

THE
DevSecOps

PLAYBOOK

THE
DevSecOps

PLAYBOOK
 Deliver Continuous Security at

Speed

SEAN D. MACK

Copyright © 2024 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada and the united Kingdom.

ISBNs: 9781394169795 (paperback), 9781394169818 (epdf), 9781394169801 (epub)

No part of this publication may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or
otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright
Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222
Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at
www.copyright.com. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201)
748-6011, fax (201) 748-6008, or online at www.wiley.com/go/permission.

Trademarks: WILEY and the Wiley logo are trademarks or registered trademarks of John Wiley
& Sons, Inc. and/or its affiliates, in the United States and other countries, and may not be used
without written permission. All other trademarks are the property of their respective owners.
John Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their
best efforts in preparing this book, they make no representations or warranties with respect
to the accuracy or completeness of the contents of this book and specifically disclaim any
implied warranties of merchantability or fitness for a particular purpose. No warranty may be
created or extended by sales representatives or written sales materials. The advice and strategies
contained herein may not be suitable for your situation. You should consult with a professional
where appropriate. Further, readers should be aware that websites listed in this work may have
changed or disappeared between when this work was written and when it is read. Neither the
publisher nor authors shall be liable for any loss of profit or any other commercial damages,
including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please
contact our Customer Care Department within the United States at (800) 762-2974, outside
the United States at (317) 572-3993 or fax (317) 572-4002.

If you believe you’ve found a mistake in this book, please bring it to our attention by emailing
our reader support team at wileysupport@wiley.com with the subject line “Possible Book
Errata Submission.”

Wiley also publishes its books in a variety of electronic formats. Some content that appears in
print may not be available in electronic formats. For more information about Wiley products,
visit our web site at www.wiley.com.

Library of Congress Control Number: 2023944292

Cover image: © lvcandy/Getty Images
Cover design: Wiley

http://www.copyright.com
http://www.wiley.com/go/permission
mailto:wileysupport@wiley.com
http://www.wiley.com

v

Foreword� xiii

Introduction� xv

Chapter 1	 Introducing DevSecOps� 1

Chapter 2	 The Evolution of Cybersecurity (from
Perimeter to Zero Trust)� 23

Chapter 3	 DevSecOps People� 47

Chapter 4	 DevSecOps Process� 77

Chapter 5	 DevSecOps Technology� 99

Chapter 6	 DevSecOps Governance� 125

Chapter 7	 Driving Transformation in Enterprise
Environments� 147

Chapter 8	 Measuring DevSecOps� 169

Chapter 9	 Conclusion� 195

Acknowledgments� 207

About the Author� 209

Index � 211

Contents at a Glance

vii

Foreword� xiii

Introduction� xv

Chapter 1	 Introducing DevSecOps� 1
Why DevSecOps? Why Now?� 1
DevOps Overview� 3

Brief History of DevOps� 4
The Three Ways of DevOps� 6
The Five Ideals� 9
The CALMS Framework� 10
DevOps as an Anti-Pattern� 11
Agile and DevOps� 13
DevOps and ITSM� 14

DevSecOps Overview� 15
Rugged DevOps Overview� 17
DevSecOps Business Results� 18
Conclusion� 22

Chapter 2	 The Evolution of Cybersecurity (from
Perimeter to Zero Trust)� 23

The Evolution of the Threat Landscape� 23
Evolution of Infrastructure� 23
The Evolution of Application Delivery� 28
The Evolution of the Threat Landscape� 29

The Evolution of Cybersecurity Response� 32
Defense in Depth� 32
Zero Trust� 35
Shift Left� 38

Benefits of Shift Left� 41
Smearing Left� 43
Shift Right� 44
Shift Left for DevSecOps� 45

Conclusion� 45

Contents

viii	 Contents	

Chapter 3	 DevSecOps People� 47
Introduction� 47
Collaboration at the Core� 48
DevSecOps Culture� 49

Trust� 50
Transparency� 53

The Shared Responsibility Model� 54
Ownership� 55
Accountability� 56
The Role of the Security Team� 57

Psychological Safety� 58
Empowerment� 59
Learning Culture� 61

Incident Postmortems� 63
Security Training Programs� 64

Organizing for DevSecOps� 66
Building a DevSecOps Culture� 69

Security Champions� 69
Internal Bug Bounties� 70

The Evolution of the Employee (T-Shaped People)� 70
Hiring for DevSecOps� 72

Key Characteristics� 72
Diversity, Equity, and Inclusion� 73

Conclusion� 74

Chapter 4	 DevSecOps Process� 77
Introduction� 77
Understanding Processes at Scale� 78
DevSecOps for IT Service Management� 78
Security Incident Management� 80
Change Management� 82

Adaptive Change Management� 83
Change Risk Calculation� 84
Guiding Principles for Change Review and Approval� 84
Standard Changes and “Change Freezes”� 85

Problem Management� 89
The Problem Manager Role� 91
Blameless Postmortems� 92

	 Contents	 ix

Release Management� 93
A DevOps Approach to Security Processes� 94

Tabletop Exercises� 94
Attack Simulation: Red Team, Blue Team, Purple Team� 95

Chaos Engineering� 96
Conclusion� 98

Chapter 5	 DevSecOps Technology� 99
Introduction� 99
DevSecOps Continuous Integration and Continuous

Deployment� 101
The Commit Stage� 103
The Build Stage� 104
The Test Stage� 105
The Deploy Stage� 107

Infrastructure as Code� 108
Secrets Management� 110
Privileged Access Management� 113
Runtime Application Self-Protection� 114
Monitoring and Observability� 114

Monitoring� 115
Observability� 117
Data Silos� 119

Event Management with SIEM and SOAR� 121
Conclusion� 122

Chapter 6	 DevSecOps Governance� 125
Introduction� 125
The Challenge of Compliance� 126

The History of Compliance� 126
The Burden of Compliance� 129

Managing Risk� 130
Risk as a Feature� 131
Risk Management and Controls� 132

DevSecOps Approach to Governance� 135
Compliance as Code� 135

Build-Time Compliance as Code� 136
Inserting Compliance into the Pipeline� 136

x	 Contents	

Compliance Automation� 137
OPA/Rego� 137

Runtime Compliance as Code� 138
Compliance as Code for Auditing� 138

The Role of Audit� 139
A Note of Caution on Compliance� 140

Compliance Foundations� 140
Identity and Access Management� 140
Change Management� 142

Conclusion� 145

Chapter 7	 Driving Transformation in Enterprise
Environments� 147

Introduction� 147
The Challenge of Cultural Transformation� 149

Resistance to Change� 149
Transforming while Delivering� 150

Transformational Leadership� 151
The Keys to a Successful Transformation� 152

Begin with the End in Mind� 153
Start Small and Find Early Wins� 153
Focus on the Cultural Transformation� 154
Measure Progress� 155
Leverage Outside Help (As Appropriate)� 156
Build a Communications Campaign� 157

Audience� 157
Communication Channels� 158

Transformation Challenges� 159
Cultural Inertia� 159
Lack of Leadership Support� 161
Lack of Contributor Buy-In� 162
Lack of Sustained Support� 164
Doing Too Much at Once� 164
Failure to Communicate Value� 165

Conclusion� 166

Chapter 8	 Measuring DevSecOps� 169
Introduction� 169

Any Metric Can Be Manipulated� 170
Start Small and Iterate� 171

	 Contents	 xi

Keys to a Successful Metrics Program� 173
Operational Metrics� 174

Number of Incidents� 174
Vulnerabilities by Service Level Objective� 176
Mean Time to x� 177
Reliability� 178

Board-Level Metrics� 178
Measuring Risk� 179
Risk Work� 180
Spend� 181
Detected Intrusion Attempts� 182
Attack Surface� 183
Performance vs. Peers� 183

Measuring Transformation� 184
Transformational Results� 184
Transformational Competencies� 185

Capability Models� 187
Conclusion� 193

Chapter 9	 Conclusion� 195
Introduction� 195
People, Process, and Technology� 195
Collaboration Is at the Core� 197
Making Security Part of How You Work� 198
Where to Start� 199

Begin with the End in Mind� 199
Start Small and Find Early Wins� 201

The Future of DevSecOps� 202
Artificial Intelligence� 203
Experience Management� 204
Product Thinking� 204

Conclusion� 205

Acknowledgments� 207

About the Author� 209

Index � 211

xiii

The friction between traditional security and the rest of the IT
organization started increasing as developers needed to deploy

more quickly, push out more stable builds, and produce more secure
products. Teams created new practices to solve the bottlenecks, and the
impossible came into reach. Much like doing multiple deploys a day
was once considered insane on the maturity scale, embedding security
in the whole organization is now within reach. Security is a first-world
citizen in this new alliance between dev and ops.

So how do you get started with DevSecOps? I like people who
come to me with solutions instead of complaining about problems.
This is how I recruit people with the right attitude. To propose solu-
tions, you need to know what’s out there, learn about them, and put
them in your toolbox to apply them wisely. Dealing with security is no
exception. If you are embarking on this journey, The DevSecOps Playbook
will provide you with what you need: insights, tools, process, and peo-
ple practices.

One could say collaboration is all you need, and the rest will come
from there. This emphasis on collaboration prompts the question, how
is DevSecOps different from DevOps? In mindset there is no differ-
ence; they both start from the same principles, similar to how DevOps
started from Agile principles. And introducing DevSecOps is no differ-
ent from driving any other change in a company.

What is important is that by giving DevSecOps its own label, we
were able to tag all the related stories and good practices that people
were exploring under one umbrella term. The stories and information
shared in this book give you the context of how the concept was born.
Then you’ll learn about the tools and techniques that will help you.

What gives The DevSecOps Playbook a unique perspective is that
the author has gone through an actual long-running transformation,
not just some theoretical exercise. It translates the DevOps principles

Foreword

xiv	 Foreword	

to security practices. Therefore, instead of focusing on a few aspects, it
covers the right broad spectrum of topics. But don’t let this vast cover-
age scare you! It only means that there is a lot to learn. And learn you
shall now that you have this book in your hands.

—Patrick Debois

Founder of DevOpsDays and a creator of the
DevOps movement

xv

Welcome to The DevSecOps Playbook: Deliver Continuous Security
at Speed. This book is the definitive guide to DevSecOps

transformation. With DevSecOps, you can deliver secure products and
services to market quicker, helping you to outpace your competition
while ensuring security and privacy. This book explores the people,
process, and technology of DevSecOps and provides a guide for driv-
ing the transformation.

Who Should Read This Book?
This book is intended for anyone interested in truly understanding
DevSecOps and how to apply it to keep businesses more secure. More
specifically, this book is for security leaders who want to learn about
how to drive DevSecOps transformation to build and deliver secure
products and services without impeding the flow of delivery. This book
is also for security engineers who want a better understanding of
DevOps and the changing security landscape, as well as privacy practi-
tioners, auditors, and governance, risk, and compliance specialists who
want to understand how a fundamentally different approach to security
with DevSecOps can impact the way they do business.

This book is focused on DevSecOps in midsize and large enter-
prise environments. While the principles of DevSecOps apply to com-
panies of any size, the challenges of coordination and collaboration
become more acute with the size and age of a company. Details around
driving transformation and organizational structures may be more
applicable to companies that have established ways of working than to
startups taking a greenfield approach.

A basic understanding of information technology and cybersecu-
rity concepts and terminology may be helpful but is not required.

Introduction

xvi	 Introduction	

Who This Book Is Not For

This book is not an engineering guide. This book does not tell you
how to configure DevSecOps tools (although it covers many tools),
and it does not go into detail about secure coding practices.

How This Book Is Organized

DevSecOps is about more than technology; in fact, it is more about
people and collaboration than anything else. Gene Kim, author of the
Phoenix Project and one of the foremost thought leaders in DevOps,
originally described DevOps as a cultural movement. Because of its
cultural nature, DevSecOps impacts all elements of how you do cyber-
security. This book uses the classic triad of people, process, and tech-
nology to look in depth at all components of DevSecOps.

Chapter 1, “Introducing DevSecOps,” starts by providing an
overview of DevOps and what DevSecOps is. Chapter 2, “The
Evolution of Cybersecurity (from Perimeter to Zero Trust),” provides
a foundation for the rest of the book by looking at the evolution of
technology and the resulting impact on the approach to cybersecurity.
With this background, Chapters 3, “DevSecOps People”, Chapter 4,
“DevSecOps Process”, and Chapter 5, “DevSecOps Technology,” look
at people, process, and technology and how DevSecOps impacts each
of these categories.

The remaining chapters dig into key DevSecOps topics in depth.
Chapter 6, “DevSecOps Governance,” takes an detailed look at how
the concepts of DevSecOps provide a fresh approach to governance
and compliance with the opportunity to save millions of dollars and
reduce engineering overhead. Chapter 7, “Driving Transformation in
Enterprise Environments,” provides insight into how to drive the
DevSecOps transformation in your business, laying out some of the
key elements for successful transformation and some of the pitfalls to
avoid. Chapter 8, “Measuring DevSecOps,” looks at some of the key
metrics for measuring your DevSecOps progress and the impact it is
having on the business. Chapter 9, “Conclusion,” brings these concepts
together by providing some insight into what is coming and the next
steps you can take to drive your DevSecOps transformation.

	 Introduction	 xvii

Conventions Used in This Book

Throughout this book you will find a few conventions to note key
terms, technical notation, and auxiliary information. The following
conventions will help as you make your way through this book:

Lines of programming code are noted using this Courier,
fixed-width font.

Code that is included within the text looks like these code words
within the sentences and paragraphs.

You will also see key terms in italics. These are important terms
that are given emphasis the first time they appear to indicate their
importance.

Key concepts—Important ideas from the chapter are called out from
their context in this manner to make them easily identifiable and to reiterate
critical information.

Notes—explain background information or clarify a point. They are
also used to direct you to information you can find elsewhere to clarify cer-
tain topics.

Tips—are used throughout the book to provide practical information or
advice related to topics covered in the book. These can be helpful in the imple-
mentation of the principles covered.

Real-World Examples

Throughout the text, you will find additional information and
examples to highlight the points being made through the use
of specific, real-world examples.

1

Chapter 1

Introducing DevSecOps

Why DevSecOps? Why Now?
DevSecOps provides the ability to deliver more secure products and
services to the market rapidly. For decades, technology engineers have
sought to balance the speed of delivery with security and performance.
DevSecOps fundamentally alters this equation, allowing companies to
deliver at speed without compromising security, privacy, or system
performance.

Technologists have long struggled with the balance of quality and
speed, attempting to answer the question, “How do we deliver prod-
ucts to market quickly without sacrificing security?” With DevSecOps,
you finally have that answer, and that answer lies in collaboration.
DevOps and, by extension, DevSecOps offer the promised holy grail
of technology product development and delivery: the ability to build
reliable, secure, and maintainable products without sacrificing speed
to market.

DevSecOps provides a fundamentally new approach to security.
This approach moves away from the gating approach of yesterday by
shifting responsibilities earlier in the development pipeline. By working
with developers, it is possible to integrate security across technical appli-
cations and services more easily. Through automation and education,
one engineer can embed security practices in many applications. By
ensuring that security practices are embedded earlier in the develop-
ments, you can reduce the effort it takes to build secure products. In
effect, by taking a DevOps approach to security, you can reduce the fric-
tion of security and compliance and become a force multiplier for the
security team.

2	 The DevSecOps Playbook	

Cybersecurity has never been a more critical issue than today.
The number of cyber threats is continuing to grow. Today we face an
increasing number of threats, and the breaches we are seeing have an
even larger impact.

With the increasing prevalence of remote work and global teams,
the attack surface is continuing to expand. It is no longer possible to
simply secure the network perimeter; we must provide security at every
level as we move toward approaches such as defense in depth and zero
trust. Chapter 2, “The Evolution of Cybersecurity (from Perimeter to
Zero Trust),” explores the evolution of the security model in detail.

In addition, we are seeing an increasing number of attackers and
increasing sophistication of the attackers. The number of attackers
continues to grow as the availability of tools to launch attacks has
grown. The ready availability of attack tools means that it takes less
skill to launch attacks. Today, a novice attacker can rent a fleet of zom-
bie computers on the Dark Web and launch a distributed denial-of-
service attack in minutes. In addition to the proliferation of attackers,
we are seeing increasing sophistication of attackers. Today the primary
threat actors include organized crime with cybercrime revenue esti-
mated at $1.5 trillion in 2019, more than the revenue of Tesla, Facebook,
Microsoft, Apple, Amazon, and Walmart combined.1 We also see
nation-states leveraging cybercrime as a weapon of war.

To combat this increasing threat landscape, you not only need
new tools; you need a fundamentally new approach. DevSecOps gives
you what you need to combat these emerging threats. By taking a col-
laborative approach to security, you will be able to leverage the power
of the entire technology organization to drive security rather than
relying on a single team within that organization. In addition, tech-
nologies such as continuous integration and continuous development
(CI/CD) allow you to integrate security directly into the deploy-
ment pipeline.

1 P., Anton. “Cybercrime Annual Revenue Is 3 Times Bigger than Walmart’s.” Atlas
VPN. AtlasVPN, March 10, 2020. https://atlasvpn.com/blog/
cybercrime-annual-revenue-is-3-times-bigger-than-walmarts.

http://atlasvpn.com/blog/cybercrime-annual-revenue-is-3-times-bigger-than-walmarts
http://atlasvpn.com/blog/cybercrime-annual-revenue-is-3-times-bigger-than-walmarts

	 Introducing DevSecOps	 3

DevOps Overview

The people, process, and technology of DevOps advance the way that
engineers build, deploy, and manage technical systems by bridging the
gap between development and operations teams to get products to
market quickly, while addressing the nonfunctional requirements such
as stability and scalability. DevOps is a set of principles for delivering
value to customers based on Lean principles and collaboration. While
many people think of DevOps as a technology or set of technologies,
these are really a means to an end. That is, these are simply tools used
to better apply the principles of DevOps.2 DevOps includes the peo-
ple, processes, and technologies used to deliver value to customers
through technical products and services based on the DevOps
principles.

DevOps is a set of principles for delivering value to customers based on
Lean principles and collaboration.

Gene Kim, DevOps thought leader and author of The Phoenix
Project: A Novel about IT, DevOps, and Helping Your Business Win\
The DevOps Handbook: How to Create World-Class Agility, Reliability,
& Security in Technology Organizations, and many other DevOps
books, describes DevOps in an interview with Dynatrace, saying, “I
think that’s exactly what DevOps is. Take those Lean principles, apply
them to technology value streams, and you end up with emergent pat-
terns that allow organizations to do tens, hundreds, or even hundreds
of thousands of deployments per day, while preserving world-class reli-
ability, security, and stability.”

Understanding DevOps as a culture or set of principles that focus
on collaboration, you can then understand it as the interaction or col-
laboration among development, operations, and QA, as shown in
Figure 1.1.

2 Virtser, David. “What Is DevOps.” Quora. June 22, 2014. www.quora.com/What-
is-DevOps/answer/David-Virtser.

4	 The DevSecOps Playbook	

Although there are many definitions of DevOps, the Three Ways
of DevOps, described in Gene Kim’s The Phoenix Project, as well as the
CALMS model originated by Jez Humble, co-author of Accelerate: The
Science of Lean Software and DevOps: Building and Scaling High Performing
Technology Organizations and The DevOps Handbook: How to Create
World-Class Agility, Reliability, & Security in Technology Organizations,
provide two of the original models for understanding DevOps. These
two models go a long way to explaining the principles underly-
ing DevOps.

If you are already a DevSecOps professional, much of the following
information may be review. Feel free to skip to Chapter 2. If you
are just getting started with DevOps and DevSecOps, keep read-
ing.

Brief History of DevOps

In 2009, John Allspaw, then senior vice president of technical opera-
tions at Flickr, and Paul Hammond, director of engineering at Flickr,
delivered their talk “10+ Deploys per Day: Dev and Ops Cooperation
at Flickr” at the O’Reilly Velocity Conference. They introduced many
of the concepts of small batch deployment and collaboration between
development and operations. The blog A Short History of DevOps states

Quality
Assurance

Development

DevOps

Operations

Figure 1.1  DevOps can be thought of as the intersection of develop-
ment, operations, and quality assurance

Introducing DevSecOps	 5

that “The talk becomes widely credited with showing the world what
development-operations collaboration can achieve.”3 That same year,
the term DevOps was introduced when Patrick Debois launched the
“Devopsdays” event in Ghen, Belgium. The concept took hold, and
the first U.S. Devopsdays was held in 2010. Devopsdays was later
shortened to the term DevOps that we are all familiar with today.

In 2013, Gene Kim, Kevin Behr, and George Spafford penned
their book, The Phoenix Project: A Novel about IT, DevOps, and Helping
Your Business Win, which presented many of the underpinning concepts
that make up DevOps today. At the same time, the “State of DevOps
Report” was developed, which sought to determine DevOps best prac-
tices and their outcomes. The “State of DevOps Report” has become a
staple of information for DevOps practices. In his blog post “A
Summary of All of the State of DevOps Reports,” Tom Geraghty
writes, “The first report was in 2013, and showed quite clearly that
adopting DevOps practices resulted in technological and business
improvements.”

DevOps continued to grow, and in 2014 we saw the increased
expansion of DevOps into enterprise environments marked by the
launch of the DevOps Enterprise Summit (DOES). DOES sought to
explore DevOps at scale for large and complex organizations. That
same year the group that would later develp the DevOps Research and
Assessment (DORA) metrics teamed up with Puppet labs to find new
ways of measuring DevOps and the results.4 These metrics were
included in the “State of DevOps Report” from 2014–2017. The
research and details about these metrics were published in Accelerate:
The Science of Lean Software and DevOps: Building and Scaling High
Performing Technology Organizations by Nicole Forsgren, Jez Humble,
and Gene Kim in 2018.

While site reliability engineering (SRE) had been around for some
time, it came into increased usage much later. The term was originally

3 Rapaport, Richard. “A Short History of DevOps.” CA Technologies. December 23,
2014. www.ca.com/us/rewrite/articles/devops/a-short-history-of-
devops.html.
4 Humble, Jez. “DORA’S Journey: An Exploration.” Medium. February 2, 2019.
https://medium.com/@jezhumble/doras-journey-an-exploration-
4c6bfc41e667.

http://www.ca.com/us/rewrite/articles/devops/a-short-history-ofdevops.html
http://www.ca.com/us/rewrite/articles/devops/a-short-history-ofdevops.html
https://medium.com/@jezhumble/doras-journey-an-exploration-4c6bfc41e667
https://medium.com/@jezhumble/doras-journey-an-exploration-4c6bfc41e667

6	 The DevSecOps Playbook	

used at Google in 2003. The term grew in prominence in the DevOps
world around 2015, and in 2017 LinkedIn named SRE as one of the
most promising jobs of the year.5

It is only in recent years that DevOps has really begun to connect
with security and DevSecOps has gained momentum. The 2017 and
2018 “State of DevOps Report” showed that DevOps helped improve
security outcomes.

Today, DevOps is something almost every company is doing,
from nimble startups to the Fortune 500. More and more the scope is
expanding to cover security, and companies are seeing how the benefits
of DevOps can be unleashed on cybersecurity through DevSecOps.

The Three Ways of DevOps

Gene Kim’s The Phoenix Project provides one of the earliest and most
widely read explanations of the key principles of DevOps. Based loosely
on The Goal: A Process of Ongoing Improvement by Eliyahu M. Golratt,
The Phoenix Project follows a set of fictional characters through the trials
of a modern technical and bureaucratic landscape. In the book, the pro-
tagonist, Bill Palmer, is thrust into a leadership role as the new VP of
operations, where he must right the sinking ship and ensure a successful
product launch for a struggling auto parts manufacturer. Through the
book he discovers that by getting the development and operations teams
to work closely together, he not only saves the struggling project but also
boosts the company to never before discovered levels of success.

In the book, Palmer meets a mysterious mentor who guides him
through the principles referred to as the Three Ways of DevOps. These
principles allow Palmer and his team to rise to the challenge.

These “Three Ways” provide some of the core principles of
DevOps. On his blog, Kim writes, “We assert that the Three Ways
describe the values and philosophies that frame the processes, proce-
dures, practices of DevOps, as well as the prescriptive steps.”

Kim describes the Three Ways as follows.

5 Shapero, Daniel. “LinkedIn Data Reveals the Most Promising Jobs of 2017.”
LinkedIn Official Blog. LinkedIn, January 20, 2017. https://blog.linkedin
.com/2017/january/20/linkedin-data-reveals-the-most-promising-
jobs-of-2017.

http://blog.linkedin.com/2017/january/20/linkedin-data-reveals-the-most-promising-jobs-of-2017
http://blog.linkedin.com/2017/january/20/linkedin-data-reveals-the-most-promising-jobs-of-2017
http://blog.linkedin.com/2017/january/20/linkedin-data-reveals-the-most-promising-jobs-of-2017

	 Introducing DevSecOps	 7

The First Way focuses on the flow through the entire system,
which breaks down silos such as development and operations to enable
flow from ideation to ultimate customer value creation. This type of
thinking shifts focus away from “what is my job?” to “how do we deliver
value to the customer?” When viewing systems in this way, people can
begin to look at how to maximize flow and remove bottlenecks.

These are examples of the First Way of DevOps:

•	 Shared goals—By sharing goals across technology teams,
companies build a shared direction for the company. Instead
of having a development team focused on delivering new func-
tionality and an operations team focused on delivering stabil-
ity, all teams can focus on delivering value to the customer
with the right mix of functionality and stability.

•	 Value stream mapping—Value stream analysis is a Lean man-
agement technique for analyzing the process of delivering
value to the customer. This analysis looks at every step in a
process to identify potential bottlenecks and inefficiencies. By
mapping out the process of value delivery, it is possible to
identify and eliminate bottlenecks that may impact the deliv-
ery of value to the customer.

•	 Test automation—Automated development testing is a key
element of the First Way, as it reduces handoffs between devel-
opment and QA teams and eliminates potential bottlenecks,
thus enabling the flow of value to the customer. In traditional
software development models, software was developed, and
once a feature or product was complete, it was handed off to
the quality assurance team for testing. Automated testing
allows for incremental testing so that minor code changes can
be tested as soon as they are checked in. This helps ensure the
product is always in a working state during development and
eliminates the need for large-scale test and retest cycles at the
end of every development cycle.

The Second Way is about creating feedback loops. This way focuses
on getting and amplifying input from the customers to the people
building the product. The Second Way also includes looking for ways
to shorten and amplify these feedback loops.

8	 The DevSecOps Playbook	

These are key examples of the Second Way:

•	 A/B testing—A/B testing is the process of comparing and test-
ing hypotheses about a product’s performance by testing them
in a production environment. As a simple example, if a com-
pany wanted to determine if users were more likely to click a
green button or a blue button, they could display a green but-
ton for 50 percent of users and a blue button for 50 percent of
users and measure the results.

•	 Feature flags—Feature flags are a method of turning features
on or off. These enable companies to push features to produc-
tion without making them available to customers and then
turn those features on at a given time without additional
changes to the code in production. This process allows com-
panies to push new features to production without affecting
timing of marketing launches or other timing-related ele-
ments. More advance feature flags allow for features to be ena-
bled for certain percentages of users or even certain customer
segments and, as such, can enable A/B testing.

•	 Continuous customer contact—One of the best ways to get
feedback is by meeting directly with customers. Far too often
security engineers work in isolation from the people they are
trying to protect. Whether they are internal customers or
external customers, it is critical to hear input directly from
them at every stage of the product life cycle.

The Third Way focuses on driving experimentation and learning.
This includes building a learning culture that is continually reflecting
on mistakes, learning from them, and using these learnings to grow
and improve. In a learning culture, learning is built into the way a com-
pany operates on a daily basis. The Third Way also looks at opportuni-
ties to drive mastery through repetition as part of this larger
learning culture.

These are key practices of the Third Way:

•	 Chaos engineering—Chaos engineering is a practice where
random errors are intentionally inserted into the system to

	 Introducing DevSecOps	 9

ensure that the system, processes, and people are resilient and
able to react and respond appropriately. These errors can
range from software defects to hardware failures to security
misconfigurations. By inserting errors into the system, chaos
engineering helps ensure system resilience and provides
opportunities to learn when it is not.

•	 20% time—This refers to the practice of reserving 20 percent
of resources time to do work focused on innovation and exper-
imentation. Reserving one day a week or one week a month or
20 percent a day can facilitate this. The key is that this time
must be isolated and protected to ensure that there is room for
experimentation.

•	 Hackathons—Hackathons are the practice of designating a set
period of time where organizations form teams to do focused
work on building innovative new ideas. Hackathons often take
the form of weeklong efforts focused on demonstration of the
work created during that time period.

•	 Blameless culture and blameless postmortems—Blameless
postmortems focus on providing a safe space to review past
incidents without trying to find anyone or any one thing to
blame. Instead, these postmortems are focused on using inci-
dents as a learning opportunity, which help the organization
improve by learning together. Blameless culture extends this
concept ensuring that the culture is one that does not point
fingers but instead is one of physiological safety where people
can learn and grow.

The Five Ideals

In 2019, Gene Kim released a sequel, The Unicorn Project: A Novel about
Developers, Digital Disruption, and Thriving in the Age of Data. The
Unicorn Project takes place during the same time period at the same
company as the Phoenix Project. However, the Unicorn Project fol-
lows a second set of characters, giving a perspective from the team
level, as they work through their own set of challenges.

10	 The DevSecOps Playbook	

Throughout this book, Kim introduces the Five Ideals, listed here:

•	 The First Ideal: Locality and Simplicity

•	 The Second Ideal: Focus, Flow, and Joy

•	 The Third Ideal: Improvement of Daily Work

•	 The Fourth Ideal: Psychological Safety

•	 The Fifth Ideal: Customer Focus

These ideals introduce ways of working that are crucial to the
DevOps culture.

The CALMS Framework

The CALMS framework is another approach to defining the principles
of DevOps. CALMS is an acronym that stands for Culture, Automation,
Lean, Measurement, and Sharing. The original acronym, CAMS, was
coined by John Willis and Damon Edwards. It was later expanded to
include L for Lean by Jez Humble,6 co-author of The DevOps Handbook
and Continuous Delivery.

This model focuses on these underlying principles of DevOps:

•	 Culture focuses on how people work together to achieve a goal.

•	 Automation emphasizes the need to automate everything
through methods like continuous delivery and infrastructure
as code to ensure the continuous flow of value to customers.
The focus on automation is critical for DevOps because, with-
out it, we require people to take multiple, time-wasting steps,
which require handoffs between teams and increase opportu-
nity for bottlenecks.

•	 Lean refers to the Lean management principles, such as small
batch sizes, which underpin much of DevOps. While these
principals were originally developed for manufacturing, they

6 Willis, John. “DevOps Culture (Part 1).” IT Revolution. IT Revolution, May 1, 2012.
https://itrevolution.com/articles/devops-culture-part-1.

http://itrevolution.com/devops-culture-part-1

	 Introducing DevSecOps	 11

have significant applicability to software engineering. For
example, small batch sizes allow for incremental delivery of
value to the customer while reducing inventory, backlogs, and
work-in-progress.

•	 Measurement refers to the extraction of key data that provides
everyone with constant opportunities to learn and improve.

•	 Sharing refers to the need for open communication, transpar-
ency, and collaboration at all levels and stages of the process.

This model, like the Three Ways, codifies many of the underlying
principles of DevOps.

It is important to note that neither the Three Ways nor CALMS
excludes security, but neither do they explicitly include security. The
focus on removing silos certainly implies that cybersecurity should be
part of the value delivery equation.

DevOps as an Anti-Pattern

In many ways, DevOps can be seen as an anti-pattern, a rejection of the
idea that operations and development should be separate silos. That is,
DevOps has emerged as a response to a common problem that arises
in the conflict between operations and development teams.

In traditional software development, with waterfall-based meth-
odology, the development teams and operations teams often function
under separate leaders, sometimes even under separate organizations
altogether. This organizational structure invites inherent conflict, with
development teams focusing on delivering features and operations
teams focusing on stability. Not only were these teams focused on sep-
arate things, these teams were often aligned around separate and com-
peting goals with compensation tied directly to these goals. Operations
teams receive bonuses based on system availability and development
teams receive bonuses based on the number of features built. This
underlying structure causes conflict between teams and creates delays
in getting products to customers, which meet both their functional and
nonfunctional requirements.

12	 The DevSecOps Playbook	

In addition to the inherent conflict based on separation of opera-
tions and development teams, this structure coupled with a waterfall-
based approach ensured multiple manual handoffs, which, by their
nature, create an opportunity for delay.

Development teams handed off the product to the operations
teams, who would then begin running through a rigorous set of tests to
ensure the application is “ready for production.” Only after all devel-
opment was complete would the operations teams begin looking at the
product. Extensive performance testing would be performed, and the
maintainability of the product would be reviewed. Invariably, defects
were discovered, and the product would be sent back to development
for correction. This process fostered a blame-based culture that forced
the already burdened development teams to constantly refocus, ensur-
ing further delays.

The Changing Relationship Between
Development and Operations

I remember many years ago, applying for my first job leading
operations teams. The interviewer asked me how I felt about
and handled the conflict between operations and development.
Now this was back in the days when the company was still
releasing their product on CD, so not only was DevOps not a
thing, but many of the enabling technologies hadn’t been
invented yet.

My answer was something along the lines that it was a
healthy tension. This tension was, in fact, useful to have one
team that prioritized feature development and another that
prioritized stability and, as long as they worked together with
open dialogue, a healthy balance would emerge.

My beliefs have changed since then and so has the tech-
nology. With the advent of DevOps, we can deliver features to
market quickly without sacrificing stability, and these princi-
ples apply to security too!

	 Introducing DevSecOps	 13

DevOps emerged as a rejection of this approach. With a focus on
collaboration, it sought to tear down the barriers between teams, to
break through the inherent conflict between development and opera-
tions, and, in so doing, to deliver better products to market that
addressed both the functional and nonfunctional requirements in a
much timelier and more transparent way.

Agile and DevOps

Both the Agile and DevOps methodologies have roots in Lean manu-
facturing. Dating back to the 1990s, Agile focuses on development and
quality assurance working together to deliver incremental value to cus-
tomers. While more recent, DevOps takes these same concepts and
extends them to operations, building on many of the same principles
and practices.

Inherent Conflict Between Development and
Operations

At another company, I remember sitting cramped in a small
conference room with 20 other development and operations
engineers fervently arguing with the CTO that the product
was not ready to be released. (If you are too young to remem-
ber times when this was commonplace, count yourself lucky!)
I argued that the product had major known defects and that
performance testing was not complete. The CTO was arguing
that they had a major market event coming up and the launch
of the product was based around this one event. In addition,
customers had been promised that this product would be ready,
and the date of launch had already been communicated.

I lost that argument. The product was launched with all
the known problems. We spent the next two weeks in a strug-
gle to troubleshoot problems while fixing known issues and
investigating new complaints. Teams worked day and night
just to ensure the product stayed up. The customer experience,
and team morale, suffered significantly.

14	 The DevSecOps Playbook	

If you look at the goals of Agile and DevOps, you find that they
are strikingly similar. Look at the value Agile and DevOps deliver. That
is, look at the “why” of DevOps, and look at the “why” of Agile. When
you look closer, you discover that the goals of both are to get value to
the customer quicker and to rapidly react to changing market demands.
DevOps takes the principles introduced in Agile and extends them
beyond code check-in to deployment and operations.

DevOps takes the principles introduced in Agile and extends them
beyond code check-in to deployment and operations.

As the goals of Agile and DevOps align, it is not surprising to find
significant overlap in the practices that surround them. In many ways,
the intersection of DevOps and Agile relates to a culture of collabora-
tion and modern technical practices and processes that emerge from
that culture. Processes such as continuous testing and the small batch
deployment help ensure the rapid delivery of working products to the
customer. DevOps takes Agile concepts and extends them beyond the
build so you can amplify Agile by implementing DevOps practices.7

DevOps and ITSM

There is a prevalent myth that DevOps and IT Service Management
(ITSM) and the IT Infrastructure Library (ITIL) are incompatible.
However, this supposition has very little basis. ITIL is a framework
from which you can take or leave portions you like, and, in fact,
this framework provides many useful paradigms for DevOps
implementations.

Contrary to the myth, there is a considerable amount of synergy
between ITIL and DevOps. If you understand ITIL as a process
framework and see DevOps as, primarily, a culture of collaboration,
there is no reason you cannot have a process framework integrate very
well with a culture of collaboration. In fact, the process framework of
ITIL can support the culture of collaboration. If you look at the ITIL

7 Mack, Sean. “Innovate ITIL: A DevOps Approach to the ITIL Framework.”
DZone. August 2, 2018. https://dzone.com/articles/innovate-itil-a-
devops-approach-to-the-itil-framew.

	 Introducing DevSecOps	 15

process for problem management, incident management, or change
management and approach these with a focus on DevOps principles
such as collaboration, transparency, learning, and automation, you can
build DevOps-aligned processes to support the business.

Many others have noted the synergies between DevOps and
ITIL. At CIO.com, Barclay Rae writes, “We need the key elements that
are found in both ITSM and DevOps, whether we use these explicitly
or not. DevOps is much more than just automated development; it
involves collaboration and a blame-free culture. As well, ITSM/ITIL
shouldn’t be pigeonholed as an administrative burden, but rather used
in an Agile way.”8

The ITIL process framework is just that, a framework. It is not a
mandate that “thou must fill out 20 pages of documents to release soft-
ware” (although some overly bureaucratic implementations certainly
make it feel that way). When you understand the IT Infrastructure
Library as a framework, it becomes evident that there is no reason you
cannot apply DevOps principles within this framework to make your
technology operations more streamlined. By taking a DevOps approach
to your change process definition and implementation, you can drive
safer releases rapidly, you can ensure better communication between
your teams, you can drive quicker resolution to incidents, and you can
ensure you keep your focus keenly on delivering value to your custom-
ers quickly.9 You will delve deeper into how you can take a DevOps
approach to ITIL processes in Chapter 4, “DevSecOps Process.”

DevSecOps Overview

Put simply, DevSecOps is the subset of DevOps focused on cybersecu-
rity. It is critical to fully understand DevOps. In many ways, DevSecOps
is the intersection of development, quality assurance, operations, and
cybersecurity, as shown in Figure 1.2.

8 Rae, Barclay. “ITSM Vs. DevOps: Which Side Are You On?” CIO. May 15, 2017. www
.cio.com/article/229983/itsm-vs-devops-which-side-are-you-on.html.
9 Mack, Sean, and Christopher Lee. “Amplify Agile With DevOps.” LinkedIn. May
19, 2020. www.linkedin.com/pulse/amplify-agile-devops-sean-d-
mack-mba.

http://cio.com
http://www.cio.com/article/229983/itsm-vs-devops-which-side-are-you-on.html
http://www.cio.com/article/229983/itsm-vs-devops-which-side-are-you-on.html

16	 The DevSecOps Playbook	

Agile focuses on the overlap of development and quality assur-
ance; DevOps focuses on the interconnectivity between development,
quality assurance, and operations; and DevSecOps focuses on the con-
nection between development, quality assurance, operations, and
cybersecurity (see Figure 1.3).

This view of Agile, DevOps, and DevSecOps is, perhaps, a bit too
simplistic. Agile never excluded operations or security. In fact, it
provides a model for prioritizing operations and security work. In

Quality
Assurance

Development

Cybersecurity

DevSecOps

Operations

Figure 1.2  DevSecOps can be though of as intersection of develop-
ment, operations, quality assurance, and cybersecurity.

Quality
Assurance

Development

DevOps

Operations

Quality
Assurance

Development

Cybersecurity

DevSecOps

Operations

Agile

Quality
Assurance Development

DevOps + Security = DevSecOps

Figure 1.3  While Agile focuses on the development process, DevOps
adds focus on the operational aspects of the product life cycle, and
DevSecOps emphasizes security.

	 Introducing DevSecOps	 17

addition, the small batch sizes and rapid iteration are ideally suited for
reducing the scope of defects that might be introduced and addressing
them rapidly when they are introduced.

Similarly, DevOps never explicitly excluded cybersecurity. In fact,
DevOps was always meant to include it. As DevOps is based on the
idea that value can be delivered faster through collaboration, we should
expect that this collaboration should extend to security. In the article
“Surprise! Broad Agreement on the Definition of DevOps,” Eric
Minick writes of “community leaders and analysts writing, ‘No, no it
really should be Dev_____Ops’ where the blank is filled in by their
own specialty. Examples are DevQAOps, DevOpsSec, DevSecOps,
BizDevOps, and, of course, Bussdevtestqanetsecnetops.”10 But, of
course, Bussdevtestqanetsecnetops would not have caught on as well as
DevOps. The point is that DevOps is meant to be inclusive and, as
such, should certainly include cybersecurity.

But too often it does not. Security teams are frequently excluded
from the DevOps discussion. It is also the case that security teams have
been slow to adapt to the DevOps mindset. With a culture rooted in
risk mitigation, security teams are often accustomed to operating in a
silo surrounded by secrecy. By their nature, the data that security teams
deal with can be highly sensitive and require higher levels of secrecy.
This confidential nature and secretive culture has, in many cases,
delayed adoption of DevOps principles around transparency and col-
laboration. It is the purpose of this book to explore how the DevOps
principles can be applied to cybersecurity in a way that does not com-
promise the privacy or security of the customer data. While it is pos-
sible to break down the walls between teams and make security an
integral part of product development, it requires a shift of technical
practices and cultural norms.

Rugged DevOps Overview

Like DevSecOps, Rugged DevOps is an extension of DevOps that
places a priority on security. Rugged DevOps is based on the Rugged
Software movement, which was started by Joshua Corman, David Rice,

10 Minick, Eric. “Surprise! Broad Agreement on the Definition of DevOps.” DevOps.
Com. May 13, 2015. https://devops.com/surprise-broad-agreement-on-
the-definition-of-devops.

https://devops.com/surprise-broad-agreement-on-the-definition-of-devops/
https://devops.com/surprise-broad-agreement-on-the-definition-of-devops/

18	 The DevSecOps Playbook	

and Jeff Williams in 2010. The Rugged Software movement focuses on
developing software that was highly available, secure, and resilient.
Similar to DevOps, Rugged Software also emphasizes the cultural
aspects of software development focusing on organizational elements
such as cooperation and experimentation.11

In 2012, Corman, Rice, and Williams teamed up with several oth-
ers to publish the Rugged Handbook, which included the Rugged
Manifesto. The Rugged Manifesto laid out the core principles of
Rugged Software development as follows:

I am rugged because I refuse to be a source of vulnerability
or weakness.

I am rugged because I assure my code will support its mission.

I am rugged because my code can face these challenges and
persist in spite of them.

I am rugged, not because it is easy, but because it is necessary and
I am up for the challenge.

Rugged DevOps is similar to DevSecOps in that both are based
on DevOps and focus on security. However, where Rugged focuses on
prioritizing security, DevSecOps focuses on collaboration and extend-
ing the principles of DevOps to security.

DevSecOps Business Results

It is important when you approach any sort of transformation that you
look at the “why.” You must truly understand the motivating factors
that justify a costly and time-consuming undertaking. It is not enough
to do DevOps simply because it is the latest buzzword or because your

11 Corman, Joshua, David Rice, and Jeff Williams. “The Rugged Manifesto.” Rugged
Software. February 5, 2010. https://ruggedsoftware.org.

http://ruggedsoftware.org

	 Introducing DevSecOps	 19

boss told you to do it. If you are undertaking an effort that will require
a substantial amount of work and fundamentally shift the culture of
your company, you must do it to achieve bottom-line business results.

The 2021 “State of DevOps Report” by the DevOps Research
and Assessment (DORA) team at Google Cloud provided details about
the impact that DevOps is having for high-performing organizations.
The report found that high-performing DevOps teams deploy code
973 times more frequently than low performers. These teams also had
a lead time to change (as measured by the time from code commit to
code deploy) 6,570 times faster than the lower-performing teams.

In addition, these same high-performing teams had a mean fail-
ure rate less than a third (7.5 percent versus 23 percent) of their lower-
performing counterparts. And, when failures did occur, they restored
service 6,570 times faster than low-performing teams.12 So, not only
are high-performing teams delivering code faster to production, but
they are also providing far greater levels of availability.

12 Kersten, Nigel, McCarthy, Kate, & Stahnke, Michael. 2021 State of DevOps
Report. Puppet, 2021.

Business Results from DevOps
We saw this same sort of business-level improvement in our
implementation of DevOps at Wiley & Sons Ltd. During the
rollout of DevOps, the average flow time, as measured from
code commit to production, dropped by 11 percent. In addi-
tion, the lead time, as measured by flow time plus time in the
backlog, decreased by 9 percent.

(continues )

http://cloud.google.com/blog/products/devops-sre/announcing-dora-2021-accelerate-state-of-devops-report
http://cloud.google.com/blog/products/devops-sre/announcing-dora-2021-accelerate-state-of-devops-report

20	 The DevSecOps Playbook	

At the same time that lead times fell, our flow velocity of
delivery increased by an average of 4.5 percent.

Not only were we able to deliver software to market faster,
but we saw significant improvements in stability. Our average

(continued )

70

60

50

40

30

20

10

0

Ju
n-

21

Ju
l-2

1

Aug
-2

1

Sep
-2

1

Oct-
21

Nov
-2

1

Dec
-2

1

Ja
n-

22

Feb
-2

2

M
ar

-2
2

Apr
-2

2

M
ay

-2
2

Flow Time

Avg Flow/Lead Time - Done (Days)

Lead Time

Flow time and flow lead time fell dramatically at Wiley with
the implementation of DevOps practices.

3500

3000

2500

2000

1500

1000

500

0

Ju
n-

21

Ju
l-2

1

Aug
-2

1

Sep
-2

1

Oct-
21

Nov
-2

1

Dec
-2

1

Ja
n-

22

Feb
-2

2

M
ar

-2
2

Apr
-2

2

M
ay

-2
2

Flow Velocity - Done (Work Items)

Features Defects Debt Risk

Flow velocity increased at Wiley as the pace of delivery improved.

	 Introducing DevSecOps	 21

mean time to restore (MTTR) improved by 25 percent, with
MTTR for top-priority incidents (P1) improving by 83 percent!

Perhaps most important, overall employee engagement
increased by 2 percent while these massive changes and improve-
ments were happening.

384:00:00

336:00:00

288:00:00

240:00:00

192:00:00

144:00:00

96:00:00

48:00:00

0:00:00

Ju
n-

21

Ju
l-2

1

Aug
-2

1

Sep
-2

1

Oct-
21

Nov
-2

1

Dec
-2

1

Ja
n-

22

Feb
-2

2

M
ar

-2
2

Apr
-2

2

Ju
n-

22

M
ay

-2
2

MTTR (Hours)

P1 P2 P3 P4 P5

The time to resolve issues as measured by MTTR fell across
all incident priorities.

Jan-21

Jan-20

0% 20% 40% 60%

Unfavorable

80% 100%

5%

5%

18%

16%

77%

79%

Neutral

Employee Engagement

Favorable

Employee engagement increased by 2 percent between
January 2020 and January 2021.

(continued )

22	 The DevSecOps Playbook	

If you can see these sorts of changes by implementing DevOps,
think about the benefits when you begin to use these same principles
for cybersecurity.

Conclusion

DevSecOps takes the principles of DevOps and applies them to secu-
rity. Drawing from Lean and focusing on collaboration, DevSecOps
presents a fundamentally new approach to cybersecurity. DevSecOps
draws on the principles of Lean as well as others, such as flow, continu-
ous learning, and automation codified in Kim’s Three Ways and the
CALMS model from Willis, Edwards, and Humble.

Although DevOps has been around for some time now and is, in
many ways, entering a more mature state, DevSecOps is still new for
many companies. If you are looking for a better way to do cybersecu-
rity and if you are interested in learning how to take what people have
learned from DevOps and apply those principles to security,
keep reading.

The following chapters explore how the principles of DevOps
can be applied to all aspects of cybersecurity. From people to process
to technology, DevSecOps requires a different approach, but this new
approach delivers real results. Taking a collaborative approach to
cybersecurity and applying the principles of DevOps will enable you to
deliver software faster without sacrificing security.

23

Chapter 2

The Evolution of Cybersecurity
(from Perimeter to Zero Trust)

The Evolution of the Threat Landscape

To best understand DevSecOps, it should be understood in the broader
context of the evolution of technology and cybersecurity. DevSecOps
has emerged, in part, because technologies such as CI/CD enable com-
panies to work in new ways.

Evolution of Infrastructure

Since the 1980s, massive shifts in the technology landscape have given
rise to new threats and new security responses. One of the most funda-
mental to the cybersecurity approach is the expansion and erosion of
the network perimeter. DevSecOps offers key strategies for addressing
these new challenges.

Traditional cybersecurity approaches focused on securing the
perimeter. This made sense in legacy network environments where all
of the critical systems and data for a company were contained within
the company walls. When all the company’s data, systems, and employ-
ees were located in one location, securing that location was enough. By
providing network security at the perimeter, engineers could provide a
walled garden, thus protecting the crown jewels within. However, as
technology has moved from a centrally hosted, on-premises model to
a cloud-based model, the validity of this approach has rapidly deterio-
rated. The “Verizon 2022 Data Breach Investigation Report” notes
that “the main ways in which your business is exposed to the Internet

24	 The DevSecOps Playbook	

are the main ways that your business is exposed to the bad guys.”1 As
this perimeter has become increasingly complex and porous, new
approaches to cybersecurity have had to emerge.

The proliferation of the Internet has been a major factor in
expanding the ways in which attackers can gain access to corporate
resources. Since the launch of the public Internet in 1991, the borders
for business have been continuing to expand. If you look back on the
history of cyber-attacks, it highlights this point. The AIDS Trojan, also
known as PC Cyborg Trojan, was the first example of ransomware, a
class of breach used to extort money from a company. This Trojan
horse was distributed in 1989 via thousands of floppy disks, which were
mailed to users and installed when unsuspecting users ran the program
on the disk. This is a stark reminder that, at that time, to access users’
systems, one had to be physically near a system or introduce malicious
code. Today, with the ubiquity of email and the Internet, all attackers
need to do is get users to click a link to download malicious code.

This same issue has been significantly worsened as companies
have increasingly moved to globally distributed, hybrid (work-from-
home/corporate office) workforces and work-from-anywhere models.
When all people working at a company were physically located at a
company’s office, providing strong premise-based network perimeter
security was an effective security mechanism. However, with the advent
of COVID-19, more companies are implementing hybrid workforce
strategies with a significantly larger percentage of the population
working from home. According to Gallup research, as of October
2021, 45 percent of full-time employees work from home at least part
of the time.2 This means that the attack surface that attackers can focus
on is no longer limited to the periphery of the network and the office—
now the attack surface extends to employees homes, to airports, and to
public parks, in fact, today’s workforce may be anywhere there is a
network connection.

1 Bassett, Gabriel, C. D. Hylender, Phillip Langlois, Alex Pinto, and Suzanne Widup.
2022. Data Breach Investigations Report. Verizon.
2 Saad, Lydia, and Ben Wigert. “Remote Work Persisting and Trending Permanent.”
Gallup. October 13, 2021. https://news.gallup.com/poll/355907/
remote-work-persisting-trending-permanent.aspx.

http://news.gallup.com/poll/355907/remote-work-persisting-trending-permanent.aspx
http://news.gallup.com/poll/355907/remote-work-persisting-trending-permanent.aspx

	 The Evolution of Cybersecurity (from Perimeter to Zero Trust)	 25

In addition, companies are increasingly moving to bring-your-
own-device (BYOD) policies, which allow unsecured and unmanaged
devices onto the corporate network. In the Forbes article “BYOD
Reignited: How to Get It Right This Time,” Dean Hager notes that,
after a downturn in 2018, the COVID-19 pandemic has reignited the
move for employees to bring their own devices to work. Figures
2.1.1–2.1.7 illustrates the continued expansion and growing com-
plexity of the threat surface landscape.

Company Headquarters

Mainframe

Figure 2.1.1  Early computer systems and data were contained in the
company headquarters or the mainframes which were often located
within the headquarters.

Office

OfficeOffice

Office

Company Headquarters

Mainframe

Figure 2.1.2  Interconnected offices expanded the network footprint.

Company
Headquarters

Office Office Office Office

Datacenter

Figure 2.1.3  Data centers were co-located or hosted outside of the
company headquarters further expanding the network perimeter and
data footprint.

26	 The DevSecOps Playbook	

Company
Headquarters

Office Office Office Office

Cloud Hosting Datacenter

Figure 2.1.4  Increased adoption of cloud providers such as AWS, GCP,
and Azure provided new locations for companies’ data, applications,
and services.

Company
Headquarters

Office Office Office Office

Cloud Hosting
Provider

SaaS Provider

Datacenter

Figure 2.1.5  SaaS providers such as Salesforce and SAP introduced
new locations where critical data resides outside the direct control of
the company.

Company
Headquarters

Datacenter

Office Office Office Office

Datacenter

SaaS Provider SaaS Provider SaaS Provider

Cloud Hosting
Provider

Cloud Hosting
Provider

Cloud Hosting
Provider

Figure 2.1.6  As cloud adoption accelerated multi-cloud approach fur-
ther increased the spread of company data.

	 The Evolution of Cybersecurity (from Perimeter to Zero Trust)	 27

Having a “a hard crunchy outside and a soft chewy center” is no longer
a viable security posture.3

Because of the increasingly complex perimeter, cybersecurity
must move away from simply securing the perimeter, an approach
often referred to as the castle-and-moat approach. Simply having a cas-
tle and moat is no longer sufficient, nor is it practical if the land you are
trying to protect extends well beyond the castle walls. Today, you must
assume that you need to protect people and land well beyond the cas-
tle. You must also assume the enemy is already inside. As Stephanie
Balaouras noted in her 2010 Forrester report, having a “a hard crunchy
outside and a soft chewy center” is no longer a viable security posture.
Today’s security approach must provide security at every layer, from
the network to the application to the database. This has given rise to
the concepts of Defense in Depth and Zero Trust security, which are
explored later in this chapter.

Company
Headquarters

Datacenter

Datacenter

Office

Home
Office

Home
Office

Home
Office

Home
Office

Home
Office

Home
Office

Home
Office

Home
Office

Office Office Office

Cloud Hosting
Provider

Cloud Hosting
Provider

Cloud Hosting
Provider

SaaS Provider SaaS Provider SaaS Provider

Figure 2.1.7  The global remote and hybrid work environment acceler-
ated by the COVID-19 pandemic rapidly increased the locations where
employees are working adding further complexity to companies’ network.

3 Kindervag, John. 2010. No More Chewy Centers: Introducing The Zero Trust Model
Of Information Security. Forrester.

28	 The DevSecOps Playbook	

The Evolution of Application Delivery

The evolution of application delivery from physical media in the 1990s
and early 2000s to web-based updates and software-as-a-service (SaaS)
platforms has played a significant role in the approach to application
development and application security. Early software was delivered via
disk or CD. Companies developed software that would then be put on
a physical medium, which would be produced many thousands of times
and distributed to customers. With this type of distribution system,
any changes, new features, or bug fixes required reproducing the phys-
ical media and redistribution. Because of this, it was critical that the
application being put on physical media be a fully functional applica-
tion with as few defects as possible.

Developing a fully functional, complete product and distributing
it via physical media made the idea of incremental updates or small
batch delivery impractical, if not impossible. Software updates required
physical shipment of thousands of new disks or CDs. This is analogous
to automotive production. A car is developed and delivered with all the
features that it will have for the life cycle of the vehicle. Only in extreme
circumstances such as major defects are cars updated during their life
cycle. In these cases, a recall is issued, and manufacturers must spend
millions, and in some cases billions, of dollars.

Development methodologies such as waterfall were developed
for the type of applications that were being built and the distribution
mechanism of the time. With the ubiquity of the Internet and the abil-
ity to not only deliver software over the Internet, but also to update
that software regularly over the Internet, delivering in small batch
updates became a reality. This same principle is extended with SaaS
applications. SaaS applications—such as Salesforce, Microsoft 365, and
Slack—are hosted and managed by the provider and do not require
delivery or installation. SaaS-based applications can be instantly
updated by the software vendor for all users by updating the
hosted platform.

It is important to keep in mind that legacy software development
methodologies were not “wrong” but that new technologies have
emerged that enable DevOps and DevSecOps. With an understanding
of the technologies behind this shift, you may be better able to lever-
age it correctly and be prepared for the next shift.

	 The Evolution of Cybersecurity (from Perimeter to Zero Trust)	 29

The Evolution of the Threat Landscape

Since the 1970s, cybercriminals have been finding new ways to attack
systems. As the attack surface has increased and the value of breaches
has increased, so too has the ferocity of the attacks. Attacks have
evolved from relatively simple worms written by individual developers
to advanced, multistage attacks launched by nation-states.

Computer viruses date as far back as the 1970s. One of the first
ever computer viruses was written by Bob Thomas in 1971 as a simple
computer program designed to move between computers on
ARPANET, the predecessor to the Internet.4 The program simply
moved between computers and displayed the message “I’m the
Creeper: catch me if you can!” and was subsequently named the
Creeper. Bob Thomas’s colleague Ray Tomlinson responded by writ-
ing a program that similarly moved between computers and deleted
the Creeper, which became known as the “the Reaper,” thus the Reaper
and the Creeper. While the Creeper did not have malicious intent or
create significant damage, it was a portent of things to come and the
ongoing battle between hackers and defenders. It was also evidence of
the power and the danger of computers that were connected, a danger
that grew exponentially with the launch of the Internet.

In 1988, the first Denial-of-Service attack was launched. Denial-
of-Service attacks attempt to render resources unavailable by making a
large number of requests with the intention of overloading the resource
such as application servers. The first such instance was an Internet
worm, dubbed the “Morris worm” after its creator, Robert Tappan
Morris, a student at Cornell University. The source code is as follows:

static mainloop() /* 0x2302 */
{
 long key, time1, time0;
 time(&key);
 srandom(key);
 time0 = key;
 if (hg() == 0 && hl() == 0)
 ha();

4 Wikipedia contributors, “Creeper and Reaper,” Wikipedia, The Free Encyclopedia,
https://en.wikipedia.org/w/index.php?title=Creeper
_and_Reaper&oldid=1155116768.

http://en.wikipedia.org/wiki/Creeper_and_Reaper
http://en.wikipedia.org/wiki/Creeper_and_Reaper

30	 The DevSecOps Playbook	

 checkother();
 report_breakin();
 cracksome();
 other_sleep(30);

 while (1) {
/* Crack some passwords */

 cracksome();
 /* Change my process id */
 if (fork() > 0)

exit(0);

 if (hg() == 0 && hi() == 0 && ha() == 0)
hl();

 other_sleep(120);
 time(&time1);
 if (time1 - time0 >= 60*60*12)

h_clean();
 if (pleasequit && nextw > 0)

exit(0);
 }

}5

While its creator claimed it was intended simply to gauge the size
of the Internet, a bug in the code led it to infect the same computer
multiple times causing it to crash.6 Morris was subsequently convicted
of a felony under the Computer Fraud and Abuse Act.7 Critically, the
Morris worm prompted the creation of the Computer Emergency
Response Team (CERT), a federally funded research center focused on
improving the security of software and the Internet.

5 Martini, Arialdo. “Arialdomartini / Morris-worm.” GitHub. November 24, 2020.
https://github.com/arialdomartini/morris-worm/blob/master/worm.c.
6 “The Fascinating Evolution of Cybersecurity.” La Trobe University. February 15,
2018. www.latrobe.edu.au/nest/fascinating-evolution-cybersecurity.
7 Wikipedia contributors, “Morris worm,” Wikipedia, The Free Encyclopedia,
https://en.wikipedia.org/w/index.php?title=Morris_worm&
oldid=1161946775.

http://github.com/arialdomartini/morris-worm/blob/master/worm.c
http://www.latrobe.edu.au/nest/fascinating-evolution-cybersecurity/
https://en.wikipedia.org/w/index.php?title=Morris_worm&oldid=1161946775
https://en.wikipedia.org/w/index.php?title=Morris_worm&oldid=1161946775

	 The Evolution of Cybersecurity (from Perimeter to Zero Trust)	 31

The 1990s saw the proliferation of email-based attacks against
enterprises—such as “Melissa” and “ILOVEYOU”—which led to the
rise in antivirus software and gave birth to the companies that would
dominate cybersecurity protection for years to come. During this time,
the proliferation of the Internet also gave rise to many more paths to
launch an attack, otherwise known as attack vectors. Self-replicating
popup ads were at first just a nuisance but increasingly gave rise to
more invasive malware, spyware, and trojans.

The 2000s saw the evolution toward attacks on corporations to
steal consumer information with large-scale data breaches, like the
2007 data breach of TJ Maxx. It was, at the time, the largest breach of
consumer data, with up to 45.6 million stolen credit and debit
card numbers.

Since the 2010s, attacks have evolved to be increasingly complex
and breadth. The 2014 attack on Target’s retail point of sale compro-
mised more than 40 million credit and debit card accounts. In 2017,
the Equifax data breach exposed the private data of more than 150 mil-
lion people.

More recently, the rise of well-funded, organized crime syndi-
cates and nation-state actors driving major cybercrime attacks has
exposed existential and global vulnerabilities. These attacks are increas-
ingly sophisticated, with multiple attack vectors. In addition, attacks
include complex movement from the breached system to adjacent sys-
tems, commonly referred to as lateral movement, once breaches have
occurred. This has corresponded with a rise in ransomware attacks
precipitated by the emergence of crypto currencies, making it easier to
collect payment and more difficult to track the source of the attacker.

In conjunction, there has been an increase in supply chain attacks,
attacks aimed at intermediaries to get to the intended targets. Supply
chain attacks include attacks on intermediary vendors, open-source
products, or products and services that are used as part of the software
development process. The SolarWinds breach in 2020 was one of the
best-known examples of a supply chain attack, where attackers injected
malicious code into Orion, the enterprise network monitoring tool
used by more than 18,000 customers.

Cybersecurity continues to evolve with attacks growing in fre-
quency and scale. Cybersecurity professionals must proactively and

32	 The DevSecOps Playbook	

rapidly evolve their approach if they are to keep their customers and
companies safe.

The Evolution of Cybersecurity Response

As the threat landscape has developed, so too has the responses to these
threats. To address the growing complexity of the attack surface and
the veracity of the attackers, new methods of defense have had to
evolve. Both Defense in Depth and Zero Trust have emerged as ways
to address this changing landscape. The concepts included in these
approaches underpin many of the approaches taken in DevSecOps.

Defense in Depth

Defense in Depth takes a layered approach to security, providing secu-
rity at every layer of operations and infrastructure. The National
Institute of Standards and Technology (NIST) defines Defense in Depth
as “Information security strategy integrating people, technology, and
operations capabilities to establish variable barriers across multiple
layers and dimensions of the organization.”8

Defense in Depth came from the National Security Agency
(NSA) and was developed based on a military strategy with the same
name. “The Defense in Depth (DiD) originated in the military arena
as a defensive strategy aimed to protect the population while preserv-
ing the effectiveness of defense installations. It deals with slowdown of
the progression of an attack by using different successive layers, such
as fortifications, troops, and field works, instead of concentrating all
resources onto a single defensive line.”9

Defense in Depth recognizes that, because the perimeter is dete-
riorating and/or even nonexistent, it is necessary to have defense at
every layer. If a perimeter exists at all, you must assume the attacker has

8 “Defense-in-depth.” NIST Computer Security Resource Center CSRC. NIST,
February 15, 2018. https://csrc.nist.gov/glossary/term/defense_
in_depth.
9 Chierici, Lorenzo, Gian Luigi Fiorini, Stefano La Rovere, and Paolo Vestrucci3.
“The Evolution of Defense in Depth Approach: A Cross Sectorial Analysis.” Open
Journal of Safety Science and Technology Vol. 6, no. No. 2 (2016). Accessed March 31,
2022. https://doi.org/10.4236/ojsst.2016.62004.

http://csrc.nist.gov/glossary/term/defense_in_depth
http://csrc.nist.gov/glossary/term/defense_in_depth
https://doi.org/10.4236/ojsst.2016.62004

	 The Evolution of Cybersecurity (from Perimeter to Zero Trust)	 33

already breached it and ensure that other attack vectors are protected
as well. In addition, Defense in Depth recognizes that security is not
limited to the perimeter but rather extends beyond technology to the
people involved.

As illustrated in Figure 2.2, this layering approach should include
the following:

•	 Perimeter

•	 Network

•	 Host

•	 Application

•	 Data

At each layer, different security measures are put in place to pro-
tect that layer. Protections at each layer include items such as these:

•	 Perimeter security includes the physical and technical bounda-
ries, including things such as physical security (e.g., deadbolt
locks), intrusion detection systems (IDSs), and email security.

•	 Network security includes all security related to the networks
that an organization uses to transmit information and may
include items such as firewalls, demilitarized zones (DMZs),
and virtual private networks (VPNs).

Perimeter

Network

Application

Host

Data

Figure 2.2  Defense in Depth takes a layered approach to security with
protection at every level.

34	 The DevSecOps Playbook	

•	 Application security includes all security of the technical appli-
cations and services and includes vulnerability scanners, soft-
ware composition analysis (SCA), static application security
testing (SAST), and dynamic application security testing
(DAST).

•	 Data security includes the protection of a company’s digital
information. Protection at this layer includes things such as
identity and access management (IAM), data classification, and
encryption.

While this list is in no way meant to be comprehensive, it should
clearly illustrate that, even within a layer, several types of protection
may be required. Robyn Wright, CISO at Wiley, uses the analogy of a
house that needs protecting. You may need a fence and a camera to
protect the area around your house as well as window locks and door
locks to ensure no one enters. The door itself may even have multiple
types of locks. When you look at protecting the enterprise business,
many options may be needed at each layer—the number and types of
those protections will depend on the size, maturity, and risk tolerance
of a given organization.

In addition to providing technology solutions at each layer of the
system, Defense in Depth includes operational and governance activi-
ties by both people and technology. These leverage the tooling at each
layer to help ensure the security of the system as a whole. Telemetry is
the measurement data collected by the tools and instrumentation
designed to measure a systems performance. Operations teams lever-
age telemetry within the systems to provide 24/7/365 support and
response when critical issues arise.

Governance functions track the data to ensure that not only are
companies adhering to compliance requirements but also that the tools
are operating effectively. For example, a governance team may be
responsible for tracking all vulnerabilities reported from various
sources and ensuring that they are remediated within specified service
level agreements (SLAs). It should be noted that, when taking a
DevSecOps approach, it is critical that operations and governance

	 The Evolution of Cybersecurity (from Perimeter to Zero Trust)	 35

functions work in tight collaboration with application development
teams and not as separate silos (see Figure 2.3). Chapter 7, “Driving
Transformation in Enterprise Environments,” covers this in more
detail. For now, suffice to say that having a governance body that func-
tions as a separate silo to impose rules on development teams is anti-
thetical to the DevSecOps approach.

With the disintegration of the perimeter, network or perimeter
security is no longer enough. The modern enterprise requires a
Defense in Depth that includes defense at each layer as well as govern-
ance and operational management to coordinate across all layers.

Zero Trust

Like Defense in Depth, Zero Trust is another strategy to address the
perimeterless business world we operate in today. Zero Trust provides
a new approach to security that is based around the idea that organiza-
tions should never automatically assume trusted relationships and
should always require verification. The key concept of Zero Trust
strategy is “never trust, always verify.” NIST Special Publication 800-
207 defines Zero Trust as “a security concept centered on the belief
that organizations should not automatically trust anything inside or

Perimeter

G
ov

er
n

an
ce

Network

Application

Host

Data

O
p

er
at

io
n

s

Figure 2.3  In addition to security at every level, Defense in Depth
includes operational and governance activities to help manage across all
the layers.

36	 The DevSecOps Playbook	

outside its perimeters and instead must verify anything and everything
trying to connect to its systems before granting access.”10

Zero Trust may rely on Defense in Depth strategies, but the two
are not the same. While Defense in Depth focuses on providing secu-
rity at every layer, Zero Trust focuses on the assumption that trust
should never be assumed. So, it is quite possible that a company could
have many layers of defense but still use a single source of authentica-
tion to prove identity that’s then accepted at every layer and, therefore,
not adhere to core Zero Trust principles.

The term Zero Trust was initially coined by Stephen Paul Marsh
in 1994 in his doctoral thesis on computer security at the University of
Stirling in Scotland. In attempting to quantify the trust relationship,
Marsh describes situations in which trust equaled 0.11 However, the
NIST special publication on Zero Trust notes, “The concept of Zero
Trust has been present in cybersecurity since before the term ‘Zero
Trust’ was coined.” The special publication notes that work in the
Jericho Forum in 2004 as well as work by the Defense Information
Systems Agency (DISA) and the Department of Defense discussing
security approaches moving away from perimeter-based security.

In 2009, the concept took a significant step forward when Google
implemented a Zero Trust architecture referred to as BeyondCorp.
BeyondCorp is a cybersecurity architecture that developed access poli-
cies based on a specific device, the device state, and the user. The term
was popularized in 2010 by John Kindervag, an analyst at Forester
Research in his publication “No More Chewy Centers: Introducing
The Zero Trust Model Of Information Security.”12 This concept was

10 Rose, Scott, Oliver Borchert, Stu Mitchell, and Sean Connelly. “Zero Trust
Architecture.” (2020). Accessed March 31, 2022. https://doi.org/10.6028/
NIST.SP.800-207.
11 Marsh, Stephen P. “Formalising Trust as a Computational Concept.” Submitted in
partial fulfilment of the degree of Doctor of Philosophy, University of Stirling, 1994.
12 Kindervag, John. “No More Chewy Centers: The Zero Trust Model Of
Information Security.” Forrester, (2016). Accessed March 31, 2022.

https://doi.org/10.6028/NIST.SP.800-207
https://doi.org/10.6028/NIST.SP.800-207

	 The Evolution of Cybersecurity (from Perimeter to Zero Trust)	 37

expanded on in 2018 when NIST published Special Publication 800-
207, “Zero Trust Architecture,” and in 2021 when the Cybersecurity and
Infrastructure Security Agency (CISA), an agency of the United States
Department of Homeland Security, published version 1.0 of the Zero
Trust Maturity Model, which defined the five pillars of Zero Trust.13

The Cybersecurity & Infrastructure Security Agency defines the
five pillars of Zero Trust as follows:

•	 Identity—Attributes that allow systems to uniquely recognize
an entity that is trying to take action. Zero Trust has several
approaches to identity including least privilege access, move-
ment away from password toward combination of factors, and
the need to continuously validate access, not just when origi-
nally granted.

•	 Device—Any hardware asset that can connect to a network.
The Zero Trust Maturity Model entails not just validating the
identity of users but also ensuring the security of each device
they use to access services and data.

•	 Network/environment—The medium over which digital
communications flow, whether that be wireless, local area net-
works, or the Internet. Zero Trust identifies various methods
for secure network design, including segmentation, the process
of dividing the network into multiple discrete sections, and
micro-segmentation, which breaks the network down into even
smaller segments based on individual workloads. Network
protections also include encryption and machine-learning
based threat protection.

•	 Application workload—Applications and services managed
by the company corresponding to the application layer in the
Defense-in-Depth approach. Recommended activities for
protecting application workloads can include continuous
authorization, behavioral analysis, and integrated security test-
ing as part of the deployment pipeline.

13 “Zero Trust Maturity Model.” Cybersecurity and Infrastructure Security Agency
Cybersecurity Division 1.0, (2021). Accessed March 31, 2022.

38	 The DevSecOps Playbook	

•	 Data—The company’s data assets at rest and in transit,
whether it be on devices, inside storage devices, or part of
databases. Zero Trust protection techniques for data include
tagging and categorization for tracking purposes, encryption,
and strict access-based controls.

For additional information about Zero Trust and the implemen-
tation methods for the five pillars of Zero Trust, see the 2021 CISA
publication “Zero Trust Maturity Model.”

It is important to note that both Defense in Depth and Zero Trust
have often been coopted as buzzwords by marketing teams. While
both provide valuable security models, they are often used to sell
products in misleading ways. Because of this, products are often
sold as “Zero Trust Solutions.” This has added confusion to the
definition of these terms, as companies have used them to fit their
products rather than as originally intended. Defense in Depth and
Zero Trust are security concepts that must be applied wholistically
and cannot be solved by any one product or service.

Shift Left

Shift Left is the concept of doing tasks earlier in the development pro-
cess than they are traditionally done. While Shift Left originally
focused on moving testing earlier in the development process, the con-
cept, and the related benefits, can be extended to reliability engineer-
ing and security engineering practices. By testing earlier in the
development process, you can significantly reduce the time and effort
it takes to address these issues—these same benefits can be enjoyed
when applied to security. Shift Left has become a critical component of
DevOps and DevSecOps because of the applicability to small batch
delivery/CI/CD and alignment with DevOps principles.

In traditional waterfall development methodologies, the software
development process is displayed left to right, from plan to develop to

	 The Evolution of Cybersecurity (from Perimeter to Zero Trust)	 39

test to deploy (see Figure 2.4). In this model, systems were fully built
and integrated with other systems before testing begins in earnest.

The Shift Left testing approach takes advantage of the fact that,
by doing testing earlier in the development process, the cost of identi-
fying and remediating defects is significantly reduced.

The term was originally introduced by Larry Smith, the chief
scientist emeritus of software productivity research (SPR), in his arti-
cle, “Shift-Left Testing” in September 2001. In this article, Smith
writes, “Shift-left testing is how I refer to a better way of integrating
the quality assurance (QA) and development parts of a software pro-
ject. By linking these two functions at lower levels of management, you
can expand your testing program while reducing manpower and equip-
ment needs—sometimes by as much as an order of magnitude.”14

While waterfall models generally include some test work up
front, such as development of test plans, the vast majority of it is done
at the end of the test cycle, leaving many defects to be found very far
into a project (see Figure 2.5).

The Shift Left model of testing brings much of the testing up
front, as shown in Figure 2.6.

Requirements
Analysis

Design

Develop

Test

Support

Figure 2.4  Traditional waterfall development methodology depicted
as proceeding from left to right from requirements analysis to support.

14 Smith, Larry. “Shift-Left Testing.” Dr. Dobb’s Journal, (2001). Accessed May 31,
222. https://web.archive.org/web/20140810171940/http://
collaboration.cmc.ec.gc.ca/science/rpn/biblio/ddj/Website/

articles/DDJ/2001/0109/0109e/0109e.htm.

https://web.archive.org/web/20140810171940/http://collaboration.cmc.ec.gc.ca/science/rpn/biblio/ddj/Website/articles/DDJ/2001/0109/0109e/0109e.htm
https://web.archive.org/web/20140810171940/http://collaboration.cmc.ec.gc.ca/science/rpn/biblio/ddj/Website/articles/DDJ/2001/0109/0109e/0109e.htm
https://web.archive.org/web/20140810171940/http://collaboration.cmc.ec.gc.ca/science/rpn/biblio/ddj/Website/articles/DDJ/2001/0109/0109e/0109e.htm

40	 The DevSecOps Playbook	

The practice of shifting left exemplifies Gene Kim’s First and
Second Ways of DevOps. By shifting testing earlier in the process, you
reduce the time to identify and remediate issues, thus increasing flow
of value key to Kim’s First Way of DevOps. In addition, shifting testing
left helps amplify and shorten feedback loops, illustrating the Second
Way of DevOps. By doing security testing closer to when the code is

Requirement

Te
st

in
g

D
ur

in
g

S
D

LC
 S

ta
ge

s

Design Development

Shift Left Model

Testing Support

Figure 2.6  Testing by development phase using a Shift Left approach
introduces significantly higher levels of testing at the beginning of the
development cycle.

Requirement

Te
st

in
g

D
ur

in
g

S
D

LC
 S

ta
ge

s

Design Development

Traditional Model

Testing Support

Figure 2.5  Testing during the traditional development cycle is heavily
weighted toward the end of the cycle.

	 The Evolution of Cybersecurity (from Perimeter to Zero Trust)	 41

actually being produced, you shorten the amount of time between
development and feedback on that work.

Benefits of Shift Left

Shifting security testing earlier in the development cycles has signifi-
cant benefits in increasing the speed of feedback to developers and
thereby reducing the effort required to address those issues. This is
because the nearer developers are to writing the code with potential
security vulnerabilities, the more familiar they will be with that code
and the easier it will be for them to correct it. If developers are not
notified of defects until weeks or months after they produce the code,
they lose the context of the work, and it can take significantly more
effort to correct.

The Cost of Technical Debt

People who have worked in large companies that have been
around for long enough have likely encountered the impact of
the increased cost of technical debt in the form of unremedi-
ated security vulnerabilities. One of the more extreme exam-
ples of this are systems that are still in production but no longer
have support. On more than one occasion, I have found signifi-
cant vulnerabilities in legacy systems whose developers are no
longer with the company or that were developed by external
companies that no longer exist.

The cost to remediate these issues requires developers
who are unfamiliar with the code to go in and determine the
cause of the vulnerabilities. At times, this may require signifi-
cant effort to reverse-engineer these systems. In addition,
because of the age and lack of knowledge about these systems,
any changes may introduce significant risk to the stability of
the system. Clearly, being able to address and remediate these
risks at the time of development would be significantly less
costly and less risky.

42	 The DevSecOps Playbook	

The data supporting this paradigm has been known for quite
some time. A study by Walter Baziuk in 1995 showed that the cost of
repairing a defect in production could be up to 880 times as expensive
as the cost of fixing a defect at the requirements phase.15 A study in
2002 from the National Institute of Standards & Technology (NIST)
stated that the cost to fix defects after product release was 30 times that
of defects found at the requirements phase.16 In Smith’s original writ-
ing on the topic of Shift Left testing, he writes, “Bugs are cheap when
caught young. You can catch bugs earlier by making QA a part of your
development, not just part of the release process.” The same concept
applies to security defects and is critical as you look at DevSecOps. If
you can include security earlier in the development process, you pro-
duce secure code while reducing the time and effort to do so. At the
same time, Jones found that significantly more defects were introduced
at the beginning of the development cycle, which makes sense in
waterfall, as this is where the bulk of the development is done. However,
it means that doing testing earlier has significant implications for
reducing the cost of developing and delivering secure products and
services (see Figure 2.7).

Several challenges arise with the delay of defect removal in addi-
tion to the time and cost to remediate. Frequently the people needed
for testing and remediation may be significantly reduced once prod-
ucts have been completed, especially products that have been com-
pleted for extended periods of time. Defects found later in the
development cycle may also require significant re-architecture or
rework. In addition, when you look at security defects, the longer these
vulnerabilities are in a product, the longer the company is at risk.

Agile and DevOps amplify the opportunities for Shift Left prac-
tices because of their focus on small batch delivery and automation.

15 Baziuk, Walter. “BNR/NORTEL: Path to Improve Product Quality, Reliability
and Customer Satisfaction.” Proceedings of Sixth International Symposium on
Software Reliability Engineering. ISSRE’95, (1995): pp.256-262. Accessed May 31,
222. https://doi.org/10.1109/ISSRE.1995.497665.
16 “Planning Report 02-3 The Economic Impacts of Inadequate Infrastructure for
Software Testing.” (2002). Accessed May 31, 2022.

	 The Evolution of Cybersecurity (from Perimeter to Zero Trust)	 43

Continuous integration and continuous deployment processes, which
allow for small batch delivery, mean that there is always a working
product that can be tested. In addition, because the build pipeline is
automated, it necessitates automated testing. However, security issues
are all too often left out of this process, introducing risk into produc-
tion environments and sacrificing significant potential for reducing
the cost of security. By introducing tools for SCA, SAST, and DAST,
you can automatically inject security into your deployment pipeline.
These tools and many more are discussed in more detail in Chapter 5,
“DevSecOps Technology.”

Smearing Left

Shifting left is not just taking the same task and doing it earlier, but
doing it as early as possible, which may mean that some smaller sec-
tions can be done earlier. Dave Stanke, developer relations engineer at
Google, coined the phrase smearing left to describe this phenomenon.17
In the “Devopedia” post on Shift Left, the authors note that “Shift Left
doesn’t mean ‘shifting’ the position of a task within a process flow.

1X

5X

10X

15X

30X

Requirements
Gathering

and Analysis/
Architectural

Design

Coding/
Unit Test

Integration
and

Component/
RAISE

System Test

Early Customer
Feedback/
Beta Test
Programs

Post-product
Release

Figure 2.7  The NIST 2002 study “The Economic Impacts of
Inadequate Infrastructure for Software Testing” shows that the cost of
fixing defects grows substantially through later stages of the develop-
ment cycles.

17 Stephens, Rachel. “Developer Experience Is Security.” RedMonk. February 17,
2022. https://redmonk.com/rstephens/2022/02/17/devex-is-
security.

https://redmonk.com/rstephens/2022/02/17/devex-is-security/
https://redmonk.com/rstephens/2022/02/17/devex-is-security/
https://redmonk.com/rstephens/2022/02/17/devex-is-security/

44	 The DevSecOps Playbook	

It also doesn’t imply that no testing is done just before a release. It
should be seen as ‘spreading’ the task and its concerns to all stages of
the process flow. It’s about continuous involvement and feedback.”18 It
is obvious that penetration testing cannot be done before the applica-
tion is built, but that doesn’t mean all security testing must wait until
the full product is built. Because you are taking the security testing
typically done at the end of the cycle and spreading it toward the
beginning, “smearing left” may be a more accurate way of thinking
about it than “shifting left.”

Shift Right

More recently, the concept of “Shift Right” has emerged. Shift Right
focuses on increasing testing further to the right in the development
life cycle and testing in production. In recognition of the increasing
complexity of loosely coupled, serverless systems and microservices
running in distributed cloud environments, it has become evident that
simply testing in preproduction and other “production-like” environ-
ments is not enough. On the Dynatrace blog, Saif Gunja writes, “Shift
Right methods ensure that applications running in production can
withstand real user load while ensuring the same high levels of qual-
ity.”19 To truly test a system and build resiliency, it is important to test
in production.

Practices like Chaos Testing, discussed in more detail in Chapter 4,
“DevSecOps Process,” inject failure conditions into production to ensure
that production systems are resilient to such failures. Other practices—
such as A/B testing and canary releases—allow you to perform tests in
production to see which variants of products perform the best.

•	 A/B testing releases two different versions of a piece of soft-
ware to test which performs better.

•	 Canary releases, on the other hand, release an updated version
of the software to a small portion of the user population to see
how it performs before releasing to all users.

18 Padmanabhan, Arvind. “Shift Left.” Devopedia. February 15, 2022. https://
devopedia.org/shift-left.
19 Gunja, Saif. “Shift Left Vs Shift Right: A DevOps Mystery Solved.” Devopedia.
October 27, 2022. www.dynatrace.com/news/blog/what-is-shift-left-and-
what-is-shift-right.

https://www.dynatrace.com/news/blog/what-is-shift-left-and-what-is-shift-right/
https://www.dynatrace.com/news/blog/what-is-shift-left-and-what-is-shift-right/

	 The Evolution of Cybersecurity (from Perimeter to Zero Trust)	 45

These methods offer ways of testing in production, in effect,
shifting the testing to the right in the development life cycle. Shift
Right helps to get additional insight into performance of a system
under real-world conditions. In addition to testing the resilience of the
code, Shift Right allows you to exercise your instrumentation to ensure
that these anomalies (and any potentially adverse impacts to the cus-
tomers) are identified.

Shift Left for DevSecOps

The concept of Shift Left was originally applied to testing methodol-
ogy, but it is key to many DevSecOps practices. Shift Left underpins
many of the DevSecOps practices explored in this book. In addition,
Shift Left is facilitated by the CI/CD process central to DevOps.

Shift Left fundamentally underpins one of the core concepts of
DevSecOps, the concept that security is everyone’s responsibility.
Shifting left enables developers to take a more active role in security.
Instead of a security team providing gates at the end of the cycle to
prevent security vulnerabilities from getting into production systems,
security is integrated into every step of the process and everything you
do. Fundamentally, security must be everyone’s responsibility and part
of everything you do, not an afterthought to be tested at the end of the
process or, worse yet, ignored altogether. Doing security testing closer
to the development work shortens the feedback loops and lowers the
cost to address any defects.

Shift Left fundamentally underpins one of the core concepts of
DevSecOps, the concept that security is everyone’s responsibility.

Conclusion

As the security landscape continues to evolve, so too must the response.
With the continuing expansion and dilution of the network perimeter,
it is no longer possible to simply provide a tight security perimeter.
Zero Trust and Defense in Depth provide models that help deal with
these new challenges, but they do not provide comprehensive answers
to the needs of the modern enterprise.

46	 The DevSecOps Playbook	

The speed of delivery and proliferation of today’s applications
presents an exponential increase in cybersecurity challenges.
DevSecOps provides a new model to help address the evolving security
landscape, enabling developers to secure their internal systems and
their customer-facing systems. By inserting security into the deploy-
ment pipelines, developers help ensure that the applications they are
delivering meet the security requirements that modern customers
demand. Not only that, but DevSecOps allows them to do so without
delaying the rapid, and continuous, delivery of new services and fea-
tures that today’s customers have come to expect.

47

Chapter 3

Introduction

People are at the core of DevSecOps. While tools and processes can
help enable DevSecOps, it is, more than anything, about people.
DevSecOps requires a cultural transformation with people at its core.
When Gene Kim (author of The Phoenix Project: A Novel about IT,
DevOps, and Helping Your Business Win, and one of the foremost thought
leaders in DevOps) first began writing about DevOps, he described
it as a cultural movement. The tools and the process can reinforce that
cultural transformation, but it must be, first and foremost, about the
people and the underpinning cultural transformation of the workplace.

Of course, people are also the most difficult thing to change. It is
relatively easy to buy and implement a new security tool. In compari-
son, getting security professionals, developers, and end users to behave
differently is difficult. It is also important to keep in mind that security
professionals have spent their careers mitigating risk. They have cho-
sen careers focused on keeping others safe. In many cases, the safest
thing to do is nothing at all. So, it is not surprising that the security
community can often be change-resistant. This explains, in many
instances, why security teams can be late adopters or even laggards
when it comes to adopting new ways of working (see Figure 3.1).
Security personnel often are slow to adopt because early adoption car-
ries a high risk. Regardless of domain, changing the way people work
is significantly more challenging than changing the technology they
are using, and yet it is, arguably, the most crucial element of
DevSecOps success.

DevSecOps People

48	 The DevSecOps Playbook	

Collaboration at the Core

DevSecOps is, fundamentally, a transformation away from siloed activ-
ity and toward collaboration. As defined earlier, it is “a method of
delivering value to customers based on Lean principles and collabora-
tion.” Collaboration is the key underpinning principle.

In its blog article on DevSecOps Culture, the security company
Synk writes, “DevSecOps culture focuses on uniting the normally
siloed roles of Development, Security, and Operations into a collabo-
rative shared-responsibility paradigm. It seeks to break down barriers
of finger pointing and deflection. Instead, it aims to build empathy and
common goals among various disciplines within the organization.”1 In
bringing people together, you focus on building collaboration and,
through this, begin to build a better security organization.

Frequently, when I am asked a question about DevSecOps, I sub-
stitute the word collaboration in my head and, by and large, this
brings me to the right answer. For example, if someone were to ask,
“What is the best step to drive DevSecOps?” I think, “What is the
best step to drive collaboration for security?” and the answer
becomes self-evident.

High

Innovators

HighPropensity to adopt

Early
adopters

Laggards

Early majority Late majority

Propensity to resistLow Low

Figure 3.1  Security professionals often fall into the later stages of the
innovation adoption life cycle.

1 “DevSecOps Culture.” Snyk. March 19, 2020. https://snyk.io/series/
devsecops/culture.

https://snyk.io/series/devsecops/culture
https://snyk.io/series/devsecops/culture

	 DevSecOps People	 49

The critical component of the Venn diagram of DevSecOps from
Chapter 1, “Introducing DevSecOps,” is the section of overlap of the
different domains (see Figure 3.2). Any of the nonoverlapping domains
are just the domains themselves as they have existed for many years.
The critical component is the point of overlap because this is where
collaboration happens.

This is one of the reasons so many people are passionate about
DevSecOps. What they find through DevSecOps is that, by working
together better, they can drive better security and faster delivery to
their customers. Balancing feature delivery against security concerns is
a problem that technologists have struggled with for many years. The
fundamental question is, “How do you deliver securely without slow-
ing down delivery?” And the answer, it turns out, is collaboration.

DevSecOps Culture

While collaboration is at the core of DevSecOps, there are many other
elements of DevSecOps culture that are of critical importance for suc-
cess. A DevOps culture includes trust, transparency, empowerment,
and continuous learning. All of these cultural elements can be lever-
aged to build stronger security for the business.

Quality
Assurance

Development

Cybersecurity

DevSecOps

Operations

Figure 3.2  DevSecOps can be considered the intersection between
operations, development, quality assurance, and cybersecurity.

50	 The DevSecOps Playbook	

Trust

Trust is key to DevSecOps culture but often a challenging area for
security practitioners. While security is focused on protecting against
threat actors with presumed malicious intent, you must, ultimately,
have trust if you are going to work within an organization. In reality,
you do this every day. When your co-worker asks for help with a
project, you trust that they are doing the project for the company, and
you trust that your help will aid in that effort. In fact, companies work
only because of an assumed trust between individuals and systems
within that company. DevSecOps requires tighter collaboration
between teams, and this, in turn, requires trust. This is why it is so
critical to build team trust, because better trust leads to better collabo-
ration, and better collaboration leads to better business outcomes.

Build team trust, because better trust leads to better collaboration, and
better collaboration leads to better business outcomes.

This is not to say you should provide blanket trust. If someone
was to ask you for a complete list of your passwords, you might be a
little suspicious, and for good reason! However, this does mean you
should assume good intent from your teammates.

All too often when there is a security breach we jump to the
assignment of blame. The reality is that most people come to work
with the intention of doing the best job they can. By the same token,
no one comes to work thinking, “Gee, I wonder how I can cause a
major security breach today.” We cite “human error” as the cause of the
problem, forgetting systems in which that human error occurred.
Sidney Dekker, professor of human factors and flight safety and direc-
tor of research at the School of Aviation, Lund University, Sweden,
writes about this extensively in his book The Field Guide to Understanding
Human Error. This tendency to look for individual blame erodes trust,
which is so essential to building a strong team. Dekker writes, “Getting
rid of Bad Apples tends to send a signal to other people to be more
careful with what they do, say, report, or disclose. It does not make
‘human errors’ go away, but does tend to make the evidence of them go

	 DevSecOps People	 51

away; evidence that might otherwise have been available to you and
your organization so that you could learn and improve.”2

Building collaboration and trust between team members has
become ever more challenging during the COVID-19 pandemic and
the increase of remote workforces. With increasing numbers of tech
workers working from home, people are increasingly detached from
their teams and have fewer social interactions, which are vital to build-
ing relationships and trust. One of the things you lose with increas-
ingly remote and hybrid teams is the opportunity to build trust between
team members. When all interactions occur via video conferencing,
they become increasingly transactional, leaving little room for the sort
of interactions that build strong, trust-based relationships. However,
you can take steps to increase trust on a team, including these:

•	 Create opportunities for teams to meet face-to-face—It is
important to be purposeful about creating opportunities for
people to come together face-to-face and, when that happens,
encourage interactions that are focused on team building and
understanding one another. When you build empathy for oth-
ers, when you understand where others are coming from, it
helps to build trust. As you look at building teams in remote
and hybrid models, it is critical that you think about the value
of working together and how you bring that value to teams
that do not share the same office space.

•	 Be open and honest about failure—It is important that peo-
ple understand that we all fail at times and that this is acceptable,
especially when we are open about it and learn from it. In the
Spencer Stuart blog, James M. Citrin and Darleen Derosa state,
“A sure sign of a lack of trust is the blame game: team members
pointing the finger at others for problems or failures and no one
taking accountability. Leaders can emphasize the importance of
being open and honest by inviting team members to regularly
share their challenges as well as their successes.”3 It is especially
critical for leaders to model this behavior for others. By showing

2 Dekker, Sidney. 2014. The Field Guide to Understanding ‘Human Error’. 3rd ed.
Burlington: Ashgate Publishing Ltd.
3 Citrin, James M., and Darleen Derosa. “No Trust, No Team: Six Best Practices for
Building Trust on Virtual Teams.” SpencerStuart. March 24, 2021. www.spencer
stuart.com/leadership-matters/2021/march/no-trust-no-team.

http://www.spencerstuart.com/leadership-matters/2021/march/no-trust-no-team
http://www.spencerstuart.com/leadership-matters/2021/march/no-trust-no-team
http://www.spencerstuart.com/leadership-matters/2021/march/no-trust-no-team

52	 The DevSecOps Playbook	

that we are all susceptible to error and that there is no recrimi-
nation for making errors, we begin to build a learning culture.

•	 Be truthful—This may sound obvious, but it is often over-
looked for the sake of expediency. Not only is it important to
be honest, but it is important to follow through on promises
made. If you are consistently truthful and consistently live up
to your promises, it will inspire trust throughout the team.

•	 Be empathetic—Simply asking your colleagues how they are
doing ensures they know you care about them on a personal
level. In addition, it may help you better understand where
they are coming from. In an increasingly disconnected world,
building empathy into an organization can go a long way.

Building Trust Through Phishing Campaigns

When Wiley first launched their internal phishing campaign,
users were hesitant to report suspicious emails. The security
team sent fake phishing emails to users and tracked the num-
ber of users who clicked the link and the number who clicked
“Report Phishing activity.” Users at first were afraid to report
phishing emails for fear of being wrong.

As users began to see that clicking the button to report
phish had no negative consequence, even if they were incor-
rect, they began to see that it was okay to make a mistake. This
also encouraged users to report when they accidentally clicked
real phishing emails.

Building Empathy Among Colleagues

Wiley launched a “Check In on a Colleague” initiative. They
encouraged people across the company to take some time out
of their workday to check in with a colleague. Whether it was

(continues )

	 DevSecOps People	 53

Numerous studies have found a correlation between intra-team
trust and performance. An analysis across 55 different studies on the
relationship found “[t]eam trust was positively correlated with team
performance. . .higher levels of trust in business teams are generally
associated with higher levels of team performance.”4 Given the strong
relationship between team trust and team performance and the chal-
lenges arising from an increasingly global hybrid work environment, it
is essential that you look for ways to build trust between security teams
and the rest of the organization.

Transparency

Transparency is another key to DevSecOps culture, and it is also an
important way to build trust. It is important that you share data as much
as possible without risking the security of your systems. This applies to
transparency of your business plans as well as transparency in your data.
If you can share data in your company, it provides a better chance that
you can identify security issues and resolve them more quickly.

This is, of course, a bit of a nuanced subject when it comes to
cybersecurity where transparency can actually increase your risk. You
obviously cannot be transparent about implementation details of your
cyber defenses, as an attacker may use this information to breach your
systems. However, we are increasingly seeing that being open and

4 Morrissette, Amy M., and Jennifer L. Kisamore. “Trust and Performance in Business
Teams: A Meta-analysis.” Team Performance Management: An International Journal 26,
no. 5/6 (2020): 287–300.  Accessed June 11, 2023. https://doi.org/10.1108/
TPM-02-2020-0012

going to lunch, grabbing coffee, or setting up some time to
chat over Teams, people found ways to connect. These activi-
ties helped give all employees the opportunity to connect with
their fellow Wiley employees, thereby building connection
and trust between team members.

(continued )

https://doi.org/10.1108/TPM-02-2020-0012
https://doi.org/10.1108/TPM-02-2020-0012

54	 The DevSecOps Playbook	

transparent has positive results, even when it comes to cybersecurity.
In a survey by Deloitte of people who received a breach notification,
they found that “34 percent said they trusted that organization more.
In addition, 73 percent of this cohort who received a privacy breach
notification did not trust the organization any less following the
notification.”5 This is not to say that transparency means exposing
everything at all times—you must still be judicious in what you
share—but, in sharing, you have the opportunity to build trust and a
culture of collaboration that drives better business results.

Transparency can take many forms and can be as simple as a
meeting to share business direction. It can also take the form of
anonymized data shared across teams to drive better business deci-
sions. It can also take the form of sharing data between companies to
drive governmental action against cybercriminals. We are increasingly
seeing this sort of industry-wide data sharing to help all companies be
better prepared for the next attack.

The Shared Responsibility Model

As DevSecOps focuses on collaboration, you must create a model of
shared responsibilities where everyone is responsible for security. If you
are developing a product, you are responsible for the security of the prod-
uct. If you are implementing a new network design, you are responsible
for the security of that network. If you are implementing a new tool, you
are responsible for the security of that tool. In DevSecOps it is no longer
acceptable to simply assume that the security team will take care of secu-
rity for you. For DevSecOps to be successful, you must break the pattern
of simply throwing the responsibility over the wall to another group.

It is not sufficient to simply say “everyone is responsible now” because
that diffusion of responsibilities can lead to a situation where no one takes
ownership or accountability.

However, this change can create complications in defining who
exactly is responsible for specific tasks. It is not sufficient to simply say

5 “Transparency Builds Trust.” Deloitte. Accessed June 11, 2023. www2.deloitte
.com/au/en/pages/financial-services/ articles/ transparency-builds-
trust.html.

http://www2.deloitte.com/au/en/pages/financial-services/articles/transparency-builds-trust.html
http://www2.deloitte.com/au/en/pages/financial-services/articles/transparency-builds-trust.html
http://www2.deloitte.com/au/en/pages/financial-services/articles/transparency-builds-trust.html

	 DevSecOps People	 55

“everyone is responsible now” because that diffusion of responsibilities
can lead to a situation where no one takes ownership or accountability.
Who, for example, is responsible for defining security standards? Who,
specifically, is monitoring for security alerts? Who, specifically, is coor-
dinating customer communication in case of a data breach?

Ownership

It is important to recognize that the idea of “ownership,” while concep-
tually simple, is often more complex and requires another level of
thought and consideration. Often people bandy about the idea of own-
ership, asking, “Who owns this (process/task/application/infrastructure/
etc.)?” The reality is often more complex as many people are involved
in the care, management, and completion of a given task.

One way to address this ambiguity is through the use of RACI
matrices. RACI matrices detail every task in a given process and define
who is Responsible, Accountable, Consulted, and Informed (RACI) for
each one. This forces you to delineate just what is meant by “owner-
ship” and detail all the activities involved in a given process. With a
RACI approach, the responsible party does the work. The Accountable
party may be the same or different from the Responsible party, but this
person is ultimately held accountable for ensuring completion of the
tasks. In addition, with a RACI approach, only one party may hold the
Accountability for a given task. This ensures that, while there may be
many people involved in completing a given task, there is ultimately
only one person who is held accountable for that task is completed.

That said, the absence of a RACI model should not dissuade you
from taking ownership. Ultimately, a RACI model is just a tool to aid
and clarify ownership. Everyone must work together to be clear about
who is responsible, and a RACI is one way to do this.

I often think of baseball outfielders when there is a fly ball and it is
unclear who should catch it. Everyone wants to make sure that the
ball is caught and, if it is not clear who should catch it, one person
should call out “Got it” so that they do not run head on into the other
outfielders. What matters in this situation is that all people want to
solve the problem together, and they communicate about who will be
doing what, both beforehand and during, to ensure optimal outcomes.

56	 The DevSecOps Playbook	

In a DevSecOps model, while there may be different people
responsible for implementing the solution, the application team must
ultimately be accountable for the security and performance of the sys-
tem. It is no longer the case that one team will build a system and the
security team will still be held accountable for its security. In a 2022
article in Computer Weekly, Mandy Andress wrote, “DevSecOps is a
mindset and way of working within the application security field in
which security is a part of everyone’s job, not just one team. . .organi-
zations should consider delegating responsibility for DevSecOps to
engineering teams, not security teams.”6

In many DevSecOps implementations, the security team may still
be accountable for providing the framework, tools, and governance for
the rest of the organization, but it is the development teams themselves
who are accountable for ensuring the security of the systems they are
building. In this way, the teams work together in a well-defined man-
ner to ensure the overall security of the organization. By sharing the
responsibility for security, you ensure that you build security into eve-
rything you do, and you get security closer to the source of the prob-
lem, which leads to more secure products and services.

Accountability

While trust is a key element of the DevSecOps culture, this does not
mean there should be an absence of accountability. In fact, a trust-
based culture should mean that expectations around accountability are
even higher. The lack of micromanagement and oversight is, in fact,
dependent on the assumption that everyone is responsible for deliver-
ing on their promises. To be part of a community based on trust, we
must all be accountable for our actions and delivery of our promises.

If a problem occurs, it is important to be open and honest with
the role one plays in the problem. In an environment that is not blame
based, being open about our own failures becomes easier. If there is
truly no fear of retribution and instead a focus on learning, being open
about failure becomes a learning opportunity. If people are having

6 Andress, Mandy. “It’s Time for Engineering Teams to Own DevSecOps.”
ComputerWeekly.Com. September 23, 2022. www.computerweekly.com/
opinion/Its-time-for-engineering-teams-to-own-DevSecOps.

http://www.computerweekly.com/opinion/Its-time-for-engineering-teams-to-own-DevSecOps
http://www.computerweekly.com/opinion/Its-time-for-engineering-teams-to-own-DevSecOps
http://www.computerweekly.com/opinion/Its-time-for-engineering-teams-to-own-DevSecOps

	 DevSecOps People	 57

problems being open about mistakes, it is important to consider
whether you are somehow instilling a culture of fear or retribution.
Employee engagement surveys and management 360s are useful in
understanding the cultural environment. That said, the very fact that
people are hesitant to share information openly about their failures
may be indicative of a culture of fear.

It may be difficult to set security as a top-level goal if upper man-
agement is not genuinely security focused. While security is increasingly
becoming a topic for boards and executives, some companies still see
security as a cost that must be paid but without a real understanding of
the criticality. In these instances, it is often useful to keep in mind that
cybersecurity breaches are one of the few things that can cost C-level
executives their jobs. In 2013, the data breach of the retail giant Target
cost CEO Greg Steinhafel his job, and in 2014 the Sony Pictures breach
led to the resignation of Board Co-Chairman Amy Pascal.7 These are
just two of a growing number of examples of how cybersecurity has an
impact, not just on the company but also on executives responsible for
the company. What is more important here is that, by including security
in shared goals, it becomes part of everyone’s responsibilities.

A shared responsibility model can also be fostered by building
shared goals for the organization. Goals should include security at the
highest levels of the organization. And these goals should cascade down
throughout the organization. By setting these goals at the top levels of
the organization, you set the north star toward which the entire com-
pany is pointed and ensure security is part of everything you do.

The Role of the Security Team

With shared responsibility and collaboration around security, the role
of the security team must fundamentally change. With DevSecOps,
the security team is no longer a policing organization responsible for
ensuring that everyone is following the rules and punishing rule break-
ers. Instead, the role of the security team must shift to governance
and guidance.

7 NeSmith, Brian. “CEOs: The Data Breach Is Your Fault.” Forbes. June 26, 2018.
www.forbes.com/sites/forbestechcouncil/2018/06/26/ceos-the-
data-breach-is-your-fault/?sh=71cfd658b0f7.

http://www.forbes.com/sites/forbestechcouncil/2018/06/26/ceos-the-data-breach-is-your-fault/?sh=71cfd658b0f7
http://www.forbes.com/sites/forbestechcouncil/2018/06/26/ceos-the-data-breach-is-your-fault/?sh=71cfd658b0f7
http://www.forbes.com/sites/forbestechcouncil/2018/06/26/ceos-the-data-breach-is-your-fault/?sh=71cfd658b0f7

58	 The DevSecOps Playbook	

With shared responsibility and collaboration around security, the role of
the security team must fundamentally change.

The modern security team should focus on developing the stand-
ards and governance around security and designing systems to auto-
matically monitor, measure, and enforce these rules. By integrating
security directly into the tools that developers use to build and deliver
products, security becomes integrated into the way teams work. Instead
of a policing organization, security teams are partners to development,
operations, and SRE teams, helping them drive best practices and
deliver secure products.

Psychological Safety

For a DevOps culture to thrive, people must have psychological safety.
The concept of psychological safety first emerged in 1965 in the book
Personal and Organizational Change Through Group Methods: The
Laboratory Approach by Edgar Schein and Warren Bennis, who describe
it as “an atmosphere where one can take chances (which experimental-
ism implies) without fear and with sufficient protection.”8 Part of
empowering engineers is developing trust, and a trust-based culture
requires psychological safety. Harvard Business School professor Dr.
Amy C. Edmondson expanded on the concept, describing it as “a belief
that one will not be punished or humiliated for speaking up with ideas,
questions, concerns, or mistakes.” However, this term has taken on
increasing importance as we look at building collaboration, empower-
ment, and a learning culture. You must build a culture where people
feel safe if you are to encourage learning and empower engineers.

Psychological safety is the fourth ideal identified in Gene Kim’s
book The Unicorn Project. In describing the psychological safety, Kim
says, “No one will take risks, experiment, or innovate in a culture of fear,
where people are afraid to tell the boss bad news.”9 When people are

8 Schein, Edgar H., and Warren G. Bennis. “Personal And Organizational Change
Through Group Meth Ods: The Laboratory Approach.” Adult Education 17, no. 2
(1967). Accessed June 11, 2023. https://doi.org/10.1177/0741713667017
00211.
9 Kim, Gene. 2019. The Unicorn Project: A Novel About Developers, Digital
Disruption, and Thriving in the Age of Data. Oregon: IT Revolution.

http://journals.sagepub.com/doi/10.1177/074171366701700211
http://journals.sagepub.com/doi/10.1177/074171366701700211

	 DevSecOps People	 59

focused overly on mistake prevention rather than value creation, they
often do the minimal work needed, reducing output for the company.

In her TEDx talk called “Building a Psychologically Safe
Workplace,” Amy Edmondson provided three suggestions for foster-
ing a culture of psychological safety.

•	 Frame the work as a learning problem, not an execution
problem.

•	 Acknowledge your own fallibility.

•	 Model curiosity.10

Transparency and honesty help build an environment of psycho-
logical safety and trust. The best leaders are the ones who respect
problem analysis because it ultimately saves everybody time and money.
Trust and physiological safety, in turn, build an environment where
teams can feel empowered and a learning culture can develop—this
sort of culture is essential to DevSecOps.

Empowerment

Empowering engineers is another key component of DevSecOps cul-
ture. Engineers who are empowered by their managers deliver better
results. This sort of empowerment is often created through trust-
based cultures.

By instilling trust in engineers, they will be empowered to deliver
their best work. Engineers are, by and large, highly educated and
highly compensated professions. It is a safe assumption that these peo-
ple are trying to do their best work. If you start by trusting that people
are trying their best, it helps you empower them.

This approach represents a fundamental shift in how you
approach management of people. Using the same approach to manage
highly skilled engineers as one would to manage low skilled assembly
line workers does not make sense and has a negative impact on

10 Edmondson, Amy. “Building a Psychologically Safe Workplace.” TEDx Talks. May
5, 2014. Video, www.youtube.com/watch?v=LhoLuui9gX8.

60	 The DevSecOps Playbook	

productivity. Unfortunately, many common management practices
today are based on the bureaucratic, tightly controlled management
practices developed for managing large groups of low-skilled employ-
ees. Instead of managing engineers such as assembly line workers, it is
important to approach them like doctors or lawyers, understanding the
immense knowledge they have and empowering them to act indepen-
dently based on that knowledge.

When leaders micromanage employees or are quick to blame
them for errors, those employees tend to do less work than they might
otherwise. Examining every piece of work and being quick to criticize
creates a culture of fear where people do not strive to do their best but,
instead, try only not to make mistakes.

This approach has interesting implications to questions about
work-from-home policies in the post-COVID-19 workforce. Companies
that truly empower workers allow them to work wherever and when-
ever they want, trusting that they will know how best to manage their
time and effort to produce the best and most work. Forcing employees
to come into the office clearly sends a message that “We do not trust
you to do your jobs unless we are watching you do your work.” When
this happens, we have to wonder why companies would be hiring peo-
ple and paying them large sums of money if they cannot trust them to
do their jobs independently. Either they have hired the wrong people or
they have not built a culture that inspires people to do their best.

Ultimately what is important about highly skilled workforces is
delivery. There are still deadlines that must be met and security stand-
ards that must be adhered to, but if people are delivering high-quality
work on time, where and when that work is done is less important.
And, by and large, if managers trust and empower their employees,
those employees will deliver better results.

This is not to say that there isn’t value to working together in the
same physical location but rather that it is important to understand
what that value of in-person work is and to understand motives and
desired outcomes when determining how and when engineers must
come to the office. Setting values for human contact and creating
events that require in-office bonding needs to be part of how employ-
ees work. At the same time, letting employees know that they are

	 DevSecOps People	 61

trusted to choose when and where they do their work goes a long way
to empowering them to do their best.

Learning Culture

Trust and empowerment go a long way to building a learning culture,
which is another key component of DevSecOps. A learning culture is
open to change and continually learning. One of the most successful
ways to institute a learning culture is to ensure it is embedded in the
day-to-day activities and processes that make the business flow.

For cybersecurity you can build a learning culture throughout the
daily life with activities such as these:

•	 Incident postmortems—Incident postmortems are an opportu-
nity to review an incident after it has been resolved. By focusing
on learning rather than blame, incident postmortems can provide
an excellent opportunity to embed a learning culture into daily
activity of a company. See Chapter 4, “DevSecOps Process,” for
additional information about incident postmortems.

•	 Tabletop exercises—Tabletop exercises allow the team to walk
through theoretical cybersecurity incidents and discuss actions
that all parties involved would take in response. This provides
an opportunity to identify potential gaps and learn from other
team members to build better coordination and better responses.

•	 Game days—Game days simulate a cybersecurity event such
as an attack or breach to practice the team’s response and learn
and improve. Game days are similar to tabletop exercises
except that game days involve real-world simulation and
response, while tabletop exercises are discussion-based with-
out use of actual systems.

•	 Phishing campaigns—Phishing campaigns are a tool for
sending simulated phishing emails to a company’s employees
to test the ability to identify and respond. Running these on a
regular cadence is an excellent method to train company’s
users to identify and report potentially suspicious emails.

62	 The DevSecOps Playbook	

As phishing is one of the top cybersecurity attack vectors, this
can be an important tool.

•	 Training—Continual training is another critical aspect of any
cybersecurity program. As people/social engineering are one
of the most common paths to breaches, it is critical that you
continually work to increase security knowledge throughout
the organization. It is critical to develop a comprehensive
training program for all people in a company. One should
determine what training is required for employees based on
their role within the company. Many of the standard trainings
are applicable to all employees. It is also critical to recognize
that training is not a one-time activity. It is not enough to do a
training for new hires; trainings must be revised and repeated
on a regular basis.

•	 Cross training—In addition to standard training practices, it
can be hugely valuable to have people cross-train in areas out-
side of their own. This can be a powerful method of building a
well-rounded team as it helps build breadth of knowledge. In
addition to building skills, cross-training is an excellent method
for building a DevSecOps culture, as it provides people with
insight into the work that others are doing and thereby builds
empathy and opens opportunities for cross-team collaboration.

Building Cybersecurity into the Culture

At Wiley, every October is Cybersecurity Month: a full month
dedicated to cybersecurity awareness and education. This month
includes activities like capture the flag—team-based events
designed to test the cybersecurity skills of the teams by discover-
ing hidden “flags” within intentionally vulnerable systems—and
red team/blue team events. It also includes trainings, trivia com-
petitions, brown bags, and even a Halloween dress-up-as-your-
favorite-vulnerability-or-exploit competition! This is another
example of how Wiley builds cybersecurity learning into
the culture.

	 DevSecOps People	 63

Part of building a learning culture is embracing failure as a learn-
ing opportunity. In The Unicorn Project, Gene Kim describes, “The
corrosive effects that a culture of fear creates, where mistakes are rou-
tinely punished and scapegoats fired. Punishing failure and ‘shooting
the messenger’ only cause people to hide their mistakes, and eventually,
all desire to innovate is completely extinguished.”

It is important to note that some of our most successful engineers
are the ones making the most mistakes. This is because it is precisely
those engineers who are doing the most work, taking on the hardest tasks,
driving innovation, and taking risks. These mistakes are often an indica-
tor of people who are pushing the envelope of what we can do with tech-
nology. You need to reward such innovation instead of punishing mistakes.

Mistakes occur only in a system that allows for those mistakes to
occur. Sidney Deker notes this, writing “the apparent simplicity of
‘human error’ is misleading. Underneath every seemingly obvious,
simple story of error, there is a second, deeper story. . . . This second
story is inevitably an organizational story, a story about the system in
which people work, about its management, technology, governance,
administration and operation.” It is crucial, when looking at errors or
mistakes, that you look at the system as a whole and search for oppor-
tunities to improve in all areas.

It is critical to embrace mistakes as a learning opportunity. This is
an important part of building a learning culture. When, not if, mistakes
happen, it is important not to seek out the individual responsible and
to punish but rather to understand all of the elements that contributed
to that failure and learn from it and grow stronger. The most critical
thing that can happen when mistakes occur is that the organization, as
a whole, must learn. This is even more important than correcting the
causes of the mistake. And, there are often many.

Incident Postmortems

Incidents offer a unique opportunity to build a learning culture. By
taking the time to learn from errors that cause security incidents, you

64	 The DevSecOps Playbook	

build learning into your daily work. But how these are approached is
critical to building a learning culture. These cannot be approached as
an exercise to fill out a form. These also cannot be approached as an
exercise to find out what the root cause was and apply a fix. These
approaches are too myopic and miss the opportunity to learn and grow
as an organization. It is important in these reviews to first truly under-
stand what happened from every person’s perspective who participated.
By understanding what each person was thinking and what lead to the
decisions, you can begin to build an empathetic and learning organiza-
tion. Only then can or should you begin to identify improvement
opportunities or actions that should be taken. Additional details on
incident postmortems can be found in Chapter 4.

Security Training Programs

Security training programs are a critical part of the learning culture
around cybersecurity. It is critical that they not be limited to a single
type or method of training. It is also important that these be embedded
into a regular cadence, repeated at intervals and, in some cases, inte-
grated on an ongoing basis. Training should also be catered to the peo-
ple responsible for training.

Every cybersecurity training program will differ based on the
organization. Requirements will differ based on size, complexity,
potential threats, industry, and compliance requirements for that busi-
ness or industry. The first step in developing a comprehensive cyberse-
curity program is to assess the key threats to the organization as
compliance requirements.

Training programs can include new-hire training, annual compli-
ance training for any in-scope compliance requirements such as the
Payment Card Industry (PCI) standard for those companies accepting
credit cards or Sarbanes-Oxley (SOX) for companies in the public
domain, and ongoing knowledge testing such as phishing tests. It is
also important to understand the various stakeholders of a cybersecu-
rity training program. You must train end users in security best prac-
tices while also providing specialized training for the security

	 DevSecOps People	 65

professionals in your organization. It is important to provide basic
training to all end users of a company to ensure they understand the
threats that are faced.

Specific groups of users may require specialized or additional
training, such as executives who may be at heightened risk levels due to
their elevated position within the companies. Training for security
professionals within the company provides an excellent opportunity to
invest in internal resources and build the strength of the security team,
while improving employee retention. Offering training and certifica-
tions for your security team can be a great way to help motivate your
workforce while strengthening your security posture.

Integrated Phishing Tests into Your
Training Program

Wiley uses tools to do regular phishing tests. According to the
2022 Verizon Data Breach Investigation Report, phishing is
the second highest risk entry path to exploiting a company’s
environment, so it is critical not only that they have tools to
protect automatically but also that users are trained to identify
and react to potential phishing threats.

Every couple of weeks, a test phishing campaign is sent to
the entire organization. People who click the link are given
feedback and direct training on the spot about how to identify
phishing emails. People who correctly identify and click the
Phish Alert Report button are given positive reinforcement.
For people who make repeated mistakes, additional training
and support are provided.

In addition, Wiley leverages the data on a global basis to
identify regions or teams that are performing well and others
that may need additional support. By running these sorts of test
campaigns on a continuous basis, they ensure that there is a
constant awareness of the security threats present through email.

66	 The DevSecOps Playbook	

Whatever the audience for security training, there are several
things you can do to ensure that your security training is successful. It
is important to develop training that is interactive and engaging. To
that end, make sure that the training is relevant to the audience you are
targeting. Make sure the content for the training is relatable to the
people taking the training. The more engaging you can make the train-
ing, the better the results for the entire organization.

Organizing for DevSecOps
If DevSecOps is focused on collaboration, it is critical then that you
build organizational structures that facilitate collaboration. When
thinking about how to organize teams most effectively for DevSecOps,
you can take learnings from DevOps, which has matured in many
organizations far more than DevSecOps.

It is important to understand that there is no one right way to
organize DevSecOps. While organizational structures may vary, what
matters is that they enable the DevOps principles of collaboration and
fewer hand-offs. Phrasing the question around “collaboration,” the
question “How do I organize for collaboration on security?” seems to
miss the point to some extent. There is obviously no one way to organ-
ize for collaboration, and, in fact, the organization is going to be sec-
ondary to the culture. That is, if collaboration is built into your culture,
many different organizational structures can help build on that collab-
oration. The opposite is also true—if a culture of collaboration is not
there, organizational structure alone will not fix that. Not only that, but
there is a low likelihood that an alternative organizational structure will
be made in a company that does not have collaboration built in.

In their popular blog post, “DevOps Topologies,” Matthew
Skelton and Manuel Pais discuss many of the different organiza-
tional patterns and anti-patterns for DevOps in which they state,
“The DevOps Topologies reflect two key ideas: (1) There is no one-
size-fits-all approach to structuring teams for DevOps success. The
suitability and effectiveness of any given topology depends on the
organization’s context. (2) There are several topologies known to be

	 DevSecOps People	 67

detrimental (anti-patterns) to DevOps success, as they overlook or
go against core tenets of DevOps.”11 The Skelton and Pais post goes
on to describe several common patterns to organize for DevOps
including dev and ops collaboration, fully shared ops responsibili-
ties, and ops as infrastructure as a service (platform). They also point
to several anti-patterns, including dev and ops silos and DevOps
team silo.

Skelton and Pais go on to say that “Organizations must design
teams intentionally by asking these questions: Given our skills, con-
straints, cultural and engineering maturity, desired software architec-
ture, and business goals, which team topology will help us deliver
results faster and safer? How can we reduce or avoid handovers between
teams in the main flow of change? Where should the boundaries be in
the software system in order to preserve system viability and encour-
age rapid flow? How can our teams align to that?”12

That said, there are several organizational structures that can aid
DevSecOps and some that may be detrimental. In fact, the anti-
patterns or organizational patterns that deter collaboration may be
more impactful. One of the most obvious is the organization around
siloed specialty groups such as security or operations. As with other
areas, security teams have lagged in adopting new organizational struc-
tures. In many companies, security remains a siloed team operating
fully independent of other teams. In The DevOps Handbook, Gene,
Humble, Debois, and Willis write, “When infosec is organized as a silo
outside of development and operations, many problems arise.”13

It is important to note that the organizational structure for
DevSecOps will depend on many elements, including the size of the
company, the maturity of the DevSecOps program, and the complex-
ity, and age, of the tech stack. For example, it is much easier for a small
startup built on modern technologies to do DevOps than a large com-
pany with a variety of technologies dating back to the 1980s.

11 Skelton, Matthew, and Manuel Pais. “What Team Structure Is Right for DevOps
to Flourish?” DevOps Topologies. Accessed June 11, 2023. https://web.devops
topologies.com.
12 Skelton, Matthew, and Manuel Pais. 2018. Team Topologies: Organizing Business
and Technology Teams for Fast Flow. Oregon: IT Revolution.
13 Kim, Gene, Jez Humble, Patrick Debois, and John Willis. 2021. The DevOps
Handbook: How to Create World-Class Agility, Reliability, & Security in Technology
Organizations. 1st ed. Portland: IT Revolution Press.

https://web.devopstopologies.com
https://web.devopstopologies.com

68	 The DevSecOps Playbook	

The reality is that any tech team small enough to be fully self-
contained is, by its nature, doing DevSecOps insomuch as they are
working together to do all the parts of product development and secu-
rity and operations. It is only at scale that you really see the start of
specialization, which leads to the silos, which need to be broken down.

One of the most successful organizational paradigms of DevOps
that you can apply to DevSecOps is the concept of the site reliability
engineering team and embedded site reliability engineers. The concept
of site reliability engineering originated at Google in 2003 with the idea
that teams needed a role to focus efforts on the reliability of the system.
In the organizational approach developed by Google, there is a core site
reliability engineering team, which provides guidance, governance,
frameworks, standards, and, in some cases, shared tooling. In addition,
there is another part of the team of SREs embedded within other teams.

The embedded SREs focus on a deep understanding of reliability
engineering as it applies to the specific product or service of the team
in which they are working. This pattern fits very well for DevSecOps
and can easily build on existing security teams as long as the security
team is willing to work in collaboration with other teams and break out
of the siloed approach. With this model, a core team provides security
standards and direction to other groups looking for help. In addition,
security engineers or, alternatively, security champions, are embedded
within the application teams. Embedded resources can report directly
to the security team or via a dotted line—the key is that they are work-
ing in conjunction with, and as an extension of, the security team.

DevOps Orientation of Smaller Companies

I often joke that when I ran technology for a small startup back
during the tech bubble of the 1990s, I was doing DevOps
before there was DevOps. I was leading a very small tech team,
and we had to do everything, from racking and stacking servers
to developing the code to getting up at 2 a.m. when things
went bump in the night. Our small tech team was develop-
ment, QA, operations, security, and everything in between.

	 DevSecOps People	 69

Building a DevSecOps Culture

We’ve discussed the culture of DevSecOps as well as the type of people
who comprise a strong DevSecOps culture, but how do you actually
instill this culture within your company? How do you build a culture
in which security is part of everything you do?

Security Champions

One great tool to use is the concept of security champions. A security
champions program empowers SREs, developers, and quality engi-
neers to become a champion in their teams. This person can help
bridge the gap by evangelizing, managing, and enforcing the security
posture while acting as an extended member of the security team.

Security champions should be voluntary and be people who desire
to learn more about cybersecurity. This provides a mechanism to pro-
mote application security best practices throughout the organization.
Security champions become a point of contact for security-related
questions or concerns within their respective application teams.
Security champion programs help improve collaboration between the
security team and the rest of the organization.

These programs also provide significant benefits to those who
choose to be security champions. They provide an opportunity for peo-
ple who are interested in security to learn valuable new skills. The secu-
rity champions gain greater visibility across the enterprise. They also
build valuable cross-team and cross-organization relationships, which
increase their value to the company while building the DevSecOps culture.

In addition, security champions can form a group that spans the
company to enable continued learning and best practices sharing.
Regular security champion meetings help build collaboration and
continual learning throughout the company. Security champions pro-
grams also function as a way to drive standards and best practices
across the organization. This makes the security champions a force
multiplier for the security team. It is not possible, or desirable, for the
security team to have a person on every team, as this would ensure
that security must scale linearly with the growth of a company. By
enabling all people and promoting security best practices through

70	 The DevSecOps Playbook	

security champions, they can emphasize security practices without
continuing to grow security staff.

Security champions help embed security into every team. This, in
turn, emphasizes the idea that security is everyone’s responsibility and
not just the domain of a separate security team. By developing a com-
prehensive security champions program, you not only instantly increase
the reach of the security team, but you also help build a culture of
shared responsibility and continual learning.

Internal Bug Bounties

Internal security bug bounty programs offer a reward for identifying
security vulnerabilities in applications or services provided by the com-
pany. These programs offer a reward for anyone who can identify secu-
rity vulnerabilities in existing products. They help build security
awareness while helping ensure the security of the products. Incentives
can come in the form of recognition or even monetary compensation.
These programs help build a culture of security through the organiza-
tion by encouraging everyone to participate in the identification of
security vulnerabilities.

Not only do security-related bug bounties help identify potential
security issues within a company’s products, but they also encourage
employees to better understand the avenues an adversary might exploit
and therefore become more knowledgeable about pitfalls to be avoided.

The Evolution of the Employee
(T-Shaped People)
As your technological approach evolves, so too must the type of people
who you look to fill the roles. The concept of the T-shaped employee
refers to the idea that we now look for employees who not only have a
great breadth of knowledge, as represented by the vertical line in the
letter T, but also a depth of knowledge represented by the horizontal
line. The concept of the T-shaped employee has been around for quite
some time now. With references dating as far back as the 1980s, the

	 DevSecOps People	 71

concept of the T-shaped employee was first referenced in the article
“The Hunt Is On for the Renaissance Man of Computing” by David
Guest in the Independent (September 17, 1991). However, with
DevSecOps, this concept takes on increasing relevance.

This is an important concept for DevSecOps, as people must
understand not only their individual domains but also the broader
technical environment in which they are operating. In addition, they
must understand the broader business context within which they are
operating. Because DevSecOps requires all people to be responsible
for security and operations, they must understand those areas as well.
Developers must not only understand the programming language in
which they are developing, they must also have a breadth of knowledge
extending to the infrastructure they are operating on as well as the
security requirements for their application.

Today, expanding the breadth of developer’s knowledge to secu-
rity and infrastructure is aided by abstraction and automation of these
elements. For example, the use of Amazon Web Services (AWS) means
that developers do not know the details of router configuration, but
they must, nonetheless, still understand how to implement their ser-
vice via the AWS services. This is one of the reasons it is so critical that
you make security easily accessible through automation. You cannot
expect every engineer to also be a security engineer, but you can expect
them to be security conscious. By doing things like automating the
deployment of endpoint security by embedding it in the golden AWS
image, you provide the automation to easily enable security best prac-
tices and enable T-shaped employees to succeed.

This is not to say that every engineer must be a developer, DBA,
network engineer, and security engineer all in one. There is certainly
room for depth of knowledge in each of these fields. However, it does
mean that every engineer needs to be aware of the broad spectrum of
operational and security requirements in which their systems are going
to operate, and they must be capable of building their systems and
ensuring they continue to run in a secure way. For DevSecOps to be
effective, everyone involved in the development and delivery of techni-
cal products and services must have a basic understanding of the basic
security risk implications of the systems or features they are working
on and must be responsible for ensuring their safety.

72	 The DevSecOps Playbook	

Hiring for DevSecOps
In today’s job market, DevOps and security engineers are two of the
most in-demand skill sets, and when you look for a combination of the
two in one person, it can be next to impossible. Finding and retaining
the top DevSecOps engineers is even tougher. If DevSecOps focuses
on a culture of collaboration, then hiring for DevSecOps engineers
means finding people not only who are good technically but, more
importantly, who are good collaborators. Identifying these soft skills
can be significantly harder than any technical skills, and yet it is criti-
cal. One of the reasons that collaboration is so critical to hire for is that
it is easier to train someone in a new skill than it is to get them to
change their behaviors.

Key Characteristics

When hiring for DevSecOps, you should focus on key characteristics,
including these:

•	 Creative problem solving

•	 Communication

•	 Collaboration

•	 Curiosity

Your interview process should look for these traits in any candi-
date. You should structure your interviews carefully to ensure you are
covering trust, collaboration, and culture aspects. Questions like the
following can help illuminate practical teamwork skills:

•	 Tell me a time when your team had a conflict and what you did
to resolve it.

•	 Tell me about a time when you had a conflict with your super-
visor and what you did to resolve it.

•	 Tell me about a time a project you were working on was not
going in the right direction and what you did to resolve it.

	 DevSecOps People	 73

More advanced methods, such as role playing, can also be used to
further illuminate a candidate’s interpersonal skills in real-world sce-
narios. Whatever you do, it is important to ensure you illuminate the
interpersonal skills and highlight those DevSecOps attributes that are
critical for your company.

One of my favorite interview questions is “Tell me how a flush
toilet works.” While most security engineers don’t work on toilets
on a regular basis, the answers can illustrate a natural curiosity. I
press this handle and something happens. I wonder how that
works? Beyond that, it can tell you if they’ve been proactive in
troubleshooting a potential problem and getting their hands dirty,
literally and figuratively. And, barring previous knowledge of
plumbing, it tells you if they can think deductively, based on what
they know about toilets and how they work.

As with any hiring, it is important that you structure your inter-
views well and are clear about what each of the interviewees are going to
focus on to cover all aspects of a job and a candidate. One interview may
focus more on the technical aspects while another may focus more on
the soft skills. Because DevSecOps is such a competitive skills market, it
is important to keep in mind that the candidate is evaluating your com-
pany at the same time you are evaluating them. If your process has long
delays or is not well organized, you are likely to lose the best candidates.
You should also make the interview process an opportunity to tell can-
didates about the reasons your company is a great place to work. Even if
they do not end up in the position, this is an important opportunity to
build the company brand in the security and engineering community.

Diversity, Equity, and Inclusion

Like other technical fields, when hiring for DevSecOps, building a
diverse team can provide tremendous benefits. Not only does diversity
open up additional hiring opportunities, but it also improves the per-
formance of the team.

McKinsey & Company and PricewaterhouseCoopers (PwC) have
demonstrated the measurable value diversity brings to a team.

74	 The DevSecOps Playbook	

Representing the diverse society you operate in and the customers you
serve brings a greater number of ideas and speed of innovation. Having
a diverse set of team members brings a broader range of viewpoints,
which often leads to better solutions. A 2016 Harvard Business Review
article noted that “non-homogenous teams are simply smarter. Working
with people who are different from you may challenge your brain to
overcome its stale ways of thinking and sharpen its performance.”14 Yet,
according to a report by Tech Nation, just 15 percent of tech workers are
from black, Asian, and minority backgrounds, and 19 percent of tech
workers are women.15

In addition to delivering better results, hiring diverse candidates
can broaden your talent pool. If you push yourself to ensure you
include gender and racial diversity, there are large sources of untapped
talent that you can make part of your team. By targeting these talent
pools, you can find talent that competitors are missing.

However, talent diversity does not just happen. You must be
intentional about hiring and building diverse teams. When hiring, it is
critical that you specifically target diverse populations. Starting from
talent outreach, you can look to target female and nonwhite colleges as
well as other institutions. You also need to take action, such as
anonymizing applicants names, to eliminate bias in the hiring process
as much as possible. Once you have brought diverse candidates into
your team, it is also important that you ensure the workplace environ-
ment is a comfortable and safe environment for everyone. It is also
important to nourish diverse talent and ensure that people have oppor-
tunities to grow with your company.

Conclusion

When you look at the human aspect of DevSecOps, you need to look
at how we you a culture around security. People and culture are often
the most challenging parts of any transformation, so it is critical that

14 Rock, David, and Heidi Grant. “Why Diverse Teams Are Smarter.” Harvard Business
Review. November 4, 2016. https://hbr.org/2016/11/why-diverse-teams-
are-smarter.
15 Browne, Orla. “What % of People Working in Tech Are from BAME
Backgrounds?” Tech Nation. August 22, 2018. https://technation.io/news/
what-of-people-working-in-tech-are-from-bame-backgrounds.

https://technation.io/news/what-of-people-working-in-tech-are-from-bame-backgrounds
https://technation.io/news/what-of-people-working-in-tech-are-from-bame-backgrounds

	 DevSecOps People	 75

you do not underestimate the challenge of this aspect of DevSecOps.
Changing how people behave takes time and must be ingrained into
how you work. Like the security check at the beginning of the day at a
construction site, it is important to develop routines that build security
into daily activities for every part of the technology organization.

You can build security into your culture through security cham-
pions, activities such as game days, tabletops, red team activities, and
bug bounties. But, to develop a culture of DevSecOps, it must be inte-
grated into how you work.

It is also critical to break down silos between teams and organize
in ways that help embed security into all activities. Whether that be
through security champions, embedded security engineers, or shared
security practice leads, the point must be emphasized that security is
everyone’s job.

Trust breeds empowerment, trust encourages transparency, and trust
and transparency enable a learning culture.

The most critical component of DevSecOps is in building a cul-
ture around security that embraces the DevOps culture. This must be
a culture built on trust, empowerment, and transparency. Ultimately,
trust in each other builds empowerment. When you trust people to do
the right thing, they will be empowered to take action. Trust encour-
ages transparency because when people know they are trusted to do
the right thing, they will be empowered to share what they have
learned, to share what they did right, and maybe to share what they
didn’t. And each of these items—trust, empowerment, and
transparency—leads to a learning culture that will continue to learn,
grow, and thrive securely in the competitive business landscape.

77

Chapter 4

DevSecOps Process

Introduction

DevSecOps as a set of principles, and a newer one at that, does not have
any inherent processes. These principles provide underlying guidance
around the tools and practices within DevSecOps, but they do not pro-
vide step-by-step processes for how to work. Jayne Groll, CEO of
DevOps Institute, emphasized this point by saying, “There are no pro-
cesses which are inherent to DevOps.” In fact, many of the processes
that DevOps practitioners rely on are based on ITIL. However, as you
look to apply DevOps principles to how you work, you must look for
opportunities to automate, empower, and focus on collaboration.

When looking at the processes related to DevSecOps, you must
determine how to apply DevSecOps culture and principles to the pro-
cesses of security management. Fundamentally, DevSecOps processes are:

•	 Lightweight

•	 Automated

•	 Trustful

•	 Measured

•	 Driving ownership and accountability

•	 Transparent

•	 Empowering

•	 Engendering of psychological safety

•	 Focused on developing a learning culture

78	 The DevSecOps Playbook	

If you integrate these principles into existing processes and find
processes that enable them, you will build DevSecOps into every-
thing you do.

Understanding Processes at Scale

When considering processes for an organization, the size and the
maturity of an organization are key determinants. As organizations
become larger, more advanced processes are needed to align the com-
ponent parts. This, however, does not mean that processes need to be
burdensome or slow things down. In fact, when an enterprise is mov-
ing faster, they need to have the process framework in place to ensure
smooth and consistent execution. In a small company of only five or
ten people, it is much easier for everyone to know what everyone else
is doing at any given time. With smaller companies, there is less need
to track everything in detail. As companies grow, it becomes impera-
tive that they have the processes to track activities and react when
problems arise.

When companies are performing tens or even hundreds of
releases a day, they need to have a record of releases, so when some-
thing breaks, they can quickly find and easily understand what changed.
For midsize to large companies, you need to know what is changing,
what the process is, and who needs to get involved to engage the right
people and respond quickly to get services restored during major
incidents.

DevSecOps for IT Service Management

IT Service Management (ITSM) is the set of processes a company uses to
manage its technology products and services. The Information Technology
Infrastructure Library (ITIL) is a framework for ITSM. ITIL provides
process frameworks for the management of technology and alignment
with the delivery of value to the customer. ITIL includes processes such
as incident management, problem management, and change manage-
ment. As mentioned in Chapter 1, “Introducing DevSecOps,” there is a
common misconception that DevOps and ITIL are fundamentally

	 DevSecOps Process	 79

incompatible. This is actually far from reality. ITIL is a framework from
which you can take or leave portions you like; it provides many useful
processes for DevOps. As DevSecOps is based around a culture of col-
laboration, a process framework can integrate very well with a culture of
collaboration.

Integrating process frameworks such as ITIL with DevSecOps
principles becomes increasingly critical at scale:

•	 Incident management is a great example of the need for these
processes. When you have millions of moving pieces and hun-
dreds of globally distributed teams, it is significantly more
important that you have a framework for responding appro-
priately when something goes wrong. At a small scale, every-
one knows who wrote the code—it may even be the same
engineer who set up the server on which the code runs, so
diagnosing and responding have lower coordination require-
ments. At a large scale, you must have a process in place to
coordinate and track across different systems, different teams,
and different geographies.

•	 Problem management is another ITIL process that’s critical to
DevSecOps, as it focuses on understanding and remediating
the root cause of incidents. This sort of review and evaluation
is a key component of a learning culture. To be good at col-
laboration, DevSecOps engineers are also constantly looking
at the underlying causes of incidents to learn from them and
drive continuous improvement. The best DevSecOps teams
are the ones that are not just reacting when an incident occurs,
but being proactive and making sure they don’t occur in the
first place.

•	 Change management is another key ITIL process. When imple-
mented poorly, it can be an impediment to rapid release cycles
that serve as a cornerstone of great DevOps practices. However,
by implementing change management with DevOps princi-
ples in mind, you can use the ITIL change management pro-
cess to enable rapid releases, encourage DevOps practices, and
improve stability.

80	 The DevSecOps Playbook	

One way to do this is by taking an adaptive approach to change
management to balance risk with business agility. An adaptive approach
can account for the level of automation and resilience built into the
software and release process to allow for rapid releases while automati-
cally tracking all changes to the system. This same adaptive approach
can also ensure that higher-risk releases get the appropriate level of
scrutiny and that dependencies across organizations are appropriately
managed. In this way, a DevOps approach to the ITIL change manage-
ment process can enhance collaboration and improve stability while
enabling rapid release cycles.

Security Incident Management

The service management process of incident management is focused
on the resolution of issues impacting technology services. Tightly
honed incident management processes rely on collaboration between
teams to drive the rapid resolution of issues and are therefore a good
opportunity for the application of DevSecOps tools and principles.
Tools such as enterprise chat and notification systems can help ensure
that the right people are engaged at the right team, while practices
such as blameless postmortems help ensure continuous improvement.

There is a lot of incident management activity that can happen
before an incident occurs. From clear roles and responsibility to tightly
honed instrumentation, DevSecOps principles can be applied to pre-
vent incidents from happening in the first place and reduce their
impact when they do occur.

DevSecOps focuses a lot on system telemetry, which is the data you
collect about how your systems and services are performing, and for
good reason. If you can instrument your systems properly, you can find
issues before they impact customers and prevent minor incidents from
becoming major incidents. In addition, if systems are properly instru-
mented, you can begin to apply machine learning and predictive ana-
lytics to anticipate incidents before they happen.

As mentioned previously, DevOps has its roots in Lean manufac-
turing, and many of the concepts of Lean are reflected in DevSecOps
practices. One of the processes it borrows from Lean is the Andon

	 DevSecOps Process	 81

Cord. In Lean, the Andon Cord is a cord that shuts down an assembly
line when something goes wrong. This decentralizes the decision to
stop the assembly line and ensures that all resources are brought to
bear on localized problems that impact the end-to-end delivery of a
product. You can apply similar concepts to incident management by
allowing anyone to declare an incident when there is a system error.
In addition, you can bring all resources to bear on an issue with the
concept of swarming to ensure that incidents are resolved as quickly
as possible.

As discussed in Chapter 3, “DevSecOps People,” a big part of the
DevOps culture is accountability. In a trust-based culture, people
working on incidents focus on resolving the issues rather than defer-
ring blame or pointing fingers. This idea of accountability is aided by
the concept of functional teams and full-stack engineers. Full-stack
engineers focus on the system as a whole rather than individual vertical
slices, while functional teams focus on isolated functionality, which can
be developed without dependence on other teams. As a result of these
structures, engineers can take full responsibility for resolving issues
within their domains rather than needing to “throw them over the
wall” to another team that might have shared responsibility. This prac-
tice is very much in line with proper incident management processes
and ultimately leads to faster resolution times.

The ephemeral nature of systems in modern DevOps architec-
tures has fundamentally changed the approach to incident manage-
ment. For these applications and services, maintaining the state is no
longer important, so incident responders can easily restart the systems
on which applications run. In fact, in some cases, you can kill the
whole application or service. For services with ephemeral infrastruc-
ture, the resolution process changes from investigate and diagnose to
rapid restart and restore procedures, leading to significant improve-
ments in resolution times. This is not to say that you should disregard
diagnosis; it is important to capture important information such as
application and system logs so that diagnosis can happen at a later
time. Without further investigation or post-incident reviews, you can-
not build a learning culture nor can you prevent repeat incidents from
occurring. However, this approach allows you to separate restoration
from investigation.

82	 The DevSecOps Playbook	

Change Management

Change management is the IT service management process focusing
on managing changes to the technical environment to ensure that the
new changes are successfully made while minimizing negative impact.
Change management can be particularly important for security, as
appropriate change management can help ensure that changes adhere
to an organization’s security policies. Change management is another
example of an ITIL-based process that can be significantly improved
by the application of DevOps principles.

Change management is often implemented in ways that fly in the
face of DevOps. Traditional implementations put multiple layers of
approval in place for every change, inserting significant bureaucracy
and gates that almost guarantee longer release cycles and delays in get-
ting value to the customer. This fundamentally contradicts the DevOps
emphasis of short release cycles and the rapid delivery of value to
customers.

However, there can be little argument that tracking changes in a
technical environment can be highly valuable. Especially in large envi-
ronments, with small batch deployments, where many different
changes are occurring at the same time, it is critical to have visibility
into what is changing and how those changes might impact one another
and, ultimately, the end customer. By bringing DevOps principles to
bear on change management, you can ensure that you are tracking and
managing changes while enabling speed and agility.

Instead of using change management as a gate to prevent change, use it
as a process to enable change to get to your customers quickly and securely.

A DevOps approach to change management requires that you
shift the focus of change management from the myopic focus on secu-
rity and stability. You must broaden your perspective to understand
change management as a process that enables security and agility while
ensuring stability. Instead of using change management as a gate to
prevent change, use it as a process to enable change to get to your cus-
tomers quickly and securely.

	 DevSecOps Process	 83

Companies today are often doing tens and even hundreds of
releases a day using continuous integration and continuous deploy-
ment. To do change management at this pace, you must automate your
change management process. ITSM workflow tools such as Service
Now expose Application Programming Interfaces (APIs), which define and
allow for other applications to interface with them on a programmatic
basis. These APIs allow you to easily integrate your CD pipeline with
your change management system. Using these APIs, you can automati-
cally create change tickets. This ensures that there is a ticket for every
change without causing additional burden or slowing down your
deployment process.

Adaptive Change Management

If you take a DevOps approach to change management, you can imple-
ment adaptive change management. The goal of adaptive change man-
agement is to implement lightweight, scalable, and agile processes to
improve stability while enabling delivery velocity. This process takes
into account the risk of a change, thereby ensuring that the appropri-
ate amount of attention is paid to high-risk changes without slowing
down low-risk changes. This approach also provides a mechanism for
teams to lower their risk, thus driving down friction and encouraging
continuous improvement.

In this approach to change management, every change is assigned
a risk based on a risk calculation by the team implementing the change.
This aligns with the overarching goal of ensuring that you are appro-
priately managing risk and adapting to it. Approval and oversight levels
are then dynamically adjusted based on the risk of a given change. In
addition, release times can be adjusted in accordance with risk levels.

Approaches such as continuous integration and continuous
deployment (CI/CD) and deploying updates to a small subset of users,
referred to as A/B deployments, lower the risk level of a given change.
With adaptive change management, low-risk changes—with fully
automated testing using CI/CD and A/B deployments—are released
without any approvals. On the other hand, high-risk changes, which

84	 The DevSecOps Playbook	

may require coordination with multiple teams and may be highly man-
ual, receive review from all teams that may be impacted. This ensures
collaboration and appropriate integration testing at all levels.

Change Risk Calculation

Risk calculation for a change can be aligned with standard methods of
using the impact and probability of a risk. In this approach, probability
reflects the likelihood that a given risk will occur, while impact reflects
the impact on the business if a risk occurs regardless of the probability.
That is, assuming the change fails, what is the level of impact on the
business? It is important that teams be allowed to assess their own
impact and risk. Allowing teams to assess their own risk aligns with the
DevOps concepts of accountability and trust. By trusting teams to
accurately assess the risk of a change, you can build a high-trust culture
that drives high-performance companies.

Some may balk at the idea of self-assessment, decrying that they
cannot trust the releasors to accurately assess the risk of their
changes favoring rapid delivery over stability. However, the reality
is that this is not the case for high-trust environments, where
development and operations teams alike are focused on the success
of the customer. That said, you can put mitigating controls in place
if needed. One way to do this is to weigh the risk rating based on a
team’s past performance as well as their ability to accurately rate
the risk of a change. For example, if you are rating risk using
high-, medium-, and low-risk ratings, a team with a failed change
in the past 10 releases might increase from a low-risk rating to a
medium. This risk weighting would then be removed once the
team had reestablished a history of successful releases. By bringing
actual performance back into the risk rating, you can build a
numerical feedback format and allay concerns that some may game
the system.

Guiding Principles for Change Review and Approval

Once the risk of a change is calculated, the review and approvals can be
adjusted to align with the level of risk of a given change. Low-risk

	 DevSecOps Process	 85

changes may require review from managers. Higher-risk changes may
require coordination with other teams when there are cross-
dependencies and, in such situations, may benefit from review by a
change advisory board (CAB). When aligning approvals with risk, keep
in mind these guiding principles:

•	 The closer the change reviewer is to the technical details of
the code, the better. That is, an engineer on the same develop-
ment team will have a much better idea of the impact of a code
change than the vice president of that group.

•	 While high trust is critical, an audit should require that there
be another set of eyes reviewing changes to prevent people
from making illicit or damaging changes when they have mali-
cious intent.

•	 The CAB, if one is needed, should act as a “flight control,”
coordinating between different teams and business needs. The
CAB should not be a bureaucratic body designed to stop changes.

•	 Small, incremental changes are safer. Instead of making major
updates, strive to continually improve small portions of the
application or service.

•	 The easier you can make it to submit a change, the more likely
people are to follow the process.

With these principles in mind, you can develop an approval sys-
tem that ensures proper oversight while allowing changes to produc-
tion to be as frictionless as possible.

Standard Changes and “Change Freezes”

In addition to these types of changes, there are also standard changes
that do not require approval. This is the ideal state for changes in a
DevSecOps world, where small changes can be released almost con-
tinuously to production.

Standard changes are pre-approved changes that are extremely
low risk, relatively common, and follow a set process. This is an idea
for changes that can be deployed in a fully automated manner using

86	 The DevSecOps Playbook	

CI/CD, which includes best practices such as continuous testing, auto-
mated rollback, feature flags, and the like. These sorts of changes can
be approved to be standard changes. For a change to qualify as a stand-
ard change, it must be low risk and have a history of successful perfor-
mance. Once approved, these standard changes can be deployed
without any approval other than the code review. This is ideal for an
organization that wants to move quickly. By encouraging as many
changes as possible to go through the standard change process, organi-
zations can reduce organizational bureaucracy and increase time
to market.

It is important to note that timing can play an important part in
change management, as it can impact the risk of a change. Periods of
high activity, such as Cyber Monday for commerce platforms as well as
major company events, can be high-risk times for a business. Often it
is desirable to do whatever is possible during these times to min-
imize risk.

The evidence indicates that “change freezes” simply do not work.

Change freezes are a common practice among many business
where, during critical business periods, no changes are allowed.
However, the evidence indicates that change freezes simply do not
work. There are multiple reasons these do not work, the first of which
is that they are hardly, if ever, actually adhered to. The fact is that, even
during high-risk times, business and technology must continue to
move forward. Whether it is an emergency fix for a customer issue or
business critical release, there are almost always exceptions to change
freezes. This happens so much so that change freezes are often referred
to as change slushes.

Data shows that change freezes often cause a huge influx of
changes directly before the freeze, where teams try to cram in all their
critical features directly before a high risk, leading to significant insta-
bility during the very period of time that the business is trying to pro-
tect. In addition, there is a flood of releases directly after the change
freeze period, which shows that a backlog of changes has built up and
the company is losing out on delivering value to the customer during
that period. Figure 4.1 shows change data from a major media com-
pany that depicts exactly this scenario.

	 DevSecOps Process	 87

Can you guess where the change freeze was? Not only is there a
massive spike in the number of releases before and after the change
freeze period, but the number of changes during the period shows only
a slight decrease.

The final problem with change freeze periods is that they treat
low-risk changes the same way they treat high-risk changes—with a
blanket statement that “Thou shalt not change.” One way to address
these issues is to simply approach it for what it is: a high-risk period.
With that in mind, you can simply raise the risk of any changes during
that period. Starting from an adaptive approach to change manage-
ment, you can raise the risk of all change so that low-risk changes are
evaluated as medium risk changes, medium as high, and high as critical.
(Note that this necessitates the creation of an additional level of risk,
which is higher than high.) This does a good job of accurately reflect-
ing the business reality without imposing a somewhat arbitrary,

65

60

55

50

45

40

35

30

C
h

an
g

e
R

eq
u

es
t

C
o

u
n

t

25

20

15

10

5

0

Changes Over Time

20
17

-0
5-

01

20
17

-0
5-

05

20
17

-0
5-

09

20
17

-0
5-

13

20
17

-0
5-

17

20
17

-0
5-

21

20
17

-0
5-

25

20
17

-0
5-

29

20
17

-0
6-

02

20
17

-0
6-

06

20
17

-0
6-

10

20
17

-0
6-

14

20
17

-0
6-

18

20
17

-0
6-

22

20
17

-0
6-

26

20
17

-0
6-

30

20
17

-0
7-

04

20
17

-0
7-

08

20
17

-0
7-

12

20
17

-0
7-

16

20
17

-0
7-

20

20
17

-0
7-

24

20
17

-0
7-

28

20
17

-0
8-

01

20
17

-0
8-

05

20
17

-0
8-

09

20
17

-0
8-

13

20
17

-0
8-

17

20
17

-0
8-

21

20
17

-0
8-

25

20
17

-0
8-

29

20
17

-0
9-

02

20
17

-0
9-

06

20
17

-0
9-

10

20
17

-0
9-

14

20
17

-0
9-

18

20
17

-0
9-

22

20
17

-0
9-

26

20
17

-0
9-

30

20
17

-1
0-

04

20
17

-1
0-

08

20
17

-1
0-

12

20
17

-1
0-

16

20
17

-1
0-

20

20
17

-1
0-

24

20
17

-1
0-

28

20
17

-1
1-

01

20
17

-1
1-

05

20
17

-1
1-

09

20
17

-1
1-

13

Figure 4.1  The rate of change shows a significant spike in the number
of releases directly before and after a “change freeze” period.

88	 The DevSecOps Playbook	

unrealistic blanket statement, which is rarely enforced. The reality is
that this is a higher risk time for the business, and any changes should
be evaluated with this in mind.

Of course, testing is a critical success factor for any change man-
agement process to be successful. All testing—from the unit level
to integration testing to vulnerability testing—is important. The key
here is to automate wherever possible and to build this automation into
your deployment pipeline. Additional details on building a DevSecOps
deployment pipeline with automated security validation are available in
Chapter 5, “DevSecOps Technology,” With automated testing in place,
resources can be deployed to do testing that is more exploratory in
nature and that might catch things that automated testing would not.
This test automation can be used in every environment and should be
integrated into the deployment pipeline.

There is a balance here from a time perspective in that these tests
must test full system functionality but also cannot take much time if
they are going to be used in a rapidly deploying pipeline. This balance
will vary from team to team, but it must not be so time-consuming that
teams are tempted to skip testing or to do less frequent releases.
Ultimately, it is the responsibility of the team developing the code to
determine this balance. They must ensure that code is delivered to
customers without issues. Once testing is automated and proven suc-
cessful, it is easy to advocate that these changes be included as standard
changes, enabling rapid and seamless delivery to the customers.

In all this planning and risk classification, it is important to
remember that there will always be unplanned/emergency changes
and you must ensure that your process accounts for these. To maintain
the adaptability of your change management process even under emer-
gency circumstances, you can continue to use the classification and
approval matrices described in this chapter. However, in emergency
circumstances, modifications must be made so that changes can be
made even quicker. To accommodate rapid change, it is often impor-
tant to allow verbal approval for these sorts of changes. It is often also
appropriate to delay the filing of any change forms until after the
emergency situation has been remediated. By making these adjust-
ments, you can ensure that a process that is already designed for rapid
deployment can become even faster to handle emergencies without
sacrificing the necessary review and oversight.

	 DevSecOps Process	 89

Problem Management

Problem management is another critical ITIL process for security
professionals and one that closely aligns with DevOps principles.
Problem management looks at, and attempts to address, the underly-
ing causes of incidents. In doing so, you have an opportunity to help
build the learning culture critical to DevSecOps. By looking to miti-
gate the underlying causes of incidents, problem management also
builds into the culture a process that drives continual improvement,
another key element of DevSecOps.

According to the IT Process Wiki, “The primary objectives of this
ITIL process are to prevent incidents from happening, and to minimize
the impact of incidents that cannot be prevented.”1 To do this, problem
management looks at the root causes for incidents and determines
actions to be taken. Taking a DevSecOps approach here means that the
focus must be on continuous learning rather than blame or correc-
tive action.

Problem Management at Wiley

Wiley takes problem management seriously, making a dedi-
cated effort to identify and reduce problems. At Wiley I intro-
duced an availability manager whose sole focus is managing
the availability and performance of its products and services
for researchers and learners around the world.

The Wiley incident managers perform a dual role of
incident manager and problem manager so that the people
responsible for resolving the incident can also take actions to
help ensure they do not occur in the future. The availability

(continues )

1 Kempter, Stefan. “Problem Management.” IT Process Wiki. IT Process Maps, March 10,
2022. https://wiki.en.it-processmaps.com/index.php/Problem_Management.

http://wiki.en.it-processmaps.com/index.php/Problem_Management/

90	 The DevSecOps Playbook	

manager, in conjunction with the incident/problem managers,
launched a focused effort to identify and reduce incidents. This
focus effort enabled Wiley to close almost 200 outstanding
problems. By reducing the underlying causes of incidents,
Wiley was able to reduce the number and severity of incidents.
During that same time period, availability across all applica-
tions rose by .64 percent. While that may seem like a small
number, when we are talking about availability and getting to
multiple nines, this represents a huge improvement for the
customers.

The first step in the problem management process is the identifi-
cation of the problem. This can be done by examining incident trends
to determine what common underlying causes may be. Many organi-
zations follow the problem management process for all major inci-
dents (generally defined as P1 or P2 incidents) to ensure that every

Backlog Total
500

400

418

383

334 335

231227 224
242236 234

248250

300

T
ot

al
 o

f P
ro

bl
em

s

200

100

0

18
/0

2/
20

21

09
/0

3/
20

21

28
/0

3/
20

21

16
/0

4/
20

21

05
/0

5/
20

21

24
/0

5/
20

21

12
/0

6/
20

21

01
/0

7/
20

21

20
/0

7/
20

21

08
/0

8/
20

21

27
/0

8/
20

21

15
/0

9/
20

21

04
/1

0/
20

21

23
/1

0/
20

21

11
/1

1/
20

21

30
/1

1/
20

21

19
/1

2/
20

21

07
/0

1/
20

22

26
/0

1/
20

22

14
/0

2/
20

22

05
/0

3/
20

22

24
/0

3/
20

22

12
/0

4/
20

22

01
/0

5/
20

22

20
/0

5/
20

22

08
/0

6/
20

22

27
/0

6/
20

22

16
/0

7/
20

22

04
/0

8/
20

22

23
/0

8/
20

22

11
/0

9/
20

22

30
/0

9/
20

22

19
/1

0/
20

22

07
/1

1/
20

22

26
/1

1/
20

22

15
/1

2/
20

22

402
418

383
364 358

339 334 335 333

311

287
268

246
231 231 231

221 223 232 227 227 224 224
242

210

237 236 234 230
248

233 238
250

Working together, problem management and availability manage-
ment drove significant reduction in problem tickets.

(continued )

	 DevSecOps Process	 91

major incident has follow-up to drive continuous improvement. It is,
however, important to stress that problem management should not be
reserved only for major incidents. Often it is the minor incidents that
are most insidious. There is the risk of “death by 1,000 paper cuts,” that
is, many small issues can be as bad as, if not worse than, one major one.
Problem managers and availability managers should be looking for
trends and repeat incidents and trends to be included as part of the
problem management process.

While this approach may incur the additional cost of availability
managers, this cost outweighs the detrimental impact of outages and
performance degradation. The cost to brand reputation for numerous
small issues can be just as serious as major outages. In addition, by
proactively addressing the root cause of incidents, you can signifi-
cantly reduce the amount of valuable time your engineers focus on
firefighting.

The incident postmortem, also referred to as the post-incident review
(PIR), is the first step in problem management and an excellent opportu-
nity to instill institutional learning for an organization. During this pro-
cess, the underlying cause may be determined or a temporary fix applied.
If the underlying root cause is known, the problem can be classified as a
known error until the underlying cause(s) are resolved. If the underlying
cause cannot be determined, then actions can be taken to improve han-
dling and preparations or work-arounds before it occurs again.

Problem management requires focused work and dedication.
Problem management does not “just happen” because postmortems
are happening. For midsize to large companies, resources need to be
assigned to problem management.

The Problem Manager Role

In more and more companies, incident managers are playing dual
roles as incident and problem managers. This can be a useful model,
as the incident managers are often the closest to the incidents; how-
ever, this combination of roles cannot happen at the expense of prob-
lem resolution. If incident managers are too busy firefighting to take

92	 The DevSecOps Playbook	

time to build a better fire engine, then improvement will not be
made, and the team will be mired in daily toil. For the combined role
of incident manager and problem manager to work, it is often neces-
sary to have someone whose job it is to identify and drive the resolu-
tion of problems. This is one of the most rewarding processes, as
resolving the causes of incidents and improving daily work are key
elements to DevSecOps. There are cost and flow efficiencies here.
The combined role also reduces hand-offs and thereby increases effi-
ciency. If you can do problem management well, it reduces toil in
day-to-day work by reducing the amount of effort spent on a daily
basis fighting fires.

If incident managers are too busy firefighting to take time to build a
better fire engine, then improvement will not be made, and the team will be
mired in daily toil.

Blameless Postmortems

Learning culture is a key component of DevSecOps, and this type of
learning can be instilled in organizations through the ITIL process of
incident postmortems. This DevSecOps principle is highlighted in
Gene Kim’s Third Way of DevOps: “creating a culture that fosters two
things: continual experimentation, taking risks and learning from failure.”

It is important that postmortems be approached with a spirit of
learning rather than a spirit of blame. To build a culture of continual
learning, all resources involved in the incident use the incident post-
mortem as an opportunity for the organization to grow and learn.

A good postmortem creates an environment of psychological safety
where the team can feel free to explore the issue. In blameless postmor-
tems, the engineers walk through the incident detailing each event as it
happened from their perspective. Engineers who were involved in the
incident detail their observations, expectations, and the timeline of
events. The key goal of such a postmortem is not just to solve the “prob-
lem,” or to find the “root cause,” but also to ensure that organizational
learning occurs. At the end of a postmortem, one of the key items that
everyone involved must ask themselves is “What did I learn?” If every-
one leaving the postmortem has learned something, then the postmor-
tem should be considered a success even if no further action is taken.

	 DevSecOps Process	 93

If everyone leaving the postmortem has learned something, then the
postmortem should be considered a success even if no further action is taken.

It is critical that postmortems not focus on finding a single root
cause or finding someone to blame. In The Unicorn Project, as they are
beginning their postmortem meeting, Kurt (a key QA manager help-
ing to lead change at Parts Unlimited) notes this stating, “The spirit
and intent of these sessions are to learn from them, chronicling what
happened before memories fade. Prevention requires honesty, and
honesty requires the absence of fear.”2

As mentioned, blame-based cultures discourage the experimenta-
tion and learning required to be successful in today’s marketplace.
Looking for blame will only ensure that the full story is not revealed
because people do not feel comfortable sharing what happens. In Etsy’s
famous Code as Craft blog post, “Blameless PostMortems and a Just
Culture,” John Allspaw writes, “A funny thing happens when engineers
make mistakes and feel safe when giving details about it: they are not
only willing to be held accountable, they are also enthusiastic in helping
the rest of the company avoid the same error in the future.”3 Postmortems
provide an excellent opportunity to show engineers how they can be
rewarded for their honesty. By providing space for open and honest
discussion, leaders can play a big part in building a learning culture.

Release Management

Release management is an ITIL process that fundamentally changes
with the technology of DevSecOps. No longer does release manage-
ment need to be a set of manual steps executed by different people,
each taking separate actions to ensure the successful release of a new
product. Deployment tools such as Jenkins enable CI/CD in a fully
automated manner. CI/CD is a cornerstone of DevOps and DevSecOps,
as it enables the small incremental releases that are at the core of
DevOps. CI/CD enables core principles of DevOps such as flow, fast
feedback, experimentation, and continuous learning.

2 Kim, Gene. 2019. The Unicorn Project: A Novel About Developers, Digital
Disruption, and Thriving in the Age of Data. 1st ed. Portland: IT Revolution Press.
3 “Blameless PostMortems and a Just Culture.” Code as Craft. Etsy, May 22, 2012.
www.etsy.com/codeascraft/blameless-postmortems.

http://www.etsy.com/codeascraft/blameless-postmortems/
http://www.etsy.com/codeascraft/blameless-postmortems/

94	 The DevSecOps Playbook	

In addition, these mechanisms that allow for the rapid deployment
of software and infrastructure can also be leveraged to enable auto-
mated testing and automated security scanning. By interjecting security
tooling into the deployment pipeline, you can ensure that all releases
meet the security standards of your organization. Because deployment
pipelines can be leveraged to deploy infrastructure as code (IaC), you
can employ security scanning in your deployment pipelines to ensure
that the software and hardware meet your security standards. In addi-
tion, these pipelines can be used to automate compliance, alleviating
the need for manual testing and evidence collection.

Chapter 5 provides details about DevSecOps pipelines and how
to integrate security into the deployment process. From a process per-
spective, what is important to note is that, through automation, you
can eliminate the laborious manual release processes of yesterday by
automating deployment from start to finish with CI/CD.

A DevOps Approach to Security Processes

Many of the standard security processes and practices also enable a
DevSecOps culture when they are done right. Practices such as table-
top exercises and red team/blue team exercises help build a culture of
collaboration and continuous learning that’s critical to DevSecOps.
These processes have been part of cybersecurity for quite some time,
so the key is to ensure they are approached with the principles of
DevOps, encouraging learning culture, collaboration, and trust.

Tabletop Exercises

Tabletop exercises for cybersecurity allow cross-functional teams to vir-
tually simulate cyber-attacks and the responses. In tabletop exercises, a
specified attack is described, and then, in a serial fashion, participants
discuss their actions in the process to identify and remediate the situa-
tion. Tabletop exercises provide a great way to ensure appropriate
response in a low-risk environment. These exercises help build aware-
ness across the organization, help clarify roles and responsibilities as
well as key decision-making capabilities, and help identify potential
gaps in the process.

	 DevSecOps Process	 95

Tabletops exercises offer many benefits, including the following:

•	 Increased awareness of threats across teams within a business

•	 Opportunities to evaluate incident preparedness

•	 Determination of gaps in the incident response process

•	 Clarification of roles and responsibilities as well as decision-
making

•	 Identification of potential capability gaps

Tabletop exercises become increasingly valuable for addressing
wide-reaching scenarios, such as ransomware attacks, which may
require participation from many departments including legal, finance,
marketing, development, and operations. For critical situations, table-
top exercises can be a great way to raise awareness and build collabora-
tion between the teams, again stressing that security is not the job of
any one team, but a way that all teams become involved.

Attack Simulation: Red Team, Blue Team,
Purple Team

Similar to tabletop exercises, attack simulations offer an opportunity to
embed cybersecurity learning into the culture. Red team/blue team
exercises are attack simulations in which one group of people is desig-
nated the red team with the goal of breaching the security. Another
group, designated the blue team, is charged with defending against the
attack. To protect against unintended consequences to production sys-
tems, these simulations are often performed in preproduction or iso-
lated accounts with copies of production systems. These exercises are
similar to tabletop exercises, in that they test the defenses through
simulated attacks. However, in these exercises, the teams are working
hands on with the systems they are trying to protect.

These types of exercise are critical to DevSecOps because they
help establish a learning culture by actively involving all teams to think
about creative ways to attack and defend their systems. To build this
culture across the organization, it is important to include people

96	 The DevSecOps Playbook	

outside of the security organization—such as development, operations,
and platform engineering—in these drills. These exercises often
include a purple team, whose responsibility it is to help coordinate and
monitor the simulation. The purple team can further facilitate learning
though careful observation and data analysis, identify potential gaps,
and make suggestions for future improvements.

As with tabletop exercises, it is important to make this a regular
and repeated process. It is not enough to do this once. To build these
tests into the culture, it is best to find a regular cadence where these
sorts of events are repeated, potentially on different systems, poten-
tially with different participants. Whether that be quarterly, semi-
annually, or even annually, the key is to ensure it is planned on a regular
cadence to truly build it into the culture.

Chaos Engineering

Chaos engineering is a great DevOps practice that can be adapted to
DevSecOps. Chaos engineering helps build system resilience by inten-
tionally interjecting errors, such as server shutdowns, latency increases,
and resource exhaustion, into a system. The concept of chaos engi-
neering originated at Netflix in 2011 and was designed to help ensure
stability in Netflix’s cloud platform. Casey Rosenthal, who built the
Chaos Engineering team at Netflix, defines chaos engineering as “the
discipline of experimenting on a distributed system in order to build
confidence in the system’s capability to withstand turbulent conditions
in production.”4

To implement chaos testing, Netflix developed the widely known
Chaos Monkey to inject random errors. The initial system randomly
brought down systems (EC2 instances) within Amazon Web Services
(AWS) to ensure the system was resilient to these types of failures.
Chaos Monkey was later expanded into a set of tools known as the
Simian Army. Chaos Monkey and the tools within the Simian Army
are open-source and available for download on GitHub.

4 Rosenthal, Casey. “What Chaos Engineering Is (and Isn’T).” DevOps.Com. June 25,
2021. https://devops.com/what-chaos-engineering-is-and-isnt.

http://devops.com/what-chaos-engineering-is-and-isnt/

	 DevSecOps Process	 97

With any highly complex system, failure is inevitable, so you need to
prepare for failure rather than just try to prevent it.

Chaos engineering speaks to a larger mental shift from assuming
that, if designed correctly, systems would behave correctly to assuming
that systems will fail and building them to be resilient to that type of
failure. One of the reasons this type of testing is important is because
of the increasing complexity of our systems.

Previous state-based systems assumed that servers in the data
center would not go down and therefore could safely store the state of
the application locally. Modern design acknowledges that this is not a
safe assumption. Not only will systems occasionally fail, but as systems
become increasingly complex, more components mean more opportu-
nities for failure.

With any system of sufficient complexity, full knowledge of the
system is ultimately not possible. It is, therefore, not possible to fully
test a system based on knowledge of that system. Engineers must
design systems to expect failure and be resilient to that failure from the
ground up. In the same way, you must design for security attacks and
breaches from the ground up. It is important to keep in mind that, with
any highly complex system, failure is inevitable, so you need to prepare
for failure rather than just try to prevent it.

Chaos testing is also important because it allows you to learn
while not in the middle of an incident. By intentionally injecting fail-
ure conditions, you can observe how the system reacts when you’re not
in the middle of a firefight. While incidents offer great learning oppor-
tunities, they are rarely an ideal time to learn because the people
involved in resolving the incident are under pressure and laser focused
on getting things back in working order.

Testing of this nature not only tests the systems for resilience
but also tests the systems around these systems—such as people, pro-
cesses, and monitoring. With testing of this type, you see not only
that the system is resilient but also how monitoring and instrumenta-
tion behaves as well as any people involved in the management of
these systems.

98	 The DevSecOps Playbook	

Chaos testing can be quite successful for cybersecurity. The
testers should begin with a hypothesis and then develop an automated
way of testing that hypothesis. In this way, known error conditions can
be tested. For example, test the hypothesis that, if a container with a
known vulnerability were created in production, the Security
Operations team would be notified.

With that hypothesis in mind, you can design a test to insert
cybersecurity error conditions and observe the results. Other failure
scenarios might include catching AWS instances deployed with default
permissions, or introducing code or infrastructure with critical vulner-
abilities that should be caught and/or blocked. If you can design tests
of this nature in an automated way, it will help ensure that the tools
that you think are protecting you are working correctly, not only dur-
ing normal operating conditions but also when error conditions arise.

Conclusion

The processes of DevSecOps come from many sources: they come
from ITIL, they come from security, they come from quality assur-
ance. What is important about these processes—what they have in
common and what makes them DevSecOps processes—is that they
apply the DevOps principles and leverage automation to reduce human
toil. By taking a lightweight and automated approach to traditional
processes, you can reduce steps in processes and even make these pro-
cesses completely transparent to engineers without eliminating the
value these processes were created to deliver. By applying DevOps
principles, you take traditional processes and use them to empower
engineers and build the learning culture that is critical to successful
DevSecOps implementation.

99

Chapter 5

DevSecOps Technology

Introduction

DevSecOps technology enables and underpins the core principles of
DevOps, but it is important to reiterate that DevSecOps and DevOps
are not just about technology. DevSecOps is primarily about culture
and the DevOps principles. With this in mind, it is important to clarify
just what constitutes a DevSecOps tool. What defines DevSecOps
technology? The reality is that there is no such thing as a “DevSecOps”
tool, but, rather, a set of tools that enable DevSecOps. While this may
seem like a subtle differentiation, it is an important one because how a
tool is used impacts the outcome. If you think of DevSecOps as a cul-
ture of collaboration, then you can consider a set of tools that enable
collaboration. More generally, you can think of DevSecOps tools as
the set of security tools that enables the core principles of DevOps.

The reality is, there is no such thing as a “DevSecOps” tool, but, rather,
a set of tools that enable DevSecOps. . .. If you think of DevSecOps as a culture
of collaboration, then you can consider a set of tools that enables collaboration.

Marketing messages make this point more confusing, as many
modern security tools now purport to be a “DevSecOps tool.” It is
important to consider what a DevSecOps tool actually is to separate
reality from the marketing messages. Tools like extended detection and
response (XDR), which monitor the environment, focus on core princi-
ples such as observability and transparency. However, if these tools are
not shared with others who are responsible for these systems, they can
actually be contradictory to DevOps principles. Tools are, ultimately,
just a means to an end and can be used in many different ways. So,
when understanding if something is a “DevSecOps tool,” you must

100	 The DevSecOps Playbook	

look at tools that enable the core principles of DevOps. You must
understand how to use technology to enable collaboration, rapid feed-
back, continuous learning, and small batch delivery.

You must look for tools that enable DevSecOps principles
such as these:

•	 Collaboration—As collaboration is at the core of DevSecOps,
you must look for tools that enable better collaboration across
teams. Chat tools such as Slack or Teams promote the free
flow of information required for collaboration in global hybrid
team environments. In addition, tools such as PagerDuty can
help coordinate and communicate between teams when
issues arise.

•	 Flow of value from left to right—CI/CD tools such as
Jenkins and CircleCI are the key to Gene Kim’s First Way of
DevOps, allowing for the smooth and continuous flow of value
to the customer. In addition, automation in its many forms
helps eliminate daily toil, thereby allowing engineers to focus
on building great products and services for the customers.
This automation can take the form of security orchestration,
automation, and response (SOAR) tools or custom scripts. As
long as the focus is on reducing manual work, they help sup-
port flow of value to the customers.

•	 Empowerment—By giving engineers more control over the
application life cycle from development to production sup-
port, you empower them, which drives better business results.
Abstraction layers such as cloud providers and automated
security testing allow engineers to do the right thing without
requiring hand-offs or dependence on other teams.

•	 Fast feedback and continuous learning—Small batch deliv-
ery enabled by CI/CD tools enables rapid feedback from the
customers, thus allowing engineers to rapidly see the impact
their changes are having for their customers. In addition,
shared telemetry from monitoring and observability tools can
provide critical visibility to the impact of changes.

	 DevSecOps Technology	 101

•	 Shift Left—Using test-driven development and inserting
security testing in the pipeline can increase the quality of your
service and give you more confidence to release faster and
more frequently.

DevSecOps Continuous Integration and
Continuous Deployment

Continuous integration and continuous deployment (CI/CD) is a cor-
nerstone of DevOps principles and practices, as it enables small batch
delivery by providing short feedback loops and strengthening input
from the customer. The CI/CD process includes all the steps to take
changes to code from the developer and get them built and deployed
to the customer. This includes the following steps:

1.	 Pushing the code from the source code repository

2.	 Integrating it into the rest of the application

The Fallacy of a “DevSecOps Tool”
No tool is inherently a “DevSecOps tool.” This is because
alignment with DevOps principles is dependent on how a tool
is used. I have seen tools designed for, and marketed as,
DevSecOps used in ways that are fundamentally at odds with
the core DevOps principles.

During my time running a global DevOps consulting
firm, we worked with one team that had three different chat
platforms. The development team used Slack, the security
team used Teams, and the business teams used HipChat. This
use of these tools actually reenforced silos and discouraged
communication between the teams. In this way, chat tools,
arguably one of the tools that can clearly enhance collabora-
tion, was being used in a way that actually prevented collabora-
tion across teams. When considering what a “DevSecOps tool”
is, it is important to look not just at the tool’s function, but also
at how it is being used.

102	 The DevSecOps Playbook	

3.	 Building a complete application

4.	 Testing the application

5.	 Deploying the application to production all through
automation

This is in stark contrast to older methods, where developers
would manually build their code in isolation and then send it to testers
to examine, who would log and report any errors they encountered.

CI/CD is the process for rapid building and deploying of appli-
cations. Continuous integration allows developers to integrate their
code with the code of other developers who are working on the same
application or service at any time. Continuous deployment takes this
code and builds it into a deployable state so that it can be pushed to
production at any time. It should be noted that continuous deploy-
ment does not mean that applications are always deployed to the cus-
tomer, only that the application is always in a deployable state. While
delivering the product to customers quickly is important, constant
changes to the application may cause a suboptimal experience for the
end users. Timing is crucial in determining when certain changes are
launched. Therefore, continuous deployment pipelines may simply
build the production-ready package to be available for deployment
when scheduled or may deploy every change depending on the busi-
ness requirements.

CI/CD provides amazing improvements in direct feedback to the
developers. By getting small incremental changes to customers quickly,
engineers get rapid feedback on the impact their changes are having
for their customers. The deployment pipeline also provides tremen-
dous opportunities for security. By incorporating security tools in the
deployment process, you can ensure that code is secure before it ever
gets to a production environment.

Figure 5.1 shows a basic CI/CD diagram. At each stage of the
deployment pipeline, different tools can be used to ensure the security
of the release. These tools, as well as a selection of the top vendors in
each area, are listed. While this is not a comprehensive picture of all
available tools or providers, it should provide some idea about the

	 DevSecOps Technology	 103

variety of vendors available to you as you build out your pipeline. Note
that some tools are available in multiple stages because they can be
used at multiple points throughout the CI/CD pipeline. The following
sections go into more detail about the stages of the deployment pipe-
line and the tools that can be used at each stage.

The Commit Stage

Commit is generally the first step in the DevOps CI/CD pipeline.
Developers commit their code to a source code repository to provide a
centralized source for storing code and tracking versioning accurately.
To appropriately manage the code, all source code should be checked
into a shared repository. There are many source code repositories
including GitHub, Bitbucket, SourceForge, and GitLab. Cloud pro-
viders have their own source code repositories, such as AWS
CodeCommit and Azure Repos.

Commit Build Test Deploy

SAST
 • SonarQube
 • Veracode
 • Mend
 • Checkmarx
 • Snyk

SAST
 • SonarQube
 • Veracode
 • Mend
 • Checkmarx
 • Snyk
DAST
 • Checkmarx
 • Rapid 7
 • HCL
 AppScan
IAST
 • Contrast
 Security
 • Invicti
 • Checkmarx
 • Veracode

SCA
 • GitHub
 • GitLab
 • Snyk
 • FOSSA
laC Scanning
 • TFLint
 • GitLab
 • Snyk

DAST
 • Checkmarx
 • Rapid 7
 • HCL
 AppScan
RASP
 • Dynatrace
 • Signal
 Science
 • JSDefender
 • Imperva
 • OpenRASP
 • Veracode
 • Rapid 7

Figure 5.1  The DevSecOps pipeline integrates security tools directly
into the process of building and deploying applications and services.

104	 The DevSecOps Playbook	

The commit stage is a great early opportunity to verify the secu-
rity of the code. Static code analysis tools such as static application
security testing (SAST) can insert security at the first step in the CI/
CD pipeline. SAST can analyze the code committed to determine if
there are any potential security weaknesses, such as cross-site scripting,
SQL injections, and buffer overflow. Popular SAST tools include
SonarQube, Veracode, Mend, Checkmarx CxSAST, and Snyk. SAST
provides white-box analysis, looking directly at the code and offering
considerable protection because of the full visibility into the inner
workings of the system.

SAST tools can be built into the deployment process and run
every time new code is checked in. The CI/CD orchestration tool can
then be configured to reject or flag any potential issues. By detecting
and rejecting these issues early in the CI/CD process, developers can
ensure that security issues are never introduced to the codebase. In
addition, by providing immediate feedback to the developer, the cost to
remediate these issues is lower. Identifying issues earlier in the software
development life cycle is a great example of the concept of Shift Left.

The Build Stage

The build stage of the CI/CD pipeline takes newly committed code
and integrates it with existing code to build the system or service.
Building will also pull in any dependencies or libraries that need to be
included in the final product. The build stage usually produces a com-
pleted package that is ready to be tested and deployed.

A standard build process may include the following steps:

1.	 Compilation of all code that must be built to develop
executable programs

2.	 Linting, which checks the code for programmatic and
stylistic errors

3.	 Artifact generation, where the final package is prepared for
deployment to production1

1 Fernandez, Tomas. “Design an Effective Build Stage for Continuous Integration.”
Semaphore. December 7, 2022. https://semaphoreci.com/blog/build-
stage.

https://semaphoreci.com/blog/build-stage
https://semaphoreci.com/blog/build-stage

	 DevSecOps Technology	 105

The build phase should be used to incorporate any security stand-
ard tools and libraries. During the build phase, you can incorporate
code for endpoint protection, dynamic application testing, and logging
and tagging standards. You should use this opportunity to ensure that
all your standard security tools are built into the product. This should
include installation of endpoint detection and response (EDR) tools as
well as dynamic application security testing (DAST) tools. Although
these are runtime tools, you can use the build phase to ensure they are
built into your solution. This is also a good time to verify that the tag-
ging standards for your organization are adhered to, both for the appli-
cation and for infrastructure deployments.

During the build phase, you can also use source composition
analysis (SCA) to check for vulnerabilities in any dependencies or
libraries. Third-party vulnerabilities are increasingly becoming a major
area of risk for companies, as seen in the Apache Log4J breach. SCA
looks at all source code to determine potential known vulnerabilities in
linked libraries and open-source code references. SCA can also be used
to identify any potential license violations that could cost companies a
significant amount of money. Top SCA tools include GitHub, GitLab,
Snyk, and FOSSA. By scanning at the build phase, you can ensure that
the code that’s submitted is secure and that external dependencies,
such as open-source libraries, are secure as well.

The build phase is also a good point to scan any IaC for vulner-
abilities related to components of your infrastructure. IaC scanning
works in a similar manner to SAST tools, except that they focus on
infrastructure-related vulnerabilities. Key tools in this category include
TFLint, GitLab, and Snyk. By leveraging IaC scanning, you can ensure
that your application and your infrastructure is secure.

The Test Stage

Once the build process is complete, automated testing of the compiled
system can begin. The key for DevSecOps practices is to make security
testing part of the process. This testing will be black-box testing, looking
for ways to compromise the build system as a compiled whole. DAST
can be deployed at this stage. DAST provides an outside-in evaluation
of the applications and services. It helps identify vulnerabilities by

106	 The DevSecOps Playbook	

simulating attacks in a way similar to how an external party would try
to breach the application or service.

DAST tools are run against the compiled product. As part of the
deployment process the application or service should be deployed to
a staging environment where this sort of testing can be run. DAST
tools search for vulnerabilities in a running application, such as cross-
site scripting, external XML entities (XXE), cross-site request forgery
(CSRF), or SQL injections that your SAST tool may not have caught.
While static code analysis may identify some of these issues, it is
important to run these tests against a running application. Because
DAST tools are designed to be run against a dynamic environment,
they can identify issues that your SAST tool may not.2 It should be
noted that while DAST tools are quite useful in identifying potential
issues, they are inherently noisy and tend to produce a lot of false
positives.

The Microfocus blog says “a DAST scanner can be thought of
like a security guard. However, rather than just making sure the doors
and windows are locked, this guard goes a step further by attempting
to physically break into the building. The guard might try to pick the
locks on the doors or break windows. After finishing this examination,
the guard could report back to the building manager and provide an
explanation of how he was able to break into the building.” To extend
this metaphor, SAST examines all the components of the lock to ensure
the integrity of each one. DAST attempts to pick the fully assembled
lock and your CI/CD pipeline coordinates all phases of the process,
assembles and installs the lock, and coordinates the testing.

Interactive application security testing (IAST) provides another
useful tool during the testing phase. IAST solutions instrument appli-
cations by deploying agents and sensors in running applications to
analyze how the application performs during runtime, which can be
simulated by testing. Unlike SAST and DAST, IAST is integrated into
your codebase and runs when your code runs. It should be noted that
because IAST runs only when your code runs, it will not test all code

2 “What Is Dynamic Application Security Testing (DAST)?” OpenText. March 1, 2023.
www.microfocus.com/en-us/what-is/dast.

http://www.microfocus.com/en-us/what-is/dast/

DevSecOps Technology	 107

but only those code paths that are executed during runtime. IAST pro-
vides instrumentation of the application code designed to identify and
alert potential attacks and provides a useful tool in detecting security
issues during functional and performance testing.

The Deploy Stage

The deployment phase makes the code available to users of the appli-
cation or service. This is the point at which you transition from look-
ing at the build time security vulnerabilities to identifying runtime
vulnerabilities. Once an application or service has been pushed to pro-
duction, the feature is available but so are any vulnerabilities or secu-
rity flaws that still exist, which is why it is so critical to find and address
any issues prior to this stage. In addition, new vulnerabilities may be
discovered in already deployed code, so it is important to continuously
scan the production environment for vulnerability.

The deployment stage also represents the point at which secu-
rity logging, telemetry, and IAST happen. This is the point at which
you can begin to see how the application performs under real-world
scenarios and, at times, real-world attack scenarios. IAST runs in real
time during application execution. In addition, runtime application
self-protection (RASP) can detect intrusion attempts and respond to
remediate those threats. Real-time logging and monitoring provide
valuable insights into how the system is operating in production,
thus helping to alert you to intrusion attempts and other malicious
activities.

IDE Integration

Many companies are now integrating security testing directly into the
tools that developers are using to develop their code, their integrated
development environment (IDE). This extends the Shift Left para-
digm, moving the security testing earlier in the development process
and providing faster feedback to the developer. By implementing secu-
rity testing directly into the IDE, developers do not need to wait to
commit their code before they receive feedback.

108	 The DevSecOps Playbook	

The IDE is a great place to do static code analysis and check
dependencies such as libraries using SAST and SCA. Tools such as
Snyk and Contrast now offer the ability to integrate directly into
the IDE, providing immediate feedback as the developer is work-
ing. This is akin to a word processor that highlights misspelled
words as opposed to submitting a completed paper to someone else
and then waiting for them to edit and return a marked-up version.
Clearly, by providing direct and immediate feedback, the author of
the code is empowered to take security concerns into their own
hands without reliance on others, thus reducing the need for unnec-
essary handoffs.

While integration of security tools into the IDE provides a significant
opportunity to shorten feedback loops, it will not provide testing of the fully
built application nor will it catch runtime dependencies or even issues that
occur when code is integrated with other code components. Therefore, it should
not be seen as a substitute for IAST or DAST.

Infrastructure as Code

IaC is another DevOps-related technology with significant opportuni-
ties for cybersecurity. IaC allows developers to describe the systems on
which an application will run using code enabling the automated
deployment not just of the application, but also the infrastructure on
which it runs. Tools such as Terraform, CloudFormation, and Azure
Resource Manager (ARM) allow engineers to describe the exact infra-
structure as code.

IaC makes it easy to ensure consistency between development,
testing, and production environments. It also provides the ability to
easily re-create the entire environment from the ground up in disaster
recovery scenarios. Because the code is checked in and managed by a
source code repository, it also allows for changes to be easily rolled
back if they are problematic. IaC ensures consistency, repeatability,
traceability, and resilience.

	 DevSecOps Technology	 109

The following Terraform code from HashiCorp’s tutorial pro-
vides a basic example of code used to describe and deploy infrastructure:

terraform {
 required_providers {
 aws = {
 source = "hashicorp/aws"
 version = "~> 4.16"
 }
 }
 required_version = ">= 1.2.0"
}
 provider "aws" {

 region = "us-west-2"

}
resource "aws_instance" "app_server" {

ami = "ami-830c94e3"

instance_type = "t2.micro"
tags = {
 Name = "ExampleAppServerInstance"
 }
}3

This code will automatically create a new server instance in the
AWS US West region. This code is used to specify where the server
will be deployed, what type of system it will be (t2.micro), and the
name of the system (ExampleAppServerInstance).

While this simple example configures only a single application
server, languages such as Terraform are immensely powerful and can
be used to deploy highly complex environments.

Once this is executed, the infrastructure will be available for
deploying the application. Additional tools such as Ansible can then be

3 “Build Infrastructure.” HashiCorp. Accessed April 18, 2023. https://learn
.hashicorp.com/tutorials/terraform/aws-build.

http://learn.hashicorp.com/tutorials/terraform/aws-build
http://learn.hashicorp.com/tutorials/terraform/aws-build

110	 The DevSecOps Playbook	

used to deploy detailed system configuration. IaC can be integrated
into the CI/CD pipeline so that it not only deploys the latest version
of the code but also deploys the infrastructure as well as deploying
everything needed for a fully functional system.

As with other Shift Left practices, IaC poses risks and opportuni-
ties. As IaC relies on templates for the deployment of infrastructure, an
insecure template can easily replicate vulnerabilities across many envi-
ronments. By the same light, that the template conforms to security
standards, those standards will be present in all infrastructure that lev-
erage those templates.

You can also use some of the same tools discussed for application
security within your deployment pipeline to verify the security and
compliance for infrastructure as code. SAST tools such as XenonStack
and Snyk provide code analysis tools for your IaC code. And, because
you are talking about code, you can build these checks into your
deployment pipeline to ensure that it is secure.

One of the other security benefits that IaC offers is traceability.
Because your infrastructure is code, you can treat it as such by check-
ing it into a code repository and submitting any changes. Rather than
allowing engineers to make changes directly via your cloud provider or
hardware interfaces, all infrastructure is checked in, and any changes to
it can be tracked. Like application code, all changes should be required
to be reviewed and approved, another safeguard often not offered
when hardware is manually configured.

Secrets Management

To securely build a successful CI/CD pipeline, it is important to care-
fully manage credentials including usernames and passwords as well as
private keys. Whether these be credentials used to connect the applica-
tion to a data source or the credentials needed to automatically deploy
infrastructure, these secrets must be carefully managed. These secrets
cannot be stored in the source code repository, where they are easily
discoverable by potential threat actors even if the source code is pro-
tected. In addition, similar to shared passwords, storing secrets in the
source code repositories can lead to a lack of knowledge of who has

	 DevSecOps Technology	 111

access to which systems and easily give people access that they should
not have. Even worse, these secrets are often inadvertently exposed on
the open Internet for anyone to access.

Secrets management provides a set of tools to securely store
any credentials and other sensitive information that can then be
accessed by applications with the appropriate credentials. These
secrets include passwords, API keys or credentials, and tokens or
certificates. Common secrets management tools include Vault AWS
Secrets Manager and Azure Key Vault. These tools enable many
developers to leverage the same set of secrets without even knowing
them or having access to them.

The following IaC example from HashiCorp uses their secrets
manager, called Vault, to retrieve temporary credentials that are then
used to create compute resources (EC2 instances) in AWS:

variable "name" { default = "dynamic-aws-creds-operator" }
variable "region" { default = "us-east-1" }
variable "path" { default = "../vault-admin-workspace/
terraform.tfstate" }
variable "ttl" { default = "1" }

terraform {
 backend "local" {
 path = "terraform.tfstate"
 }
}

data "terraform_remote_state" "admin" {
 backend = "local"

 config = {
 path = var.path
 }
}

data "vault_aws_access_credentials" "creds" {
 backend = data.terraform_remote_state.admin.outputs.
backend
 role = data.terraform_remote_state.admin.outputs.role

112	 The DevSecOps Playbook	

}

provider "aws" {
 region = var.region
 access_key = data.vault_aws_access_credentials.creds
.access_key
 secret_key = data.vault_aws_access_credentials.creds
.secret_key
}

data "aws_ami" "ubuntu" {
 most_recent = true

 filter {
 name = "name"
 values = ["ubuntu/images/hvm-ssd/ubuntu-trusty-14.04-
amd64-server-*"]
 }

 filter {
 name = "virtualization-type"
 values = ["hvm"]
 }

 owners = ["099720109477"] # Canonical
}

Create AWS EC2 Instance
resource "aws_instance" "main" {
 ami = data.aws_ami.ubuntu.id
 instance_type = "t2.nano"

 tags = {
 Name = var.name
 TTL = var.ttl
 owner = "${var.name}-guide"
 }
}4

4 Nguyen, Tu. “Build Infrastructure.” GitHub. HashiCorp, July 13, 2020. https://
github.com/hashicorp/learn-terraform-inject-secrets-aws-
vault/blob/main/operator-workspace/main.tf#L20.

http://github.com/hashicorp/learn-terraform-inject-secrets-aws-vault/blob/main/operator-workspace/main.tf#L20
http://github.com/hashicorp/learn-terraform-inject-secrets-aws-vault/blob/main/operator-workspace/main.tf#L20
http://github.com/hashicorp/learn-terraform-inject-secrets-aws-vault/blob/main/operator-workspace/main.tf#L20

	 DevSecOps Technology	 113

Privileged Access Management

Privileged access management (PAM) is a cybersecurity mechanism
for protecting access to resources from databases to infrastructure to
codebases. PAM provides monitoring and detection of unauthorized
access as well as providing mechanisms for safely, allowing the right
level of access to the appropriate users. There are several tools and
combinations of tools that can aid in PAM. One of the benefits of PAM
solutions is that they can allow temporary access just in time to a select
user, thereby providing the minimal access required without prevent-
ing access that is needed. If an engineer needs access to a system to
troubleshoot an incident, they can be granted temporary access to that
system or to the set of impacted systems. Instead of providing blanket
access for an indefinite period of time to a large group of users—as
with older identity approaches—PAM solutions can allow temporary
access. This aligns very well with the Zero Trust approaches to identity
discussed in Chapter 2, “The Evolution of Cybersecurity (from
Perimeter to Zero Trust”).

A DevSecOps approach to PAM requires a new way of thinking
about access management. While you still need to ensure people have
the least privileges needed to do their job, you need to think carefully
about enablement and empowerment. One of the best ways to disem-
power someone is to not give them the ability to execute their job or to
require them to ask permission to do the basic tasks needed to do their
job. It is important to stop thinking of security as a gate, and instead
think of it as guardrails. PAM can be a powerful tool to allow people to
have access to the systems they need in emergency situations, so it is
very important that this access be quickly implemented. Instead of
thinking about how to stop people from doing stupid things, start
thinking about how to enable them to do their jobs in a safe way. While
this is a subtle difference, it is critical when considering the approach
to identity and access management.

In thinking about the implementation of PAM, it is important to
consider the access that people need to do their jobs. If you are asking
developers to be responsible for runtime security of the platforms and
services they build, they need access to the security telemetry for those
systems. If you are asking teams to be responsible for responding to

114	 The DevSecOps Playbook	

incidents, you should empower them to easily push updates to resolve
the issues. This is not to say that you simply allow everyone to have
access to everything all the time. Quite the opposite. PAM gives you
the ability to provide granular control for specified time windows. It
also allows you to monitor more closely for dynamic indicators of
compromised accounts. By leveraging all the capabilities of PAM, you
can ensure that everyone can do their jobs seamlessly, without compro-
mising security.

Runtime Application Self-Protection

Runtime application self-protection (RASP) tools are another powerful
bullet in your DevSecOps arsenal for managing operational activities.
RASP uses information about an application’s internal state to identify
potential threats at runtime, which may not have been identified ear-
lier in the process. When RASP tools detect potential threats, they can
automatically take action to address the threat. RASP leverages the
internal application logic to detect potential attacks. Based on the
attack, these tools can take actions—such as isolating, blocking, or
alerting—to ensure that the attack is prevented.

RASP acts like an internal sensor similar to an internal motion
sensor that might detect an intruder and sound an alert or automati-
cally lock doors when intrusion is detected. Because RASP tools are
built into the application, they have insight into the internal applica-
tion execution, thus providing deeper visibility into what might consti-
tute a threat. In addition, they can take an active role in defending
against the attack. Because of the automated nature of RASP tools,
they help eliminate toil and become an important part of the
DevSecOps toolset.

Monitoring and Observability

Monitoring and observability technologies are core to DevSecOps
because these extend beyond Agile deployment into the operational
aspect of a system. Monitoring and observability tools provide insight
into potential system issues in near real time, allowing developers to

	 DevSecOps Technology	 115

detect security attacks before they impact their services. These tools
also help them understand the scope of security incidents, identify the
cause, and implement remediation as quickly as possible.

Monitoring

Monitoring is the process of observing how a system behaves.
Monitoring relies on the telemetry of a system, where telemetry is
defined as the data that is recorded and transmitted about how a sys-
tem behaves. At a base level, this telemetry can include system-level
metrics such as CPU levels. It can also include data from monitoring
tools, such as endpoint detection and response (EDR), which sit on
system endpoints and issue alerts when they detect potential security
issues. In line with the concepts of Defense in Depth, security moni-
toring can and should sit at every layer of your application, from the
database to the user experience. Monitoring should also include moni-
toring of your logs for patterns, which may be indicative of a security
issue. Something as simple as a large spike in log messages about failed
authorization may be indicative of an intrusion attempt.

One of the toughest challenges that many midsize to large enter-
prises face today is the massive growth of monitoring data and the
proliferation of monitoring tools. With the increasing size and com-
plexity of systems has come an increasing number of monitoring points
and data about those points. In addition, there seems to be a never-
ending flood of tools to help you monitor the security of your systems.
However, this proliferation of tools and data points can actually be
detrimental to your ability to rapidly identify real security threats
and issues.

Monitoring Tool Proliferation

At one company I worked, we had more than 50 monitoring
tools, from database to system to real user monitoring! At each
layer, there were multiple tools duplicating the same type of
monitoring. Not only that, but even where the same tools were

(continues )

116	 The DevSecOps Playbook	

Because of the continued increasing size and complexity of sys-
tems, monitoring is rarely sufficient and quickly becomes unmanage-
able without additional tools to correlate and present the data. In some
cases, telemetry in isolation can be of limited use. For example, CPU
utilization data in isolation offers very little value as it may or may not
have a bearing on system performance or customer experience. What
does it tell you if the CPU is at 100 percent utilization? Is this a good
thing or a bad thing? In some systems you may very well want to use
the maximum available processing power, so higher CPU utilization

used, the implementation was different so that they could not
be used in the same way. In one data center, alerts were arranged
by application; in another they were arranged by rack number.
On one tool a red alert meant something completely different
than a red alert on another system.

Because of the number of tools and alerts, it was practi-
cally impossible to identify when an actual problem was occur-
ring. Even with a modern security operations center (SOC) with a
full wall display there was nowhere enough room to begin to
look at all of the monitoring dashboards and information.
Postmortems would often reveal that an alert had fired but
that no one had seen it.

We undertook a massive effort to redefine our monitor-
ing stack, looking for duplication and removing tools wherever
possible. We rationalized the tools from 50 down to just 12.
We also worked diligently to define standards so that monitor-
ing tools were used in a uniform manner across all of the sys-
tems. The final step in the process was to identify and reduce
alert noise. We created a rule that any alert must be acted upon,
even if that action was to turn off the alert if it was not useful.
With this effort, the team significantly improved its ability to
detect and prevent potential threats and to drive resolutions
quickly when problems did arise.

(continued )

	 DevSecOps Technology	 117

may actually be an indicator of optimum performance. In other sys-
tems, it may be an indicator of a Distributed-Denial-of-Service (DDoS)
attack. What matters most is the user experience, so it is critical to col-
laborate with users early in the development process to carefully define
and monitor performance against these expectations. However, espe-
cially in cybersecurity, user experience alone is not enough because
there may be no impact to user experience in the case of a breach or
attempted breach.

Because of the proliferation of data sources, it is important to
leverage tools to provide correlation and presentation of the data to
rapidly identify and address potential security issues. Correlation takes
the telemetry from many data sources and brings it together, helping
to identify duplicates and potentially related events from separate sys-
tems. For example, CPU spiking alone may not be indicative of a prob-
lem, but CPU spiking in conjunction with alerts from network
detection and response (NDR) system and increased response times
from synthetic user monitoring may be indicative of a DDoS attack.
Security information and event management (SIEM) tools such a Splunk
and Datadog attempt to take all of the various data sources, correlate
them, and present them in a way that is easily digestible and actionable
by humans. Figure 5.2 provides a basic representation of a correlation
tool, which takes data from many sources to provide a useful represen-
tation of the data via a presentation layer.

Observability

Observability takes the next step in managing the operations of com-
plex systems, as it focuses on answering novel questions about the
current status of the system. Observability is a measure of how well

Logs

Metrics Correlation Presentation

Alerts

User Group 1

User Group 2

User Group 3

Figure 5.2  Correlating events across all logs, metrics, and alerts pro-
vides a variety of views for the many users of monitoring data.

118	 The DevSecOps Playbook	

internal states of a system can be inferred from knowledge of its
external outputs. Monitoring and observability are distinct concepts
that depend on each other. Monitoring is an action you perform to
increase the observability of your system. Observability, on the other
hand, is a property of that system, like stability or maintainability.
One important difference between monitoring and observability is
that monitoring requires you to know, in advance, what you want to
know about. Because of the complexity of systems today, it is often
impossible to predict what you will need to know about. Observability
tools, on the other hand, allow you to ask new questions about the
status of a system.

The concept of observability actually dates back to the 1960s when
the concept was introduced by the Hungarian-American engineer
Rudolf E. Kálmán, in the field of control theory, the mathematical
study of systems, such as industrial processes. Kálmán states that a sys-
tem was observable if its internal state could be inferred from the
external outputs. In recent years, this same concept has been extended
to technical applications and services.

The three pillars of observability are metrics, logs, and traces.
These pillars can be understood as follows:

•	 Metrics—Metrics represent key-value pairs of information
about a system. Metrics might include information such as the
number of transactions per second or CPU utilization levels.
This is often time-series data.

•	 Logs—Logs are representations of system status or events
that are stored in a file.

•	 Traces—Traces represent the flow of activity through a sys-
tem, with insight into each step a single transaction might take.

Each of these pillars has unique benefits as well as shortcomings.
When the three pillars of observability are brought together, you can
gain a wholistic picture of a system’s performance. New Relic expanded
on the idea with the MELT model, which includes metrics, events,
logs, and traces, where events represent an action happening at a pre-
cise moment, such as when a system exceeds a specified threshold.

	 DevSecOps Technology	 119

Data Silos

While DevSecOps often focuses on eliminating organizational and
process silos, there are frequently data silos that underpin these
organizational silos. In the field of security, the isolation of data can,
at times, be necessary for confidentiality or privacy reasons. However,
more often than not, these data silos are unnecessary and can impede
the flow of information across the organization. You see these data
silos when development teams have the data they are looking at,
such as defects, and operations, has a separate set of data including
things like log files or real user monitoring, and security has another
set of data, such as vulnerability data and intrusion detection alerts.
In addition, the business users often have a completely separate set
of data that they are looking at, such as revenue or user conver-
sion rates.

Data Silos’ Impact on Incident Resolution

I have all too often been on incident bridges and heard these
data silos play out in real time with the security team looking
at one set of metrics, the operations team looking at another,
and the infrastructure teams looking at a completely separate
set of information, with no team having visibility into the other
team’s data.

The network team will report, “We’re not seeing any
problem on our side.”

The database team will report, “No issues on the
database.”

The development team will report, “Application is not
reporting any errors.”

But the incident managers, and, frequently, the custom-
ers, know there is a problem. However, the lack of transpar-
ency impairs collaboration, leading to lack of trust and delays
in resolution.

120	 The DevSecOps Playbook	

The DevOps Handbook speaks about exactly these issues, stating,
“for decades we have ended up with silos of information, where
Development only creates logging events that are interesting to devel-
opers, and Operations only monitors whether the environments are up
or down. As a result, when inopportune events occur, no one can deter-
mine why the entire system is not operating as designed or which spe-
cific component is failing, impeding our ability to bring our system
back to a working state.”5 Unless these data silos are broken down, they
will serve only to emphasize existing organizational silos. However, a
proper approach and architecture for your monitoring data can help.

Fortunately, you can take steps to help eliminate data silos. One
of the first steps is to fix the data coming in. One key step here is to
look at the various inputs and reduce duplicate systems wherever pos-
sible. If there are two systems used for the same purpose, it is beneficial
to eliminate one. This often happens in legacy systems, where previous
functionality and data were used differently under different manage-
ment or business features and not properly eliminated, modified, or
turned off. While flexibility and autonomy are important in DevSecOps,
this is one area where it can be beneficial to consolidate and align
across the organization. This is not to say you should have one tool to
do all the monitoring. At the same time, having five different tools to
monitor the CPU is clearly also not ideal. While it is good to have
generalizable tools that cover multiple types of monitoring, it is also
important to identify key point solutions. You may, for example, require
a specific tool for vulnerability management in your cloud environ-
ment separate from your data center environment. The number of
tools and the focus of the tools will differ based on the size and matu-
rity of an organization. What is important is that you reduce redun-
dancy in your telemetry wherever possible.

Wherever possible, it is also important to drive consistency across
your data sources. For tools that are part of the distributed tracing
chain, you should make sure that the trace ID is included in metrics,
logs, and alerts. In addition, key values such as application ID must be
included in your data sources. If one tool refers to an application by ID

5 Kim, Gene, Jez Humble, Patrick Debois, and John Willis. 2021. The DevOps
Handbook: How to Create World-Class Agility, Reliability, & Security in Technology
Organizations. 1st ed. Portland: IT Revolution Press.

	 DevSecOps Technology	 121

and another uses another name, it will rapidly become difficult if not
impossible to correlate the data across the disparate tools throughout
the environment.

Once source data has been appropriately addressed, the data can
be brought into a unified data store. The data store can be centralized
or distributed depending on your size and the distribution of the appli-
cation landscape. What is important is that you can leverage key data
across all sources.

This same approach should be used for security. All too often,
security data is siloed away in the name of “security,” when the real
intent is job security. Data is not shared as a way for individuals to
maintain control and prevent others from easily replacing them. But
you must share data carefully, as not all users should have access to all
data. Transparency is good, but complete transparency could expose
sensitive information about your vulnerabilities to malicious actors.
Trust is also important, but insider threat is a reality so you need to
ensure that sensitive data is exposed only to the right people. This can
be accomplished by managing access to the data through access con-
trols. When data is appropriately categorized, it can be segregated so
that the appropriate people have access to the data they need. In this
way, you can share data effectively across the organization to drive bet-
ter collaboration without exposing vital security information.

Event Management with SIEM and SOAR
Because of the quantity of information that can be produced during
production, SIEM tools can be used to collect all of the data and help
security operations teams and security engineers use the data. As men-
tioned earlier, SIEM tools collect data from all of the sources of
security-related information including logs, metrics, traces, and events
to provide unified insight and management of this data. These tools
provide real-time analysis of this data, helping make sense of the vast
amount of information from monitoring and logging systems and
helping identify potential attacks. SIEM tools can also assist in inci-
dent troubleshooting and response by identifying the cause of the inci-
dent and assisting with automation.

122	 The DevSecOps Playbook	

SIEM tools can detect a security incident and all of the alerts
related to the incident and present it in a way that is easily actionable.
For example, during a DoS-type attack, there may be hundreds or even
thousands of alerts as systems try to respond to the flood of requests.
SIEM tools can correlate these alerts and suppress duplicates, making
it easier to diagnose the problem and drive a quicker resolution.

SOAR tools help automate many of these sorts of activities.
SOAR refers to a collection of tools that help collect data on vulner-
abilities and security events and automate the responses. These tools
can be built to automatically respond to known threat types. If the
preventative actions for certain types of attacks are known, these
responses can be automated using SOAR. With the focus on increas-
ing automation to reduce toil, SOAR tools can be an important part of
the DevSecOps toolset.

Conclusion

While DevSecOps is not about technology, tools, CI/CD pipelines,
and automation are essential to enabling the principles of DevOps
within a security context. Build a culture of collaboration—tools alone
do not make you “DevOps.”

Build a culture of collaboration—tools alone do not make you “DevOps.”

DevOps focuses on the CI/CD pipeline because it enables small
batch delivery, which, in turn, allows for the flow of value to the cus-
tomer, shorter feedback loops, and experimentation, all of the Three
Ways of DevOps. By integrating security into the CI/CD pipeline, you
can extend the benefits of DevOps to security, thus enabling the
DevSecOps culture.

When you use privileged access management and secrets man-
agement correctly, you empower engineers with the access they need
to do their jobs quickly and efficiently, ensuring they aren’t blockers. In
doing so, you enable a state of flow in the creative process of develop-
ing great technology, which is critical to building the best products and
systems on Earth (and the universe!).

	 DevSecOps Technology	 123

Monitoring and observability provide key components in the
transparency of the DevOps culture. If you want to move from a para-
digm where the security team is solely responsible for security to one
where security is everyone’s responsibility, you must give everyone vis-
ibility into the data about security which is so critical to making good
decisions about security. While you must be careful about sharing con-
fidential information, sharing information about vulnerabilities in a
transparent way across all technology teams can be a great way to drive
improvement in those areas.

Automation helps free engineers from manual tasks, enabling
them to focus on higher-level engineering problems. SIEM and SOAR
can significantly reduce operational overhead, thus automating the
most common activities in security engineering. In addition, this auto-
mation can help reduce the noise from monitoring telemetry to help
focus on the important signals that indicate valid security threats.

Through technology, you enable the culture of DevOps. Auto
mation can help drive greater flow of value to your customers, as can
your CI/CD pipelines. By building security automation, you can ensure
that security is done as part of everything your organization does
instead of being added on as an afterthought.

125

Chapter 6

Introduction

Governance seeks to ensure the compliance of an organization with
policies designed to protect that organization. Governance, risk, and
compliance is a rapidly growing area of concern for many companies
due to the rapidly shifting compliance standards. Traditional methods
of governance and compliance have been highly manual, relying on
controls listed in spreadsheets and evidence manually produced and
delivered. DevSecOps brings a new approach to governance, risk, and
compliance that can help save manual effort from engineers while
improving compliance through automation.

Governance does not, in and of itself, bring value to customers.
However, governance does ensure that companies comply with regula-
tions and policies that are designed to limit systemic risk. This compli-
ance, in turn, provides validation to customers that those risk mitigation
activities have been adhered to and, in doing so, builds trust with cus-
tomers and other regulating bodies. It is certainly possible, especially
for smaller companies, to be secure without governance. However, as
companies grow and become more complex, this governance helps
ensure that companies are behaving in a way that mitigates known risks.

DevSecOps brings an automated approach to compliance with
compliance as code and governance automation, which can be immensely
powerful for companies. Compliance as code is a methodology for
automating compliance tasks by describing themes in a programmatic
fashion. Compliance as code can include activities such as defining
controls in code and automatically verifying that infrastructure and
applications adhere to these controls as part of your deployment
pipeline.

DevSecOps Governance

126	 The DevSecOps Playbook	

In the same way that inserting automated security testing in your
CI/CD pipeline helps you produce code, which is more secure while
reducing manual efforts, compliance as code can help you comply with
audit requirements. By implementing your compliance verification in
an automated way, you can significantly improve your adherence to
compliance standards, reduce the time your engineers spend on
compliance-related tasks, and increase your time to market.

The Challenge of Compliance

The work involved in maintaining compliance for public companies
cannot be underestimated. Legislation and regulation in the last 20
years has substantially increased the amount of work that public com-
panies need to do to ensure compliance. In addition, to maintain com-
pliance, engineers often make extensive manual efforts, pulling them
away from the critical task of developing products and services for
their customers.

The History of Compliance

Compliance requirements for corporations in the United States date
back to the early 19th century and have accelerated significantly
through the 20th century. Compliance regulations and regulating bod-
ies have arisen in response to corporate misdeeds and public scandals
and the negative impact on the broader economy. Regulations in the
United States around public companies go as far back as the Interstate
Commerce Act of 1887 and the Sherman Antitrust Act of 1890.
However, it wasn’t until the 20th century that modern compliance
really arose with the launch of the Food and Drug Administration
(FDA) in 1906.

The 2000s gave birth to much of what developers focus on in
modern compliance with the launch of the Sarbanes-Oxley Act (SOX)
in 2002 and the Payment Card Industry (PCI) in 2006. The Sarbanes-
Oxley Act was created in response to public corporate scandals in the
United States with Enron and WorldCom, which led the Securities
and Exchange Commission (SEC) to define regulations for how public
companies needed to operate and report on their finances.

	 DevSecOps Governance	 127

The Payment Card Industry standards were created by a group of
financial services companies—including MasterCard, Visa, and
American Express—to address cybersecurity threats to payment sys-
tems. Today companies must comply with a wide range of compliance
regulations, including SOX, HIPAA, FedRAMP, EU Model Contracts,
and SEC Reg-SCI regulations, as well as contractual obligations, such
as PCI DSS or DOD DISA.

Compliance Challenges

At one company I had just started working for, we faced huge
compliance hurdles. Because of our inability to show compli-
ance with SOX audit requirements for two years in a row, we
were at risk of having a significant deficiency and potentially
even a material weakness, which would need to be made public
via SEC filings. Just two months into a new job and I found
myself in a SOX compliance war room. I don’t know if you’ve
ever been in a war room, but they are generally some of the
toughest high-pressure situations anyone can imagine, and a
SOX compliance war room was likely one of the most painful
experiences of my career.

We spent two weeks meeting with team after team to
review their evidence, ask questions, and schedule follow-up
meetings to get additional information. Team after team came
in to present their evidence of compliance around access and
change governance.

One team showed their change approvals, documented
via email, bringing in, as evidence, long email threads with
approvals at the bottom. Other teams showed tickets pulled
from Jira, others still from ServiceNow. Some had policies
documented in Word, others in email. Engineers were spend-
ing hours and hours of their time just digging around to pro-
vide manual documentation, matching it to server logs showing

(continues)

128	 The DevSecOps Playbook	

actual change deployment related to the change approval. We
spent a full two weeks in the war room, and the engineers spent
a staggering amount of time outside of that room running
around trying to find the right evidence to show compliance.

What this effort illustrated was that disparate and manual
processes, managed through varying manual processes, was
costing the company millions of dollars and putting the com-
pany at serious risk of violating compliance regulations.

Over the next two years, we took steps to develop our
compliance as code approach. Our first steps were to unify our
processes and our tracking. This fell into two major categories—
change management and identity and access management.

We built an adaptive change management process to be
used for modern applications with sophisticated deployment
processes as well as for legacy applications that had, until then,
manual and tightly coordinated steps. Over the next nine
months we rolled this process out across all of our teams.

We implemented three new systems to manage identity
and access controls. We implemented Azure AD to provide
internal users access to the applications and services they
needed. We deployed CyberArk for privileged access manage-
ment to ensure that only the right people had access to privi-
leged accounts and then only for the set time periods needed.
And we implemented Saviynt to manage identity governance,
ensuring the right roles in the organization had access to the
systems they needed and only those systems. This allowed us
to deprecate legacy IGA systems, reduce complexity in our sys-
tem, and provide more secure access for our users.

We also created governance, risk, and compliance tooling
to track all of the compliance regulations that we were required
to meet. With this foundation set across all of our systems, we

(continued )

	 DevSecOps Governance	 129

The Burden of Compliance

Maintaining compliance is a huge cost for public companies. This
includes the cost of internal and external auditors, regulatory filing fees,
and costs for the systems required to manage compliance. These costs
extend to technical teams as well. Engineers must spend countless hours
ensuring that the systems they are building comply with regulations. In
addition, they must spend time tracking and reporting on evidence of
compliance. A 2021 study of the costs of compliance for public compa-
nies found that the cost of compliance was 4.1 percent of the market capi-
talization for the median U.S. public company.1 A separate survey
conducted by the Risk Management Association found that 50 percent of
respondents said they spent between 6 and 10 percent of their revenue on
compliance costs. Whichever way you cut it, these are huge numbers.

The fines for noncompliance are even larger. In 2010, the SEC
assessed a $550 million fine against Goldman Sachs for misleading
investors about a subprime mortgage product linked to the collapse of
the U.S. housing market in 2008. In 2017, Deutsche Bank was fined

had a stable base to work from. We were able to begin to map
controls in Saviynt to the evidence that was required to prove
those controls. Because everyone was now following the same
processes and using the same tools, repeating tests for different
applications was simple. We were able to automate what had
previously been hundreds of hours of manual effort in evidence
collection and significantly improve our compliance. During
this time, we reduced our IT general control deficiencies from
66 to just 4 minor deficiencies and eliminated the burden of
manual evidence collection, allowing our engineers to focus on
building products and services.

1 Ewens, Michael, Kairong Xiao, and Ting Xu. “Regulatory Costs of Being Public:
Evidence from Bunching Estimation.” National Bureau of Economic Research,
(2021). https://doi.org/10.3386/w29143.

(continued )

130	 The DevSecOps Playbook	

£163 million by the UK regulatory body the Financial Conduct
Authority (FC) for failing to properly protect information about cus-
tomer relationships. These fines are not limited to financial institu-
tions. In 2019 the Federal Trade Commission (FTC) imposed a $5
billion penalty on Facebooks’ parent company Meta for failing to pro-
tect the privacy of users’ personal information.

Not only that, but the way in which compliance is implemented
in companies often limits a company’s agility and adaptability. When
compliance is managed as a set of manual checks that gate releases to
production, it means additional work and rework every time new fea-
tures and functionalities are brought to market. In addition, manual
compliance audits postproduction mean substantial effort must be
spent manually collecting evidence and remediating audit findings.
A Garner survey found that 81 percent of IT professionals feel that
InfoSec policies inhibit speed and agility.2 Not only that, but of those
surveyed, 77 percent of information security professionals agree. So,
not only do engineers see this impact but cybersecurity profes-
sionals agree.

Managing Risk

Ultimately all cybersecurity work should be understood as an effort to
manage risk. Governance and compliance are steps that help ensure
that risk-mitigation activities are undertaken. Governance provides
the overarching framework while compliance ensures that specified
steps are taken within that framework. Many elements comprise a
business’s risk profile. Cybersecurity is only one element, but it is the
focus for this book. Most public companies have complete Enterprise
Risk Management (ERM) programs that evaluate all the potential risks,
as these must be reported in the company’s quarterly filings. As cyber-
security is a growing risk for almost all companies today, a DevSecOps
approach can be hugely helpful in mitigating these risks.

The goal of cybersecurity is not to eliminate risk but to manage
it. Ultimately, you can never completely eliminate risk, but you can

2 Proctor, Paul, Greg Young, Sid Deshpande, Jeremy D’Hoinne, and Ray Wagner.
“Predicts 2016: Threat and Vulnerability Management.” Gartner Research, (2016).

	 DevSecOps Governance	 131

significantly reduce it. That reduction must be in balance with a com-
pany’s risk tolerance. It is possible for a company to spend almost infi-
nite amounts of money mitigating cybersecurity risk and still not be
100 percent risk free. It is, therefore, important to consider the cost
and benefit of cybersecurity efforts to mitigate risk. The governance
frameworks should help align these efforts with the compliance
requirements and the risk tolerance for that business.

The correct risk levels for a business are dependent on many
aspects of that business, including size, industry, and stage of develop-
ment. A small company trying to get a new product to market quickly
may have a higher risk tolerance because it values development of new
features over mitigating risk. Because of the lower number of users, a
new company may not have the same risk exposure of a larger, more
established player. In addition, if a startup cannot get the features it
needs to its initial users, security may not matter at all if the company
fails. On the other hand, established companies with highly sensitive
data—such as financial and healthcare information—have a much
lower risk tolerance and do all they can to mitigate cybersecurity risk.

Risk as a Feature

With a DevSecOps approach, risk should be thought of as another
feature. In this way, risk-based activities should be placed on teams’
backlogs and prioritized and managed through each development
team’s queues just as other features are. You should pay careful atten-
tion to these risk features, as these are all too often deprioritized in
favor of feature work. Ultimately, if a system is not resilient and secure,
it will not matter if it has all the flashy features in the world. As exam-
ples like Medstar Health and Telefonica make clear, forgoing cyberse-
curity risk can be the downfall of many a promising company. This
priority must be clear through the training of development and prod-
uct managers alike.

Tracking the amount of risk work helps provide visibility into
whether the right amount of effort is going to risk mitigation efforts.
In his book Project to Product, Mik Kersten introduces the concept of
flow metrics, which provide a great mechanism for measuring risk-
based work. Project to Product provides a way of measuring the pace of

132	 The DevSecOps Playbook	

delivery as well as the types of work being done in the development life
cycle. He breaks work down into four key types: Feature, Defect, Risk,
and Debt. By implementing this type of measurement through tagging
work items, you can see how much work is dedicated to risk mitigation
activities, from remediating vulnerabilities to meeting regulatory
requirements to implementing new security features. All of this can
and should be viewed and prioritized as a feature of the product.

Risk Management and Controls

Many levels of risk exist, from enterprise risks such as market shifts to
individual risk items such as a vulnerability on a specific cloud instance.
It is useful to understand the structures of risk management and how
they relate. A good risk management program includes many items:

•	 Risk framework—Risk frameworks such as NIST and
COBIT provide a structure for risk management.

•	 Compliance standards—There are many standards (such as
SOX and PCI) that you may have to comply with, depending
on your company’s size and structure. Standards that compa-
nies must adhere to depend on industry, business size, business
type, and the types of activities the business is involved in.

•	 Policy—Policies are written documents that help you comply
with the frameworks or standards with which you need to comply.

•	 Controls—Controls are actions that are in place to ensure
that you comply with the policy as written.

•	 Evidence—Evidence is the proof that a control has been met.

•	 Attestation—This is the signed and dated evidence where the
responsible party acknowledges that the evidence satisfies
the control.

While many different cybersecurity frameworks exist, Figure 6.1
highlights the fact that there is significant overlap between them.

	 DevSecOps Governance	 133

Risk and privacy standards have similar overlaps. With emerging
privacy standards, for example, many different standards exist.
However, there is significant overlap here as well, as illustrated in
Figure 6.2.

ISO 27002

NIST 800-53

NIST 800-171

CIS CSC

CMMC Coverage

NFO
Controls

CERT RMM

NIST 800-171B

FAR 52.204-21

CUI
Controls

Figure 6.1  The different cybersecurity frameworks have significant
areas of overlap.

Data
Protection CCPAGDPR

Approved by
EU Parliament in 2016

Enforced on May 25, 2018

Signed by
Gov Jerry Brown in June 2018

January 1, 2020 tentative
enforcement date

Figure 6.2  Standards such as the emerging standards for the
protection of privacy also have areas of overlap.

134	 The DevSecOps Playbook	

Policies help set rules to ensure that the requirements of the
frameworks are adopted and legal standards are met. The controls
then act as tests of these standards.

Controls are generally broken down into three main categories:

•	 Detective—A control that indicates when a risk has already
manifested

•	 Corrective—A control that repairs the process to compensate
for a risk

•	 Preventive—A control that makes the risk less likely to
manifest

Once the controls are established, evidence must then be col-
lected to show that the standards are met. Generally, you can think of
the connection between frameworks, standards, policies, controls, and
evidence, as outlined in Figure 6.3.

For example, NIST recommends a password policy that requires
all user-created passwords to be at least eight characters in length, and
all machine-generated passwords to be at least six characters in length.
A company may then have a policy that all passwords are at least 12
characters in length, with upper- and lowercase letters, numbers, and
symbols. Controls for this policy might include rules within the
Identity and Access Management tool. Evidence might include a ran-
dom set of users and passwords sampled from the user base. In this
way, the controls enforce the guidelines created in the frameworks and
legal standards that a company must adhere to.

It should be noted that policies may map to multiple frameworks
and standards and that the controls may also map to multiple policies.

Legal
Standard

Framework

Policy Control Evidence

Figure 6.3  The hierarchy of risk management flows from general stand-
ards and frameworks to specific controls and evidence of those controls.

	 DevSecOps Governance	 135

While this may add confusion, it can be a good thing because one con-
trol may help drive compliance to multiple standards.

DevSecOps Approach to Governance

DevSecOps requires a fundamentally different approach to govern-
ance. A DevSecOps approach means increased collaboration between
auditors, cybersecurity practitioners, site reliability engineers, and
developers. The governance, risk, and compliance practitioners and
internal auditors should be working side-by-side with developers so
that the developers can better understand the audit requirements.
The audit teams can also better understand how developers are spe-
cifically meeting the requirements. You should work to break down
the silos between these teams and find opportunities for collabora-
tion. By understanding each other’s goals, all teams can design better
solutions.

Tighter collaboration provides opportunities to shift governance
to the left in the process. By involving governance and audit teams
earlier in the process, you can ensure that the design team meets the
requirements rather than discovering them at the end of the process
and having to remediate after release.

In addition, a DevSecOps approach to governance means that
you should find opportunities to automate and reduce toil. Traditional
governance processes entail spreadsheets for tracking controls and
extensive manual efforts for tracking evidence. These processes require
significant time and effort to manually track down and upload compli-
ance evidence. The following sections of this chapter detail ways to
automate this process to reduce manual work and increase the velocity
of delivery.

Compliance as Code

The good news is that a compliance as code approach can help you
significantly reduce the burden discussed in the previous section.
Compliance as code attempts to describe compliance requirements in
a programmatic language so that compliance activities can be automated.

136	 The DevSecOps Playbook	

There is an increasingly wide array of tools to help you do this.
Compliance as code can be inserted as several points throughout the
development life cycle—at build time, at runtime, as well as during
audits—to show evidence of compliance.

Build-Time Compliance as Code

Following “Shift Left” principles, these compliance as code practices
can be executed earlier in the development life cycle to increase the
rate of feedback to developers and reduce the friction in addressing
compliance requirements. By inserting automated compliance verifi-
cation when developers check in their application or infrastructure
code, you can catch issues earlier and provide immediate feedback. As
with vulnerability scanning, this practice can be integrated directly
into the IDE to further reduce the feedback cycle. In the blog for the
configuration management vendor Chef, they write that “Compliance
has both a build-time and a runtime component,” and you learn about
each of these in the following sections.

Inserting Compliance into the Pipeline

In the same way that DevSecOps builds security into the CI/CD pipe-
line, compliance automation and tooling can be integrated to reduce
the overall cost of compliance without slowing down product delivery.
This practice aligns with the principles of Shift Left by ensuring that
the code meets compliance regulations when it is checked in or built
rather than trying to check for compliance after the project is com-
pleted and the system is deployed.

You should use the same tools to ensure the security of your pipe-
line as you do to secure the code you are building with the pipeline.
This means using infrastructure as code for any components of your
pipeline infrastructure and checking in the code for the pipeline con-
figuration into your source code repository. You also need to ensure
that all the tools you use to secure your applications and services, from
SAST to endpoint security, are used on the pipeline itself.

	 DevSecOps Governance	 137

Compliance Automation

While security tools have been around for a long time, at this point
the set of compliance automation tools is still very much in its
infancy. However, a set of standards and new set of tools are rap-
idly emerging.

OPA/Rego

Open Policy Agent (OPA) and Rego are key sources for defining policies
in a unified language. OPA is an open-source engine that allows you to
define policies. It allows you to define policies as code, and it has been
adopted as a standard by many other tools. Rego is the declarative lan-
guage that supports OPA. It is used to describe OPA policies in an
easily understandable format.

In this simple example from OPA, they use Rego to describe a
policy for an application that prevents anyone except a pet’s owner
from updating their pet’s name:

package application.authz
import future.keywords
Only owner can update the pet's information
Ownership information is provided as part of OPA’s input
default allow := false

allow if {
 input.method == "PUT"
 some petid
 input.path = ["pets", petid]
 input.user == input.owner

}3

In this way, you can express your policies as code. One of the
major benefits of OPA and Rego is that they separate the policy

3 “Policy-based Control for Cloud Native Environments.” Open Policy Agent.
Accessed April 24, 2023. www.openpolicyagent.org.

http://www.openpolicyagent.org/
http://www.openpolicyagent.org/

138	 The DevSecOps Playbook	

definition from the code of the infrastructure of the application. So, if
a policy changes, you can easily update the Rego code without having
to modify the applications that rely on it.

Runtime Compliance as Code

As you verify that the code you developed for production is compliant
with rules and regulations, it is also important to examine the runtime
environment. As Julian Dunn notes in the Chef blog, “Compliance has
both a build-time and a runtime component.” Although the checked-in
code may be compliant, there may be interactions between disparate
code segments that violate compliance regulations. In addition, there
may be components of the system, such as user roles, that are not man-
aged as code and never pushed throughout the deployment pipeline. It
is therefore equally important that you take a programmatic approach
to verifying runtime environments as well.

Compliance as Code for Auditing

In addition to integrating compliance into your development pipeline,
you should look for ways to automate the process of control mapping
and evidence collection to lessen the burden of audits. While ensuring
compliance for deployed infrastructure and code is critical, it is not
sufficient. You must also verify that those controls are working. For
example, while you may have a rule that prevents passwords from being
written directly into configuration code that is deployed through the
pipeline, it may be possible for someone to circumvent this by manu-
ally deploying that infrastructure. So, it is important that you also ver-
ify that the controls in place in the development pipeline are having
the intended effect. By taking a programmatic approach to control
mapping and evidence collection, you can further reduce the cost of
compliance on the resources and agility of an organization.

Many governance, risk, and compliance systems can help with this
process. Systems such as ServiceNow and Saviynt can help map the
standards to the policy to the control. Once you determine the evidence
needed to prove that a control is adhered to, you can then automate the

	 DevSecOps Governance	 139

collection of that evidence and store it in an evidence repository. These
evidence repositories should be immutable. Immutable repositories
cannot be changed after creation, which will ensure that evidence can-
not be tampered with. Once the evidence is collected, the controls can
be marked as passing with links to the evidence. In this way, it is possible
to eliminate the manual effort of evidence collection, making the pro-
cess more secure and reliable for the auditors.

The Role of Audit

Beyond compliance as code for auditing, DevSecOps requires a funda-
mental shift in the audit approach. Traditionally, IT auditing has been
based on a segregation of duties. The concept that operations and
development are different teams, with different incentives, has pro-
vided the foundation for risk mitigation approaches for many years.
Because these teams had separate focuses and reporting structures, it
was assumed that the segregation of duties would provide appropriate
checks and balances. Of course, this segregation of duties is contrary to
the focus of DevOps, which strives to bring Dev and Ops together,
thus building teams that have responsibility for building, deploying,
and maintaining their codes.

As discussed in Chapter 3, “DevSecOps People,” empowered
engineers must have the ability to deploy and manage their systems if
they are going to be held accountable for the availability and reliability
of those systems. In addition, the CI/CD pipeline and the automation
of change management fly in the face of traditional controls, which
mandate layers of review and approval.

In 2015, James DeLuccia IV, Jeff Gallimore, Gene Kim, and
Byron Miller wrote the DevOps Audit Defense Toolkit, in which they
explore the challenges between audit and DevOps. They describe the
problem statement:

“As IT organizations increasingly adopt DevOps patterns, there is more
tension than ever between IT and audit. These new DevOps patterns chal-
lenge traditional thinking about auditing, controls, and risk mitigation. Just
as ‘Dev’ and ‘Ops’ need to find new and better ways of working together to
help their organization win, so now does IT and audit.”

140	 The DevSecOps Playbook	

The new ways of working in DevOps require a new way of think-
ing about auditing.

A Note of Caution on Compliance

It should be noted that compliance does not, in and of itself, make you
secure. Compliance verifies that you meet specific standards aimed at
preventing specific types of issues, but it does not guarantee security.
Compliance does checks for security, but it doesn’t necessarily make
you secure. Cybersecurity is context dependent and constantly chang-
ing. The threat landscape is evolving much quicker than compliance
regulations. You need to design your security posture based on the
threat landscape and the business requirements of your company.
Ideally this goes well above and beyond the requirements of compliance.

Compliance Foundations

A key foundation to driving compliance as code automation is the need
to have consistency. Having disparate processes and tool proliferation
can make compliance significantly more complex to manage. IAM and
the change management process stand as the foundation for many
compliance requirements, so having consistency in these areas is of
particular import. By driving standardization in these areas, you can
significantly reduce the cost of compliance management and enable
automation.

Identity and Access Management

Identity and Access Management (IAM) is at the core of modern cyberse-
curity. It is a key element of Zero Trust because it is the verified iden-
tity of the user that allows you to establish trust in the actions the user
(or machine) wants to take with that identity. Keep in mind that IAM
applies to systems as well as machines. It allows systems to interact
with one another as well as users to interact with systems. In a Zero
Trust model, if the identity cannot be securely and effectively estab-
lished, that actor should not be allowed to take the action.

	 DevSecOps Governance	 141

As decryption and hacking have become increasingly sophisticated,
traditional methods of identity verification have had to evolve. A recent
report by Hive Systems showed that it takes just one second to crack a
seven letter password.4 Even quite complex passwords can be cracked
relatively easily with modern computing power. So it is incumbent upon
companies to take increasingly sophisticated approaches to IAM.

Almost all companies today are using dual-factor authentication,
which requires more than one way of establishing your identity, and,
increasingly, companies are moving away from passwords altogether.
Modern identity can be dynamic and based on historical data such as
location and time of access. If a user is accessing systems at 2 a.m.,
when they normally work 9 to 5, this can indicate a problem. Systems
can also look for impossible travel. If a user accessed a system from
California one second and one from Nigeria one hour later, this is
likely an indication that the account has been compromised. Modern
identity systems should take into account all of these factors as part of
the actor’s identity. IAM is an increasingly complex topic—whole
books have been written on the topic—and it is not the purpose of this
book to explore IAM in detail. The purpose here is to provide an over-
view and put IAM in the context of DevSecOps and automated
governance.

One of the keys for making IAM and DevSecOps successful is to
ensure they are standardized across the organization. This is one of the
foundational elements of governance, so standardization provides
enormous benefits in terms of reducing manual overhead of managing
separate identity systems. In addition, a centralized and standardized
IAM makes it tremendously easier to provide people with the right
levels of access to be most effective. Access can be very difficult to
manage when separate systems have separate mechanisms for access. If
your legacy CRM system has separate access controls from your cloud-
based applications and that is separate from your ticketing system,
managing these in any sort of holistic way can be next to impossible.
That leaves you with significant risk.

4 “Hive Systems Password.” Hive Systems. Accessed April 24, 2023. www.hivesystems.
io/password-table.

http://www.hivesystems.io/password-table
http://www.hivesystems.io/password-table

142	 The DevSecOps Playbook	

In addition, if systems are managed in a decentralized manner, it
can be difficult, if not impossible, to provide a holistic audit for the
organization to ensure that those who should have access do and those
who should not do not. If there are multiple points at which identity
can be managed, the burden for governance can be overwhelming. The
process for identifying who has access to which systems alone can be a
massive undertaking. When you have a centralized IAM system, you
have a single point to check that the right people have access to the
right systems. As IAM is central to compliance requirements, having a
unified approach is key to any governance automation.

Change Management

Change management is another foundational element of DevSecOps.
As discussed in Chapter 4, “DevSecOps Process,” most change man-
agement processes have their roots in ITIL. Many of these processes
are highly bureaucratic, with large documentation requirements and
change advisory boards (CABs) required to review and approve all
changes. Considering DevOps, this should be approached in a funda-
mentally different way, with changes recorded and approvals auto-
mated whenever possible. Change reviews should be localized to
people who are technically familiar with the changes that are being
made. This type of approach empowers engineers and enables flow
unimpeded by bureaucratic overhead. In addition, when you properly
insert security into the pipeline, it can lead to a more secure product.

Unfortunately, this approach flies in the face of conventional
assumptions about change management. While many of these assump-
tions were designed before CI/CD was even a possibility, these assump-
tions are baked into policies and controls of many organizations. Many
change-management policies are built on the assumption that there is
a segregation of duties between development and operations teams
and that this segregation of duties ensures that secure code will be
released. It may be necessary to work closely with the audit team to
review and update company policies for new approaches to change
management to be acceptable.

	 DevSecOps Governance	 143

The reality is that security is much better served having review
from developers close to the code than having approval from a vice presi-
dent working three layers above the person writing the code. In addition,
an automated deployment pipeline designed with security engineers with
security verification built in will be more secure than any manual review.

However, this may not align with the organization’s policies. This
issue is explored in The DevOps Audit Defense Toolkit by the fictitious
auditors who had concerns that “the absence of separation of duty and
change approval controls create the risk of untested and unauthorized
code being introduced into production.” That’s okay, because there’s a
little-known fact: organizational policies can change.

This is not to say that Separation of Duties (SoD) is not a valid con-
cept and not necessary to mitigate risk. SoD is the requirement that
two separate parties be responsible for different parts of a process.
Payroll is a good example. Often it is required that one person sched-
ule the payroll and another person approve it. This helps ensure that
no one person can do something like pay themselves twice. SoD is a
foundation of modern risk management and ensures that no single bad
actor can act in a vacuum to take malicious action. Traditional policies
relied on the segregation of duties between development and opera-
tions to ensure that malicious code was not released. But DevOps fun-
damentally shifts this paradigm with the combination of Development
and Operations, the elimination of CABs, and the automation of the
approval pipeline.

However, it is quite possible to provide this sort of separation of
duties in a DevOps environment. One of the key ways to achieve this
is to ensure that all code is reviewed by someone other than the code
submitter. This should be a requirement of all CI/CD pipelines and
helps ensure that no single person can insert malicious code.

In addition, elevated access should be removed to ensure that the
only way to deploy code to product systems is through the CI/CD
pipeline. They reiterate this mitigation technique in Investments
Unlimited: A Novel about DevOps, Security, Audit Compliance, and Thriving
in the Digital Age by Helen Beal, Bill Bensing, Jason Cox, Michael

144	 The DevSecOps Playbook	

Edenzon, Topo Pal, Caleb Queern, John Rzezotarski, Andres Vega,
and John Willis, stating “If we take away elevated production access
from every developer and ensure that every code change is peer
reviewed before production deployment, we will have the best way to
mitigate that risk. . . . The key is enforcing the peer review process.”

Additional controls can be added here to strengthen this control,
such as including multiple reviewers and requiring rotation or rand-
omization of code reviewers to prevent two people from teaming up to
submit malicious code. While this may feel strange and risky to some,
the reality is that a code reviewer familiar with the code is much more
likely to catch subtle code changes that might be written with mal
intent than a security or operations person who has never seen the
code before.

In addition, by taking this approach, you shift the verification left
and can catch any problems very early in the development process,
rather than waiting until it is about to be deployed, or worse, it is run-
ning in production.

The other piece to keep in mind is that, by automating the secu-
rity testing in the pipeline, you provide another control point in which
to catch any problematic code. This sort of automated testing is likely
to be more reliable and effective than manual testing, which would
otherwise be necessary.

The DevOps Audit Defense Toolkit describes this risk and the
related mitigating control as follows:

“Business Risk R1. An internal actor abuses provided or developed privi-
leges to commit fraud to the organization and/or its customers. (BR2, BR3)

Control Strategy CS1. All code is validated through defined controls
prior to production deployment to prevent developers from inserting ‘back
doors’ or vulnerabilities into production.”

The paper provides details about potential mitigating strategies
including reviews and automation.

Ultimately, segregation of duties should not be a barrier to
DevSecOps adoption. It is quite possible to segregate duties with

	 DevSecOps Governance	 145

automated deployments and peer reviews. However, in many environ-
ments, this may require a fundamentally different understanding and
approach. It will require building a new shared understanding between
security and auditing, which is understanding the risks and controls in
place to mitigate these risks. It may even require that policies be rewrit-
ten if they explicitly call out a separation between development and
operations.

The thing to keep in mind is that auditors and cybersecurity pro-
fessionals share a common goal: they all want to reduce risk for the
company. It is not the auditors’ goal to make life difficult for engineers
nor is it their desire to spend weeks and months filling in spreadsheets
and manually pouring through evidence. Nor is it security’s goal to
slow down the product development process or create additional work
for developers and site reliability engineers. Both groups are keenly
focused on the goal of reducing risk. With that in mind, it is possible to
agree on the best action to reduce risk and build that approach into
policies and controls for the organization.

Conclusion

Governance automation is one of the biggest opportunities in
DevSecOps. This area alone can save companies millions of dollars.
Not only that, but governance automation can help ensure that engi-
neers spend more time focused on building great products and services
and less time in the manual toil of evidence collection and manual
compliance activities. Yet it remains one of the most underdeveloped
areas. While many companies are now adopting DevSecOps practices,
they have yet to even begin their journey on governance automation.

A key to governance automation is, of course, collaboration. It is
critical that you build collaboration with internal and external partners
and view them as just that—partners, rather than a policing organiza-
tion. You must build bridges between auditing, security, development,
and site reliability engineering to be successful in your compliance
automation efforts. It is important to remember that these teams may
have different focuses and approaches. However, they are ultimately
aligned on mitigating risks for the business.

146	 The DevSecOps Playbook	

It is also important to create a strong foundation for governance
automation. Change management and IAM stand at the core of many
compliance requirements. If you can do these two things well and in a
standardized way across your organization, it will position you well to
take your governance automation journey.

On top of this foundation, you can build your governance auto-
mation and tooling. New tools are emerging at a rapid pace to assist
with your governance automation. Your CI/CD pipeline will play a
central role, as many of the compliance requirements can be verified
during the deployment process using common frameworks like Rego
and OPA. Additional automation can be wrapped around your envi-
ronments to map risks to controls and controls to evidence. That way,
you can seamlessly verify that you are compliant, thus helping to ensure
the security of your systems.

147

Chapter 7

Introduction

More than 50 percent of the Fortune 500 companies from the year
2000 no longer exist.1 In just two decades, more than half of the top 500
companies have disappeared. In many cases, the reason these compa-
nies no longer exist is a failure to transform, a failure to adapt to chang-
ing business conditions. The world is transforming, and your business
must transform too if you want to continue to succeed. DevSecOps is
one of the many transformations that businesses are going through
today to meet the business needs of today and tomorrow.

As mentioned in Chapter 1, “Introducing DevSecOps,” when
approaching transformation, it is important to start with the “why.”
Transformation is hard. It is hard for the organizations, and it is hard
for the people going through those transformations. Transformation is
difficult because, to transform, you must fundamentally change not
only what you are working on but how you work. Changing habits and
ways of work—changing the way people work—is one of the most dif-
ficult challenges a business can face. If you are going through that dif-
ficulty, it is important to understand the underlying reason. By
understanding and communicating the “why,” you can help everyone
in the organization become part of, and support, that transformation.

One of the primary factors for business transformation is quite
simply to deliver better business results. For DevSecOps, this includes
delivering secure products and services that the customers and market

Driving Transformation
in Enterprise Environments

1 Berman, Ryan. “Business Apocalypse: Fifty-two Percent of Fortune 500 Companies
from the Year 2000 Are Extinct.” Courageous. April 24, 2020. https://ryanberman
.com/glossary/business-apocalypse.

https://ryanberman.com/glossary/business-apocalypse/
https://ryanberman.com/glossary/business-apocalypse/
https://ryanberman.com/glossary/business-apocalypse/

148	 The DevSecOps Playbook	

demand while outpacing the competition. It is important to go beyond
platitudes to actually define how you measure these results and track
progress as you go through this transformation. If your goal is to
increase security while reducing time to market, you can look at met-
rics around security incidents, risk, and cycle time. Chapter 8,
“Measuring DevSecOps,” provides a detailed approach to measuring
the progress of a DevSecOps transformation, but it is fundamentally
about increasing value delivered to your customers. Ensuring risk
reduction is part of that value delivery equation.

It is also important to keep in mind the forces that drive transfor-
mation. Technology is progressing more rapidly than ever in human
history. Computer technology is now progressing more each hour than
it did in the first 90 years.2 To keep up with the rapid pace of techno-
logical change and to take advantage of it, you need to fundamentally
change too. You need to fundamentally change your systems, processes,
personnel, and even hierarchical organization. While this requires
investments of time and money, the benefits far outweigh the costs,
and not changing can lead to failure.

Not only must businesses do things in new ways to adopt new
technology, but those new technologies also allow businesses to do
things in new and better ways. As discussed in Chapter 2, “The
Evolution of Cybersecurity (from Perimeter to Zero Trust),” the
migration from compiled fully functional applications that were dis-
tributed on CD-ROM to Internet-based applications and software as a
service has allowed for the move to continuous integration and con-
tinuous deployment. The tools that have emerged to allow companies
to deploy continuously provide a unique challenge and a unique oppor-
tunity for cybersecurity. By integrating security into your continuous
integration and continuous deployment pipeline, you can ensure that
every release is secure and that security is built into how you work.

Emerging technologies such as artificial intelligence and Big
Data provide new ways to protect systems, and you must take advan-
tage of them. By leveraging Big Data and machine learning in your

2 Grossman, Lev. “2045: The Year Man Becomes Immortal.” Time, February 10,
2011.

https://medium.com/future-today/exponential-thinking-99dce72ab2d8/
https://medium.com/future-today/exponential-thinking-99dce72ab2d8/

	 Driving Transformation in Enterprise Environments	 149

monitoring and observability systems, you can now look at massive
amounts of data from all of your systems and automatically identify
patterns that may be indicative of security compromise.

The Challenge of Cultural Transformation

To successfully drive transformation, it is important to first understand
the challenges that an organization faces during transformation so that
these challenges can be handled head-on to drive a successful
DevSecOps transformation.

Changing the way people work, how they are valued, how you
communicate with them, what new tasks they will be asked to do, how
they report their results, and how their roles may be redefined are the
most difficult parts of any transformation. Changing tools or changing
technologies, while not easy, is relatively straightforward in compari-
son. There are known patterns that you can leverage and, especially
when using vendor-supplied technologies, there are people with prior
experience who can help. As with other transformations, DevSecOps
is, more than anything, a cultural transformation. You must make an
effort to understand the current culture and the changes that need to
be made to accommodate the culture you are aiming for.

Changing the way people work, how they are valued, how you commu-
nicate with them, what new tasks they will be asked to do, how they report
their results, and how their roles may be redefined are the most difficult parts
of any transformation. Changing tools or changing technologies, while not
easy, is, in comparison, relatively straightforward.

Resistance to Change

Security has typically been performed in a silo, and this silo served a
purpose, as there is often a requirement of secrecy for security. When
a vulnerability is discovered, you cannot tell everyone, “Hey, guess
what? We found a huge vulnerability!” Exposing this information can
put a company at additional risk from malicious actors who might
exploit the vulnerability. However, this approach is often contradictory
to the DevOps culture of openness and transparency. So, you need to

150	 The DevSecOps Playbook	

work to find the right balance. Confidentiality and secrecy have
long been part of the culture of security, so finding the ability to
be open about mistakes may be counterintuitive to many security
professionals.

In addition, change introduces risk, and transformation repre-
sents a massive change, so transformation may be counter to the nature
of many security professionals. Security professionals have spent their
entire careers working to reduce risk. In many cases, they have made a
conscious decision to make risk reduction their life’s work. In the
Computer Weekly article “It’s time for engineering teams to own
DevSecOps,” Mandy Andress writes “DevSecOps can be difficult to
implement because it involves a mindset shift for security teams, engi-
neers and developers.”3 It is no wonder that asking security profession-
als to take a major risk in transforming the fundamental way in which
they work may be met with resistance. For a transformation to be suc-
cessful, you must understand the impact it will have on people and the
goals and concerns of those people.

Transforming while Delivering

Like other business transformations, the DevSecOps transformation is
also challenging for established companies, because you must trans-
form while continuing to deliver with existing models of working.
Security operations can never stop, so pausing existing security activi-
ties to implement new ways of working is not an option. Teams often
struggle because they lack the knowledge of these new ways of working
and lack the time to dedicate to learning and establishing them. Just
about every security team is fully occupied with day-to-day tasks, and
this sort of transformation requires additional work, which must be
accommodated. You cannot stop existing monitoring or security inci-
dent response activities while you revamp them.

3 Andress, Mandy. “It’S Time for Engineering Teams to Own DevSecOps.”
ComputerWeekly.Com. TechTarget, September 23, 2022.

https://www.computerweekly.com/opinion/Its-time-for-engineering-teams-to-own-DevSecOps/

	 Driving Transformation in Enterprise Environments	 151

Transformational Leadership

To lead transformation, you must be a transformational leader. As a
leader, you must be empowering, transparent, collaborative, agile,
instructive, innovating, and customer focused.

There are many studies of what it means to be a transformative
leader. Jeff Dyer and Hal Gregersen did an extensive study on the
topic in their book, Innovator’s DNA: Mastering the Five Skills of
Disruptive Innovators. In it they write, “We believe that a leader’s abil-
ity to successfully drive innovation largely boils down to something
we call innovation capital, a multifaceted set of characteristics that
allows the leader to acquire and effectively deploy the human and
financial resources required to take a risky and novel idea and turn it
into an innovation with impact.” They describe this as a mix of char-
acteristics, including associating, questioning, observing, networking,
and experimenting.

A separate study from Harvard Business Review found that innova-
tive leaders exhibited the following 10 characteristics:

•	 Display excellent strategic vision

•	 Have a strong customer focus

•	 Create a climate of reciprocal trust

•	 Display fearless loyalty to doing what’s right for the organiza-
tion and the customer

•	 Put their faith in a culture that magnifies upward
communication

•	 Are persuasive

•	 Excel at setting stretch goals

•	 Emphasize speed

•	 Are candid in their communication

•	 Inspire and motivate through action4

4 Zenger, Jack, and Joseph Folkman. “Research: 10 Traits of Innovative Leaders.”
Harvard Business Review. December 15, 2014. https://hbr.org/2014/12/
research-10-traits-of-innovative-leaders.

http://hbr.org/2014/12/research-10-traits-of-innovative-leaders/
http://hbr.org/2014/12/research-10-traits-of-innovative-leaders/
http://hbr.org/2014/12/research-10-traits-of-innovative-leaders/

152	 The DevSecOps Playbook	

Different studies have produced different lists, but as the study in
Innovators DNA showed, no one skill defines an innovative leader.
There is, instead, a combination of skills and behaviors that help a
leader drive innovation.

What is certain is that the world is changing, and leaders must
change too in order to successfully drive the DevSecOps transfor-
mation. The role of the chief information security officer (CISO) has
fundamentally changed over the past decade. With the increasing
threat landscape and the increasing media attention to wide-scale
breaches, the CISO’s role has become increasingly more central to
all companies. Boards of directors are paying increasingly more
attention to cybersecurity and demanding higher rigor across
industries.

One of the key changes in the role of the CISO is from opera-
tional manager to strategic driver. It is no longer sufficient for a CISO
to keep the machinery of security running and to execute the direction
of the CEO. The CISO must understand the business and make stra-
tegic business decisions, balancing security and the customer.

As technology leaders move to more strategic roles within the
organization, they also must move from being a cost controller to
being a value driver. More and more, you can look at security as a value
to your customers. So often security is thought of only as a cost center.
As the tech industry shifts its focus from delivering product and ser-
vices to delivering user experiences, you need to find new ways to make
security a value driver for your company. You cannot be satisfied by
simply driving cost efficiency; you cannot be satisfied to simply have
fewer security incidents; you must work more closely with the business
to drive value for the company.

The Keys to a Successful Transformation

DevSecOps transformation is difficult, but there are certain steps you
can take to help ensure your transformation is successful. Transformation
is a journey, and not one that has a distinct destination. Any transfor-
mation will undoubtedly have obstacles and setbacks that you’ll need

	 Driving Transformation in Enterprise Environments	 153

to overcome, but as you approach your transformation, the steps in the
following sections can help ensure that you get the results you desire.

Begin with the End in Mind

One of the keys to driving a successful transformation is to have a
vision of where you will be at the end of the transformation. Because
transformations such as DevSecOps require all people to be working
toward the same goal, it is critical that the end goal be identified and
clearly articulated to everyone. It is important to build a shared vision
with concrete goals, objectives, and key results in a measurable format.
For DevSecOps transformations, this means you must understand not
just what you are doing but why you are doing it. Using an outcome-
based approach and clearly measurable competencies, you can success-
fully drive DevSecOps in a large and diverse environment.

If you are doing DevSecOps to increase security while improving
the speed of delivery to your customers, first define how you will meas-
ure the results. Typical measurements to examine include security inci-
dents over time, number of vulnerabilities identified in production,
and amount of time features take to go from the backlog to produc-
tion. Additional information about metrics is available in Chapter 8.
The metrics you arrive at must reflect the high-level business value
that security engineers, business leaders, and customers expect. You
must measure it at the start of your journey and track the progress
throughout. By defining where you want to go, you create a north star
to set the direction for the entire team. By measuring progress in that
direction, you ensure that the changes are having the intended results
and moving you in the right direction.

Start Small and Find Early Wins

Midsize to large organizations make the common mistake of trying to
do DevOps for the entire organization at once in a homogeneous way.
In trying to do everything at the same time, you can often fail to make
any progress at all. Worse yet, you can create failures that provide the
perfect excuse for detractors to block any positive change.

154	 The DevSecOps Playbook	

The best course of action is to look at ways you can start small
and find early wins that can be examples for other teams to follow. In
an organization that may have tens or hundreds of Agile development
teams, find one or maybe two that are really innovative and want to
take time to implement DevSecOps practices. If you can find those
thought leaders, they can pave the way for the rest of the company.

When identifying these teams, it is best to ensure that they have
a positive standing in the company and a track record of delivering.
You should also ensure that they are interested in sharing information
about their successes. Look for teams that are willing to do activities
such as interviews, posting metrics about their successes, writing sto-
ries about their work, and sharing those stories at your company events
so that they can become evangelists for your transformation. Once you
have identified these teams, make sure you are investing the time and
resources to set them up for success.

You can also identify quick wins by identifying pain points within
your organization. These pain points are generally well known and
easy to identify. One of the quickest ways to identify these pain points
is simply by asking. Hold interviews with key stakeholders and engi-
neers across the organization and ask them what their biggest cyberse-
curity challenges are. If you listen, you should be able to rapidly identify
common themes that can be addressed to deliver impactful results
quickly. For example, if you’re spending millions of dollars on long,
drawn-out, manual deployment cycles and you can reduce that signifi-
cantly by automating the deployments, that is going to be a big win for
you and your customers. These sorts of wins help build the momentum
you need to drive the transformation forward.

Focus on the Cultural Transformation

Far too many transformations focus on the technology and not the
cultural transformation that must accompany the new technology. You
cannot buy a tool to make your transformation a success. Because this
is a cultural transformation, it is important to keep in mind the impact
that it will have on the people that make up the company and help
deliver great products and services.

	 Driving Transformation in Enterprise Environments	 155

DevSecOps requires a new way of thinking. Security engineers
must reorient themselves toward building systems that enable and
empower others to make more secure products rather than imple-
menting security themselves. Developers must reorient themselves to
understand principles of secure coding and make security engineering
part of their daily work. This type of cultural change and mindset shift
requires significant work, including process reengineering and train-
ing. It is also not sufficient to simply provide one training and think
everyone will just get on board. DevSecOps and the underlying
DevOps principles need to be built into the ways of working so that it
is reinforced through processes. Only when they are built into the ways
of working, into daily work, will they really permeate the culture in a
meaningful way.

DevSecOps requires a new way of thinking. Security engineers must
reorient themselves toward building systems that enable and empower others
to make more secure products rather than implementing security themselves.
Developers must reorient themselves to understand principles of secure coding
and make security engineering part of their daily work.

Measure Progress

To drive progress in any DevSecOps transformation, it is critical that
you measure your progress. It is important to take a multifaceted
approach to measurement, looking at every level of the transformation.
There are two key aspects that must be measured, the competencies
that are key to DevSecOps and the business outcomes. It is important
to measure both of these to ensure you are moving forward with the
DevSecOps transformation and that it is having the intended results.
Additional detail on measuring transformation can be found in
Chapter 8.

Transparency is a critical component of DevOps culture, and
these measurements can provide a great opportunity for transparency.
In addition to measuring the progress, you should make sure to share
that information across your organization. Information radiators are
informational displays that are placed in central locations to share
information across the teams. These can take the form of large moni-
tors, whiteboards, or glass walls for sticky notes. You can leverage
information radiators for that data so that you can share that data

156	 The DevSecOps Playbook	

among teams. Not only does this encourage teams to progress against
those measurements, but it also facilitates learning. Teams that are
struggling will be motivated to perform better, and teams that are per-
forming well can serve as exemplars. Teams needing assistance can seek
the help of other teams that may be performing well in the areas where
help is needed. While it is good to share this information, it is impor-
tant that this not become a tool that contributes to a culture of fear or
retribution. It needs to be part of a collaborative and learning culture,
where teams work together to drive each other to do their best.

Leverage Outside Help (As Appropriate)

External vendors and consultants can be a benefit for transformational
work; however, there is a balance here as over-reliance can be detri-
mental to long-term transformation success. Often, it is extremely use-
ful to have an external vendor help assess the status of a transformation
and provide key recommendations. An independent third party can
provide a relatively unbiased perspective and bring in experience from
transformations from other companies.

It is also important to keep in mind that transformation requires
work, a lot of work, and it is foolish to think that current people within
an organization can simply take on this work in addition to all the work
they are already doing. There is, of course, a cost factor here as well.
Bringing in external resources is an expense for the organization.
If you are planning on doing a transformation with existing resources,
you are likely setting yourself up for failure. In addition, placing addi-
tional burden on current resources is likely to cause burnout, thus
leading to increased turnover, the cost of which can far exceed the
potential cost of supplementary resources. Additional resources and
time must be allocated to the transformation, and often, external ven-
dors help offset the resource requirements of this work. However, you
should not be over-reliant on this sort of external help.

Ultimately, the people in the organization must understand,
learn, and do the work. Internal resources must begin to adjust to new
ways of working. You cannot simply hire an external vendor to “trans-
form you.” This is especially important as most transformations do not
have a clear start and end. Few transformations are ever fully complete.

	 Driving Transformation in Enterprise Environments	 157

Especially in DevOps, there is always more that you can do, even for
companies that are relatively mature in the DevSecOps practices. You
need to build expertise in-house and develop internal processes to con-
tinue to drive transformation in the absence of external help. External
resources must have clearly defined goals and expectations and, most
importantly, a clear definition of when their job is complete. Ultimately,
while external resources can help drive transformation forward, they
must be balanced with internal resources and processes to drive con-
tinual learning and continual improvement.

Build a Communications Campaign

One of the most challenging and most important components of a
DevSecOps transformation is winning over the hearts and minds of
the stakeholders and the participants. This requires extensive
communication.

When thinking through your communications plan, it is useful to
think of it as a marketing campaign. You can’t simply say, “Hey, every-
body, do DevSecOps,” and expect the company to make the drastic
changes required. You need to create a consistent communication plan
tailored for the audience and the many channels via which they con-
sume information. You cannot simply communicate once in an email
and think you are done. You must leverage all the communication
channels, including town halls, intranets, blog sites, news updates, and
timely emails, and think about ways to get people to talk about it and
engage with it.

In developing the plan, you need to understand the entire scope
of your implementation while focusing on short-term goals so as not
to overburden the team with too much change. This plan must include
the definitions of the teams involved, projected process changes in the
short term, and expected realization of the short-term goals for
each team.

Audience

When developing a communication plan, first identify and address the
audience you are speaking to. Audiences include business-line owners
who have a stake in these applications, whether the application is an

158	 The DevSecOps Playbook	

internal application, such as human resources, or a revenue-producing
website. It also includes technical groups that are benefiting from
DevSecOps. While the data showing a decreased number of vulnera-
bilities may speak to security engineers, it may mean very little to a
business leader.

It is important to understand each of the audiences you are speak-
ing to, understand their concerns or focus, and craft messaging specific
to them. Engineers, for example, will likely be interested in exciting
new technology and innovation. Engineering managers, on the other
hand, may be more interested in decreased time spent mitigating vul-
nerabilities found later in the development life cycle. Messaging for
business leaders should focus on the value for the customer and
increased revenue. At an executive level, messaging should address the
stability of the company and criticality of customers and risk to long-
term viability and reputation.

Communication Channels

When Coca-Cola wants to increase sales, they don’t send one email
message and then sit there wondering, “Why isn’t everyone drinking
our soda? Didn’t they get our email?” They have vast marketing cam-
paigns across every possible communication stream. They have TV
campaigns, email campaigns, web campaigns, in-store marketing, and
product placement in movies and TV. They work to get the message to
consumers wherever their consumers are, and then they repeat that
message again and again and again.

As a technologist who wants to effect positive change, you must
get better at thinking like business managers and marketing executives.
There is a common misconception among engineers that if they build
something great, people will flock to it because, hey, there’s this great
tech-thingy they built and why wouldn’t everyone use it? As a security
engineer, you may feel that the value of security is self-evident; how-
ever, this is rarely the case with people who are not part of the security
world. The reality is that unless people know about it, they cannot use

	 Driving Transformation in Enterprise Environments	 159

it, and, even beyond that, it requires continued communication to
change behavior.

Engagement with your audience should also include social media
and company chat platforms. Load up these information radiators with
metrics. When you have a team that is doing many deployments a day
and you have them put up a dashboard showing their performance
metrics and the release metrics, people can see that and then want to
improve to attain that kind of performance level. This should be an
ongoing marketing campaign with many different channels of infor-
mation distribution and many different pieces to the message that you
want to distribute.

Transformation Challenges

Just as there are several keys to driving successful transformation, there
are also pitfalls to be avoided to successfully drive the DevSecOps
transformation.

Cultural Inertia

While many organizations may think they want transformation, many
do not realize that they need to fundamentally change their behavior
and their mindset nor do they understand how difficult this can be.
Inertia is the physical property wherein a body in motion tends to stay
in motion, and a body at rest tends to stay at rest, unless there is a force
acting on it. While this is a property of physical matter, the cultural
manifestation of inertia is a powerful force that must be recognized
when approaching a transformation like DevSecOps.

Often there is a person or group within an organization pushing
for transformation, but the rest of the organization is not onboard.
Often others will give lip service to supporting the transformation but
drag their feet when it comes to actually changing. This passive resist-
ance can kill a transformation effort. Transformations require support
from the top levels of an organization as well as from the engineers and

160	 The DevSecOps Playbook	

managers who will be doing the actual work to implement the changes.
Although not everyone needs to be on board, it is essential that there
is enough support to build momentum and carry that body in motion
forward for a continued period of time.

A Willingness to Change

In addition to helping drive transformations for the companies
I have worked for, I also had the privilege of running xOps, a
global DevOps consulting company. During that time, we
were often called upon to help companies through their trans-
formations in DevOps, Agile, the cloud, and DevSecOps.

One large media company brought us in to help assess
the status of its DevOps and provide recommendations to help
drive its transformation. During the intake period, we discov-
ered that not only weren’t there development and operations
teams working together but their development and quality
assurance teams were siloed as well. The teams were doing
development and, only when it was fully complete, handing it
over to the quality assurance team in a manner much more
akin to waterfal than to Agile.

Despite using Jira and Scrum to track their tickets, devel-
opment of a feature was completed before it was handed off for
any QA. Not only were these teams siloed, but they were work-
ing in different locations in different time zones with only a
couple of hours overlap between the two. The teams were not
willing to change to find ways to work together. When the
leadership was approached about this fundamental misalign-
ment, they were not interested in changing teams to increase
collaboration or build a singular Agile workflow.

Although the company wanted to do DevOps, they were
unwilling to make the fundamental changes needed to pro-
gress in their Agile and DevOps transformation, thus leaving
little hope that their transformation would be a success.

	 Driving Transformation in Enterprise Environments	 161

It is useful to understand why cultural inertia may exist. Many
may perceive a transformation as a risk to their job. If you are now ask-
ing all developers to integrate security into their daily work, security
engineers might wonder if their job of doing security is going to be
needed in the future.

In addition, it is important to understand that people have spent
years of their life trying to master the current tools and processes, so
changing these may be asking key resources to destroy the very thing
they have dedicated years of their lives to building. Because of the del-
eterious effects that cultural inertia can have on the DevSecOps trans-
formation, it is critical that you recognize it, understand its cause, and
attempt to address using tools outlined in the section “Build a
Communications Campaign”; this process requires empathy. Only by
understanding where detractors are coming from can you begin to
address their concerns.

Only by understanding where detractors are coming from can you begin
to address their concerns.

Once you have a firm understanding of where the cultural inertia
stems from, you must take action to address it by speaking to those
concerns directly. You can help people recognize that these changes
provide new opportunities by moving people to better jobs with new
and exciting technology. You can also provide rewards, such as com-
pensation and promotions for those who step up and take an active role
in transformation. If others will not change, they may need to find new
roles or exit the organization altogether. By understanding the con-
cerns that drive cultural inertia, you can take concrete and measurable
steps to address them.

Lack of Leadership Support

DevSecOps transformations take time, money, resources, and sus-
tained effort. To have these things in a company of any size requires
support from the top. Transformation cannot be done by will alone,
and it cannot be done in your “spare time.” Without the time or money
to dedicate to a transformation, it is not likely to succeed. Ensuring
that resources are available requires the support of top leadership.

162	 The DevSecOps Playbook	

One way to mitigate this threat from the start is to clearly identify
both the costs of the transformation and the expected benefits. As dis-
cussed earlier, having a clear articulation of the expected results from
the outset is critical. This can help offset the possibility of changing
course midway through your transformation. If there is broad agree-
ment on both the expected costs and the expected benefits of the trans-
formation, it will significantly insulate against the possible impact of
shifting priorities at a leadership level.

Lack of Contributor Buy-In

While it is important to have support from the top, it is equally, if not
more important, to have support from the engineers and managers
who will be doing the work of transformation. These are the people
who will need to implement new tools, adopt new ways of thinking,
and change the way they work on a day-to-day basis. Without their
support, transformations often fail.

With contributors, it is also important to look for signs of passive
resistance. Identify the people who say they are willing to change but
then find reasons to delay or present roadblocks at every step. This sort
of passive resistance can be even more toxic to transformation and can
be an effective method of derailing progress. This type of resistance
gives rise to questions about why the transformation is not progressing
with answers that may be less obvious than when people are open

A Loss of Leadership Support

At one company I worked at, we had a massive DevOps trans-
formation underway. The transformation brought in people
from all different teams, including QA, development, opera-
tions, and the business. In the middle of this transformation,
the company leadership changed, and the new leadership did
not see the value of DevOps. Suddenly, people from across the
company were reallocated to other efforts. Without the sup-
port of executive leadership, resources for the transformation
were quickly diverted, and the effort died on the vine.

	 Driving Transformation in Enterprise Environments	 163

about their reservations and concerns. Everyone is “on board,” so why
aren’t things moving forward? These questions may spread disillusion-
ment with the transformation as a whole, which may threaten to derail
the entire effort.

This is not to say that everyone will be on board or that this is a
requirement. With any transformation, it can be expected that there
will be those who are eager to engage early and those who are reticent
to change at every step of the process. There will always be those peo-
ple who are constantly cynical about change. It is important to be
empathetic and actively listen to their concerns, as they may have some
valid points.

You have to understand the value of DevSecOps in great detail,
up and down the line from requirements to delivery, so when you ask
them to prove their point, you have the answers in your back pocket. It
is important not to be dogmatic or you will get eyerolls every time
“DevSecOps” is mentioned. Be public through your communications
channels about what issues have been raised and address them specifi-
cally. If you stage your implementation with reasonable short-term
deliverables, success can be yours.

As exemplified with Everett Rogers’ bell curve shown in figure 7.1,
there will be roughly 15 percent of people who adapt to changes
quickly and roughly 15 percent who Rogers categorizes as “laggard,”
which are people who are slow to adopt to new technologies and ways

2.5%

Innovators

13.5% 34%

INNOVATION ADOPTION LIFE CYCLE

34% 16%

Early Adopters

Laggards

Early Majority

Late Majority

Figure 7.1  The innovation adoption life cycle can provide a guide for
adoption rates at various stages of your DevSecOps transformation.

164	 The DevSecOps Playbook	

of working. This is okay, should be expected, and can be offset by lev-
eraging early adopters to help move others to the DevSecOps model.
However, if there are enough contributors who do not buy in, it will be
challenging, if not impossible, to have a successful transformation.

Lack of Sustained Support

Lack of sustained support can also be a major problem for the
DevSecOps transformation. These transformations are not short-term
efforts. While there may be a significant up-front effort to get the
transformation started, there will be ongoing effort to maintain the
transformation and continue to learn and grow. Transformations
require fundamental changes in the way people work and the tools
they use. These changes can take a significant amount of time.
Migrating teams to new tooling for secure code deployment alone can
take anywhere from months to years. You need resources to continue
to build community and lead education. You need ongoing funding for
the tools and infrastructure required for DevSecOps. You cannot sim-
ply do three months of work and then wash your hands like, “All done
with that transformation. Phew! Glad that’s over with.” Even compa-
nies with mature DevSecOps practices have opportunities to continue
to refine, improve, and grow. Anyone who has been through a success-
ful Agile transformation knows that there is always opportunity for
continued improvement and that improvement requires work.

Note that this will mean sustained financial investment. The plan
must include long-term financial support for the tooling, training, and
people needed to continue the transformation, build a learning cul-
ture, and ensure continual learning so critical to DevSecOps.

Doing Too Much at Once

Doing too much at once can also be a surefire way to derail a transfor-
mation. Transformations are large, long-term commitments. If you try
to do too much too fast, it can actually be detrimental to progress.
If you try to make progress on too many items, it can mean little to no
progress is made in many directions, which can be frustrating to all
involved. It is important to understand the time and resources available

	 Driving Transformation in Enterprise Environments	 165

and use those in a focused way to drive real progress on a more limited
set of items.

Failure to Communicate Value

As mentioned earlier in this chapter, it is critical to understand why
you and your company are undertaking the DevSecOps transforma-
tion. Not only must you understand why you are taking this on, but
you must communicate that to all of the participants and the stake-
holders. As discussed in the section “Build a Communications
Campaign,” it is important that you present that value in ways that
connect to the audience you are addressing. The executive leadership
and board of directors will appreciate the focus on lower risk levels for
the company and faster time to market. Developers will appreciate the
way in which they are empowered and the opportunity to move faster
with fewer gates to deliver innovative new features to market. Security

Transformation Spread Too Thin

During one of my first DevOps transformation efforts, we
were overly ambitious. We brought together representatives
from development, QA, and operations and mapped out all the
things we wanted to do as part of our DevOps transformation.
We spun up seven work streams, each taking on a major body
of work, all without any dedicated resources or funding. Week
after week, we would meet to report on what the work streams
had accomplished, and week after week the teams had little, if
any, progress to report.

Eventually people who had started off as very motivated
just stopped showing up. While everyone was doing their best
and excited about the transformation, they all had full-time
jobs and were stretched thin to begin with. No one wants to
show up to say that they weren’t able to accomplish what they
had set out to do. Slowly but surely, the enthusiasm and par-
ticipation dwindled.

166	 The DevSecOps Playbook	

engineers will appreciate the value of building security as a shared
responsibility across the organization.

Not only must you understand and communicate this value, it is
also important to measure the value delivered so that you can ensure
your transformation is delivering the results expected. You can explore
exactly what and how to measure this in more detail in Chapter 8.

Conclusion

The world is transforming, and you must too. As the threat landscape
continues to expand, it will take new tools and, more importantly, new
ways of working. The DevSecOps transformation can help your com-
pany address these emerging challenges while continuing to be agile,
adaptive, and delivery-focused to meet your customers’ needs. This
transformation is, at its core, a cultural transformation, which entails
its own unique set of challenges. Organizations must pivot not only the
tools they use to work but also how they work and adapt to new ways
of thinking.

Today, technology is at the core of everything we do, and because
of this, it is no longer possible to separate cybersecurity and the busi-
ness. To drive transformation in this new world, you must be a leader
who understands the business and customer needs. It is critical to
always have a customer focus and a keen eye on the value you deliver.
To do this, you must collaborate across engineering and business lines.

Successful transformations require transformational leaders and
security engineers who can help lead this transformation. These newly
emerging leaders must move from simply keeping things secure from
an isolated silo to innovating and driving new business in collaboration
with business and technology leaders across the company. The only
way to succeed in transformation is to work together. Security engi-
neers must lead the charge, integrated with their development coun-
terparts, moving from being implementation engineers to being
teachers and mentors.

	 Driving Transformation in Enterprise Environments	 167

DevSecOps requires a fundamentally different mindset. It requires
that you move from thinking of security as a siloed organization to
thinking of it as something every engineer must participate in as part of
their daily work. This mindset requires openness, transparency, trust,
and collaboration. Everyone who participates in the DevSecOps trans-
formation needs to embody these characteristics.

The struggles to drive transformation will be multiplied tenfold
without support from both the top and the bottom of the organiza-
tion and without leaders emerging in all areas. Whatever your role in
the organization, you have the opportunity to lead the DevSecOps
transformation. Never has transformation been more important.
Transformation and continuous improvement must be part of how
you work every day.

169

Chapter 8

Introduction

For a DevSecOps transformation to succeed, it is critical to measure it.
To truly have a culture of continual learning, you must measure the
progress. The very act of defining these measures can help ensure that
you have properly articulated the direction you want to take. Tracking
progress against these measures helps ensure that you are moving in
the right direction and delivering the intended results.

At this point in the maturing DevSecOps movement, there is a
huge variety of metrics. It is possible to look at metrics from different
organizational levels, for many different purposes, and for different
timescales. The metrics that the security operations team lead needs to
manage their team on a daily basis will necessarily be different from
the metrics that the board should review to make investment decisions
on an annual basis. While there may be some overlap between audi-
ences, you must consider the audience and the results you are trying to
achieve by measuring and reporting. Ultimately, it is important that
your metrics drive action for which they are designed. If the selected
metrics do not provide value and drive action, they should be aban-
doned. Periodic review of the metrics should be performed to make
sure that the evolving organizational needs are properly addressed.

Although there are a broad range of metrics that may be useful
for your security program, this book focuses on metrics that are spe-
cific to DevSecOps and the DevSecOps transformation. The U.S.
General Services Administration (GSA) released a relatively compre-
hensive list of DevSecOps metrics in its “DevSecOps Guide,” which
can be found at tech.gsa.gov/guides/dev_sec_ops_guide.

Measuring DevSecOps

https://tech.gsa.gov/guides/dev_sec_ops_guide/

170	 The DevSecOps Playbook	

While this provides a good reference, some of these are overly broad
and cover subjects outside of the scope of DevSecOps. At the same
time, some metrics, such as mean time to resolve (MTTR), which looks at
the time it takes to resolve an incident, are not unique to DevSecOps
but have sufficient overlap to be included in DevSecOps reports. This
chapter focuses on metrics that are squarely within the domain of
DevSecOps.

Any Metric Can Be Manipulated

It is almost always possible to manipulate a metric, and there is a poten-
tial to drive negative behavior by focusing too much on any one metric.
MTTR and ticket closure rate are prime examples of this. If you
myopically focus on the time it takes to close a ticket and even go as far
as incentivizing (paying bonuses, etc.) based on this, people will find a
way to game the system to drive down the time tickets are open.
Examples include behavior such as not opening tickets until the issue
is resolved so that they can open and close tickets almost instantane-
ously, or, perhaps less nefariously, simply rushing to get tickets closed,
favoring ticket closure over other priorities such as quality and cus-
tomer experience. In cases such as these, well intended metrics can
create a very negative customer experience.

One way to lessen the risk of people manipulating metrics is to
ensure that you use multiple metrics and avoid over-reliance on any
one factor. If you are looking at MTTR, you should also look at met-
rics like customer satisfaction and ticket reopen rates. Another way to
help ensure that people do not try to manipulate metrics is to set the
right tone and develop a learning culture in which people know that
the things you are measuring are being used to drive continual improve-
ment and not as a means to micromanage or enforce. These types of
metrics should not be tied directly to an individual’s performance but
should be looked at on a team level to drive direction. As discussed in
Chapter 3, “DevSecOps People,” punitive applications of measure-
ment are likely to breed a culture of fear and mistrust.

Service level objectives (SLOs) set targets for things such as availa-
bility or delivery of services. SLOs are different than service level

	 Measuring DevSecOps	 171

agreements, which are generally externally facing commitments to
customers. However, they are related in that SLOs may underpin
SLAs. That is, it may be necessary to achieve one or more internal
targets (SLOs) to ensure external commitments (SLAs) are met.

All too often people are hesitant to commit to SLOs because they
fear they will be punished if the target is not achieved. Given the num-
ber of changing parameters—such as changing market conditions,
turnover, and shifting priorities—people may feel they cannot reason-
ably predict their ability to meet specific SLOs. One good practice to
overcome this fear is to begin by acknowledging you don’t have the
data and make a best estimate for an SLO target. Communicate clearly
that the first step is only to measure and then adjust at a later date if
required based on the additional information this initial measure pro-
vides. If there is an incident that takes longer than expected to resolve,
the response must not be punitive; instead, it should be approached as
an opportunity for learning to understand why this happened and look
for opportunities to improve going forward.

While metrics can certainly be manipulated in one direction or
another, this should not be used as an excuse not to measure things.
Just because it is possible to artificially alter MTTR does not mean you
should not track it. By ensuring you are getting as full a picture as
possible, looking from many different angles through many different
metrics, and by building a learning culture, you can make metrics a
powerful guiding tool for your organization.

Start Small and Iterate

Start small and iterate when approaching the development of a new
metrics program. The amount of data you can collect can be over-
whelming, so it is useful to start with just one or two metrics you want
to measure, collect the data around them, and then add another.

Metrics will generally be wrong the first time you measure them,
and that needs to be okay. Almost every time you start to track new
data, the first time you share it, you will be incorrect because people
have not previously paid attention to the accuracy of the data. The

172	 The DevSecOps Playbook	

attention that publishing incorrect data draws will drive corrective
action. Only after the metric has been published for a few months
should you expect the accuracy of the data to be at a level to drive stra-
tegic action. Ultimately, starting with bad data is almost always better
than waiting for perfection or not starting at all.

Metrics will generally be wrong the first time you measure them, and
that needs to be okay.

Starting with Bad Data

As the leader of global technical operations teams, when I share
a new metric, I am open about the fact that there will be errors
in the data the first time it is presented. This data is bound to
be inaccurate because no one has paid attention to it previously.

At one company when I rolled out the vulnerability pro-
gram and presented cloud vulnerability data per application,
people shouted about how there were false positives and how
the data was incorrect. For me, this argument was actually a
sign of great success. It indicated that people were now paying
attention to the data. It meant that teams cared about the met-
rics and would take action. If they care enough to shout about
it, they will care enough to begin to dig into the data and start
to make sure it is accurate.

After a couple months of presenting cloud vulnerability
data, the number of vulnerabilities dropped by almost 50 per-
cent. This was, in part, because there were a lot of false posi-
tives, but it was also because there was a significant amount of
low-hanging fruit that teams had not resolved because they did
not have the visibility. If we had waited until the data was 100
percent accurate before presenting it, we would have waited
forever because those same teams would never have taken
action to resolve the underlying data issues.

	 Measuring DevSecOps	 173

As you develop your metrics program, ensure that perfection is
not the enemy of progress. Many people get lost in the vast morass of
potential metrics. This can be an excuse to take no action at all. Choose
easy first steps and gradually increase the scope by adding additional
metrics. In addition, it is often only when you see new data that you
can really determine what data you want. Often the data you present
raises new questions and helps you define the data you really are
interested in.

Keys to a Successful Metrics Program

While metrics programs can be complex, the following are a few key
elements that will help ensure that your metrics program is successful:

•	 Automated—Make sure that whatever metrics you develop
are delivered in an automated way. Ideally this should be
through live dashboards that can be accessed at any time. If it
takes too much effort to generate the metrics you review, they
are likely to be discarded when workloads increase. By pre-
senting them on an active dashboard, you ensure that they are
not only automated but always up-to-date, removing the pos-
sibility that you need an extensive process to manually gener-
ate them on a periodic basis.

•	 Reproducible—Whatever metrics you develop should be
easily reproducible. This generally goes hand in hand with
automation. If you are automatically generating your metrics
and reporting, you can ensure that the time period is configur-
able. This enables you to easily regenerate metrics for prior
time periods.

•	 Transparent—Share as much as you can without exposing
yourself to additional security risk. The more people have vis-
ibility into the metrics, the more you will develop shared
learning and shared direction.

•	 Actionable—Ideally your metrics should drive action. If you
are simply reporting metrics for the sake of reporting, then

174	 The DevSecOps Playbook	

you may be wasting effort. You should make sure that the data
you are looking at is driving action or that if a change was
observed, it would prompt action. If the metrics are not influ-
encing behavior, you need to question whether they are
really needed.

Operational Metrics

Some of the most important DevSecOps metrics are the ones that help
you drive your business on a day-to-day basis, the operational metrics.
These are key metrics to look at daily, weekly, and monthly to deter-
mine if your DevSecOps practice is delivering the results expected.

As you develop your operational metrics, you should carefully
consider the periodicity of metrics. Different metrics may be more rel-
evant and provide more value for different periods of time. Some met-
rics should be reviewed on a daily basis, while others will be more
useful for trending purposes on a weekly or monthly basis.

•	 Things like number of attacks and high-frequency incidents
are good to review on a daily (or even hourly) basis, as they
may represent an emergent trend or imminent threat that you
need to take immediate action on.

•	 Other metrics, such as MTTR may make more sense to review
on a weekly and/or monthly basis, as this is more indicative of
longer-term trends. While these need to be acted upon,
because the data is sparser, it may not fluctuate significantly on
a daily basis, and looking at it more frequently may not
prove valuable.

The following sections provide details on some of the most valu-
able metrics to adopt in your DevSecOps program.

Number of Incidents

Number of incidents is an obvious and valuable metric to review. For
these purposes, you should think of an incident as an unplanned inter-
ruption or degradation of service. Incidents also include the failure of

	 Measuring DevSecOps	 175

a system that may cause impact to service even if it has not yet done so.
This would track the highest priority incidents such as breaches or
DDoS attacks that bring down a service as well as lower-priority inci-
dents such as users being locked out of their accounts or DDoS attacks
that have been mitigated.

Incidents by Priority Over Time

Incidents resolved by priority over time is one of my favorite
metrics to review. It provides good insight into security as well
as the workload for the team. I review this data on a weekly
basis on our weekly security standup. Figure 8.1 shows the
number of incidents per day broken down by priority.

In general, you should expect to see a higher number of
lower-priority incidents. If you are not, it is worth investigat-
ing why. One team I worked with had a very low number of
low-priority incidents. When I investigated, it was revealed
that they were simply not tracking minor incidents. This is a
common practice but quite problematic. The low-priority
incidents are often the bulk of the work for the security team.
You need to track these, as they provide insight into what is

Figure 8.1  Number of incidents by priority can be a great way to
ensure incidents are being prioritized correctly. This data can also
identify potentially problematic spikes in incident activity.

(continues )

176	 The DevSecOps Playbook	

Prioritizing incidents is beyond the scope of this book, but it is
important to find a consistent and standard way to do this. IT service
management provides a good, standardized way to prioritize incidents
that will also ensure a similar prioritization method for security and
operational incidents.

Lower-priority incidents generally occur significantly more fre-
quently than high-priority incidents and therefore are drivers of trends
and overall workload volume. High-priority incidents are, ideally, rela-
tively infrequent, so they may not provide as good of a measure on a
daily basis but should be trended over longer periods of time.

Note—It may be necessary to report separately on major incident
trends as the lower-priority incidents can skew the scale to such an
extent that high-priority incidents become difficult to see.

Vulnerabilities by Service Level Objective

Vulnerabilities give insight into the risk exposure your systems may
have. While it is good to know the total number of vulnerabilities, this
may not be that illuminating because the vulnerabilities may be of
different priorities. A high-severity vulnerability obviously is much
riskier to the organization than a low-severity vulnerability, so simply
lumping them all together does not provide valuable information.

driving the workload. It is also important to track low-priority
incidents because, while one minor incident may not be prob-
lematic, many may lead to significant issues, what is often
referred to as “death by 1000 papercuts.”

Incidents by priority is generally cyclical, so you should
keep an eye out for spikes or other anomalies.

(continued )

	 Measuring DevSecOps	 177

The Common Vulnerability Scoring System (CVSS) provides a good
method for determining the criticality of vulnerabilities. Whether you
use this or another prioritization method, you should take this method
into account when tracking vulnerabilities in your system.

While looking at the total number of vulnerabilities by severity is
useful, there is also an age element to vulnerabilities. As new vulnera-
bilities are arising every day, even the most secure systems will have
some vulnerabilities. In addition, some vulnerabilities are so low risk
that it may not make sense to address them. Because of this, it is impor-
tant to measure how old vulnerabilities are and, more importantly,
whether you are resolving them within a timeframe that is acceptable
from a risk perspective for your business.

To do this, you can set SLOs, discussed earlier in the chapter, to
set target timeframes by which you want to see vulnerabilities closed
for the risk levels that are acceptable for your business. For example,
you may say that high-severity vulnerabilities must be remediated
within 24 hours, while low-severity vulnerabilities should be resolved
within 5 days. You can then track the percentage of vulnerabilities
resolved within the defined SLO. By doing this, you do not need to
look at the number of vulnerabilities, the number of vulnerabilities by
severity, or resolution time by vulnerability, because all of these are
encapsulated in your SLO metric. By tracking vulnerability SLOs, you
can determine if your business is within acceptable risk levels and take
action if it is not.

Mean Time to x

Mean time to respond (MTTr) provides the amount of time it takes to
respond to an incident, while MTTR (capital R) tracks how long it
takes to resolve incidents. Looking at MTTR by priority helps to see
the mean time it takes to resolve each incident by priority. This can be
a highly valuable metric and one of the items to look at as part of a
continual improvement program, as it speaks directly to whether a
company is increasing the speed at which incidents are resolved.
As DevSecOps practices are implemented, you should expect to see

178	 The DevSecOps Playbook	

MTTr and MTTR reduced. CI/CD, small batch deployments, auto-
mated testing, and cross-team collaboration all contribute to low-
ering MTTx.

It should be noted that there are some problems with mean time
metrics. In an article entitled “MTTR Is a Misleading Metric—Now
What?”1 Courtney Nash lays out some of the deficiencies of MTTr,
including the fact that the mean is highly impacted by outliers. She
also notes that incident data is relatively sparse, which reduces the
value of an average value. The article suggests that mean time to resolve
or SLOs may be a better way to look at incident data. That said, mean
time to resolve can provide value from a directional standpoint.

Note—If you see a steady increase in MTTR over time, this is an
indicator that something is changing that bears further investiga-
tion.

Reliability

Reliability from a security perspective refers to how long an applica-
tion or service performs effectively without a security incident. One
way to measure this is by looking at mean time between failures
(MTBF). MTBF calculates the average between the incident start
times and provides the frequency of outage. It is calculated as follows:

MTBF = Total operational time/Number of failures

This is an important metric to trend over time, as it lets you know
how long, on average, a system runs without an incident. Tracking
MTBF over time provides another indicator of whether measures to
increase security are effective.

Board-Level Metrics

Although it is important to measure the effectiveness of your security
posture on a daily and weekly basis by looking at security operations
trends, you should also report on effectiveness of the DevSecOps

1 Nash, Courtney. “MTTR Is a Misleading Metric—Now What?” Verica. November
4, 2021. www.verica.io/blog/mttr-is-a-misleading-metric-now-what.

https://www.verica.io/blog/mttr-is-a-misleading-metric-now-what/
https://www.verica.io/blog/mttr-is-a-misleading-metric-now-what/

Measuring DevSecOps	 179

program to senior executives and the board of directors. If the com-
pany is investing considerable time and effort on the DevSecOps
transformation, it is critical to show the results of these efforts in
improved security and time to market to ensure continued support.

When considering board-level metrics, you should consider what
it is the board really wants to know. The board will be looking at invest-
ment in security along with other investments the business is, or could
be, making. Ultimately, the board will be focused on risk exposure for
the company and investment around risk. The board will want to know
if you are secure or, more specifically, if the residual risk, that is, the risk
remaining after the mitigation steps you have taken, meets the busi-
nesses risk tolerance. In addition, they will want to ensure that the
investment the company is making in risk mitigation provides the most
value possible.

The following sections provide some key board-level metrics to
consider when developing your security metrics program.

Measuring Risk

There has been quite a lot written about measuring cybersecurity
risk—in fact, there are entire books written on it. This chapter does
not go into a detailed analysis of risk measurement methodologies, but
what is critical to note is that, from a board-level perspective, the pur-
pose of the cybersecurity program is mitigating risk and making busi-
ness decisions about balancing risk and investment. For more detail on
ways to measure risk, you can read How to Measure Anything in
Cybersecurity Risk, by Douglas W. Hubbard, Richard Seiersen, and
Stuart McClure.2 To show the effectiveness of a DevSecOps program,
it is therefore critical that you have a standard method of measuring
risk so that you can show the impact of the program on the risk levels.

Ultimately, what you want to be able to say at a board level is that,
based on x dollars of investment in a specified risk reduction activity,

2 Hubbard, Douglas W., and Richard Seiersen. 2016. How to Measure Anything in
Cybersecurity Risk. 1st ed. Wiley & Sons. https://doi.org/10.1002/97811191
62315.

https://doi.org/10.1002/9781119162315
https://doi.org/10.1002/9781119162315

180	 The DevSecOps Playbook	

you moved your company’s risk level from A to B. That is, for a given
investment, you were able to reduce the risk level by a measurable
amount. To do this, it is important to first measure your baseline risk
levels. Then you measure your risk level after mitigating controls (such
as implementing a code scanning solution in your deployment pipe-
line) to leave you with a new risk level referred to as residual risk. Note
that you can use this same approach to talk to potential future invest-
ment cases and to evaluate the impact of multiple different investment
opportunities. If a $1 million investment in one tool yields a higher-
potential risk reduction than investment in another, similarly priced
tool, that analysis should be valuable input in guiding the investment
decision. Over time, this should be the key to your board-level report-
ing. Look at the investment made and the reduction in risk levels asso-
ciated with those investments.

Risk Work

Another great metric to look at for senior executive reporting is the
amount of time spent mitigating risk. In From Project to Product, Mik
Kersten introduces the concept of flow metrics, which provide a great
mechanism for measuring risk-based work. Project to Product provides a
way of measuring delivery of value in the development life cycle. He
breaks work down into flow items, which are categorized into four key
types: Feature, Defect, Risk, and Debt. By implementing this type of
measurement through tagging of work items, it is possible to see how
much work is dedicated to risk mitigation activities such as remediat-
ing vulnerabilities or meeting regulatory requirements.

There is no “right” level of risk-related work. For a new startup
trying to launch a product to a friendly test market, it may be quite
acceptable to limit the amount of risk-based work and focus on feature
delivery. On the other hand, making a new feature for a widely availa-
ble product in the healthcare space dealing with patient information
may require a considerable amount of risk-based work. Explicitly call-
ing out this type of work and measuring it against other types of work
enables business leaders to make conscious decisions about the amount
of work being dedicated to these and other competing types of work.

	 Measuring DevSecOps	 181

Spend

Aside from resource time, cybersecurity investment is the other key
item of interest from a board level. You must let the board know how
much you are investing in cybersecurity and the benefits this invest-
ment is providing. However, total dollars, or even total dollars by team,
does not provide the most useful view of this information. What may
be more pertinent at a board level is to quantify how much you are
spending on specific risk-mitigation activities. One way to do this is to
look at spend against your cybersecurity framework categories. If, for
example, you are using the NIST framework, you may want to look at
spend for each of the NIST functions: Identify, Protect, Detect,
Respond, and Recover. This can be further enhanced by looking at
how you are performing against each of these categories. If you are
spending the most money on Identify but scoring lowest on that func-
tion, you may want to reevaluate how you are allocating funds for
that function.

Another way to break up your spend in a way that may resonate
with the board is to look at spend per layer of security. Taking a Defense
in Depth approach, you can show spend on application layer, host

Insights from Flow Metrics

When Wiley first implemented flow metrics, I noticed that
most groups in the CIO organization were spending little, if
any, time on risk-related work. This was quite shocking to me,
as I was both the CIO and the CISO. However, it made clear
that we were not focusing enough on cybersecurity. We
adjusted our workloads to allow more time for risk-related
activities and ensure that some risk-based work was allocated
in every sprint, making sure that security was truly part of eve-
rything we did. We also set targets across the entire technology
team for the amount of risk-based work that teams should be
doing to ensure that everyone was making risk mitigation
a priority.

182	 The DevSecOps Playbook	

layer, network layer, data layer, and so on. Again, by breaking up spend-
ing beyond resources, infrastructure, and software, you identify what
this money is going to protect. If you are not already tagging spend
against these categories, it may take some effort to break up spending
in this way, but it will be well worth it.

Once spend is properly analyzed, you may want to also bench-
mark spend against other companies. To the extent possible, you should
focus on companies of a similar size in your industry. The goal is not
necessarily to spend less than these other companies but, rather, to use
these benchmarks to make strategic decisions. You may very well
decide that you want security to be a strategic advantage and therefore
make a conscious decision to invest more than your competition.
These benchmarks may also lead to important realizations about
spending. If you find you are spending significantly more than com-
petitors, investigation may reveal opportunities where you could be
reducing spend without compromising security. Alternatively, this
analysis may offer opportunities from a marketing perspective, as you
can let your customers know that you are taking their security seri-
ously and investing more heavily than your competition.

Detected Intrusion Attempts

All too often, organizations do not think about cybersecurity until a
breach has occurred. In the article “7 key cybersecurity metrics for the
board and how to present them,” Andrew Froehlich says, “Give the
board a picture of the overall number of threats the business faces at
any given time.” Information about detected intrusion attempts or
blocked phishing attempts can be quite useful in highlighting the per-
sistent threat to the organization as well as the positive impact current
investment is having.

It’s important to strike a balance here, because reporting too
many threats and metrics can begin to feel too low level and opera-
tional for a board-level view, but it is also important to paint a picture
of the ongoing threat that your company faces. The correct amount of
attack metrics you provide depends on the knowledge of your board
and their interest in this sort of information. That said, it is important
to paint a picture of the very real and persistent attack your company

	 Measuring DevSecOps	 183

is under. These metrics speak to the ongoing types of attacks that the
company is subject to every day. This data also provides insight into
the value the tools and security operations personnel are providing.
Without this sort of information, security operations will seem like
simply a cost overhead.

Attack Surface

In addition to knowing the number of intrusion attempts, it is useful to
help the board understand the scope of the attack surface that you are
protecting. The attack surface can include things such as the number
of users, number of assets, payment processing environments, point-
of-sale (POS) devices, amount of data, and number of applications and
services. This information should be tracked over time, as it is likely to
be correlated to security spend. For example, as the number of users
increases, so too will your expense on endpoint management. This data
also serves to increase the knowledge about what the key points of risk
are for the business.

Performance vs. Peers

Your security posture compared to your peers is another good metric to
provide at a board level. In the TechTarget article “7 key cybersecurity
metrics for the board and how to present them,” Andrew Froehlich
states, “One of the best ways to showcase your cybersecurity efforts is to
demonstrate how you stack up against your peers in the industry.”3
Services such as UpGuard and BitSight can provide an external security
assessment of your customer-facing services and provide an overall secu-
rity score. Even more importantly for board-level reports, these services
can provide your competitors’ scores. This is useful benchmarking data
for your board to evaluate not only your security posture but also where
you stand in comparison to the competition. These are also valuable
points of data, as this data is also used by insurance companies as well as
potential customers to evaluate the security of your services.

3 Froehlich, Andrew. “7 Key Cybersecurity Metrics for the Board and how to Present
Them.” TechTarget. August 1, 2022.

http://www.techtarget.com/searchsecurity/tip/7-key-cybersecurity-metrics-for-the-board-and-how-to-present-them
http://www.techtarget.com/searchsecurity/tip/7-key-cybersecurity-metrics-for-the-board-and-how-to-present-them

184	 The DevSecOps Playbook	

While external security assessments provide a useful benchmark
against competitors, these services only provide an external view of
your security posture. They do not provide data about internal tools,
processes, or teams. When you present to the board, call out that this
is only one point of data about the company’s security posture.

Measuring Transformation

If you are undertaking the DevSecOps transformation, it is important
to measure your transformation to ensure that you are making pro-
gress and that it is yielding the expected results. As mentioned in
Chapter 7, “Driving Transformation in Enterprise Environments,”
measuring your progress is one of the keys to ensuring a successful
transformation. One way to think of this journey is as an experiment.
The hypothesis is that by changing people, process, and technology,
you will yield specified business results. To determine if the experiment
is a success, you must measure both the things you are changing and
the results. There are therefore two parts of what you want to
measure—the end goal and the DevSecOps competencies.

Transformational Results

In measuring your transformation, it is important to go back to the
concept introduced in Chapter 7, of beginning with the end in mind,
that is, understanding why and then translating this into measurable
goals. This book has talked about DevSecOps as driving increased
security while driving a quicker time to market. With this as a starting
point, you can look at ways to measure both time to market and secu-
rity. Some of the key metrics in these areas include the following:

Time to market

•	 Velocity—This measures the number of items completed
over a defined period of time.

•	 Lead time—This measures the time from idea creation to
delivery to the customer. This includes time in the backlog.

	 Measuring DevSecOps	 185

Security

•	 Risk exposure by NIST function—This measures the risk
level for each of the functions defined by NIST: Identify,
Protect, Detect, Respond, and Recover.

•	 Mean time to resolve (MTTR)—As discussed earlier in this
chapter, this is the time from when an incident starts until it is
fully resolved.

In measuring outcomes, you should not lose sight of the human
element. Highly engaged teams are reflective of the transparent and
engaged culture that is core to DevOps. To measure this, you should
ensure you also look at people metrics such as employee engagement
as a measure of employee satisfaction. This is often measured based on
periodic employee surveys.

These metrics provide a base for the type of information you are
likely driving toward as a reason for your DevSecOps transformation.
This is not a definitive or exhaustive list. While there are many other
ways to measure security, time to market, and employee engagement,
it is important to keep your target list as tightly focused as possible to
set a clear target. Each organization may have its own key goals, but
these are the types of data you should look at to determine if your
transformation is delivering the expected results.

Transformational Competencies

Of course, you must not only measure the results; you must also track
and influence the DevSecOps capabilities that you want to implement.
To do this, you can leverage the classic triad of people, process, and
technology and understand the key goals in each of these areas. For
example, you might look at metrics for each of the following:

People

•	 Ownership and accountability—To what extent do people
in the organization take accountability and ownership for their
work product, deliverables, and mistakes?

186	 The DevSecOps Playbook	

•	 Collaboration—How much do people work across organiza-
tional boundaries?

•	 Empowering—To what extent do people have the tools and
resources they need to do their jobs? How easy is it to
get support?

•	 Learning culture—Does the organization learn from its mis-
takes? To what extent are learning rituals built into standard
activities?

Process

•	 Automated—To what extent are automatable tasks auto-
mated? How much time is spent on daily toil?

•	 Collaboration—To what extent is cross-team collaboration
built into the organizational processes?

•	 Continuous improvement—To what extent is continuous
improvement built into standard processes? Do processes like
postmortems and retrospectives exist?

•	 Light weight—How burdensome is process overhead? Are
processes automated when they can be?

•	 Measured—To what extent are the results of processes
measured?

•	 Transparent—How much visibility do people have into the
organization’s processes? (This would apply to everything
from work requests to goals and objectives.)

•	 Trustful—To what extent do processes assume best intent?

Technology

•	 SAST—To what extent is static application security testing
(SAST) used?

•	 DAST—To what extent is dynamic application security testing
(DAST) used?

	 Measuring DevSecOps	 187

•	 SCA—To what extent is software composition analysis (SCA)
used?

•	 CI/CD integration—What percentage of the application
landscape is deployed via continuous integration and continu-
ous deployment (CI/CD) pipelines? How mature are the
organization’s CI/CD pipelines?

•	 IAC—To what extent is infrastructure as code (IaC) used?

•	 PAM—To what extent is privileged access management
(PAM) used?

•	 Observability—What level of visibility do teams have into
their system’s performance?

•	 Secrets management—To what extent are secrets properly
managed within the application landscape? To what extent are
secrets management tools used?

Some of these measures may be more subjective than others. For
these items, surveys or descriptions of maturity levels may suffice. For
example, cultural norms like “collaboration” may be hard to measure
but can be included in regular surveys. Other items, such as “source
code analysis,” should be easier to quantify so you can determine if a
tool is in place and across what percentage of your landscape.

This list is not meant to be comprehensive but should provide a
good starting point. The critical elements of your DevSecOps trans-
formation may vary. However, by defining the competencies that mat-
ter most at the beginning of your transformation, you define the
specific outcomes you hope to achieve.

Capability Models

Capability models measure the competency within specified areas of a
practice such as DevSecOps. Capability models are a useful way to
evaluate process adoption to tell you where you are strong and where

188	 The DevSecOps Playbook	

you have gaps. They may also help to provide insight into where you
should invest to drive improvement.

DevSecOps assessments can be a key tool in this process. These
frequently come in the form of surveys based on defined DevSecOps
capabilities. Many vendors now offer DevOps and DevSecOps capa-
bility assessments. In addition, there are tools available with prepack-
aged assessments as well as tools that allow you to build your own. Use
an assessment tool that has an agreed upon set of capabilities that are
key to DevSecOps for your organization to measure those capabilities
on a periodic basis. Assessments can help identify points of frustration
for your team as well as key targets for automation. They can also help
identify places where there is excess spend and opportunities for great
efficiencies.

Capability models differ from maturity models. Maturity models
measure the maturity of a tool, activity, or set of characteristics based
on a linearly progressing and predefined set of maturity standards.
Capability models, on the other hand, generally focus on supporting
capabilities and their impact on the expected outcomes. While both
can provide value, there can be some drawbacks to maturity models. In
Accelerate, Forsgren, Humble, and Kim state that “[t]he key to success-
ful change is measuring and understanding the right things with a
focus on capabilities—not on maturity.”4 They note that maturity
models tend to take a linear approach instead of a continuous learning
approach. In addition, they tend to take a very static and standardized
approach that may not be flexible enough for today’s dynamic DevOps
environment.

Today there is no universally accepted DevSecOps maturity or
capability model. The Open Worldwide Application Security Project
(OWASP) has released the DevSecOps Maturity Model (SDOMM),5
and consulting companies are coming up with new models every day.
Traditional cybersecurity frameworks such as NIST, ISO, and SOC2
do provide good models for evaluation but tend to omit key DevSecOps
capabilities.

4 Forsgren, Nicole, Jez Humble, and Gene Kim. 2018. Accelerate: The Science of Lean
Software and DevOps: Building and Scaling High Performing Technology
Organizations. 1st ed. Oregon: IT Revolution Press.
5 “OWASP Devsecops Maturity Model.” OWASP. Accessed May 6, 2023. https://
owasp.org/www-project-devsecops-maturity-model.

http://owasp.org/www-project-devsecops-maturity-model
http://owasp.org/www-project-devsecops-maturity-model

	 Measuring DevSecOps	 189

While these focus on the traditional security measures, they
should certainly benefit from DevSecOps. For example, the Detect
component of the NIST framework will certainly see an improved rat-
ing as you implement advanced observability, which is a critical com-
ponent of DevSecOps. In addition, there are several DevOps maturity
models and assessments—including the DevOps Research and
Assessment (DORA)—that have become standards in the DevOps
community. However, to really drive DevSecOps, it is best to use
something specifically focused on DevSecOps or develop your own.

If external support is required, you can leverage external vendors
or help develop your own based on the capability measures mentioned
here. What is important is that you develop and track your progress in
a consistent manner by defining key capabilities and maturity levels
appropriate for your organization. It is important that you leverage the
same reporting method year after year so that you can see where you
are improving and where you need to focus. Whatever model you use,
you must ensure it does not become a one-time document that sits on
a shelf without driving action.

It is important that you leverage the same reporting method year after
year so that you can see where you are improving and where you need to focus.

There are several ways to assess progress against a set of capabili-
ties needed for the organization. Survey-based assessments, team-
based assessments, interview-based assessments, and data-based
analysis provide details about the capabilities you are trying to develop.
Each one of these provides valuable insight in their own right. Survey-
based assessments can be sent to all technical employees to get their
opinion on where the organization stands. For example, you send a
survey with questions like the following:

Do you have SAST integrated into your deployment pipeline:

No.

One or two.

About half.

Yes, on most.

190	 The DevSecOps Playbook	

All deployments have SAST and do not go to production unless
remediation requirements are met.

Note: Survey design is an art unto itself. All too many surveys
are poorly designed, leaving survey respondents feeling frustrated
and like their time has been wasted. If you are going to develop a
survey, it is best to consult someone who has expertise in this area
or rely on an out-of-the-box solution. It is also important to make
sure you share the results and the outcomes of the survey. Otherwise,
respondents will feel like their time was not well spent.

Although surveys can be great ways of gathering information,
they are somewhat subjective in that they are based on the survey
respondent’s opinion and knowledge about how well a team is doing.
While the subjective nature can be problematic, the opinions of your
people are important. In addition, these types of surveys can provide
insight into items that you may not be able to assess through more
quantitative data. Competencies like collaboration and learning cul-
ture can be difficult to assess through quantitative methods and might
be better suited to a survey-based approach.

This same approach can be leveraged using team leads to provide
feedback on the maturity levels. Rather than sending out a survey to all
technical team members, it is possible to have the team leads self-assess
on the capabilities defined on the maturity model. This approach
empowers team leads; however, it requires a trust-based approach that
clearly emphasizes the results will not be used in a punitive manner but
rather used to drive learning and continual improvement. In addition,
this approach has the benefit that the evaluators are often closest to the
competencies. However, this approach may exclude some vital sources
of information. It may not include critical people, and it may be prone
to bias for team leads who overstate their strengths.

The target of capability models and maturity models is rarely to
get all teams or products to the highest rating. The investment would
likely outweigh the benefits of this type of approach. In addition, the
targets will be highly variable based on the maturity of the product and

	 Measuring DevSecOps	 191

the goals of the organization. If, for example, a product is toward the
later stages of its life and set to be deprecated in the near future, with
limited changes or updates planned, it may not make sense to take the
time and effort to integrate all the security tools into a CI/CD pipe-
line. In this case, it may be completely acceptable to run the product at
its current maturity level until it is retired. Capability and maturity
scores must not become punitive measures that factor into perfor-
mance reviews, compensation, or advancement considerations. If these
types of assessments are used to measure performance or drive discipli-
nary action against employees, you will develop a culture of fear. If
people fear that their income or jobs may be impacted by assessment
results, they may not help or, alternatively, they may provide false
results. While it is important to drive improvement, this data should be
taken as an opportunity to learn and grow and to build a learning cul-
ture and a system of continual learning.

An interview-based approach to assessments can also provide
very useful insight that may not be evident from a survey. While these
are time-consuming and subjective, they tend to be highly productive
in the information they uncover. Simple questions such as “What is
your biggest challenge?” can uncover surprising results and great

Combine Multiple Measurement Approaches

Wiley takes multiple measuring approaches to measure its
DevOps maturity. It takes general surveys as well as assess-
ments on the same characteristics from the team leads. This
provides multiple views of the team’s capabilities. By and large,
what Wiley discovered was that these two methods tend to
corroborate each other, which is encouraging. It indicates that
the team leads as well as the larger technical population tend to
have the same view on strength and weaknesses. The places
where the two approaches did not corroborate provided a
learning opportunity to investigate the disparity.

192	 The DevSecOps Playbook	

targets for improvement that might not be uncovered in a general sur-
vey on maturity of capabilities. By providing opportunities for interac-
tive discussions and opportunities to dive deeper into participants,
response interviews open up insights that surveys may not.

Results from Stakeholder Interviews

When working on a DevOps transformation for a major media
company, I performed an initial assessment using DORA met-
rics in conjunction with in-person interviews. It was very inter-
esting to see the similarities, and the differences, that came out
of the two vantage points. Some great insight was gleaned
from the interviews that did not appear in the survey, such as
the fact that Dev and QA teams were spread out across time
zones and, while they claimed to be using Agile, they were
waiting until features were fully complete to throw the com-
pleted products over the wall to a QA team in a very waterfall-
like manner.

In addition, interviews showed that communication was a
major problem. More than 60 percent of interviewees men-
tioned communication as a core problem. While respondents
indicated several different issues under the umbrella term com-
munication, it was clearly one of the biggest themes. One of the
primary issues identified as a communication issue was the lack
of understanding of broader direction, goals, or vision. Several
people felt they did not know what to focus on or how to
behave, as they had no knowledge of the overall strategic direc-
tion. Other communication challenges included lack of com-
munication between teams and lack of commitment from team
members and leadership.

One simple step coming out of this assessment was to
improve communication from the leadership. We ensured that
there was regular communication to the team—including all-
hands meetings, emails, newsletters, and the like. These were
all great, low-cost opportunities to share progress, build a
common vision, and articulate common goals.

	 Measuring DevSecOps	 193

In addition to assessments, it is possible to make data-based eval-
uations of many of the capabilities you are trying to implement. This
may draw from several of the measurements discussed earlier in the
chapter. By looking at the hard data, you can get objective measures of
how your organization is performing. For example, you can look at the
amount of time it takes to resolve major incidents by examining data
directly from your incident tracking system. These metrics can also be
used as comparisons against the more subjective data collected via
surveys. This could be done by comparing questions about how quickly
people perceive it takes for security incidents to get resolved against
the data tracked in your incident management system.

Conclusion

Measuring DevSecOps transformation and delivery helps you make
great strides in securing your systems through DevSecOps principles.
Measuring the outcomes as well as the improvement in competencies
targeted by the DevSecOps transformation not only helps measure
progress but also lays the foundation for continued improvement by
codifying the results you aim to achieve in a quantitative way. By look-
ing not only at the capabilities you are attempting to implement but
also at the outcomes, you can correlate the results with your action to
ensure that they are having the desired results for the business. This
process helps to bear out the book’s thesis—if you collaborate closely
and if you implement the DevSecOps principles, everyone can deliver
at speed without sacrificing security.

Along the journey, you must also make sure to quantify opera-
tional metrics for the security team as well as the many stakeholders.
You must understand the metrics that are useful to look at on different
cadences: what is useful for the security team to look at on a daily,
weekly, and monthly basis and, conversely, what data should the board
review on a quarterly or annual basis. In all cases, what is critical is that
the data provided helps determine if you are headed in the right direc-
tion and that the metrics developed and reviewed help you make
actionable decisions to deliver the best business outcomes.

195

Chapter 9

Conclusion

Introduction

While DevOps has been around for some time now and is reaching
maturity in many organizations, DevSecOps is still in its infancy.
Companies that are able to bring DevOps principles to cybersecurity
will reap the benefits seen from DevOps and have the opportunity to
leapfrog their competition. By implementing DevSecOps, companies
have the opportunity to deliver at speed without sacrificing security.

Of course, implementing DevSecOps is easier said than done.
DevSecOps requires that people fundamentally change how they
approach security. DevSecOps requires that they change how they
work and what they do on a day-to-day basis. Security practitioners
must move from implementing security to implementing security plat-
forms; they must move from an enforcer of security gates to an advo-
cate of security best practices. But, if you, as a security practitioner, are
along for that journey and are ready to transform, the benefits that you
can provide to your company are tremendous. Not only will your
company benefit, but by leveraging these practices, you will propel
your career forward.

People, Process, and Technology

DevSecOps affects all elements of how people work, from the tools they
use to the roles they take on. To truly do DevSecOps, you must change
all the elements of your business from people to process to technology.

People must fundamentally change how they work to build col-
laboration across all teams and aspects of technical delivery. The work

196	 The DevSecOps Playbook	

they do and the roles they have change. No longer is the role of security
to work in an isolated silo, maintaining and monitoring the gates to
prevent risk. Rather, security practitioners must build the roads to ena-
ble developers to move at the speed of business while operating in a
secure environment. Security teams must move from rule enforcement
to education and advocacy. At the same time, people building infra-
structure and applications must take on more responsibility for security.
Taking ownership for the delivery of the applications and infrastructure
that’s being developed for customers means taking responsibility for
nonfunctional requirements such as stability, maintainability, and, of
course, security.

This change in culture is one of the most difficult parts of the
DevSecOps transformation, and it should not be underestimated.
Building a culture of shared responsibilities and breaking down tradi-
tional silos requires a fundamental shift in mindset. You must look for
ways to build this new culture of collaboration and continual learning
and shift how you work together.

To support this transformation, the processes you rely on must
fundamentally change as well. You need to look for ways to build
DevOps principles of flow, fast feedback, and continual learning into
processes such as incident management and change management. You
must look to other processes that build collaboration and reinforce the
shared responsibility model. Processes like tabletop exercises and red
team/blue team/purple team drills create the opportunity for teams to
practice the skills required for collaboration and to build these muscles
so they are strong when emergencies do arise.

The core DevSecOps principles can be enabled by the tools you
use. The tools help you deliver on these principles, but they do not, in
and of themselves, make you DevSecOps. The CI/CD pipeline is criti-
cal to small-batch delivery, which enables experimentation, but it can
also be used to push out legacy, tightly coupled code. By focusing on
CI/CD and small-batch delivery, you can build the tools of security
and compliance regulations directly into the means of delivering
products to your customers, thereby shifting security left in the
development life cycle. By focusing on automation, you can free your
security engineers from the manual toil of day-to-day activities and

	C onclusion	 197

allow them to focus on higher-value tasks, such as improving security
tools, improving pipelines, and, ultimately, improving security for your
customers.

Changing technology also requires changing leadership styles. As
technology evolves, so too must your leadership style. As commerce has
evolved from the world assembly lines to just-in-time inventory man-
agement, companies must evolve their leadership from command and
control to enablement and empowerment. The move to rapid-change,
small-batch deployments enables a learning culture and empowers lead-
ers who are learning champions. The centrality of cybersecurity in just
about every business means that leadership must move from being a cost
controller to an innovative engine. Security leaders and practitioners
must shift their focus from internal systems to external customers. We
must all shift from operational managers to transformational leaders.

It is only when you look at all aspects of software delivery—the
people, process, and technology—that you can really do DevSecOps.
Tools alone will not make you DevOps, nor will a few SREs or a table-
top exercise. You must practice all of these and more to truly progress
on your DevSecOps journey.

Collaboration Is at the Core

If there is one thing that you take away from this book, I hope it is that
you can produce better software, more quickly, and more securely
through collaboration. One of the reasons I love DevSecOps is this
focus on collaboration. Ultimately, what this means is that, by working
together better, people can do better work. That is, if you focus on
improving how you work with others, you can deliver more value to
your customers. This is amazing because it means that, as a DevSecOps
practitioner, you get to focus on building relationships, improving
communication, and getting people to work together better. Now
that’s a gratifying thing to do every day, and to get to do it and deliver
better business results is simply amazing.

Despite the progress made in this regard through DevOps, many
organizations have not extended this philosophy to security. Security
remains a siloed team in many organizations working in a secretive and

198	 The DevSecOps Playbook	

siloed manner. In many ways, this is the nature of the work and the
people in this line of work. If there is a security flaw, it is common that
they do not go shouting about it lest others exploit it or the company
lose customers and market share. Yet, time and time again, it is open-
ness about security vulnerabilities, sharing of information, and work-
ing together that actually makes companies more secure.

If you are a security practitioner undertaking the DevSecOps
journey, it is important to note that one of the things that may have to
change is you. It is a journey of transformation of organization and
organization members (you and me). You must all take on new roles.
You must shift from gatekeeper to enabler, from rule maker to educa-
tor. To truly embrace openness and collaboration, you need to exem-
plify these traits as engineers and leaders. This may require a personal
change as well because you cannot effectively be part of the change—
you cannot effectively lead the change—if you are not willing to
change as well.

If you are a security practitioner undertaking the DevSecOps journey, it
is important to note that one of the things that may have to change is you.

Making Security Part of How You Work

As you increase collaboration around security, you’ll begin to
integrate it into everyone’s job and everything they do. This is a
natural extension of the collaborative nature of DevSecOps. It is no
longer an isolated security team’s responsibility to ensure that the
enterprise is secure. This book has, for a long time, talked about the
full-stack developer and the T-shaped employee, which is an employee
who has depth of experience in one area, such as Java programming,
and also breadth of experience to understand the systems on which
they run. DevSecOps emphasizes that this breadth of knowledge
extends to security as well. Developers must understand secure
development practices to ensure that they do not inadvertently
write code that’s vulnerable to attacks. Platform engineers must
understand security to ensure that the platforms they are building
and the APIs they are developing to interface with them are not
open to attack.

	C onclusion	 199

With DevSecOps, security is not an afterthought. Security must
be a fundamental part of everything you do. Security was previously
tested at the end of the development life cycle. This was a losing prop-
osition even when companies were only releasing twice a year. With
teams releasing tens and hundreds of times a day, you must start with
security in mind. You must shift security left in the development pipe-
line through IDEs and deployment pipelines to ensure that code is
secure from the outset.

This means that security cannot be a toll gate that prevents you
from going forward unless certain fees are paid. By shifting security
left and developing a shared responsibility model, you make security
part of everything you do. Security is simply how employees work and
not something that needs to be checked or added as an afterthought.
You must not build gates; instead, you should provide guardrails to
allow teams to move faster and more securely.

You must not build gates; instead, you should provide guardrails to allow
teams to move faster and more securely.

Where to Start

The DevSecOps transformation is a large one. It is a transformation
journey that may last for many years. It can be difficult to determine
the first steps to take, and yet those are the most critical steps. Without
the first steps, you will never get anywhere.

In thinking about where to start, you can refer to two of the key
suggestions for driving transformation from Chapter 7, “Driving
Transformation in Enterprise Environments,”—begin with the end in
mind and start small.

Begin with the End in Mind

One of the first steps to take is to determine why you want to go
through the DevSecOps transformation and determine how you
will measure success. This is a relatively straightforward issue that
you should be able to accomplish without new tooling or significant
time investment and one that will yield benefits throughout the
transformation.

200	 The DevSecOps Playbook	

You should use this as an opportunity to engage stakeholders as
well. While it is certainly possible to determine this by yourself, it rep-
resents a real opportunity to begin to set the tone of collaboration
between your business, security, and technology teams. There is, of
course, a balance here, because this is a cultural change that, by its
nature takes time; you should not take undue time or measures to get
buy-in from folks who may be adverse to the change from the start.
However, by getting buy-in to your goals and how you are measuring
them, you can help ensure that the team is aligned and take your first
steps toward breaking down cultural silos.

It is also important to be cautious of the “perfect” data trap.
People will often complain, “We can’t use that metric, because we don’t
have reliable data” or “We only have that data for a subset of the popu-
lation, so we can’t use it” or “That data is not good.” While these are
all valid concerns, data becomes good only when you start to use it. You
should be completely content to find a subset of data or data that may
not have 100 percent accuracy because, in using the data, you help
drive greater accuracy.

The Perfect Data Trap

There will be arguments when the data is first presented, such
as “That data is incorrect,” but I have found that those argu-
ments are the first step toward getting accurate data. Once
those arguments begin, you know you are headed in the right
direction, because people have a stake in the game and are pas-
sionate about fixing it. That means they will begin to ensure
the data quality improves.

On one metrics project I witnessed, the implementation
first focused on collecting the data, and then they started meas-
uring the data accuracy. There was little improvement in either
the data quality or the items that were being measured. When
the team asked me why things weren’t improving, I asked them
how they were using the metrics—a lightbulb went off. They
were measuring metrics (and the accuracy of those metrics)

(continues )

	C onclusion	 201

Understanding your target state and knowing how to measure pro-
gress is an important first step, because it represents the north star toward
which everyone will orient themselves. If you create a mandate without
this north star, everyone may take action, but that action will be unfocused
and may push and pull in many directions, thereby limiting progress and
creating fiction rather than creating momentum. By taking this first step,
you align everyone in the same direction. When everyone is pointing in
the same direction, the results can be amazing (see Figure 9.1).

Start Small and Find Early Wins

The Chinese philosopher Lao Tzu said, “The journey of a thousand
miles begins with one step.” Keep this in mind as you begin your jour-
ney. The contrapositive is also true—if you do not take the first step,

and doing nothing with them except for reviewing them with
the small group that had designed and implemented the
metrics program. It was only when they started reviewing the
metrics with the larger team and holding the teams accountable
for presenting the metrics that we began to see improvement
in the accuracy as well as the business value the metrics were
trying to measure in the first place.

Figure 9.1  By setting measurable targets, you can align the direction
in which independent groups are working to drive better results.

(continued )

202	 The DevSecOps Playbook	

you are sure to go nowhere. What is essential is that you take a step
forward and not be paralyzed by the options or the size of the
undertaking.

As mentioned in Chapter 7, finding one team that can act as an
exemplar team for the rest of the organization can be much more
effective than trying to move the whole organization. If you are a
developer who is passionate about security, perhaps this is your
team. If you can find a team that is truly excited to take the
DevSecOps journey and that is passionate about technology and
security, you can develop a use case that is sure to provide inspira-
tion for others. There will also be failures, but with a passionate and
engaged team, those failures can be an opportunity for learning that
you can bring to the rest of the organization as you continue to
broaden the transformation.

Proof-of-concept pipelines can also be a good first step. These
example pipelines allow you to integrate your security tools and dem-
onstrate how successful automation works. In a similar way to exemplar
teams, these provide an example that others can be inspired by and that
others can use as a template.

The DevSecOps transformation is large and impacts every-
thing you do—from people to process to technology—and it is
important to address all the elements. However, if you try to take
on too much, you may see significant progress in nothing. It is also
such a vast undertaking that it is simple to be stuck in analysis paral-
ysis, evaluating all options but taking no action. So, take your first
step, whatever that may be, and you will be on the way to your
DevSecOps transformation.

The Future of DevSecOps

While some companies are just getting started, others are well along
their journey in the DevSecOps transformation. Wherever you are,
one thing is certain: the threat landscape and DevSecOps will continue
to evolve. The changes you can see in DevSecOps are reflective of the
changing technology and the sorts of shifts we are seeing in how
organizations are applying technology.

	C onclusion	 203

Artificial Intelligence

Artificial Intelligence (AI) has emerged as one of the most dominant and
transformative changes in the technology landscape. AI, the ability for
machines to perceive and synthesize information and come up with
novel answers, is reshaping the face of technology. It has far-reaching
impacts across almost every aspect of technology, and we are already
seeing the impacts on cybersecurity.

Some of the applications of AI to the threat landscape are relatively
simple, such as the use to craft better phishing emails. The increasing
availability of large language models (LLMs), which can generate text on
request, allows attacks to more easily craft messages that are used to
phish for credentials. These also enable people to craft more natural
sounding messages in languages that may not be their first language,
expanding the ease with which people from around the world can
launch attacks against targets in other countries. LLMs are also
becoming increasingly efficient at impersonation. By examining public
bodies of information such as speeches, AIs can quickly write messages
in the tone of another person, thereby allowing attackers to more easily
and accurately impersonate CEOs and CFOs to convince employees
to take action. These LLMs can also be used to hold full conversations,
allowing for threat actors to automate phishing campaigns beyond the
initial attacks and potentially allowing them to significantly increase
the number of attacks through automation.

There are also more advanced applications of AI such as polymor-
phic malware attacks. These attacks rely on AI to continuously modify
malware so that the signature of a given malware is constantly chang-
ing. Because the malware is constantly changing, traditional antivirus
programs do not have a set pattern that can be detected.

To respond to these rapidly developing threats, you need to rely
on AI-based solutions. To detect polymorphic malware and advanced
phishing attacks, you need tools that can learn and adapt to new pat-
terns. DevSecOps lays the groundwork for organizations to be able to
rapidly adapt to a changing threat landscape and add new tools to
respond. If you have properly developed your deployment pipelines,
you can rapidly insert new security capabilities into these pipelines.
Beyond the tooling, developing a learning culture is important, as people

204	 The DevSecOps Playbook	

within these organizations need to rapidly learn about AI and the new
threats it poses.

Experience Management

With the shift to a product focus comes a focus on the wholistic expe
rience of the customer. Across many industries, we are increasingly
seeing this shift from the goods received to the experience involved in
receiving those goods. This focus can be seen in everything from the
packaging your goods come in when you order something online from
Nike to the way the Starbucks barista addresses you when you buy a
grande latte at your local coffee shop. Each of these is specifically tai-
lored to build a comprehensive experience with the brand. It is not just
about the coffee you buy; it is about the wholistic experience in buying
that coffee. This experience builds a relationship with that brand and
makes you want to keep coming back.

Security professionals need to begin thinking about overall
experience as well. This means that when thinking about implementing
security tools, you must consider the user experience. The tools must
fit frictionlessly into the engineer’s workflows. In addition, tools must
be fit for purpose, addressing the function but also tailored for the
group of users who will interface with them. However security fits into
your organization, you must begin to think of it as a part of the overall
experience of your customers, both internal and external.

Product Thinking

Increasingly you must think about security offerings as a product that
is part of a wholistic experience for your users. This shift applies equally
to internal tools and services as to external services. Security leaders
must shift their thinking from which projects need to be done in a
given year to what their capabilities are that their security services
deliver to end users and customers.

Product-oriented thinking focuses more on the value delivered to
the customer and less on the thing delivered within a fixed scope
project. Mik Kersten discusses this change in focus in his book Project

	C onclusion	 205

to Product, where he writes, “Product-oriented management focuses on
measuring the results of each unit of investment that brings value to
the business. Those units are products; they deliver value to a cus-
tomer, and as such, the measurement must be based on those business
outcomes. Funding of new value streams is based on a business case for
that product, as is ongoing investment in those value streams.”1

In the security space, you must think about security as a product
that you are delivering for your customers. You must think about the
value that the product delivers, the key gaps in the product, and the most
valuable features that your customers need. In shifting the focus to a
product-based mindset, you can bring greater focus on the customers as
well as on the values that the work delivers. In addition, security leaders
and practitioners should think about new security offerings that should
be brought forward. Companies can add products and services such as
security trainings for their customers as well as value add offerings
within existing product lines. With a product-based approach, security
moves from being a cost center to a value driver.

Conclusion

I hope this book has provided you with some insight into the people,
process, and technology of DevSecOps and some help to begin
your journey.

DevSecOps is a rapidly developing field, but there are many
sources available to help you on the journey. You can find additional
information in the following resources:

•	 Gene Kim; Jez Humble; et al. The DevOps Handbook. IT
Revolution Press. (PART VI—The Technical Practices Of
Integrating Information Security, Change Management, And
Compliance.)

•	 Forsgren PhD, Nicole; Jez Humble; Gene Kim. Accelerate. IT
Revolution Press. Kindle Edition. (Integrating Infosec Into
The Delivery Lifecycle.)

1 Kersten, Mik. 2018. Project to Product: How to Survive and Thrive in the Age of
Digital Disruption with the Flow Framework. 1st ed. Portland: IT Revolution
Press Next.

206	 The DevSecOps Playbook	

•	 Helen Beal; Jason Cox; et al. Investments Unlimited: A Novel
About DevOps, Security, Audit Compliance, and Thriving in the
Digital Age. IT Revolution Press.

•	 Kelly Shortridge and Aaron Rinehart. Security Chaos Engineering:
Sustaining Resilience in Software and Systems. O’Reilly Media.

•	 Gene Kim; Kevin Behr, et al. The Phoenix Project. IT Revolution
Press.

•	 Gene Kim. The Unicorn Project. IT Revolution Press.

•	 Sidney Dekker. Understanding Human Error. CRC Press.

DevSecOps is an exciting step in the evolution of cybersecurity.
By building better collaboration across teams and by making security a
shared responsibility, you can bring more secure products to market
without sacrificing speed. Whether you are a security leader or just
beginning your career, you can be part of the DevSecOps revolution!

207

There have been so many people who have helped make this book
a reality. Without them you would not be reading this book today.

I would like to thank my family and friends for their ongoing sup-
port and for putting up with me through it all. Special thanks to my
wife, Judith, for her patience and a willingness to always listen when I
needed to talk through ideas. Thanks to my father, Jon, and to my step-
mother, Annie, for their unwavering support.

I had the opportunity to speak with many of the top minds in
DevOps and DevSecOps space as well as some brilliant authors in the
development of this book and learned so much from them! I hope
some of that has translated into the knowledge I have imparted in this
book. Thanks to David Seidl for all of his input on the authoring pro-
cess. Thanks to Matt Titmus for his ongoing leadership of the DevOps
community here in NYC and his input on the writing process. Thanks
to Brian Scott, Bill Bensing, Lisa Tarsi, and Barak Brudo for their input
into governance, risk, and compliance. Thanks to Aaron Rinehard for
his insight into security chaos engineering. Thanks to Tapabrata
“Topo” Pal for sharing his wealth of experience with DevSecOps in
highly-regulated enterprise environments.

Thanks to Tom Zarb for his insight into cybersecurity and for
helping to catch all of my mistakes. Thanks to Fedor Terlov and David
Thatcher for reading some of the first drafts of this book and for help-
ing build an amazing DevOps culture at Wiley.

I would like to thank the team at Wiley who helped develop our
DevSecOps pipeline, including Chase Martin, Tom Zarb, Lisa Tarsi,
Fedor Terlov, and Anatolii Leskovets. I learned a ton from working
with this group. From governance to site reliability engineering to
security, this was a great example of the type of cross-functional team
that exemplifies many of the concepts highlighted in this book.

Acknowledgments

208	 Acknowledgments	

Special thanks to everyone who helped edit this book. As my
acquisition editor said to me, “Writing is editing,” it could not be more
true, and I could not have done it without a ton of help. Thanks to
Greg Fletcher for all of his tireless editing assistance. His feedback and
input on every chapter of the book helped make it 10 times better than
it would have otherwise been. Thanks to Jim Minatel, acquisition edi-
tor, who helped me understand the process of being an author. Thanks
to Kezia Endsley for her amazing editing assistance, for always being
quick and positive, and for keeping me on target through it all. Thanks
to Pete Gaughan, senior managing editor, and all around helper with
templates. Without these folks and more, this book simply would not
have happened.

Thank you,

—Sean

209

Sean D. Mack, MBA, CISO, is a visionary and innovative technol-
ogy leader with a history of driving global business strategy and

transformation. He has extensive background in all aspects of technol-
ogy leadership including DevOps, security, cloud, infrastructure,
enterprise applications, development, and program management. Sean
is the former CIO and CISO at Wiley, a global research and educa-
tion company.

Sean has led global teams across a wide range of companies from
large financial companies like Experian to innovative tech companies
like Etsy. Throughout his career he has held a variety of technology
leadership positions ranging from CEO and CTO of a global DevOps
consulting firm to Vice President of Operations and Applications for
Pearson Education.

Sean has his bachelor’s degree in computer and information sci-
ences from the University of California and a master’s in business
administration from Seattle University.

Sean was born and raised in New York City and has lived in vari-
ous places around the world including Seattle, Chicago, San Francisco,
and the UK. He currently lives in New York with his wife and 9-year-old
daughter. He likes fitness, including martial arts and skiing. He rides a
Triumph Thruxton and plays upright bass.

How to Contact the Author

Connecting and community are important to DevOps and important
to me! If you are passionate about cybersecurity, governance, and tech-
nology, I encourage you to connect with me on LinkedIn at
www.linkedin.com/in/seandmacknyc. You can also continue the dis-
cussion about DevSecOps with me on Twitter at @SeanDMackNYC.

About the Author

https://www.linkedin.com/in/seandmacknyc/

210	 About the Author	

I appreciate your input and questions about this book! If you have
feedback or questions, you can contact me on LinkedIn or Twitter, or
email me directly at sean@seandmack.com.

mailto:sean@seandmack.com

211

A
A/B deployment, 83–84
A/B testing, 8, 44
Accelerate: The Science of Lean Software and

DevOps: Building and Scaling High
Performing Technology Organizations
(Humble, Forsgren, and Kim), 4,
5, 188, 205

accountability, in shared responsibility
model, 56–57

actionability, for metrics programs, 173–174
adaptive change management, 83–88
Agile, DevOps and, 13–14
AI (artificial intelligence), 148–149,

203–204
AIDS Trojan, 24
Allspaw, John, 4, 93
Amazon Web Services (AWS), 71, 96
American Express, 127
Andon Cord, 80–81
Andress, Mandy, 56
Ansible, 109–110
anti-pattern, DevOps as an, 11–13
Apache Log4J breach, 105
application delivery, evolution of, 28
Application Programming Interfaces

(APIs), 83
application security, in Defense in Depth

(DiD), 33, 34
application workload, as one of five pillars of

Zero Trust, 37
ARM (Azure Resource Manager), 108
ARPANET, 29
artificial intelligence (AI), 148–149, 203–204
attack simulations, 95–96
attack surface metric, 183
attack vectors, 31
attestation, 132
audience, 157–158
Audit Defense Toolkit, 143
audits

compliance as code for, 138–140
role of, 139–140

automation
in CALMS framework, 10

of compliance, 137–138
metric for, 186
for metrics programs, 173

AWS (Amazon Web Services), 71, 96
AWS CodeCommit, 103
Azure Key Vault, 111
Azure Repos, 103
Azure Resource Manager (ARM),

108

B
Balaouras, Stephanie, 27
Baziuk, Walter, 42
Beal, Helen (author)

Investments Unlimited: A Novel about
DevOps, Security, Audit Compliance,
and Thriving in the Digital Age,
143–144, 206

Behr, Kevin
The Phoenix Project: A Novel about IT,

DevOps, and Helping Your Business
Win, 3, 4, 5, 6, 47

Bennis, Warren (author)
Personal and Organizational Change

Through Group Methods: The
Laboratory Approach, 58

Bensing, Bill (author)
Investments Unlimited: A Novel about

DevOps, Security, Audit Compliance,
and Thriving in the Digital Age,
143–144, 206

BeyondCorp, 36
Big Data, 148–149
Bitbucket, 103
BitSight, 183
black-box testing, 105
blameless culture, 9
blameless postmortems, 9, 92–93
board-level metrics, 178–184
bring-your-own-device (BYOD) policies,

25
Build stage, in CI/CD, 104–105
“Building a Psychologically Safe Workplace”

(Edmondson), 59
build-time compliance as code, 136

Index

212	 Index	

business results, in DevSecOps, 18–22
“BYOD Reignited: How to Get It Right This

Time” (Hager), 25

C
CALMS model, 3, 10–11
canary releases, 44
capability models, 187–193
castle-and-moat approach, 27
CERT (Computer Emergency

Response Team), 30
change, willingness to, 160
change advisory board (CAB)

about, 85
resistance to, 149–150

change freezes, 85–88
change management

about, 82–83
adaptive, 83–88
as a compliance foundation, 142–145
ITIL and, 79

change risk calculation, 84
channels, communication, 158–159
chaos engineering, 8–9, 96–98
Chaos Monkey, 96
chaos testing, 44
Checkmars CxSAST, 104
Chef, 136, 138
chief information security officer (CISO), 152
CI/CD. See continuous integration and

continuous development (CI/CD)
CircleCI, 100
CISA (Cybersecurity and Infrastructure

Security Agency), 37
Citrin, James M., 51
CloudFormation, 108
Coca-Cola, 158
code

compliance as, 135–140
runtime compliance as, 138

collaboration
importance of, 48–49, 197–198
metric for, 186
tools for, 100

Commit stage, in CI/CD, 103–104
Common Vulnerability Scoring System

(CVSS), 177
communication channels, 158–159
communications campaigns, build-

ing, 157–159
compliance

automation of, 137–138
build-time, as code, 136

burden of, 128–129
caution about, 140
challenge of, 126–130
as code, 125, 135–140
as code for auditing, 138–140
foundations of, 140–145
history of, 126–129
inserting into pipelines, 136
standards for, 132

Computer Emergency Response Team
(CERT), 30

Computer Fraud and Abuse Act, 30
continuous customer contact, 8
continuous improvement metric, 186
continuous integration and continuous

development (CI/CD)
about, 43, 83–84, 93, 101–103
Build stage, 104–105
CI/CD integration metric, 187
Commit stage, 103–104
Deploy stage, 107
integrated development environment

(IDE) integration, 107–108
pipeline, 196–197
Test stage, 105–107

continuous learning tools, 100
Contrast, 108
contributor buy-in, lack of, 162–164
controls, risk management and, 132–135
Corman, Joshua, 17–18
costs, of technical debt, 41
Cox, Jason (author)

Investments Unlimited: A Novel about
DevOps, Security, Audit Compliance,
and Thriving in the Digital Age,
143–144, 206

Creeper, 29
cross training, in learning culture, 62
cross-site request forgery (CSRF), 106
cross-site scripting, 106
cultural inertia, 159–161
cultural transformation

about, 154–155
challenge of, 149–150

culture
blameless, 9
building

cybersecurity into, 62
DevSecOps, 69–70

in CALMS framework, 10
DevSecOps, 49–54

CVSS (Common Vulnerability Scoring
System), 177

	 Index	 213

CyberArk, 128
cybersecurity

about, 45–46
building into culture, 62
cost of technical debt, 41
defense in depth (DoD), 32–35
evolution of

about, 23–46
application delivery, 28
infrastructure, 23–27
response, 32–46
threat landscape, 23–32

Shift Left, 38–45
Zero Trust, 35–38

Cybersecurity and Infrastructure Security
Agency (CISA), 37

D
DAST (dynamic application security testing)

about, 105–106
metric for, 186

data breaches, 31, 38
Data security, in Defense in Depth

(DiD), 33, 34
data silos, 119–121
Datadog, 117
DDoS (Distributed-Denial-of-Service)

attack, 117
Debois, Patrick, 5

The DevOps Handbook and Continuous
Delivery, 10, 67

Defense in Depth (DiD), 32–35
Defense Information Systems Agency

(DISA), 36
DEI (diversity, equity, and inclusion), 73–74
Dekker, Sidney (professor), 63

The Field Guide to Understanding
Human Error, 50

delivering, transformation while, 150
DeLuccia, James, IV

DevOps Audit Defense Toolkit, 139
Denial-of-Service (DoS) attack, 29
Department of Defense, 36
Deploy stage, in CI/CD, 107
Derosa, Darleen, 51
detected intrusion attempts metric, 182–183
Deutsche Bank, 128–129
development, relationship between operations

and, 12, 13
device, as one of five pillars of Zero Trust, 37
DevOps

Agile and, 13–14

as an anti-pattern, 11–13
approach to security process, 94–96
IT Service Management (ITSM)

and, 14–15
rugged, 17–18

DevOps Audit Defense Toolkit (DeLuccia IV,
Gallimore, Kim, and Miller), 139

DevOps Enterprise Summit (DOES), 5
DevOps Research and Assessment (DORA),

5, 19, 189
The DevOps Audit Defense Toolkit, 143
The DevOps Handbook and Continuous Delivery

(Humble, Debois and
Willis), 10, 67

The DevOps Handbook: How to Create
World-Class Agility, Reliability, &
Security in Technology Organizations
(Humble and Kim), 4, 120, 205

DevSecOps
about, 1–2, 15–17, 22
Agile and DevOps, 13–14
approach to governance, 135
building a culture, 69–70
business results, 18–22
CALMS model, 10–11
changing relationship between develop-

ment and operations, 12
conflict between development and

operations, 13
culture of, 49–54
DevOps

about, 3–4
as an anti-pattern, 11–13
IT Service Management (ISTM)

and, 14–15
Five Ideals, 9–10
future of, 202–205
hiring for, 72–74
history of DevOps, 4–6
for IT Service Management

(ITSM), 78–80
methods of, 6–9
organizing for, 66–68
rugged, 17–18
Shift Left for, 45

“DevSecOps Guide,” 169–170
DevSecOps Maturity Model (SDOMM), 188
DiD (Defense in Depth), 32–35
Distributed-Denial-of-Service (DDoS)

attack, 117
diversity, equity, and inclusion (DEI), 73–74
DOD DISA, 127
DOES (DevOps Enterprise Summit), 5

214	 Index	

DORA (DevOps Research and Assessment),
5, 19, 189

DoS (Denial-of-Service) attack, 29
Dunn, Julian, 138
Dyer, Jeff (author)

Innovator’s DNA: Mastering the Five Skills
of Disruptive Innovators, 151

dynamic application security testing (DAST)
about, 105–106
metric for, 186

Dynatrace (blog), 44

E
Edenzon, Michael (author)

Investments Unlimited: A Novel about
DevOps, Security, Audit Compliance,
and Thriving in the Digital Age,
143–144, 206

Edmondson, Amy C. (professor), 58
“Building a Psychologically Safe

Workplace,” 59
EDR (endpoint detection and response)

tools, 105, 115
Edwards, Damon, 10
embedded SREs, 68
empathy, 52–53
employees, evolution of, 70–71
empowerment

about, 59–61
metric for, 186
tools for, 100

endpoint detection and response (EDR)
tools, 105, 115

Enron, 126
enterprise environments

about, 147–149, 166–167
challenge of cultural transforma-

tion, 149–150
keys to successful transformation, 152–159
transformation challenges, 159–166
transformational leadership, 151–152

Enterprise Risk Management (ERM), 130
Etsy, 93
EU Model Contracts, 127
event management, with SIEM and

SOAR, 121–122
Everett Rogers’ bell curve, 163
evidence, 132
experience management, 204
extended detection and response (XDR),

99
external CML entities (XXE), 106

F
Facebook, 129
face-to-face team meetings, 51
failure, openness and honesty about, 51
FC (Financial Conduct Authority), 128–129
FDA (Food and Drug Administration), 126
feature flags, 8
Federal Trade Commission (FTC), 129
FedRAMP, 127
feedback loops, 7–8
feedback tools, 100
The Field Guide to Understanding Human Error

(Dekker), 50
The Fifth Ideal, 10
Financial Conduct Authority (FC), 128–129
First Way of DevOps, 7, 39–40
The First Ideal, 10
Five Ideals, 9–10
flow metrics, insights from, 181
flow of value tools, 100
Food and Drug Administration (FDA), 126
Forsgren, Nicole (author)

Accelerate: The Science of Lean Software and
DevOps: Building and Scaling High
Performing Technology Organizations,
4, 5, 188, 205

FOSSA, 105
The Fourth Ideal, 10
Froehlich, Andrew

“7 key cybersecurity metrics for the board
and how to present them,” 182

From Project to Product (Kersten),
131–132, 180

FTC (Federal Trade Commission), 129

G
Gallimore, Jeff

DevOps Audit Defense Toolkit, 139
game days, in learning culture, 61
Geraghty, Tom, 5
GitHub, 96, 103, 105
GitLab, 103, 105
The Goal: A Process of Ongoing Improvement

(Golratt), 6
Goldman Sachs, 128
Golratt, Eliyahu M. (author)

The Goal: A Process of Ongoing
Improvement, 6

Google, 36, 68
governance

about, 34–35, 125–126, 145–146
challenge of compliance, 126–130

	 Index	 215

compliance as code, 125, 135–140
compliance foundations, 140–145
DevSecOps approach to, 135
managing risk, 130–135

Gregerson, Hal (author)
Innovator’s DNA: Mastering the Five Skills

of Disruptive Innovators, 151
Groll, Jayne, 77
GSA (U.S. General Services

Administration), 169–170
Guest, David

“The Hunt Is On for the Reconnaissance
Man of Computing,” 71

guiding principles, for change review and
approval, 84–85

Gunja, Saif (blogger), 44

H
hackathons, 9
Hager, Dean

“BYOD Reignited: How to Get It Right
This Time,” 25

Hammond, Paul, 4
HashiCorp, 111
HIPAA, 127
HipChat, 101
hiring, for DevSecOps,

72–74
Hive Systems, 141
How to Measure Anything in Cybersecurity Risk

(Hubbard, Seiersen and
McClure), 179

Hubbard, Douglas W. (author)
How to Measure Anything in

Cybersecurity Risk, 179
Humble, Jez (author)

Accelerate: The Science of Lean Software and
DevOps: Building and Scaling High
Performing Technology Organizations,
4, 5, 188, 205

The DevOps Handbook and Continuous
Delivery, 10, 67

The DevOps Handbook: How to Create
World-Class Agility, Reliability, &
Security in Technology Organizations,
4, 120, 205

“The Hunt Is On for the Reconnaissance
Man of Computing” (Guest), 71

I
IaC (infrastructure as code)

about, 94, 105, 108–110
metric for, 187

IAST (interactive application security
testing), 106–107

IDE (integrated development environment)
integration, in CI/CD, 107–108

identity, as one of five pillars of Zero Trust, 37
Identity and Access Management (IAM), as a

compliance foundation, 140–142
ILOVEYOU attack, 30–31
incident postmortems

about, 91
in learning culture, 61, 63–64

incidents
impact of data silos on resolution of, 119
ITIL and management of, 79
number of, 174–176
by priority over time, 175–176

information radiators, 155
Information Technology Infrastructure

Library (ITIL), 78–80
infrastructure, evolution of, 23–27
infrastructure as code (IaC)

about, 94, 105, 108–110
metric for, 187

innovation capital, 151
Innovator’s DNA: Mastering the Five Skills of

Disruptive Innovators (Dyer and
Gregerson), 151

insights, from flow metrics, 181
integrated development environment (IDE)

integration, in CI/CD, 107–108
integrated phishing tests, training and, 65
interactive application security testing

(IAST), 106–107
internal bug bounties, 70
Interstate Commerce Act of 1887, 126
Investments Unlimited: A Novel about DevOps,

Security, Audit Compliance, and
Thriving in the Digital Age (Beal,
Bensing, Cox, Edenzon, Pal,
Queem, Rzezotarski, Vega, and
Willis), 143–144, 206

IT Infrastructure Library (ITIL),
14–15, 78–80

IT Service Management (ITSM)
DevOps and, 14–15
DevSecOps and, 78–80

iterating, 171–173
ITIL (Information Technology Infrastructure

Library), 14–15, 78–80

J
Jenkins, 93, 100
Jericho Forum, 36
Jira, 160

216	 Index	

K
Kálmán, Rudolf E., 118
Kersten, Mik (author)

From Project to Product, 131–132, 180
Kim, Gene (author)

Accelerate: The Science of Lean Software and
DevOps: Building and Scaling High
Performing Technology Organizations,
4, 5, 188, 205

DevOps Audit Defense Toolkit, 139
The DevOps Handbook and Continuous

Delivery, 67
The DevOps Handbook: How to Create

World-Class Agility, Reliability, &
Security in Technology Organizations,
3, 120, 205

First Way of DevOps, 6–9, 39–40
The Phoenix Project: A Novel about IT,

DevOps, and Helping Your Business
Win, 3, 4, 5, 6, 47

Second Way of DevOps, 6–9, 39–40
Third Way of DevOps, 6–9, 92–93
The Unicorn Project: A Novel about

Developers, Digital Disruption, and
Thriving in the Age of Data, 9–10,
58–59, 63, 93

Kindervag, John
“No More Chewy Centers: Introducing

The Zero Trust Model Of
Information Security,” 36–37

L
Lao Tzu (philosopher), 201–202
large language models (LLMs), 203
lateral movement, 31
lead time metric, 184
leadership

lack of support from, 161–162
transformational, 151–152

Lean, in CALMS framework, 10–11
learning culture

about, 61–66
metric for, 186

leveraging outside help, 156–157
light weight metric, 186
linting, 104
LLMs (large language models), 203
logs, as a pillar of observability, 118

M
machine learning, 148–149
Marsh, Stephen Paul, 36

MasterCard, 127
McClure, Stuart (author)

How to Measure Anything in
Cybersecurity Risk, 179

mean time between failures (MTBF), 178
mean time to resolve (MTTR) metric,

170, 185
mean time to respond (MTTr), 177–178
mean time to x metric, 177–178
measuring

about, 169–170, 193
attack surface, 183
bad data, 172
board-level metrics, 178–184
in CALMS framework, 11
capability models, 187–193
combining multiple approaches to, 191
detected intrusion attempts, 182–183
incidents by property over time, 175–176
insights from flow metrics, 181
iterating, 171–173
keys to successful metrics program,

173–174
manipulating metrics, 170–171
mean time to x, 177–178
metric for, 186
number of incidents, 174–176
operational metrics, 174–178
performance vs. peers, 183–184
progress, 155–156
reliability, 178
results from stakeholder interviews,

192
risk, 179–180
risk work, 180–181
spend, 181–182
transformation, 184–187
transformational competencies, 185–187
transformational results, 184–185
vulnerabilities by service level objective,

176–177
Melissa attack, 30–31
MELT model, 118
Mend, 104
Meta, 129
metrics

board-level, 178–184
keys to a successful program for, 173–174
manipulating, 170–171
operational, 174–178
as a pillar of observability, 118

Microfocus (blog), 106
Microsoft 365, 28

	 Index	 217

Miller, Byron
DevOps Audit Defense Toolkit, 139

Minick, Eric, 17
models

CALMS, 3, 10–11
capability, 187–193

monitoring and observability, 114–121
Morris, Robert Tappan, 29–30
Morris worm, 29–30
MTBF (mean time between failures), 178
MTTr (mean time to respond), 177–178
MTTR (mean time to resolve) metric,

170, 185

N
National Institute of Standards and

Technology (NIST), 32, 42
National Security Agency (NSA), 32
Netflix, 96
network detection and response (NDR)

system, 117
Network security, in Defense in

Depth (DiD), 33
network/environment, as one of five pillars of

Zero Trust, 37
New Relic, 118
NIST Special Publication 800-207, 35–37
“No More Chewy Centers: Introducing The

Zero Trust Model Of Information
Security” (Kindervag), 36–37

number of incidents metric, 174–176

O
observability and monitoring, 114–121
observability metric, 187
Open Policy Agent (OPA), 137–138
Open Worldwide Application Security Project

(OWASP), 188
operational metrics

about, 174
mean time to x, 177–178
number of incidents, 174–176
reliability, 178
vulnerabilities by service level objective,

176–177
operations, relationship between development

and, 12, 13
organizing, for DevSecOps, 66–68
ownership, in shared responsibility

model, 55–56
ownership and accountability metric, 185

P
PagerDuty, 100
Pais, Manuel, 66–67
Pal, Topo (author)

Investments Unlimited: A Novel about
DevOps, Security, Audit Compliance,
and Thriving in the Digital Age,
143–144, 206

Palmer, Bill, 6
PAM (privileged access management),

113–114, 187
Pascal, Amy, 57
Payment Card Industry (PCI) standard,

64–65, 126–127
PC Cyborg Trojan, 24
PCI DSS, 127
people

about, 47–48, 74–75, 195–197
building DevSecOps culture, 69–70
DevSecOps culture, 49–54
evolution of employees (T-shaped

people), 70–71
hiring for DevSecOps, 72–74
importance of collaboration, 48–49
metrics for, 185–186
organizing for DevSecOps, 66–68
psychological safety, 58–66
shared responsibility model, 54–58

performance vs. peers metric, 183–184
Perimeter security, in Defense in

Depth (DiD), 33
Personal and Organizational Change Through

Group Methods: The Laboratory
Approach (Schein and Bennis), 58

phishing campaigns
building trust through, 52
in learning culture, 61–62

The Phoenix Project: A Novel about IT, DevOps,
and Helping Your Business Win (Kim,
Behr, and Spafford), 3, 4, 5, 6, 47

policies, 132
post-incident review (PIR), 91
postmortems, blameless, 9, 92–93
privileged access management (PAM),

113–114, 187
problem management

about, 89–91
blameless postmortems, 92–93
ITIL and, 79
problem manager role, 91–92
at Wiley, 89–90

problem manager role, 91–92

218	 Index	

process
about, 77–78, 98, 195–197
change management, 82–88
chaos engineering, 96–98
DevOps approach to security processes,

94–96
DevSecOps for IT service management,

78–80
metrics for, 186
problem management, 89–93
release management, 93–94
at scale, 78
security incident management, 80–81

product thinking, 204–205
progress, measuring, 155–156
proof-of-concept pipelines, 202
psychological safety

about, 58–59
empowerment, 59–61
learning culture, 61–66

Q
quality assurance (QA), 39, 42
Queem, Caleb (author)

Investments Unlimited: A Novel about
DevOps, Security, Audit Compliance,
and Thriving in the Digital Age,
143–144, 206

R
Rae, Barclay, 15
ransomware, 24
RASP (runtime application self-protection),

107, 114
Rego, 137–138
release management, 93–94
reliability metric, 178
reproducibility, for metrics programs, 173
residual risk, 179, 180
resistance to change, 149–150
Responsible, Accountable, Consulted, and

Informed (RACI) matrices, 55
Rice, David, 17–18
risk

frameworks for, 132
managing

about, 130–131
controls and, 132–135
risk as a feature, 131–132

measuring, 179–180
risk exposure by NIST function metric, 185
Risk Management Association, 128

risk work metric, 180
Rosenthal, Casey, 96
rugged DevOps, 17–18
Rugged Handbook, 18
Rugged Manifesto, 18
Rugged Software movement, 17–18
runtime application self-protection

(RASP), 107, 114
runtime compliance, as code, 138
Rzezotarski, John (author)

Investments Unlimited: A Novel about
DevOps, Security, Audit Compliance,
and Thriving in the Digital Age,
143–144, 206

S
SaaS (software-as-a-service) platform, 28
Salesforce, 28
Sarbanes-Oxley (SOX), 64–65, 126, 127
SAST (static application security test-

ing), 104, 186
scale, processes at, 78
Schein, Edgar (author)

Personal and Organizational Change
Through Group Methods: The
Laboratory Approach, 58

Scrum, 160
SDOMM (DevSecOps Maturity Model),

188
Second Way of DevOps, 7–8, 39–40
secrets management, 110–112, 187
Securities and Exchange Commission

(SEC), 126
security

about, 198–199
DevOps approach to, 94–96
metrics for, 185

security champions, 69–70
security incident management process, 80–81
security information and event management

(SIEM)
event management with, 121–122
tools for, 117

security operations center (SOC), 116
security orchestration, automation, and

response (SOAR)
event management with, 121–122
tools, 100

security team, role of in shared responsibility
model, 57–58

security training programs, in learning
culture, 64–66

	 Index	 219

segmentation, 37
Seiersen, Richard (author)

How to Measure Anything in
Cybersecurity Risk, 179

Separation of Duties (SoD), 143
service level agreements (SLAs), 34–35
service level objectives (SLOs), 170–171
Service Now, 83
“7 key cybersecurity metrics for the board and

how to present them”
(Froehlich), 183

shared goals, 7
shared responsibility model

about, 54–55
accountability, 56–57
ownership, 55–56
role of security team, 57–58

sharing, in CALMS framework, 11
Sherman Antitrust Act of 1890, 126
Shift Left

about, 38–41
benefits of, 40–41
for DevSecOps, 45
Shift Right, 44–45
smearing left, 43–44
tools for, 101

Shift Right, 44–45
“Shift-Left Testing” (Smith), 39
A Short History of DevOps blog, 4–5
site reliability engineering (SRE), 5–6, 68
Skelton, Matthew, 66–67
Slack, 28, 100, 101
SLAs (service level agreements), 34–35
SLOs (service level objectives), 170–171
smearing left, 43–44
Smith, Larry, 42

“Shift-Left Testing,” 39
Snyk, 48, 104, 105, 108, 110
SOAR (security orchestration, automation,

and response)
event management with, 121–122
tools, 100

SOC (security operations center), 116
software productivity research (SPR), 39
software-as-a-service (SaaS) platform, 28
SolarWinds breach, 31
SonarQube, 104
Sony Pictures, 57
source composition analysis (SCA), 105,

187
SourceForge, 103
SOX (Sarbanes-Oxley), 64–65, 126, 127

Spafford, George
The Phoenix Project: A Novel about IT,

DevOps, and Helping Your Business
Win, 2, 4, 5, 6, 47

spend metric, 181–182
Splunk, 117
SRE (site reliability engineering), 5–6, 68
stakeholder interviews, 192
standard changes, 85–88
Stanke, Dave (developer relations

engineer), 43
“State of DevOps Report,” 5, 19
static application security testing

(SAST), 104, 186
Steinhafel, Greg, 57
Stuart, Spencer, 51
supply chain attacks, 31
survey design, 190
sustained support, lack of, 164
swarming, 81

T
tabletop exercises

about, 94–95
in learning culture, 61

Target, 31, 57
Teams, 100
technical debt, costs of, 41
technology

about, 99–101, 122–123, 195–197
continuous integration and continuous

development (CI/CD), 101–108
event management with SIEM and

SOAR, 121–122
infrastructure as code (IaC), 108–110
metrics for, 186–187
monitoring and observability, 114–121
privileged access management, 113–114
runtime application self-protection, 114
secrets management, 110–112

telemetry, 115
Terraform, 108, 109
test automation, 7
Test stage, in CI/CD, 105–107
testing

A/B, 8, 44
black-box, 105

Third Way of DevOps, 8–9, 92–93
The Second Ideal, 10
The Third Ideal, 10
Thomas, Bob, 29

220	 Index	

threat landscape, evolution of, 23–32
Three Ways of DevOps, 6–9
time to market metrics, 184
TJ Maxx, 31
Tomlinson, Ray, 29
traces, as a pillar of observability, 118
training

integrated phishing tests and, 65
in learning culture, 62

transformation
challenges with, 159–166
cultural, 154–155
keys to successful, 152–159
measuring, 184–187
while delivering, 150

transformational competencies,
185–187

transformational leadership, 151–152
transformational results, 184–185
transparency

in DevSecOps culture, 53–54
metric for, 186
for metrics programs, 173

trust
building through phishing campaigns,

52
in DevSecOps culture,

50–53
trustful metric, 186
truthfulness, 52
T-Shaped employees, 70–71,

198
20% time, 9

U
The Unicorn Project: A Novel about Developers,

Digital Disruption, and Thriving in
the Age of Data (Kim), 9–10,
58–59, 63, 93

UpGuard, 183
U.S. General Services Administration

(GSA), 169–170

V
value, failure to communicate, 165–166
value stream mapping, 7
Vault AWS Secrets Manager, 111
Vega, Andres (author)

Investments Unlimited: A Novel about
DevOps, Security, Audit Compliance,
and Thriving in the Digital Age,
143–144, 206

velocity metric, 184
Veracode, 104
Verizon Data Breach Investigation Report,

65
Visa, 127
vulnerabilities by service level objectives

metric, 176–177

W
waterfall development methodol-

ogy, 28, 38–39
white-box analysis, 104
Williams, Jeff, 17–18
Willis, John (author), 10

The DevOps Handbook and Continuous
Delivery, 10, 67

Investments Unlimited: A Novel about
DevOps, Security, Audit Compliance,
and Thriving in the Digital Age,
143–144, 206

WorldCom, 126
Wright, Robyn, 34

X
XDR (extended detection and response),

99
XenonStack, 110
XXE (external CML entities), 106

Z
Zero Trust, 35–38
Zero Trust Maturity Model, 37–38

WILEY END USER LICENSE
AGREEMENT

Go to www.wiley.com/go/eula to access Wiley’s
ebook EULA.

http://www.wiley.com/go/eula

	Cover Page
	Title Page
	Copyright Page
	Contents
	Foreword
	Introduction
	Who Should Read This Book?
	Who This Book Is Not For
	How This Book Is Organized
	Conventions Used in This Book

	Chapter 1 Introducing DevSecOps
	Why DevSecOps? Why Now?
	DevOps Overview
	Brief History of DevOps
	The Three Ways of DevOps
	The Five Ideals
	The CALMS Framework
	DevOps as an Anti-Pattern
	Agile and DevOps
	DevOps and ITSM

	DevSecOps Overview
	Rugged DevOps Overview
	DevSecOps Business Results
	Conclusion

	Chapter 2 The Evolution of Cybersecurity (from Perimeter to Zero Trust)
	The Evolution of the Threat Landscape
	Evolution of Infrastructure
	The Evolution of Application Delivery
	The Evolution of the Threat Landscape

	The Evolution of Cybersecurity Response
	Defense in Depth
	Zero Trust
	Shift Left

	Conclusion

	Chapter 3 DevSecOps People
	Introduction
	Collaboration at the Core
	DevSecOps Culture
	Trust
	Transparency

	The Shared Responsibility Model
	Ownership
	Accountability
	The Role of the Security Team

	Psychological Safety
	Empowerment
	Learning Culture

	Organizing for DevSecOps
	Building a DevSecOps Culture
	Security Champions
	Internal Bug Bounties

	The Evolution of the Employee (T-Shaped People)
	Hiring for DevSecOps
	Key Characteristics
	Diversity, Equity, and Inclusion

	Conclusion

	Chapter 4 DevSecOps Process
	Introduction
	Understanding Processes at Scale
	DevSecOps for IT Service Management
	Security Incident Management
	Change Management
	Adaptive Change Management

	Problem Management
	The Problem Manager Role
	Blameless Postmortems

	Release Management
	A DevOps Approach to Security Processes
	Tabletop Exercises
	Attack Simulation: Red Team, Blue Team, Purple Team

	Chaos Engineering
	Conclusion

	Chapter 5 DevSecOps Technology
	Introduction
	DevSecOps Continuous Integration and Continuous Deployment
	The Commit Stage
	The Build Stage
	The Test Stage
	The Deploy Stage
	IDE Integration

	Infrastructure as Code
	Secrets Management
	Privileged Access Management
	Runtime Application Self-Protection
	Monitoring and Observability
	Monitoring
	Observability
	Data Silos

	Event Management with SIEM and SOAR
	Conclusion

	Chapter 6 DevSecOps Governance
	Introduction
	The Challenge of Compliance
	The History of Compliance
	The Burden of Compliance

	Managing Risk
	Risk as a Feature
	Risk Management and Controls

	DevSecOps Approach to Governance
	Compliance as Code
	Build-Time Compliance as Code
	Inserting Compliance into the Pipeline
	Compliance Automation
	Runtime Compliance as Code
	Compliance as Code for Auditing
	A Note of Caution on Compliance

	Compliance Foundations
	Identity and Access Management
	Change Management

	Conclusion

	Chapter 7 Driving Transformation in Enterprise Environments
	Introduction
	The Challenge of Cultural Transformation
	Resistance to Change
	Transforming while Delivering

	Transformational Leadership
	The Keys to a Successful Transformation
	Begin with the End in Mind
	Start Small and Find Early Wins
	Focus on the Cultural Transformation
	Measure Progress
	Leverage Outside Help (As Appropriate)
	Build a Communications Campaign

	Transformation Challenges
	Cultural Inertia
	Lack of Leadership Support
	Lack of Contributor Buy-In
	Lack of Sustained Support
	Doing Too Much at Once
	Failure to Communicate Value

	Conclusion

	Chapter 8 Measuring DevSecOps
	Introduction
	Any Metric Can Be Manipulated
	Start Small and Iterate

	Keys to a Successful Metrics Program
	Operational Metrics
	Number of Incidents
	Vulnerabilities by Service Level Objective
	Mean Time to x
	Reliability

	Board-Level Metrics
	Measuring Risk
	Risk Work
	Spend
	Detected Intrusion Attempts
	Attack Surface
	Performance vs. Peers

	Measuring Transformation
	Transformational Results
	Transformational Competencies

	Capability Models
	Conclusion

	Chapter 9 Conclusion
	Introduction
	People, Process, and Technology
	Collaboration Is at the Core
	Making Security Part of How You Work
	Where to Start
	Begin with the End in Mind
	Start Small and Find Early Wins

	The Future of DevSecOps
	Artificial Intelligence
	Experience Management
	Product Thinking

	Conclusion

	Acknowledgments
	About the Author
	Index
	EULA

Devspecl]ps

jhook

