

Exploring PowerShell Automation
Selections by Richard Siddaway

Manning Author Picks

 Copyright 2016 Manning Publications
To pre-order or learn more about these books go to www.manning.com

Licensed to Bob Spuntak <bobspuntak@msn.com>

http://www.manning.com/

For online information and ordering of these and other Manning books, please visit
www.manning.com. The publisher offers discounts on these books when ordered in quantity.

For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2016 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co.
20 Baldwin Road Technical
PO Box 761
Shelter Island, NY 11964

Cover designer: Leslie Haimes

ISBN 9781617294525
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 - EBM - 21 20 19 18 17 16

Licensed to Bob Spuntak <bobspuntak@msn.com>

http://www.manning.com

iii

contents
introduction iv

INTRODUCTION TO POWERSHELL 1
Welcome to PowerShell
Chapter 1 from Windows PowerShell in Action, Third Edition

by Bruce Payette and Richard Siddaway 2

POWERSHELL REMOTING 47
PowerShell Remoting
Chapter 10 from PowerShell in Depth, Second Edition

by Don Jones, Jeffrey Hicks, and Richard Siddaway 48

POWERSHELL AND SQL SERVER 85
PowerShell and the SQL Server provider
Chapter 23 from PowerShell Deep Dives edited by Jeffrey Hicks,

Richard Siddaway, Oisin Grehan, and Aleksander Nikolic 86

IIS ADMINISTRATION 97
Provisioning IIS web servers and sites with PowerShell
Chapter 27 from PowerShell Deep Dives edited by Jeffrey Hicks,

Richard Siddaway, Oisin Grehan, and Aleksander Nikolic 98

AD ADMINISTRATION 113
User accounts
Chapter 5 from PowerShell in Practice by Richard Siddaway 114

index 151

Licensed to Bob Spuntak <bobspuntak@msn.com>

iv

introduction
PowerShell is ten years old in November 2016. Over that decade a significant, and

continually increasing, percentage of Windows administrators have learned that Pow-

erShell enables them to be more productive. They’ve realised that PowerShell enables

them to perform administrative tasks across a wide range of technologies from Micro-

soft and third party vendors. The time taken to develop PowerShell scripts is paid back

multiple times– by automating repetitive tasks and reducing errors through the use of

repeatable, reliable processes.

 When PowerShell was first introduced there were only a small number of com-

mands available. You had to learn to script if you wanted to perform any complex

administration. Over time, particularly with the release of Windows 8 / Server 2012,

the number of commands has greatly increased, to the point that all major compo-

nents in Windows, or major Microsoft products, have PowerShell support available.

The range of third party vendors with PowerShell support is staggering – VMWare,

NetApp, IBM, Cisco and EMC to name a few. It’s even possible to administer Linux

machines using PowerShell through CIM and Desired State Configuration!

 This ebook gives you an overview of using PowerShell to administer your environ-

ment. I’ve been involved in the production of all of these chapters either as an author

or an editor, and I’ve chosen them specifically to represent the breadth of possibilities

for administering your systems through PowerShell. The first two chapters provide an

overview of PowerShell and PowerShell remoting. The remaining three chapters pro-

vide examples of using PowerShell to administer SQL Server, IIS and Active Directory

– three components that’ll be found in practically any Windows environment.

 Enjoy!

Licensed to Bob Spuntak <bobspuntak@msn.com>

INTRODUCTION v

Reading suggestions

If you’re new to PowerShell this suggested list of books provides a good learning path.
I’d suggest reading the following in this order:

 Learn PowerShell in a Month of Lunches
 PowerShell in Depth, second edition
 PowerShell Deep Dives

Once you’ve learned the PowerShell basics it’s time to put that knowledge into prac-
tice. These books show you how to administer a number of common technologies
using PowerShell:

 PowerShell in Practice
 PowerShell and WMI
 Learn Active Directory Management in a Month of Lunches
 Learn Windows IIS in a Month of Lunches
 Learn Windows Server in a Month of Lunches
 Learn Hyper-V in a Month of Lunches

If you want to learn how the PowerShell language works and why it works the way it
does you need to read:

 PowerShell in Action, third edition

Licensed to Bob Spuntak <bobspuntak@msn.com>

Licensed to Bob Spuntak <bobspuntak@msn.com>

I’ve included this chapter for two reasons. Firstly, the chapter is co-authored
by Bruce Payette (one half of the team that designed the PowerShell language)
who has been a leading developer on the PowerShell team since its inception.
Who better to introduce you to PowerShell? Secondly, the chapter provides an
excellent introduction to PowerShell fundamentals, including pipelines, format-
ting of output, and PowerShell’s elastic syntax.

Introduction to
PowerShell
Licensed to Bob Spuntak <bobspuntak@msn.com>

Chapter 1 from Windows PowerShell in Action,
Third Edition by Bruce Payette and Richard
Siddaway

Welcome to PowerShell
Vizzini: Inconceivable!
Inigo: You keep on using that word. I do not think it means what you think it means.

—William Goldman, The Princess Bride

It may seem strange for us to start by welcoming you to PowerShell when Power-
Shell is nine years old (at the time of writing), is on its fifth version, and this is the
third edition of this book. In reality the adoption of PowerShell is only now achiev-
ing significant momentum, meaning that to many users PowerShell is a new tech-

This chapter covers
 Core concepts

 Aliases and elastic systems

 Parsing and PowerShell

 Pipelines

 Formatting and output
2

Licensed to Bob Spuntak <bobspuntak@msn.com>

https://www.manning.com/books/windows-powershell-in-action-third-edition
https://www.manning.com/books/windows-powershell-in-action-third-edition

3

nology and the three versions of PowerShell subsequent to the book’s second edition
contain many new features. Welcome to PowerShell.

NOTE This book’s written using PowerShell 5.0. It’ll be noted in the text
where earlier versions are different, or work in a different manner. We’ll also
document when various features were introduced to PowerShell or signifi-
cantly modified between versions.

Windows PowerShell is the command and scripting language from Microsoft built
into all versions of Windows since Windows Server 2008. Although PowerShell is new
and different (or has new features you haven’t explored yet), it’s been designed to
make use of what you already know, making it easy to learn. It’s also designed to allow
you to learn a bit at a time.

Starting at the beginning, here’s the traditional “Hello world” program in PowerShell:

’Hello world.’

But “Hello world” itself isn’t interesting. Here’s something a bit more complicated:

dir $env:windir*.log | Select-String -List error |
Format-Table path,linenumber –AutoSize

Although this is more complex, you can probably still figure out what it does. It
searches all the log files in the Windows directory, looking for the string “error”, and
then prints the full name of the matching file and the matching line number. “Useful,
but not special,” you might think, because you can easily do this using cmd.exe on
Windows or bash on UNIX. What about the “big, really big” thing? Well, how about
this example?

([xml] [System.Net.WebClient]::new().
 DownloadString('http://blogs.msdn.com/powershell/rss.aspx')).
 RSS.Channel.Item |
 Format-Table title,link

Running PowerShell commands
You have two choices for running the examples provided in this book. First choice is
to use the PowerShell console. This provides a command line interface – based on
the same console used for cmd.exe. It is the tool of choice for interactive work.

The second choice is the PowerShell Integrated Scripting Environment (ISE). The ISE
supplies an editing pane plus a combined output and interactive pane. The ISE is the
tool of choice when developing scripts, functions, and other advanced functionality.

The examples in the book will be written in a way that allows pasting directly into
either tool.

Other third party tools exist, such as those supplied by Sapien, but we’ll only consider
the native tools in this book.
Licensed to Bob Spuntak <bobspuntak@msn.com>

http://blogs.msdn.com/powershell/rss.aspx

4 CHAPTER 1 Welcome to PowerShell
Now we’re getting somewhere. This script downloads the RSS feed from the Power-
Shell team blog and then displays the title and a link for each blog entry. By the way,
you weren’t expected to figure out this example yet. If you did, you can move to the
head of the class!

 Finally, one last example:

using assembly System.Windows.Forms
using namespace System.Windows.Forms
$form = [Form] @{
 Text = 'My First Form'
}
$button = [Button] @{
 Text = 'Push Me!'
 Dock = 'Fill'
}
$button.add_Click{
 $form.Close()
}
$form.Controls.Add($button)
$form.ShowDialog())

This script uses the Windows Forms library (WinForms) to build a graphical user
interface (GUI) that has a single button displaying the text “Push Me!” The window
this script creates is shown in figure 1.1.

Figure 1.1 When you run the code from the
example, this window will be displayed.

When you click the button, it closes the form and exits the script. With this you go
from "Hello world" to a GUI application in less than two pages.

 Now let’s come back down to Earth for a minute. The intent of chapter one is to
set the stage for understanding PowerShell—what it is, what it isn’t, and, almost as
important, why the PowerShell team made the decisions they made in designing the
PowerShell language. Chapter one covers the goals of the project, along with some of
the major issues the team faced in trying to achieve those goals. First, a philosophical
digression: while under development, from 2002 until the first public release in 2006,
Licensed to Bob Spuntak <bobspuntak@msn.com>

http://www.microsoft.com/en-us/download/details.aspx?id=36389
http://www.microsoft.com/en-us/download/details.aspx?id=36389

5What is PowerShell?
the codename for this project was Monad. The name Monad comes from The Monadol-
ogy by Gottfried Wilhelm Leibniz, one of the inventors of calculus. Here’s how Leibniz
defined the Monad:

The Monad, of which we shall here speak, is nothing but a simple substance, which enters
into compounds. By “simple” is meant “without parts.”

—From The Monadology by Gottfried Wilhelm Leibniz (translated by Robert Latta)

In The Monadology, Leibniz described a world of irreducible components from which
all things could be composed. This captures the spirit of the project: to create a toolkit
of simple pieces that you compose to create complex solutions.

1.1 What is PowerShell?
More specifically, what is PowerShell, and what can you do with it? Ask a group of Pow-
erShell users and you’ll get different answers:

 PowerShell is a command-line shell
 PowerShell is a scripting environment
 PowerShell is an automation engine

These are all part of the answer. We prefer to say that PowerShell is a tool you can use
to manage your Microsoft based machines and applications, that programs consis-
tency into your management process. The tool is attractive to administrators and
developers in that it can span the range of command line, simple and advanced
scripts, to real programs.

NOTE If you take this to mean that PowerShell is the ideal devops tool for the
Microsoft platform then congratulations – you’ve got it in one.

PowerShell draws heavily from existing command-line shell and scripting languages,
but the language, runtime and subsequent additions, such as PowerShell Workflows
and Desired State Configuration, were designed from scratch to be an optimal envi-
ronment for the modern Windows operating system.

 Most people are introduced to PowerShell through its interactive aspects. Let’s
refine our definitions of shell and scripting.

1.1.1 Shells, command lines, and scripting languages

In the previous section, we called PowerShell a command-line shell. You may be ask-
ing, what’s a shell? And how is that different from a command interpreter? What
about scripting languages? If you can script in a shell language, doesn’t that make it a
scripting language? In answering these questions, let’s start with shells.

 Defining a shell can be tricky because pretty much everything at Microsoft has
something called a shell. Windows Explorer is a shell. Visual Studio has a component
called the shell. Heck, even the Xbox has something they call a shell.
Licensed to Bob Spuntak <bobspuntak@msn.com>

6 CHAPTER 1 Welcome to PowerShell
 Historically, the term shell describes the piece of software that sits over an operat-
ing system’s core functionality. This core functionality is known as the operating system
kernel (shell…kernel…get it?). A shell is the piece of software that lets you access the
functionality provided by the operating system – for our purposes we’re more inter-
ested in the traditional text-based environment where the user types a command and
receives a response. Put another way, it is a shell is a command-line interpreter. The
two terms can be used for the most part interchangeably.

SCRIPTING LANGUAGES VS. SHELLS

If this is the case, what is scripting and why are scripting languages not shells? To some
extent, there’s no difference. Many scripting languages have a mode in which they
take commands from the user and then execute those commands to return results.
This mode of operation is called a Read-Evaluate-Print loop, or REPL. In what way is a
scripting language with a Read-Evaluate-Print loop not a shell? The difference is
mainly in the user experience. A proper command-line shell is also a proper user
interface. As such, a command line has to provide a number of features to make the
user’s experience pleasant and customizable, including aliases (shortcuts for hard-to-
type commands), wildcard matching to avoid having to type out full names, and the
ability to start other programs easily. Finally, command-line shells provide mechanisms
for examining, editing, and re-executing previously typed commands. These mecha-
nisms are called command history.

 If scripting languages can be shells, can shells be scripting languages? The
answer is, emphatically, yes. With each generation the UNIX shell languages have
grown increasingly powerful. It’s entirely possible to write substantial applications in
a modern shell language, such as bash or zsh. Scripting languages characteristically
have an advantage over shell languages, in that they provide mechanisms to help
you develop larger scripts by letting you break a script into components, or modules.
Scripting languages typically provide more sophisticated features for debugging
your scripts. Next, scripting language runtimes are implemented in a way that makes
their code execution more efficient, and scripts written in these languages execute
more quickly than they’d in the corresponding shell script runtime. Finally, script-
ing language syntax is oriented more toward writing an application than toward
interactively issuing commands.

 In the end, there’s no hard-and-fast distinction between a shell language and a
scripting language. Because Power-Shell’s goal is to be both a good scripting language
and a good interactive shell, balancing the trade-offs between user-experience and
script authoring was one of the major language design challenges.

MANAGING WINDOWS THROUGH OBJECTS

Another factor that drove the need for a new shell model is, as Windows acquired
more and more subsystems and features, the number of issues we had to think about
when managing a system increased dramatically. To help us deal with this increase in
complexity, the manageable elements were factored into structured data objects. This
Licensed to Bob Spuntak <bobspuntak@msn.com>

7PowerShell example code
collection of management objects is known internally at Microsoft as the Windows manage-
ment surface.

NOTE Microsoft wasn’t the only company that was running into issues caused
by increased complexity. Most people in the industry were having this prob-
lem. This led to the Distributed Management Task Force (dmtf.org), an
industry organization, creating a standard for management objects called the
Common Information Model (CIM). Microsoft’s implementation of this stan-
dard is called the Windows Management Instrumentation (WMI).

Although this factoring addressed overall complexity and worked well for graphical
interfaces, it made it much harder to work with using a traditional text-based shell
environment.

 Windows is an API driven operating system compared to Unix and its derivatives,
which are document (or text) driven. You can administer Unix by changing configu-
ration files. In Windows you need to use the API which means accessing properties
and using methods on the appropriate object.

 Finally, as the power of the PC increased, Windows began to move off the desktop
and into the corporate datacenter. In the corporate datacenter we had a large number
of servers to manage, and the graphical point-and-click management approach didn’t
scale. All these elements combined to make it clear that Microsoft could no longer
ignore the command line.

 Now that you grasp the environmental forces that led to the creation of Power-
Shell—the need for command-line automation in a distributed object-based operat-
ing environment—let’s look at the form the solution took.

1.2 PowerShell example code
We’ve said PowerShell is for solving problems that involve writing code. By now you’re
probably asking “Dude! Where’s my code?” Enough talk, let’s see some example code!
First, we’ll revisit the dir example. This time, instead of displaying the directory listing,
you’ll save it into a file using output redirection like in other shell environments. In the
following example, you’ll use dir to get information about a file named somefile.txt in
the root of the C: drive. Using redirection, you direct the output into a new file,
c:\foo.txt, and then use the type command to display what was saved. Here’s what this
looks like:

dir c:\somefile.txt > c:\foo.txt
type c:\foo.txt

 Directory: C:\

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 11/07/2015 14:49 0 somefile.txt

As you can see, commands work more or less as you’d expect.
Licensed to Bob Spuntak <bobspuntak@msn.com>

8 CHAPTER 1 Welcome to PowerShell
NOTE Okay, on your system choose any file that does exist and the example
will work fine, though obviously the output will be different.

Let’s go over some other things that should be familiar to you.

1.2.1 Navigation and basic operations

The PowerShell commands for working with the file system should be pretty familiar
to most users. You navigate around the file system with the cd command. Files are cop-
ied with the copy or cp commands, moved with the move and mv commands, and
removed with the del or rm commands. Why two of each command, you might ask?
One set of names is familiar to cmd.exe/DOS users and the other is familiar to UNIX
users. In practice they’re aliases for the same command, designed to make it easy for
people to get going with PowerShell. One thing to keep in mind is that, although the
commands are similar they’re not exactly the same as either of the other two systems.
You can use the Get-Help command to get help about these commands. Here’s the
output of Get-Help for the dir command:

PS> Get-Help dir

NAME
 Get-ChildItem

SYNOPSIS
 Gets the items and child items in one or more specified locations.

SYNTAX
 Get-ChildItem [[-Path] <String[]>] [[-Filter] <String>] [-Exclude

<String[]>] [-Force] [-Include <String[]>]
 [-Name] [-Recurse] [-UseTransaction [<SwitchParameter>]]

[<CommonParameters>]

 Get-ChildItem [[-Filter] <String>] [-Exclude <String[]>] [-Force] [-
Include <String[]>] [-Name] [-Recurse]

 -LiteralPath <String[]> [-UseTransaction [<SwitchParameter>]]
[<CommonParameters>]

DESCRIPTION
 The Get-ChildItem cmdlet gets the items in one or more specified

locations. If the item is a container, it gets
 the items inside the container, known as child items. You can use the

Recurse parameter to get items in all child
 containers.

 A location can be a file system location, such as a directory, or a
location exposed by a different Windows

 PowerShell provider, such as a registry hive or a certificate store.
Licensed to Bob Spuntak <bobspuntak@msn.com>

9PowerShell example code
RELATED LINKS
 Online Version: http://go.microsoft.com/fwlink/p/?linkid=290488
 Get-Alias
 Get-Item
 Get-Location
 Get-Process
 about_Providers

REMARKS
 To see the examples, type: "get-help Get-ChildItem -examples".
 For more information, type: "get-help Get-ChildItem -detailed".
 For technical information, type: "get-help Get-ChildItem -full".
 For online help, type: "get-help Get-ChildItem -online"

1.2.2 Basic expressions and variables

In addition to running commands, PowerShell can evaluate expressions. In effect, it
operates as a kind of calculator. Let’s evaluate a simple expression:

2+2
4

Notice that as soon as you typed the expression, the result was calculated and dis-
played. It wasn’t necessary to use any kind of print statement to display the result. It’s
important to remember that whenever an expression is evaluated, the result of the
expression is output, not discarded. PowerShell supports most of the basic arithmetic
operations you’d expect, including floating point.

 You can save the output of an expression to a file by using the redirection operator:

(2+2)*3/7 > c:\foo.txt
type c:\foo.txt
1.71428571428571

PowerShell help system
The PowerShell help subsystem contains information about all of the commands pro-
vided with the system and is a great way to explore what’s available.

In PowerShell 3.0, and later, help files aren’t installed by default. Help has become
updatable and you need to install the latest versions yourself. See Get-Help
about_Updatable_Help.

You can even use wildcard characters to search through the help topics (v2 and
later). This is the simple text output. The PowerShell ISE also includes help in the
richer Windows format and will even let you select an item and then press F1 to view
the help for the item. Finally, by using the –Online option to Get-Help, you can
view the help text for a command or topic using a web browser.

Get-Help -Online is the best way to get help because the online documentation
is constantly being updated and corrected, whereas the local copies aren’t.
Licensed to Bob Spuntak <bobspuntak@msn.com>

http://go.microsoft.com/fwlink/p/?linkid=290488

10 CHAPTER 1 Welcome to PowerShell
Saving expressions into files is useful; saving them in variables is more useful:

$n = (2+2)*3
$n
12
$n / 7
1.71428571428571

Variables can also be used to store the output of commands:

$files = dir
$files[1]
 Directory: Microsoft.PowerShell.Core\FileSystem::C:\Document
 s and Settings\brucepay

 Directory: C:\Users\Richard\Documents

Mode LastWriteTime Length Name
---- ------------- ------ ----
d---- 18/08/2014 20:11 Custom Office Templates

In this example, you extracted the second element of the collection of file informa-
tion objects returned by the dir command. You were able to do this because you
saved the output of the dir command as an array of objects in the $files variable.

NOTE Collections in PowerShell start at 0, not 1. This is a characteristic we’ve
inherited from .NET. This is why $files[1] is extracting the second ele-
ment, not the first.

Given that PowerShell is all about objects, the basic operators need to work on more
than numbers. Chapters three and four cover these features in detail.

1.2.3 Processing data

As you’ve seen in the preceding sections, you can run commands to get information,
perform some basic operations on this information using the PowerShell operators,
and then store the results in files and variables. Let’s look at additional ways you can
process this data. First you’ll see how to sort objects and how to extract properties
from those objects. Then we’ll look at using the PowerShell flow-control statements to
write scripts that use conditionals and loops to do more sophisticated processing.

SORTING OBJECTS

Sort the list of file information objects returned by dir. Because you’re sorting objects,
the command you’ll use is Sort-Object. For convenience you’ll use the shorter alias
sort in these examples. Start by looking at the default output, which shows the files
sorted by name:

cd c:\files
dir
 Directory: C:\files
Licensed to Bob Spuntak <bobspuntak@msn.com>

11PowerShell example code
 Directory: C:\files

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 21/01/2015 18:10 9 File 1.txt
-a--- 11/07/2015 15:14 15986 File 2.txt
-a--- 21/01/2015 18:10 9 File 3.txt
-a--- 21/01/2015 18:10 9 File 4.txt

The output shows the basic properties on the file system objects, sorted by the name
of the file. Let’s sort by name in descending order:

dir | sort -Descending
 Directory: C:\files

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 21/01/2015 18:10 9 File 4.txt
-a--- 21/01/2015 18:10 9 File 3.txt
-a--- 11/07/2015 15:14 15986 File 2.txt
-a--- 21/01/2015 18:10 9 File 1.txt

There you have it—files sorted by name in reverse order. Now let’s sort by something
other than the name of the file: file length.

NOTE In many examples in this book we’ll be using aliases (shortcuts) rather
than the full cmdlet name. This is for brevity and to ensure the code fits
neatly in the page.

 In PowerShell, when you use the Sort-Object cmdlet, you don’t have to tell it to
sort numerically—it already knows the type of the field, and you can specify the sort
key by property name instead of a numeric field offset. The result looks like this:

dir | sort -Property length
 Directory: C:\files

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 21/01/2015 18:10 9 File 3.txt
-a--- 21/01/2015 18:10 9 File 4.txt
-a--- 21/01/2015 18:10 9 File 1.txt
-a--- 11/07/2015 15:14 15986 File 2.txt

This illustrates what working with pipelines of objects gives you:
 You have the ability to access data elements by name instead of using substring

indexes or field numbers.
 By having the original type of the element preserved, operations execute cor-

rectly without you having to provide additional information.
Now let’s look at some other things you can do with objects.
Licensed to Bob Spuntak <bobspuntak@msn.com>

12 CHAPTER 1 Welcome to PowerShell
SELECTING PROPERTIES FROM AN OBJECT

In this section, we’ll introduce another cmdlet for working with objects: Select-
Object. This cmdlet allows you to select a subrange of the objects piped into it and to
specify a subset of the properties on those objects.

 Say you want to get the largest file in a directory and put it into a variable:

$a = dir | sort -Property length -Descending |
Select-Object -First 1
$a
 Directory: C:\files

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 11/07/2015 15:14 15986 File 2.txt

NOTE You’ll notice the secondary prompt >> when you copy the previous
example into a PowerShell console. The first line of the command ended in a
pipe symbol. The PowerShell interpreter noticed this, saw that the command
was incomplete, and prompted for additional text to complete the command.
Once the command is complete, you type a second blank line to send the
command to the interpreter. If you want to cancel the command, you can
press Ctrl-C at any time to return to the normal prompt.

Now say you want only the name of the directory containing the file and not all the
other properties of the object. You can also do this with Select-Object. As with the
Sort-Object cmdlet, Select-Object takes a -Property parameter (you’ll see this
frequently in the PowerShell environment—commands are consistent in their use of
parameters):

$a = dir | sort -Property length -Descending |
Select-Object -First 1 -Property directory
$a

Directory

C:\files

You now have an object with a single property.

PROCESSING WITH THE FOREACH-OBJECT CMDLET

The final simplification is to get the value itself. We’ll introduce a new cmdlet that lets
you do arbitrary processing on each object in a pipeline. The ForEach-Object cmd-
let executes a block of statements for each object in the pipeline. You can get an arbi-
trary property out of an object and then do arbitrary processing on that information
using the ForEach-Object command. Here’s an example that adds up the lengths of
all the objects in a directory:

$total = 0
dir | ForEach-Object {$total += $_.length }
$total
16013
Licensed to Bob Spuntak <bobspuntak@msn.com>

13PowerShell example code
In this example you initialize the variable $total to 0, and then add to it the length of
each file returned by the dir command and finally display the total (you’ll get a dif-
ferent total on your system).

PROCESSING OTHER KINDS OF DATA

One of the great strengths of the PowerShell approach is that once you learn a pattern
for solving a problem, you can use this same pattern over and over again. For exam-
ple, say you want to find the largest three files in a directory. The command line might
look like this:

dir | sort -Descending length | select -First 3

Here, the dir command retrieved the list of file information objects, sorted them in
descending order by length, and then selected the first three results to get the three
largest files.

 Now let’s tackle a different problem. You want to find the three processes on the
system with the largest working set size. Here’s what this command line looks like:

Get-Process | sort -Descending ws | select -First 3
Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 1337 1916 235360 287852 1048 63.23 2440 WWAHost
 962 55 94460 176008 692 340.25 6632 WINWORD
 635 40 136040 140088 783 6.42 2564 powershell

This time you run Get-Process to get data about the processes on this computer, and
sort on the working set instead of the file size. Otherwise, the pattern is identical to
the previous example. This command pattern can be applied over and over again.

NOTE Because of this ability to apply a command pattern over and over, most
of the examples in this book are deliberately generic. The intent is to high-
light the pattern of the solution rather than show a specific example. Once
you understand the basic patterns, you can effectively adapt them to solve a
multitude of other problems.

1.2.4 Flow-control statements

Pipelines are great, but sometimes you need more control over the flow of your script.
PowerShell has the usual script flow-control statements found in most programming
languages. These include the basic if statements, a powerful switch statement, and
various loops like a while loop, for and foreach loops, and so on. Here’s an exam-
ple showing use of the while and if statements:

$i=0
while ($i++ -lt 10) { if ($i % 2) {"$i is odd"}}
1 is odd
3 is odd
5 is odd
7 is odd
9 is odd
Licensed to Bob Spuntak <bobspuntak@msn.com>

14 CHAPTER 1 Welcome to PowerShell
This example uses the while loop to count through a range of numbers, printing out
only the odd numbers. In the body of the while loop is an if statement that tests to
see whether the current number is odd, and then writes out a message if it is. You can
do the same thing using the foreach statement and the range operator (..), but
much more succinctly:

foreach ($i in 1..10) { if ($i % 2) {"$i is odd"}}

The foreach statement iterates over a collection of objects, and the range operator is
a way to generate a sequence of numbers. The two combine to make looping over a
sequence of numbers clean.

 Because the range operator generates a sequence of numbers, and numbers are
objects like everything else in PowerShell, you can implement this using pipelines and
the ForEach-Object cmdlet:

1..10 | foreach { if ($_ % 2) {"$_ is odd"}}

These examples only scratch the surface of what you can do with the PowerShell flow-
control statements (wait until you see the switch statement!). The complete set of
control structures is covered in detail in chapter 5 with lots of examples.

1.2.5 Scripts and functions

What good is a scripting language if you can’t package commands into scripts? Power-
Shell lets you do this by putting your commands into a text file with a .ps1 extension
and then running that command. You can even have parameters in your scripts. Put
the following text into a file called hello.ps1:

param($name = 'bub')
"Hello $name, how are you?"

Notice that the param keyword is used to define a parameter called $name. The
parameter is given a default value of ’bub’. Now you can run this script from the Pow-
erShell prompt by typing the name as .\hello. You need the .\ to tell PowerShell to
get the command from the current directory.

NOTE Before you can run scripts on a machine in the default configuration,
you’ll have to change the PowerShell execution policy to allow scripts to run.
See Get-Help –Online for_ detailed instructions on execution_policies .
The default settings change between Windows versions, so be careful to check
the execution policy setting.

The first time you run this script, you won’t specify any arguments:

.\hello
Hello bub, how are you?

You see that the default value was used in the response. Run it again, but this time
specify an argument:

.\hello Bruce
Hello Bruce, how are you?
Licensed to Bob Spuntak <bobspuntak@msn.com>

15PowerShell example code
Now the argument is in the output instead of the default value. Sometimes you want
to have subroutines in your code. PowerShell addresses this need through functions.
Let’s turn the hello script into a function. Here’s what it looks like:

function hello {
param($name = "bub")
"Hello $name, how are you"
}

The body of the function is exactly the same as the script. The only thing added is the
function keyword, the name of the function, and braces around the body of the
function. Now run it, first with no arguments as you did with the script:

hello
Hello bub, how are you

and then with an argument:

hello Bruce
Hello Bruce, how are you

Obviously the function operates in the same way as the script, except that PowerShell
didn’t have to load it from a disk file, making it a bit faster to call. Scripts and func-
tions are covered in detail in chapter six.

1.2.6 Remote administration

In the previous sections, you’ve seen the kinds of things you can do with PowerShell
on a single computer, but the computing industry has long since moved beyond a one-
computer world. Being able to manage groups of computers, without having to physi-
cally visit each one, is critical in the modern cloud-orientated IT world where your
server may easily be on another continent. To address this, PowerShell has built-in
remote execution capabilities (remoting) and an execution model that ensures that if
a command works locally it should also work remotely.

NOTE Remoting was introduced in PowerShell 2.0. It isn’t available in Power-
Shell 1.0

The core of PowerShell remoting is the Invoke-Command command (aliased to icm).
This command allows you to invoke a block of PowerShell script on the current com-
puter, on a remote computer, or on a thousand remote computers. Let’s see some of
this in action. Microsoft release patches for Windows on a regular basis. Some of those
patches are critical, in that they resolve security related issues, and as an administrator
you need to be able to test if the patch has been applied to the machines for which you
are responsible. Checking a single machine is relatively easy – you can use the Windows
update option in Control panel and view the installed updates as shown in figure 1.2
Licensed to Bob Spuntak <bobspuntak@msn.com>

16 CHAPTER 1 Welcome to PowerShell
Figure 1.2 Viewing the installed updates on the local machine.

Alternatively, you can use the Get-Hotfix cmdlet:

 Get-HotFix -Id KB3083325

Source Description HotFixID InstalledBy InstalledOn
------ ----------- -------- ----------- -----------
SERVER02 Update KB3083325 NT AUTHORITY\SYSTEM

This shows you that the hotfix is installed on the local machine. But what about all of
your other machines? Connecting to each one individually and using the control panel
or running the Get-Hotfix cmdlet is tedious. You need a method of running the cmd-
let on remote machines and having the results returned to your local machine.

 Invoke-Command is used to wrap the previous command:
Invoke-Command -ScriptBlock {Get-HotFix -Id KB3083325} `
-ComputerName W12R2SCDC01

Source Description HotFixID InstalledBy InstalledOn
------ ----------- -------- ----------- -----------
W12R2SCDC01 Update KB3083325 NT AUTHORITY\SYSTEM 9/24/2015

NOTE Get-Hotfix has a –ComputerName parameter, and, like many cmdlets,
is capable of working directly with remote machines. Cmdlet based remoting
often uses protocols other than WSMAN. Using Invoke-Command, as in a
PowerShell remoting session, is more efficient, as you’ll see in chapter eleven.

You have many machines that need testing. Typing in the computer names one at a
time is still too tedious. You can create a list of computers – either from a text file or in
your code, and test them all:

 $computers = 'W12R2SCDC01', 'W12R2SUS'
Invoke-Command -ScriptBlock {Get-HotFix -Id KB3083325} `
-ComputerName $computers
Licensed to Bob Spuntak <bobspuntak@msn.com>

17PowerShell example code
Source Description HotFixID InstalledBy InstalledOn
------ ----------- -------- ----------- -----------
W12R2SCDC01 Update KB3083325 NT AUTHORITY\SYSTEM 9/24/2015
W12R2SUS Update KB3083325 NT AUTHORITY\SYSTEM 9/24/2015

What happens if a machine doesn’t have the hotfix installed:

Invoke-Command -ScriptBlock {Get-HotFix -Id KB3080042} `
-ComputerName $computers
Cannot find the requested hotfix on the 'localhost' computer. Verify the

input and run the command again.
 + CategoryInfo : ObjectNotFound: (:) [Get-HotFix],

ArgumentException
 + FullyQualifiedErrorId :

GetHotFixNoEntriesFound,Microsoft.PowerShell.Commands.GetHotFixCommand
 + PSComputerName : W12R2SCDC01

Source Description HotFixID InstalledBy InstalledOn
------ ----------- -------- ----------- -----------
W12R2SUS Update KB3080042 NT AUTHORITY\SYSTEM 9/24/2015

An error is generated on a computer that doesn’t have the patch installed, and results
appear on the computers that do.

NOTE In a production script you’d put error handling in place to catch the
error and report that the patch wasn’t installed. This will be covered in chap-
ter fourteen.

The Invoke-Command command is the way to programmatically execute PowerShell
commands on a remote machine. When you want to connect to a machine to interact
with it on a one-to-one basis, you use the Enter-PSSession command. This com-
mand allows you to start an interactive one-to-one session with a remote computer.
Running Enter-PSSession looks like this:

Enter-PSSession -ComputerName W12R2SUS
[W12R2SUS]: > Get-HotFix -Id KB3080042

Source Description HotFixID InstalledBy
------ ----------- -------- -----------
W12R2SUS Update KB3080042 NT AUTHORITY\SYSTEM

[W12R2SUS]: > Get-Date

28 September 2015 15:57:53

[W12R2SUS]: > Exit-PSSession

As shown here, when you connect to the remote computer, your prompt changes to
indicate that you’re working remotely. Otherwise, once connected, you can interact
with the remote computer the same way you’d a local machine. When you’re done,
Licensed to Bob Spuntak <bobspuntak@msn.com>

18 CHAPTER 1 Welcome to PowerShell
exit the remote session with the Exit-PSSession command, which returns you to the
local session. This brief introduction covers some powerful techniques, but we’ve only
begun to cover all the things remoting lets you do.

 At this point, we’ll end our “Cook’s tour” of PowerShell. We’ve only breezed over
the features and capabilities of the environment. Many other areas of PowerShell
aren’t covered here. In upcoming chapters, we’ll explore each of the elements dis-
cussed here in detail and a whole lot more.

1.3 Core concepts
The core PowerShell language is based on the mature IEEE standard POSIX 1003.2
grammar for the Korn shell, which has a long history as a successful basis for modern
shells like bash and zsh. The language design team (Jim Truher and Bruce Payette)
deviated from this standard where necessary to address the specific needs of an object-
based shell and to make it easier to write sophisticated scripts.

 PowerShell syntax is aligned with C#. The major value this brings is that Power-
Shell code can be migrated to C#, when necessary for performance improvements,
and, more importantly, C# examples can be easily converted to PowerShell — the
more examples you have in a language, the better off you are.

1.3.1 Command concepts and terminology

Much of the terminology used in PowerShell will be familiar if you’ve used other
shells in the Linux or Windows world. Because PowerShell is a new kind of shell, there
are a number of terms that are different and a few new terms to learn. In this section,
we’ll go over the PowerShell-specific concepts and terminology for command types
and command syntax.

1.3.2 Commands and cmdlets

Commands are the fundamental part of any shell language; they’re what you type to
get things done. A simple command looks like this:

command –parameter1 –parameter2 argument1 argument2

A more detailed illustration of the anatomy of this command is shown in figure 1.3.
This figure calls out all the individual elements of the command.
All commands are broken down into the command name, the parameters specified to
the command, and the arguments to those parameters. You can think of a parameter
as the receiver of a piece of information and the argument as the information itself.

NOTE The distinction between parameter and argument may seem a bit strange
from a programmer’s perspective. If you’re used to languages such as Python
and Visual Basic, which allow for keyword parameters, PowerShell parameters
correspond to the keywords, and arguments correspond to the values.

The first element in the command is the name of the command to be executed. The
PowerShell interpreter looks at this name and determines which command to run,
Licensed to Bob Spuntak <bobspuntak@msn.com>

19Core concepts
Figure 1.3 The anatomy of a basic command. It begins with the name of the command, followed by
parameters. These may be switch parameters that take no arguments, regular parameters that do take
arguments, or positional parameters, where the matching parameter is inferred by the argument’s
position on the command line.

and also which kind of command to run. In PowerShell there are a number of catego-
ries of commands: cmdlets, shell function commands, script commands, workflow
commands, and native Windows commands. Following the command name come
zero or more parameters and/or arguments. A parameter starts with a dash, followed
by the name of the parameter. An argument, on the other hand, is the value that’ll be
associated with, or bound to, a specific parameter. Let’s look at an example:

PS (1) > Write-Output -InputObject Hello
Hello

In this example, the command is Write-Output, the parameter is -InputObject, and
the argument is Hello.

 What about the positional parameters? When a PowerShell command is created,
the author of that command specifies information that allows PowerShell to deter-
mine which parameter to bind an argument to, even if the parameter name itself is
missing. For example, the Write-Output command has been defined such that the
first parameter is -InputObject. This lets you write

PS (2) > Write-Output Hello
Hello

The piece of the PowerShell interpreter that figures all of this out is called the parame-
ter binder. The parameter binder is smart—it doesn’t require that you specify the full
name of a parameter as long as you specify enough for it to uniquely distinguish what
you mean.

NOTE PowerShell isn’t case sensitive but we use the correct casing on com-
mands and parameters to aid reading. It’s also a good practice when scripting,
as it’s easier to understand the code when you revisit it many months later.
Licensed to Bob Spuntak <bobspuntak@msn.com>

20 CHAPTER 1 Welcome to PowerShell
 What else does the parameter binder do? It’s in charge of determining how to match
the types of arguments to the types of parameters. Remember that PowerShell is an
object-based shell. Everything in PowerShell has a type. PowerShell uses a fairly complex
type-conversion system to correctly put things together. When you type a command at
the command line, you’re typing strings. What happens if the command requires a dif-
ferent type of object? The parameter binder uses the type converter to try to convert
that string into the correct type for the parameter. If you use a value that can’t be con-
verted to the correct type you get an error message explaining that the type conversion
failed. We discuss this in more detail in chapter two, when we talk about types.

 What happens if the argument you want to pass to the command starts with a dash?
This is where the quotes come in. Let’s use Write-Output to print out the string “-
InputObject”:

PS (1) > Write-Output -InputObject "-InputObject"
-InputObject

And it works as desired. Alternatively, you could type this:

PS (2) > Write-Output "-InputObject"
-InputObject

The quotes keep the parameter binder from treating the quoted string as a parameter.
 Another, less frequently used way of doing this is by using the special “end-of-

parameters” parameter, which is two hyphens back to back (--). Everything after this
sequence will be treated as an argument, even if it looks like a parameter. For exam-
ple, using -- you can also write out the string -InputObject without using quotes:

PS (3) > Write-Output -- -InputObject
-InputObject

This is a convention standardized in the POSIX Shell and Utilities specification.
 The final element of the basic command pattern is the switch parameter. These are

parameters that don’t require an argument. They’re usually either present or absent
(obviously they can’t be positional). A good example of this is the -Recurse parame-
ter on the dir command. This switch tells the dir command to display files from a
specified directory as well as all its subdirectories:

PS (1) > dir -Recurse -Filter c*d.exe c:\windows
 Directory: C:\windows\system32

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 29/10/2014 00:37 141824 CloudStorageWizard.exe
-a--- 29/10/2014 01:28 357376 cmd.exe

As you can see, the -Recurse switch takes no arguments.
Licensed to Bob Spuntak <bobspuntak@msn.com>

21Core concepts
NOTE Although it’s almost always the case that switch parameters don’t take
arguments, it’s possible to specify arguments to them. We’ll save discussion of
when and why you might do this for chapter seven, which focuses on scripts
(shell functions and scripts are the only time you need this particular feature,
and we’ll keep you in suspense for the time being).

Now that we’ve covered the basic anatomy of the command line, let’s go over the types
of commands that PowerShell supports.

1.3.3 Command categories

As we mentioned earlier, there are four categories of commands in PowerShell: cmd-
lets, functions, scripts, and native Win32 executables.

CMDLETS

The first category of command is a cmdlet (pronounced “command-let”). Cmdlet is a
term that’s specific to the PowerShell environment. A cmdlet is implemented by a
.NET class that derives from the Cmdlet base class in the PowerShell Software Devel-
opers Kit (SDK).

NOTE Building cmdlets is a developer task and requires the PowerShell SDK.
This SDK is freely available for download from Microsoft and includes exten-
sive documentation along with many code samples. Our goal is to coach you
to effectively use and script in the PowerShell environment, and we’re not
going to do much more than mention the SDK in this book.

This category of command is compiled into a dynamic link library (DLL) and then
loaded into the PowerShell process, usually when the shell starts up. Because the com-
piled code is loaded into the process, it’s the most efficient category of command to
execute.

 Cmdlets always have names of the form Verb-Noun, where the verb specifies the
action and the noun specifies the object on which to operate. In traditional shells,
cmdlets correspond most closely to what’s usually called a built-in command. In Power-
Shell, though, anybody can add a cmdlet to the runtime, and there isn’t any special
class of built-in commands.

FUNCTIONS

The next type of command is a function. This is a named piece of PowerShell script
code that lives in memory as the interpreter is running, and is discarded on exit. Func-
tions consist of user-defined code that’s parsed when defined. This parsed representa-
tion is preserved in order that it doesn’t have to be reparsed every time it’s used.

 Functions in PowerShell version 1 could have named parameters like cmdlets but
were otherwise fairly limited. In version 2, and later, this was fixed, and scripts and
functions now have the full parameter specification capabilities of cmdlets. The same
basic structure is followed for both types of commands. Functions and cmdlets have
the same streaming behavior.
Licensed to Bob Spuntak <bobspuntak@msn.com>

22 CHAPTER 1 Welcome to PowerShell
 PowerShell workflows were introduced in PowerShell 3.0. Their syntax is similar to
that of a function. When the workflow is first loaded in memory a PowerShell function
is created that can be viewed through the function: PowerShell drive. Workflows are
covered in chapter twelve.

SCRIPTS

A script command is a piece of PowerShell code that lives in a text file with a .ps1 exten-
sion. These script files are loaded and parsed every time they’re run, making them
somewhat slower than functions to start (although once started, they run at the same
speed). In terms of parameter capabilities, shell function commands and script com-
mands are identical.

NATIVE COMMANDS (APPLICATIONS)
The last type of command is called a native command. These are external programs
(typically executables) that can be executed by the operating system. Because running
a native command involves creating a whole new process for the command, native
commands are the slowest of the command types. Also, native commands do their
own parameter processing and don’t necessarily match the syntax of the other types of
commands.

 Native commands cover anything that can be run on a Windows computer, and
you get a wide variety of behaviors. One of the biggest issues is when PowerShell waits
for a command to finish but it keeps on going. For example, say you’re starting a text
document at the command line:

PS (1) > .\foo.txt
PS (2) >

You get the prompt back more or less immediately, and your default text editor will pop
up (probably notepad.exe because that’s the default). The program to launch is deter-
mined by the file associations that are defined as part of the Windows -environment.

NOTE In PowerShell, unlike in cmd.exe, you have to prefix a command with
./ or .\ if you want to run it out of the current directory. This is part of Power-
Shell’s “Secure by Design” philosophy. This particular security feature was
adopted to prevent Trojan horse attacks where the user is lured into a directory
and then told to run an innocuous command such as notepad.exe. Instead of
running the system notepad.exe, they end up running a hostile program that
the attacker has placed in that directory and named notepad.exe.

What if you specify the editor explicitly?

PS (2) > notepad foo.txt
PS (3) >

The same thing happens—the command returns immediately. What if you run the
command in the middle of a pipeline?

PS (3) > notepad foo.txt | sort-object
<exit notepad>
PS (4) >
Licensed to Bob Spuntak <bobspuntak@msn.com>

23Core concepts
This time PowerShell waits for the command to exit before giving you back the prompt.
This can be handy when you want to insert something such as a graphical form editor in
the middle of a script to do some processing. This is also the easiest way to make Power-
Shell wait for a process to exit. As you can see, the behavior of native commands
depends on the type of native command, as well as where it appears in the pipeline.

 A useful thing to remember is that the PowerShell interpreter itself is a native com-
mand: powershell.exe. This means you can call PowerShell from within PowerShell.
When you do this, a second PowerShell process is created. In practice there’s nothing
unusual about this—that’s how all shells work. PowerShell doesn’t have to do it often,
making it much faster than conventional shell languages.

 The ability to run a child PowerShell process is particularly useful if you want to
have isolation in portions of your script. A separate process means that the child script
can’t impact the caller’s environment. This feature is useful enough that PowerShell
has special handling for this case, allowing you to embed the script to run inline. If
you want to run a fragment of script in a child process, you can do this by passing the
block of script to the child process delimited by braces. Here’s an example:

PS {1) > powershell { Get-Process *ss } | Format-Table name, handles

Name Handles
---- -------
csrss 1077
lsass 1272
smss 28

Two things should be noted in this example; the script code in the braces can be any
PowerShell code, and it’ll be passed through to the new PowerShell process. The spe-
cial handling takes care of encoding the script in such a way that it’s passed properly
to the child process. The other thing to note is that, when PowerShell is executed this
way, the output of the process is serialized objects—the basic structure of the output is
preserved—and can be passed into other commands. We’ll look at this serialization in
detail when we cover remoting—the ability to run PowerShell scripts on a remote com-
puter—in chapter twelve.

DESIRED STATE CONFIGURATION

Desired State Configuration (DSC) is a management platform in Windows Power-
Shell. It enables the deployment and management of configuration data for software
services and the environment on which these services run. A configuration is created
using PowerShell like syntax. The configuration is used to create a MOF (Managed
Object Format) file which is passed to the remote machine on which the configura-
tion will be applied. DSC is covered in chapter eighteen.

 Now that we’ve covered the PowerShell command types, let’s get back to looking at
the PowerShell syntax. Notice that a lot of what we’ve examined this far is a bit ver-
bose. This makes it easy to read, which is great for script maintenance, but it looks like
it’d be a pain to type on the command line. PowerShell addresses these two conflict-
ing goals—readability and writeability—with the concept of elastic syntax. Elastic syntax
Licensed to Bob Spuntak <bobspuntak@msn.com>

24 CHAPTER 1 Welcome to PowerShell
allows you to expand and collapse how much you need to type to suit your purpose.
We’ll see how this works in the next section.

1.3.4 Aliases and elastic syntax

We haven’t talked about aliases yet or how they’re used to achieve an elastic syntax in
PowerShell. Because this concept is important in the PowerShell environment, we
need to spend some time on it.

 The cmdlet Verb-Noun syntax, while regular, is, as we noted, also verbose. You may
have noticed that in most of the examples we’re using commands such as dir and
type. The trick behind all this is aliases. The dir command is Get-ChildItem, and the
type command is Get-Content. You can see this by using the Get-Command command:

PS (1) > Get-Command dir
CommandType Name ModuleName
----------- ---- ----------
Alias dir -> Get-ChildItem

This tells you that the command is an alias for Get-ChildItem. To get information
about the Get-ChildItem command, you then do this

PS (2) > Get-Command Get-ChildItem
CommandType Name ModuleName
----------- ---- ----------
Cmdlet Get-ChildItem Microsoft.PowerShell.Management

To see all the information, pipe the output of Get-Command into fl. This shows you
the full detailed information about this cmdlet. But wait—what’s the fl command?
Again you can use Get-Command to find out:

PS (4) > Get-Command fl
CommandType Name ModuleName
----------- ---- ----------
Alias fl -> Format-List

PowerShell comes with a large set of predefined aliases. Two basic categories of aliases
exist—transitional aliases and convenience aliases. By transitional aliases, we mean a set of
aliases that map PowerShell commands to commands that people are accustomed to
using in other shells, specifically cmd.exe and the UNIX shells. For the cmd.exe user,
PowerShell defines dir, type, copy, and so on. For the UNIX user, PowerShell defines
ls, cat, cp, and so forth. These aliases allow a basic level of functionality for new users
right away.

 The other set of aliases are the convenience aliases. These aliases are derived from
the names of the cmdlets they map to. Get-Command becomes gcm, Get-ChildItem
becomes gci, Invoke-Item becomes ii, and so on. For a list of the defined aliases,
type Get-Alias at the command line. You can use the Set-Alias command (whose
alias is sal, by the way) to define your own aliases – many experienced PowerShell
users create a set of one letter aliases to cover the cmdlets they most often use at the
command prompt.
Licensed to Bob Spuntak <bobspuntak@msn.com>

25Core concepts
NOTE Aliases in PowerShell are limited to aliasing the command name only.
Unlike in other systems such as ksh, bash, and zsh, PowerShell aliases can’t
include parameters. If you need to do something more sophisticated than sim-
ple command-name translations, you’ll have to use shell functions or scripts.

This is all well and good, but what does it have to do with elastics? Glad you asked! The
idea is that PowerShell can be terse when needed and descriptive when appropriate.
The syntax is concise for simple cases and can be stretched like an elastic band for larger
problems. This is important in a language that’s both a command-line tool and a script-
ing language. Many “scripts” that you’ll write in PowerShell will be no more than a few
lines long. There’ll be a string of commands that you’ll type on the command line and
then never use again. To be effective in this environment, the syntax needs to be con-
cise. This is where aliases like fl come in—they allow you to write concise command
lines. When you’re scripting, though, it’s best to use the long name of the command.
Sooner or later, you’ll have to read the script you wrote (or—worse—someone else will).
Would you rather read something that looks like this

gcm|?{$_.parametersets.Count -gt 3}|fl name

or this?

Get-Command |
 Where-Object {$_.parametersets.count -gt 3} |
 Format-List name

We’d certainly rather read the latter. (As always, we’ll cover the details of these exam-
ples later in the book.)

 There’s a second type of alias used in PowerShell: parameter aliases. Unlike com-
mand aliases, which can be created by end users, parameter aliases are created by the
author of a cmdlet, script, or function. (You’ll see how to do this when we look at
advanced function creation in chapter seven.)

 A parameter alias is a shorter name for a parameter. Wait a second, earlier we said
that you needed enough of the parameter name to distinguish it from other com-
mand parameters. Isn’t this enough for convenience and elasticity? Why do you need
parameter aliases? The reason you need these aliases has to do with script versioning.
The easiest way to understand versioning is to look at an example.

 Say you have a script that calls a cmdlet Process-Message. This cmdlet has a
parameter -Reply. You write your script specifying

Process-Message -Re

Run the script, and it works fine. A few months later, you install an enhanced version
of the Process-Message command. This new version introduces a new parameter: -
receive. only specifying -Re is no longer sufficient. If you run the old script with the
new cmdlet, it’ll fail with an ambiguous parameter message; the script is broken.

 How do you fix this with parameter aliases? The first thing to know is that Power-
Shell always picks the parameter that exactly matches a parameter name or alias over a
Licensed to Bob Spuntak <bobspuntak@msn.com>

26 CHAPTER 1 Welcome to PowerShell
partial match. By providing parameter aliases, you can achieve pithiness without also
making scripts subject to versioning issues. We recommend always using the full
parameter name for production scripts or scripts you want to share. Readability is
always more important in that scenario.

 Now that we’ve covered the core concepts of how commands are processed, let’s
step back a bit and look at PowerShell language processing overall. PowerShell has a
small number of important syntactic rules you should learn. When you understand
these rules, your ability to read, write, and debug PowerShell scripts will increase tre-
mendously.

1.4 Parsing the PowerShell language
In this section, we’ll cover the details of how PowerShell scripts are parsed. Before the
PowerShell interpreter can execute the commands you type, it first has to parse the
command text and turn it into something the computer can execute, as shown in fig-
ure 1.4.

Figure 1.4 The flow of processing in the PowerShell interpreter, where an expression is transformed
and then executed to produce a result

 More formally, parsing is the process of turning human-readable source code into
a form the computer understands. A piece of script text is broken up into tokens by
the tokenizer (or lexical analyzer, if you want to be more technical). A token is a particu-
lar type of symbol in the programming language, such as a number, a keyword, or a
variable. Once the raw text has been broken into a stream of tokens, these tokens are
processed into structures in the language through syntactic analysis.

 In syntactic analysis, the stream of tokens is processed according to the grammati-
cal rules of the language. In normal programming languages, this process is straight-
forward—a token always has the same meaning. A sequence of digits is always a
number; an expression is always an expression, and so on. For example, the sequence

3+2
Licensed to Bob Spuntak <bobspuntak@msn.com>

27Parsing the PowerShell language
would always be an addition expression, and “Hello world” would always be a constant
string. Unfortunately, this isn’t the case in shell languages. Sometimes you can’t tell
what a token is except through its context.

NOTE More information on this and the inner workings of PowerShell is
available in the PowerShell language specification at http://www.micro-
soft.com/en-us/download/details.aspx?id=36389. The specification is cur-
rently only available up to version 3.0 of the PowerShell language.

In the next section, we go into more detail on why this is, and how the PowerShell
interpreter parses a script.

1.4.1 How PowerShell parses

For PowerShell to be successful as a shell, it can’t require that everything be quoted.
PowerShell would fail if it required people to continually type

cd ".."

or

copy "foo.txt" "bar.txt"

On the other hand, people have a strong idea of how expressions should work:

2

This is the number 2, not a string “2”. Consequently, PowerShell has some rather com-
plicated parsing rules. The next three sections will cover these rules. We’ll discuss how
quoting is handled, the two major parsing modes, and the special rules for newlines
and statement termination.

1.4.2 Quoting

Quoting is the mechanism used to turn a token that has special meaning to the Power-
Shell interpreter into a simple string value. For example, the Write-Output cmdlet
has a parameter -InputObject. But what if you want to use the string “-InputObject”
as an argument? To do this, you have to quote it; you surround it with single or double
quotes. The result looks like this:

PS (2) > Write-Output '-InputObject'
-inputobject

If you hadn’t put the argument in quotes an error message is produced indicating that
an argument to the parameter -InputObject is required.

 PowerShell supports several forms of quoting, each with somewhat different mean-
ings (or semantics). Putting single quotes around an entire sequence of characters
causes them to be treated like a single string. This is how you deal with file paths that
have spaces in them for example. If you want to change to a directory whose path con-
tains spaces, you type this:
Licensed to Bob Spuntak <bobspuntak@msn.com>

http://www.microsoft.com/en-us/download/details.aspx?id=36389
http://www.microsoft.com/en-us/download/details.aspx?id=36389

28 CHAPTER 1 Welcome to PowerShell
PS (4) > cd 'c:\program files'
PS (5) > pwd
Path

C:\Program Files

When you don’t use the quotes, you receive an error complaining about an unex-
pected parameter in the command because "c:\program" and "files" are treated as
two separate tokens.

NOTE Notice that the error message reports the name of the cmdlet, not the
alias that was used. This way you know what is being executed. The position
message shows you the text that was entered in order that you can see an alias
was used.

One problem with using matching quotes as we did in the previous examples is that
you have to remember to start the token with an opening quote. This raises an issue
when you want to quote a single character. You can use the backquote (`) character to
do this (the backquote is usually the upper-leftmost key, below Esc):

PS (6) > cd c:\program` files
PS (7) > pwd
Path

C:\Program Files

The backquote, or backtick, as it tends to be called, has other uses that we’ll explore
later in this section. Now let’s look at the other form of matching quote: double
quotes. You’d think it works pretty much like the example with single quotes; what’s
the difference? In double quotes, variables are expanded. If the string contains a vari-
able reference starting with a $, it’ll be replaced by the string representation of the
value stored in the variable. Let’s look at an example. First assign the string “files” to
the variable $v:

PS (10) > $v = 'files'

Now reference that variable in a string with double quotes:

PS (11) > cd "c:\program $v"
PS (12) > pwd

Path

C:\Program Files

The cd succeeded and the current directory was set as you expected.

NOTE Variable expansion only occurs with double quotes. A common begin-
ner error is to use single quotes and expect variable expansion to work.

What if you want to show what the value of $v is? To do this, you need to have expan-
sion in one place but not in the other. This is one of those other uses we had for the
Licensed to Bob Spuntak <bobspuntak@msn.com>

29Parsing the PowerShell language
backtick. It can be used to quote or escape the dollar sign in a double-quoted string to
suppress expansion. Let’s try it:

PS (16) > Write-Output "`$v is $v"
$v is files

Here’s one final tweak to this example—if $v contained spaces, you’d want to make
clear what part of the output was the value. Because single quotes can contain double
quotes and double quotes can contain single quotes, this is straightforward:

PS (17) > Write-Output "`$v is '$v'"
$v is 'files'
PS (18) >

Now, suppose you want to display the value of $v on another line instead of in quotes.
Here’s another situation where you can use the backtick as an escape character. The
sequence `n in a double-quoted string will be replaced by a newline character. You can
write the example with the value of $v on a separate line as follows:

PS (19) > "The value of `$v is:`n$v"
The value of $v is:
Files

The list special characters that can be generated using backtick (also called escape)
sequences can be found using Get-Help about_Escape_Characters. Note that escape
sequence processing, like variable expansion, is only done in double-quoted strings. In
single-quoted strings, what you see is what you get. This is particularly important when
writing a string to pass to a subsystem that does additional levels of quote processing.

1.4.3 Expression-mode and command-mode parsing

As mentioned earlier, because PowerShell is a shell, it has to deal with some parsing
issues not found in other languages. PowerShell simplifies parsing considerably, trim-
ming the number of modes down to two: expression mode and command mode.

 In expression mode, the parsing is conventional: strings must be quoted, numbers
are always numbers, and so on. In command mode, numbers are treated as numbers
but all other arguments are treated as strings unless they start with $, @, ', ", or (.
When an argument begins with one of these special characters, the rest of the argu-
ment is parsed as a value expression. (There’s also special treatment for leading vari-
able references in a string, which we’ll discuss later.) Table 1.1 shows some examples
that illustrate how items are parsed in each mode.

Table 1.1 Parsing mode examples

Example command line Parsing mode and explanation

2+2 Expression mode; results in 4.

Write-Output 2+2 Command mode; results in 2+2.

$a=2+2 Expression mode; the variable $a is assigned the value 4.
Licensed to Bob Spuntak <bobspuntak@msn.com>

30 CHAPTER 1 Welcome to PowerShell
Notice that in the Write-Output (2+2) case, the open parenthesis causes the inter-
preter to enter a new level of interpretation where the parsing mode is once again
established by the first token. This means the sequence 2+2 is parsed in expression
mode, not command mode, and the result of the expression (4) is emitted. Also, the
last example in the table illustrates the exception mentioned previously for a leading
variable reference in a string. A variable itself is treated as an expression, but a vari-
able followed by arbitrary text is treated as though the whole thing were in double
quotes. This allows you to write

cd $HOME/scripts

instead of

cd "$HOME/scripts"

As mentioned earlier, quoted and unquoted strings are recognized as different tokens
by the parser. This is why

Invoke-MyCmdlet -Parm arg

treats -Parm as a parameter and

Invoke-MyCmdlet "-Parm" arg

treats "-Parm" as an argument. There’s an additional wrinkle in the parameter bind-
ing. If an unquoted parameter like -NotAparameter isn’t a parameter on Invoke-MyC-
mdlet, it’ll be treated as an argument. This lets you say

Write-Host -this -is -a parameter

without requiring quoting.

Write-Output (2+2) Expression mode; because of the parentheses, 2+2 is evaluated
as an expression producing 4. This result is then passed as an
argument to the Write-Output cmdlet.

Write-Output $a Expression mode; produces 4. This is ambiguous—evaluating it in
either mode produces the same result. The next example shows
why the default is expression mode if the argument starts with a
variable.

Write-Output
$a.Equals(4)

Expression mode; $a.Equals(4) evaluates to true and Write-
Output writes the Boolean value True. This is why a variable is
evaluated in expression mode by default. You want simple method
and property expressions to work without parentheses.

Write-Output
$a/foo.txt

Command mode; $a/foo.txt expands to 4/foo.txt. This is
the opposite of the previous example. Here you want it to be evalu-
ated as a string in command mode. The interpreter first parses in
expression mode and sees that it’s not a valid property expression,
and it backs up and rescans the argument in command mode. As a
result, it’s treated as an expandable string.

Table 1.1 Parsing mode examples (continued)

Example command line Parsing mode and explanation
Licensed to Bob Spuntak <bobspuntak@msn.com>

31Parsing the PowerShell language
 This finishes our coverage of the basics of parsing modes, quoting, and commands.
Commands can take arbitrary lists of arguments, and knowing when the statement
ends is important. We’ll cover this in the next section.

1.4.4 Statement termination

In PowerShell, there are two statement terminator characters: the semicolon (;) and
(sometimes) the newline. Why is a newline a statement separator only sometimes? The
rule is that if the previous text is a syntactically complete statement, a newline is con-
sidered to be a statement termination. If it isn’t complete, the newline is treated like
any other whitespace. This is how the interpreter can determine when a command or
expression crosses multiple lines. For example, in the following

PS (1) > 2 +
>> 2
>>
4
PS (2) >

the sequence 2 + is incomplete, and the interpreter prompts you to enter more text.
(This is indicated by the nest prompt characters, >>.) On the other hand, in the next
sequence

PS (2) > 2
2
PS (3) > + 2
2
PS (4) >

the number 2 by itself is a complete expression, and the interpreter goes ahead and
evaluates it. Likewise, + 2 is a complete expression and is also evaluated (+ in this case
is treated as the unary plus operator). From this, you can see that if the newline comes
after the + operator, the interpreter will treat the two lines as a single expression. If
the newline comes before the + operator, it’ll treat the two lines as two individual
expressions.

 Most of the time, this mechanism works the way you expect, but sometimes you can
receive some unanticipated results. Take a look at the following example:

PS (22) > $b = (2
>> + 2)
>>
Missing closing ')' in expression.
At line:2 char:1
+ + <<<< 2)
PS (23) >

This was a question raised by one of the PowerShell beta testers. They were surprised
by this result and thought there was something wrong with the interpreter, but in fact,
this isn’t a bug. Here’s what’s happening.
Licensed to Bob Spuntak <bobspuntak@msn.com>

32 CHAPTER 1 Welcome to PowerShell
 Consider the following text:

> $b = (2 +
> 2)

It’s parsed as $b = (2 + 2) because a trailing + operator is only valid as part of a
binary operator expression. The sequence $b = (2 + can’t be a syntactically com-
plete statement, and the newline is treated as whitespace. On the other hand, con-
sider the text

> $b = (2
> + 2)

In this case, 2 is a syntactically complete statement, and the newline is now treated as a
line terminator. In effect, the sequence is parsed like $b = (2 ; + 2); two complete
statements. Because the syntax for a parenthetical expression is

(<expr>)

you get a syntax error—the interpreter is looking for a closing parenthesis as soon as it
has a complete expression. Contrast this with using a subexpression instead of the
parentheses alone:

>> $b = $(
>> 2
>> +2
>>)
>>
PS (24) > $b
2
2

Here the expression is valid because the syntax for subexpressions is

$(<statementList>)

How do you extend a line that isn’t extensible by itself? This is another situation where
you can use the backtick escape character. If the last character in the line is a backtick,
then the newline will be treated as a simple breaking space instead of a newline:

PS (1) > Write-Output `
>> -inputobject `
>> "Hello world"
>>
Hello world
PS (2) >

Finally, one thing that surprises some people is that strings aren’t terminated by a new-
line character. Strings can carry over multiple lines until a matching, closing quote is
encountered:

PS (1) > Write-Output "Hello
>> there
>> how are
>> you?"
Licensed to Bob Spuntak <bobspuntak@msn.com>

33Parsing the PowerShell language
>>
Hello
there
how are
you?
PS (2) >

In this example, you see a string that extended across multiple lines. When that string
was displayed, the newlines were preserved in the string.

 The handling of end-of-line characters in PowerShell is another of the trade-offs
that kept PowerShell useful as a shell. Although the handling of end-of-line characters
is a bit strange compared to non-shell languages, the overall result is easy for most
people to get used to.

1.4.5 Comment syntax in PowerShell

Every computer language has some mechanism for annotating code with expository
comments. Like many other shells and scripting languages, PowerShell comments
begin with a number sign (#) symbol and continue to the end of the line. The # char-
acter must be at the beginning of a token for it to start a comment. Here’s an example
that illustrates what this means:

PS (1) > echo hi#there
hi#there

In this example, the number sign is in the middle of the token hi#there and isn’t
treated as the starting of a comment. In the next example, there’s a space before the
number sign:

PS (2) > echo hi #there
hi

Now the # is treated as starting a comment and the following text isn’t displayed. It
can be preceded by characters other than a space and still start a comment. It can be
preceded by any statement-terminating or expression-terminating character like a
bracket, brace, or semicolon, as shown in the next couple of examples:

PS (3) > (echo hi)#there
hi
PS (4) > echo hi;#there
hi

In both of these examples, the # symbol indicates the start of a comment.
 Finally, you need to take into account whether you’re in expression mode or com-

mand mode. In command mode, as shown in the next example, the + symbol is
included in the token hi+#there:

PS (5) > echo hi+#there
hi+#there

In expression mode it’s parsed as its own token. Now the # indicates the start of a com-
ment, and the overall expression results in an error:
Licensed to Bob Spuntak <bobspuntak@msn.com>

34 CHAPTER 1 Welcome to PowerShell
PS (6) > "hi"+#there
You must provide a value expression on the right-hand side of the '+'
operator.
At line:1 char:6
+ "hi"+ <<<< #there

The # symbol is also allowed in function names:

PS (3) > function hi#there { "Hi there" }
PS (4) > hi#there
Hi there

The reason for allowing the # in the middle of tokens was to make it easy to accommo-
date path providers that used # as part of their path names. People conventionally
include a space before the beginning of a comment, and this doesn’t appear to cause
any difficulties.

MULTILINE COMMENTS

In PowerShell version 2, multiline comments were introduced, primarily to allow you
to embed inline help text in scripts and functions. A multiline comment begins with
<# and ends with #>. Here’s an example:

<#
 This is a comment
 that spans
 multiple lines
#>

This type of comment need not span multiple lines;you can use this notation to add a
comment preceding some code:

PS {2) > <# a comment #> "Some code"
Some code
PS {3) >

In this example, the line is parsed, the comment is read and ignored, and the code
after the comment is executed.

 One of the things this type of comment allows you to do is easily embed chunks of
preformatted text in functions and scripts. The PowerShell help system takes advan-
tage of this feature to allow functions and scripts to contain inline documentation in the
form of special comments. These comments are automatically extracted by the help
system to generate documentation for the function or script. You’ll learn how the
comments are used by the help subsystem in chapter seven.

 Now that you have a good understanding of the basic PowerShell syntax, let’s look
at how your commands are executed by the PowerShell execution engine. We’ll start
with the pipeline.

1.5 How the pipeline works
A pipeline is a series of commands separated by the pipe operator (|), as shown in figure
1.5. In some ways, the term production line better describes pipelines in PowerShell. Each
Licensed to Bob Spuntak <bobspuntak@msn.com>

35How the pipeline works
Figure 1.5 Anatomy of a pipeline

command in the pipeline receives an object from the previous command, performs
some operation on it, and then passes it along to the next command in the pipeline.

NOTE This, by the way, is the great PowerShell Heresy. All previous shells
passed strings only through the pipeline. Many people had difficulty with the
notion of doing anything else. Like the character in The Princess Bride, they’d
cry “Inconceivable!” And we’d respond, “I do not think that word means what
you think it means.”

All of the command categories take parameters and arguments. In the following
example

Get-ChildItem -Filter *.dll -Path c:\windows -Recurse

-Filter is a parameter that takes one argument, *.dll. The string “c:\windows” is the
argument to the positional parameter -Path.

 Next we’ll discuss the signature characteristic of pipelines—streaming behavior.

1.5.1 Pipelines and streaming behavior

Streaming behavior occurs when objects are processed one at a time in a pipeline. This
is one of the characteristic behaviors of shell languages. In stream processing, objects
are output from the pipeline as soon as they become available. In more traditional pro-
gramming environments the results are returned only when the entire result set has
been generated—the first result and the last result are returned at the same time. In a
pipelined shell, the first result is returned as soon as it’s available and subsequent results
return as they also become available. This flow is illustrated in figure 1.6.

 At the top of figure 1.5 you see a PowerShell command pipeline containing four
commands. This command pipeline is passed to the PowerShell parser, which figures
out what the commands are, what the arguments and parameters are, and how they
should be bound for each command. When the parsing is complete, the pipeline pro-
cessor begins to sequence the commands. First it runs the begin clause of each of the
commands, once, in sequence from first to last. After all the begin clauses have been
run, it runs the process clause in the first command. If the command generates one
or more objects, the pipeline processor passes these objects, one at a time, to the sec-
Licensed to Bob Spuntak <bobspuntak@msn.com>

36 CHAPTER 1 Welcome to PowerShell
Figure 1.6 How objects flow through a pipeline one at a time. A common parser constructs each of
the command objects and then starts the pipeline processor, stepping each object through all stages
of the pipeline.

ond command. If the second command also emits an object, this object is passed to
the third command, and so on.

 When processing reaches the end of the pipeline, any objects emitted are passed
back to the PowerShell host. The host is then responsible for any further processing.

 This aspect of streaming is important in an interactive shell environment, because
you want to see objects as soon as they’re available. The next example shows a simple
pipeline that traverses through C:\Windows looking for all of the DLLs whose names
start with the word “system”:

dir -recurse -filter *.dll | where Name -match "system.*dll"

 Directory: C:\windows\assembly\GAC_32\System.EnterpriseServices\
[CA]2.0.0.0__b03f5f7f11d50a3a

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 27/05/2014 05:39 113664 System.EnterpriseServices.Wrapper.dll

 Directory: C:\windows\assembly\GAC_32\System.Printing\
[CA]3.0.0.0__31bf3856ad364e35

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 03/08/2013 05:41 372736 System.Printing.dll
Licensed to Bob Spuntak <bobspuntak@msn.com>

37How the pipeline works
With streaming behavior, as soon as the first file is found, it’s displayed. Without
streaming, you’d have to wait until the entire directory structure has been searched
before you’d see any results.

 In most shell environments streaming is accomplished by using separate processes
for each element in the pipeline. In PowerShell, which only uses a single process (and a
single thread as well), streaming is accomplished by splitting cmdlets into three clauses:
BeginProcessing, ProcessRecord, and EndProcessing. In a pipeline, the BeginPro-
cessing clause is run for all cmdlets in the pipeline. Then the ProcessRecord clause is
run for the first cmdlet. If this clause produces an object, that object is passed to the
ProcessRecord clause of the next cmdlet in the pipeline, and so on. Finally, the End-
Processing clauses are all run. (We cover this sequencing again in more detail in chap-
ter five, which is about scripts and functions, because they can also have these clauses.)

1.5.2 Parameters and parameter binding

Now let’s talk about more of the details involved in binding parameters for com-
mands. Parameter binding is the process in which values are bound to the parameters
on a command. These values can come from either the command line or the pipeline.
Here’s an example of a parameter argument being bound from the command line:

PS (1) > Write-Output 123
123

And here’s the same example where the parameter is taken from the input object
stream:

PS (2) > 123 | Write-Output
123

The binding process is controlled by declaration information on the command itself.
Parameters can have the following characteristics: they are either mandatory or
optional, they have a type to which the formal argument must be convertible, and they
can have attributes that allow the parameters to be bound from the pipeline. Table 1.2
describes the actual steps in the binding process.

Table 1.2 Steps in the parameter binding process

Binding step Description

1. Bind all named parameters. Find all unquoted tokens on the command line that start with a
dash. If the token ends with a colon, an argument is required.
If there’s no colon, look at the type of the parameter and see if
an argument is required. Convert the type of actual argument
to the type required by the parameter, and bind the parameter.

2. Bind all positional parameters. If there are any arguments on the command line that haven’t
been used, look for unbound parameters that take positional
parameters and try to bind them.
Licensed to Bob Spuntak <bobspuntak@msn.com>

38 CHAPTER 1 Welcome to PowerShell
As you can see, this binding process is quite involved. In practice, the parameter
binder almost always does what you want—that’s why a sophisticated algorithm is
used. Sometimes you’ll need to understand the binding algorithm to get a particular
behavior. PowerShell has built-in facilities for debugging the parameter-binding pro-
cess that can be accessed through the Trace-Command cmdlet. Here’s an example
showing how to use this cmdlet:

Trace-Command -Name ParameterBinding -Option All `
-Expression { 123 | Write-Output } -PSHost

In this example, you’re tracing the expression in the braces—that’s the expression:

123 | Write-Output

This expression pipes the number 123 to the cmdlet Write-Output. The Write-Out-
put cmdlet takes a single mandatory parameter -InputObject, which allows pipeline
input by value. The tracing output is long but fairly self-explanatory, and we haven’t
included it here. This is something you should experiment with to see how it can help
you figure out what’s going on in the parameter-binding process.

 And now for the final topic in this chapter: formatting and output. The formatting
and output subsystem provides the magic that lets PowerShell figure out how to dis-
play the output of the commands you type.

1.6 Formatting and output
One of the issues people new to PowerShell face is the formatting system. As a general
rule we run commands and depend on the system to figure out how to display the
results. We’ll use commands such as Format-Table and Format-List to give general
guidance on the shape of the display, but no specific details. Let’s dig in now and see
how this all works.

3. Bind from the pipeline by value
with exact match.

If the command isn’t the first command in the pipeline and
there are still unbound parameters that take pipeline input, try
to bind to a parameter that matches the type exactly.

4. If not bound, then bind from the
pipe by value with conversion.

If the previous step failed, try to bind using a type conversion.

5. If not bound, then bind from the
pipeline by name with exact
match.

If the previous step failed, look for a property on the input
object that matches the name of the parameter. If the types
exactly match, bind the parameter.

6. If not bound, then bind from the
pipeline by name with conversion.

If the input object has a property whose name matches the
name of a parameter, and the type of the property is convert-
ible to the type of the parameter, bind the parameter.

Table 1.2 Steps in the parameter binding process (continued)

Binding step Description
Licensed to Bob Spuntak <bobspuntak@msn.com>

39Formatting and output
 PowerShell is a type-based system. Types are used to determine how things are dis-
played, but normal objects don’t usually know how to display themselves. PowerShell
deals with this by including formatting information for various types of objects as part
of the extended type system. This extended type system allows PowerShell to add new
behaviors to existing .NET objects or extend the formatting system to cope with new
types you have created. The default formatting database is stored in the PowerShell
install directory, which you can get to by using the $PSHOME shell variable. Here’s a list
of the files that were included as of this writing:

PS (1) > dir $PSHOME/*format* | Format-Table name

Name

Certificate.format.ps1xml
Diagnostics.Format.ps1xml
DotNetTypes.format.ps1xml
Event.Format.ps1xml
FileSystem.format.ps1xml
Help.format.ps1xml
HelpV3.format.ps1xml
PowerShellCore.format.ps1xml
PowerShellTrace.format.ps1xml
Registry.format.ps1xml
WSMan.Format.ps1xml

The naming convention helps users figure out the purpose of files. (The others
should become clear after reading the rest of this book.) These files are XML docu-
ments that contain descriptions of how each type of object should be displayed.

TIP These files are digitally signed by Microsoft. Do NOT alter them under
any circumstances. You’ll break things if you do.

These descriptions are fairly complex and somewhat difficult to write. It’s possible for
end users to add their own type descriptions, but that’s beyond the scope of this chap-
ter. The important thing to understand is how the formatting and outputting com-
mands work together.

1.6.1 The formatting cmdlets

Display of information is controlled by the type of the objects being displayed, but the
user can choose the “shape” of the display by using the Format-* commands:

PS (5) > Get-Command Format-* | Format-Table name

Name

Format-Custom
Format-List
Format-Table
Format-Wide
Licensed to Bob Spuntak <bobspuntak@msn.com>

40 CHAPTER 1 Welcome to PowerShell
By shape, we mean things such as a table or a list. Here’s how they work. The Format-
Table cmdlet formats output as a series of columns displayed across your screen:

PS (1) > Get-Item c:\ | Format-Table

 Directory:

Mode LastWriteTime Length Name
---- ------------- ------ ----
d--hs 30/03/2015 20:04 C:\

PowerShell 5.0 automatically derives the on–screen positioning from the first few
objects through the pipeline – effectively an automatic –Autosize parameter. This
change was introduced because –Autosize is a blocking parameter that caused huge
amounts of data to be stored in memory until all objects were available.

The Format-List command displays the elements of the objects as a list, one after the
other:

PS (2) > Get-Item c:\ | Format-List

 Directory:

Name : C:\
CreationTime : 22/08/2013 14:31:02
LastWriteTime : 30/03/2015 20:04:20
LastAccessTime : 30/03/2015 20:04:20

If there’s more than one object to display, they’ll appear as a series of lists. This is usually
the best way to display a large collection of fields that won’t fit well across the screen.

Format-Table autosize parameter
In PowerShell 1.0 through 4.0 Format-Table tries to use the maximum width of the
display and guesses at how wide a particular field should be. This allows you to start
seeing data as quickly as possible (streaming behavior) but doesn’t always produce
optimal results. You can achieve a better display by using the -AutoSize switch, but
this requires the formatter to process every element before displaying any of them,
and this prevents streaming. PowerShell has to do this to figure out the best width
to use for each field. The result in this example looks like this:

PS (3) > Get-Item c:\ | Format-Table -AutoSize

 Directory:

Mode LastWriteTime Length Name
---- ------------- ------ ----
d--hs 30/03/2015 20:04 C:\

In practice, the default layout when streaming is good and you don’t need to use -
Autosize, but sometimes it can help make things more readable.
Licensed to Bob Spuntak <bobspuntak@msn.com>

41Formatting and output
 The Format-Wide cmdlet is used when you want to display a single object property
in a concise way. It’ll treat the screen as a series of columns for displaying the same
information.

PS (1) > Get-Process –Name s* | Format-Wide -Column 8 id

1372 640 516 1328 400 532 560 828
876 984 1060 1124 4

In this example, you want to display the process IDs of all processes whose names start
with “s” in eight columns. This formatter allows for dense display of information.

 The final formatter is Format-Custom, which displays objects while preserving the
basic structure of the object. Because most objects have a structure that contains other
objects, which in turn contain other objects, this can produce extremely verbose out-
put. Here’s a small part of the output from the Get-Item cmdlet, displayed using For-
mat-Custom:

PS (10) > Get-Item c:\ | Format-Custom -Depth 1
v
class DirectoryInfo
{
 PSPath = Microsoft.PowerShell.Core\FileSystem::C:\
 PSParentPath =
 PSChildName = C:\
 PSDrive =
 class PSDriveInfo
 {
 CurrentLocation =
 Name = C
 Provider = Microsoft.PowerShell.Core\FileSystem
 Root = C:\
 Description = C_Drive
 Credential = System.Management.Automation.PSCredential
 }

The full output is considerably longer, and notice that we’ve told it to stop walking the
object structure at a depth of 1. You can imagine how verbose this output can be! Why
have this cmdlet? Mostly because it’s a useful debugging tool, either when you’re cre-
ating your own objects or for exploring the existing objects in the .NET class libraries.

1.6.2 The outputter cmdlets

Now that you know how to format something, how do you output it? You don’t have to
worry because, by default, things are automatically sent to (can you guess?) Out-
Default.

 Note that the following three examples do exactly the same thing:

dir | Out-Default
dir | Format-Table
dir | Format-Table | Out-Default
Licensed to Bob Spuntak <bobspuntak@msn.com>

42 CHAPTER 1 Welcome to PowerShell
This is because the formatter knows how to get the default outputter, the default out-
putter knows how to find the default formatter, and the system in general knows how
to find the defaults for both. The Möbius strip of subsystems!

 As with the formatters, there are several outputter cmdlets available in PowerShell
out of the box. You can use the Get-Command command to find them:

PS (1) > Get-Command Out-* | Format-Wide -Column 3

Out-Default Out-File Out-GridView
Out-Host Out-Null Out-Printer
Out-String

Here we have a somewhat broader range of choices. We’ve already talked about Out-
Default. The next one we’ll talk about is Out-Null. This is a simple outputter; any-
thing sent to Out-Null is discarded. This is useful when you don’t care about the out-
put for a command; you want the side effect of running the command.

NOTE Piping to Out-Null is the equivalent to doing redirecting to $null but
invokes the pipeline and can be up to forty times slower than redirecting to
$null.

Next we have Out-File. Instead of sending the output to the screen, this command
sends it to a file. (This command is also used by I/O redirection when doing output to
a file.) In addition to writing the formatted output, Out-File has several flags that
control how the output is written. The flags include the ability to append to a file
instead of replacing it, to force writing to read-only files, and to choose the output
encodings for the file. This last item is the trickiest one. You can choose from a num-
ber of the text encodings supported by Windows. Here’s a trick—enter the command
with an encoding that you know doesn’t exist:

PS (9) > out-file -encoding blah
Out-File : Cannot validate argument on parameter 'Encoding'. The argument

"blah" doesn’t belong to the set
"unknown,string,unicode,bigendianunicode,

utf8,utf7,utf32,ascii,default,oem" specified by the ValidateSet attribute.
Supply an argument found in the set and then try the command again.

You can see in the error message that all the valid encoding names are displayed. If
you don’t understand what these encodings are, don’t worry about it, and let the sys-
tem use its default value.

NOTE Where you’re likely to run into problems with output encoding (or
input encoding for that matter) is when you’re creating files that are going to
be read by another program. These programs may have limitations on what
encodings they can handle, particularly older programs. To find out more
about file encodings, search for “file encodings” on http://msdn.micro-
soft.com. MSDN contains a wealth of information on this topic. Chapter five
also contains additional information about working with file encodings in
PowerShell.
Licensed to Bob Spuntak <bobspuntak@msn.com>

http://msdn.microsoft.com
http://msdn.microsoft.com

43Formatting and output
The Out-Printer cmdlet doesn’t need much additional explanation; it routes its text-
only output to the default printer instead of to a file or to the screen.

 The Out-Host cmdlet is a bit more interesting—it sends its output back to the host.
This has to do with the separation in PowerShell between the interpreter or engine,
and the application that hosts that engine. The host application has to implement a
special set of interfaces to allow Out-Host to render its output properly. (We see this
used in PowerShell versions 2.0 to 5.0 which include two hosts: the console host and
the Integrated Scripting Environment (ISE).)

NOTE Out-Default delegates the actual work of outputting to the screen to
Out-Host.

The last output cmdlet to discuss is Out-String. This one’s a bit different. All the
other cmdlets terminate the pipeline. The Out-String cmdlet formats its input and
sends it as a string to the next cmdlet in the pipeline. Note that we said string, not
strings. By default, it sends the entire output as a single string. This isn’t always the
most desirable behavior—a collection of lines is usually more useful—but at least once
you have the string, you can manipulate it into the form you want. If you do want the
output as a series of strings, use the -Stream switch parameter. When you specify this
parameter, the output will be broken into lines and streamed one at a time.

 Note that this cmdlet runs somewhat counter to the philosophy of PowerShell;
once you’ve rendered the object to a string, you’ve lost its structure. The main reason
for including this cmdlet is for interoperation with existing APIs and external com-
mands that expect to deal with strings. If you find yourself using Out-String a lot in
your scripts, stop and think if it’s the best way to attack the problem.

 PowerShell version 2 introduced one additional output command: Out-GridView.
As you might guess from the name, this command displays the output in a grid, but
rather than rendering the output in the current console window, a new window is
opened with the output displayed using a sophisticated grid control (see figure 1.7).
The underlying grid control used by Out-GridView has all the features you’d expect
from a modern Windows interface: columns can be reordered by dragging and drop-
ping them, and the output can be sorted by clicking a column head. This control also
introduces sophisticated filtering capabilities. This filtering allows you to drill into a
dataset without having to rerun the command.

 That’s it for the basics: commands, parameters, pipelines, parsing, and presenta-
tion. You should now have a sufficient foundation to start moving on to more
advanced topics in PowerShell.
Licensed to Bob Spuntak <bobspuntak@msn.com>

44 CHAPTER 1 Welcome to PowerShell
1.7 Summary
 PowerShell is Microsoft’s command-line/scripting environment that’s at the

center of Microsoft server and application management technologies. Micro-
soft’s most important server products, including Exchange, Active Directory,
and SQL Server, now use PowerShell as their management layer.

 PowerShell incorporates object-oriented concepts into a command-line shell
using the .NET object model as the base for its type system, but can also access
other object types like WMI.

 Shell operations, like navigation and file manipulation in PowerShell, are simi-
lar to what you’re used to in other shells.

 The way to get help about things in PowerShell is to use the Get-Help com-
mand.

 PowerShell has a full range of calculation, scripting, and text processing capa-
bilities.

 PowerShell supports a comprehensive set of remoting features to allow you to
do scripted automation of large collections of computers.

 PowerShell has a number of command types, including cmdlets, functions, script
commands, and native commands, each with slightly different characteristics.

 PowerShell supports an elastic syntax—concise on the command line and com-
plete in scripts. Aliases are used to facilitate elastic syntax.

 PowerShell parses scripts in two modes: expression mode and command mode,
which is a critical point to appreciate when using PowerShell.

 The PowerShell escape character is a backtick (`), not a backslash.

Figure 1.7 Displaying output with Out-GridView
Licensed to Bob Spuntak <bobspuntak@msn.com>

45Summary
 PowerShell supports both double quotes and single quotes; variable and expres-
sion expansion is done in double quotes, but not in single quotes.

 Line termination is handled specially in PowerShell because it’s a command
language.

 PowerShell has two types of comments: line comments that begin with # and
block comments that start with <# and end with #>. The block comment nota-
tion was introduced in PowerShell version 2 with the intent of supporting inline
documentation for scripts and functions.

 PowerShell uses a sophisticated formatting and outputting system to determine
how to render objects without requiring detailed input from the user.
Licensed to Bob Spuntak <bobspuntak@msn.com>

46 CHAPTER 1 Welcome to PowerShell
Windows PowerShell in Action, Third Edition is a completely
revised edition of the bestselling book on PowerShell. It
keeps the same crystal-clear introduction to PowerShell
as the last edition and adds extensive coverage of v3, v4,
and v5 features such as PowerShell Workflows, Desired
State Configuration, PowerShell classes and the Power-
Shell APIs, new error handling and debugging features.
It includes full chapters on these topics and also covers
new language elements and operators, PowerShell
remoting, CIM, events, working with data such as XML
and flat files, The Second Edition's coverage of batch
scripting and string processing, COM, WMI, and .NET

have all been significantly revised and expanded. The book includes many popular
usage scenarios and is rich in interesting examples that will spark your imagination. This
is the definitive book on PowerShell - whichever version you use.

 Windows PowerShell transformed the way administrators and developers interact
with Windows. PowerShell, an elegant dynamic language from Microsoft, lets you
script administrative tasks and control Windows from the command line. Because it's
a full-featured, first-class Windows programming language, programmers and power-
users can now do things in a shell that previously required VB, VBScript, or C#.

What's inside:

 Writing modules and scripts
 PowerShell Workflows
 Desired State Configuration
 PowerShell background jobs
 PowerShell classes
 Programming APIs, pipelines and ISE extensions
 Error handling and debugging

Written for developers and administrators with intermediate level scripting knowl-
edge. No prior experience with PowerShell is required.
Licensed to Bob Spuntak <bobspuntak@msn.com>

https://www.manning.com/books/windows-powershell-in-action-third-edition
https://www.manning.com/books/windows-powershell-in-action-third-edition

Remoting – the ability to connect to and administer remote machines – is
the foundation of administering your Windows environment with PowerShell.
Being able to work with tens, hundreds, or even thousands of machines, brings
great flexibility and time savings. You need a good understanding of the theoret-
ical and practical aspects of remoting to get the best from it. This chapter pro-
vides that mixture of theory and practice that’ll help you learn how to use and
troubleshoot PowerShell remoting.

PowerShell
Remoting
Licensed to Bob Spuntak <bobspuntak@msn.com>

Chapter 10 from PowerShell in Depth, Second
Edition by Don Jones, Jeffrey Hicks, and
Richard Siddaway

PowerShell Remoting
Remoting was one of the major new technologies introduced in PowerShell v2 and
in the broader Windows Management Framework v2 (WMF v2), of which Power-
Shell is a part. With v4, Microsoft has continued to invest in this important founda-
tional technology. Most Windows machines, client or server, can be used as the
local or remote machine—that is, you can create remote connections to them and
you can create remote connections from them. The one exception is Windows RT—
you can only remote from machines running that version.

NOTE There’s very little difference between Remoting in PowerShell v3
and v4. Unless we state otherwise, everything in this chapter applies equally
to PowerShell v3 and v4.

This chapter covers
 Outlining Remoting technologies and protocols

 Configuring and securing Remoting endpoints

 Exploring Remoting scenarios

 Using implicit Remoting
48

Licensed to Bob Spuntak <bobspuntak@msn.com>

https://www.manning.com/books/powershell-in-depth-second-edition
https://www.manning.com/books/powershell-in-depth-second-edition

49The many forms of remote control
Remoting is a complex technology, and we’ll do our best to explore it as thoroughly as
possible. But some uses for Remoting are outside the purview of an administrator:
Programming custom-constrained runspaces, for example, requires software develop-
ment skills that are outside the scope of this book.

NOTE Everything in this chapter focuses on PowerShell v4 and v3, but the
majority of the material also applies to v2. The three versions of the shell can
talk to each other via Remoting—that is, a v2 shell can connect to a v3 or v4
shell, and vice versa. PowerShell Remoting between v3 and v4 works seamlessly.

10.1 The many forms of remote control
The first thing we need to clear up is the confusion over the word remote. PowerShell
v2 offers two means for connecting to remote computers:

 Cmdlets, which have their own –ComputerName parameter. They use their own
proprietary communications protocols, most often DCOM or RPC, and are gen-
erally limited to a single task. They don’t use PowerShell Remoting (with a cou-
ple of exceptions that we’ll cover later in this chapter).

 Cmdlets that specifically use the Remoting technology: Invoke-Command, any-
thing with the –PSSession noun, and a few others that we’ll cover in this chapter.

In this chapter, we’re focusing exclusively on the second group. The nice thing about
it is that any cmdlet—whether it has a –ComputerName parameter or not—can be used
through Remoting.

NOTE PowerShell v3 introduced another type of Remoting: CimSessions.
These are analogous to PowerShell Remoting sessions and also work over
WSMAN by default. They are covered in detail in chapter 39.

What exactly is Remoting? It’s the ability to send one or more commands over the net-
work to one or more remote computers. The remote computers execute the com-
mands using their own local processing resources (meaning the command must exist
and be loaded on the remote computers). The results of the commands—like all
PowerShell commands—are objects, and PowerShell serializes them into XML. The
XML is transmitted across the network to the originating computer, which deserializes
them back into objects and puts them into the pipeline. The serialize/deserialize part
of the process is crucial, because it offers a way to get complex data structures into a
text form that’s easily transmitted over a network. Don’t overthink the serializing
thing, though: It’s not much more complicated than piping the results of a command
to Export-CliXML and then using Import-CliXML to load the results back into the
pipeline as objects. It’s almost exactly like that, in fact, with the additional benefit of
having Remoting taking care of getting the data across the network.

 PowerShell Web Access (PWA—Microsoft uses PSWA but the PowerShell commu-
nity prefers PWA as an acronym) was introduced in Windows Server 2012 and
enhanced in Windows Server 2012 R2. PWA is covered in appendix B. PWA uses Power-
Shell Remoting “under the hood.” It’s best to consider PWA as a presentation layer
superimposed on PowerShell Remoting, which is why we don’t cover it here.
Licensed to Bob Spuntak <bobspuntak@msn.com>

50 CHAPTER 10 PowerShell Remoting
10.2 Remoting overview
Terminology gets a lot of people messed up when it comes to Remoting, so let’s get
that out of the way.

 WSMAN is the network protocol used by PowerShell Remoting. It stands for Web
Services for Management, and it’s more or less an industry-standard protocol.
You can find implementations on platforms other than Windows, although
they’re not yet widespread. WSMAN is a flavor of good-old HTTP, the same pro-
tocol your web browser uses to fetch web pages from a web server.

 Windows Remote Management, or WinRM, is a Microsoft service that implements
the WSMAN protocol and that handles communications and authentication for
connections. WinRM is designed to provide communications services for any
number of applications; it isn’t exclusive to PowerShell. When WinRM receives
traffic, that traffic is tagged for a specific application—such as PowerShell—and
WinRM takes care of getting the traffic to that application as well as accepting
any replies or results that the application wants to send back.

 Remoting is a term applied to PowerShell’s use of WinRM. Therefore, you can’t
do “Remoting” with anything other than PowerShell—although other applica-
tions could certainly have their own specific uses for WinRM.

One of the features introduced in PowerShell v3 was a set of Common Information
Model (CIM) cmdlets. Over time, they’ll replace the legacy Windows Management
Instrumentation (WMI) cmdlets that have been in PowerShell since v1, although for
now the WMI and CIM cmdlets live side by side and have a lot of overlapping function-
ality. Both sets of cmdlets use the same underlying WMI data repository; one of the pri-
mary differences between the two sets is in how they communicate over the network.
The WMI cmdlets use remote procedure calls (RPCs), whereas the CIM cmdlets use
WinRM. The CIM cmdlets aren’t using Remoting —they provide their own utilization
of WinRM (more details in chapter 39). We point this out only as an example of how
confusing the terminology can be. In the end, you don’t have to worry about it all the
time, but when it comes to troubleshooting you’ll definitely need to understand which
parts are using what.

 Now for a bit more terminology, this time diving into some of the specific imple-
mentation details:

 An endpoint is a particular configuration item in WinRM. An endpoint repre-
sents a specific application for which WinRM can receive traffic, along with a
group of settings that determine how the endpoint behaves. It’s entirely possi-
ble for a single application, like PowerShell, to have multiple endpoints set up.
Each endpoint might be for a different purpose and might have different secu-
rity, network settings, and so forth associated with it.

 A listener is another configuration item in WinRM, and it represents the service’s
ability to accept incoming network traffic. A listener is configured to have a TCP
port number, is configured to accept traffic on one or more IP addresses, and so
Licensed to Bob Spuntak <bobspuntak@msn.com>

51Using Remoting
forth. A listener also is set up to use either HTTP or HTTPS; if you want to be
able to use both protocols, then you must have two listeners set up.

10.2.1 Authentication

WinRM has two levels of authentication: machine-level and user-level. User-level authen-
tication involves the delegation of your logon credentials to the remote machine that
you’ve connected to. The remote machine can undertake any tasks you’ve specified
using your identity, meaning you’ll be able to do whatever you have permission to do
and no more. By default, the remote machine can’t delegate your credentials to any
other machines—which can lead to a problem called “the second hop” where you
attempt, and usually fail, to perform an action on a third machine from within your
remote session. We’ll deal with that later in the chapter.

 Remoting also supports machine-level authentication. In other words, when you
connect to a remote machine, your computer must trust that machine. Trust normally
comes through mutual membership in an Active Directory domain, although it can
also be manually configured in a number of ways. The practical upshot is that your
computer will refuse to connect to any remote machine that it doesn’t know and trust.
That can create complications for some environments where the machines aren’t all
in the same domain, requiring additional configuration to get Remoting to work.

10.2.2 Firewalls and security

One of the joys of Remoting is that it operates over a single port: 5985 for HTTP and
5986 for HTTPS, by default, although you can reconfigure them if you like. It’s there-
fore easy to set up firewall exceptions that permit Remoting traffic.

 Some organizations, mainly those with very tight network security, may have some
trepidation about enabling Remoting and its firewall exceptions. Our only advice is to
“get over it.” Remoting is now a foundational, mandatory technology in Windows. Not
allowing it would be like not allowing Ethernet. Without Remoting, you’ll find that
many of Windows’ administrative tools and features simply don’t work, especially in
Windows Server 2012 and later.

 Remoting is more secure than what we’ve used in the past for these tasks. It
authenticates, by default, using the Kerberos protocol, which never transmits pass-
words on the network (encrypted or otherwise). Remoting uses a single, customizable
port, rather than the thousands required by older protocols like RPCs. WinRM and
Remoting have a huge variety of configuration settings that let you control who can
use it, how much they can use it, and soon.

10.3 Using Remoting
In the next few sections, we’re going to walk you through the complete process of set-
ting up and using Remoting. This will specifically cover the “easy scenario,” meaning
that both your computer and the remote computer are in the same Active Directory
domain. After we go over these basics, we’ll dive into all of the other scenarios that
you might have to configure.
Licensed to Bob Spuntak <bobspuntak@msn.com>

52 CHAPTER 10 PowerShell Remoting
10.3.1 Enabling Remoting

Remoting needs to be enabled on any machine that will receive connections, which
can include computers running either the server or a client version of the Windows
operating system. Windows Server 2012, and later versions of the server OS, has
Remoting enabled by default though client version of Windows don’t. The easy way to
set up Remoting is to run Enable-PSRemoting (you need to be running PowerShell
with elevated privileges). You could perform all of the steps manually but we don’t rec-
ommend it.

NOTE You have to set up PowerShell Remoting on the machine itself. You
can’t do it remotely. Having it enabled by default is a good step forward—one
less configuration step on new machines.

The Enable-PSRemoting command performs several tasks:

 Starts (or restarts, if it’s already started) the WinRM service.
 Sets the WinRM service to start automatically from now on.
 Creates a WinRM listener for HTTP traffic on port 5985 for all local IP addresses.
 Creates a Windows Firewall exception for the WinRM listener. Note that this will

fail on client versions of Windows if any network cards are configured to have a
type of “Public,” because the firewall will refuse to create new exceptions on
those cards. If this happens, change the network card’s type to something else
(like “Work” or “Private,” as appropriate—Windows 8/2012 provides the Set-
NetConnectionProfile cmdlet for this task) and run Enable-PSRemoting
again. Alternately, if you know you have some Public network cards, add the
-SkipNetworkProfileCheck parameter to Enable-PSRemoting. Doing so will
successfully create a Firewall exception that allows incoming Remoting traffic
only from the computer’s local subnet.

The command will also set up one or more of these endpoints:

 Microsoft.PowerShell
 Microsoft.PowerShell32
 Microsoft.ServerManager (for Server Manager)
 Microsoft.Windows.ServerManagerWorkflows (for Server Manager workflows)
 Microsoft.PowerShell.Workflow (for PowerShell workflow)

You’ll be prompted several times as the command runs; be sure to reply “Y” for
“Yes” so that each step can complete properly. You can avoid the prompts by using
the –Force parameter.
Licensed to Bob Spuntak <bobspuntak@msn.com>

53Using Remoting
Table 10.1 illustrates some example endpoint configurations. On a 32-bit machine,
the endpoint is referred to as PowerShell rather than PowerShell32.

Discovering WSMAN endpoints
You can find the endpoints that exist on your system through the WSMAN provider.
The configuration information is exposed through a PowerShell drive—WSMAN:

PS C:\> dir WSMan:\localhost\Plugin
 WSManConfig: Microsoft.WSMan.Management\WSMan::localhost\Plugin
Type Keys Name
---- ---- ----
Container {Name=Event Forwarding Plugin} Event Forwarding Plugin
Container {Name=microsoft.powershell} microsoft.powershell
Container {Name=microsoft.powershell... microsoft.powershell.workflow
Container {Name=microsoft.powershell32} microsoft.powershell32
Container {Name=WMI Provider} WMI Provider

This example is taken from a Windows 8.1 64-bit machine. You’ll notice what appears
to be two endpoints that we haven’t mentioned:

 Event Forwarding Plugin
 WMI Provider

Windows servers have another apparent endpoint that we haven’t mentioned: SEL
Plugin.

The simple reason we haven’t mentioned them is that they aren’t Remoting endpoints
as such. Their purpose is to provide WSMAN connectivity for other activities. Event for-
warding and WMI are self-explanatory whereas SEL is for hardware management.

The WSMAN configurations that are purely for Remoting can be discovered by using
Get-PSSessionConfiguration:

PS C:\> Get-PSSessionConfiguration | format-table Name, PSVersion -auto
Name PSVersion
---- ---------
microsoft.powershell 4.0
microsoft.powershell.workflow 4.0
microsoft.powershell32 4.0

Table 10.1 Example endpoint configurations. The table reports the “out-of-the-box” configuration. Any
machine originally running PowerShell v3 that has been upgraded to PowerShell v4 will show the
PowerShell version as 4.

PowerShell
version

PowerShell
32-bit

PowerShell
64-bit

Server
Manager

Server
Manager
workflow

PowerShell
workflow

Windows Server
2008 R2

2 Y Y Y

Windows 7 64-bit 2 Y Y Y
Licensed to Bob Spuntak <bobspuntak@msn.com>

54 CHAPTER 10 PowerShell Remoting
In an enterprise you’ll probably use Group Policy to configure Remoting. That
approach has slightly a different outcome compared to using Enable-PSRemoting, as
shown in table 10.2.

Windows 8 32-bit
client

3 Y Y

Windows 8.1
64-bit client

4 Y Y Y

Windows Server
2012

3 Y Y Y Y

Windows Server
2012 R2

4 Y Y Y Y

Windows 7 client
32-bit stand-alone

2 Y

Table 10.2 The outcome when enabling Remoting through different mechanisms

Enable-PSRemoting Group Policy Manually step-by-step

Set WinRM to
autostart and start
the service

Yes Yes Yes; use Set-Service
and
Start-Service.

Configure HTTP
listener

Yes You can configure
autoregistration of lis-
teners, but you can’t cre-
ate custom listeners.

Yes; use the Winrm
command-line utility
and WSMan: drive in
PowerShell

Configure HTTPS
listener

No No Yes; use the winrm
command-line utility
and WSMan: drive in
PowerShell

Configure
endpoints/session
configurations

Yes No Yes; use PSSession-
Configuration cmd-
lets

Configure Windows
Firewall exception

Yes, but not on a Public
network

Yes, but not on a Public
network

Yes, but not on a Public
network

Table 10.1 Example endpoint configurations. The table reports the “out-of-the-box” configuration. Any
machine originally running PowerShell v3 that has been upgraded to PowerShell v4 will show the
PowerShell version as 4. (continued)

PowerShell
version

PowerShell
32-bit

PowerShell
64-bit

Server
Manager

Server
Manager
workflow

PowerShell
workflow
Licensed to Bob Spuntak <bobspuntak@msn.com>

55Using Remoting
10.3.2 1-to-1 Remoting

The most straightforward way to use Remoting is called 1-to-1 Remoting, in which you
essentially bring up an interactive PowerShell prompt on a remote computer. It’s
pretty simple, once Remoting is enabled on the remote machine:

PS C:\> Enter-PSsession -ComputerName Win8
[Win8]: PS C:\Users\Administrator\Documents>

NOTE If you want to experiment with this, just use localhost as the computer
name, once you’ve enabled Remoting on your computer. You’ll be “remotely
controlling” your local machine, but you’ll get the full Remoting experience.

Notice how the PowerShell prompt changes to include the name of the computer
you’re now connected to. From here, it’s almost exactly as if you were physically stand-
ing in front of that computer, and you can run any command that the remote
machine contains. Keep these important caveats in mind:

 By default, when the PowerShell prompt contains any computer name (even
localhost), you can’t execute any other commands that initiate a Remoting con-
nection. Doing so would create a “second hop,” which won’t work by default.

 You can’t run any commands that start a graphical application. If you do so, the
shell may appear to freeze; press Ctrl-C to end the process and regain control.

 You can’t run any command program that has its own “shell” like nslookup
or netsh—though you can run them as commands rather than interactively.

 You can only run scripts on the remote machine if its execution policy permits
you to do so (we discuss that in chapter 17).

 You aren’t connected to an interactive desktop session; your connection will be
audited as a “network logon,” much as if you were connecting to a file share on
the remote machine. As a result of the connection type, Windows won’t execute
profile scripts, although you’ll be connected to your profile home folder on the
remote machine.

 Nothing you do will be visible by any other user who’s connected to the same
machine, even if they’re interactively logged onto its desktop console. You can’t
run some application and have it “pop up” in front of the logged-on user.

 You must specify the computer’s name as it appears in Active Directory or in
your local Trusted Hosts list; you can’t use IP addresses or DNS CNAME aliases
unless they’ve been added to your Trusted Hosts list.

When you’ve finished with the remote machine, run Exit-PSSession. This will return
you to your local prompt, close the connection to the remote machine, and free up
resources on the remote machine. This will also happen automatically if you just close
the PowerShell window.

[Win8]: PS C:\Users\Administrator\Documents> Exit-PSSession
PS C:\>
Licensed to Bob Spuntak <bobspuntak@msn.com>

56 CHAPTER 10 PowerShell Remoting
The way we’ve used Enter-PSSession will always connect to the remote machine’s
default PowerShell endpoint. On a 64-bit operating system, that’ll be the 64-bit ver-
sion of PowerShell. Later, we’ll show you how to connect to other endpoints (remem-
bering that Enable-PSRemoting will create multiple endpoints).

10.3.3 1-to-many Remoting

One-to-many Remoting, also known as fan-out Remoting, is a powerful technique that
highlights the value of Remoting. You transmit a command (or a series of commands)
to multiple remote computers. They each execute the command, serialize the results
into XML, and send the results back to you. Your copy of PowerShell deserializes the
XML into objects and puts them in the pipeline. For example, suppose you want to get a
list of all processes whose names start with the letter “s,” from two different computers:

PS C:\> Invoke-Command -ScriptBlock { Get-Process -name s* } -ComputerName

➥ localhost,win8

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessN PSCompu
 ame terName
------- ------ ----- ----- ----- ------ -- -------- -------
 217 11 3200 7080 33 1.23 496 services win8
 50 3 304 980 5 0.13 248 smss win8
 315 16 2880 8372 46 0.03 12 spoolsv win8
 472 36 8908 11540 60 0.31 348 svchost win8
 306 12 2088 7428 36 0.19 600 svchost win8
 295 15 2372 5384 29 0.61 636 svchost win8
 380 15 17368 19428 55 0.56 728 svchost win8
 1080 41 12740 25456 120 2.19 764 svchost win8
 347 19 3892 8812 93 0.03 788 svchost win8
 614 52 13820 18220 1129 2.28 924 svchost win8
 45 4 508 2320 13 0.02 1248 svchost win8
 211 18 9228 8408 1118 0.05 1296 svchost win8
 71 6 804 3540 28 0.00 1728 svchost win8
 2090 0 120 292 3 10.59 4 System win8
 217 11 3200 7080 33 1.23 496 services loca...
 50 3 304 980 5 0.13 248 smss loca...
 315 16 2880 8372 46 0.03 12 spoolsv loca...
 469 36 8856 11524 59 0.31 348 svchost loca...
 306 12 2088 7428 36 0.19 600 svchost loca...
 295 15 2372 5384 29 0.61 636 svchost loca...
 380 15 17368 19428 55 0.56 728 svchost loca...
 1080 41 12740 25456 120 2.19 764 svchost loca...
 347 19 3892 8812 93 0.03 788 svchost loca...
 607 49 13756 18132 1129 2.28 924 svchost loca...
 45 4 508 2320 13 0.02 1248 svchost loca...
 211 18 9228 8408 1118 0.05 1296 svchost loca...
 71 6 804 3540 28 0.00 1728 svchost loca...
 2089 0 120 292 3 10.59 4 System loca...

The command is Invoke-Command. Its –ScriptBlock parameter accepts the com-
mands (use semicolons to separate multiple commands) you want transmitted to the
Licensed to Bob Spuntak <bobspuntak@msn.com>

57Using Remoting
remote machines; the –ComputerName parameter specifies the machine names. Alter-
natively, for longer commands a script block object could be created:

$sb = {Get-Process -Name s*}
Invoke-Command -ComputerName localhost,win8 -ScriptBlock $sb

As with Enter-PSSession, you must specify the computer’s name as it appears in
Active Directory or in your local Trusted Hosts list; you can’t use IP addresses or DNS
CNAME aliases unless they’ve been added to your Trusted Hosts list.

 Notice anything interesting about the output? It contains an extra column named
PSComputerName, which contains the name of the computer each result row came
from. This is a handy way to separate, sort, group, and otherwise organize your results.
This property is always added to the incoming results by PowerShell; if you’d rather
not see the property in the output, add the –HideComputerName parameter to Invoke-
Command. The property will still exist (and can be used for sorting and so forth), but it
won’t be displayed in the output by default.

 As with Enter-PSSession, Invoke-Command will use the default PowerShell end-
point on the remote machine—which in the case of a 64-bit OS will be the 64-bit shell.
We’ll cover how to connect to a different endpoint later in this chapter.

 By default, Invoke-Command will talk to only 32 computers at once. Doing so
requires it to maintain a PowerShell instance in memory for each remote machine it’s
talking to; 32 is a number Microsoft came up with that seems to work well in a variety
of situations. If you specify more than 32 computers, the extra ones will just queue up,
and Invoke-Command will start working with them as the first 32 begin to complete.
You can change the level of parallelism by using the command’s –ThrottleLimit
parameter, keeping in mind that higher numbers place a greater load on your com-
puter but no extra load on the remote machines.

10.3.4 Remoting caveats

The data sent from a remote machine to your computer has to be packaged in a way
that makes it easy to transmit over the network. Serialization and deserialization,
which we’ve already mentioned, make it possible—but with some loss of functionality.
For example, consider the type of object produced by Get-Service:

PS C:\> Get-Service | Get-Member

 TypeName: System.ServiceProcess.ServiceController

Name MemberType Definition
---- ---------- ----------
Name AliasProperty Name = ServiceName
RequiredServices AliasProperty RequiredServices = ServicesDepe...
Disposed Event System.EventHandler Disposed(Sy...
Close Method System.Void Close(
Continue Method System.Void Continue()
CreateObjRef Method System.Runtime.Remoting.ObjRef ...
Dispose Method System.Void Dispose()
Equals Method bool Equals(System.Object obj)
Licensed to Bob Spuntak <bobspuntak@msn.com>

58 CHAPTER 10 PowerShell Remoting
ExecuteCommand Method System.Void ExecuteCommand(int ...
GetHashCode Method int GetHashCode()
GetLifetimeService Method System.Object GetLifetimeService()
GetType Method type GetType()
InitializeLifetimeService Method System.Object InitializeLifetim...
Pause Method System.Void Pause()
Refresh Method System.Void Refresh()
Start Method System.Void Start(), System.Voi...
Stop Method System.Void Stop()
WaitForStatus Method System.Void WaitForStatus(Syste...
CanPauseAndContinue Property bool CanPauseAndContinue {get;}
CanShutdown Property bool CanShutdown {get;}
CanStop Property bool CanStop {get;}
Container Property System.ComponentModel.IContaine...
DependentServices Property System.ServiceProcess.ServiceCo...
DisplayName Property string DisplayName {get;set;}
MachineName Property string MachineName {get;set;}
ServiceHandle Property System.Runtime.InteropServices....
ServiceName Property string ServiceName {get;set;}
ServicesDependedOn Property System.ServiceProcess.ServiceCo...
ServiceType Property System.ServiceProcess.ServiceTy...
Site Property System.ComponentModel.ISite Sit...
Status Property System.ServiceProcess.ServiceCo...
ToString ScriptMethod System.Object ToString();

As you can see, these objects’ members include several methods, which let you stop
the service, pause it, and so on. Now consider that exact same kind of object retrieved,
via Remoting, from a remote machine:

PS C:\> Invoke-Command -ComputerName win8 -ScriptBlock { Get-Service } |

➥ Get-Member

 TypeName: Deserialized.System.ServiceProcess.ServiceController

Name MemberType Definition
---- ---------- ----------
ToString Method string ToString(), string ToString(str...
Name NoteProperty System.String Name=AeLookupSvc
PSComputerName NoteProperty System.String PSComputerName=win8
PSShowComputerName NoteProperty System.Boolean PSShowComputerName=True
RequiredServices NoteProperty Deserialized.System.ServiceProcess.Ser...
RunspaceId NoteProperty System.Guid RunspaceId=00e784f7-6c27-4...
CanPauseAndContinue Property System.Boolean {get;set;}
CanShutdown Property System.Boolean {get;set;}
CanStop Property System.Boolean {get;set;}
Container Property {get;set;}
DependentServices Property Deserialized.System.ServiceProcess.Ser...
DisplayName Property System.String {get;set;}
MachineName Property System.String {get;set;}
ServiceHandle Property System.String {get;set;}
ServiceName Property System.String {get;set;}
ServicesDependedOn Property Deserialized.System.ServiceProcess.Ser...
ServiceType Property System.String {get;set;}
Site Property {get;set;}
Status Property System.String {get;set;}
Licensed to Bob Spuntak <bobspuntak@msn.com>

59Using Remoting
The methods (except for the universal ToString() method) are gone. That’s because
you’re looking at a deserialized version of the object (it says so right in the TypeName
at the top of the output), and the methods are stripped off. Essentially, you’re getting
a read-only, static version of the object.

 This isn’t necessarily a downside; serialization and the removal of methods doesn’t
occur until the remote commands finish executing and their output is being pack-
aged for transmission. The objects are still “live” objects when they’re on the remote
computer, so you have to start them, stop them, pause them, or whatever on the
remote machine. In other words, any “actions” you want to take must be part of
the command you send to the remote machine for execution.

10.3.5 Remoting options

Both Invoke-Command and Enter-PSSession offer a few basic options for customizing
their behavior.

ALTERNATE CREDENTIALS

By default, PowerShell delegates whatever credential you used to open the shell on
your computer. That may not always be what you want, so you can specify an alternate
username by using the –Credential parameter. You’ll be prompted for the account’s
password, and that account will be used to connect to the remote machine (or
machines) and run whatever commands you supply.

NOTE In chapter 17, on PowerShell security, we discuss the –Credential
parameter in more detail and offer other ways in which it can be used.

ALTERNATE PORT NUMBER

PowerShell defaults to using port 5985 for Remoting; you can change that when you
set up WinRM listeners. You can also change your computer to use a different port
when it initiates connections, which makes sense if you’ve changed the port your serv-
ers are listening to.

 You’ll find the port being listened to (the port on which traffic will be accepted) by
examining your WSMan drive in PowerShell. Here’s an example. (Note that your com-
puter’s listener ID will be different than the Listener_1084132640 shown here, but
you can find your ID by getting a directory listing of WSMan:\localhost\Listener.)

PS WSMan:\localhost\Listener\Listener_1084132640> ls

 WSManConfig:
Microsoft.WSMan.Management\WSMan::localhost\Listener\Listener_1084132640

Type Name SourceOfValue Value
---- ---- ------------- -----
System.String Address *
System.String Transport HTTP
System.String Port 5985
System.String Hostname
System.String Enabled true
System.String URLPrefix wsman
Licensed to Bob Spuntak <bobspuntak@msn.com>

60 CHAPTER 10 PowerShell Remoting
System.String CertificateThumbprint
System.String ListeningOn_1638538265 10.211.55.6
System.String ListeningOn_1770022257 127.0.0.1
System.String ListeningOn_1414502903 ::1
System.String ListeningOn_766473143 2001:0:4...
System.String ListeningOn_86955851 fdb2:2c2...
System.String ListeningOn_1728280878 fe80::5e...
System.String ListeningOn_96092800 fe80::98...
System.String ListeningOn_2037253461 fe80::c7...

Keep in mind that to work with the WSMAN PSDrive, you must be in an elevated
PowerShell session. To change the port (using port 1000 as an example), type this:

PS C:\> Set-Item WSMan:\localhost\listener*\port 1000

Now let’s look at the client-side configuration, which tells your computer which port
the server will be listening to:

PS WSMan:\localhost\Client\DefaultPorts> dir

 WSManConfig:
Microsoft.WSMan.Management\WSMan::localhost\Client\DefaultPorts

Type Name SourceOfValue Value
---- ---- ------------- -----
System.String HTTP 5985
System.String HTTPS 5986

If you’ve set all of your servers to port 1000 (for example), then it makes sense to also
reconfigure your clients so that they use that port by default:

PS C:\> Set-Item WSMan:\localhost\client\DefaultPorts\HTTP 1000

Alternately, both Invoke-Command and Enter-PSSession have a –Port parameter,
which can be used to specify a port other than the one listed in the DefaultPorts con-
figuration. That’s useful if you have to use an alternate port for just one or two servers
in your environment and don’t want to change the client’s defaults.

TIP If you want to change default ports for your enterprise, we suggest you
use Group Policy to push out these settings.

The default ports should only be changed if you have a good reason. If you do change
the ports, make sure that your change is documented and applied across your enter-
prise (including firewalls) to avoid unnecessary troubleshooting efforts if Remoting
connections fail.

USING SSL
If a server is configured with an HTTPS endpoint (which isn’t the case after running
Enable-PSRemoting; you have to set that up manually, which we’ll get to later), then
specify the –UseSSL parameter of Invoke-Command or Enter-PSSession to use the
HTTPS port. That’s port 5986 by default.
Licensed to Bob Spuntak <bobspuntak@msn.com>

61PSSessions
SENDING A SCRIPT INSTEAD OF A COMMAND

Our example of Invoke-Command showed how to send just one command, or even a
few commands separated by semicolons. For example, to run a command that’s
located in a module, you first need to load the module:

PS C:\> Invoke-Command –ScriptBlock { Import-Module ActiveDirectory;

➥ Get-ADUser –filter * } –ComputerName WINDC1

PowerShell v3 and v4 autoloads modules by default, though you won’t see them using
Get-Module –ListAvailable until you’ve used them. Forcing the module to load is
required for PowerShell v2 and does no harm in v3 or later. In a mixed environment,
it’s essential. The module has to be available on the remote machine. Invoke-Command
can also send an entire script file, if you prefer. The file path and name are provided
to the –FilePath parameter, which you’d use in place of –ScriptBlock. PowerShell
will read the contents of the file from the local machine and transmit them over the
network—the remote machines don’t need direct access to the file itself.

10.4 PSSessions
So far, your use of Remoting has been ad hoc. You’ve allowed PowerShell to create the
connection, it’s run your commands, and then it closes the connection. Without real-
izing it, you’ve been creating a temporary PowerShell session, or PSSession. A PSSession
represents the connection between your computer and a remote one. Some overhead
is involved in setting up a connection and then closing it down, and if you plan to
connect to the same computer several times within a period of time, you may want
to create a persistent connection to avoid that overhead.

 Persistent connections have another advantage: They represent a running copy of
PowerShell on a remote machine. Using the ad hoc Remoting that we’ve shown you so
far, every single command you send runs in a new, fresh copy of the shell. With a per-
sistent connection, you could continue to send commands to the same copy of Power-
Shell, and the results of those commands—such as importing modules—would
remain in effect until you closed the connection.

10.4.1 Creating a persistent session

The New-PSSession command sets up one or more new sessions. You might want to
assign these session objects to a variable so that you can easily refer to them in
the future:

PS C:\> $win8 = New-PSsession -ComputerName win8
PS C:\> $domaincontrollers = New-PSsession -ComputerName win8,windc1

Here, you’ve created a variable, $win8, that contains a single session object, and a vari-
able, $domaincontrollers, that contains two session objects.

NOTE New-PSSession offers the same options for using alternate credentials,
using SSL, and using port numbers as Enter-PSSession and Invoke-Command.
Licensed to Bob Spuntak <bobspuntak@msn.com>

62 CHAPTER 10 PowerShell Remoting
10.4.2 Using a session

Both Invoke-Command and Enter-PSSession can use an already-open session object.
Provide the object (or objects) to the commands’ –Session parameter, instead of
using the –ComputerName parameter. For example, to initiate a 1-to-1 connection to a
computer, use this:

PS C:\> Enter-PSSession -Session $win8
[win8]: PS C:\Users\Administrator\Documents>

Be careful to pass only a single session to Enter-PSSession; if you give it multiple
objects, the command can’t function properly. Invoke-Command, though, can accept
multiple sessions:

PS C:\> Invoke-Command -Session $domaincontrollers -ScriptBlock {

➥ get-eventlog -LogName security -Newest 50 }

As we mentioned, it’s a lot easier to work with sessions if you keep them in a variable.
That isn’t mandatory, though, because you can use Get-PSSession to retrieve ses-
sions. For example, if you have an open session to a computer named WINDC1, you can
retrieve the session and connect to it like this:

PS C:\> Enter-PSSession –Session (Get-PSSession –computername WINDC1)

The parenthetical Get-PSSession runs first, returning its session object to the –Ses-
sion parameter of Enter-PSSession. If you have multiple sessions open to the same
computer, the command will fail.

10.4.3 Managing sessions

Session objects will remain open and available for quite some time by default; you can
configure a shorter idle timeout if you want. You can display a list of all sessions, and
their status, by running Get-PSSession with no parameters:

PS C:\> Get-PSSession

 Id Name ComputerName State ConfigurationName Ava
 ila
 bil
 ity
 -- ---- ------------ ----- ----------------- ---
 6 Session6 win8 Opened Microsoft.PowerShell ble
 7 Session7 win8 Opened Microsoft.PowerShell ble

Note that the output includes both the state (Opened, in this case) and availability
(Available, although our output here is a bit truncated). You can also see the name of
the endpoint that the session is connected to—Microsoft.PowerShell in both instances
in this example. One reason you might maintain multiple connections to a single
remote machine is to connect to different endpoints—perhaps, for example, you
might want a connection to both a 64-bit and a 32-bit PowerShell session.

 When you’ve finished with a session, you can close it to free up resources. For
example, to close all open sessions, use this:

PS C:\> Get-PSSession | Remove-PSSession
Licensed to Bob Spuntak <bobspuntak@msn.com>

63PSSessions
Get-PSSession is quite flexible. It provides parameters that let you retrieve just a sub-
set of available sessions without having to get them all and then filter them through
Where-Object:

 -ComputerName retrieves all sessions for the specified computer name.
 -ApplicationName retrieves all sessions for the specified application.
 -ConfigurationName retrieves all sessions connected to the specified endpoint,

such as Microsoft.PowerShell.

10.4.4 Disconnecting and reconnecting sessions

PowerShell v3 introduced the ability to disconnect a session and then later reconnect
it. A disconnected session is still running on the remote machine, meaning you can
potentially start a long-running process, disconnect, and then reconnect later to
check your results. You can even receive the results from a disconnected session with-
out having to explicitly reconnect.

 Note that the disconnection isn’t necessarily automatic. If you just close your shell
window, or if your computer crashes, PowerShell won’t automatically put the remote
session into a disconnected state. Instead, it’ll shut the session down. Disconnecting is
something you have to explicitly do, although PowerShell can automatically put a ses-
sion into a disconnected state after a long timeout period or a network outage. The
neat thing is that you can start a session from one computer, disconnect it, and then
reconnect to that session from another computer. For example, to start a session and
then disconnect it, use this:

PS C:\> New-PSSession -ComputerName win8

 Id Name ComputerName State ConfigurationName Ava
 ila
 bil
 ity
 -- ---- ------------ ----- ----------------- ---
 16 Session16 win8 Opened Microsoft.PowerShell ble

Availability value when the session is open is - Available

PS C:\> Get-PSSession -ComputerName win8 | Disconnect-PSSession

 Id Name ComputerName State ConfigurationName Ava
 ila
 bil
 ity
 -- ---- ------------ ----- ----------------- ---
 16 Session16 win8 Disconnected Microsoft.PowerShell one

Availability value when the session is disconnected is – None.
 Now you can shut down your shell window, move to an entirely different computer,

and reconnect the session from there. To do so, run Connect-PSSession and specify
the computer name on which the session is running (you can also specify an applica-
tion name and configuration name using the appropriate parameters):
Licensed to Bob Spuntak <bobspuntak@msn.com>

64 CHAPTER 10 PowerShell Remoting
PS C:\> Connect-PSSession -ComputerName win8

 Id Name ComputerName State ConfigurationName Ava
 ila
 bil
 ity
 -- ---- ------------ ----- ----------------- ---
 16 Session16 win8 Opened Microsoft.PowerShell ble

Here’s an important thing to note: You can reconnect to someone else’s session. For
example, it’s possible for Bob to “grab” a session that was originally opened by, and
disconnected by, Jane. You need to be an administrator to seize someone else’s session
as long as you have the credentials.

 Invoke-Command can be used in its ad hoc mode—when you specify a computer
name rather than a session—and told to create a disconnected session. The command
will start up a session, send the command you specify, and then leave the session dis-
connected and still running that command. You can reconnect later or receive the
results from the session. Here’s an example:

PS C:\> Invoke-Command -ComputerName win8 -ScriptBlock { get-eventlog

➥ -LogName security -Newest 1000 } –Disconnected

 Id Name ComputerName State ConfigurationName Ava
 ila
 bil
 ity
 -- ---- ------------ ----- ----------------- ---
 13 Session12 win8 Disconnected http://schemas.mi... one

PS C:\> Receive-PSSession -Session (Get-PSSession -ComputerName win8)

 Index Time EntryType Source InstanceID Me PS
 ss Co
 ag mp
 e ut
 er
 Na
 me
 ----- ---- --------- ------ ---------- -- --
 299 Mar 14 16:24 SuccessA... Microsoft-Windows... 4616 Th wi
 298 Mar 14 15:23 SuccessA... Microsoft-Windows... 4616 Th wi
 297 Mar 14 14:22 SuccessA... Microsoft-Windows... 4616 Th wi
 296 Mar 14 13:21 SuccessA... Microsoft-Windows... 4616 Th wi

Here, you can see that we invoked the command and asked it to create a disconnected
session. The –Disconnected parameter we used is an alias for –InDisconnectedSes-
sion. Normally, when you specify a computer name the session will start, run the com-
mand, and then send you the results and close. In this case, you anticipate the
command taking a few moments to complete, so you leave the session running and
disconnected. Receive-PSSession is used to retrieve the results. The session is still
running and disconnected, but if you want to run further commands in it, you can
easily reconnect it to do so:
Licensed to Bob Spuntak <bobspuntak@msn.com>

65Advanced session techniques
PS C:\> Get-PSSession -ComputerName win8 | Connect-PSSession

 Id Name ComputerName State ConfigurationName Ava
 ila
 bil
 ity
 -- ---- ------------ ----- ----------------- ---
 13 Session12 win8 Opened http://schemas.mi... ble
PS C:\> invoke-command -ScriptBlock { get-service } -Session (Get-PSSession

➥ -ComputerName win8)
Status Name DisplayName PSCompu
 terName
------ ---- ----------- -------
Stopped AeLookupSvc Application Experience win8
Stopped ALG Application Layer Gateway Service win8
Stopped AllUserInstallA... Windows All-User Install Agent win8
Stopped AppIDSvc Application Identity win8
Stopped Appinfo Application Information win8
Stopped AppMgmt Application Management win8

10.5 Advanced session techniques
There’s a lot more you can do with sessions. Keep in mind that Remoting always
involves a session—even if it’s one that’s created, used, and closed automatically.
Therefore, most of the options we’ll discuss in the next two sections apply both to the
–PSSession cmdlets as well as Invoke-Command, because all of them involve the use of
Remoting sessions.

10.5.1 Session parameters

Several common parameters are used by the Remoting cmdlets:

 -Authentication specifies an authentication mechanism. Kerberos is the
default; you can also specify Basic, CredSSP, Digest, Negotiate, and Negotiate-
WithImplicitCredential. CredSSP is a common alternative that offers a solution
to the “second hop” problem, which we’ll discuss later. Note that the protocol
you specify must be enabled in WinRM before it can be used, and only Kerberos
is enabled by default. You can see the authentication protocols configured on
the client by using this:

dir wsman:\localhost\client\auth

The remote authentication configuration can be viewed like this:

Connect-WSMan -ComputerName server02
dir wsman:server02\service\auth

-SessionOption specifies a Session Options object, which wraps up a number
of advanced configuration settings. We’ll discuss those next.

 -AllowRedirection allows your Remoting session to be redirected from the
computer you originally specified and handled by another remote machine
instead. It’s unusual to use this on an internal network, but it’s common when
Licensed to Bob Spuntak <bobspuntak@msn.com>

66 CHAPTER 10 PowerShell Remoting
you’re connecting to a cloud infrastructure. Microsoft Office 365 is an excellent
example: You’ll often connect PowerShell to a generic computer name and
then be redirected to the specific server that handles your organization’s data.

 -ApplicationName connects a session to the specified application name, such
as http://localhost:5985/WSMAN. The application name is always a URI starting
with http:// or https://.

 -ConfigurationName connects a session to the specified configuration or end-
point. This can either be a name, like Microsoft.PowerShell, or a full URI, such
as http://schemas.microsoft.com/powershell.

 -ConnectionURI specifies the connection endpoint—this is more or less an alter-
nate way of specifying a computer name, port number, and application name in
one easy step. These look something like http://SERVER2:5985/PowerShell,
including the transport (http or https), the computer name, the port, and the
application name.

When creating a new session with either Invoke-Command or New-PSSession, you can
specify a friendly name for the session. Just use –SessionName with Invoke-Command,
or use –Name with New-PSSession. Once you’ve done so, it’s a bit easier to retrieve the
session again: Just use Get-PSSession and the –Name parameter to specify the friendly
name of the desired session.

10.5.2 Session options

On most of the Remoting-related commands you’ll notice a –SessionOption parame-
ter, which accepts a Session Options object. This object consolidates a number of
advanced parameters that can be used to set up a new session. Typically, you’ll create
the options object using New-PSSessionOption, export the session to an XML file (or
store it in a variable), and then reimport it (or specify the variable) to utilize the
options. New-PSSessionOption supports a number of parameters, and you can read
all about them in its help file.

 For example, suppose you occasionally want to open a new session with no com-
pression or encryption. Here’s how you could create a reusable options object and
then use it to open a new session:

PS C:\> New-PSSessionOption -NoCompression

➥ -NoEncryption | Export-Clixml NoCompNoEncOption.xml
PS C:\> New-PSSession -ComputerName win8

➥ -SessionOption (Import-Clixml .\NoCompNoEncOption.xml)

NOTE This particular set of session options won’t work by default, because
the default client profile doesn’t permit unencrypted traffic. We modified
our test computer to permit unencrypted traffic to help ease troubleshooting
and experimentation in our lab.

New-PSSessionOption has a whole slew of parameters; none of them are mandatory.
Specify the ones you want, and omit the ones you don’t care about, when creating a
new session options object.
Licensed to Bob Spuntak <bobspuntak@msn.com>

http://localhost:5985/WSMAN
http://schemas.microsoft.com/powershell
http://SERVER2:5985/PowerShell

67Creating a custom endpoint
10.6 Creating a custom endpoint
The New-PSSessionConfigurationFile cmdlet makes it easy to set up new endpoints.
You’re not technically creating anything related to a PSSession, despite what the cmd-
let name implies; you’re creating a new Remoting configuration, also known as an end-
point, that will run Windows PowerShell. The command uses a number of parameters,
most of which are optional. We’ll let you read the command’s help for full details and
stick with the most important parameters. The first, -Path, is mandatory and specifies
the path and filename of the session configuration file that you want to create. You
must give the file the “.pssc” filename extension.

 Everything else is optional. Some of the parameters, such as –AliasDefinitions,
accept a hash table (we cover those in chapter 16). This parameter, for example,
defines a set of aliases that’ll be available to anyone who connects to this new endpoint.
You’d specify something like –AliasDefinitions @{Name='hlp';definition='Get-
Help'; options='ReadOnly'} to define an alias named hlp that runs the Get-Help
cmdlet and that isn’t modifiable by anyone using the endpoint (ReadOnly).

 Here’s an example:

PS C:\> New-PSSessionConfigurationFile -Path Restricted.pssc

➥ -LanguageMode Restricted -VisibleProviders FileSystem

➥ -ExecutionPolicy Restricted -PowerShellVersion 3.0

This code creates a new configuration file that specifies:

 The endpoint will be in Restricted Language mode. Users will be able to run
cmdlets and functions, but they may not create script blocks or variables and
may not use other scripting language features. Only basic comparison opera-
tors will be available (all of this is documented in the command’s help for the
-LanguageMode parameter).

 The endpoint will be PowerShell 3.0. If you omit this parameter the newest avail-
able version of Windows PowerShell is used. Valid values are 2.0 and 3.0 even in
PowerShell v4 and later. We recommend using the newest available version.

 Only the FileSystem PSProvider will be available; other forms of storage won’t
be connected as drives.

 Script execution won’t be permitted, meaning that only cmdlets will be avail-
able to run.

Next, you ask the shell to use that configuration file to create the new endpoint, regis-
tering it with WinRM:

PS C:\> Register-PSSessionConfiguration -Path .\Restricted.pssc -Force

➥ -Name MyEndpoint

 WSManConfig: Microsoft.WSMan.Management\WSMan::localhost\Plugin

Type Keys Name
---- ---- ----
Container {Name=MyEndpoint} MyEndpoint
Licensed to Bob Spuntak <bobspuntak@msn.com>

68 CHAPTER 10 PowerShell Remoting
You define the name MyEndpoint for this new endpoint, so to create a session that
connects to it, you go to another computer and use New-PSSession:

PS C:\> $sess = New-PSSession -ComputerName win8

➥ -ConfigurationName MyEndpoInt

Now you can use that session object with Enter-PSSession or Invoke-Command, as you
learned earlier in this chapter.

 There are other commands used for unregistering a configuration, disabling and
enabling them (while leaving them registered), and so forth:

PS C:\> Get-Command -Noun pssessionconfiguration*

Capability Name
---------- ----
Cmdlet Disable-PSSessionConfiguration
Cmdlet Enable-PSSessionConfiguration
Cmdlet Get-PSSessionConfiguration
Cmdlet New-PSSessionConfigurationFile
Cmdlet Register-PSSessionConfiguration
Cmdlet Set-PSSessionConfiguration
Cmdlet Test-PSSessionConfigurationFile
Cmdlet Unregister-PSSessionConfiguration

When you create a custom session configuration file, as you’ve seen, you can set its
language mode. The language mode determines what elements of the PowerShell
scripting language are available in the endpoint, and the language mode can be a
bit of a loophole. With the Full language mode, you get the entire scripting lan-
guage, including script blocks. A script block is any executable hunk of PowerShell
code contained within curly brackets {}. They’re the loophole. Any time you allow
the use of script blocks, they can run any legal command, even if your endpoint
used -VisibleCmdlets or -VisibleFunctions or another parameter to limit the com-
mands in the endpoint.

 In other words, if you register an endpoint that uses -VisibleCmdlets to expose
Get-ChildItem but you create the endpoint’s session configuration file to have the
full language mode, then any script blocks inside the endpoint can use any command. Some-
one could run:

PS C:\> & { Import-Module ActiveDirectory; Get-ADUser -filter * |

➥ Remove-ADObject }

Eek! This can be especially dangerous if you configured the endpoint to use a RunAs
credential to run commands under elevated privileges. It’s also somewhat easy to let
this happen by mistake, because you set the language mode when you create the new
session configuration file (New-PSSessionConfigurationFile), not when you register
the session (Register-PSSessionConfiguration). So if you’re using a session config-
uration file created by someone else, pop it open and confirm its language mode
before you use it!

 You can avoid this problem by setting the language mode to NoLanguage, which shuts
off script blocks and the rest of the scripting language. Or, go for RestrictedLanguage,
Licensed to Bob Spuntak <bobspuntak@msn.com>

69Creating a custom endpoint
which blocks script blocks while still allowing some basic operators if you want users of
the endpoint to be able to do basic filtering and comparisons.

 Understand that this isn’t a bug—the behavior we’re describing here is by design.
But it can be a problem if you don’t know about it and understand what it’s doing.

NOTE Much thanks to fellow MVP Aleksandar Nikolic for helping us under-
stand the logic of this loophole!

10.6.1 Custom endpoints for delegated administration

One of the coolest things you can do with a custom endpoint is called delegated admin-
istration. You set up the endpoint so that it runs all commands under a predefined
user account’s authority, rather than using the permissions of the user who connected
to the endpoint. This is especially useful for PowerShell Web Access.

 To start, you create a custom endpoint, just as we showed you earlier. When creat-
ing the new session configuration file, you restrict the endpoint. So, when you’re run-
ning New-PSSessionConfigurationFile, you’ll generally do something like this:

 Use –ExecutionPolicy to define a Restricted execution policy if you don’t
want people running scripts in the endpoint.

 Use –ModulesToImport to specify one or more modules to load into the session.
 Use –FunctionDefinitions to define custom functions that will appear within

the session.
 Potentially use –LanguageMode to turn off PowerShell’s scripting language; this

is useful if you want people to run only a limited set of commands.
 Use –SessionType to set the session type to RestrictedRemoteServer. This

turns off most of the core PowerShell commands, including the ability to import
any modules or extensions that aren’t part of the session configuration file.

 Use –VisibleCmdlets to specify which commands you want visible within the
session. You have to make sure their module is imported, but this lets you
expose less than 100 percent of the commands in a module. Use –Visible-
Functions to do the same thing for imported functions, and use –VisiblePro-
viders to make specific PSProviders available.

Register the new session configuration using Register-PSSessionConfiguration.
When you do so, use the –RunAsCredential parameter to specify the username that
all commands within the session will run as. You’ll be prompted for the password. You
might also want to consider these parameters:

 -AccessMode lets you specify that the endpoint can only be used by local users
(“Local”) or by local and remote (“Remote”).

 -SecurityDescriptorSddl lets you specify, in the Security Descriptor Defini-
tion Language (SDDL), who can use the endpoint. Users must have, at a mini-
mum, “Execute(Invoke)” in order to be able to use the session. We find SDDL to
Licensed to Bob Spuntak <bobspuntak@msn.com>

70 CHAPTER 10 PowerShell Remoting
be complex, so you could specify the –ShowSecurityDescriptorUI parameter,
which lets you set the endpoint permissions in a GUI dialog box. See, GUIs are
still useful for some things!

In the end, you’ve created an endpoint that (a) only certain people can connect to,
and that (b) will run commands under an entirely different set of credentials. Dele-
gated administration! The people using the endpoint don’t need permission to run
the commands you’ve allowed within it!

10.7 Connecting to non-default endpoints
To connect to an endpoint other than the default PowerShell endpoint, you need to
know the endpoint name, also called its configuration name. You can run Get-
PSSessionConfiguration to see all of the endpoints configured on the local machine:

PS C:\> Get-PSSessionConfiguration

Name : microsoft.powershell
PSVersion : 4.0
StartupScript :
RunAsUser :
Permission : BUILTIN\Administrators AccessAllowed,
 BUILTIN\Remote Management Users AccessAllowed

Name : microsoft.powershell.workflow
PSVersion : 4.0
StartupScript :
RunAsUser :
Permission : BUILTIN\Administrators AccessAllowed,
 BUILTIN\Remote Management Users AccessAllowed

Name : microsoft.powershell32
PSVersion : 4.0
StartupScript :
RunAsUser :
Permission : BUILTIN\Administrators AccessAllowed,
 BUILTIN\Remote Management Users AccessAllowed

This output shows you the configuration name, which you provide to the New-PSSession
–ConfigurationName parameter when creating a new session:

PS C:\> New-PSSession -ComputerName win8

➥ -ConfigurationName 'microsoft.powershell32'
 Id Name ComputerName State ConfigurationName Ava
 ila
 bil
 ity
 -- ---- ------------ ----- ----------------- ---
 19 Session19 win8 Opened microsoft.powersh... ble

You’ll also find a –ConfigurationName parameter on Invoke-Command and Enter-
PSSession, which enables those cmdlets to connect to an alternate endpoint without
creating a persistent session object first.
Licensed to Bob Spuntak <bobspuntak@msn.com>

71Enabling the “second hop”
 Get-PSSessionConfiguration only works on the local machine. If you need to dis-
cover the endpoints on a remote machine, you can do one of two things. Your first option
is to create a session to the remote machine and use Get-PSSessionConfiguration:

PS C:\> Enter-PSSession -ComputerName dc02
[dc02]: PS C:\Users\Richard\Documents> Get-PSSessionConfiguration

Alternatively, you could use Connect-WSMan like this:

PS C:\> Connect-WSMan -ComputerName w12standard
PS C:\> dir wsman:\w12standard\plugin

Both methods work and give the required results as long as Remoting is enabled on
the remote system.

10.8 Enabling the “second hop”
We’ve mentioned this “second hop” thing a number of times. It’s essentially a built-in,
default limitation on how far your credentials can be delegated. Here’s the scenario:

 You’re using a computer named CLIENT. You open PowerShell, making sure
that the shell is run as Administrator. You can run whatever commands you like.

 You use Enter-PSSession to remote to a machine named SERVER1. Your creden-
tials are delegated via Kerberos, and you can run whatever commands you like.

 While still remoted into SERVER1, you use Invoke-Command to send a command,
via Remoting, to SERVER2. Your credentials can’t delegate across this “second
hop,” and so the command fails.

There are two workarounds to solve this problem. The first is easy: Specify a –Credential
parameter any time you’re launching a new Remoting connection across the second
and subsequent hops. In our example scenario, while running Invoke-Command on
SERVER1 to connect to SERVER2, provide an explicit credential. That way, your cre-
dential doesn’t need to be delegated, and you avoid the problem.

NOTE If you’re a domain administrator and the local machine (CLIENT in
this example) is a domain controller, some elements of the delegation to
enable “second hop” processing are available by default. We don’t recom-
mend using domain controllers as administration workstations!

The second technique requires that you enable, and then use, the CredSSP authenti-
cation protocol on all machines involved in the chain of Remoting, starting with your
computer (CLIENT in our example scenario) and including every machine that you’ll
remote to. Enabling CredSSP is most easily done through Group Policy, where you can
configure it for entire groups of computers at once. You can, though, enable it on a
per-machine basis using the WSMan: drive in PowerShell:
Licensed to Bob Spuntak <bobspuntak@msn.com>

72 CHAPTER 10 PowerShell Remoting
PS WSMan:\localhost\Service\Auth> dir

 WSManConfig: Microsoft.WSMan.Management\WSMan::localhost\Service\Auth

Type Name SourceOfValue Value
---- ---- ------------- -----
System.String Basic false
System.String Kerberos true
System.String Negotiate true
System.String Certificate false
System.String CredSSP false
System.String CbtHardeningLevel Relaxed

PS WSMan:\localhost\Service\Auth> set-item ./credssp $true
PS WSMan:\localhost\Service\Auth> dir

 WSManConfig: Microsoft.WSMan.Management\WSMan::localhost\Service\Auth

Type Name SourceOfValue Value
---- ---- ------------- -----
System.String Basic false
System.String Kerberos true
System.String Negotiate true
System.String Certificate false
System.String CredSSP true
System.String CbtHardeningLevel Relaxed

Here, we’ve shown the protocol before and after enabling it in WSMan:\localhost\
Service\Auth. Once it’s enabled, specify –Authentication CredSSP when using
Invoke-Command, Enter-PSSession, or New-PSSession to use the protocol. An alter-
native, and possibly simpler, technique is to use the Enable-WSManCredSSP cmdlet on
the relevant machines.

 On the client machine, run:

Enable-WSManCredSSP -Role Client -DelegateComputer SERVER1

We recommend that you only enable CredSSP when required rather than as a perma-
nent configuration.

 On the remote machine, run:

Enable-WSManCredSSP -Role Server

10.9 Setting up WinRM listeners
Enable-PSRemoting creates a single WinRM listener that listens on all enabled IP
addresses on the system. You can discover the existing listeners by using this:

PS C:\> Get-WSManInstance winrm/config/Listener -Enumerate

cfg : http://schemas.microsoft.com/wbem/wsman/1/config/
 listener
xsi : http://www.w3.org/2001/XMLSchema-instance
lang : en-US
Address : *
Transport : HTTP
Port : 5985
Hostname :
Enabled : true
Licensed to Bob Spuntak <bobspuntak@msn.com>

http://www.w3.org/2001/XMLSchema-instance
http://schemas.microsoft.com/wbem/wsman/1/config/

73Setting up WinRM listeners
URLPrefix : wsman
CertificateThumbprint :
ListeningOn : {10.10.54.165, 127.0.0.1, 192.168.2.165, ::1...}

And the IP addresses that are being listened on are discovered like this:

Get-WSManInstance winrm/config/Listener -Enumerate |
select -ExpandProperty ListeningOn

Alternatively, you can use the WSMAN provider:

PS C:\> dir wsman:\localhost\listener

 WSManConfig: Microsoft.WSMan.Management\WSMan::localhost\Listener

Type Keys Name
---- ---- ----
Container {Address=*, Transport=HTTP} Listener_809701527

Keep in mind that a single WinRM listener can service any number of endpoints and
applications, as shown in figure 10.1; you only need to set up a new listener if the
default one (which uses HTTP on port 5985) isn’t what you want to use. It’s easier to
change the default listener to use different settings if you don’t want to use its default
settings at all. But if you want both that listener and an alternate one, then you need
to create that alternate one.

Requests Listener Endpoints

Figure 10.1 A single listener
servicing multiple endpoints

 Why might you want to create a new listener? The most probable answers are that
you want to restrict the IP addresses, or ports, that are used for listening or you want to
create a listener for secured traffic using HTTPS rather than HTTP. A combination of
these conditions would allow only connections over HTTPS to a specific IP address
and port. That approach is useful in an environment requiring secure transport and
access—for example, to a server in the DMZ where you need to be able to connect
over the management network but not from the internet-facing address.

10.9.1 Creating an HTTP listener

You can create a new listener by using the New-WSManInstance cmdlet:

PS C:\> New-WSManInstance winrm/config/Listener

➥ -SelectorSet @{Transport='HTTP'; Address="IP:10.10.54.165"}

➥ -ValueSet @{Port=8888}
Licensed to Bob Spuntak <bobspuntak@msn.com>

74 CHAPTER 10 PowerShell Remoting
The address, port, and transport protocol are specified, but notice that they’re in two
separate groups. That’s because New-WSManInstance uses –SelectorSet to identify
the individual instance (see the Keys column in the following code) and –ValueSet to
define property values. You can see the new listener like this:

PS C:\> dir wsman:\localhost\listener | Format-Table -AutoSize

 WSManConfig: Microsoft.WSMan.Management\WSMan::localhost\Listener

Type Keys Name
---- ---- ----
Container {Address=*, Transport=HTTP} Listener_809701527
Container {Address=IP:10.10.54.165, Transport=HTTP} Listener_886604375

10.9.2 Adding an HTTPS listener

Adding a listener for HTTPS is similar, but you need to go through a few steps first:

1 Create a certificate request. You can’t do that in PowerShell and need to either
ask your Certificate Services administrators for help or use the tools provided by
your certificate provider.

2 Request the certificate using the request you’ve just created.
3 Download the certificate.
4 Install the certificate into the computer certificate store.
5 Find the new certificate in the PowerShell cert: drive and get its thumbprint.

You can now create the listener:

New-WSManInstance winrm/config/Listener

➥ -SelectorSet @{Transport='HTTPS'; Address="IP:10.10.54.165"}

➥ -ValueSet @{Hostname="<servername>";CertificateThumbprint="XXXXXXXX"}

where Hostname matches the server name in your SSL certificate.
 You can remove a listener using Remove-WSManInstance:

PS C:\> Get-WSManInstance winrm/config/Listener

➥ -SelectorSet @{Transport='HTTP'; Address="IP:10.10.54.165"} |
Remove-WSManInstance

Or use

Remove-WSManInstance winrm/config/Listener

➥ -SelectorSet @{Transport='HTTP'; Address="IP:10.10.54.165"}

You remove the default listener like this:

Remove-WSManInstance winrm/config/Listener

➥ -SelectorSet @{Transport="HTTP"; Address="*"}

We recommend restarting the WinRM service after you modify the listeners.
 There are two modifications you can make to a connection, whether using

Invoke-Command, Enter-PSSession, or some other Remoting command that relates
to HTTPS listeners. These are created as part of a session option object.
Licensed to Bob Spuntak <bobspuntak@msn.com>

75Other configuration scenarios
 -SkipCACheck causes WinRM to not worry about whether or not the SSL certifi-
cate was issued by a trusted CA. But untrusted CAs may in fact be untrustworthy!
A poor CA might issue a certificate to a bogus computer, leading you to believe
you’re connecting to the right machine when in fact you’re connecting to an
imposter. Using this parameter is risky, so do so with caution.

 -SkipCNCheck causes WinRM to not worry about whether or not the SSL certifi-
cate on the remote machine was actually issued for that machine. Again, this is
a great way to find yourself connected to an imposter. Half the point of SSL
is mutual authentication, and this parameter disables that half.

10.10 Other configuration scenarios
So far in this chapter, we’ve tried to focus on the easy and common Remoting con-
figuration scenarios, but we know there are other scenarios you’ll have to confront.
In the next few sections, we’ll cover some of these “outside the lines” cases. There
are certainly others, and you’ll find most of those documented in PowerShell’s
about_remote_troubleshooting help file, which we heartily recommend that you
become familiar with. That file also explains how to configure many of the Remoting
configuration settings, set up firewall exceptions, and perform other tasks via Group
Policy—which is a lot easier than configuring individual machines one at a time.

10.10.1Cross-domain Remoting

Remoting doesn’t work across Active Directory domains by default. If your computer
is in DOMAINA, and you need to remote into a machine that belongs to DOMAINB,
you’ll have to do a bit of work first. You’ll still need to ensure that your user account
has permissions to do whatever it is you’re attempting in DOMAINB—the configura-
tion setting we’re showing you only enables the Remoting connectivity. This is a Regis-
try setting, so be careful when making this change:

PS C:\> New-ItemProperty -Name LocalAccountTokenFilterPolicy -Path

➥ HKLM:\SOFTWARE\Microsoft\Windows\CurrentVersion\Policies\System

➥ -PropertyType DWord -Value 1

This code will enable all members of a machine’s Administrators group, regardless of
the domain they’re in, to use Remoting on the machine. So, in our example, you’d
make this change on the machine in DOMAINB—the destination machine of the
Remoting connection.

10.10.2Quotas

The great thing about Remoting is that it exists and solves a number of administration
problems. The bad thing (and there’s always one of those) is that too much Remoting
can damage your system health. Imagine the scenario where you’ve implemented a
server to support a new business-critical application. The application is being rolled
out across the enterprise and the number of users is growing rapidly. At a certain load-
ing you realize that the application is breaking down and consuming more resources
than it should. You need to restrict the amount of resources devoted to PowerShell
Remoting. How? You set quotas.
Licensed to Bob Spuntak <bobspuntak@msn.com>

76 CHAPTER 10 PowerShell Remoting
 If you look in the WSMAN provider, you’ll see a number of possible quota sessions:

PS C:\> dir wsman:\localhost | select Name, Value

Name Value
---- -----
MaxEnvelopeSizekb 500
MaxTimeoutms 60000
MaxBatchItems 32000
MaxProviderRequests 4294967295

PS C:\> dir wsman:\localhost\service | select Name, value

Name Value
---- -----
MaxConcurrentOperations 4294967295
MaxConcurrentOperationsPerUser 1500
EnumerationTimeoutms 240000
MaxConnections 300
MaxPacketRetrievalTimeSeconds 120

We haven’t come across a situation where the defaults needed to be changed, but just
in case you should ever need to make a change, this is how you do it:

Set-Item wsman:\localhost\MaxEnvelopeSizeKB -value 200

This code sets a global value for the size of the envelope (message) to 200 KB. Quotas
can be set on individual session configurations:

Set-PSSessionConfiguration -name microsoft.powershell

➥ -MaximumReceivedObjectSizeMB 11 -Force

This increases the maximum object size for the microsoft.powershell endpoint.
Other quota values can be found in a number of areas of the listener and endpoint
configurations:

dir wsman:\localhost\plugin\microsoft.powershell\quotas
dir wsman:\localhost\plugin\microsoft.powershell\InitializationParameters

10.10.3Configuring on a remote machine

You may run into instances where you need to modify the WinRM configuration on a
remote computer. WinRM needs to be up and running on that system, and you can
use the Connect-WSMan cmdlet to create the connection:

PS WSMan:\> Connect-WSMan -ComputerName win8
PS WSMan:\> dir

 WSManConfig:

ComputerName Type
------------ ----
localhost Container
win8 Container
Licensed to Bob Spuntak <bobspuntak@msn.com>

77Other configuration scenarios
As you can see here, the new computer shows up alongside localhost in your WSMan:
drive, enabling you to access the machine’s WinRM configuration. You might also
want to use the Test-WSMan cmdlet to verify everything:

PS C:\> Test-WSMan -comp quark -Authentication default

wsmid : http://schemas.dmtf.org/wbem/wsman/identity/1/
 wsmanidentity.xsd
ProtocolVersion : http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd
ProductVendor : Microsoft Corporation
ProductVersion : OS: 6.2.8250 SP: 0.0 Stack: 3.0

In addition to validating that Remoting is working, you can see the WinRM stack ver-
sion (the OS and SP values will only be visible if the -Authentication default param-
eter is used). In this example, Quark is running PowerShell 3.0 and therefore WSMAN
3.0 is shown in the Stack property.

NOTE WSMAN version 3.0 is used in PowerShell v3 and v4.

For the most part you shouldn’t run into any issues Remoting from a PowerShell 4.0,
or 3.0, machine to one running PowerShell 2.0, but this is a handy tool for double-
checking version information. You’ll need this when we discuss CIM sessions in chap-
ter 39.

10.10.4Key WinRM configuration settings

All of these settings are located in your WSMan: drive; we’ll cover the ones of most
common interest but you can explore the drive to discover others. Many of these can
also be configured via Group Policy—look for the “Windows Remote Management”
section of the Group Policy object, under the Computer Configuration container.

 \Shell\IdleTimeout—The number of milliseconds a Remoting session can sit
idle before being disconnected

 \Shell\MaxConcurrentUsers—The maximum number of Remoting sessions any
number of users can have to a machine

 \Shell\MaxShellRunTime—The maximum time any Remoting session can be
open, in milliseconds

 \Shell\MaxProcessesPerShell—The maximum number of processes any Remoting
session can run

 \Shell\MaxMemoryPerShellMB—The maximum amount of memory any Remot-
ing session can utilize

 \Shell\MaxShellsPerUser—The maximum number of Remoting sessions any
one user can open to the machine

To change one of these settings manually, use the Set-Item cmdlet:

PS C:\> Set-Item WSMAN:\Localhost\Shell\IdleTimeout -Value 3600000
Licensed to Bob Spuntak <bobspuntak@msn.com>

http://schemas.dmtf.org/wbem/wsman/identity/1/
http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd

78 CHAPTER 10 PowerShell Remoting
WARNING The updated configuration might affect the operation of the plug-
ins having a per-plug-in quota value greater than 3600000. Verify the configu-
ration of all the registered plug-ins and change the per-plug-in quota values
for the affected plug-ins.

Some WSMAN settings can be configured at a global and individual plug-in level (a
plug-in is another way of looking at a session configuration). This is especially true
when the plug-in needs to use the capability of the shell. If you run this code

Get-Item -Path wsman:\localhost\shell\IdleTimeout
Get-ChildItem wsman:\localhost\plugin |
foreach {
 Get-Item "wsman:\localhost\plugin\$($_.Name)\quotas\IdleTimeoutms"
}

you’ll get back something like this:

 WSManConfig: Microsoft.WSMan.Management\WSMan::localhost\Shell

Type Name SourceOfValue Value
---- ---- ------------- -----
System.String IdleTimeout 7200000

 WSManConfig:
Microsoft.WSMan.Management\WSMan::localhost\Plugin\microsoft.powershell
\Quotas

Type Name SourceOfValue Value
---- ---- ------------- -----
System.String IdleTimeoutms 7200000

 WSManConfig: Microsoft.WSMan.Management\WSMan::localhost\Plugin\microsoft
.powershell.

workflow\Quotas

Type Name SourceOfValue Value

---- ---- ------------- -----
System.String IdleTimeoutms 7200000

As the error message on the Set-Item call explains, if you change the timeout setting
at the shell level it will conflict with the setting at the plug-in level. The plug-in needs
to be modified to match the shell. As with quotas, the default settings work very well
and we don’t know any reason for changing them in normal operating conditions.

10.10.5Adding a machine to your Trusted Hosts list

Remoting doesn’t like to connect to machines that it doesn’t trust. You might think
you’re connecting to a remote machine named SERVER1, but if an attacker could
somehow spoof DNS or perform some other trickery, they could hijack your session
and have you connect to the attacker’s machine instead. They could then capture all
manner of useful information from you. Remoting’s concept of trust prevents that
from happening. By default, Remoting trusts only machines that are in the same
Active Directory domain as your computer, enabling it to use Kerberos authentication
Licensed to Bob Spuntak <bobspuntak@msn.com>

79Other configuration scenarios
to confirm the identity of the remote machine. That’s why, by default, you can’t
remote to a machine using an IP address or hostname alias: Remoting can’t use those
to look up the machine’s identity in Active Directory.

 You can modify this behavior by manually adding machine names, IP addresses,
and other identifiers to a persistent, static Trusted Hosts list that’s maintained by
WinRM. WinRM—and thus Remoting—will always trust machines on that list, although
it doesn’t actually authenticate them. You’re opening yourself up to potential hijack-
ing attempts—although it’s rare for those to occur on an internal network.

 You modify the list by using the WSMan: drive, as shown here:

PS WSMan:\localhost\Client> dir

 WSManConfig: Microsoft.WSMan.Management\WSMan::localhost\Client

Type Name SourceOfValue Value
---- ---- ------------- -----
System.String NetworkDelayms 5000
System.String URLPrefix wsman
System.String AllowUnencrypted false
Container Auth
Container DefaultPorts
System.String TrustedHosts

PS WSMan:\localhost\Client> Set-Item .\TrustedHosts *

WinRM Security Configuration.
This command modifies the TrustedHosts list for the WinRM client. The
computers in the TrustedHosts list might not be authenticated. The client
might send credential information to these computers. Are you sure that
you want to modify this list?
[Y] Yes [N] No [S] Suspend [?] Help (default is "Y"): y
PS WSMan:\localhost\Client>

We’ve added * to TrustedHosts, essentially meaning we’ll be able to use Remoting
with any computer. We don’t necessarily recommend that as a best practice, but it’s
useful in a lab environment where you just want stuff to work. In a production envi-
ronment, we generally prefer to see a managed list of trusted hosts rather than the *
wildcard. For example, *.company.pri would trust all hosts in the company.pri domain.
Read the about_remote_troubleshooting PowerShell help file for a lot more detail
and examples.

10.10.6Using Group Policy to configure Remoting

This is a reminder that in a production environment the best way to configure Remot-
ing is to use Group Policy. Full details on configuring Remoting via Group Policy can
be found in the help file about_remote_troubleshooting.

 We strongly recommend that you fully understand the settings by configuring
manually in a lab before applying a Group Policy to your enterprise.
Licensed to Bob Spuntak <bobspuntak@msn.com>

80 CHAPTER 10 PowerShell Remoting
10.11 Implicit Remoting
Implicit Remoting is an incredibly cool trick and one that you’ll get more and more
use out of in the future. The basic idea is this: Rather than installing every possible
PowerShell module on your computer, you leave the modules installed out on servers.
You can then “import” the modules into your current PowerShell session, making it
look like the commands in the modules all live locally. In reality, your computer will
contain “shortcuts” to the commands, and the commands will execute out on the serv-
ers you got them from. The results—and even the commands’ help—will be brought
to your computer via Remoting.

 Here’s an example where you’ll import the ServerManager module from a remote
server:

PS C:\> $sess = New-PSSession -ComputerName win8
PS C:\> Invoke-Command -Session $sess -ScriptBlock { Import-Module

➥ servermanager }
PS C:\> Import-PSSession -Session $sess -Module ServerManager -Prefix RemSess

ModuleType Name ExportedCommands
---------- ---- ----------------
Script tmp_1hn0kr5w.keb {Get-WindowsFeature, Ins...

Here’s what you did:

1 You opened a session to the remote machine, saving the session object in a vari-
able for easy use later.

2 You invoked a command against that session, asking it to load the desired mod-
ule into memory.

3 You imported that session, grabbing only the commands in the ServerManager
module. To make these commands easy to distinguish, you added the prefix
“RemSess” to the noun of all imported commands. The prefix is optional but is
recommended especially if you’re importing to a Windows 8, Windows Server
2012, or later system with the greatly increased number of cmdlets.

You can quickly check to see which commands you brought over:

PS> Get-Command -Noun RemSess*

CommandType Name
----------- ----
Alias Add-RemSessWindowsFeature
Alias Remove-RemSessWindowsFeature
Function Disable-RemSessServerManagerStandardUserRemoting
Function Enable-RemSessServerManagerStandardUserRemoting
Function Get-RemSessWindowsFeature
Function Install-RemSessWindowsFeature
Function Uninstall-RemSessWindowsFeature

NOTE The module name column has been removed to enable the display to
fit the page width.
Licensed to Bob Spuntak <bobspuntak@msn.com>

81Implicit Remoting
You can now run these commands, just as if they were locally installed, and can even
access their help (provided the server has had Update-Help run so that it has a copy of
the help locally). The only caveat is the one that applies to all results in Remoting:
The results of your commands won’t have any methods attached to them, because the
results will have been through the serialization/deserialization process.

 These “imported” commands will exist as long as your session to the remote
machine is open and available. Once it’s closed, the commands will vanish. If you want
to make these commands always available to you, save the remote session information
to a module using the Export-PSSession cmdlet.

 There are a few ways you might want to use this. First, take your current session
and export everything to a module:

PS C:\> Export-PSSession -Session $q -OutputModule QuarkAll

The session $q is to the computer named Quark. This command will create a module
called QuarkAll under $home\Documents\WindowsPowerShell\Modules:

PS C:\> Get-Module -ListAvailable QuarkAll

ModuleType Name ExportedCommands
---------- ---- ----------------
Manifest QuarkAll {}

Later, you can import this module as you would with implicit Remoting. Because the
imported cmdlet names may conflict, add a prefix:

PS C:\> Import-Module QuarkAll -Prefix Q

The first time you try to run one of the commands, PowerShell dynamically creates
the necessary session and establishes a remote connection:

PS C:\> Get-Qsmbshare
Creating a new session for implicit Remoting of "Get-SmbShare" command...

If you check sessions, you should see a new one created for this module:

PS C:\> Get-PSSession | select *

State : Opened
ComputerName : quark
ConfigurationName : Microsoft.PowerShell
InstanceId : 662484ed-d350-4b76-a146-865a8d43f603
Id : 2
Name : Session for implicit Remoting module at
 C:\Users\Jeff\Documents\WindowsPowerShell\Modules\
 QuarkAll\QuarkAll.psm1
Availability : Available
ApplicationPrivateData : {PSVersionTable}
Runspace : System.Management.Automation.RemoteRunspace

If you remove the module, the session is also automatically removed.
 You can also create a limited module by only exporting the commands you want.

First, create a session:

PS C:\> $q=New-PSSession Quark
Licensed to Bob Spuntak <bobspuntak@msn.com>

82 CHAPTER 10 PowerShell Remoting
Then, create a new module exporting only the Get cmdlets:

PS C:\> Export-PSSession -Session $q -OutputModule QuarkGet –CommandName

➥ Get* [CA] -CommandType cmdlet

When you import the module, the only commands you can run remotely on Quark
are the Get cmdlets:

PS C:\> Import-Module QuarkGet -Prefix Q
PS C:\> Get-Command -module QuarkGet

CommandType Name Definition
----------- ---- ----------
Function Get-QAppLockerFileInformation ...
Function Get-QAppLockerPolicy ...
Function Get-QAppxProvisionedPackage ...
Function Get-QAutoEnrollmentPolicy ...
Function Get-QBitsTransfer ...
...

One thing we should point out is that when you export a session, any commands with
names that might conflict on your local computer are skipped unless you use the
-AllowClobber parameter. In the examples with Quark, you’re connecting from a
computer running PowerShell 2.0 to one running PowerShell 4.0, or 3.0, and thus
are able to use the cmdlets of the later versions of PowerShell just as if they were
installed locally:

PS C:\> get-qciminstance win32_operatingsystem | Select

➥ CSName,BuildNumber,Version
Creating a new session for implicit Remoting of "Get-CimInstance" command...

CSName BuildNumber Version
------ ----------- -------
QUARK 8250 6.2.8250

Implicit Remoting is an incredibly powerful technique—and a necessity for working
with remote Exchange servers—that lets you take advantage of modules, snap-ins, and
tools that you may not have installed locally. If you find yourself needing these tools
often, take the time to export a session to a module; then you’ll be ready for anything.

10.12 Standard troubleshooting methodology
Troubleshooting can be difficult, especially with Remoting because there are so many
layers in which something can go wrong. We strongly recommend that you read,
learn, and inwardly digest the help file about_Remote_Troubleshooting. It contains a
lot of useful information that will improve your knowledge of Remoting and enable
you to troubleshoot problems. When you have to diagnose problems with Remoting,
we recommend that you follow these four steps:

1 Test Remoting with its default configuration. If you’ve tinkered with it, undo
your changes and start from scratch.

2 Start by attempting to connect from the initiating machine to the target machine
by using something other than Remoting but that’s still security-sensitive. For
Licensed to Bob Spuntak <bobspuntak@msn.com>

83Summary
example, use Windows Explorer to open the remote machine’s C$ shared
folder. If that doesn’t work, you have broader security issues. Make a note of
whether you need to provide alternate credentials—if you do, Remoting will
need them as well.

3 Install a Telnet client on the initiating machine (a simple command-line client,
like the Windows native one, will do). Attempt to connect to the HTTP WinRM
listener by running telnet machine_name:5985. You should get a blank screen,
and Ctrl-C will end the session. If this doesn’t work, there’s a basic connectivity
problem (such as a blocked port) you need to resolve.

4 Use Test-WSMan, using an alternate credential if necessary. Make sure that
you’re using the machine’s real name as it appears in Active Directory or that
you’ve taken one of the other approaches (TrustedHosts plus a credential, or
SSL plus a credential). If that doesn’t work, you have a problem in the WSMAN
configuration.

Walking through these four steps, in this order, can help you pinpoint at least the gen-
eral cause of most problems.

10.13 Summary
Remoting was the most eagerly awaited feature in PowerShell v2. It moved Power-
Shell’s capabilities up by several levels. You can gain remote access to systems through
a number of cmdlets that have a –ComputerName parameter or through the WSMAN-
based Remoting technology.

 Once you’ve mastered the material in this chapter, you’ll be able to administer all
the machines in your environment from the comfort of your own workstation.
Licensed to Bob Spuntak <bobspuntak@msn.com>

84 CHAPTER 10 PowerShell Remoting

PowerShell in Depth, Second Edition is the go-to reference
for administrators working with Windows PowerShell.
Every major technique, technology, and tactic is care-
fully explained and demonstrated, providing a hands-
on guide to almost everything an admin would do in
the shell. Written by three experienced authors and
PowerShell MVPs, this is the PowerShell book you'll
keep next to your monitor—not on your bookshelf!

 A Windows admin using PowerShell every day may
not have the time to search the net every time he or she
hits a snag. Wouldn't it be great to have a team of sea-
soned PowerShell experts ready to answer even the

toughest questions? That's what you get with this book.
 PowerShell in Depth, Second Edition is the go-to reference for administrators working

with Windows PowerShell. Every major technique, technology, and tactic is carefully
explained and demonstrated, providing a hands-on guide to almost everything an
admin would do in the shell. Written by PowerShell MVPs Don Jones, Jeffrey Hicks,
and Richard Siddaway, each valuable technique was developed and thoroughly tested,
so you'll be able to consistently write production-quality, maintainable scripts while
saving hours of time and effort.

What's inside:

 Automating tasks
 Packaging and deploying scripts
 Introduction to Desired State Configuration
 PowerShell security
 Covers PowerShell version 3 and later

This book assumes you know the basics of PowerShell.

Licensed to Bob Spuntak <bobspuntak@msn.com>

https://www.manning.com/books/powershell-in-depth-second-edition
https://www.manning.com/books/powershell-in-depth-second-edition
https://www.manning.com/books/powershell-in-depth-second-edition

SQL Server is a common member of Windows environments, and you may
find yourself having to administer this technology. You can work with SQL
Server with PowerShell in a number of ways—scripting, cmdlets and the SQL
Server Provider. This chapter introduces the provider and gives you a number of
scripts you can use in your environment to perform common tasks.

PowerShell
and SQL Server
Licensed to Bob Spuntak <bobspuntak@msn.com>

Chapter 23 from PowerShell Deep Dives edited by
Jeffrey Hicks, Richard Siddaway, Oisin
Grehan, and Aleksander Nikolic

PowerShell and
the SQL Server provider
This chapter is written for the DBA who needs an efficient way to get information
from or manage SQL Servers in their environment with just a few commands by
using native PowerShell methods. When you’re looking at the options for manag-
ing or getting information from a SQL Server by using PowerShell your choice is
driven by a few scenarios. One use case might be to find out how many databases
are in the instances you maintain while using the simplest way to reference these
instances. Another might be to find out whether a certain object exists in a Soft-
ware as a Service (SaaS) environment with thousands of databases and multiple
servers while upgrading in a phased upgrade methodology. You may want to know
which database has the object so you don’t attempt to upgrade that database in the
second wave and find that the object exists. When faced with these or other scenar-
ios you can quickly accomplish your goal with part PowerShell methods and part
SQL Server provider.

 You have a few options for managing SQL Server using PowerShell. You can use
straight Shared Management Objects (SMOs) by loading the SMOs individually or by
using the SQL Server provider. This chapter discusses the SQL Server provider that
was released with SQL Server 2008/2008 R2. The provider for SQL 2008/R2 is imple-
mented as a Windows PowerShell snap-in (PSSnapin) and is implemented as a mod-
ule in SQL Server 2012. The provider for SQL Server 2012 has a few more cmdlets
and more properties and methods on the SMOs, but the functionality is the same. I’ll
start by introducing you to the SQL Server provider and then I’ll show you practical
ways to use the provider to get at SQL Server information using PowerShell cmdlets.
86

Licensed to Bob Spuntak <bobspuntak@msn.com>

https://www.manning.com/books/powershell-deep-dives

87Introduction to the SQL Server provider
23.1 Requirements
Many modules and providers come with PowerShell in Windows, but the SQL Server
provider is a separate element that you install like any other Windows application.
It’s installed when you install SQL Server 2008, 2008 R2, or 2012 Management Tools,
or you can download and install a copy of the Feature Pack for 2008 R2 at
http://mng.bz/ccVK or for 2012 at http://mng.bz/m8po. You’ll need to download
and install the following components for 2008/R2:

 1033 \ x64 \ PowerShellTools.msi
 1033 \ x64 \ SharedManagementObjects.msi
 1033 \ x64 \ SQLSysClrTypes.msi

For 2012 you install the following components:

 Microsoft Windows PowerShell Extensions for Microsoft SQL Server 2012
 Microsoft SQL Server 2012 Shared Management Objects

These components for 2008/R2 are listed for the x64 platform, and the corresponding
items are available for IA64 and x86. With the components installed and with access to a
SQL Server you can start exploring the capabilities of the SQL Server provider.

23.2 Introduction to the SQL Server provider
Two snap-ins are registered with PowerShell when you install the SQL Server provider
components for 2008/R2: SqlServerCmdletSnapin100 and SqlServerProvider-
Snapin100. You can verify that the snap-ins are available by using the first command in
the following code. You can add them a couple of different ways, as shown:

Get-PSSnapin –Registered

Add-PSSnapin SqlServerCmdletSnapin100
Add-PSSnapin SqlServerProviderSnapin100

Alternatively you can use Wildcards, but be sure that you only get what you want:

Add-PSSnapin *SQL*

The first snap-in contains two cmdlets that you can use to execute commands against a
SQL Server. The first cmdlet, Invoke-PolicyEvaluation, is used in SQL Server policy-
based management in SQL Server 2008 and above. The second is Invoke-SqlCmd,
which is a query executer. These two cmdlets are useful, and in future versions of the
provider there are more cmdlets available.

 The second snap-in is the SQL Server provider. It’s used for navigating SQL Server
objects in a manner similar to navigating a directory structure, folders, and items in fold-
ers. Think of a directory like C:\WINDOWS and how you can use the dir command to
access the items in that folder. The objects that are returned from the SQL Server pro-
vider are SMO-based. You can do a search on “SQL SMO objects” and see the richness
these objects can bring. We’re familiar with objects in SQL Server because we deal with
tables, columns, and indexes. SMOs represent SQL Server objects and have properties
and methods to interact with objects in SQL Server, such as dropping an object, getting
properties of an object, and altering an object. This provider becomes powerful when
Licensed to Bob Spuntak <bobspuntak@msn.com>

http://mng.bz/ccVK
http://mng.bz/m8po

88 CHAPTER 23 PowerShell and the SQL Server provider
automating certain processes or information-gathering procedures by simplifying the
syntax to get these objects. Let’s dive in and learn how to use this provider’s power.

23.3 Using the SQL Server provider
The SQL Server provider is exposed as a PSDrive (PowerShell Drive) by using paths
into the hierarchy of SQL Server objects. A PSDrive is a way to access items in a way
that’s similar to a directory structure. After you load the provider you can use the
PowerShell command Get-PSDrive to show all the drives available for PowerShell to
reference in a fashion similar to a file system.

 The list of drives includes a SQLSERVER: drive when the provider is loaded. This
drive begins the process of accessing SQL Server objects through a series of paths.
Table 1 shows the drive structure and what each level represents.

Table 23.1 SQL Server provider paths

Path Description

SQLSERVER: The drive you use to access SQL, just as you would use C:. The root of
this drive contains the following paths to explore:
SQL
SQLPolicy
SQLRegistration
DataCollection
Utility
DAC

SQLSERVER:\SQL The root of the SQL services on the local machine, and the beginning of
the path in SQL Server via the provider.

SQLSERVER:\SQL\Computer-
Name

The beginning of SQL Server’s journey in the provider. The computer
name is the next part of the path and it can be local or remote. This
doesn’t include the instance name (default or named). Executing
Get-ChildItem gets information about all instances on this machine,
including the default, and shows you their properties.

SQLSERVER:\SQL\Computer-
Name\Instance

The path that connects you to the instance of SQL Server and tries to log
you in via your Windows credentials. The following folders are available:
Audits
BackupDevices
Credentials
CryptographicProviders
Databases
Endpoints
JobServer
Languages
LinkedServers
Logins
Mail
ResourceGovernor
Roles
ServerAuditSpecifications
SystemDataTypes
SystemMessages
Triggers
UserDefinedMessages
Licensed to Bob Spuntak <bobspuntak@msn.com>

89Examples of using the SQL Server provider
With an understanding of this information you can begin to use the SQL Server pro-
vider in a powerful way. The information in table 1 will be a valuable reference for you
regarding where you can go in SQL Server because most of the objects are repre-
sented in the provider and SMO.

 As I’ve said, the real power of the provider syntax is that it’s like a directory struc-
ture. Think of what the path to a table would look like. Listing 1 demonstrates the
basic use of the provider from a console or the Integrated Scripting Environment
(ISE); this can eventually be wrapped in a function, where you can pass parameters for
the server, instance, and other parameters. It also shows using path-like structures in
PowerShell with the SQL Server provider. You can extend this to your advantage in other
pieces of automation.

$server = "localhost"
$instance = "default"
$dbname = "AdventureWorks"
$tblname = "HumanResources.Employee"

$path="SQLSERVER:\SQL\$server\$instance\Databases\$dbname\Tables\$tblname"
If(Test-Path $path)
{
 Get-Item $path
}

The more you use the SQL provider the more you’ll want to become familiar with the
paths that exist in the provider if you’re planning to do any work in SQL Server with
PowerShell.

23.4 Examples of using the SQL Server provider
Let’s get some objects and see what you can do with this tool. Listing 2 shows a func-
tion that prepares the provider for use in the various versions of SQL Server; this
function is reused throughout this chapter. It includes an example of using the provider
to get information from SQL Server. The listing uses code from http://mng.bz/4sXz to
load the assemblies so the function is reusable.

function Load-SQLSnapins
{
 [CmdletBinding()]
 Param()

 $ErrorActionPreference = "Stop"

 $sqlpsreg="HKLM:\SOFTWARE\Microsoft\PowerShell\1\ShellIds\
 ➥ Microsoft.SqlServer.Management.PowerShell.sqlps"

 if (Get-ChildItem $sqlpsreg -ErrorAction "SilentlyContinue")
 {
 throw "SQL Server Provider for Windows PowerShell is not installed."

Listing 23.1 Path-like access to SQL objects

Listing 23.2 Function to load the SQL Server provider
Licensed to Bob Spuntak <bobspuntak@msn.com>

http://mng.bz/4sXz

90 CHAPTER 23 PowerShell and the SQL Server provider
 }
 else
 {
 $item = Get-ItemProperty $sqlpsreg
 $sqlpsPath = [System.IO.Path]::GetDirectoryName($item.Path)
 }

 Set-Variable -scope Global -name SqlServerMaximumChildItems -Value 0
 Set-Variable -scope Global -name SqlServerConnectionTimeout -Value 30
 Set-Variable -scope Global -name SqlServerIncludeSystemObjects -Value

$false
 Set-Variable -scope Global -name SqlServerMaximumTabCompletion -Value

1000

 Push-Location
 cd $sqlpsPath

 if (!(Get-PSSnapin -Name SQLServerCmdletSnapin100 `
-ErrorAction SilentlyContinue))
 {
 Add-PSSnapin SQLServerCmdletSnapin100
 Write-Verbose "Loading SQLServerCmdletSnapin100..."
 }
 else
 {
 Write-Verbose "SQLServerCmdletSnapin100 already loaded"
 }

 if (!(Get-PSSnapin -Name SqlServerProviderSnapin100 `
-ErrorAction SilentlyContinue))
 {
 Add-PSSnapin SqlServerProviderSnapin100
 Write-Verbose "Loading SqlServerProviderSnapin100..."
 }
 else
 {
 Write-Verbose "SqlServerProviderSnapin100 already loaded"
 }

 Update-TypeData -PrependPath SQLProvider.Types.ps1xml
 update-FormatData -prependpath SQLProvider.Format.ps1xml
 Pop-Location
}

<#
namespaces based on
http://msdn.microsoft.com/en-ca/library/ms182491(v=sql.105).aspx

SQL2005
root\Microsoft\SqlServer\ComputerManagement"

SQL2008
root\Microsoft\SqlServer\ComputerManagement10"

SQL2012
\\.\root\Microsoft\SqlServer\ComputerManagement11\instance_name
Licensed to Bob Spuntak <bobspuntak@msn.com>

91Examples of using the SQL Server provider
#>
function Prepare-SQLProvider
{
 [CmdletBinding()]
 Param()
 $namespace = "root\Microsoft\SqlServer\ComputerManagement"
 if ((Get-WmiObject -Namespace $namespace -Class SqlService `
-ErrorAction SilentlyContinue)
)
 {
 Write-Verbose "Running SQL Server 2005"
 #load Snapins
 Load-SQLSnapins
 }
 elseif ((Get-WmiObject -Namespace "$($namespace)10" -Class SqlService `
-ErrorAction SilentlyContinue))
 {
 Write-Verbose "Running SQL Server 2008/R2"
 #load Snapins
 Load-SQLSnapins
 }
 elseif ((Get-WmiObject –Namespace "$($namespace)11" -Class SqlService `
-ErrorAction SilentlyContinue))
 {
 Write-Verbose "Running SQL Server 2012"
 Write-Verbose "Loading SQLPS Module ... "
 Import-Module SQLPS
 }
}

Listing 3 shows how to get a list of the database names on your server. It’s simple if you
think of your SQL Server like a file system. For each file in a file system, properties give
information about that file. Similarly, in the SQL Server provider you can access your
databases like you do files in a directory.

Prepare-SQLProvider
cd SQLSERVER:\SQL\localhost\default
cd Databases
Get-Childitem | Select Name

The example in listing 4 takes you a little further into the hierarchy to get a list of
tables. This isn’t much harder than the previous example, because the Tables folder is
another level in the hierarchy. The path is similar to SQLSERVER: \ SQL\ localhost\
default \ Databases \ AdventureWorks\Tables. You can either use Get-ChildItem to get
the tables or you can use Where-Object to filter them by property. In this case, you
need to use the Where-Object because the SQL Server provider doesn’t have support
for filters. Figures 23.1 and 23.2 show the output from listing 4.

Listing 23.3 Displaying a list of database names from SQL Server
Licensed to Bob Spuntak <bobspuntak@msn.com>

92 CHAPTER 23 PowerShell and the SQL Server provider

Prepare-SQLProvider
CD SQLSERVER:\SQL\localhost\default\Databases\AdventureWorks\Tables
Get-ChildItem | Select DisplayName
Get-ChildItem | Where-Object { $_.DisplayName –match "HumanResources[.]" |
 Select DisplayName

Last but not least, when you aren’t in the mood or can’t use the provider to get infor-
mation but you need to use some of the objects it provides you can take advantage of
the fact that the return objects are SMO-based. You use a server object to get some
properties, or when you need access to the server object later in your code you can use
Get-Item and the provider path to the server to get a server object. This is illustrated
in the following listing. Figure 23.3 shows the output.

Figure 23.3 Using Get-Item to get an SMO server object

Listing 23.4 Getting a list of tables

Figure 23.1 Output of getting a list of tables

Figure 23.2 Output of the second command with the Where-Object clause
Licensed to Bob Spuntak <bobspuntak@msn.com>

93Getting a count of databases in an instance
Prepare-SQLProvider
$server = Get-Item SQLSERVER:\SQL\localhost\default
$server.GetType() | Format-Table –Auto
$server | Get-Member

Notice in figure 23.3 that you see the type: the server object is a Microsoft.SqlServer
.Management.Smo.SqlSmoObject. More specifically, in the second statement it’s a
Microsoft.SqlServer.Management.Smo.Server object. You can use this approach
with databases, tables, and stored procedures to get and manipulate objects, all in a
path to the object.

23.5 Getting a count of databases in an instance
The next listing uses the SQL Server provider to get a count of databases using func-
tions to load the provider for whichever version of SQL Server is installed.

function Get-DatabaseCounts
{

 [CmdletBinding()]
 Param(
 [Parameter(Position=0,Mandatory=$true)]
 [alias("server")]
 [string]$serverName,

 [Parameter(Position=1,Mandatory=$true)]
 [alias("instance")]
 [string]$instanceName
)

 $results = @()
 (Get-Item SQLSERVER:\SQL\$serverName\$instanceName).Databases |
 Foreach-Object {
 $db = $_

 $db.Tables |
 Foreach-Object {
 $table = $_

 $hash = @{
 "Database" = $db.Name
 "Schema" = $table.Schema
 "Table" = $table.Name
 "RowCount" = $table.RowCount
 "Replicated" = $table.Replicated
 }

 $item = New-Object PSObject -Property $hash
 $results += $item

 }
 }

Listing 23.5 Getting a server object using the SQL Server provider

Listing 23.6 Get-DatabaseCounts function
Licensed to Bob Spuntak <bobspuntak@msn.com>

94 CHAPTER 23 PowerShell and the SQL Server provider
 $results

}

Prepare-SQLProvider -Verbose
Get-DatabaseCounts -server "localhost" -instance "DEFAULT" | Out-GridView

This listing shows the count of databases in the localhost \ DEFAULT instance of SQL
Server using the Get-DatabaseCounts function.

23.6 Finding a table in many databases
This use case is a common one when you’re dealing with upgrades to a database or
when you’re deploying new code that relies on a new table that was created during
development. There are different ways to find a table in the midst of many databases.
Listing 7 shows a function that uses the provider to find the table, and listing 8 still
uses the provider but with a script.

Function Get-SQLTableInDB {
 [CmdletBinding()]
 Param(
 [Parameter(Position=0,Mandatory=$true)]
 [alias("server")]
 [string]$serverName,

 [Parameter(Position=1,Mandatory=$true)]
 [alias("instance")]
 [string]$instanceName,

 [Parameter(Position=2,Mandatory=$true)]
 [alias("table")]
 [string]$tableName
)

 (Get-Item SQLSERVER:\SQL\$serverName\$instanceName).Databases |
 Foreach-Object {
 $db = $_

 $db.Tables |
 Foreach-Object {

 $sqltable = $_
 If($tableName –eq $($sqltable.Name)) {
 Return $db.Name
 }
 }
 }
}

Prepare-SQLProvider
Get-SQLTableInDatabases –server "localhost" –instance "DEFAULT" `
–table "Table1"

Listing 23.7 Finding the existence of a table in many databases
Licensed to Bob Spuntak <bobspuntak@msn.com>

95Summary
Prepare-SQLProvider

$servername = "localhost"
$instance = "default"
$tableName = "backupset"
$schema = "dbo"

$instpath = "SQL\$servername\$instance\Databases"
foreach($db in (Get-ChildItem SQLSERVER:\SQL\$instpath)) {
 $dbname = $db.Name
 if(!(Test-Path SQLSERVER:\$instpath\$dbname\Tables\$schema`.$tableName))
 {
 Write-Output $db.Name
 }
}

23.7 Summary
In this chapter you’ve seen how to get the SQL Server PowerShell provider for 2008/R2
and how to add it to your PowerShell session. The SQL Server provider for Power-
Shell is provided as a snap-in and is loaded with the Add-PSSnapin command; you
access the structure of SQL Server using a path structure. You can add the provider to
any Windows machine by downloading the PowerShell objects in the SQL Server Fea-
ture Packs.

 Whether you’re retrieving objects individually or detecting their existence a path
structure provides a powerful way to use PowerShell and SQL Server together. This is
just the tip of the iceberg when it comes to what you can do with the provider and how
it all works, but I hope you caught the vision of where you can take it.

 Chapter 25 discusses SMO and how to use objects in SQL Server with SMO; that
chapter is a great companion to what you learned here. SQL Server 2012 wasn’t cov-
ered in this chapter, but the concepts apply to the SQL Server 2012 provider; it’s just
loaded as a module (SQLPS) instead of a snap-in. Now, go execute some PowerShell!

Listing 23.8 Finding the existence of a table in many databases using the provider
Licensed to Bob Spuntak <bobspuntak@msn.com>

96 CHAPTER 23 PowerShell and the SQL Server provider
Here's your chance to learn from the best in the
business. PowerShell Deep Dives is a trove of essential tech-
niques, practical guidance, and the expert insights you
earn only through years of experience. Editors Jeffery
Hicks, Richard Siddaway, Oisin Grehan, and Aleksandar
Nikolic hand-picked the 28 chapters in the book's four
parts: Administration, Scripting, Development, and Plat-
forms.

 PowerShell has permanently changed Windows admi-
nistration. This powerful scripting and automation tool
allows you to control virtually every aspect of Windows
and most Microsoft servers like IIS and SQL Server.

 PowerShell Deep Dives is a trove of essential techniques and practical guidance. It is
rich with insights from experts who won them through years of experience. The
book's 28 chapters, grouped in four parts (Administration, Scripting, Development,
and Platforms), were hand-picked by four section editors: Jeffery Hicks, Richard Sid-
daway, Oisín Grehan, and Aleksandar Nikolic.

 Whether you're just getting started with PowerShell or you already use it daily,
you'll find yourself returning to this book over and over.

What's inside:

 Managing systems through a keyhole
 The Ten Commandments of PowerShell scripting
 Scalable scripting for large datasets
 Adding automatic remoting
 Provisioning web servers and websites automatically to IIS 8
 And 23 more fantastic chapters
Licensed to Bob Spuntak <bobspuntak@msn.com>

https://www.manning.com/books/powershell-deep-dives
https://www.manning.com/books/powershell-deep-dives
https://www.manning.com/books/powershell-deep-dives

IIS has many configuration settings. Scripting provides a way to set up multi-
ple IIS instances with identical configurations. This chapter provides an excel-
lent introduction to IIS administration via PowerShell. It also gives a good
practical example – standing up a web farm of four web servers. You’re shown
how to perform the individual tasks and then combine the code to produce a
script you can reuse as many times as required.

IIS Administration
Licensed to Bob Spuntak <bobspuntak@msn.com>

Chapter 27 from PowerShell Deep Dives edited by
Jeffrey Hicks, Richard Siddaway, Oisin
Grehan, and Aleksander Nikolic

Provisioning IIS web servers
and sites with PowerShell
The following scenario is common if you’re an administrative web master, and
here’s how it was delivered to me: “Deploy a highly available web farm (four serv-
ers) with a couple of websites, including certificates, for a new secure shopping site.
Make sure to enable graphical remote management for IIS Manager so that other
admins and developers can make changes; and, by the way, did we mention we’re
moving to Windows Server 2012 Core?” (See figure 27.1.)

 This isn’t a complicated project, thanks to the support of PowerShell and the
Internet Information Services (IIS) cmdlets, but you may encounter tricky spots
and gotchas along the way.

 Initially I solved this problem by using PowerShell interactively to complete the
required tasks. As a smart and lazy admin, I saved the commands to a script so that
in the future I could automate similar deployments without all the typing. I even
turned some of the tasks into advanced functions so that other admins could
accomplish some of the trickier stuff.

 In this chapter you’ll see how I interactively solved this deployment scenario,
and I’ll also show you how to automate it. The entire process from beginning to
end involves these tasks:

 Deploy IIS to the Windows Server 2012 Core remote servers.
 Prepare the remote servers with website files and certificates.
 Enable remote-management support for the graphical IIS Manager.
 Create a load-balanced web farm.
98

Licensed to Bob Spuntak <bobspuntak@msn.com>

https://www.manning.com/books/powershell-deep-dives

99
 Create a secure load-balanced website using Secure Sockets Layer (SSL).
 Automate the process.

Setting up the lab environment
I created a lab environment to write this chapter. If you want to follow along you can
create a similar environment.

Although I’m using Windows Server 2012 Core, this deployment solution also works
on Windows Server 2008 R2, with or without a graphical desktop. I use some of the
newer networking commands from Server 2012 for the Domain Name System (DNS)
settings, but if you’re using Windows Server 2008 R2 you can work around that with
the GUI. I also use the dynamic module-loading feature in PowerShell v3; if you’re
using PowerShell v2 I’ll warn you when you need to import a module.

These are the items that I set up in advance:

Deployment station—Windows 8 Pro running Remote Server Administration Tools
(RSAT). I’ll use local RSAT cmdlets in this chapter.

Four Windows Server 2012 Core servers—Each server is assigned an IP address and
is a member of the domain, although this is not required for middle-tier web servers.
You can set up the IP address through SConfig.cmd or the networking cmdlets.

Remoting—This feature is enabled for all Windows Server 2012 products; you’ll need
to enable it if you’re using Windows Server 2008 R2. (This is a requirement.)

Firewall / NAT

Open ports 80 and 443

Two websites:

http://www.company.loc

https://shop.company.loc

Deployment station

Windows 8 with

RSAT tools

Windows Server 2012 Core

load-balanced web farm

1. The goal is to deploy and

provision four IIS servers in

a load balance with

several websites.

2. Customers should be able

to connect to a public and

secure site over SSL.

IIS IIS IIS IIS

Figure 27.1 The deployment goal of a web farm with multiple websites
Licensed to Bob Spuntak <bobspuntak@msn.com>

100 CHAPTER 27 Provisioning IIS web servers and sites with PowerShell
Let’s get started and deploy the web servers and websites.

27.1 Rapid IIS deployment
To begin the deployment we’ll use PowerShell Remoting to connect to the remote
servers. Some tasks won’t be completed over remoting, so store a list of computer
names in a variable that you can pipe to commands.

1 Gather the computer names of the future web servers and store them to a vari-
able, $Servers, using one of the following options.

If the servers are members of the domain, use the Active Directory cmdlet
Get-ADComputer:

PS> $Servers = Get-ADComputer -Filter "name -like 's*'" |
 ➥ Select-Object -ExpandProperty name

NOTE If you’re using PowerShell v2, be sure to import the Active Directory
module first.

You can also get the list from a CSV or TXT file:

PS> $Servers = Import-Csv c:\servers.csv |
 ➥ Select-Object -ExpandProperty ComputerName

PS> $Servers = Get-Content c:\servers.txt

2 Create a PowerShell remote session to the servers. Store the sessions in a vari-
able $Sessions for easy access later:

PS> $Sessions = New-PSSession -ComputerName $Servers

3 Determine what software is needed to support all of the tasks for this project.
The remote servers require the following roles and features for this deploy-

ment solution, but you can add to the list if you need additional components to
support your websites:

– Web Server (IIS) (web-server) —The primary role for a web server. This installs
the components of IIS and creates the default website.

– ASP.NET (web-asp-net) —Provides support for ASP.NET websites.
– Network Load Balancing (NLB) —I’m using Microsoft’s built-in layer-3 NLB

software. You can substitute your own hardware load balancer or Micro-
soft’s layer-7 Application Request Routing (ARR) balancer. ARR has cmdlets
for easy management and is one of my favorite products. ARR also includes

Script execution—This should be enabled on the servers.

SSL certificate—For a lab environment you can use a self-signed certificate, but for
production use a good web server certificate or even an Extended Validation (EV) cer-
tificate. I created a certificate in Active Directory Certificate Services (AD CS) and
exported it to a Personal Information Exchange (.pfx) file.
Licensed to Bob Spuntak <bobspuntak@msn.com>

101Rapid IIS deployment
additional features beyond load balancing but requires greater in-depth
knowledge, so I’m sticking with the straightforward, built-in, and useful
Microsoft NLB.

– Management Service (Web-Mgmt-Service) —Required component for remote
management of IIS with IIS Manager.

4 Install the required components on the remote servers with Invoke-Command:

PS> Invoke-Command -Session $Sessions {Install-WindowsFeature
 ➥ web-server,web-asp-net,NLB,Web-Mgmt-Service}

Installing the software components to all four servers, as shown in figure
27.2, takes only a few minutes (5 minutes to be exact).

The IIS installation process creates the default website automatically. Let’s
test this default website on each server before continuing with the next task.

Testing ensures that the web server is functioning properly and reduces
future troubleshooting if something goes wrong:

5 Use the $Servers variable to pipe the server names to Internet Explorer:

PS> $Servers | ForEach-Object {Start-Process iexplore http://$_}

Four separate browsers automatically launch and test the default website on
each individual server.

With the initial software deployment completed the next task is to deploy (copy) the
website files and certificate out to the servers. PowerShell makes this a snap.

PowerShell v2 notes
If you’re using PowerShell v2 on Server 2008 R2 you’ll need to import the Server
Manager module first:

Invoke-Command -Session $Sessions {Import-Module ServerManager}

Also I’m using the new Install-WindowsFeature cmdlet. In PowerShell v2 use the
Add-WindowsFeature cmdlet.

Add additional IIS components

based on your needs.

Figure 27.2 Performing a rapid install of the required software on multiple servers
Licensed to Bob Spuntak <bobspuntak@msn.com>

102 CHAPTER 27 Provisioning IIS web servers and sites with PowerShell
27.2 Transferring website files and certificates
IIS supports storing your website files and applications on a central share from a clus-
tered file server. Some organizations, such as small companies, don’t have this capabil-
ity, so we’ll copy the websites from a central location (my computer) out to the
individual web servers. Because these web servers will be load-balanced, each server
needs to have the same files.

DEPLOYING THE DEFAULT WEBSITE

1 Copy the new default website to each web server’s c:\ inetpub\ wwwroot path:

PS> $Servers | ForEach-Object {Copy-Item -Path c:\sites\www*.*
 ➥ -Destination "\\$_\c$\inetpub\wwwroot"}

2 Test the default website after the file transfer (see figure 27.3):

PS> $Servers | ForEach-Object {Start-Process iexplore http://$_}

With the default website successfully deployed we can focus on the new secure shop-
ping site.

Testing the default website

on each server

Figure 27.3 Successful
deployment of the default website
to multiple web servers

DEPLOYING THE SHOPPING WEBSITE

Most of the websites that you’ll copy out to the web servers won’t be in the default path
(InetPub). I prefer to use a directory called sites, with each website in its own folder:

1 Create the folder structure on the remote servers (C:\ sites\ shopping), and then
copy the new website:

PS> Invoke-Command -Session $Sessions {New-Item -Path c:\sites\shopping
 ➥ -ItemType directory -Force}
PS> $Servers | ForEach-Object {Copy-Item -Path c:\sites\shopping*.*
 ➥ -Destination "\\$_\c$\sites\shopping"}

2 Generate a certificate for SSL for the secure shopping site.
(I previously generated and stored a trusted certificate on my local Windows 8

computer in c:\ sites\ certpfx.)
Licensed to Bob Spuntak <bobspuntak@msn.com>

103Enabling remote management for IIS Manager
3 Copy the certificate to the remote servers, and then use CertUtil.exe to import
the certificate:

PS> $Servers | ForEach-Object {Copy-Item -Path c:\sites\certpfx*.*
 ➥ -Destination "\\$_\c$"}
PS> Invoke-Command -Session $Sessions {certutil -p P@ssw0rd
 ➥ -importpfx c:\company.loc.pfx}

I sent the password in clear text because PowerShell Remoting is secure and
encrypted. I wouldn’t do this in a script. The certificate imports successfully, as
shown in figure 27.4.

4 Remove (delete) the .pfx file from the remote servers:

PS> $Servers | ForEach-Object {Remove-Item -Path
 "\\$_\c$\company.loc.pfx"}

The website files are copied to the remote servers and each server has the certificate for
the secure site. Before you finish creating and configuring the secure site you need to
enable IIS remote management so that the websites can be managed using IIS Manager.

27.3 Enabling remote management for IIS Manager
IIS remote management adds the capability of managing websites on remote servers
from IIS Manager. It’s best to enable and configure this feature using IIS Manager run
locally on each server; it’s not a friendly feature to enable through the command line
or on Windows Server 2012 Core. In addition, we need to replace the temporary, self-
signed certificate, which is assigned to remote management.

 Let’s break this into two steps: enabling the service and replacing the certificate.

ENABLING THE SERVICE

1 Enable the remote management service in the registry, and then start the Web
Management Service (WMSVC).

WMSVC has a startup type of Manual, so change the startup to Automatic
before starting the service:

PS> Invoke-Command -Session $Sessions {Set-ItemProperty
 ➥ –Path HKLM:\SOFTWARE\Microsoft\WebManagement\Server
 ➥ -Name EnableRemoteManagement -Value 1}
PS> Invoke-Command -Session $Sessions {Set-Service wmsvc
 ➥ -StartupType Automatic}
PS> Invoke-Command -Session $Sessions {Start-Service wmsvc}

Figure 27.5 illustrates the successful start of WMSVC on the remote computers.

Certificates successfully installed.

Don’t forget to delete the .pfx

files from the servers.

Figure 27.4 Deploying and installing a certificate for SSL
Licensed to Bob Spuntak <bobspuntak@msn.com>

104 CHAPTER 27 Provisioning IIS web servers and sites with PowerShell
At this point you can connect IIS Manager to the remote computers, but you can’t use
IIS Manager to manage and change the certificates for the remote service.

Don't forget to set

the startup to Automatic

before you start WMSVC.

Figure 27.5 Enabling IIS remote management and starting WMSVC

REPLACING THE CERTIFICATE

The IIS remote management service uses port 8172 and binds a temporary certificate
to “all unassigned” IP addresses. You need to change this binding, and this is where
things get a little strange. To remove the old SSL binding for port 8172 and add a new
one you need to access the IIS: provider. Because PowerShell cmdlets and this pro-
vider don’t work together as well as they could, extra steps are required to complete
the process:

1 Get the thumbprint of the trusted certificate that you imported previously and
store it to a variable ($cert).

Perform this step over PowerShell Remoting so that the variable can be used
for later commands:

PS> Invoke-Command -Session $Sessions {$cert = Get-ChildItem
 ➥ -Path Cert:\LocalMachine\My | where {$_.subject -like "*company*"} |
 ➥ Select-Object -ExpandProperty Thumbprint}

2 Access the IIS: drive.
When IIS is installed, a module called WebAdministration is added, which

includes cmdlets and an IIS: provider. To ensure that the provider is loaded,
import the WebAdministration module:

PS> Invoke-Command -Session $Sessions {Import-Module WebAdministration}
PS> Invoke-command -Session $Sessions {cd IIS:\SslBindings}

Bindings are stored in IIS:\ SslBindings as path items.

3 Remove the binding that contains the temporary certificate:

PS> Invoke-command -Session $Sessions {Remove-Item -Path
 ➥ IIS:\SslBindings \0.0.0.0!8172}

NOTE Usually IIS binding information is entered and displayed as IPaddress
:port:hostname, as in *:80:*, but PowerShell interprets the colon (:) as a
path indicator. When using the cmdlets to work with bindings for IIS, replace
the colon with an exclamation mark (!), as in *!80!*.
Licensed to Bob Spuntak <bobspuntak@msn.com>

105Creating a load-balanced web farm
4 Create a new binding that uses the new trusted certificate.
Use the Get-Item command to retrieve the correct certificate based on the

thumbprint stored in $cert. The certificate is piped to New-Item, which creates
the new binding for all IP addresses on port 8172:

PS> Invoke-Command -Session $Sessions {Get-Item
 ➥ -Path "cert:\localmachine\my\$cert" |
 ➥ New-Item -Path IIS:\SslBindings\0.0.0.0!8172}

5 Start IIS Manager (PS> Start inetmgr), and create connections to the remote
servers as shown in figure 27.6.

With the remote management capabilities of IIS enabled we can finish off our deploy-
ment and provisioning web server project with two final tasks: building the web farm
and creating a new secure website. Let’s start with the web farm.

27.4 Creating a load-balanced web farm
For many companies a hardware load balancer that provides high availability is the
only choice for their web farms; it’s fast, efficient, and provides certificate manage-
ment. Not everyone can afford (or even needs) this level of performance, so other
options are available. My favorite is the layer-7 load balancer for IIS from Microsoft
called Application Request Routing (ARR). It’s free, an excellent product, can be
downloaded from www.iis.net, has cmdlets for management, includes many more

With remote management

enabled, you can now add

the servers to your IIS

management console.

1

2 3

Figure 27.6 Adding the remote servers to IIS Manager
Licensed to Bob Spuntak <bobspuntak@msn.com>

www.iis.net
www.iis.net

106 CHAPTER 27 Provisioning IIS web servers and sites with PowerShell
features in addition to load balancing, and, did I mention, it’s free. ARR performs
load balancing using URL rewrite. Because URL rewrite is complex and requires in-
depth knowledge of ARR I chose to use the built-in Microsoft NLB for this example
deployment situation. NLB works well and doesn’t require the additional installation
and knowledge overhead to make a great solution.

 For this task I’m using the cmdlets from the NLB module on my Windows 8 com-
puter. Alternatively you could issue these commands over PowerShell Remoting:

1 Create the load balance on server S1 with the New-NlbCluster cmdlet, and cre-
ate a cluster IP address for the default website:

PS> New-NlbCluster -HostName s1 -InterfaceName Ethernet -ClusterName web
 ➥ -ClusterPrimaryIP 192.168.3.200 -SubnetMask 255.255.255.0
 ➥ -OperationMode Multicast

2 Add another address with the Add-NlbClusterVip cmdlet:

PS> Get-NlbCluster -HostName s1 | Add-NlbClusterVip -IP 192.168.3.201
 ➥ -SubnetMask 255.255.255.0

You’ll use this additional cluster IP address for the secure website that you’ll
create in the next section.

3 Add the second server (S2) as a node in the load balance with the Get-Nlb-
Cluster cmdlet:

PS> Get-NlbCluster -HostName s1 | Add-NlbClusterNode -NewNodeName s2
 ➥ -NewNodeInterface Ethernet

4 Repeat step 3 for the other two servers in this scenario.
The return information from the Get-NlbCluster cmdlet informs you if you

have any problems converging the load balance.

5 Launch the graphical Network Load Balancing Manager (on a Windows 8 com-
puter) from the Administrative Tools to verify the status (see figure 27.7).

6 Test the load balance with full name resolution.

Figure 27.7 Verifying the load balance in the Network Load Balancing Manager
Licensed to Bob Spuntak <bobspuntak@msn.com>

www.iis.net

107Creating an SSL website
Create a www record in DNS that points to the cluster IP address, and then
launch a browser using the new address:

PS> Add-DnsServerResourceRecordA -Name www -ZoneName company.loc
 ➥ -IPv4Address 192.168.3.200 -ComputerName DC.company.loc
PS> Start-Process iexplore http://www.company.loc

Finally, after all this work, it’s time for the final task: creating a new and secure website
for the web farm. Let’s make a website!

27.5 Creating an SSL website
To make a new website on the remote servers use
the IIS (web) cmdlets from the WebAdministra-
tion module. Remember that we already copied
the files for this new website to the location
c:\sites\shopping:

Figure 27.8 Creating a pool in IIS
Manager

1 Create an application pool for the new
website with the New-WebAppPool cmdlet:

PS> Invoke-Command -Session $Sessions
{New-WebAppPool -Name Shopping-Pool}

Figure 27.8 shows the graphical version
of creating a pool in IIS Manager.

The new application pool is created with
default settings for items such as the recycle
times and identity. This is a good time to
add your own application pool commands
to alter those defaults, if desired. (See the sidebar for an example.)

Changing the application pool identity
Usually, for application pools of ApplicationPoolIdentity, the default identity is
sufficient as a restricted identity. In cases where multiple customers have websites
located on the same server (multitenant), isolating each pool with its own identity pro-
vides unique security for every customer. To set the pool identity IIS uses a number
representing the identity. The default value is 4, but if you want to have isolation you
can create individual accounts and assign those accounts to each pool as in the fol-
lowing example:

LocalSystem = 0
LocalService = 1
NetworkService = 2
SpecificUser = 3
ApplicationPoolIdentity = 4
PS> Invoke-Command –Session $Sessions {Set-ItemProperty
 ➥ -Path IIS:\AppPools\MyTest -Name processmodel.identityType -Value 3}
Licensed to Bob Spuntak <bobspuntak@msn.com>

http://www.company.loc

108 CHAPTER 27 Provisioning IIS web servers and sites with PowerShell
2 Create a new website named Shopping.
After you create the application pool the New-Website cmdlet does the rest

of the work:

PS> Invoke-Command -Session $Sessions {New-Website -Name Shopping
 ➥ -HostHeader shop.company.loc -PhysicalPath C:\sites\shopping
 ➥ -ApplicationPool Shopping-Pool -Port 443 -ssl -SslFlags 0}

The website has a host header of shop.company.loc and points to the physi-
cal location of the website files. The new site is assigned to the correct applica-
tion pool and a binding on port 443 is set. The –SslFlags tells the website to
use a normal certificate.

3 Create another SSL binding for the new site.
The process is the same as discussed previously, but the binding is for all IP

addresses on port 443:

PS> Invoke-Command -Session $Sessions {$cert=Get-ChildItem
 ➥ -Path Cert:\LocalMachine\My | where {$_.subject -like "*company*"} |
 ➥ Select-Object -ExpandProperty Thumbprint}
PS> Invoke-Command -Session $Sessions {Import-Module WebAdministration}
PS> Invoke-Command -Session $Sessions {Get-Item
 ➥ -Path "cert:\localmachine\my\$cert" | New-Item -Path
 ➥ IIS:\SslBindings\0.0.0.0!443!Shop.company.loc}

As shown in figure 27.9, the new binding is successfully created on all remote
servers.

4 Test the new website.
Add a DNS record that points to the cluster IP address previously defined for

the website and then launch a browser using the address:

PS> Add-DnsServerResourceRecordA -Name shop -ZoneName company.loc
 ➥ -IPv4Address 192.168.3.201 -ComputerName DC.company.loc
PS> Start-Process iexplore https://shop.company.loc

PS> Invoke-Command –Session $Sessions {Set-ItemProperty
 ➥ -Path IIS:\AppPools\MyTest -Name processmodel.username
 ➥ -Value Administrator}
PS> Invoke-Command –Session $Sessions {Set-ItemProperty
 ➥ -Path IIS:\AppPools\MyTest -Name processmodel.password -Value

P@ssw0rd}

Figure 27.9 Successful creation of the new SSL binding
Licensed to Bob Spuntak <bobspuntak@msn.com>

https://shop.company.loc

109Automating the process
As shown in figure 27.10, the new website successfully passes the test using
the trusted certificate over SSL.

Total time for this project, using PowerShell interactively, is approximately 30 min-
utes. Storing these commands in a .ps1 file helps me script future deployment proj-
ects. Why do all that typing again? I wrote the tricky tasks, such as enabling remote
management, as advanced functions so that other admins have the tools they need
without all the hassle. I increased my value to the company and managed to get a little
more time on the beach.

27.6 Automating the process
Automating the deployment process is as simple as sticking the commands in a script
file, but I went further and built in more flexibility. PowerShell Remoting and the
Invoke-Command cmdlet make life easy. For example, have you ever tried the switch
option for Invoke-Command –FilePath? This switch option eliminates the need to
copy scripts to remote computers before executing them. You write a script that per-
forms the tasks as if it were running on the local computer. To send that script to your
remote computers use Invoke-Command.

 In this section I’ll first show you the script that does the hard work, and then I’ll
show you how I call and use the script. The only changes from the commands you’ve
already seen are the following:

 I removed all of the Invoke-Command cmdlets.
 I changed how the certificate password is passed to the script. I don’t want the

password hardcoded in the script, so I used a PowerShell v3 feature to pass a
variable to the script with $Using:CertPassword.

 I left out the NLB commands, in case you already have a load-balance solution,
but you can always add them.

Here’s the script, which I named Deploy-WebServer.ps1.

The new secure SSL site works

using the cluster IP address.

Figure 27.10 Successful test of the new website using SSL
Licensed to Bob Spuntak <bobspuntak@msn.com>

110 CHAPTER 27 Provisioning IIS web servers and sites with PowerShell
Install-WindowsFeature web-server,Web-Mgmt-Service

Set-ItemProperty -Path HKLM:\SOFTWARE\Microsoft\WebManagement\Server `
-Name EnableRemoteManagement -Value 1

Set-Service wmsvc -StartupType Automatic
Start-Service wmsvc

certutil -p $Using:certPassword -importpfx c:\Wildcard.company.loc.pfx
Remove-Item -Path c:\Wildcard.company.loc.pfx

Import-module -Name WebAdministration
$cert = Get-ChildItem -Path Cert:\LocalMachine\My |
where {$_.subject -like "*company*"} |
Select-Object -ExpandProperty Thumbprint

Remove-Item -Path IIS:\SslBindings\0.0.0.0!8172

Get-Item -Path "cert:\localmachine\my\$cert" |
New-Item -Path IIS:\SslBindings\0.0.0.0!8172

New-WebBinding -Name "Default Website" -Protocol https

Get-Item -Path "cert:\localmachine\my\$cert" |
New-Item -Path IIS:\SslBindings\0.0.0.0!443

To use the Deploy-WebServer.ps1 script I run interactive commands to set up the
remoting connections and set a few variables. Then I call the deployment script with a
single Invoke-Command cmdlet:

1 Build a remote session to the computers that will become web servers.
Put the server names in a variable—you’ll need that later, so don’t cheat and

make this a one-liner:

PS> $Servers='server1','server2', 'server3'
PS> $Sessions=New-PSSession -ComputerName $Servers

2 Set a variable to contain the password to install the certificate.
This information is passed over the remoting session encrypted:

PS> $CertPassword="P@ssw0rd"

3 Interactively copy the website files and certificates to the remote servers:

PS> $servers | ForEach-Object{New-Item -Path \\$_\C$\inetpub\wwwroot
 ➥ -ItemType Directory -Force}
PS> $servers | ForEach-Object{Copy-Item -Path c:\sites\www*.*
 ➥ -Destination \\$_\C$\inetpub\wwwroot -Force}
PS> $servers | ForEach-Object{Copy-Item -Path c:\sites\CertPFX*.*
 ➥ -Destination \\$_\C$\ -Force}

If you put these commands in the Deploy-WebServer.ps1 file you’ll run into a
double-hop issue—the remote computers connecting to another remote server
to get the files.

Listing 27.1 Deploy-WebServer.ps1
Installs required
components

Enables remote
management

Removes the
certificate file

Creates new
SSL binding
Licensed to Bob Spuntak <bobspuntak@msn.com>

111Summary
NOTE If you copy files to Windows Server 2012 Core you’ll first need to
install the FS-FileServer role to access the C$ share.

4 Run the deployment script using the –FilePath parameter:

PS> Invoke-Command -Session $Sessions -FilePath C:\scripts\deploy-
 ➥ WebServer.ps1

All the target servers now have a web server, website, and certificates installed and are
ready for action!

27.7 Summary
This chapter covered the deployment of multiple web servers with multiple websites,
which included building a web farm and installing certificates for SSL. The concepts
and tactics demonstrated here could easily be applied to other roles, features, and
products, such as SharePoint web servers and Client Access Server (CAS) arrays for
Microsoft Exchange. I gleaned the following takeaways during this real-life project:

 I can use PowerShell interactively to solve each task, even for a more compli-
cated deployment.

 There may not be specific cmdlets for every situation, such as enabling the
remote management of IIS, but there are ways around those issues.

 PowerShell Remoting must be enabled to permit these larger-scale manage-
ment solutions. While it’s the default for Windows Server 2012, you need to
enable it now even if you’re not at that version yet.

Thanks to PowerShell I get an amazing amount of work done quickly and without travel-
ing to a cold data center. If you have any questions about the script or commands I dis-
cussed in this chapter visit the forums at http://www.powershell.org, and I’ll be happy
to help!

Licensed to Bob Spuntak <bobspuntak@msn.com>

http://www.powershell.org
http://www.powershell.org
http://www.powershell.org

112 CHAPTER 27 Provisioning IIS web servers and sites with PowerShell

Here's your chance to learn from the best in the
business. PowerShell Deep Dives is a trove of essential
techniques, practical guidance, and the expert insights
you earn only through years of experience. Editors Jef-
fery Hicks, Richard Siddaway, Oisin Grehan, and Alek-
sandar Nikoli? hand-picked the 28 chapters in the
book's four parts: Administration, Scripting, Develop-
ment, and Platforms.

 PowerShell has permanently changed Windows
administration. This powerful scripting and automation
tool allows you to control virtually every aspect of Win-
dows and most Microsoft servers like IIS and SQL Server.

 PowerShell Deep Dives is a trove of essential techniques and practical guidance. It is
rich with insights from experts who won them through years of experience. The
book's 28 chapters, grouped in four parts (Administration, Scripting, Development,
and Platforms), were hand-picked by four section editors: Jeffery Hicks, Richard Sid-
daway, Oisín Grehan, and Aleksandar Nikolic.

 Whether you're just getting started with PowerShell or you already use it daily,
you'll find yourself returning to this book over and over.

What's inside:

 Managing systems through a keyhole
 The Ten Commandments of PowerShell scripting
 Scalable scripting for large datasets
 Adding automatic remoting
 Provisioning web servers and websites automatically to IIS 8
 And 23 more fantastic chapters

Licensed to Bob Spuntak <bobspuntak@msn.com>

https://www.manning.com/books/powershell-deep-dives
https://www.manning.com/books/powershell-deep-dives
https://www.manning.com/books/powershell-deep-dives

I’ve probably done more PowerShell scripting against Active Directory than
any other target. AD management, user management in particular, is often the
first target for automation in most organizations. This chapter introduces that
topic and gives an example of one of PowerShell’s strengths, namely that there’s
often more than one way to accomplish a task. If you can’t get access to the AD
cmdlets this chapter shows how to perform the common user administration
tasks through scripting.

AD Administration

Licensed to Bob Spuntak <bobspuntak@msn.com>

Chapter 5 from PowerShell in Practice by
Richard Siddaway

User accounts
“Working with users” is the title of the middle part of this book. Anyone who
thought “It would be a nice job but for the users” should be ashamed, very
ashamed. Write out 100 times “I mustn’t say things like that again.” Better still, cre-
ate a PowerShell script to write it out. There’ll be a test.

 A large part of administration comes back to users, directly or indirectly. In this
chapter, we’ll be automating the administration of user accounts. Why do we want
to do this? Look back at my example from chapter 4. Do you want to set up 7,000+
users in a few weeks? Automation all the way.

 The other reason for automating user account management is consistency.
When working as a consultant, I’ve seen Active Directory implementations where
the names are created in every combination you can think of. First name first; sur-

This chapter covers
 Automating AD user accounts

 Searching Active Directory

 Creating and modifying group memberships

 Group nesting
114

Licensed to Bob Spuntak <bobspuntak@msn.com>

https://www.manning.com/books/powershell-in-practice

115Automating user account management
name first; various combinations of commas and spaces between the name parts.
Commas should be avoided if possible, as they have to be allowed for in the script; oth-
erwise the user account won’t be found. The rest of the account information is just as
inconsistent, with missing or wrong telephone numbers, addresses, and so on. Consis-
tency makes things easier to administer. Be consistent. How do you do that? Automa-
tion all the way. Another thing we need to consider is groups. Allocating permissions
by groups is best practice in a Windows environment, so we need to know how to cre-
ate and modify groups.

 The chapter will start with a look at the options we have for working with user
accounts and groups. In this chapter, most of the scripts will be presented in two varia-
tions in order to provide the maximum flexibility. After explaining which options will
be used, we’ll look at how we work with local users and groups, including creation and
modification.

 Working with Active Directory users and groups occupies the bulk of the chapter.
We start at the logical place by creating a user account. One of the major differences
between working locally and working with Active Directory is that with the latter, we’re
often working with multiple users simultaneously. This will be illustrated by looking at
how we can create users in bulk. Not quite on the scale of 7,000 at a time, but we could
scale if required. Having created our users, we need to think about modifications to
various attributes together with how we move the account to a different Organiza-
tional Unit (OU). During the move, the account may need to be disabled. This is a
common scenario for dealing with people leaving the organization.

 We often need to search Active Directory to find a particular user or possibly to
find accounts or passwords that are about to expire. One common need is to discover
a user’s last logon time. This can be useful for checking who’s still active on our direc-
tory. I recently checked an AD installation where there were several hundred accounts
that hadn’t been used for over six months. The disposal of old accounts can, and
should, be automated.

 The final section of the chapter deals with Active Directory groups. After a group
has been created, we’ll definitely need to modify its membership and may need to
change its scope—the last type of group. We complete the section by answering two
questions: “Who’s in this particular group?” and “What groups is this user in?” These
are questions that can’t be easily answered by using the GUI tools.

 In order to perform these tasks, we need to use ADSI, which is the primary interface
for working with Active Directory, as we saw in chapter 3. There are a few options to con-
sider regarding the exact way we accomplish this before we start creating scripts.

5.1 Automating user account management
Before the release of Windows Server 2008 R2, we’d work with user accounts via ADSI,
as we saw in chapter 4. This can be performed in a number of ways, including:

 [ADSI] type accelerator
 System.DirectoryServices .NET classes
Licensed to Bob Spuntak <bobspuntak@msn.com>

116 CHAPTER 5 User accounts
 System.DirectoryServices.AccountManagement .NET classes
 Quest AD cmdlets (the nouns all start with QAD)

Windows Server 2008 R2 introduced a module containing Active Directory cmdlets
(see section 5.1.2).

POWERSHELL DILEMMA This illustrates the dilemma that many new Power-
Shell users face. “I’ve found three different ways of performing this task:
which one should I use?” The short-term answer, especially if you’re new to
PowerShell, is whichever one you feel most comfortable with. In the longer
term, investigate the possibilities, pick one, and stick with it. One slight prob-
lem is that sometimes you need to use multiple methods to cover
all eventualities.

ADSI can be used to access AD LDS, previously known as ADAM, via PowerShell in a
similar way to Active Directory. The only major change is the way you connect to the
directory service. The code to get a directory entry for an Active Directory user is:

$user = [ADSI]"LDAP://cn=Richard,cn=Users,dc=Manticore,dc=org"

To connect to an AD LDS or ADAM instance, this changes to:

$user = [ADSI]
"LDAP://server_name:port/cn=Richard,cn=Users,dc=Manticore,dc=org"

If the AD LDS/ADAM instance is on the local machine, this becomes:

$user = [ADSI]
"LDAP://localhost:389/cn=Richard,cn=Users,dc=Manticore,dc=org"

5.1.1 Microsoft AD cmdlets

When a Windows Server 2008 R2 domain controller is created, a module of Active
Directory cmdlets is installed. Modules are covered in more detail in chapter 15 and
appendix B. This module can also be installed on Windows Server 2008 R2 servers or
Windows 7 machines (using the RSAT download). The module isn’t loaded by Power-
Shell by default. We use:

Import-Module ActiveDirectory

The Microsoft AD cmdlets work in a slightly different manner, in that they access a
web service running on the domain controller. This performs the actions against
Active Directory. The web service is available for installation on Windows Server 2008
or Windows Server 2003 domain controllers, but we’ll need a Windows Server 2008 R2
or Windows 7 machine to install and run the cmdlets. The PowerShell v2 remoting
capabilities can be used to set up proxy functions for these cmdlets on any machine
running PowerShell v2. This technique is described in chapter 13.

 A similar approach is taken with Exchange 2010, in that remote access is provided
by a web service. These two systems are examples of a “fan-in” administrative model, in
that many administrators can connect to the same machine to perform their jobs.
Contrast this with the approach we’ll see with IIS in chapter 13, where one administra-
tor can work on multiple machines. PowerShell provides many ways to remotely
Licensed to Bob Spuntak <bobspuntak@msn.com>

117Local users and groups
administer our systems. The Active Directory cmdlets interacting with a web service is
just one example. The need to install something on the domain controller may be
viewed as a negative, in which case the Quest cmdlets could be used, as they only need
to be installed on the machine used for administration.

5.1.2 Recommendations

When working with Active Directory and PowerShell, we have two main choices: use
scripts or use the AD cmdlets from Microsoft or Quest. My preference is to use the
cmdlets, but I realize that they aren’t available in some tightly controlled environ-
ments. I’ll concentrate on scripting so that the chapter is applicable to as many people
as possible. Even if you use the cmdlets, understanding how to script the task will aid
your understanding of the subject.

 I don’t fully recommend the System.DirectoryServices.AccountManagement
.NET classes for use with Active Directory for three reasons. First, you need to have
installed .NET 3.5, which not everyone can do. Second, the functionality has some
gaps; for instance there’s no capability to set the description attribute (this seems to
be a common failing on the .NET classes for working with Active Directory). Finally,
the syntax is odd compared to the standard ADSI syntax many people already know.
I’ll show examples using these classes because there’s some useful functionality and
because it’s new with little documentation.

 For local users and groups, the System.DirectoryServices.AccountManagement
.NET classes are excellent and will be used in the following scripts. Variant scripts
using [ADSI] will be shown for those users who don’t have .NET 3.5 available. For
Active Directory-based users, the [ADSI] accelerator will mainly be used, with the
Microsoft or Quest AD cmdlets used as a variant.

NOTE I won’t be providing variant scripts in all the remaining chapters of the
book, just where I think there’s value in showing two approaches.

First up on the automation express is local users and groups.

5.2 Local users and groups
Enterprises use Active Directory to manage users and groups. But they still need to
manage local user accounts. This could be because the machine isn’t a domain mem-
ber (for example if it’s in a perimeter network).

NOTE If performing this on Windows Vista or Windows Server 2008, Power-
Shell needs to be started with elevated privileges—it needs to be started using
Run as Administrator. On Windows XP or Windows Server 2003, you must be
logged on with an account with Administrator privileges.

As stated earlier, we’ll be using the System.DirectoryServices.AccountManagement
.NET classes in these examples. You must have .NET 3.5 loaded to use this namespace.
If it’s not possible to use this version of .NET then the scripts shown under the varia-
tion headings can be used.
Licensed to Bob Spuntak <bobspuntak@msn.com>

118 CHAPTER 5 User accounts
COMPUTER NAMES In the example scripts dealing with local users and
groups, the machine name is always pcrs2. You’ll need to change this in your
environment.

Compared to Active Directory, there are a limited number of tasks we’d want to per-
form against local users. The tasks condense to creation and modification activities
against users and groups. We need to create users before we can modify them, so
that’s where we’ll start.

TECHNIQUE 1 User creation

Creating user accounts is the first step in working with users. In this case, we’re creat-
ing an account on the local machine. Ideally, we’re looking for a method that’ll work
when run locally or against a remote machine. We can achieve this by using the follow-
ing approach.

PROBLEM
We need to create a local user account on a Windows machine.

SOLUTION
Creating a user account is a common administrative activity and is illustrated in
listing 5.1. If it’s not possible to use this .NET class, use the variant presented in listing
5.2. Start by loading the System.DirectoryServices.AccountManagement assembly as
shown in listing 5.1 (see B). PowerShell doesn’t automatically load all .NET assem-
blies, so we need to perform that chore. If an assembly will be used often, put the load
statement into your profile. Nothing bad happens if you do perform the load state-
ment multiple times.

 The [void] statement is new. All it does is suppress the messages as the assembly
loads. If you want to see the messages, remove it. I’ve used the full name of the assem-
bly (obtained via Resolve-Assembly in PowerShell Community Extensions), as some
of the other load mechanisms are in the process of being removed. In PowerShell v2
we could use:

Add-Type -AssemblyName System.DirectoryServices.AccountManagement

as an alternative load mechanism. This avoids the need to use the deprecated .NET
method.

[void][reflection.assembly]::Load(
"System.DirectoryServices.AccountManagement, Version=3.5.0.0,

Culture=neutral, PublicKeyToken=b77a5c561934e089")

$password = Read-Host "Password" -AsSecureString
$cred = New-Object -TypeName System.Management.Automation.PSCredential
-ArgumentList "userid", $password

$ctype = [System.DirectoryServices.AccountManagement.ContextType]::Machine
$context = New-Object

Listing 5.1 Creating a local user account

Load the
assembly

B

C Create the
password

DSet the context
Licensed to Bob Spuntak <bobspuntak@msn.com>

119Local users and groups
-TypeName System.DirectoryServices.AccountManagement.PrincipalContext
-ArgumentList $ctype, "pcrs2"

$usr = New-Object -TypeName
System.DirectoryServices.AccountManagement.UserPrincipal
-ArgumentList $context

$usr.SamAccountName = "Newuser1"
$usr.SetPassword($cred.GetNetworkCredential().Password)
$usr.DisplayName = "New User"
$usr.Enabled = $true
$usr.ExpirePasswordNow()

$usr.Save()

The next job after loading the assembly is to generate a password for the new account
C. The method presented here avoids having the password in the script (good secu-
rity) and doesn’t show its value on screen as it is input. Using Read-Host with the -
AsSecureString option means we get prompted for the password, and when we type
it, asterisks (*) are echoed back on screen rather than the actual characters. The
string we’ve typed in is encrypted and can’t be accessed directly:

PS> $password = Read-Host "Password" -AsSecureString
Password: ********
PS> $password
System.Security.SecureString
PS>

There’s a slight issue with this technique. You can’t use the secure string directly as a
password in a user account. We resolve this by creating a PowerShell credential as the
next step. Userid is a placeholder for the account name in the credential. Any string
will do.

 PowerShell needs to know where to create the account using the Principal-
Context class D. This takes a context type, in this case Machine (the local SAM store),
and the name of the machine. If the name is null then the local machine is assumed.

MACHINE NAME The machine name will need to be changed for your envi-
ronment.

The UserPrincipal class is used to create an empty user account in the data store we
set in the context E. We can then start to set the properties of the user account F as
shown. SamAccountName and DisplayName should be self explanatory. $usr.Enabled =
$true means that the account is enabled and ready to use; $usr.ExpirePassword-
Now() indicates that the user must change the password at first logon.

TRUE OR FALSE The PowerShell automatic variables $true and $false are
used to define Boolean values—true or false. They’re of type System.Boolean.
One thing to explicitly note is that $true isn’t the same as “true” and $false
isn’t the same as “false.” Remember to use the Booleans, not the strings.

Create userE

Set propertiesF

SaveG
Licensed to Bob Spuntak <bobspuntak@msn.com>

120 CHAPTER 5 User accounts
Setting the password value is interesting, as it uses the SetPassword method with the
password from the credential we created earlier:

$usr.SetPassword($cred.GetNetworkCredential().Password)

The last action is to write the new user account back to the local data store G using
the Save() method.

DISCUSSION
This may seem like a lot of code, especially when compared to the WinNT method
presented next, but everything before we create the user object E (in listing 5.1)
could be created once and used many times. One property that can’t be set using this
approach is the description. If you want to use this, consider the WinNT approach pre-
sented in listing 5.2. We’ll be using ADSI via the [ADSI] accelerator in this example.
ADSI can connect to a number of account data stores, including Active Directory using
the LDAP provider, which we’ll see in later sections, and the WinNT provider for con-
necting to the local account database. If you’ve been in IT long enough to remember
scripting against Windows NT, you’ll remember using WinNT. No prizes for guessing
where the name comes from.

WINNT AND ACTIVE DIRECTORY The WinNT provider can be used to connect to
LDAP directories such as Active Directory, but it has much reduced capability
compared to the LDAP provider.

WinNT and LDAP are case sensitive. Remembering this will make debugging scripts
much faster.

$computer = "pcrs2"
$sam = [ADSI]"WinNT://$computer"
$usr = $sam.Create("User", "Newuser2")
$usr.SetPassword("Passw0rd!")
$usr.SetInfo()

$usr.Fullname = "New User2"
$usr.SetInfo()
$usr.Description = "New user from WinNT"
$usr.SetInfo()
$usr.PasswordExpired = 1
$usr.setInfo()

Set a variable to the computer name (change for your environment) B. We then
need to bind to the local Security Account Manager (SAM) database using the WinNT
ADSI provider C. Setting the computer name in a variable isn’t strictly necessary, but
it makes things easier if you want to change the script to accept parameters.

 The Create() method is used to create a user object D. The first parameter tells
the system to create a user, and the second parameter is the account name. Unless you
want the account to be disabled, you must set the password at this point.

Listing 5.2 Creating a local user account using WinNT

Computer nameB
Link to SAMC

Create userD

Set fullnameE

Set DescriptionF

Force password changeG
Licensed to Bob Spuntak <bobspuntak@msn.com>

121Local users and groups
PASSWORD WARNING I deliberately wrote this script with the password in the
script to show how obvious it is. Imagine a scenario where you create a set of
new accounts. If someone finds the password, you could have a security
breach. As an alternative, you could leave the account disabled until required.

SetInfo() is used to save the account information back to the database. There are a
few other attributes we want to set. The full name defaults to the account name (login
ID), so changing it to the user’s name will make finding the account easier E. Using
the .NET method, we couldn’t set the description, but it can be done quite easily with
this method F. The last setting is to force the users to change their passwords when
they log on for the first time G. If PasswordExpired is set to one, the password
change is enforced. A value of 0 for PasswordExpired means that users don’t have to
change their passwords.

 It’s not strictly necessary to use SetInfo() after every change. The attribute
changes could be rolled up by a single call to SetInfo().

 One way or another, we’ve created our user. Now we have to think about creating a
group for the user account.

TECHNIQUE 2 Group creation

Working with groups is much more efficient than working with individual accounts.
You need to give a set of users access to a resource. Put them in a group and assign the
permissions to the group. Before we can do that, we need to create the group.

PROBLEM
We need to create a local group on a Windows computer.

SOLUTION
Continuing our exploration of System.DirectoryServices.AccountManagement, we
use the GroupPrincipal class to create a group in listing 5.3. After loading the assem-
bly B (in listing 5.3) we set the context to the local machine C. This time we’re creat-
ing a group, so we need to set the group scope to local D. This code can be modified
to work at the domain level by changing the context to domain and the group scope
to the appropriate value. Examples of using these .NET classes on Active Directory
accounts will be given later.

[void][reflection.assembly]::Load(
"System.DirectoryServices.AccountManagement,
Version=3.5.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089")

$ctype =
[System.DirectoryServices.AccountManagement.ContextType]
::Machine

$context = New-Object
-TypeName System.DirectoryServices.
AccountManagement.PrincipalContext

Listing 5.3 Create a local group

Load assemblyB
Licensed to Bob Spuntak <bobspuntak@msn.com>

122 CHAPTER 5 User accounts
-ArgumentList $ctype, "pcrs2"

$gtype = [System.DirectoryServices.AccountManagement.GroupScope]::Local

$grp = New-Object
-TypeName System.DirectoryServices.
AccountManagement.GroupPrincipal
-ArgumentList $context, "lclgrp01"

$grp.IsSecurityGroup = $true
$grp.GroupScope = $gtype
$grp.Save()

The GroupPrincipal class is used to create the group using the context and a group
name of lclgrp01 E. Set the group scope (type of group) F, save the changes G,
and we’re done. We may not need to explicitly set the fact that it’s a security group for
local groups by using $grp.IsSecurityGroup = $true, but it’s useful when working
with Active Directory groups.

DISCUSSION
Using ADSI is just as easy, as shown in listing 5.4

$computer = "pcrs2"
$sam = [ADSI]"WinNT://$computer"
$grp = $sam.Create("Group", "lclgrp02")
$grp.SetInfo()

$grp.description = "New test group"
$grp.SetInfo()

After connecting to the local SAM database B, we use the Create() method C. The
parameters indicate that we’re creating a group and the group name. This approach
allows us to set the description D, and we save the new group E to the database.

 Note that we also did a SetInfo() immediately after creation. As we’ll see when
working with Active Directory, saving is needed so we can actually work with the
object. Groups need members, so now we’ll look at how to add members into a group.

TECHNIQUE 3 Group membership

Groups by themselves don’t do anything. We need to add members to make them use-
ful. We should remove members from the group when they don’t need to be in there
anymore. We all clean up group membership—don’t we?

PROBLEM
We need to add a new member to a local group.

SOLUTION
The GroupPrincipal class contains methods for modifying the membership of a group.
By now, you should see a pattern emerging for how these scripts work. Listing 5.5 dem-
onstrates this pattern. Load the assembly B, set the context to the local machine C, set
the method to find the group D, and then find the GroupPrincipal E.

Listing 5.4 Create a local group with WinNT

Set contextC

DSet group scope

Create groupE

Set propertiesF

SaveG

Connect to machineB

Create groupC

Set propertiesD

SaveE
Licensed to Bob Spuntak <bobspuntak@msn.com>

123Local users and groups

[void][reflection.assembly]::Load(
"System.DirectoryServices.AccountManagement,
Version=3.5.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089")

$ctype = [System.DirectoryServices.AccountManagement.ContextType]::Machine
$context = New-Object
-TypeName System.DirectoryServices.
AccountManagement.PrincipalContext
-ArgumentList $ctype, "pcrs2"

$idtype =
[System.DirectoryServices.AccountManagement.IdentityType]
::SamAccountName

$grp = [System.DirectoryServices.AccountManagement.GroupPrincipal]
::FindByIdentity($context, $idtype, "lclgrp01")

$grp.Members.Add($context, $idtype, "newuser1")
$grp.Members.Add($context, $idtype, "newuser2")
$grp.Save()

remove group members
#$grp.Members.Remove($context, $idtype, "newuser1")
#$grp.Save()

The group has a collection of members and we can use the Add() method to modify
the membership F. Note that we have to give the context and how we’re identifying
the user as well as the user account to add. A final Save() G and our changes are writ-
ten back to disk.

 To remove group members, we use the Remove() method instead of the Add()
method.

DISCUSSION
Using ADSI to modify group membership is equally straightforward, as seen in listing
5.6. We get objects to represent the users and group and use the group’s Add()
method to add members. Note that we have to give the path to the user, which will be
something like WinNT://pcrs2/newuser1. We could input the path directly to Add().
Removing users is equally direct: we use the Remove() method as shown.

$grp = [ADSI]"WinNT://pcrs2/lclgrp02"
$user = [ADSI]"WinNT://pcrs2/newuser1"
$grp.Add($user.Path)
$grp.SetInfo()

$user2 = [ADSI]"WinNT://pcrs2/newuser2"
$grp.Add($user2.Path)
$grp.SetInfo()

#$grp.Remove($user2.Path)
#$grp.SetInfo()

Listing 5.5 Modify local group membership

Listing 5.6 Modify local group membership with WinNT

Load assemblyB

Set contextC

Set find methodD

E
Find
groupAdd

members
F

SaveG
Licensed to Bob Spuntak <bobspuntak@msn.com>

124 CHAPTER 5 User accounts
That’s all we’re going to look at as far as local users and groups are concerned. Auto-
mating local accounts gains us some efficiency improvements, but it’s not the whole
picture. Enterprises will be using Active Directory to manage the vast majority of their
user accounts. With accounts numbering in the hundreds, if not thousands, it’s in the
automation of Active Directory management that we’ll really see some benefit.

5.3 Active Directory users
Active Directory is the foundation of administration in a modern Windows environ-
ment. I’ve given an example of the mass creation of user accounts and the savings that
automating that process brought. It’s time to start looking at the automation of Active
Directory user account management in detail. Though I can’t cover all eventualities in
a single chapter, the examples here will form a solid start to building automation into
your environment.

 The majority of the scripts deal with a single object, but in listing 5.11 I show how
to create users in bulk. In listing 5.23 where we discuss changing group membership,
there’s a technique for dealing with all of the users in a particular OU. This technique
can be used in the other scripts as appropriate to enable them for bulk processing. In
this section, I’ll use an ADSI-based script as the primary method, with the Quest and
Microsoft AD cmdlets as secondary methods. If it’s possible to use these cmdlets in
your organization, I recommend you do so.

DOMAIN NAMES In these scripts I’m working in my test domain. You need to
change this for your environment, so you must change the LDAP connectivity
strings of the form LDAP://OU=England,dc=manticore,dc=org to match your
domain.

TECHNIQUE 4 User creation

Any work on user accounts must start with creating that user account

PROBLEM
A user account has to be created in Active Directory.

SOLUTION
Using ADSI, the solution has similarities to that presented in listing 5.2. We start by
creating the data, such as the name and user ID that we’ll use to create the account B
(in listing 5.7). I create the fullname ($struser) from the first and last names, as each
will be required later. I’ve deliberately set the password in the script rather than
explain how to use a secure string again. Use the technique shown in listing 5.1 if you
want to mask the password. I’ve included a version of listing 5.7 in the code download
file that uses the password-masking technique—look for listing 5.7s.

$first = "Joshua"
$last = "TETLEY"
$userid = "jtetl"

Listing 5.7 Creating a single user

Define dataB
Licensed to Bob Spuntak <bobspuntak@msn.com>

LDAP://OU=England

125Active Directory users
$strusr = $last + " " + $first
$defaultPassword = "Password1"

$ou = [ADSI]"LDAP://OU=England,dc=manticore,dc=org"
$newuser = $ou.Create("User", "CN=$strusr")
$newuser.SetInfo()

$newuser.samaccountname = $userid
$newuser.givenName = $first
$newuser.sn = $last
$newuser.displayName = $strusr
$newuser.userPrincipalName = $userid + "@manticore.org"
$newuser.SetInfo()

$newuser.Invoke("SetPassword", $defaultPassword)
$newuser.userAccountControl = 512
$newuser.SetInfo()

$newuser.pwdLastSet = 0
$newuser.SetInfo()

The next steps are to define the OU where we’ll create the user C then perform the
creation D. The new user account should be immediately saved E. This ensures that
later processing occurs without error.

 The attributes concerned with the user’s name are set F. Surname is sn and
givenName is the first name. The display name is what’s shown as the full name in
Active Directory Users and Computers (ADUC). The attribute cn is the name shown in
AD Users and Computers when the OU is browsed. cn is also used to identify the user
when we’re creating a directory entry for modification. See listing 5.11.

 When first created, an Active Directory account is disabled by default. We need to
set a password and set the useraccountcontrol attribute to 512 (normal user) to
enable the account G. useraccountcontrol flags are detailed in appendix D. The
final process is to set the pwdLastset attribute to zero H. This forces the user to
change the password at next logon.

DISCUSSION
That was a fairly lengthy script for creating users. PowerShell cmdlets give a much bet-
ter experience than scripting, as we’ll see in listings 5.8 and 5.8a. There are three sep-
arate examples here to illustrate different methods of handling passwords:

 In the first example in listing 5.8 B, $null password is specified. No password is
set and the account is disabled unless it’s requested to be enabled. A password
has to be supplied before the account can be enabled.

 In the second example C, no password is specified. No password is set and the
account is left in a disabled state. Again, a password is required before the
account can be enabled.

 In the final example D, a user password is specified. The password is set and
the account is enabled via the Enable-ADAccount cmdlet.

Note that the Microsoft AD cmdlets all use a prefix on AD for the noun.

Define dataB
Set OUC

Create userD

E Save

Basic
attributes

F

Enable
account

G

Force password
change

H

Licensed to Bob Spuntak <bobspuntak@msn.com>

126 CHAPTER 5 User accounts

New-ADUser -Name "DARWIN Charles" -SamAccountName "CDarwin" `
-GivenName "Charles" -Surname "DARWIN" `
-Path 'ou=england,dc=manticore,dc=org' -DisplayName "DARWIN Charles" `
-AccountPassword $null -CannotChangePassword $false `
-ChangePasswordAtLogon $true -UserPrincipalName "CDarwin@manticore.org"

New-ADUser -Name "NEWTON Isaac" -SamAccountName "INewton" `
-GivenName "Isaac" -Surname "NEWTON" `
-Path 'ou=england,dc=manticore,dc=org' -DisplayName "NEWTON Isaac" `
-AccountPassword (Read-Host -AsSecureString "AccountPassword") `
-CannotChangePassword $false -ChangePasswordAtLogon $true `
-UserPrincipalName "INewton@manticore.org"

New-ADUser -Name "SORBY Henry" -SamAccountName "HSorby" `
-GivenName "Henry" -Surname "SORBY" `
-Path 'ou=england,dc=manticore,dc=org' -DisplayName "SORBY Henry" `
-AccountPassword (Read-Host -AsSecureString "AccountPassword")`
-CannotChangePassword $false -ChangePasswordAtLogon $true `
-UserPrincipalName "HSorby@manticore.org"

 Enable-ADAccount -Identity HSorby

Using the Quest cmdlets is similar. Some of the parameters are slightly different—for
example, Path and ParentContainer respectively for the OU in which the user is
created.

New-QADUser -Name "SMITH Samuel" -FirstName "Samuel" -LastName "SMITH"
-DisplayName "SMITH Samuel" -SamAccountName ssmith
-UserPassword "Password1" -UserPrincipalName "ssmith@manticore.org"
-ParentContainer "ou=England,dc=manticore,dc=org"

Set-QADUser -Identity "manticore\ssmith"
-ObjectAttributes @{useraccountcontrol=512; pwdLastSet=0}

The New-QADUser cmdlet is used to create user accounts. New is used for cmdlets that
create objects. Comparing listing 5.8 with listing 5.7: the similarities are obvious. The
–Name parameter corresponds to cn used to create the user in listing 5.7. Note we need
to create the user, then set the useraccountcontrol and force the password change
by using Set-QADUser. These attributes can’t be set when creating the account. It just
doesn’t work.

 Creating a single user may be slightly more efficient in PowerShell, especially using
the cmdlets. We really gain from automating the bulk creation of user accounts.

TECHNIQUE 5 User creation (bulk)

We’ve seen how to create users one by one. The full benefit of automation is achieved
by creating users in bulk. In order to get the most from these techniques, you may
want to change your procedures for new joiners to the organization. Get all the new
user information in one go and create them using listing 5.9 or 5.10. One or two runs

Listing 5.8 Creating a single user by Microsoft cmdlets

Listing 5.8a Creating a single user with the Quest cmdlets

B

C

D

D

Licensed to Bob Spuntak <bobspuntak@msn.com>

127Active Directory users
per week and they’re all done. It’s much more efficient than single-user creation in
dribs and drabs.

PROBLEM
We need to create a lot of users at one time.

SOLUTION
Our solution is an adaptation of listing 5.7. Take a moment to compare listing 5.9 with
listing 5.7 and you’ll see that the content of the foreach loop is a modified version of
listing 5.7.

FOREACH ALIAS Foreach as used here is an alias for Foreach-Object as shown
in listing 5.10a.

We start by reading a CSV file called pms.csv and passing the contents into a
Foreach_object (in listing 5.9) B. The CSV file contains three columns with headers
of last, first, and userid. The great advantage of using a CSV file is that we can refer to
the column headers in the rest of our script as properties of the pipeline object.

Import-csv pms.csv | foreach {
 $strusr = $_.Last.ToUpper() + " " + $_.First

 $ou = [ADSI]"LDAP://OU=England,dc=manticore,dc=org"
 $newuser = $ou.Create("user","cn=$strusr")
 $newuser.SetInfo()

 $newuser.samaccountname = $_.userid
 $newuser.givenName = $_.first
 $newuser.sn = $_.last
 $newuser.displayName = $strusr
 $newuser.userPrincipalName = $_.userid + "@manticore.org"
 $newuser.SetInfo()

 $newuser.Invoke("SetPassword", "Password1")
 $newuser.userAccountControl = 512
 $newuser.SetInfo()

 $newuser.pwdLastSet = 0
 $newuser.SetInfo()

 Write-Host "Created Account for: " $newuser.Displayname
}

We can create the contents of the $struser variable by using $_.last.ToUpper() and
$_.first (remember PowerShell isn’t case sensitive) C. ToUpper() is a string-
handling method that converts all characters to uppercase. $_ refers to the object
coming down the pipeline. In this case, the object is a line from the CSV file. The col-
umn headers are properties, so $_.first means the contents of the column named
first in the current row. This is real processing power.

 I’ve hard coded an OU for this batch of users D. In a typical organization, you may
be creating users in a number of OUs, so this could become another column in the

Listing 5.9 Creating users in bulk

Read CSV file into loopB
Create userC

D Set OU

E Save user

Completion
message

F

Licensed to Bob Spuntak <bobspuntak@msn.com>

128 CHAPTER 5 User accounts
CSV file. After we create the user E, we proceed to complete the attributes as before.
The only difference is that we’re reading them from the pipeline object rather than
coding them into the script. The last line of the script F writes out a message to state
that creation is complete.

 By adding a couple of commands and changing the way we get the data, we’ve
turned a script to create a single user into one that can create many. The time and
effort to go from listing 5.7 to 5.9 is minimal. The administrative effort that will be
saved is huge and will easily pay back the investment.

DISCUSSION

In listing 5.8, we had a script to create a single user with the AD cmdlets. This is can
also be turned into a bulk creation script, as in listing 5.10.

Import-Csv -Path users2.csv | foreach {
New-ADUser -Name "$($_.Given) $($_.Surname)" `
-SamAccountName $_.Id -GivenName $_.Given `
-Surname $_.Surname `-Path 'ou=england,dc=manticore,dc=org' `

 -DisplayName "$($_.Given) $($_.Surname)" `
 -AccountPassword $null -CannotChangePassword $false `
 -ChangePasswordAtLogon $true `
 -UserPrincipalName "$($_.Id)@manticore.org"
 }

In this case, I’ve used the parameters as subexpressions for variety. It’s not usually nec-
essary to do this, but is worth demonstrating. We have seen how to create a user
account with the Microsoft cmdlets. Listing 5.10a shows how we can perform the same
action with the Quest cmdlets.

Import-Csv pres.csv | ForEach-Object {
$name = $_.last.ToUpper() + " " + $_.first
$upn = $_.userid + "@manticore.org"
New-QADUser -Name $name -FirstName $_.first -LastName $_.last.ToUpper()
 -DisplayName $name -SamAccountName $_.userid -UserPassword "Password1"
 -UserPrincipalName $upn -ParentContainer "ou=USA,dc=manticore,dc=org"

Set-QADUser -Identity $upn
-ObjectAttributes @{useraccountcontrol=512; pwdLastSet=0}
}

These examples follow the same format as listing 5.9. We take a CSV file and pass it
into a foreach loop. The data for the parameters is read from the pipeline as before.
After looking at listing 5.10, there are no real differences in this one as to how we han-
dle the data apart from the fact that I create a variable for the UPN. This is so that it
can be used in both cmdlets. It’s more efficient to only create it once. I haven’t specif-
ically written out a message, because the two cmdlets automatically create messages.

Listing 5.10 Creating users in bulk with Microsoft cmdlets

Listing 5.10a Creating users in bulk with Quest cmdlets
Licensed to Bob Spuntak <bobspuntak@msn.com>

129Active Directory users
 The names in the CSV files are those of English scientists, British prime ministers,
and US presidents respectively, in case you were wondering. Unfortunately, things
never remain the same in IT, so we have to tear ourselves away from PowerShell Space
Invaders and modify some users. An admin’s work is never done.

TECHNIQUE 6 User modification

After creating a user account, it’s more than probable that we’ll need to make modifi-
cations. People move departments; telephone numbers change; even names can
change. We may want to increase security by restricting most users to being able to log
on only during business hours.

 Active Directory can hold a lot of information about your organization. If you keep
the information up to date and accessible then you can leverage the investment in
Active Directory and you don’t need a separate phone book system, for instance.

PROBLEM
We have to make modifications to one or more user accounts in Active Directory.

SOLUTION
Using ADSI, we retrieve a directory entry for the user account we need to modify and
set the appropriate properties. This is one of the longest scripts we’ll see, but as we
break it down, you’ll see that it’s not as bad as it looks. I’ve organized the script to
match the tabs on the user properties in ADUC.

SCRIPT USAGE I don’t expect this script to be used in its entirety. In normal
use, I’d expect a few attributes to be changed rather than a bulk change like
this. It’s more efficient to present all the changes in one script. Then you can
choose which attributes you need to modify.

In listing 5.11, we start by getting a directory entry for the user B. This is the part that
will change in your organization. If you’re making the same change to lots of users,
put them into a CSV file and use a foreach loop in a similar manner to listing 5.9.

$user = [ADSI]
"LDAP://CN=CHURCHILL Winston,OU=England,DC=Manticore,DC=org"
$user.Initials = "S"
$user.Description = "British PM"
$user.physicalDeliveryOfficeName = "10 Downing Street"
$user.TelephoneNumber = "01207101010"
$user.mail = "wsc@manticore.org"
$user.wwwHomePage = "http://www.number10.com"
$user.SetInfo()

$user.streetAddress = "10 Downing Street"
$user.postOfficeBox = "P.O. 10"
$user.l = "London"
$user.St = "England"

Listing 5.11 Modifying user attributes

Get userB

Start of General tabC

D Office
EmailE

Start of
Address

F

PO BoxG
CityH

State/provinceD
Licensed to Bob Spuntak <bobspuntak@msn.com>

http://www.number10.com

130 CHAPTER 5 User accounts
$user.postalCode = "L10 9WS"
$user.c = "GB"
$user.SetInfo()

$comp = "comp1,comp2"
[byte[]]$hours = @(0,0,0,0,255,3,0,255,3,0,255,3,0,255,3,0,255,3,0,0,0)

$user.logonhours.value = $hours
$user.userWorkstations = $comp
$user.SetInfo()

$user.profilepath = \\server1\usrprofiles\wsc
$user.scriptPath = "mylogon.vbs"
$user.homeDrive = "S:"
$user.homeDirectory = "\\server2\home\wsc"
$user.SetInfo()

$user.homePhone = "01207101010"
$user.Pager = "01207101011"
$user.Mobile = "01207101012"
$user.facsimileTelephoneNumber = "01207101014"
$user.ipPhone = "01207101015"
$user.Info = "This is made up data"
$user.SetInfo()

$user.Title = "Prime Minister"
$user.Department = "Government" "
$user.Company = "Britain""
$user.Manager = "CN=WELLESLEY Arthur,OU=England,DC=Manticore,DC=org" "

$user.SetInfo()

The first tab that we need to deal with is the General tab C. This holds the name
information, which can be modified as shown. Usually the attributes we use in ADSI
match those shown in ADUC. I’ve annotated those that are different such as office D
and email address E. I’ve used SetInfo() after each tab’s worth of changes to ensure
that they’re written back. If you cut and paste the script, it’s less likely the SetInfo()
will be forgotten.

 Moving on to the Address tab F, we find simple data such as the PO Box G as well
as number of catches. The City field on ADUC we have to treat as l (for location) H,
and state\province becomes st I. Setting the country requires the use of the two-
character ISO code in the c attribute J. In this case, GB is the ISO code for the United
Kingdom, even though Great Britain is only part of the UK!

TIP If you can’t remember the ISO code for a particular country or aren’t
sure what to use, use ADUC to set the country by name on one user and
ADSIEdit to check what code has been entered. With Windows Server 2008
ADUC, use the Attribute tab to view the data.

On the Account tab 1@, we can also set the workstations a user can log on to 1# as well
as the hours of the day he can log on. We need to create an array of workstation names
1) and use this to set the attribute. The logon hours attribute is more complicated, in
that we have to create an array of bytes as shown 1!. Three bytes represent a day (start-

CountryJ
Array of computer
names

1)

Start of Account tab1@

1# Log on to... 1!
Allowed logon
hours

Start of Profile tab1$

Logon script1%

1^ Local path
1& Connect

Telephones tab1*

1(Organization tab
Licensed to Bob Spuntak <bobspuntak@msn.com>

131Active Directory users
ing at Sunday) and each bit represents a one-hour time span. All zeros means the user
isn’t allowed to log on, and if all values are set to 255 (default) the user can log on
24x7. In the case shown, the user is restricted to logon times of Monday to Friday 8
a.m. to 6 p.m. If you want to use this, I recommend setting up one user in ADUC and
copying the resultant values. This is definitely the quickest way to get it right.

 The Profile tab 1$ is for setting logon scripts and home drives as shown. The only dif-
ficulty here is the attribute names, as I’ve annotated, especially the scriptpath 1% which
supplies the logon script to be run for the user. The local path 1^ refers to the drive to
be mapped to a user’s home area and the connect attribute 1& supplies the UNC path to
the user’s home area. When you’re setting telephone numbers on the Telephones tab
1*, remember that the numbers are input as strings rather than numbers.

 The final tab I’ll deal with is the Organization tab 1(. The attribute names match
the ADUC fields as shown. Note that the Manger entry must be given the AD distin-
guished name as its input. The Direct Reports field is automatically backfilled from
the Manager settings on other users. You can’t set it directly.

DISCUSSION
I haven’t given a full alternative using the cmdlets in this section. We can use the
Microsoft cmdlets like this:

Get-ADUser -Identity hsorby | Set-ADUser -Department Geology
Get-ADUser -Identity hsorby -Properties Department

Get-ADUser -Identity hsorby -Properties *

The most efficient way to perform bulk changes is to use Get-ADuser to return the
users in which we’re interested and then pipe them into Set-AdUser. This way we can
easily test which users are affected. The change can be examined with Get-ADUser.
When we use Get-ADUser, we normally only get a small subset of properties returned.
We can generate more data by explicitly stating which properties we want returned.

 With the Quest cmdlets, we’d use the Set-QADUser cmdlet and use either one of the
predefined parameters or the -ObjectAttributes parameter as shown in listing 5.10a.

TECHNIQUE 7 Finding users

We’ve seen how to create and modify user accounts in Active Directory. One of the
other tasks we need to perform frequently is searching for particular users. No, not
under the desk, but in Active Directory. In this section, we’ll look at searching for an
individual user, disabled accounts, and accounts that are locked out. You’ll see other
searches that look at logon times and account expiration later in the chapter.

 Searching Active Directory requires the use of LDAP filters. They’re explained in
appendix D.

DELETED USER ACCOUNTS Searching for deleted user accounts will be covered
in chapter 10

We’ll start with searching for a single user.
Licensed to Bob Spuntak <bobspuntak@msn.com>

132 CHAPTER 5 User accounts
PROBLEM
We need to search Active Directory for specific users or accounts that are disabled or
locked out.

SOLUTION
We can use the System.DirectoryServices.DirectorySearcher class to perform our
search. In PowerShell v2, this can be shortened slightly by using [ADSISEARCHER].
Using System.DirectoryServices.DirectorySearcher makes searching faster and
simpler compared to previous scripting options. We need to start by creating a vari-
able with the name of the user to search for B (in listing 5.12). We can search on
other attributes, as we’ll see later. We want to search the whole Active Directory,
because we can’t remember where we put this user. We can use GetDomain() to deter-
mine the current domain C. Using this method makes our script portable across
domains. We then get a directory entry D for the domain.

$struser = "BOSCH Herbert"

$dom =
[System.DirectoryServices.ActiveDirectory.Domain]::GetCurrentDomain()

$root = $dom.GetDirectoryEntry()

$search = [System.DirectoryServices.DirectorySearcher]$root
$search.Filter = "(cn=$struser)"
$result = $search.FindOne()

if ($result -ne $null)
{
 $result.properties.distinguishedname
}
else {Write-Host $struser " Does not exist"}

Creating a search as shown E will set the domain as the root of the search—we search
the whole domain. We’re looking for a particular user, so we need to set an LDAP filter
for that user F. The cn attribute holds the name of the user account in Active Direc-
tory. It’s possible to search on most attributes.

PAGE SIZE AND TIMEOUT There’s a limit on the number of results that will be
returned from an LDAP search. The default limit is 1,000. If your results will
exceed this number, add the line $search.PageSize = 1000 after the filter.
This will cause the results to be returned in batches (pages) of 1,000. When
using the cmdlets, use the PageSize and SizeLimit parameters to control the
return of data.

There’s a timeout of 120 seconds on the server side, at which point the
server will return only the results found up to that point. The default client-
side timeout is infinite.

When we run this search, we only expect a single result, so we use FindOne() G. As
we’ll see later, if we expect multiple results to be returned, we use FindAll(). Interest-
ingly, FindOne() does a FindAll() and returns only the first result. If you’ve per-

Listing 5.12 Searching for a user account

Set userB

C

D
Root
entry

E

F Set filter
G Run search

H

Licensed to Bob Spuntak <bobspuntak@msn.com>

133Active Directory users
formed Active Directory searches using VBScript in the past, note that we don’t need
to use an ADO recordset.

 We perform a final check to see if we actually have a result H and then we can dis-
play the distinguished name of the user. This will tell us where the user is hiding.

DISCUSSION
Using the cmdlets is even simpler. The Microsoft cmdlets give us:

Get-ADUser -Identity hsorby

And the Quest cmdlets produce:

$struser = "BOSCH Herbert"
Get-QADUser -ldapFilter "(cn=$struser)"

We could make this one line by putting the name into the -Identity parameter. The
cmdlet automatically produces output, including the distinguished name, which mini-
mizes the amount of code we need.

 Our search script can be easily modified so that we can search for different things.
Two examples are searching for disabled accounts and locked-out accounts, as shown
in listing 5.13.

$dom = [System.DirectoryServices.ActiveDirectory.Domain]
::GetCurrentDomain()
$root = $dom.GetDirectoryEntry()

$search = [System.DirectoryServices.DirectorySearcher]$root

$search.Filter = "(&(objectclass=user)(objectcategory=user)
(useraccountcontrol:1.2.840.113556.1.4.803:=2))"
$result = $search.FindAll()

foreach ($user in $result)
{
 $user.properties.distinguishedname
}

We create the search so that we’re searching the whole domain again. The main dif-
ference in this script is the search filter B. Our LDAP filter will find user accounts. We
need the objectclass and the objectcategory, as computer accounts also use the
user class! The last part of the filter is where we look at the useraccountcontrol attri-
bute and perform a bitwise AND on it with the value 2 (account disabled). The syntax
looks bad, but just think of it as a long-winded way of saying “bitwise”. The only part
we need to think about changing is the final value, which is what we’re searching for.
The possible values for useraccountcontrol are listed in appendix D.

 In case there’s more than one disabled account, we use FindAll() to return multi-
ple results C, which we can then display.

 I’m almost embarrassed to present the cmdlet equivalents as they are so short.
We’ll start with the Microsoft cmdlet:

Listing 5.13 Disabled user accounts

Search filterB

C
Find all disabled
accounts
Licensed to Bob Spuntak <bobspuntak@msn.com>

134 CHAPTER 5 User accounts
Search-ADAccount -AccountDisabled -UsersOnly |
select Name, distinguishedName

The Quest version is even shorter:

Get-QADUser -Disabled

It doesn’t get any easier than that! The cmdlet also displays the results. What more can
you ask for? Well, it doesn’t make the tea for one...

 Moving on, users and passwords don’t mix. Users seem to take great delight in for-
getting passwords and locking themselves out of Active Directory, usually on a Monday
morning when they’ve just got back from vacation. Eventually, they may get around to
ringing the help desk and you can check to see if they’re locked out. Alternatively, you
can use listing 5.14 to find the locked-out accounts.

Add-Type -AssemblyName System.DirectoryServices.AccountManagement

$ctype =
[System.DirectoryServices.AccountManagement.ContextType]::Domain
$context = New-Object -TypeName

System.DirectoryServices.AccountManagement.PrincipalContext
-ArgumentList $ctype, "manticore.org", "DC=Manticore,DC=org"

$date = (Get-Date).AddDays(-1)

$mtype =
[System.DirectoryServices.AccountManagement.MatchType]
::GreaterThan

$results =
[System.DirectoryServices.AccountManagement.UserPrincipal]
::FindByLockoutTime($context, $date, $mtype)
if($results -ne $null){
 foreach ($result in $results){$result.distinguishedname}
}
else{Write-Host "No users locked out"}

System.DirectoryServices.AccountManagement from .NET 3.5 has a nice method,
FindByLockoutTime(), which we can use to find locked accounts. In addition, we can
see how to use these classes in a domain environment. As usual, we start by loading the
.NET assembly B. In this case, I’ve used Add-Type from PowerShell v2. In PowerShell
v1 you can use the load command from listing 5.1. The context in this case is a
domain rather than a single machine. ContextType is set to Domain as shown, and the
PrincipalContext is set to the name of the domain C. The arguments are the con-
text type we created in B; the name of the domain and container we’re working with,
respectively. The container defined by the LDAP distinguished name of the domain.

 The lockout time on the user accounts will be compared to a value we create D.
We use Get-Date to retrieve the current date and use the AddDays() method to set the
date back, in this case by one day. We’re adding a negative number. There isn’t a
method to subtract days, so we fall back on this slightly inelegant approach. We’ll be

Listing 5.14 Locked user accounts

B

C

D

E

F

Licensed to Bob Spuntak <bobspuntak@msn.com>

135Active Directory users
searching for accounts locked out in the last 24 hours. By varying this value, we can
control how far back we look for locked-out accounts.

 The comparison operator for our search is provided by the MatchType E. In this
case we’re looking for values greater than the reference value—lockouts that have
occurred since the reference time. The search is performed by the FindByLockout-
Time() method with the context, reference date, and operator as parameters F. The
usual check on the results and displaying the distinguished names completes the
script. This is the easiest method to script for searching for locked-out accounts that
I’ve found.

 If you want a super easy way of finding locked-out accounts, it doesn’t get much
easier than using the AD cmdlets. The Microsoft cmdlet syntax is:

Search-ADAccount -LockedOut

and the syntax for the Quest cmdlet is very similar:

Get-QADUser -Locked

These will retrieve all locked-out accounts in the domain.
 We’ve looked at searching for disabled accounts; we should now look at how to

enable or disable them.

TECHNIQUE 8 Enabling and disabling accounts

Listing 5.4 showed how to disable or enable a local user account. This script shows
how to perform the same action on an Active Directory account.

PROBLEM
We need to disable or enable an Active Directory account.

SOLUTION
An Active Directory user account can be disabled by modifying the useraccountcon-
trol attribute, as shown in listing 5.15. This is the domain equivalent of listing 5.1 in
that it toggles between enabled/disabled—it’ll enable a disabled account and vice
versa. We use ADSI to connect to the relevant account, retrieve the useraccountcon-
trol attribute, perform a bitwise exclusive OR on it, and write it back. The bitwise
exclusive OR will toggle the disabled bit to the opposite value; that is it will disable the
account if enabled and enable if disabled.

$user = [ADSI]"LDAP://CN=BOSCH Herbert,OU=Austria,DC=Manticore,DC=org"
$oldflag = $user.useraccountcontrol.value
$newflag = $oldflag -bxor 2
$user.useraccountcontrol = $newflag
$user.SetInfo()

DISCUSSION
The AD cmdlets provide specific commands to disable and enable user accounts:

Disable-ADAccount -Identity HSorby
Enable-ADAccount -Identity HSorby

Listing 5.15 Disabling Active Directory user accounts
Licensed to Bob Spuntak <bobspuntak@msn.com>

136 CHAPTER 5 User accounts
Disable-QADUser -Identity "CN=BOSCH Herbert,OU=Austria,DC=Manticore,DC=org"
Enable-QADUser -Identity "CN=BOSCH Herbert,OU=Austria,DC=Manticore,DC=org"

All we need is to pass the identity of the user to the cmdlet and it does the rest. I can
type this faster than opening the GUI tools, especially if I know the user ID so I can use
domain\userid as the identity with the Quest cmdlets. (See appendix D for an expla-
nation of the differences between the two sets of cmdlets when handling identities.)

 One problem that you may find is disabling an account and moving it to a holding
OU pending deletion. We’ve seen how to disable it, and we’ll now turn to the move.

TECHNIQUE 9 Moving accounts

One method of organizing users in Active Directory is to have OUs based on department
or location. This can enable us to apply specific group policies to those users. If the users
move to a different location or department, we need to move the account to the correct
OU so they receive the correct settings. When people leave the organization, their user
accounts should be deleted. Many organizations will have an OU specifically for accounts
that are to be deleted, so the accounts have to be moved into the correct OU.

PROBLEM
A user account has to be moved to another OU.

SOLUTION
The [ADSI] accelerator gives us access to a MoveTo method, but we have to remember
that it’s on the base object, so we need to include .psbase in PowerShell v1. In v2, this
isn’t an issue, as it has been made visible. Listing 5.16 demonstrates how we use the
MoveTo() method to move a user account into a new OU.

$newou = [ADSI]"LDAP://OU=ToBeDeleted,DC=Manticore,DC=org"
$user = [ADSI]"LDAP://CN=SMITH Samuel,OU=England,DC=Manticore,DC=org"

$user.psbase.MoveTo($newou)

Using the [ADSI] type accelerator, we set variables to the user and target OU. If you
were to perform $user | get-member, you wouldn’t see any methods on the object
apart from two conversion methods. But by using $user.psbase | get-member, we
drop into the underlying object as discussed in chapter 2. There we can see a
MoveTo() method that will do just what we want. We call the method with the target
OU as a parameter and the user is whisked off to his new home. If we have to move a
number of accounts from an OU, we can modify the script to read the OU contents
and then perform a move on the selected accounts.

WITHIN A DOMAIN ONLY The techniques in this section only work within a
domain; they can’t be used for cross-domain moves.

DISCUSSION
The AD cmdlets don’t provide a cmdlet to explicitly move users between OUs, but
we can use the generic cmdlets for moving AD objects. All we need to provide is the

Listing 5.16 Moving Active Directory user accounts
Licensed to Bob Spuntak <bobspuntak@msn.com>

137Active Directory users
identity of the user and target OU. Using the Microsoft cmdlet we can perform a move
like this:

Move-ADObject
-Identity "CN=HUXLEY Thomas,ou=starking,dc=manticore,dc=org"
-TargetPath "ou=england,dc=manticore,dc=org"

The Quest cmdlet is similar, but notice the parameter is called NewParentContainer
rather than TargetPath. There are just enough differences like this to get confusing if
you use both sets of cmdlets on a regular basis:

Move-QADObject
-Identity "CN=SMITH Samuel,OU=England,DC=Manticore,DC=org"
-NewParentContainer "OU=ToBeDeleted,DC=Manticore,DC=org"

These cmdlets also work with groups and computer accounts. When we’re not creat-
ing, moving, or modifying user accounts, someone is bound to ask for information
such as the last time Richard logged on to the domain.

TECHNIQUE 10 Last logon time

Finding the last logon time for a user isn’t straightforward. When Active Directory was
introduced with Windows 2000, an attribute called lastlogon was made available. This
is stored on a domain controller by domain controller basis. Each domain controller
stores the date and time it last authenticated that user. The attribute isn’t replicated.

 Windows 2003 introduced another attribute called lastlogontimestamp. It does
replicate between domain controllers, but it’s only updated if the user hasn’t logged
on to that domain controller for more than a week. The value can easily become more
than a week out of date. This attribute is really of use for determining if a user hasn’t
logged on for a significant period, for example finding all of the users who haven’t
logged on for a month or more.

PROBLEM
Determine the last time a user logged on to the domain.

SOLUTION
As discussed, in listing 5.17 we’ll use the lastlogon and lastlogontimestamp attri-
butes to find when a user last logged on to the domain. By using System.Directory-
Services.ActiveDirectory.Domain we can retrieve information about the current
domain B. This includes a list of the domain controllers C in the domain. By loop-
ing through this list, we can check each domain controller in turn for the last logon
information. This wouldn’t be practical in a domain with many domain controllers, so
the list of domain controllers to check could be manually created.

$dom = [System.DirectoryServices.ActiveDirectory.Domain]
::GetCurrentDomain()

foreach ($dc in $dom.domaincontrollers) {

$ldapstr = "LDAP://" + $dc.Name + "/cn=richard,cn=users,dc=manticore,dc=org"

Listing 5.17 Last logon times

B

Iterate through domain controllersC

D

Licensed to Bob Spuntak <bobspuntak@msn.com>

138 CHAPTER 5 User accounts
$user = [ADSI]$ldapstr
"`nDomain Controller: $($dc.Name)"
"Name: {0}" -f $($user.name)

$ll = $user.lastlogon.value
$log = [datetime]$user.ConvertLargeIntegerToInt64($ll)
$lastlog = $log.AddYears(1600)

"Last Logon: {0:F}" -f $($lastlog)

$ll = $user.lastlogontimestamp.value
$log = [datetime]$user.ConvertLargeIntegerToInt64($ll)
$lastlog = $log.AddYears(1600)

"Last Logon Timestamp: {0:F}" -f $($lastlog)

}

The LDAP string we use to connect is slightly modified to include the fully qualified
domain name of the domain controller D. Note the use of the + symbol for string con-
catenation. Previously we’ve performed a serverless binding and not worried about
which domain controller we connected to. Using the LDAP string, we connect to the
designated domain controller and access the user account E stored on that machine.

 We can now print the required information starting with the domain controller F
name. We’re substituting into the string, but need to use the $() to ensure the name
is evaluated before substitution; otherwise the name of the object would be output!
The `n before the domain controller is a special character that forces a new line. Spe-
cial characters are detailed in appendix A.

 The name G, lastlogon H, and lastlogontimestamp I are displayed using the
string formatting operator -f. The fields within the string are enclosed in {} and sub-
stituted by the variables to the right of the -f operator in turn. The two logon times
are stored in ticks (10,000th of a second, counting from January 1, 1600). We need to
convert the number that’s stored in Active Directory into a 64-bit integer and then
into a date.

 When we use $log = [datetime]$user.ConvertLargeIntegerToInt64($ll) to
create the date it starts counting from 0 AD so the date is 1,600 years too low. We need
to add 1,600 years to the resultant date to make it match the calendar.

 In listing 5.18 we use the FromFileTime() method of the datetime class which
automatically performs this addition. A simple example illustrates how it works.

PS> $d = Get-Date
PS> $d

25 March 2010 21:36:47

PS> $d.Ticks
634051498076096000
PS> [datetime]::FromFileTime($d.Ticks)

25 March 3610 21:36:47

We get the date and save it to a variable. The date and number of ticks can be viewed.
When we convert the number of ticks back to a date the 1600 years is automatically
added.

Get userE
F

G

Last logonH

Last logon
timestamp

I

Licensed to Bob Spuntak <bobspuntak@msn.com>

139Active Directory users
DISCUSSION
Using the cmdlets is a little simpler, but we still need to query multiple domain con-
trollers, as shown in listing 5.18.

Get-ADDomainController -Filter *| foreach {
 $server = $_.Name
 $user = Get-ADUser -Identity Richard `
 -Properties lastlogon, lastlogondate, lastlogontimestamp `
 -Server $($server)

 $t1 = [Int64]::Parse($($user.lastLogon))
 $d1 = [DateTime]::FromFileTime($t1)

 $t2 = [Int64]::Parse($($user.lastLogontimestamp))
 $d2 = [DateTime]::FromFileTime(t2)

 Add-Member -InputObject $($user) -MemberType Noteproperty `
 -Name "DCName" -Value $($server) -PassThru -Force |
 Format-Table DCName, `
 @{Name="LastLogonTime"; Expression={$($d1)}},`
 lastlogondate, `
 @{Name="LastLogonTimeStamp"; Expression={$d2}
}}

Get-ADDomainController will only return a single domain controller by choice. This
can be overridden by specifying * in the filter parameter. Each domain controller is
queried for the last logon time information. Note that lastlogondate is new in Win-
dows Server 2008 R2. I’m using Add-Member to add the domain controller name as a
new property on the user object. This enables us to see to which domain controller
the information relates. Note how we have to work to retrieve the date from the Int64
that’s held in Active Directory.

 The Quest solution is similar to listing 5.18 in that we connect to the domain B
(in listing 5.19) and loop through the domain controllers C as before. We print the
domain controller name D and then connect to the domain controller of interest E.
$null is used to suppress the informational messages regarding the connection. The
user information is retrieved and displayed F. The date creation is handled automati-
cally G. We then disconnect from the domain controller.

$dom = [System.DirectoryServices.ActiveDirectory.Domain]
::GetCurrentDomain()
foreach ($dc in $dom.domaincontrollers) {

"`nDomain Controller: $($dc.Name)"

$null = Connect-QADService -Service $dc.Name

Get-QADUser -Identity 'manticore\Richard' |
Select-Object name, lastlogon, lastlogontimestamp | Format-List

Disconnect-QADService
}

Listing 5.18 Last logon times using Microsoft cmdlets

Listing 5.19 Last logon times using Quest cmdlets

B

C
Iterate through
domain controllersD

E
Get
user

F

DisconnectG
Licensed to Bob Spuntak <bobspuntak@msn.com>

140 CHAPTER 5 User accounts
These solutions aren’t satisfactory because we have to query a number of domain con-
trollers to get an exact time. But if we only need an approximate last logon time, using
the lastlogontimestamp is a simpler option.

 In addition to knowing when users last logged on, we may need to know when
their passwords or, in the case of temporary staff, their accounts are going to expire.

TECHNIQUE 11 Password expiration

The default maximum password age is 42 days and is controlled by domain-level
group policy. This is often altered to meet an organization’s particular needs. Users
will often forget that passwords need changing, especially mobile users who’re rarely
in the office. It can often save administrative effort to remind them that their pass-
words will need changing ahead of time. It’s usually possible to change a password
when connected by VPN, but not if the password has already expired. Prompting users
to change passwords ahead of time can solve the problem before it arrives.

PROBLEM
We need to find the users whose passwords will expire within a given time frame.

SOLUTION
This involves searching the domain, so we return to our search script and modify the
LDAP filter to check the pwdlastset attribute. The expiration date for the password
isn’t stored directly. The date the password was last set is stored in the pwdlastset
attribute. Unfortunately, this isn’t directly accessible because it’s a COM large integer,
like the logon times we saw in the previous example. We need to convert some dates
into the correct format and use them in our search filter, as in listing 5.20.

$now = (Get-Date).ToFileTime()
$end = ((Get-Date).Adddays(-42)).ToFileTime()

$dom = [System.DirectoryServices.ActiveDirectory.Domain]
::GetCurrentDomain()

$root = $dom.GetDirectoryEntry()

$filt = "(&(objectcategory=Person)" +
"(objectclass=user)" +
"(pwdlastset>=$end)(pwdlastset<=$now))"

$search = [System.DirectoryServices.DirectorySearcher]$root
$search.Filter = $filt
$results = $search.FindAll()

foreach ($result in $results){
 $result.properties.distinguishedname
}

Start by using the current date (Get-Date) and convert it into the correct format using
the ToFileTime() method B. If we assume that we have a 42-day maximum password
age then all passwords should’ve been reset at least 42 days ago. We need to decide how
many days ago we want to check for password reset. If you’re looking at passwords that

Listing 5.20 Password expiration check

Set current dateB

C
Set time period
of interest

Get current domainD

Create
searcher

E

F Set filter

G Display results
Licensed to Bob Spuntak <bobspuntak@msn.com>

141Active Directory users
will expire in the next 10 days, we’re interested in those set 32 days ago, and so forth. As
I’m using a test domain, I had to force some of this, so my example shows a date of 42
days in the past—in other words, all password changes C. You’ll need to set this value
depending on your password policy and how far ahead you want look.

 We get the current domain root D and create a directory searcher E, as we’ve
seen previously. The filter F is interesting in that we need the objectcategory and
objectclass to restrict the search to users. Leave off the objectcategory and you’ll
get computer accounts as well.

COMPUTER PASSWORDS Computer passwords set themselves—don’t try to
change them manually.

We check the pwdlastset attribute for accounts that fall between our chosen dates
using FindAll() and display the results G. We’re using a DirectorySearcher object
so you don’t have access to the full property list. We can use the distinguished name to
access a DirectoryEntry object and list full names, and so on. We could even send the
user an email (PowerShell v2 has a Send-MailMessage cmdlet or we can script it).

DISCUSSION
A similar result can be achieved using the cmdlets:

$now = (Get-Date).ToFileTime()
$end = ((Get-Date).AddDays(-42)).ToFileTime()

$filt = "(&(objectcategory=Person)" +
"(objectclass=user)(pwdlastset>=$end)" +
"(pwdlastset<=$now))"

Get-ADUser -LDAPFilter $filt

$now = (Get-Date).ToFileTime()
$end = ((Get-Date).Adddays(-42)).ToFileTime()

$filt = "(&(objectcategory=Person)" +
"(objectclass=user)(pwdlastset>=$end)" +
"(pwdlastset<=$now))"

Get-QADUser -ldapFilter $filt

We set the start and end dates of our search and use the same LDAP filter as earlier. We
get the same result, but with less code.

 Temporary workers are often given accounts with an expiration date. Searching for
these is similar to searching for expiring passwords.

TECHNIQUE 12 Account expiration

This is another search scenario, except this time we’ll be using the accountexpires
attribute. One big plus of creating search scripts in this way is that the only real
change is the LDAP filter. The body of the script remains the same.

PROBLEM
We need to know which accounts will expire within a given time frame.
Licensed to Bob Spuntak <bobspuntak@msn.com>

142 CHAPTER 5 User accounts
SOLUTION
Modifying our LDAP filter to use the accountexpires attribute enables us to find
accounts that will expire within a certain number of days, as shown in listing 5.21. This is
a variation on the password expiration script we saw previously. Set the start and end
dates of our search B. In this case, we’re interested in accounts that will expire in the
next 60 days. Get the current domain root and create a searcher C. The search filter is
simpler in that we’re looking at the user object class and we want to find accounts where
the accountexpires attribute falls between our two given dates D. We use FindAll()
because we expect multiple results and we display the results E as previously.

$now = (Get-Date).ToFileTime()
$end = ((Get-Date).Adddays(60)).ToFileTime()

$dom = [System.DirectoryServices.ActiveDirectory.Domain]
::GetCurrentDomain()

$root = $dom.GetDirectoryEntry()

$search = [System.DirectoryServices.DirectorySearcher]$root
$filt = "(&(objectclass=user)" +
"(accountexpires<=$end)" +
"(accountexpires>=$now))"

$search.Filter = $filt

foreach ($result in $results){
 $result.properties.distinguishedname
}

DISCUSSION
Using the cmdlets is easy. All we need to do is define the end date of our search. Using
the Microsoft cmdlet, we have this syntax:

Search-ADAccount -AccountExpiring `
-TimeSpan 60.00:00:00 -UsersOnly |
Format-Table Name, Distinguishedname

The Quest cmdlet has a simpler syntax:

Get-QADUser -AccountExpiresBefore $((Get-Date).AddDays(60))

With the Microsoft cmdlets, we use a TimeSpan to look 60 days ahead. We use the -
UsersOnly parameter to only give us user accounts. The Quest cmdlet only has to be
given the date that’s 60 days ahead.

 This completes our look at user accounts in Active Directory. You’ve seen a lot of
material in this section that should cover most of your needs for automating the
administration of user accounts. The scripts are easily modifiable, especially the
search and modification scripts. They can all easily be adapted to accept parameters
or to read from a file using the examples already given. I’m going to round off the
chapter with a look at Active Directory groups.

Listing 5.21 Account expiration check

Set datesB

Create
searcher

C

Search filterD

Display resultsE
Licensed to Bob Spuntak <bobspuntak@msn.com>

143Active Directory groups
5.4 Active Directory groups
Active Directory groups are manipulated in a similar manner to the local groups we’ve
already seen. We have the alternative of using cmdlets in this case. We’ll look at creat-
ing and modifying groups, and finish the section by discovering how to display nested
group memberships from the perspective of a group and a user-something you defi-
nitely can’t do in the GUI.

TECHNIQUE 13 Group creation

Group creation is similar to creating local groups.

PROBLEM
We need to create an Active Directory group.

SOLUTION
The group can be created using ADSI in a similar manner to creating a user in Active
Directory, as shown in listing 5.22. There are a number of group types available in Active
Directory. We start by creating constants that define the available types and scopes of
groups B (in listing 5.22). We bind to the OU where we’ll create the group C. The
group type and scope are combined at the bit level using a binary or operation D. I
deliberately made this a universal group so that it’s obvious that this works. The default
group is a global security group. The group is created E and immediately saved.

$global = 0x00000002
$domainlocal = 0x00000004
$security = 0x80000000
$universal = 0x00000008

$ou = [ADSI]"LDAP://ou=All Groups,dc=manticore,dc=org"
$grouptype = $security -bor $universal

$newgroup = $ou.Create("Group", "cn=UKPMs")
$newgroup.SetInfo()

$newgroup.GroupType = $grouptype
$newgroup.samAccountname = "UKPMs"
$newgroup.SetInfo()

Processing is completed by setting the group type F and a samaccountname G. We
need samaccountname or a random one is generated. A final SetInfo() writes every-
thing back to the database.

DISCUSSION
If we use the cmdlets, we need to supply the information shown. The code matches
the script, but each cmdlet is only one line of code. We start with the Microsoft cmd-
let, New-ADGroup, and then look at the Quest cmdlet. New-QADGroup:

New-ADGroup -Name "English Scientists" -SamAccountName EngSci `
 -GroupCategory Security -GroupScope Global `
-DisplayName "English Scientists" `
 -Path "OU=England,dc=manticore,dc=org" `

Listing 5.22 Creating Active Directory group

Set constantsB

C

D Set group type
E

F
Set samAccountnameG
Licensed to Bob Spuntak <bobspuntak@msn.com>

144 CHAPTER 5 User accounts
-Description "Members of this group are English Scientists"

New-QADGroup -Name "USPres" -SamAccountName "USPres" `
-GroupType "Security" -GroupScope "Universal" `
-ParentContainer "ou=All Groups,dc=manticore,dc=org"

After creating our group, we need to populate it with members.

TECHNIQUE 14 Changing membership

Managing group membership will be a mixture of manual and automated proce-
dures. I hate to say it, but not everything can be automated. If you can use the cmd-
lets, they’re ideal for adding single users to a group. If you’re creating a group with a
number of users that can be identified to an LDAP search, then use the following
script as a guide. It could just as easily be searching on a department or location. If the
users are scattered across your Active Directory, then collect their names into a CSV
file and modify the script to read the file and add the users to a group.

 Group membership can also be set as the user account is created.

PROBLEM
All of the users in an OU need to be put into a group.

SOLUTION
An LDAP search filter is used to find all of the user accounts in a given OU, and we can
use that information to add the users to the group, as in listing 5.23. We start by creat-
ing a directory entry B (in listing 5.23) for the group. A directorysearcher C is cre-
ated to find all of the users in the OU. Note that we set the root of the search to the
OU. There’s no need to search the whole directory when we know the users are in a
single OU.

$group = [ADSI]"LDAP://cn=UKPMs,ou=All Groups,dc=manticore,dc=org"
$root = [ADSI]"LDAP://ou=England,dc=manticore,dc=org"
$search = [System.DirectoryServices.DirectorySearcher]$root
$search.Filter = "(&(objectclass=user)(objectcategory=user))"
$result = $search.FindAll()

foreach ($user in $result)
{
 $group.Add("LDAP://" + $user.properties.distinguishedname)
 $group.SetInfo()

$message = $user.properties.distinguishedname +
 " added to group " + $group.cn
Write-Host $message
}

We loop through our results D and use the Add() method of the group to add E the
user into the group. We’re constructing the AD path for the user, which is the input
parameter the method expects. $user.properties.distinguishedname is used to
access the distinguished name property because we’re dealing with a directoryse-
archer resultset rather than a user object.

Listing 5.23 Changing Active Directory group membership

GroupB

Search
for users

C

Loop through resultsD
Add userE

F Save

MessageG
Licensed to Bob Spuntak <bobspuntak@msn.com>

145Active Directory groups
 As usual, we use SetInfo() to write F the information back to disk. The script fin-
ishes by writing a message G to say the user has been created. If we wanted to remove
users from a group, we could use the Remove() method instead of Add().

DISCUSSION
We can use the cmdlets in a number of ways to solve this problem. One solution is to
search on an attribute and pipe the results into the cmdlet we use to add a group
member:

Get-ADUser -Filter {Title -eq "Scientist"} `
-SearchBase "OU=England,dc=manticore,dc=org" | foreach {
 Add-ADGroupMember -Identity EngSci -Members $($_.DistinguishedName) }

Quest has analagous cmdlets:

Get-QADUser -SearchRoot "ou=USA,dc=manticore,dc=org" |
ForEach-Object {Add-QADGroupMember
-Identity "CN=USPres,OU=All Groups,DC=Manticore,DC=org"
-Member $_.distinguishedname }

Use Get-QADUser (equivalent to a directory searcher) pointed at the OU with the
users. Pipe the results into a foreach where we use Add-QADGroupMember to add the
user to the group. The -Identity parameter refers to the group, and -Member to the
user. The cmdlets automatically print the results on screen as shown in figure 5.15.

Figure 5.15 Output when using Add-QADGroupMember

 After creating our groups and populating them with users, we may need to change
the scope of the group.
Licensed to Bob Spuntak <bobspuntak@msn.com>

146 CHAPTER 5 User accounts
TECHNIQUE 15 Changing scope

Groups can be changed from distribution lists to security groups (going the other way,
you’ll lose the permissions the group has) and the group scope can be changed within
the limits given next. Distribution groups don’t have their own constant, so just leave
out the security group value.

 Only some group scope changes are supported:

 Universal to global
 Global to universal
 Domain local to universal
 Universal to domain local

In all cases, the group membership has to support the new scope; for instance a global
group can’t be changed to a universal group if it’s a member of other global groups.

PROBLEM
Our universal group must be changed to a global group.

SOLUTION
The group scope is changed by modifying the grouptype attribute, as shown in listing
5.24. The script starts by defining the constants B that we use to create the group.
Comparison with listing 5.22 will show them to be the same as used in that script. We
have to get a directory entry for the group C, and create D and set the new group
type E. The script finishes by saving the change to disk F. The creation of the group
type is a binary bit operation as in listing 5.22.

$global = 0x00000002
$domainlocal = 0x00000004
$security = 0x80000000
$universal = 0x00000008

$group = [ADSI]"LDAP://cn=USPres,ou=All Groups,dc=manticore,dc=org"

$grouptype = $security -bor $global
$group.GroupType = $grouptype
$group.SetInfo()

DISCUSSION
The change can be accomplished by using cmdlets. We define the group together
with the new type and scope:

Microsoft
Get-ADGroup -Identity EngSci
Set-ADGroup -Identity EngSci -GroupScope Universal
Get-ADGroup -Identity EngSci

Quest
Set-QADGroup -Identity "cn=UKPMs,ou=All Groups,dc=manticore,dc=org"
-GroupScope "Global" -GroupType "Security"

Listing 5.24 Changing Active Directory group scope

Set constantsB
Get group C

Create group typeD

E Set group typeSaveF
Licensed to Bob Spuntak <bobspuntak@msn.com>

147Active Directory groups
We need to consider two final tasks regarding groups to complete our work with Active
Directory. One question that will arise is “Which groups is this user a member of?” But
before we consider that, we need to be able to find all of the members of a group.

TECHNIQUE 16 Finding group members

Discovering the members of a group can be thought of as two separate problems. We
have a problem—the direct group membership—that can be resolved easily. This is
the list of members you’d see on the Members tab of the Properties dialog in Active
Directory Users and Computers.

 The second problem is more complex, in that we want to find all of the members,
including those users that are members of a group—members of the group in which
we’re interested. The group nesting may occur to any number of levels.

PROBLEM
We need to find all the members of a group.

SOLUTION
We solve this problem by creating a function that will list the group members, as
shown in listing 5.25. If a member is itself a group, we get the function to call itself
using the name of that group. This is known as recursion. The primary goal of this sec-
tion is to resolve the nested group membership. But before we review that script, we’ll
look at reading the direct membership of a group:

$group = [ADSI]"LDAP://cn=UKPMs,ou=All Groups,dc=manticore,dc=org"
$group.member | Sort-Object

After retrieving a directory entry object for the group, we can display the members
using $group.member. Piping this into a sort makes the output more readable.

function resolve-group{
param ($group)
 foreach ($member in $group.member){
 $obj = [ADSI]("LDAP://" + $member)
 $global:members += $obj.distinguishedname
 if ($obj.objectclass[1] -eq 'group'){resolve-group $obj}
 }
}

$global:members = @()
$ldp = "LDAP://cn=International,ou=All Groups,dc=manticore,dc=org"
$group = [ADSI]$ldp

resolve-group $group
$global:members | Sort-Object -Unique

Alternatively, we can use the Microsoft cmdlet:

Get-ADGroupMember -Identity EngSci | select Name, distinguishedname

The Quest alternative gives us:

Get-QADGroupMember -Identity "cn=USPres,ou=All Groups,dc=manticore,dc=org"

Listing 5.25 Get nested group membership

Loop through
members

E
Add to
members
list

F

GCall function
Define arrayB

C Directory entry Call functionD

Display all membersH
Licensed to Bob Spuntak <bobspuntak@msn.com>

148 CHAPTER 5 User accounts
Discovering the nested group membership is more complicated than retrieving the
membership of a single group, as listing 5.25 shows. The script consists of two parts: a
function, resolve-group, that reads the group membership, and the main part of the
script that gets the group and displays the membership. We start the script by creating
an empty array (developers will refer to this as declaring an array) B. The point to note
here is the way the variable is defined: $global:members. The addition of global: to
the variable makes it a variable of global scope, meaning that we can access the same
variable in the main part of the script and in the function. This will be important.

 ADSI is used to get a directory entry C for the group. We then call the resolve-
group function D, passing in the group as a parameter. The $group within the func-
tion is in a different scope than the $group outside the function.

 A foreach loop is used to read the group membership E from the member prop-
erty. A directory entry is created for each member F and added to our globally avail-
able array. We test the group member, and if it’s a group G, we call the resolve-
group function using the member as a parameter.

DISCUSSION
Congratulations! You now understand recursion, as the function will keep calling
itself as many times as necessary. As the array we created to hold the membership is
global in scope, it can be accessed through the various levels of recursion.

 Once the function has finished processing the direct and nested membership, we
return to the main part of the script. The contents of the array are sorted and the
unique values H are displayed. Using the -Unique parameter prevents duplicate
entries from being displayed, and means that we don’t have to write code to deal with
them. This makes the script easier to write and understand.

 There’s a simpler way to get this information using the Microsoft cmdlet Get-
ADGroupMember. The -Recursive parameter displays nested group membership:

Get-ADGroupMember -Identity international -Recursive |
select Name, DistinguishedName

The Quest alternative is to use the –Indirect parameter:

Get-QADGroupMember -Identity 'manticore\international' -Indirect

Having mastered recursion in the previous example, we’ll use it again to determine all
of the groups of which a particular user is a member.

TECHNIQUE 17 Finding a user’s group membership

One last Active Directory script and then we’re done.

PROBLEM
We need to find all of the groups of which the user is a member.

SOLUTION
The memberof attribute holds the groups of which the user is a member. We can recur-
sively check those groups for other groups to determine the full list of groups where
the user is a member, as shown in listing 5.26. The processing starts by getting a direc-
Licensed to Bob Spuntak <bobspuntak@msn.com>

149Summary
tory entry for the user B. We use the memberof property to find the groups of which
the user is a direct member C. The group is passed into the function resolve-mem-
bership, where the distinguished name is written D to screen.

 For each of the groups, we get a directory entry E and test to see if it’s a member
of any groups. If it is, we call the function with the name of each group. F Recursion
keeps this script compact. It is a topic that many find difficult but the examples in the
book should make it easier to use. Once you have worked through a few scripts of
your own you’ll be proficient.

function resolve-membership{
param ($group)
 Write-Host $group

 $group2 = [ADSI]("LDAP://" + $group)
 if ($group2.memberof -ne $null){
 foreach ($group3 in $group2.memberof){
 resolve-membership $group3 }
 }
}

$user = [ADSI]"LDAP://CN=WELLESLEY Arthur,OU=England,DC=Manticore,DC=org"

foreach ($group in $user.memberof){resolve-membership $group}

DISCUSSION
I haven’t produced a version using the cmdlets, as there isn’t a built-in way to produce
this information, and we just replace the [ADSI] lines E and B in listing 5.26 with
Get-ADGroup/Get-QADGroup and Get-ADUser/Get-QADUser respectively.

5.5 Summary
Automating Active Directory administration involves working with users and groups
or performing searches. We can perform these tasks by scripting based on ADSI or by
using the AD cmdlets from either Microsoft or Quest .

 Creation and modification scripts follow a pattern of getting a directory object,
making changes (or creating a child object), and saving back to the database. Search-
ing has its own pattern of defining the root of the search, defining the search filter,
performing the search, and displaying the results.

 There’s useful functionality in the System.DirectoryServices.Accountmanage-
ment classes, though a few holes also exist.

 After creating and modifying our user account, it’s time to turn our attention to
our email system. Email has become a business critical tool, and by combining our
mailbox and user account administration techniques, we can automate and stream-
line our processes.

Listing 5.26 Get user’s group membership

Write groupD

Group directory entryE

Call functionF

CCall function

User directory entry B
Licensed to Bob Spuntak <bobspuntak@msn.com>

150 CHAPTER 5 User accounts
PowerShell in Practice covers 205 individually tested and
ready-to-use techniques, each explained in an easy prob-
lem/solution/discussion format. The book has three
parts. The first is a quick overview of PowerShell. The
second, Working with People, addresses user accounts,
mailboxes, and desktop configuration. The third, Work-
ing with Servers, covers techniques for DNS, Active
Directory, Exchange, IIS, and much more. Along the
way, you'll pick up a wealth of ideas from the book's
examples: 1-line scripts to full-blown Windows programs.

 PowerShell is a powerful scripting language that lets
you automate Windows processes you now manage by

hand. It will make you a better administrator.

What's inside:

 Basics of PowerShell for sysadmins
 Remotely configuring desktops and Office apps
 205 practical techniques

 This book requires no prior experience with PowerShell.
Licensed to Bob Spuntak <bobspuntak@msn.com>

https://www.manning.com/books/powershell-in-practice
https://www.manning.com/books/powershell-in-practice

 index

Symbols

-- symbol 20
./ prefix 22
.\ prefix 22
* 139
character 33
+ symbol 33
$() 138
$cert variable 104
$Servers variable 101
$Using:CertPassword 109

Numerics

1-to-1 remoting 55–56
1-to-many remoting 56–57

A

accelerators
[ADSI] 115, 136
[ADSISEARCHER] 132

-AccessMode parameter 69
Account tab 130
accounts, moving 136
Active Directory

automation 124
cmdlets 128

moving users 136
creating a user account 124
directory entry 116
disable or enable account 135
group membership 144

finding 148

group scope 146
group types 143
groups 122, 143

bulk creation 143
changing scope 145
creating 143
managing membership 144

modifying user accounts 129
moving users 136
.NET classes 121
and PowerShell 117
searching users 131
Users and Computers 147
Windows 2000 137
WinNT provider 120

Active Directory Users and Computers.
See ADUC

AD LDS 116
ADAM. See AD LDS
Add() method 123, 144
AddDays() method 134
Add-Member cmdlet 139
Add-NlbClusterVip cmdlet 106
Add-QADGroupMember 145
Add-Type cmdlet 134
administration, Active Directory 124
ADO, recordset 133
[ADSI] accelerator

getting group membership 149
moving user accounts 136

ADUC 125, 129–130
-AliasDefinitions parameter 67
aliases

and elastic syntax 24, 26
predefined 24
why use parameter alias 25
151

Licensed to Bob Spuntak <bobspuntak@msn.com>

152 INDEX
AllowClobber parameter 82
-AllowRedirection parameter 65
alternate credentials, for remoting 59
APIs (application programming interfaces)

interoperation with 43
Application Request Routing. See ARR
-ApplicationName parameter 63, 66
ApplicationPoolIdentity 107
applications. See also native commands 45
arguments 35

vs. parameters 18
arithmetic operation 9
ARR (Application Request Routing) 105
arrays, 0 origin 10
-AsSecureString option 119
authentication

CredSSP 71
remoting 51

-Authentication parameter 65, 72
automating website deployment 109–111
-AutoSize switch 40

B

backquote character 28
backtick character 28
bash shell 6, 18
bash, Windows 3
begin clause 35
begin-processing clause 37
binding, parameters pipelines and 37–38
bitwise, exclusive 135
built-in commands 21

C

CIM (Common Information Model) 50
namespaces 7

cmd.exe 3
cmdlet Verb-Noun syntax 24
cmdlets 21

bulk creating users 128
commands and 18, 21
creating users 125
formatting and output 39
generic 136
module 116

code, example
basic expressions and variables 9–10
navigation and basic operations 8–9

collections 10
command aliases, for DOS and UNIX 8

command history 6
command interpreter, vs. shell 5
command lines 5–6
command mode 29, 33
command-mode parsing 29, 31
commands

anatomy of 18
and cmdlets 18, 21
break-down of 18
built-in 21
categories of 21, 24

cmdlets 21
functions 21
native commands 22, 24
scripts 22

first element of 18
prefixing 22

comment syntax 33–34
Common Information Model (CIM). See CIM
comparison operator 135
complete statement 31
Computer Configuration container 77
-ComputerName parameter 49, 57, 62–63
-ConfigurationName parameter 63, 66, 70
-ConnectionURI parameter 66
Connect-PSSession cmdlet 63
Connect-WSMan cmdlet 76
-ContextType parameter 119, 134
convenience aliases 24
Create() method, using WinNT 120, 122
-Credential parameter 59, 71
CredSSP authentication protocol 71
cross-domain remoting 75
CSV file 127

D

data, processing 10, 13
problem-solving pattern 13
selecting properties from objects 12
sorting objects 10–11
with ForEach-Object cmdlet 12–13

databases, getting count of 93–94
debugging 38
default, group 143
DefaultPorts configuration 60
delegated administration 69–70
deserialization 49, 56–57
Desktop Management Task Force 7
Direct Reports 131
directory entry 125, 132

group scope 146
user attributes 129
Licensed to Bob Spuntak <bobspuntak@msn.com>

153INDEX
disconnecting PSSessions 63–64
display, width of 40
distribution lists 146
DLL (dynamic link library) 21
domain

cross-domain moves 136
moving users 136
root 141

domain controllers 116
last logon information 137
last logon time 137, 139

double quotes 28
Dynamic Link Libraries. See DDL

E

elastic syntax 23
aliases and 24, 26
definition 25

Enable-PSRemoting cmdlet 52, 54
Enable-WSManCredSSP cmdlet 72
end-of-parameters parameter 20
endpoints

custom 67–70
defined 50
example configurations 53
nondefault, connecting to 70–71

end-processing clause 37
Enter-PSSession cmdlet 57, 59
Enter-PSSession command 17
escape character 29
escape sequence processing 29
EV (Extended Validation) certificate 100
example code

basic expressions and variables 9–10
flow control statements 13–14
navigation and basic operations 8–9
processing data 10, 13

problem-solving pattern 13
selecting properties from objects 12
sorting objects 11
with ForEach-Object cmdlet 12–13

remoting and Universal Execution Model 15
scripts and functions 14–15

Exchange 2010, remote access 116
-ExecutionPolicy parameter 69
exit command 18
Exit-PSSession cmdlet 55
Export-Clixml cmdlet 49
Export-PSSession cmdlet 81
expression mode 29
expression-mode parsing 29, 31
expressions, basic 9–10

extended type system 39
Extended Validation certificate. See EV

F

-f 138
$false 119
fields 40
file system, working with 8
-FilePath parameter 61
FindAll() method 132–133, 141–142
fl command 24
for loop 13
-Force parameter 52
foreach loop 127–128

defined 13
reads group membership 148

foreach statement 14
ForEach-Object cmdlet 127

comparing with foreach statement 14
definition and example 13
processing with 12–13

Format-Custom formatter 41
Format-List command 38, 40
Format-Table command 38
Format-Wide cmdlet 41
-FunctionDefinitions parameter 69
functions 14–15, 21

G

Get-ADComputer cmdlet 100
Get-ADDomainController cmdlet 139
Get-ADGroup cmdlet 149
Get-ADGroupMember cmdlet 148
Get-ADUser cmdlet 131, 149
Get-ChildItem cmdlet 91
Get-ChildItem command 24
Get-Content command 24
Get-Date cmdlet, with locked user accounts 134
Get-Help command 8
Get-Help Online about_execution_policies 14
Get-NlbCluster cmdlet 106
Get-Process command 13
Get-PSSession cmdlet 62
Get-PSSessionConfiguration cmdlet 70–71
Get-QADGroup cmdlet 149
Get-QADUser cmdlet 145, 149
$global:members 148
grammar 18
Group Policy, configuring remoting using 79
group scope, grouptype attribute 146
Licensed to Bob Spuntak <bobspuntak@msn.com>

154 INDEX
$group.member 147
GroupPrincipal class 122

group membership 122
groups 137

Active Directory vs local 143
activities 118
creating 121
distribution groups 146
finding members 147
group name 122
group policies 136, 140
local 115, 117, 124
members 147
membership 122

modifying 123
nested membership 147
removing members 123
scope 121–122

GUIs (graphical user interfaces) 4
GUI, tools 136

H

Hello world program 3
help subsystem, PowerShell 9
-HideComputerName parameter 57

I

-Identity parameter 133, 145
IIS (Internet Information Services)

automating deployment 109–111
connecting to servers 100–101
deploying website files 102
enabling remote management for IIS Manager

enabling service 103–104
overview 103
replacing certificate 104–105

load balancing web farms 105–107
secure websites

configuring 107–109
deploying SSL certificates 102–103

IIS Manager. See IIS
implicit remoting 80–82
Import-CliXML cmdlet 49
Import-Module cmdlet 116
inline documentation 34
-InputObject parameter 19, 27
Int64 139
Integrated Scripting Environment

help within 9
using F1 key 9

Invoke-Command cmdlet 15, 49, 59, 64, 109–110
Invoke-PolicyEvaluation 87
Invoke-SqlCmd 87
ISE (Integrated Scripting Environment) 89
ISO codes 130

K

Korn shell 18

L

-LanguageMode parameter 67, 69
last logon time 137

approximate 140
last mile problem 7
lastlogon property 137–138
lastlogondate property 139
lastlogontimestamp property 137–138, 140
LDAP

connectivity strings 124
distinguished name 134
filter 131, 133, 140

for finding a user 132
provider 120
search 132, 144
string 138

Leibniz, Gottfried Wilhelm 5
lexical analyzer 26
listeners

defined 50
for WinRM 72–74

load balancing, for web farms 105–107
load statement 118
lockout time 134
login ID 121
logon hours 130
logon time 131

last 137

M

machine name 118–119
management objects 7
Manager settings 131
matching quote 28
MatchType 135
-Member parameter 145
memberof attribute 148
members, adding to a group 122
Members tab 147
Licensed to Bob Spuntak <bobspuntak@msn.com>

155INDEX
membership
changing 144
finding group 149
nested 147

Microsoft
Active Directory cmdlets 116
cmdlets 131

account expiry 142
AD group scope 146
bulk creating users 128
disabled accounts 133
group membership 145
last logon times 139
moving users 137
searching 133

lockedout accounts 135
Microsoft WMI (Windows Management

Instrumentation) 7
Microsoft.PowerShell.Workflow endpoint 52
Microsoft.PowerShell32 endpoint 52
Microsoft.ServerManager endpoint 52
Microsoft.Windows.ServerManagerWorkflows

endpoint 52
modules 6
-ModulesToImport parameter 69
Monad project 5
Monadology, The (Leibniz) 5
MoveTo() method 136
MSDN (Microsoft Developers Network) 42
multiline comments 34

N

name 138
-Name parameter 126
native commands 22, 24

Windows 19
navigation 8–9
nest prompt characters 31
.NET 3.5 117

finding a locked account 134
netsh 55
Network Load Balancing. See NLB
New-ADGroup cmdlet 143
newline character 31–32
New-NlbCluster cmdlet 106
NewParentContainer 137
New-PSSession cmdlet 61
New-PSSessionConfigurationFile cmdlet 67
New-PSSessionOption cmdlet 66
New-QADGroup cmdlet 143
New-QADUser cmdlet 126

New-WebAppPool cmdlet 107
New-WSManInstance cmdlet 73–74
NLB (Network Load Balancing) 100
NoLanguage mode 68
nondefault endpoints, connecting to 70–71
NSlookup 55
$null password 125

O

-ObjectAttributes parameter 131
objectcategory property 133, 141
objectclass property 133, 141
objects

managing windows through 6–7
selecting properties from 12
sorting 11

operating environment, object-based 7
operations, basic 8–9
Options object 65
Organization tab 131
Organizational Unit. See OU
OU 115, 124–127

delete accounts 136
moving users 136

out-default 42
Out-File cmdlet 42
Out-GridView command 43
Out-Host cmdlet 43
Out-Null outputter 42
Out-Printer cmdlet 43
output redirection 7
outputter cmdlets 41
Out-String cmdlet 43

P

PageSize 132
param keyword 14
parameter aliases 25
parameter binding 19

pipelines and 37–38
parameters 20, 35

for PSSessions 65–66
vs. arguments 18

ParentContainer 126
parsing

comment syntax 33–34
multiline 34

expression-mode and command-mode 29, 31
quoting 27
statement termination 31, 33
Licensed to Bob Spuntak <bobspuntak@msn.com>

156 INDEX
parsing modes 31
password

expiring 141
secure string 119
setting 120

PasswordExpired 121
password-masking technique 124
-Path parameter 126
persistent sessions 61
pipe operator 34
pipelines 38

and parameter binding 37–38
and streaming behavior 35, 37

port number, for remoting 59–60
portability 132
POSIX 18
PowerShell

Active Directory 117
aligning with C# syntax 18
case sensitivity 127
categories of commands 19
Community Extensions 118
creation of 7
credential 119
exact vs. partial match 26
expressions in 9
help subsystem 9
-Property parameter 12
secondary prompt in 12
terminology similar to other shells 18
using wildcard characters with help 9

PowerShell foundations
aliases and elastic syntax 24, 26
core concepts 18, 24
parsing. See parsing
pipelines 38

and parameter binding 37–38
and streaming behavior 35, 37

PowerShell Heresy 35
PowerShell interpreter, function of 18
PowerShell Web Access. See PWA
PrincipalContext 119, 134
privileges, elevated 117
problem-solving pattern 13
process clause 35
process streaming 37
processing

data 10, 13
problem-solving pattern 13
selecting properties from objects 12
sorting objects 11
with ForEach-Object cmdlet 12–13

Process-Message cmdlet 25
process-object clause 37

Profile tab 131
properties, selecting from objects 12
Properties dialog 147
provisioning IIS web servers/sites

automating deployment 109–111
connecting to servers 100–101
deploying website files 102
enabling remote management for IIS Manager

enabling service 103–104
overview 103
replacing certificate 104–105

load balancing web farms 105–107
secure websites

configuring 107–109
deploying SSL certificates 102–103

.ps1 extension 22

.psbase extension 136
PSDrives 60
$PSHOME variable 39
PSSessions

creating persistent session 61
defined 61
disconnecting 63–64
managing sessions 62–63
options for 66
parameters for 65–66
reconnecting 63–64
using open session 62

PSSnapin 86
PWA (PowerShell Web Access) 49
pwdLastSet property 125, 140–141
Python, comparison to Visual Basic 18

Q

QAD 116
Quest

AD cmdlets 116
cmdlets 117

account expiry 142
AD group scope 146
bulk creating users 128
creating a user 126
disabled accounts 134
group membership 145
last logon times 139
locked-out accounts 135
moving users 137
searching 133

domain controllers 139
quotas, and remoting 75–76
quotation marks 20
quoting 27
Licensed to Bob Spuntak <bobspuntak@msn.com>

157INDEX
R

read-evaluate-print loop 6
Read-Host cmdlet 119
Really Simple Syndication. See RSS 4
Receive-PSSession cmdlet 64
reconnecting PSSessions 63–64
-Recurse switch 20
recursion 147
-Recursive parameter 148
Register-PSSessionConfiguration cmdlet 68–69
remote procedure calls. See RPCs
remoting 15, 23

1-to-1 55–56
1-to-many 56–57
authentication for 51
caveats for 57–59
configuring on remote machine 76–77
cross-domain 75
custom endpoints 67–70
enabling 52, 71–72
enabling for IIS Manager

enabling service 103–104
overview 103
replacing certificate 104–105

forms of 49
implicit 80–82
network security 51
nondefault endpoints 70–71
options for

alternate credentials 59
port number 59–60
sending script instead of command 61
using SSL 60

overview 50–51
PSSessions

creating persistent session 61
disconnecting 63–64
managing sessions 62–63
options for 66
parameters for 65–66
reconnecting 63–64
using open session 62

quotas and 75–76
troubleshooting 82–83
trusted hosts 78–79
using Group Policy to configure 79
WinRM

configuring 77–78
setting up listeners for 72–74

Remove() method 123, 145
Remove-WSManInstance cmdlet 74
rendering objects 43

REPL. See read-evaluate-print loop 6
requirements, for SQL Server provider 87
Resolve-Assembly 118
resolve-group 148
resolve-membership function 149
RestrictedLanguage mode 68
RPCs (remote procedure calls) 50
RSAT (Remote Server Administration Tools) 99
RSAT download 116
RSS (Really Simple Syndication) 4
Run as Administrator 117
-RunAsCredential parameter 69

S

S.DS 115
SaaS (Software as a Service) 86
SAM database 120
script commands 19
script versioning 25
-ScriptBlock parameter 56
scripting languages, vs. shell, advantages 6
scripts 14–15, 22

debugging 120
hello world file 14
sending instead of commands 61

SDDL (Security Descriptor Definition
Language) 69

search
creating 132
disabled accounts 133
end date 142
filter 142
number of results 132
root 132

$search.PageSize 132
Secure Socket Layer certificates. See SSL
Secure Sockets Layer. See SSL
secure string 119, 124
secure websites

configuring 107–109
deploying SSL certificates 102–103

security
groups 122, 146
remoting and 51

Security Account Manager. See SAM
Security Descriptor Definition Language.

See SDDL
-SecurityDescriptorSddl parameter 69
Select-Object cmdlet

defined 12
using -Property parameter 12

-SelectorSet parameter 74
Licensed to Bob Spuntak <bobspuntak@msn.com>

158 INDEX
semicolon character 31
Send-MailMessage cmdlet 141
serialization 49, 57
serialized objects 23
Server Manager module 101
-SessionOption parameter 66
-SessionType parameter 69
Set-AdUser cmdlet 131
Set-Alias command 24
SetInfo() method 121–122, 143, 145
Set-NetConnectionProfile cmdlet 52
SetPassword method 120
Set-QADUser cmdlet 131
shell environments 37
shell function commands 19
shells

as command-line interpreter 6
reasons for new model 7

managing windows through objects 6–7
scripting languages vs. 6

-ShowSecurityDescriptorUI parameter 70
SizeLimit property 132
-SkipCACheck parameter 75
-SkipCNCheck parameter 75
SkipNetworkProfileCheck parameter 52
Software as a Service. See SaaS
sorting

in descending order 11
objects 11

Sort-Object cmdlet 10–11
special characters, using backtick 29
SQL Server provider

examples using 89–93
finding table in many databases 94
getting database count 93–94
overview 86–88
requirements for 87
using 88–89

SQLSERVER path 88
SQLSERVER:SQL path 88
SQLSERVER:SQLComputerName path 88
SQLSERVER:SQLComputerNameInstance

path 88
SqlServerCmdletSnapin100 87
SqlServerProviderSnapin100 87
SqlSmoObject class 93
SSL (Secure Socket Layer) certificates 102–103
SSL (Secure Sockets Layer) 60
SslFlags 108
statement termination 31, 33
-Stream parameter 43
streaming behavior 21, 35, 37
string concatenation 138
strings 32

subdirectories, and dir command 20
subexpressions 32
switch parameters 20
switch statement 13
syntactic analysis 26
syntactically complete statement 32
System.DirectoryServices.AccountManagement

116–118, 121, 134
System.DirectoryServices.ActiveDirectory.Domain

class 137
System.DirectoryServices.DirectorySearcher

class 132

T

tables, finding in many databases 94
TargetPath property 137
Telephones tab 131
telnet 83
terminator characters 31
terminology 18
Test-WSMan cmdlet 77, 83
-ThrottleLimit parameter 57
TimeSpan objects 142
ToFileTime() method 140
tokenizer analyzer 26
tokens 26
ToString method 59
Trace-Command cmdlet 38
transitional aliases 24
troubleshooting, remoting 82–83
$true 119
trusted hosts 55, 78–79
type command 24

U

-Unique parameter 148
Universal Execution Model 15
Update-Help cmdlet 81
user accounts

Active Directory 124, 142
ADSI 115
automating local 124
consistency 114
creating 115, 118, 124
creating local 118, 120
deleted 131, 136
disabled 131, 133
disabling 135
empty 119
enabling and disabling 135
expiring 142
Licensed to Bob Spuntak <bobspuntak@msn.com>

159INDEX
locked 134
locked-out accounts 135
management automation 124
mass creation 124
modifying 129
moving 136
New-QADUser 126
searching 132

user name, attributes 125
useraccountcontrol 125–126, 133

disabling an account 135
UserPrincipal class 119
users

account. See also user accounts
activities 118
and passwords 134
bulk creation 126
creating 125
creating in bulk 124, 127
finding 131
local 115, 117, 124
organizing 136
passwords 140
permissions 121
searching 131
single user 126

-UsersOnly parameter 142
-UseSSL parameter 60

V

-ValueSet parameter 74
variable reference 28
variables

automatic 119
basic 9–10
initializing 13
saving expressions in 10

-VisibleCmdlets parameter 68–69
-VisibleFunctions parameter 68–69
Visual Basic 18
[void] 118

W

web farms 105–107

Web Services-Management. See WSMAN
WebAdministration module 104, 107
websites

automating deployment 109–111
deploying files for 102
secure websites

configuring 107–109
deploying SSL certificates 102–103

Where-Object cmdlet 91
while loop 13–14
Windows

Active Directory 124
Server 2003 117

Windows commands, native 19
Windows Forms library 4
Windows Management Instrumentation.

See Microsoft WMI 7
Windows Management Instrumentation. See WMI
Windows management surface 7
Windows Remote Management. See WinRM
Windows Server 2008, ADUC 130
Windows Server 2008 R2

Active Directory cmdlets 116
lastlogondate 139

Windows XP 117
windows, managing through objects 6–7
WinForms 4
WinNT

ADSI provider 120
creating local groups 122
modifying group membership 123
provider 120

WinRM (Windows Remote Management) 50
configuring 77–78
setting up listeners for 72–74

WMF (Windows Management Foundation) 48
WMI (Windows Management

Instrumentation) 50
Write-Output cmdlet 19, 27
WSMAN (Web Services-Management) 50, 53, 78

Z

zsh shell 6, 18
Licensed to Bob Spuntak <bobspuntak@msn.com>

Windows PowerShell in Action, Third Edition
by Bruce Payette and Richard Siddaway

ISBN: 9781633430297
625 pages
$59.99
Fall 2016

PowerShell in Depth, Second Edition
by Don Jones, Jeffrey Hicks, and Richard Siddaway

ISBN: 9781617292187
744 pages
$59.99
October 2014

PowerShell Deep Dives
Edited by Jeffery Hicks, Richard Siddaway,

Oisin Grehan, and Aleksandar Nikolic

ISBN: 9781617291319
464 pages
$49.99
July 2013

Save 50% on these selected books—eBook, pBook, and MEAP. Just enter feepsa50 in the Pro-
motional Code box when you check out. Only at manning.com.

Licensed to Bob Spuntak <bobspuntak@msn.com>

https://www.manning.com/books/windows-powershell-in-action-third-edition
https://www.manning.com/books/windows-powershell-in-action-third-edition
https://www.manning.com/books/powershell-in-depth-second-edition
https://www.manning.com/books/powershell-deep-dives
https://www.manning.com/books/powershell-in-depth-second-edition
http://manning.com
https://www.manning.com/books/powershell-deep-dives

PowerShell in Practice
by Richard Siddaway

ISBN: 9781935182009
584 pages
$49.99
June 2010

https://www.manning.com/books/powershell-in-practice
https://www.manning.com/books/powershell-in-practice

	contents
	Introduction
	Reading suggestions

	Introduction to PowerShell
	Welcome to PowerShell
	1.1 What is PowerShell?
	1.1.1 Shells, command lines, and scripting languages

	1.2 PowerShell example code
	1.2.1 Navigation and basic operations
	1.2.2 Basic expressions and variables
	1.2.3 Processing data
	1.2.4 Flow-control statements
	1.2.5 Scripts and functions
	1.2.6 Remote administration

	1.3 Core concepts
	1.3.1 Command concepts and terminology
	1.3.2 Commands and cmdlets
	1.3.3 Command categories
	1.3.4 Aliases and elastic syntax

	1.4 Parsing the PowerShell language
	1.4.1 How PowerShell parses
	1.4.2 Quoting
	1.4.3 Expression-mode and command-mode parsing
	1.4.4 Statement termination
	1.4.5 Comment syntax in PowerShell

	1.5 How the pipeline works
	1.5.1 Pipelines and streaming behavior
	1.5.2 Parameters and parameter binding

	1.6 Formatting and output
	1.6.1 The formatting cmdlets
	1.6.2 The outputter cmdlets

	1.7 Summary
	What's inside:
	What's inside:

	PowerShell Remoting
	PowerShell Remoting
	10.1 The many forms of remote control
	10.2 Remoting overview
	10.2.1 Authentication
	10.2.2 Firewalls and security

	10.3 Using Remoting
	10.3.1 Enabling Remoting
	10.3.2 1-to-1 Remoting
	10.3.3 1-to-many Remoting
	10.3.4 Remoting caveats
	10.3.5 Remoting options

	10.4 PSSessions
	10.4.1 Creating a persistent session
	10.4.2 Using a session
	10.4.3 Managing sessions
	10.4.4 Disconnecting and reconnecting sessions

	10.5 Advanced session techniques
	10.5.1 Session parameters
	10.5.2 Session options

	10.6 Creating a custom endpoint
	10.6.1 Custom endpoints for delegated administration

	10.7 Connecting to non-default endpoints
	10.8 Enabling the “second hop”
	10.9 Setting up WinRM listeners
	10.9.1 Creating an HTTP listener
	10.9.2 Adding an HTTPS listener

	10.10 Other configuration scenarios
	10.10.1 Cross-domain Remoting
	10.10.2 Quotas
	10.10.3 Configuring on a remote machine
	10.10.4 Key WinRM configuration settings
	10.10.5 Adding a machine to your Trusted Hosts list
	10.10.6 Using Group Policy to configure Remoting

	10.11 Implicit Remoting
	10.12 Standard troubleshooting methodology
	10.13 Summary

	PowerShell and SQL Server
	PowerShell and the SQL Server provider
	23.1 Requirements
	23.2 Introduction to the SQL Server provider
	23.3 Using the SQL Server provider
	23.4 Examples of using the SQL Server provider
	23.5 Getting a count of databases in an instance
	23.6 Finding a table in many databases
	23.7 Summary
	What's inside:

	IIS Administration
	Provisioning IIS web servers and sites with PowerShell
	27.1 Rapid IIS deployment
	27.2 Transferring website files and certificates
	27.3 Enabling remote management for IIS Manager
	27.4 Creating a load-balanced web farm
	27.5 Creating an SSL website
	27.6 Automating the process
	27.7 Summary
	What's inside:

	User accounts
	5.1 Automating user account management
	5.1.1 Microsoft AD cmdlets
	5.1.2 Recommendations

	5.2 Local users and groups
	User creation
	Problem
	Solution
	Discussion

	Group creation
	Problem
	Solution
	Discussion

	Group membership
	Problem
	Solution
	Discussion

	5.3 Active Directory users
	User creation
	Problem
	Solution
	Discussion

	User creation (bulk)
	Problem
	Solution

	User modification
	Problem
	Solution
	Discussion

	Finding users
	Problem
	Solution
	Discussion

	Enabling and disabling accounts
	Problem
	Solution
	Discussion

	Moving accounts
	Problem
	Solution
	Discussion

	Last logon time
	Problem
	Solution
	Discussion

	Password expiration
	Problem
	Solution
	Discussion

	Account expiration
	Problem
	Solution
	Discussion

	5.4 Active Directory groups
	Group creation
	Problem
	Solution
	Discussion

	Changing membership
	Problem
	Solution
	Discussion

	Changing scope
	Problem
	Solution
	Discussion

	Finding group members
	Problem
	Solution
	Discussion

	Finding a user’s group membership
	Problem
	Solution
	Discussion

	5.5 Summary
	What's inside:

	AD Administration
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z
	index
	Windows PowerShell in Action, Third Edition
	PowerShell in Practice
	PowerShell in Depth, Second Edition
	PowerShell Deep Dives

