
Top considerations for addressing risks in the OWASP Top 10 for LLMs

Mitigate AI-generated
code security risks
with Snyk.

Learn more

Prompt injection

Prompt injection (similar to SQL injection) is the manipulation of an
LLM by providing inputs designed to trick the LLM into performing
tasks it shouldn’t be allowed to do�

� Educate your teams on prompt injection, and consider gamifying
the learning with a tool like Gandalf from Lakera�

� Use the principles of least priviledge between your LLM and your
data/functionality�

� Limit the sensitive data your LLM has access to�

� Treat your LLM like a user data and sanitize actions and
responses�

� Use function calling where possible to avoid unstructured data
which might change the context for the LLM/desired behavior

01
Model Denial of Service

MDoS (similar to ReDoS) occurs when malicious users provide input/
prompts to an LLM that consume significant system resources to
create a denial of service for the request or wider system�

� Consider LLM frameworks, such as LangChain that restrict
number of steps in input evaluation�

� Consider following LLM architecture references from vendors and
software architecture best practices such as circuit breakers�

� Typical DoS advice still apply: sanitization and validation of input,
rate limiting calls, etc.

04

Sensitive information disclosure

This occurs when an LLM discloses sensitive and confidential
data back to the user in an unauthorized manner�

� Don’t give your LLM more data than it needs to do it’s job�

� Add input output guard checks around interactions to
sanitize input from users and output from LLM.

and

06

Insecure output handling

Avoid your LLM directly accesses sensitive data, or to executing
functions without validation�

� Treat your LLM like your user data and be careful of direct access
between your LLM and data�

� Adhere to the rules of least privilege�

� Don’t allow your LLM to be able to execute dangerous functions
when it shouldn’t need to.

02

Supply chain vulnerabilities

Vulnerabilities can exist in the training or tuning data (similar to
vulnerable components in apps) that was taken from third-party
sources — making them part of the software supply chain�

� List the data source dependencies you’re using for the
training/tuning of your LLM�

� Use attestation/signing techniques to validate data you use�

� Responsibly evaluate traditional security risks of malicious
and typosquatting libs related to AI and LLMs devtools SDKs.

05

Overreliance

Overreliance occurs when a user incorrectly assumes that
generated code (for example) are correct, secure, legal etc�

� Treat generated code, like junior developer code: validate,
test, correct�

� Use tools like Snyk Code to automate AI generated code
security testing and fix first party code in the IDE where code
is generated, as well as Snyk Open Source to test AI
suggested open source library usage�

� Educate teams about hallucinations and disinformation by
from generative AI.

09

Excessive agency

An LLM with excessive agency may choose to invoke particular
functionality in a malicious or unexpected way causing
unexpected results.

Three types of excessive agency include�

� Insufficient functionality granularity
in plugins can lead to LLM applications taking actions that
are too broad�

� An LLM plugin provides more
access/permissions than required�

� An LLM application automatically
taking dangerous actions without user interaction.

Excessive Functionality:

Excessive Permissions:

Excessive Autonomy:

08

Training data poisoning

This is the manipulation of training data or fine tuning processes to
make the LLM output less secure, more biased, less effective, or less
performant�

� Validate/verify data sources�

� Use sandboxing of data sources, so external sources can’t be
added easily�

� Perform attestation/signing of data.

03

Insecure plugin design

Homegrown LLM plugins that are triggered by the LLM can be
open to the risk of malicious input from the LLM�

� Treat LLM output similar to how you treat user input�

� Use various param input into plugins vs. single text queries�

� Think about plugin interactions similar to an API contract and
follow OWASP Top 10 API Security Risks best practices.

07

Read the full OWASP Top 10 for LLMs

Model theft

Protect your digital IP from an an attacker trying to gain
unauthorized access to your LLM by using existing best practices
like RBAC and more.

10

https://snyk.io/lp/secure-ai-generated-code?utm_medium=content-top-10-llm&utm_source=llm-cheat-sheet&utm_campaign=llm-top-10
https://learn.snyk.io/lesson/sql-injection/
https://gandalf.lakera.ai/
https://lakera.ai/
https://learn.snyk.io/lesson/redos/
https://www.langchain.com/
https://learn.snyk.io/lesson/vulnerable-and-outdated-components/
https://snyk.io/solutions/software-supply-chain-security/
https://snyk.io/product/snyk-code/
https://snyk.io/lp/secure-ai-generated-code/
https://snyk.io/lp/secure-ai-generated-code/
https://snyk.io/product/open-source-security-management/
https://owasp.org/API-Security/editions/2023/en/0x11-t10/
https://owasp.org/www-project-top-10-for-large-language-model-applications/
https://snyk.io/lp/secure-ai-generated-code/?utm_campaign=llm-top-10&utm_medium=content-top-10-llm&utm_source=llm-cheat-sheet

