
Windows
PowerShell Tutorial

for Beginners

Table of Contents

Introduction

1. PowerShell Scripting Basics

 1.1 Launching the PowerShell

 1.2 Preparing to Run PowerShell Scripts

 1.3 PowerShell Cmdlets

 1.4 Comments

 1.5 Pipes

2. Top 10 Active Directory Management Tasks with PowerShell

 2.1 Creating New User and Computer Accounts

 2.2 Joining a Computer to a Domain and Removing a Computer from a Domain

 2.3 Renaming a Computer

 2.4 Resetting a Computer Account

 2.5 Disabling User and Computer Accounts

 2.6 Deleting a Computer from Active Directory

 2.7 Creating and Deleting an Active Directory Group

 2.8 Adding Users and Computers to a Group

 2.9 Removing Users and Computers from a Group

 2.10 Moving Users and Computers to a New Organizational Unit

4

5

5

6

7

11

11

12

12

18

19

20

20

21

22

24

25

26

2

3

3. Top 10 File System Management Tasks Using PowerShell

 3.1 Viewing Objects in a Directory

 3.2 Creating Files and Folders

 3.3 Deleting Files and Folders

 3.4 Copying Files and Folders

 3.5 Moving Files and Directories

 3.6 Renaming Files

 3.7 Setting File and Folder Permissions

 3.8 Removing User Permissions

 3.9 Enabling and Disabling Permissions Inheritance

 3.10 Changing File and Folder Ownership

4. Automating PowerShell Scripts

 4.1 Creating Scheduled Tasks with PowerShell Scripts

 4.2 Running PowerShell Scripts with Task Scheduler

Final Word

About Netwrix

28

28

29

29

31

32

33

33

36

37

38

39

39

40

45

47

4

Introduction
Automate it. Now, where’s that script…
Warning: PowerShell is addictive.

Windows PowerShell is an object-oriented automation engine and scripting language with an interactive

command-line shell designed to help IT professionals configure systems and automate administrative tasks.

You can find it in every modern Windows OS starting with Windows 2008R2.

Learning Windows PowerShell is like learning to use a universal multi-tool. In this eBook, we’ll walk you

through PowerShell scripting basics, show you PowerShell commands and scripts for performing the most

common administrative tasks, and explain how you can schedule your PowerShell scripts and commands.

So, let’s start learning PowerShell!

1. PowerShell Scripting Basics

5

In this part, we’ll cover PowerShell scripting basics so you can more easily perform virtually any

administration task in your Windows IT environment.

PowerShell offers both a command-line option and an integrated scripting environment (ISE):

1.1 Launching the PowerShell

To launch the PowerShell command line, type powershell.exe in the Windows Start menu. You’ll see a

screen like the following:

To launch the PowerShell ISE, type powershell_ise.exe in the Start menu. Using the PowerShell ISE is the

preferred way to work with the scripting language because it provides syntax highlighting, auto-filling of

commands and other automation features that simplify script development and testing.

6

1.2 Preparing to Run PowerShell Scripts

PowerShell scripts are stored in.ps1 files. You cannot run a script by simply double-clicking a file; this design
helps avoid accidental harm to your systems. Instead, to execute a script, right-click it and choose Run with
PowerShell:

In addition, there is a policy that restricts script execution. You can check this policy by running the
Get-ExecutionPolicy command in PowerShell:

You will get one of the following values:

To start working with PowerShell, you’ll need to change the policy setting from Restricted to RemoteSigned
using the Set-ExecutionPolicy RemoteSigned command:

Restricted — No scripts are allowed. This is the default setting, so you will see it the first time you run the

command.

AllSigned — You can run scripts signed by a trusted developer. Before executing, a script will ask you to

confirm that you want to run it.

RemoteSigned — You can run your own scripts or scripts signed by a trusted developer.

Unrestricted — You can run any script you want.

7

1.3 PowerShell Cmdlets

A cmdlet is a PowerShell command with a predefined function, similar to an operator in a programming
language. Here are some key things to know about cmdlets:

A cmdlet always consists of a verb (or a word that functions as a verb) and a noun, separated with a hyphen
(the “verb-noun” rule). For example, some of the verbs include:

For practice, try executing the following cmdlets:

There are system, user and custom cmdlets.

Cmdlets output results as an object or as an array of objects.

Get — To get something

Get-Process — Shows the processes currently running on your computer:

Set — To define something

Start — To run something

Stop — To stop something that is running

Out — To output something

New — To create something (“new” is not a verb, of course, but it functions as one)

Cmdlets can get data for analysis or transfer data to another cmdlet using pipes (I’ll discuss pipes more in

a moment).

Cmdlets are case-insensitive. For example, it doesn’t matter whether you type Get-ADUser, get-aduser

or gEt-AdUsEr.

If you want to use several cmdlets in one string, you must separate them with a semicolon (;).

8

Get-Service — Shows the list of services with their status

Get-Content — Shows the content of the file you specify (for example, Get-Content
C:\Windows\System32\drivers\etc\hosts)

Good news — you don’t need to memorize all cmdlets. You can list all cmdlets by executing the Get Help
-Category cmdlet, which will return the following:

You can also create your own custom cmdlets.

Each cmdlet has several parameters that customize what it does. The PowerShell ISE will automatically
suggest all valid parameters and their types after you type a cmdlet and a hyphen (-):

9

For example, the following cmdlet shows all services whose names start with “W”:
Get-Service -Name W*

If you forget a cmdlet’s parameters, just use a script like the following, which will display the parameters for
the Get-Process cmdlet:

If you still don’t find the cmdlet you need, you can make sure the help is current and then get examples for
a cmdlet (such as Get-Process) using a script like this:

Update-Help #to update the help data
Get-Help Get-Process -Examples

Get-Process | Get-Member

Start-Process notepad

Stop-Process -Name notepad

spps -Name notepad

start notepad

10

You can also use aliases, which are shortened cmdlet names. For instance, instead of Get-Help you can use
just Help. Try running the following two commands and see whether you get the same result:

Similarly, to stop this process, you can use either of the following commands:

To see all aliases, execute the Get-Alias cmdlet.

11

1.5 Pipes

A pipe passes data from one cmdlet to another. I used a pipe earlier to get all properties of an object.

For example, if you execute the following script, you’ll get all services sorted by their status:

You can also use a pipe to output text to a file using a script like the following:

1.4 Comments

Leaving comments in a script will help you — and your colleagues — better understand what the script does.
A string comment is a single line that starts with a number sign (#); block comments spread across multiple
lines, starting and ending with number signs and angle brackets:

Get-Service | Sort-Object -property Status

"Hello, World!" | Out-File C:\ps\test.txt

You can use multiple pipes. For instance, the following script lists all services, with the first pipe excluding
stopped services and the second pipe limiting the list to display names only:

Get-Service | WHERE {$_.status -eq "Running"} | SELECT displayname
“$_.” defines current element in the pipe

2. Top 10 Active Directory Management
Tasks with PowerShell
The easiest way to manage objects in an Active Directory domain is using the Active Directory Users and

Computers (ADUC) MMC snap-in. However, what if you need to create multiple user accounts in bulk, or

ADUC is not available for some reason? In this part, we’ll explore how to perform most common AD

management tasks with PowerShell.

Keep in mind that before you can work with Active Directory and its objects, you need to import the Active

Directory module for Windows PowerShell. In Microsoft Windows Server 2008 R2, you need to enable this

module by running the following command:

In Microsoft Windows Server 2012 and later, this module is enabled by default.

You can create new user accounts in Active Directory using the cmdlet New-ADUser. You can get its full
syntax by running the following command:

When you know the syntax, it’s easy to add users to Active Directory:

2.1 Creating New User and Computer Accounts

12

Import-Module ActiveDirectory

Get-Command New-ADUser –Syntax

New-ADUser B.Johnson

Accounts are created with the following default properties:

Therefore, to make a new account that’s actually usable, you need to enable it using the Enable-ADAccount

cmdlet and give it a password using the Set-ADAccountPassword cmdlet.

Let’s create a new account with the following attributes:

The Read-Host parameter will ask you to input new password. Note that the password should meet the

length, complexity and history requirements of your domain security policy.

Here’s the script we’ll use:

13

Account is created in the “Users” container.

Account is disabled.

Account is a member of Domain Users group.

No password is set.

User must reset the password at the first logon.

Name — Jack Robinson

Given Name — Jack

Surname — Robinson

Account Name — J.Robinson

User Principal Name — J.Robinson@enterprise.com

Path — “OU=Managers,DC=enterprise,DC=com”

Password Input — Required

Status — Enabled

New-ADUser -Name "Jack Robinson" -GivenName "Jack" -Surname "Robinson" -SamAccountName
"J.Robinson" -UserPrincipalName "J.Robinson@enterprise.com" -Path
"OU=Managers,DC=enterprise,DC=com" -AccountPassword(Read-Host -AsSecureString "Input
Password") -Enabled $true

Now, let’s create ten similar Active Directory accounts in bulk and set a default password (P@ssw0rd) for

each of them. To send the default password in a protected state, we must use the ConvertTo-SecureString

parameter. Here’s the script to use:

To make the script more flexible, add the Read-Host parameter, which will ask for the number of users to be

added:

14

parameter. Here’s the script to use:
$path="OU=IT,DC=enterprise,DC=com"
$username="ITclassuser"
$count=1..10
foreach ($i in $count)
{ New-AdUser -Name $username$i -Path $path -Enabled $True -ChangePasswordAtLogon $true `
-AccountPassword (ConvertTo-SecureString "P@ssw0rd" -AsPlainText -force) -passThru }

$path="OU=IT,DC=enterprise,DC=com"
$username=Read-Host "Enter name"
$n=Read-Host "Enter Number"
$count=1..$n
foreach ($i in $count)
{ New-AdUser -Name $username$i -Path $path -Enabled $True -ChangePasswordAtLogon $true `
-AccountPassword (ConvertTo-SecureString "P@ssw0rd" -AsPlainText -force) -passThru }

Another option for creating users in AD is to import them from a CSV file. This option is great when you have

a list of users with predefined personal details such as:

The CSV file must be in UTF8 encoding and contain contact data that looks like this:

The following script will create enabled user objects for any users in the CSV that don’t already have accounts

in AD. The “Reset password at the next logon” option will be enabled for the new accounts, so you can use

your default password:

15

FirstName

LastName

Username

Department

Password

OU

16

#Enter a path to your import CSV file
$ADUsers = Import-csv C:\scripts\newusers.csv

foreach ($User in $ADUsers)
{
 $Username = $User.username
 $Password = $User.password
 $Firstname = $User.firstname
 $Lastname = $User.lastname
 $Department = $User.department
 $OU = $User.ou

 #Check if the user account already exists in AD
 if (Get-ADUser -F {SamAccountName -eq $Username})
 {
 #If user does exist, output a warning message
 Write-Warning "A user account $Username has already exist in Active Directory."
 }
 else
 {
 #If a user does not exist then create a new user account

 #Account will be created in the OU listed in the $OU variable in the CSV file; don’t forget
to change the domain name in the"-UserPrincipalName" variable
 New-ADUser `
 -SamAccountName $Username `
 -UserPrincipalName "$Username@yourdomain.com" `
 -Name "$Firstname $Lastname" `
 -GivenName $Firstname `
 -Surname $Lastname `
 -Enabled $True `
 -ChangePasswordAtLogon $True `
 -DisplayName "$Lastname, $Firstname" `
 -Department $Department `
 -Path $OU `
 -AccountPassword (convertto-securestring $Password -AsPlainText -Force)

 }
}

17

After script execution, we have two new users, Edward Franklin and Bill Jackson, in our Active Directory

domain:

To create a computer object, use the New-ADComputer cmdlet. For example, execute the following cmdlet

parameters to create a computer object with “WKS932” as its name and the default LDAP path value:

If you have a list of computers that should be imported into Active Directory, save the list to a CSV file with

the heading “computer” and the list of computer names in the column below it. Run the following PowerShell

script on your domain controller to add computers from the CSV file, making sure you have the Path and File

variables set correctly:

New-ADComputer –Name “WKS932” –SamAccountName “WKS932”

$File="C:\scripts\Computers.csv" # Specify the import CSV position.
$Path="OU=Devices,DC=enterprise,DC=com" # Specify the path to the OU.
Import-Csv -Path $File | ForEach-Object { New-ADComputer -Name $_.Computer
-Path $Path -Enabled $True}

Another common task is joining a computer to a domain controller. To join a PC to an Active Directory
domain, run the following PowerShell script locally:

The computer will restart and then join the domain; it will be added to the default container.

To join a computer to a DC remotely, you need to enhance this script this way:

2.2 Joining a Computer to a Domain and Removing
a Computer from a Domain

18

$dc = "ENTERPRISE" # Specify the domain to join.
$pw = "Password123" | ConvertTo-SecureString -asPlainText –Force # Specify the password for
the domain admin.
$usr = "$dc\T.Simpson" # Specify the domain admin account.
$creds = New-Object System.Management.Automation.PSCredential($usr,$pw)
Add-Computer -DomainName $dc -Credential $creds -restart -force -verbose # Note that the
computer will be restarted automatically.

The $pc variable and –LocalCredential parameter are used to authenticate the computer to the domain.
Note that in order to use this method, you must disable the firewall on the local computer.

You can add more than one computer to the domain by either specifying them in the command line as a
comma-delimited list or importing their names from a text file.

Here’s how to specify the computers in a comma-delimited list:

$dc = "ENTERPRISE"
$pw = "Password123" | ConvertTo-SecureString -asPlainText -Force
$usr = "$dc\T.Simpson"
$pc = "WKS034, WKS052, WKS057" # Specify the computers that should be joined to the domain.
$creds = New-Object System.Management.Automation.PSCredential(usrpw)
Add-Computer -ComputerName $pc -LocalCredential $pc\admin -DomainName $dc -Credential
$creds -Restart -Force

$dc = "ENTERPRISE"
$pw = "Password123" | ConvertTo-SecureString -asPlainText -Force
$usr = "$dc\T.Simpson"
$pc = "R07GF" # Specify the computer that should be joined to the domain.
$creds = New-Object System.Management.Automation.PSCredential($usr,$pw)
Add-Computer -ComputerName $pc -LocalCredential $pc\admin -DomainName $dc -Credential
$creds -Verbose -Restart -Force

And here’s how to use a text file with the list of computers that should be joined:

To remove a computer from a domain remotely, use the Remove-Computer cmdlet. Here, we’re removing a
computer from a domain, so no local credentials are needed and we can skip the –LocalCredential parameter:

To remove multiple computers using a list in a TXT file, use the script above for joining computers to a DC,
replacing the Add-Computer cmdlet with Remove-Computer. Note that you will still need domain admin
credentials to complete this unjoin operation.

19

$dc = "ENTERPRISE"
$pw = "Password123" | ConvertTo-SecureString -asPlainText -Force
$usr = "$dc\T.Simpson"
$pc = Get-Content -Path C:\Computers.txt # Specify the path to the computers list.
$creds = New-Object System.Management.Automation.PSCredential($usr,$pw)
Add-Computer -ComputerName $pc -LocalCredential $pc\admin -DomainName $dc -Credential
$creds -Restart -Force

$dc = "ENTERPRISE"
$pw = "Password123" | ConvertTo-SecureString -asPlainText -Force
$usr = "$dc\T.Simpson"
$pc = "R07GF"
$creds = New-Object System.Management.Automation.PSCredential($usr,$pw)
Remove-Computer -ComputerName $pc -Credential $creds –Verbose –Restart –Force

To change a computer name, use the Rename-Computer cmdlet. Note that the computer must be online
and connected to Active Directory.

2.3 Renaming a Computer

Rename-Computer –ComputerName "FS1" -NewName "FS2"

If you want to run this script locally, it will look like this:

Rename-Computer -NewName "newname" -DomainCredential "Domain\Administrator"

You can improve the renaming script by joining the computer to the domain and putting it into the specified
OU simultaneously. The script should be run on the target machine, not on the domain controller.

The script will prompt for the credentials of an account that has permissions to join computers to the
domain, and then the computer will be renamed, restarted and joined to the domain.

20

$NewComputerName = "Server3" # Specify the new computer name.
$DC = "contoso.com" # Specify the domain to join.
$Path = "OU=TestOU,DC=contoso,DC=com" # Specify the path to the OU where to put the
computer account in the domain.
Add-Computer -DomainName $DC -OUPath $Path -NewName $NewComputerName –Restart
–Force

Like a user account, a computer account interacts with Active Directory using a password. But for computer
accounts, a password change is initiated every 30 days by default and the password is exempted from the
domain’s password policy. Password changes are driven by the client (computer), not AD.

Computer credentials usually unknown to the user because they are randomly set by the computer. But you
can set your own password; here is a PowerShell script for doing so:

2.4 Resetting a Computer Account

$pc = read-host –Prompt “Input computer name to reset“ # Specify the computer name.
$pw = read-host –Prompt “Input random characters for temp password“ –AsSecureString #
Specify the password.
Get-ADComputer $pc | Set-ADAccountPassword –NewPassword:$pw -Reset:$true

To disable user, computer or service accounts, use the Disable-ADAccount cmdlet. The -Identity parameter
specifies which account to disable. You can specify an account by its distinguished name, security identifier
(SIDs), globally unique identifier (GUID) or Security Account Manager (SAM) account name.

2.5 Disabling User and Computer Accounts

Disable-AdAccount -Identity RussellS

If you specify a computer account name, remember to append a dollar sign ($) at the end of the name;
otherwise, you’ll get an error after script execution.

21

Disable-ADAccount -Identity fs1$

You can also disable accounts in bulk using a list in a text file:

$Pclist = Get-Content C:\scripts\Computer.txt # Specify the path to the computer list.
Foreach($pc in $Pclist)
{
Disable-ADAccount -Identity "$pc"
Get-ADComputer -Identity "$pc" | Move-ADObject -TargetPath “OU=Disabled
Computers,DC=enterprise,DC=com”
}

To delete a computer account from AD, use the Remove-ADObject cmdlet:

You will be prompted to confirm the deletion.

If you have a text file with a list of old computers, you can streamline the task of removing them using
PowerShell. The following script will read the computer names from a TXT file and delete the corresponding
accounts via a pipeline:

2.6 Deleting a Computer from Active Directory

Remove-ADObject -Identity "WKS932"

Get-Content C:\scripts\computersfordeletion.txt | % { Get-ADComputer -Filter { Name
-eq $_ } } | Remove-ADObject -Recursive

22

In Active Directory, access to network resources is granted to security principals, such as user accounts and
computer accounts, and those permissions can change over time. To simplify access management and
improve security, medium and large companies often use Active Directory security groups, which can
contain user and computer accounts as well as other groups. They also often use distribution groups to
manage email distribution lists. Both security and distribution groups have unique SIDs and GUIDs.

There is one computer, FS1, that has been not been logged on to for more than 30 days. The system will
prompt for confirmation before deleting it from the domain:

If you want to disable, rather than delete, the inactive computer accounts, replace the
Remove-ADComputer cmdlet with Set-ADComputer and -Enabled $false parameter and value.

2.7 Creating and Deleting an Active Directory Group

$stale = (Get-Date).AddDays(-30) # means 30 days since last logon; can be changed to any number.
Get-ADComputer -Property Name,lastLogonDate -Filter {lastLogonDate -lt $stale} |
FT Name,lastLogonDate
Get-ADComputer -Property Name,lastLogonDate -Filter {lastLogonDate -lt $stale} |
Remove-ADComputer

Remember that it is critical to closely track all changes to computer accounts, so you can quickly spot any
unwanted modifications and respond appropriately. Here’s how to monitor computer account deletions.

Stale accounts in Active Directory can be compromised, leading to security incidents, so it is critical to keep
an eye on them. This PowerShell script will query Active Directory and return all computers that have not
been logged in to for the past 30 days. It also will remove those accounts to keep your AD clean.

https://www.netwrix.com/how_to_detect_who_deleted_a_computer_account.html?utm_source=content&utm_medium=ebook&utm_campaign=powershell-tutorial

23

To create an AD group, use the New-ADGroup cmdlet. You can get its syntax by running the following command:

Get-Command New-ADGroup –Syntax

The easiest way to create a group is to run this short script:

The system will ask you to specify the GroupScope parameter and then it will create a new group. However,
this group will have default values, such as:

Let’s create a security group called “Quality” in the “Production” OU (-Path); it should be a security group
(-GroupCategory) and it should be global (-GroupScope):

If you want to make a universal distribution group, simply change the –GroupCategory parameter to “Distribution” and
the –GroupScope parameter to “Universal”. You can also change the LDAP path by changing the –Path parameter.

To delete an AD group, use the Remove-ADGroup cmdlet. The easiest script for that will look like this:

You’ll be prompted to confirm the deletion of the group.

New-ADGroup "Group Name"

Remove-ADGroup -Identity Quality

New-ADGroup "Quality" -Path "OU=Production,DC=enterprise,dc=com" -GroupCategory
Security -GroupScope Global -PassThru –Verbose

It will be created in the default LDAP container called “Users”.

It will have the “Security” group type.

The Members, Member of, Description, Email and Notes fields will all be blank.

If you’re not already familiar with AD groups and group management, please read the Active Directory
Group Management Best Practice guide.

https://www.netwrix.com/active_directory_group_management.html?utm_source=content&utm_medium=ebook&utm_campaign=powershell-tutorial
https://www.netwrix.com/active_directory_group_management.html?utm_source=content&utm_medium=ebook&utm_campaign=powershell-tutorial

24

Add-AdGroupMember -Identity Quality -Members B.Jackson, E.Franklin

Add-AdGroupMember -Identity Quality -Members WKS043$

"Managers","Quality" | Add-ADGroupMember -Members `
 (Read-Host -Prompt "Enter User Name")

2.8 Adding Users and Computers to a Group

You can add users to an AD group with the Add-AdGroupMember cmdlet. For instance, if you needed to
add two users, B.Jackson and E.Franklin, to the “Quality” group, here is what the script would look like:

Get-ADGroupMember -Identity Quality

Once you’ve added users to a security group, you can run this script to verify that they are listed as members:

If you need to add users to another security or distribution group, such as Domain Admins, specify “Domain
Admins” as the value for the –Identity parameter. If you need one group to be a member of another, specify
the group name as the value for the –Members parameter. The same principle applies to computer accounts,
but you’ll need to append a dollar sign ($) to the end of the computer account name. For example, to add the
computer “WKS043” to a group, specify “WKS043$” as the value for the –Member parameter:

To add a user to multiple groups at once, run the following script.

You’ll be prompted to input the username.

If you want to add a large number of users to a group, you can specify them in a CSV file and then import that
file. Note that the list of the usernames in the CSV file must contain the SamAccountNames in the “users”
column, as shown below:

25

Import-CSV C:\scripts\users.csv -Header users | ForEach-Object {Add-AdGroupMember
-Identity "Quality" -members $_.users}

To add users to group from a CSV file, run the following PowerShell script:

Get-ADGroupMember “Quality” | Get-ADUser | ForEach-Object {Add-ADGroupMember
-Identity “QualityControl” -Members $_}

If you want to copy all members from one group to another group, run the following script:

Import-CSV C:\scripts\users.csv -Header users | ForEach-Object {Remove-ADGroupMember
-Identity "Quality" -members $_.users}

Get-ADUser -Identity E.Franklin -Properties MemberOf | ForEach-Object {
 $_.MemberOf | Remove-ADGroupMember -Members $_.DistinguishedName -Confirm:$false
}

To remove a user from all groups, run this script:

2.9 Removing Users and Computers from a Group

To remove a user from a group, use the Remove-ADGroupMember cmdlet:

Remove-ADGroupMember -Identity Quality -Members J.Robinson

To remove a computer account from a group, specify the computer name with a dollar sign ($) at the end as
the value for the -Members parameter.

An easy way to remove multiple users from an AD group is to create a CSV file with the list of usernames and
then remove those users from the group object using this script:

26

Note that the user will lose all group membership except Domain Users, which can be removed manually if
needed.

2.10 Moving Users and Computers to a New Organizational Unit

The PowerShell Move-ADObject cmdlet moves any object or set of objects (such as a user, a computer, a
group or an OU) to a specified OU. The -Identity parameter specifies which Active Directory object or
container to move. Note that you need to enter the full LDAP path or SID of the object; you cannot use its
SamAccountName. Here’s how to move the user “John Brown” to the “Districts” OU:

Move-ADObject -Identity "CN=John Brown,CN=Users,DC=enterprise,DC=com" -TargetPath
"OU=Districts,OU=IT,DC=Enterprise,DC=Com"

Use the same syntax to move computer objects. The following command will move the computer “R07GF” to
the “Computers” container:

If you have a predefined list of objects to move, you can save it as a CSV file and then import that file to Active
Directory. The CSV list should be in the following format:

Move-ADObject -Identity "CN=R07GF,OU=CEO,DC=enterprise,DC=com" -TargetPath
"CN=Computers,DC=Enterprise,DC=Com"

Don’t forget to enable the Active Directory Recycle Bin feature so you can easily roll back your changes if
something goes wrong.

https://www.netwrix.com/how_to_restore_active_directory_users.html?utm_source=content&utm_medium=ebook&utm_campaign=powershell-tutorial

27

Use this PowerShell script to move AD user accounts listed in a CSV file:

Specify target OU. This is where users will be moved.
$TargetOU = "OU=Districts,OU=IT,DC=enterprise,DC=com"
Specify CSV path. Import CSV file and assign it to a variable.
$Imported_csv = Import-Csv -Path "C:\temp\MoveList.csv"

$Imported_csv | ForEach-Object {
 # Retrieve DN of user.
 $UserDN = (Get-ADUser -Identity $_.Name).distinguishedName
 # Move user to target OU.
 Move-ADObject -Identity $UserDN -TargetPath $TargetOU
}

To move AD computer accounts listed in a text file, use the following PowerShell script:

Specify path to the text file with the computer account names.
$computers = Get-Content C:\Temp\Computers.txt

Specify the path to the OU where computers will be moved.
$TargetOU = "OU=Districts,OU=IT,DC=enterprise,DC=com"
ForEach($computer in $computers){
 Get-ADComputer $computer |
 Move-ADObject -TargetPath $TargetOU
}

3. Top 10 File System Management Tasks
Using PowerShell
Every day, system administrators have to perform a range of standard operations on the numerous files and

folders on their Windows servers, from managing user data on shared resources to maintaining backups

properly. Using the following information, you can automate many of these tasks and save time for more

important projects.

In this part, we explain how to automate file management and NTFS permissions management tasks with the

help of PowerShell scripts.

To view the content of a directory on a Windows file server, use the Get-ChildItem cmdlet. To show all
hidden files, add the -Force parameter. The command below shows all root objects in the Shared folder:

To filter the output, add the Filter, Exclude, Include and Path parameters to the Get-ChildItem cmdlet. For
advanced object filtering, use the Where-Object cmdlet. The script below searches for all executable files in
the IT folder that were modified after April 1, 2018:

3.1 Viewing Objects in a Directory

28

Get-ChildItem -Force \\fs\Shared

If you want to also check all subfolders and their content, add the -Recurse parameter:

Get-ChildItem -Force \\fs\Shared -Recurse

Get-ChildItem -Path \\fs\Shared\IT -Recurse -Include *.exe | Where-Object -FilterScript
{($_.LastWriteTime -gt '2018-04-01')}

To create new objects with Windows PowerShell, you can use the New-Item cmdlet and specify the type of
item you want to create, such as a directory, file or registry key. For example, this command creates a folder:

If you need to create a file and write data to it, there are at least two built-in methods. The first is to use the
Out-File cmdlet:

To overwrite an existing file, use the –Force switch parameter.

Alternatively, you can create files using the Export-Csv cmdlet, which exports the output to a csv file that can
be opened in Excel:

3.2 Creating Files and Folders

29

New-Item -Path '\\fs\Shared\NewFolder' -ItemType Directory

To delete objects, use the Remove-Item cmdlet. If the object is not empty, you’ll be prompted to confirm the
deletion. Here’s how to delete the “IT” folder and all the subfolders and files inside it:

3.3 Deleting Files and Folders

Remove-Item -Path '\\fs\shared\it\'
Confirm
The item at \\pdc\shared\it has children and the Recurse parameter was not specified. If you
continue, all children will be removed with the item. Are you sure you want to continue?
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):

And this command creates an empty file:

New-Item -Path '\\fs\Shared\NewFolder\newfile.txt' -ItemType File

$text = 'Hello World!' | Out-File $text -FilePath C:\data\text.txt

Get-ADuser -Filter * | Export-Csv -Path C:\data\ADusers.csv

If you have already made sure that every object inside the folder should be deleted, you can use the
-Recurse switch to skip the confirmation step:

30

Remove-Item -Path '\\fs\shared\it\' -Recurse

Sometimes you need to clean up old files from a certain directory. Here’s the way to accomplish that:

$Folder = "C:\Backups"

#delete files older than 30 days
Get-ChildItem $Folder -Recurse -Force -ea 0 |
? {!$_.PsIsContainer -and $_.LastWriteTime -lt (Get-Date).AddDays(-30)} |
ForEach-Object {
 $_ | del -Force
 $_.FullName | Out-File C:\log\deletedbackups.txt -Append
}

#delete empty folders and subfolders if any exist
Get-ChildItem $Folder -Recurse -Force -ea 0 |
? {$_.PsIsContainer -eq $True} |
? {$_.getfiles().count -eq 0} |
ForEach-Object {
 $_ | del -Force
 $_.FullName | Out-File C:\log\deletedbackups.txt -Append
}

31

Here’s how to check whether a file exists and delete it if it does:

$FileName = 'C:\data\log.txt'
If (Test-Path $FileName){
 Remove-Item $FileName
}

To delete files from remote PCs, you must have the appropriate security permissions to access them.
Be sure to use UNC paths so the script will correctly resolve the file locations.

$filelist = @(" \c$\Temp", "\c$\Backups") #variable to delete files and folder
$computerlist = Get-Content C:\data\pc.txt #get list of remote pc's
 foreach ($computer in $computerlist){
 foreach ($file in $filelist){
 $filepath= Join-Path "\\$computer\" "$filelist" #generate unc paths to files or folders
 if (Test-Path $filepath)
 {
 Remove-Item $filepath -force -recurse -ErrorAction Continue}}}

The Copy-Item cmdlet enables you to copy objects from one path to another. The following command
creates a backup by copying the file users.xlsx from one remote computer (fs) and saving it to another (fs2)
over the network:

3.4 Copying Files and Folders

Copy-Item -Path \\fs\Shared\it\users.xlsx -Destination \\fs2\Backups\it\users.xlsx

If the target file already exists, the copy attempt will fail. To overwrite the existing file, even if it is in
Read-Only mode, use the -Force parameter:

Copy-Item -Path \\fs\Shared\it\users.xlsx -Destination \\fs2\Backups\it\users.xlsx -Force

If you’re copying files to or from remote computers, be sure to use UNC paths. For example, use this
command to copy files from a remote file server to the local C: directory:

Copy-Item \\fs\c$\temp -Recurse C:\data\

32

To copy files from your local directory to the remote folder, simply reverse the source and destination
locations:

Copy-Item C:\data\ -Recurse \\fs\c$\temp

You can also copy files from one remote server to another. The following script recursively copies the
\\fs\Shared\temp folder to \\fs\Shared\test:

Copy-Item \\fs\Shared\temp -Recurse \\fs\Shared\test

To copy only certain files from the source content to the destination, use the -Filter parameter. For instance,
the following command copies only txt files from one folder to another:

Copy-Item -Filter *.txt -Path \\fs\Shared\it -Recurse -Destination \\fs2\Shared\text

You can also run the XCOPY and ROBOCOPY commands to copy files, or use COM objects as in the example
below:

(New-Object -ComObject Scripting.FileSystemObject).CopyFile('\\fs\Shared', 'fs2\Backup')

Move-Item -Path \\fs\Shared\Backups\1.bak -Destination \\fs2\Backups\archive\1.bak

Move-Item -Path \\fs\Shared\Backups -Destination \\fs2\Backups\archive

The Move-Item cmdlet moves an item, including its properties, contents, and child items, from one location
to another. It can also move a file or subdirectory from one directory to another location.

The following command moves a specific backup file from one location to another:

This script moves the entire Backups folder and its content to another location:

The Backups directory and all its files and subfolders will then appear in the archive directory.

3.5 Moving Files and Directories

33

Rename-Item -Path "\\fs\Shared\temp.txt" -NewName "new_temp.txt"

[system.enum]::getnames([System.Security.AccessControl.FileSystemRights])

The Rename-Item cmdlet enables you to change the name of an object while leaving its content intact. It’s
not possible to move items with the Rename-Item command; for that functionality, you should use the
Move-Item cmdlet as described above.

The following command renames a file:

$files = Get-ChildItem -Path C:\Temp #create list of files
foreach ($file in $files)
{
 $newFileName=$file.Name.Replace("A","B") #replace "A" with "B"
 Rename-Item $file $newFileName
}

To rename multiple files at once, use a script like this:

3.6 Renaming Files

In order to implement a least-privilege model, which is a best practice for system security, IT security
specialists and system administrators configure NTFS access control lists (ACLs) by adding access control
entries (ACEs) on NTFS file servers. There are both basic and advanced NTFS permissions. You can set each
of the permissions to “Allow” or “Deny”. You can find all these user permissions by running the following
PowerShell script:

The PowerShell set-acl cmdlet is used to change the security descriptor of a specified item, such as a file,
folder or a registry key; in other words, it is used to modify file or folder permissions. The following script sets
the “FullControl” permission to “Allow” for the user “ENTERPRISE\T.Simpson” to the folder “Sales”:

3.7 Setting File and Folder Permissions

If you’re not familiar with NTFS permissions management, check out this NTFS Permissions
Management Best Practice guide.

https://www.netwrix.com/ntfs_permissions_management.html?utm_source=content&utm_medium=ebook&utm_campaign=powershell-tutorial
https://www.netwrix.com/ntfs_permissions_management.html?utm_source=content&utm_medium=ebook&utm_campaign=powershell-tutorial

34

$acl = Get-Acl \\fs1\shared\sales
$AccessRule = New-Object
System.Security.AccessControl.FileSystemAccessRule("ENTERPRISE\T.Simpson","FullControl","Allow")
$acl.SetAccessRule($AccessRule)
$acl | Set-Acl \\fs1\shared\sales

$acl = Get-Acl \\fs1\shared\Accounting
$AccessRule = New-Object
System.Security.AccessControl.FileSystemAccessRule("ENTERPRISE\J.Carter","FullControl","Allow")
$acl.AddAccessRule($AccessRule)
$acl | Set-Acl \\fs1\shared\Accounting

Note that the SetAccessRule parameter completely overwrites the permissions for a user or group, so you
can change folder permissions using this parameter. If you just want to add permissions, use the
AddAccessRule parameter instead. For instance, the following script adds the “FullControl” permission for
the “ENTERPRISE\J.Carter” user account to the “Accounting” folder:

Here are the other permissions you can assign to users or security groups:

Access Right

Full Control

Traverse Folder / Execute File

List Folder / Read Data

Read Attributes

Read Extended Attributes

Create Files / Write Data

Create Folders / Append Data

Write Attributes

Write Extended Attributes

Delete Subfolders and Files

Delete

Read Permissions

Change Permissions

Take Ownership

Access Right’s Name in PowerShell

FullControl

ExecuteFile

ReadData

ReadAttributes

ReadExtendedAttributes

CreateFiles

AppendData

WriteAttributes

WriteExtendedAttributes

DeleteSubdirectoriesAndFiles

Delete

ReadPermissions

ChangePermissions

TakeOwnership

35

There are also sets of basic access rights that can be applied:

Access Rights Set

Read

Write

Read and Execute

Modify

Rights Included in the Set

List Folder / Read Data

Read Attributes

Read Extended Attributes

Read Permissions

Create Files / Write Data

Create Folders / Append Data

Write Attributes

Write Extended Attributes

Traverse folder / Execute File

List Folder / Read Data

Read Attributes

Read Extended Attributes

Read Permissions

Traverse folder / Execute File

List Folder / Read Data

Read Attributes

Read Extended Attributes

Create Files / Write Data

Create Folders / Append Data

Write Attributes

Write Extended Attributes

Delete

Read Permissions

Name of the Set in PowerShell

Read

Write

ReadAndExecute

Modify

36

To copy permissions, a user must own both the source and target folders. The following command will copy
the permissions from the “Accounting” folder to the “Sales” folder:

get-acl \\fs1\shared\accounting | Set-Acl \\fs1\shared\sales

If you want to get a list of NTFS permissions via PowerShell, you can follow this easy how-to about
exporting NTFS permissions to CSV.

$acl = Get-Acl \\fs1\shared\sales
$AccessRule = New-Object
System.Security.AccessControl.FileSystemAccessRule("ENTERPRISE\T.Simpson","FullControl","Allow")
$acl.RemoveAccessRule($AccessRule)
$acl | Set-Acl \\fs1\shared\sales

To remove permissions, use the RemoveAccessRule parameter. Let’s delete the “Allow FullControl”
permission for T.Simpson to the “Sales” folder:

$acl = Get-Acl \\fs1\shared\sales
$usersid = New-Object System.Security.Principal.Ntaccount ("ENTERPRISE\T.Simpson")
$acl.PurgeAccessRules($usersid)
$acl | Set-Acl \\fs1\shared\sales

Note that RemoveAccessRule deletes only specific permissions. To completely wipe T.Simpson’s
permissions to the “Sales” folder, use the PurgeAccessRules command:

Note that PurgeAccessRules doesn’t work with a string user name; it works only with SIDs. Therefore, we
used the “Ntaccount” class to convert the user account name from a string into a SID. Also note that
PurgeAccessRules works only with explicit permissions; it does not purge inherited ones.

3.8 Removing User Permissions

https://www.netwrix.com/how_to_export_folder_permissions.html?utm_source=content&utm_medium=ebook&utm_campaign=powershell-tutorial

37

NTFS permissions can be either explicit or inherited. Explicit permissions are permissions that are
configured individually, while inherited permissions are inherited from the parent folder. The hierarchy for
permissions is as follows:

To manage inheritance, we use the SetAccessRuleProtection method. It has two parameters:

Let’s disable inheritance for the “Sales” folder and delete all inherited permissions as well:

All inherited permissions were removed; only access permissions added explicitly are left.

Let’s revert this change and re-enable inheritance for the “Sales” folder:

3.9 Enabling and Disabling Permissions Inheritance

Explicit Deny

The first parameter is responsible for blocking inheritance from the parent folder. It has two states:

“$true” and “$false”.

The second parameter determines whether the current inherited permissions are retained or removed.

It has the same two states: “$true” and “$false”.

Explicit Allow

Inherited Deny

Inherited Allow

$acl = Get-Acl \\fs1\shared\sales
$acl.SetAccessRuleProtection($true,$false)
$acl | Set-Acl \\fs1\shared\sales

$acl = Get-Acl \\fs1\shared\sales
$acl.SetAccessRuleProtection($false,$true)
$acl | Set-Acl \\fs1\shared\sales

38

If you want to set an owner for a folder, you need to run the SetOwner method. Let’s make
“ENTERPRISE\J.Carter” the owner of the “Sales” folder:

Notice that we again used the Ntaccount class to convert the user account name from a string into a SID.

Note that the SetOwner method does not enable you to change the owner to any account you want; the
account must have the “Take Ownership”, “Read” and “Change Permissions” rights.

3.10 Changing File and Folder Ownership

$acl = Get-Acl \\fs1\shared\sales
$object = New-Object System.Security.Principal.Ntaccount("ENTERPRISE\J.Carter")
$acl.SetOwner($object)
$acl | Set-Acl \\fs1\shared\sales

4. Automating PowerShell Scripts
Now let’s explore you how to create scheduled tasks using PowerShell scripts and Microsoft Windows Task

Scheduler.

Suppose that each day at 10 AM, we want to execute a PowerShell script that monitors changes to group
membership in an Active Directory site.

In Windows Powershell 2.0 (Windows 7 or Windows Server 2008 R2), to create a scheduled job, you must use
the Task Scheduler module. Install the module by running the Import-Module TaskScheduler command,
and then use the following script to create a task that will execute the PowerShell script named
“GroupMembershipChanges.ps1” daily at 10 AM:

Windows PowerShell 3.0 and 4.0 (Windows Server 2012 R2 and above) don’t include the Task Scheduler
module, so this script will not work. Instead, PowerShell 3.0 and 4.0 include new cmdlets for creating
scheduled tasks, New-ScheduledTaskTrigger and Register-ScheduledTask, which make creating a
scheduled task much easier and more convenient. So let’s create a task that will execute our script daily at
10 AM using the system account (SYSTEM), which has elevated privileges:

4.1 Creating Scheduled Tasks with PowerShell Scripts

39

Import-Module TaskScheduler $task = New-Task
$task.Settings.Hidden = $true
Add-TaskAction -Task $task -Path C:\Windows\system32\WindowsPowerShell\v1.0\powershell.exe
–Arguments “-File C:\Scripts\GroupMembershipChanges.ps1”
Add-TaskTrigger -Task $task -Daily -At “10:00”
Register-ScheduledJob –Name ”Monitor Group Management” -Task $task

$Trigger= New-ScheduledTaskTrigger -At 10:00am –Daily # Specify the trigger settings
$User= "NT AUTHORITY\SYSTEM" # Specify the account to run the script
$Action= New-ScheduledTaskAction -Execute "PowerShell.exe" -Argument "C:\PS\StartupScript.ps1"
Specify what program to run and its parameters
Register-ScheduledTask -TaskName "MonitorGroupMembership" -Trigger $Trigger -User $User
-Action $Action -RunLevel Highest –Force # Specify the name of the task

Other trigger options that could be useful in creating new tasks include:

Note that, it is not possible to trigger execution “on an event” using these cmdlets; PowerShell scripts with
“on an event” triggers are much more complicated. However, it is possible to do so with the Task Scheduler
tool, so this is a real disadvantage of using PowerShell rather than Task Scheduler.

40

-AtStartup — Triggers the task at Windows startup.

-AtLogon — Triggers the task when the user signs in.

-Once — Triggers the task once. You can set a repetition interval using the –RepetitionInterval parameter.

-Weekly — Triggers the task once a week.

Task Scheduler can help you automatically launch a program or PowerShell script at a certain time or when
certain conditions are met. You can also schedule sending emails and even displaying certain messages.

To create a task, open Task Scheduler by pressing “Windows+R” and typing taskschd.msc in the window that
opens. Then take the following steps:

1. Click Create a task and enter a name and description for the new task. To run the program with
administrator privileges, check the Run with the highest privileges box. In our example, we’ll assign a
service account to run the task and run it regardless of whether the user is logged on.

4.2 Running PowerShell Scripts with Task Scheduler

2. Switch to the Triggers tab and click the New… button. Here you can specify the conditions that trigger the
task to be executed. For example, you can have it executed on schedule, at logon, on idle, at startup or
whenever a particular event occurs. We want our task to be triggered by any new software installation, so we
choose On an event from the drop-down menu and select Application from the Log drop-down. Leave the
Source parameter blank and enter “11707” for the EventID. Click OK to save your changes.

41

3. Navigate to the Actions tab and click New…. Here you can specify the actions that will be executed
whenever the trigger conditions are met. For instance, you can send an email or display a message. In our
case, we want to start a program. You can find the script here; it will send an alert with the event details
about the installed software.

To schedule the PowerShell script, specify the following parameters:

Click OK to save your changes.

42

Action — Start a program

Program\script — powershell

Add arguments (optional) — -File [Specify the file path to the script here]

https://www.netwrix.com/how_to_detect_software_installations.html?utm_source=content&utm_medium=ebook&utm_campaign=powershell-tutorial

4. The Conditions tab enables you to specify the conditions that, along with the trigger, determine whether
the task should be run. In our case, we should leave the default settings on this tab.

43

5. You can also set up additional parameters for your scheduled task on the Settings tab. For our example,
though, we’ll leave them unchanged.

6. When the task is completely set up, the system will ask you for the service account password. Note that
this account must have the “Log on as Batch Job” right. Enter the password and click OK to save the task.

7. For Task Scheduler to function properly, the Job Scheduler service must be set to start automatically. Run
Services.msc. In the list of services, find Task Scheduler and double-click it. On the General tab, set the
startup type to “Automatic” and click OK to save your change.

Now whenever new software is installed on your Microsoft Windows Server, you will be notified via an email
that details the time of the installation, the name of the software and the user ID (SID) of the person who
installed it.

To modify an existing task, right-click it in the list, select Properties, edit the required settings and click OK.
To delete a scheduled task, right-click it, select Delete and confirm the action.

44

Final Word
Let’s quickly summarize the key points of this Windows PowerShell tutorial. Now you know the basics of

PowerShell scripting, how to perform the most common Active Directory and file system management tasks

using PowerShell, and how to schedule PowerShell scripts. You might also want to check out the following

PowerShell scripts used by IT professionals to address specific cases:

45

How to Collect AD Site Information Using PowerShell

How Find Disabled or Inactive Users and Computers in AD

How to Find Locked Out User Accounts in AD

How to Find Account Lockout Source

How to Get a List of AD Users Whose Passwords Never Expire

How to Get a List of All Computers in an OU

How to Get a List of All Users from a Specific OU

How to Get an Active Directory OU Permissions Report

How to Export Active Directory Objects to CSV

How to Export Members of a Particular AD Group

How to Export Group Policy Settings

How to Determine Every AD User’s Last Logon Date

How to Get User Login History

How to Monitor AD Group Membership Changes

How to Detect Changes to OUs and Groups in AD

How to Determine Who Modified Permissions to an OU

How to Count Files in a Folder or a Directory

How to Get the ACL for a Folder

How to Monitor a Folder for New Files

How to Find Duplicate Files

How to Get Server Inventory Across Your Network

How to Get Local Group Membership Reports

How to List All User Accounts on a Windows System

How to Get Rid of Ransomware Using Free Tools and PowerShell

You can also further expand your knowledge of PowerShell by reviewing the following resources:

Netwrix Blog: PowerShell

Netwrix How-To Guides

https://blog.netwrix.com/2017/07/20/how-to-collect-ad-site-information-using-powershell/?utm_source=content&utm_medium=ebook&utm_campaign=powershell-tutorial
https://blog.netwrix.com/2017/06/15/powershell-find-disabled-or-inactive-users-and-computers-in-ad/?utm_source=content&utm_medium=ebook&utm_campaign=powershell-tutorial
https://blog.netwrix.com/2017/07/20/how-to-find-locked-out-user-accounts-in-active-directory-using-powershell/?utm_source=content&utm_medium=ebook&utm_campaign=powershell-tutorial
https://www.netwrix.com/how_to_find_account_lockout_source.html?utm_source=content&utm_medium=ebook&utm_campaign=powershell-tutorial&cID=7010g000001Yg8p
https://www.netwrix.com/how_to_get_list_of_users_with_password_never_expires.html?utm_source=content&utm_medium=ebook&utm_campaign=powershell-tutorial&cID=7010g000001Yg8p
https://www.netwrix.com/how_to_list_all_computers_in_ou.html?utm_source=content&utm_medium=ebook&utm_campaign=powershell-tutorial&cID=7010g000001Yg8p
https://www.netwrix.com/how_to_get_all_users_from_a_specific_ou.html?utm_source=content&utm_medium=ebook&utm_campaign=powershell-tutorial&cID=7010g000001Yg8p
https://www.netwrix.com/how_to_generate_active_directory_ou_permissions_report.html?utm_source=content&utm_medium=ebook&utm_campaign=powershell-tutorial&cID=7010g000001Yg8p
https://www.netwrix.com/how_to_export_active_directory_objects_to_csv.html?utm_source=content&utm_medium=ebook&utm_campaign=powershell-tutorial&cID=7010g000001Yg8p
https://www.netwrix.com/how_to_export_members_from_active_directory.html?utm_source=content&utm_medium=ebook&utm_campaign=powershell-tutorial&cID=7010g000001Yg8p
https://www.netwrix.com/how_to_report_on_gpo_security_settings.html?utm_source=content&utm_medium=ebook&utm_campaign=powershell-tutorial&cID=7010g000001Yg8p
https://www.netwrix.com/how_to_determine_last_logon_date.html?utm_source=content&utm_medium=ebook&utm_campaign=powershell-tutorial&cID=7010g000001Yg8p
https://www.netwrix.com/how_to_get_user_login_history.html?utm_source=content&utm_medium=ebook&utm_campaign=powershell-tutorial&cID=7010g000001Yg8p
https://www.netwrix.com/how_to_monitor_ad_group_membership_changes.html?utm_source=content&utm_medium=ebook&utm_campaign=powershell-tutorial&cID=7010g000001Yg8p
https://www.netwrix.com/how_to_detect_changes_to_organizational_units_and_groups_in_active_directory.html?utm_source=content&utm_medium=ebook&utm_campaign=powershell-tutorial&cID=7010g000001Yg8p
https://www.netwrix.com/how_to_detect_who_modified_security_permission.html?utm_source=content&utm_medium=ebook&utm_campaign=powershell-tutorial&cID=7010g000001Yg8p
https://www.netwrix.com/how_to_count_files_in_a_folder.html?utm_source=content&utm_medium=ebook&utm_campaign=powershell-tutorial&cID=7010g000001Yg8p
https://www.netwrix.com/how_to_get_acl_for_a_folder.html?utm_source=content&utm_medium=ebook&utm_campaign=powershell-tutorial&cID=7010g000001Yg8p
https://www.netwrix.com/how_to_monitor_a_folder_for_new_files.html?utm_source=content&utm_medium=ebook&utm_campaign=powershell-tutorial&cID=7010g000001Yg8p
https://www.netwrix.com/how_to_find_dublicate_files.html?utm_source=content&utm_medium=ebook&utm_campaign=powershell-tutorial&cID=7010g000001Yg8p
https://www.netwrix.com/how_to_collect_server_inventory.html?utm_source=content&utm_medium=ebook&utm_campaign=powershell-tutorial&cID=7010g000001Yg8p
https://www.netwrix.com/how_to_get_local_group_membership_report.html?utm_source=content&utm_medium=ebook&utm_campaign=powershell-tutorial&cID=7010g000001Yg8p
https://www.netwrix.com/how_to_list_all_user_accounts_on_a_windows_system.html?utm_source=content&utm_medium=ebook&utm_campaign=powershell-tutorial&cID=7010g000001Yg8p
https://blog.netwrix.com/2017/06/29/how-to-get-rid-of-ransomware-at-no-cost/?utm_source=content&utm_medium=ebook&utm_campaign=powershell-tutorial&cID=7010g000001Yg8p
https://blog.netwrix.com/tag/powershell/?utm_source=content&utm_medium=ebook&utm_campaign=powershell-tutorial&cID=7010g000001Yg8p
https://www.netwrix.com/how_to_guides.html?utm_source=content&utm_medium=ebook&utm_campaign=powershell-tutorial&cID=7010g000001Yg8p

Independently reviewed and recommended by leading industry experts, these tools

consistently prove themselves useful for IT pros. Audit Active Directory and file servers,

troubleshoot account lockouts, find stale accounts and more — all for free.

Simplify Your Life with

the Top 7 Freeware Tools
for IT Professionals

Netwrix Auditor Free Community Edition Free Download

Free Community Edition
Netwrix Auditor for
Active Directory

Free Download

Free Community Edition
Netwrix Auditor for
Windows File Servers

Free Download

Free Community Edition
Netwrix Auditor for
Windows Server

Free Download

Netwrix Account
Lockout Examiner

Free Download

Netwrix Effective
Permissions Reporting Tool

Free Download

Netwrix Inactive
User Tracker

Free Download

https://www.netwrix.com/free_community_edition.html?utm_source=content&utm_medium=ebook&utm_campaign=powershell-tutorial&cID=7010g000001Yg8p
https://www.netwrix.com/netwrix_change_notifier_for_active_directory.html?utm_source=content&utm_medium=ebook&utm_campaign=powershell-tutorial&cID=7010g000001Yg8p
https://www.netwrix.com/netwrix_change_notifier_for_file_servers.html?utm_source=content&utm_medium=ebook&utm_campaign=powershell-tutorial&cID=7010g000001Yg8p
https://www.netwrix.com/netwrix_change_notifier_for_windows_server.html?utm_source=content&utm_medium=ebook&utm_campaign=powershell-tutorial&cID=7010g000001Yg8p
https://www.netwrix.com/account_lockout_examiner.html?utm_source=content&utm_medium=ebook&utm_campaign=powershell-tutorial&cID=7010g000001Yg8p
https://www.netwrix.com/netwrix_effective_permissions_reporting_tool.html?utm_source=content&utm_medium=ebook&utm_campaign=powershell-tutorial&cID=7010g000001Yg8p
https://www.netwrix.com/netwrix_inactive_user_tracker.html?utm_source=content&utm_medium=ebook&utm_campaign=powershell-tutorial&cID=7010g000001Yg8p

About Netwrix
Netwrix Corporation is a software company focused exclusively on providing IT security and operations

teams with pervasive visibility into user behavior, system configurations and data sensitivity across hybrid IT

infrastructures to protect data regardless of its location. Over 9,000 organizations worldwide rely on Netwrix

to detect and proactively mitigate data security threats, pass compliance audits with less effort and expense,

and increase the productivity of their IT teams.

Founded in 2006, Netwrix has earned more than 140 industry awards and been named to both the Inc. 5000

and Deloitte Technology Fast 500 lists of the fastest growing companies in the U.S.

For more information about Netwrix, visit www.netwrix.com.

netwrix.com/social

Corporate Headquarters:
300 Spectrum Center Drive, Suite 200, Irvine, CA 92618
Phone: 1-949-407-5125 Toll-free: 888-638-9749 EMEA: +44 (0) 203-588-3023

https://www.netwrix.com?utm_source=content&utm_medium=ebook&utm_campaign=powershell-tutorial&cID=7010g000001Yg8p
https://www.netwrix.com/social_communities.html?utm_source=content&utm_medium=ebook&utm_campaign=powershell-tutorial&cID=7010g000001Yg8p
https://twitter.com/netwrix
https://www.facebook.com/Netwrix
https://www.linkedin.com/company/455932
https://www.youtube.com/user/NetWrix
https://community.spiceworks.com/pages/NetWrix
https://www.instagram.com/netwrix/

