
2/26/24, 8:56 AM PowerShell Parameter Validation: Ensuring Valid Input for Functions

https://www.itprotoday.com/print/151011 1/7

Alamy

END-USER PLATFORMS > POWERSHELL

PowerShell Parameter Validation: Ensuring Valid Input for Functions

It’s a good idea to validate function parameters before executing any

actions. Learn these two techniques for performing parameter validation.

Brien Posey | Feb 20, 2024

https://www.itprotoday.com/
https://www.itprotoday.com/windows-and-user-productivity
https://www.itprotoday.com/end-user-platforms/powershell
https://www.itprotoday.com/author/Brien-Posey

2/26/24, 8:56 AM PowerShell Parameter Validation: Ensuring Valid Input for Functions

https://www.itprotoday.com/print/151011 2/7

PowerShell makes it easy to pass values to a function in the form of parameters.
However, it’s a good idea to validate parameters before executing any actions.
Otherwise, unexpected values could cause a function to behave in a completely
unpredictable way.

That being the case, I want to share two methods that I commonly use to validate the
parameters that are passed to a function .

Related: PowerShell Modules vs. Dot Sourcing: Which Approach Is Better?

Before I get started, I want to point out that the techniques I’m about to demonstrate
are only suitable for scenarios where you are passing a string value to a function and
are certain that the string should contain one of several possible values. If you are
working with other types of data or don’t know ahead of time which values for the
string are acceptable, you must resort to using other validation techniques.

#1. Validation Check Using the -Contains Operator

So, with that said, here is a very simple PowerShell script that demonstrates the first
validation technique:

Function Display-ColorText {
 param(
 [String]$Color
)
 $Colors = "Red","Green","Blue","Yellow","Gray"
 if($Colors -contains $Color) {
 Write-Host "This text is" $Color -ForegroundColor $Color
 } else {
 Write-Host $Color 'is not a Supported Color.'
 }
}

$Color = Read-Host "Please type the name of a color"
Display-ColorText $Color

https://www.itprotoday.com/powershell/powershell-functions-explained-whatif-verbose-and-passing-parameters
https://www.itprotoday.com/powershell/powershell-modules-vs-dot-sourcing-which-approach-better

2/26/24, 8:56 AM PowerShell Parameter Validation: Ensuring Valid Input for Functions

https://www.itprotoday.com/print/151011 3/7

In this script, the user is prompted to enter the name of a color, which is then sent to
a function called Display-ColorText. Of course, the user could enter just about
anything, not necessarily a valid color name. This includes misspellings and
unsupported color names. To address this, the script uses a validation step to make
sure the entered color name is appropriate.

Looking at the script, you’ll notice that I created a variable called $Colors and have
set it to be equal to “Red”, “Green”, “Blue”, “Yellow”, “Gray”. These are the colors
that the script will support. While PowerShell recognizes a broader range of color
names, the script deliberately focuses on these five colors to keep things simple.

The next line of code checks if the color name entered by the user (stored in the
$Color variable) exists in the list of supported colors defined by the $Colors variable.
This check is based on the -Contains operator. If the color entered by the user is
present in the list, the script outputs a line of text in the chosen color. Conversely, if
the color is not supported, the user receives a message indicating their selection is
unsupported. You can see the script in action in Figure 1.

2/26/24, 8:56 AM PowerShell Parameter Validation: Ensuring Valid Input for Functions

https://www.itprotoday.com/print/151011 4/7

Figure 1. This is what my script does.

#2. Validation Check Using ValidateSet

Now that I have demonstrated how to perform parameter validation by using a -
Contains operator, I will introduce a different technique that accomplishes more or
less the same thing.

Here is the script:

Function Display-ColorText {

Brien Posey

2/26/24, 8:56 AM PowerShell Parameter Validation: Ensuring Valid Input for Functions

https://www.itprotoday.com/print/151011 5/7

 param(
 [ValidateSet("Red","Green","Blue","Yellow","Gray”)]
 [String]$Color
)

 Write-Host "This text is" $Color -ForegroundColor $Color
}

$Color = Read-Host "Please type the name of a color"
Display-ColorText $Color

In this script, ValidateSet is used instead of the -Contains operator. Notice that all
acceptable input values are defined within the Param section. This means that you
don’t have to worry about writing a block of code to validate the input. The
ValidateSet statement handles the validation process for you.

This technique works exceptionally well if the user enters a valid color. However, if
the user inputs something invalid, the script spews a lengthy and convoluted error
message. You can see an example of this in Figure 2.

Brien Posey

2/26/24, 8:56 AM PowerShell Parameter Validation: Ensuring Valid Input for Functions

https://www.itprotoday.com/print/151011 6/7

Figure 2. Using ValidateSet works well until the user enters something invalid.

There is a way to handle errors more gracefully, but error handling requires you to
be running PowerShell 7 or higher.

Take a look at the script below: It’s identical to the previous script but adds an error
message to the validation set. The cool thing about this error message is that it tells
the user what values can be used as acceptable input.

Function Display-ColorText {

 param(
 [ValidateSet("Red","Green","Blue","Yellow","Gray",ErrorMessage="The color {
 [String]$Color
)

 Write-Host "This text is" $Color -ForegroundColor $Color
}

$Color = Read-Host "Please type the name of a color"
Display-ColorText $Color

Brien Posey

https://www.itprotoday.com/powershell/powershell-advanced-functions-cmdlet-bindings-and-parameters

2/26/24, 8:56 AM PowerShell Parameter Validation: Ensuring Valid Input for Functions

https://www.itprotoday.com/print/151011 7/7

Source URL:https://www.itprotoday.com/powershell/powershell-parameter-validation-ensuring-valid-input-functions

Figure 3. PowerShell 7 greatly improves error handling.

About the author

Brien Posey is a bestselling technology author, speaker, and 21x Microsoft MVP. In

addition to his ongoing work in IT, Posey has trained as a commercial astronaut

candidate in preparation to �y on a mission to study polar mesospheric clouds from

space.

https://www.itprotoday.com/powershell/powershell-parameter-validation-ensuring-valid-input-functions
https://www.itprotoday.com/author/Brien-Posey

