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Preface

Python is the preferred language choice of developers, engineers, data scientists, and

hobbyists everywhere. It is a great scripting language that can power your applications

and provide speed, safety, and scalability. By exposing Python as a series of simple recipes,

this book can help you gain insights into specific language features in a concrete context.

The idea is to avoid abstract discussions of language features and focus on applying the

language to concrete data and processing problems.

What you need for this book
All you need to follow through the examples in this book is a computer running any

Python, version 3.12 or newer. Many of the examples can be adapted to work with Python

3 versions prior to 3.12. Material in Chapter 10 describes the match statement, introduced

with Python 3.10.

We strongly encourage installing a fresh copy of Python, avoiding any pre-installed operat-

ing system Python. The language run-time can be downloaded from

https://www.python.org/downloads/. An alternative is to start with the Miniconda tool

(https://docs.conda.io/en/latest/miniconda.html) and use conda to create a Python

3.12 (or newer) environment.

Python 2 cannot be used anymore. Since 2020, Python 2 is no longer an

alternative.

https://www.python.org/downloads/
https://docs.conda.io/en/latest/miniconda.html
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Who this book is for
The book is for web developers, programmers, enterprise programmers, engineers, and big

data scientists. If you are a beginner, this book can get you started. If you are experienced,

it will expand your knowledge base. A basic knowledge of programming will help; while

some foundational topics are covered, this is not a tutorial on programming or Python.

What this book covers
There are over 130 recipes in this book. We can decompose them into four general areas:

• Python Fundamentals

Chapter 1, Numbers, Strings, and Tuples, will look at the different kinds of numbers,

how to work with strings, how to use tuples, and how to use the essential built-in

types in Python. We will also show ways to exploit the full power of the Unicode

character set.

Chapter 2, Statements and Syntax, will cover some basics of creating script files. Then

we’ll move on to looking at some of the complex statements, including if, while,

for, break, try, raise, and with.

Chapter 3, Function Definitions, will look at a number of function definition techniques.

We’ll devote several recipes to type hints for a variety of types. We’ll also address an

element of designing a testable script by using functions and a main-import-switch.

Chapter 4, Built-In Data Structures Part 1: Lists and Sets, begins an overview of the

built-in data structures structures that are available and what problems they solve.

This includes a number of recipes showing list and set operations, including list and

set comprehensions.

Chapter 5, Built-In Data Structures Part 2: Dictionaries, continues examining the

built-in data structures, looking at dictionaries in detail. This chapter will also look

at some more advanced topics related to how Python handles references to objects.

It also shows how to handle mutable objects as function parameter default values.
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Chapter 6, User Inputs and Outputs, explains how to use the different features of the

print() function. We’ll also look at the different functions used to provide user

input. The use of f-strings for debugging and the argparse module for command-line

input are featured.

• Object-Oriented and Functional Design Approaches

Chapter 7, Basics of Classes and Objects, begins the coverage of object-oriented

programming. It shows how to create classes and the type hints related to class

definitions. This section has been expanded from previous editions to cover data-

classes. It shows how to extend built-in classes, and how to create context managers

to manage resources.

Chapter 8, More Advanced Class Design, continues the exploration of object-oriented

design and programming. This includes an exploration of the composition vs. inheri-

tance question, and shows how to manage the “duck typing” principle of Python.

Chapter 9, Functional Programming Features, looks at Python’s functional program-

ming features. This style of programming emphasizes function definitions and

stateless, immutable objects. The recipes look at generator expressions, using the

map(), filter(), and reduce() functions. We also look at ways to create partial

functions and some examples of replacing stateful objects with data structures built

from collections of immutable objects.

• More Sophisticated Designs

Chapter 10, Working with Type Matching and Annotations, looks more closely at type

hints and the match statement. This includes using Pydantic to create classes with

more strict run-time type-checking. It also looks at introspection of annotated types.

Chapter 11, Input/Output, Physical Format, and Logical Layout, will work with paths

and files in general. It will look at reading and writing data in a variety of file

formats, including CSV, JSON (and YAML), XML, and HTML. The HTML section

will emphasize using Beautiful Soup for extracting data.
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Chapter 12, Graphics and Visualization with Jupyter Lab, will use Jupyter Lab to

create notebooks that use Python for data analysis and visualization. This will show

ways to ingest data into a notebook to create plots, and how to use Markdown to

create useful documentation and reports from a notebook.

Chapter 13, Application Integration: Configuration, will start looking at ways that we

can design larger applications. The recipes in this chapter address different ways to

handle configuration files and how to manage logging.

Chapter 14, Application Integration: Combination, will continue looking at ways to

create composite applications from smaller pieces. This will look at object-oriented

design patterns and Command-Line Interface (CLI) applications. It will also look

at using the subprocess module to run existing applications under Python’s control.

• Completing a Project: Fit and Finish

Chapter 15, Testing, provides recipes for using the built-in doctest and unittest

testing frameworks used in Python. Additionally, recipes will cover the pytest tool.

Chapter 16, Dependencies and Virtual Environments, covers tools used to manage

virtual environments. The built-in venv, as well as conda and poetry will be covered.

There are a lot of solutions to managing virtual environments, and we can’t cover all

of them.

Chapter 17, Documentation and Style, covers additional tools that can help to create

high-quality software. This includes a particular focus on sphinx for creating

comprehensive, readable documentation. We’ll also look at tox to automate running

tests.

To get the most out of this book
To get the most out of this book you can download the example code files and the color

images as per the instructions below.
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Download the example code files
The code bundle for the book is also hosted on GitHub at

https://github.com/PacktPublishing/Modern-Python-Cookbook-Third-Edition.

This repository is also the best place to start a conversation about specific topics discussed

in the book. Feel free to open an issue if you want to engage with the authors or other

readers. We also have other code bundles from our rich catalog of books and videos

available at https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this

book. You can download it here: https://packt.link/gbp/9781835466384.

Conventions used
In this book, you will find a number of text styles that distinguish between different kinds of

information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, path-

names, dummy URLs, user input, and Twitter handles are shown as follows: “We can

include other contexts through the use of the include directive.”

A block of code is set as follows:

if distance is None:
distance = rate * time

elif rate is None:
rate = distance / time

elif time is None:
time = distance / rate

Any command-line input or output is written as follows:

>>> import math
>>> math.factorial(52)
80658175170943878571660636856403766975289505440883277824000000000000

https://github.com/PacktPublishing/Modern-Python-Cookbook-Third-Edition
https://github.com/PacktPublishing/
https://packt.link/gbp/9781835466384
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New terms and important words are shown in bold.

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com, and mention the book’s title in the

subject of your message. If you have questions about any aspect of this book, please email

us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes

do happen. If you have found a mistake in this book we would be grateful if you would

report this to us. Please visit, http://packtpub.com/support/errata, selecting your

book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet,

we would be grateful if you would provide us with the location address or website name.

Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise

in and you are interested in either writing or contributing to a book, please visit http:

//authors.packtpub.com.

http://packtpub.com/support/errata
http://authors.packtpub.com
http://authors.packtpub.com
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Share your thoughts
Once you’ve read Modern Python Cookbook, Third Edition, we’d love to hear your thoughts!

Scan the QR code below to go straight to the Amazon review page for this book and share

your feedback or leave a review on the site that you purchased it from.

https://packt.link/r/1835466389

Your review is important to us and the tech community and will help us make sure we’re

delivering excellent quality content.

https://packt.link/r/1835466389
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Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere? Is your

eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at

no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite

technical books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and

great free content in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781835466384

2. Submit your proof of purchase

3. That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781835466384


1
Numbers, Strings, and
Tuples

This chapter will look at some of the central types of Python objects. We’ll look at working

with different kinds of numbers, working with strings, and using tuples. These are the

simplest kinds of data that Python works with. In later chapters, we’ll look at data structures

built on these foundations.

While these recipes start with a beginner’s level of understanding of Python 3.12, they

also provide some deeper background for those familiar with the language. In particular,

we’ll look at some details of how numbers are represented internally, because this can help

when confronted with more advanced numerical programming problems. This will help us

distinguish the uses cases for the rich variety of numeric types.

We’ll also look at the two different division operators. These have distinct use cases, and

we’ll look at one kind of algorithm that demands truncated division.

When working with strings, there are several common operations that are important. We’ll
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explore some of the differences between bytes—as used by our OS files—and strings used

to represent Unicode text. We’ll look at how we can exploit the full power of the Unicode

character set.

In this chapter, we’ll show the recipes as if we’re working from the >>> prompt in interactive

Python. This is the prompt that’s provided when running python from the command line

or using the Python console in many Integrated Development Environment (IDE) tools.

This is sometimes called the read-evaluate-print loop (REPL). In later chapters, we’ll

change the style so it looks more like a script file. One goal of this chapter is to encourage

interactive exploration because it’s a great way to learn the language.

We’ll cover these recipes to introduce basic Python data types:

• Choosing between float, decimal, and fraction

• Choosing between true division and floor division

• String parsing with regular expressions

• Building complicated strings with f-strings

• Building complicated strings from lists of strings

• Using the Unicode characters that aren’t on our keyboards

• Encoding strings – creating ASCII and UTF-8 bytes

• Decoding bytes – how to get proper characters from some bytes

• Using tuples of items

• Using NamedTuples to simplify item access in tuples

We’ll start with numbers, work our way through strings, and end up working with simple

combinations of objects in the form of tuples and NamedTuple objects.

Choosing between float, decimal, and fraction
Python offers several ways to work with rational numbers and approximations of irrational

numbers. We have three basic choices:
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• Float

• Decimal

• Fraction

When we have choices, it helps to have some criteria for making a selection.

Getting ready
There are three general cases for expressions that involve numbers beyond integers, which

are:

1. Currency: Dollars, cents, euros, and so on. Currency generally has a fixed number

of decimal places and rounding rules to properly quantize results.

2. Rational Numbers or Fractions: When we scale a recipe that serves eight, for

example, down to five people, we’re doing fractional math using a scaling factor of 5
8 .

3. Floating Point: This includes all other kinds of calculations. This also includes

irrational numbers, like 𝜋, root extraction, and logarithms.

When we have one of the first two cases, we should avoid floating-point numbers.

How to do it...
We’ll look at each of the three cases separately.

Doing currency calculations

When working with currency, we should always use the decimal module. If we try to use

the values of Python’s built-in float type, we can run into problems with the rounding

and truncation of numbers:

1. To work with currency, import the Decimal class from the decimal module:

>>> from decimal import Decimal

2. We need to create Decimal objects from strings or integers. In this case, we want
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7.25%, which is 7.25
100 . We can compute the value using Decimal objects:

>>> tax_rate = Decimal('7.25')/Decimal(100)
>>> purchase_amount = Decimal('2.95')
>>> tax_rate * purchase_amount
Decimal('0.213875')

We could also use Decimal('0.0725') instead of doing the division explicitly.

3. To round to the nearest penny, create a penny object:

>>> penny = Decimal('0.01')

4. Quantize the result using the penny object:

>>> total_amount = purchase_amount + tax_rate * purchase_amount
>>> total_amount.quantize(penny)
Decimal('3.16')

This uses the default rounding rule of ROUND_HALF_EVEN. The Decimal module offers other

rounding variations. We might, for example, do something like this:

>>> import decimal
>>> total_amount.quantize(penny, decimal.ROUND_UP)
Decimal('3.17')

This shows the consequences of using a different rounding rule.

Fraction calculations

When we’re doing calculations that have exact fraction values, we can use the fractions

module to create rational numbers. In this example, we want to scale a recipe for eight

down to five people, using 5
8 of each ingredient. When the recipe calls for 2 12 cups of rice,

what does that scale down to?

To work with fractions, we’ll do this:
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1. Import the Fraction class from the fractions module:

>>> from fractions import Fraction

2. Create Fraction objects from strings, integers, or pairs of integers. We created one

fraction from a string, ’2.5’. We created the second fraction from a floating-point

expression, 5 / 8. This only works when the denominator is a power of 2:

>>> sugar_cups = Fraction('2.5')
>>> scale_factor = Fraction(5/8)
>>> sugar_cups * scale_factor
Fraction(25, 16)

We can see that we’ll use almost a cup and a half of rice to scale the recipe for five people

instead of eight. While float values will often be useful for rational fractions, they may not

be exact unless the denominator is a power of two.

Floating-point approximations

Python’s built-in float type can represent a wide variety of values. The trade-off here is

that a float value is often an approximation. There may be a small discrepancy that reveals

the differences between the implementation of float and the mathematical ideal of an

irrational number:

1. To work with float, we often need to round values to make them look sensible. It’s

important to recognize that all float calculations are an approximation:

>>> (19/155)*(155/19)
0.9999999999999999

2. Mathematically, the value should be 1. Because of the approximations used, the

computed result isn’t exactly 1. We can use round(answer, 3) to round to three

digits, creating a value that’s more useful:
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>>> answer = (19/155)*(155/19)
>>> round(answer, 3)
1.0

Approximations have a very important consequence.

Don’t compare floating-point values for exact equality.

Code that uses an exact == test between floating-point numbers has the

potential to cause problems when two approximations differ by a single bit.

The float approximation rules come from the IEEE, and are not a unique feature of Python.

Numerous programming languages work with float approximations and have identical

behavior.

How it works...
For these numeric types, Python offers a variety of operators: +, -, *, /, //, %, and **. These

are for addition, subtraction, multiplication, true division, truncated division, modulo, and

raising to a power, respectively. We’ll look at the two division operators, / and //, in the

Choosing between true division and floor division recipe.

Python will do some conversions between the various numeric types. We can mix int

and float values; the integers will be promoted to floating-point to provide the most

accurate answer possible. Similarly, we can mix int and Fraction as well as mixing int

and Decimal. Note that we cannot casually mix Decimal with float or Fraction; an explicit

conversion function will be required.

It’s important to note that float values are approximations. The Python syntax allows us

to write floating-point values using base 10 digits; however, that’s not how values are

represented internally.

We can write the value 8.066 × 1067 like this in Python:
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>>> 8.066e+67
8.066e+67

The actual value used internally will involve a binary approximation of the decimal value

we wrote. The internal value for this example is this:

>>> (6737037547376141/(2**53))*(2**226)
8.066e+67

The numerator is a big number, 6737037547376141. The denominator is always 253. This

is why values can get truncated.

We can use the math.frexp() function to see these internal details of a number:

>>> import math
>>> math.frexp(8.066E+67)
(0.7479614202861186, 226)

The two parts are called the mantissa (or significand) and the exponent. If we multiply

the mantissa by 253, we always get a whole number, which is the numerator of the binary

fraction.

Unlike the built-in float, a Fraction is an exact ratio of two integer values. We can create

ratios that involve integers with a very large number of digits. We’re not limited by a fixed

denominator.

A Decimal value, similarly, is based on a very large integer value, as well as a scaling factor

to determine where the decimal place goes. These numbers can be huge and won’t suffer

from peculiar representation issues.

There’s more...
The Python math module contains several specialized functions for working with floating-

point values. This module includes common elementary functions such as square root,
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logarithms, and various trigonometry functions. It also has some other functions such as

gamma, factorial, and the Gaussian error function.

The math module includes several functions that can help us do more accurate floating-

point calculations. For example, the math.fsum() function will compute a floating-point

sum more carefully than the built-in sum() function. It’s less susceptible to approximation

issues.

We can also make use of the math.isclose() function to compare two floating-point values,

an expression, and a literal 1.0, to see if they’re nearly equal:

>>> (19/155)*(155/19) == 1.0
False

>>> math.isclose((19/155)*(155/19), 1.0)
True

This function provides us with a way to compare two floating-point numbers meaningfully

for near-equality.

Python also offers complex numbers. A complex number has a real and an imaginary part.

In Python, we write 3.14+2.78j to represent the complex number 3.14 + 2.78
√
−1. Python

will comfortably convert between float and complex. We have the usual group of operators

available for complex numbers.

To support complex numbers, there’s the cmath package. The cmath.sqrt() function, for

example, will return a complex value rather than raise an exception when extracting the

square root of a negative number. Here’s an example:

>>> math.sqrt(-2)
Traceback (most recent call last):
...
ValueError: math domain error

>>> import cmath
>>> cmath.sqrt(-2)
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1.4142135623730951j

This module is helpful when working with complex numbers.

See also
• We’ll talk more about floating-point numbers and fractions in the Choosing between

true division and floor division recipe.

• See https://en.wikipedia.org/wiki/IEEE_floating_point.

Choosing between true division and floor division
Python offers us two kinds of division operators. What are they, and how do we know

which one to use? We’ll also look at the Python division rules and how they apply to

integer values.

Getting ready
There are several general cases for division:

• A div-mod pair: We want both parts – the quotient and the remainder. The name

refers to the division and modulo operations combined together. We can summarize

the quotient and remainder as 𝑞, 𝑟 = (⌊ 𝑎𝑏 ⌋, 𝑎 mod 𝑏).

We often use this when converting values from one base into another. When we

convert seconds into hours, minutes, and seconds, we’ll be doing a div-mod kind of

division. We don’t want the exact number of hours; we want a truncated number of

hours, and the remainder will be converted into minutes and seconds.

• The true value: This is a typical floating-point value; it will be a good approximation

to the quotient. For example, if we’re computing an average of several measurements,

we usually expect the result to be floating-point, even if the input values are all

integers.

• A rational fraction value: This is often necessary when working in American units of

https://en.wikipedia.org/wiki/IEEE_floating_point
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feet, inches, and cups. For this, we should be using the Fraction class. When we

divide Fraction objects, we always get exact answers.

We need to decide which of these cases apply, so we know which division operator to use.

How to do it...
We’ll look at these three cases separately.

Doing floor division

When we are doing the div-mod kind of calculations, we might use the floor division

operator, //, and the modulo operator, %. The expression a % b gives us the remainder

from an integer division of a // b. Or, we might use the divmod() built-in function to

compute both at once:

1. We’ll divide the number of seconds by 3,600 to get the value of hours. The modulo,

or remainder in division, computed with the % operator, can be converted separately

into minutes and seconds:

>>> total_seconds = 7385
>>> hours = total_seconds // 3600
>>> remaining_seconds = total_seconds % 3600

2. Next, we’ll divide the number of seconds by 60 to get minutes; the remainder is the

number of seconds less than 60:

>>> minutes = remaining_seconds // 60
>>> seconds = remaining_seconds % 60
>>> hours, minutes, seconds
(2, 3, 5)

Here’s the alternative, using the divmod() function to compute quotient and modulo

together:

1. Compute quotient and remainder at the same time:



Chapter 1 11

>>> total_seconds = 7385
>>> hours, remaining_seconds = divmod(total_seconds, 3600)

2. Compute quotient and remainder again:

>>> minutes, seconds = divmod(remaining_seconds, 60)
>>> hours, minutes, seconds
(2, 3, 5)

Doing true division

Performing a true division calculation gives a floating-point approximation as the result.

For example, about how many hours is 7,385 seconds? Here’s 7385
60 using the true division

operator:

>>> total_seconds = 7385
>>> hours = total_seconds / 3600
>>> round(hours, 4)
2.0514

We provided two integer values, but got a floating-point exact result. Consistent with our

previous recipe, when using floating-point values, we rounded the result to avoid having

to look at tiny error digits.

Rational fraction calculations

We can do division using Fraction objects and integers. This forces the result to be a

mathematically exact rational number:

1. Create at least one Fraction value:

>>> from fractions import Fraction
>>> total_seconds = Fraction(7385)

2. Use the Fraction value in a calculation. Any integer will be promoted to a Fraction:
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>>> hours = total_seconds / 3600
>>> hours
Fraction(1477, 720)

The denominator of 720 doesn’t seem too meaningful. Working with fractions like

this requires a bit of finesse to find useful denominators that makes sense to people.

Otherwise, converting to a floating-point value can be useful.

3. If necessary, convert the exact Fraction into a floating-point approximation:

>>> round(float(hours), 4)
2.0514

First, we created a Fraction object for the total number of seconds. When we do arithmetic

on fractions, Python will promote any integers to Fraction objects; this promotion means

that the math is done as precisely as possible.

How it works...
Python has two division operators:

• The / true division operator produces a true, floating-point result. It does this even

when the two operands are integers. This is an unusual operator in this respect. All

other operators preserve the type of the data. The true division operation – when

applied to integers – produces a float result.

• The // truncated division operator always produces a truncated result. For two

integer operands, this is the truncated quotient. When floating-point operands are

used, this is a truncated floating-point result:

>>> 7358.0 // 3600.0
2.0
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See also
• For more on the choice between floating-point and fractions, see the Choosing between

float, decimal, and fraction recipe.

• See PEP-238.

String parsing with regular expressions
How do we decompose a complex string? What if we have complex, tricky punctuation?

Or—worse yet—what if we don’t have punctuation, but have to rely on patterns of digits to

locate meaningful information?

Getting ready
The easiest way to decompose a complex string is by generalizing the string into a pattern

and then writing a regular expression that describes that pattern.

There are limits to the patterns that regular expressions can describe. When we’re con-

fronted with deeply nested documents in a language like HTML, XML, or JSON, we often

run into problems and be prohibited from using regular expressions.

The re module contains all of the various classes and functions we need to create and use

regular expressions.

Let’s say that we want to decompose text from a recipe website. Each line looks like this:

>>> ingredient = "Kumquat: 2 cups"

We want to separate the ingredient from the measurements.

How to do it...
To write and use regular expressions, we often do this:

1. Generalize the example. In our case, we have something that we can generalize as:

(ingredient words): (amount digits) (unit words)

https://www.python.org/dev/peps/pep-0238
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2. We’ve replaced literal text with a two-part summary: what it means and how it’s

represented. For example, ingredient is represented as words, while amount is

represented as digits. Import the re module:

>>> import re

3. Rewrite the pattern into regular expression (RE) notation:

>>> pattern_text = r'([\w\s]+):\s+(\d+)\s+(\w+)'

We’ve replaced representation hints such as ingredient words, a mixture of letters and

spaces, with [\w\s]+. We’ve replaced amount digits with \d+. And we’ve replaced

single spaces with \s+ to allow one or more spaces to be used as punctuation. We’ve

left the colon in place because, in regular expression notation, a colon matches itself.

For each of the fields of data, we’ve used () to capture the data matching the pattern.

We didn’t capture the colon or the spaces because we don’t need the punctuation

characters.

REs typically use a lot of \ characters. To make this work out nicely in Python, we

almost always use raw strings. The r' tells Python not to look at the \ characters

and not to replace them with special characters that aren’t on our keyboards.

4. Compile the pattern:

>>> pattern = re.compile(pattern_text)

5. Match the pattern against the input text. If the input matches the pattern, we’ll get a

match object that shows details of the substring that matched:

>>> match = pattern.match(ingredient)
>>> match is None
False
>>> match.groups()
('Kumquat', '2', 'cups')
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6. Extract the named groups of characters from the match object:

>>> match.group(1)
'Kumquat'
>>> match.group(2)
'2'
>>> match.group(3)
'cups'

Each group is identified by the order of the capture () portions of the regular expression.

This gives us a tuple of the different fields captured from the string. We’ll return to the

use of the tuple data structure in the Using tuples of items recipe. This can be confusing in

more complex regular expressions; there is a way to provide a name, instead of the numeric

position, to identify a capture group.

How it works...
There are a lot of different kinds of string patterns that we can describe with regular

expressions.

We’ve shown a number of character classes:

• \w matches any alphanumeric character (a to z, A to Z, 0 to 9).

• \d matches any decimal digit.

• \s matches any space or tab character.

These classes also have inverses:

• \W matches any character that’s not a letter or a digit.

• \D matches any character that’s not a digit.

• \S matches any character that’s not some kind of space or tab.

Many characters match themselves. Some characters, however, have a special meaning,

and we have to use \ to escape from that special meaning:

• We saw that + as a suffix means to match one or more of the preceding patterns. \d+
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matches one or more digits. To match an ordinary +, we need to use \+.

• We also have * as a suffix, which matches zero or more of the preceding patterns.

\w* matches zero or more characters. To match a *, we need to use \*.

• We have ? as a suffix, which matches zero or one of the preceding expressions. This

character is used in other places, and has a different meaning in the other context.

We’ll see it used in ?P<name>...)|, where it is inside \verb|)| to define special

properties for the grouping.

• The . character matches any single character. To match a . specifically, we need to

use \..

We can create our own unique sets of characters using [] to enclose the elements of the

set. We might have something like this:

(?P<name>\w+)\s*[=:]\s*(?P<value>.*)

This has a \w+ to match any number of alphanumeric characters. This will be collected

into a group called name. It uses \s* to match an optional sequence of spaces. It matches

any character in the set [=:]. Exactly one of the two characters in this set must be present.

It uses \s* again to match an optional sequence of spaces. Finally, it uses .* to match

everything else in the string. This is collected into a group named value.

We can use this to parse strings, like this:

size = 12

weight: 14

By being flexible with the punctuation, we can make a program easier to use. We’ll tolerate

any number of spaces, and either an = or a : as a separator.

There’s more...
A long regular expression can be awkward to read. We have a clever Pythonic trick for

presenting an expression in a way that’s much easier to read:
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>>> ingredient_pattern = re.compile(
... r'(?P<ingredient>[\w\s]+):\s+' # name of the ingredient up to the ":"
... r'(?P<amount>\d+)\s+' # amount, all digits up to a space
... r'(?P<unit>\w+)' # units, alphanumeric characters
... )

This leverages three syntax rules:

• A statement isn’t finished until the () characters match.

• Adjacent string literals are silently concatenated into a single long string.

• Anything between # and the end of the line is a comment, and is ignored.

We’ve put Python comments after the important clauses in our regular expression. This

can help us understand what we did, and perhaps help us diagnose problems later.

We can also use the regular expression’s “verbose” mode to add gratuitous whitespace and

comments inside a regular expression string. To do this, we must use re.X as an option

when compiling a regular expression to make whitespace and comments possible. This

revised syntax looks like this:

>>> ingredient_pattern_x = re.compile(r'''
... (?P<ingredient>[\w\s]+):\s+ # name of the ingredient up to the ":"
... (?P<amount>\d+)\s+ # amount, all digits up to a space
... (?P<unit>\w+) # units, alphanumeric characters
... ''', re.X)

We can either break the pattern up into separate string components, or make use of extended

syntax to make the regular expression more readable. The benefit of providing names

shows up when we use the groupdict() method of the match object to extract parsed

values by the name associated with the pattern being captured.

See also
• The Decoding bytes – how to get proper characters from some bytes recipe.

• There are many books on regular expressions and Python regular expressions in



18 Numbers, Strings, and Tuples

particular, like Mastering Python Regular Expressions https://www.packtpub.com/a

pplication-development/mastering-python-regular-expressions.

Building complicated strings with f-strings
Creating complex strings is, in many ways, the polar opposite of parsing a complex string.

We generally use a template with substitution rules to put data into a more complex format.

Getting ready
Let’s say we have pieces of data that we need to turn into a nicely formatted message. We

might have data that includes the following:

>>> id = "IAD"
>>> location = "Dulles Intl Airport"
>>> max_temp = 32
>>> min_temp = 13
>>> precipitation = 0.4

And we’d like a line that looks like this:

IAD : Dulles Intl Airport : 32 / 13 / 0.40

How to do it...
1. Create an f-string for the result, replacing all of the data items with placeholders.

Inside each placeholder, put a variable name (or an expression.) Note that the string

uses the prefix of f'. This prefix creates a sophisticated string object where values

are interpolated into the template when the string is used:

f'{id} : {location} : {max_temp} / {min_temp} / {precipitation}'

2. For each name or expression, an optional data type can be appended to the names in

the template string. The basic data type codes are:

• s for string

https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions


Chapter 1 19

• d for decimal number

• f for floating-point number

It would look like this:

f'{id:s} : {location:s} : {max_temp:d} / {min_temp:d} /
{precipitation:f}'

Because the book’s margins are narrow, the string has been broken

to fit on the page. It’s a single (very wide) line of code.

3. Add length information where required. Length is not always required, and in some

cases, it’s not even desirable. In this example, though, the length information ensures

that each message has a consistent format. For strings and decimal numbers, prefix

the format with the length like this: 19s or 3d. For floating-point numbers, use a

two-part prefix like 5.2f to specify the total length of five characters, with two to

the right of the decimal point. Here’s the whole format:

>>> f'{id:3s} : {location:19s} : {max_temp:3d} / {min_temp:3d} /
{precipitation:5.2f}'
'IAD : Dulles Intl Airport : 32 / 13 / 0.40'

How it works...
F-strings can do a lot of relatively sophisticated string assembly by interpolating data into

a template. There are a number of conversions available.

We’ve seen three of the formatting conversions—s, d, f—but there are many others. Details

can be found in the Formatted string literals section of the Python Standard Library: https:

//docs.python.org/3/reference/lexical_analysis.html#formatted-string-liter

als.

Here are some of the format conversions we might use:

• b is for binary, base 2.

https://docs.python.org/3/reference/lexical_analysis.html#formatted-string-literals
https://docs.python.org/3/reference/lexical_analysis.html#formatted-string-literals
https://docs.python.org/3/reference/lexical_analysis.html#formatted-string-literals
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• c is for Unicode character. The value must be a number, which is converted into a

character. Often, we use hexadecimal numbers for these characters, so you might

want to try values such as 0x2661 through 0x2666 to see interesting Unicode glyphs.

• d is for decimal numbers.

• E and e are for scientific notations. 6.626E-34 or 6.626e-34, depending on which E or

e character is used.

• F and f are for floating-point. For not a number, the f format shows lowercase nan;

the F format shows uppercase NAN.

• G and g are for general use. This switches automatically between E and F (or e and

f) to keep the output in the given sized field. For a format of 20.5G, up to 20-digit

numbers will be displayed using F formatting. Larger numbers will use E formatting.

• n is for locale-specific decimal numbers. This will insert , or . characters, depending

on the current locale settings. The default locale may not have 1,000 separators

defined. For more information, see the locale module.

• o is for octal, base 8.

• s is for string.

• X and x are for hexadecimal, base 16. The digits include uppercase A-F and lowercase

a-f, depending on which X or x format character is used.

• % is for percentage. The number is multiplied by 100 and the output includes a %

character.

We have a number of prefixes we can use for these different types. The most common

one is the length. We might use {name:5d} to put in a 5-digit number. There are several

prefixes for the preceding types:

• Fill and alignment: We can specify a specific filler character (space is the default)

and an alignment. Numbers are generally aligned to the right and strings to the left.

We can change that using <, >, or ^. This forces left alignment, right alignment, or



Chapter 1 21

centering, respectively. There’s a peculiar = alignment that’s used to put padding

after a leading sign.

• Sign: The default rule is a leading negative sign where needed. We can use + to

put a sign on all numbers, - to put a sign only on negative numbers, and a space to

use a space instead of a plus for positive numbers. In scientific output, we often use

{value:5.3f}. The space makes sure that room is left for the sign, ensuring that all

the decimal points line up nicely.

• Alternate form: We can use the # to get an alternate form. We might have something

like {0:#x}, {0:#o}, or {0:#b} to get a prefix on hexadecimal, octal, or binary values.

With a prefix, the numbers will look like 0xnnn, 0onnn, or 0bnnn. The default is to

omit the two-character prefix.

• Leading zero: We can include 0 to get leading zeros to fill in the front of a number.

Something like {code:08x} will produce a hexadecimal value with leading zeroes to

pad it out to eight characters.

• Width and precision: For integer values and strings, we only provide the width.

For floating-point values, we often provide width.precision.

There are some times when we won’t use a {name:format} specification. Sometimes, we’ll

need to use a {name!conversion} specification. There are only three conversions available:

• {name!r} shows the representation that would be produced by repr(name).

• {name!s} shows the string value that would be produced by str(name); this is the

default behavior if you don’t specify any conversion. Using !s explicitly lets you add

string-type format specifiers.

• {name!a} shows the ASCII value that would be produced by ascii(name).

• Additionally, there’s a handy debugging format specifier available. We can include a

trailing equals sign, =, to get a handy dump of a variable or expression. The following

example uses both forms:



22 Numbers, Strings, and Tuples

>>> value = 2**12-1
>>> f'{value=} {2**7+1=}'
'value=4095 2**7+1=129'

The f-string showed the value of the variable named value and the result of an expression,

2**7+1.

In Chapter 7, we’ll leverage the idea of the {name!r} format specification to simplify

displaying information about related objects.

There’s more...
The f-string processing relies on the string format() method. We can leverage this method

and the related format_map() method for cases where we have more complex data struc-

tures.

Looking forward to Chapter 5, we might have a dictionary where the keys are simple strings

that fit with the format_map() rules:

>>> data = dict(
... id=id, location=location, max_temp=max_temp,
... min_temp=min_temp, precipitation=precipitation
... )
>>> '{id:3s} : {location:19s} : {max_temp:3d} / {min_temp:3d} /
{precipitation:5.2f}'.format_map(data)
'IAD : Dulles Intl Airport : 32 / 13 / 0.40'

We’ve created a dictionary object, data, that contains a number of values with keys that

are valid Python identifiers: id, location, max_temp, min_temp, and precipitation. We

can then use this dictionary with the format_map() method to extract values from the

dictionary using the keys.

Note that the formatting template here is not an f-string. It doesn’t have the f" prefix. In-

stead of using the automatic formatting features of an f-string, we’ve done the interpolation

“the hard way” using the format_map() method of an f-string.
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See also
• More details can be found in the Formatted string literals section of the Python

Standard Library:https://docs.python.org/3/reference/lexical_analysis.h

tml#formatted-string-literals.

Building complicated strings from lists of strings
How can we make complicated changes to an immutable string? Can we assemble a string

from individual characters?

In most cases, the recipes we’ve already seen give us a number of tools for creating and

modifying strings. There are yet more ways in which we can tackle the string manipulation

problem. In this recipe, we’ll look at using a list object as a way to decompose and rebuild

a string. This will dovetail with some of the recipes in Chapter 4.

Getting ready
Here’s a string that we’d like to rearrange:

>>> title = "Recipe 5: Rewriting an Immutable String"

We’d like to do two transformations:

• Remove the part before :.

• Replace the punctuation with _ and make all the characters lowercase.

We’ll make use of the string module:

>>> from string import whitespace, punctuation

This has two important constants:

• string.whitespace lists all of the whitespace characters that are also part of ASCII,

including space and tab.

https://docs.python.org/3/reference/lexical_analysis.html#formatted-string-literals
https://docs.python.org/3/reference/lexical_analysis.html#formatted-string-literals
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• string.punctuation lists punctuation marks that are also part of ASCII. Unicode

has a large domain of punctuation marks. This is a widely used subset.

How to do it...
We can work with a string exploded into a list. We’ll look at lists in more depth in Chapter 4:

1. Explode the string into a list object:

>>> title_list = list(title)

2. Find the partition character. The index() method for a list has the same semantics

as the index() method has for a string. It locates the position with the given value:

>>> colon_position = title_list.index(':')

3. Delete the characters that are no longer needed. The del statement can remove items

from a list. Unlike strings, lists are mutable data structures:

>>> del title_list[:colon_position+1]

4. Replace punctuation by stepping through each position. In this case, we’ll use a for

statement to visit every index in the string:

>>> for position in range(len(title_list)):
... if title_list[position] in whitespace+punctuation:
... title_list[position]= '_'

5. The expression range(len(title_list)) generates all of the values between 0 and

len(title_list)-1. This assures us that the value of position will be each value

index in the list. Join the list of characters to create a new string. It seems a little odd

to use a zero-length string, '', as a separator when concatenating strings together.

However, it works perfectly:
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>>> title = ''.join(title_list)
>>> title
'_Rewriting_an_Immutable_String'

We assigned the resulting string back to the original variable. The original string object,

which had been referred to by that variable, is no longer needed: it’s automatically removed

from memory (this is known as garbage collection). The new string object replaces the

value of the variable.

How it works...
This is a change in representation trick. Since a string is immutable, we can’t update it. We

can, however, convert it into a mutable form; in this case, a list. We can make whatever

changes are required to the mutable list object. When we’re done, we can change the

representation from a list back to a string and replace the original value of the variable.

Lists provide some features that strings don’t have. Conversely, strings provide a number

of features lists don’t have. As an example, we can’t convert a list into lowercase the way

we can convert a string.

There’s an important trade-off here:

• Strings are immutable, which makes them very fast. Strings are focused on Unicode

characters. When we look at mappings and sets, we can use strings as keys for

mappings and items in sets because the value is immutable.

• Lists are mutable. Operations are slower. Lists can hold any kind of item. We can’t

use a list as a key for a mapping or an item in a set because the list value could

change.

Strings and lists are both specialized kinds of sequences. Consequently, they have a number

of common features. The basic item indexing and slicing features are shared. Similarly, a

list uses the same kind of negative index values that a string does: the expression list[-1]

is the last item in a list object.
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We’ll return to mutable data structures in Chapter 4.

See also
• Sometimes, we need to build a string, and then convert it into bytes. See the Encoding

strings – creating ASCII and UTF-8 bytes recipe for how we can do this.

• Other times, we’ll need to convert bytes into a string. See the Decoding bytes – how

to get proper characters from some bytes recipe for more information.

Using the Unicode characters that aren’t on our
keyboards
A big keyboard might have almost 100 individual keys. Often, fewer than 50 of these keys

are letters, numbers, and punctuation. At least a dozen are function keys that do things

other than simply insert letters into a document. Some of the keys are different kinds of

modifiers that are meant to be used in conjunction with another key—for example, we

might have Shift, Ctrl, Option, and Command.

Most operating systems will accept simple key combinations that create about 100 or so

characters. More elaborate key combinations may create another 100 or so less popular

characters. This isn’t even close to covering the vast domain of characters from the world’s

alphabets. And there are icons, emojis, and dingbats galore in our computer fonts. How do

we get to all of those glyphs?

Getting ready
Python works in Unicode. There are thousands of individual Unicode characters available.

We can see all the available characters at https://en.wikipedia.org/wiki/List_of_Un

icode_characters, as well as at http://www.unicode.org/charts/.

We’ll need the Unicode character number. We may also want the Unicode character name.

A given font on our computer may not be designed to provide glyphs for all of those

characters. In particular, Windows computer fonts may have trouble displaying some of

https://en.wikipedia.org/wiki/List_of_Unicode_characters
https://en.wikipedia.org/wiki/List_of_Unicode_characters
http://www.unicode.org/charts/
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these characters. Using the following Windows command to change to code page 65001 is

sometimes necessary:

chcp 65001

Linux and macOS rarely have problems with Unicode characters.

How to do it...
Python uses escape sequences to extend the ordinary characters we can type to cover the

vast space of Unicode characters. Each escape sequence starts with a \ character. The next

character tells us exactly which of the Unicode characters to create. Locate the character

that’s needed. Get the name or the number. The numbers are always given as hexadecimal,

base 16. Websites describing Unicode often write the character as U+2680. The name might

be DIE FACE-1. Use \unnnn with up to a four-digit number, nnnn. Or, use \N{name} with

the spelled-out name. If the number is more than four digits, use \Unnnnnnnn with the

number padded out to exactly eight digits:

>>> 'You Rolled \u2680'

'You Rolled '

>>> 'You drew \U0001F000'

'You drew '

>>> 'Discard \N{MAHJONG TILE RED DRAGON}'

'Discard '

Yes, we can include a wide variety of characters in Python output. To place a \ in the string

without the following characters being part of an escape sequence, we need to use \\. For

example, we might need this for Windows file paths.

How it works...
Python uses Unicode internally. The 128 or so characters we can type directly using the

keyboard all have handy internal Unicode numbers.
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When we write:

'HELLO'

Python treats it as shorthand for this:

'\u0048\u0045\u004c\u004c\u004f'

Once we get beyond the characters on our keyboards, the remaining thousands of characters

are identified only by their number.

When the string is being compiled by Python, \uxxxx, \Uxxxxxxxx, and \N{name} are all

replaced by the proper Unicode character. If we have something syntactically wrong—for

example, \N{name with no closing }—we’ll get an immediate error from Python’s internal

syntax checking.

Regular expressions use a lot of \ characters and that we specifically do not want Python’s

normal compiler to touch them; we used the r' prefix on a regular expression string to

prevent \ from being treated as an escape and possibly converted into something else. To

use the full domain of Unicode characters, we cannot avoid using \ as an escape.

What if we need to use Unicode in a regular expression? We’ll need to use \\ all over the

place in the regular expression. We might see something like this:

'\\w+[\u2680\u2681\u2682\u2683\u2684\u2685]\\d+'.

We couldn’t use the r' prefix on the string because we needed to have the Unicode escapes

processed. This forced us to use \\ for elements of the regular expression. We used \uxxxx

for the Unicode characters that are part of the pattern. Python’s internal compiler will

replace \uxxxx with Unicode characters and \\w will become the required \w internally.

When we look at a string at the >>> prompt, Python will display the string in its canonical

form. Python prefers to display strings with ' as a delimiter, using " when the string

contains a '. We can use either ' or " for a string delimiter when writing code. Python

doesn’t generally display raw strings; instead, it puts all of the necessary escape sequences

back into the string:
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>>> r"\w+"
'\\w+'

We provided a string in raw form. Python displayed it in canonical form.

See also
• In the Encoding strings – creating ASCII and UTF-8 bytes and the Decoding bytes – how

to get proper characters from some bytes recipes, we’ll look at how Unicode characters

are converted into sequences of bytes so we can write them to a file. We’ll look

at how bytes from a file (or downloaded from a website) are turned into Unicode

characters so they can be processed.

• If you’re interested in history, you can read up on ASCII and EBCDIC and other

old-fashioned character codes here: http://www.unicode.org/charts/.

Encoding strings – creating ASCII and UTF-8
bytes
Our computer files are bytes. When we upload or download from the internet, the commu-

nication works in bytes. A byte only has 256 distinct values. Our Python characters are

Unicode. There are a lot more than 256 Unicode characters.

How do we map Unicode characters to bytes to write to a file or for transmission?

Getting ready
Historically, a character occupied 1 byte. Python leverages the old ASCII encoding scheme

for bytes; this sometimes leads to confusion between bytes and text strings of Unicode

characters.

Unicode characters are encoded into sequences of bytes. There are a number of standardized

encodings and a number of non-standard encodings.

Plus, there also are some encodings that only work for a small subset of Unicode characters.

http://www.unicode.org/charts/
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We try to avoid these, but there are some situations where we’ll need to use a subset

encoding scheme.

Unless we have a really good reason not to, we almost always use UTF-8 encoding for

Unicode characters. Its main advantage is that it’s a compact representation of the Latin

alphabet, which is used for English and a number of European languages.

Sometimes, an internet protocol requires ASCII characters. This is a special case that

requires some care because the ASCII encoding can only handle a small subset of Unicode

characters.

How to do it...
Python will generally use our OS’s default encoding for files and internet traffic. The details

are unique to each OS:

1. We can make a general setting using the PYTHONIOENCODING environment variable.

We set this outside of Python to ensure that a particular encoding is used everywhere.

When using Linux or macOS, use the shell’s export statement to set the environment

variable. For Windows, use the set command, or the PowerShell Set-Item cmdlet.

For Linux, it looks like this:

(cookbook3) % export PYTHONIOENCODING=UTF-8

2. Run Python:

(cookbook3) % python

3. We sometimes need to make specific settings when we open a file inside our script.

We’ll return to this topic in Chapter 11. Open the file with a given encoding. Read or

write Unicode characters to the file:

>>> with open('some_file.txt', 'w', encoding='utf-8') as output:

... print('You drew \U0001F000', file=output)

>>> with open('some_file.txt', 'r', encoding='utf-8') as input:

... text = input.read()



Chapter 1 31

>>> text

'You drew '

We can also manually encode characters, in the rare case that we need to open a file in

bytes mode; if we use a mode of wb, we’ll also need to use manual encoding of each string:

>>> string_bytes = 'You drew \U0001F000'.encode('utf-8')
>>> string_bytes
b'You drew \xf0\x9f\x80\x80'

We can see that a sequence of bytes (\xf0\x9f\x80\x80) was used to encode a single

Unicode character, U+1F000, .

How it works...
Unicode defines a number of encoding schemes. While UTF-8 is the most popular, there

is also UTF-16 and UTF-32. The number is the typical number of bits per character. A

file with 1,000 characters encoded in UTF-32 would be 4,000 8-bit bytes. A file with 1,000

characters encoded in UTF-8 could be as few as 1,000 bytes, depending on the exact mix of

characters. In UTF-8 encoding, characters with Unicode numbers above U+007F require

multiple bytes.

Various OSes have their own coding schemes. macOS files can be encoded in Mac Roman

or Latin-1. Windows files might use CP1252 encoding.

The point with all of these schemes is to have a sequence of bytes that can be mapped to a

Unicode character and—going the other way—a way to map each Unicode character to one

or more bytes. Ideally, all of the Unicode characters are accounted for. Pragmatically, some

of these coding schemes are incomplete.

The historical form of ASCII encoding can only represent about 100 of the Unicode charac-

ters as bytes. It’s easy to create a string that cannot be encoded using the ASCII scheme.

Here’s what the error looks like:
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>>> 'You drew \U0001F000'.encode('ascii')
Traceback (most recent call last):
...
UnicodeEncodeError: 'ascii' codec can't encode character '\U0001f000' in
position 9: ordinal not in range(128)

We may see this kind of error when we accidentally open a file with an encoding that’s not

the widely used standard of UTF-8. When we see this kind of error, we’ll need to change

our processing to select the encoding actually used to create the file. It’s almost impossible

to guess what encoding was used, so some research may be required to locate metadata

about the file that states the encoding.

Bytes are often displayed using printable characters. We’ll see b'hello' as shorthand for

a five-byte value. The letters are chosen using the old ASCII encoding scheme, where

byte values from 0x20 to 0x7F will be shown as characters, and outside this range, more

complex-looking escapes will be used.

This use of characters to represent byte values can be confusing. The prefix of b' is our

hint that we’re looking at bytes, not proper Unicode characters.

See also
• There are a number of ways to build strings of data. See the Building complicated

strings with f-strings and the Building complicated strings from lists of strings recipes for

examples of creating complex strings. The idea is that we might have an application

that builds a complex string, and then we encode it into bytes.

• For more information on UTF-8 encoding, see https://en.wikipedia.org/wiki/

UTF-8.

• For general information on Unicode encodings, see http://unicode.org/faq/utf_

bom.html.

https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
http://unicode.org/faq/utf_bom.html
http://unicode.org/faq/utf_bom.html
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Decoding bytes – how to get proper characters
from some bytes
How can we work with files that aren’t properly encoded? What do we do with files written

in ASCII encoding?

A download from the internet is almost always in bytes—not characters. How do we decode

the characters from that stream of bytes?

Also, when we use the subprocess module, the results of an OS command are in bytes. How

can we recover proper characters?

Much of this is also relevant to the material in Chapter 11. We’ve included this recipe here

because it’s the inverse of the previous recipe, Encoding strings – creating ASCII and UTF-8

bytes.

Getting ready
Let’s say we’re interested in offshore marine weather forecasts. Perhaps this is because we

are departing the Chesapeake Bay for the Caribbean.

Are there any special warnings coming from the National Weather Services office in

Wakefield, Virginia?

Here’s the link:

https://forecast.weather.gov/product.php?site=AKQ&product=SMW&issuedby=AKQ.

We can download this with Python’s urllib module:

>>> import urllib.request
>>> warnings_uri = (
... 'https://forecast.weather.gov/'
... 'product.php?site=AKQ&product=SMW&issuedby=AKQ'
... )

>>> with urllib.request.urlopen(warnings_uri) as source:
... forecast_text = source.read()

https://forecast.weather.gov/product.php?site=AKQ&product=SMW&issuedby=AKQ
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Note that we’ve enclosed the URI string in () and broken it into two separate string literals.

Python will concatenate these two adjacent literals into a single string. We’ll look at this

in some depth in Chapter 2.

As an alterative, we can use programs like curl or wget to get this. At the OS Terminal

prompt, we might run the following (long) command:

(cookbook3) % curl 'https://forecast.weather.gov/product.php?site=AKQ&product=SMW&

issuedby=AKQ' -o AKQ.html

Typesetting this book tends to break the command onto many lines. It’s really one very

long line.

The code repository includes a sample file, ch01/Text Products for SMW Issued

by AKQ.html.

The forecast_text value is a stream of bytes. It’s not a proper string. We can tell because

it starts like this:

>>> forecast_text[:80]
b'<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/x'

The data goes on for a while, providing details from the web page. Because the displayed

value starts with b', it’s bytes, not proper Unicode characters. It was probably encoded with

UTF-8, which means some characters could have weird-looking \xnn escape sequences

instead of proper characters. We want to have the proper characters.

While this data has many easy-to-read characters, the b' prefix shows that it’s a collection

of byte values, not proper text. Generally, a bytes object behaves somewhat like a string

object. Sometimes, we can work with bytes directly. Most of the time, we’ll want to decode

the bytes and create proper Unicode characters from them.
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How to do it...
1. Determine the coding scheme if possible. In order to decode bytes to create proper

Unicode characters, we need to know what encoding scheme was used. When we

read XML documents, there’s a big hint provided within the document:

<?xml version="1.0" encoding="UTF-8"?>

When browsing web pages, there’s often a header containing this information:

Content-Type: text/html; charset=ISO-8859-4

Sometimes, an HTML page may include this as part of the header:

<meta http-equiv="Content-Type" content="text/html; charset=utf-8">

In other cases, we’re left to guess. In the case of US weather data, a good first guess

is UTF-8. Another good guess is ISO-8859-1. In some cases, the guess will depend on

the language.

2. The codecs — Codec registry and base classes section of the Python Standard Library

lists the standard encodings available. Decode the data:

>>> document = forecast_text.decode("UTF-8")
>>> document[:80]
'<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/x'

The b' prefix is no longer used to show that these are bytes. We’ve created a proper

string of Unicode characters from the stream of bytes.

3. If this step fails with an exception, we guessed wrong about the encoding. We need

to try another encoding in order to parse the resulting document.

Since this is an HTML document, we should use Beautiful Soup to extract the data. See

http://www.crummy.com/software/BeautifulSoup/.

We can, however, extract one nugget of information from this document without completely

parsing the HTML:

http://www.crummy.com/software/BeautifulSoup/
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>>> import re
>>> content_pattern = re.compile(r"// CONTENT STARTS(.*?)// CONTENT ENDS",
re.MULTILINE | re.DOTALL)
>>> content_pattern.search(document)
<re.Match object; span=(8530, 9113), match='// CONTENT STARTS HERE
-->\n\n<span style="font-s>

This tells us what we need to know: there are no warnings at this time. This doesn’t mean

smooth sailing, but it does mean that there aren’t any major weather systems that could

cause catastrophes.

How it works...
See the Encoding strings – creating ASCII and UTF-8 bytes recipe for more information on

Unicode and the different ways that Unicode characters can be encoded into streams of

bytes.

At the foundation of the OS, files and network connections are built up from bytes. It’s our

software that decodes the bytes to discover the content. It might be characters, images,

or sounds. In some cases, the default assumptions are wrong and we need to do our own

decoding.

See also
• Once we’ve recovered the string data, we have a number of ways of parsing or

rewriting it. See the String parsing with regular expressions recipe for examples of

parsing a complex string.

• For more information on encodings, see https://en.wikipedia.org/wiki/UTF-8

and http://unicode.org/faq/utf_bom.html.

Using tuples of items
What’s the best way to represent simple (𝑥, 𝑦) and (𝑟 , 𝑔, 𝑏) groups of values? How can we

keep things that are pairs, such as latitude and longitude, together?

https://en.wikipedia.org/wiki/UTF-8
http://unicode.org/faq/utf_bom.html


Chapter 1 37

Getting ready
In the String parsing with regular expressions recipe, we skipped over an interesting data

structure.

We had data that looked like this:

>>> ingredient = "Kumquat: 2 cups"

We parsed this into meaningful data using a regular expression, like this:

>>> import re
>>> ingredient_pattern =
re.compile(r'(?P<ingredient>\w+):\s+(?P<amount>\d+)\s+(?P<unit>\w+)')
>>> match = ingredient_pattern.match(ingredient)
>>> match.groups()
('Kumquat', '2', 'cups')

The result is a tuple object with three pieces of data. There are lots of places where this

kind of grouped data can come in handy.

How to do it...
We’ll look at two aspects to this: putting things into tuples and getting things out of tuples.

Creating tuples

There are lots of places where Python creates tuples of data for us. In the Getting ready

section of the String parsing with regular expressions recipe, we showed you how a regular

expression match object will create a tuple of text that was parsed from a string.

We can create our own tuples, too. Here are the steps:

1. Enclose the data in ().

2. Separate the items with ,.

>>> from fractions import Fraction
>>> my_data = ('Rice', Fraction(1/4), 'cups')
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There’s an important special case for the one-tuple, or singleton. We have to include the ,

even when there’s only one item in the tuple:

>>> one_tuple = ('item', )
>>> len(one_tuple)
1

The () characters aren’t always required. There are a few times where we can omit them.

It’s not a good idea to omit them.

It’s the comma that creates a tuple of values. This means we can see funny things when

we have an extra comma:

>>> 355,
(355,)

The comma after 355 turns the value into a singleton tuple.

We can also create a tuple by conversion from another sequence. For example, tuple([355])

creates a singleton tuple from a singleton list.

Extracting items from a tuple

The idea of a tuple is to be a container with a number of items that’s fixed by the problem

domain: for example, for (red, green, blue) color numbers, the number of items is always

three.

In our example, we’ve got an ingredient, and amount, and units. This must be a three-item

collection. We can look at the individual items in two ways:

• By index position; that is, positions are numbered starting with zero from the left:

>>> my_data[1]
Fraction(1, 4)

• Using multiple assignment:



Chapter 1 39

>>> ingredient, amount, unit = my_data
>>> ingredient
'Rice'
>>> unit
'cups'

Tuples—like strings—are immutable. We can’t change the individual items inside a tuple.

We use tuples when we want to keep the data together.

How it works...
Tuples are one example of the more general Sequence class. We can do a few things with

sequences.

Here’s an example tuple that we can work with:

>>> t = ('Kumquat', '2', 'cups')

Here are some operations we can perform on this tuple:

• How many items in t?

>>> len(t)
3

• How many times does a particular value appear in t?

>>> t.count('2')
1

• Which position has a particular value?

>>> t.index('cups')
2
>>> t[2]
'cups'

• When an item doesn’t exist, we’ll get an exception:
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>>> t.index('Rice')
Traceback (most recent call last):
...
ValueError: tuple.index(x): x not in tuple

• Does a particular value exist?

>>> 'Rice' in t
False

There’s more...
A tuple, like a string, is a sequence of items. In the case of a string, it’s a sequence of

characters. In the case of a tuple, it’s a sequence of many things. Because they’re both

sequences, they have some common features. We’ve noted that we can pluck out individual

items by their index position. We can use the index() method to locate the position of an

item.

The similarities end there. A string has many methods it can use to create a new string that’s

a transformation of a string, plus methods to parse strings, plus methods to determine the

content of the strings. A tuple doesn’t have any of these bonus features. It’s—perhaps—the

simplest possible data structure.

See also
• We looked at one other sequence, the list, in the Building complicated strings from

lists of strings recipe.

• We’ll also look at sequences in Chapter 4.

Using NamedTuples to simplify item access in
tuples
When we worked with tuples, we had to remember the positions as numbers. When we

use a (𝑟 , 𝑔, 𝑏) tuple to represent a color, can we use “red” instead of zero, “green” instead of
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1, and “blue” instead of 2?

Getting ready
Let’s continue looking at items in recipes. The regular expression for parsing the string

had three attributes: ingredient, amount, and unit. We used the following pattern with

names for the various substrings:

r'(?P<ingredient>\w+):\s+(?P<amount>\d+)\s+(?P<unit>\w+)')

The resulting data tuple looked like this:

>>> item = match.groups()
>>> item
('Kumquat', '2', 'cups')

While the matching between ingredient, amount, and unit is pretty clear, using something

like the following isn’t ideal. What does 1 mean? Is it really the quantity?

>>> from fractions import Fraction
>>> Fraction(item[1])
Fraction(2, 1)

We want to define tuples with names, as well as positions.

How to do it...
1. We’ll use the NamedTuple class definition from the typing package:

>>> from typing import NamedTuple

2. With this base class definition, we can define our own unique tuples, with names for

the items:

>>> class Ingredient(NamedTuple):
... ingredient: str
... amount: str
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... unit: str

3. Now, we can create an instance of this unique kind of tuple by using the classname:

>>> item_2 = Ingredient('Kumquat', '2', 'cups')

4. When we want a value from the tuple, we can use a name instead of the position:

>>> Fraction(item_2.amount)
Fraction(2, 1)
>>> f"Use {item_2.amount} {item_2.unit} fresh {item_2.ingredient}"
'Use 2 cups fresh Kumquat'

How it works...
The NamedTuple class definition introduces a core concept from Chapter 7. We’ve extended

the base class definition to add unique features for our application. In this case, we’ve

named the three attributes each Ingredient tuple must contain.

Because a subclass of NamedTuple class is a tuple, the order of the attribute names is

fixed. We can use a reference like the expression item_2[0] as well as the expression

item_2.ingredient. Both names refer to the item in index 0 of the tuple, item_2.

The core tuple types can be called “anonymous tuples” or maybe “index-only tuples.”

This can help to distinguish them from the more sophisticated “named tuples” introduced

through the typing module.

Tuples are very useful as tiny containers of closely related data. Using the NamedTuple

class definition makes them even easier to work with.

There’s more...
We can have a mixed collection of values in a tuple or a named tuple. We need to perform

conversion before we can build the tuple. It’s important to remember that a tuple cannot

ever be changed. It’s an immutable object, similar in many ways to the way strings and
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numbers are immutable.

For example, we might want to work with amounts that are exact fractions. Here’s a more

sophisticated definition:

>>> from typing import NamedTuple
>>> from fractions import Fraction
>>> class IngredientF(NamedTuple):
... ingredient: str
... amount: Fraction
... unit: str

These objects require some care to create. If we’re using a bunch of strings, we can’t simply

build this object from three string values; we need to convert the amount into a Fraction

instance. Here’s an example of creating an item using a Fraction conversion:

>>> item_3 = IngredientF('Kumquat', Fraction('2'), 'cups')

This tuple has a more useful value for the amount of each ingredient. We can now do

mathematical operations on the amounts:

>>> f'{item_3.ingredient} doubled: {item_3.amount * 2}'
'Kumquat doubled: 4'

It’s very handy to explicitly state the data type within the NamedTuple class definition.

It turns out Python doesn’t use the type information directly. Other tools, for example,

mypy, can check the type hints in a NamedTuple against the operations in the rest of the

code to be sure they agree.

See also
• We’ll look at class definitions in Chapter 7.
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Join our community Discord space
Join our Python Discord workspace to discuss and find out more about the book:

https://packt.link/dHrHU

https://packt.link/dHrHU


2
Statements and Syntax

Python syntax is designed to be simple. In this chapter, we’ll look at some of the most

commonly used statements in the language as a way to understand the rules. Concrete

examples can help clarify the language’s syntax.

We’ll cover some of the basics of creating script files first. Then we’ll move on to looking

at some of the more commonly used statements. Python only has about 20 or so different

kinds of imperative statements in the language. We’ve already looked at two kinds of

statements in Chapter 1, the assignment statement and the expression statement.

When we write something like this:

>>> print("hello world")
hello world

We’re actually executing a statement that contains only the evaluation of a function,

print(). This kind of statement—where we evaluate a function or a method of an object—is

common.



46 Statements and Syntax

The other kind of statement we’ve already seen is the assignment statement. Python has

many variations on this theme. Most of the time, we’re assigning a single value to a single

variable. When a function returns a tuple as a result, we can unpack that collection and

assign more than one variable at the same time in a single assignment statement. It is done

like this:

>>> quotient, remainder = divmod(355, 113)

The recipes in this chapter will look at the if, while, for, with, and try statements. We’ll

also touch on a few of the simpler statements as we go, like pass, break, and raise.

In later chapters, we’ll look at other statements. Here’s a summary:

Statement Chapter
def Chapter 3
return Chapter 3
import Chapter 3
del Chapter 4
class Chapter 7
match Chapter 8
type Chapter 10
assert Chapter 10

Table 2.1: Python Statements and Chapters

In this chapter, we’ll look at the following recipes:

• Writing Python script and module files – syntax basics

• Writing long lines of code

• Including descriptions and documentation

• Writing better docstrings with RST markup

• Designing complex if...elif chains

• Saving intermediate results with the := "walrus" operator
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• Avoiding a potential problem with break statements

• Leveraging exception matching rules

• Avoiding a potential problem with an except: clause

• Concealing an exception root cause

• Managing a context using the with statement

We’ll start by looking at the big picture – scripts and modules – and then we’ll move down

into details of individual statements.

Writing Python script and module files – syntax
basics
The point of Python (and programming in general) is to create automated solutions to

problems that involve data and processing. Further, the software we write is a kind of

knowledge representation; this means clarity is perhaps the most important quality aspect

of software.

In Python, we implement automated solutions by creating script files. These are the top-

level, main programs of Python programming. In addition to main scripts, we may also

create modules (and packages of modules) to help organize the software into intellectually

manageable chunks. A script is a module; however, it has a distinct intent to do useful

processing when started by the OS.

A key part of creating clear, readable Python files is making sure our code follows the

widely adopted conventions.

For example, we need to be sure to save our files in UTF-8 encoding. While ASCII encoding

is still supported by Python, it’s a poor choice for modern programming. We’ll also need to

be sure our editor uses spaces instead of the tab character. This is often a configuration

setting in programming editors. Using Unix newlines is also helpful for portability.
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Getting ready
To edit Python scripts, we’ll need a good programming editor. It’s nearly impossible to

suggest just one. So we’ll suggest a few.

The JetBrains PyCharm editor has numerous features. The community edition version is

free. See https://www.jetbrains.com/pycharm/download/.

ActiveState has Komodo IDE, which is also very sophisticated. The Komodo Edit version is

free and does some of the same things as the full Komodo IDE. See http://komodoide.co

m/komodo-edit/.

Notepad++ is good for Windows developers. See https://notepad-plus-plus.org.

BBEdit is very nice for macOS X developers. See http://www.barebones.com/products

/bbedit/. Sublime is also popular on macOS X. See https://www.sublimetext.com.

For Linux developers, there are several built-in editors, including Vim and gedit. Since

Linux tends to be biased toward developers, the editors available are all suitable for writing

Python.

It is helpful is to have two windows open while working:

• An editor to create the final script or module file.

• A terminal session with Python’s >>> prompt, where we can try things out to see

what works and what doesn’t.

Most editors recognize the .py extension and provide appropriate formatting based on

PEP-8. This generally includes the following:

• The file encoding should be UTF-8.

• Indentation should be four spaces.

• We want the Tab key on the keyboard to insert spaces instead of the tab character,

\t.

Once the editor is configured, we can write a script file that other people can easily use or

https://www.jetbrains.com/pycharm/download/
http://komodoide.com/komodo-edit/
http://komodoide.com/komodo-edit/
https://notepad-plus-plus.org
http://www.barebones.com/products/bbedit/
http://www.barebones.com/products/bbedit/
https://www.sublimetext.com
https://peps.python.org/pep-0008/
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extend.

How to do it...
Here’s how we create a script file:

1. The first line of most Python script files looks like this:

#!/usr/bin/env python3

This sets an association between the file you’re writing and Python. If the file’s mode

is set to executable with the bash chmod command, and the directory is on the OS

PATH list, the script will be a first-class application, as usable as any of the built-in

commands.

For Windows, the filename-to-program association is done through a setting in the

Default Programs control panel. Find the panel for Set Associations, and make

sure .py files are bound to the Python program. This is often set by the installer, and

we rarely need to change it or set it manually.

2. After the preamble, convention suggests we include a triple-quoted block of text.

This is the documentation string (called a docstring) for the file we’re going to

create:

"""
A summary of this script.
"""

Because Python triple-quoted strings can be indefinitely long, feel free to write as

much as necessary. This should be the primary vehicle for describing the script or

library module. This can even include examples of how it works.

3. Now comes the interesting part of the script: the part that really does something.

We can write all the statements we need to get the job done. For now, we’ll use this

as a placeholder:
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print('hello world')

This isn’t much, but at least the script does something. It’s common to create function

and class definitions, as well as to write statements to use the functions and classes

to do things.

For our first, simple script, all of the statements must begin at the left margin and must be

complete on a single line. There are many Python statements that have blocks of statements

nested inside them. These internal blocks of statements will be indented to clarify their

scope. Generally—because we set indentation to four spaces—we can hit the Tab key to

properly indent the code.

Our file should look like this:

#!/usr/bin/env python3
"""
My First Script: Calculate an important value.
"""

print(355 / 113)

How it works...
Unlike other languages, there’s very little boilerplate in Python. There’s only one line of

overhead and even the #!/usr/bin/env python3 line is generally optional.

Why do we set the encoding to UTF-8? While the language was originally designed to

work using just the original 128 ASCII characters, we often find that ASCII is limiting. This

is legal Python if we save our file in UTF-8:

𝜇 = 355/113
print(𝜇)

It’s important to be consistent when choosing between spaces and tabs in Python. They

are both more or less invisible, and mixing them up can easily lead to errors when trying
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to run the script. Spaces are suggested.

The initial #! line is a comment. Because the two characters are sometimes called sharp

and bang, the combination is called “shebang.” Everything between a # and the end of the

line is ignored. The Linux loader (a program named execve) looks at the first few bytes of

a file to see what the file contains. These first few bytes are sometimes called magic bytes

because the loader’s behavior seems magical. When present, this two-character sequence

of #! is followed by the path to the program responsible for processing the rest of the data

in the file. We prefer to use /usr/bin/env to start the Python program for us. We can

leverage the env program to make Python-specific environment settings.

There’s more...
The Python Standard Library documents are derived, in part, from the documentation

strings present in the module files. It’s common practice to write sophisticated docstrings

in modules, packages, and scripts. There are tools like pydoc and Sphinx that can reformat

the module docstrings into elegant documentation. We’ll look at this in the Writing better

docstrings with RST markup recipe, as well as the Using Sphinx autodoc to create the API

reference recipe in Chapter 17.

Additionally, unit test cases can be included in the docstrings. Tools like doctest can extract

examples from the document strings and execute the code to see if the answers in the

documentation match the answers found by running the code. This is the subject of many

recipes in Chapter 15. Many examples in this book are validated by doctest.

Triple-quoted documentation strings are preferred over # comments. While all text between

# and the end of the line is ignored, this is limited to a single line; the conventional approach

is to use it sparingly. A docstring can be of indefinite size; they are used widely.

There’s another bit of overhead that’s sometimes included. The Vim and gedit editors let

us keep edit preferences in the file. This is called a modeline. Here’s a typical modeline

that’s useful for Python:

# vim: tabstop=8 expandtab shiftwidth=4 softtabstop=4
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This makes sure any tab characters will be transformed into eight spaces; when we hit the

Tab key, we’ll shift four spaces. This is widely used because tab characters are traditionally

indented eight spaces, and this replacement is likely to create proper indentation. This

setting is embedded in the code; we don’t have to do any Vim setup to apply these settings

to our Python script files.

See also
• We’ll look at how to write useful document strings in the Including descriptions and

documentation and Writing better docstrings with RST markup recipes.

• For more information on suggested style, see PEP-8.

Writing long lines of code
There are many times when we need to write lines of code that are so long that they’re

very hard to read. Many people like to limit the length of a line of code to 80 characters or

fewer. It’s a well-known principle of graphic design that a narrower area of text is easier

to read. See http://webtypography.net/2.1.2 for a deeper discussion of line width and

readability.

While fewer characters per line is easier on the eyes, our code can refuse to cooperate with

this principle. How can we break long Python statements into more manageable pieces?

Getting ready
Let’s say we’ve got something like this:

>>> import math

>>> example_value = (63/25) * (17+15*math.sqrt(5)) / (7+15*math.sqrt(5))

>>> mantissa_fraction, exponent = math.frexp(example_value)
>>> mantissa_whole = int(mantissa_fraction*2**53)
>>> message_text = f'the internal representation is
{mantissa_whole:d}/2**53*2**{exponent:d}'
>>> print(message_text)

https://www.python.org/dev/peps/pep-0008/
http://webtypography.net/2.1.2
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the internal representation is 7074237752514592/2**53*2**2

This code includes a long formula, and a long format string into which we’re injecting

values. This looks bad when typeset in a book; the f-string line may be broken incorrectly.

It may look bad on our screen when trying to edit this script. (For more on f-strings, see

Building complicated strings with f-strings in Chapter 1.)

We can’t haphazardly break Python statements into chunks. The syntax rules are clear that

a statement must be complete on a single logical line.

The term “logical line” provides a hint as to how we can proceed. Python makes a distinction

between logical lines and physical lines; we’ll leverage these syntax rules to break up long

statements.

How to do it...
Python gives us several ways to wrap long statements so they’re more readable:

• We can use \ at the end of a line to continue the logical line onto the next physical

line. While this always works, it can be hard to spot the \.

• Python has a rule that a statement can span multiple logical lines because the (),

[], and {} characters must balance. Further, we can also exploit the way Python

automatically concatenates adjacent string literals to make a single, longer string

literal: ("a" "b") is the same as "ab".

• In some cases, we can decompose a statement into multiple statements by assigning

intermediate results to separate variables.

We’ll look at each one of these in separate parts of this recipe.

Using a backslash to break a long statement into logical lines

1. If there’s a meaningful break, insert the \ to separate the statement:
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>>> message_text = f'the internal representation is \
... {mantissa_whole:d}/2**53*2**{exponent:d}'

For this to work, the \ must be the last character on the line. An extra space after the \

is fairly hard to see; some care is required. The PEP-8 proposal provides guidelines on

formatting and tends to discourage this technique.

In spite of this being a little hard to see, the \ can always be used. Think of it as the last

resort in making a line of code more readable.

Using the () characters to break a long statement into sensible pieces

1. Write the whole statement on one line, even if it’s confusing:

>>> import math

>>> example_value1 = (63/25) * (17+15*math.sqrt(5)) /
(7+15*math.sqrt(5))

Add the extra () characters, which don’t change the value but allow breaking the

expression into multiple lines:

>>> example_value2 = (63/25) * ( (17+15*math.sqrt(5)) /
(7+15*math.sqrt(5)) )

>>> example_value2 == example_value1
True

2. Break the line inside the () characters:

>>> example_value3 = (63/25) * (
... (17+15*math.sqrt(5))
... / (7+15*math.sqrt(5))
... )

>>> example_value3 == example_value1
True

The matching () characters technique is quite powerful and will work in a wide variety of

https://www.python.org/dev/peps/pep-0008/
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cases. This is widely used and highly recommended.

We can almost always find a way to add extra () characters to a statement. In rare cases

when we can’t add () characters, we can fall back on using \ to break the statement into

sections.

Using string literal concatenation

We can combine the () characters with another rule that joins adjacent string literals. This

is particularly effective for long, complex format strings:

1. Wrap the long string value in the () characters.

2. Break the string into meaningful substrings:

>>> message_text = (
... f'the internal representation '
... f'is {mantissa_whole:d}/2**53*2**{exponent:d}'
... )

>>> message_text
'the internal representation is 7074237752514592/2**53*2**2'

We can always break a long string literal into adjacent pieces. We can then use as many

physical line breaks as we need. With string literal values, no explicit operator is needed.

Assigning intermediate results to separate variables

Here’s the context for this technique:

>>> import math

>>> example_value = (63/25) * (17+15*math.sqrt(5)) / (7+15*math.sqrt(5))

We can break this into three intermediate values:

1. Identify sub-expressions in the overall expression. Assign these to variables:
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>>> a = (63/25)
>>> b = (17+15*math.sqrt(5))
>>> c = (7+15*math.sqrt(5))

2. Replace the sub-expressions with the variables that were created:

>>> example_value = a * b / c

We can always take a sub-expression and assign it to a variable, and use the variable

everywhere the sub-expression was used. The 15*sqrt(5) product is repeated; this, too, is

a good candidate for refactoring the expression.

We didn’t give these variables descriptive names. In some cases, the sub-expressions have

some semantics that we can capture with meaningful names.

How it works...
The Python language manual makes a distinction between logical lines and physical lines.

A logical line contains a complete statement. It can span multiple physical lines through

a technique called line joining. The manual identifies two techniques: explicit line

joining and implicit line joining.

The use of \ for explicit line joining is sometimes helpful. Because it’s easy to overlook,

it’s not generally encouraged. PEP-8 suggests this should be the method of last resort.

The use of () for implicit line joining can be used in many cases. It often fits semantically

with the structure of the expressions, so it is encouraged.

There’s more...
Expressions are used widely in a number of Python statements. Any expression can have

() characters added. This gives us a lot of flexibility.

There are, however, a few places where we may have a long statement that does not

specifically involve a long expression. The most notable example of this is the import

https://www.python.org/dev/peps/pep-0008/
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statement—it can become long, but doesn’t use any expressions. In spite of not having

a proper expression, it does, however, still permit the use of (). The following example

shows we can surround a very long list of imported names:

>>> from math import (
... sin, cos, tan,
... sqrt, log, frexp)

While the () characters are emphatically not part of an expression, they are part of the

syntax available to help make the statement more readable.

See also
• Implicit line joining also applies to the matching [] and {} characters. These apply

to collection data structures that we’ll look at in Chapter 4.

Including descriptions and documentation
When we have a useful script, we often need to leave notes for ourselves—and others—on

what it does, how it solves some particular problem, and when it should be used. This

recipe contains a suggested outline to help make the documentation reasonably complete.

Getting ready
If we’ve used the Writing Python script and module files – syntax basics recipe to start a script

file, we’ll have a small documentation string in place. We’ll expand on this documentation

string in this recipe.

There are other places where documentation strings should be used. We’ll look at these

additional locations in Chapter 3 and Chapter 7.

We have two general kinds of modules for which we’ll be writing summary docstrings:

• Library modules: These files will contain mostly function definitions as well as

class definitions. The docstring summary should focus on the definitions in the

module, describing what the module is. The docstring can provide examples of using
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the functions and classes that are defined in the module. In Chapter 3, and Chapter 7,

we’ll look more closely at these modules.

• Scripts: These are files that we generally expect will do some real work. The

docstring should describe what the module does and how to use it. The options,

environment variables, and configuration files are important parts of this docstring.

We will sometimes create files that contain a little of both. This requires a proper balance

between doing and being.

How to do it...
The first step in writing documentation is the same for both library modules and scripts:

1. Write a brief summary of what the script or module is or does. The summary doesn’t

need to dig too deeply into how it works. Like a lede in a newspaper article, it

introduces the who, what, when, where, how, and why of the module. Details will

follow in the body of the docstring.

It can help to avoid needless phrases like This script. We might start our module docstring

like this:

"""
Downloads and decodes the current Special Marine Warning (SMW)
for the area 'AKQ'.
"""

We’ll separate the other steps based on the general focus of the module.

Writing docstrings for scripts

When we document a script, we need to focus on the needs of a person who will use the

script.

1. Start as shown earlier, creating a summary sentence.

2. Sketch an outline for the rest of the docstring. We’ll be using ReStructuredText

(RST) markup. Write the topic on one line, then put a line of = under the topic to
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make it a proper section title. Remember to leave a blank line between each topic.

Topics may include:

• SYNOPSIS: A summary of how to run this script. If the script uses the

argparse module to process command-line arguments, the help text produced

by argparse is the ideal synopsis text. Other installable tools like click or

invoke can also produce elegant synopsis text. (See Using argparse to get

command-line input in Chapter 6.)

• DESCRIPTION: An explanation of what this script does.

• OPTIONS: This provides the details of all parameters and options. (See Using

argparse to get command-line input in Chapter 6.)

• ENVIRONMENT: This provides the place to describe the environment vari-

ables and what they mean. (See Using the OS environment settings in Chapter 6.)

• FILES: The names of files that are created or read by a script are very important

pieces of information.

• EXAMPLES: Some examples of using the script are always helpful. In some

cases, this is the only part a user will read.

• SEE ALSO: Any related scripts or background information.

Other topics that might be interesting include EXIT STATUS, AUTHOR, BUGS,

REPORTING BUGS, HISTORY, or COPYRIGHT. In some cases, advice on re-

porting bugs, for instance, doesn’t really belong in a module’s docstring, but rather

elsewhere in the project’s GitHub or SourceForge pages.

3. Fill in the details under each topic. It’s important to be accurate. Since the docu-

mentation is in the same file as the code, it’s easier to be correct, complete, and

consistent.

Here’s an example of a docstring for a script:
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"""
Downloads and decodes the current Special Marine Warning (SMW)
for the area \textquotesingle AKQ\textquotesingle{}

SYNOPSIS
========

::

python3 akq_weather.py

DESCRIPTION
===========

Downloads the Special Marine Warnings

Files
=====

Writes a file, ''AKW.html''.

EXAMPLES
========

Here's an example::

slott\$ python3 akq_weather.py
None issued by this office recently.

In the SYNOPSIS section, we used :: as a separate paragraph. In the EXAMPLES section, we

used :: at the end of a paragraph. Both versions are hints to the RST processing tools that

the indented section that follows should be typeset as code. See Chapter 17, Documentation

and Style.

Writing docstrings for library modules

When we document a library module, we need to focus on the needs of a programmer who

will import the module to use it in their code:

1. Sketch an outline for the rest of the docstring. We’ll be using RST markup. Write the

topic on one line. Include a line of = characters under each topic to make the topic
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into a proper heading. Remember to leave a blank line between each paragraph.

2. Start as shown previously, creating a summary sentence:

• DESCRIPTION: A summary of what the module contains and why the module

is useful

• MODULE CONTENTS: The classes and functions defined in this module

• EXAMPLES: Examples of using the module

3. Fill in the details for each topic. The module contents may be a long list of class

or function definitions. The docstring should be a summary. Within each class or

function, we’ll have a separate docstring with the details for that item.

How it works...
Over the decades, the man page outline has evolved to contain a complete description of

Linux commands. This general approach to writing documentation has proven useful and

resilient. We can capitalize on a large body of experience, and structure our documentation

to follow the man page model.

We want to prepare module docstrings that can be used by the Sphinx Python docu-

mentation generator (see http://www.sphinx-doc.org/en/stable/). This is the tool

used to produce Python’s documentation files. The autodoc extension in Sphinx will

read the docstring headers on our modules, classes, and functions to produce the final

documentation that looks like other modules in the Python ecosystem.

There’s more...
RST markup has a simple, central syntax rule: paragraphs are separated by blank lines.

This rule makes it easy to write documents that can be examined by the various RST

processing tools and reformatted to look nice.

It can be challenging to write good software documentation. There’s a broad chasm between

too little information and documentation that recapitulates details apparent from looking

http://www.sphinx-doc.org/en/stable/
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at the code.

What’s important is to focus on the needs of a person who doesn’t know too much about the

software or how it works, but can read the Python code. Provide this semi-knowledgeable

user with the information they need to understand what the software does and how to use

it.

See also
• We look at additional techniques in Writing better docstrings with RST markup.

• If we’ve used the Writing Python script and module files – syntax basics recipe, we’ll

have put a documentation string in our script file. When we build functions in

Chapter 3, and classes in Chapter 7, we’ll look at other places where documentation

strings can be placed.

• See http://www.sphinx-doc.org/en/stable/ for more information on Sphinx.

• For more background on the man page outline, see https://en.wikipedia.org/w

iki/Man_page.

Writing better docstrings with RST markup
When we have a useful script, we often need to leave notes on what it does, how it works,

and when it should be used. Many tools for producing documentation, including Docutils,

work with RST markup. This allows us to write plain text documentation. It can include

some special punctuation to pick a bold or italic font variant to call attention to details. In

addition, RST permits organizing content via lists and section headings.

Getting ready
In the Including descriptions and documentation recipe, we looked at putting some basic

documentation into a module. We’ll look at a few of the RST formatting rules for creating

readable documentation.

http://www.sphinx-doc.org/en/stable/
https://en.wikipedia.org/wiki/Man_page
https://en.wikipedia.org/wiki/Man_page
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How to do it...
1. Start with an outline of the key point, creating RST section titles to organize the

material. A section title has a one-line title followed by a line of underline characters

using =, -, ^, ~ as long as the title.

A heading will look like this:

Topic
=====

The heading text is on one line and the underlining characters are on the next line.

This must be surrounded by blank lines. There can be more underline characters

than title characters, but never fewer.

The RST tools will infer our chosen pattern of using underlining characters. As long

as the underline characters are used consistently, the docutil tools will detect the

document’s structure.

When starting out, it can help to have an explicit standard for heading underlines:

Character Level

= 1

- 2

^ 3

~ 4

2. Fill in the various paragraphs. Paragraphs (including the section titles) are separated

by at least one empty line.

3. If the programming editor has a spell checker, use it. Doing this can be frustrating

because the code samples often have abbreviations that fail spell checking.

How it works...
The Docutils conversion programs will examine the document, looking for sections and

body elements. A section is identified by a title. The underlines are used to organize the
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sections into a properly nested hierarchy.

A properly nested document might have the following sequence of underline characters:

TITLE

=====

SOMETHING

----------

MORE

^^^^^

EXTRA

^^^^^

LEVEL 2

-------

LEVEL 3

^^^^^^^^

When an HTML file is created from the documentation it will have <h1>, <h2>, and <h3>

tags for the various levels. Creating a LATEX file requires some additional configuration

choices, but the common Article template means the resulting document will use \section,

\subsection, and \subsubsection headings. These final presentation choices aren’t our

primary concern when writing; the most important point is to use proper underlines to

reflect the desired organization.

There are several different kinds of body elements the RST parser can recognize. We’ve

shown a few. A more complete list includes:

• Paragraphs of text: These might use inline markup for different kinds of emphasis

or highlighting.
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• Literal blocks: These are introduced with :: and indented with four spaces. They

may also be introduced with the .. parsed-literal:: directive. A doctest block is

indented with four spaces and includes the Python >>> prompt.

• Lists, tables, and block quotes: We’ll look at these later. These can contain other

body elements.

• Footnotes: These are special paragraphs. When rendered, they may be displayed at

the bottom of a page or at the end of a section. These can also contain other body

elements.

• Hyperlink targets, substitution definitions, and RST comments: These are

more specialized text items that we won’t look at closely here.

There’s more...
In the Including descriptions and documentation recipe, we looked at several different kinds

of body elements we might use:

• Paragraphs of text: This is a block of text surrounded by blank lines. Within these,

we can make use of inline markup to emphasize words or phrases. We’ll look at

inline markup in the Writing better docstrings with RST markup recipe.

• Lists: These are paragraphs that begin with something that looks like a number or a

bullet. We might have paragraphs like this.

It helps to have bullets because:

- They can help clarify

- They can help organize

Other characters can be used at the start of the line, but - and * seem to be the most

common choices.

• Numbered lists: There are a variety of patterns that are recognized. This includes

leading digits or letters followed by . or ). Using # instead of a digit or letter will

continue from the previous paragraph value.
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• Literal blocks: A code sample is presented literally, without looking for RST ele-

ments. The text for this must be indented. A handy prefix is ::. A .. code-block::

directive is also possible.

• Directives: A directive is a paragraph that generally looks like .. directive::. It

may have some content that’s indented to be contained within the directive. It might

look like this:

.. important::

Do not flip the bozo bit.

The .. important:: text is the directive. This is followed by text indented within

the directive.

Using directives

Docutils has several built-in directives. The Sphinx tool adds a large number of additional

directives with a variety of features.

Some of the most commonly used directives are the admonitions: attention, caution,

danger, error, hint, important, note, tip, warning, and a generic admonition. These are

compound body elements because they have nested text within them. Above, we provided

an example of the important admonition.

Using inline markup

Within a paragraph, we have several forms of inline markup we can use:

• We can surround a word or phrase with * for *emphasis*. This is commonly typeset

as italic.

• We can surround a word or phrase with ** for **strong**. This is commonly typeset

as bold.

• We surround references with single back-ticks, `. Links are followed by an underscore,

_. We might use `section title`_ to refer to a specific section within a document.
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We don’t generally need to put any markup around URLs. The Docutils tools

recognize these. Sometimes we want a word or phrase to be shown and the URL

concealed. We can use this: `the \textbf{Sphinx} documentation

<http://www.sphinx-doc.org/en/stable/>`_.

• We can surround code-related words with a double back-tick, ``, to make them look

like ``code``. This will be typeset as code.

There’s also a more general technique called a role. A role starts with :word: as the role

name, followed by the applicable word or phrase in single ` back-ticks. A text role looks

like this: :strong:`this`.

There are a number of standard role names, including :emphasis:, :literal:,

:code:, :math:, :pep-reference:, :rfc-reference:, :strong:, :subscript:,

:superscript:, and :title-reference:. Some of these are also available with simpler

markup like *emphasis* or **strong**.

Also, we can define new roles with a directive. If we want to do very sophisticated

processing, we can provide the Docutils tool with class definitions for handling new roles.

This allows us to tweak the way our document is processed.

See also
• For more information on RST syntax, see http://docutils.sourceforge.net. This

includes a description of the Docutils tool.

• For information on Sphinx Python Documentation Generator, see http://www.

sphinx-doc.org/en/stable/.

Designing complex if...elif chains
In most cases, our scripts will involve a number of choices. Sometimes the choices are

simple, and we can judge the quality of the design with a glance at the code. In other cases,

the choices are more complicated, and it’s not easy to determine whether or not our if

statements are designed properly to handle all of the conditions.

http://docutils.sourceforge.net
http://www.sphinx-doc.org/en/stable/
http://www.sphinx-doc.org/en/stable/
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In the simplest case, we have one condition, 𝐶, and its inverse, ¬𝐶. These are the two

conditions for an if...else statement. One condition, 𝐶, is stated in the if clause; the

inversion condition, ¬𝐶, is implied in the else clause.

This follows the Law of the Excluded Middle: we’re claiming there’s no missing alterna-

tive between the two conditions, 𝐶 and ¬𝐶. For a complex condition, though, this can be

difficult to visualize.

If we have something like:

if weather == Weather.RAIN and plan == Plan.GO_OUT:
bring("umbrella")

else:
bring("sunglasses")

It may not be immediately obvious, but we’ve omitted a number of possible alternatives.

The weather and plan variables have four different combinations of values. One of the

conditions is stated explicitly, the other three are assumed:

• weather == RAIN and plan == GO_OUT. Bringing an umbrella seems right.

• weather != RAIN and plan == GO_OUT. Bringing sunglasses seems appropriate.

• weather == RAIN and plan != GO_OUT. If we’re staying in, then neither accessory

seems right.

• weather != RAIN and plan != GO_OUT. Again, the accessory question seems moot

if we’re not going out.

How can we be sure we haven’t missed anything? How can we be sure we have not

conflated too many things into a condition that’s assumed instead of being stated?

Getting ready
Let’s look at a concrete example of an if...elif chain. In the casino game of Craps, there

are a number of rules that apply to a roll of two dice. These rules apply on the first roll of

the game, called the come-out roll:
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• 2, 3, or 12 is craps, which is a loss for most bets.

• 7 or 11 is a winner for most bets.

• The remaining numbers establish a point. The dice-rolling continues based on

another set of rules.

We’ll use this set of three conditions as an example for looking at this recipe because it has

a potentially vague clause in it.

How to do it...
When we write an if statement, even when it appears trivial, we need to be sure that all

conditions are covered.

1. Enumerate the conditions we know. In our example, we have three rules: the (2, 3,

12) rule, the (7, 11) rule, and a vague statement of “the remaining numbers.” This can

form a first draft of an if statement.

2. Determine the universe of all possible alternatives. For this example, there are 11

alternative outcomes: the numbers from 2 to 12, inclusive.

3. Compare the various if and elif conditions, 𝐶, with the universe of alternatives, 𝑈 .

There are three possible design patterns:

• We have more if conditions in the code than are possible in the universe of

alternatives, 𝐶 ⊂ 𝑈 . The most common cause is failing to completely enumerate

all possible alternatives in the universe. We might, for example, have modeled

dice using 0 to 5 instead of 1 to 6. The universe of alternatives appears to be

the values from 0 to 10, yet there are conditions for 11 and 12.

• We have gaps in the conditions in our code, 𝑈 ⧵ 𝐶 ≠ ∅. The most common

cause of alternatives in the universe without a clearly-stated if condition is

failing to fully understand the conditions in the code. We might, for example,

have enumerated the values as two tuples instead of sums. The numbers 2, 3

and 12 are defined by a number of pairs, including (1, 1), (1, 2), and (6, 6). It’s
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possible to overlook the condition (2, 1), leaving this untested by any clause of

the if statement.

• We can prove there’s a match between conditions expressed in the code and

the universe of alternatives, 𝑈 ≡ 𝐶. This is ideal. The universe of all possi-

ble alternatives matches all the conditions in the if and elif clauses of the

statement.

In this example, it’s easy to enumerate all of the possible alternatives. In other cases, it can

take some careful reasoning to understand any gaps or omissions.

In this example, we have a vague term, remaining numbers, which we can replace with

the list of values (4, 5, 6, 8, 9, 10). Supplying a list removes any possible gaps and doubts.

When there are exactly two alternatives, we can write a condition expression for one of

the alternatives. The other condition can be implied; an if and else will work.

When we have more than two alternatives, we can use this recipe to write a chain of if

and elif statements, one statement per alternative:

1. Write an if ... elif ... elif chain that covers all of the known alternatives. For our

example, it might start like this:

dice = die_1 + die_2
if dice in (2, 3, 12):

game.craps()
elif dice in (7, 11):

game.winner()
elif dice in (4, 5, 6, 8, 9, 10):

game.point(dice)

2. Add an else clause that raises an exception, like this:

else:
raise Exception('Design Problem')

This extra else gives us a way to positively identify when a logic problem is found. We
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can be sure that any design error we made will lead to a conspicuous problem when the

program runs. Ideally, we’ll find any problems while we’re unit testing.

In this case, it is clear that all 11 alternatives are covered by the if statement conditions.

The extra else can’t ever be used. Not all real-world problems have this kind of easy proof

that all the alternatives are covered by conditions. It can help to provide a noisy failure

mode.

How it works...
Our goal is to be sure that our program works reliably. While testing helps, we can still

have the same wrong assumptions when doing design and creating test cases.

While rigorous logic is essential, we can still make mistakes. Further, someone doing

ordinary software maintenance might introduce an error. Adding a new feature to a

complex if statement is a potential source of problems.

This Else-Raise design pattern forces us to be explicit for each and every condition.

Nothing is assumed. As we noted previously, any error in our logic will be uncovered if

the exception gets raised.

Crashing with an exception is sensible behavior in the presence of a design problem. While

an alternative is to write a message to an error log, a program with this kind of profound

design flaw should be viewed as fatally broken.

There’s more...
In many cases, we can derive an if...elif...elif chain from an examination of the

desired post condition at some point in the program’s processing. For example, we may

need a statement that establishes something like 𝑚 is equal to the larger of 𝑎 or 𝑏.

(For the sake of working through the logic, we’ll avoid Python’s handy m = max(a, b),

and focus on the way we can compute a result from exclusive choices.)

We can formalize the final condition like this:
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(𝑚 = 𝑎 ∨ 𝑚 = 𝑏) ∧ 𝑚 ≥ 𝑎 ∧ 𝑚 ≥ 𝑏

We can work backward from this final condition, by writing the goal as an assert statement:

# do something
assert (m == a or m == b) and m >= a and m >= b

Once we have the goal stated, we can identify statements that lead to that goal. Clearly,

assignment statements like m = a or m = b would be appropriate, but each of these works

only under limited conditions.

We can derive the precondition that shows when these statements should be used. The

preconditions for an assignment statement will be written in if and elif expressions.

We need to use the statement m = a when a >= b. Similarly, we need to use the statement

m = b when b >= a. Rearranging logic into code gives us this:

if a >= b:
m = a

elif b >= a:
m = b

else:
raise Exception('Design Problem')

assert (m == a or m == b) and m >= a and m >= b

Note that our universe of conditions, 𝑈 = {𝑎 ≥ 𝑏, 𝑏 ≥ 𝑎}, is complete; there’s no other

possible relationship. Also notice that in the edge case of 𝑎 = 𝑏, we don’t actually care

which assignment statement is used. Python will process the decisions in order and will

execute m = a. The fact that this choice is consistent shouldn’t have any impact on our

design of the if...elif...elif chain. We can design the conditions without regard to

the order of evaluation of the clauses.
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See also
• This is somewhat similar to the syntactic problem of the “dangling else.” See

https://docs.oracle.com/javase/specs/jls/se9/html/jls-14.html.

This isn’t the same problem; Python’s indentation removes the “dangling else” syntax

problem. This is an adjacent semantic problem of trying to be sure that all conditions

are properly accounted for in a complex if...elif...elif chain.

Saving intermediate results with the := “walrus”
operator
Sometimes we’ll have a complex condition where we want to preserve an expensive

intermediate result for later use. Imagine a condition that involves a complex calculation;

the cost of computing is high measured in time, input-output operations, memory resources,

or all three.

An example includes doing repetitive searches using the Regular Expression (re) package.

A match() method can do quite a bit of computation before returning either a Match object

or a None object to show the pattern wasn’t found. Once this computation is completed,

we may have several uses for the result, and we emphatically do not want to perform the

computation again. Often, the initial use is the simple check to see if the result is a Match

object or None.

This is an example where it can be helpful to assign a name to the value of an expression

and also use the expression in an if statement. We’ll look at how to use the “assignment

expression” or “walrus” operator. It’s called the walrus because the assignment expression

operator, :=, looks like the face of a walrus to some people.

Getting ready
Here’s a summation where—eventually—each term becomes so small that there’s no point

in continuing to add it to the overall total:

https://docs.oracle.com/javase/specs/jls/se9/html/jls-14.html
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∑
0≤𝑛<∞

(
1

2𝑛 + 1)
2

In effect, this is something like the following summation function:

>>> s = sum((1 / (2 * n + 1)) ** 2 for n in range(0, 20_000))

What’s not clear is the question of how many terms are required. In the example, we’ve

summed 20,000 values. But what if 16,000 are enough to provide an accurate answer?

We don’t want to write a summation like this:

>>> b = 0
>>> for n in range(0, 20_000):
... if (1 / ( 2 * n + 1)) ** 2 >= 0.000_000_001:
... b = b + (1 / (2 * n + 1)) ** 2

This example repeats an expensive computation, (1/(2*n+1))**2. We can avoid processing

that includes this kind of time-wasting overhead by using the walrus operator.

How to do it...
1. First we isolate an expensive operation that’s part of a conditional test. In this

example, the variable term is used to hold the expensive result:

>>> p = 0
>>> for n in range(0, 20_000):
... term = (1 / (2 * n + 1)) ** 2
... if term >= 0.000_000_001:
... p = p + term

2. Rewrite the assignment statement to use the := assignment operator. This replaces

the simple condition of the if statement.

3. Add an else condition to break out of the for statement if no more terms are needed.

Here’s the results of these two steps:
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>>> q = 0
>>> for n in range(0, 20_000):
... if (term := (1 / (2 * n + 1)) ** 2) >= 0.000_000_001:
... q = q + term
... else:
... break

Note that we changed the summation variable. In the previous step of the recipe, it

was p. In this step, it’s q. This permits easy side-by-side comparisons to be sure the

results are still correct.

The assignment expression := lets us do two things in the if statement.

How it works...
The assignment expression operator := saves an intermediate result. The operator’s re-

sult value is the same as the right-hand side operand. This means that the expression

a + (b := c+d) is the same as the expression a+(c+d). The difference between the ex-

pression a + (b := c+d) and the expression a+(c+d) is the side-effect of setting the value

of the b variable partway through the evaluation.

An assignment expression can be used in almost any kind of context where expressions

are permitted in Python. The most common cases are if statements. Another good idea is

inside a while condition.

They’re also forbidden in a few places. They cannot be used as the operator in an expression

statement. We’re specifically prohibited from writing a := 2 as a statement: there’s a

perfectly good assignment statement for this purpose and an assignment expression, while

similar in intent, is potentially confusing.

There’s more...
We can do some more optimization of our infinite summation example, shown earlier in

this recipe. The use of a for statement and a range() object seems simple. The problem is

that we want to end the for statement early—when the terms being added are so small

that they have no significant change in the final sum.
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We can combine the early exit with the term computation:

>>> r = 0
>>> n = 0
>>> while (term := (1 / (2 * n + 1)) ** 2) >= 0.000_000_001:
... r += term
... n += 1

We’ve used a while statement with the assignment expression operator. This will compute a

value using (1/(2*n+1))**2, and assign this to the term variable. If the value is significant,

we’ll add it to the sum, r, and increment the value for the n variable. If the value assigned

to term is too small to be significant, the while statement will end.

Here’s another example, showing how to compute running sums of a collection of values.

This looks forward to concepts in Chapter 4. Specifically, this shows a list comprehension

built using the assignment expression operator:

>>> data = [11, 13, 17, 19, 23, 29]
>>> total = 0
>>> running_sum = [(total := total + d) for d in data]
>>> total
112
>>> running_sum
[11, 24, 41, 60, 83, 112]

We’ve started with some data, in the data variable. This might be minutes of exercise each

day for most of a week. The value of the final running_sum variable is a list object, built by

evaluating the expression (total := total + d) for each value, d, in the data variable.

Because the assignment expression changes the value of the total variable, the resulting

list is the result of each new value being accumulated.

See also
• For details on assignment expression, see PEP-572, where the feature was first

described.

https://www.python.org/dev/peps/pep-0572/
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Avoiding a potential problem with break
statements
The common way to understand a for statement is that it creates a for all condition. At

the end of the statement, we can assert that, for all items in a collection, the processing in

the body of the statement has been done.

This isn’t the only meaning a for statement can have. When the break statement is used

inside the body of a for statement, it changes the semantics to there exists. When the break

statement leaves the for (or while) statement, we can assert there exists at least one item

that caused the enclosing statement to end.

There’s a side issue here. What if the for statement ends without executing the break

statement? Either way, we’re at the statement after the for statement. The condition that’s

true upon leaving a for or while statement with a break statement can be ambiguous. We

can’t easily tell; this recipe gives some design guidance.

The problem is magnified when we have multiple break statements, each with its own

condition. How can we minimize the problems created by having these complicated

conditions for leaving a for or while statement?

Getting ready
When parsing configuration files, we often need to find the first occurrence of a : or =

character in a string. The property file format uses a property name and : or = followed

by a value.

Finding the punctuation mark is an example of a there exists modification to a for statement.

We don’t want to process all characters; we want to know where the leftmost : or = character

is found.

Here’s the sample data we’re going use as an example:

>>> sample_1 = "some_name = the_value"
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Here’s a small for statement to locate the leftmost : or = character in the sample string

value:

>>> for position in range(len(sample_1)):
... if sample_1[position] in '=:':
... break
>>> print(f"name={sample_1[:position]!r}",
... f"value={sample_1[position+1:]!r}")
name='some_name ' value=' the_value'

When the = character is found, the break statement ends the for statement. The value of

the position variable shows where the desired character was found.

What about the following edge case?

>>> sample_2 = "name_only"
>>> for position in range(len(sample_2)):
... if sample_2[position] in '=:':
... break
>>> print(f"name={sample_2[:position]!r}",
... f"value={sample_2[position+1:]!r}")
name='name_onl' value=''

The result is awkwardly wrong: the y character got dropped from the value of name. Why

did this happen? And, more importantly, how can we make the condition at the end of the

for statement clearer?

How to do it...
Every statement establishes a post-condition. When designing a for or while statement,

we need to articulate the condition that should be true at the end of the statement. Ideally,

the post-condition is something simple like text[position] in '=:'. However, in the

case where there’s no = or : in the given text, the overly simple post-condition can’t be

true.

At the end of the for statement, one of these two things are true:

• Either the character with the index of position is : or =
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• Or all characters have been examined and no character is : or =

Our application code needs to handle both cases.

1. Write the obvious post-condition. We sometimes call this the happy-path condition

because it’s the one that’s true when nothing unusual has happened:

assert text[position] in '=:' # We found a = or :

2. Create the overall post-condition by adding the conditions for the edge cases. In this

example, we have two additional conditions:

• There’s no = or :.

• There are no characters at all. This means the len() is zero, and the for

statement never actually did anything. This also means the position variable

will never be created.

In this example, then, we have discovered a total of three conditions:

• len(text) == 0

• not('=' in text or ':' in text), which can be stated in a number of ways.

not(text[position] == ':' or text[position] == '=') might be most

clear.

• text[position] in '=:'

3. A while statement can be redesigned to have the complete set of post conditions

in the while clause. This can eliminate the need for a break statement. Proper

initialization of variables is still required.

4. When a for statement is being used, proper initialization of variables is required.

Add if statements for the various terminating conditions after the body of the for

statement. Here’s the resulting for statement and a complicated if statement to

examine all of the possible post conditions:



80 Statements and Syntax

>>> position = -1
>>> for position in range(len(sample_2)):
... if sample_2[position] in '=:':
... break
...
>>> if position == -1:
... print(f"name=None value=None")
... elif not(sample_2[position] == ':' or sample_2[position] == '='):
... print(f"name={sample_2!r} value=None")
... else:
... print(f"name={sample_2[:position]!r}",
... f"value={sample_2[position+1:]!r}")
name='name_only' value=None

In the statements after the for statement, we’ve enumerated all of the terminating condi-

tions explicitly.

How it works...
This approach forces us to work out the post-condition carefully so that we can be absolutely

sure that we know all the reasons the for or while statement ended.

The idea here is to forego any assumptions or intuition. With a little bit of discipline, we

can be sure of the post-conditions. It’s imperative to be explicit about the condition that’s

true when a statement works. This is the goal of our software, and we can work backward

from the goal by choosing the simplest statements that will make the goal conditions true.

There’s more...
We can also use an else clause on a for statement to determine if the statement finished

normally or a break statement was executed. We can use something like this:

>>> for position in range(len(sample_2)):
... if sample_2[position] in '=:':
... name, value = sample_2[:position], sample_2[position+1:]
... break
... else:
... if len(sample_2) > 0:
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... name, value = sample_2, None

... else:

... name, value = None, None
>>> print(f"{name=!r} {value=!r}")
name='name_only' value=None

Using an else clause in a for statement is sometimes confusing, and we don’t recommend

it. It’s not clear if this version is substantially better than any of the alternatives. It’s too

easy to forget the reason why the else is executed because it’s used so rarely.

See also
• A classic article on this topic is by David Gries, A note on a standard strategy for

developing loop invariants and loops. See http://www.sciencedirect.com/scienc

e/article/pii/0167642383900151

Leveraging exception matching rules
The try statement lets us capture an exception. When an exception is raised, we have a

number of choices for handling it:

• Ignore it: If we do nothing, the program stops. We can do this in two ways—don’t

use a try statement in the first place, or don’t have a matching except clause in the

try statement.

• Log it: We can write a message and use a raise statement to let the exception

propagate after writing to a log. The expectation is that this will stop the program.

• Recover from it: We can write an except clause to do some recovery action to

undo any effects of the partially completed try clause.

• Silence it: If we do nothing (that is, use the pass statement), then processing is

resumed after the try statement. This silences the exception, but does not correct

the underlying problem, or supply alternative results as a recovery attempt.

• Rewrite it: We can raise a different exception. The original exception becomes a

http://www.sciencedirect.com/science/article/pii/0167642383900151
http://www.sciencedirect.com/science/article/pii/0167642383900151
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context for the newly raised exception.

What about nested contexts? In this case, an exception could be ignored by an inner try

but handled by an outer context. The basic set of options for each try context is the same.

The overall behavior of the software depends on the nested definitions.

The design of a try statement depends on the way that Python exceptions form a class

hierarchy. For details, see the Exception hierarchy section of Python Standard Library. For

example, the ZeroDivisionError exception is also an ArithmeticError and an Exception.

For another example, the FileNotFoundError exception is also an OSError as well as an

Exception.

This hierarchy can lead to confusion if we’re trying to handle detailed exceptions as well

as generic exceptions.

Getting ready
Let’s say we’re going to make use of the shutil module to copy a file from one place to

another. Most of the exceptions that might be raised indicate a problem too serious to

work around. However, in the specific event of a FileNotFoundError exception, we’d like

to attempt a recovery action.

Here’s a rough outline of what we’d like to do:

>>> from pathlib import Path
>>> import shutil

>>> source_dir = Path.cwd()/"data"
>>> target_dir = Path.cwd()/"backup"
>>> for source_path in source_dir.glob('**/*.csv'):
... source_name = source_path.relative_to(source_dir)
... target_path = target_dir / source_name
... shutil.copy(source_path, target_path)

We have two directory paths, source_dir and target_dir. We’ve used the glob() method

to locate all of the files under source_dir that have *.csv files.
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The expression source_path.relative_to(source_dir) gives us the tail end of the file-

name, the portion after the directory. We use this to build a new, similar path under the

target_dir directory. This assures that a file named wc1.csv in the source_dir directory

will have a similar name in the target_dir directory.

The problems arise with handling exceptions raised by the shutil.copy() function. We

need a try statement so that we can recover from certain kinds of errors. We’ll see this

kind of error if we try to run this:

Traceback (most recent call last):
...
FileNotFoundError: [Errno 2] No such file or directory: ...

(We’ve replaced some details with ... because they’ll be different on your computer.)

This exception is raised when the backup directory hasn’t been created. It will also happen

when there are subdirectories inside the source_dir directory tree that don’t also exist in

the target_dir tree. How do we create a try statement that handles these exceptions and

creates the missing directories?

How to do it...
1. Write the code we want to use indented in the try block:

>>> try:
... shutil.copy(source_path, target_path)

2. Include the most specific exception classes first in an except clause. In this case, we

have a meaningful response to the specific FileNotFoundError exception.

3. Include any more general exceptions later. In this case, we’ll report any generic

OSError exception that’s encountered. This leads to the following:

>>> try:
... target = shutil.copy(source_path, target_path)
... except FileNotFoundError:
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... target_path.parent.mkdir(exist_ok=True, parents=True)

... target = shutil.copy(source_path, target_path)

... except OSError as ex:

... print(f"Copy {source_path} to {target_path} error {ex}")

We’ve matched exceptions with the most specific first and the more generic after that.

We handled the FileNotFoundError exception by creating the missing directories. Then

we tried the copy() again, knowing it would now work properly.

We logged any other exceptions of the class OSError. For example, if there’s a permission

problem, that error will be written to a log and the next file will be tried. Our objective is

to try and copy all of the files. Any files that cause problems will be logged, but the overall

copying process will continue.

And, yes, the line of code to copy the files is repeated in two distinct contexts. The first

repetition is when there has been no error. The second is after attempted recovery from

the initial error. To an extent, this feels like breaking the Don’t Repeat Yourself principle.

Let’s look at the alternative, which doesn’t seem as good.

To meet the DRY standard, we could try to nest this operation in a for statement. The

break statement is used if things work, otherwise, multiple attempts can be made. The

extra complication of the for statement seems to be worse than the repetition.

A common compromise is to write a one-line function that reduces the repetition to the

name of the function. This has the advantage of making it possible to change to another of

the shutil copy functions in one place.

How it works...
Python’s matching rules for exceptions are intended to be simple:

• Process except clauses in order.

• Match the actual exception against the exception class (or tuple of exception classes).

A match means that the actual exception object (or any of the base classes of the
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exception object) is of the given class in the except clause.

These rules show why we put the most specific exception classes first and the more general

exception classes last. A generic exception class like Exception will match almost every

kind of exception. We don’t want this first, because no other clauses will be checked.

There’s an even more generic class, the BaseException class. There’s no good reason

to ever handle exceptions of this class. If we do, we will be catching SystemExit and

KeyboardInterrupt exceptions; this interferes with the ability to kill a misbehaving appli-

cation. We only use the BaseException class as a superclass when defining new exception

classes that exist outside the normal exception hierarchy.

There’s more...
Our example includes a nested context in which a second exception can be raised. Consider

this except clause snippet (taken out of context):

... except FileNotFoundError:

... target_path.parent.mkdir(exist_ok=True, parents=True)

... target = shutil.copy(source_path, target_path)

If the mkdir() method or shutil.copy() functions actually raise exceptions while handling

the original FileNotFoundError exception, it won’t be handled. Any exceptions raised

within an except clause can crash the program as a whole. Handling these nested exceptions

can involve nested try statements.

We can rewrite the exception clause to include a nested try during recovery:

>>> try:
... target = shutil.copy(source_path, target_path )
... except FileNotFoundError:
... try:
... target_path.parent.mkdir(exist_ok=True, parents=True)
... target = shutil.copy(source_path, target_path)
... except OSError as ex2:
... print(f"{target_path.parent} problem: {ex2}")
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... except OSError as ex:

... print(f"Copy {source_path} to {target_path} error {ex}")

In this example, a nested context writes one message for an OSError exception. In the

outer context, a slightly different error message is used to log a similar error. In both cases,

processing can continue. The distinct error messages can make it slightly easier to debug

the problems.

See also
• In the Avoiding a potential problem with an except: clause recipe, we look at some

additional considerations when designing exception handling statements.

Avoiding a potential problem with an except:
clause
There are some common mistakes in exception handling. These can cause programs to

become unresponsive.

One of the mistakes we can make is to use the except: clause with no named exception

class to match. There are a few other mistakes that we can make if we’re not cautious

about the exceptions we try to handle.

This recipe will show some common exception handling errors that we can avoid.

Getting ready
When code can raise a variety of exceptions, it’s sometimes tempting to try and match

as many as possible. Matching too many exception classes can interfere with stopping a

misbehaving Python program. We’ll extend the idea of what not to do in this recipe.

How to do it...
We need to avoid using the bare except: clause. Instead, use except Exception: to match

the most general kind of exception that an application can reasonably handle.
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Handling too many exception classes can interfere with our ability to stop a misbehaving

Python program. When we hit Ctrl + C, or send a SIGINT signal via the OS’s kill -2

command, we generally want the program to stop. We rarely want the program to write a

message and keep running. If we use a bare except: clause, we can accidentally silence

important exceptions.

There are a few other classes of exceptions that we should be wary of attempting to handle:

• SystemError

• RuntimeError

• MemoryError

Generally, these exceptions mean things are going badly somewhere in Python’s internals.

Rather than silence these exceptions, or attempt some recovery, we should allow the

program to fail, find the root cause, and fix it.

Further, if we capture any of these exceptions, we can interfere with the way these internal

exceptions are handled:

• SystemExit

• KeyboardInterrupt

• GeneratorExit

Trying to handle these exceptions can cause a program to become unresponsive at exactly

the time we need to stop it.

How it works...
There are three techniques we should avoid:

• Don’t match the BaseException class in an except BaseException: clause.

• Don’t use except: with no exception class. This matches all exceptions, including

exceptions we should avoid trying to handle.
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• Don’t match exceptions from which there’s no sensible recovery.

If we handle too many kinds of exceptions, we may exacerbate a problem, transforming it

into a larger and more mysterious problem by way of flawed exception handling.

It’s a noble aspiration to write a program that never crashes. Interfering with some of

Python’s internal exceptions, however, doesn’t create a more reliable program. Instead, it

creates a program where a clear failure is masked and made into an obscure problem.

See also
• In the Leveraging exception matching rules recipe, we look at some considerations

when designing exception-handling statements.

Concealing an exception root cause
Exceptions contain a root cause. The default behavior of internally raised exceptions is to

use an implicit __context__ attribute to include the root cause of an exception. In some

cases, we may want to deemphasize the root cause because it’s misleading or unhelpful for

debugging.

This technique is almost always paired with an application or library that defines a unique

exception. The idea is to show the unique exception without the clutter of an irrelevant

exception from outside the application or library.

Getting ready
Assume we’re writing some complex string processing. We’d like to treat a number of

different kinds of detailed exceptions as a single generic error so that users of our software

are insulated from the implementation details. We can attach details to the generic error.

How to do it...
1. To create a new exception, we can do this:
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>>> class MyAppError(Exception):
... pass

This creates a new, unique class of exception that our library or application can use.

2. When handling exceptions, we can conceal the root cause exception like this:

>>> try:
... None.some_method(42) # Raises an exception
... except AttributeError as exception:
... raise MyAppError("Some Known Problem") from None

In this example, we raise a new instance of the module’s unique MyAppError exception

class. The new exception will not have any connection with the root cause AttributeError

exception.

How it works...
The Python exception classes all have a place to record the cause of the exception. We can

set this __cause__ attribute using the raise Visible from RootCause statement. This is

done implicitly using the exception context.

Here’s how it looks when this exception is raised:

>>> try:
... None.some_method(42)
... except AttributeError as exception:
... raise MyAppError("Some Known Problem") from None
Traceback (most recent call last):
...
MyAppError: Some Known Problem

The underlying cause has been concealed. If we omit the from None in the raise statement,

then the exception will include two parts and will be quite a bit more complex. When the

root cause is shown, the output looks more like this:
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Traceback (most recent call last):
File "<doctest recipe_09.txt[3]>", line 2, in <module>

None.some_method(42)
^^^^^^^^^^^^^^^^

AttributeError: 'NoneType' object has no attribute 'some_method'

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
File ...

exec...
File ...

raise...
MyAppError: Some Known Problem

This shows the underlying AttributeError exception. This may be an implementation

detail that’s unhelpful and better left off the printed display of the exception.

The more useful part of the exception (with some details replaced by ...) follows the initial

(and possibly irrelevant) root cause information.

There’s more...
There are a number of internal attributes of an exception. These include __cause__,

__context__, __traceback__, and __suppress_context__. The overall exception context

is in the __context__ attribute. The cause, if provided via a raise from statement, is in

__cause__. The context for the exception is available but can be suppressed from being

printed.

See also
• In the Leveraging exception matching rules recipe, we look at some considerations

when designing exception-handling statements.

• In the Avoiding a potential problem with an except: clause recipe, we look at some

additional considerations when designing exception-handling statements.
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Managing a context using the with statement
There are many instances where our scripts will be entangled with external resources.

The most common examples are disk files and network connections to external hosts. A

common bug is retaining these entanglements forever, tying up these resources uselessly.

These are sometimes called a memory leak because the available memory is reduced each

time a new file is opened without closing a previously used file.

We’d like to isolate each entanglement so that we can be sure that the resource is acquired

and released properly. The idea is to create a context in which our script uses an external

resource. At the end of the context, our program is no longer bound to the resource and

we want to be guaranteed that the resource is released.

Getting ready
Let’s say we want to write lines of data to a file in CSV format. When we’re done, we want

to be sure that the file is closed and the various OS resources—including buffers and file

handles—are released. We can do this in a context manager, which guarantees that the file

will be properly closed.

Since we’ll be working with CSV files, we can use the csv module to handle the details of

the formatting:

>>> import csv

We’ll also use the pathlib module to locate the files we’ll be working with:

>>> from pathlib import Path

For the purposes of having something to write, we’ll use this silly data source:

>>> some_source = [
... [2,3,5],
... [7,11,13],
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... [17,19,23]]

We’ll also need a working directory. In the examples, we’re using data under the current

working directory. We can create this directory using a terminal window command, or we

can create it from within Python:

>>> Path.cwd().mkdir("data", exists=ok=True)

This will give us a context in which to learn about the with statement.

How to do it...
1. Create the context by opening the Path, or creating the network connection with

urllib.request.urlopen(). Other common contexts include creating archives like

zip files and tar files. Here’s the essential context creation for an open file:

>>> target_path = Path.cwd() / "data" / "test.csv"
>>> with target_path.open('w', newline='') as target_file:

2. Include all the processing, indented within the with statement:

>>> target_path = Path.cwd() / "data" / "test.csv"
>>> with target_path.open('w', newline='') as target_file:
... writer = csv.writer(target_file)
... writer.writerow(['column', 'data', 'heading'])
... writer.writerows(some_source)

3. When we use a file as a context manager, the file is automatically closed at the end

of the indented context block. Even if an exception is raised, the file is still closed

properly. Outdent the processing that is done after the context is finished and the

resources are released:

>>> target_path = Path.cwd() / "data" / "test.csv"
>>> with target_path.open('w', newline='') as target_file:
... writer = csv.writer(target_file)
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... _ = writer.writerow(['column', 'data', 'heading'])

... writer.writerows(some_source)
>>> print(f'finished writing {target_path.name}')
finished writing test.csv

The statements outside the with context will be executed after the context is closed. The

named resource — the file opened by target_path.open() — will be properly closed.

(We assign the result of the writerow() method of a writer to the _ variable. This is a trick

required to avoid showing this result. It’s the number 21, telling us how many characters

were written.)

Even if an exception is raised inside the with context, the file is still properly closed. The

context manager is notified of the exception. It can close the file and allow the exception

to propagate.

How it works...
A context manager is notified of three significant events surrounding the indented block of

code:

• Entry to the context

• Normal exit from the context with no exception

• Exit from the context because of an exception

The context manager will—under all conditions—disentangle our program from external

resources. Files can be closed. Network connections can be dropped. Database transactions

can be committed or rolled back. Locks can be released.

We can experiment with this by including a manual exception inside the with statement.

This can show that the file was properly closed:
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>>> try:
... with target_path.open('w', newline='') as target_file:
... writer = csv.writer(target_file)
... _ = writer.writerow(['column', 'data', 'heading'])
... _ = writer.writerow(some_source[0])
... raise Exception("Testing")
... except Exception as exc:
... print(f"{target_file.closed=}")
... print(f"{exc=}")
target_file.closed=True
exc=Exception('Testing')
>>> print(f"finished writing {target_path.name}")
finished writing test.csv

In this example, we’ve wrapped the real work in a try statement. This allows us to raise an

exception after writing the first line of data to the CSV file. Because the exception handling

is outside the with context, the file is closed properly. All resources are released and the

part that was written is properly accessible and usable by other programs.

The output confirms the expected file state:

target_file.closed=True
exc=Exception('Testing')

This shows us that the file was properly closed. It also shows us the message associated

with the exception to confirm that it was the exception we raised manually. This kind

of technique allows us to work with expensive resources like database connections and

network connections and be sure these don’t “leak.”

Resource leak is a common description used when resources are not released properly back

to the OS. It’s as if a pool is slowly drained away, and the application stops working because

there are no more available OS network sockets or file handles. The with statement can be

used to properly disentangle our Python application from OS resources.
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There’s more...
Python offers us a number of context managers. We noted that an open file is a context, as

is an open network connection created by urllib.request.urlopen().

For all file operations, and all network connections, we should always use a with statement

as a context manager. It’s very difficult to find an exception to this rule.

It turns out that the decimal module makes use of a context manager to allow localized

changes to the way decimal arithmetic is performed. We can use the decimal.localcontext()

function as a context manager to change rounding rules or precision for calculations isolated

by a with statement.

We can define our own context managers, also. The contextlib module contains functions

and decorators that can help us create context managers around resources that don’t

explicitly offer them.

When working with locks, the with statement context manager is the ideal way to acquire

and release a lock. See https://docs.python.org/3/library/threading.html#with-l

ocks for the relationship between a lock object created by the threading module and a

context manager.

See also
• See PEP-343 for the origins of the with statement.

• Numerous recipes in Chapter 9, will make use of this technique. The recipes Reading

delimited files with the CSV module, Reading complex formats using regular expressions,

and Reading HTML documents, among others, will make use of the with statement.

https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://www.python.org/dev/peps/pep-0343/
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Join our community Discord space
Join our Python Discord workspace to discuss and find out more about the book:

https://packt.link/dHrHU

https://packt.link/dHrHU


3
Function Definitions

Function definitions are a way to decompose a large problem into smaller problems. Mathe-

maticians have been doing this for centuries. It’s a way to package our Python programming

into intellectually manageable chunks.

We’ll look at a number of function definition techniques in these recipes. This will include

ways to handle flexible parameters and ways to organize the parameters based on some

higher-level design principles.

We’ll also look at the typing module and how we can create more formal type hints for

our functions. Using type hints will prepare our code so we can use tools like mypy to

confirm the data types are used properly throughout a program. Type hints aren’t required,

but they often identify potential inconsistencies, allowing us to write code that prevents

problems.

In this chapter, we’ll look at the following recipes:

• Function parameters and type hints

• Designing functions with optional parameters
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• Using super flexible keyword parameters

• Forcing keyword-only arguments with the * separator

• Defining position-only parameters with the / separator

• Picking an order for parameters based on partial functions

• Writing clear documentation strings with RST markup

• Designing recursive functions around Python’s stack limits

• Writing testable scripts with the script-library switch

Function parameters and type hints
Through a number of Python Enhancement Proposals, type hints have grown in sophisti-

cation. The mypy tool is one way to validate these type hints to be sure the hints and the

code agree. All the examples shown in this book have been checked with the mypy tool.

This extra syntax for the hints is optional. It has limited use at runtime and has no

performance costs.

Getting ready
We’ll need to download and install the mypy tool. Generally, this is done with the following

terminal command:

(cookbook3) % python -m pip install mypy

Using the python -m pip command ensures the pip command will be associated with

the currently active virtual environment. In this example, the prompt shows a virtual

environment named cookbook3.

We can also use the pyright tool to examine type hints.

For an example of type hints, we’ll look at some color computations. The first of these is

extracting the Red, Green, and Blue values from the color codes commonly used in the
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style sheets for HTML pages. There are a variety of ways of encoding the values, including

strings, integers, and tuples. Here are some of the varieties of data types:

• A string of six hexadecimal characters with a leading # , for example, "#C62D42"

• A string of six hexadecimal characters, for example, "C62D42"

• A Python numeric value, for example, 0xC62D42

• A three-tuple of R, G, and B integers, for example, (198, 45, 66)

For strings and numbers, we use the type name directly, str or int. For tuples, we use a

more complicated-looking tuple[int, int, int].

The target is three integer values. A conversion from string or integer to three values

involves two separate steps:

1. If the value is a string, convert to a single integer using the int() function.

2. For single integer values, split the integer into three separate values using the >>

and & operators. This is the core computation for converting a single integer value,

hx_int, into three separate r, g, b values:

r, g, b = (hx_int >> 16) & 0xFF, (hx_int >> 8) & 0xFF, hx_int & 0xFF

A single RGB integer has three separate values that are combined via bit shifting. The

red value was shifted left 16 bits. To extract this component, the value is shifted right 16

bits using the >> operator. The & operator applies 0xff as a “mask” to save only 8 bits of

a potentially larger number. To extract the green component, shift right 8 bits. The blue

value occupies the least-significant 8 bits.

How to do it...
For some functions, it can be easiest to start with a working implementation and add hints.

Here’s how it works:

1. Write the function without any hints:
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def hex2rgb_1(hx_int):
if isinstance(hx_int, str):

if hx_int[0] == "#":
hx_int = int(hx_int [1:], 16)

else:
hx_int = int(hx_int, 16)

r, g, b = (hx_int >> 16) & 0xff, (hx_int >> 8) & 0xff, hx_int &
0xff
return r, g, b

2. Add the result hint. It’s based on the return statement. In this example, the return is

a tuple of three integers, tuple[int, int, int].

3. Add the parameter hints. In this case, we’ve got two alternative types for the pa-

rameter: it can be a string or an integer. In the formal language of the type hints,

this is a union of two types. The parameter can be described as Union[str, int]

or str | int. If Union is used, the definition must be imported from the typing

module.

Combining the hints into a function leads to the following definition:

def hex2rgb(hx_int: int | str) -> tuple[int, int, int]:
if isinstance(hx_int, str):

if hx_int[0] == "#":
hx_int = int(hx_int[1:], 16)

else:
hx_int = int(hx_int, 16)

r, g, b = (hx_int >> 16) & 0xff, (hx_int >> 8) & 0xff, hx_int & 0xff
return r, g, b

How it works...
These type hints have no impact when the Python code is executed. The hints are designed

for people to read and for external tools, like mypy, to verify. A tool can confirm that the

hx_int variable is always used as either an integer or a string.

In the r, g, b = assignment statement, the value for hx_int is expected to be an integer.



Chapter 3 101

The mypy tool can confirm the operators are appropriate for integer values, and the return

type matches the computed types.

We can observe the mypy tool’s analysis of a type by inserting the reveal_type(hx_int)

function into our code. This statement has function-like syntax; it’s only used when

running the mypy tool. We will only see output from this when we run mypy, and we

have to remove this extra line of code before we try to do anything else with the module.

The output looks like this when we run mypy at the shell prompt on the

recipe_01_reveal.py file:

(cookbook3) % mypy src/ch03/recipe_01_reveal.py

src/ch03/recipe_01_reveal.py:15: note: Revealed type is "builtins.int"

Success: no issues found in 1 source file

The output from the reveal_type(hx_int) line tells us mypy is certain the variable will

have an integer value after the first if statement is complete. Once we’ve seen the revealed

type information, we need to delete the reveal_type(hx_int) line from the file.

There’s more...
Let’s look at a related computation. This converts RGB numbers into Hue-Saturation-

Lightness (HSL) values. These HSL values can be used to compute complementary colors.

An additional algorithm required to convert from HSL back into RGB values can help

encode colors for a web page:

• RGB to HSL: We’ll look at this closely because it has complex type hints.

• HSL to complement: There are a number of theories on what the “best” complement

might be. We’ll gloss over the details.

• HSL to RGB: This will be the final step, but we’ll ignore the details of this computation.

We won’t look closely at two of the implementations. They are not horribly complicated,

but these computation details can be a distraction from understanding the types and type

hints. See https://www.easyrgb.com/en/math.php.

https://www.easyrgb.com/en/math.php
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We start by roughing out a definition of the function with a stub definition, like this:

def rgb_to_hsl_t(rgb: tuple[int, int, int]) -> tuple[float, float, float]:
...

This can help us visualize a number of related functions to be sure they all have consistent

types. The other two functions have stubs like these:

def hsl_comp_t(hsl: tuple[float, float, float]) -> tuple[float, float,
float]:

...

def hsl_to_rgb_t(hsl: tuple[float, float, float]) -> tuple[int, int, int]:
...

After writing down this initial list of stub definitions, we can see some type hints are

repeated in slightly different contexts. This suggests we need to create a separate named

type to avoid repetition of the details. We’ll provide a name for the repeated type detail:

from typing import TypeAlias

RGB_a: TypeAlias = tuple[int, int, int]

HSL_a: TypeAlias = tuple[float, float, float]

def rgb_to_hsl(color: RGB_a) -> HSL_a:
...

def hsl_complement(color: HSL_a) -> HSL_a:
...

def hsl_to_rgb(color: HSL_a) -> RGB_a:
...

This overview of the various functions can be helpful for assuring that each function uses
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data in a way that’s consistent with other functions.

The names RGB_a and HSL_a include a suffix of _a to help distinguish these type aliases

from other examples in this recipe. In a practical application, the suffix strings like _a to

show the name is an alias are going to become visual clutter and should be avoided.

As noted in the Using NamedTuples to simplify item access in tuples in Chapter 1, we can

provide a more descriptive set of names for these tuple types:

from typing import NamedTuple

class RGB(NamedTuple):
red: int
green: int
blue: int

We’ve defined a unique, new NamedTuple subclass, called RGB. Using names can help clarify

the intent behind the code.

See also
• The mypy project contains a wealth of information. See https://mypy.readthedo

cs.io for more information on the way type hints work.

• The pyright project is another helpful type hint tool. See https://microsoft.gith

ub.io/pyright for more information.

Designing functions with optional parameters
When we define a function, we often have a need for optional parameters. This allows us

to write functions that are more flexible and easier to read.

We can also think of this as a way to create a family of closely related functions. Each

function has a slightly different collection of parameters – called the signature – but

all sharing the same simple name. This is sometimes called an “overloaded” function.

Within the typing module, an @overload decorator can help create type hints in the more

complicated cases.

https://mypy.readthedocs.io
https://mypy.readthedocs.io
https://microsoft.github.io/pyright
https://microsoft.github.io/pyright
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An example of an optional parameter is the built-in int() function. This function has two

signatures:

• int(str) -> int. For example, the value of int('355') has a value of 355. An

optional base parameter defaults to a value of 10.

• int(str, base) -> int. For example, the value of int('163', 16) is 355. In this

case, the base parameter value is 16.

Getting ready
A great many games rely on collections of dice. The casino game of Craps uses two dice. A

game like Zonk (or Greed or Ten Thousand) uses six dice. It’s handy to have a dice-rolling

function that can handle all of these variations.

How to do it...
We have two approaches to designing a function with optional parameters:

• General to particular: Start by designing the most general solution and provide

defaults for the most common case.

• Particular to general: Start by designing several related functions. We then merge

them into one general function that covers all of the cases, singling out one of the

original functions to be the default behavior.

We’ll look at the particular to general approach first, because it’s often easier to start

with a number of concrete examples.

Particular to general design

Throughout this example, we’ll use slightly different names as the function evolves. This

simplifies unit testing the different versions and comparing them. Here’s how we’ll proceed:

1. Write one game function. We’ll start with the Craps game because it seems to be the

simplest:
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import random

def die() -> int:
return random.randint(1, 6)

def craps() -> tuple[int, int]:
return (die(), die())

We defined a function, die(), to encapsulate a basic fact about standard dice. Five

platonic solids are often used, yielding four-sided, six-sided, eight-sided, twelve-sided,

and twenty-sided dice. The randint() expression assumes a six-sided cube.

2. Write the next game function. We’ll move on to the Zonk game:

def zonk() -> tuple[int, ...]:
return tuple(die() for x in range(6))

We’ve used a generator expression to create a tuple object with a collection of six

dice. We’ll look at generator expressions in depth in Chapter 9.

The generator expression in the body of the zonk() function has a variable, x, which

is required syntax, but the value is ignored. It’s also common to see this written as

tuple(die() for _ in range(6)). The variable _ is a valid Python variable name,

often used when a variable name is required, but is never used.

3. Locate the common features in the craps() and zonk() functions. In this case, we

can refactor the design of the craps() function to follow the pattern set by the

zonk() function. Rather than building exactly two evaluations of the die() function,

we can introduce a generator expression based on range(2) that will evaluate the

die() function twice:

def craps_v2() -> tuple[int, ...]:
return tuple(die() for x in range(2))

Merge the two functions. This will often involve exposing a variable that had



106 Function Definitions

previously been a literal value:

def dice_v2(n: int) -> tuple[int, ...]:
return tuple(die() for x in range(n))

This provides a general function that covers the needs of both the Craps and Zonk

games.

4. Identify the most common use case and make this the default value for any parameters

that were introduced. If our most common simulation was Craps, we might do this:

def dice_v3(n: int = 2) -> tuple[int, ...]:
return tuple(die() for x in range(n))

Now, we can use dice_v3() for the Craps game. We’ll need to use the expression

dice_v3(6) for the first roll of a Zonk game.

5. Check the type hints to be sure they describe the parameters and the return values.

In this case, we have one parameter with an integer value, and the return is a tuple

of integers, described by tuple[int, ...].

Throughout this example, the name evolved from dice() to dice_v2() and then to dice_v3().

This can make it easier to see the differences here in the recipe. Once a final version is

written, it makes sense to delete the others and rename the final versions of these functions

to dice(), craps(), and zonk(). The story of their evolution may become a blog post, but

it doesn’t need to be preserved in the code.

General to particular design

When following the general to particular strategy, we’ll identify all of the needs first. It

can be difficult to foresee all the alternatives, making this more challenging. We’ll often do

this by introducing variables to the requirements:

1. Summarize the requirements for dice-rolling. We might start with a list like this:

• Craps: Two dice
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• First roll in Zonk: Six dice

• Subsequent rolls in Zonk: One to six dice

2. Rewrite the requirements with an explicit parameter in place of any literal value.

We’ll replace all of our numbers with a parameter, 𝑛. This will take on values of 2, 6,

or a value in the range 1 ≤ 𝑛 ≤ 6. We want to be sure we’ve properly parameterized

each of the various functions.

3. Write the function that fits the general pattern:

def dice_d1(n):
return tuple(die() for x in range(n))

In the third case – subsequent rolls in Zonk – we identified a constraint of 1 ≤ 𝑛 ≤ 6,

imposed by the application program to play Zonk.

4. Provide a default value for the most common use case. If our most common simulation

was Craps, we might do this:

def dice_d2(n=2):
return tuple(die() for x in range(n))

5. Add type hints. These will describe the parameters and the return values. In this case,

we have one parameter with an integer value, and the return is a tuple of integers,

described by tuple[int, ...]:

def dice(n: int=2) -> tuple[int, ...]:
return tuple(die() for x in range(n))

Now, we can use this dice() function for Craps. We’ll need to use dice(6) for the first roll

in Zonk.

In this recipe, the name didn’t need to evolve through multiple versions. The name evolution

is only useful in a book for unit testing each example.

This version looks precisely like dice_v2() from the previous recipe. This isn’t an accident
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– the two design strategies often converge on a common solution.

How it works...
Python’s rules for providing parameter values enable several ways to ensure that each

parameter is given an argument value. We can think of the process like this:

1. Where there are default values, set those parameters. Default values make these

optional.

2. For arguments without names – for example, dice(2) – the argument values are

assigned to the parameters by position.

3. For arguments with names – for example, dice(n=2) – the argument values are

assigned to parameters by name.

4. If any parameter still lacks a value, raise a TypeError exception.

The rules also allow us to mix positional values with named values. This make some

parameters optional by providing a default value.

There’s more...
It helps to write functions that are specialized versions of our more generalized function.

These functions can simplify an application:

def craps_v3():
return dice(2)

def zonk_v3():
return dice(6)

Our application features – craps_v3() and zonk_v3() – depend on a general function,

dice().

These form layers of dependencies, saving us from having to understand too many details.

This idea of layered abstractions is sometimes called chunking, a way of managing

complexity by isolating the details.
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See also
• We’ll extend on some of these ideas in the Picking an order for parameters based on

partial functions recipe, later in this chapter.

• We’ve made use of optional parameters that involve immutable objects. In this recipe,

we focused on numbers. In Chapter 4, we’ll look at mutable objects, which have an

internal state that can be changed. In the Avoiding mutable default values for function

parameters recipe, we’ll look at some additional considerations for optional values.

Using super flexible keyword parameters
Some design problems involve solving a simple equation for one unknown when given

enough known values. For example, rate, time, and distance have a simple linear relation-

ship. We can solve for any one when given the other two.

There are three related solutions to 𝑟 × 𝑡 = 𝑑:

• 𝑑 = 𝑟 × 𝑡

• 𝑟 = 𝑑
𝑡

• 𝑡 = 𝑑
𝑟

When designing electrical circuits, for example, a similar set of equations is used based on

Ohm’s law. In that case, the equations tie together resistance, current, and voltage.

In some cases, we want an implementation that can perform any of the three different

calculations based on what’s known and what’s unknown.

Getting ready
We’ll build a single function that can solve a Rate-Time-Distance (RTD) calculation by

embodying all three solutions, given any two known values. With minor variable name

changes, this applies to a surprising number of real-world problems.

We don’t necessarily want a single value as an answer. We can slightly generalize this
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by creating a small Python dictionary with the three values in it; two are given, one is

computed. We’ll look at dictionaries in more detail in Chapter 5.

We’ll use the warnings module instead of raising an exception when there’s a problem:

import warnings

Sometimes, it is more helpful to produce a result that is doubtful than to stop processing.

How to do it...
1. Solve the equation for each of the unknowns. There are three separate expressions:

• distance = rate * time

• rate = distance / time

• time = distance / rate

2. Wrap each expression in an if statement based on one of the values being None

when it’s unknown:

if distance is None:
distance = rate * time

elif rate is None:
rate = distance / time

elif time is None:
time = distance / rate

3. Refer to the Designing complex if...elif chains recipe from Chapter 2, for guidance on

designing these complex if...elif chains. Include a variation of the Else-Raise

option:

else:
warnings.warning("Nothing to solve for")

4. Build the resulting dictionary object:
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return dict(distance=distance, rate=rate, time=time)

5. Wrap all of this as a function using keyword parameters with default values of None.

This leads to parameter types of Optional[float], often stated as float | None. The

return type is a dictionary with string keys, summarized as dict[str, float | None].

It looks like this:

def rtd(
distance: float | None = None,
rate: float | None = None,
time: float | None = None,

) -> dict[str, float | None]:

if distance is None and rate is not None and time is not None:
distance = rate * time

elif rate is None and distance is not None and time is not None:
rate = distance / time

elif time is None and distance is not None and rate is not None:
time = distance / rate

else:
warnings.warn("Nothing to solve for")

return dict(distance=distance, rate=rate, time=time)

The type hints tend to make the function definition so long it has to be spread across five

physical lines of code. The presence of so many optional values is difficult to summarize!

We can use the resulting function like this:

>>> rtd(distance=31.2, rate=6)
{'distance': 31.2, 'rate': 6, 'time': 5.2}

This shows us that going 31.2 nautical miles at a rate of 6 knots will take 5.2 hours.

For a nicely formatted output, we might do this:
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>>> result = rtd(distance=31.2, rate=6)

>>> ('At {rate}kt, it takes '
... '{time}hrs to cover {distance}nm').format_map(result)
'At 6kt, it takes 5.2hrs to cover 31.2nm'

To break up the long string, we used our knowledge from the Designing complex if...elif

chains recipe in Chapter 2.

To make the warning more visible, the warnings module can be used to set a filter that

elevates the warning to an error. Use the expression warnings.simplefilter('error')

to transform warnings into visible exceptions.

How it works...
Because we’ve provided default values for all of the parameters, we can provide argument

values for any two of the three parameters, and the function can then solve for the third

parameter. This saves us from having to write three separate functions.

Returning a dictionary as the final result isn’t essential to this. It’s a handy way to show

inputs and outputs. It allows the function to return a uniform result, no matter which

parameter values were provided.

There’s more...
We have an alternative formulation for this, one that involves more flexibility. Python

functions have an all other keywords parameter, prefixed with **.

We can leverage the flexible keywords parameter and insist that all arguments be provided

as keywords:

def rtd2(**keywords: float) -> dict[str, float | None]:

rate = keywords.get('rate')
time = keywords.get('time')
distance = keywords.get('distance')
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# etc.

The keywords type hint states that all of the values for these parameters will be float

objects. In some rare case, not all of the keyword parameters are the same type; in this

case, some redesign may be helpful to make the types clearer.

This version uses the dictionary get() method to find a given key in the dictionary. If the

key is not present, a default value of None is provided.

The dictionary’s get() method permits a second parameter, the default, which can be

provided instead of None if the key is not present.

This kind of open-ended design has the potential advantage of being much more flexible.

One potential disadvantage is that the actual parameter names are hard to discern, since

they’re not part of the function definition, but instead part of the function’s body. We can

follow the Writing better docstrings with RST markup recipe and provide a good docstring.

It seems much better, though, to provide the parameter names explicitly as part of the

Python code rather than implicitly through documentation.

This has another, and more profound, disadvantage. The problem is revealed in the follow-

ing bad example:

>>> rtd2(distnace=31.2, rate=6)
{'distance': None, 'rate': 6, 'time': None}

This isn’t the behavior we want. The misspelling of “distance” is not reported as a TypeError

exception. The misspelled parameter name is not reported anywhere. To uncover these

errors, we’d need to add some programming to pop items from the keywords dictionary

and report errors on names that remain after the expected names were removed:
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def rtd3(**keywords: float) -> dict[str, float | None]:

rate = keywords.pop("rate", None)
time = keywords.pop("time", None)
distance = keywords.pop("distance", None)
if keywords:

raise TypeError(
f"Invalid keyword parameter: {''.join(keywords.keys())}")

This design will spot spelling errors. The extra processing suggests explicit parameter

names might be better than the flexibility of an unbounded collection of names.

See also
• We look at the documentation of functions in the Writing better docstrings with RST

markup recipe in Chapter 2.

Forcing keyword-only arguments with the *
separator
There are some situations where we have a large number of positional parameters for

a function. Pragmatically, a function with more than about three parameters can be

confusing. A great deal of conventional mathematics seems to focus on one- and two-

parameter functions. There don’t seem to be too many common mathematical operators

that involve three or more operands.

When it gets difficult to remember the required order for the parameters, this suggests

there are too many parameters.

Getting ready
We’ll look at a function to prepare a wind-chill table and write the data to a CSV format

output file. We need to provide a range of temperatures, a range of wind speeds, and

information on the file we’d like to create. This is a lot of parameters.

One formula for the apparent temperature, the wind chill, 𝑇𝑤𝑐 , is this:
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𝑇𝑤𝑐(𝑇𝑎, 𝑉 ) = 13.2 + 0.6215𝑇𝑎 − 11.37𝑉 0.16 + 0.3965𝑇𝑎𝑉 0.16

The wind chill temperature, 𝑇𝑤𝑐 , is based on the air temperature, 𝑇𝑎, in degrees C, and the

wind speed, 𝑉 , in KPH.

For Americans, this requires some conversions:

• Convert the temperature, 𝑇𝑎, from Farenheit, ◦𝐹 , into Celsius, ◦𝐶: 𝑇𝑎 = 5(𝐹−32)
9 .

• Convert windspeed, 𝑉 , from MPH, 𝑉𝑚𝑝ℎ, into KPH: 𝑉 = 1.609344𝑉𝑚𝑝ℎ.

• The result, 𝑇𝑤𝑐 , needs to be converted from ◦𝐶 back to ◦𝐹 : 𝐹 = 32 + 9𝑇𝑤𝑐
5 .

We won’t fold these American conversions into the solution. We’ll leave this as an exercise

for you.

The function to compute the wind-chill temperature, T_wc() looks like this:

def T_wc(T: float, V: float) -> float:
return 13.12 + 0.6215*T - 11.37*V**0.16 + 0.3965*T*V**0.16

This function has an unusual name, T_wc(). We’ve matched the formal definition of 𝑇𝑤𝑐 ,

rather than enforcing the PEP-8 rule of beginning function names with a lowercase letter.

In this case, it seems better to stick with names used in the literature, rather than imposing

a name based on language conventions.

One approach to creating a wind-chill table is to create something like this:

import csv
from typing import TextIO

def wind_chill(
start_T: int, stop_T: int, step_T: int,
start_V: int, stop_V: int, step_V: int,
target: TextIO

) -> None:
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"""Wind Chill Table."""
writer= csv.writer(target)
heading = ['']+[str(t) for t in range(start_T, stop_T, step_T)]
writer.writerow(heading)
for V in range(start_V, stop_V, step_V):

row = [float(V)] + [
T_wc(T, V)
for T in range(start_T, stop_T, step_T)

]
writer.writerow(row)

Before we get to the design problem, let’s look at the essential processing. We expect the

function using this will have opened an output file using the with context. This follows

the Managing a context using the with statement recipe in Chapter 2. Within this context,

we’ve created a write for the CSV output file. We look at this in more depth in Chapter 11.

The value for the heading variable includes a list literal and a comprehension that builds a

list. We look at lists in Chapter 4. We look at comprehensions and generator expressions in

Chapter 9.

Similarly, each row of the table is built by an expression that combines a single float value

with a list comprehension. The list consists of values computed by the wind-chill function,

T_wc(). We provide the wind velocity, V, based on the row in the table. We also provide a

temperature, T, based on the column in the table.

The wind_chill() function’s overall definition presents a problem: the wind_chill()

function has seven distinct positional parameters. When we try to use this function, we

wind up with code like the following:

>>> from pathlib import Path
>>> p = Path('data/wc1.csv')
>>> with p.open('w',newline='') as target:
... wind_chill(0, -45, -5, 0, 20, 2, target)

What are all those numbers? Is there something we can do to help explain the purposes

behind all those numbers?
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How to do it...
When we have a large number of parameters, it helps to require the use of keyword

arguments instead of positional arguments. We can use the * as a separator between two

groups of parameters.

For our example, the resulting function definition has the following stub definition:

def wind_chill_k(
*,
start_T: int, stop_T: int, step_T: int,
start_V: int, stop_V: int, step_V: int,
target: Path

) -> None:

Let’s see how it works in practice with different kinds of parameters:

1. When we try to use the confusing positional parameters, we’ll see this:

>>> wind_chill_k(0, -45, -5, 0, 20, 2, target)
Traceback (most recent call last):
...
TypeError: wind_chill_k() takes 0 positional arguments but 7 were
given

2. We must use the function with explicit parameter names, as follows:

>>> p = Path('data/wc2.csv')
>>> with p.open('w', newline='') as output_file:
... wind_chill_k(start_T=0, stop_T=-45, step_T=-5,
... start_V=0, stop_V=20, step_V=2,
... target=output_file)

This use of mandatory keyword parameters forces us to write a longer, but clearer, statement

each time we use this complicated-seeming function.
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How it works...
The * character, when used as a parameter definition, separates two collections of parame-

ters:

• Before *, we list the argument values that can be either positional or named by

keyword. In this example, we don’t have any of these parameters.

• After *, we list the argument values that must be given with a keyword. For our

example, this is all of the parameters.

The print() function exemplifies this. It has three keyword-only parameters for the output

file, the field separator string, and the line end string.

There’s more...
We can, of course, combine this technique with default values for the various parameters.

We might, for example, make a change to this, thus introducing a single default value:

import sys
from typing import TextIO

def wind_chill_k2(
*,
start_T: int, stop_T: int, step_T: int,
start_V: int, stop_V: int, step_V: int,
target: TextIO = sys.stdout

) -> None:
...

We can now use this function in two ways:

• Here’s a way to print the table on the console, using the default target:

>>> wind_chill_k2(
... start_T=0, stop_T=-45, step_T=-5,
... start_V=0, stop_V=20, step_V=2)

• Here’s a way to write to a file using an explicit target:
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>>> import pathlib
>>> path = pathlib.Path("data/wc3.csv")
>>> with path.open('w', newline='') as output_file:
... wind_chill_k2(target=output_file,
... start_T=0, stop_T=-45, step_T=-5,
... start_V=0, stop_V=20, step_V=2)

We can be more confident in these changes because the parameters must be provided by

name. We don’t have to check carefully to be sure about the order of the parameters.

As a general pattern, we suggest doing this when there are more than three parameters for

a function. It’s easy to remember one or two. Most mathematical operators are unary or

binary. While a third parameter may still be easy to remember, the fourth (and subsequent)

parameter will become very difficult to recall.

See also
• See the Picking an order for parameters based on partial functions recipe for another

application of this technique.

Defining position-only parameters with the /
separator
We can use the / character in the parameter list to separate the parameters into two groups.

Before /, all argument values work positionally. After the / parameter, argument values

may be given positionally, or names may be used.

This should be used for functions where the following conditions are all true:

• A few positional parameters are used (no more than three).

• And they are all required.

• And the order is so obvious that any change might be confusing.

This has always been a feature of the standard library. As an example, the math.sin()

function can only use positional parameters. The formal definition is as follows:
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>>> help(math.sin)
Help on built-in function sin in module math:

sin(x, /)
Return the sine of x (measured in radians).

Even though there’s an x parameter name, we can’t use this name. If we try to, we’ll see

the following exception:

>>> import math
>>> math.sin(x=0.5)
Traceback (most recent call last):
...
TypeError: math.sin() takes no keyword arguments

The x parameter can only be provided positionally. The output from the help() function

provides a suggestion of how the / separator can be used to make this happen.

Getting ready
Position-only parameters are used by some of the internal built-ins; the design pattern can

also be helpful, though, in our functions. To be useful, there must be very few position-only

parameters. Since most mathematical operators have one or two operands, this suggests

one or two position-only parameters can be useful.

We’ll consider two functions for conversion of units from the Fahrenheit system used in

the US and the Centigrade system used almost everywhere else in the world:

• Convert from ◦𝐹 into ◦𝐶: 𝐶 = 5(𝐹−32)
9

• Convert from ◦𝐶 into ◦𝐹 : 𝐹 = 32 + 9𝐶
5

Each of these functions has a single argument, making it a reasonable example for a

position-only parameter.
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How to do it...
1. Define the function:

def F_1(c: float) -> float:
return 32 + 9 * c / 5

2. Add the / parameter separator after the position-only parameters:

def F_2(c: float, /) -> float:
return 32 + 9 * c / 5

For these examples, we put a _1 and _2 suffixes on the function names to make it clear

which definition goes with each step of the recipe. These are two versions of the same

function, and they should have the same name. They’re separated to show the history of

writing the functions; this is not a practical naming convention except when writing a

book where some partially complete functions have their own unit tests.

How it works...
The / separator divides the parameter names into two groups. In front of / are parameters

where the argument values must be provided positionally: named argument values cannot

be used. After the / are parameters where names are permitted.

Let’s look at a slightly more complex version of our temperature conversions:

def C(f: float, /, truncate: bool=False) -> float:
c = 5 * (f - 32) / 9
if truncate:

return round(c, 0)
return c

This function has a position-only parameter named f. It also has the truncate parameter,

which can be provided by name. This leads to three separate ways to use this function, as

shown in the following examples:
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>>> C(72)
22.22222222222222

>>> C(72, truncate=True)
22.0

>>> C(72, True)
22.0

The first example shows the position-only parameter and the output without any rounding.

This is an awkwardly complex-looking value.

The second example uses the named parameter style to set the non-positional parameter,

truncate, to True. The third example provides both argument values positionally.

There’s more...
This can be combined with the * separator to create very sophisticated function signatures.

The parameters can be decomposed into three groups:

• Parameters before the / separator must be given by position. These must be first.

• Parameters after the / separator can be given by position or name.

• Parameters after the * separator must be given by name only. These names are

provided last, since they can never be matched by position.

See also
• See the Forcing keyword-only arguments with the * separator recipe for details on the

* separator.

Picking an order for parameters based on partial
functions
The term partial function is widely used to describe the partial application of a function.

Some of the argument values are fixed, while others vary. We might have a function,
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𝑓 (𝑎, 𝑏, 𝑐), where there are fixed values for 𝑎 and 𝑏. With fixed values, we have a new version

of the function, 𝑓𝑝(𝑐).

When we look at complex functions, we’ll sometimes see a pattern in the ways we use the

function. We might, for example, evaluate a function many times with some argument

values that are fixed by context, and other argument values that are changing with the

details of the processing. Having some fixed argument values suggests a partial function.

Creating a partial function can simplify our programming by avoiding code to repeat the

argument values that are fixed by a specific context.

Getting ready
We’ll look at a version of the haversine formula. This computes distances between two

points, 𝑝1 = (𝑙𝑜𝑛1, 𝑙𝑎𝑡1) and 𝑝2 = (𝑙𝑜𝑛2, 𝑙𝑎𝑡2), on the surface of the Earth:

𝑎 =

√

sin2(
𝑙𝑎𝑡2 − 𝑙𝑎𝑡1

2 ) + cos(𝑙𝑎𝑡1) cos(𝑙𝑎𝑡2) sin2(
𝑙𝑎𝑡2 − 𝑙𝑎𝑡1

2 )

𝑐 = 2 arcsin 𝑎

The essential calculation yields the central angle, 𝑐, between two points. The angle is

measured in radians. We must convert this angle into distance by multiplying by the

Earth’s mean radius in some given units. If we multiply the angle 𝑐 by a radius of 3,959

miles, we’ll convert the angle into miles.

Here’s an implementation of this function:

from math import radians, sin, cos, sqrt, asin

MI = 3959
NM = 3440
KM = 6372
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def haversine(
lat_1: float, lon_1: float,
lat_2: float, lon_2: float, R: float

) -> float:
"""Distance between points.
R is Earth's radius.
R=MI computes in miles. Default is nautical miles.

>>> round(haversine(36.12, -86.67, 33.94, -118.40, R=6372.8), 5)
2887.25995
"""

Δ_lat = radians(lat_2) - radians(lat_1)
Δ_lon = radians(lon_2) - radians(lon_1)
lat_1 = radians(lat_1)
lat_2 = radians(lat_2)
a = sqrt(

sin(Δ_lat / 2) ** 2 +
cos(lat_1) * cos(lat_2) * sin(Δ_lon / 2) ** 2

)
return R * 2 * asin(a)

The doctest example uses an Earth radius with an extra decimal point that’s not used

elsewhere. This example’s output will match other examples found online.

The problem we often have is the value for R rarely changes for a specific context. One

context may use kilometers throughout the application, while another uses nautical miles.

We’d like to impose a context-specific default value like R = NM to get nautical miles in a

given context without having to edit the module.

We’ll look at several common approaches to providing a consistent value for an argument.

How to do it...
In some cases, an overall context will establish a single value for a parameter. The value

will rarely change. The following are three common approaches to providing a consistent

value for an argument:

• Wrap the function in a new function that provides the default value.
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• Create a partial function with the default value. This has two further refinements:

– We can provide defaults as a keyword parameters.

– We can provide defaults as positional parameters.

We’ll look at each of these in separate variations in this recipe.

Wrapping a function

Here’s how we can revise the function, slightly, and create a wrapper:

1. Make some parameters positional and some parameters keywords. We want the

contextual features – the ones that rarely change – to be keywords. The parameters

that change more frequently should be left as positional:

def haversine_k(
lat_1: float, lon_1: float,
lat_2: float, lon_2: float, *, R: float

) -> float:
... # etc.

We can follow the Forcing keyword-only arguments with the * separator recipe.

2. We can then write a wrapper function that will apply all of the positional arguments,

unmodified. It will supply the additional keyword argument as part of the long-

running context:

def nm_haversine_1(*args):
return haversine_k(*args, R=NM)

We have the *args construct in the function declaration to accept all positional

argument values in a single tuple, args. We use a similar-looking *args when

evaluating the haversine() function to expand the tuple into all of the positional

argument values to this function.

In this case, all the types are float. We can use *args: float to provide a suitable hint.

This doesn’t always work out, and this style of handling arguments – while simple-looking
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– can hide problems.

Creating a partial function with keyword parameters

One approach to defining functions that work well as partial function is to use keyword

parameters:

1. We can follow the Forcing keyword-only arguments with the * separator recipe to do

this. We might change the basic haversine function so that it looks like this:

def haversine_k(
lat_1: float, lon_1: float,
lat_2: float, lon_2: float, *, R: float

) -> float:
... # etc.

2. Create a partial function using the keyword parameter:

from functools import partial
nm_haversine_3 = partial(haversine, R=NM)

The partial() function builds a new function from an existing function and a concrete set

of argument values. The nm_haversine_3() function has a specific value for R provided

when the partial was built.

We can use this like we’d use any other function:

>>> round(nm_haversine_3(36.12, -86.67, 33.94, -118.40), 2)
1558.53

We get an answer in nautical miles, allowing us to do boating-related calculations. Having a

fixed value for R=NM leaves the code slightly simpler-looking, and much more trust-worthy.

The possibility of one computation having an incorrect value for R is eliminated.

Creating a partial function with positional parameters

If we try to use partial() with positional arguments, we’re constrained to providing the

leftmost parameter values in the partial definition. This leads us to think of the first few



Chapter 3 127

arguments to a function as candidates for being hidden by a partial function or a wrapper:

1. We need to change the basic haversine function to put the R parameter first. This

makes it slightly easier to define a partial function. Here’s the changed definition:

def p_haversine(
R: float,
lat_1: float, lon_1: float, lat_2: float, lon_2: float

) -> float:
# etc.

2. Create a partial function using the positional parameter:

from functools import partial
nm_haversine_4 = partial(p_haversine, NM)

The partial() function builds a new function from an existing function and a

concrete set of argument values. The nm_haversine_4() function has a specific

value for the first parameter, R, that’s provided when the partial was built.

We can use this like we’d use any other function:

>>> round(nm_haversine_4(36.12, -86.67, 33.94, -118.40), 2)
1558.53

We get an answer in nautical miles, allowing us to do boating-related calculations easily,

The code can use a version of the the haversine() function without the annoying detail of

repeating the R=NM argument value.

How it works...
A partial function is, essentially, identical to a wrapper function. We can build partials

freely in the middle of other, more complex, pieces of a program. Note that creating partial

functions leads to a few additional considerations when looking at the order for positional

parameters:

• If we try to use *args in the wrapper, these must be defined last. All of these
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parameters become anonymous. This anonymity means tools like mypy may have

problems confirming the parameters are being used correctly. The documentation

will not show the necessary details, either.

• The leftmost positional parameters are easiest to provide a value for when creating a

partial function.

• Any keyword-only parameters, defined after the * separator, are also a good choice

to provide as part of a partial definition.

These considerations can lead us to look at the leftmost argument as being a kind of context:

these parameters are expected to change rarely and can be provided more easily by partial

function definitions.

There’s more...
There’s yet another way to wrap a function – we can also build a lambda object. The

following example will also work:

nm_haversine_L = lambda *args: haversine_k(*args, R=NM)

This relies on the haversine_k() function definition, where the R parameter is marked as

keyword-only. Without this clear separation between positional and keyword argument

values, this lambda definition will result in a warning from mypy. If we use the original

haversine() function, the warning tells us that it’s possible for R to get multiple values.

A lambda object is a function that’s been stripped of its name and body. The function

definition is reduced to just two essentials:

• The parameter list, *args, in this example.

• A single expression, which is the result, haversine_k(*args, R=NM). A lambda

cannot have any statements.

The lambda approach makes it difficult to create type hints. This limits its utility. Further,

the PEP-8 recommendations suggest assigning a lambda to a variable should never be done.

https://peps.python.org/pep-0008/
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See also
• We’ll also look at extending this design further in the Writing testable scripts with the

script-library switch recipe.

• For more functional programming techniques, see Functional Python Programming:

https://www.packtpub.com/product/functional-python-programming-3rd-e

dition-third-edition/9781803232577. This has numerous examples of using

lambdas and partial functions.

Writing clear documentation strings with RST
markup
How can we clearly document what a function does? Can we provide examples? Of course

we can, and we really should. In the Including descriptions and documentation recipe in

Chapter 2, and in the Writing better docstrings with RST markup recipe, we looked at some

essential documentation techniques. Those recipes introduced ReStructuredText (RST)

for module docstrings.

We’ll extend those techniques to write RST for function docstrings. When we use a tool such

as Sphinx, the docstrings from our function will become elegant-looking documentation

that describes what our function does.

Getting ready
In the Forcing keyword-only arguments with the * separator recipe, we looked at a function

to compute wind-chill, given the temperature and wind-speed.

In the recipe, we’ll show several versions of the function with trailing _0 in the name.

Pragmatically, this name change is not a good idea. For the purposes of making the

evolution of this function clear in this book, however, it seems helpful to give each new

variant a distinct name.

We need to annotate this function with some more complete documentation.

https://www.packtpub.com/product/functional-python-programming-3rd-edition-third-edition/9781803232577
https://www.packtpub.com/product/functional-python-programming-3rd-edition-third-edition/9781803232577
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How to do it...
We’ll generally write the following things for a function description:

• Synopsis

• Description

• Parameters

• Returns

• Exceptions

• Test cases

• Anything else that seems meaningful

Here’s how we’ll create documentation for a function. We can apply a similar method to a

method of a class, or even a module.

1. Write the synopsis. A proper subject isn’t required. Don’t write This function

computes...; we can start with Computes.... There’s no reason to overstate the context:

def T_wc_1(T, V):
"""Computes the wind chill temperature."""

To help clarify the evolution of this function’s docstring in this book, we’ve appended

a suffix of _1 to the name.

2. Write the description and provide details:

def T_wc_2(T, V):
"""Computes the wind chill temperature.
The wind-chill, :math:`T_{wc}`,
is based on air temperature, T, and wind speed, V.
"""

In this case, we used a little block of typeset math in our description. The :math:

interpreted text role uses LATEXmath typesetting. Tools like Sphinx can use MathJax

or jsMath to do handle math typesetting.
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3. Describe the parameters. For positional parameters, it’s common to use :param name:

description. Sphinx will tolerate a number of variations, but this is common. For

parameters that must be keywords, it’s common to use :key name: as the prefix to

the description.

def T_wc_3(T: float, V: float):
"""Computes the wind chill temperature
The wind-chill, :math:`T_{wc}`,
is based on air temperature, T, and wind speed, V.

:param T: Temperature in °C
:param V: Wind Speed in kph
"""

4. Describe the return value using :returns::

def T_wc_4(T: float, V: float) -> float:
"""Computes the wind chill temperature
The wind-chill, :math:`T_{wc}`,
is based on air temperature, T, and wind speed, V.

:param T: Temperature in °C
:param V: Wind Speed in kph

:returns: Wind-Chill temperature in °C
"""

5. Identify the important exceptions that might be raised. Use the :raises exception:

markup to define the reasons for the exception. There are several possible variations,

but :raises exception: seems to be popular:

def T_wc_5(T: float, V: float) -> float:
"""Computes the wind chill temperature
The wind-chill, :math:`T_{wc}`,
is based on air temperature, T, and wind speed, V.

:param T: Temperature in °C
:param V: Wind Speed in kph
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:returns: Wind-Chill temperature in °C

:raises ValueError: for wind speeds under 4.8 kph or T above 10°C
"""

6. Include a doctest test case, if possible:

def T_wc(T: float, V: float) -> float:
"""Computes the wind chill temperature
The wind-chill, :math:`T_{wc}`,
is based on air temperature, T, and wind speed, V.

:param T: Temperature in °C
:param V: Wind Speed in kph

:returns: Wind-Chill temperature in °C

:raises ValueError: for wind speeds under 4.8 kph or T above 10°C

>>> round(T_wc(-10, 25), 1)
-18.8

7. Write any additional notes and helpful information. We could add the following to

the docstring:

See https://en.wikipedia.org/wiki/Wind_chill
.. math::

T_{wc}(T_a, V) = 13.2 + 0.6215 T_a - 11.37 V ^ {0.16} + 0.3965
T_a V ^ {0.16}

We’ve included a reference to a Wikipedia page that summarizes wind-chill calcula-

tions and has links to more detailed information.

We’ve also included a .. math:: directive with the LaTeX formula that’s used in

the function. This will often typeset nicely, providing a very readable version of the

code.
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How it works...
For more information on docstrings, see the Including descriptions and documentation recipe

in Chapter 2. While Sphinx is popular, it isn’t the only tool that can create documentation

from the docstring comments. The pydoc utility that’s part of the Python Standard Library

can also produce good-looking documentation from the docstring comments.

The Sphinx tool relies on the core features of RST processing in the Docutils package.

See https://pypi.python.org/pypi/docutils for more information.

The RST rules are relatively simple. Most of the additional features in this recipe leverage the

interpreted text roles of RST. Each of our :param T:, :returns:, and :raises ValueError:

constructs is a text role. The RST processor can use this information to decide on a style

and structure for the content. The style usually includes a distinctive font. The context

might be an HTML definition list format.

There’s more...
In many cases, we’ll also need to include cross-references among functions and classes. For

example, we might have a function that prepares a wind-chill table. This function might

have documentation that includes a reference to the T_wc() function.

Sphinx will generate these cross-references using a special :func: text role:

def wind_chill_table() -> None:
"""Uses :func:`T_wc` to produce a wind-chill
table for temperatures from -30°C to 10°C and
wind speeds from 5kph to 50kph.
"""
... # etc.

We’ve used :func:`Twc` to create a reference from one function in the RST documentation

to another function. Sphinx will turn these into proper hyperlinks.

https://pypi.python.org/pypi/docutils
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See also
• See the Including descriptions and documentation and Writing better docstrings with

RST markup recipes in Chapter 2, for other recipes that show how RST works.

Designing recursive functions around Python’s
stack limits
Some functions can be defined clearly and succinctly using a recursive formula. There are

two common examples of this.

The factorial function has the following recursive definition:

𝑛! =

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

1 if 𝑛 = 0,

𝑛 × (𝑛 − 1)! if 𝑛 > 0.

The recursive rule for computing a Fibonacci number, 𝐹𝑛, has the following definition:

𝐹𝑛 =

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

1 if 𝑛 = 0 ∨ 𝑛 = 1,

𝐹𝑛−1 + 𝐹𝑛−2 if 𝑛 > 1.

Each of these involves a case that has a simple defined value and a case that involves

computing the function’s value, based on other values of the same function.

The problem we have is that Python imposes an upper limit for these kinds of recursive

function evaluations. While Python’s integers can easily compute the value of 1000!, the

stack limit prevents us from computing this casually.

Pragmatically, the filesystem is an example of a recursive data structure. Each directory

contains subdirectories. Recursive function definitions can be used on directory trees. The

cases with defined values come from processing the non-directory files.

We can often refactor a recursive design to eliminate the recursion and replace it with
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iteration. While doing recursion elimination, we’d like to preserve as much of the original

mathematical clarity as possible.

Getting ready
Many recursive function definitions follow the pattern set by the factorial function. This is

sometimes called tail recursion because the recursive case can be written at the tail of the

function body:

def fact_r(n: int) -> int:
if n == 0:

return 1
return n * fact_r(n - 1)

The last expression in the function refers to the same function, but uses a different argument

value.

We can restate this, avoiding the recursion limits in Python.

How to do it...
A tail recursion can also be described as a reduction. We’re going to start with a collection

of values, and then reduce them to a single value:

1. Expand the rule to show all of the details: 𝑛! = 𝑛 × (𝑛 − 1) × (𝑛 − 2) × (𝑛 − 3) ×⋯ × 1.

This helps ensure we understand the recursive rule.

2. Write a loop or generator to create all the values: 𝑁 = {𝑛, 𝑛 − 1, 𝑛 − 2, 𝑛 − 3,… , 1}. In

Python, this can be as simple as range(1, n+1). In some cases, though, we might

have to apply some transformation function to the base values: 𝑁 = {𝑓 (𝑖) ∣ 1 ≤

𝑖 < 𝑛 + 1}. This is a list comprehension; see Building lists – literals, appending, and

comprehensions in Chapter 4.

3. Incorporate the reduction function. In this case, we’re computing a large product,

using multiplication. We can summarize this as ∏1≤𝑥<𝑛+1 𝑥 .

Here’s an implementation in Python:
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def prod_i(int_iter: Iterable[int]) -> int:
p = 1
for x in int_iter:

p *= x
return p

An equivalent function is available in the math module. Rather than write it out as

shown above, we can use from math import prod.

The prod_i() function can be used as follows to compute a factorial value:

>>> prod_i(range(1, 6))
120
>>> fact(5)
120

This works nicely. We’ve optimized the prod_i() function into an iterative function. This

revision avoids the potential stack overflow problems the recursive version suffers from.

Note that the range object is lazy; it doesn’t create a big list object, avoiding the allocation

of a great deal of memory. A range object returns individual values as they are consumed

by the prod_i() function.

How it works...
A tail recursion definition is handy because it’s short and easy to remember. Mathematicians

like this because it can help clarify what a function means.

Many static, compiled languages create optimized code in a manner similar to the technique

we’ve shown here. This works by injecting a special instruction into the virtual machine’s

byte code – or the actual machine code – to re-evaluate the function without creating a

new stack frame. Python doesn’t have this feature. In effect, this optimization transforms a

recursion into a kind of while statement:
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def loop_fact(n: int) -> int:
p = n
while n != 1:

n = n-1
p *= n

return p

The injection of the special byte code instruction will lead to code that runs quickly, without

revealing the intermediate revisions. The resulting instructions will not be a perfect match

for the source text, however, leading to potential difficulties in locating bugs.

There’s more...
Computing the 𝐹𝑛 Fibonacci number involves an additional problem. If we’re not careful,

we’ll compute a lot of values more than once:

To compute 𝐹5 = 𝐹4 + 𝐹3, for example, we’ll evaluate this:

𝐹5 = (𝐹3 + 𝐹2) + (𝐹2 + 𝐹1)

Expanding the definition of 𝐹3 and 𝐹2 shows a number of redundant computations.

The Fibonacci problem involves two recursions. If we write it naively, it might look like

this:

def fibo(n: int) -> int:
if n <= 1:

return 1
else:

return fibo(n-1) + fibo(n-2)

It’s difficult to do a simple mechanical transformation to turn something like this example

into a tail recursion. We have two ways to reduce the computation complexity of this:

• Use memoization

• Restate the problem
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The memoization technique is easy to apply in Python. We can use the @functools.cache

as a decorator. It looks like this:

from functools import cache

@cache
def fibo_r(n: int) -> int:

if n < 2:
return 1

else:
return fibo_r(n - 1) + fibo_r(n - 2)

Adding this decorator will optimize a more complex recursion.

Restating the problem means looking at it from a new perspective. In this case, we can

think of computing all Fibonacci numbers up to and including the desired 𝐹𝑛. We only

want the last value in this sequence. Computing a number of intermediate values can be

reasonably efficient.

Here’s a generator function that does this:

from collections.abc import Iterator

def fibo_iter() -> Iterator[int]:
a = 1
b = 1
yield a
while True:

yield b
a, b = b, a + b

This function is an infinite iteration of Fibonacci numbers. It uses Python’s yield so that it

emits values in a lazy fashion. When a client function uses this iterator, the next number

in the sequence is computed as each number is consumed.

Here’s a function that consumes the values and also imposes an upper limit on the otherwise

infinite iterator:
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def fibo_i(n: int) -> int:
for i, f_i in enumerate(fibo_iter()):

if i == n:
break

return f_i

This function consumes a sequence of values from the fibo_iter() iterator. When the

desired number has been reached, the break statement ends the for statement.

We’ve optimized the recursive solution and turned it into an iteration that avoids the

potential for stack overflow.

See also
• See the Avoiding a potential problem with break statements recipe in Chapter 2.

Writing testable scripts with the script-library
switch
It’s often very easy to create a Python script file. When we provide a script file to Python,

it runs immediately. In some cases, there are no function or class definitions; the script file

is the sequence of Python statements.

These script files are very difficult to test. Additionally, they’re also difficult to reuse. When

we want to build larger and more sophisticated applications from a collection of script files,

we’re often forced to re-engineer a script into one or more functions.

Getting ready
Let’s say that we have a handy implementation of the haversine distance function called

haversine(), and it’s in a file named recipe_11.py.

The file contains the functions and definitions shown in the Picking an order for parameters

based on partial functions in this chapter. This includes a partial function, nm_haversine(),

to compute distances in nautical miles. The script also contains the following top-level

code:
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source_path = Path("data/waypoints.csv")
with source_path.open() as source_file:

reader = csv.DictReader(source_file)
start = next(reader)
for point in reader:

d = nm_haversine(
float(start['lat']),
float(start['lon']),
float(point['lat']),
float(point['lon'])

)
print(start, point, d)
start = point

This Python script opens a file, data/wapypoints.csv, and does some processing on that

file. While this is handy to use, we can’t easily test it.

If we try to import the haversine() function for a unit test, we’ll execute the other parts of

the script. How can we refactor this module so we can import the useful functions without

it printing a display of distances between waypoints in the wapypoints.csv file?

How to do it...
Writing a Python script can be called an attractive nuisance; it’s attractively simple, but

it’s difficult to test effectively. Here’s how we can transform a script into a testable and

reusable library:

1. Identify the statements that do the work of the script. This means distinguishing

between definitions and actions. Statements such as import, def, and class are

definitional – they create objects but don’t take a direct action to compute or produce

the output. Almost all other statements take some action. Because some assignment

statements might be part of type hint definition, or might create useful constants,

the distinction is entirely one of intent.

2. In our example, we have some assignment statements that are more definition than

action. These assignments are analogous to def statements; they only set variables
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that are used later. Here are the generally definitional statements:

from math import radians, sin, cos, sqrt, asin
from functools import partial

MI = 3959
NM = 3440
KM = 6373

def haversine(
lat_1: float, lon_1: float,
lat_2: float, lon_2: float, *, R: float) -> float:

... # etc.

nm_haversine = partial(haversine, R=NM)

The rest of the statements in the module are designed to take an action toward

producing the printed results.

3. Wrap the actions into a function. Try to pick a descriptive name. If there’s no better

name, use main(). In this example the action computes distances, so we’ll call the

function distances().

def distances_draft():
source_path = Path("data/waypoints.csv")
with source_path.open() as source_file:

reader = csv.DictReader(source_file)
start = next(reader)
for point in reader:

d = nm_haversine(
float(start['lat']),
float(start['lon']),
float(point['lat']),
float(point['lon'])

)
print(start, point, d)
start = point

In the above example, we named the function distances_draft() to assure that it’s
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clearly distinct from a more final version. Practically, using distinct names like this

as code evolves toward completion isn’t necessary, unless writing a book where it’s

essential to unit test intermediate steps.

4. Where possible, extract literals and turn them into parameters. This is often a simple

movement of the literal to a parameter with a default value.

def distances(
source_path: Path = Path("data/waypoints.csv")

) -> None:
... # etc.

This makes the script reusable because the path is now a parameter instead of an

assumption.

5. Include the following if statement as the only high-level action statements in the

script file:

if __name__ == "__main__":
distances()

We’ve packaged the action of the script as a function. The top-level action script is now

wrapped in an if statement so that it isn’t executed during import but is executed when

the script is run directly.

How it works...
An important rule for Python is that an import of a module is essentially the same as

running the module as a script. The statements in the file are executed, in order, from top

to bottom.

When we import a file, we’re generally interested in executing the def and class state-

ments. We might be interested in some assignment statements that define useful globals.

Sometimes, we’re not interested in executing the main program.

When Python runs a script, it sets a number of built-in special variables. One of these is
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__name__. This variable has two different values, depending on the context in which the

file is being executed:

• The top-level script, executed from the command line: In this case, the value of the

built-in special name of __name__ is set to "__main__".

• A file being executed because of an import statement: In this case, the value of

__name__ is the name of the module being created from reading the file and executing

the Python statements.

The standard name of "__main__" may seem a little odd at first. Why not use the filename

in all cases? This special name is assigned because a Python script can be read from one of

many sources. It can be a file. Python can also be read from the stdin pipeline, or it can be

provided on the Python command line using the -c option.

There’s more...
We can now build useful work around a reusable library. We might make an application

script file that look like this:

from pathlib import Path
from ch03.recipe_11 import distances

if __name__ == "__main__":
for trip in 'trip_1.csv', 'trip_2.csv':

distances(Path('data') / trip)

The goal is to decompose a practical solution into two collections of features:

• The definition of classes and functions

• A very small action-oriented script that uses the definitions to do useful work

We often start with a script that conflates both sets of features. This kind of script can

be viewed as a spike solution. Our spike solution can evolve toward a more refined

solution as soon as we’re sure that it works. A spike or piton is a piece of removable

mountain-climbing gear that enables us to climb safely.
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After starting with a spike, we can elevate our design and refactor the code into definitions

and actions. Tests can then import the module to test the various definitions without taking

actions that might overwrite important files.

See also
• In Chapter 7, we look at class definitions. These are another kind of widely used

definitional statement, in addition to function definitions.

• The Reading delimited files with the CSV module recipe that we look at in Chapter 11

also addresses CSV file reading.

Join our community Discord space
Join our Python Discord workspace to discuss and find out more about the book:

https://packt.link/dHrHU

https://packt.link/dHrHU


4
Built-In Data Structures Part
1: Lists and Sets

Python has a rich collection of built-in data structures. These data structures are sometimes

called “containers” or “collections” because they contain a collection of individual items.

These structures cover a wide variety of common programming situations.

We’ll look at an overview of the various collections that are built in and what problems

they solve. After the overview, we will look at the list and set collections in detail.

The built-in tuple and string types were part of Chapter 1, Numbers, Strings, and Tuples.

These structures are sequences, making them similar in many ways to the list collection.

However, strings and tuples seem to have more in common with immutable numbers.

The next chapter, Chapter 5, will look at dictionaries, as well as some more advanced topics

also related to lists and sets. In particular, it will look at how Python handles references to

mutable collection objects. This has consequences in the way functions need to be defined

that accept lists or sets as parameters.
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In this chapter, we’ll look at the following recipes, all related to Python’s built-in data

structures:

• Choosing a data structure

• Building lists – literals, appending, and comprehensions

• Slicing and dicing a list

• Shrinking lists – deleting, removing, and popping

• Writing list-related type hints

• Reversing a copy of a list

• Building sets – literals, adding, comprehensions, and operators

• Shrinking sets – remove(), pop(), and difference

• Writing set-related type hints

Choosing a data structure
Python offers a number of built-in data structures to help us work with collections of data.

It can be confusing to match the data structure features with the problem we’re trying to

solve.

How do we choose which structure to use?

Getting ready
Before we put data into a collection, we’ll need to consider how we’ll gather the data, and

what we’ll do with the collection once we have it. One big question is how to identify a

particular item within the collection. Python offers a variety of choices.

How to do it...
1. Is the programming focused on the existence of a value? An example of this is

validating an input value. When the user enters something that’s in a collection,
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their input is valid; otherwise, the entry is invalid. Simple membership tests suggest

using a set:

def confirm() -> bool:
yes = {"yes", "y"}
no = {"no", "n"}
while (answer := input("Confirm: ")).lower() not in (yes | no):

print("Please respond with yes or no")
return answer in yes

A set holds items in no particular order. If order matters, then a list is more appropri-

ate.

2. Are we going to identify items by their position in the collection? An example

includes the lines in an input file—the line number is its position in the collection.

When we identify an item using an index or position, we must use a list:

>>> month_name_list = ["Jan", "Feb", "Mar", "Apr",
... "May", "Jun", "Jul", "Aug",
... "Sep", "Oct", "Nov", "Dec"]
>>> month_name_list[8]
'Sep'
>>> month_name_list.index("Feb")
1

We have created a list, month_name_list, with 12 string items in a specific order.

We can pick an item by providing the index position. We can also use the index()

method to return the index position of an item in the list. List index values in Python

always start with zero. While a list has a simple membership test, the test can be

slow for a very large list, and a set might be a better idea if many such tests will be

needed.

If the number of items in the collection is fixed—for example, RGB colors have three

values—this suggests a tuple instead of a list. If the number of items will grow and

change, then the list collection is a better choice than the tuple collection.

3. Are we going to identify the items in a collection by a key value that’s distinct
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from the item’s index? An example might include a mapping between strings of

characters—words, for example—and integers that represent the frequencies of those

words. Another example might be a mapping between a color name and the RGB

tuple for that color. We’ll look at mappings and dictionaries in Chapter 5, Built-In

Data Structures Part 2: Dictionaries. The important distinction is mappings do not

locate items by a numerical index position the way lists do.

4. Consider the mutability of items in a set collection (and the keys in a dictionary).

Each item in a set must be an immutable object. Numbers, strings, and tuples are all

immutable and can be collected into sets. Since list, dictionary, and set objects are

mutable, they can’t be used as items in a set. It’s impossible to build a set of list

objects, for example.

Rather than create a set of list items, we can transform each item into an immutable

tuple object. Similarly, dictionary keys must be immutable. We can use a number,

a string, or a tuple as a dictionary key. We can’t use a list, or a set, or any other

mutable object as a dictionary key.

How it works...
Each of Python’s built-in collections offers a specific set of unique features. The collections

also offer a large number of overlapping features. The challenge for programmers new to

Python is to map the unique features of each collection to the problem they are trying to

solve.

The collections.abc module provides a kind of road map through the built-in container

classes. This module defines the Abstract Base Classes (ABCs) underlying the concrete

classes we use. We’ll use the names from this set of definitions to guide us through the

features.

From the ABCs, we can see that there are places for a total of three general kinds of

collections with six implementation choices:

• Set: Its unique feature is that items are either members or not. This means duplicates
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are ignored:

– Mutable set: The built-in set collection

– Immutable set: The built-in frozenset collection

• Sequence: Its unique feature is that items are provided with an index position:

– Mutable sequence: The built-in list collection

– Immutable sequence: The built-in tuple collection. This is the subject of

some recipes in Chapter 1.

• Mapping: Its unique feature is that each item has a key that refers to a value:

– Mutable mapping: The built-in dict collection. This is the subject of Chap-

ter 5.

– Immutable mapping: Interestingly, there’s no built-in frozen mapping.

Python’s libraries offer additional implementations of these core collection types. The

collections module include:

• namedtuple: A tuple that offers names for each item in a tuple. It’s slightly clearer

to use rgb_color.red than rgb_color[0].

• deque: A double-ended queue. It’s a mutable sequence with optimizations for pushing

and popping from each end. We can do similar things with a list, but deque is more

efficient when changes at both ends are needed.

• defaultdict: A dict that can provide a default value for a missing key.

• Counter: A dict that is designed to count occurrences of a key. This is sometimes

called a multiset or a bag.

• ChainMap: A dict that combines several dictionaries into a single mapping.

Additionally, there’s an older OrderedDict class. This class retains the keys in the order

in which they were created. Starting with Python 3.7, the dictionary keys for an ordinary
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dictionary are retained in the order they were created, making the OrderedDict class

redundant.

There’s more...
There’s still more in the Python Standard Library. We can also use the heapq module, which

defines a kind of list that acts as a high-performance priority queue. The bisect module

includes methods for searching a sorted list very quickly. This lets us create a list object,

which can have performance that is a little closer to the very fast lookups of a dictionary.

We can find descriptions of data structures on summary web pages, like this one: https:

//thealgorist.com. We’ll take a quick look at four additional families of data structures:

• Arrays: The Python array module supports densely packed arrays of values. The

numpy module also offers very sophisticated array processing.

• Trees: Generally, tree structures can be used to create sets, sequential lists, or key-

value mappings. We can look at a tree as an implementation technique for building

sets or dictionaries. We often build tree structures using objects and class definitions.

• Hashes: Python uses hashes to implement dictionaries and sets. This leads to good

speed but potentially large memory consumption.

• Graphs: Python doesn’t have a built-in graph data structure. However, we can

easily represent a graph structure with a dictionary where each node has a list

of adjacent nodes. External libraries like NetworkX, Pyoxigraph, and RDFLib

support sophisticated graph databases.

We can—with a little cleverness—implement almost any kind of data structure in Python.

While it’s often the case that the built-in structures have the essential we may be able to

locate a built-in structure that can be pressed into service. We’ll look at mappings and

dictionaries in Chapter 5, Built-In Data Structures Part 2: Dictionaries.

See also
• For high-performance array processing, see https://numpy.org.

https://thealgorist.com
https://thealgorist.com
https://numpy.org
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• For advanced graph analysis, see https://networkx.github.io.

• For graph manipulation and storage, see htthttps://pyoxigraph.readthedocs.i

o/en/stable/.

• For graph manipulation, see htthttps://rdflib.readthedocs.io/en/stable/.

Building lists – literals, appending, and
comprehensions
If we’ve decided to create a collection based on each item’s position in the container—a

list—we have several ways of building this structure. We’ll look at a number of ways we

can assemble a list object from the individual items.

In some cases, we’ll need a list because it allows duplicate values, unlike a set. This is

common in statistical work. A different structure, called a multiset, can also be useful for a

statistically oriented collection that permits duplicates. This collection is available in the

standard library as collections.Counter.

Getting ready
Let’s say we need to do some statistical analyses of some file sizes. Here’s a short script

that will provide us with the sizes of some files:

>>> from pathlib import Path
>>> home = Path.cwd() / "data"
>>> for path in sorted(home.glob('*.csv')):
... print(path.stat().st_size, path.name)
260 binned.csv
250 ch14_r03.csv
2060 ch14_r04.csv
45 craps.csv
225 fuel.csv
156 fuel2.csv
28 output.csv
19760 output_0.csv
19860 output_1.csv
19645 output_2.csv

https://networkx.github.io
htthttps://pyoxigraph.readthedocs.io/en/stable/
htthttps://pyoxigraph.readthedocs.io/en/stable/
htthttps://rdflib.readthedocs.io/en/stable/
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19971 output_3.csv
19588 output_4.csv
...

We’ve used a pathlib.Path object to represent a directory in our filesystem. The glob()

method expands all names that match a given pattern.

We’d like to accumulate a list object that has the various file sizes. From that list, we can

compute the total size and average size.

How to do it...
We have many ways to create list objects:

• Literal: We can create a literal display of a list using a sequence of values surrounded

by [] characters. For example, [1, 2, 3]. Python needs to match an opening [ and

a closing ] to see a complete logical line, so the literal can span physical lines. For

more information, refer to the Writing long lines of code recipe in Chapter 2.

• Conversion function: We can convert some other data collection into a list using

the list() function.

• Append method: We have list methods that allow us to build a list one item at

a time. These methods include append(), extend(), and insert(). We’ll look at

the append() method in the Building a list with the append() method section of this

recipe.

• Comprehension: A comprehension is a specialized generator expression that com-

putes a list from a source object. We’ll look at this in detail in the Writing a list

comprehension section of this recipe.

The first two ways to create a list are single Python expressions. The last two are more

complex, and we’ll show recipes for each of them.

Building a list with the append() method

1. Create an empty list using literal syntax, [], or the list() function:
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>>> file_sizes = []

2. Iterate through some source of data. Append the items to the list using the append()

method:

>>> home = Path.cwd() / "data"
>>> for path in sorted(home.glob('*.csv')):
... file_sizes.append(path.stat().st_size)

>>> print(file_sizes)
[260, 250, 2060, 45, 225, 156, 28, 19760, 19860, 19645, 19971, 19588,
19999, 20000, 20035, 19739, 19941, 215, 412, 28, 166, 0, 1810, 0, 0,
16437, 20295]
>>> print(sum(file_sizes))
240925

When we print the list, Python displays it in literal notation. This is handy if we ever need

to copy and paste the list into another script.

It’s very important to note that the append() method does not return a value. The append()

method mutates the list object, and does not return anything.

Writing a list comprehension

The goal of a list comprehension is to create an object that occupies the syntax role of a

literal:

1. Write the wrapping [] brackets that surround the list object to be built.

2. Write the source of the data. This will include the target variable. Note that there’s

no : at the end of the for clause because we’re not writing a complete statement:

[... for path in home.glob('*.csv')]

3. Prefix the for clause with an expression to evaluate to create each value that goes

into the sequence from the value of target variable. Again, since this is only a single

expression, we cannot use complex statements here:
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[path.stat().st_size
for path in home.glob('*.csv')]

Here’s an example of list object construction:

>>> [path.stat().st_size
... for path in sorted(home.glob('*.csv'))]
[260, 250, 2060, 45, 225, 156, 28, 19760, 19860, 19645, 19971, 19588, 19999,
20000, 20035, 19739, 19941, 215, 412, 28, 166, 0, 1810, 0, 0, 16437, 20295]

Now that we’ve created a list object, we can assign it to a variable and do other calculations

and summaries on the data.

The list comprehension is built around a central generator expression, called a compre-

hension in the language manual. The comprehension has two parts: the data expression

clause and a for clause. The data expression clause is evaluated repeatedly, driven by the

variables assigned in the for clause.

We can replace the enclosing [ and ] with the list() function. Using the explicit list()

function had an advantage when we consider the possibility of changing the data structure.

We can easily replace list() with set() or Counter() to make use of the core generator,

but creating a distinct collection type.

How it works...
A Python list object has a dynamic size. The size is adjusted when items are appended

or inserted, or the list is extended with items from another sequence. Similarly, the size

shrinks when items are popped or deleted.

In rare cases, we might want to create a list with a given initial size, and then set the values

of the items separately. We can do this with a list comprehension, like this:

>>> sieve = [True for i in range(100)]

This will create a list with an initial size of 100 items, each of which is True. We might
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need this kind of initialization to implement the Sieve of Eratosthenes algorithm:

>>> sieve[0] = sieve[1] = False
>>> for p in range(100):
... if sieve[p]:
... for n in range(p*2, 100, p):
... sieve[n] = False
>>> prime = [p for p in range(100) if sieve[p]]

The sieve collection has a sequence of True and False values. The index position of each

True is a prime number. Multiples of each prime, 𝑝, starting with 𝑝2, are set to False. The

prime collection is a sequence of values, p for which the expression sieve[p] is True.

There’s more...
A common goal for creating a list object is to be able to summarize it. We can use a

variety of Python functions for this. Here are some examples:

>>> sizes = list(path.stat().st_size
... for path in home.glob('*.csv'))
>>> sum(sizes)
240925
>>> max(sizes)
20295
>>> min(sizes)
0
>>> from statistics import mean
>>> round(mean(sizes), 3)
8923.148

We’ve used the built-in sum(), min(), and max() methods to produce some descriptive

statistics of these document sizes. Which of these index files is the smallest? We want to

know the position of the minimum in the list of values. We can use the index() method

for this:

>>> sizes.index(min(sizes))
1

https://math.libretexts.org/Bookshelves/Combinatorics_and_Discrete_Mathematics/Elementary_Number_Theory_(Raji)/02%3A_Prime_Numbers/2.01%3A_The_Sieve_of_Eratosthenes
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We found the minimum, and then used the index() method to locate the position of that

minimal value.

Other ways to extend a list

We can extend a list object, as well as insert one into the middle or beginning of a list.

We have two ways to extend a list: we can use the + operator or we can use the extend()

method. Here’s an example of creating two lists and putting them together with the +

operator:

>>> home = Path.cwd() / "src"
>>> ch3 = list(path.stat().st_size
... for path in home.glob('ch03/*.py'))
>>> ch4 = list(path.stat().st_size
... for path in home.glob('ch04/*.py'))

>>> len(ch3)
16
>>> len(ch4)
6
>>> final = ch3 + ch4
>>> len(final)
22
>>> sum(final)
34853

We have created a list of sizes of documents with names like Chapter_03/*.py. We

then created a second list of sizes of documents with a slightly different name pattern,

Chapter_04/*.py. We then combined the two lists into a final list.

We can insert a value prior to any particular position in a list. The insert() method accepts

the position of an item; the new value will be before the given position:

>>> p = [3, 5, 11, 13]
>>> p.insert(0, 2)
>>> p
[2, 3, 5, 11, 13]
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>>> p.insert(3, 7)
>>> p
[2, 3, 5, 7, 11, 13]

We’ve inserted two new values into a list object. As with the append() and extend()

methods, the insert() method does not return a value. It mutates the list object.

See also
• Refer to the Slicing and dicing a list recipe for ways to copy lists and pick sublists

from a list.

• Refer to the Shrinking lists – deleting, removing, and popping recipe for other ways to

remove items from a list.

• In the Reversing a copy of a list recipe, we’ll look at reversing a list.

• This article provides some insights into how Python collections work internally:

https://wiki.python.org/moin/TimeComplexity.

When looking at the tables, it’s important to note the expression O(1) means that

the cost is essentially constant. The expression O(𝑛) means the cost grows as the

size of the collection grows.

Slicing and dicing a list
There are many times when we’ll want to pick items from a list. One of the most common

kinds of processing is to treat the first item of a list as a special case. This leads to a kind of

head-tail processing where we treat the head of a list differently from the items in the tail

of a list.

We can use these techniques to make a copy of a list too.

Getting ready
We have a spreadsheet that was used to record fuel consumption on a large sailboat. It has

rows that look like this:

https://wiki.python.org/moin/TimeComplexity
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date engine on fuel height
engine off fuel height

Other notes
10/25/2013 08:24:00 AM 29

01:15:00 PM 27
calm seas – anchor solomon’s island

10/26/2013 09:12:00 AM 27
06:25:00 PM 22

choppy – anchor in jackson’s creek

Table 4.1: Example of sailboat fuel use

In this dataset, fuel is measured by height. This is because a sight-gauge is used, calibrated

in inches of depth. For all practical purposes, the tank is rectangular, so the depth shown

can be converted into volume since we know 31 inches of depth is about 75 gallons.

This example of spreadsheet data is not properly normalized. Ideally, all rows follow the

First Normal Form for data: a row should have identical content, and each cell should

have only atomic values. In this data, there are three subtypes of row:

1. The first row of a three-row group has engine on date, time, and a measurement.

2. The second row of a group has engine off time and a measurement.

3. The third row has some notes that aren’t too useful.

This kind of denormalized data includes the following two problems:

• The .csv file has four rows of headings. (The fourth row is a blank line that’s not

shown here in this nicely formatted book.) This is something the csv module can’t

deal with directly.

• Each day’s travel is spread across three rows. These rows must be combined to make

it easier to compute an elapsed time and the number of inches of fuel used.

We can read the data with a function defined like this:
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import csv
from pathlib import Path

def get_fuel_use(path: Path) -> list[list[str]]:
with path.open() as source_file:

reader = csv.reader(source_file)
log_rows = list(reader)

return log_rows

We’ve used the csv module to read the log details. The object returned by the csv.reader()

function is iterable. In order to collect the items into a single list, we applied the list()

function to the iterable; this creates a list object from the reader.

Each row of the original CSV file is a list. Here’s what the first and last rows look like:

>>> log_rows[0]
['date', 'engine on', 'fuel height']

>>> log_rows[-1]
['', "choppy -- anchor in jackson's creek", '']

For this recipe, we’ll use an extension of a list index expression to slice items from the list

of rows. The slice, like an index expression, follows the list object in [] characters. Python

offers several variations of the slice expression so that we can extract useful subsets of the

list of rows.

How to do it...
1. The first thing we need to do is remove the four lines of headings from the list of

rows. We’ll use two partial slice expressions to divide the list by the fourth row:

>>> head, tail = log_rows[:4], log_rows[4:]
>>> head[0]
['date', 'engine on', 'fuel height']
>>> head[-1]
['', '', '']
>>> tail[0]
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['10/25/13', '08:24:00 AM', '29']
>>> tail[-1]
['', "choppy -- anchor in jackson's creek", '']

We’ve sliced the list into two sections using log_rows[:4] and log_rows[4:]. The

first slice expression selects the first four lines; this is assigned to the head variable.

The second slice expression selects rows from 4 to the end of the list. This is assigned

to the tail variable. These are the rows of the sheet we care about.

2. We’ll use slices with steps to pick the interesting rows. The [start:stop:step]

version of a slice will pick rows in groups based on the step value. In our case, we’ll

take two slices. One slice starts on row zero—the “engine on” lines—and the other

slice starts on row one—the “engine off” lines.

Here’s a slice of every third row, starting with row zero:

>>> pprint(tail[0::3], width=64)
[['10/25/13', '08:24:00 AM', '29'],
['10/26/13', '09:12:00 AM', '27']]

We’ve used the pprint() function from the pprint module to make the output much

easier to read.

There’s additional data in every third row, starting with row one:

>>> pprint(tail[1::3], width=48)
[['', '01:15:00 PM', '27'],
['', '06:25:00 PM', '22']]

3. These two slices can then be zipped together to create a list of pairs:

>>> paired_rows = list(zip(tail[0::3], tail[1::3]))
>>> pprint(paired_rows)
[(['10/25/13', '08:24:00 AM', '29'], ['', '01:15:00 PM', '27']),
(['10/26/13', '09:12:00 AM', '27'], ['', '06:25:00 PM', '22'])]
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This gives us a sequence that consists of pairs of three tuples. This is very close to

something we can work with.

4. Flatten the results:

>>> paired_rows = list(zip(tail[0::3], tail[1::3]))
>>> combined = [a+b for a, b in paired_rows]
>>> pprint(combined)
[['10/25/13', '08:24:00 AM', '29', '', '01:15:00 PM', '27'],
['10/26/13', '09:12:00 AM', '27', '', '06:25:00 PM', '22']]

We’ve used a list comprehension from the Building lists – literals, appending, and

comprehensions recipe to combine the two elements in each pair of rows to create

a single row. This has more properly normalized data describing each leg of the

voyage.

From the resulting list, we can now compute the difference in times to get the running

time for the boat. We can compute the difference in heights to estimate the fuel consumed

during each leg of the journey. This flat list with five useful items—date, time, height, time,

and height—has all the needed data in a single row. It also has a column that will generally

contain an empty string.

How it works...
The slice operator has several different forms:

• [:]: The start and stop are implied. The expression S[:] will create a copy of

sequence S.

• [:stop]: This makes a new list from the beginning to just before the stop index.

• [start:]: This makes a new list from the given start to the end of the sequence.

• [start:stop]: This picks a sublist, starting from the start index and stopping just

before the stop index. Python works with half-open intervals. The start is included,

while the stop index is not included.

• [::step]: The start and stop are implied and include the entire sequence. The
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step—generally not equal to one—means we’ll skip through the list from the start

using the step. For a given step, 𝑠, and a list of size |𝐿|, the index values are 𝑖 ∈ {𝑠 × 𝑛 ∣

𝑛 ∈ ℕ and 0 ≤ 𝑠 × 𝑛 < |𝐿|}.

• [start::step]: The start is given, but the stop is implied. The idea is that the start

is an offset, and the step applies to that offset. For a given start, 𝑎, step, 𝑠, and a list

of size |𝐿|, the index values are 𝑖 ∈ {𝑠 × 𝑛 + 𝑎 ∣ 𝑛 ∈ ℕ and 0 ≤ 𝑠 × 𝑛 + 𝑎 < |𝐿|}.

• [:stop:step]: This is used to prevent processing the last few items in a list. Since

the step is given, processing begins with element zero.

• [start:stop:step]: This will pick elements from a subset of the sequence. Items

prior to start and from stop to the end will not be used.

The slicing technique works for lists, tuples, strings, and any other kind of sequence. Slicing

does not cause the collection to be mutated; rather, slicing will make a copy of some part of

the sequence. The items within the source collection are now shared between collections.

There’s more...
In the Reversing a copy of a list recipe, we’ll look at an even more sophisticated use of slice

expressions.

The copy of a sequence is called a shallow copy because there will be two collections that

each contain references to the same underlying objects. We’ll look at this in detail in the

Making shallow and deep copies of objects recipe.

For this specific example, we have another way of restructuring multiple rows of data into

single rows of data: we can use a generator function. We’ll look at functional programming

techniques online in Chapter 9.

See also
• Refer to the Building lists – literals, appending, and comprehensions recipe for ways

to create lists.

• Refer to the Shrinking lists – deleting, removing, and popping recipe for other ways to
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remove items from a list.

• In the Reversing a copy of a list recipe, we’ll look at reversing a list.

• The pandas package offers some additional ways to work with CSV files.

Shrinking lists – deleting, removing, and popping
There will be many times when we’ll want to remove items from a list collection. We might

delete items from a list, and then process the items that are left over.

Removing unneeded items has a similar effect to using filter() to create a copy that has

only the needed items. The distinction is that a filtered copy will use more memory than

deleting items from a list. We’ll show both techniques for removing unwanted items from

a mutable list.

Getting ready
We have a spreadsheet that is used to record fuel consumption on a large sailboat. See

Table 4.1 for the data.

For more background on this data, refer to the Slicing and dicing a list recipe earlier in this

chapter. The get_fuel_use() function will collect the raw data. It’s important to note that

the structure of this data—each fact spread among three separate rows—is perfectly awful

and requires considerable care to reconstruct something more useful.

Each row of the original CSV file is a list. Each of those lists contains three items. It’s

essential to remove some rows with titles and uninformative data.

How to do it...
We’ll look at several ways to remove items from a list:

• The del statement.

• The remove() method.

• The pop() method.

https://pandas.pydata.org
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• We can also replace items in a list using slice assignment.

The del statement

We can remove items from a list using the del statement. We can provide an object and a

slice to remove a group of rows from the list object. Here’s how the del statement looks:

>>> del log_rows[:4]
>>> log_rows[0]
['10/25/13', '08:24:00 AM', '29']

>>> log_rows[-1]
['', "choppy -- anchor in jackson's creek", '']

The del statement removed the first four rows, leaving behind the rows that we really need

to process. We can then combine these rows and summarize them using the Slicing and

dicing a list recipe.

The remove() method

We can remove items from a list using the remove() method. Given a specific value, this

removes matching items from a list.

We might have a list that looks like this:

>>> row = ['10/25/13', '08:24:00 AM', '29', '', '01:15:00 PM', '27']

We can remove the useless '' item from the list:

>>> row.remove('')
>>> row
['10/25/13', '08:24:00 AM', '29', '01:15:00 PM', '27']

Note that the remove() method does not return a value. It mutates the list in place.

As noted in the Building lists – literals, appending, and comprehensions recipe, the following

code is incorrect:



Chapter 4 165

a = ['some', 'data']
a = a.remove('data')

This is emphatically wrong. This will set a to None.

The pop() method

We can remove items from a list using the pop() method. This removes items from a list

based on their index.

We might have a list that looks like this:

>>> row = ['10/25/13', '08:24:00 AM', '29', '', '01:15:00 PM', '27']

This has a useless '' string in it. We can find the index of the item to pop and then remove

it. The code for this has been broken down into separate steps in the following example:

>>> target_position = row.index('')
>>> target_position
3

>>> row.pop(target_position)
''
>>> row
['10/25/13', '08:24:00 AM', '29', '01:15:00 PM', '27']

Note that the pop() method does two things:

• It mutates the list object to remove an item.

• It also returns the item that was removed.

This combination of mutation and returning a value is rare, making this method distinctive.

Slice assignment

We can replace items in a list by using a slice expression on the left-hand side of the

assignment statement. This lets us replace items in a list. When the replacement is a
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different size, it lets us expand or contract a list. This leads to a technique for removing

items from a list using slice assignment.

We’ll start with a row that has an empty value in position 3. This looks like this:

>>> row = ['10/25/13', '08:24:00 AM', '29', '', '01:15:00 PM', '27']

>>> target_position = row.index('')
>>> target_position
3

We can assign an empty list to the slice that starts at index position 3 and ends just before

index position 4. This will replace a one-item slice with a zero-item slice, removing the

item from the list:

>>> row[3:4] = []
>>> row
['10/25/13', '08:24:00 AM', '29', '01:15:00 PM', '27']

The del statement and methods like remove() and pop() seem to clearly state the intent

to eliminate an item from the collection. The slice assignment can be less clear because it

doesn’t have an obvious method name. It does work well, however, for removing a number

of items that can be described by a slice expression.

How it works...
Because a list is a mutable object, we can remove items from the list. This technique doesn’t

work for tuples or strings, because they are immutable.

We can only remove items with an index that’s present in the list. If we attempt to remove

an item with an index outside the allowed range, we’ll get an IndexError exception.

The following example tries to delete an item with an index of three from a list where the

index values are zero, one, and two:
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>>> row = ['', '06:25:00 PM', '22']

>>> del row[3]
Traceback (most recent call last):
...
IndexError: list assignment index out of range

There’s more...
There are a few places in Python where deleting from a list object may become complicated.

If we use a list object in a for statement, we can’t delete items from the list. Doing so

will lead to unexpected conflicts between the iteration control and the underlying object’s

internal state.

Let’s say we want to remove all even items from a list. Here’s an example that does not

work properly:

>>> data_items = [1, 1, 2, 3, 5, 8, 10,
... 13, 21, 34, 36, 55]

>>> for f in data_items:
... if f % 2 == 0:
... data_items.remove(f)
>>> data_items
[1, 1, 3, 5, 10, 13, 21, 36, 55]

The source list had several even values. The result is clearly not correct; the values of 10

and 36 remained in the list. Why are some even-valued items left in the list?

Let’s look at what happens when processing data_items[5]; it has a value of 8. When the

remove(8) method is evaluated, the value will be removed, and all the subsequent values

will slide forward one position in the list. The 10 value will be moved into position 5, the

position formerly occupied by the 8 value. The iterator control value will advance to the

next position, which will have 13 in it. The 10 value will never be processed.

We have several ways to avoid the skip-when-delete problem:
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• Make a copy of the list:

>>> for f in data_items[:]:
... if f % 2 == 0:
... data_items.remove(f)

• Use a while statement and maintain the index value explicitly:

>>> position = 0
>>> while position != len(data_items):
... f = data_items[position]
... if f % 2 == 0:
... data_items.remove(f)
... else:
... position += 1

We’ve designed a while statement to only increment the position variable if the

value of data_items[position] is odd. If the value is even, then the value is removed,

which also means the other items are moved forward one position in the list; it’s

essential the value of the position variable is left unchanged.

• We can also traverse the list in reverse order. The expression range(len(row)-1, -1, -1)

will produce index descending from -1. This works because negative index values

work forward from the end of the list. The value row[-1] is the last item.

See also
• Refer to the Building lists – literals, appending, and comprehensions recipe for ways

to create lists.

• Refer to the Slicing and dicing a list recipe for ways to copy lists and pick sublists

from a list.

• In the Reversing a copy of a list recipe, we’ll look at reversing a list.
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Writing list-related type hints
The typing module provides a few essential type definitions for describing the contents

of a list object. The primary type definition is list, which we can parameterize with the

types of items in the list. It often looks like list[int].

Getting ready
We’ll look at a list that has two kinds of tuples. Some tuples are simple RGB colors. Other

tuples are RGB colors that are the result of some computations. These are built from float

values instead of integers. We might have a heterogenous list structure that looks like this:

scheme = [
(' Brick_Red', (198, 45, 66)),
(' color1', (198.00, 100.50, 45.00)),
(' color2', (198.00, 45.00, 142.50)),
]

Each item in the list is a two-tuple with a color name, and a tuple of RGB values. The RGB

values are represented as a three-tuple of either integer or float values. This is potentially

difficult to describe with type hints.

We have two related functions that work with this data. The first creates a color code from

RGB values.

The essential rule is to treat each component, red, green, or blue, as an 8-bit number, a

value between 0 and 255. These three are combined by shifting the red value by 16 bits and

shifting the green value by 8 bits. The Python << operator does the necessary bit shifting.

The | operator performs an “or” operation, combining the shifted bits to create a new

integer value.

The hints for this function aren’t very complicated:

def hexify(r: float, g: float, b: float) -> str:
return f'#{int(r) << 16 | int(g) << 8 | int(b):06X}'
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The :06X format specification produces a 6-position hexadecimal value.

An alternative is to treat each color as a separate pair of hex digits with an expression like

f"#{int(r):02X}{int(g):02X}{int(b):02X}". This uses three copies of the :02X format

specification to produce 2-position hexadecimal values for each color component.

When we use this function to create a color string from an RGB number, it looks like this:

>>> hexify(198, 45, 66)
'#C62D42'

The other function, however, is potentially confusing. This function transforms a complex

list of colors into another list with the hexadecimal color codes:

def source_to_hex_0(src):
return [

(n, hexify(*color)) for n, color in src
]

We need to add type hints to be sure this function properly transforms a list of colors from

numeric form into string code form.

We’ve included a _0 suffix on the function name to distinguish it from the examples that

follow. This is not a best practice in general, but we find it helps clarify the code presented

in a book like this.

How to do it...
We’ll start by adding type hints to describe the individual items of the input list, exemplified

by the scheme variable, shown previously:

1. Define the resulting type first. It often helps to focus on the outcomes and work

backward toward the source data required to produce the expected results. In this

case, the result is a list of two-tuples with the color name and the hexadecimal code

for the color. We could describe this as list[tuple[str, str]], but that kind of

summary hides some important details. We prefer to expose the details as follows:
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ColorCode = tuple[str, str]
ColorCodeList = list[ColorCode]

This list can be seen as being homogeneous; each item will match the ColorCode

type definition.

2. Define the source type. In this case, we have two slightly different kinds of color

definitions. While they tend to overlap, they have different origins, and the processing

history is sometimes helpful as part of a type hint:

from typing import Union
RGB_I = tuple[int, int, int]
RGB_F = tuple[float, float, float]
ColorRGB = tuple[str, Union[RGB_I, RGB_F]]
ColorRGBList = list[ColorRGB]

We’ve defined the two integer-based RGB three-tuple as RGB_I, and the float-based

RGB three-tuple as RGB_F. These two alternative types are combined into the ColorRGB

tuple definition. This is a two-tuple; the second element may be an instance of either

the RGB_I type or the RGB_F type. The presence of a Union type means that this list

is heterogenous.

We could also use RGB_I | RGB_F instead of Union[RGB_I, RGB_F].

3. Update the function to include the type hints. The input will be a list like the schema

object, shown previously. The result will be a list that matches the ColorCodeList

type description:

def source_to_hex(src: ColorRGBList) -> ColorCodeList:
return [

(n, hexify(*color)) for n, color in src
]
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How it works...
The list[T] type hint requires a single value, T, to describe all of the object types that can

be part of this list. For homogeneous lists, the type is stated directly. For heterogeneous

lists, a Union must be used to define the various kinds of types that may be present.

The approach we’ve taken breaks type hinting down into two layers:

• A “foundation” layer that describes the individual items in a collection. We’ve defined

three types of primitive items: the RGB_I and RGB_F types, as well as the resulting

ColorCode type.

• A number of “composition” layers that combine foundational types into descriptions

of composite objects. In this case, ColorRGB, ColorRGBList, and ColorCodeList are

all composite type definitions.

Once the types have been named, then the names are used with definition functions, classes,

and methods.

It’s important to define types in stages to avoid long, complex type hints that don’t provide

any useful insight into the objects being processed. It’s good to avoid type descriptions

like this:

list[tuple[str, Union[tuple[int, int, int], tuple[float, float, float]]]]

While this is technically correct, it’s difficult to understand because of its complexity. It

helps to decompose complex types into useful component descriptions.

There’s more...
The type hints assume a single type for each item in the list. The syntax list[T] states

that all items are of type T.

In the case of a heterogeneous list, with a number of distinct types, we need to define a

union of types. We can import the Union type from the typing module. Or we can use | to

provide the alternative types for a list.
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Using a construct like list[RGB_I | RGB_F] describes a list that contains items with a

mixture of types.

See also
• In Chapter 1, the Using NamedTuples to simplify item access in tuples recipe provides

some alternative ways to clarify types hints for tuples.

• The Writing set-related type hints recipe covers this from the view of set types.

Reversing a copy of a list
Some algorithms produce results in a reversed order. It’s common to collect the output in

a list and then reverse the list. As an example, we’ll look at the way numbers converted

into a specific base are often generated from least-significant to most-significant digit. We

generally want to display the values with the most-significant digit first. This leads to a

need to reverse the sequence of digits in a list.

Getting ready
Let’s say we’re doing a conversion among number bases. We’ll look at how a number is

represented in a base, and how we can compute that representation from a number.

Any value, 𝑣, can be defined as a polynomial function of the various digits, 𝑑𝑛, in a given

base, 𝑏. A four-digit number would have ⟨𝑑3, 𝑑2, 𝑑1, 𝑑0⟩ as the sequence of digits.

Note that the order we’re using here is reversed from the usual order of items in a Python

list.

The value, 𝑣, of this sequence of digits is given by the following polynomial:

𝑣 = 𝑑𝑛 × 𝑏𝑛 + 𝑑𝑛−1 × 𝑏𝑛−1 + 𝑑𝑛−2 × 𝑏𝑛−2 +⋯ + 𝑑1 × 𝑏 + 𝑑0

For example, the hexadecimal number 0xBEEF has the following digits: ⟨𝐵 = 11, 𝐸 = 14, 𝐸 =

14, 𝐹 = 15⟩, with base 𝑏 = 16:
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48879 = 11 × 163 + 14 × 162 + 14 × 16 + 15

There are many cases where the base isn’t a consistent power of some number. The ISO

date format, for example, has a mixed base that involves 7 days per week, 24 hours per day,

60 minutes per hour, and 60 seconds per minute.

Instead of 𝑏4, 𝑏3, 𝑏2, 𝑏1 = 𝑏, and 𝑏0 = 1, we have 7 × 24 × 60 × 60, 24 × 60 × 60, 60 × 60, and

60 as the various values used to compute the polynomial.

Given a week number, a day of the week, an hour, a minute, and a second, we can compute

a timestamp of seconds, 𝑡𝑠 , within the given year:

𝑡𝑠 = (((𝑤 × 7 + 𝑑) × 24 + ℎ) × 60 + 𝑚) × 60 + 𝑠

For example:

>>> week = 13
>>> day = 2
>>> hour = 7
>>> minute = 53
>>> second = 19

>>> t_s = (((week*7+day)*24+hour)*60+minute)*60+second
>>> t_s
8063599

This shows how we convert from the given moment into a timestamp. How do we invert

this calculation? How do we get the various fields from the overall timestamp?

We’ll need to use divmod style division. For some background, refer to the Choosing between

true division and floor division recipe.

The algorithm for converting a timestamp in seconds, 𝑡𝑠 , into individual week, day, and

time fields looks like this:
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𝑡𝑚; 𝑠 = ⌊ 𝑡𝑠
60 ⌋; 𝑡𝑠 mod 60

𝑡ℎ; 𝑚 = ⌊ 𝑡𝑚60 ⌋; 𝑡𝑚 mod 60

𝑡𝑑 ; ℎ = ⌊ 𝑡ℎ24 ⌋; 𝑡ℎ mod 24

𝑤; 𝑑 = ⌊ 𝑡𝑑7 ⌋; 𝑡𝑑 mod 7

This has a handy pattern that leads to an implementation. It has the consequence of

producing the values in reverse order:

>>> t_s = 8063599
>>> fields = []
>>> for base in 60, 60, 24, 7:
... t_s, f = divmod(t_s, base)
... fields.append(f)
>>> fields.append(t_s)
>>> fields
[19, 53, 7, 2, 13]

We’ve applied the divmod() function four times to extract seconds, minutes, hours, days,

and weeks from a timestamp, given in seconds. These are in the wrong order. How can we

reverse them?

How to do it...
We have three approaches: we can use the reverse() method, we can use a [::-1] slice

expression, or we can use the reversed() built-in function. Here’s the reverse() method:

>>> fields_copy1 = fields.copy()
>>> fields_copy1.reverse()
>>> fields_copy1
[13, 2, 7, 53, 19]

We made a copy of the original list so that we could keep an unmutated copy to compare

with the mutated copy. This makes it easier to follow the examples. We applied the
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reverse() method to reverse a copy of the list.

This will mutate the list. As with other mutating methods, it does not return a useful value.

It’s incorrect to use a statement like a = b.reverse(); the value of a will always be None.

Here’s a slice expression with a negative step:

>>> fields_copy2 = fields[::-1]
>>> fields_copy2
[13, 2, 7, 53, 19]

In this example, we made a slice [::-1] that uses an implied start and stop, and a step of

-1. This picks all the items in the list in reverse order to create a new list.

The original list is emphatically not mutated by this slice operation. This creates a copy.

Check the value of the fields variable to see that it’s unchanged.

Here’s how we can use the reversed() function to create a reversed copy of a list of values:

>>> fields_copy3 = list(reversed(fields))
>>> fields_copy3
[13, 2, 7, 53, 19]

It’s important to use the list() function in this example. The reversed() function is a

generator, and we need to consume the items from the generator to create a new list.

How it works...
As we noted in the Slicing and dicing a list recipe, the slice notation is quite sophisticated.

Using a slice with a negative step size will create a copy (or a subset) with items processed

in right to left order, instead of the default left to right order.

It’s important to distinguish between these three methods:

• The reverse() method modifies the list object itself. As with methods like append()

and remove(), there is no return value from this method. Because it changes the list,

it doesn’t return a value.
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• The [::-1] slice expression creates a new list. This is a shallow copy of the original

list, with the order reversed.

• The reversed() function is a generator that yields the values in reverse order. When

the values are consumed by the list() function, it creates a copy of the list.

See also
• Refer to the Making shallow and deep copies of objects recipe for more information on

what a shallow copy is and why we might want to make a deep copy.

• Refer to the Building lists – literals, appending, and comprehensions recipe for ways

to create lists.

• Refer to the Slicing and dicing a list recipe for ways to copy lists and pick sublists

from a list.

• Refer to the Shrinking lists – deleting, removing, and popping recipe for other ways to

remove items from a list.

Building sets – literals, adding, comprehensions,
and operators
If we’ve decided to create a collection based on only an item being present—a set—we have

several ways of building this structure. Because of the narrow focus of sets, there’s no

ordering to the items—no relative positions—and items cannot be duplicated. We’ll look at

a number of ways we can assemble a set collection from a source of individual items.

The set operators parallel the operators defined by the mathematics of set theory. These

can be helpful for doing bulk comparisons between sets. We’ll look at these in addition to

the methods of the set class.

Sets have an important constraint: they only contain immutable objects. Informally,

immutable objects have no internal state that can be changed. Numbers are immutable, as

are strings, and tuples of immutable objects. Formally, immutable objects have an internal

hash value, and the hash() function will show this value.
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Here’s how this looks in practice:

>>> a = "string"
>>> hash(a)
... # doctest: +SKIP
4964286962312962439

>>> b = ["list", "of", "strings"]
>>> hash(b)
Traceback (most recent call last):
...
TypeError: unhashable type: 'list'

The value of the a variable is an immutable string, which has a hash value. The b variable,

on the other hand, is a mutable list, and doesn’t have a hash value. We can create sets of

immutable objects like strings, but the TypeError exception will be raised if we try to put

mutable objects into a set.

Getting ready
Let’s say we need to do some analysis of the dependencies among modules in a complex

application. Here’s one part of the available data:

>>> import_details = [
... ('Chapter_12.ch12_r01', ['typing', 'pathlib']),
... ('Chapter_12.ch12_r02', ['typing', 'pathlib']),
... ('Chapter_12.ch12_r03', ['typing', 'pathlib']),
... ('Chapter_12.ch12_r04', ['typing', 'pathlib']),
... ('Chapter_12.ch12_r05', ['typing', 'pathlib']),
... ('Chapter_12.ch12_r06', ['typing', 'textwrap', 'pathlib']),
... ('Chapter_12.ch12_r07', ['typing', 'Chapter_12.ch12_r06',
'Chapter_12.ch12_r05', 'concurrent']),
... ('Chapter_12.ch12_r08', ['typing', 'argparse', 'pathlib']),
... ('Chapter_12.ch12_r09', ['typing', 'pathlib']),
... ('Chapter_12.ch12_r10', ['typing', 'pathlib']),
... ('Chapter_12.ch12_r11', ['typing', 'pathlib']),
... ('Chapter_12.ch12_r12', ['typing', 'argparse'])

Each item in this list names a module and a list of modules that it imports. There are a
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number of questions we can ask about this collection of relationships among modules.

We’d like to compute the short list of dependencies, thereby removing duplicates from this

list.

How to do it...
We have many ways to create set objects:

• Literal: We can create literal display of a set using a sequence of values surrounded

by characters. It looks like this: {value, ... }. Python needs to match the { at the

start of the literal and } at the end of the literal to see a complete logical line, so the

literal can span physical lines. For more information, refer to the Writing long lines

of code recipe in Chapter 2.

Note that we can’t create an empty set with {}; this is an empty dictionary. We must

use set() to create an empty set.

• Conversion function: We can convert some other data collection into a set using

the set() function. We can convert a list of immutable items, or the keys of a dict,

or a tuple of immutable items.

• Add method: The set method add() will add an item to a set. Additionally, sets can

be created by a union() method or the | operator.

• Comprehension: A comprehension is a specialized generator expression that de-

scribes the items in a set using an expression to define membership. We’ll look at

this in detail in the Writing a set comprehension section of this recipe.

The first two ways to create sets are single Python expressions. The last two are more

complex, and we’ll show recipes for each of them.

Building a set with the add method

Our source collection of data is a list with sublists. We want to summarize the items inside

each of the sublists:

1. Create an empty set into which items can be added. Unlike lists, there’s no abbreviated
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syntax for an empty set, so we must use the set() function:

>>> all_imports = set()

2. Write a for statement to iterate through each two-tuple in the import_details

collection. This needs a nested for statement to iterate through each name in the

list of imports in each pair. Use the add() method of the all_imports set to create a

complete set with duplicates removed:

>>> for item, import_list in import_details:
... for name in import_list:
... all_imports.add(name)
>>> all_imports == {'Chapter_12.ch12_r06', 'textwrap',
... 'Chapter_12.ch12_r05', 'pathlib', 'concurrent',
... 'argparse', 'typing'}
True

This result summarizes many lines of details, showing the set of distinct items imported.

Note that the order here is arbitrary and can vary each time the example is executed.

The arbitrary ordering means a doctest example to confirm the correctness of this code

can’t simply show the expected result. See the Handling common doctest issues recipe in

Chapter 15 for more advice on using doctest.

Writing a set comprehension

The goal of a set comprehension is to create an object that occupies a syntax role, similar

to a set literal:

1. Write the wrapping braces that surround the set object to be built:

>>> {}
{}

2. Write the source of the data. This will include the target variable. We have two

nested lists, so we’ll need to use two for clauses. Note that there’s no : at the end of

the for clause because we’re not writing a complete statement:
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>>> {...
... for item, import_list in import_details
... for name in import_list
... }
{Ellipsis}

For now, we’ve written the result of the expression as the special Ellipsis object.

Once we finish this expression, we will replace it with something more useful.

3. Prefix the for clause with the expression to evaluate that creates each value of the

target collection. In this case, we only want the name from the import list within

each pair of items in the overall import details list-of-lists:

>>> names = {name
... for item, import_list in import_details
... for name in import_list}
>>> names == {'Chapter_12.ch12_r06', 'Chapter_12.ch12_r05',
... 'typing', 'concurrent', 'argparse', 'textwrap', 'pathlib'}
True

A set comprehension cannot have duplicates, so this will always have distinct values.

As with the list comprehension, a set comprehension is built around a central generator ex-

pression. The generator expression at the heart of the comprehension has a data expression

clause and a for clause.

We can replace the enclosing { and } syntax with the set() function. Using the explicit

set() function had an advantage when we consider the possibility of changing the data

structure. We can easily replace set() with frozenset(), list(), or Counter().

How it works...
A set is a collection of immutable objects. Each immutable Python object has a hash value,

and these numeric hash codes are used to optimize locating items in a set. We can imagine

the implementation relies on an array of buckets, and the numeric hash value directs us to

a bucket to see if the item is present in that bucket or not.
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Hash values are not necessarily unique. The array of hash buckets is finite, meaning hash

collisions are possible. A collision occurs when two distinct objects both have the same

hash value. This leads to some overhead to handle any collisions.

We can create two integers that will have a hash collision:

>>> import sys
>>> v1 = 7
>>> v2 = 7+sys.hash_info.modulus
>>> v1
7
>>> v2
2305843009213693958

>>> hash(v1)
7
>>> hash(v2)
7

In spite of these two objects having the same hash value, hash collision processing will

keep these two objects separate from each other in a set.

There’s more...
We have several ways to add items to a set:

• The example used the add() method. This works with a single item.

• We can use the union() method. This method is like an operator—it creates a new

result set. It does not mutate either of the operand sets.

• We can use the update() method to update one set with items from another set. This

mutates a set and does not return a value.

For most of these techniques, we’ll need to create a singleton set from the item we’re going

to add. Here are some examples:
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>>> collection = {1}
>>> collection
{1}

>>> item = 3
>>> collection.union({item})
{1, 3}

>>> collection
{1}

In the preceding example, we’ve created a singleton set, {item}, from the value of the item

variable. We then used the union() method to compute a new set, which is the union of

the collection set and the {item} set.

Note that union() creates a new object and leaves the original collection untouched. Here

is yet another alternative that uses the union operator, |:

>>> collection = collection | {item}
>>> collection
{1, 3}

We can also use the update() method to mutate the set:

>>> collection.update({4})
>>> collection
{1, 3, 4}

Methods like update() and add() mutate the set object. Because they mutate the set, they

do not return a value. This is similar to the way methods of the list collection work.

Generally, a method that mutates the collection does not return a value. The only exception

to this pattern is the pop() method, which both mutates the set object and returns the

popped value.

Python has a number of set operators. These are ordinary operator symbols that we can

use in complex set expressions:
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• | for set union, often typeset as 𝐴 ∪ 𝐵

• & for set intersection, often typeset as 𝐴 ∩ 𝐵

• ^ for set symmetric difference, often typeset as 𝐴 △ 𝐵

• - for set subtraction, often typeset as 𝐴 ⧵ 𝐵

See also
• In the Shrinking sets – remove(), pop(), and difference recipe, we’ll look at how we can

update a set by removing or replacing items.

Shrinking sets – remove(), pop(), and difference
Python gives us several ways to remove items from a set collection. We can use the

remove() method to remove a specific item. We can use the pop() method to remove (and

return) an arbitrary item.

Additionally, we can compute a new set using the set intersection, difference, and symmetric

difference operators: &, -, and ^. These will produce a new set that is a subset of a given

input set.

Getting ready
Sometimes, we’ll have log files that contain lines with complex and varied formats. Here’s

a small snippet from a long, complex log:

>>> log = """
... [2016-03-05T09:29:31-05:00] INFO: Processing ruby_block[print IP] action
run (@recipe_files::/home/slott/ch4/deploy.rb line 9)
... [2016-03-05T09:29:31-05:00] INFO: Installed IP: 111.222.111.222
... [2016-03-05T09:29:31-05:00] INFO: ruby_block[print IP] called
...

... (Skipping some details)
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... """

We need to find all of the text similar to IP: 111.222.111.222 in this log. These are IPv4

addresses with 4 numeric fields.

Here’s how we can create a set of matches:

>>> import re
>>> pattern = re.compile(r"IP: \d+\.\d+\.\d+\.\d+")
>>> matches = set(pattern.findall(log))
>>> matches
{'IP: 111.222.111.222'}

The problem we have with this log is extraneous matches. The log file also has text that

looks similar but are dummy or placeholder values we need to ignore. In the full log, we’ll

also find lines containing text like IP: 1.2.3.4, which is a placeholder, not a meaningful

address. It turns out that there is a small set of irrelevant values.

This is a place where set intersection and set subtraction can be very helpful.

How to do it...
1. Create a set of items we’d like to ignore as a set literal:

>>> to_be_ignored = {'IP: 0.0.0.0', 'IP: 1.2.3.4'}

2. Collect all entries from the log. We’ll use the re module for this, as shown earlier.

We’ll see results like the following:

>>> matches = {'IP: 111.222.111.222', 'IP: 1.2.3.4'}

3. Remove items from the set of matches using set subtraction. Here are two examples:

>>> matches - to_be_ignored
{'IP: 111.222.111.222'}
>>> matches.difference(to_be_ignored)
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{'IP: 111.222.111.222'}

Both of these are operators that return new sets as their results. Neither of these will

mutate the underlying set objects.

It turns out the difference() method can work with any iterable collection, including

lists and tuples. While permitted, mixing sets and lists can be confusing, and it can be

challenging to write type hints for them.

We’ll often use these in statements, like this example:

>>> valid_matches = matches - to_be_ignored
>>> valid_matches
{'IP: 111.222.111.222'}

This will assign the resulting set to a new variable, valid_matches, so that we can do the

required processing on this new set.

We can also use the remove() and pop() methods to remove specific items. The remove()

method raises an exception when an item cannot be removed. We can use this behavior to

both confirm that an item is in the set and remove it.

How it works...
A set object tracks membership of items. An item is either in the set or not. We specify the

item we want to remove. Removing an item doesn’t depend on an index position or a key

value.

The set operators permit sophisticated set computations. We can remove any of the items

in one set from a target set computing set difference or set subtraction.

There’s more...
We have several other ways to remove items from a set:

• Inthisexample,weusedthedifference()method and the - operator. The difference()
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method behaves like an operator and creates a new set.

• We can also use the difference_update() method. This will mutate a set in place.

It does not return a value.

• We can remove an individual item with the remove() method.

• We can also remove an arbitrary item with the pop() method. This doesn’t apply to

this example very well because we can’t control which item is popped from a set.

Here’s how the difference_update() method looks:

>>> valid_matches = matches.copy()
>>> valid_matches.difference_update(to_be_ignored)
>>> valid_matches
{'IP: 111.222.111.222'}

We applied the difference_update() method to remove the undesirable items from the

valid_matches set. Since the valid_matches set was mutated, no value is returned. Also,

since the set is a copy, this operation doesn’t modify the original matches set.

We could do something like the following example to use the remove() method. Note that

remove() will raise an exception if an item is not present in the set:

>>> valid_matches = matches.copy()
>>> for item in to_be_ignored:
... if item in valid_matches:
... valid_matches.remove(item)

>>> valid_matches
{'IP: 111.222.111.222'}

We tested to see if the item was in the valid_matches set before attempting to remove it.

Using an if statement is one way to avoid raising a KeyError exception. An alternative is

to use a try: statement to silence the exception that’s raised when an item is not present.

We can also use the pop() method to remove an arbitrary item. This method is unusual
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in that it both mutates the set and returns the item that was removed. However, we can’t

control which item is popped, making it inappropriate for this example.

Writing set-related type hints
The typing module provides a few essential type definitions for describing the contents

of a set object. The primary type definition is set, which we can parameterize with the

types of items in the set. We’ll use set[int] to describe a set composed of integers. This

parallels the Writing list-related type hints recipe.

Getting ready
A dice game like Zonk (also called 10,000 or Greed) requires a random collection of dice to

be grouped into “hands.” While rules vary, there a several patterns for hands, including:

• Three of a kind.

• A “small straight” of five ascending dice (1-2-3-4-5 or 2-3-4-5-6 are the two combina-

tions).

• A “large straight” of six ascending dice.

• An “ace” hand. This has at least one 1 die that’s not part of a three of a kind or

straight.

• Six of a kind. While rare, it’s not impossible.

We’ll use the following class and function definitions to create the hands of dice:

import random

class Die(str, Enum):
d_1 = "\u2680"
d_2 = "\u2681"
d_3 = "\u2682"
d_4 = "\u2683"
d_5 = "\u2684"
d_6 = "\u2685"
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def zonk(n: int = 6) -> tuple[Die, ...]:
faces = list(Die)
return tuple(random.choice(faces) for _ in range(n))

The Die class definition enumerates the six faces of a standard die by providing the Unicode

character with the appropriate value.

When we evaluate the zonk() function, it looks like this.

>>> zonk()

(<Die.d_6: ' '>, <Die.d_1: ' '>, <Die.d_1: ' '>,

<Die.d_6: ' '>, <Die.d_3: ' '>, <Die.d_2: ' '>)

This shows us a hand with two sixes, two ones, a two, and a three. When examining the

hand for patterns, we will often create complex sets of objects.

How to do it...
A function to do analysis of the patterns of dice works by creating a set[Die] object from

the six dice instances. This set reveals a great deal of information:

• When there is one die in the set of unique values, then all six dice have the same

value.

• When there are five distinct dice in the set of unique values, then this could be a

small straight. This requires an additional check to see if the set of unique values is

1-5 or 2-6, which are the two valid small straights.

• When there are six distinct items in the set of unique values, then this must be a

large straight.

• For two unique dice values there will be at least one three of a kind. There may be

a four or five of a kind, but these are scored as a three of a kind and the remaining

dice are non-scoring.

• For three or four unique dice in the set, there may be a three of a kind. More detailed
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analysis of the set is required to see the exact pattern.

We can distinguish many of the patterns by looking at the cardinality of the set of distinct

dice. The remaining distinctions can be made by looking at the pattern of counts. For this,

a collections.Counter object will be useful.

Here’s how to write this set-based analysis:

1. Define the type for each item in the set. In this example, the Die class is the item

class. We’ll work with set[Die] and Counter[Die] types.

2. Create the set object with the unique values from the hand of Die instances. Here’s

how the evaluation function can begin:

import collections

def eval_zonk_6(hand: tuple[Die, ...]) -> str:
assert len(hand) == 6, "Only works for 6-dice zonk."
unique: set[Die] = set(hand)

3. There are two small straight definitions: 1-5 and 2-6:

faces = list(Die)
small_straights = [

set(faces[:-1]), set(faces[1:])
]

We can build these two sets in the body of the analysis function to show how they’re

used. Pragmatically, the value of small_straights should be computed only once.

We can’t build a set of these two set instances because set objects are mutable. We

could build a set of two frozenset objects instead of building a list.

4. Examine the simple cases. The number of distinct elements in the set identifies

several kinds of hands directly:
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if len(unique) == 6:
return "large straight"

elif len(unique) == 5 and unique in small_straights:
return "small straight"

elif len(unique) == 2:
return "three of a kind"

elif len(unique) == 1:
return "six of a kind"

5. When there are three or four distinct values, the patterns can be summarized using

the counts. This pattern of frequency counts can be summarized as a set[int]:

elif len(unique) in {3, 4}:
# 4 unique: wwwxyz (good) or wwxxyz (bad)
# 3 unique: xxxxyz, xxxyyz (good) or xxyyzz (bad)
frequencies: set[int] = set(

collections.Counter(hand).values())

6. For the cases of three or four distinct Die values, these can form a variety of patterns.

If at least one of the Die has a frequency of three or four, that’s a scoring combination.

If nothing else matches and there’s a die showing a one, that’s a minimal score:

if 3 in frequencies or 4 in frequencies:
return "three of a kind"

elif Die.d_1 in unique:
return "ace"

7. Are there any conditions left over? Does this cover all the possible cardinalities of

dice and frequencies of dice? The remaining cases includes collections of pairs and

singletons without any “one” showing. After the above if statement, we can provide

a single return statement to collect all other cases into a single, non-scoring Zonk:

return "Zonk!"

This shows two ways of using sets to evaluate the pattern of a collection of data items.

The first set, set[Die], looked at the overall pattern of unique Die values. The second set,
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set[int], looked at the pattern of frequencies of Die values.

How it works...
The essential property of a set is membership. When we compute a set from a collection of

Die instances, we used the set[Die] type hint to describe this structure.

Similarly, when we look at the distribution of frequencies, there are only a few distinct

patterns. Transforming the counts into a set of values into a collection with the set[int]

type hint described this additional structure.

There’s more...
A set of items that don’t have a single, uniform type is potentially confusing. We can use

set[T1 | T2] to describe a set where items can be any of the types T1 or T2.

Computing the score of the hand of dice depends on which dice were part of the winning

pattern. This means the evaluation function needs to return a more complex result when

the outcome is a three of a kind. To determine the points, there are three cases we need to

consider:

• Which value of the Dice class occurred three or six times. This determines the base

score. Often, 1s are given 1,000 points, and 2 through 6 are given 200 through 600

points.

• It’s possible to roll two triples; this pattern must be distinguished, too. This often

scores 2,000 points, irrespective of the numbers shown.

• For the straights and the “ace” hand, simple fixed scores are assigned. A small straight

might be 1,000 points. A large straight 2,000. A lone 1 might score only 50 points.

We have two separate conditions to identify the patterns of unique values indicating a

three-of-a-kind pattern. The function needs some refactoring to properly identify the

values of the dice occurring three or more times and the values of the dice which were

ignored. We’ve left this additional design as an exercise for the reader.
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See also
• Refer to the Writing list-related type hints recipe in this chapter for more about type

hints for lists.

Join our community Discord space
Join our Python Discord workspace to discuss and find out more about the book:

https://packt.link/dHrHU

https://packt.link/dHrHU




5
Built-In Data Structures Part
2: Dictionaries

Starting with Chapter 4, Built-In Data Structures Part 1: Lists and Sets, we began looking at

Python’s rich collection of built-in data structures. These data structures are sometimes

called “containers” or “collections” because they contain a collection of individual items.

In this chapter, we’ll cover the dictionary structure. A dictionary is a mapping from keys

to values, sometimes called an associative array. It seems sensible to separate mappings

from the two sequences – lists and sets.

This chapter will also look at some more advanced topics related to how Python handles

references to mutable collection objects. This has consequences in the way functions need

to be defined.

In this chapter, we’ll look at the following recipes, all related to Python’s built-in data

structures:

• Creating dictionaries – inserting and updating
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• Shrinking dictionaries – the pop() method and the del statement

• Writing dictionary-related type hints

• Understanding variables, references, and assignment

• Making shallow and deep copies of objects

• Avoiding mutable default values for function parameters

We’ll start with how to create a dictionary.

Creating dictionaries – inserting and updating
A dictionary is one kind of Python mapping. The built-in type dict provides a number of

foundational features. There are some common variations on these features defined in the

collections module.

As we noted in the Choosing a data structure recipe at the beginning of Chapter 4, we’ll

use a dictionary when we have a key that we need to map the key to a given value. For

example, we might want to map a single word to a long, complex definition of the word, or

perhaps map some value to a count of the number of times that value has occurred in a

dataset.

Getting ready
We’ll look at an algorithm for locating the various stages in transaction processing. This

relies on assigning a unique ID to each request and including that ID with each log record

written during the transaction. Because a multi-threaded server may be handling a number

of requests concurrently, the stages for each request’s transaction will be interleaved

unpredictably. Reorganizing the log by request ID helps isolate each transaction.

Here’s a simulated sequence of log entries for three concurrent requests:

[2019/11/12:08:09:10,123] INFO #PJQXB^{}eRwnEGG?2%32U path="/openapi.yaml" method=GET

[2019/11/12:08:09:10,234] INFO 9DiC!B^{}nXxnEGG?2%32U path="/items?limit=x" method=GET

[2019/11/12:08:09:10,235] INFO 9DiC!B^{}nXxnEGG?2%32U error="invalid query"
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[2019/11/12:08:09:10,345] INFO #PJQXB^{}eRwnEGG?2%32U status="200" bytes="11234"

[2019/11/12:08:09:10,456] INFO 9DiC!B^{}nXxnEGG?2%32U status="404" bytes="987"

[2019/11/12:08:09:10,567] INFO >~UL>~PB_R>&nEGG?2%32U path="/category/42" method=GET

The lines are long, and may be wrapped haphazardly to fit within the book’s margins. Each

line has a timestamp. The severity level is INFO for each record shown in the example. The

next string of 20 characters is a transaction ID. This is followed by log information for

unique to a step in the transaction.

The following regular expression defines the log records:

import re
log_parser = re.compile(r"\[(.*?)\] (\w+) (\S+) (.*)")

This pattern captures the four fields of each log entry. For more information on regular

expression, see the String parsing with regular expressions recipe in Chapter 1.

Parsing these lines will produce a sequence of four-tuples. The resulting object looks like

this:

[('2019/11/12:08:09:10,123',
'INFO',
'#PJQXB^{}eRwnEGG?2%32U',
'path="/openapi.yaml" method=GET'),
('2019/11/12:08:09:10,234',
'INFO',
'9DiC!B^{}nXxnEGG?2%32U',
'path="/items?limit=x" method=GET'),

... details omitted ...

('2019/11/12:08:09:10,567',
'INFO',
'>~UL>~PB_R>&nEGG?2%32U',
'path="/category/42" method=GET')]

We need to know how often each unique path is requested. This means ignoring some log
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records and collecting data from the other records. A mapping from the path string to a

count is an elegant way to gather this data. We’ll look at how to implement this in detail.

Later, we’ll look at some alternative implementations in the collections module.

How to do it...
We have a number of ways to build dictionary objects:

• Literal: We can create a display of a dictionary by using a sequence of key/value

pairs surrounded by {} characters. We use a : between a key and the associated

value. Literals look like this: {"num": 355, "den": 113}.

• Conversion function: A sequence of two-tuples can be turned into a dictionary

like this: dict([('num', 355), ('den', 113)]). Each two-tuple becomes a key-

value pair. The keys must be immutable objects like strings, numbers, or tuples of

immutable objects. We can also build dictionaries like this: dict(num=355, den=113).

Each of the parameter names becomes a key. This limits the dictionary keys to strings

that are also valid Python variable names.

• Insertion: We can use the dictionary [key] = value syntax to set or replace a

value in a dictionary. We’ll look at this later in this recipe.

• Comprehensions: Similar to lists and sets, we can write a dictionary comprehension

to build a dictionary from some source of data.

Building a dictionary by setting items

We build a dictionary by creating an empty dictionary and then setting items to it:

1. Create an empty dictionary to map paths to counts. We can also use dict() to create

an empty dictionary. Since we’re going to create a histogram that counts the number

of times a path is used, we’ll call it histogram:

>>> histogram = {}

We can also use the function dict() instead of the literal value {} to create an empty
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dictionary.

2. For each of the log lines, filter out the ones that do not have a value that starts with

path in the item with an index of 3:

>>> for line in log_lines:
... path_method = line[3] # group(4) of the original match
... if path_method.startswith("path"):

3. If the path is not in the dictionary, we need to add it. Once the value of the

path_method string is in the dictionary, we can increment the value in the dictionary,

based on the key from the data:

... if path_method not in histogram:

... histogram[path_method] = 0

... histogram[path_method] += 1

This technique adds each new path_method value to the dictionary. Once it has been

established that the path_method key is in the dictionary, we can increment the value

associated with the key.

Building a dictionary as a comprehension

The last field of each log line had one or two fields inside. There may have been a value

like path="/openapi.yaml" method=GET with two attributes, path and method, or a value

like error="invalid query" with only one attribute, error.

We can use the following regular expression to decompose the final field of each line:

param_parser = re.compile(
r'(\w+)=(".*?"|\w+)'

)

The findall() method of this regular expression will provide a sequence of two-tuples

based on the matching text. We can then build a dictionary from the sequence of matched

groups:
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1. For each of the log lines, apply the regular expression to create a sequence of pairs:

>>> for line in log_lines:
... name_value_pairs = param_parser.findall(line[3])

2. Use a dictionary comprehension to use the first matching group as the key and the

second matching group as the value:

... params = {match[0]: match[1] for match in name_value_pairs}

We can print the params values and we’ll see the dictionaries like the following examples:

{'path': '"/openapi.yaml"', 'method': 'GET'}
{'path': '"/items?limit=x"', 'method': 'GET'}
{'error': '"invalid query"'}

Using a dictionary for the final fields of each log record makes it easier to separate the

important pieces of information.

How it works...
The core feature of a dictionary is a mapping from an immutable key to a value object of

any kind. In the first example, we’ve used an immutable string as the key, and an integer

as the value. We describe it as dict[str, int] in the type hint.

It’s important to understand how the += assignment statement works. The implementation

of += is essentially this:

histogram[customer] = histogram[customer] + 1

The histogram[customer] value is fetched from the dictionary, a new value is computed,

and the result is used to update the dictionary.

It’s essential that dictionary key objects be immutable. We cannot use a list, set, or dictionary

as the key in a dictionary mapping. We can, however, transform a list into an immutable
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tuple, or make a set into a frozenset so that we can use one of these more complex objects

as a key. In the examples shown in this recipe, we had immutable strings as the keys to

each dictionary.

There’s more...
We don’t have to use an if statement to add missing keys. We can use the setdefault()

method of a dictionary instead. It’s even easier to use one of the classes from the collections

module.

Here’s the version using the defaultdict class from the collections module:

>>> from collections import defaultdict

>>> histogram = defaultdict(int)
>>> for line in log_lines:
... path_method = line[3] # group(4) of the match
... if path_method.startswith("path"):
... histogram[path_method] += 1

We’ve created a defaultdict instance that will initialize any unknown key values using

the int() function. We provide int—the function object—to the defaultdict constructor.

The defaultdict instance will evaluate the given function to create default values.

This allows us to use histogram[path_method] += 1. If the value associated with the

path_method key was previously in the dictionary, the value will be incremented and

put back into the dictionary. If the path_method key was not in the dictionary, the int()

function is called with no argument; this default value will be incremented and put into

the dictionary.

The other way we can accumulate frequency counts is by creating a Counter object. We

can build the Counter object from the raw data as follows:

>>> from collections import Counter

>>> filtered_paths = (
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... line[3]

... for line in log_lines

... if line[3].startswith("path")

... )
>>> histogram = Counter(filtered_paths)
>>> histogram
Counter({'path="/openapi.yaml" method=GET': 1, 'path="/items?limit=x"
method=GET': 1, 'path="/category/42" method=GET': 1})

First, we used a generator expression to create an iterator over the filtered path data; this

was assigned to filtered_paths. Then we created a Counter from the source of data; the

Counter class will scan the data and count the distinct occurrences.

See also
• In the Shrinking dictionaries – the pop() method and the del statement recipe, we’ll

look at how dictionaries can be modified by removing items.

Shrinking dictionaries – the pop() method and
the del statement
A common use case for a dictionary is as an associative store: it keeps an association

between key and value objects. This means that we may be doing any of the CRUD

operations on an item in the dictionary:

• Create a new key and value pair.

• Retrieve the value associated with a key.

• Update the value associated with a key.

• Delete the key (and the corresponding value) from the dictionary.

Getting ready
A great deal of processing supports the need to group items around one (or more) different

common values. We’ll return to the log data shown in the Creating dictionaries – inserting
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and updating recipe in this chapter.

We’ll use an iterator algorithm that uses the transaction ID as a key in a dictionary. The

value for this key will be the sequence of steps for the transaction. With a very long log,

we don’t — generally — want to save every transaction in a gigantic dictionary. When we

reach the termination of a transaction’s sequence, we can yield the list of log entries for the

transaction. A function can consume this iterator, processing each batch of transactions

independently.

How to do it...
The context for this recipe will require an if statement with the condition

match := log_parser.match(line). This will apply the regular expression, and collect

the result in the match variable. Given that context, the processing to update or delete from

a dictionary is as follows:

1. This function uses the defaultdict class, and two additional type hints, Iterable

and Iterator:

from collections import defaultdict
from collections.abc import Iterable, Iterator

2. Define a defaultdict object to hold transaction steps. The keys are 20-character

strings. The values are lists of log records. In this case, each log record will have

been parsed from the source text into a tuple of individual strings:

LogRec = tuple[str, ...]

def request_iter_t(source: Iterable[str]) -> Iterator[list[LogRec]]:
requests: defaultdict[str, list[LogRec]] = defaultdict(list)

3. Define the key for each cluster of log entries:

for line in source:
if match := log_parser.match(line):

id = match.group(3)
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4. Update a dictionary item with a log record:

requests[id].append(tuple(match.groups()))

5. If this log record completes a transaction, yield the group as part of a generator

function. Then remove the transaction from the dictionary, since it’s complete:

if match.group(4).startswith('status'):
yield requests[id]
del requests[id]

6. At the end, there may be an non-empty requests dictionary. This reflects a transac-

tion that was in process when the log file was switched.

How it works...
Because a dictionary is a mutable object, we can remove keys from a dictionary. A del

statement will delete both the key and the value object associated with the key. In this

example, the key is removed when the data reveals the transaction is complete. A moder-

ately busy web server handling an average of 10 transactions per second will see 864,000

transactions in a 24-hour period. If there are an average of 2.5 log entries per transaction,

there will be at least 2,160,000 lines in the file.

If we only want to know the elapsed time per resource, we don’t want to keep the entire

dictionary of 864,000 transactions in memory. We’d rather transform the log into an

intermediate summary file for further analysis.

This idea of transient data leads us to accumulate the parsed log lines into a list instance.

Each new line is appended to the appropriate list for the transaction in which the line

belongs. When the final line has been found, the group of lines can be purged from the

dictionary.

There’s more...
In the example, we used the del statement. The pop() method can also be used. The

del statement will raise a KeyError exception if the given item cannot be found in the
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dictionary.

The pop() method would look like this:

requests.pop(id)

This will mutate the dictionary in place, removing the item if it exists, or raising a KeyError

exception.

The pop() method, when provided with a default value, can return the given default value

instead of raising an exception when a key is not found. In either case, the key will no

longer be in the dictionary. Note that this method both mutates the collection and returns

a value.

The popitem() method will remove a key and value pair from the dictionary. The pairs

are returned in Last-In-First-Out (LIFO) order. This means a dictionary is also a kind of

stack.

See also
• In the Creating dictionaries – inserting and updating recipe, we look at how we create

dictionaries and fill them with keys and values.

Writing dictionary-related type hints
When we look at sets and lists, we generally expect each item within a list (or a set) to be

the same type. When we look at object-oriented class designs, in Chapter 7, we’ll see how

a common superclass can be the common type for a closely related family of object types.

While it’s possible to have heterogeneous types in a list or set collection, it often becomes

quite complex to process, requiring the match statement to do proper type matching. A

dictionary, however, can be used to create a discriminated union of types. A particular key

value may be used to define which other keys are present in the dictionary. This means a

simple if statement can discriminate between heterogeneous types.
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Getting ready
We’ll look at two kinds of dictionary type hints, one for homogeneous value types and the

other for heterogeneous value types. We’ll look at data that starts out as one of these kinds

of dictionaries but is transformed to have more complex type definitions.

We’ll be starting with the following CSV file:

date,engine on,fuel height on,engine off,fuel height off
10/25/13,08:24:00,29,13:15:00,27
10/26/13,09:12:00,27,18:25:00,22
10/28/13,13:21:00,22,06:25:00,14

This describes three separate legs of a multi-day trip on a sailboat. The fuel is measured

by the height in the tank, rather than some indirect method using a float or other gauges.

Because the tank is approximately rectangular, 31 inches of depth is about 75 gallons of

fuel.

How to do it...
The initial use of csv.DictReader will lead to dictionaries with homogeneous type defini-

tions:

1. Locate the type of the keys in the dictionary. When reading CSV files, the keys are

strings, with the type str.

2. Locate the type of the values in the dictionary. When reading CSV files, the values

are strings, with the type str.

3. Combine the types using the dict type hint. This yields dict[str, str].

Here’s an example function for reading data from a CSV file:

import csv
from pathlib import Path

def get_fuel_use(source_path: Path) -> list[dict[str, str]]:
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with source_path.open() as source_file:
rdr = csv.DictReader(source_file)
data: list[dict[str, str]] = list(rdr)

return data

The get_fuel_use() function yields values that match the source data. In this case, it’s a

dictionary that maps string column names to string cell values.

This data, by itself, is difficult to work with. A common second step is to apply transforma-

tions to the source rows to create more useful data types. We can describe the results with

a type hint:

1. Identify the various value types that will be needed. In this example, there are five

fields with three different types, shown here:

• The date field is a datetime.date object.

• The engine on field is a datetime.time object.

• The fuel height on field is an integer, but we know that it will be used in a

float context, so we’ll create a float directly.

• The engine off field is a datetime.time object.

• The fuel height off field is also a float value.

2. Import the TypedDict type definition from the typing module.

3. Define the subclass of TypedDict with the new heterogeneous dictionary types:

import datetime
from typing import TypedDict

class History(TypedDict):
date: datetime.date
start_time: datetime.time
start_fuel: float
end_time: datetime.time
end_fuel: float
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This is, in part, a teaser for Chapter 7. It shows a very simple kind of class definition.

In this case, the class is dictionaries with five specific keys, all of which are required

and must have values of the given types.

In this example, we’ve also renamed the fields to make them into names that are valid

Python names. Replacing punctuation with _ is the obvious first step. We also changed a

few because the column names in the CSV file seemed awkward.

The function to perform the transformation can look like the following example:

from collections.abc import Iterable, Iterator

def make_history(source: Iterable[dict[str, str]]) -> Iterator[History]:
for row in source:

yield dict(
date=datetime.datetime.strptime(

row['date'], "%m/%d/%y").date(),
start_time=datetime.datetime.strptime(

row['engine on'], '%H:%M:%S').time(),
start_fuel=float(row['fuel height on']),
end_time=datetime.datetime.strptime(

row['engine off'], '%H:%M:%S').time(),
end_fuel=float(row['fuel height off']),

)

This function consumes instances of the initial dict[str,str] dictionary and creates

instances of the dictionary described by the History class. Here’s how these two functions

work together:

>>> from pprint import pprint

>>> source_path = Path("data/fuel2.csv")
>>> fuel_use = make_history(get_fuel_use(source_path))
>>> for row in fuel_use:
... pprint(row)
{'date': datetime.date(2013, 10, 25),
'end_fuel': 27.0,
'end_time': datetime.time(13, 15),
'start_fuel': 29.0,
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'start_time': datetime.time(8, 24)}
{'date': datetime.date(2013, 10, 26),
'end_fuel': 22.0,
'end_time': datetime.time(18, 25),
'start_fuel': 27.0,
'start_time': datetime.time(9, 12)}
{'date': datetime.date(2013, 10, 28),
'end_fuel': 14.0,
'end_time': datetime.time(6, 25),
'start_fuel': 22.0,
'start_time': datetime.time(13, 21)}

This shows how the output from the get_fuel_use() function can be processed by the

make_history() function to create an iterable sequence of dictionaries. Each of the result-

ing dictionaries has the source data converted to a more useful type.

How it works...
The core type hint for a dictionary names the key type and the value type, in the form

dict[key, value]. The TypedDict class lets us be more specific about bindings between

dictionary keys and a broad domain of values.

It’s important to note that type hints are only checked by programs like mypy. These

hints have no runtime impact. We could, for example, write a statement like the following:

result: History = {'date': 42}

This statement claims that the result dictionary will match the type hints in the History

type definition. The dictionary literal, however, has the wrong type for the 'date' field

and a number of other fields are missing. While this will execute, it will raise errors from

mypy.

Running the mypy program reveals the error as shown in the following listing:

(cookbook3) % python -m mypy src/ch05/recipe_04_bad.py

src/ch05/recipe_04_bad.py:18: error: Missing keys ("start_time", "start_fuel", "

end_time", "end_fuel") for TypedDict "History" [typeddict-item]
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Found 1 error in 1 file (checked 1 source file)

For run-time validation of data, a project like Pydantic can be very helpful.

There’s more...
One of the common cases for heterogeneity in dictionary keys is optional items. The type

hint Optional[str] or str | None describes this. This is rarely needed with a dictionary,

since it can be simpler to omit the key-value pair entirely.

Let’s assume we need two variants of the History type:

• The variant shown earlier in this recipe, where all fields are present.

• Two “incomplete” records, one without an engine off time and ending fuel height,

and another variant without an engine on time or starting fuel height. These two

records might be used for an overnight passage under power.

In this case, we might need to use the NotRequired annotation for these fields. The resulting

class definition would look like this:

from typing import TypedDict, NotRequired

class History2(TypedDict):
date: datetime.date
start_time: NotRequired[datetime.time]
start_fuel: NotRequired[float]
end_time: NotRequired[datetime.time]
end_fuel: NotRequired[float]

This record permits a great deal of variability in the dictionary values. It requires the use

of if statements to determine the mix of fields present in the data. Furthermore, it also

requires somewhat more clever processing in the make_history() function to create these

variant records based on empty columns in the CSV file.

There are some parallels between TypedDict and the NamedTuple type definitions. Chang-

ing TypedDict to NamedTuple will create a named tuple class instead of a typed dictionary

class.

https://docs.pydantic.dev/2.7/
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Because a NamedTuple class has an _asdict() method, it’s possible to produce a dictionary

that matches the TypedDict structure from a named tuple.

A dictionary that matches the TypedDict hint is mutable. A subclass of NamedTuple,

however, is immutable. This is one central difference between these two type hints. More

importantly, a dictionary uses row['date'] syntax to refer to one item using the key

'date'. A named tuple uses row.date syntax to refer to one item using a name.

See also
• The Using NamedTuples to simplify item access in tuples recipe provides more details

on the NamedTuple type hint.

• See the Writing list-related type hints recipe in Chapter 4 for more about type hints

for lists.

• The Writing set-related type hints recipe, also in Chapter 4, covers this from the view

of set types.

• For runtime validation of data, a project like Pydantic can be very helpful. See

https://docs.pydantic.dev/latest/.

Understanding variables, references, and
assignment
How do variables really work? What happens when we assign a mutable object to two

variables? When two variables are sharing references to a common mutable object, the

behaviors can be confusing.

This is the core principle: Python shares references; it doesn’t copy

data.

To see what this rule on reference sharing means, we’ll create two data structures: one is

mutable and one is immutable.

https://docs.pydantic.dev/latest/
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Getting ready
We’ll look at the two kinds of sequences, although we could do something similar with

two kinds of sets:

>>> mutable = [1, 1, 2, 3, 5, 8]
>>> immutable = (5, 8, 13, 21)

We’ll look at what happens when references to these objects are shared.

We can do a similar comparison with a set and a frozenset. We can’t easily do this with

a mapping because Python doesn’t offer a handy immutable mapping.

How to do it...
This recipe will show how to observe the “spooky action at a distance” when there are

two references to an underlying mutable object. We’ll look at ways to prevent this in the

Making shallow and deep copies of objects recipe. Here are the steps for seeing the difference

between mutable and immutable collections:

1. Assign each collection to an additional variable. This will create two references to

the structure:

>>> mutable_b = mutable
>>> immutable_b = immutable

We now have two references to the list [1, 1, 2, 3, 5, 8] and two references to

the tuple (5, 8, 13, 21).

2. We can confirm this using the is operator. This determines if two variables refer to

the same underlying object:

>>> mutable_b is mutable
True
>>> immutable_b is immutable
True

3. Make a change to one of the two references to the collection. For the list type, we
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have methods like extend() or append(). For this example we’ll use the + operator:

>>> mutable += [mutable[-2] + mutable[-1]]

We can do a similar thing with the immutable structure:

>>> immutable += (immutable[-2] + immutable[-1],)

4. Look at the other two variables that reference the mutable structure. Because the

two variables are references to the same underlying list object, each variable shows

the current state:

>>> mutable_b
[1, 1, 2, 3, 5, 8, 13]
>>> mutable is mutable_b
True

5. Look at the two variables referring to immutable structures. Initially, the two variables

shared a common object. When the assignment statement was executed, a new tuple

was created and only one variable changed to refer to the new tuple:

>>> immutable_b
(5, 8, 13, 21)
>>> immutable
(5, 8, 13, 21, 34)

How it works...
The two variables, mutable and mutable_b, still refer to the same underlying object. Because

of that, we can use either variable to change the object and see the change reflected in the

other variable’s value.

The two variables, immutable_b and immutable, started out referring to the same object.

Because the object cannot be mutated in place, a change to one variable means that a

new object is assigned to that variable. The other variable remains firmly attached to the

original object.
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In Python, a variable is a label that’s attached to an object. We can think of them like

adhesive notes in bright colors that we stick on an object temporarily. Multiple labels can

be attached to an object. It’s the assignment statement that places a variable name on an

object.

Consider the following statement:

immutable += (immutable[-2] + immutable[-1],)

This has the same effect as this statement:

immutable = immutable + (immutable[-2] + immutable[-1],)

The expression on the right side of = creates a new tuple from the previous value of

the immutable tuple. The assignment statement then assigns the label immutable to the

newly-minted object.

Assigning to a variable has two possible actions:

• For mutable objects that provide definitions for appropriate in-place assignment

operators like +=, the assignment is transformed into a special method; in this case,

__iadd__(). The special method will mutate the object’s internal state.

• For immutable objects that do not provide definitions for assignment like +=, the

assignment is transformed into = and +. A new object is built by the + operator and

the variable name is attached to that new object. Other variables that previously

referred to the object being replaced are not affected; they will continue to refer to

old objects.

Python counts the number of places from which an object is referenced. When the count

of references becomes zero, the object is no longer used anywhere and can be removed

from memory.
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There’s more...
Some languages have primitive types in addition to objects. In these languages, a +=

statement may leverage a feature of the hardware instructions to tweak the value of a

primitive type.

Python doesn’t have this kind of optimization. Numbers are immutable objects; there are no

special instructions to tweak their values. Consider the following assignment statements:

a = 355
a += 113

The processing does not tweak the internal state of the object 355. The int class does not

provide an __iadd__() special method. A new immutable integer object is created. This

new object is given the label a. The old value previously assigned to a is no longer needed,

and the storage can be reclaimed.

See also
• In the Making shallow and deep copies of objects recipe, we’ll look at ways we can

copy mutable structures to prevent shared references.

• Also, see Avoiding mutable default values for function parameters for another conse-

quence of the way references are shared in Python.

• For the CPython implementation, a few objects can be immortal. See PEP 683 for

more on this implementation detail.

Making shallow and deep copies of objects
Throughout this chapter, we’ve talked about how assignment statements share references

to objects. Objects are not normally copied.

Consider this assignment statement:

https://peps.python.org/pep-0683/
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a = b

This creates two references to the same underlying object. If the value of the b variable has

a mutable type, like the list, set, or dict types, then a change using either a or b will update

the underlying mutable object. For more background, see the Understanding variables,

references, and assignment recipe.

Most of the time, this is the behavior we want. This is ideal for providing mutable objects

to functions and having a local variable in the function mutate an object created outside

the function. There are rare situations in which we want to actually have two independent

objects created from one original object.

There are two ways to break the connection that exists when two variables are references

to the same underlying object:

• Making a shallow copy of the structure

• Making a deep copy of the structure

Getting ready
Python does not automatically make a copy of an object. We’ve seen several kinds of syntax

for making a copy:

• Sequences – list, as well as the str, bytes, and tuple types: we can use sequence[:]

to copy a sequence by using an empty slice expression. This is a special case for

sequences.

• Almost all collections have a copy() method.

• Calling a type, with an instance of the type as the only argument, returns a copy. For

example, if d is a dictionary, dict(d) will create a shallow copy of d.

What’s important is that these are all shallow copies. When two collections are shallow

copies, they each contain references to the same underlying objects. If the underlying

objects are immutable, such as tuples, numbers, or strings, this distinction doesn’t matter.
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For example, if we have a = [1, 1, 2, 3], we can’t perform any mutation on a[0]. The

number 1 in a[0] has no internal state. We can only replace the object.

Questions arise, however, when we have a collection that involves mutable objects. First,

we’ll create an object, then we’ll create a copy:

>>> some_dict = {'a': [1, 1, 2, 3]}
>>> another_dict = some_dict.copy()

This example created a shallow copy of the dictionary. The two copies will look alike

because they both contain references to the same objects. There’s a shared reference to

the immutable string 'a' and a shared reference to the mutable list [1, 1, 2, 3]. We can

display the value of another_dict to see that it looks like the some_dict object we started

with:

>>> another_dict
{'a': [1, 1, 2, 3]}

Here’s what happens when we update the shared list that’s inside the copy of the dictionary.

We’ll change the value of some_dict and see the results are also present in another_dict:

>>> some_dict['a'].append(5)
>>> another_dict
{'a': [1, 1, 2, 3, 5]}

We can see that the item is shared by using the id() function:

>>> id(some_dict['a']) == id(another_dict['a'])
True

Because the two id() values are the same, these are the same underlying object. The value

associated with the key 'a' is the same mutable list in both some_dict and another_dict.

We can also use the is operator to see that they’re the same object.

This mutation of a shallow copy works for list collections that contain all other mutable
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object types as items as well:

Because we can’t make a set of mutable objects, we don’t really have to consider making

shallow copies of sets that share items.

A tuple can contain mutable objects. While the tuple is immutable, the

objects inside it are mutable.

The immutability of a tuple does not magically propagate to the items within

the tuple.

What if we want to completely disconnect two copies? How do we make a deep copy

instead of a shallow copy?

How to do it...
Python generally works by sharing references. It makes copies of objects reluctantly.

The default behavior is to make a shallow copy, sharing references to the items within a

collection. Here’s how we make deep copies:

1. Import the copy module:

>>> import copy

2. Use the copy.deepcopy() function to duplicate an object and all of the mutable items

contained within that object:

>>> some_dict = {'a': [1, 1, 2, 3]}
>>> another_dict = copy.deepcopy(some_dict)

This will create copies that have no shared references. A change to one copy’s mutable

internal items won’t have any effect anywhere else:
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>>> some_dict['a'].append(5)
>>> some_dict
{'a': [1, 1, 2, 3, 5]}
>>> another_dict
{'a': [1, 1, 2, 3]}

We updated an item in some_dict and it had no effect on the copy in another_dict. We

can see that the objects are distinct with the id() function:

>>> id(some_dict['a']) == id(another_dict['a'])
False

Since the id() values are different, these are distinct objects. We can also use the is

operator to see that they’re distinct objects.

How it works...
Making a shallow copy is relatively easy. We can even write our own version of the

algorithm using comprehensions (containing generator expressions):

>>> copy_of_list = [item for item in some_list]
>>> copy_of_dict = {key:value for key, value in some_dict.items()}

In the list case, the items for the new list are references to the items in the source list.

Similarly, in the dict case, the keys and values are references to the keys and values of the

source dictionary.

The deepcopy() function uses a recursive algorithm to look inside each item that’s a

mutable collection.

For an object with a list type, the conceptual algorithm is something like this:
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from typing import Any

def deepcopy_json(some_obj: Any) -> Any:
match some_obj:

case int() | float() | tuple() | str() | bytes() | None:
return some_obj

case list() as some_list:
list_copy: list[Any] = []
for item in some_list:

list_copy.append(deepcopy_json(item))
return list_copy

case dict() as some_dict:
dict_copy: dict[Any, Any] = {}
for key in some_dict:

dict_copy[key] = deepcopy_json(some_dict[key])
return dict_copy

case _:
raise ValueError(f"can't copy {type(some_obj)}")

This can be used for the collection of types used in JSON documents. For the immutable

types in the first case clause, there’s no need to make a copy; an object of one of these types

cannot be mutated. For the two mutable types used in JSON documents, empty structures

are built, and then copies of each item are inserted. The processing involves recursion to

assure that — no matter how deeply nested — all items that are mutable are copied.

The actual implementation of the deepcopy() function handles additional types, not part

of the JSON specification. The point of this example is to show the general idea of a deep

copy function.

See also
• In the Understanding variables, references, and assignment recipe, we look at how

Python prefers to create references to objects.



Chapter 5 221

Avoiding mutable default values for function
parameters
In Chapter 3, we looked at many aspects of Python function definitions. In the Designing

functions with optional parameters recipe, we showed a recipe for handling optional pa-

rameters. At the time, we didn’t dwell on the issue of providing a reference to a mutable

structure as a default. We’ll take a close look at the consequences of a mutable default

value for a function parameter.

Getting ready
Let’s imagine a function that either creates or updates a mutable Counter object. We’ll call

it gather_stats().

Ideally, a small data gathering function could look like this:

from collections import Counter
from random import randint, seed

def gather_stats_bad(
n: int,
samples: int = 1000,
summary: Counter[int] = Counter()

) -> Counter[int]:
summary.update(

sum(randint(1, 6)
for d in range(n)) for _ in range(samples)

)
return summary

This shows a bad design for a function. It has two scenarios:

1. The first scenario offers no argument value for the summary parameter. When this is

omitted, the function creates and returns a collection of statistics. Here’s the example

of this story:



222 Built-In Data Structures Part 2: Dictionaries

>>> seed(1)
>>> s1 = gather_stats_bad(2)
>>> s1
Counter({7: 168, 6: 147, 8: 136, 9: 114, 5: 110, 10: 77, 11: 71, 4: 70,
3: 52, 12: 29, 2: 26})

2. The second scenario allows us to provide an explicit argument value for the summary

parameter. When this argument is provided, this function updates the given object.

Here’s an example of this story:

>>> seed(1)
>>> mc = Counter()
>>> gather_stats_bad(2, summary=mc)
Counter...
>>> mc
Counter({7: 168, 6: 147, 8: 136, 9: 114, 5: 110, 10: 77, 11: 71, 4: 70,
3: 52, 12: 29, 2: 26})

We’ve set the random number seed to be sure that the two sequences of random

values are identical. We provided a Counter object to confirm that the results are

identical.

The problem arises when we do the following operation after the first scenario shown

above:

>>> seed(1)
>>> s3b = gather_stats_bad(2)
>>> s3b
Counter({7: 336, 6: 294, 8: 272, 9: 228, 5: 220, 10: 154, 11: 142, 4: 140,
3: 104, 12: 58, 2: 52})

The values in this example are incorrect. They’re doubled. Something has gone wrong.

This only happens when we use the default scenario more than once. This code can pass a

simple unit test suite and appear correct.

As we saw in the Making shallow and deep copies of objects recipe, Python prefers to share
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references. A consequence of that sharing is the object referenced by the s1 variable and

the object referenced by the s3b variable are the same object:

>>> s1 is s3b
True

This means the value of the object referred to by the s1 variable changed when the object

for the s3b variable was created. From this, it should be apparent the function is updating

a single, shared collection object and returning the reference to the shared collection.

The default value used for the summary parameter of this gather_stats_bad() function

leads to result values built from a single, shared object. How can we avoid this?

How to do it...
There are two approaches to solving this problem of a mutable default parameter:

• Provide an immutable default.

• Change the design.

We’ll look at the immutable default first. Changing the design is generally a better idea. In

order to see why it’s better to change the design, we’ll show a purely technical solution.

When we provide default values for functions, the default object is created exactly once

and shared forever after. Here’s the alternative:

1. Replace any mutable default parameter value with None:

def gather_stats_good(
n: int,
samples: int = 1000,
summary: Counter[int] | None = None

) -> Counter[int]:

def gather_stats_good(
n: int,
summary: Counter[int] | None = None,
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samples: int = 1000,
) -> Counter[int]:

2. Add an if statement to check for an argument value of None and replace it with a

fresh, new mutable object of the proper type:

if summary is None:
summary = Counter()

This will assure us that every time the function is evaluated with no argument value

for a parameter, we create a fresh, new mutable object. We will avoid sharing a single

mutable object over and over again.

How it works...
As we noted earlier, Python prefers to share references. It rarely creates copies of objects

without explicit use of the copy module or the copy() method of an object. Therefore,

default values for function parameter values will be shared objects. Python does not create

fresh, new objects for default parameter values.

Never use mutable defaults for default values of function parameters.

Instead of a mutable object (for example, set, list, or dict) as a default,

use None.

In most cases, we should consider changing the design to not offer a default value at all.

Instead, define two separate functions. One function updates a parameter value, and a

second function uses this function but provides a fresh, empty mutable object.

For this example, they might be called create_stats() and update_stats(), with unam-

biguous parameters:
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def update_stats(
n: int,
summary: Counter[int],
samples: int = 1000,

) -> Counter[int]:
summary.update(

sum(randint(1, 6)
for d in range(n)) for _ in range(samples))

return summary

def create_stats(n: int, samples: int = 1000) -> Counter[int]:
return update_stats(n, Counter(), samples)

Note that the summary parameter to the update_stats() function is not optional. Similarly,

there is no summary object parameter defined for the create_stats() function.

The idea of optional mutable arguments was not a good idea because the mutable object

provided as a default value for a parameter is reused.

There’s more...
In the standard library, there are some examples of a cool technique that shows how we

can create fresh default objects. A number of places use a factory function as a parameter.

This function can be used to create a fresh, new mutable object.

In order to leverage this design pattern, we need to modify the design of our update_stats()

function. We will no longer update an existing Counter object in the function. We’ll always

create a fresh, new object.

Here’s a function that calls a factory function to create a useful default value:

from collections import Counter
from collections.abc import Callable, Iterable, Hashable
from typing import TypeVar, TypeAlias

T = TypeVar('T', bound=Hashable)
Summarizer: TypeAlias = Callable[[Iterable[T]], Counter[T]]
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def gather_stats_flex(
n: int,
samples: int = 1000,
summary_func: Summarizer[int] = Counter

) -> Counter[int]:
summary = summary_func(

sum(randint(1, 6)
for d in range(n)) for _ in range(samples))

return summary

For this version, we’ve defined the Summarizer type to be a function of one argument that

will create a Counter object. The default value uses the Counter class as the one-argument

function. We can override the summary_func function with any one-argument function

that will collect details instead of summarizing.

Here’s an example using list instead of collections.Counter:

>>> seed(1)
>>> gather_stats_flex(2, 12, summary_func=list)
[7, 4, 5, 8, 10, 3, 5, 8, 6, 10, 9, 7]

In this case, we provided the list function to create a list with the individual random

samples in it.

Here’s an example without an argument value. It will create a new collections.Counter

object each time it’s used:

>>> seed(1)
>>> gather_stats_flex(2, 12)
Counter({7: 2, 5: 2, 8: 2, 10: 2, 4: 1, 3: 1, 6: 1, 9: 1})

In this case, we’ve evaluated the function using the default value for summary_func, which

creates a collections.Counter object from the random samples.
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See also
• See the Creating dictionaries – inserting and updating recipe, which shows how the

defaultdict collection works.

Join our community Discord space
Join our Python Discord workspace to discuss and find out more about the book:

https://packt.link/dHrHU

https://packt.link/dHrHU




6
User Inputs and Outputs

The key purpose of software is to produce useful output. Of the many possible outputs,

one simple type of output is text displaying a useful result. Python supports this with the

print() function.

The input() function has a parallel with the print() function. The input() function reads

text from a console, allowing us to provide data to our programs. The use of print() and

input() creates an elegant symmetry between input and output from an application.

There are a number of other common ways to provide input to a program. Parsing the

command line is helpful for many applications. We sometimes need to use configuration

files to provide useful input. Data files and network connections are yet more ways to

provide input. Each of these methods is distinct and needs to be looked at separately. In

this chapter, we’ll focus on the fundamentals of input() and print().

In this chapter, we’ll look at the following recipes:

• Using the features of the print() function

• Using input() and getpass() for user input
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• Debugging with f"{value=}" strings

• Using argparse to get command-line input

• Using invoke to get command-line input

• Using cmd to create command-line applications

• Using the OS environment settings

It seems best to start with the print() function and show several of the things it can do.

After all, it’s often the output from an application that is most useful.

Using the features of the print() function
In many cases, the print() function is the first function we learn about. The first script is

often a variation on the following:

>>> print("Hello, world.")
Hello, world.

The print() function can display multiple values, with helpful spaces between items.

When we write this:

>>> count = 9973
>>> print("Final count", count)
Final count 9973

We can see that a space separator is included for us. Additionally, a line break, usually

represented by the \n character, is printed after the values provided in the function.

Can we control this formatting? Can we change the extra characters that are supplied?

Getting ready
Consider this spreadsheet, used to record fuel consumption on a large sailboat. The CSV

file has rows that look like this:
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date,engine on,fuel height on,engine off,fuel height off
10/25/13,08:24:00,29,13:15:00,27
10/26/13,09:12:00,27,18:25:00,22
10/28/13,13:21:00,22,06:25:00,14

For more information on this data, refer to the Shrinking sets – remove(), pop(), and difference

and Slicing and dicing a list recipes in Chapter 4. Instead of a sensor inside the tank, the

depth of fuel is observed through a glass panel on the side of the tank. Knowing the tank is

approximately rectangular, with a full depth of about 31 inches and a volume of about 72

gallons, it’s possible to convert depth to volume.

Here’s an example of using this CSV data. This function reads the file and returns a list of

fields built from each row:

from pathlib import Path
import csv

def get_fuel_use(source_path: Path) -> list[dict[str, str]]:
with source_path.open() as source_file:

rdr = csv.DictReader(source_file)
return list(rdr)

Here’s an example of reading and printing rows from the CSV file:

>>> source_path = Path("data/fuel2.csv")
>>> fuel_use = get_fuel_use(source_path)
>>> for row in fuel_use:
... print(row)
{'date': '10/25/13', 'engine on': '08:24:00', 'fuel height on': '29',
'engine off': '13:15:00', 'fuel height off': '27'}
{'date': '10/26/13', 'engine on': '09:12:00', 'fuel height on': '27',
'engine off': '18:25:00', 'fuel height off': '22'}
{'date': '10/28/13', 'engine on': '13:21:00', 'fuel height on': '22',
'engine off': '06:25:00', 'fuel height off': '14'}

The output from the print() function, shown here in long lines, is challenging to use. Let’s

look at how we can improve this output using additional features of the print() function.
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How to do it...
We have two ways to control the print() function output format:

• Set the inter-field separator string, sep. The default value is a single-space character.

• Set the end-of-line string, end. The default value is the \n character.

This recipe will show several variations:

1. Read the data:

>>> fuel_use = get_fuel_use(Path("data/fuel2.csv"))

2. For each item in the data, make any useful data conversions:

>>> for leg in fuel_use:
... start = float(leg["fuel height on"])
... finish = float(leg["fuel height off"])

3. The following alternatives show different ways to include separators:

• Print labels and fields using the default values of sep and end:

... print("On", leg["date"], "from", leg["engine on"],

... "to", leg["engine off"],

... "change", start-finish, "in.")
On 10/25/13 from 08:24:00 to 13:15:00 change 2.0 in.
On 10/26/13 from 09:12:00 to 18:25:00 change 5.0 in.
On 10/28/13 from 13:21:00 to 06:25:00 change 8.0 in.

When we look at the output, we can see where a space was inserted between

each item.

• When preparing data, we might want to use a format that’s similar to CSV,

perhaps using a column separator that’s not a simple comma. We can print

labels and fields using a string value of " | " for the sep parameter:
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... print(leg["date"], leg["engine on"],

... leg["engine off"], start-finish, sep=" | ")
10/25/13 | 08:24:00 | 13:15:00 | 2.0
10/26/13 | 09:12:00 | 18:25:00 | 5.0
10/28/13 | 13:21:00 | 06:25:00 | 8.0

In this case, we can see that each column has the given separator string. Since

there were no changes to the end setting, each print() function produces a

distinct line of output.

• Here’s how we might change the default punctuation to emphasize the field

name and value. We can print labels and fields using a string value of "=" for

the sep parameter and ", " for the end parameter:

... print("date", leg["date"], sep="=", end=", ")

... print("on", leg["engine on"], sep="=", end=", ")

... print("off", leg["engine off"], sep="=", end=", ")

... print("change", start-finish, sep="=")
date=10/25/13, on=08:24:00, off=13:15:00, change=2.0
date=10/26/13, on=09:12:00, off=18:25:00, change=5.0
date=10/28/13, on=13:21:00, off=06:25:00, change=8.0

Since the string used at the end of the line was changed to ", ", each use of the

print() function no longer produces separate lines. In order to see a proper

end of line, the final print() function has a default value for end. We could

also have used an argument value of end="\n" to make the presence of the

newline character explicit.

How it works...
The print() function has a definition that includes several parameters that must be pro-

vided as keywords. Two of these are the sep and end keyword parameters, with default

values of space and newline, respectively.

Using the print() function’s sep and end parameters can get quite complex for anything

more sophisticated than these simple examples. Rather than working with a complex
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sequence of print() function requests, we can use the format() method of a string, or use

an f-string.

There’s more...
The sys module defines the two standard output files that are always available: sys.stdout

and sys.stderr. Generally, the print() function can be thought of as a handy wrapper

around sys.stdout.write().

We can use the file= keyword argument to write to the standard error file instead of

writing to the standard output file:

>>> import sys

>>> print("Red Alert!", file=sys.stderr)

We’ve imported the sys module so that we have access to the standard error file. We used

this to write a message that will not be part of the standard output stream.

Because these two files are always available, using OS file redirection techniques often

works out nicely. When our program’s primary output is written to sys.stdout, it can be

redirected at the OS level. A user might enter a shell command line like this:

% python myapp.py < input.dat > output.dat

This will provide the input.dat file as the input to sys.stdin. When this Python program

writes to sys.stdout, the output will be redirected by the OS to the output.dat file.

In some cases, we need to open additional files. In that case, we might see programming

like this:

>>> from pathlib import Path
>>> target_path = Path("data")/"extra_detail.log"
>>> with target_path.open('w') as target_file:
... print("Some detailed output", file=target_file)
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... print("Ordinary log")
Ordinary log

In this example, we’ve opened a specific path for the output and assigned the open file

to target_file, using the with statement. We can then use this as the file= value in

a print() function to write to this file. Because a file is a context manager, leaving the

with statement means that the file will be closed properly; all of the OS resources will be

released from the application. All file operations should be wrapped in a with statement

context to ensure that the resources are properly released.

See also
• For more formatting options, see the Debugging with f"{value=}" strings recipe.

• For more information on the input data in this example, refer to the Shrinking sets –

remove(), pop(), and difference and Slicing and dicing a list recipes in Chapter 4.

• For more information on file operations in general, refer to Chapter 8

Using input() and getpass() for user input
Some Python scripts depend on gathering input from a user. There are several ways to do

this. One popular technique is to use the console to prompt a user for input interactively.

There are two relatively common situations:

• Ordinary input: This will provide a helpful echo of the characters being entered.

• Secure, no echo input: This is often used for passwords. The characters entered

aren’t displayed, providing a degree of privacy. We use the getpass() function in

the getpass module for this.

As an alternative to interactive input, we’ll look at some other approaches in the Using

argparse to get command-line input recipe later in this chapter.

The input() and getpass() functions are just two implementation choices to read from the
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console. It turns out that getting the string of characters is only the first step in gathering

useful data. The input also needs to be validated.

Getting ready
We’ll look at a technique to read a complex structure from a person. In this case, we’ll

use year, month, and day as separate items. These items are then combined to create a

complete date.

Here’s a quick example of user input that omits all of the validation considerations. This is

poor design:

from datetime import date

def get_date1() -> date:
year = int(input("year: "))
month = int(input("month [1-12]: "))
day = int(input("day [1-31]: "))
result = date(year, month, day)
return result

While it is very easy to use the input() function, it lacks a number of helpful features.

When the user enters an invalid date, this will raise a potentially confusing exception.

We often need to wrap the input() function with data validation processing to make it

more useful. The calendar is complex, and we’d hate to accept February 31 without warning

the user that it is not a proper date.

How to do it...
1. If the input is a password or something equally subject to redaction, the input()

function isn’t the best choice. If passwords or other secrets are involved, then use

the getpass.getpass() function. This means we need the following import when

secrets are involved:

from getpass import getpass
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Otherwise, when secret input is not required, we’ll use the built-in input() function,

and no additional import is required.

2. Determine which prompt will be used. In our example, we provided a field name and

a hint about the type of data expected as the prompt string argument to the input()

or getpass() functions. It can help to separate the input from the text-to-integer

conversion. This recipe doesn’t follow the snippet shown previously; it breaks the

operation into two separate steps. First, get the text value:

year_text = input("year: ")

3. Determine how to validate each item in isolation. The simplest case is a single value

with a single rule that covers everything. In more complex cases – like this one –

each individual element is a number with a range constraint. In a later step, we’ll

look at validating the composite item:

year = int(year_text)

Wrap the input and validation into a while-try block that looks like this:

year = None
while year is None:

year_text = input("year: ")
try:

year = int(year_text)
except ValueError as ex:

print(ex)

This applies a single validation rule, the int(year_txt) expression, to ensure that the input

is an integer. The while statement leads to a repeat of the input and conversion sequence

of steps until the value of the year variable is not None.

Raising an exception for faulty input allows us some flexibility. We can extend this with

additional exception classes for other conditions the input must meet.

This processing only covers the year field. We still need to get values for the month and
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day fields. This means we’ll need three nearly identical loops for each of these three fields

of a complex date object. Rather than copying and pasting nearly identical code, we need

to restructure this processing.

We’ll define a new function, get_integer(), for general-purpose input of a numeric value.

Here’s the complete function definition:

def get_integer(prompt: str) -> int:
while True:

value_text = input(prompt)
try:

value = int(value_text)
return value

except ValueError as ex:
print(ex)

We can combine this into an overall process to get the three integers of a date. This will

involve a similar while-try design pattern but applied to the composite object. It will look

like this:

def get_date2() -> date:
while True:

year = get_integer("year: ")
month = get_integer("month [1-12]: ")
day = get_integer("day [1-31]: ")
try:

result = date(year, month, day)
return result

except ValueError as ex:
print(f"invalid, {ex}")

This uses individual while-try processing sequences around the sequence of get_integer()

functions to get the individual values that make up a date. Then, it uses the date()

constructor to create a date object from the individual fields. If the date object – as a

whole – can’t be built because the pieces are invalid, then the year, month, and day must

be reentered to create a valid date.
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How it works...
We need to decompose the input problem into several separate but closely related problems.

To do this, imagine a tower of conversion steps. At the bottom layer is the initial interaction

with the user. We identified two of the common ways to handle this:

• input(): This prompts and reads from a user

• getpass.getpass(): This prompts and reads input (like passwords) without a visible

echo

These two functions provide the essential console interaction. There are other libraries

that can provide more sophisticated interactions, if that’s required. For example, the Click

project has some helpful prompting capabilities. See https://click.palletsprojects.

com/en/7.x/.

The Rich project has extremely sophisticated terminal interaction. See https://rich.rea

dthedocs.io/en/latest/.

On top of the foundation, we’ve built several tiers of validation processing. The tiers are as

follows:

• A data type validation: This uses built-in conversion functions such as int() or

float(). These raise a ValueError exception for invalid text.

• A domain validation: This uses an if statement to determine whether values fit any

application-specific constraints. For consistency, this should also raise a ValueError

exception if the data is invalid.

• Composite object validation: This is application-specific checking. For our example,

the composite object was an instance of datetime.date. This also tends to raise

ValueError exceptions for dates that are invalid.

There are a lot of potential kinds of constraints that might be imposed on values. We’ve

used the valid date constraint because it’s particularly complicated.

https://click.palletsprojects.com/en/7.x/
https://click.palletsprojects.com/en/7.x/
https://rich.readthedocs.io/en/latest/
https://rich.readthedocs.io/en/latest/
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There’s more...
We have several alternatives for user input that involve slightly different approaches. We’ll

look at these two topics in detail:

• Complex text: This will involve the simple use of input() with more sophisticated

parsing of the source text. Instead of prompting for individual fields, it might be

better to accept a string in the yyyy-mm-dd format and use the strptime() parser

to extract a date. This doesn’t change the design pattern; it replaces an int() or

float() with something a bit more complicated.

• Interaction via the cmd module: This involves a more complex class to control

interaction. We’ll look at this closely in the Using cmd to create command-line

applications recipe.

A list of potential input validation rules can be extracted from JSON schema definitions.

This list of types includes Boolean, integer, float, and string. A number of common string

formats defined in JSON schema include date-time, time, date, email, hostname, IP addresses

in the version 4 and version 6 formats, and URIs.

Another source of user input validation rules can be found in the definition of the HTML5

<input> tag. This list includes color, date, datetime-local, email, file, month, number,

password, telephone numbers, time, URL, and week-year.

See also
• See the Using cmd to create command-line applications recipe in this chapter for

complex interaction.

• See the Using argparse to get command-line input recipe to gather user input from

the command line.

• In the reference material for the SunOS operating system, which is now owned by

Oracle, there is a collection of commands that prompt for different kinds of user inputs:

https://docs.oracle.com/cd/E19683-01/816-0210/6m6nb7m5d/index.html

https://docs.oracle.com/cd/E19683-01/816-0210/6m6nb7m5d/index.html
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Debugging with f“{value=}” strings
One of the most important debugging and design tools available in Python is the print()

function. The two formatting options shown in the Using the features of the print() function

recipe don’t offer a lot of flexibility. We have more flexibility with f"string" formatting.

We’ll build on some of the recipes shown in Chapter 1, Numbers, Strings, and Tuples.

Getting ready
Let’s look at a multi-step process that involves some moderately complex calculations.

We’ll compute the mean and standard deviation of some sample data. Given these values,

we’ll locate all items that are more than one standard deviation above the mean:

>>> import statistics
>>> size = [2353, 2889, 2195, 3094,
... 725, 1099, 690, 1207, 926,
... 758, 615, 521, 1320]
>>> mean_size = statistics.mean(size)
>>> std_size = statistics.stdev(size)
>>> sig1 = round(mean_size + std_size, 1)
>>> [x for x in size if x > sig1]
[2353, 2889, 3094]

This calculation has several working variables. The final list comprehension involves three

other variables, mean_size, std_size, and sig1. With so many values used to filter the

size list, it’s difficult to visualize what’s going on. It’s often helpful to know the steps in

the calculation; showing the values of the intermediate variables can be very helpful.

How to do it...
The f"{name=}" string will have both the literal string name= and the value for the name

expression. This is often a variable, but any expression can be used. Using this with a

print() function looks as follows:
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>>> print(
... f"{mean_size=:.2f}, {std_size=:.2f}"
... )
mean_size=1414.77, std_size=901.10

We can use {name=} to put any variable into the f-string and see the value. These exam-

ples in the code above include a suffix of :.2f as the format specification to show the

values rounded to two decimal places. Another common suffix is !r to show the internal

representation of the object; we might use f"{name=!r}".

How it works...
For more background on the formatting options, refer to the Building complicated strings

with f-strings recipe in Chapter 1.

There is a very handy extension to this capability. We can use any expression on the left

of the = in the f-string. This will show the expression and the value computed by the

expression, providing us with even more debugging information.

There’s more...
We can use the extended expression capability of f-strings to include additional calculations

that aren’t simply the values’ local variables:

>>> print(
... f"{mean_size=:.2f}, {std_size=:.2f},"
... f" {mean_size + 2 * std_size=:.2f}"
... )
mean_size=1414.77, std_size=901.10, mean_size + 2 * std_size=3216.97

We’ve computed a new value, mean_size+2*std_size, that appears only inside the format-

ted output. This lets us display intermediate computed results without having to create an

extra variable.
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See also
• Refer to the Building complicated strings with f-strings recipe in Chapter 1, for more

of the things that can be done with f-strings and the format() method of a string.

• Refer to the Using the features of the print() function recipe earlier in this chapter for

other formatting options.

Using argparse to get command-line input
For some applications, it can be better to get the user input from the OS command line

without a lot of human interaction. We’d prefer to parse the command-line argument

values and either perform the processing or report an error.

For example, at the OS level, we might want to run a program like this:

% python ch06/distance_app.py -u KM 36.12,-86.67 33.94,-118.40
From 36.12,-86.67 to 33.94,-118.4 in KM = 2886.90

At the OS prompt of %, we entered a command, python ch06/distance_app.py. This

command had an optional argument, -u KM, and two positional arguments of 36.12,-86.67

and 33.94,-118.40.

If the user enters something incorrect, the interaction might look like this:

% python ch06/distance_app.py -u KM 36.12,-86.67 33.94,-118asd
usage: distance_app.py [-h] [-u {NM,MI,KM}] p1 p2
distance_app.py: error: argument p2: could not convert string to float:
'-118asd'

An invalid argument value of -118asd leads to an error message. A user can hit the up-

arrow key to get the previous command line back, make a change, and run the program

again. The interactive user experience is delegated to OS command-line processing.

Getting ready
The first thing we need to do is to refactor our code to create three separate functions:
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• A function to get the arguments from the command line.

• A function that does the real work. The intent is to define a function that can be

reused in a variety of contexts, one of which is with parameters from the command

line.

• A main function that gathers arguments and invokes the real work function with the

appropriate argument values.

Here’s our real work function, display():

from ch06.distance_computation import haversine, MI, NM, KM

def display(
lat1: float, lon1: float, lat2: float, lon2: float, r: str

) -> None:
r_float = {"NM": NM, "KM": KM, "MI": MI}[r]
d = haversine(lat1, lon1, lat2, lon2, R=r_float)
print(f"From {lat1},{lon1} to {lat2},{lon2} in {r} = {d:.2f}")

We’ve imported the core calculation, haversine(), from the ch06.distance_computation

module. We’ve based this on the calculations shown in the examples in the Picking an order

for parameters based on partial functions recipe in Chapter 3:

Here’s how the function looks when it’s used inside Python:

>>> display(36.12, -86.67, 33.94, -118.4, 'NM')
From 36.12,-86.67 to 33.94,-118.4 in NM = 1558.53

This function has two important design features. The first feature is that it avoids references

to features of the argparse.Namespace object that’s created by argument parsing. Our goal

is to have a function that we can reuse in a number of alternative contexts. We need to

keep the input and output elements of the user interface separate.

The second design feature is that this function displays a value computed by another

function. This is a decomposition of a larger problem into two smaller problems. We’ve
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separated the user experience of printed output from the essential calculation. (Both aspects

are quite small, but the principle of separating these two aspects is important.)

How to do it...
1. Define the overall argument parsing function:

def get_options(argv: list[str]) -> argparse.Namespace:

2. Create the parser object:

parser = argparse.ArgumentParser()

3. Add the various types of arguments to the parser object. Sometimes, this is difficult

because we’re still refining the user experience. It’s difficult to imagine all the ways

in which people will use a program and all of the questions they might have. For our

example, we have two mandatory, positional arguments and an optional argument:

• Point 1 latitude and longitude

• Point 2 latitude and longitude

• Optional units of distance; we’ll provide nautical miles as the default:

parser.add_argument("-u", "--units",
action="store", choices=("NM", "MI", "KM"), default="NM")

parser.add_argument("p1", action="store", type=point_type)
parser.add_argument("p2", action="store", type=point_type)

We’ve added a mix of optional and mandatory arguments. The -u argument starts

with a dash to mark it as optional. A longer double dash version, --units, is supported

as an alternative.

The mandatory, positional arguments are named without a prefix.

4. Evaluate the parse_args() method of the parser object created in step 2:
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options = parser.parse_args(argv)

By default, the parser uses the values from sys.argv, which are the command-line argument

values entered by the user. Testing is much easier when we can provide an explicit argument

value.

Here’s the final function:

def get_options(argv: list[str]) -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument("-u", "--units",

action="store", choices=("NM", "MI", "KM"), default="NM")
parser.add_argument("p1", action="store", type=point_type)
parser.add_argument("p2", action="store", type=point_type)
options = parser.parse_args(argv)
return options

This relies on a point_type() function to both validate the strings and convert the string

to a (latitude, longitude) two-tuple. Here’s the definition of this function:

def point_type(text: str) -> tuple[float, float]:
try:

lat_str, lon_str = text.split(",")
lat = float(lat_str)
lon = float(lon_str)
return lat, lon

except ValueError as ex:
raise argparse.ArgumentTypeError(ex)

If anything goes wrong, an exception will be raised. From this exception, we’ll raise an

ArgumentTypeError exception. This is caught by the argparse module and causes it to

report the error to the user.

Here’s the main script that combines the option parser and the output display functions:
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def main(argv: list[str] = sys.argv[1:]) -> None:
options = get_options(argv)
lat_1, lon_1 = options.p1
lat_2, lon_2 = options.p2
display(lat_1, lon_1, lat_2, lon_2, r=options.r)

if __name__ == "__main__":
main()

This main script connects the user inputs to the displayed output. The details of error

messages and help processing are delegated to the argparse module.

How it works...
The argument parser works in three stages:

1. Define the overall context by creating a parser object as an instance of the ArgumentParser

class.

2. Add individual arguments with the add_argument() method. These can include

optional arguments as well as required arguments.

3. Parse the actual command-line inputs, often based on sys.argv.

Some simple programs will have a few optional arguments. A more complex program may

have many optional arguments.

It’s common to have a filename as a positional argument. When a program reads one or

more files, the filenames can be provided in the command line, as follows:

% python some_program.py *.rst

We’ve used the Linux shell’s globbing feature: the *.rst string is expanded into a list of

all files that match the naming rule. This is a feature of the Linux shell, and it happens

before the Python interpreter starts. This list of files can be processed using an argument,

defined as follows:
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parser.add_argument('file', type=Path, nargs='*')

All of the arguments on the command line that do not start with the - character are

positional arguments, and they are collected into the file value in the object built by the

parser.

We can then use the following to process each of the given files:

for filename in options.file:
process(filename)

For Windows programs, the shell doesn’t glob filenames from wildcard patterns. This

means the application must deal with filenames that contain wildcard characters like "*"

and "?" in them. The Python glob module can help with this. Also, the pathlib module

can create Path objects, which include globbing features to locate matching filenames in a

directory.

There’s more...
What kinds of arguments can we process? There are a lot of argument styles in common

use. All of these variations are defined using the add_argument() method of a parser:

• Simple options: Arguments of the form -o or --option often define optional

features. These use the 'store_true' or 'store_false' actions.

• Options with values: We showed -r unit as an option with a value. The 'store'

action is how the value is saved.

• Options that increment a counter: The action 'count' and default=0 permit an

option that can be repeated. The verbose and very verbose logging options, -v and

-vv, respectively, are an example.

• Options that accumulate a list: The action 'append' and default=[] can accu-

mulate multiple option values.
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• Show the version number: A special action of 'version' can be used to create an

argument that will show the version number and exit.

• Positional arguments do not have a leading '-' in their name. They must be defined

in the order they will be used.

The argparse module uses -h, and --help will display a help message and exit. These

options are available unless changed by an argument that uses the 'help' action.

This covers most of the common cases for command-line argument processing. Generally,

we’ll try to leverage these common styles of arguments when we write our own applica-

tions. If we strive to follow the widely used argument styles, our users are more likely to

understand how our application works.

See also
• We looked at how to get interactive user input in the Using input() and getpass() for

user input recipe.

• We’ll look at a way to add even more flexibility to this in the Using the OS environment

settings recipe.

Using invoke to get command-line input
The invoke package is not part of the standard library. It needs to be installed separately.

Generally, this is done with the following terminal command:

(cookbook3) % python -m pip install invoke

Using the python -m pip command ensures that we will use the pip command that goes

with the currently active virtual environment, shown as cookbook3.

See the Using argparse to get command-line input recipe in this chapter. It describes a

command-line application that works something like the following:

https://www.pyinvoke.org
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% RECIPE=7 # invoke

The command will always be invoke. The Python path information is used to locate

a module file named tasks.py to provide the definitions of the commands that can be

invoked. The remaining command-line values are provided to a function defined in the

tasks module.

Getting ready
Often, we’ll create a two-tiered design when using invoke. These two tiers are:

• A function to get the arguments from the command line, do any validation or con-

version required, and invoke the function to perform the real work. This function

will be decorated with @task.

• A function that does the real work. It helps if this function is designed so that it

makes no reference to the command-line options in any direct way. The intent

is to define a function to be reused in a variety of contexts, one of which is with

parameters from the command line.

In some cases, these two functions can be merged into one. This often happens when

Python is used as a wrapper to provide a simple interface for an underlying application

that is bewilderingly complicated. In this kind of application, the Python wrapper may do

very little processing, with no useful distinction between validating parameter values and

doing the “real work” of the application.

In the Using argparse to get command-line input recipe in this chapter, the display()

function is defined. This function does the “real work” of the application. When working

with invoke, this design will continue to be used.

How to do it...
1. Define a function that describes a task that can be invoked. It’s often essential to

provide some help for the various parameters, which is done by providing a dictionary
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of parameter names and help text to the @task decorator:

import sys
from invoke.tasks import task
from invoke.context import Context

@task(
help={

'p1': 'Lat,Lon',
'p2': 'Lat,Lon',
'u': 'Unit: KM, MI, NM'})

def distance(
context: Context, p1: str, p2: str, u: str = "KM"

) -> None:
"""Compute distance between two points.
"""

The docstring for the function becomes the help text provided by the

invoke distance --help command. It’s very important to provide something that

will help the user understand what the various commands will do and how to use

them.

The Context parameter is required, but it won’t be used in this example. This object

provides a consistent context when invoking multiple separate tasks. It also provides

methods to run external applications.

2. Perform any needed conversions on the various parameter values. Evaluate the

“real-work” function with cleaned values:

try:
lat_1, lon_1 = point_type(p1)
lat_2, lon_2 = point_type(p2)
display(lat_1, lon_1, lat_2, lon_2, r=u)

except (ValueError, KeyError) as ex:
sys.exit(f"{ex}\nFor help use invoke --help distance")

We’ve used sys.exit() to produce a failure message. It’s also possible to raise an

exception, but this will show long traceback displays that may not be helpful.



252 User Inputs and Outputs

How it works...
The invoke package examines the parameters for a given Python function and builds

the necessary command-line parsing options. The parameter names become the names

for options. In the example distance() function, the parameters of p1, p2, and u become

the command-line options of --p1, --p2, and -u, respectively. This lets us provide the

parameters flexibly when running the application. The values can be provided positionally,

or by using the option flags.

There’s more...
The most important feature of invoke is its ability to act as a wrapper for other binary

applications. The Context object that’s provided to each task provides ways to change the

current working directory and run an arbitrary OS command. This includes options to

update the environment of the subprocess, capture the output and error streams, provide

an input stream, and many other features.

We can use invoke to combine multiple applications under a single wrapper. This can help

to simplify complicated collections of applications by providing a uniform interface via a

single module of task definitions.

We can, for example, combine an application that computes distance between two points,

and a separate application that processes a CSV file with an entire route of a connected

series of points.

The overall design might look like this:

@task
def distance(context: Context, p1: str, p2: str, u: str) -> None:

... # Shown earlier

@task
def route(context: Context, filename: str) -> None:

if not path(filename).exists():
sys.exit(f"File not found {filename}")

context.run("python some_app.py {filename}", env={"APP_UNITS": "NM"})
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The context.run() method will invoke an arbitrary OS-level command. The env parameter

value provides updated environment variables to the command that’s executed.

See also
• Additional recipes for application integration are shown in Chapter 14, Application

Integration: Combination.

• The https://www.pyinvoke.org web page contains all of the documentation on

invoke.

Using cmd to create command-line applications
There are several ways to create interactive applications. The Using input() and getpass() for

user input recipe looked at functions such as input() and getpass.getpass(). The Using

argparse to get command-line input recipe showed us how to use the argparse module to

create applications with which a user can interact from the OS command line.

We have another way to create interactive applications: using the cmd module. This module

will prompt the user for input and then invoke a specific method of the class we provide.

Here’s an example of the interaction:

] dice 5

Rolling 5 dice

] roll

[5, 6, 6, 1, 5]

]

We entered the dice 5 command to set the number of dice. After that, the roll com-

mand showed the results of rolling five dice. The help command will show the available

commands.

Getting ready
The core feature of a cmd.Cmd application is a read-evaluate-print loop (REPL). This

kind of application works well when there are a number of individual state changes and a

https://www.pyinvoke.org
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number of closely related commands to make those state changes.

We’ll make use of a simple, stateful dice game. The idea is to have a handful of dice, some

of which can be rolled and some of which are frozen. This means our Cmd class definition

must have some attributes that describe the current state of a handful of dice.

Commands will include the following:

• dice to set the number of dice

• roll to roll the dice

• reroll to re-roll selected dice, leaving the others untouched

How to do it...
1. Import the cmd module to make the cmd.Cmd class definition available. Since this is a

game, the random module will also be needed:

import cmd
import random

2. Define an extension to cmd.Cmd:

class DiceCLI(cmd.Cmd):

3. Define any initialization required in the preloop() method:

def preloop(self) -> None:
self.n_dice = 6
self.dice: list[int] | None = None # no roll has been made.
self.reroll_count = 0

This method is evaluated once when the processing starts.

Initialization can also be done in an __init__() method. However, doing this is a

bit more complicated because it must collaborate with the Cmd class initialization.

4. For each command, create a do_command() method. The name of the method will be
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the command, prefixed by the characters do_. Any user input text after the command

will be provided as an argument value to the method. The docstring comment in

the method definition is the help text for the command. Here is the roll command,

defined by the do_roll() method:

def do_roll(self, arg: str) -> bool:
"""Roll the dice. Use the dice command to set the number of
dice."""
self.dice = [random.randint(1, 6) for _ in range(self.n_dice)]
print(f"{self.dice}")
return False

5. Parse and validate the arguments to the commands that use them. The user’s input

after the command will be provided as the value of the first positional argument to

the method. Here is the dice command, defined by the do_dice() method:

def do_dice(self, arg: str) -> bool:
"""Sets the number of dice to roll."""
try:

self.n_dice = int(arg)
except ValueError:

print(f"{arg!r} is invalid")
return False

self.dice = None
print(f"Rolling {self.n_dice} dice")
return False

6. Write the main script. This will create an instance of this class and execute the

cmdloop() method:

if __name__ == "__main__":
game = DiceCLI()
game.cmdloop()

The cmdloop() method handles the details of prompting, collecting input, and exe-

cuting the proper method.
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How it works...
The Cmd class contains a large number of built-in features to display a prompt, read input

from a user, and then locate the proper method based on the user’s input.

For example, when we enter a command like dice 5, the built-in methods of the Cmd

superclass will strip the first word from the input, dice, and prefix this with do_. It will

then try to evaluate the method with the argument value of the rest of the line, 5.

If we enter a command for which there’s no matching do_*() method, the command

processor writes an error message. This is done automatically; we don’t need to write any

code to handle invalid command input.

Some methods, such as do_help(), are already part of the application. These methods will

summarize the other do_* methods. When one of our methods has a docstring, this will be

displayed by the built-in help feature.

The Cmd class relies on Python’s facilities for introspection. An instance of the class can

examine the method names to locate all of the methods that start with do_. Introspection

is an advanced topic, one that will be touched on in Chapter 8.

There’s more...
The Cmd class has a number of additional places where we can add interactive features:

• We can define specific help_*() methods that become part of the help topics.

• When any of the do_*() methods return a non-False value, the loop will end. We

might want to add a do_quit() method to return True.

• If the input stream is closed, an EOF command will be provided. In Linux, using

ctrl-d will close the input file. This leads to the do_EOF() method, which should

use return True.

• We might provide a method named emptyline() to respond to blank lines.

• The default() method is evaluated when the user’s input does not match any of

the do_*() methods.
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• The postloop() method can be used to do some processing just after the loop finishes.

This would be a good place to write a summary.

Also, there are a number of attributes we can set. These are class-level variables that would

be peers of the method definitions:

• The prompt attribute is the prompt string to write. The intro attribute is the in-

troductory text to write before the first prompt. For our example, we can do the

following:

class DiceCLI2(cmd.Cmd):
prompt = "] "
intro = "A dice rolling tool. ? for help."

• We can tailor the help output by setting doc_header, undoc_header, misc_header,

and ruler attributes.

The goal is to be able to create a tidy class that handles user interaction as directly as

possible.

See also
• We’ll look at class definitions in Chapter 7 and Chapter 8.

Using the OS environment settings
There are several ways to look at inputs provided by the users of our software:

• Interactive input: This is provided by the user as required by the application. See

the Using input() and getpass() for user input recipe.

• Command-line arguments: These are provided once, when the program is started.

See the Using argparse to get command-line input and Using invoke to get command-line

input recipes.

• Environment variables: These are OS-level settings. There are several ways these

can be set:
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– At the command line, when running the application.

– Set in a configuration file for the user’s selected shell. For example, if using

zsh, these files are the ~/.zshrc file and the ~/.profile file. There can also

be system-wide files, like the /etc/zshrc file.

– In Windows, there’s the Advanced Settings option for environment variables.

• Configuration files: These are unique to an application. They are the subject of

Chapter 13.

The environment variables are available through the os module.

Getting ready
In the Using argparse to get command-line input recipe, we wrapped the haversine()

function in a simple application that parsed command-line arguments. We created a

program that worked like this:

% python ch06/distance_app.py -u KM 36.12,-86.67 33.94,-118.40
From 36.12,-86.67 to 33.94,-118.4 in KM = 2886.90
"""

After using this version of the application for a while, we may find that we’re often using

nautical miles to compute distances from where our boat is anchored. We’d really like to

have default values for one of the input points as well as the -r argument.

Since a boat can be anchored in a variety of places, we need to change the default without

having to tweak the actual code. The idea of a “slowly changing” argument value fits well

with the OS environment variables. They can be persistent but are also relatively easy to

change.

We’ll use two OS environment variables:

• UNITS will have the default distance units.

• HOME_PORT can have an anchor point.
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We want to be able to do the following:

% UNITS=NM
% HOME_PORT=36.842952,-76.300171
% python ch06/distance_app.py 36.12,-86.67

From 36.12,-86.67 to 36.842952,-76.300171 in NM = 502.23

How to do it...
1. Import the os module. The default set of command-line arguments to parse comes

from sys.argv, so it’s important to also import the sys module. The application will

also depend on the argparse module:

import os
import sys
import argparse

2. Import any other classes or objects needed for the application:

from ch03.recipe_11 import haversine, MI, NM, KM
from ch06.recipe_04 import point_type, display

3. Define a function that will use the environment values as defaults for optional

command-line arguments:

def get_options(argv: list[str] = sys.argv[1:]) -> argparse.Namespace:

4. Gather default values from the OS environment settings. This includes any validation

required:

default_units = os.environ.get("UNITS", "KM")
if default_units not in ("KM", "NM", "MI"):

sys.exit(f"Invalid UNITS, {default_units!r} not KM, NM, or
MI")

default_home_port = os.environ.get("HOME_PORT")
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Note that using os.environ.get() permits the application to include a default value

for cases where the environment variable is not set.

5. Create the parser object. Provide the default values for the relevant arguments

extracted from the environment variables:

parser = argparse.ArgumentParser()
parser.add_argument("-u", "--units",

action="store", choices=("NM", "MI", "KM"),
default=default_units

)
parser.add_argument("p1", action="store", type=point_type)
parser.add_argument(

"p2", nargs="?", action="store", type=point_type,
default=default_home_port

)

6. Do any additional validation to ensure that arguments are set properly. In this

example, it’s possible to have no value for HOME_PORT and no value provided for the

second command-line argument.

This requires an if statement and a call to sys.exit():

options = parser.parse_args(argv)
if options.p2 is None:

sys.exit("Neither HOME_PORT nor p2 argument provided.")

7. Return the final options object with the set of valid arguments:

return options

This will allow the -u argument and the second point to be optional. The argument parser

will use the configuration information to supply default values if these are omitted from

the command line.

There is a nuanced distinction in the error code provided by sys.exit(). When applications

fail because of command-line problems, it’s common to return a status code of 2, but

sys.exit() will set the value to 1. A slightly better approach is to use the parser.error()
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method. Doing this requires refactoring to create the ArgumentParser instance before

acquiring and validating values from environment variables.

How it works...
We’ve used the OS environment variables to create default values that can be overridden

by command-line arguments. If the environment variable is set, that string is provided

as the default to the argument definition. If the environment variable is not set, then an

application-level default value will used. In the case of the UNITS variable, in this example,

the application uses kilometers as the default if the OS environment variable is not set.

We’ve used the OS environment to set default values that can be overridden by the command-

line argument values. This supports the idea of the environment providing a general context

that might be shared by a number of commands.

There’s more...
The Using argparse to get command-line input recipe shows a slightly different way to

handle the default command-line arguments available from sys.argv. The first of the

arguments is the name of the Python application being executed and is not often relevant

to argument parsing.

The value of sys.argv will be a list of strings:

['ch06/distance_app.py', '-u', 'NM', '36.12,-86.67']

We have to skip the initial value in sys.argv[0] at some point in the processing. Generally,

the application needs to provide sys.argv[1:] to the parser. This can be done inside

the get_options() function. It can be done when the main() function evaluates the

get_options() function. As shown in this example, it can be done when creating the

default argument values for the get_options() function.

The argparse module allows us to provide type information for an argument definition.

Providing type information can be used to validate argument values. In many cases, there
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may be a finite list of choices for a value, and this set of allowed choices can be provided

as part of the argument definition. Doing this creates better error and help messages,

improving the user experience when running the application.

See also
• We’ll look at numerous ways to handle configuration files in Chapter 13.

Join our community Discord space
Join our Python Discord workspace to discuss and find out more about the book:

https://packt.link/dHrHU

https://packt.link/dHrHU


7
Basics of Classes and
Objects

The point of computing is to process data. We often encapsulate the processing and the

data into a single definition. We can organize objects into classes with a common collection

of attributes to define their internal state and common behavior. Each instance of a class is

a distinct object with unique internal state and behavior.

This concept of state and behavior applies particularly well to the way games work. When

building something like an interactive game, the user’s actions update the game state. Each

of the player’s possible actions is a method to change the state of the game. In many games

this leads to a lot of animation to show the transition from state to state. In a single-player

arcade-style game, the enemies or opponents will often be separate objects, each with an

internal state that changes based on other enemy actions and the player’s actions.

On the other hand, if we consider a card or dice game, there may be very few states

possible. A game like Zonk involves a player rolling (and rerolling) dice as long as their
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score improves. If a subsequent roll fails to improve their hand of dice, their turn is over.

The hand’s state is the pool of dice that comprise the scoring subset, often pushed to one

side of the table. In a six-dice game, there will be from one to six scoring dice as distinct

states. Additionally, when all dice are scoring, the player can begin the rolling process

again by rerolling all of the dice. This leads to an additional “over-the-top” state that the

players must also bear in mind.

The point of object-oriented design is to define the current state with the attributes of an

object. Each object is defined as an instance of a class of similar objects. We write the class

definitions in Python and use these to create objects. The methods defined in the class

cause the state changes on an object.

In this chapter, we will look at the following recipes:

• Using a class to encapsulate data and processing

• Essential type hints for class definitions

• Designing classes with lots of processing

• Using typing.NamedTuple for immutable objects

• Using dataclasses for mutable objects

• Using frozen dataclasses for immutable objects

• Optimizing small objects with __slots__

• Using more sophisticated collections

• Extending a built-in collection – a list that does statistics

• Using properties for lazy attributes

• Creating contexts and context managers

• Managing multiple contexts with multiple resources

The subject of object-oriented design is quite large. In this chapter, we’ll cover some of the
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essentials. We’ll start with some foundational concepts, such as how a class definition

encapsulates state and processing details for all instances of a class.

Using a class to encapsulate data and processing
Class design is influenced by the SOLID design principles. The Single Responsibility and

Interface Segregation principles offer helpful advice. Taken together, these principles

advise us that a class should have methods narrowly focused on a single, well-defined

responsibility.

Another way of considering a class is as a group of closely-related functions working with

common data. We call these methods for working with the data. A class definition should

contain the smallest collection of methods for working with the object’s data.

We’d like to create class definitions based on a narrow allocation of responsibilities. How

can we define responsibilities effectively? What’s a good way to design a class?

Getting ready
Let’s look at a simple, stateful object – a pair of dice. The context for this is an application

that simulates a simple game like Craps.

A software object can be viewed as analogous to a thing – a noun. The behaviors of the

class can then be viewed as verbs. This identification with nouns and verbs gives us a hint

as to how we can proceed to design classes to work effectively.

This leads us to several steps of preparation. We’ll provide concrete examples of these steps

using a pair of dice for game simulation. We proceed as follows:

1. Write down simple sentences that describe what an instance of the class does. We

can call these the problem statements. It’s essential to focus on single-verb sentences,

with a focus on only the nouns and verbs. Here are some examples:

• The game of Craps has two standard dice.

• Each die has six faces, with point values from one to six.
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• Dice are rolled by a player. While writers and editors prefer the active voice

version, “A player rolls the dice,” the dice are often acted upon by other objects,

making passive-voice sentences slightly more useful.

• The total of the dice changes the state of the Craps game. Those rules are

separate from the dice.

• If the two dice match, the number was described as being rolled “the hard way”.

If the two dice do not match, the roll was described as being made “the easy

way”.

2. Identify all of the nouns in the sentences. In this example, the nouns include dice,

faces, point values, and a player. The nouns identify different classes of objects that

may be collaborators, like player and game. Nouns may also identify attributes of

objects, like face and point value.

3. Identify all the verbs in the sentences. Verbs often become methods of the class in

question. In this example, verbs include roll and match.

This information helps define the state and behavior of the objects. Having this background

information will help us write the class definition.

How to do it...
Since the simulation we’re writing involves random throws of dice, we’ll depend on

from random import randint to provide the useful randint() function. The steps for

defining a class are as follows:

1. Start writing the class with the class statement:

class Dice:

2. Initialize the object’s attributes within the body of an __init__() method. We’ll

model the internal state of the dice with a faces attribute. A self variable is required

to be sure that we’re referencing an attribute of a given instance of a class. We’ll
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provide a type hint on each attribute to be sure it’s used properly throughout the

class definition:

def __init__(self) -> None:
self.faces: tuple[int, int] = (0, 0)

3. Define the object’s methods based on the verbs in the description. When the player

rolls the dice, a roll() method can set the values shown on the faces of the two dice.

We implement this with a method to set the faces attribute of the self object:

def roll(self) -> None:
self.faces = (randint(1,6), randint(1,6))

This method mutates the internal state of the object. We’ve elected to not return a

value.

4. After a player rolls the dice, a total() method helps compute the total of the dice:

def total(self) -> int:
return sum(self.faces)

5. Additional methods can provide answers to questions about the state of the dice. In

this case, the total was made “the hard way” when both dice match:

def hardway(self) -> bool:
return self.faces[0] == self.faces[1]

def easyway(self) -> bool:
return self.faces[0] != self.faces[1]

How it works...
The core idea here is to use ordinary rules of grammar – nouns, verbs, and adjectives –

as a way to identify basic features of a class. In our example, dice are real things. We

try to avoid using abstract terms such as randomizers or event generators. It’s easier to

describe the tangible features of real things, and then define an implementation to match

the tangible features.
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The idea of rolling the dice is an example physical action that we can model with a method

definition. This action of rolling the dice changes the state of the object. In rare cases – 1

time in 36 – the next state will happen to match the previous state.

Here’s an example of using the Dice class:

1. First, we’ll seed the random number generator with a fixed value so that we can get

a fixed sequence of results:

>>> import random
>>> random.seed(1)

2. We’ll create a Dice object, and assign it to a variable, d1. We can then set its state

with the roll() method. We’ll then look at the total() method to see what was

rolled. We’ll examine the state by looking at the faces attribute:

>>> d1 = Dice()
>>> d1.roll()
>>> d1.total()
7
>>> d1.faces
(2, 5)

There’s more...
Capturing the essential internal state and methods that cause state change is the first step

in good class design. We can summarize some helpful design principles using the acronym

SOLID:

• Single Responsibility Principle: A class should have one clearly defined responsi-

bility.

• Open/Closed Principle: A class should be open to extension – generally via inheri-

tance – but closed to modification. We should design our classes so that we don’t

need to tweak the code to add or change features.

• Liskov Substitution Principle: We need to design inheritance so that a subclass
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can be used in place of the superclass.

• Interface Segregation Principle: When writing a problem statement, we want

to be sure that collaborating classes have as few dependencies as possible. In many

cases, this principle will lead us to decompose large problems into many small class

definitions.

• Dependency Inversion Principle: It’s less than ideal for a class to depend directly

on other classes. It’s better if a class depends on an abstraction, and a concrete

implementation class is substituted for the abstract class.

The goal is to create classes that have the necessary behavior and also adhere to the design

principles so they can be extended and reused.

See also
• See the Using properties for lazy attributes recipe, where we’ll look at the choice

between an eager attribute and a lazy property.

• In Chapter 8, we’ll look in more depth at class design techniques.

• See Chapter 15, for recipes on how to write appropriate unit tests for the class.

Essential type hints for class definitions
A class name is also a type hint, allowing a direct reference between a variable and the

class that should define the objects associated with the variable. This relationship lets tools

such as mypy reason about our programs to be sure that object references and method

references appear to match the type hints in our code.

In addition to the class name, we’ll use type hints in three common places within a class

definition:

• In method definitions, we’ll use type hints to annotate the parameters and the return

type.

• In the __init__() method, we may need to provide hints for the instance variables
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that define the state of the object.

• Inside the attributes of the class overall. These are not common and type hints are

rare here.

Getting ready
We’re going to examine a class with a variety of type hints. In this example, our class will

model a handful of dice. We’ll allow rerolling selected dice, making the instance of the

class stateful.

The collection of dice can be set by a first roll, where all the dice are rolled. The class allows

subsequent rolls of a subset of dice. The number of rolls is counted as well.

The type hints will reflect the nature of the collection of dice, the integer counts, a floating-

point average value, and a string representation of the hand as a whole. This will show a

number of type hints and how to write them.

How to do it...
1. This definition will involve random numbers as well as type hints for sets and lists.

We import the random module:

import random

2. Define the class. This creates a new type:

class Dice:

3. It’s rare for class-level variables to require a type hint. They’re almost always created

with assignment statements that make the type information clear to a person or a

tool like mypy. In this case, we want all instances of our class of dice to share a

common random number generator object:

RNG = random.Random()
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4. The __init__() method creates the instance variables that define the state of the

object. In this case, we’ll save some configuration details, plus some internal state.

The __init__() method also has the initialization parameters. Generally, we’ll put

the type hints on these parameters. Other internal state variables may require type

hints to show what kinds of values will be assigned by other methods of the class. In

this example, the faces attribute has no initial value; we state that when it is set, it

will be a List[int] object:

def __init__(self, n: int, sides: int = 6) -> None:
self.n_dice = n
self.sides = sides
self.faces: list[int]
self.roll_number = 0

5. Methods that compute new derived values can be annotated with their return type

information. Here are three examples to return a string representation, compute the

total, and also compute an average of the dice. These functions have return types of

str, int, and float, as shown:

def __str__(self) -> str:
return ", ".join(

f"{i}: {f}"
for i, f in enumerate(self.faces)

)

def total(self) -> int:
return sum(self.faces)

def average(self) -> float:
return sum(self.faces) / self.n_dice

6. For methods with parameters, we include type hints on the parameters as well as a

return type. In this case, the methods that change the internal state also return values.

The return value from both methods is a list of dice faces, described as list[int].

The parameter for the reroll() method is a set of dice to be rolled again. This is

shown as a set[int] requiring a set of integers. Python is a little more flexible than
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this, and we’ll look at some alternatives:

def first_roll(self) -> list[int]:
self.roll_number = 0
self.faces = [

self.RNG.randint(1, self.sides)
for _ in range(self.n_dice)

]
return self.faces

def reroll(self, positions: set[int]) -> list[int]:
self.roll_number += 1
for p in positions:

self.faces[p] = self.RNG.randint(1, self.sides)
return self.faces

How it works...
The type hint information is used by programs such as mypy to be sure that the instances

of the class are used properly throughout the application.

If we try to write a function like the following:

def example_mypy_failure() -> None:
d = Dice(2.5)
d.first_roll()
print(d)

The attempt to create an instance of the Dice class using a float value for the n parameter

represents a conflict with the type hints. The hint for the Dice class’s __init__() method

claimed the argument value should be an integer. The mypy program reports the following:

src/ch07/recipe_02_bad.py:9: error: Argument 1 to "Dice" has incompatible type "

float"; expected "int" [arg-type]

If we try to execute the application, it will raise a TypeError exception in another place.

The error will manifest when evaluating the d.first_roll() method. The exception is

raised here because the body of the __init__() method works well with values of any type.
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The hints claim specific types are expected, but at runtime, any object can be provided.

The hints are not checked during execution.

Similarly, when we use other methods, the mypy program checks to be sure our use of the

method matches the expectations defined by the type hints. Here’s another example:

r1: list[str] = d.first_roll()

This assignment statement has a type hint for the r1 variable that doesn’t match the type

hint for the return type from the first_roll() method. This conflict is found by mypy

and reported as an Incompatible types in assignment error.

There’s more...
One of the type hints in this example is too specific. The function for re-rolling the dice,

reroll(), has a positions parameter. The positions parameter is used in a for statement,

which means the object must be some kind of iterable object.

The mistake was providing a type hint, set[int], which is only one of many kinds of

iterable objects. We can generalize this definition by switching the type hint from the very

specific set[int] to the more general Iterable[int].

Relaxing the hint means that any set, list, or tuple object can be a valid argument value

for this parameter. The only other code change required is to import Iterable from the

collections.abc module.

The for statement has a specific protocol for getting the iterator object from an iterable

collection, assigning values to a variable, and executing the indented body. This protocol is

defined by the Iterable type hint. There are many such protocol-based types, and they

allow us to provide type hints that match Python’s inherent flexibility with respect to type.

See also
• In Chapter 3, in the Function parameters and type hints recipe, a number of similar

concepts are shown.
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• In Chapter 4, the Writing list-related type hints and Writing set-related type hints

recipes address additional detailed type hinting.

• In Chapter 5, the Writing dictionary-related type hints recipe also addresses type

hinting.

Designing classes with lots of processing
Some of the time, an object will contain all of the data that defines its internal state. There

are cases, however, where a class doesn’t hold the data, but instead is designed to consolidate

processing for data held in separate containers.

Some prime examples of this design are statistical algorithms, which are often outside the

data being analyzed. The data might be in a built-in list or Counter object; the processing

is defined in a class separate from the data container.

Getting ready
It’s quite common to do analysis on data that’s already been summarized into groups or

bins. We might, for example, have a vast data file with a large number of measurements of

an industrial process.

For background, see the NIST Aerosol Particle Size case study: https://www.itl.nist.g

ov/div898/handbook/pmc/section6/pmc62.htm

Rather than analyze the voluminous raw data, it’s often much faster to first summarize the

important variables, then analyze the summarized data. The summary data can be kept in

a Counter object. The data looks like this:

data = Counter({7: 80,
6: 67,
8: 62,
9: 50,

... Details omitted ...

https://www.itl.nist.gov/div898/handbook/pmc/section6/pmc62.htm
https://www.itl.nist.gov/div898/handbook/pmc/section6/pmc62.htm
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2: 3,
3: 2,
1: 1})

The keys (7, 6, 8, 9, and so on) are codes reflecting the particle size. The actual sizes varied

from 109 to 119. Computing the actual size, 𝑐, from the 𝑠 code is done with 𝑐 = ⌊2(𝑠 − 109)⌋.

(The units aren’t provided in the NIST background information. Since a lot of the data

reflects electronic chip wafers and fabrication, the units are likely something very small.)

We want to compute some statistics on this Counter object without being forced to work

with the original voluminous dataset. In general, there are two general design strategies

for designing classes to store and process data:

• Extend the storage class definition, Counter in this case, to add statistical processing.

We’ll cover this in detail in the Extending a built-in collection – a list that does statistics

recipe.

• Wrap a Counter object in a class that provides the additional features required.

When we do this, though, we have two more choices:

– Expose the underlying Counter object. We’ll focus on this.

– Write special methods to make the wrapper appear to also be a collection,

encapsulating the Counter object. We’ll look at this in Chapter 8.

For this recipe, we’ll focus on the wrap variant where we define a statistical computation

class that exposes a Counter object. We have two ways to design this compute-intensive

processing:

• An Eager implementation computes the statistics as soon as possible. The values

become simple attributes. We’ll focus on this choice.

• A Lazy approach doesn’t compute anything until the value is required via a method

function or property. We’ll look at this in the Using properties for lazy attributes

recipe.
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The essential algorithm for both designs is the same. The only question is when the work

of the computation gets done.

How to do it...
1. Import the appropriate class from the collections module. The computation uses

math.sqrt(). Be sure to add the needed import math also:

from collections import Counter
import math

2. Define the class with a descriptive name:

class CounterStatistics:

3. Write the __init__() method to include the object where the data is located. In this

case, the type hint is Counter[int] because the keys used in the Counter object will

be integers:

def __init__(self, raw_counter: Counter[int]) -> None:
self.raw_counter = raw_counter

4. Initialize any other local variables in the __init__() method that might be useful.

Since we’re going to calculate values eagerly, the most eager possible time is when

the object is created. We’ll write references to some yet to be defined functions:

self.mean = self.compute_mean()
self.stddev = self.compute_stddev()

5. Define the required methods for the various values. Here’s the calculation of the

mean:

def compute_mean(self) -> float:
total, count = 0.0, 0
for value, frequency in self.raw_counter.items():

total += value * frequency
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count += frequency
return total / count

6. Here’s how we can calculate the standard deviation:

def compute_stddev(self) -> float:
total, count = 0.0, 0
for value, frequency in self.raw_counter.items():

total += frequency * (value - self.mean) ** 2
count += frequency

return math.sqrt(total / (count - 1))

Note that this calculation requires that the mean is computed first and the self.mean

instance variable has been created. This internal state change from no known mean to a

known mean to a known standard deviation is a potential complication that requires clear

documentation.

The raw data for this example is at https://www.itl.nist.gov/div898/handbook//da

tasets/NEGIZ4.DAT. This file has an awkwardly complicated layout because there are 50

lines of header text in front of the data. Further, the file isn’t in a common CSV format. For

these reasons, it’s easier to work with summarized data.

The repository of code for this book includes a file named data/binned.csv that has the

binned summary data. This data has three columns: size_code, size, and frequency.

We’re only interested in size_code and frequency.

Here’s how we can build a suitable Counter object from this file:

>>> from pathlib import Path
>>> import csv
>>> from collections import Counter

>>> data_path = Path.cwd() / "data" / "binned.csv"
>>> with data_path.open() as data_file:
... reader = csv.DictReader(data_file)
... extract = {
... int(row['size_code']): int(row['frequency'])

https://www.itl.nist.gov/div898/handbook//datasets/NEGIZ4.DAT
https://www.itl.nist.gov/div898/handbook//datasets/NEGIZ4.DAT
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... for row in reader

... }
>>> data = Counter(extract)

We’ve used a dictionary comprehension to create a mapping from size_code to the

frequency of that code value. This is then provided to the Counter class to build a

Counter object named data from this existing summary. We can provide this data to

the CounterStatistics class to get useful summary statistics from the binned data. This

looks like the following example:

>>> stats = CounterStatistics(data)
>>> print(f"Mean: {stats.mean:.1f}")
Mean: 10.4
>>> print(f"Standard Deviation: {stats.stddev:.2f}")
Standard Deviation: 4.17

We provided the data object to create an instance of the CounterStatistics class. Cre-

ating this instance will also immediately compute the summary statistics. No additional

explicit method evaluations are required. These values are available as the stats.mean and

stats.stddev attributes.

The processing cost to compute the statistics is paid initially. As we’ll see below, a tiny

incremental cost can be associated with any change to the underlying data.

How it works...
This class encapsulates two complex algorithms, but doesn’t include any of the data for

those algorithms. The data is kept separately, in a Counter object. We wrote a high-level

specification for the processing and placed it in the __init__() method. Then we wrote

methods to implement the processing steps that were specified. We can set as many

attributes as are needed, making this a very flexible approach.

The advantage of this design is that the attribute values can be used repeatedly. The cost

of computation for the mean and standard deviation is paid once; each time an attribute
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value is used, no further processing is required.

The disadvantage of this design is that any changes to the state of the underlying Counter

object will render the CounterStatistics object’s state obsolete and incorrect. If, for

example, we added a few hundred more data values, the mean and standard deviation

would need to be recomputed. A design that eagerly computes values is appropriate when

the underlying Counter object isn’t going to change.

There’s more...
If we need to do computations on stateful, mutable objects, we have several choices:

• Encapsulate the Counter object and make changes via the CounterStatistics class.

This requires some care to expose enough methods of the data collection. We’ll defer

this kind of design until Chapter 8.

• Use lazy computations. See the Using properties for lazy attributes recipe in this

chapter.

• Add a method to implement the computation of mean and standard deviation, so

these can be recomputed after changing the underlying Counter object. This leads

to refactoring the __init__() method to use this new computation method. We’ll

leave this as an exercise for the reader.

• Write documentation explaining the requirement to create a new CounterStatistics

instance each time the underlying Counter object changes. This involves no code,

merely an explicit statement of the constraints on the object’s state.

See also
• In the Extending a built-in collection – a list that does statistics recipe, we’ll look at a

different design approach where these new summary functions are used to extend a

class definition.

• We’ll look at a different approach in the Using properties for lazy attributes recipe.

This alternative recipe will use properties to compute the attributes as needed.



280 Basics of Classes and Objects

• The wrap=extend design choice is also looked at in Chapter 8.

Using typing.NamedTuple for immutable objects
In some cases, an object is a container of rather complex data, but doesn’t really do very

much processing on that data. Indeed, in many cases, we’ll define a class that doesn’t

require any unique method functions. These classes are relatively passive containers of

data items, without a lot of processing.

In many cases, Python’s built-in container classes – list, set, or dict – can cover your

use cases. The small problem is that the syntax for accessing an item in a dictionary or a

list isn’t quite as elegant as the syntax for accessing an attribute of an object.

How can we create a class that allows us to use object.attribute syntax instead of the

more elaborate object['attribute']?

Getting ready
There are two cases for any kind of class design:

• Is it stateless (or immutable)? Does it embody attributes with values that never

change? This is a good example of a NamedTuple.

• Is it stateful (or mutable)? Will there be state changes for one or more attributes?

This is the default for Python class definitions. An ordinary class is stateful. We

can simplify creating stateful objects using the Using dataclasses for mutable objects

recipe.

We’ll define a class to describe simple playing cards that have a rank and a suit. Since

a card’s rank and suit don’t change, we’ll create a small stateless class for this. The

typing.NamedTuple class serves as a handy base class for these kinds of class definitions.

How to do it...
1. We’ll define stateless objects as a subclass of typing.NamedTuple:
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from typing import NamedTuple

2. Define the class name as an extension to NamedTuple. Include the attributes with

their individual type hints:

class Card(NamedTuple):
rank: int
suit: str

Here’s how we can use this class definition to create Card objects:

>>> eight_hearts = Card(rank=8, suit='\N{White Heart Suit}')
>>> eight_hearts
Card(rank=8, suit='♥')

>>> eight_hearts.rank
8

>> eight_hearts.suit
'♥'

>>> eight_hearts[0]

We’ve created a new class, named Card, which has two attribute names: rank and suit.

After defining the class, we can create an instance of the class. We built a single Card object,

eight_hearts, with a rank of eight and a suit of ♥.

We can refer to attributes of this object with their name or their position within the tuple.

When we use eight_hearts.rank or eight_hearts[0], we’ll see the value of the rank

attribute because this attribute is defined first in the sequence of attribute names.

This kind of object is immutable. Here’s an example of attempting to change the instance

attributes:
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>>> eight_hearts.suit = '\N{Black Spade Suit}'
Traceback (most recent call last):
...
AttributeError: can't set attribute

We attempted to change the suit attribute of the eight_hearts object. This raised an

AttributeError exception showing that instances of NamedTuple are immutable.

A tuple can contain objects of any type.

When a tuple contains mutable items, like lists, sets, or dictionaries, those

objects remain mutable.

Only the top-level containing tuple is immutable. Lists, sets, or dictionaries

within a tuple are mutable.

How it works...
The typing.NamedTuple class lets us define a new subclass that has a well-defined list of

attributes. A number of methods are created automatically to provide a minimal level

of Python behavior. We can see an instance will display a readable text representation

showing the values of the various attributes.

In the case of a NamedTuple subclass, the behavior is based on the way a built-in tuple

instance works. The order of the attributes defines the comparison between tuples. Our

definition of Card, for example, lists the rank attribute first. This means that we can easily

sort cards by rank. For two cards of equal rank, the suits will be sorted into order. Because

a NamedTuple is also a tuple, it works well as a member of a set or a key for a dictionary.

The two attributes, rank and suit in this example, are named as part of the class definition,

but are implemented as instance variables. A variation on the tuple’s __new__() method

is created for us. This method has two parameters matching the instance variable names.

The automatically created method will assign argument values to the instance variables

when the object is created.
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There’s more...
We can add methods to this class definition. For example, if each card has a number of

points, we might want to extend the class to look like this example:

class CardPoints(NamedTuple):
rank: int
suit: str

def points(self) -> int:
if 1 <= self.rank < 10:

return self.rank
else:

return 10

We’ve written a CardsPoints class with a points() method that returns the points assigned

to each rank. This point rule applies to games like Cribbage, not to games like Blackjack.

Because this is a tuple, the methods cannot add new attributes or change the attributes. In

some cases, we build complex tuples from other tuples.

See also
• In the Designing classes with lots of processing recipe, we looked at a class that is

entirely processing and almost no data. It acts as the polar opposite of this class.

Using dataclasses for mutable objects
We’ve noted two general kinds of objects in Python:

• Immutable: During design, we’ll ask if something has attributes with values that

never change. If the answer is yes, see the Using typing.NamedTuple for immutable

objects recipe, which offers a way to build class definitions for immutable objects.

• Mutable: Will there be state changes for one or more attributes? In this case, we can

either build a class from the ground up, or we can leverage the @dataclass decorator

to create a class definition from a few attributes and type hints. This case is the focus

of this recipe.
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How can we leverage the dataclasses library to help design mutable objects?

Getting ready
We’ll look closely at a mutable object with an internal state to represent a hand of cards.

While individual cards are immutable, they can be inserted into a hand and removed from

a hand. In a game like Cribbage, the hand has a number of state changes. Initially, six cards

are dealt to both players. The players will each lay away a pair of cards to create the crib.

The remaining four cards are then played alternately to create scoring opportunities. The

hands are then counted in isolation, with a slightly different mix of scoring opportunities.

The dealer gets the score from counting the cards in the crib as an extra hand. (Yes, it’s

unfair initially, but the deal alternates, so it’s eventually fair.)

We’ll look at a simple collection to hold the cards and discard two that form the crib.

How to do it...
1. To define data classes, we’ll import the @dataclass decorator:

from dataclasses import dataclass

2. Define the new class using the @dataclass decorator:

@dataclass
class CribbageHand:

3. Define the various attributes with appropriate type hints. For this example, we’ll

expect a player to have a collection of cards represented by list[CardPoints].

Because each card is unique, we could also use a set[CardPoints] type hint:

cards: list[CardPoints]

4. Define any methods that change the state of the object:
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def to_crib(self, card1: CardPoints, card2: CardPoints) -> None:
self.cards.remove(card1)

Here’s the complete class definition, properly indented:

@dataclass
class CribbageHand:

cards: list[CardPoints]

def to_crib(self, card1: CardPoints, card2: CardPoints) -> None:
self.cards.remove(card1)
self.cards.remove(card2)

This definition provides a single instance variable, self.cards, that can be used by any

method that is written. Because we provided a type hint, the mypy program can check the

class to be sure that it is being used properly.

Here’s how it looks when we create an instance of this CribbageHand class:

>>> cards = [
... CardPoints(rank=3, suit='\N{WHITE DIAMOND SUIT}'),
... CardPoints(rank=6, suit='\N{BLACK SPADE SUIT}'),
... CardPoints(rank=7, suit='\N{WHITE DIAMOND SUIT}'),
... CardPoints(rank=1, suit='\N{BLACK SPADE SUIT}'),
... CardPoints(rank=6, suit='\N{WHITE DIAMOND SUIT}'),
... CardPoints(rank=10, suit='\N{WHITE HEART SUIT}')]
>>> ch1 = CribbageHand(cards)

>>> from pprint import pprint
>>> pprint(ch1)
CribbageHand(cards=[CardPoints(rank=3, suit='♦'),

CardPoints(rank=6, suit='♠'),
CardPoints(rank=7, suit='♦'),
CardPoints(rank=1, suit='♠'),
CardPoints(rank=6, suit='♦'),
CardPoints(rank=10, suit='♥')])
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>>> [c.points() for c in ch1.cards]
[3, 6, 7, 1, 6, 10]

In the following example, the player decided (perhaps unwisely) to lay away the 3♦ and

A♠ cards for the crib:

>>> ch1.to_crib(
... CardPoints(rank=3, suit='\N{WHITE DIAMOND SUIT}'),
... CardPoints(rank=1, suit='\N{BLACK SPADE SUIT}'))

>>> pprint(ch1)
CribbageHand(cards=[CardPoints(rank=6, suit='♠'),

CardPoints(rank=7, suit='♦'),
CardPoints(rank=6, suit='♦'),
CardPoints(rank=10, suit='♥')])

>>> [c.points() for c in ch1.cards]
[6, 7, 6, 10]

After the to_crib() method removed two cards from the hand, the remaining four cards

were displayed. Another list comprehension was created with the point values of the

remaining four cards.

How it works...
The @dataclass decorator helps us define a class with several useful methods as well

as a list of attributes drawn from the named variables and their type hints. We can see

that an instance displays a readable text representation showing the values of the various

attributes.

The attributes are named as part of the class definition, but are actually implemented as

instance variables. In this example, there’s only one attribute, cards. A very sophisticated

__init__() method is created for us. In this example, it will have a parameter that matches

the name of each instance variable and will assign the argument value to a matching

instance variable.
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The @dataclass decorator has a number of options to help us choose what features we

want in the class. Here are the options we can select from and the default settings:

• init=True: By default, an __init__() method will be created with parameters to

match the instance variables.

• repr=True: By default, a __repr__() method will be created to return a string

showing the state of the object.

• eq=True: By default, the __eq__() and __ne__() methods are provided. These

methods implement the == and != operators.

• order=False: The __lt__(), __le__(), __gt__(), and __ge__() methods are not

created automatically. These methods implement the <, <=, >, and >= operators.

• unsafe_hash=False: Normally, mutable objects do not have hash values, and cannot

be used as keys for dictionaries or elements of a set. It’s possible to have a __hash__()

method added automatically, but this is rarely a sensible choice for mutable objects,

which is why the option is called an “unsafe” hash.

• frozen=False: This creates an immutable object. See the Using frozen dataclasses for

immutable objects recipe in this chapter for more details.

Because a great deal of code is written for us, we can focus on the attributes of the

class definition. We can write the methods that are truly distinctive and avoid writing

“boilerplate” methods that have obvious definitions.

There’s more...
A hand of cards requires an initialization method to provide the collection of Card objects.

A default __init__() method can populate the collection.

Consider creating a deck of cards, in contrast to a hand of cards. The initial deck of cards

is an example of a dataclass that doesn’t need an initialization method to set the instance

variables. Instead, a deck of cards needs a customized __init__() method without any

parameters; it always creates the same collection of 52 Card objects. This means we’ll use
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init=False in the @dataclass decorator to define this method for a Deck class definition.

The general pattern for @dataclass definitions is to provide class-level names, which

are used to both define the instance variables and also create the initialization method,

__init__(). This covers a common use case for stateful objects.

In some cases, however, we want to define a class-level variable that is not used to create

instance variables, but will remain a class-level variable. This is done with the ClassVar

type hint. A ClassVar type indicates a class-level variable that is not part of the instance

variables or the __init__() method.

In the following example, we’ll create a class variable with a sequence of suit strings:

import random

from typing import ClassVar

@dataclass(init=False)
class Deck:

SUITS: ClassVar[tuple[str, ...]] = (
'\N{Black Club Suit}',
'\N{White Diamond Suit}',
'\N{White Heart Suit}',
'\N{Black Spade Suit}'
)

cards: list[CardPoints]

def __init__(self) -> None:
self.cards = [

CardPoints(rank=r, suit=s)
for r in range(1, 14)

This example class definition provides a class-level variable, SUITS, which is part of the

Deck class. This variable is a tuple of the characters used to define the suits.

The cards variable has a hint claiming it will have the list[CardPoints] type. This

information is used by the mypy program to confirm that the body of the __init__()



Chapter 7 289

method performs the proper initialization of this attribute. It also confirms that this attribute

is used appropriately by other classes.

See also
• See the Using typing.NamedTuple for immutable objects recipe for a way to build class

definitions for stateless objects.

• The Using a class to encapsulate data and processing recipe covers techniques for

building a class without the additional methods created by the @dataclass decorator.

Using frozen dataclasses for immutable objects
In the Using typing.NamedTuple for immutable objects recipe, we saw how to define a class

that has a fixed set of attributes. The attributes can be checked by the mypy program to

ensure that they’re being used properly. In some cases, we might want to make use of the

slightly more flexible dataclass to create an immutable object.

One potential reason for using a dataclass is because it can have more complex field defini-

tions than a NamedTuple subclass. Another potential reason is the ability to customize the

initialization and the hashing function that is created. Because a NamedTuple is essentially

a tuple, there’s limited ability to fine-tune the behavior of the instances in this class.

Getting ready
We’ll revisit the idea of defining simple playing cards with rank and suit. The rank can

be modeled by an integer between 1 (ace) and 13 (king.) The suit can be modeled by a

single Unicode character from the set {'♠', '♥', '♦', '♣'}. Since a card’s rank and

suit don’t change, we’ll create a small, frozen dataclass for this.

How to do it...
1. From the dataclasses module, import the dataclass decorator:

from dataclasses import dataclass
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2. Start the class definition with the @dataclass decorator, using the frozen=True

option to ensure that the objects are immutable. We’ve also included order=True

so that the comparison operators are defined, allowing instances of this class to be

sorted into order:

@dataclass(frozen=True, order=True)
class Card:

3. Provide the attribute names and type hints for the attributes of each instance of this

class:

rank: int
suit: str

We can use these objects in code as follows:

>>> eight_hearts = Card(rank=8, suit='\N{White Heart Suit}')

>>> eight_hearts
Card(rank=8, suit='♥')

>>> eight_hearts.rank
8

>>> eight_hearts.suit
'♥'

We’ve created an instance of the Card class with a specific value for the rank and suit

attributes. Because the object is immutable, any attempt to change the state will result in

an exception that looks like the following example:

>>> eight_hearts.suit = '\N{Black Spade Suit}'
Traceback (most recent call last):
...
dataclasses.FrozenInstanceError: cannot assign to field 'suit'

This shows an attempt to change an attribute of a frozen dataclass instance.
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The dataclasses.FrozenInstanceError exception is raised to signal that this kind of

operation is not permitted.

How it works...
This @dataclass decorator adds a number of built-in methods to a class definition. As we

noted in the Using dataclasses for mutable objects recipe, there are a number of features that

can be enabled or disabled. Each feature may lead us to include one or several individual

methods in the class definition.

There’s more...
The @dataclass initialization method is quite sophisticated. We’ll look at one feature that’s

sometimes handy for defining optional attributes.

Consider a class that can hold a hand of cards. While the common use case provides a set

of cards to initialize the hand, we can also have hands that might be built incrementally,

starting with an empty collection and adding cards during the game.

We can define this kind of optional attribute using the field() function from the

dataclasses module. The field() function lets us provide a function to build default

values, called default_factory. We’d use it as shown in the following example:

from dataclasses import dataclass, field

@dataclass(frozen=True, order=True)
class Hand:

cards: list[CardPoints] = field(default_factory=list)

The Hand dataclass has a single attribute, cards, which is a list of CardPoints objects. The

field() function provides a default factory: in the event no initial value is provided, the

list() function will be executed to create a new, empty list.

We can create two kinds of hands with this dataclass. Here’s the conventional example,

where we deal six cards:
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>>> cards = [
... CardPoints(rank=3, suit='\N{WHITE DIAMOND SUIT}'),
... CardPoints(rank=6, suit='\N{BLACK SPADE SUIT}'),
... CardPoints(rank=7, suit='\N{WHITE DIAMOND SUIT}'),
... CardPoints(rank=1, suit='\N{BLACK SPADE SUIT}'),
... CardPoints(rank=6, suit='\N{WHITE DIAMOND SUIT}'),
... CardPoints(rank=10, suit='\N{WHITE HEART SUIT}')]
>>>
>>> h = Hand(cards)

The Hands() type expects a single attribute, matching the definition of the attributes in the

class. This is optional, and we can build an empty hand as shown in this example:

>>> crib = Hand()
>>> d3 = CardPoints(rank=3, suit='\N{WHITE DIAMOND SUIT}')
>>> h.cards.remove(d3)
>>> crib.cards.append(d3)

>>> from pprint import pprint
>>> pprint(crib)
Hand(cards=[CardPoints(rank=3, suit='♦')])

In this example, we’ve created a Hand() instance with no argument values, assigned to

the crib variable. Because the cards attribute was defined with a field that provided a

default_factory, the list() function will be used to create an empty list for the cards

attribute.

See also
• The Using dataclasses for mutable objects recipe covers some additional topics on

using dataclasses to avoid some of the complexities of writing class definitions.

Optimizing small objects with __slots__
The general case for an object allows a dynamic collection of attributes. There’s a special

case for an object with a fixed collection of attributes based on the tuple class. We looked

at both of these in the Using typing.NamedTuple for immutable objects recipe.
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There’s a middle ground. We can also define an object with a fixed number of attributes,

but the values of the attributes can be changed. By changing the class from an unlimited

collection of attributes to a fixed set of attributes, it turns out that we can also save memory

and processing time.

How can we create optimized classes with a fixed set of attributes?

Getting ready
Generally, Python allows adding attributes to an object. This can be undesirable, particularly

when working with a large number of objects. The flexibility of the way most class

definitions use a dictionary has a cost in memory use. Using specific __slots__ names

limits the class to the named attributes, saving memory.

The card game of Cribbage, for example, has a few components:

• A deck of cards.

• Two players, who will alternate in the role of dealer and opponent.

This small domain of things seems like a candidate for a class definition. Each player has

a hand of cards and a score. The player’s role is an interesting complication. There are

import differences in the two roles.

• The player who is the dealer gets the crib cards.

• If the starter card is a Jack, the player in the dealer role gets points for this.

• The opponent plays the first card.

• The opponent counts their hand first.

• The dealer plays from their hand, but counts their hand and the crib.

The specific order of play and counting hands is important because the first player to pass

120 points is the winner, no matter what state the game is in.

It seems like the Cribbage game includes a deck of cards and two players. The crib – which
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belongs to the dealer – can be seen as a feature of the game overall. We’ll look at ways to

switch the role between dealer and opponent when a new round of play starts.

How to do it...
We’ll leverage the __slots__ special name when creating the class:

1. Define the class with a descriptive name:

class Cribbage:

2. Define the list of attribute names. This identifies the only two attributes that are

allowed for instances of this class. Any attempt to add another attribute will raise an

AttributeError exception:

__slots__ = ('deck', 'players', 'crib', 'dealer', 'opponent')

3. Add an initialization method. This must create instance variables for the named slots:

def __init__(
self,
deck: Deck,
player1: Player,
player2: Player

) -> None:
self.deck = deck
self.players = [player1, player2]
random.shuffle(self.players)
self.dealer, self.opponent = self.players
self.crib = Hand()

The Deck class definition is shown in the Using dataclasses for mutable objects recipe

in this chapter.

4. Add methods to update the collection. For this example, we’ve defined a method to

switch roles.
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def new_deal(self) -> None:
self.deck.shuffle()
self.players = list(reversed(self.players))
self.dealer, self.opponent = self.players
self.crib = Hand()

Here’s how we can use this class to build a hand of cards. We’ll need the definition of the

Card class based on the example in the Using typing.NamedTuple for immutable objects

recipe:

>>> deck = Deck()
>>> c = Cribbage(deck, Player("1"), Player("2"))
>>> c.dealer
Player(name='2')
>>> c.opponent
Player(name='1')
>>> c.new_deal()
>>> c.dealer
Player(name='1')
>>> c.opponent
Player(name='2')

The initial Cribbage object was created with a Deck and two Player instances. These three

objects filled in the the deck and players slots. The __init__() method then randomized

the players, making one of them the dealer and the other the opponent. The crib was

initialized to an empty Hand instance.

The new_deal() method makes a number of changes to the state of the Cribbage instance.

This is revealed when the dealer and opponent attributes are examined.

Here’s what happens if we try to create a new attribute:

>>> c.some_other_attribute = True
Traceback (most recent call last):
...
AttributeError: 'Cribbage' object has no attribute 'some_other_attribute'
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We attempted to create an attribute named some_other_attribute on the Cribbage object,

c. This raised an AttributeError exception. Using __slots__ means that new attributes

cannot be added to an instance of the class.

How it works...
When we create an object instance, the steps in the process are defined in part by the

object’s class and the built-in type() function. Implicitly, a class has a special __new__()

method that handles the internal house-keeping required to create a new, empty object.

After this, the __init__() method creates and initializes the attributes.

Python has three essential paths for creating instances of a class:

• The default behavior, defined by the built-ins object and type(), is used when we

define a class without doing anything unusual. Each instance contains a __dict__

attribute that is used to hold all other attributes. Because the object’s attributes are

kept in a dictionary, we can add, change, and delete attributes freely. This flexibility

requires the use of additional memory for the dictionary object inside each instance.

• The __slots__ behavior avoids creating the __dict__ attribute. Because the object

has only the attributes named in the __slots__ sequence, we can’t add or delete

attributes. We can change the values of the defined attributes. This lack of flexibility

means that less memory is used for each object.

• The subclass of tuple behavior defines immutable objects. An easy way to create

these classes is with typing.NamedTuple as a parent class. Once built, the instances

are immutable and cannot be changed. While it’s possible to directly subclass tuple,

the extra features of a NamedTuple seem to make this ideal.

A large application might be constrained by the amount of memory used, and switching

the class with the largest number of instances to __slots__ can lead to an improvement in

performance.



Chapter 7 297

There’s more...
It’s possible to tailor the way the __new__() method works to replace the default __dict__

attribute with a different kind of dictionary. This is an advanced technique because it

exposes the inner workings of classes and objects.

Python relies on a metaclass to create instances of a class. The default metaclass is the type

class. The idea is that the metaclass provides a few pieces of functionality that are used to

create each object. Once the empty object has been created, then the class’s __init__()

method will initialize the empty object.

Generally, a metaclass will provide a definition of __new__(), and perhaps __prepare__(),

if there’s a need to customize the object. There’s a widely used example in the Python

Language Reference document that tweaks the namespace used to create a class.

For more details, see https://docs.python.org/3/reference/datamodel.html#metacla

ss-example.

See also
• The more common cases of an immutable object or a completely flexible object are

covered in the Using typing.NamedTuple for immutable objects recipe.

Using more sophisticated collections
Python has a wide variety of built-in collections. In Chapter 4, we looked at them closely.

In the Choosing a data structure recipe, we provided a kind of decision tree to help locate

the appropriate data structure from the available choices.

When we consider built-in types and other data structures in the standard library, we have

more choices, and more decisions to make. How can we choose the right data structure for

our problem?

https://docs.python.org/3/reference/datamodel.html#metaclass-example
https://docs.python.org/3/reference/datamodel.html#metaclass-example
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Getting ready
Before we put data into a collection, we’ll need to consider how we’ll gather the data, and

what we’ll do with the collection once we have it. The big question is always how we’ll

identify a particular item within the collection. We’ll look at a few key questions that we

need to answer to help select a proper collection for our needs.

Here’s an overview of some of the alternative collections. The collectionsmodule contains

a number of variations on the built-in collections. These include the following:

• deque: A double-ended queue. This is a mutable sequence with optimizations for

pushing and popping from each end. Note that the class name starts with a lowercase

letter; this is atypical for Python.

• defaultdict: A mapping that can provide a default value for a missing key. Note

that the class name starts with a lowercase letter; this is atypical for Python.

• Counter: A mapping that is designed to count the number of occurrences of distinct

keys. This is sometimes called a multiset or a bag.

• ChainMap: A mapping that combines several dictionaries into a single mapping.

The heapq module includes a priority queue implementation. This is a specialized library

that leverages the built-in list sequence to maintain items in a sorted order.

The bisect module includes methods for searching a sorted list. This creates some overlap

between the dictionary features and the list features.

Additionally, there’s an OrderedDict class in the collections module. Starting with

Python 3.7, the dictionary keys for an ordinary dictionary are retained in the order they

were created, making the OrderedDict class redundant.

How to do it...
There are a number of questions we need to answer to decide if we need a library data

collection instead of one of the built-in collections:

1. Is the structure a buffer between the producer and the consumer? Does some part of
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the algorithm produce data items and another part consume the data items?

• A queue is used for First-In-First-Out (FIFO) processing. Items are inserted

at one end and consumed from the other end. We can use list.append()

and list.pop(0) to simulate this, though collections.deque will be more

efficient; we can use deque.append() and deque.popleft().

• A stack is used for Last-In-First-Out (LIFO) processing. Items are inserted

and consumed from the same end. We can use list.append() and list.pop()

to simulate this, though collections.deque will be more efficient; we can use

deque.append() and deque.pop().

• A priority queue (or heap queue) keeps the queue sorted in some order, distinct

from the arrival order. We can try to simulate this by using the list.append(),

list.sort(key=lambda x:x.priority), and list.pop(-1) operations to keep

items in priority order. Performing a sort after each insert can make it inefficient.

Using the heapq module can be more efficient. The heapq module has functions

for creating and updating heaps.

2. How do we want to deal with missing keys from a dictionary?

• Raise an exception. This is the way the built-in dict class works.

• Create a default item. This is how collections.defaultdict works. We must

provide a function that returns the default value. Common examples include

defaultdict(int) and defaultdict(float) to use a default value of 0 or 0.0.

We can also use defauldict(list) and defauldict(set) to create dictionary-

of-list or dictionary-of-set structures.

• The defaultdict(int) used to create a dictionary for counting items is so

common that the collections.Counter class does exactly this.

3. How do we want to handle the order of keys in a dictionary? Generally, Python

above version 3.6 keeps the keys in insertion order. If we want a different order, we’ll

have to sort them manually.
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4. How will we build the dictionary?

• We have a simple algorithm to create items. In this case, a built-in dict object

may be sufficient.

• We have multiple dictionaries that will need to be merged. This can happen

when reading configuration files. We might have an individual configuration,

a system-wide configuration, and a default application configuration that all

need to be merged into a single dictionary using a ChainMap collection.

How it works...
There are two principle resource constraints on data processing:

• Storage

• Time

All of our programming must respect these constraints. In most cases, the two are inverses:

anything we do to reduce storage use tends to increase processing time, and anything we

do to reduce processing time increases storage use. Algorithm and data structure design

seeks to find an optimal balance among the constraints.

The time aspect is formalized via a complexity metric. There are several ways to describe

the complexity of an algorithm:

• Complexity O(1) doesn’t change with the volume of data. For some collections,

the actual overall long-term average is nearly O(1) with minor exceptions. Many

dictionary operations are O(1). Appending to a list, and popping from the end of a

list is very fast, making a LIFO stack very efficient. Popping from the front of a list is

O(𝑛), making a FIFO queue built from a simple list rather expensive; the deque class

and heapq module remedy this with better designs.

• Complexity described as O(log 𝑛) means the cost grows more slowly than the volume

of data, 𝑛. The bisect module lets us search a sorted list more efficiently than the

list class by dividing the list into halves. Note that sorting the list in the first place is
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O(𝑛 log 𝑛), so there needs to be a great many searches to amortize the cost of sorting.

• Complexity described as O(𝑛) means the cost grows as the volume of data, 𝑛, grows.

Finding an item in a list has this complexity. If the item is at the end of the list, all 𝑛

items must be checked. Sets and mappings don’t have this problem, and have nearly

O(1) complexity.

• A complexity described as O(𝑛 log 𝑛) grows more quickly than the volume of data.

Sorting a list tends to have this complexity. For this reason, it helps to minimize or

eliminate sorting large volumes of data.

• There are even worse cases. Some algorithms have a complexity of O(𝑛2), O(2𝑛), or

even O(𝑛!). We’d like to avoid these kinds of very expensive algorithms through

clever design and good choice of data structure. These can be deceptive in practice.

We may be able to work out an O(2𝑛) algorithm that seems to perform well on small

test cases where 𝑛 is 3 or 4. In these cases, there are only 8 or 16 combinations. If

real data involves 70 items, the number of combinations is on the order of 1022, a

number with 22 digits.

The various data structures available in the standard library reflect a number of time and

storage trade-offs.

There’s more...
As a concrete and extreme example, let’s look at searching a web log file for a particular

sequence of events. We have two overall design strategies:

• Read all of the events into a list structure with something like file.read().splitlines().

We can then use a for statement to iterate through the list looking for the combination

of events. While the initial read may take some time, the search will be very fast

because the log is all in memory.

• Read and process each individual event from a log file. When a log entry is part of

the searched-for pattern, it makes sense to save only this event in a subset of the log.

We might use a defaultdict with a session ID or client IP address as the key and a
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list of events as the value. This will take longer to read the logs, but the resulting

structure in memory will be much smaller than a list of all log entries.

The first algorithm, reading everything into memory, can be wildly impractical. On a large

web server, the logs might involve hundreds of gigabytes of data. Logs can easily be too

large to fit into any computer’s memory.

The second approach has a number of alternative implementations:

• Single process: The general approach to most of the Python recipes here assumes

that we’re creating an application that runs as a single process.

• Multiple processes: We might expand the row-by-row search into a multi-processing

application using the multiprocessing or concurrent.futures packages. These

packages let us create a collection of worker processes, each of which can process

a subset of the available data and return the results to a consumer that combines

the results. On a modern multiprocessor, multi-core computer, this can be a very

effective use of resources.

• Multiple hosts: The extreme case requires multiple servers, each of which handles

a subset of the data. This requires more elaborate coordination among the hosts to

share result sets. Generally, it can work out well to use a framework such as Dask

or Spark for this kind of processing. While the multiprocessing module is quite

sophisticated, tools like Dask are even more suitable for large-scale computation.

We’ll often decompose a large search into map and reduce processing. The map phase

applies some processing or filtering to every item in the collection. The reduce phase

combines map results into summary or aggregate objects. In many cases, there is a complex

hierarchy of Map-Reduce stages applied to the results of previous Map-Reduce operations.

See also
• See the Choosing a data structure recipe in Chapter 4, for a foundational set of decisions

for selecting data structures.
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Extending a built-in collection – a list that does
statistics
In the Designing classes with lots of processing recipe, we looked at a way to distinguish

between a complex algorithm and a collection. We showed how to encapsulate the algorithm

and the data into separate classes. The alternative design strategy is to extend the collection

to incorporate a useful algorithm.

How can we extend Python’s built-in collections? How can we add features to the built-in

list?

Getting ready
We’ll create a sophisticated list class where each instance can compute the sums and

averages of the items in the list. This will require an application to put only numbers in

the list; otherwise, there will be ValueError exceptions raised.

We’re going to show methods that explicitly use generator expressions as places where ad-

ditional processing can be included. Rather than use sum(self), we’re going to emphasize

sum(v for v in self) because there are two common future extensions: sum(m(v) for v

in self) and sum(v for v in self if f(v)). These are the mapping and filtering alter-

natives where a mapping function, m(v), is applied to each item; or a filter function, f(v),

is applied to pass or reject each item. Computing a sum of squares, for example, applies a

mapping to compute the square of each value before summing.

How to do it...
1. Pick a name for the list that also does simple statistics. Define the class as an extension

to the built-in list class:

class StatsList(list[float]):

We can stick with a generic type hint of list. This is often too broad. Since the struc-

ture will contain numbers, it’s more sensible to use the narrower hint of list[float].

When working with numeric data, mypy treats the float type as a superclass for
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both float and int, saving us from having to define an explicit Union[float, int].

2. Define the additional processing as methods. The self variable will be an object that

has inherited all of the attributes and methods from the superclass. In this case, the

superclass is list[float]. We’ll use a generator expression here as a place where

future changes might be incorporated. Here’s a sum() method:

def sum(self) -> float:
return sum(v for v in self)

3. Here’s another method that we often apply to a list. This counts items and returns

the size. We’ve used a generator expression to make it easy to add mappings or filter

criteria if that ever becomes necessary:

def size(self) -> float:
return sum(1 for v in self)

4. Here’s the mean method:

def mean(self) -> float:
return self.sum() / self.size()

5. Here are some additional methods. The sum2() method computes the sum of squares

of values in the list. This is used to compute variance. The variance is then used to

compute the standard deviation of the values in the list. Unlike with the previous

sum() and count() methods, where there’s no mapping, in this case, the generator

expression includes a mapping transformation:

def sum2(self) -> float:
return sum(v ** 2 for v in self)

def variance(self) -> float:
return (

(self.sum2() - self.sum() ** 2 / self.size())
/ (self.size() - 1)

)
def stddev(self) -> float:
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return math.sqrt(self.variance())

The StatsList class definition inherits all the features of a list object. It is extended by the

methods that we added. Here’s an example of creating an instance in this collection:

>>> subset1 = StatsList([10, 8, 13, 9, 11])
>>> data = StatsList([14, 6, 4, 12, 7, 5])
>>> data.extend(subset1)

We’ve created two StatsList objects, subset1 and data, from literal lists of objects. We

used the extend() method, inherited from the list superclass, to combine the two objects.

Here’s the resulting object:

>>> data
[14, 6, 4, 12, 7, 5, 10, 8, 13, 9, 11]

Here’s how we can use the additional methods that we defined on this object:

>>> data.mean()
9.0
>>> data.variance()
11.0

We’ve displayed the results of the mean() and variance() methods. All the features of the

built-in list class are also present in our extension.

How it works...
One of the essential features of class definition is the concept of inheritance. When we

create a superclass-subclass relationship, the subclass inherits all of the features of the

superclass. This is sometimes called the generalization-specialization relationship. The

superclass is a more generalized class; the subclass is more specialized because it adds or

modifies features.
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All of the built-in classes can be extended to add features. In this example, we added some

statistical processing that created a subclass that’s a specialized kind of list of numbers.

There’s an important tension between the two design strategies:

• Extending: In this case, we extended a class to add features. The features are deeply

entrenched with this single data structure, and we can’t easily use them for a different

kind of sequence.

• Wrapping: In designing classes with lots of processing, we kept the processing

separate from the collection. This leads to some more complexity in juggling two

objects.

It’s difficult to suggest that one of these is inherently superior to the other. In many cases,

we’ll find that wrapping may have an advantage because it seems to be a better fit to the

SOLID design principles. However, there will often be cases where it’s appropriate to

extend a built-in collection.

There’s more...
The idea of generalization can lead to superclasses that are abstractions. Because an abstract

class is incomplete, it requires a subclass to extend it and provide missing implementation

details. We can’t make an instance of an abstract class because it would be missing features

that make it useful.

As we noted in the Choosing a data structure recipe in Chapter 4, there are abstract super-

classes for all of the built-in collections. Rather than starting from a concrete class, we can

also start our design from an abstract base class.

We could, for example, start a class definition like this:

from collections.abc import MutableMapping

class MyFancyMapping(MutableMapping[int, int]):
... # etc.
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In order to finish this class, we’ll need to provide an implementation for a number of special

methods:

• __getitem__()

• __setitem__()

• __delitem__()

• __iter__()

• __len__()

Each of these methods is missing from the abstract class; they have no concrete imple-

mentation in the Mapping class. Once we’ve provided workable implementations for each

method, we can then make instances of the new subclass.

See also
• In the Designing classes with lots of processing recipe, we took a different approach.

In that recipe, we left the complex algorithms in a separate class.

Using properties for lazy attributes
In the Designing classes with lots of processing recipe, we defined a class that eagerly

computed a number of attributes of the data in a collection. The idea there was to compute

the values as soon as possible, so that the attributes would have no further computational

cost.

We described this as eager processing, since the work was done as soon as possible. The

other approach is lazy processing, where the work is done as late as possible.

What if we have values that are used rarely, and are very expensive to compute? What

can we do to minimize the up-front computation, and only compute values when they are

truly needed?
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Getting ready...
For background, see the NIST Aerosol Particle Size case study: https://www.itl.nist.g

ov/div898/handbook/pmc/section6/pmc62.htm

See the Designing classes with lots of processing recipe in this chapter for more details on this

dataset. Rather than work with the raw data, it can help to work with summary information

contained in a Counter object. The recipe shows a mapping from particle size to number

to a count of times the particular size was measured.

We want to compute some statistics on this Counter. We have two overall strategies for

doing this:

• Extend: We covered this in detail in the Extending a built-in collection – a list that

does statistics recipe, and we will look at other examples of extending a class in

Chapter 8.

• Wrap: We can wrap the Counter object in another class that provides just the

features we need. We’ll look at this in Chapter 8.

A common variation on wrapping creates a statistical computation object separate from

the data collection object. This variation on wrapping often leads to an elegant solution.

No matter which class architecture we choose, we also have two ways to design the

processing:

• Eager: This means we’ll compute the statistics as soon as possible. This was the

approach followed in the Designing classes with lots of processing recipe.

• Lazy: This means we won’t compute anything until it’s required via a method

function or property. In the Extending a built-in collection – a list that does statistics

recipe, we added methods to a collection class. These additional methods are examples

of lazy calculation. The statistical values are computed only when required.

The essential math for both designs is the same. The only question is when the computation

is done.

https://www.itl.nist.gov/div898/handbook/pmc/section6/pmc62.htm
https://www.itl.nist.gov/div898/handbook/pmc/section6/pmc62.htm
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How to do it...
1. Define the class with a descriptive name:

class LazyCounterStatistics:

2. Write the initialization method to include the object to which this object will be

connected. We’ve defined a method function that takes a Counter object as an

argument value. This Counter object is saved as part of the Counter_Statistics

instance:

def __init__(self, raw_counter: Counter[int]) -> None:
self.raw_counter = raw_counter

3. Define some useful helper methods. Each of these is decorated with @property to

make it behave like a simple attribute:

@property
def sum(self) -> float:

return sum(
f * v
for v, f in self.raw_counter.items()

)
@property
def count(self) -> float:

return sum(
f
for v, f in self.raw_counter.items()

)

4. Define the required methods for the various values. Here’s the calculation of the

mean. This too is decorated with @property. The other methods can be referenced

as if they are attributes, even though they are proper method functions:

@property
def mean(self) -> float:

return self.sum / self.count
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5. Here’s how we can calculate the standard deviation. Note that we’ve been using

math.sqrt(). Be sure to add the required import math statement in the Python

module:

@property
def sum2(self) -> float:

return sum(
f * v ** 2
for v, f in self.raw_counter.items()

)
@property
def variance(self) -> float:
return (

(self.sum2 - self.sum ** 2 / self.count) /
(self.count - 1)

)
@property
def stddev(self) -> float:

return math.sqrt(self.variance)

To show how this works, we’ll apply an instance of this class to some summarized data.

The repository of code for this book includes a data/binned.csv file that has the binned

summary data. This data has three columns: size_code, size, and frequency. We’re only

interested in size_code and frequency.

Here’s how we can build a suitable Counter object from this file:

>>> from pathlib import Path
>>> import csv
>>> from collections import Counter

>>> data_path = Path.cwd() / "data" / "binned.csv"
>>> with data_path.open() as data_file:
... reader = csv.DictReader(data_file)
... extract = {
... int(row['size_code']): int(row['frequency'])
... for row in reader
... }
>>> data = Counter(extract)
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We’ve used a dictionary comprehension to create a mapping from size_code to the fre-

quency of that code value. This is then provided to the Counter class to build a Counter

object named data from this existing summary.

Here’s how we can analyze the Counter object:

>>> stats = LazyCounterStatistics(data)
>>> print(f"Mean: {stats.mean:.1f}")
Mean: 10.4
>>> print(f"Standard Deviation: {stats.stddev:.2f}")
Standard Deviation: 4.17

We provided the data object to create an instance of the LazyCounterStatistics class, the

stats variable. When we print the value for the stats.mean property and the stats.stddev

property, the methods are invoked to do the appropriate calculations of the various values.

The cost for the computation is not paid until a client object requests the stats.mean or

stats.stddev property values. This will invoke a cascade of computation to compute these

values.

When the underlying data is changed, the entire computation is performed again. This can

be costly in the rare case of highly dynamic data. In the more common case of analyzing

previously summarized data, this is quite efficient.

How it works...
The idea of lazy calculation works out well when the value is used rarely. In this example,

the count is computed twice as part of computing the variance and standard deviation.

A naïve lazy design may not be optimal in some cases when values are recomputed fre-

quently. This is an easy problem to fix in general. We can always create additional local

variables to cache intermediate results instead of recomputing them. We’ll look at this later

in this recipe.

To make this class look like it has performed eager calculations, we used the @property

decorator. This makes a method appear to be an attribute. This can only work for methods
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that have no argument values.

In all cases, an attribute that’s computed eagerly can be replaced by a lazy property. The

principle reason for creating eager attribute variables is to optimize computation costs. In

the case where a computed result may not always be used, a lazy property can avoid an

expensive calculation.

There’s more...
There are some situations in which we can further optimize a property to limit the amount

of additional computation that’s done when a value changes. This requires a careful analysis

of the use cases in order to understand the pattern of updates to the underlying data.

In the situation where a collection is loaded with data and an analysis is performed, we

can cache results to save computing them a second time. We might do something like this:

from typing import cast

class CachingLazyCounterStatistics:
def __init__(self, raw_counter: Counter[int]) -> None:

self.raw_counter = raw_counter
self._sum: float | None = None
self._count: float | None = None

@property
def sum(self) -> float:

if self._sum is None:
self._sum = sum(

f * v
for v, f in self.raw_counter.items()

)
return self._sum

This technique uses two attributes to save the results of the sum and count calculations,

self._sum and self._count. These values will be computed once and returned as often as

needed with no additional cost for recalculation.

The type hints show these attributes as being optional. Once the values for self._sum and
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self._count have been computed, the values are no longer optional, but will be present.

We describe this to tools like mypy with the cast() type hint. This hint tells type-checking

tools to consider self._sum as being a float object, not a float | None object. There’s no

cost to this function as it does nothing; its purpose is to annotate the processing to show

the design intent.

This caching optimization is helpful if the state of the raw_counter object never changes.

In an application that updates the underlying Counter, this cached value would become out

of date. That kind of application would need to reset the internal cache values of self._sum

and self._count when the underlying Counter is updated.

See also...
• In the Designing classes with lots of processing recipe, we defined a class that eagerly

computed a number of attributes. This represents a different strategy for managing

the cost of the computation.

Creating contexts and context managers
A number of Python objects behave like context managers. Some of the most visible

examples are file objects. We generally use with path.open() as file: to process a file

in a context that can guarantee the resources are released. In Chapter 2, the Managing

a context using the with statement recipe covers the basics of using a file-based context

manager.

How can we create our own classes that act as context managers?

Getting ready
We’ll look at a function from Chapter 3, in the Picking an order for parameters based on

partial functions recipe. This recipe introduced a function, haversine(), which has a

context-like parameter used to adjust the answer from dimensionless radians to a useful

unit of measure, such as kilometers, nautical miles, or US statute miles. In many ways, this

distance factor is a kind of context, used to define the kinds of computations that are done.
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What we want is to be able to use the with statement to describe an object that doesn’t

change very quickly; indeed the change acts as a kind of boundary, defining the scope of

computations. We might want to use code like the following:

>>> with Distance(r=NM) as nm_dist:
... print(f"{nm_dist(p1, p2)=:.2f}")
... print(f"{nm_dist(p2, p3)=:.2f}")
nm_dist(p1, p2)=39.72
nm_dist(p2, p3)=30.74

The Distance(r=NM) constructor provides the definition of the context, creating a new

object, nm_dist, that has been configured to perform the required calculation in nautical

miles. This can be used only within the body of the with statement.

This Distance class definition can be seen as creating a partial function, nm_dist(). This

function provides a fixed unit-of-measure parameter, r, for a number of following compu-

tations using the haversine() function.

There are a number of other ways to create partial functions, including a lambda object,

the functools.partial() function, and callable objects. We looked at the partial function

alternative in Chapter 3, in the Picking an order for parameters based on partial functions

recipe.

How to do it...
A context manager class has two special methods that we need to define:

1. Start with a meaningful class name:

class Distance:

2. Define an initializer that creates any unique features of the context. In this case, we

want to set the units of distance that are used:

def __init__(self, r: float) -> None:
self.r = r
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3. Define the __enter__() method. This is called when the with statement block begins.

The statement with Distance(r=NM) as nm_dist does two things. First, it creates

the instance of the Distance class, then it calls the __enter__() method of that object

to start the context. The return value from the __enter__() method is assigned to

a local variable via the as clause. This isn’t always required. For simple cases, the

context manager often returns itself. If this method needs to return an instance in

the same class, note that the class hasn’t been fully defined yet, and the class name

type hint must be provided as a string. For this recipe, we’ll return a function, with

the type hint based on Callable:

def __enter__(self) -> Callable[[Point, Point], float]:
return self.distance

4. Define the __exit__() method. When the context finishes, this method is invoked.

This is where resources are released and cleanup can happen. In this example, nothing

more needs to be done. The details of any exception are provided to this method; the

method can silence the exception or allow it to propagate. If the return value from

the __exit__() method is True, the exception is silenced. A return value of False

or None will allow the exception to be seen outside the with statement:

def __exit__(
self,
exc_type: type[Exception] | None,
exc_val: Exception | None,
exc_tb: TracebackType | None

) -> bool | None:
return None

5. Create a class (or define the methods of this class) that works within the context. In

this case, the method will make use of a separately defined haversine() function

from Chapter 3:
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def distance(self, p1: Point, p2: Point) -> float:
return haversine(

p1.lat, p1.lon, p2.lat, p2.lon, R=self.r
)

Most context-manager classes require a fairly large number of imports:

from collections.abc import Callable
from types import TracebackType
from typing import NamedTuple

This class has been defined to work with objects of the class Point. This can be a

NamedTuple, @dataclass, or some other class that provides the required two attributes.

Here’s the NamedTuple definition:

class Point(NamedTuple):
lat: float
lon: float

This class definition provides a class, Point, with the required attribute names.

How it works...
The context manager relies on the with statement doing a large number of things.

We’ll put the following construct under a microscope:

>>> p1 = Point(38.9784, -76.4922)
>>> p2 = Point(36.8443, -76.2922)
>>> nm_distance = Distance(r=NM)
>>> with nm_distance as nm_calc:
... print(f"{nm_calc(p1, p2)=:.2f}")
nm_calc(p1, p2)=128.48

The first line creates an instance of the Distance class. This has a value for the r parameter

equal to the constant NM, allowing us to do computations in nautical miles. The Distance

instance is assigned to the nm_distance variable.
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When the with statement starts execution, the context manager object is notified by having

the __enter__() method executed. In this case, the value returned by the __enter__()

method is a function, with the type Callable[[Point, Point], float]. The function

accepts two Point objects and returns a floating-point result. The as clause assigns this

function object to the nm_calc name.

The print() function does its work using the nm_calc object. The object is a function that

will compute a distance from two Point instances.

When the with statement finishes, the __exit__() method will be executed. For more

complex context managers, this may involve closing files or releasing network connections.

There are a great many kinds of context cleanup that might be necessary. In this case,

there’s nothing that needs to be done to clean up the context.

This has the advantage of defining a fixed boundary in which the partial function is used.

In some cases, the computation inside the context manager might involve a database or

complex web services, leading to a more complex __exit__() method.

There’s more. . .
The operation of the __exit__() method is central to making best use of a context manager.

In the previous example, we use the following “do nothing” __exit__() method:

def __exit__(
self,
exc_type: type[Exception] | None,
exc_val: Exception | None,
exc_tb: TracebackType | None

) -> bool | None:
# Cleanup goes here.
return None

The point here is to allow any exception to propagate normally. We often see any cleanup

processing replacing the # Cleanup goes here. comment. This is where buffers are

flushed, files are closed, and error log messages are written.
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Sometimes, we’ll need to handle specific exception details. Consider the following snippet

of an interactive session:

>>> p1 = Point(38.9784, -76.4922)
>>> p2 = Point(36.8443, -76.2922)
>>> with Distance(None) as nm_dist:
... print(f"{nm_dist(p1, p2)=:.2f}")
Traceback (most recent call last):
...
TypeError: unsupported operand type(s) for *: 'NoneType' and 'int'

The Distance object was initialized with the r argument value set to None. While this

code will lead to warnings from tools like mypy, it’s syntactically valid. The TypeError

traceback, however, doesn’t point to Distance; it points to a line of code within the

haversine() function.

We might want to report a ValueError instead of this TypeError. Here’s a variation on

the Distance class, which conceals the TypeError, replacing it with a ValueError:

class Distance_2:
def __init__(self, r: float) -> None:

self.r = r

def __enter__(self) -> Callable[[Point, Point], float]:
return self.distance

def __exit__(
self,
exc_type: type[Exception] | None,
exc_val: Exception | None,
exc_tb: TracebackType | None

) -> bool | None:
if exc_type is TypeError:

raise ValueError(f"Invalid r={self.r!r}")
return None

def distance(self, p1: Point, p2: Point) -> float:
return haversine(p1.lat, p1.lon, p2.lat, p2.lon, R=self.r)

This shows how we can examine the details of the exception in the __exit__() method.



Chapter 7 319

The information provided parallels the sys.exc_info() function, and includes the excep-

tion’s type, the exception object, and a traceback object with the types.TracebackType

type.

See also
• In the Managing a context using the with statement recipe in Chapter 2, we cover the

basics of using a file-based context manager.

Managing multiple contexts with multiple
resources
We often use context managers with open files. Because the context manager can guarantee

the OS resources are released, doing so prevents resource leaks. It can be used to prevent

files from being closed without having all buffers flushed to persistent storage.

When multiple resources are being processed, it often means multiple context managers

will be needed. For example, if we have three open files, we could require three nested

with statements? How can we optimize or simplify multiple with statements?

Getting ready
We’ll look at creating a plan for a journey with multiple legs. Our starting data collection is

a list of points that define our route. For example, traveling through Chesapeake Bay may

involve starting in Annapolis, Maryland, sailing to Solomon’s Island, Deltaville, Virginia,

and then Norfolk, Virginia. For planning purposes, we’d like to think of this as three legs,

instead of four points. A leg has a distance and takes time to traverse: computing time,

speed, and distance is the essence of the planning problem.

We’ll start with some foundational definitions before we run the recipe. First is the definition

of a single point, with attributes of latitude and longitude:
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@dataclass(frozen=True)
class Point:

lat: float
lon: float

A point can be built with a statement like this: p = Point(38.9784, -76.4922). This lets

us refer to p.lat and p.lon in subsequent computations. The use of attribute names makes

the code much easier to read.

A leg is a pair of points. We can define it as follows:

@dataclass
class Leg:

start: Point
end: Point
distance: float = field(init=False)

We’ve created this as a mutable object. The distance attribute has an initial value defined

by the dataclasses.field() function. The use of init=False means the attribute is not

provided when the object is initialized; it must be supplied after initialization.

Here’s a context manager to create Leg objects from Point instances. This is similar to the

context managers shown in the Creating contexts and context managers recipe. There is

a tiny but important difference here. The __init__() saves a value for self.r to set the

distance unit context. The default value is nautical miles:

from types import TracebackType

class LegMaker:
def __init__(self, r: float=NM) -> None:

self.last_point: Point | None = None
self.last_leg: Leg | None = None
self.r = r

def __enter__(self) -> "LegMaker":
return self
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def __exit__(
self,
exc_type: type[Exception] | None,
exc_val: Exception | None,
exc_tb: TracebackType | None

) -> bool | None:
return None

The important method, waypoint(), accepts a waypoint and creates a Leg object. The very

first waypoint, the starting point for the voyage, will return None. All subsequent points

will return a Leg object:

def waypoint(self, next_point: Point) -> Leg | None:
leg: Leg | None
if self.last_point is None:

# Special case for the first leg
self.last_point = next_point
leg = None

else:
leg = Leg(self.last_point, next_point)
d = haversine(

leg.start.lat, leg.start.lon,
leg.end.lat, leg.end.lon,
R=self.r

)
leg.distance = round(d)
self.last_point = next_point

return leg

This method uses a cached Point object, self.last_point, and the next point, next_point,

to create a Leg instance and then update that instance.

If we want to create an output file in CSV format, we’ll need to use two context managers:

one to create Leg objects, and another to manage the open file. We’ll put this complex

multi-context processing into a single function.
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How to do it...
1. We’ll be working with the csv and pathlibmodules. Additionally, this recipe will also

make use of the Iterable type hint, and the asdict function from the dataclasses

module:

from collections.abc import Iterable
import csv
from dataclasses import asdict
from pathlib import Path

2. Since we’ll be creating a CSV file, we need to define the headers to be used for the

CSV output:

HEADERS = ["start_lat", "start_lon", "end_lat", "end_lon", "distance"]

3. Define a function to transform complex objects into a dictionary suitable for writing

each individual row. The input is a Leg object; the output is a dictionary with keys

that match the HEADERS list of column names:

def flat_dict(leg: Leg) -> dict[str, float]:
struct = asdict(leg)
return dict(

start_lat=struct["start"]["lat"],
start_lon=struct["start"]["lon"],
end_lat=struct["end"]["lat"],
end_lon=struct["end"]["lon"],
distance=struct["distance"],

)

4. Define the function with a meaningful name. We’ll provide two parameters: a list

of Point objects and a Path object showing where the CSV file should be created.

We’ve used Iterable[Point] as a type hint so this function can accept any iterable

collection of Point instances:

def make_route_file(
points: Iterable[Point], target: Path

) -> None:
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5. Start the two contexts with a single with statement. This will invoke both __enter__()

methods to prepare both contexts for work. This line can get long:

with (
LegMaker(r=NM) as legger,
target.open('w', newline='') as csv_file

):

6. Once the contexts are ready for work, we can create a CSV writer and begin writing

rows:

writer = csv.DictWriter(csv_file, HEADERS)
writer.writeheader()
for point in points:

leg = legger.waypoint(point)
if leg is not None:

writer.writerow(flat_dict(leg))

7. At the end of the context, do any final summary processing. This is not indented

within the with statement’s body; it is at the same indentation level as the with

keyword itself:

print(f"Finished creating {target}")

By keeping this outside the with context, this message provides important evidence

that the files were properly closed and all of the computations were completed.

How it works...
The compound with statement created a number of context managers for us. All of the

managers will have their __enter__()methods used to both start processing and, optionally,

return an object usable within the context. The LegMaker class defined an __enter__()

method that returned the LegMaker instance. The Path.open() method returns a TextIO

object; these are also context managers.

When the context exits at the end of the with statement, all of the context manager

__exit__() methods are called. This allows each context manager to do any finalization.
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In the case of TextIO objects, this closes the external files, releasing any of the OS resources

being used.

In the case of the LegMaker object, there is no finalization processing on context exit.

A LegMaker object was created; the value returned from the __enter__() method is a

reference to a method of this object. The legger callable will continue to operate correctly

even outside the context. This is an odd special case that occurs in instances where there is

no cleanup in the __exit__() method. If it’s important to prevent further use of the legger

callable, then the __exit__() method needs to make an explicit state change inside the

LegMaker object so it raises an exception. One approach is for the __exit__() method to

set the self.r value to None, which would prevent further use of the waypoint() method.

There’s more...
A context manager’s job is to isolate details of resource management. The most common

examples are files and network connections. We’ve shown the use of a context manager

around an algorithm to help manage a cache with a single Point object.

When working with very large datasets, it’s often helpful to use compression. This can

create a different kind of context around the processing. The built-in open() method is

generally assigned to the io.open() function in the io module. This means we can often

replace io.open() with a function such as bz2.open() to work with compressed files.

We can replace an uncompressed file context manager with something like this:

import bz2

def make_route_bz2(points: Iterable[Point], target: Path) -> None:
with (

LegMaker(r=NM) as legger,
bz2.open(target, "wt") as archive

):
writer = csv.DictWriter(archive, HEADERS)
writer.writeheader()
for point in points:

leg = legger.waypoint(point)
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if leg is not None:
writer.writerow(flat_dict(leg))

print(f"Finished creating {target}")

We’ve replaced the original path.open() method with bz2.open(path). The rest of the

context processing remains identical. This flexibility allows us to work with text files

initially and later convert them to compressed files when the volume of data grows.

See also
• In the Managing a context using the with statement recipe in Chapter 2, we cover the

basics of using a file-based context manager.

• The Creating contexts and context managers recipe covers the core of creating a class

that is a context manager.

Join our community Discord space
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https://packt.link/dHrHU
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8
More Advanced Class
Design

In Chapter 7, we looked at some recipes that covered the basics of class design. In this

chapter, we’ll dive more deeply into Python classes and class design.

In the Designing classes with lots of processing and Using properties for lazy attributes recipes

in Chapter 7, we identified a design choice that’s central to object-oriented programming,

the “wrap versus extend” decision. One way to add features is to create a new subclass via

an extension. The other technique for adding features is to wrap an existing class, making

it part of a new class.

In addition to direct inheritance, there are some other class extension techniques available

in Python. A Python class can inherit features from more than one superclass. We call this

design pattern a mixin.

In Chapter 4 and Chapter 5, we looked at the core built-in data structures. We can combine

and extend these collection definition features to create more complex data structures or
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data structures with additional features.

In this chapter, we’ll look at the following recipes:

• Choosing between inheritance and composition – the "is-a" question

• Separating concerns via multiple inheritance

• Leveraging Python’s duck typing

• Managing global and singleton objects

• Using more complex structures – maps of lists

• Creating a class that has orderable objects

• Deleting from a list of complicated objects

There are a great many techniques of object-oriented class design available in Python.

We’ll start with a foundational design concept: making the design choice between using

inheritance from a base class and wrapping a class to extend it.

Choosing between inheritance and composition –
the “is-a” question
In the Using cmd to create command-line applications recipe in Chapter 6, and the Extending

a built-in collection – a list that does statistics recipe in Chapter 7, we looked at extending a

class. In both cases, the class implemented in the recipe was a subclass of one of Python’s

built-in classes.

The idea of extension via inheritance is sometimes called the generalization-specialization

relationship. It can also be called an is-a relationship. There’s an important semantic

issue:

• Do we mean that instances of the subclass are also instances of the superclass? This is

an is-a relationship, an example of inheritance, where we extend a class, changing

the implementation details of features.
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• Or do we mean something else? Perhaps there’s a composition or association,

sometimes called a has-a relationship. In this case, we may wrap another class,

adding or removing features.

One of the SOLID design principles, the Liskov Substitution Principle, requires any

subclass to be a proper replacement for the superclass. We’ll look at both the inheritance

and composition techniques for creating new features for existing classes.

Getting ready
For this recipe, we’ll use models for a deck of playing cards as concrete examples. We’ll

look at several ways to design a collection.

The core ingredient for both implementations is the underlying Card object. We can define

this using NamedTuple:

from typing import NamedTuple

class Card(NamedTuple):
rank: int
suit: str

Spades, Hearts, Diamonds, Clubs = ('\u2660', '\u2661', '\u2662', '\u2663')

We’ll use this Card class in the rest of this recipe. What’s important is the various kinds

of collection representing a deck or hand; all have considerable overlaps in the kinds of

features they support.

We have several common pattern for collections:

• Aggregation: Some objects are bound into collections, but the objects have a properly

independent existence. While Card objects can be aggregated into a Hand collection,

when the Hand object is deleted, the Card objects continue to exist.

• Composition: Some objects in collections do not have an independent existence. A

Hand of cards cannot exist without a Player. When a Player instance leaves a game,

the Hand object must also be removed.
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• Inheritance (also called an is-a relationship): This is the idea that a Deck is a Hand

with some extra features. We can extend a built-in class like list to implement this.

The distinction between aggregation and composition is very important when designing a

database, where persistence of objects is the focus. In Python, the distinction is a minor

nuance. The ordinary Python memory management will preserve the objects still referenced

by collections or variables. We’ll consider both to be examples of composition.

Once the relationships are understood, there are two distinct paths: Composition or

aggregation or Inheritance and extension.

How to do it...
This recipe has two separate mini-recipes: aggregation and inheritance.

Composition or aggregation

Wrapping a collection object inside another class’s instance variables has two common

variants, sometimes called composition and aggregation. The nuanced difference doesn’t

matter in Python. Here’s how we design a collection using composition:

1. Define the collection class.

To distinguish similar examples in this book, the name has a _W suffix to show it

is a wrapper. This is not a generally recommended practice; it’s only used here to

emphasize the distinctions between class definitions in this recipe.

Here’s the definition of the class:

class Deck_W:

2. Use the __init__() method of this class as one way to provide the underlying

collection object. This will also initialize any stateful variables. We might create an

iterator for dealing:
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def __init__(self, cards: list[Card]) -> None:
self.cards = cards
self.deal_iter = iter(self.cards)

This uses a type hint, list[Card], to show the source collection that will be wrapped.

3. Provide the methods appropriate to the aggregate object. The shuffle() method

randomizes the internal list object. It also creates an iterator used to step through

the list by the deal() method. We’ve provided a type hint on deal() to clarify that

it returns Card instances:

def shuffle(self) -> None:
random.shuffle(self.cards)
self.deal_iter = iter(self.cards)

def deal(self) -> Card:
return next(self.deal_iter)

Here’s how we can use the Deck_W class. We’ll be working with a list of Card objects. In

this case, the domain variable was created from a list comprehension that generated all 52

combinations of 13 ranks and four suits:

>>> domain = list(
... Card(r+1,s)
... for r in range(13)
... for s in (Spades, Hearts, Diamonds, Clubs)
... )
>>> len(domain)
52

We can use the items in this collection, domain, to create a second aggregate object that

shares the same underlying Card objects. We’ll build the Deck_W object from a list of Card

objects:
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>>> d = Deck_W(domain)

>>> import random
>>> random.seed(1)
>>> d.shuffle()
>>> [d.deal() for _ in range(5)]
[Card(rank=13, suit='♥'), Card(rank=3, suit='♥'), Card(rank=10, suit='♥'),
Card(rank=6, suit='♦'), Card(rank=1, suit='♦')]

Inheritance and extension

Here’s an approach to defining a class that extends one of the built-in collections of objects:

1. Start by defining the extension class as a subclass of a built-in collection. To dis-

tinguish similar examples in this book, the name has an _X suffix. The subclass

relationship is a formal statement—a Deck_X instance is also a kind of list. Here’s

the class definition:

class Deck_X(list[Card]):

2. No additional code is needed to initialize the instance, as we’ll use the __init__()

method inherited from the list class.

3. No additional code is needed to update the deck, as we’ll use other methods of the

list class for adding, changing, or removing items from the Deck_X instance.

4. Provide the appropriate new features to the extended object. The shuffle() method

randomizes the object as a whole. The collection here is self, because this method

is an extension of the list class. The deal() object relies on an iterator created by

the shuffle() method to step through the list, returning Card instances:

def shuffle(self) -> None:
random.shuffle(self)
self.deal_iter = iter(self)

def deal(self) -> Card:
return next(self.deal_iter)
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Here’s how we can use the Deck_X class. First, we’ll build a deck of cards:

>>> dx = Deck_X(
... Card(r+1,s)
... for r in range(13)
... for s in (Spades, Hearts, Diamonds, Clubs)
... )
>>> len(dx)
52

Using only the deck-specific features for the Deck_X implementation looks exactly like the

other implementation, Deck_W:

>>> import random
>>> random.seed(1)
>>> dx.shuffle()
>>> [dx.deal() for _ in range(5)]
[Card(rank=13, suit='♥'), Card(rank=3, suit='♥'), Card(rank=10, suit='♥'),
Card(rank=6, suit='♦'), Card(rank=1, suit='♦')]

As we’ll see below in There’s more..., because Deck_X is a list, it has all of the methods of

a list object. When designing a framework for others to use, this may be a bad idea. When

designing an application, it’s easy to avoid using the extra features.

How it works...
Python implements the idea of inheritance via a clever search algorithm for finding methods

(and attributes) of an object’s class. The search works like this:

1. Examine the object’s class for the method or attribute name.

2. If the name is not defined in the immediate class, then search in all of the parent

classes for the method or attribute. The Method Resolution Order (MRO) defines

the order in which these classes are searched.

Searching through the parent classes ensures two things:

• All methods defined in any superclass are available to subclasses.
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• Any subclass can override a method to replace the superclass method. The super()

function searches parent classes for the definition being overridden.

Because of this, a subclass of the list class inherits all the features of the parent class. It is

a specialized extension of the built-in list class.

This also means that all methods have the potential to be overridden by a subclass. Some

languages have ways to lock a method against extension. Because Python doesn’t have

this, a subclass can override any method.

The super() function allows a subclass to add features by wrapping the superclass version

of a method. One way to use it is like this:

class SomeClass(Parent):
def some_method(self) -> None:

# do something extra
super().some_method()

In this case, the some_method() method of a class will do something extra and then use the

superclass version of the method. This allows us a handy way to extend selected methods

of a class. We can preserve the superclass features while adding features unique to the

subclass.

There’s more...
There are some huge differences between the two definitions, Deck_W and Deck_X. When

wrapping, we get precisely the methods we defined and no others. When using inheritance,

we receive a wealth of method definitions from the superclass. This leads to some additional

behaviors in the Deck_X class that may not be desirable:

• We can use a variety of collections as a source to create Deck_X instances. This works

because the list class has a number of features for converting Python collections to

lists. The Deck_W class will only work for sequences offering the methods implicitly

required by the shuffle() method. Further, the type hint of list[Card] will cause

programs like mypy to raise errors for the use of other source collections.
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• A Deck_X instance can be sliced and indexed outside the core sequential iteration

supported by the deal() method.

• Because the Deck_X class is a list, it also works directly with the iter() function; it

can be used as an iterable source of Card objects without the deal() method.

These differences are also important parts of deciding which technique to use. If the

additional features are desirable, that suggests inheritance. If the additional features create

problems, then composition might be a better choice.

See also
• We’ve looked at built-in collections in Chapter 4. Also, in Chapter 7, we looked at

how to define simple collections.

• In the Designing classes with lots of processing recipe, we looked at wrapping a class

with a separate class that handles the processing details. We can contrast this with the

Using properties for lazy attributes recipe of Chapter 7, where we put the complicated

computations into the class as properties; this design relies on extension.

Separating concerns via multiple inheritance
In the Choosing between inheritance and composition – the "is-a" question recipe earlier

in the chapter, we looked at the idea of defining a Deck class that was a composition of

playing card objects. For the purposes of that example, we treated each Card object as

simply having rank and suit attributes. This created two small problems:

• The display for the card always showed a numeric rank. We didn’t see J, Q, or K.

Instead we saw 11, 12, and 13. Similarly, an ace was shown as 1 instead of A.

• Many games like Cribbage assign a point value to each rank. Generally, the face

cards have 10 points. The remaining cards have points that match their rank.

Python’s multiple inheritance lets us handle variations in card game rules while keeping a

single, essential Card class. Using multiple inheritance lets us separate rules for specific

games from generic properties of playing cards. We can combine a base class definition
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with a mixin class that provides needed features.

Python multiple inheritance relies on a clever algorithm called C3 to resolve various parent

classes into a single list, in a useful order. When we combine multiple classes, they will have

common parent classes, which now have multiple references. The C3 algorithm creates a

linear list that respects all of the parent-child relationships.

Getting ready
A practical extension to the Card class needs to be a mixture of two feature sets. Python

lets us define a class that includes features from multiple parents. The are two parts to this

pattern:

1. Essential features: This are the rank and suit. This also includes a method to show

the Card object’s value nicely as a string using “J”, “Q”, and “K” for court cards, and

“A” for aces.

2. Mixin features: These are all of the less essential, game-specific features, such as the

number of points allotted to each particular card.

The working application relies on a combination of features built from the essentials and

the mixins.

How to do it...
This recipe will create two hierarchies of classes, one for the essential Card and one for

game-specific features including Cribbage point values:

1. Define the essential class. This is a generic Card class, suitable for ranks 2 to 10:

@dataclass(frozen=True)
class Card:

"""Superclass for cards"""
rank: int
suit: str

def __str__(self) -> str:
return f"{self.rank:2d} {self.suit}"
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2. Define the subclasses to implement specializations. We need two subclasses of the

Card class—the AceCard class and the FaceCard class, as defined in the following

code:

class AceCard(Card):
def __str__(self) -> str:

return f" A {self.suit}"

class FaceCard(Card):
def __str__(self) -> str:

names = {11: "J", 12: "Q", 13: "K"}
return f" {names[self.rank]} {self.suit}"

Each of this overrides the built-in __str__() method to provide distinct behaviors.

3. Define the core features required by the mixin classes. Use the typing.Protocol

superclass to be sure the various implementations all provide the required features.

The rank attribute is required by the protocol, and will be defined in the essential

class. A points() method will be defined in the mixin classes. Here’s how it looks:

from typing import Protocol

class PointedCard(Protocol):
rank: int
def points(self) -> int:

...

When writing type hint classes, the body can be ... because this will be ignored by

tools like mypy.

4. Define a mixin subclasses for additional features that will be added. For the game of

Cribbage, the points for some cards are equal to the rank of the card, and face cards

are 10 points:

class CribbagePoints(PointedCard):
def points(self) -> int:

return self.rank
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class CribbageFacePoints(PointedCard):
def points(self) -> int:

return 10

5. Create the final concrete class definitions to combine an essential base class and all

of the required mixin classes:

class CribbageCard(Card, CribbagePoints):
pass

class CribbageAce(AceCard, CribbagePoints):
pass

class CribbageFace(FaceCard, CribbageFacePoints):
pass

Note that the CribbagePoints mixin is used for both Card and AceCard classes,

allowing us to reuse code.

6. Define a function (or class) to create the appropriate objects based on the input

parameters. This is often called a factory function or factory class. The objects being

created will all be considered as subclasses of the Card class because it’s first in the

list of base classes:

def make_cribbage_card(rank: int, suit: str) -> Card:
if rank == 1:

return CribbageAce(rank, suit)
elif 2 <= rank < 11:

return CribbageCard(rank, suit)
elif 11 <= rank:

return CribbageFace(rank, suit)
else:

raise ValueError(f"invalid rank {rank}")

We can use the make_cribbage_card() function to create a shuffled deck of cards, as shown

in this example interactive session:
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>>> import random
>>> random.seed(1)
>>> deck = [make_cribbage_card(rank+1, suit) for rank in range(13) for suit
in SUITS]
>>> random.shuffle(deck)
>>> len(deck)
52

>>> [str(c) for c in deck[:5]]
[' K ♥', ' 3 ♥', '10 ♥', ' 6 ♦', ' A ♦']

We can evaluate the points() method of each Card object:

>>> sum(c.points() for c in deck[:5])
30

The hand has two face cards, plus 3, 6, and ace, so the total points are 30.

How it works...
Python’s mechanism for finding a method (or attribute) of an object works like this:

1. Search the instance for the attribute.

2. Search in the class for the method or attribute.

3. If the name is not defined in the immediate class, then search all of the parent classes

for the method or attribute. The parent classes are searched in a sequence called,

appropriately, the Method Resolution Order (MRO).

We can display the MRO using the mro() method of a class. Here’s an example:

>>> c.__class__.__name__
'CribbageCard'

>>> from pprint import pprint
>>> pprint(c.__class__.mro())
[<class 'recipe_02.CribbageCard'>,
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<class 'recipe_02.Card'>,
<class 'recipe_02.CribbagePoints'>,
<class 'recipe_02.PointedCard'>,
<class 'typing.Protocol'>,
<class 'typing.Generic'>,
<class 'object'>]

The mro() method of the CribbageCard class shows us the order that’s used to resolve

names. Because the class object uses an internal dict to store method definitions, the

search is an extremely fast hash-based lookup of the attribute name.

There’s more...
There are several kinds of design concerns we can separate in the form of mixins:

• Persistence and representation of state: A mixin class could add methods to

manage conversion to a consistent external representation like CSV or JSON notation.

• Security: A mixin class could add methods performs a consistent authorization

check that applies to a number of base classes.

• Logging: A mixin class could introduce a logger with a definition consistent across

a variety of classes.

• Event signaling and change notification: A mixin might report object state

changes so one or more GUI widgets can refresh the display.

As an example, we’ll create a mixin to introduce logging to cards. We’ll define this class in

a way that must be provided first in the list of superclasses. Since it’s early in the MRO list,

it uses the super() function to use methods defined by subsequent classes in the MRO list.

This class will add the logger attribute to each object that has the PointedCard protocol

defined:
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import logging

class Logged(Card, PointedCard):
def __init__(self, rank: int, suit: str) -> None:

self.logger = logging.getLogger(self.__class__.__name__)
super().__init__(rank, suit)

def points(self) -> int:
p = super().points() # type: ignore [safe-super]
self.logger.debug("points {0}", p)
return p

Note that we’ve used super().__init__() to perform the __init__() method of any other

classes defined. The order for these initializations comes from the class MRO. The simplest

approach to have one class that defines the essential features of an object, and all other

mixins add features in the form of additional methods to the essential object.

We’ve provided an overriding definition for points(). This will search other classes in

the MRO list for an implementation of the points() method. Then it will log the results

computed by the method from another mixin class.

The # type: ignore [safe-super] comment is a note to tools like mypy that do strict

type-checking. When we look at the definitions of the PointedCard protocol, there’s no

definition for this method. From the tool’s examination of the class hierarchy, it’s possible

that calling super().points() is unsafe. We’re sure this won’t happen in practice, because

a mixin will always be present to define the points() method. We’ve flagged the unsafe

use of super() as an error to be ignored.

Here are some classes that include the Logged mixin features:

class LoggedCribbageAce(Logged, AceCard, CribbagePoints):
pass

class LoggedCribbageCard(Logged, Card, CribbagePoints):
pass
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class LoggedCribbageFace(Logged, FaceCard, CribbageFacePoints):
pass

Each of these classes are built from three separate class definitions. Since the Logged class

is provided first, we’re assured that all classes have consistent logging. We’re also assured

that any method in Logged can use super() to locate an implementation in the class list

that follows it in the sequence of classes in the definition.

To make use of these classes, we’d need to define a make_logged_card() function to use

these new classes.

See also
• The method resolution order is computed when the class is created. The algorithm

used is called C3. The process was originally developed for the Dylan language

and is now also used by Python. The C3 algorithm ensures that each parent class

is searched exactly once. It also ensures the relative ordering of superclasses is

preserved; subclasses will be searched before any of their parent classes are examined.

More information is available at https://dl.acm.org/doi/10.1145/236337.2363

43.

• When considering multiple inheritance, it’s always essential to also consider whether

or not a wrapper is a better design than a subclass. See the Choosing between

inheritance and composition – the "is-a" question recipe.

Leveraging Python’s duck typing
When a design involves inheritance, there is often a clear relationship from a superclass

to one or more subclasses. In the Choosing between inheritance and composition – the

"is-a" question recipe of this chapter, as well as the Extending a built-in collection – a list

that does statistics recipe in Chapter 7, we’ve looked at extensions that involve a proper

subclass-superclass relationship.

In order to have classes that can be used in place of one another (“polymorphic” classes),

https://dl.acm.org/doi/10.1145/236337.236343
https://dl.acm.org/doi/10.1145/236337.236343
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some languages require a common superclass. In many cases, the common class doesn’t

have concrete implementations for all of the methods; it’s called an abstract superclass.

Python doesn’t require common superclasses. The standard library offers the abc module

to support creating abstract classes in cases where it can help to clarify the relationships

among classes.

Instead of defining polymorphic classes with common superclasses, Python relies on duck

typing to establish equivalence. This name comes from the quote:

When I see a bird that walks like a duck and swims like a duck and quacks like a

duck, I call that bird a duck. (James Whitcomb Riley)

In the case of Python class relationships, if two objects have the same methods and the

same attributes, these similarities have the same effect as having a common superclass. No

formal definition of a common class is required.

This recipe will show how to exploit the concept of duck typing to create polymorphic

classes. Instances of these classes can be used in place of each other, giving us more flexible

designs.

Getting ready
In some cases, it can be awkward to define a superclass for a number of loosely related

implementation choices. For example, if an application is spread across several modules,

it might be challenging to factor out a common superclass and put this by itself in a

separate module where it can be imported into other modules. Instead of factoring out a

common abstraction, it’s sometimes easier to create classes that will pass the “duck test”:

the various classes have the same methods and attributes; therefore, they are effectively

interchangeable, polymorphic classes.

How to do it...
We’ll define a pair of classes to show how this works. These classes will both simulate

rolling a pair of dice. We’ll create two distinct implementations that have enough common



344 More Advanced Class Design

features that they are interchangeable:

1. Start with a class, Dice1, with the required methods and attributes. In this example,

we’ll have one attribute, dice, that retains the result of the last roll, and one method,

roll(), that changes the state of the dice:

import random

class Dice1:
def __init__(self, seed: int | None = None) -> None:

self._rng = random.Random(seed)
self.roll()

def roll(self) -> tuple[int, ...]:
self.dice = (

self._rng.randint(1, 6),
self._rng.randint(1, 6))

return self.dice

2. Define another class, Dice2, with the same methods and attributes. Here’s a some-

what more complex definition that creates a class that has the same signature as the

Dice1 class:

import random

class Die:
def __init__(self, rng: random.Random) -> None:

self._rng = rng
def roll(self) -> int:

return self._rng.randint(1, 6)

class Dice2:
def __init__(self, seed: int | None = None) -> None:

self._rng = random.Random(seed)
self._dice = [Die(self._rng) for _ in range(2)]
self.roll()

def roll(self) -> tuple[int, ...]:
self.dice = tuple(d.roll() for d in self._dice)
return self.dice

At this point, the two classes, Dice1 and Dice2, can be interchanged freely. Here’s a
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function that accepts either class as an argument, creates an instance, and yields several

rolls of the dice:

from collections.abc import Iterator

def roller(
dice_class: type[Dice1 | Dice2],
seed: int | None = None,
*,
samples: int = 10

) -> Iterator[tuple[int, ...]]:
dice = dice_class(seed)
for _ in range(samples):

yield dice.roll()

We can use this function providing either the Dice1 class or Dice2 class for the dice argu-

ment value. The type[Dice1 | Dice2] type hint specifies a union of multiple equivalent

classes. This function creates an instance of the given class in the dice parameter, and

can even provide the seed value. Using a known seed creates reproducible results, often

required for unit testing, and also used for reproducing statistical studies that involve

randomized selection.

The following interactive session shows the roller() function being applied to both

classes:

>>> list(roller(Dice1, 1, samples=5))
[(1, 3), (1, 4), (4, 4), (6, 4), (2, 1)]

>>> list(roller(Dice2, 1, samples=5))
[(1, 3), (1, 4), (4, 4), (6, 4), (2, 1)]

The objects built from Dice1 and Dice2 have enough similarities that they’re indistinguish-

able.
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How it works...
We’ve created two classes with identical collections of attributes and methods. This is

the essence of duck typing. Because of the way Python searches through a sequence of

dictionaries for matching names, classes do not need to have a common superclass to be

interchangeable.

It can be helpful to define a union of related classes. An alternative is to define a common

Protocol that the classes adhere to. It’s not necessary for each class to explicitly inherit

from the Protocol definition, but it can make it more clear to your readers to do this. Tools

like mypy can discern whether or not a class fits a Protocol, which is how duck typing

works.

There’s more...
In the definition of the roller() function, we used the following type hint:

dice: type[Dice1 | Dice2].

It’s often helpful to make this explicit with code like this:

Dice = Dice1 | Dice2

This can be easily extended as new alternative definitions are added. Client classes can

then use type[Dice] to refer to the union of alternatives.

An alternative is to define a protocol. A protocol defines a generic type with only the

common features the various implementations will share:

class DiceP(Protocol):
def roll(self) -> tuple[int, ...]:

...

It helps to create type hints later in the development process. After creating alternative

implementations, it’s easy to define a type that’s a union of the various choices. If more

implementations arise, they can be added to the union.
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A protocol permits easier expansion of the alternatives. The protocol defines only the

relevant features of the implementations. This is often done by refactoring the signatures

of client methods and attributes to refer to the protocol class.

See also
• The duck type question is implicit in the Choosing between inheritance and composition

– the "is-a" question recipe; if we leverage duck typing, we’re also making a claim that

two classes are not the same thing. When we bypass inheritance, we are implicitly

claiming that the is-a relationship doesn’t hold.

• When looking at the Separating concerns via multiple inheritance recipe, we’re also

able to leverage duck typing to create composite classes that may not have a simple

inheritance hierarchy.

Managing global and singleton objects
The Python environment contains a number of implicit global objects. These objects

provide a convenient way to work with a collection of other objects. Because the collection

is implicit, we’re saved from the annoyance of explicit initialization code.

One example of this is an implicit random number generating object in the random module.

When we evaluate random.random(), we’re actually making use of an instance of the

random.Random class.

Because a module is only imported once, a module implements the Singleton design

pattern. We can rely on this technique to implement these global singletons.

Other examples of this include the following:

• The collection of data encoders and decoders (codecs) available. The codecs module

has a registry for encoders and decoders. We can add encodings and decodings to

this registry.

• The webbrowser module has a registry of known browsers.

• The numbers module has a registry of numeric data types. This allows a module to
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define a new implementation of a numeric type and add it to the mix of known types.

• The logging module maintains a collection of named loggers. The getLogger()

function tries to find an existing logger; it creates a new logger if needed.

• The re module has a cache of compiled regular expressions. This saves the time to

recompile a regular expression that’s defined inside a method or function.

This recipe will show how to work with an implicit global object like the registries used

for codecs, browsers, and number classes.

Getting ready
A collection of functions can all work with an implicit global object, created by a module.

The benefit is to allow other modules to share a common object without having to write

any code that explicitly coordinates sharing.

This is potentially confusing to people reading your code.

The idea of shared global state can become a design nightmare. The further

step of making a shared object implicit may compound the problem.

Looking at the examples from the Python standard library, there are two

important patterns. First, there’s a narrow focus. Second, the updates to

the registry are limited to adding new instances.

As an example, we’ll define a module with a global singleton object. We’ll look more at

modules in Chapter 13.

Our global object will be a counter that we can use to accumulate centralized data from

several independent modules or objects. We’ll use this global to count events in the

application. The counts provide a summary of the work completed, and a check to confirm

that all the work was completed.

The goal is to be able to write something like this:
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for row in source:
count('input')
some_processing()

print(counts())

The some_processing() function might use something like count('reject') to count

rejected input rows. This function may call other functions that also use the count()

function to record evidence of the processing.

These two independent functions both refer to a shared global counter:

• count(key) increments a global Counter and returns the current value for the given

key.

• counts() provides all of the Counter values.

How to do it...
There are two common ways to handle global state information:

• Use a module global variable because modules are singleton objects.

• Use a class-level variable (called static in some programming languages). In Python,

a class definition is also a singleton object that can be shared.

We’ll cover these as separate mini-recipes, starting with module globals.

Module global variables

We can do the following to create a variable that is global to a module:

1. Create a module file. This will be a .py file with the definitions in it. We’ll call it

counter.py.

2. If necessary, define a class for the global singleton. In our case, we can use this

definition to create a collections.Counter object:

from collections import Counter
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3. Define the one and only instance of the global singleton object. We’ve used a leading

_ in the name to make it slightly less visible. It’s not — technically — private. It is,

however, gracefully ignored by many Python tools and utilities:

_global_counter: Counter[str] = Counter()

A common idiom for marking global variables is to use an ALL_CAPS name. This

seems more important for global variables that are to be considered as constants. In

this case, this variable will be updated, and an ALL_CAPS name seems misleading.

4. Define the two functions to use the global object, _global_counter. These functions

encapsulate the detail of how the counter is implemented:

def count(key: str, increment: int = 1) -> None:
_global_counter[key] += increment

def counts() -> list[tuple[str, int]]:
return _global_counter.most_common()

Now we can write applications that use the count() function in a variety of places. The

counted events, however, are fully centralized in a single object, defined as part of the

module.

We might have code that looks like this:

>>> from counter import *
>>> from recipe_03 import Dice1

>>> d = Dice1(1)
>>> for _ in range(1000):
... if sum(d.roll()) == 7:
... count('seven')
... else:
... count('other')
>>> print(counts())
[('other', 833), ('seven', 167)]

We’ve imported the count() and counts() functions from the counter module. We’ve also
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imported the Dice1 class as a handy object that creates a sequence of events. When we

create an instance of Dice1, we provide an initialization to force a particular random seed.

This gives repeatable results.

The benefit of this technique is that several modules can all share the global object within

the counter module. All that’s required is an import statement. No further coordination

or overheads are necessary.

Class-level “static” variables

We can do the following to create a variable that is global to all instances of a class definition:

1. Define a class with a variable outside the __init__() method. This variable is part

of the class, not part of an instance. To make it clear that the attribute is shared by

all instances of the class, the ClassVar type hint is helpful. In this example, we’ve

decided to use a leading _ so the class-level variable is not seen as part of the public

interface:

from collections import Counter
from typing import ClassVar

class EventCounter:

_class_counter: ClassVar[Counter[str]] = Counter()

2. Add methods to update and extract data from the class-level _class_counter at-

tribute. These will use the @classmethod decorators to show they are used directly

by the class, not by an instance. The self variable is not used; instead, a cls variable

is used as a reminder that the method applies to the class:

@classmethod
def count(cls, key: str, increment: int = 1) -> None:

cls._class_counter[key] += increment

@classmethod
def counts(cls) -> list[tuple[str, int]]:

return cls._class_counter.most_common()
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It’s very important to note that the _class_counter attribute is part of the class, and is

referred to as cls._class_counter. We don’t use a self instance variable because we

aren’t referring to an instance of the class; we’re referring to a variable that’s part of

the overall class definition, provided as the first parameter to a method decorated with

@classmethod.

Here’s how we can use this class.

>>> from counter import *
>>> EventCounter.count('input')

>>> EventCounter.count('input')
>>> EventCounter.count('filter')

>>> EventCounter.counts()
[('input', 2), ('filter', 1)]

Since all these operations update the EventCounter class, each increments the shared

variable.

Shared global state must be used carefully.

They may be tangential to the real work of the class. The focus must be

narrow and limited to very state changes.

When in doubt, explicitly shared objects will be a better design strategy, but

will involve a bit more code.

How it works...
The Python import mechanism uses sys.modules to track which modules are loaded. Once

a module is in this mapping, it is not loaded again. This means that any variable defined

within a module will be a singleton: there will only be one instance.

Within a module, a class definition can only be created once. This means the internal state

changes of a class also follow the Singleton design pattern.
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How can we choose between these two mechanisms? The choice is based on the degree

of confusion created by having multiple classes sharing a global state. As shown in the

previous example in Class-level "static" variables, we could have multiple variables sharing

a common Counter object. If the presence of an implicitly shared global state seems

confusing, then a module-level global is a better choice. In the cases where a module-level

global is confusing, share state explicitly with ordinary visible variables.

There’s more...
A shared global state can be called the opposite of object-oriented programming. One ideal

of object-oriented programming is to encapsulate state changes in individual objects. Used

too broadly, global variables break the idea of encapsulation of state within a single object.

In a sense, a module is a kind of class-like structure. A module is a namespace with

module-level variables to define state and module functions that are like methods.

One example of a need for a common global state often arises when trying to define config-

uration parameters for an application. It can help to have a single, uniform configuration

that’s shared widely throughout multiple modules. When these objects are used for perva-

sive features such as configuration, audits, logging, and security, globals can be helpful

for segregating a single, focused cross-cutting concern into a generic class separate from

application-specific classes.

An alternative is to create a configuration object explicitly. This configuration object can

then be provided as a parameter to other objects throughout an application.

See also
• Chapter 14 covers additional topics in module and application design.

Using more complex structures – maps of lists
In Chapter 4, we looked at the basic data structures available in Python. Those recipes

generally looked at the various structures in isolation.

We’ll look at a common combination structure—the mapping from a single key to a list of
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related values. This can be used to accumulate detailed information about database or log

records identified by a given key. This recipe will partition a flat list of details into lists

organized by shared key values.

This blurs into class design because we can often leverage Python’s built-in classes for this

kind of work. This can reduces the volume of unique, new code we have to write.

Getting ready
We’ll look at a mapping from a string to a list of instances of a class we’ll design. We’re

going to start with some raw log entries from an application, decompose each line into

individual fields, and then create individual Event objects from the fields of data. Once we

have these objects, we can then reorganize and regroup them into lists associated with

common attribute values like module name, or message severity.

In Chapter 5, we looked at log data in the Creating dictionaries – inserting and updating

recipe.

The first step will be to transform the log lines into a more useful comma-separated

value (CSV) format. A regular expression can pick out the various syntactic groups. See

the String parsing with regular expressions recipe in Chapter 1 for information on how the

parsing works.

The raw data looks like the following:

[2016-04-24 11:05:01,462] INFO in module1: Sample Message One
[2016-04-24 11:06:02,624] DEBUG in module2: Debugging
[2016-04-24 11:07:03,246] WARNING in module1: Something might have gone
wrong

Each row can be parsed into the component fields with a regular expression. We’ll define

a NamedTuple subclass that has a static method, from_line(), to create instances of the

class using these four fields. Making sure the attribute names match the regular expression

group names, we can build instances of the class using the following definition:
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import re
from typing import NamedTuple

class Event(NamedTuple):
timestamp: str
level: str
module: str
message: str

@staticmethod
def from_line(line: str) -> 'Event | None':

pattern = re.compile(
r"\[(?P<timestamp>.*?)\]\s+"
r"(?P<level>\w+)\s+"
r"in\s+(?P<module>\w+)"
r":\s+(?P<message>.*)"
)

if log_line := pattern.match(line):
return Event(**log_line.groupdict())

else:
return None

Our objective is to group the log messages by the module name attribute. We want to see

something like this:

>>> pprint(summary)
{'module1': [

Event('2016-04-24 11:05:01,462', 'INFO', 'module1', 'Sample Message
One'),
Event('2016-04-24 11:07:03,246', 'WARNING', 'module1', 'Something might
have gone wrong')],

'module2': [
Event('2016-04-24 11:06:02,624', 'DEBUG', 'module2', 'Debugging')]

}

How to do it...
We can write a summarize() function to restructure the log data as follows:

1. Import the required modules and some type hints for various kinds of collections:
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from collections import defaultdict
from collections.abc import Iterable

The defaultdict type is a concrete class that extends the MutableMapping abstract

base class. This is in a separate module from the Iterable type hint, which is an

abstract base class definition.

2. The source data type, the Event class, was shown in the Getting ready section.

3. Define an overall type hint for the summary dictionary we’ll be working with:

from typing import TypeAlias
Summary: TypeAlias = defaultdict[str, list[Event]]

4. Start the definition of a function to summarize an iterable source of the Event

instances, and produce a Summary object:

def summarize(data: Iterable[Event]) -> Summary:

5. Use the list function as the default value for defaultdict. It’s also helpful to create

a type hint for this collection:

module_details: Summary = defaultdict(list)

The list function is provided as a name only. A common mistake using list() will

evaluate the function and create a list object that is not a function. An error message

like TypeError: first argument must be callable or None is a reminder that

the argument must be the name of a function only.

6. Iterate through the data, appending to the list associated with each key. The

defaultdict object will use the supplied list() function to build an empty list

as the value corresponding to each new key the first time each key is encountered:
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for event in data:
module_details[event.module].append(event)

return module_details

The result of the summarize() function is a dictionary that maps from a module name

string to a list of all log rows for that module name. The data will look like the following:

>>> pprint(summary)
defaultdict(<class 'list'>,

{'module1': [Event(timestamp='2016-04-24 11:05:01,462',
level='INFO', module='module1', message='Sample Message One'),

Event(timestamp='2016-04-24 11:07:03,246',
level='WARNING', module='module1',
message='Something might have gone wrong')],

'module2': [Event(timestamp='2016-04-24 11:06:02,624',
level='DEBUG', module='module2', message='Debugging')]})

The key for this mapping is the module name and the value in the mapping is the list of

rows for that module name. We can now focus the analysis on a specific module. This

seems to be a close match with the initial expectations for the summarized results.

How it works...
There are two choices for how a mapping behaves when a key is not found:

• The built-in dict class raises an exception when a key is missing. This makes it

difficult to accumulate values associated with keys that aren’t known in advance.

• The defaultdict class evaluates a function that creates a default value when a key

is missing. In many cases, the function is int or float to create a default numeric

value of 0 or 0.0. In this case, the function is list to create an empty list.

We can imagine using the set function instead of list to create an empty set object for a

missing key. This would be suitable for a mapping from a key to a set of immutable objects

that share that key.
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There’s more...
We can also build a version of this as an extension to the built-in dict class:

class ModuleEvents(dict[str, list[Event]]):
def __missing__(self, key: str) -> list[Event]:

self[key] = list()
return self[key]

We’ve provided an implementation for the special __missing__() method. The default

behavior is to raise a KeyError exception. This will create a new empty list in the mapping.

This allows us to use code such as the following:

>>> event_iter = (Event.from_line(l) for l in log_data.splitlines())
>>> module_details = ModuleEvents()
>>> for event in filter(None, event_iter):

The use case is identical to the defaultdict, but the definition of the collection class is

slightly more complicated. This permits further extension to add features to the ModuleEvents

class.

See also
• In the Creating dictionaries – inserting and updating recipe in Chapter 4, we looked at

the basics of using a mapping.

• In the Avoiding mutable default values for function parameters recipe in Chapter 4, we

looked at other places where default values are used.

• In the Using more sophisticated collections recipe in Chapter 7, we looked at other

examples of using the defaultdict class.

Creating a class that has orderable objects
We often need objects that can be sorted into order. Log records, to give one example,

are often ordered by date and time. Most of our class definitions have not included the
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features necessary for sorting objects into order. Many of the recipes have kept objects in

mappings or sets based on the internal hash value computed by the __hash__() method,

and an equality test defined by the __eq__() method.

In order to keep items in a sorted collection, we’ll need the comparison methods that

implement <, >, <=, and >=. These comparisons are all based on the attribute values of each

object.

When we extend the NamedTuple class, the comparison methods that apply to the tuple

class are available. If we defined class using the @dataclass decorator, the comparison

methods are not provided by default. We can use @dataclass(order=True) to have the

ordering methods included. For this recipe, we’ll look at a class that is not based on either

of these helpers.

Getting ready
In the Separating concerns via multiple inheritance recipe, we defined playing cards using

two class definitions. The Card class hierarchy defined essential features of each card. A

second set of mixin classes provided game-specific features for each card.

The core definition, Card, was a frozen dataclass. It did not have the order=True parameter,

and does not properly put cards into order. We’ll need to add features to this Card definition

to create objects that can be ordered properly.

We’ll assume one more class definition, PinochlePoints to follow the rules for assigning

points to cards for the game of Pinochle. The details don’t matter; all that matters is that

the class implements the points() method.

In order to create a sortable collection of cards, we need to add yet another feature to the

family of Card class definitions. We’ll need to define four special methods used for the

comparison operators.
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How to do it...
To create an orderable class definition, we’ll create a comparison protocol, and then define

a class that implements the protocol, as follows:

1. We’re defining a new protocol that tools like mypy can use when comparing objects.

This will describe what kinds of objects the mixin will apply to. We’ve called it

CardLike because it applies to any class with at least the two attributes of rank and

suit:

from typing import Protocol, Any

class CardLike(Protocol):
rank: int
suit: str

This use of something-Like as a protocol name is part of the overall Pythonic approach

of duck typing. Rather than insist on a type hierarchy, we define the fewest features

required as a new Protocol.

2. Extending the protocol, we can create the SortableCard subclass for the comparison

features. This subclass can be mixed into any class that fits the protocol definition:

class SortableCard(CardLike):

3. Add the four order comparison methods to the SortableCard subclass. In this

case, we’re using the relevant attributes of any class that fits the CardLike protocol

into a tuple, then using Python’s built-in tuple comparison to handle the details of

comparing the items in the tuple. Here are the methods:

def __lt__(self: CardLike, other: Any) -> bool:
return (self.rank, self.suit) < (other.rank, other.suit)

def __le__(self: CardLike, other: Any) -> bool:
return (self.rank, self.suit) <= (other.rank, other.suit)

def __gt__(self: CardLike, other: Any) -> bool:
return (self.rank, self.suit) > (other.rank, other.suit)

def __ge__(self: CardLike, other: Any) -> bool:
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return (self.rank, self.suit) >= (other.rank, other.suit)

4. Write the composite class definitions, built from an essential Card class and two

mixin classes to provide the Pinochle and comparison features:

class PinochleAce(AceCard, SortableCard, PinochlePoints):
pass

class PinochleFace(FaceCard, SortableCard, PinochlePoints):
pass

class PinochleNumber(Card, SortableCard, PinochlePoints):
pass

5. There’s no simple superclass for this collection of classes. We’ll add a type hint to

create a common definition:

from typing import TypeAlias
PinochleCard: TypeAlias = PinochleAce | PinochleFace | PinochleNumber

6. Now we can create a function that will create individual PinochleCard objects from

the classes defined previously:

def make_pinochle_card(rank: int, suit: str) -> PinochleCard:
if rank in (9, 10):

return PinochleNumber(rank, suit)
elif rank in (11, 12, 13):

return PinochleFace(rank, suit)
else:

return PinochleAce(rank, suit)

The dauntingly complex point rules for Pinochle are encapsulated in the PinochlePoints

class. We’ve omitted them because the points don’t parallel the six card ranks at all. Building

composite classes as a base subclass of Card plus PinochlePoints leads to an accurate

model of the cards without too much overt complexity.

We can now make cards that respond to comparison operators, using the following sequence
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of interactive commands:

>>> c1 = make_pinochle_card(9, '♥')
>>> c2 = make_pinochle_card(10, '♥')
>>> c1 < c2
True

>>> c1 == c1 # Cards match themselves
True

>>> c1 == c2
False

>>> c1 > c2
False

The equality comparisons to implement == and != are defined in the base class, Card. This

is a frozen data class. By default, data classes contain equality test methods.

Here’s a function that builds the special 48-card deck. It creates two copies of each of the

24 different rank and suit combinations:

def make_pinochle_deck() -> list[PinochleCard]:
return [

make_pinochle_card(r, s)
for _ in range(2)

for r in range(9, 15)
for s in SUITS

]

The value of the SUITS variable is the four Unicode characters for the suits. The generator

expression inside the make_deck() function builds two copies of each card using the 6

ranks that are part of the Pinochle game.

How it works...
Python uses special methods for a vast number of things. Almost every operator in the

language is implemented by a special method. (The few exceptions are the is operator and

and, or, and not.) In this recipe, we’ve leveraged the four ordering operators.
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The expression c1 <= c2 is evaluated as if we’d written c1.__le__(c2). This kind of

transformation happens for almost all Python operators.

The Python Language Reference organizes the special methods into several distinct groups.

In this recipe, we’ve looked at methods used for basic customization of a class.

Here’s how it looks when we work with instances of this class hierarchy. The first example

will create a 48-card Pinochle deck:

>>> deck = make_pinochle_deck()
>>> len(deck)
48

>>> import random
>>> random.seed(4)
>>> random.shuffle(deck)
>>> [str(c) for c in sorted(deck[:12])]
[' 9 ♣', '10 ♣', ' J ♠', ' J ♦', ' J ♦', ' Q ♠', ' Q ♣', ' K ♠', ' K ♠',
' K ♣', ' A ♥', ' A ♣']

The important part of the above example is the use of the sorted() function. Because

we’ve defined proper comparison operators, we can sort the PinochleCard instances, and

they are presented in the expected order from low rank to high rank.

There’s more...
A little formal logic suggests that we really only need to implement two of the comparisons

in detail. From an equality method and one ordering method, all the remaining methods

can be built. For example, if we build the operations for less than (__lt__()) and equal to

(__eq__()), we could compute the other three comparisons following these equivalence

rules:

• 𝑎 ≤ 𝑏 ≡ 𝑎 < 𝑏 ∨ 𝑎 = 𝑏

• 𝑎 ≥ 𝑏 ≡ 𝑏 < 𝑎 ∨ 𝑎 = 𝑏

• 𝑎 ≠ 𝑏 ≡ ¬(𝑎 = 𝑏)
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Python emphatically does not do any of this kind of advanced algebra for us. We need to

do the algebra carefully and implement the necessary comparison methods.

The functools library includes a decorator, @total_ordering, that can generate these

missing comparison methods.

See also
• See the Separating concerns via multiple inheritance recipe for the essential definitions

of cards and card game rules.

• See Chapter 7 for more information on dataclasses and named tuple classes.

Deleting from a list of complicated objects
Removing items from a list has an interesting consequence. Specifically, when an item is

removed, all the subsequent items move forward. The rule is this:

On deleting item y, items list[y+1:] take the place of items list[y:].

This is a side-effect that happens in addition to removing the selected item. Because things

can move around in a list, it makes deleting more than one item at a time potentially

challenging.

When the list contains items that have a definition for the __eq__() special method, then

the list remove() method can remove each item. When the list items don’t have a simple

__eq__() test, then the remove() method doesn’t work, making it more challenging to

remove multiple items from the list.

Getting ready
For this example, we’ll work with a list of dictionaries, where a naïve approach to removing

items doesn’t work out. It’s helpful to see what can go wrong with trying repeatedly to

search a list for an item to delete.

In this case, we’ve got some data that includes a song name, the writers, and a duration.

The dictionary objects are rather long. The data looks like this:
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>>> song_list = [
... {'title': 'Eruption', 'writer': ['Emerson'], 'time': '2:43'},
... {'title': 'Stones of Years', 'writer': ['Emerson', 'Lake'], 'time':
'3:43'},
... {'title': 'Iconoclast', 'writer': ['Emerson'], 'time': '1:16'},
... {'title': 'Mass', 'writer': ['Emerson', 'Lake'], 'time': '3:09'},
... {'title': 'Manticore', 'writer': ['Emerson'], 'time': '1:49'},
... {'title': 'Battlefield', 'writer': ['Lake'], 'time': '3:57'},
... {'title': 'Aquatarkus', 'writer': ['Emerson'], 'time': '3:54'}
... ]

The type hint for each row of this complex structure can be defined with as follows:

from typing import TypedDict

class SongType(TypedDict):
title: str
writer: list[str]
time: str

A better design would use a datetime.timedelta for the song’s time. We’ve

omitted this complication from the recipe.

The list of songs as a whole can be described as list[SongType].

Here’s a naïve approach that emphatically does not work:

def naive_delete(data: list[SongType], writer: str) -> None:
for index in range(len(data)):

if 'Lake' in data[index]['writer']:
del data[index]

Because items are moved, the computed index values will skip over the item just after one

that is deleted. Further, because the list gets shorter, the range is wrong after a deletion.

This fails with an index error, as shown in the following output:
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>>> naive_delete(song_list, 'Lake')
Traceback (most recent call last):
...
IndexError: list index out of range

Another failing approach looks like this:

>>> remove = list(filter(lambda x: 'Lake' in x['writer'], song_list))
>>> for x in remove:
... song_list.remove(x)

This suffers from the problem that each remove() operation must search the list from the

beginning. This approach will be slow for a very large list.

We need to combine search and remove operations in a way that avoids multiple passes

through the list.

How to do it...
To efficiently delete multiple items from a list, we’ll need to implement our own list index

processing function as follows:

1. Define a function to update a list object by removing selected items:

def incremental_delete(
data: list[SongType],
writer: str

) -> None:

2. Initialize an index value, i, to zero to begin with the first item in the list:

i = 0

3. While the value for the i variable is not equal to the length of the list, we want to

make a state change to either increment the i value or shrink the list:
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while i != len(data):

4. If the data[i] value is the searched-for target, we can remove it, shrinking the list.

Otherwise, increment the index value, i, one step closer to the length of the list:

if 'Lake' in data[i]['writer']:
del data[i]

else:
i += 1

This leads to the expected behavior of removing the items from the list without suffering

from index errors, making multiple passes through the list items, or failing to delete

matching items.

How it works...
The goal is to examine each item exactly once and either remove it or step over it, leaving

it in place. The while statement design stems from looking at statements that advance

toward the goal: increment the index, and delete an item. Each of these works in a limited

set of conditions:

• Incrementing the index only works if the item should not be removed.

• Deleting an item only works if the item is a match.

What’s important is that the conditions are exclusive. When we use a for statement, the

increment processing always happens, an undesirable feature. The while statement permits

us to increment only when the item should be left in place.

There’s more...
An alternative to the overhead of removal is to create a new list with some items rejected.

Making a shallow copy of items is much faster than removing items from a list, but uses

more storage. This is a common example of the time versus memory trade-off.

We can use a list comprehension like the following one to create a new list of only the
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desired items:

>>> [item
... for item in song_list
... if 'Lake' not in item['writer']
... ]

This will create a shallow copy of selected items from the list. The items we don’t want to

keep will be ignored. For more information on the idea of a shallow copy, see the Making

shallow and deep copies of objects recipe in Chapter 4.

We can also use a higher-order function, filter(), as part of the copy operation. Consider

this example:

>>> list(
... filter(
... lambda item: 'Lake' not in item['writer'],
... song_list
... )
... )

The filter() function has two arguments: a lambda object and the original set of data. In

this case, the lambda expression is used to decide which items to pass. Items for which the

lambda returns False are rejected.

The filter() function is a generator. This means that we need to collect all of the items

to create a final list object. The list() function is one way to consume all items from a

generator, stashing them in the collection object they create and return.

See also
• We’ve leveraged two other recipes: Making shallow and deep copies of objects and

Slicing and dicing a list in Chapter 4.

• We’ll look closely at filters and generator expressions in Chapter 9.
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9
Functional Programming
Features

The idea of functional programming is to focus on writing small, expressive functions

that perform the required data transformations. Combinations of functions can often create

code that is more succinct and expressive than long strings of procedural statements or

the methods of complex, stateful objects. This chapter focuses on functional programming

features of Python more than procedural or object-oriented programming.

This provides an avenue for software design distinct from the strictly object-oriented

approach used elsewhere in this book. The combination of objects with functions permits

flexibility in assembling an optimal collection of components.

Conventional mathematics defines many things as functions. Multiple functions can be

combined to build up a complex result from previous transformations. When we think of

mathematical operators as functions, an expression like 𝑝 = 𝑓 (𝑛, 𝑔(𝑛)) can also be written

as two separate functions. We might think of this as 𝑝 = 𝑓 (𝑛, 𝑏), where 𝑏 = 𝑔(𝑛).
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Ideally, we can also create a composite function from these two functions:

𝑝 = 𝑓 (𝑛, 𝑔(𝑛)) = 𝑔 ◦ 𝑓 (𝑛)

Defining a new composite function, 𝑔 ◦ 𝑓 , instead of nested functions can help to clarify the

intent behind a design. This re-framing of the components can allow us to take a number

of small details and combine them into a larger chunk of knowledge that embodies the

concept behind the design.

Since programming often works with collections of data, we’ll often be applying a function

to all the items of a collection. This happens when doing database extraction and transfor-

mation to align data from diverse source applications. It also happens when summarizing

data. Something as commonplace as transforming a CSV file into a statistical summary is a

composition of transformation functions from rows of text to rows of data, and from rows

of data to a mean and standard deviation. This fits nicely with the mathematical idea of a

set builder or set comprehension.

There are three common patterns for applying one function to a set of data:

• Mapping: This applies a function to all the elements of a collection, {𝑚(𝑥)|𝑥 ∈ 𝑆}.

We apply some function, 𝑚(𝑥), to each item, 𝑥 , of a larger collection, 𝑆.

• Filtering: This uses a function to select elements from a collection, {𝑥 |𝑥 ∈ 𝑆 if 𝑓 (𝑥)}.

We use a function, 𝑓 (𝑥), to determine whether to pass or reject each item, 𝑥 , from

the larger collection, 𝑆.

• Reducing: This summarizes the items of a collection. One of the most common

reductions is creating a sum of all items in a collection, 𝑆, written as ∑
𝑥∈𝑆

𝑥 . Other

common reductions include finding the smallest item, the largest one, and the product

of all items.

We’ll often combine these patterns to create more complex composite applications. What’s

important here is that small functions, such as 𝑚(𝑥) and 𝑓 (𝑥), can be combined via the built-

in higher-order functions such as map(), filter(), and reduce(). The itertools module
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contains many additional higher-order functions that we can use to build an application.

And, of course, we can define our own higher-order functions to combine smaller functions.

Some of these recipes will show computations that could also be defined as properties

of a class definition created using the @property decorator. This is yet another design

alternative that can limit the complexity of stateful objects. In this chapter, however, we’ll

try to stick to a functional approach, that is, transformation to create new objects rather

than using properties.

In this chapter, we’ll look at the following recipes:

• Writing generator functions with the yield statement

• Applying transformations to a collection

• Using stacked generator expressions

• Picking a subset – three ways to filter

• Summarizing a collection – how to reduce

• Combining the map and reduce transformations

• Implementing “there exists” processing

• Creating a partial function

• Writing recursive generator functions with the yield from statement

We’ll start with a recipe where we will create functions that yield an iterable sequence of

values. Rather than creating an entire list (or set, or some other collection), a generator

function yields the individual items of a collection as demanded by a client operation. This

saves memory and may save time.

Writing generator functions with the yield
statement
A generator function is often designed to apply some kind of transformation to each item of

a collection. Generators can create data, too. A generator is called lazy because the values
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it yields must be consumed by a client; values are not computed until a client attempts to

consume them. Client operations like the list() function or a for statement are common

examples of consumers. Each time a function like list() demands a value, the generator

function must yield a value using the yield statement.

In contrast, an ordinary function can be called eager. Without the yield statement, a

function will compute the entire result and return it via the return statement.

A lazy approach is very helpful in cases where we can’t fit an entire collection in memory.

For example, analyzing gigantic web log files can be done in small doses rather than by

creating a vast in-memory collection.

In the language of Python’s type hints, we’ll often use the Iterator generic to describe

generators. We’ll need to clarify this generic with a type, like Iterator[str], to show that

the function yields string objects.

The items that are being consumed by a generator will often be from a collection described

by the Iterable generic type. All of Python’s built-in collections are Iterable, as are files.

A list of string values, for example, can be viewed as an Iterable[str].

Both the Iterable and Iterator types are available from the collections.abc module.

They can also be imported from the typing module.

The yield statement is what changes an ordinary function into a generator.

It will compute and yield results iteratively.

Getting ready
We’ll apply a generator to some web log data. We’ll design a generator that will transform

raw text into more useful structured objects. The generator function serves to isolate

transformation processing. This permits flexibility in applying filter or summary operations

after the initial transformation.

The entries start out as lines of text that look like this:
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[2016-06-15 17:57:54,715] INFO in ch10_r10: Sample Message One
[2016-06-15 17:57:54,716] DEBUG in ch10_r10: Debugging
[2016-06-15 17:57:54,720] WARNING in ch10_r10: Something might have gone
wrong

We’ve seen other examples of working with this kind of log in the Using more complex

structures – maps of lists recipe in Chapter 8. Using REs from the String parsing with regular

expressions recipe in Chapter 1, we can decompose each line into a more useful structure.

It’s often helpful to capture the details of each line of the log in an object of a distinct type.

This helps make the code more focused, and it helps us use the mypy tool to confirm that

types are used properly. Here’s a NamedTuple class definition:

from typing import NamedTuple

class RawLog(NamedTuple):
date: str
level: str
module: str
message: str

We’ll start with the transformation of an iterable source of strings string into an iterator

over tuple of fields. After that, we’ll apply the recipe again to transform the date attribute

from a string into a useful datetime object.

How to do it...
A generator function is a function, so the recipe is similar to those shown in Chapter 3.

We’ll start by defining the function, as follows:

1. Import the needed type hints from the collections.abc module. Import the re

module to parse the line of the log file:

import re
from collections.abc import Iterable, Iterator
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2. Define a function that iterates over RawLog objects. It seems helpful to include _iter

in the function name to emphasize that the result is an iterator, not a single value.

The parameter is an iterable source of log lines:

def parse_line_iter(
source: Iterable[str]

) -> Iterator[RawLog]:

3. The parse_line_iter() transformation function relies on a regular expression to

decompose each line. We can define this inside the function to keep it tightly bound

with the rest of the processing:

pattern = re.compile(
r"\[(?P<date>.*?)\]\s+"
r"(?P<level>\w+)\s+"
r"in\s+(?P<module>.+?)"
r":\s+(?P<message>.+)",
re.X

)

4. A for statement will consume each line of the iterable source, allowing us to create

and then yield each RawLog object in isolation:

for line in source:

5. The body of the for statement can map each string instance that matches the pattern

to a new RawLog object using the match groups:

if match := pattern.match(line):
yield RawLog(*match.groups())

Non-matching lines will be silently dropped. For the most part, this seems sensible

because a log can be filled with messages from a variety of sources.
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Without a yield statement, a function is “ordinary” and computes a

single result.

Here’s how we use this function to emit a sequence of RawLog instances from the sample

data shown above:

>>> from pprint import pprint

>>> for item in parse_line_iter(log_lines):
... pprint(item)
RawLog(date='2016-04-24 11:05:01,462', level='INFO', module='module1',
message='Sample Message One')
RawLog(date='2016-04-24 11:06:02,624', level='DEBUG', module='module2',
message='Debugging')
RawLog(date='2016-04-24 11:07:03,246', level='WARNING', module='module1',
message='Something might have gone wrong')

We could also collect items into a list object using something like this:

>>> details = list(parse_line_iter(log_lines))

In this example, the list() function consumes all of the items produced by the

parse_line_iter() function. A generator is a relatively passive construct: until data is

demanded, it doesn’t do any work.

How it works...
Each of Python’s built-in collection types implements a special method, __iter__(), to

produce an iterator object. An iterator object implements the __next__() special method

to both return an item and advance the state of the iterator to return the next item. This is

the Iterator protocol. The built-in next() function evaluates this method of an iterator

object.

While the Python built-in collections can create Iterator objects, a generator function

also implements this protocol. A generator will return itself in response to the iter()
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function. In response to the next() function, a generator suspends execution at a yield

statement, and provides a value that becomes the result of the next() function. Since the

function is suspended, it can be resumed when another next() function is evaluated.

To see how the yield statement works, look at this small function, which yields two objects:

test_example_4_3 = """
>>> def gen_func():
... print("pre-yield")
... yield 1
... print("post-yield")

Here’s what happens when we evaluate the next() function on this generator:

>>> y = gen_func()
>>> next(y)
pre-yield
1

>>> next(y)
post-yield

The first time we evaluated the next() function, the first print() function was evaluated,

and then the yield statement produced a value.

The use of the next() function resumed processing, and the statements between the two

yield statements were evaluated.

What happens next? Since there are no more yield statements in the function’s body, so

we observe the following:

>>> next(y)
Traceback (most recent call last):
...

The StopIteration exception is raised at the end of a generator function. This is expected
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by the processing of a for statement. It is quietly absorbed to break from processing.

If we don’t use a function like list() or a for statement to consume the data, we’ll see

something like this:

>>> parse_line_iter(data)
<generator object parse_line_iter at ...>

The value returned by evaluating the parse_line_iter() function is a generator. It’s not

a collection of items, but an object that will produce items, one at a time, on demand from

a consumer.

There’s more...
We can apply this recipe to convert the date attributes in each RawLog object. The more

refined kind of data from each line will follow this class definition:

import datetime
from typing import NamedTuple

class DatedLog(NamedTuple):
date: datetime.datetime
level: str
module: str
message: str

This has a more useful datetime.datetime object for the timestamp. The other fields

remain as strings.

Here’s a generator function – using a for statement and yield so that it’s an iterator –

that’s used to refine each RawLog object into a DatedLog object:

def parse_date_iter(
source: Iterable[RawLog]

) -> Iterator[DatedLog]:
for item in source:

date = datetime.datetime.strptime(
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item.date, "%Y-%m-%d %H:%M:%S,%f"
)
yield DatedLog(

date, item.level, item.module, item.message
)

Breaking overall processing into small generator functions confers several significant

advantages. First, the decomposition makes each function more succinct because it is

focused on a specific task. This makes these functions easier to design, test, and maintain.

Second, it makes the overall composition somewhat more expressive of the work being

done.

We can combine these two generators in the following kind of composition:

>>> for item in parse_date_iter(parse_line_iter(log_lines)):
... print(item)
DatedLog(date=datetime.datetime(2016, 4, 24, 11, 5, 1, 462000),
level='INFO', module='module1', message='Sample Message One')
DatedLog(date=datetime.datetime(2016, 4, 24, 11, 6, 2, 624000),
level='DEBUG', module='module2', message='Debugging')
DatedLog(date=datetime.datetime(2016, 4, 24, 11, 7, 3, 246000),
level='WARNING', module='module1', message='Something might have gone
wrong')

The parse_line_iter() function will consume lines from the source data, creating RawLog

objects when they are demanded by a consumer. The parse_date_iter() function is a

consumer of RawLog objects; from these, it creates DatedLog objects when demanded by a

consumer. The outer for statement is the ultimate consumer, demanding DatedLog objects.

At no time will there be a large collection of intermediate objects in memory. Each of these

functions works with a single object, limiting the amount of memory used.

See also
• In the Using stacked generator expressions recipe, we’ll combine generator functions

to build complex processing stacks from simple components.
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• In the Applying transformations to a collection recipe, we’ll see how the built-in map()

function can be used to create complex processing from a simple function and an

iterable source of data.

• In the Picking a subset – three ways to filter recipe, we’ll see how the built-in filter()

function can also be used to build complex processing from a simple function and an

iterable source of data.

Applying transformations to a collection
We often define generator functions with the intention apply the function to a collection

of data items. There are a number of ways that generators can be used with collections.

In the Writing generator functions with the yield statement recipe in this chapter, we created

a generator function to transform data from a string into a more complex object.

Generator functions have a common structure, and generally look like this:

def new_item_iter(source: Iterable[X]) -> Iterator[Y]:
for item in source:

new_item: Y = some_transformation(item)
yield new_item

The yield statement means the results will be generated iteratively. The function’s type

hints emphasize that it consumes items from the source collection. This template for

writing a generator function exposes a common design pattern.

Mathematically, we can summarize this as follows:

𝑁 = {𝑚(𝑥) ∣ 𝑥 ∈ 𝑆}

The new collection, 𝑁 , is a transformation, 𝑚(𝑥), applied to each item, 𝑥 , of the source,

𝑆. This emphasizes the transformation function, 𝑚(𝑥), separating it from the details of

consuming the source and producing the result. In the Python example previously shown,

this function was called some_transformation().
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This mathematical summary suggests that the for statement can be understood as a kind of

scaffold around the transformation function. There are two additional forms this scaffolding

can take. We can write a generator expression or we can use the built-in map() function.

This recipe will examine all three techniques.

Getting ready
We’ll look at the web log data from the Writing generator functions with the yield statement

recipe. This had dates as strings that we would like to transform into a proper datetime

object to be used for further computations. We’ll make use of the DatedLog class definition

from that earlier recipe.

The Writing generator functions with the yield statement recipe used a generator function

like the following example to transform a sequence of RawLog objects into an iterator of

more useful DatedLog instances:

import datetime
from recipe_01 import RawLog, DatedLog

def parse_date_iter(
source: Iterable[RawLog]

) -> Iterator[DatedLog]:
for item in source:

date = datetime.datetime.strptime(
item.date, "%Y-%m-%d %H:%M:%S,%f"

)
yield DatedLog(

date, item.level, item.module, item.message
)

This parse_date_iter() function has a significant amount of scaffolding code around an

interesting function. The for and yield statements are examples of scaffolding. The date

parsing, on the other hand, is the distinctive, interesting part of the function. We need to

extract this distinct processing to permit use of more flexible scaffolding.
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How to do it...
To make use of different approaches to applying a generator function, we’ll need to start

by refactoring the original parse_date_iter() function. This will extract a parse_date()

function that can be used in a variety of ways. After this initial step, we’ll show three

separate mini-recipes for using the refactored code.

Refactor the iterator to define a function that can be applied to a single row of the data. It

should produce an item of the result type from an item of the source type:

def parse_date(item: RawLog) -> DatedLog:
date = datetime.datetime.strptime(

item.date, "%Y-%m-%d %H:%M:%S,%f")
return DatedLog(

date, item.level, item.module, item.message)

This transformation can be applied to a collection of data in three ways: a generator

function, a generator expression, and via the map() function. We’ll start by rebuilding the

original generator.

Using the for and yield statements

We can apply a single-row parse_date() transformation function to each item of a collec-

tion using the for and yield statements. This was shown in the Writing generator functions

with the yield statement recipe earlier in this chapter. Here’s what it looks like:

def parse_date_iter_y(
source: Iterable[RawLog]

) -> Iterator[DatedLog]:
for item in source:

yield parse_date(item)

Using a generator expression

We can apply the parse_date() function to each item of a collection using a generator

expression. A generator expression includes two parts – the mapping function, and a for

clause – enclosed by (). This follows the pattern of the Building lists – literals, appending,



384 Functional Programming Features

and comprehensions recipe in Chapter 4:

1. Write the () brackets that surround the generator.

2. Write a for clause for the source of the data, assigning each item to a variable, in

this case, item:

(... for item in source)

3. Prefix the for clause with the mapping function, applied to the variable:

(parse_date(item) for item in source)

4. The expression can be the return value from a function that provides suitable type

hints for the source and the resulting expression. Here’s the entire function, since

it’s so small:

def parse_date_iter_g(
source: Iterable[RawLog]

) -> Iterator[DatedLog]:
return (parse_date(item) for item in source)

The function returns the generator expression that applies the parse_date() function

to each item in the source iterable.

Yes, this function is so small, it doesn’t seem to require the overhead of a def statement

and a name. The type hints can be helpful in some contexts, making this a sensible choice.

Using the map() function

We can apply the parse_date() function to each item of a collection using the map()

built-in function:

1. Use the map() function to apply the transformation to the source data:

map(parse_date, source)

2. The expression can be the return value from a function that provides suitable type



Chapter 9 385

hints for the source and the resulting expression. Here’s the entire function, since

it’s so small:

def parse_date_iter_m(
source: Iterable[RawLog]

) -> Iterator[DatedLog]:
return map(parse_date, source)

The map() function is an iterator that applies the parse_date() function to each item from

the source iterable. It yields the objects created by the parse_date() function.

It’s important to note that the parse_date name without () is a reference

to a function object.

It’s a common error to think the function must be evaluated, and include

extra, unnecessary uses of ().

All three techniques are equivalent.

How it works...
The map() function replaces some common code that acts as a scaffold around the processing.

It does the work of a for statement. It applies the given function to each item in the source

iterable.

We can define our own version of map() as follows:

def my_map2(f: Callable[[P], Q], source: Iterable[P]) -> Iterator[Q]:
return (f(item) for item in source)

As we’ve seen, these are identical in their behavior. Different audiences for the code may

have distinct preferences. The guidance we offer is to choose the style that makes the

meaning and intention the most clear to the audience reading the code.
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There’s more...
In this example, we’ve used the map() function to apply a function that takes a single

parameter to each item of a single iterable collection. It turns out that the map() function

can do a bit more than this. The map() function can process several sequences.

Consider this function and these two sources of data:

>>> def mul(a, b):
... return a * b

>>> list_1 = [2, 3, 5, 7]
>>> list_2 = [11, 13, 17, 23]

We can apply the mul() function to the sequence of pairs drawn from each source of data:

>>> list(map(mul, list_1, list_2))
[22, 39, 85, 161]

This allows us to merge several sequences of values using different kinds of operations on

argument values pulled from the sequences.

See also
• In the Using stacked generator expressions recipe later in this chapter, we will look at

stacked generators. We will build a composite function from a number of individual

mapping operations, written as various kinds of generator functions.

Using stacked generator expressions
In the Writing generator functions with the yield statement recipe earlier in this chapter,

we created a simple generator function that performed a single transformation on a piece

of data. As a practical matter, we often have several functions that we’d like to apply to

incoming data.

How can we stack or combine multiple generator functions to create a composite function?
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Getting ready
This recipe will apply several different kinds of transformations to source data. There will

be restructuring of the rows to combine three rows into a single row, data conversions to

convert the source strings into useful numbers or datetime stamps, and filtering to reject

rows that aren’t useful.

We have a spreadsheet that is used to record fuel consumption on a large sailboat.

For details of this data, see the Slicing and dicing a list recipe in Chapter 4. We’ll look at

parsing this in more detail in the Reading delimited files with the CSV module recipe in

Chapter 11.

We’d like to apply a number of transformations to each row-level list of this list-of-lists-of-

strings object:

• Exclude the three lines of headers (and any blank lines) that are present in the data.

• Merge three physical lines of text strings into one logical row of data.

• Convert the separated date and time strings into datetime objects.

• Convert the fuel height from a string to a float, ideally in gallons (or liters) instead of

inches.

Our goal is to create a group of generator functions. Assuming we have assigned the results

of a generator function to a variable, datetime_gen, the transformations allow us to have

software that looks like this:

>>> total_time = datetime.timedelta(0)
>>> total_fuel = 0
>>> for row in datetime_gen:
... total_time += row.engine_off - row.engine_on
... total_fuel += (
... float(row.engine_on_fuel_height) -
... float(row.engine_off_fuel_height)
... )

>>> print(
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... f"{total_time.total_seconds()/60/60 = :.2f}, "

... f"{total_fuel = :.2f}")

We need to design a composite function that can create this datetime_gen generator.

How to do it...
We’ll decompose this into three separate mini-recipes:

• Restructuring the rows.

• Excluding the header row.

• Creating more useful row objects.

We’ll start with restructuring three physical lines into a logical row.

Restructuring the rows

We’ll start by creating a row_merge() function to restructure the data:

1. We’ll use a named tuple to define a type for the combined logical rows:

from typing import NamedTuple

class CombinedRow(NamedTuple):
# Line 1
date: str
engine_on_time: str
engine_on_fuel_height: str
# Line 2
filler_1: str
engine_off_time: str
engine_off_fuel_height: str
# Line 3
filler_2: str
other_notes: str
filler_3: str

The raw data has empty cells; we’ve called them filler_1, filler_2, and filler_3.

Preserving these junk columns can make it easier to debug problems.
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2. The source rows created by a CSV reader will have a list[str] type; we’ll provide

an alias for this type, RawRow. The function’s definition will accept an iterable of

RawRow instances. It is an iterator over CombinedRow objects:

from typing import TypeAlias
from collections.abc import Iterable, Iterator

RawRow: TypeAlias = list[str]

def row_merge(
source: Iterable[RawRow]

) -> Iterator[CombinedRow]:

3. The body of the function will consume rows from the source iterator, skipping empty

lines, building a cluster that defines a CombinedRow object. When the first column

is non-empty, any previous cluster is complete, it is yielded, and a new cluster is

started. The very last cluster also needs to be yielded:

cluster: RawRow = []
for row in source:

if all(len(col) == 0 for col in row):
continue

elif len(row[0]) != 0:
# Non-empty column 1: line 1
if len(cluster) == 9:

yield CombinedRow(*cluster)
cluster = row.copy()

else:
# Empty column 1: line 2 or line 3
cluster.extend(row)

if len(cluster) == 9:
yield CombinedRow(*cluster)

This initial transformation can be used to convert a sequence of lines of CSV cell values

into CombinedRow objects where each of the field values from three separate rows have

their own unique attributes.

The first row output from this transformation will be a header row. The next part is a
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function to drop this row.

Excluding the header row

The first three lines of text from the source CSV file will create a CombinedRow object that’s

not very useful. We’ll exclude a row with labels instead of data:

1. Define a function to work with an iterable collection of CombinedRow objects, creating

an iterator of CombinedRow objects:

def skip_header_date(
source: Iterable[CombinedRow]

) -> Iterator[CombinedRow]:

2. The function’s body consumes each row of the source and yields the good rows. It

uses a continue statement to reject the undesirable rows:

for row in source:
if row.date == "date":

continue
yield row

This can be combined with the row_merge() function shown in the previous recipe to

provide an iterator over good data.

There are several transformation steps required to make the merged data truly useful. Next,

we’ll look at one of these, creating proper datetime.datetime objects.

Creating more useful row objects

The dates and times in each row aren’t very useful as separate strings. The function we’ll

write can have a slightly different form than the previous two steps in this recipe because

it applies to each row in isolation. The single-row transformation looks like this:

1. Define a new NamedTuple class that specifies a more useful type for the time values:
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import datetime
from typing import NamedTuple

class DatetimeRow(NamedTuple):
date: datetime.date
engine_on: datetime.datetime
engine_on_fuel_height: str
engine_off: datetime.datetime
engine_off_fuel_height: str
other_notes: str

2. Define a mapping function to convert one CombinedRow instance into a single

DatetimeRow instance:

def convert_datetime(row: CombinedRow) -> DatetimeRow:

3. The body of this function will perform a number of date-time computations and

create a new DatetimeRow instance:

travel_date = datetime.datetime.strptime(
row.date, "%m/%d/%y").date()

start_time = datetime.datetime.strptime(
row.engine_on_time, "%I:%M:%S %p").time()

start_datetime = datetime.datetime.combine(
travel_date, start_time)

end_time = datetime.datetime.strptime(
row.engine_off_time, "%I:%M:%S %p").time()

end_datetime = datetime.datetime.combine(
travel_date, end_time)

return DatetimeRow(
date=travel_date,
engine_on=start_datetime,
engine_off=end_datetime,
engine_on_fuel_height=row.engine_on_fuel_height,
engine_off_fuel_height=row.engine_off_fuel_height,
other_notes=row.other_notes

)

We can now stack the transformation functions to merge rows, exclude the header, and
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perform date time conversions. The processing looks like this:

>>> row_gen = row_merge(log_rows)
>>> tail_gen = skip_header_date(row_gen)
>>> datetime_gen = (convert_datetime(row) for row in tail_gen)

We’ve decomposed the reformatting, filtering, and transformation problems into three

separate functions. Each of these three steps does a small part of the overall job. We can test

each of the three functions separately. More important than being able to test is being able

to fix or revise one step without completely breaking the entire stack of transformations.

How it works...
When we write a generator function, the argument value can be a collection of items, or it

can be any other kind of iterable source of items. Since generator functions are iterators, it

becomes possible to create a pipeline of generator functions by stacking them. The results

of one generator are the input to the next one in the stack.

The datetime_gen object created by this recipe is a composition of three separate generators.

A for statement can gather values from the datetime_gen generator expression. The body

of that statement can print details and compute summaries of the objects being generated.

This design emphasizes small, incremental operations at each stage. Some stages of the

pipeline will consume multiple source rows for a single result row, restructuring the data as

it is processed. Other stages consume and transform a single row, making them amenable

to being described by generator expressions.

The entire pipeline is driven by demand from the client. Note that there’s no concurrency in

this processing. Each function is “suspended” at the yield statement until a client demands

more data from it via the built-in next() function.

Most importantly, the individual transformation steps can be debugged and tested separately.

This decomposition can help to create more robust and reliable software.
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There’s more...
There are a number of other conversions required to make this data useful. We’ll want to

transform the start and end timestamps into a duration. We also need to transform the fuel

height values into floating-point numbers instead of strings.

We have a number of ways to handle these derived data computations:

1. We can create additional transformation steps in our stack of generator functions.

This reflects an eager computation approach.

2. We can also add @property methods to the class definition. This is lazy computation;

it’s only performed when the property value is required.

To compute additional fuel height and volume values eagerly, we can apply the design

pattern again. First, define additional named tuple classes with the required fields. Then,

define a transformation function to convert height from a string to a float. Also, define a

transformation to convert height from inches to gallons. These additional functions will be

small and easy to test.

We now have a sophisticated computation that’s defined in a number of small and (almost)

completely independent chunks. Each function does the work required to create only one

row, keeping the overheads to a minimum. We can modify one piece without having to

think deeply about how the other pieces work.

See also
• See the Writing generator functions with the yield statement recipe for an introduction

to generator functions.

• See the Slicing and dicing a list recipe in Chapter 4, for more information on the fuel

consumption dataset.

• See the Combining the map and reduce transformations recipe for another way to

combine operations.

• The Picking a subset – three ways to filter recipe covers the filter function in more
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detail.

Picking a subset – three ways to filter
Choosing a subset of relevant rows can be termed filtering a collection of data. We can

view a filter as rejecting bad rows or including the desirable rows. There are several ways

to apply a filtering function to a collection of data items.

In the Using stacked generator expressions recipe, we wrote the skip_header_date() gener-

ator function to exclude some rows from a set of data. The skip_header_date() function

combined two elements: a rule to pass or reject items, and a source of data. This generator

function had a general pattern that looks like this:

from collections.abc import Iterable, Iterator
from typing import TypeVar

T = TypeVar("T")

def data_filter_iter(
source: Iterable[T]

) -> Iterator[T]:
for item in source:

if should_be_passed(item):
yield item

This data_filter_iter() function’s type hints emphasize that it is an iterable that con-

sumes items of a type, T, from an iterable source collection. Some expression is applied to

each item to determine if it’s valid. This expression can be defined as a separate function.

We can define filters of considerable sophistication.

The design pattern can be summarized as follows:

𝑁 = {𝑥 ∣ 𝑥 ∈ 𝑆 if 𝑓 (𝑥)}

The new collection, 𝑁 , is each item, 𝑥 , in the source, 𝑆, where a filter function, 𝑓 (𝑥), is
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true. This summary emphasizes the filter function, 𝑓 (𝑥), separating it from minor technical

details of consuming the source and producing the result.

This mathematical summary suggests the for statement is little more than scaffolding code.

Because it’s less important than the filter rule, it can help to refactor a generator function

and extract the filter from the other processing.

Considering the for statement as scaffolding, how else can we apply a filter to each item

of a collection? There are two additional techniques we can use:

• We can write a generator expression.

• We can use the built-in filter() function.

Both of these require refactoring the generator function — skip_header_date(), shown

earlier in the Using stacked generator expressions recipe — to extract the decision-making

expression, separate from the for and if scaffolding around it. From this function, we can

then move to creating a generator expression, and using the filter() function.

Getting ready
In this recipe, we’ll look at the fuel consumption data from the Using stacked generator

expressions recipe in this chapter. For details of this data, see the Slicing and dicing a list

recipe in Chapter 4.

We used two generator functions. The first, row_merge(), restructured the physical lines

into logical rows. A named tuple, CombinedRow, was used to provide a more useful structure

to the row data. The second generator function, skip_header_date(), rejected the heading

rows of the data, passing the useful data rows.

We’ll rewrite the skip_header_date() function to demonstrate three distinct approaches

to extracting useful data.

How to do it...
The first part of this recipe will refactor the “good data” rule out of the generator function

to make it more widely useful.
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1. Start with a draft version of a generator function with the following outline:

def skip_header_date(
source: Iterable[CombinedRow]

) -> Iterator[CombinedRow]:
for row in source:

if row.date == "date":
continue

yield row

2. The expression in the if statement can be refactored into a function that can be

applied to a single row of the data, producing a bool value:

def pass_non_date(row: CombinedRow) -> bool:
return row.date != "date"

3. The original generator function can now be simplified:

def skip_header_date_iter(
source: Iterable[CombinedRow]

) -> Iterator[CombinedRow]:
for item in source:

if pass_non_date(item):
yield item

The pass_non_date() function can be used in three ways. As shown here, it can be used by

a generator function. It can also be used in a generator expression, and with the filter()

function. Next, we’ll look at writing an expression.

Using a filter in a generator expression

A generator expression includes three parts – the item, a for clause, and an if clause – all

enclosed by ():

1. Start with a for clause that assigns objects to a variable. This source comes from

some iterable collection, which is called source in this example:

(... for item in source)
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2. Because this is a filter, the result expression should be the variable from the for

clause:

(item for item in source)

3. Write an if clause using the filter rule function, pass_non_date():

(item for item in source if pass_non_date(source))

4. This generator expression can be the return value from a function that provides

suitable type hints for the source and the resulting expression. Here’s the entire

function, since it’s so small:

def skip_header_gen(
source: Iterable[CombinedRow]

) -> Iterator[CombinedRow]:
return (

item
for item in source
if pass_non_date(item)

)

This function returns the result of the generator expression. The function doesn’t do

very much, but it does applying a name and a set of type hints to the expression.

The skip_header_gen() function uses a generator expression that applies the

pass_non_date() function to each item in the source collection to determine whether

it passes and is kept, or whether it is rejected.

The results are identical to the original skip_header_date() function, shown above.

Using the filter() function

Using the filter() function includes two parts – the decision function and the source of

data – as arguments:

1. Use the filter() function to apply the function to the source data:
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filter(pass_non_date, source)

The filter() function is an iterator that applies the given function, pass_non_date() as

a rule to pass or reject each item from the given iterable, data. It yields the rows for which

the pass_non_date() function returns True.

It’s important to note that the pass_non_date name without () is a reference

to a function object.

It’s a common error to think the function must be evaluated, and include

extra, unnecessary uses of ().

How it works...
A generator expression must include a for clause to provide a source of data items. The

optional if clause can apply a condition that preserves some items while rejecting others.

Placing a filter condition in an if clause can make the expression clear and expressive of

the algorithm.

Generator expressions have an important limitation. As expressions, they cannot use

statement-oriented features of Python. The try-except statement, used to handle excep-

tional data conditions, is often helpful.

There’s more...
Sometimes, it’s difficult to write a simple rule to define the valid data or reject the invalid

data. In many cases, it may be impossible to use a simple string comparison to identify

rows to reject. This happens when a file is filled with extraneous information; manually

prepared spreadsheets suffer from this. It some cases, there’s no trivial regular expression

that helps to characterize valid data.

We can often encounter data where the easiest way to establish validity is to attempt a

conversion, and transform the presence or absence of an exception into a Boolean condition.
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Consider the following function to ascertain if a row of data has a valid date:

import datetime

def row_has_date(row: CombinedRow) -> bool:
try:

datetime.datetime.strptime(row.date, "%m/%d/%y")
return True

except ValueError as ex:
return False

This will attempt a conversion of a date. It will reject invalid strings of characters that fail

to follow the essential format rule. It will also reject 2/31/24; while the string of digits is

valid, this is not a real date.

See also
• In the Using stacked generator expressions recipe earlier in this chapter, we placed

a function like this in a stack of generators. We built a composite function from a

number of individual mapping and filtering operations written as generator functions.

Summarizing a collection – how to reduce
A reduction is the generalized concept behind computing a summmary like the total or

the maximum of a collection of numbers. Computing statistical measures like mean or

variance are also reductions. In this recipe, we’ll look at several summarization or reduction

techniques.

In the introduction to this chapter, we noted that there are three processing patterns that

Python supports elegantly: map, filter, and reduce. We saw examples of mapping in the

Applying transformations to a collection recipe and examples of filtering in the Picking a

subset – three ways to filter recipe.

The third common pattern is reduction. In the Designing classes with lots of processing and

the Extending a built-in collection – a list that does statistics recipes, we looked at class

definitions that computed a number of statistical values. These definitions relied — almost
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exclusively — on the built-in sum() function. This is one of the more common reduce

operations.

In this recipe, we’ll look at a way to generalize summation, leading to ways to write

a number of different kinds of reductions that are similar. Generalizing the concept of

reduction will let us build on a reliable foundation to create more sophisticated algorithms.

Getting ready
Some of the most common reduce operations are the sum, minimum, maximum. These

reductions are so common, they’re built in. The average and variance, on the other hand,

are reductions defined in the statistics module. The math module has a variant on sum,

fsum(), that works particularly well for collections of floating-point values.

Summations are the backbone of financial reporting. It is the essence of what a spreadsheet

has been used for since the days of doing financial reports using pen and paper.

The mathematics of summation help us to see how an operator is used to convert a collection

of values into a single value. Here’s a way to think of the mathematical definition of the sum

function using an operator, +, applied to the values in a collection, 𝐶 = {𝑐0, 𝑐1, 𝑐2,… , 𝑐𝑛}:

∑
𝑐𝑖∈𝐶

𝑐𝑖 = 𝑐0 + 𝑐1 + 𝑐2 +⋯ + 𝑐𝑛 + 0

We’ve expanded the definition of sum by folding the + operator into the sequence of values

in 𝐶.

Folding involves two items: a binary operator and a base value. For sum, the operator was

+ and the base value was zero. For product, the operator is × and the base value is one. The

base value needs to be the identity element for the given operator.

We can apply this concept to many algorithms, potentially simplifying the definition. In this

recipe, we’ll define a product function. This is the ∏ operator, similar to the ∑ operator.
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How to do it...
Here’s how we define a reduction that implements product of a collection of numbers:

1. Import the reduce()) function from the functools module:

from functools import reduce

2. Pick the operator. For sum, it’s +. For product, it will be ×. These can be defined in a

variety of ways. Here’s the long version. Other ways to define the necessary binary

operators will be shown later:

def mul(a: int, b: int) -> int:
return a * b

3. Pick the base value required. The additive identity value for sum is zero. The

multiplicative identity for a product is one:

def prod(values: Iterable[float]) -> float:
return reduce(mul, values, 1)

def prod(values: Iterable[int]) -> int:
return reduce(mul, values, 1)

We can use this prod() function to define other functions. One example is the factorial

function. It looks like this:

def factorial(n: int) -> int:
return prod(range(1, n+1))

How many six-card cribbage hands are possible? The binomial calculation uses the factorial

function to compute the number of ways 6 cards can be extracted from a 52 card deck:

(
52
6 )

=
52!

6!(52 − 6)!
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Here’s a Python implementation:

>>> factorial(52) // (factorial(6) * factorial(52 - 6))
20358520

For any given shuffle, there are about 20 million different possible cribbage hands we might

see.

How it works...
The reduce() function behaves as though it has this definition:

T = TypeVar("T")

def my_reduce(
fn: Callable[[T, T], T],
source: Iterable[T],
initial: T | None = None

) -> T:

The type hints shows how there has to be a unifying type, T, that applies to the operator

being folded, and the initial value for the folding. The given function, fn(), must combine

two values of type T and return another value of the same type T. The result of the reduce()

function will be a value of this type also.

Furthermore, in Python, the reduce operation will iterate through the values from left to

right. It will apply the given binary function, fn(), between the previous result and the

next item from the source collection. This additional detail is important when thinking

about non-commutative operators like subtraction or division.

There’s more...
We’ll look at three additional topics. First, ways to define the operation. After that, we’ll

look at applying reduce to Boolean values in Logical reductions: any and all. Finally, in

Identity elements, we’ll look at the identity elements used by various operators.
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Operation definition

When designing a new application for the reduce() function, we need to provide a binary

operator. There are three ways to define the necessary binary operator. First, we can use a

complete function definition, as shown above in the recipe. There are two other choices.

We can use a lambda object instead of a complete function:

from collections.abc import Callable

lmul: Callable[[int, int], int] = lambda a, b: a * b

A lambda object is an anonymous function boiled down to just two essential elements: the

parameters and the return expression. There are no statements inside a lambda, only a

single expression.

We assigned the lambda object to a variable, lmul, so that we can use the expression

lmul(2, 3) to apply the lambda object to argument values.

When the operation is one of Python’s built-in operators, we have another choice – import

the definition from the operator module:

from itertools import takewhile

This works nicely for all the built-in arithmetic operators.

It’s essential to consider the complexity of the operator being used to reduce. Performing a

reduce operation increases an operation’s complexity by a factor of 𝑛. An operation that’s

O(1) becomes O(n) when applied to 𝑛 items in a collection. For the operators we’ve shown,

like add and mul, this fits our expectations. An operator with more complexity than O(1)

can turn into a performance nightmare.

In the next section, we’ll look at the logical reduction functions.
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Logical reductions: any and all

Conceptually, it seems like we should be able to do reduce() operations using the Boolean

operators and and or. It turns out this involves some additional consideration.

Python’s Boolean operators have a short-circuit feature: when we evaluate the expression

False and 3 / 0, the result is only False. The expression on the right-hand side of the

and operator, 3 / 0, is never evaluated. The or operator is similar: when the left side is

True, the right-hand side is never evaluated.

If we want to be sure that a sequence of bool values is all true, building our own reduce()

will do far too much work. Once the initial False is seen, there’s no reason to process the

remaining items. The short-circuit feature of and and or does not not fit with the reduce()

function.

The built-in functions any() and all(), on the other hand, are reductions using logic

operators. The any() function is, effectively, a kind of reduce() using the or operator.

Similarly, the all() function behaves as if it’s a reduce() with the and operator.

Identity elements

Generally, an operator used for a reduction must have an identity element. This is provided

to the reduce() function as the initial value. The identity element will also be the result

when they’re applied against an empty sequence. Here are some common examples:

• sum([]) is zero.

• math.prod([]) is one.

• any([]) is False.

• all([]) is True.

The identity value for the given operation is a matter of definition.

In the case of any() and all() specifically, it can help to think of the fundamental fold

operation. The identity element can always be folded in without changing the result. Here’s

how all() would look with explicitly folded and operators:
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𝑏0 and 𝑏1 and 𝑏2 and … and 𝑏𝑛 and True

If all of the values 𝑏0, 𝑏1, 𝑏2, ..., 𝑏𝑛 are True, then the additional and True doesn’t change the

value. If any of the values 𝑏0, 𝑏1, 𝑏2, ..., 𝑏𝑛 are are False, similarly, the additional and True

has no impact.

When there are no values in a collection, the value for all() is the identity element, True.

See also
• See the Using stacked generator expressions recipe in this chapter for a context in

which sum can be applied to compute total hours and total fuel.

Combining the map and reduce transformations
In the other recipes in this chapter, we’ve been looking at map, filter, and reduce operations.

We’ve looked at each of these functions in isolation:

• The Applying transformations to a collection recipe shows the map() function.

• The Picking a subset – three ways to filter recipe shows the filter() function.

• The Summarizing a collection – how to reduce recipe shows the reduce() function.

Many algorithms will involve creating composite functions that combine these more basic

operations. Additionally, we’ll need to look at a profound limitation of working with

iterators and generator functions.

Here’s an example of this limitation:

>>> typical_iterator = iter([0, 1, 2, 3, 4])
>>> sum(typical_iterator)
10

>>> sum(typical_iterator)
0
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We created an iterator over a sequence of values by manually applying the iter() function

to a literal list object. The first time that the sum() function consumed the values from

typical_iterator, it consumed all five values. The next time we try to apply any function

to typical_iterator, there will be no more values to be consumed; the iterator will appear

empty. By definition, the identity value — 0 for summation — is the result.

An iterator can only produce values once.

After the values have been consumed, an iterator appears to be an empty

collection.

This one-time-only constraint will force us to cache intermediate results when we need

to perform multiple reductions on the data. Creating intermediate collection objects will

consume memory, leading to the need for a careful design when working with very large

collections of data. (Processing large collections of data is difficult. Python offers some

ways to create workable solutions; it does not magically make the problem evaporate.)

To apply a complex transformation of a collection, we often find instances of map, filter,

and reduce operations that can be implemented separately. These can then be combined

into sophisticated composite operations.

Getting ready
In the Using stacked generator expressions recipe earlier in this chapter, we looked at some

sailboat data. The spreadsheet was badly organized, and a number of steps were required

to impose a more useful structure on the data.

In that recipe, we looked at a spreadsheet that is used to record fuel consumption on a

large sailboat. For details of this data, see the Slicing and dicing a list recipe in Chapter 4.

We’ll look at parsing this in more detail in the Reading delimited files with the CSV module

recipe in Chapter 11.

The initial processing in the Using stacked generator expressions recipe created a sequence

of operations to change the organization of the data, filter out the headings, and compute
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some useful values. We’d need to supplement this with two more reductions to get some

average and variance information. These statistics will help us understand the data more

fully. We’ll build on that earlier processing with some additional steps.

How to do it...
We’ll start with a target line of code as the design goal. In this case, we’d like a function

to sum the fuel use per hour. This follows a common three-step processing pattern. First,

we normalize the data with row_merge(). Second, we use mapping and filtering to create

more useful objects with clean_data_iter().

The third step should look like the following:

>>> round(
... total_fuel(clean_data_iter(row_merge(log_rows))),
... 3
... )
7.0

Our target function, total_fuel(), is designed to work with a few other functions that

clean and organize the raw data. We’ll start with the normalization and proceed to defining

the final summary function as follows:

1. Import the functions from earlier recipes to reuse the initial preparation:

from recipe_03 import row_merge, CombinedRow

2. Define the target data structure created by the cleaning and enrichment step. We’ll

use a mutable dataclass in this example. The fields coming from the normalized

CombinedRow object can be initialized directly. The other five fields will be computed

eagerly by several separate functions. Fields not computed in the __init__() method

must be given an initial value of field(init=False):

import datetime
from dataclasses import dataclass, field
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@dataclass
class Leg:

date: str
start_time: str
start_fuel_height: str
end_time: str
end_fuel_height: str
other_notes: str
start_timestamp: datetime.datetime = field(init=False)
end_timestamp: datetime.datetime = field(init=False)
travel_hours: float = field(init=False)
fuel_change: float = field(init=False)
fuel_per_hour: float = field(init=False)

3. Define the overall data cleansing and enrichment data function. This will build the

enriched Leg objects from the source CombinedRow objects. We’ll build this from

seven simpler functions. The implementation is a stack of map() and filter()

operations that will derive data from the source fields:

from collections.abc import Iterable, Iterator

def clean_data_iter(
source: Iterable[CombinedRow]

) -> Iterator[Leg]:
leg_iter = map(make_Leg, source)
fitered_source = filter(reject_date_header, leg_iter)
start_iter = map(start_datetime, fitered_source)
end_iter = map(end_datetime, start_iter)
delta_iter = map(duration, end_iter)
fuel_iter = map(fuel_use, delta_iter)
per_hour_iter = map(fuel_per_hour, fuel_iter)
return per_hour_iter

Each statement makes use of the iterator produced by the preceding statement.

4. Write the make_Leg() function to create Leg instances from CombinedRow instances:

def make_Leg(row: CombinedRow) -> Leg:
return Leg(

date=row.date,
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start_time=row.engine_on_time,
start_fuel_height=row.engine_on_fuel_height,
end_time=row.engine_off_time,
end_fuel_height=row.engine_off_fuel_height,
other_notes=row.other_notes,

)

5. Write the reject_date_header() function used by filter() to remove the heading

rows:

def reject_date_header(row: Leg) -> bool:
return not (row.date == "date")

6. Write the data conversion functions. We’ll start with the two date and time strings,

which need to become a single datetime object:

def timestamp(
date_text: str, time_text: str

) -> datetime.datetime:
date = datetime.datetime.strptime(

date_text, "%m/%d/%y").date()
time = datetime.datetime.strptime(

time_text, "%I:%M:%S %p").time()
timestamp = datetime.datetime.combine(

date, time)
return timestamp

7. Mutate the Leg instances with additional values:

def start_datetime(row: Leg) -> Leg:
row.start_timestamp = timestamp(
row.date, row.start_time)

return row

def end_datetime(row: Leg) -> Leg:
row.end_timestamp = timestamp(
row.date, row.end_time)

return row
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This update-in-place approach is an optimization to avoid creating intermediate

objects.

8. Compute the derived duration from the timestamps:

def duration(row: Leg) -> Leg:
travel_time = row.end_timestamp - row.start_timestamp
row.travel_hours = round(

travel_time.total_seconds() / 60 / 60,
1

)
return row

9. Compute any other metrics that are needed for the analysis:

def fuel_use(row: Leg) -> Leg:
end_height = float(row.end_fuel_height)
start_height = float(row.start_fuel_height)
row.fuel_change = start_height - end_height
return row

def fuel_per_hour(row: Leg) -> Leg:
row.fuel_per_hour = row.fuel_change / row.travel_hours
return row

The final fuel_per_hour() function’s calculation depends on the entire preceding stack

of calculations. Each of these computations is done separately to clarify and isolate the

computation details. This approach permits changes to the isolated computations. Most

importantly, it permits testing each computation as a separate unit.

How it works...
The core concept is to build a composite transformation from a sequence of small steps.

Since each step is conceptually distinct, it makes it somewhat easier to understand the

composition.

In this recipe, we’ve used three kinds of transformations:

• Structural changes. An initial generator function grouped physical lines into logical
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rows.

• Filters. A generator function rejected rows that were invalid.

• Enrichment. As we’ve seen, there are two design approaches to enriching data:

lazy and eager. The lazy approach may involve methods or properties, computed

only as needed. This design shows eager computation, where a number of fields had

values built by the processing pipeline.

The various enrichment methods worked by updating stateful Leg objects, setting com-

puted column values. Using stateful objects like this requires the various enrichment

transformations be performed in a strict order because some (like duration()) depend on

others having been performed first.

We can now design the target computation functions:

from statistics import *

def avg_fuel_per_hour(source: Iterable[Leg]) -> float:
return mean(row.fuel_per_hour for row in source)

def stdev_fuel_per_hour(source: Iterable[Leg]) -> float:
return stdev(row.fuel_per_hour for row in source)

This meets our design goal of being able to perform meaningful computations on the raw

data.

There’s more...
As we noted, we can only perform one iteration of consuming the items from an iterable

source of data. If we want to compute several averages, or the average as well as the

variance, we’ll need to use a slightly different design pattern.

In order to compute multiple summaries of the data, it’s often best to create a concrete

object of some kind that can be summarized repeatedly:
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def summary(raw_data: Iterable[list[str]]) -> None:
data = tuple(clean_data_iter(row_merge(raw_data)))
m = avg_fuel_per_hour(data)
s = 2 * stdev_fuel_per_hour(data)
print(f"Fuel use {m:.2f} ±{s:.2f}")

Here, we’ve created a very large tuple from the cleaned and enriched data. From this tuple,

we can can produce any number of iterators. This lets us compute any number of distinct

summaries.

We can also use the tee() function in the itertools module for this kind of processing.

This can devolve to inefficient processing because of the way the cloned instances of the

iterator maintain their internal state. It’s often better to create an intermediate structure

like a list or tuple than to use itertools.tee().

The design pattern applies a number of transformations to the source data. We’ve built it

using a stack of separate map, filter, and reduce operations.

See also
• See the Using stacked generator expressions recipe in this chapter for a context in

which sum can be applied to compute total hours and total fuel.

• See the Summarizing a collection – how to reduce recipe in this chapter for some

background on the reduce() function.

• See Python High Performance for more on distributed map-reduce processing.

• We look at lazy properties in the Using properties for lazy attributes recipe in Chapter 7.

Also, this recipe looks at some important variations of map-reduce processing.

Implementing “there exists” processing
The processing patterns we’ve been looking at can all be summarized with the universal

quantifier, ∀, meaning for all. It’s been an implicit part of all of the processing definitions:

• Map: For all items in the source, 𝑆, apply the map function, 𝑚(𝑥). We can use the

https://www.packtpub.com/product/python-high-performance-second-edition-second-edition/9781787282896
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universal quantifier: ∀𝑥∈𝑆𝑚(𝑥).

• Filter: This, also, means for all items in the source, 𝑆, pass those for which the filter

function, 𝑓 (𝑥), is true. Here, also, we can use the universal quantifier: ∀𝑥∈𝑆𝑥 if 𝑓 (𝑥).

• Reduce: For all items in the source, use the given operator and base value to compute

a summary. The universal quantification is implicit in the definition of operators

∑
𝑥∈𝑆

𝑥 and ∏
𝑥∈𝑆

𝑥 .

Contrast these universal functions with the cases where we are only interested in locating

a single item. We often describe these cases as a search to show there exists at least one

item where a condition is true. This can be described with the existential quantifier, ∃,

meaning there exists.

We’ll need to use some additional features of Python to create generator functions that

stop when the first value matches some predicate. We’d like to emulate the short-circuit

capabilities of the built-in any() and all() functions.

Getting ready
For an example of an existence test, consider a function to determine if a number is prime or

composite. A prime number has no factors other than 1 and itself. Numbers with multiple

factors are called composite. The number 42 is composite because it has the numbers 2, 3,

and 7 as prime factors.

Finding if a number is prime number is the same as showing it is not composite. For any

composite (or non-prime) number, 𝑛, the rule is this:

¬𝑃(𝑛) = ∃2≤𝑖<𝑛(𝑛 ≡ 0 mod 𝑖)

A number, 𝑛, is not prime if there exists a value, 𝑖, between 2 and the number itself, that

divides the number evenly. For a test to see if a number is prime, we don’t need to know

all the factors. The existence of a single factor shows the number is composite.

The overall idea is to iterate over the range of candidate numbers, breaking from the
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iteration when a factor is found. In Python, this early exit from a for statement is done

with the break statement, shifting the semantics from “for all” to “there exists.” Because

break is a statement, we can’t easily use a generator expression; we’re constrained to

writing a generator function.

(The Fermat test is generally more efficient than what we’re using for these examples,

but it doesn’t involve a simple search for the existence of a factor. We’re using this as an

illustration of search, not as an illustration of good primality tests.)

How to do it...
In order to build this kind of search function, we’ll need to create a generator function

that will complete processing when it finds the first match. One way to do this is with the

break statement, as follows:

1. Define a generator function to skip items until a test is passed. The generator can

yield the first value that passes the predicate test. The generator works by applying

a predicate function, fn(), to the items in a sequence of items of some type, T:

from collections.abc import Callable, Iterable, Iterator
from typing import TypeVar

T = TypeVar("T")

def find_first(
fn: Callable[[T], bool], source: Iterable[T]

) -> Iterator[T]:
for item in source:

if fn(item):
yield item
break

2. Define the specific predicate function for this application. Since we’re testing for

being prime, we’re looking for any value that divides the target number, n, evenly.

Here’s the kind of expression that’s needed:

lambda i: n % i == 0
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3. Apply the find_first() search function with the given range of values and predicate.

If the factors iterable has an item, then n is composite. Otherwise, there are no values

in the factors iterable, which means n is a prime number:

import math

def prime(n: int) -> bool:
factors = find_first(

lambda i: n % i == 0,
range(2, int(math.sqrt(n) + 1)) )

return len(list(factors)) == 0

As a practical matter, we don’t need to test every number between two and n to see whether

n is prime. It’s only necessary to test values, 𝑖, such that 2 ≤ 𝑖 < ⌊
√
𝑛⌋.

How it works...
In the find_first() function, we introduce a break statement to stop processing the

source iterable. When the for statement stops, the generator will reach the end of the

function and return normally.

A client function consuming values from this generator will be given the StopIteration

exception. The find_first() function can raise an exception, but it’s not an error; it’s the

signal that an iterable has finished processing the input values.

In this case, the StopIteration exception means one of two things:

• If a value had been yielded previously, the value is a factor of n.

• If no value was yielded, then n is prime.

This small change of breaking early from the for statement makes a dramatic difference in

the meaning of the generator function. Instead of processing all values from the source,

the find_first() generator will stop processing as soon as the predicate is true.
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There’s more...
In the itertools module, there is an alternative to the find_first() function. The

takewhile() function uses a predicate function to take values from the input while the

predicate function is true. When the predicate becomes false, then the function stops

consuming and producing values.

To use the takewhile() function, we need to invert our factor test. We need to consume

values that are non-factors until we find the first factor. This leads to a change in the

lambda from lambda i: n % i == 0 to lambda i: n % i != 0.

Let’s look at a test to see if 47 is prime. We need to check numbers in the range 2 to
√
49 = 7:

>>> from itertools import takewhile

>>> n = 47
>>> list(takewhile(lambda i: n % i != 0, range(2, 8)))
[2, 3, 4, 5, 6, 7]

For a prime number, like 47, none of the test values are factors. All these non-factor test

values pass the takewhile() predicate because it’s always true. The resulting list is the

same as the original set of test values.

For a composite number, the non-factor test values will be a subset of the test values. Some

values will have been excluded because a factor was found.

There are a number of additional functions in the itertools module that can be used

to simplify complex map-reduce applications. We encourage you to look closely at this

module.

See also
• In the Using stacked generator expressions recipe earlier in this chapter, we made

extensive use of immutable class definitions.

• See https://projecteuler.net/problem=10 for a challenging problem related to

https://projecteuler.net/problem=10
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prime numbers less than 2 million. Parts of the problem seem obvious. It can be

difficult, however, to test all those numbers for being prime.

• The itertools module provides numerous functions that can simplify functional

design.

• Outside the standard library, packages like Pyrsistent offer functional programming

components.

Creating a partial function
When we look at functions such as reduce(), sorted(), min(), and max(), we see that

we’ll often have some argument values that change very rarely, if at all. In a particular

context, they’re essentially fixed. For example, we might find a need to write something

like this in several places:

reduce(operator.mul, ..., 1)

Of the three argument values for reduce(), only one – the iterable to process – actually

changes. The operator and the initial value argument values are essentially fixed at

operator.mul and 1.

Clearly, we can define a whole new function for this:

from collections.abc import Iterable
from functools import reduce
import operator

def prod(iterable: Iterable[float]) -> float:
return reduce(operator.mul, iterable, 1)

Python has a few ways to simplify this pattern so we don’t have to repeat the boilerplate

def and return statements.

The goal of this recipe is different from providing general default values. A partial function

doesn’t provide a way for us to override the defaults. A partial function has specific values

https://pypi.org/project/pyrsistent/
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bound when it is defined. The idea is to be able to create many partial functions, each with

specific argument values bound in advance. This is also sometimes called a closure, but

applied to some of the parameters. See Picking an order for parameters based on partial

functions in Chapter 3 for more examples of partial function definition.

Getting ready
Some statistical modeling is done with standardized values, sometimes called z-scores.

The idea is to standardize a raw measurement onto a value that can be easily compared to

a normal distribution, and easily compared to related numbers that may be measured in

different units.

The calculation is this:

𝑧 =
𝑥 − 𝜇
𝜎

Here, 𝑥 is a raw value, 𝜇 is the population mean, and 𝜎 is the population standard deviation.

The value 𝑧 will have a mean of 0 and a standard deviation of 1, providing a standardized

value. We can use this value to spot outliers – values that are suspiciously far from the

mean. We expect that (approximately) 99.7% of our 𝑧 values will be between -3 and +3.

We could define a function to compute standard scores, like this:

def standardize(mean: float, stdev: float, x: float) -> float:
return (x - mean) / stdev

This standardize() function will compute a z-score from a raw score, 𝑥 . When we use

this function in a practical context, we’ll see that there are two kinds of argument values

for the parameters:

• The argument values for the mean and stdev parameters are essentially fixed. Once

we’ve computed the population values, we’ll have to provide the same two values to

the standardize() function over and over again.
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• The value for the x parameter will vary each time we evaluate the standardize()

function.

Let’s work with a collection of data samples with two variables, x and y. These pairs are

defined by the DataPair class:

from dataclasses import dataclass

@dataclass
class DataPair:

x: float
y: float

As an example, we’ll compute a standardized value for the x attribute. This means computing

the mean and standard deviation for the x values. Then, we’ll need to apply the mean and

standard deviation values to standardize the data in our collection. The computation looks

like this:

>>> import statistics
>>> mean_x = statistics.mean(item.x for item in data_1)
>>> stdev_x = statistics.stdev(item.x for item in data_1)
>>> for DataPair in data_1:
... z_x = standardize(mean_x, stdev_x, DataPair.x)
... print(DataPair, z_x)

Providing the mean_x, and stdev_x values each time we evaluate the standardize() func-

tion can clutter an algorithm with details that aren’t deeply important.

We can use a partial function to simplify this use of standardize() with two fixed argument

values and one that is left to vary.

How to do it...
To simplify using a function with a number of fixed argument values, we can create a

partial function. This recipe will show two ways to create a partial functions as separate

mini-recipes:
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• Using the partial() function from the functools module to build a new function

from the full standardize() function

• Creating a lambda object to supply argument values that don’t change

Using functools.partial()

1. Import the partial() function from the functools module:

from functools import partial

2. Create a new function using partial(). We provide the base function, plus the

positional arguments that need to be included. Any parameters that are not supplied

when the partial is defined must be supplied when the partial is evaluated:

z = partial(standardize, mean_x, stdev_x)

We’ve provided fixed values for the first two parameters, mean and stdev, of the standardize()

function. We can now use the z() function with a single value, z(a), and it will evaluate

the expression standardize(mean_x, stdev_x, a).

Creating a lambda object

1. Define a lambda object that binds the fixed parameters:

lambda x: standardize(mean_x, stdev_x, x)

2. Assign this lambda to a variable to create a callable object, z():

z = lambda x: standardize(mean_x, stdev_x, x)

This provides fixed values for the first two parameters, mean and stdev, of the standardize()

function. We can now use the z() lambda object with a single value, z(a), and it will

evaluate the expression standardize(mean_x, stdev_x, a).
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How it works...
Both techniques create a callable object – a function – named z() that has the values for

mean_x and stdev_x already bound to the first two positional parameters. With either

approach, we can now have processing that can look like this:

for DataPair in data_1:
print(DataPair, z(DataPair.x))

We’ve applied the z() function to each set of data. Because z() is a partial function and

has some parameters already applied, its use is simplified.

There’s one significant difference between the two techniques for creating the z() function:

• The partial() function binds the actual values of the parameters. Any subsequent

change to the variables that were used will not change the definition of the partial

function that’s created.

• The lambda object binds the variable name, not the value. Any subsequent change

to the variable’s value will change the way the lambda behaves.

We can modify the lambda slightly to bind specific values instead of names:

z = lambda x, m=mean_x, s=stdev_x: standardize(m, s, x)

This extracts the current values of mean_x and stdev_x to create default values for the

lambda object’s parameters. The values of mean_x and stdev_x are now irrelevant to the

proper operation of the lambda object, z().

There’s more...
We can provide keyword argument values as well as positional argument values when

creating a partial function. While this works nicely in general, there are a few cases where

it doesn’t work.

We started this recipe looking at the reduce() function. Interestingly, this function is one



422 Functional Programming Features

example of functions that can’t be trivially turned into a partial function. The parameters

aren’t in the ideal order for creating a partial and it doesn’t permit providing argument

values by name.

It appears as though the reduce() function is defined like this:

def reduce(function, iterable, initializer=None)

If this were the actual definition, we could do this:

prod = partial(reduce(mul, initializer=1))

Practically, the preceding example raises a TypeError. It doesn’t work because the definition

of reduce() does not take keyword argument values. Consequently, we can’t easily create

partial functions that use it.

This means that we’re forced to use the following lambda technique:

>>> from operator import mul
>>> from functools import reduce
>>> prod = lambda x: reduce(mul, x, 1)

In Python, a function is an object. We’ve seen numerous ways that functions can be

arguments to other functions. A function that accepts or returns another function as an

argument is sometimes called a higher-order function.

Similarly, functions can also return a function object as a result. This means that we can

create a function like this:

from collections.abc import Sequence, Callable
import statistics

def prepare_z(data: Sequence[DataPair]) -> Callable[[float], float]:
mean_x = statistics.mean(item.x for item in data_1)
stdev_x = statistics.stdev(item.x for item in data_1)
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return partial(standardize, mean_x, stdev_x)

Here, we’ve defined a function over a sequence of type DataPair, which are (𝑥, 𝑦) samples.

We’ve computed the mean and standard deviation of the 𝑥 attribute of each sample. We

then created a partial function that can standardize scores based on the computed statistics.

The result of this function is a function we can use for data analysis.

The following example shows how this newly created function is used:

>>> z = prepare_z(data_1)
>>> for DataPair in data_1:
... print(DataPair, z(DataPair.x))

The result of the prepare_z() function is a callable object that will standardize a score

based on the computed mean and standard deviation.

See also
• See Picking an order for parameters based on partial functions in Chapter 3 for more

examples of partial function definition.

Writing recursive generator functions with the
yield from statement
Many algorithms can be expressed neatly as recursions. In the Designing recursive functions

around Python’s stack limits recipe, we looked at some recursive functions that could be

optimized to reduce the number of function calls.

When we look at some data structures, we see that they involve recursion. In particular,

JSON documents (as well as XML and HTML documents) can have a recursive structure. A

JSON document is a complex object that can contain other complex objects within it.

In many cases, there are advantages to using generators for processing these kinds of

structures. In this recipe, we’ll look at ways to handle recursive data structures with
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generator functions.

Getting ready
In this recipe, we’ll look at a way to search for all matching values in a complex, recursive

data structure. When working with complex JSON documents, they often contain dict-

of-dict, dict-of-list, list-of-dict, and list-of-list structures. Of course, a JSON document is

not limited to two levels; dict-of-dict can really mean dict-of-dict-of.... Similarly, dict-of-

list could mean dict-of-list-of.... The search algorithm must descend through the entire

structure looking for a particular key or value.

A document with a complex structure might look like this:

document = {
"field": "value1",
"field2": "value",
"array": [

{"array_item_key1": "value"},
{"array_item_key2": "array_item_value2"}

],
"object": {

"attribute1": "value",
"attribute2": "value2"

},
}

The value "value" can be found in three places:

• ["array", 0, "array_item_key1"]: This path starts with the top-level field named

array, then visits item zero of a list, then a field named array_item_key1.

• ["field2"]: This path has just a single field name where the value is found.

• ["object", "attribute1"]: This path starts with the top-level field named object,

then the child, attribute1, of that field.

A find_value() function should yield all these paths when it searches the overall document

for the target value. The core algorithm for this is a depth-first search. The output from this
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function must be a list of paths that identify the target value. Each path will be a sequence

of field names or field names mixed with index positions.

How to do it...
We’ll start with an overview of the depth-first algorithm to visit all of the nodes in a JSON

document:

1. Start with a sketch of the function to process each of the alternative structures in

the overall data structure. Here are the imports and some type hints:

from collections.abc import Iterator
from typing import Any, TypeAlias

JSON_DOC: TypeAlias = (
None | str | int | float | bool | dict[str, Any] | list[Any]

)
Node_Id: TypeAlias = Any

Here is the sketch of the function:

def find_value_sketch(
value: Any,
node: JSON_DOC,
path: list[Node_Id] | None = None

) -> Iterator[list[Node_Id]]:
if path is None:

path = []
match node:

case dict() as dnode:
pass # apply find_value to each key in dnode

case list() as lnode:
pass # apply find_value to each item in lnode

case _ as pnode: # str, int, float, bool, None
if pnode == value:

yield path

2. Here’s a starting version to look at each key of a dictionary. This replaces the

# apply find_value to each key in dnode line in the preceding code. Test this

to be sure the recursion works properly:
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for key in sorted(dnode.keys()):
for match in find_value_y(value, dnode[key], path + [key]):

yield match

3. Replace the inner for with a yield from statement:

for key in sorted(dnode.keys()):
yield from find_value(

value, node[key], path + [key])

4. This has to be done for the list case as well. Start an examination of each item in the

list:

for index in range(len(lnode)):
for match in find_value_y(value, lnode[index], path +
[index]):

yield match

5. Replace the inner for with a yield from statement:

for index, item in enumerate(lnode):
yield from find_value(

value, item, path + [index])

The complete depth-first find_value() search function, when complete, will look like this:

def find_value(
value: Any,
node: JSON_DOC,
path: list[Node_Id] | None = None

) -> Iterator[list[Node_Id]]:
if path is None:

path = []
match node:

case dict() as dnode:
for key in sorted(dnode.keys()):

yield from find_value(
value, node[key], path + [key])
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case list() as lnode:
for index, item in enumerate(lnode):

yield from find_value(
value, item, path + [index])

case _ as pnode:
# str, int, float, bool, None
if pnode == value:

yield path

When we use the find_value() function, it looks like this:

>>> places = list(find_value('value', document))
>>> places
[['array', 0, 'array_item_key1'], ['field2'], ['object', 'attribute1']]

The resulting list has three items. Each of these is a list of keys that form a path to an item

with the target value of "value".

How it works...
For background, see the Writing generator functions with the yield statement recipe in this

chapter.

The yield from statement is shorthand for:

for item in x:
yield item

The yield from statement lets us write a succinct recursive algorithm that will behave as

an iterator and properly yield multiple values. It saves the overhead of a boilerplate for

statement.

This can also be used in contexts that don’t involve a recursive function. It’s entirely

sensible to use a yield from statement anywhere that an iterable result is involved. It’s

a handy simplification for recursive functions because it preserves a clearly recursive

structure.
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There’s more...
Another common style of definition assembles a list of items using append operations. We

can rewrite this into an iterator and avoid the overhead of building and mutating a list

object.

When factoring a number, we can define the set of prime factors of a number, 𝑥 , like this:

𝐹(𝑥) =

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

𝑥 if 𝑥 is prime

𝑛 ∪ 𝐹( 𝑥𝑛 ) if 𝑥 ≡ 0 mod 𝑛 and 2 ≤ 𝑛 ≤
√
𝑥

If the value, 𝑥 , is prime, it has only itself in the set of prime factors. Otherwise, there must

be some prime number, 𝑛, which is the least factor of 𝑥 . We can assemble a set of factors

starting with this number 𝑛 and then append all factors of 𝑥
𝑛 . To be sure that only prime

factors are found, 𝑛 must be prime. If we search ascending values of 𝑛, starting from 2,

we’ll find prime factors before finding composite factors.

An eager approach builds a complete list of factors. A lazy approach be be a generator of

factors for a consumer. Here’s an eager list-building function:

import math

def factor_list(x: int) -> list[int]:
limit = int(math.sqrt(x) + 1)
for n in range(2, limit):

q, r = divmod(x, n)
if r == 0:

return [n] + factor_list(q)
return [x]

This factor_list() function will build a list object. If a factor, 𝑛, is found, it will start a list

with that factor. It will then extend the list with the factors built from the value of x // n.

If there are no factors of x, then the value is prime, and this returns a list with only the

value of x.
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(This has an inefficiency stemming from the way this searches for composite numbers as

well as prime numbers. For example, after testing 2 and 3, this will also test 4 and 6, even

though they’re composite and all of their factors have already been tested. The example is

centered on list-building, not efficient factoring of numbers.)

We can rewrite this as an iterator by replacing the recursive calls with yield from state-

ments. The function will look like this:

def factor_iter(x: int) -> Iterator[int]:
limit = int(math.sqrt(x) + 1)
for n in range(2, limit):

q, r = divmod(x, n)
if r == 0:

yield n
yield from factor_iter(q)
return

yield x

When a factor is found, the function will yield the factor, n, followed by all other factors

found via a recursive call to factor_iter(). If no factors are found, the function will yield

the prime number, x, and nothing more.

Using an iterator allows the client of this function to build any kind of collection from the

factors. Instead of being limited to always creating a list object, we can create a multiset

using the collections.Counter class. It would look like this:

>>> from collections import Counter

>>> Counter(factor_iter(384))
Counter({2: 7, 3: 1})

This shows us that:

384 = 27 × 3

In some cases, this kind of multiset can be easier to work with than a simple list of factors.



430 Functional Programming Features

What’s important is that the multiset was created directly from the factor_iter() iterator

without creating any intermediate list objects. This kind of optimization lets us build

complex algorithms that aren’t forced to consume large volumes of memory.

See also
• In the Designing recursive functions around Python’s stack limits recipe, earlier in this

chapter, we covered the core design patterns for recursive functions. This recipe

provides an alternative way to create the results.

• For background, see the Writing generator functions with the yield statement recipe

in this chapter.

Join our community Discord space
Join our Python Discord workspace to discuss and find out more about the book:
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10
Working with Type Matching
and Annotations

This chapter will look at how we can work with data structures that have a variety of data

types. This often means inspecting the type of an attribute, an element of a tuple, or a

value in a dictionary.

In previous chapters, we’ve avoided spending too much time on data validation considera-

tions. In this chapter, we’ll look closely at validating input values to be sure they conform

to expected data types and value ranges.

This data validation is a kind of type-checking. It validates a narrower domain of values

than the very broad classes of integer or string. The application must check the values of

objects to be sure they’re valid for the intended purpose.

Some data structures like JSON or XML documents can contain objects of a variety of data

types. A common situation is summarized as First Normal Form (1NF), where each item

in a collection is of the same type. This isn’t universal, however. When parsing complex
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files like programming language statements, we’ll see a sequence of distinct data types.

The presence of diverse types means that the application software can’t simply assume a

single, consistent type, but must process the available data.

In this chapter, we’ll look at a number of recipes related to types and type matching:

• Designing with type hints

• Using the built-in type matching functions

• Using the match statement

• Handling type conversions

• Implementing more strict type checks with Pydantic

• Including run-time valid value checks

Designing with type hints
Annotations in function definitions were introduced to the language syntax back in 2006,

without any formal semantics. The annotations idea came with a list of potential use

cases, one of which was type checking. In 2014, the idea of type hints were solidified and

formalized into a typing module and some associated tools including the mypy tool.

For a few years, annotations were a general kind of syntax and type hints were a specific

use case for annotations. By 2017, other uses for annotations were deprecated and the

annotation syntax was expressly focused on type hints. While there was once a subtle

difference between annotations and type hints, the distinction has since evaporated, leaving

us with two synonyms.

There are three important aspects of using type hints:

• Type hints are optional. We can write Python without type hints.

• Type hints can be applied gradually. Part of an application can have hints, where

another part lacks them. Tools like mypy can tolerate mixtures of code with and

without hints.
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• Type hints are not used at run time and have no performance overhead.

Throughout this book, we’ve treated hints as essential to good software design. They’re

as essential as unit tests and coherent documentation, both of which are also technically

optional, but essential for trustworthy software. We’ve found them to help prevent problems

by enforcing a level of rigor and formality.

Python’s processing relies on duck typing rules. For more background, see Chapter 8,

specifically, the Leveraging Python’s duck typing recipe. There are two broad design patterns

available to us:

• A strict hierarchy with a common superclass.

• Leveraging duck typing, a collection of classes can have common features, often

defined as a protocol that specifies the relevant features.

In this recipe, we’ll look at two approaches to designing code that includes type hints and

can be checked by tools like mypy.

Getting ready
We’ll look at a problem that involves working with two distinct types of data that are

mingled together in a source file. In this case, we’re going to classify the contents of the

data directory with a large number of data files. Additionally, we have an src directory

with a large number of sub-directories that contain application programs and scripts. We

want to create a collection of data structures to represent two distinct classes of data files:

• Data files not named by any application program or script

• Data files that are referenced by one or more application programs

How to do it...
There are two broad strategies for designing this kind of program:

• Sketch out the data types and transformations first, then write code to fit the types.

• Write code first and then add type hints to the working code.
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Neither can be described as best. In many cases, the two evolve side by side.

We’ll look at each of these in separate variations in this recipe.

Type hints first design

We’re going to work with diverse classes of objects. In this variation, we’ll define the type

hints first, and then fill in the needed processing. Here’s how we can define a classifier and

the related classes starting from the class definitions:

1. Define the two subclasses. In this example, we’ll call them Unreferenced and

Referenced files. For each class, write a sentence describing the unique purpose for

the instances of each class. These serve as the starting point for the class definitions.

2. Chose an appropriate variety of available classes. This might be an ordinary class

with mutable attributes, a NamedTuple, or a @dataclass. Starting with a @dataclass

often gives the most flexibility. Switching between named tuples, dataclasses, and

frozen dataclasses involves minimal syntax changes:

from pathlib import Path
from dataclasses import dataclass

@dataclass
class Referenced:

"""Defines a data file and applications that reference it."""

The Unreferenced class definition would be similar, with an appropriate docstring.

3. Add the attributes with values that will define the state of each instance. For the

Referenced class, this is the Path and a collection of Path objects for each source

file that has a reference. These two attribute definitions look like this:

datafile: Path
recipes: list[Path]

For the Unreferenced class, however, there really aren’t very many other attributes

beyond the path. This raises an interesting question: does this deserve a separate
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class declaration, or can it simply be a Path object?

Because Python permits type aliases and type unions, there’s no real need for an

Unreferenced class; the existing Path will do. It is helpful to provide a type alias for

this:

from typing import TypeAlias

Unreferenced: TypeAlias = Path

4. Formalize the union of these distinct classes.

ContentType: TypeAlias = Unreferenced | Referenced

Now that we have the type definitions, we can write a function that is an iterator over the

ContentType union of classes. This function will yield a sequence of Unreferenced and

Referenced objects, one for each data file.

The function might look like this:

def datafile_iter(base: Path) -> Iterator[ContentType]:
data = (base / "data")
code = (base / "src")
for path in sorted(data.glob("*.*")):

if not path.is_file():
continue

used_by = [
chap_recipe.relative_to(code)
for chap_recipe in code.glob("**/*.py")
if (

chap_recipe.is_file()
and "__pycache__" not in chap_recipe.parts
and ".venv" not in chap_recipe.parts
and "ch10" not in chap_recipe.parts
and path.name in chap_recipe.read_text()

)
]

if used_by:



436 Working with Type Matching and Annotations

yield Referenced(path.relative_to(data), used_by)
else:

yield path.relative_to(data)

The datafile_iter() function skips past any non-file names in the data directory. It

also skips some source code directories, __pycache__, and.venv. Additionally, we have to

ignore some of the files in Chapter 10 because these files will have test cases that contain

names of data files, creating confusing results.

If a data file name appears in a source file, the reference is saved in the used_by collection.

Files with a non-empty used_by collection will create a Referenced instance. The remaining

files are Path objects; because of the TypeAlias these are recognized as Unreferenced

instances, also. We don’t need to formally cast or convert a Path object to the Unreferenced

type. Tools like mypy will use the TypeAlias to see the equivalence without any additional

code.

The resulting iterator provides a mix of objects of distinct types. In the Using the match

statement recipe, we’ll look at convenient ways to process objects of diverse types.

Code first design

We’re going to work with diverse classes of objects. In this variation, we’ll define the

processing first, and then fold in type hints to clarify our intent. Here’s how we can define

a classifer and the related classes starting from a function definition:

1. Start with a function definition that provides the needed parameters:

def datafile_iter(base):
data = (base / "data")
code = (base / "src")

2. Write the processing to accumulate the required data values. In this case, we need to

iterate through the names of the data files. For each data file, we need to look for

references in all of the source files.
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for path in sorted(data.glob("*.*")):
if not path.is_file():

continue

used_by = [
chap_recipe.relative_to(code)
for chap_recipe in code.glob("**/*.py")
if (

chap_recipe.is_file()
and "__pycache__" not in chap_recipe.parts
and ".venv" not in chap_recipe.parts
and "ch10" not in chap_recipe.parts
and path.name in chap_recipe.read_text()

)
]

3. Decide what the various outputs from the function need to be. In some cases, we

can yield tuple objects with the various kinds of values that are available.

if used_by:
yield (path.relative_to(data), used_by)

else:
yield path.relative_to(data)

For paths without any references in the source, we yield the Path object. For paths

that have references in the source, we can yield the data Path and a list of source

Path instances.

4. For objects with more complicated internal state, consider introducing a class defini-

tion to properly encapsulate the state. For this example, it makes sense to introduce

a type for data files that have references. This would lead to replacing a simple,

anonymous tuple with a NamedTuple like the following:

from typing import NamedTuple
class Referenced(NamedTuple):

datafile: Path
recipes: list[Path]
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This, in turn, leads to revising the yield statement for the Referenced instances.

yield Referenced(path.relative_to(data), used_by)

5. Revisit the function definition to add type hints.

def datafile_iter_2(base: Path) -> Iterator[Path | Referenced]:

The processing in both variants of the recipe is nearly identical. The differences are minor

choices on how best to present the results. In the previous example, an explicit union

named Content_Type was created. For this version, the union is implicit.

How it works...
Python duck typing permits a great deal of latitude in design. We can start with type

definitions or we can start from code and add type hints. The final code will tend to be

similar because it performs the same processing on the same data.

The choice between a code first or type first approach may lead to an insight about perfor-

mance or optimization. Each choice emphasizes distinct attributes of the final code. The

code-first approach can emphasize simple processing, where type first might emphasize

uniformity of the objects being processed. The choice of approach can also stem from the

author’s degree of comfort with Python’s types.

In some cases, the process of writing the type hints may suggest algorithms or optimizations.

This can lead to beneficial refactoring of code already written.

It’s important to note that the presence or absence of type hints has no performance impact.

Any performance gains (or losses) are ordinary design issues that might be made more

visible through the use of type hints.

There’s more...
When decomposing a large problem into smaller pieces, the interfaces among the smaller

pieces are essential design decisions that must be made early in the design process. An early
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decision on data structures often leads to a type first design process overall. The externally

facing components must have well-defined interfaces. The functions or methods that

support these external components may be designed more freely with fewer constraints.

This leads to type first for the overall architecture of complicated software, reserving a

choice of type first or code first design when working on the more detailed layers. When

we consider distributed applications – like web services – where servers and clients are on

separate machines, we find that type first is essential.

As the volume of code grows, the importance of type hints also grows. It’s challenging to

keep a lot of details in the space between one’s ears. Having a type hint to summarize a

more complicated data structure can reduce the clutter of details around the code.

In distributed computing environments, we’ll often need to consider that some components

may not be Python programs. In these cases, we can’t share Python type hints. This means

we’re forced to use a schema definition that exists outside Python, but provides needed

mappings to Python types.

Examples of these kinds of formal definitions that transcend languages include JSON

Schema, Protocol Buffers, AVRO, and many others. The JSON Schema approach is typical,

and is supported by a number of Python tools. Later in this chapter, we’ll look at using

Pydantic, which has support for defining data using JSON Schema.

See also
• In the Reading JSON and YAML documents recipe in Chapter 11, we’ll return to using

JSON documents for complicated data.

• In the Using the match statement recipe, later in this chapter, we’ll look at how to use

the match statement to process data of a variety of types. This makes it relatively

easy to work with unions of types.

• In the Implementing more strict type checks with Pydantic recipe, later in this chapter,

we’ll look at stronger type definitions using the pydantic package.
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Using the built-in type matching functions
When we have a collection of objects with mixed types, we often need to distinguish among

the types. When working with classes that we’ve defined, it’s possible to define classes

that are properly polymorphic. This is not generally the case when working with Python’s

internal objects, or working with collections of data that involve a mixture of classes we’ve

defined, and built-in classes that are part of Python.

When working entirely with our own classes, we can design them to have common methods

and attributes, but offer distinct behavior depending on which of the subclasses is involved.

This kind of design fits the “L” design principle in the S.O.L.I.D design principles: the

Liskov Substitution Principle. Any of the subclasses can be used in place of the superclass,

because they all have a common set of method definitions. For more information on this,

see Chapter 8.

This kind of abstraction-driven design is not always needed with Python. Because of

Python’s duck-typing, designs don’t require a common superclass. In some cases, it isn’t

even practical: we may have diverse types without a unifying abstraction. It’s very common

to work with mixtures of objects from built-in classes, as well as objects from our own

class definitions. We can’t impose polymorphism on the built-in classes.

How can we leverage the built-in functions to write functions and methods that are flexible

with respect to type? For this recipe, we’ll reuse the processing from the Designing with

type hints recipe earlier in this chapter.

Getting ready
In the Designing with type hints recipe, we defined a function datafile_iter() that emitted

two distinct types of objects: Path objects and Referenced objects. A Referenced object

was a bundle of Path instances, showing a data file that was used by one or more application

programs. A stand-alone Path object was a data file not used by any application program.

These unreferenced paths are candidates for removal to reduce clutter.

We need to process these two classes of objects in distinct ways. They’re created by a single
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generator function, datafile_iter(). This function emits a sequence of Unreferenced

and Referenced instances. This mixture means an application must filter objects by their

type.

The application will work with a sequence of objects. These will be created by a function

with the following definition:

from collections.abc import Iterator
DataFileIter: TypeAlias = Iterator[Unreferenced | Referenced]

def datafile_iter(base: Path) -> DataFileIter:

The datafile_iter() function will produce a sequence of Unreferenced and Referenced

objects. This will reflect the current state of files in a given directory. Some will have

references in source code; others will lack any references. See the Designing with type hints

recipe for this function.

How to do it...
The application function to do analysis will consume objects of a variety of types. The

function is designed as follows:

1. Start with a definition like the following that shows the types consumed:

from collections.abc import Iterable

def analysis(source: Iterable[Unreferenced | Referenced]) -> None:

2. Create an empty list that will hold the data files that have references. Write the for

statement to consume objects from the source iterable, and populate that list:

good_files: list[Referenced] = []
for file in source:

3. To distinguish objects by type, we can use the isinstance() function to see if an

object is a class of a given type.
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To distinguish the class, use the isinstance() function:

if isinstance(file, Unreferenced):
print(f"delete {file}")

elif isinstance(file, Referenced):
good_files.append(file)

4. While it’s technically unnecessary, it always seems prudent to include an else

condition to raise an exception in the unlikely event that the datafile_iter function

was changed in some astonishing way:

else:
raise ValueError(f"unexpected type {type(file)}")

For more about this design pattern, see the Designing complex if...elif chains recipe in

Chapter 2.

5. Write the final summary:

print(f"Keep {len(good_files)} files")

How it works...
The isinstance() function examines an object to see what classes it belongs to. The

second argument can be single class or a tuple of alternative classes.

It’s important to note that an object often has a number of parent classes, forming a lattice,

stemming from the class object. If multiple inheritance is being used, there can be a large

number of paths through the super class definitions. The isinstance() function examines

all the alternative parent classes.

The isinstance() function is aware of TypeAlias names in addition to the classes imported

and defined within the application. This gives us a great deal of flexibility to use meaning

names in type hints.
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In Python 3.12, the TypeAlias construct can be replaced with the new type

statement:

type Unreferenced = Path

See Mypy Issue #15238 for more information on support for the type state-

ment by the mypy tool.

Until this is resolved, we’ve elected to use TypeAlias in this book.

There’s more...
The isinstance() function is the kind of Boolean function that works well with the

filter() higher-order function. For more information, see the Picking a subset – three

ways to filter recipe in Chapter 9.

In addition to the built-in isinstance() to interrogate objects, there is also a issubclass()

function that lets an application examine type definitions. It’s important to distinguish

between instances of a class and a class object; the issubclass() function is used to

examine type definitions. The issubclass() function is often used for metaprogramming:

software that’s concerned with software rather than the application data. When designing

functions that work with types of objects, rather than objects, the issubclass() function

is necessary.

When examining the type of objects, the match statement is often a better choice than the

isinstance() function. The reason is that a match statement’s case clause has very so-

phisticated type pattern matching, where the isinstance() function is limited to ensuring

the object has a given class (or a class in a tuple of classes) in its parents.

See also
• See the Using the match statement recipe for an alternative to this, using the match

statement.

https://github.com/python/mypy/issues/15238
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• See Chapter 7 and Chapter 8 for several recipes related to playing cards and the

interesting class hierarchies they involve.

Using the match statement
One important reason for defining a collection of closely-related types is to distinguish the

processing that applies to the objects. One technique for providing distinct behavior is by

using a polymorphic design: a number of subclasses provide distinct implementations of a

common function. When working entirely with our own classes, we can design them to

have common methods and attributes, but offer distinct behavior depending on which of

the subclasses is involved. This is covered in Chapter 8.

This is not generally possible when working with Python’s internal objects, or when

working with collections of data that involve a mixture of classes we’ve defined, and built-

in classes that are part of Python. In these cases, it’s simpler to rely on type matching

to implement distinct behaviors. One approach was shown in the Using the built-in type

matching functions recipe in this chapter.

We can also use the match statement to write functions and methods that are flexible and

work with argument values of a variety of types. For the recipe, we’ll reuse the processing

from the Designing with type hints and Using the built-in type matching functions recipes

earlier in this chapter.

Getting ready
In the Designing with type hints recipe, we defined a datafile_iter() function that emitted

two distinct types of objects: Path objects and Referenced objects.

We need to process these two classes of objects in distinct ways. This mixture means an

application must filter them by their type.

How to do it...
The application will work with a sequence of objects of distinct types. The function is

designed as follows:
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1. Start with a definition like the following that shows the types consumed:

from collections.abc import Iterable

def analysis(source: Iterable[Unreferenced | Referenced]) -> None:

This function will consume an iterable sequence of objects. This function will count

the ones that have references. It will suggest deleting the files with no references.

2. Create an empty list that will hold the data files that have references. Write the for

statement to consume objects from the source iterable:

good_files: list[Referenced] = []
for file in source:

3. Write the start of the match statement with the file variable:

match file:

4. To process a file of the various classes, create case statements that show the kinds of

objects that must be matched. These cases are indented within the match statement:

case Unreferenced() as unref:
print(f"delete {unref}")

case Referenced() as ref:
good_files.append(file)

5. While it’s technically unnecessary, it always seems prudent to include a case _:

condition. The _ will match anything. The body of this clause can raise an excep-

tion in the unlikely event that the datafile_iter function was changed in some

astonishing way:

case _:
raise ValueError(f"unexpected type {type(file)}")

For more about this design pattern, see the Designing complex if...elif chains recipe in



446 Working with Type Matching and Annotations

Chapter 2.

6. Write the final summary:

print(f"Keep {len(good_files)} files")

How it works...
The match statement uses a sequence of case clauses to establish a class that matches

the given object. While there are a wide variety of case clauses, one common case is

the case class() as name: variant, called the class pattern. Within (), we can provide

sub-patterns to match objects with specific kinds of parameters.

For this example, we didn’t need the more sophisticated matching patterns. We can provide

what looks like an instance – made from the class name and() – to show that the case

clause will match an instance of the class. No additional detail regarding the structure of

the instance is necessary.

The use of case Unreferenced() almost looks as if the expression Unreferenced() will

create an instance of the Unreferenced class. The intent here is not to create an object,

but to write an expression that looks very much like object creation. This syntax helps to

clarify the intent of using the case to match any object of the named class.

Other patterns are available that allow matching simple literal values, sequences, and

mappings, as well as classes. Further, there are ways to provide groups of alternatives, and

even apply additional filtering via a guard condition that’s used in conjunction with the

pattern matching.

The case _ clause is a wildcard clause. It will match anything provided in the match

statement. The _ variable name has special significance here, and only this variable can be

used.

Central to this design is the clarity of the case definitions. These are much more readable

than isinstance() function evaluation in a series of elif clauses.
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There’s more...
We’ll extend this recipe to show some of the sophisticated type matching available in these

case clauses. Consider the case where we want to separate a referenced file that has only a

single item in the list of applications that refer to it.

We’re looking for objects that look like this specific example:

single use: Referenced(datafile=PosixPath('race_result.json'),
recipes=[PosixPath('ch11/recipe_06.py')])

This case can be summarized as Referenced(_, [Path()]). We want to match an instance

of the Referenced class where the second parameter is a list with a single Path instance.

This turns into a new case clause. Here’s the new, more specific case, followed by the more

general case:

case Referenced(_, [Path()]) as single:
print(f"single use: {single}")
good_files.append(single)

case Referenced() as multiple:
good_files.append(multiple)

The match statement works through the cases in order. The more-specific cases must

precede the less-specific cases. If we flip the order of these two cases, case Referenced()

would match before case Referenced(_, [Path()]) would even be examined. The most

general case, case _: must be last.

See also
• See the Using the built-in type matching functions recipe for an alternative approach

using the built-in isinstance() function.

• See Chapter 8 for several recipes related to polymorphic class design. Sometimes,

this can reduce the need for type matching.
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Handling type conversions
One of the useful features of Python is the “numeric tower” idea. See The Numeric Tower

in the Python standard library documentation. The idea is that numeric values can move

“up” the tower from integral to rational to real to complex.

The numeric conversions are based on the idea that there are a several overlapping domains

of numbers. These include ℤ integers, ℚ rational numbers, ℙ irrational numbers, ℝ real

numbers, and ℂ complex numbers. The idea is that these form a nested series of sets:

ℤ ⊂ ℚ ⊂ ℝ ⊂ ℂ. Also, ℚ ∪ℙ = ℝ: the real numbers include rational and irrational numbers.

These built-in numeric types follow the abstract concepts:

• ℂ is implemented by the complex type. Any of the types below this type can be

converted to a complex value.

• ℝ is supported by the float type. It’s important to note that float involves approxi-

mations, and doesn’t fully match the mathematical ideal of real numbers. When an

operator in this class encounters int or fraction values, it will create the equivalent

float value.

• ℚ uses the Fraction class in the fractions module. When an arithmetic operator

in the Fraction class encounters an int it will quietly create a Fraction with the

same value as the integer. 𝑧
1 = 𝑧.

• ℤ is the int class.

Generally, the Python language avoids too many conversions to other types. Strings,

for example, are not automatically parsed to create numeric values. An explicit built-in

function like int() or float() needs to be used to process strings with numbers.

We’ll often want our own types to share this kind of behavior. We’d like our functions to

be flexible, and convert objects to other types when needed. We may, for example, want

to permit a number of representations for a latitude-longitude point. These alternatives

might include:
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• A tuple of two floating-point numeric values

• A pair of strings, with each string representing a floating-point value

• A single string with two numeric values separated by a "," character

As with the numeric tower, our own class definitions need to convert other types into the

needed target type.

Getting ready
We’ll consider a function to compute distances between points on the surface of the Earth.

This involves some clever spherical trigonometry. For more information, see Chapter 3,

specifically, the Picking an order for parameters based on partial functions recipe. Also see

the Creating contexts and context managers recipe in Chapter 7.

The function is defined as:

def haversine(
lat_1: float, lon_1: float,
lat_2: float, lon_2: float, *, R: float) -> float:

... # etc.

This definition requires converting source data into individual float values. In applications

that integrate data from a number of sources, these conversions are so common that it seems

better to centralize them into a function that wraps the essential haversine() computation.

We want a function like this:

def distance(
*args: str | float | tuple[float, float],
R: float = NM

) -> float:

This function will compute distances among points defined as a variety of data types. The

*args parameter means all of the positional argument values will be combined into a single
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tuple. A number of validation rules must be applied to make sense of this tuple. Here are

the rules we’ll start with:

• Four float values: use these directly.

Example: distance(36.12, -86.67, 33.94, -118.40, R=6372.8).

• Four strings: convert these to float.

Example: distance("36.12", "-86.67", "33.94", "-118.40", R=6372.8).

• two strings: parse each string, breaking on a “,”. Each string should have two float

values.

Example: distance("36.12,-86.67", "33.94,-118.40", R=6372.8).

• Two tuples: unpack each tuple to make sure it has two float values.

Example: distance((36.12, -86.67), (33.94, -118.40), R=6372.8).

Ideally, it might be nice to support combinations of these, also. We’ll design a function that

performs the needed type conversions.

How to do it...
A function that includes type conversions is often built separately from the underlying pro-

cessing. It can help testing and debugging if these two aspects of processing – conversions

and computations – are separated:

1. Import the needed literal_eval() function to do the conversions of strings that

are expected to be Python literals:

from ast import literal_eval

With this function, we can evaluate literal_eval("2,3") to get a result of a proper

tuple, (2, 3). We don’t need to use a regular expression to decompose the string to

see the pattern of the text.

2. Define the distance function that performs conversions:
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def distance(
*args: str | float | tuple[float, float],
R: float = NM

) -> float:

3. Start the match statement for the various kinds of argument patterns.

match args:

4. Write the individual cases, moving from more specific to less specific. Start with four

distinct float values, since no conversion needs to be done. The tuple of float values

has a more complex type structure, but doesn’t require any conversion.

case [float(lat_1), float(lon_1), float(lat_2), float(lon_2)]:
pass

case (
[[float(lat_1), float(lon_1)],
[float(lat_2), float(lon_2)]]

):
pass

We’ve provided the lat_1, lon_1, lat_2, and on_2 variables to bind the values from

the args structure to variable names. This saves us from having to write assignment

statements to unpack an argument tuple. The pass statement placeholder is used

because no further processing is required beyond unpacking the data structure.

5. Write the cases that involve conversions of the supplied values:

case [str(s1), str(s2), str(s3), str(s4)]:
lat_1, lon_1, lat_2, lon_2 = (

float(s1), float(s2), float(s3), float(s4)
)

case [str(ll1), str(ll2)]:
lat_1, lon_1 = literal_eval(ll1)
lat_2, lon_2 = literal_eval(ll2)

When the argument values are four strings, we provided four variables to unpack



452 Working with Type Matching and Annotations

the four strings.

When the argument pattern is two strings, we provided two variables, ll1 and ll2,

that each needed to be converted into two tuples of numbers and then unpacked.

6. Write the default case that will match anything else and raise an exception:

case _:
raise ValueError(f"unexpected types in {args!r}")

7. Now that the arguments have been properly unpacked and any conversions applied,

use the haversine() function to compute the required result:

return haversine(lat_1, lon_1, lat_2, lon_2, R=R)

How it works...
The essential feature for type conversions is using a match statement to provide appropriate

conversions for the supported types. In this example, we tolerated a mixture of strings and

tuples that could be converted and unpacked to locate the required four argument values.

The match statement has many clever type-matching rules. For example, an expression

like ((float(f1), float(f2)), (float(f3), float(f4))) will match two tuples, each

with two float values. Further, it unpacks the values from the tuples and assigns them to

four variables.

The mechanics of converting the values are also based on a built-in feature. The float()

function converts numeric strings to float values or raises a ValueError exception.

The ast.literal_eval() function is very handy for evaluating strings that are Python

literals. The function is safe from evaluating dangerous expressions because it is limited to

literal values, and a few simple data structures – tuples, lists, dicts, and sets – built from

literal values. It permits us to parse a string like "36.12,-86.67" into (36.12, -86.67)

directly.
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There’s more...
The use of independent case clauses makes it relatively easy to add additional type conver-

sions. We might, for example, want to handle a tuple of two dictionary structures that look

like {"lat": 36.12, "lon": -86.67}. This can be matched with the following case:

case (
{"lat": float(lat_1), "lon": float(lon_1)},
{"lat": float(lat_2), "lon": float(lon_2)}

):
pass

The argument tuple pattern has () around it, making it easy to break it into multiple lines.

The four values extracted from the dictionaries will be bound to four target variables.

If we want to permit more flexibility, we can consider the case where we have two argument values

of a mixture of type patterns. For example, distance("36.12,-86.67", (33.94, -118.40),

R=6372.8). This has two distinct formats: a string and a tuple with a pair of float values.

Rather than enumerate all of the possible combinations, we can decompose the parsing of

a pair of values into a separate function, parse(), that applies the same conversion to both

argument values:

case [p_1, p_2]:
lat_1, lon_1 = parse(p_1)
lat_2, lon_2 = parse(p_2)

This new parse() function must handle all the cases where a latitude and longitude are

provided together. This includes strings, tuples, and mappings. It looks like this:

def parse(item: Point | float) -> tuple[float, float]:
match item:

case [float(lat), float(lon)]:
pass

case {"lat": float(lat), "lon": float(lon)}:
pass
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case str(sll):
lat, lon = literal_eval(sll)

case _:
raise ValueError(f"unexpected types in {item!r}")

return lat, lon

This will slightly simplify the match statement in the distance function. The refactored

statement only handles four cases:

match args:
case [float(lat_1), float(lon_1), float(lat_2), float(lon_2)]:

pass
case [str(s1), str(s2), str(s3), str(s4)]:

lat_1, lon_1, lat_2, lon_2 = float(s1), float(s2), float(s3),
float(s4)

case [p_1, p_2]:
lat_1, lon_1 = parse(p_1)
lat_2, lon_2 = parse(p_2)

case _:
raise ValueError(f"unexpected types in {args!r}")

The first two cases handle the situation where four argument values are provided. The

third case looks at a pair of values, which can have any of the pair formats.

We expressly avoid the case where three argument values are provided. This requires a

bit more care to interpret, since one of the three argument values must be a latitude and

longitude pair. The other two values must be separated latitude and longitude values. The

logic is not overwhelmingly complicated, but the details stray from the central idea of this

recipe.

While the recipe focuses on built-in types including str and float, any type can be used.

A customized Leg type, for example, with start and stop locations could easily be added in

a case clause.
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See also
• For more information on numbers and conversions, see the Choosing between float,

decimal, and fraction recipe in Chapter 1. This provides some more information about

the limitations of the float approximation.

• For more information on the haversine() function, see the Picking an order for

parameters based on partial functions recipe in Chapter 3. Also see the Creating

contexts and context managers recipe in Chapter 7.

Implementing more strict type checks with
Pydantic
For the most part, Python’s internal processing will handle a great many simple validity

checks properly. If we’ve written a function to convert a string to float, the function will

work with float values and string values. It will raise a ValueError exception if we try to

apply the float() function to a Path object.

In order for type hints to be optional, run-time type-checking is the minimum level of

checking required to make sure some processing can proceed. This is emphatically distinct

from the strict checks that tools like mypy make.

Type hints do no run-time processing.

Python (without any add-on packages) does no data type checks or value

range checks at run-time. Exceptions are raised when an operator is con-

fronted with a type it can’t process, without regard to the type hints.

This means that Python may be able to process a type that was excluded

by a hint. It’s possible to write a narrow hint like list[str]. An object of

set[str] may also work with the given body of the function.

There are applications where we’d like stronger checks at run-time. These are often helpful

in applications where extensions or plug-ins are used, and we’d like to be sure the additional
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plug-in code behaves properly.

One way to provide for run-time type checking is to use the Pydantic package. This module

allows us to define complex objects that are accompanied by run-time type checking, as

well as management of schema definitions that can be shared widely.

In Chapter 5, in the Creating dictionaries – inserting and updating recipe, we looked at a

log file that we needed to parse into a more useful structure. In Chapter 9, in the Writing

generator functions with the yield statement recipe, we looked at writing a generator function

that would parse and yield the parsed objects. We called the resulting objects RawLog, with

no type checks or type conversions. We applied a simple transformation to create a

DatedLog instance with the date-time stamp converted from text to a datetime.datetime

object.

The pydantic package can handle some of this conversion to a DatedLog instance, saving

us some programming. Further, because the schema can be generated automatically, we

can build a JSON Schema definition and do JSON serialization without a lot of complicated

work.

The Pydantic package must be downloaded and installed. Generally, this is done with the

following terminal command:

(cookbook3) % python -m pip install pydantic

Using the python -m pip command ensures that we will use the pip command that goes

with the currently active virtual environment, shown as cookbook3 in the example.

Getting ready
The log data has date-time stamps represented as string values. We need to parse these to

create proper datetime objects. To keep things focused in this recipe, we’ll use a simplified

log produced by a web server written with Flask.

The entries start out as lines of text that look like this:
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[2016-06-15 17:57:54,715] INFO in ch10_r10: Sample Message One
[2016-06-15 17:57:54,716] DEBUG in ch10_r10: Debugging
[2016-06-15 17:57:54,720] WARNING in ch10_r10: Something might have gone
wrong

We’ve seen other examples of working with this kind of log in the Using more complex

structures – maps of lists recipe in Chapter 8. Using REs from the String parsing with regular

expressions recipe in Chapter 1, we can decompose each line into a more useful structure.

Looking at the other recipes, the regular expression used for parsing had an important

feature. The names used in the (?P<name>...) groups were specifically designed to be

ordinary Python attribute names. This will fit nicely with the class definition we’ll build

later.

We’ll need to define a class that captures the essential content of each log line in a useful

form. We’ll use the Pydantic package to define and populate this class.

How to do it...
1. We’ll need the following imports to create this class definition:

import datetime
from enum import StrEnum
from typing import Annotated
from pydantic import BaseModel, Field

2. In order to properly validate a string that has a number of values, an Enum class

is required. We’ll define a subclass of StrEnum to list the valid string values. Each

class-level variable provides a name and the string literal that is the serialization for

the name:

class LevelClass(StrEnum):
DEBUG = "DEBUG"
INFO = "INFO"
WARNING = "WARNING"
ERROR = "ERROR"
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In this class, the Python attribute names and the string literals match. This isn’t a

requirement. It happens to be convenient for this collection of enumerated string

values.

3. The class will be a subclass of the BaseModel class from the pydantic package:

class LogData(BaseModel):

The BaseModel class must be the superclass for any model that makes use of pydantic

features.

4. We’ll define each field with a field name that matches the group name in the regular

expression used to parse the fields. This is not a requirement, but it makes it very

easy to build instances of the LogData class from the group dictionary that’s part of

a regular expression Match object:

date: datetime.datetime
level: LevelClass
module: Annotated[str, Field(pattern=r'^\w+$')]
message: str

The date is defined to be a datetime.datetime instance. The inherited methods

from the BaseModel class will handle this conversion. The level is an instance of

the LevelClass. Again, features from BaseModel will handle this conversion for us.

We’ve used the Annotated type to provide a type, str, and an annotation argument,

Field(...). This will be used by the methods of BaseModel to validate the field’s

content.

Here’s a generator function to read and parse log records:

from typing import Iterable, Iterator

def logdata_iter(source: Iterable[str]) -> Iterator[LogData]:
for row in source:

if match := pattern.match(row):
l = LogData.model_validate(match.groupdict())
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yield l

This will use the regular expression pattern, pattern to parse each record. The group

dictionary, match.groupdict() will have the group names and the parsed text. The

model_validate() method of the BaseModel will build an instance of the LogData class

from the dictionary created by the compiled regular expression.

It looks like the following example when we use this logdata_iter function to create

instances of the LogData class:

>>> from pprint import pprint
>>> pprint(list(logdata_iter(data.splitlines())))
[LogData(date=datetime.datetime(2016, 6, 15, 17, 57, 54, 715000),
level=<LevelClass.INFO: 'INFO'>, module='ch10_r10', message='Sample Message
One'),
LogData(date=datetime.datetime(2016, 6, 15, 17, 57, 54, 716000),
level=<LevelClass.DEBUG: 'DEBUG'>, module='ch10_r10', message='Debugging'),
LogData(date=datetime.datetime(2016, 6, 15, 17, 57, 54, 720000),
level=<LevelClass.WARNING: 'WARNING'>, module='ch10_r10',
message='Something might have gone wrong')]

This function has transformed lines of text into LogData objects populated with proper

Python objects: datetime.datetime instances and enumerated values from the LevelClass.

Further, it’s validated the module names to be sure they match a specific regular expression

pattern.

How it works...
The Pydantic package includes numerous tools for data validation and class definition.

Python’s use of types, and more detailed Annotated types, provides syntax that helps us

define the members of a class, including data conversions and data validations. In this

example, the conversions were implied; the class provided the target type, and the methods

inherited from the BaseModel class made sure that source data was properly converted to

the desired target type.
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This small class definition had three distinct kinds of types hints:

• The date and level field involved conversions to a target type.

• The module field used an annotated type to provide a Pydantic Field definition for

the attribute. The regular expression pattern will check each string value to be sure

it matches the required pattern.

• The message field provided a simple type that will match the source data type. No

additional validation will be performed for this field.

There are some parallels between the way the @dataclass and a BaseModel subclass work.

The Pydantic package provides considerably more sophisticated definitions than a dataclass

definition. A @dataclass, for example, does not do type checking or any automatic data

conversion. The type information provided when defining a dataclass is primarily of

interest to tools like mypy. In contrast, the subclasses of BaseModel do considerably more

automated conversion and run-time type checking.

The subclasses of DataModel come with a large number of methods.

The model_dump_json() and model_validate_json() methods are particularly helpful for

web services where the application often works with RESTful transfers of object state in

JSON notation. These can be serialized into newline-delimited files to collect a number of

complicated objects into files in a standardized physical format.

The Pydantic package tends to be extremely fast. The current version involves Python

extensions that are compiled to provide very high performance. Clearly, a dataclass –

which lacks a number of Pydantic features – will be faster, but do less. However, the

additional data validation is often worth the overhead.

There’s more...
One of the benefits of working with Pydantic is the automatic support for JSON Schema

definitions and JSON serialization.

This shows how we can get the JSON Schema for a model:
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>>> import json
>>> print(json.dumps(LogData.model_json_schema(), indent=2))

The details of the JSON Schema are long and match the Python definition of the class.

We’ve omitted the output.

We can serialize these LogData instances in JSON notation. Here’s how this looks:

>>> for record in logdata_iter(data.splitlines()):
... print(record.model_dump_json())
{"date":"2016-06-15T17:57:54.715000","level":"INFO","module":"ch10_r10",
"message":"Sample Message One"}
{"date":"2016-06-15T17:57:54.716000","level":"DEBUG","module":"ch10_r10",
"message":"Debugging"}
{"date":"2016-06-15T17:57:54.720000","level":"WARNING","module":"ch10_r10",
"message":"Something might have gone wrong"}

We’ve used the model_dump_json() method to serialize the object as a JSON document.

This lets us convert documents from a variety of sources to a common format. This makes it

easy to create analytic processing around the common format, separating parsing, merging,

and validating from the analysis and the interesting results of the analytic processing.

See also
• See the Including run-time valid value checks recipe for some additional validation

rules that are possible.

• See the Using dataclasses for mutable objects recipe in Chapter 7 for more on data-

classes. The Pydantic variant on dataclasses is often more useful than the

dataclasses module.

• See the Reading JSON and YAML documents recipe in Chapter 11 for information

related to reading data in JSON format.
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Including run-time valid value checks
Data analytics often involves a great deal of “data wrangling”: dealing with invalid data,

or unusual data. It’s common for source application software to change, leading to new

formats for data files, causing problems in downstream analytic applications when parsing

those files. A change in enterprise processes or policies may lead to new data types or new

coded values that can disrupt analytic processing.

Similarly, when working with machines and robots, sometimes called the Internet of Things,

it’s common for a device to provide invalid data when it’s starting up, or when it’s failing

to operate normally. In some cases, it may be necessary to raise alarms when bad data

arrives. In other cases, the out-of-range data needs to be quietly ignored.

The Pydantic package offers very sophisticated validation functions that allow us two

choices:

• Convert data from unusual formats into Python objects.

• Raise an exception for data that cannot be converted or fails to pass more specific

domain checks.

In some cases, we also need to validate the resulting object is internally consistent. This

often means that several fields must be checked for consistency with each other. This is

called model validation, which is distinct from isolated field validation.

The idea of validation can be extended. It can embrace both rejecting invalid data and

filtering out data that’s valid, but uninteresting, for a given application.

Getting ready
We’re looking at the US National Oceanographic and Atmospheric Administration

(NOAA) data on coastal tides. Moving a large sailboat means making sure there’s enough

water for it to float. This constraint requires checking predictions for the height of the

tides at places that are known to be shallow and difficult to pass.

In particular, a place called El Jobean, on the Myakka river, has a shallow spot that requires
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some care when transiting it. We can get the tidal prediction from the NOAA Tides and

Currents web site. This web page allows putting in a range of dates and downloading a

text file with tide predictions for the given range of dates.

The resulting text file looks as follows:

NOAA/NOS/CO-OPS

Disclaimer: These data are based upon the latest information available as of the

date of your request, and may differ from the published tide tables.

Daily Tide Predictions

StationName: EL JOBEAN, MYAKKA RIVER

State: FL

Stationid: 8725769

...

Date Day Time Pred High/Low

2024/04/01 Mon 04:30 -0.19 L

2024/04/01 Mon 20:07 1.91 H

...

This data is almost in CSV format, but a few quirks make it difficult to process. Here are

some complicating factors:

• The file has 19 lines of data before the useful column heading line.

• The columns use the tab character \t as a delimiter instead of a comma.

• The heading row for the relevant data has some extraneous whitespace hidden in it.

The following function will provide clean CSV rows for further processing:

import csv
from collections.abc import Iterator
from typing import TextIO

def tide_table_reader(source: TextIO) -> Iterator[dict[str, str]]:
line_iter = iter(source)

https://tidesandcurrents.noaa.gov/noaatidepredictions.html?id=8725769
https://tidesandcurrents.noaa.gov/noaatidepredictions.html?id=8725769
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for line in line_iter:
if len(line.rstrip()) == 0:

break
header = next(line_iter).rstrip().split('\t')
del header[1] # Extra tab in the header
reader = csv.DictReader(line_iter, fieldnames=header, delimiter='\t')
yield from reader

The Extra tab in the header comment handles the heading, which has an extra whites-

pace character in it. This header row has two \t characters between the Date and Day

column names:

'Date \t\tDay\tTime\tPred\tHigh/Low\n'

See the Slicing and dicing a list recipe in Chapter 4 for more on this technique for removing

an item from a list.

This list of column names can be used to build a DictReader instance to consume the rest

of the data. (See the Reading delimited files with the CSV module recipe in Chapter 11 for

more on CSV files.)

We can convert each from a dictionary to a class instance using Pydantic validation

features.

How to do it...
The core data model will validate rows of data, creating an instance of a class. We can add

features to this class to handle the application-specific processing. Here’s how we build

this class:

1. Start with the imports for the the data types within each row, plus the BaseModel

class and some related classes:

import datetime
from enum import StrEnum
from typing import Annotated
from pydantic import BaseModel, Field, PlainValidator
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2. Define the domain of values for the High/Low column. The two codes are enumerated

as an Enum subclass:

class HighLow(StrEnum):
high = "H"
low = "L"

3. Since the date text is not in the default format used by Pydantic, we need to define

a validation function that will produce a date object from the given string:

def validate_date(v: str | datetime.date) -> datetime.date:
match v:

case datetime.date():
return v

case str():
return datetime.datetime.strptime(v, "%Y/%m/%d").date()

case _:
raise TypeError("can't validate {v!r} of type {type(v)}")

The Pydantic validators can be used on internal Python objects as well as strings

from source CSV files or JSON documents. When applied to a datetime.date object,

no additional conversion is needed.

4. Define the model. The validation_alias parameter of the Field definition will

pluck data from a source field in the dictionary that’s not exactly the same as the

target attribute name in the class:

class TideTable(BaseModel):
date: Annotated[

datetime.date,
Field(validation_alias='Date '),
PlainValidator(validate_date)]

day: Annotated[
str, Field(validation_alias='Day')]

time: Annotated[
datetime.time, Field(validation_alias='Time')]

prediction: Annotated[
float, Field(validation_alias='Pred')]

high_low: Annotated[
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HighLow, Field(validation_alias='High/Low')]

Each field uses an Annotated type to define the base type, and additional details

required to validate strings and convert them to that type.

The day field – with the day of the week – is not actually useful. It’s derived data

from the date. For debugging purposes, this is preserved.

Given this class, we can use it to validate model instances from a sequence of dictionary

instances. It looks like this:

>>> tides = [TideTable.model_validate(row) for row in dict_rows]
>>> tides[0]
TideTable(date=datetime.date(2024, 4, 1), day='Mon', time=datetime.time(4,
30), prediction=-0.19, high_low=<HighLow.low: 'L'>)
>>> tides[-1]
TideTable(date=datetime.date(2024, 4, 30), day='Tue', time=datetime.time(19,
57), prediction=1.98, high_low=<HighLow.high: 'H'>)

This sequence of objects contains too much data. We can use Pydantic to also filter the

data, and pass only the useful rows. We’ll do this by revising this class definition and

creating an alternative that includes the rules for the data to be passed.

How it works...
The BaseModel class includes a number of operations that work with the annotated type

hints of the class attributes. Consider this type hint:

date: Annotated[
datetime.date,
Field(validation_alias='Date '),
PlainValidator(validate_date)]

This provides a base type, datetime.date. It provides a Field object that will extract

the field named 'Date ' from a dictionary, and apply validation rules to it. Finally, the

PlainValidator object provides a one-step validation rule that’s applied to the source data.
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The validate_date() function was written to accept date objects as already valid, and

convert string objects into date objects. This allows the validation to be used for raw data

as well as Python objects.

Our application involves some narrowing of the domains of data for this example. There

are three important criteria:

• We’re only interested in high tide predictions.

• We’d prefer the tide be at least 1.5 (45 cm) feet above baseline.

• We need this to occur after 10:00 and before 17:00.

We can leverage Pydantic to perform additional validations to narrow the data domains.

These additional validations can reject high tides less than the minimum of 1.5 feet.

There’s more...
We can extend this model to add validation rules that narrow the domain of valid rows

to those that match our selection criteria based on time of day and height of tide. We’ll

be applying these more narrow data validation rules after any data conversions. These

rules will raise ValidationError exceptions. This expands the imports from the pydantic

package.

We’ll define a number of additional validation functions. Here’s a validator that raises an

exception for low-tide data:

BaseModel, Field, PlainValidator, AfterValidator, ValidationError
)

def pass_high_tide(hl: HighLow) -> HighLow:
assert hl == HighLow.high, f"rejected low tide"
return hl

The assert statement is elegantly simple for this task. This can also be done with if and

raise.

A similar validator can raise an exception for data outside the acceptable time window:
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def pass_daylight(time: datetime.time) -> datetime.time:
assert datetime.time(10, 0) <= time <= datetime.time(17, 0)
return time

Finally, we can combine these additional validators into the annotated type definitions:

class HighTideTable(BaseModel):
date: Annotated[

datetime.date,
Field(validation_alias='Date '),
PlainValidator(validate_date)]

time: Annotated[
datetime.time,
Field(validation_alias='Time'),
AfterValidator(pass_daylight)] # Range check

prediction: Annotated[
float,
Field(validation_alias='Pred', ge=1.5)] # Minimum check

high_low: Annotated[
HighLow,
Field(validation_alias='High/Low'),
AfterValidator(pass_high_tide)] # Required value check

The additional validators will reject data where the criteria don’t match our narrow re-

quirements. The output will only have high tides, greater than 1.5 feet, and during daylight

hours.

This data forms a sequence of HighTideTable instances, like the following:

>>> from pathlib import Path
>>> data = Path("data") / "tide-table-2024.txt"
>>> with open(data) as tide_file:
... for ht in high_tide_iter(tide_table_reader(tide_file)):
... print(repr(ht))
HighTideTable(date=datetime.date(2024, 4, 7), time=datetime.time(15, 42),
prediction=1.55, high_low=<HighLow.high: 'H'>)
...
HighTideTable(date=datetime.date(2024, 4, 10), time=datetime.time(16, 42),
prediction=2.1, high_low=<HighLow.high: 'H'>)
...
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HighTideTable(date=datetime.date(2024, 4, 26), time=datetime.time(16, 41),
prediction=2.19, high_low=<HighLow.high: 'H'>)

We’ve omitted some rows to show just the first row, a row from the middle, and the last

row. These are HighTideTable objects with attributes that are Python objects, suitable for

further analysis and processing.

The general approach to Pydantic design means individual rules for combining raw data

fields, converting data, and filtering data are all separated. We can confidently change one

of these rules without having to worry about breaking other parts of the application.

This recipe included three varieties of checks:

• A range check to be sure a continuous value is within the allowed range. AfterValidator

is used to make sure a string is converted to a time.

• A minimum check to be sure a continuous value is above a limit. For numbers, this

can be done by the Field definition directly.

• A required value check to be sure a discrete value has one of the required values.

AfterValidator is used to make sure a string is converted the enumerated type.

These kinds of checks are performed after the essential type matching and used to apply

narrower validation rules.

See also
• In Chapter 11 we’ll look more deeply at reading files of data.

• See the Implementing more strict type checks with Pydantic recipe for additional

examples of using Pydantic. Pydantic uses compiled Python extensions to apply

the validation rules with little overhead.
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Join our community Discord space
Join our Python Discord workspace to discuss and find out more about the book:

https://packt.link/dHrHU

https://packt.link/dHrHU


11
Input/Output, Physical
Format, and Logical Layout

Computing often works with persistent data. There may be source data to be analyzed, or

output to be created using Python input and output operations. The map of the dungeon

that’s explored in a game is data that will be input to the game application. Images, sounds,

and movies are data output by some applications and input by other applications. Even a

request through a network will involve input and output operations. The common aspect to

all of these is the concept of a file of data. The term file is overloaded with many meanings:

• The operating system (OS) uses a file as a way to organize bytes of data on a

device. It’s the responsibility of application software to make sense of the bytes. Two

common kinds of devices offer variations in terms of the features of OS files:

– Block devices such as disks or solid-state drives (SSDs): A file on this kind of

device can seek any specific byte, making them particularly good for databases,

where any row can be processed at any time.
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– Character devices such as a network connection, a keyboard, or a GPS antenna.

A file on this kind of device is viewed as a stream of individual bytes in transit.

There’s no way to seek forward or backward; the bytes must be captured in a

buffer and processed as they arrive.

• The word file also defines a data structure used by the Python runtime. A uniform

Python file abstraction wraps the various OS file implementations. When we open a

Python file, there is a binding between the Python abstraction, an OS implementation,

and the underlying collection of bytes on a block device or stream of bytes of a

character device.

Python gives us two common modes for working with a file’s content:

• In “b” (binary) mode, our application sees the bytes, without further interpretation.

This can be helpful for processing media data like images, audio, and movies, which

have complex encodings. We’ll often import libraries like pillow to handle the details

of image file encoding into bytes and decoding from bytes.

• In “t” (text) mode, the bytes of the file are encodings of string values. Python strings

are made of Unicode characters, and there are a variety of schemes for decoding bytes

into text and encoding text into bytes. Generally, the OS has a preferred encoding and

Python respects this. The UTF-8 encoding is popular. Pragmatically, a file can have

any of the available Unicode encodings, and it may not be obvious which encoding

was used to create a file.

Additionally, Python modules like shelve and pickle have unique ways of representing

more complex Python objects than simple strings. There are a number of pickle protocols

available; all of them are based on binary mode file operations.

Throughout this chapter, we’ll talk about how Python objects are serialized. Serialization

creates a representation of the Python object’s state as a series of bytes. Deserialization is

the reverse process: it recovers a Python object’s state from the bytes of a file. Saving and

transferring a representation of the object state is the foundational concept behind REST

web services.
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When we process data from files, we have two common concerns:

• The physical format of the data: We need to know how the bytes on the file are

interpreted to reconstruct a Python object. The bytes could represent a JPEG-encoded

image or an MPEG-encoded movie. One very common example is the bytes of the file

representing Unicode text, organized into lines. Generally, physical format concerns

are handled by Python libraries like csv, json, and pickle, among many others.

• The logical layout of the data: A given data collection may have flexible positions

for storing data items. The arrangement of CSV columns or JSON fields can vary. In

cases where the data includes labels, the logical layout is clear. Without labels, the

layout is positional, and some additional schema information is required to identify

which data items occupy the various positions.

Both the physical format decoding and logical layout schema are essential to interpreting

the data on a file. We’ll look at a number of recipes for working with different physical

formats. We’ll also look at ways to divorce our program from some aspects of the logical

layout.

In this chapter, we’ll look at the following recipes:

• Using pathlib to work with filenames

• Replacing a file while preserving the previous version

• Reading delimited files with the CSV module

• Using dataclasses to simplify working with CSV files

• Reading complex formats using regular expressions

• Reading JSON and YAML documents

• Reading XML documents

• Reading HTML documents

In order to work with files, we’ll start with objects that help control the OS filesystem. The

common features of the directory structure of files and devices are described by Python’s
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pathlib module. This module has consistent behavior across a number of operating

systems, allowing a Python program to work similarly on Linux, macOS, and Windows.

Using pathlib to work with filenames
Most operating systems use a hierarchical tree of directories that contain files. The path

from the root directory to a specific file is often shown as a string. Here’s an example path:

/Users/slott/Documents/Writing/Python Cookbook/src/ch11/recipe_01.py

This full path name lists seven named directories contained in the (unnamed) root directory.

The final name has a stem of recipe_01 and a suffix of .py.

We can represent this as a string, and parse the string to locate directory names, file stems,

and suffix strings. Doing this isn’t portable between the macOS and Linux operating

systems, which use "/" for a separator, and Windows, which uses "\" for a separator.

Further, Windows files may also have device names as a prefix to the path.

Dealing with edge cases like "/" in a filename or "." in a directory name can make string

processing needlessly difficult. We can simplify parsing and many filesystem operations by

using pathlib.Path objects instead of strings.

Getting ready
It’s important to separate three concepts:

• A path that identifies a file, including the name

• Metadata for a file – like creation timestamps and ownership – kept in the directory

tree

• The contents of the file

The contents of the files are independent of the directory information. It’s common for

multiple directory entries to be linked to the same content. This can be done with hard

links, where the directory information is shared among multiple paths, and soft links,
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where a special kind of file contains a reference to another file.

Often, a filename has a suffix (or extension) used as a hint as to what the physical format is.

A filename ending in .csv is likely a text file that can be interpreted as rows and columns

of data. This binding between name and physical format is not absolute. File suffixes are

only a hint and can be wrong.

In Python, the pathlib module handles all path-related processing. The module makes

several distinctions among paths:

• Pure paths that may or may not refer to an actual file

• Concrete paths that are resolved; these refer to an actual file

This distinction allows us to create pure paths for files that our application will possibly

create or refer to. We can also create concrete paths for those files that actually exist on

the OS. An application often resolves a pure path to a concrete path.

While the pathlib module can make a distinction between Linux path objects and Windows

path objects, this distinction is rarely needed. An important reason for using pathlib is

because we want processing that is isolated from the details of the underlying OS.

All of the mini recipes in this section will leverage the following:

>>> from pathlib import Path

We’ll also presume the argparse module is used to gather the file or directory names. For

more information on argparse, see the Using argparse to get command-line input recipe in

Chapter 6. We’ll use an options variable as a namespace that contains the input filename

or directory name that the recipe works with. As an example, we’ll use the following

Namespace object:

>>> from argparse import Namespace
>>> options = Namespace(
... input='/path/to/some/file.csv',
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... file1='data/ch11_file1.yaml',

... file2='data/ch11_file2.yaml',

... )

Frequently, we’ll define argparse options to use type=Path so that the argument parsing

creates Path objects for us. For the purposes of showing how Path objects work, the path

information is provided as string values.

How to do it...
We’ll show a number of common pathname manipulations in the following mini-recipes:

• Making the output filename by changing the input filename’s suffix

• Making a number of sibling output files with distinct names

• Comparing file dates to see which is newer

• Finding all files that match a given pattern

The first two reflect techniques for working with the path of directories to a file; using

a Path object is much easier than doing sophisticated string manipulation. The last two

gather information about concrete paths and the related files on a computer.

Making the output filename by changing the input filename’s suffix

Perform the following steps to create the output filename from an input filename by

changing the input name’s suffix:

1. Create a Path object from the input filename string:

>>> input_path = Path(options.input)
>>> input_path
PosixPath('/path/to/some/file.csv')

The PosixPath class is displayed because the author is using macOS. On a Windows

machine, the class would be WindowsPath.

2. Create the output Path object using the with_suffix() method:
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>>> output_path = input_path.with_suffix('.out')
>>> output_path
PosixPath('/path/to/some/file.out')

All of the filename parsing is handled seamlessly by the Path class. This doesn’t create the

concrete output file; it merely creates a new Path for it.

Making a number of sibling output files with distinct names

Perform the following steps to make a number of sibling output files with distinct names:

1. Create a Path object from the input filename string:

>>> input_path = Path(options.input)

2. Extract the parent directory and the stem from the filename. The stem is the name

without the suffix:

>>> input_directory = input_path.parent
>>> input_stem = input_path.stem

3. Build the desired output name. For this example, we’ll append _pass to the stem and

build the complete Path object:

>>> output_stem_pass = f"{input_stem}_pass"
>>> output_stem_pass
'file_pass'

>>> output_path = (
... input_directory / output_stem_pass
... ).with_suffix('.csv')
>>> output_path
PosixPath('/path/to/some/file_pass.csv')

The / operator assembles a new Path from Path components. We need to put the /

operation in parentheses to be sure that it’s performed first, to create a new Path object
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before changing the suffix.

Comparing file dates to see which is newer

The following are the steps to see newer file dates by comparing them:

1. Create the Path objects from the input filename strings. The Path class will properly

parse the string to determine the elements of the path:

>>> file1_path = Path(options.file1)
>>> file2_path = Path(options.file2)

When exploring this example, be sure the names in the options object are actual

files.

2. Use the stat() method of each Path object to get timestamps for the file. Within

the stat object, the st_mtime| attribute provides the most recent modification time

for the file:

>>> file1_path.stat().st_mtime
1572806032.0
>>> file2_path.stat().st_mtime
1572806131.0

The values are timestamps measured in seconds. Your values will depend on the files on

your system. If we want a timestamp that seems sensible to most people, we can use the

datetime module to create a more useful object from this:

>>> import datetime
>>> mtime_1 = file1_path.stat().st_mtime
>>> datetime.datetime.fromtimestamp(mtime_1)
datetime.datetime(2019, 11, 3, 13, 33, 52)

We can use any of a number of methods to format the datetime object.

Finding all files that match a given pattern

The following are the steps to find all the files that match a given pattern:
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1. Create the Path object from the input directory name:

>>> directory_path = Path(options.file1).parent
>>> directory_path
PosixPath('data')

2. Use the glob() method of the Path object to locate all files in this directory that

match a given pattern. For non-existent directories, the iterator will be empty. Using

** as part of the pattern will recursively walk the directory tree:

>>> from pprint import pprint
>>> pprint(sorted(directory_path.glob("*.csv")))
[PosixPath('data/binned.csv'),

...

"""

We’ve elided a number of the files in the results.

The glob() method is an iterator, and we’ve used the sorted() function to consume the

values from this iterator and create a single list object from them.

How it works...
Inside the OS, the sequence of directories to find a file is a path through the filesystem. In

some cases, a simple string representation can be used to summarize the path. The string

representation, however, makes many kinds of path operations into complex string parsing

problems. A string is an unhelpfully opaque abstraction for working with OS paths.

The Path class definition simplifies operations on paths. These attributes, methods, and

operators on a Path instance include the following examples:

• .parent extracts the parent directory.

• .parents enumerates all the enclosing directories.

• .name is the final name.
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• .stem is the stem of the final name (without any suffix).

• .suffix is the final suffix.

• .suffixes is the sequence of suffix values, used with file.tag.gz kinds of names.

• The .with_suffix() method replaces the suffix of the file with a new suffix.

• The .with_name() method replaces the name in the path with a new name.

• The / operator builds Path objects from Path and string components.

A concrete path represents an actual filesystem resource. For concrete path objects, we can

do a number of additional manipulations of the directory information:

• Determine what kind of directory entry this is; that is, an ordinary file, a directory, a

link, a socket, a named pipe (or FIFO), a block device, or a character device.

• Get the directory details, including information such as timestamps, permissions,

ownership, size, and so on.

• Unlink (that is, remove) the directory entry. Note that unlinking ordinary files is

distinct from removing an empty directory. We’ll look at this in the There’s more...

section of this recipe.

• Rename the file to place it in a new path. We’ll also look at this in the There’s more...

section of this recipe.

Just about anything we might want to do with directory entries for files can be done with

the pathlib module. The few exceptions are part of the os module, because they are

generally OS-specific.

There’s more...
In addition to manipulating the path and gathering information about a file, we can also

make some changes to the filesystem. Two common operations are renaming a file and

unlinking (or removing) a file. We can use a number of methods to make changes to the

filesystem:
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• The .unlink() method removes ordinary files. It doesn’t remove directories.

• The .rmdir() method removes empty directories. Removing a directory with files

requires a two-step operation to first unlink all the files in the directory, then remove

the directory.

• The .rename() method renames a file to a new path.

• The .replace() method replaces a file without raising an exception if the target

already exists.

• The .symlink_to() method creates a soft link file with a link to an existing file.

• The .hardlink_to() method creates an OS hard link; two distinct directory entries

will now own the underlying file content.

We can open a Path either using the built-in open() function or the open() method. Some

people like to see open(some_path), where others prefer some_path.open(). Both do the

same thing: create an open file object.

We can create directories using the mkdir() method. There are two keyword parameters

for this method:

• exist_ok=False is the default; if the directory already exists, an exception is raised.

Changing this to True makes the code tolerant of an existing directory.

• parents=False is the default; the parents are not created, only the child-most di-

rectory in the path. Changing this to True will create the entire path, parents and

children.

We can also read and write files as large string or bytes objects:

• The .read_text() method reads a file as a single string.

• The .write_text() method creates or replaces a file with the given string.

• The .read_bytes() method reads a file as a single bytes instance.

• The .write_bytes() method creates or replaces a file with the given bytes.
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There are yet more file system operations, like changing ownership or changing permissions.

These operations are available in the os module.

See also
• In the Replacing a file while preserving the previous version recipe, later in this chapter,

we’ll look at how to leverage the features of a Path object to create a temporary file

and then rename the temporary file to replace the original file.

• In the Using argparse to get command-line input recipe in Chapter 6, we looked at one

very common way to use a string to create a Path object.

• The os module offers a number of filesystem operations that are less commonly used

than the ones provided by pathlib.

Replacing a file while preserving the previous
version
We can leverage the power of the pathlib module to support a variety of filename manip-

ulations. In the Using pathlib to work with filenames recipe in this chapter, we looked at a

few of the most common techniques for managing directories, filenames, and file suffixes.

One common file processing requirement is to create output files in a fail-safe manner; that

is, the application should preserve any previous output file, no matter how or where the

application fails.

Consider the following scenario:

1 At time 𝑇0, there’s a valid output.csv file from a previous run of the long_complex.py

application.

2 At time 𝑇1, we start running the long_complex.py application using new data. It

begins overwriting the output.csv file. Until the program finishes, the bytes will be

unusable.

3 At time 𝑇2, the application crashes. The partial contents of the output.csv file are



Chapter 11 483

useless. Worse, the valid file from time 𝑇0 is no longer available either because it was

overwritten.

In this recipe, we’ll look at an approach to creating output files that’s safe in the event of a

failure.

Getting ready
For files that don’t span across physical devices, fail-safe file output generally means

creating a new copy of the file using a temporary name. If the new file can be created

successfully, then the old file should be replaced using a single, atomic rename operation.

We want to have the following features:

• The important output file must be preserved in a valid state at all times.

• A temporary version of the file is written by the application. There are a variety

of conventions for naming this file. Sometimes, extra characters such as ~ or # are

placed on the filename to indicate that it’s a temporary, working file; for example,

output.csv~. We’ll use a longer suffix, .new; for example, output.csv.new.

• The previous version of the file is also preserved. Sometimes, the previous ver-

sion has a suffix of .bak, meaning “backup.” We’ll use a longer suffix and call it

output.csv.old. This also means any previous .old file must be removed as part of

finalizing the output; only a single version is preserved.

To create a concrete example, we’ll work with a file that has a very small but precious piece

of data: a sequence of Quotient objects. Here’s the definition for the Quotient class:

from dataclasses import dataclass, asdict, fields

@dataclass
class Quotient:

numerator: int
denominator: int

The following function will write an object to a file in CSV notation:
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import csv
from collections.abc import Iterable
from pathlib import Path

def save_data(
output_path: Path, data: Iterable[Quotient]

) -> None:
with output_path.open("w", newline="") as output_file:

headers = [f.name for f in fields(Quotient)]
writer = csv.DictWriter(output_file, headers)
writer.writeheader()
for q in data:

writer.writerow(asdict(q))

If a problem arises when writing the data object to the file, we could be left with a corrupted,

unusable file. We’ll wrap this function with another to provide a reliable write.

How to do it...
We start creating a wrapper function by importing the classes we need:

1. Define a function to encapsulate the save_data() function along with a few extra

features. The function signature is the same as the save_data() function:

2. Save the original suffix and create a new name with .new at the end of the suffix.

This is a temporary file. If it is written properly, with no exceptions, then we can

rename it so that it’s the target file:

ext = output_path.suffix
output_new_path = output_path.with_suffix(f'{ext}.new')
save_data(output_new_path, data)

The save_data() function is the original process to create the new file being wrapped

by this function.

3. Before replacing the previous file with the new, good file, remove any previous

backup copy. We’ll unlink an .old file, if one exists:
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output_old_path = output_path.with_suffix(f'{ext}.old')
output_old_path.unlink(missing_ok=True)

4. Now, we can preserve any previous good file with the name of .old:

try:
output_path.rename(output_old_path)

except FileNotFoundError as ex:
# No previous file. That's okay.
pass

5. The final step is to make the temporary .new file the official output:

try:
output_new_path.rename(output_path)

except IOError as ex:
# Possible recovery...
output_old_path.rename(output_path)

This multi-step process uses two rename operations:

• Rename the previous version to a backup version with .old appended to the suffix.

• Rename the new version, which had .new appended to the suffix, to be the current

version of the file.

A Path object has a replace() method. This always overwrites the target file, with no

warning if overwriting an existing file. The choice between rename() and replace()

depends on how our application needs to handle cases where old versions of files may be

left in the filesystem. We’ve used rename() in this recipe to try and avoid overwriting files

in the case of multiple problems.

Because these are applied serially, there’s a tiny span of time between preserving the old

file and renaming the new file where an application failure would fail to put a new file in

place. We’ll look at this in the next section.
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How it works...
This process involves three separate OS operations: an unlink and two renames. This is

designed to ensure that an .old file is preserved and can be used to recover the previously

good state.

Here’s a timeline that shows the state of the various files. We’ve labeled the content as

version 0 (some previous data), version 1 (the current, valid data), and version 2 (the newly

created data):

Time Operation .csv.old .csv .csv.new
𝑇0 version 0 version 1
𝑇1 Mid-creation version 0 version 1 Will appear

corrupt if used
𝑇2 Post-creation, closed version 0 version 1 version 2
𝑇3 After unlinking .csv.old version 1 version 2
𝑇4 After renaming .csv to .csv.old version 1 version 2
𝑇5 After renaming .csv.new to .csv version 1 version 2

Table 11.1: Timeline of file operations

While there are several opportunities for failure, there’s no ambiguity about which file is

valid:

• If there’s a .csv file, it’s the current, valid file.

• If there’s no .csv file, then the .csv.old file is a valid backup copy, which should be

used for recovery. See the 𝑇4 moment in time, for this condition.

Since none of these operations involve actually copying the files, the operations are all

extremely fast and reliable. They are, however, not guaranteed to work. The state of the

filesystem can be changed by any user with the right permissions, leading to the need for

care when creating new files that replace old files.

To ensure the output file is valid, some applications will take an additional step and write a

final checksum row in the file to provide unambiguous evidence that the file is complete

and consistent.
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There’s more...
In some enterprise applications, output files are organized into directories with names based

on timestamps. These operations can be handled gracefully by the pathlib module. We

might, for example, have an archive directory for old files. This directory has date-stamped

subdirectories for keeping temporary or working files.

We can then do the following to define a working directory:

archive_path = Path("/path/to/archive")

import datetime
from datetime import timezone

today = datetime.datetime.now(timezone.utc).strftime("%Y%m%d_%H%M%S")
working_path = archive_path / today
working_path.mkdir(parents=True, exist_ok=True)

The mkdir() method will create the expected directory. By including the parents=True

argument, any needed parent directories will also be created. This can be handy to create

the archive_path the very first time an application is executed. The exists_ok=True will

avoid raising an exception if the archive directory already exists.

For some applications it can be appropriate to use the tempfile module to create temporary

files. This module can create filenames that are guaranteed to be unique. This allows a

complex server process to create temporary files without regard to filename conflicts.

See also
• In the Using pathlib to work with filenames recipe, earlier in this chapter, we looked

at the fundamentals of the Path class.

• In Chapter 15, we’ll look at some techniques for writing unit tests that can ensure

that parts of this recipe’s example code will behave properly.

• In Chapter 6, the Creating contexts and context managers recipe shows additional

details regarding working with the with statement to ensure file operations complete
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properly, and that all of the OS resources are released.

• The shutil module provides a number of methods for copying files and directories

full of files. This package reflects features of Linux shell programs like cp, as well as

Windows programs like copy and xcopy.

Reading delimited files with the CSV module
One commonly used data format is comma-separated values (CSV). We can generalize

this to think of the comma character as simply one of many candidate separator characters.

For example, a CSV file can use the | character as the separator between columns of data.

This generalization for separators other than the literal , makes CSV files particularly

powerful.

How can we process data in one of the wide varieties of CSV formats?

Getting ready
A summary of a file’s content is called a schema. It’s essential to distinguish between two

aspects of a schema.

The physical format of a CSV file’s bytes encode lines of text. For CSV files, the text is

organized into rows and columns using a row separator character (or characters) and

a column separator character. Many spreadsheet products will use , (comma) as the

column separator and the \r\n sequence of characters as the row separator. The specific

combination of punctuation characters in use is called the CSV dialect.

Additionally, column data can be quoted when it contains one of the separators. The most

common quoting rules are to surround the column value with " characters. In order to

include the quote character in column data, the quote character is doubled. For example,

"He said, ""Thanks.""".

The logical layout of the data in the file is a sequence of data columns that are present.

There are several common cases for handling the logical layout in CSV files:

• The file may have one line of headings. This fits nicely with the way the csv module
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works. It can be even more helpful when the headings are also proper Python variable

names. The schema is stated explicitly in the first line of the file.

• The file has no headings, but the column positions are fixed. In this case, we can

impose headings on the file when we open it. Pragmatically, this involves some risk

because it’s difficult to confirm that the data meets the imposed schema.

• If the file has no headings and the column positions aren’t fixed. In this case, addi-

tional external schema information is required to interpret the columns of data.

There are, of course, some common complications that can arise with any data. Some

files are not in First Normal Form (1NF). In 1NF, each row is independent of all other

rows. When a file is not in this normal form, we’ll need to add a generator function to

rearrange the data into 1NF rows. See the Slicing and dicing a list recipe in Chapter 4, and

the Using stacked generator expressions recipe in Chapter 9, for other recipes that show how

to normalize data structures.

We’ll look at a CSV file that has some real-time data recorded from the log of a sailboat.

This is the waypoints.csv file. The data looks as follows:

lat,lon,date,time
32.8321666666667,-79.9338333333333,2012-11-27,09:15:00
31.6714833333333,-80.93325,2012-11-28,00:00:00
30.7171666666667,-81.5525,2012-11-28,11:35:00

This data contains four columns named in the first line of the file: lat, lon, date, and time.

These describe a waypoint and need to be reformatted to create more useful information.

How to do it...
Before starting to write any code, examine the data file to confirm the following features:

• The column separator character is ',', which is the default.

• The row separator characters are '\r\n', also widely used in both Windows and

Linux.
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• There is a single-row heading. If this isn’t present, the headings should be provided

separately when the reader object is created.

Once the format has been confirmed, we can start creating the needed functions as follows:

1. Import the csv module and the Path class:

import csv
from pathlib import Path

2. Define a raw() function to read raw data from a Path object that refers to the file:

def raw(data_path: Path) -> None:

3. Use the Path object to open the file in a with statement. Build the reader from the

open file:

with data_path.open() as data_file:
data_reader = csv.DictReader(data_file)

4. Consume (and process) the rows of data from the iterable reader. This is properly

indented inside the with statement:

for row in data_reader:
print(row)

The output from the raw() function is a series of dictionaries that look as follows:

{'lat': '32.8321666666667', 'lon': '-79.9338333333333', 'date':
'2012-11-27', 'time': '09:15:00'}

We can now process the data by referring to the columns as dictionary items, using syntax

like, for example, row['date']. Using the column names is more descriptive than referring

to the column by position; for example, row[0] is hard to understand.

To be sure that we’re using the column names correctly, the typing.TypedDict type hint

can be used to provide the expected column names.
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How it works...
The csv module handles the work of parsing the physical format. This separates the rows

from each other, and also separates the columns within each row. The default rules ensure

that each input line is treated as a separate row and that the columns are separated by ','.

What happens when we need to use the column separator character as part of data? We

might have data like this:

lan,lon,date,time,notes
32.832,-79.934,2012-11-27,09:15:00,"breezy, rainy"
31.671,-80.933,2012-11-28,00:00:00,"blowing ""like stink"""

The notes column has data in the first row, which includes the ',' column separator

character. The rules for CSV allow a column’s value to be surrounded by quotes. By

default, the quoting characters are ". Within these quoting characters, the column and row

separator characters are ignored.

In order to embed the quote character within a quoted string, the character is doubled. The

second example row shows how the value blowing "like stink" is encoded by doubling

the quote characters when they are part of the value of a column.

The values in a CSV file are always strings. A string value like 7331 may look like a number

to us, but it’s always text when processed by the csv module. This makes the processing

simple and uniform, but it can be awkward for our Python applications.

When data is saved from a manually prepared spreadsheet, the data may reveal the quirks

of the desktop software’s internal rules for data display. Data that is displayed as a date on

the desktop software is stored as a floating-point number in the CSV file.

There are two solutions to the date-as-number problem. One is to add a column in the

source spreadsheet to properly format the date data as a string. Ideally, this is done using

ISO rules so that the date is represented in the YYYY-MM-DD format. The other solution

is to recognize the spreadsheet date as a number of seconds past some epochal date. The

epochal dates vary slightly with versions of various tools, but they’re generally Jan 1, 1900.
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(A few spreadsheet applications used Jan 1, 1904.)

There’s more...
As we saw in the Combining the map and reduce transformations recipe in Chapter 9, there’s

often a pipeline of processing that includes cleaning and transforming the source data.

This idea of stacked generator functions lets a Python program process large volumes of

data. Reading one row at a time can avoid reading all the data into a vast, in-memory list.

In this specific example, there are no extra rows that need to be eliminated. However, each

column needs to be converted into something more useful.

In Chapter 10, a number of recipes use Pydantic to perform these kinds of data conversions.

See the Implementing more strict type checks with Pydantic recipe for an example of this

alternative approach.

To transform the data into a more useful form, we’ll define a row-level cleansing function.

A function can apply this cleansing function to each row of the source data.

In this case, we’ll create a dictionary object and insert additional values that are derived

from the input data. The core type hints for this Waypoint dictionary are these:

import datetime
from typing import TypeAlias, Any

Raw: TypeAlias = dict[str, Any]

Waypoint: TypeAlias = dict[str, Any]

Based on this definition of a Waypoint type, a clean_row() function can look like this:

def clean_row(
source_row: Raw

) -> Waypoint:
ts_date = datetime.datetime.strptime(

source_row["date"], "%Y-%m-%d").date()
ts_time = datetime.datetime.strptime(

source_row["time"], "%H:%M:%S").time()
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return dict(
date=source_row["date"],
time=source_row["time"],
lat=source_row["lat"],
lon=source_row["lon"],
lat_lon=(

float(source_row["lat"]),
float(source_row["lon"])

),
ts_date=ts_date,
ts_time=ts_time,
timestamp = datetime.datetime.combine(

ts_date, ts_time
)

)

The clean_row() function creates several new column values from the raw string data. The

column named lat_lon has a two-tuple with proper floating-point values instead of strings.

We’ve also parsed the date and time values to create datetime.date and datetime.time

objects, respectively. We’ve combined the date and time into a single, useful value, which

is the value of the timestamp column.

Once we have a row-level function for cleaning and enriching our data, we can map this

function to each row in the source data. We can use map(clean_row, reader) or we can

write a function that embodies this processing loop:

def cleanse(reader: csv.DictReader[str]) -> Iterator[Waypoint]:
for row in reader:

yield clean_row(row)

This can be used to provide more useful data from each row:

def display_clean(data_path: Path) -> None:
with data_path.open() as data_file:

data_reader = csv.DictReader(data_file)
clean_data_reader = cleanse(data_reader)
for row in clean_data_reader:
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pprint(row)

These cleansed and enriched rows look as follows:

>>> data = Path("data") / "waypoints.csv"
>>> display_clean(data)
{'date': '2012-11-27',
'lat': '32.8321666666667',
'lat_lon': (32.8321666666667, -79.9338333333333),
'lon': '-79.9338333333333',
'time': '09:15:00',
'timestamp': datetime.datetime(2012, 11, 27, 9, 15),
'ts_date': datetime.date(2012, 11, 27),
'ts_time': datetime.time(9, 15)}

...

The new columns such as lat_lon have proper numeric values instead of strings. The

timestamp value has a full date-time value that can be used for simple computations of

elapsed time between waypoints.

See also
• See the Combining the map and reduce transformations recipe in Chapter 9 for more

information on the idea of a processing pipeline or stack.

• See the Slicing and dicing a list recipe in Chapter 4, and the Using stacked generator

expressions recipe in Chapter 9, for more information on processing a CSV file that

isn’t in a proper 1NF.

• For more information on the with statement, see the Creating contexts and context

managers recipe in Chapter 7.

• In Chapter 10, a number of recipes use Pydantic to perform these kinds of data

conversions. See the Implementing more strict type checks with Pydantic recipe for an

example of this alternative approach.

• See https://www.packtpub.com/product/learning-pandas-second-edition

https://www.packtpub.com/product/learning-pandas-second-edition/9781787123137
https://www.packtpub.com/product/learning-pandas-second-edition/9781787123137
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/9781787123137 Learning pandas for an approach to CSV files using the pandas

framework.

Using dataclasses to simplify working with CSV
files
One commonly used data format is known as Comma-Separated Values (CSV). Python’s

csv module has a very handy DictReader class definition. When a file contains a one-row

header, the header row’s values become keys that are used for all the subsequent rows.

This allows a great deal of flexibility in the logical layout of the data. For example, the

column ordering doesn’t matter, since each column’s data is identified by a name taken

from the header row.

Using a dictionary forces us to write, for example, row['lat'] or row['date'] to refer to

data in specific columns. The built-in dict class has no provision for derived data. If we

switch to a dataclass, we have a number of benefits:

• Nicer attribute syntax like row.lat or row.date.

• Derived values can be lazy properties.

• A frozen dataclass is immutable, and the objects can be keys to dictionaries and

members of sets.

How can we improve data access and processing using dataclasses?

Getting ready
We’ll look at a CSV file that has some real-time data recorded from the log of a sailboat.

This file is the waypoints.csv file. For more information, see the Reading delimited files

with the CSV module recipe in this chapter. The data looks as follows:

lat,lon,date,time
32.8321666666667,-79.9338333333333,2012-11-27,09:15:00
31.6714833333333,-80.93325,2012-11-28,00:00:00

https://www.packtpub.com/product/learning-pandas-second-edition/9781787123137
https://www.packtpub.com/product/learning-pandas-second-edition/9781787123137
https://www.packtpub.com/product/learning-pandas-second-edition/9781787123137
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30.7171666666667,-81.5525,2012-11-28,11:35:00

The first line contains a header that names the four columns, lat, lon, date, and time. The

data can be read by a csv.DictReader object. We’d like to do more sophisticated work, so

we’ll create a @dataclass class definition encapsulating the data and the processing we

need to do.

How to do it...
We need to start with a dataclass that reflects the available data, and then we can use this

dataclass with a dictionary reader:

1. Import the definitions from the various libraries that are needed:

from dataclasses import dataclass, field
import datetime
from collections.abc import Iterator

2. Define a dataclass narrowly focused on the input, precisely as it appears in the source

file. We’ve called the class RawRow. In a complex application, a more descriptive name

than RawRow would be appropriate. This definition of the attributes may change as

the source file organization changes:

@dataclass
class RawRow:

date: str
time: str
lat: str
lon: str

As a practical matter, enterprise file formats are likely to change whenever new

software versions are introduced. It’s often helpful to formalize file schema as class

definitions to facilitate unit testing and problem resolution when changes occur.

3. Define a second dataclass where objects are built from the source dataclass attributes.

This second class is focused on the real work of the application. The source data is in
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a single attribute, raw, in this example. Fields computed from this source data are all

initialized with field(init=False) because they’ll be computed after initialization:

@dataclass
class Waypoint:

raw: RawRow
lat_lon: tuple[float, float] = field(init=False)
ts_date: datetime.date = field(init=False)
ts_time: datetime.time = field(init=False)
timestamp: datetime.datetime = field(init=False)

4. Add the __post_init__() method to eagerly initialize all the derived fields:

def __post_init__(self) -> None:
self.ts_date = datetime.datetime.strptime(

self.raw.date, "%Y-%m-%d"
).date()
self.ts_time = datetime.datetime.strptime(

self.raw.time, "%H:%M:%S"
).time()
self.lat_lon = (

float(self.raw.lat),
float(self.raw.lon)

)
self.timestamp = datetime.datetime.combine(

self.ts_date, self.ts_time
)

5. Given these two dataclass definitions, we can create an iterator that will accept

individual dictionaries from a csv.DictReader object and create the needed Waypoint

objects. The intermediate representation, RawRow, is a convenience so that we can

assign attribute names to the source data columns:

def waypoint_iter(reader: csv.DictReader[str]) -> Iterator[Waypoint]:
for row in reader:

raw = RawRow(**row)
yield Waypoint(raw)

The waypoint_iter() function creates RawRow objects from the input dictionary, and then



498 Input/Output, Physical Format, and Logical Layout

creates the final Waypoint objects from the RawRow instances. This two-step process is

helpful for isolating code changes to the source or the processing.

We can use the following function to read and display the CSV data:

def display(data_path: Path) -> None:
with data_path.open() as data_file:

data_reader = csv.DictReader(data_file)
for waypoint in waypoint_iter(data_reader):

pprint(waypoint)

How it works...
The source dataclass, the RawRow class in this example, is designed to match the input

document. The field names and types match the CSV input types. Because the names

match, the RawRow(**row) expression will create an instance of the RawRow class from the

DictReader dictionary.

From this initial, or raw, data, we can derive the more useful data, as shown in the Waypoint

class definition. The __post_init__() method transforms the initial value in the self.raw

attribute into a number of more useful attribute values.

This separation lets us manage the following two kinds of common changes to application

software:

1. The source data can change because the spreadsheet was adjusted manually. This is

common: a person may change column names or change the order of the columns.

2. The required computations may change as the application’s focus expands or shifts.

More derived columns may be added, or the algorithms may change.

It’s helpful to disentangle the various aspects of a program so that we can let them evolve

independently. Gathering, cleaning, and filtering source data is one aspect of this separation

of concerns. The resulting computations are a separate aspect, unrelated to the format of

the source data.
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There’s more...
In many cases, the source CSV file will have headers that do not map directly to valid

Python attribute names. In these cases, the keys present in the source dictionary must

be mapped to the column names. This can be managed by expanding the RawRow class

definition to include a @classmethod that builds the RawRow dataclass object from the source

dictionary.

The following example defines a class called RawRow_HeaderV2. This definition reflects a

variant spreadsheet with different column names in the header:

@dataclass
class RawRow_HeaderV2:

date: str
time: str
lat: str
lon: str

@classmethod
def from_csv(cls, csv_row: dict[str, str]) -> "RawRow_HeaderV2":

return RawRow_HeaderV2(
date = csv_row['Date of Travel (YYYY-MM-DD)'],
time = csv_row['Arrival Time (HH:MM:SS)'],
lat = csv_row['Latitude (degrees N)'],
lon = csv_row['Logitude (degrees W)'],

The instances of the RawRow_HeaderV2 class are built using the expression

RawRow_HeaderV2.from_csv(row). The objects are compatible with the RawRow class. Ei-

ther of these classes of objects can also be transformed into Waypoint instances.

For an application that works with a variety of data sources, these kinds of “raw data

transformation” dataclasses can be handy for mapping the minor variations in a logical

layout to a consistent internal structure for further processing. As the number of input

transformation classes grows, additional type hints are required. For example, the following

type hint provides a common name for the variations in input format:
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Raw: TypeAlias = RawRow | RawRow_HeaderV2

This type hint helps to unify the original RawRow and the alternative RawRow_HeaderV2

types, which are alternative definitions with compatible features. The most important

feature is the use of generators to process rows individually and avoid creating large list

objects with all of the data.

See also
• The Reading delimited files with the CSV module recipe, earlier in this chapter, also

covers CSV file reading.

• In Chapter 6, the Using dataclasses for mutable objects recipe also covers ways to use

Python’s dataclasses.

Reading complex formats using regular
expressions
Many file formats lack the elegant regularity of a CSV file. One common file format that’s

rather difficult to parse is a web server log file. These files tend to have complex data

without a single, uniform separator character or consistent quoting rules.

When we looked at a simplified log file in the Writing generator functions with the yield

statement recipe in Chapter 9, we saw that the rows look as follows:

[2016-05-08 11:08:18,651] INFO in ch09_r09: Sample Message One
[2016-05-08 11:08:18,651] DEBUG in ch09_r09: Debugging
[2016-05-08 11:08:18,652] WARNING in ch09_r09: Something might have gone
wrong

There are a variety of punctuation marks being used in this file. The csv module can’t

parse this complexity.

We’d like to write programs with the elegant simplicity of CSV processing. This means
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we’ll need to encapsulate the complexities of log file parsing and keep this aspect separate

from analysis and summary processing.

Getting ready
Parsing a file with a complex structure generally involves writing a function that behaves

somewhat like the reader() function in the csv module. In some cases, it can be easier to

create a small class that behaves like the DictReader class.

The core feature of reading a complex file is a function that will transform one line of text

into a dictionary or tuple of individual field values. Parts of this job can often be done by

the re package.

Before we can start, we’ll need to develop (and debug) the regular expression that properly

parses each line of the input file. For more information on this, see the String parsing with

regular expressions recipe in Chapter 1.

For this example, we’ll use the following code. We’ll define a pattern string with a series of

regular expressions for the various elements of the line:

import re

pattern_text = (
r"\[(?P<date>.*?)]\s+"
r"(?P<level>\w+)\s+"
r"in\s+(?P<module>\S+?)"
r":\s+(?P<message>.+)"
)

pattern = re.compile(pattern_text, re.X)

We’ve used the re.X option so that we can include extra whitespace in the regular expression.

This can help to make it more readable by separating prefix and suffix characters.

When we write a regular expression, we wrap the interesting sub-strings to capture in ().

After performing a match() or search() operation, the resulting Match object will have

the captured text for the matched substrings. The groups() method of a Match object and
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the groupdict() method of a Match object will provide the captured strings.

Here’s how this pattern works:

>>> sample_data = '[2016-05-08 11:08:18,651] INFO in ch10_r09: Sample
Message One'

>>> match = pattern.match(sample_data)
>>> match.groups()
('2016-05-08 11:08:18,651', 'INFO', 'ch10_r09', 'Sample Message One')

>>> match.groupdict()
{'date': '2016-05-08 11:08:18,651', 'level': 'INFO', 'module': 'ch10_r09',
'message': 'Sample Message One'}

We’ve provided a line of sample data in the sample_data variable. The resulting Match

object has a groups() method that returns each of the interesting fields. The value of

the groupdict() method of a match object is a dictionary, with the name provided in the

?P<name> preface to the regular expression in brackets, ().

How to do it...
This recipe is split into two mini-recipes. The first part defines a log_parser() function to

parse a single line, while the second part applies the log_parser() function for each line

of input.

Defining the parse function

Perform the following steps to define the log_parser() function:

1. Define the compiled regular expression object:

import re

pattern_text = (
r"\[(?P<date>.*?)]\s+"
r"(?P<level>\w+)\s+"
r"in\s+(?P<module>\S+?)"
r":\s+(?P<message>.+)"
)
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pattern = re.compile(pattern_text, re.X)

2. Define a class to model the resulting complex data object. This can have additional

derived properties or other complex computations. Minimally, a NamedTuple must

define the fields that are extracted by the parser. The field names should match the

regular expression capture name in the (?P<name>...) prefix:

from typing import NamedTuple

class LogLine(NamedTuple):
date: str
level: str
module: str
message: str

3. Define a function that accepts a line of text as an argument and produces a parsed

LogLine instance:

def log_parser(source_line: str) -> LogLine:

4. Apply the regular expression to create a match object. We’ve assigned it to the match

variable and also checked to see it is not None:

if match := pattern.match(source_line):

5. When the value of match is not None, return a useful data structure with the various

pieces of data from this input line:

data = match.groupdict()
return LogLine(**data)

6. When the match is None, either log the problem or raise an exception to stop pro-

cessing:
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raise ValueError(f"Unexpected input {source_line=}")

Using the log_parser() function

This portion of the recipe will apply the log_parser() function to each line of the input

file:

1. From the pathlib module, import useful class and function definitions:

>>> from pathlib import Path
>>> from pprint import pprint

2. Create the Path object that identifies the file:

>>> data_path = Path("data") / "sample.log"

3. Use the Path object to open the file in a with statement. Create the log file reader

from the open file object, data_file. In this case, we’ll use the built-in map() function

to apply the log_parser() function to each line from the source file:

>>> with data_path.open() as data_file:
... data_reader = map(log_parser, data_file)

4. Read (and process) the various rows of data. For this example, we’ll print each row:

... for row in data_reader:

... pprint(row)

The output is a series of LogLine tuples that looks as follows:

LogLine(date='2016-06-15 17:57:54,715', level='INFO', module='ch09_r10',
message='Sample Message One')
LogLine(date='2016-06-15 17:57:54,715', level='DEBUG', module='ch09_r10',
message='Debugging')
LogLine(date='2016-06-15 17:57:54,715', level='WARNING', module='ch09_r10',
message='Something might have gone wrong')
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We can do more meaningful processing on these tuple instances than we can on a line of

raw text. These allow us to filter the data by severity level, or create a counter based on

the module providing the message.

How it works...
This log file is in First Normal Form (1NF): the data is organized into lines that represent

independent entities or events. Each row has a consistent number of attributes or columns,

and each column has data that is atomic or can’t be meaningfully decomposed further.

Unlike CSV files, however, this particular format requires a complex regular expression to

parse.

In our log file example, the timestamp contains a number of individual elements – year,

month, day, hour, minute, second, and millisecond – but there’s little value in further

decomposing the timestamp. It’s more helpful to use it as a single datetime object and

derive details (like the hour of the day) from this object, rather than assembling individual

fields into a new piece of composite data.

In a complex log processing application, there may be several varieties of message fields. It

may be necessary to parse these message types using separate patterns. When we need to

do this, it reveals that the various lines in the log aren’t consistent in terms of the format

and number of attributes, breaking one of the 1NF assumptions.

We’ve generally followed the design pattern from the Reading delimited files with the CSV

module recipe, so that reading a complex log is nearly identical to reading a simple CSV

file. Indeed, we can see that the primary difference lies in one line of code:

data_reader_csv = csv.DictReader(data_file)

Compare that to the following:

data_reader_logs = map(log_parser, data_file)

This parallel construct allows us to reuse analysis functions across many input file formats.
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This allows us to create a library of tools that can be used on a number of data sources. It

can help to make analytic applications resilient when data sources change.

There’s more...
One of the most common operations when reading very complex files is to rewrite them

into an easier-to-process format. We’ll often want to save data in the CSV format for later

processing.

Some of this is similar to the Managing multiple contexts with multiple resources recipe in

Chapter 7. This recipe shows multiple open file-processing contexts. We’ll read from one

file and write to another file.

The file writing process looks as follows:

import csv

def copy(data_path: Path) -> None:
target_path = data_path.with_suffix(".csv")
with target_path.open("w", newline="") as target_file:

writer = csv.DictWriter(target_file, LogLine._fields)
writer.writeheader()
with data_path.open() as data_file:

reader = map(log_parser, data_file)
writer.writerows(row._asdict() for row in reader)

The first portion of this script defines a CSV writer for the target file. The path for the

output file, target_path, is based on the input name, data_path. The suffix is changed to

.csv.

The target file is opened with the newline character turned off by the newline='' option.

This allows the csv.DictWriter class to insert newline characters appropriate for the

desired CSV dialect.

A DictWriter object is created to write to the given file. The sequence of column headings

is provided by the LogLines class definition. This makes sure the output CSV file will

contain correct, consistent column names.
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The writeheader() method writes the column names as the first line of output. This makes

reading the file slightly easier because the column names are provided. The first row of a

CSV file can contain an explicit schema definition that shows what data is present.

The source file is opened, as shown in the preceding recipe. Because of the way the csv

module writers work, we can provide the reader generator expression to the writerows()

method of the writer. The writerows() method will consume all of the data produced by

the reader generator. This will, in turn, consume all the rows produced by the open file.

We don’t need to write any explicit for statements to ensure that all of the input rows are

processed. The writerows() function makes this guarantee for us.

The output file looks as follows:

date,level,module,message
"2016-06-15 17:57:54,715",INFO,ch09_r10,Sample Message One
"2016-06-15 17:57:54,715",DEBUG,ch09_r10,Debugging
"2016-06-15 17:57:54,715",WARNING,ch09_r10,Something might have gone wrong

The file has been transformed from the rather complex input format into a simpler CSV

format, suitable for further analysis and processing.

See also
• For more information on the with statement, see the Creating contexts and context

managers recipe in Chapter 7.

• The Writing generator functions with the yield statement recipe in Chapter 9 shows

other processing of this log format.

• In the Reading delimited files with the CSV module recipe, earlier in this chapter, we

looked at other applications of this general design pattern.

• In the Using dataclasses to simplify working with CSV files recipe, earlier in this

chapter, we looked at other sophisticated CSV processing techniques.
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Reading JSON and YAML documents
JavaScript Object Notation (JSON) is often used for serializing data. For details, see

http://json.org. Python includes the json module in order to serialize and deserialize

data in this notation.

JSON documents are used widely by web applications. It’s common to exchange data

between RESTful web clients and servers using documents in JSON notation. These two

tiers of an application stack communicate via JSON documents sent via the HTTP protocol.

The YAML format is a more sophisticated and flexible extension to JSON notation. For

details, see https://yaml.org. Any JSON document is also a valid YAML document. The

reverse is not true: YAML syntax is more complex and includes constructs that are not

valid JSON.

To use YAML, an additional module has to be installed:

(cookbook3) % python -m pip install pyyaml

The PyYAML project offers a yaml module that is popular and works well. See https:

//pypi.org/project/PyYAML/.

In this recipe, we’ll use the json module to parse JSON format data in Python.

Getting ready
We’ve gathered some sailboat racing results in race_result.json. This file contains

information on the teams, the legs of the race, and the order in which the various teams

finished each individual leg of the race. JSON handles this complex data elegantly.

An overall score can be computed by summing the finish position in each leg: the lowest

score is the overall winner. In some cases, there are null values when a boat did not start,

did not finish, or was disqualified from the race.

When computing the team’s overall score, the null values are assigned a score of one more

than the number of boats in the competition. If there are seven boats, then the team is

http://json.org
https://yaml.org
https://pypi.org/project/PyYAML/
https://pypi.org/project/PyYAML/
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given eight points for their failure to finish, a hefty penalty.

The data has the following schema. There are two fields within the overall document:

• legs: An array of strings that shows the starting port and ending port.

• teams: An array of objects with details about each team. Within each teams object,

there are several fields of data:

– name: String team name.

– position: An array of integers and nulls with a position. The order of the items

in this array matches the order of the items in the legs array.

The data looks as follows:

{
"teams": [
{

"name": "Abu Dhabi Ocean Racing",
"position": [

1,
3,
2,
2,
1,
2,
5,
3,
5

]
},

...
],
"legs": [

"ALICANTE - CAPE TOWN",
"CAPE TOWN - ABU DHABI",
"ABU DHABI - SANYA",
"SANYA - AUCKLAND",
"AUCKLAND - ITAJA\u00cd",
"ITAJA\u00cd - NEWPORT",
"NEWPORT - LISBON",
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"LISBON - LORIENT",
"LORIENT - GOTHENBURG"

]
}

We’ve only shown the first team’s details. There were a total of seven teams in this particular

race. Each team is represented by a Python dictionary, with the team’s name and their

history of finish positions on each leg. For the team shown here, Abu Dhabi Ocean Racing,

they finished in first place in the first leg, and then third place in the next leg. Their worst

performance was fifth place in both the seventh and ninth legs of the race, which were the

legs from Newport, Rhode Island, USA, to Lisbon, Portugal, and from Lorient, France, to

Gothenburg, Sweden.

The JSON-formatted data can look like a Python dictionary that contains lists within it. This

overlap between Python syntax and JSON syntax can be thought of as a happy coincidence:

it makes it easier to visualize the Python data structure that will be built from the JSON

source document.

JSON has a small set of data structures: null, Boolean, number, string, list, and object.

These map to objects of Python types in a very direct way. The json module makes the

conversions from source text into Python objects for us.

One of the strings contains a Unicode escape sequence, \u00cd, instead of the actual

Unicode character Í. This is a common technique used to encode characters beyond the

128 ASCII characters. The parser in the json module handles this for us.

In this example, we’ll write a function to disentangle this document and show the team

finishes for each leg.

How to do it...
This recipe will start by importing the necessary modules. We’ll then use these modules to

transform the contents of the file into a useful Python object:

1. We’ll need the json module to parse the text. We’ll also need a Path object to refer
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to the file:

import json
from pathlib import Path

2. Define a race\_summary() function to read the JSON document from a given Path

instance:

def race_summary(source_path: Path) -> None:

3. Create a Python object by parsing the JSON document. It’s often easiest to use

source_path.read_text() to read the file named by the Path object. We provided

this string to the json.loads() function for parsing. For very large files, an open

file can be passed to the json.load() function:

document = json.loads(source_path.read_text())

4. Display the data: The document object contains a dictionary with two keys, teams

and legs. Here’s how we can iterate through each leg, showing the team’s position

in the leg:

for n, leg in enumerate(document['legs']):
print(leg)
for team_finishes in document['teams']:

print(
team_finishes['name'],
team_finishes['position'][n])

The data for each team will be a dictionary with two keys: name and position. We can

navigate down into the team details to get the name of the first team:

>>> document['teams'][6]['name']
'Team Vestas Wind'

We can look inside the legs field to see the names of each leg of the race:



512 Input/Output, Physical Format, and Logical Layout

>>> document['legs'][5]
'ITAJAÍ - NEWPORT'

How it works...
A JSON document is a data structure in JavaScript Object Notation. JavaScript programs

can parse the document trivially. Other languages must do a little more work to translate

the JSON to a native data structure.

A JSON document contains three kinds of structures:

• Objects that map to Python dictionaries: JSON has a syntax similar to Python:

{"key": "value", ...}.

• Arrays that map to Python lists: JSON syntax uses [item, ...], which is also

similar to Python.

• Primitive values: There are five classes of values: string, number, true, false, and

null. Strings are enclosed in " and use a variety of \ escape sequences, which are

similar to Python’s. Numbers follow the rules for floating-point values. The other

three values are simple literals; these parallel Python’s True, False, and None literals.

As a special case, numbers with no decimal point become Python int objects. This

is an extension of the JSON standard.

There is no provision for any other kinds of data. This means that Python programs must

convert complex Python objects into a simpler representation so that they can be serialized

in JSON notation.

Conversely, we often apply additional conversions to reconstruct complex Python objects

from the simplified JSON representation. The json module has places where we can apply

additional processing to the simple structures to create more sophisticated Python objects.
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There’s more...
A file, generally, contains a single JSON document. The JSON standard doesn’t provide

an easy way to encode multiple documents in a single file. If we want to analyze a web

log, for example, the original JSON standard may not be the best notation for preserving a

huge volume of information.

There are common extensions, like Newline Delimited JSON (http://ndjson.org) and

JSON Lines, http://jsonlines.org, to define a way to encode multiple JSON documents

into a single file.

While these approaches handle collections of documents, there is an additional problem

that we often have to tackle: serializaing (and deserializing) complex objects, for example,

datetime objects.

When we represent a Python object’s state as a string of text characters, we’ve serialized

the object’s state. Many Python objects need to be saved in a file or transmitted to another

process. These kinds of transfers require a representation of the object state. We’ll look at

serializing and deserializing separately.

Serializing a complex data structure

The serialization to JSON works out the best if we create Python objects limited to values

of the built-in types dict, list, str, int, float, bool, and the special type for None. This

subset of Python types can be used to build objects the json module can serialize and can

be used widely by a number of programs, written in different languages.

One commonly used data structure that doesn’t serialize easily is the datetime.datetime

object.

Avoiding the TypeError exception exceptions when trying to serialize an unusual Python

object can be done in one of two ways. We can either convert the data into a JSON-friendly

structure before building the document, or we can add a default type handler to the JSON

serialization process that gives us a way to provide a serializable version of the data.

To convert a datetime object into a string prior to serializing it as JSON, we need to make

http://ndjson.org
http://jsonlines.org
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a change to the underlying data. It seems awkward to mangle the data or Python’s data

types because of a serialization concern.

The other technique for serializing complex data is to provide a function that’s used by

the json module during serialization. This function must convert a complex object into

something that can be safely serialized. In the following example, we’ll convert a datetime

object into a simple string value:

def default_date(object: Any) -> Any:
match object:

case datetime.datetime():
return {"$date$": object.isoformat()}

return object

We’ve defined a function, default_date(), which will apply a special conversion rule to

datetime objects. Any datetime.datetime instance will be replaced with a dictionary

with an obvious key – "$date$" – and a string value. This dictionary can then be serialized

by the json module.

We provide this serialization helper function to the json.dumps() function. This is done

by assigning the default_date() function to the default parameter, as follows:

>>> example_date = datetime.datetime(2014, 6, 7, 8, 9, 10)

>>> document = {'date': example_date}
>>> print(
... json.dumps(document, default=default_date, indent=2)
... )
{

"date": {
"$date$": "2014-06-07T08:09:10"

}
}

When the json module can’t serialize an object, it passes the object to the given default

function, default_date(). In any given application, we’ll need to expand this function to

handle a number of Python object types that we might want to serialize in JSON notation.
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If there is no default function provided, an exception is raised when an object can’t be

serialized.

Deserializing a complex data structure

When deserializing JSON to create Python objects, there’s a hook that can be used to

convert data from a JSON dictionary into a more complex Python object. This is called

object_hook and it is used during processing by the json.loads() function. This hook is

used to examine each JSON dictionary to see if something else should be created from the

dictionary instance.

The function we provide will either create a more complex Python object, or it will simply

return the original dictionary object unmodified:

def as_date(object: dict[str, Any]) -> Any:
if {'$date$'} == set(object.keys()):

return datetime.datetime.fromisoformat(object['$date$'])
return object

This function will check each object that’s decoded to see if the object has a single field,

and if that single field is named "$date$". If that is the case, the value of the entire

object is replaced with a datetime.datetime object. The return type is a union of Any

and dict[str, Any] to reflect the two possible results: either some object or the original

dictionary.

We provide a function to the json.loads() function using the object_hook parameter, as

follows:

>>> source = '''{"date": {"$date$": "2014-06-07T08:09:10"}}'''

>>> json.loads(source, object_hook=as_date)
{'date': datetime.datetime(2014, 6, 7, 8, 9, 10)}

This parses a very small JSON document. All objects are provided to the as_date() object

hook. Of these objects, one dictionary meets the criteria for containing a date. A Python
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object is built from the string value found in the JSON serialization.

The Pydantic package offers a number of serialization features. Recipes are shown in

Chapter 10 for working with this package.

See also
• The Reading HTML documents recipe, later in this chapter, will show how we prepared

this data from an HTML source.

• The Implementing more strict type checks with Pydantic recipe in Chapter 10 covers

some features of the Pydantic package.

Reading XML documents
The XML markup language is widely used to represent the state of objects in a serialized

form. For details, see http://www.w3.org/TR/REC-xml/. Python includes a number of

libraries for parsing XML documents.

XML is called a markup language because the content of interest is marked with tags,

written with a start <tag> and an end </tag>, used to define the structure of the data. The

overall file text includes both the content and the XML markup.

Because the markup is intermingled with the text, there are some additional syntax rules

that must be used to distinguish markup from text. A document must use &lt; instead

of <, &gt; instead of >, and &amp; instead of & in text. Additionally, &quot; is also used to

embed a " character in an attribute value. For the most part, XML parsers will handle this

transformation when consuming XML.

The example document, then, will have items as follows:

<team><name>Team SCA</name><position>...</position></team>

The <team> tag contains the <name> tag, which contains the text of the team’s name. The

<position> tag contains more data about the team’s finish position in each leg of a race.

http://www.w3.org/TR/REC-xml/
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The overall document forms a large, nested collection of containers. We can think of a

document as a tree with a root tag that contains all the other tags and their embedded

content. Between tags, there can be additional content. In some applications, the additional

content between the ends of tags is entirely whitespace.

Here’s the beginning of the document we’ll be looking at:

<?xml version="1.0"?>
<results>

<teams>
<team>

<name>
Abu Dhabi Ocean Racing

</name>
<position>

<leg n="1">
1

</leg>
...

</position>
...

</team>
...

</teams>
<legs>

<leg n="1">
ALICANTE - CAPE TOWN

</leg>
...

</legs>
</results>

The top-level container is the <results> tag. Within this is a <teams> tag. Within the

<teams> tag are many repetitions of data for each individual team, each enclosed in the

<team> tag. We’ve used ... to show where parts of the document were elided.

It’s very, very difficult to parse XML with regular expressions. Regular expressions don’t

cope well with the kinds of recursion and repetition present in XML. We need more

sophisticated parsers to handle the syntax of nested tags.
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There are two binary libraries, part of the modules xml.sax and xml.parsers.expat, to

parse XML. These have the advantage of being very fast.

In addition to these, there’s a very sophisticated set of tools in the xml.etree package. We’ll

focus on using the ElementTree class in this package to parse and analyze XML documents.

This has the advantage of offering a large number of useful features like XPath searching

to find tags in a complicated document.

Getting ready
We’ve gathered some sailboat racing results in race_result.xml. This file contains infor-

mation on teams, legs, and the order in which the various teams finished each leg. For

more information on this data, see the Reading JSON and YAML documents recipe in this

chapter.

The root tag for this data is a <results> document. This has the following schema:

• The <legs> tag contains individual <leg> tags that name each leg of the race. Each

<leg> tag will contain both a starting port and an ending port in the text.

• The <teams> tag contains a number of <team> tags with details of each team. Each

team has data structured with internal tags:

– The <name> tag contains the team name.

– The <position> tag contains a number of <leg> tags with the finish position

for the given leg. Each leg is numbered, and the numbering matches the leg

definitions in the <legs> tag.

In XML notation, the application data shows up in two kinds of places. The first is between

the start and the end tags – for example, <name>Abu Dhabi Ocean Racing</name>, has

text, ”Abu Dhabi Ocean Racing”, as well as <name> and </name> tags.

Also, data will also show up as an attribute of a tag; for example, in <leg n="1">. The tag

is <leg>, with an attribute, n, with a value of "1". A tag can have an indefinite number of

attributes.
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The <leg> tags point out an interesting problem with XML. These tags include the leg

number given as an attribute, while the position for the leg is given as the text inside the

tag. There’s no real pattern or preference to where useful data is located. Ideally, it’s always

between tags, but that’s not generally true.

XML permits a mixed content model. This reflects the case where XML is mixed in with

text and there is text inside and outside XML tags. Here’s an example of mixed content:

<p>
This has <strong>mixed</strong> content.
</p>

The content of the <p> tag is a mixture of text and a tag. The data we’re working with

in this recipe does not rely on this kind of mixed content model, meaning all the data is

within a single tag or an attribute of a tag. The whitespace between tags can be ignored.

How to do it...
We’ll define a function to convert the XML document to a dictionary with leg descriptions

and team results:

1. We’ll need the xml.etree module to parse the XML text. We’ll also need a Path

object to refer to the file. We’ve assigned a shorter name of XML to the ElementTree

class:

import xml.etree.ElementTree as XML
from pathlib import Path
from typing import cast

The cast() function is needed to force tools like mypy to treat the result as if it

were a given type. This lets us ignore the possibility of None results.

2. Define a function to read the XML document from a given Path instance:

def race_summary(source_path: Path) -> None:
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3. Create a Python ElementTree object by parsing the XML text. It’s often easiest to use

source_path.read_text() to read the file named by path. We provided this string

to the XML.fromstring() method for parsing. For very large files, an incremental

parser is sometimes more helpful. Here’s the version for smaller files:

source_text = source_path.read_text(encoding='UTF-8')
document = XML.fromstring(source_text)

4. Display the data. The XML element objects has two useful methods for navigating

the XML structure, the find() and findall() methods, to locate the first instance

of a tag and locate all instances of a tag, respectively. Using these, we can create a

dictionary with two keys, "teams" and "legs":

legs = cast(XML.Element, document.find('legs'))
teams = cast(XML.Element, document.find('teams'))
for leg in legs.findall('leg'):

print(cast(str, leg.text).strip())
n = leg.attrib['n']
for team in teams.findall('team'):

position_leg = cast(XML.Element,
team.find(f"position/leg[@n='{n}']"))

name = cast(XML.Element, team.find('name'))
print(

cast(str, name.text).strip(),
cast(str, position_leg.text).strip()

)

Within the <legs> tag, there are a number of individual <leg> tags. Each of those

tags has the following structure:

<leg n="1">ALICANTE - CAPE TOWN</leg>

The Python expression leg.attrib['n'] extracts the value of the attribute named

n from the given element. The expression leg.text.strip() will find all the text

within the <leg> tag, stripped of extra whitespace.

The find() and findall() methods of an element use XPath notation to locate tags.
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We’ll examine the features in detail in the There’s more... section of this recipe.

It’s important to note that the results of the find() function have a type hint of

XML.Element | None. We have two choices for handling the possibility of a None result:

• Use an if statement to handle the cases where the result is None.

• Use cast(XML.Element, tag.find(...)) to claim that the result is never going

to be None. If the tag is missing, the exception raised will help diagnose the mis-

match between the source document and processing expectations by our consumer

application.

For each leg of the race, we need to print the finish positions, which are contained within

the <teams> tag. Within this tag, we need to find the proper <leg> tag with the fin-

ish position for this team on the given leg. For this, we use a complex XPath search,

f"position/leg[@n='{n}']", to locate a specific instance of the <position> tag based on

the presence of a <leg> tag with a specific attribute value. The value of n is the leg number.

For the ninth leg, n=9, the f-string will be "position/leg[@n='9']". This will locate the

<position> tag containing a <leg> tag that has an attribute n equal to 9.

Because XML supports a mixed content model, all the \n, \t, and space characters in

the content are perfectly preserved by the parsing operation. We rarely want any of this

whitespace, and it makes sense to use the strip() method to remove any extraneous

characters before and after the meaningful content.

How it works...
The XML parser modules transform XML documents into a fairly complex tree structure

based on a standardized Document Object Model (DOM). In the case of the xml.etree

module, the document will be built from Element objects, which generally represent tags

and text.

XML can also include processing instructions and comments. We’ll ignore them and focus

on the document structure and content here.

Each Element instance has the text of the tag, the text within the tag, attributes that are
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part of the tag, and a tail. The tag is the name inside <tag>. The attributes are the fields

that follow the tag name, for example, the <leg n="1"> tag has a tag name of leg and an

attribute named n. Values are always strings in XML; any conversion to a different data

type is the responsibility of the application using the data.

The text is contained between the start and end of a tag. Therefore, a tag such as

<name>Team SCA</name> has "Team SCA" for the value of the text attribute of the Element

that represents the <name> tag.

Note that a tag also has a tail attribute. Consider this sequence of two tags:

<name>Team SCA</name>
<position>...</position>

There’s a \n whitespace character after the closing </name> tag and before the opening of

the <position> tag. This extra text is collected into the tail attribute of the <name> tag.

These tail values can be important when working with a mixed content model. The tail

values are generally whitespace when working in an element content model.

There’s more...
Because we can’t trivially translate an XML document into a Python dictionary, we need

a handy way to search through the document’s content. The ElementTree class provides

a search technique that’s a partial implementation of the XML Path Language (XPath)

for specifying a location in an XML document. The XPath notation gives us considerable

flexibility.

The XPath queries are used with the find() and findall() methods. Here’s how we can

find all of the team names:

>>> for tag in document.findall('teams/team/name'):
... print(tag.text.strip())
Abu Dhabi Ocean Racing
Team Brunel
Dongfeng Race Team
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MAPFRE
Team Alvimedica
Team SCA
Team Vestas Wind

The XPath query looks for the top-level <teams> tag. Within that tag, we want <team> tags.

Within those tags, we want the <name> tags. This will search for all the instances of this

nested tag structure.

See also
• There are a number of security issues related to XML documents. See the OWASP

XML Security Cheat Sheet for more information.

• The lxml library extends the core features of the element tree library, offering addi-

tional capabilities.

• The Reading HTML documents recipe, later in this chapter, shows how we prepared

this data from an HTML source.

Reading HTML documents
A great deal of content on the web is presented using HTML. A browser renders the data

very nicely. We can write applications to extract content from HTML pages.

Parsing HTML involves two complications:

• Ancient HTML dialects that are distinct from modern XML

• Browsers that tolerate HTML that’s incorrect and create a proper display

The first complication is the history of HTML and XML. Modern HTML is a specific

document type of XML. Historically, HTML started with its own unique document type

definitions, based on the older SGML. These original SGML/HTML concepts were revised

and extended to create a new language, XML. During the transition from legacy HTML to

XML-based HTML, web servers provided content using a variety of transitional document

https://cheatsheetseries.owasp.org/cheatsheets/XML_Security_Cheat_Sheet.html
https://pypi.org/project/lxml/
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type definitions. Most modern web servers use a <DOCTYPE html> preamble to state that

the document is properly structured XML syntax, using the HTML document model. Some

web servers will use other DOCTYPE references in the preamble and provide HTML that’s

not proper XML.

A further complication to parsing HTML is the design of browsers. Browsers are obligated

to render a web page in spite of poorly structured or even outright invalid HTML. The

design objective is to provide something to the user that reflects the content – not display

an error message stating the content is invalid.

HTML pages may be filled with problems and still display a good-looking

page in a browser.

We can use the standard library html.parser module, but it’s not as helpful as we’d like.

The Beautiful Soup package provides more helpful ways to parse HTML pages into

useful data structures. This is available from the Python Package Index (PyPI). See

https://pypi.python.org/pypi/beautifulsoup4.

This must be downloaded and installed with the following terminal command:

(cookbook3) % python -m pip install beautifulsoup4

Getting ready
We’ve gathered some historical sailboat racing results in Volvo Ocean Race.html. This

file contains information on teams, legs, and the order in which the various teams finished

each leg. It’s been scraped from the Volvo Ocean Race website, and it looks wonderful

when opened in a browser. For more information on this data, see the Reading JSON and

YAML documents recipe in this chapter.

While Python’s standard library has the urllib package to acquire documents, it’s common

to use the Requests package to read web pages.

https://pypi.python.org/pypi/beautifulsoup4
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Generally, an HTML page has the following overall structure:

<html>
<head>...</head>
<body>...</body>
</html>

Within the <head> tag, there will be metadata, links to JavaScript libraries, and links to

Cascading Style Sheet (CSS) documents. The content is in the <body> tag.

In this case, the race results are in an HTML <table> tag inside the <body> tag. The table

has the following structure:

<table>
<thead>

...
</thead>
<tbody>

...
</tbody>

</table>

The <thead> tag defines the column titles for a table. There’s a single row tag, <tr>, with

table heading tags, <th>, that include the column titles. For the example data, each of the

<th> tags look like this:

<th tooltipster data-title="<strong>ALICANTE - CAPE TOWN</strong>"
data-theme="tooltipster-shadow" data-htmlcontent="true" data-position="top">
LEG 1</th>

The essential display is an identifier for each leg of the race; LEG 1, in this example. This is

the text content of the <th> tag. There’s also an attribute value, data-title, that’s used by

a JavaScript function. This attribute value has the name of the leg, and it is displayed when

the cursor hovers over a column heading.

The <tbody> tag includes rows with the results for each team and race. Each <tr> table
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row tag contains <td> table data tags with the name of a team and its results. Here’s a

typical <tr> row from the HTML:

<tr class="ranking-item">
<td class="ranking-position">3</td>
<td class="ranking-avatar"><img src="..."></td>
<td class="ranking-team"> Dongfeng Race Team</td>
<td class="ranking-number">2</td>
<td class="ranking-number">2</td>
<td class="ranking-number">1</td>
<td class="ranking-number">3</td>

<td class="ranking-number" tooltipster
data-title="<center><strong>RETIRED</strong><br> Click for more
info</center>" data-theme="tooltipster-3"
data-position="bottom" data-htmlcontent="true">
<a href="/en/news/8674_Dongfeng-Race-Team-breaks-mast-crew-safe.html"
target="_blank">8</a>
<div class="status-dot dot-3"></div></td>
... more columns ...

</tr>

The <tr> tag has a class attribute that defines the CSS style for this row. This class

attribute can help our data-gathering application locate the relevant content.

The <td> tags also have class attributes. For this well-designed data, the class clarifies

what the content of the <td> cell is. Not all CSS class names are as well defined as these.

One of the cells – with the tooltipster attribute – has no text content. Instead, this cell

has an <a> tag and an empty <div> tag. That cell also contains several attributes, including

data-title, among others. These attributes are used by a JavaScript function to display

additional information in the cell.

Another complexity here is that the data-title attribute contains text that’s actually

HTML content. Parsing this bit of text will require creating a separate BeautifulSoup

parser.



Chapter 11 527

How to do it...
We’ll define a function to convert the HTML <table> to a dictionary with leg descriptions

and team results:

1. Import the BeautifulSoup class from the bs4 module to parse the text. We’ll also

need a Path object to refer to the file:

from bs4 import BeautifulSoup
from pathlib import Path
from typing import Any

2. Define a function to read the HTML document from a given Path instance:

def race_extract(source_path: Path) -> dict[str, Any]:

3. Create the soup structure from the HTML content. We’ll assign it to a variable,

soup. As an alternative, we could also read the content using the Path.read_text()

method:

with source_path.open(encoding="utf8") as source_file:
soup = BeautifulSoup(source_file, "html.parser")

4. From the soup object, we need to navigate to the first <table> tag. Within that, we

need to find the first <thead> and <tr> tags. Navigating to the first instance of a tag

is done by using the tag name as an attribute:

thead_row = soup.table.thead.tr # type: ignore [union-attr]

Aspecialcomment isusedtosilenceamypywarning. The# type: ignore [union-attr]

is needed because each tag property has a type hint of Tag | None. For some appli-

cations, additional if statements can be used to confirm the expected combinations

of tags that are present.

5. We must accumulate heading data from each <th> cell within the row:
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legs: list[tuple[str, str | None]] = []
for tag in thead_row.find_all("th"): # type: ignore [union-attr]

leg_description = (
tag.string, tag.attrs.get("data-title")

)
legs.append(leg_description)

6. To find the table’s content, we navigate down into the <table> and <tbody> tags:

tbody = soup.table.tbody # type: ignore [union-attr]

7. We need to visit all of the <tr> tags. Within each row, we want to convert the content

of all <td> tags into team names and a collection of team positions, depending on

the attributes of the td tag:

teams: list[dict[str, Any]] = []
for row in tbody.find_all("tr"): # type: ignore [union-attr]

team: dict[str, Any] = {
"name": None,
"position": []}

for col in row.find_all("td"):
if "ranking-team" in col.attrs.get("class"):

team["name"] = col.string
elif (

"ranking-number" in col.attrs.get("class")
):
team["position"].append(col.string)

elif "data-title" in col.attrs:
# Complicated explanation with nested HTML
# print(col.attrs, col.string)
pass

teams.append(team)

8. Once the legs and teams have been extracted, we can create a useful dictionary that

will contain the two collections:

document = {
"legs": legs,
"teams": teams,
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}
return document

We’ve created a list of legs showing the order and names for each leg, and we parsed the

body of the table to create a dict-of-list structure with each leg’s results for a given team.

The resulting object looks like this:

>>> source_path = Path("data") / "Volvo Ocean Race.html"
>>> race_extract(source_path)
{'legs': [(None, None),

('LEG 1', '<strong>ALICANTE - CAPE TOWN'),
('LEG 2', '<strong>CAPE TOWN - ABU DHABI</strong>'),
('LEG 3', '<strong>ABU DHABI - SANYA</strong>'),
('LEG 4', '<strong>SANYA - AUCKLAND</strong>'),
('LEG 5', '<strong>AUCKLAND - ITAJAÍ</strong>'),
('LEG 6', '<strong>ITAJAÍ - NEWPORT</strong>'),
('LEG 7', '<strong>NEWPORT - LISBON</strong>'),
('LEG 8', '<strong>LISBON - LORIENT</strong>'),
('LEG 9', '<strong>LORIENT - GOTHENBURG</strong>'),
('TOTAL', None)],

'teams': [
{'name': 'Abu Dhabi Ocean Racing',
'position': ['1', '3',

'2', '2',
'1', '2',

...

{'name': 'Team Vestas Wind',
'position': ['4',

None,
None,
None,
None,
None,
None,
'2',
'6',
'60']}]}
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Within the body of the table, many cells have None for the final race position and a complex

value in data-title attribute for the specific <TD> tag. Parsing the HTML embedded in

this text follows the pattern shown in the recipe, using another BeautifulSoup instance.

How it works...
The BeautifulSoup class transforms HTML documents into fairly complex objects based

on a Document Object Model (DOM). The resulting structure will be built from instances

of the Tag, NavigableString, and Comment classes.

Each Tag object has a name, string, and attributes. The name is the word inside < and >

characters. The attributes are the fields that follow the tag name. For example,

<td class="ranking-number">1</td> has a tag name of td and an attribute named class.

Values are often strings, but in a few cases, the value can be a list of strings. The string

attribute of the Tag object is the content enclosed by the tag; in this case, it’s a very short

string, 1.

HTML is a mixed content model. When looking at the children of a given tag, there will be

a sequence of child Tags and child NavigableText objects freely intermixed.

The BeautifulSoup parser class depends on a lower-level library to do some of the parsing

work. It’s easiest to use the built-in html.parser module for this. The alternatives offer

some advantages, like better performance or better handling of damaged HTML.

There’s more...
The Tag objects of Beautiful Soup represent the hierarchy of the document’s structure.

There are several kinds of navigation among tags. In this recipe, we relied on the way

soup.html is the same as soup.find("html"). We can also search by attribute values,

including class and id. These often provide semantic information about the content.

In some cases, a document will have a well-designed organization, and a search by the id

attribute or class attribute will find the relevant data. Here’s a typical search for a given

structure using the HTML class attribute:
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>>> ranking_table = soup.find('table', class_="ranking-list")

Note that we have to use class_ in our Python query to search for the attribute named class.

The token class is a reserved word in Python and cannot be used as a parameter name.

Given the overall document, we’re searching for any <table class="ranking-list"> tag.

This will find the first such table in a web page. Since we know there will only be one of

these, this attribute-based search helps distinguish between what we are trying to find and

any other tabular data on a web page.

See also
• The Requests package can greatly simplify the code required to interact with complex

websites.

• Se the https://www.robotstxt.org website for information on the robots.txt file

and the RFC 9309 Robots Exclusion Protocol.

• The Reading JSON and YAML documents and Reading XML documents recipes, shown

earlier in this chapter, both use similar data. The example data was created for them

by scraping the original HTML page using these techniques.

Join our community Discord space
Join our Python Discord workspace to discuss and find out more about the book:

https://packt.link/dHrHU

https://pypi.org/project/requests/
https://www.robotstxt.org
https://www.rfc-editor.org/rfc/rfc9309.html#name-informative-references
https://packt.link/dHrHU




12
Graphics and Visualization
with Jupyter Lab

A great many problems are simplified through visualization of the data. The human eye is

particularly suited to identifying relationships and trends. Given a display of a potential

relationship (or trend), it makes sense to turn to more formal statistical methods to quantify

the relationship.

Python offers a number of graphical tools. For data analytics purposes, one of the most

popular is matplotlib. This package offers numerous graphic capablities. It integrates well

with Jupyter Lab, providing us an interactive environment to visualize and analyze data.

It’s possible to do a great deal of Python development in Jupyter Lab. While wonderful,

this is not a perfect Integrated Development Environment (IDE). The one minor

drawback is the interactive notebook relies on global variables, something that isn’t ideal

for writing modules or applications. The use of global variables can lead to confusion when

transforming a notebook into a module intended for reuse.



534 Graphics and Visualization with Jupyter Lab

In addition to running Python code and displaying graphics, a Jupyter Lab notebook can also

render cells in Markdown notation. This lets us write very good-looking documentation

around the graphical analysis of data. This includes the ability to render mathematical

formulae properly. It lets us include a cell with 𝑒𝜋𝑖 + 1 = 0 kinds of mathematics close to

the relevant code.

The two packages we’ll use aren’t part of the standard Python distribution. We’ll need to

install them. In some cases, using a tool like Conda can help to install these large and

complex packages. In many cases, however, a PIP install will work when our computer is

one of the widely supported varieties.

python -m pip install matplotlib jupyterlab

Using the python -m pip command ensures that we will use the pip command that is

compatible with the currently active virtual environment.

This will conclude with a line something like the following:

Installing collected packages: pyparsing, pillow, numpy, kiwisolver, fonttools,

cycler, contourpy, matplotlib

This line will be followed by a list of new packages added to the current virtual environment.

Note that Jupyter Lab will make use of the IPython implementation of Python. This

implementation includes some additional features that are very handy for managing the

complex client-server connection between a browser and a Jupyter Lab server.

The most visible difference from the standard Python implementation is a distinct prompt.

IPython uses In [n]: as a prompt. The number, n, increases during the session. It’s

possible to recall specific previous commands and outputs using the numbering of the

prompts.

In this chapter, we’ll look at the following recipes:

• Starting a Notebook and creating cells with Python code
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• Ingesting data into a notebook

• Using pyplot to create a scatter plot

• Using axes directly to create a scatter plot

• Adding details to markdown cells

• Including Unit Test Cases in a Notebook

Starting a Notebook and creating cells with
Python code
We’ll use a terminal window to enter a command to start the lab server. The jupyter lab

command will do two things:

• It will start the backend, number-crunching server component of Jupyter Lab.

• It will also try to launch a browser window that’s connected to that server component.

The rest of our interaction with the various notebooks in the lab will be through the

browser.

In the rare case that a browser isn’t launched, the log will provide links that can be used

in your browser of choice. The IPython runtime will make use of the various installed

packages.

For this first recipe, we’ll focus on the administrative aspects of starting and stopping the

Jupyter Lab server, and creating notebooks.

Getting ready
We’re going to start a Jupyter Lab session and create a notebook to make sure that the

environment works and all of the needed components are installed.

The use of a terminal window to start Jupyter Lab is sometimes confusing. Many program-

mers are used to working inside an IDE to create and test code. Starting Jupyter Lab is
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generally done from a terminal window, not a Python editor or interactive Python REPL

session.

How to do it...
1. Open a terminal window. Change to a working directory that has access to data and

a folder for notebooks. Be sure the proper virtual environment is active. The Jupyter

Lab server is limited to working in the directory in which it was started. Enter the

following command to start Jupyter Lab:

(coobook3) % python -m jupyter lab

This will output a log of actions taken by the server. In the block of lines will be

URLs to connect to the server securely. Generally, a browser window will also open.

2. In the browser window, the Jupyter Lab window will show the launcher tab. It looks

like the page shown in Figure 12.1.
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Figure 12.1: Jupyter Lab launcher

3. Click the Python 3 (ipykernel) icon in the Notebook section of the launcher. This

will open a Jupyter Notebook named Untitled.ipynb.
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Figure 12.2: Jupyter notebook ready for work

The top of this tab has a notebook-level menu bar with a series of icons to save the

notebook, add a cell, cut a cell, copy a cell, and paste a cell, among other things.

The ▶ icon on the notebook’s menu bar will execute the cell’s Python or format the

cell’s Markup content. This can also often be done with the Shift+Enter keyboard

combination.

The remaining icons will stop the running kernel and restart it. The ▶▶ icon will

restart the notebook, running all the cells. A drop-down menu lets you choose

between the code, markdown, and raw cells. We’ll spend most of our time creating

code and markdown cells.

The initial content has a label, [ ]:, and a text box into which we can enter code. As
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we add more commands, this area will be filled with cells of code and their output.

4. To be sure we have all the required packages, enter the following code into the first

cell:

from matplotlib import pyplot as plt
from pydantic import BaseModel

Use the Shift+Enter keyboard combination or click the ▶ icon on the notebook’s

menu bar to execute the code in this cell. If it works, that confirms everything we

need is installed in the current virtual environment.

How it works...
One of the many features of Jupyter Lab is creating and editing notebooks. We can enter

code and execute code directly, saving the results for others to review. This permits a great

deal of flexibility in how to acquire, analyze, and share data.

Because we can also open a Python console and edit Python modules, we can do a tremen-

dous amount of development work using Jupyter Lab as an IDE. It’s possible to export a

notebook as a script file. This permits a transition from a sequence of cells representing a

number of good ideas into a module or application.

When confronted with a new problem or new data, using a notebook as a way to record

experiments is often encouraged. Cells that show failures reflect lessons learned and are

worth preserving. Cells that show success, of course, serve to guide colleagues through the

learning process.

The Jupyter Lab environment is designed to be used in a variety of container configurations.

Two common container architectures are:

• A large analytical host separate from an analyst’s laptop.

• An individual laptop acting as both the host for the Jupyter Lab server process and

also the host for the browser session. This is the environment created for this recipe.

The idea is to be able to scale up and process a very large dataset on a very expensive,
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very large host. This number-crunching host runs the Jupter Lab and the kernel for our

notebook. Our laptop only runs a browser and a terminal window.

There’s more...
The working notebook needs to be saved or the current state will be lost. Save early and

save often to make sure no precious results are lost. There are two ways to stop the Jupyter

Lab server when we’re finished using it.

• From the Jupyter Lab browser window.

• From the terminal window.

To stop processing from the browser window, use the File menu. At the bottom of this

menu is the Shut Down menu item. This stops the server and disconnects the browser

session.

To stop processing from the terminal window, use Control+C (Ĉ) twice to stop the pro-

cessing. Entering Ĉ once will get a Shutdown this Jupyter server (y/[n])? prompt. A

second Ĉ (or a y answer) is required to stop the process.

See also
• In the Ingesting data into a notebook section, we’ll move beyond the basics and load a

notebook with data.

• See Learning Jupyter for an in-depth book on Jupyter Lab.

Ingesting data into a notebook
As a sample data analytics problem, we’ll look at a data collection containing four closely

related series of samples. The file is named anscombe.json. Each series of data is a sequence

of (𝑥, 𝑦) data pairs and a name for the series, represented as a Python dictionary. The

series key has the name of the series. The data key is the list of data pairs. The four series

are sometimes called Anscombe’s Quartet.

We’ll create a notebook to ingest the data. To begin the work, this initial recipe will focus

https://www.packtpub.com/product/learning-jupyter/9781785884870
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on ordinary Python expressions to confirm the data was loaded properly. In later recipes,

we’ll use visualization and statistical methods to see if there are correlations between the

two variables.

Getting ready
There are a few preliminary steps:

1. Make sure the Jupyter Lab server is running. If it isn’t, see the Starting a Notebook

and creating cells with Python code recipe to start the server and open a notebook.

2. Locate the browser window for this server. When starting a server, a browser window

is often displayed that connects to the server.

3. Start a new notebook for this recipe.

If we close the browser application, or if Python can’t launch our preferred browser, then

the Jupyter Lab server will run, but there’s no obvious browser window to connect to the

server. We can locate the server by making an inquiry, using this jupyter command:

(cookbook3) % python -m jupyter server list

This will identify all running servers. It will provide a URL to connect to the server. The

output might look something like the following:

(cookbook3) % jupyter server list

Currently running servers:

http://localhost:8888/?token=85e8ad8455cd154bd3253ba0339c783ea60c56f836f7b81c :: /Users/

slott/Documents/Writing/Python/Python Cookbook 3e

The actual URL shown in the output on your computer can be used to connect to the server.

How to do it...
1. Since we’re going to read a file in the JSON format, the first cell can be a code cell

with the import statements required.
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import json
from pathlib import Path

Using the Enter (or Return) key in the cell adds lines of code.

Using Shift+Enter (or Shift+Return) will execute the cell’s code and open a new cell

for more code. This also happens when we click the ▶ icon on the menu bar to

execute the code, followed by the + icon on the menu bar to add a new, empty cell.

After a cell is executed, the number is filled in for the cell label; the first cell shows

[1]: when the cell has been executed.

2. It makes sense to put the whole “read and extract data” process into a single cell:

source_path = Path.cwd().parent.parent / "data" / "anscombe.json"
with source_path.open() as source_file:

all_data = json.load(source_file)
[data['series'] for data in all_data]

The path from the current working directory to data assumes the notebook is in a

src/ch12 folder, and the src folder is a peer of the data folder. If your project isn’t

structured like this, then the computation of source_path will need to change.

When we execute this cell, we’ll see the names of the four data series in this collection.

They look like this:
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Figure 12.3: Jupyter notebook with two cells of code

3. We can look at the (𝑥, 𝑦) pairs in this source. A cell with an expression is sufficient

to show the value of the expression:

all_data[0]['data']

4. We can define a class to hold these data pairs. Because the data is JSON-formatted,

and because the pydantic package offers really good JSON parsing, we can consider

extending the BaseModel class.

This requires rewriting cell 1 to extend the sequence of imports to include:

import json
from pathlib import Path
from pydantic import BaseModel

We can click the ▶▶ icon to restart the notebook, running all the cells. This is essential

when we go back toward the top and make a change.

At the top of the page, over the tabs for the launcher at the notebooks, there’s a

higher-level menu bar with items like File, Edit, View, Run, Kernel, Tabs, Settings,

and Help. The Kernel menu has a Restart Kernel and Run All Cells... item that

has the same functionality as the ▶▶ icon in the notebook menu bar.
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5. Define a class for an X-Y pair. Then, define a class for the series of individual pairs:

class Pair(BaseModel):
x: float
y: float

class Series(BaseModel):
series: str
data: list[Pair]

6. Then, we can populate the class instances from the all_data object:

clean_data = [Series.model_validate(d) for d in all_data]

7. Use an expression like clean_data[0] to see a specific series.

8. We have an awkward problem where each series has a position in the clean_data

sequence, and a name. Using a mapping is better than using a sequence:

quartet = {s.series: s for s in clean_data}

9. Use an expression like quartet['I'] to see a specific series.

How it works...
The Python in each cell is not dramatically different from the code used in the Reading

JSON and YAML documents recipe in Chapter 11. We’ve used Jupyter Lab to start an IPython

kernel that evaluates the code in each cell.

When a cell’s code ends with an expression, the Jupyter Notebook will display any non-

None output. This is similar to the command-line REPL. A print() function isn’t needed

to display the results of the final expression in a cell.

The Jupyter notebook interface is a distinct way to access Python and provides a richly

interactive environment. Underneath the clever editing and display features, the language

and libraries are still Python.
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There’s more...
After reviewing the notebook, it’s clear we can optimize some of the processing. There’s

no real benefit in creating the all_data and clean_data objects. The real goal is to work

with the quartet object.

We can use the following cell to parse and load the series:

source_path = Path.cwd().parent.parent / "data" / "anscombe.json"
with source_path.open() as source_file:

json_document = json.load(source_file)
source_data = (Series.model_validate(s) for s in json_document)
quartet = {s.series: s for s in source_data}

It helps to insert a new cell after the Pydantic class definition with this code. We can then

execute the code. A cell with an expression like quartet['IV'] can be used to confirm

that the data was loaded.

A more complete check would be the following cell:

for name in quartet:
print(f"{name:3s} {len(quartet[name].data):d}")

This shows each series name and the number of points in the data for the series.

Once this works, we can remove prior cells, add Markdown, and rerun the notebook to

make sure it works properly and neatly displays the data to be analyzed.

See also
• See the Reading JSON and YAML documents recipe in Chapter 11 for more on JSON-

format files.

• The Implementing more strict type checks with Pydantic recipe in Chapter 10 covers

some features of the Pydantic package.
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Using pyplot to create a scatter plot
The matplotlib project has an immense variety of graph and plot types that it can produce.

It is extremely sophisticated, which makes it challenging to use for some kinds of analysis.

A particularly useful subset of features is collected in a sub-package called pyplot. This

group of features reflects some common assumptions and optimizations that work out

very nicely when working in Jupyter Lab. In other contexts, these assumptions are often

limiting.

To make things easier, the pyplot package will automatically manage the figure being

created. It will track any sub-plots that fill in the picture. It will track the various axes and

artists that comprise those subplots.

For more information, see Parts of a Figure in the matplotlib tutorial. This diagram

identifies the various elements of a figure and what parts of matplotlib are used to create

or control those elements.

In the Ingesting data into a notebook recipe, we looked at a collection of data that had four

data series. The file that contains this data section is named anscombe.json. Each series of

data is a sequence of (𝑥, 𝑦) data pairs, and each series has a name.

The general approach will be to define some useful classes that provide helpful definitions

of the series and the samples within a series. Given those definitions, we can read the

anscombe.json file to acquire the data. Once it is loaded, we can then create a figure that

shows the data pairs.

Getting ready
There are a few preliminary steps:

1. Start the Jupyter Lab server and locate the browser window for it. If it isn’t running,

see the Starting a Notebook and creating cells with Python code recipe to start a server.

See Ingesting data into a notebook for advice on locating a server that runs in the

background.

https://matplotlib.org/stable/users/explain/quick_start.html#parts-of-a-figure
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2. Start a new notebook for this recipe.

How to do it...
1. Start the notebook with a cell that describes what the notebook will have in it. This

should be a Markdown cell to record some notes:

# Anscombe's Quartet

The raw data has four series. The correlation coefficients are high.
Visualization shows that a simple linear regression model is
misleading.

## Raw Data for the Series

2. Create the imports required to use Pydantic to load JSON-formatted data. This will

be a code cell:

import json
from pathlib import Path
from pydantic import BaseModel

3. Define two classes that define each series of data. One class has the individual (𝑥, 𝑦)

pair. The other is the series of pairs, along with the series name:

class Pair(BaseModel):
x: float
y: float

class Series(BaseModel):
series: str
data: list[Pair]

4. Write a cell with the code required to read the data, and create a global variable with

the cleaned data:

source = Path.cwd().parent.parent / "data" / "anscombe.json"
with source.open() as source_file:

json_document = json.load(source_file)
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source_data = (Series.model_validate(s) for s in json_document)
quartet = {s.series: s for s in source_data}

The value of clean_data contains a list of four individual Series objects. An expres-

sion like quartet['I'] will reveal one of the series.

5. Add a Markdown cell showing what the next part of this notebook will contain:

## Visualization of each series

6. Write the needed import for the pyplot package. This is often renamed plt to

simplify the code that is written in the Jupyter notebook cells:

from matplotlib import pyplot as plt

7. For an individual series, we’ll need to extract two parallel sequences of numbers.

We’ll use list comprehensions on clean_data[0].data to extract the x values for

one sequence and the y values for a second, parallel sequence:

x = [p.x for p in quartet['I'].data]
y = [p.y for p in quartet['I'].data]

8. The scatter() function creates the essential scatter plot. We provide two parallel

sequences: one has the 𝑥 values and one has the 𝑦 values. The title() function will

place a label above the plot. We’ve constructed a string from the series name. While

not always necessary, a plt.show() is sometimes needed to display the resulting

plot:

plt.scatter(x, y)
plt.title(f"Series {quartet['I'].series}")
plt.show()
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The resulting notebook will include cells like this:

Figure 12.4: Jupyter notebook with a figure for Series I

How it works...
The underlying matplotlib package has a tall stack of components to support graphics and

visualizations of data. One foundation is the idea of a backend component to integrate with

the wide variety of contexts, frameworks, and platforms in which Python is used. This also

includes interactive environments like Jupyter Lab. It also includes static, non-interactive
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backends that can produce a variety of image file formats.

Another foundational element of matplotlib is the API that lets us create a Figure object

populated with Artist objects. The collection of Artist objects will draw the titles, axes,

data points, and lines we expect to see in the figure. The Artist objects can be interactive,

permitting them to refresh a figure when the data changes, or when the display shape

changes.

In this kind of analysis notebook, we’re often more interested in a static figure that’s drawn

once. Our objective is to save the notebook for other people to view and understand the

data. The ultimate goal is to communicate relationships or trends in the data.

The pyplot package contains a number of simplifications for the overall matplotlib API.

These simplifications save us from some of the tedious details of keeping track of the

various axes instances that are used to create a plot displayed in a figure.

There’s more...
We’ll often want to see several closely related plots as part of a single figure. In this case,

where we have four series of data in a single file, it seems particularly helpful to put all

four plots together.

This is done using plt.figure() to create an overall figure. Within this figure, each

plt.subplot() function can create a distinct subplot. The layout of the figure is provided

as part of each subplot request as three numbers: the number of plots arranged vertically

within the figure, the number plots horizontally in the figure, and this particular plot’s

location within that layout.

We might use 2, 2, n to state that the figure has a 2 × 2 arrangement, and this specific

subplot has position n. The positions are counted across the figure from top left to bottom

right. The position can also span more than one section of the figure so that we have one

large plot and a number of smaller plots.

To make it easier to extract the x and y attributes of each plot, we’ll modify the definition

of the Series class. We’ll add two properties, x and y, that will extract all of the series
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values. This redefines the Series class as follows:

class Series(BaseModel):
series: str
data: list[Pair]

@property
def x(self) -> list[float]:

return [p.x for p in self.data]

@property
def y(self) -> list[float]:

return [p.y for p in self.data]

Adding these properties permits some slight simplifications in the plt.scatter() function.

The overall figure can be created by a cell with the following code:

plt.figure(layout='tight')
for n, series in enumerate(quartet.values(), start=1):

title = f"Series {series.series}"
plt.subplot(2, 2, n)
plt.scatter(series.x, series.y)
plt.title(title)

After changing the new Series class definition, the notebook’s cells must be rerun from

the beginning. In the Run menu, the item to Restart the kernel and run all cells will

incorporate the revised class and reload the data.

There are numerous options and parameters for the definition of the figure overall, the

scatter plot, and the axes for the scatter plot. Additionally, there are numerous alternative

kinds of plots available. The Matplotlib Examples Gallery shows dozens of varieties of

plots. For example, in a case where we have an Counter object, we can create a bar chart

using a sequence of 𝑥 values and a sequence of height values, using the bar() function

instead of the scatter() function. See the Creating dictionaries – inserting and updating

recipe in Chapter 5 for examples of creating a Counter object to summarize frequencies in

source data.

https://matplotlib.org/stable/gallery/index.html
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See also
• See the Reading JSON and YAML documents recipe in Chapter 11 for more on JSON-

format files.

• The Implementing more strict type checks with Pydantic recipe in Chapter 10 covers

some features of using the Pydantic package.

• The Ingesting data into a notebook recipe earlier in this chapter looks at JSON loading

in more depth.

• See the Matplotlib Examples Gallery for dozens of varieties of plots.

Using axes directly to create a scatter plot
Many ordinary graphics visualizations can be done using the functions available directly

in the pyplot module. In the previous recipes, we used the scatter() function to draw a

scatter plot showing the relationship between two variables. Other functions like bar(),

pie(), and hist() will create other kinds of plots from our raw data. However, there

are times when the readily available functions on the pyplot module aren’t completely

appropriate, and we’d like to do a few more things in our images.

In this recipe, we’ll add a legend box to each of the sub-plots to show the linear regression

parameters that fit the scatter-plot data.

In the Ingesting data into a notebook recipe, we looked at a collection of data that had four

series of data. The file that contained this data is named anscombe.json. Each series of

data is a dictionary with a sequence of (𝑥, 𝑦) data pairs, and a name for the series.

The general approach will be to define some classes that provide helpful definitions of

the series and the samples within a series. Given those definitions, we can read the

anscombe.json file to acquire the data. Once it is loaded, we can then create a figure that

shows the data pairs.

The statistics module in Python provides two handy functions, correlation() and

regression(), that help us annotate each plot with some parameters.

https://matplotlib.org/stable/gallery/index.html
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Getting ready
There are a few preliminary steps:

1. Ensure the Jupyter Lab server is running, and locate the browser window for it. The

Starting a Notebook and creating cells with Python code recipe shows how to start a

server. The Ingesting data into a notebook has some additional advice on locating a

server running in the background.

2. Start a new notebook for this recipe.

How to do it...
1. Start the notebook with a cell that describes what the notebook will have in it. This

should be a cell with Markdown content instead of code content:

# Anscombe's Quartet

Visualization with correlation coefficients and linear regression
model.

## Raw Data for the Series

2. Create the imports required to use Pydantic to load JSON-formatted data. This will

be a code cell:

import json
from pathlib import Path
import statistics

from pydantic import BaseModel

3. Define two classes that define each series of data. One class has the individual (𝑥, 𝑦)

pair:

class Pair(BaseModel):
x: float
y: float



554 Graphics and Visualization with Jupyter Lab

The second class is series of pairs, along with the series name. This includes two

methods to compute the useful statistical summaries like correlation and regression:

return [p.y for p in self.data]

@property
def correlation(self) -> float:

return statistics.correlation(self.x, self.y)

4. Create a cell to ingest the data, creating a dictionary that maps a series name to the

related Series instance:

source = Path.cwd().parent.parent / "data" / "anscombe.json"
with source.open() as source_file:

json_document = json.load(source_file)
source_data = (Series.model_validate(s) for s in json_document)
quartet = {s.series: s for s in source_data}

5. Confirm that the previous cells all work. Create a cell to evaluate an expression like

quartet['I'].correlation. Rounded, the result will be 0.816. Interestingly, the

result is almost the same for all four series.

6. Start a cell with an expression to create a figure using the figure() function. Provid-

ing a value of 'tight' for the layout produces a good-looking figure. It’s essential

to assign this to a variable so that the object persists until it can be displayed by the

plt.show() function:

fig = plt.figure(layout='tight')

Add a line to the cell to create a collection of axes for displaying four subplots

within the overall figure. The subplot_mosaic() function provides a great deal of

sophisticated layout capabilities. The list-of-lists structure will create a grid that’s

square. The axes will be assigned to a dictionary, ax_dict with four distinct keys.

We’ve chosen the keys to match the series names and positioned them in rows and

columns of the resulting figure, using lists of lists:
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ax_dict = fig.subplot_mosaic(
[

["I", "II"],
["III", "IV"],

],
)

7. Add the scatter plot and the text caption. We can also build a string with the

correlation coefficient, 𝑟 . This can be placed near the bottom-right corner of the

plot using a relative position that is specified as (.95, .05); this is transformed by the

ax.transAxes transformer into coordinates based on the sizes of axes.

for name, ax in ax_dict.items():
series = quartet[name]
ax.scatter(series.x, series.y)
ax.set_title(f"Series {name}")
eq1 = rf"$r = {series.correlation:.3f}$"
ax.text(.95, .05, f"{eq1}",

fontfamily='sans-serif',
horizontalalignment='right', verticalalignment='bottom',
transform=ax.transAxes)

plt.show()

The use of $ around the string, rf"$r = {...}$", forces matplotlib to apply

TEXformatting rules to the text, creating a properly formatted mathematical equation.

8. When creating an explicit figure, a final call to the show() function is needed to

display the image:

plt.show()

How it works...
The graphics technology stack in matplotlib includes an immense variety of Artist

subclasses. Each of these will create some part of the final image. In this case, we’ve used

the subplot_mosaic() function to create four subplot objects, each with a set of axes.
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We’ve used the axes object to display the data, specifying that a scatter plot organization

should be used. The title for the plot and the text block with the correlation coefficient also

draw details in the plot.

At some point, the display can become cluttered with details. A good presentation of data

needs to have a message. There are many interesting books and articles written about good

(and bad) ways to present data to an audience. Consider Matplotlib for Python Developers

from Packt Publishing as a way to learn more about data visualization.

There’s more...
The correlation value suggests there’s a relationship between the 𝑥 and 𝑦 variables in the

series. We can use linear regression to compute the parameters for a linear model that

predicts the 𝑦 value when given an 𝑥 value.

A linear_regression() function is part of the statistics module in the standard library.

The result of this function is a tuple with slope and intercept values that describe a linear

relationship, 𝑦 = 𝑚𝑥 + 𝑏, where 𝑚 is the slope and 𝑏 is the intercept.

We can update the cells of this notebook to add the linear regression computation. There

are several changes:

1. Change the Series class to add another property that performs the linear regression

computation:

@property
def regression(self) -> tuple[float, float]:

return statistics.linear_regression(self.x, self.y)

2. Add a cell to confirm that the regression works. The cell can display the expression

quartet['I'].regression The result will have a slope of almost 0.5 and an intercept

of almost 3.0. Interestingly, this is almost identical for all four series.

3. Change the subplot label to include the regression parameters:



Chapter 12 557

lr = series.regression
eq1 = rf"$r = {series.correlation:.3f}$"
eq2 = rf"$Y = {lr.slope:.1f} \times X + {lr.intercept:.2f}$"
ax.text(.95, .05, f"{eq1}\n{eq2}",

fontfamily='sans-serif',
horizontalalignment='right', verticalalignment='bottom',
transform=ax.transAxes)

ax.axline((0, lr.intercept), slope=lr.slope)

After these changes, restarting the kernel and running all cells will show that each of the

four subplots shows both the correlation coefficient and the equation for a line that predicts

𝑦 values from given 𝑥 values.

The axline() function can be used to add the regression line to each subplot. We’ve

provided a known point, the (0, 𝑏) intercept, and the slope, 𝑚. The line is automatically

constrained to fit within the range of the axes. This may be little more than more visual

clutter, or it may be helpful for understanding the relationship between the variables:

ax.axline((0, lr.intercept), slope=lr.slope)

See also
• The Ingesting data into a notebook recipe earlier in this chapter has more details on

ingesting data.

• The matplotlib examples pages include dozens of plots suitable for statistical analy-

sis. See the https://matplotlib.org/stable/gallery/statistics/index.html

Statistics Gallery web page for a large number of examples of data visualizations.

• See the matplotlib https://matplotlib.org/stable/users/resources/index.

html#books-chapters-and-articles books, chapters and articles web page for

books on data visualization.

https://matplotlib.org/stable/gallery/statistics/index.html
https://matplotlib.org/stable/users/resources/index.html#books-chapters-and-articles
https://matplotlib.org/stable/users/resources/index.html#books-chapters-and-articles
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Adding details to markdown cells
The point of data analytics is to offer deeper insights into numeric measures to show

trends and relationships. The object, in general, is to help someone make a decision that’s

fact-based. The decision can be as simple as deciding to recharge a vehicle before a trip,

based on the anticipated distance and time available for charging. Alternatively, it can be

as profound as responding to a medical diagnosis with effective therapies.

Visualization is one aspect of presenting data for an audience to help their understanding.

Adjacent to visualization is organizing the presented material into a coherent story. Further,

we also need to provide supplemental details beyond figures and images. See The Manager’s

Guide to Presentations from Packt Publishing for more on this topic.

Getting ready
We’ll update a notebook with some cells that contain Markdown formatting. We can start

with a notebook created in one of the recipes earlier in this chapter. An alternative is to

create a new, empty notebook that contains formatted text.

A notebook can be exported as a PDF file directly from Jupyter Lab. This is the quickest

and easiest publication route. We may want to hide some code cells from these kind of

publications.

For more polished results, it helps to use separate formatting tools. A notebook can be

exported as a Markdown file (or Restructured Text or LATEX). Appropriate programs like

Pandoc, Docutils, or a a TEXtoolset can then create documents from the exported notebook.

Tools like Quarto and Jupyter {Book} can also be used to create polished output.

The essential basics, however, are a sensible organization, clear writing, and Markdown-

formatting in the notebook cells. An interesting part of using Markdown is that a cell’s

content is essentially static. The notebook’s syntax won’t take computed values and inject

them into a Markdown cell.

There are two ways to create dynamic content:

https://www.packtpub.com/product/the-managers-guide-to-presentations/9781783000142
https://www.packtpub.com/product/the-managers-guide-to-presentations/9781783000142
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• Install the Python Markdown extension. See Extensions in the Jupyter Lab documen-

tation. After installing this extension, code can be included in a Markdown cell by

surrounding it with {{ and }}.

• Build the Markdown content in a code cell, and then render the results as Markdown.

We’ll look at this in a little more depth next.

How to do it...
1. Import the required function and class from the IPython.display module:

from IPython.display import display, Markdown

2. Create a Markdown object with the text to render:

m = Markdown(rf"""
We can see that $r = {quartet['I'].correlation:.2f}$; this is a strong
correlation.

This leads to a linear regression result with $y = {r.slope:.1f}
\times x + {r.intercept:.1f}$ as the best fit
for this collection of samples.
Interestingly, this is true for all four series in spite of the
dramatically distinct scatter plots.
""")

The triple-quoted string has two prefix characters, r and f. This is a “raw” formatted

string. The formatted string is essential for injecting Python objects into text. See

Building complicated strings with f-strings in Chapter 1.

A raw string is required because LATEX math formatting requires extensive use of \

characters. In this context, we emphatically do not want Python to consider the \ as

an escape character; we need to ensure these characters are left alone, untouched,

and provided to the Markdown engine without change.

Using raw strings means it’s very difficult to include a newline character. Therefore,

it’s best to use a triple-quoted string that can span multiple lines.

https://github.com/ipython-contrib/jupyter_contrib_nbextensions/tree/master/src/jupyter_contrib_nbextensions/nbextensions/python-markdown
https://jupyterlab.readthedocs.io/en/stable/user/extensions.html
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3. Use the display() function to render the cell results as Markdown instead of unfor-

matted text:

display(m)

This creates output in Markdown that includes the results of a computation.

How it works...
Given a code cells that computes a result value, a notebook uses an object’s __repl__()

method to display the object. The object can have additional methods defined that are used

by IPython to format the object in distinct ways. In this case, the use of the Markdown class

creates an object that is rendered as nicely formatted text.

The IPython.display package contains a number of helpful functions. The display()

function allows a Python code cell to interact with the browser-based rendering of the

notebook.

The creation of the block of text and the Markdown object is part of the back-end number-

crunching kernel that’s running the notebook’s code. From this, the rendered text is sent to

the browser. This text can also be send to the other external tools for publishing a notebook,

giving us nicely formatted cells with content computed by the notebook.

There’s more...
When we turn to sharing a notebook, we often have two distinct venues:

• Presentations, where the notebook has key points to back up a presenter’s remarks

to stakeholders.

• Publications, where the notebook – or a document produced from the notebook – is

distributed to stakeholders.

In some instances, we’ll need to create both a slide deck and a report. This requires some

care to be sure that computed results are consistent among all variants of the notebook.

One approach is to have two final report notebooks built around importing a core notebook

that has data ingestion and computation features.
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The %run magic command can be put into a cell to run a notebook and collect the result

variables. This will also display the output from print() and any plots that are created.

Because the output is displayed separately, the core notebook should focus on ingesting

and computing results without any display features.

For presentations, use the Property Inspector on the right side of the Jupyter Lab page.

This lets us set a cell’s Slide Type for a presentation.

We can create Markdown content with the key points, the visualizations, and all the

necessary supporting information. Once we have the content, we can mark the cells using

the Property Inspector. Finally, we need to save the notebook as a presentation. In the File

menu, the Save and Export Notebook As... menu item presents a list of alternatives. The

Reveal.js Slides will create an HTML file with the slide presentation.

The exported HTML document can be opened in a browser to provide the supporting

visuals for a presentation. It can be emailed to attendees who only want the presentation

materials.

To create a final document (often in the PDF format), we have an array of choices:

• Export as AsciiDoc, Markdown, or Restructured Text. From these formats, tools like

Pandodc, Docutils, or Sphinx can be used to create a final output file.

• Export as LaTeX. From this format, the TEXtools need to be used to create a final

PDF. These tools can be rather complicated to install and maintain, but the results

are stellar.

• Export as a PDF. There may be a webpdf option, which uses Playwright and the

Chromium library to render a PDF. There may also be a Qtpdf option, which uses

the Qt library to create a PDF.

Tools like Quarto and Jupyter {Book} can also be used to create polished output. These

include their own publication tools to create final, outstanding PDF documents from the

Markdown in a notebook.

An important thing to remember about this publication pipeline is this imperative: don’t
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copy and paste from a notebook.

Copying results from a notebook into a word-processing document is a way

to introduce errors and omissions.

Publishing directly from a notebook eliminates the possible errors caused

by having two – potentially conflicting – copies of the computation results.

See also
• See Writing clear documentation strings with RST markup in Chapter 3 for more on

using ReStructured Text to document code.

• See Including descriptions and documentation in Chapter 2 for more on documentation

for Python modules.

• See Using pyplot to create a scatter plot in this chapter for data analysis examples that

require publication.

Including Unit Test Cases in a Notebook
It’s difficult to be sure that any software is trustworthy without a test suite. It can be

awkward to unit test code in a Jupyter Notebook. One of the primary reasons testing

is difficult is that a notebook is often used to ingest a very large volume of data. This

means that computations in individual cells can take a very long time to complete. For a

sophisticated machine learning model, this kind of time-consuming processing is typical.

One approach to creating test cases is to create a “template” notebook used for unit testing.

The template can be cloned and a source Path value changed to read the large data that is

of real interest.

Since notebook .ipynb files are in the JSON format, it’s relatively easy to write a program to

confirm that the cells of a notebook used to produce the desired results are (nearly) identical

to the template notebook used for testing. Cells with specific filenames are expected to

change; the rest are expected to remain intact.
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A good notebook design transforms multi-statement cells into function (and class) defini-

tions. This means the important results are computed by functions that have test cases.

These test cases can be included in the function’s docstring. We’ll address doctest in depth

in Chapter 15.

In addition to doctest examples for functions and classes, we can use the assert statement

in a cell to confirm that a notebook’s cells work as expected. This statement is a shorthand

for an if-raise statement pair. If the expression in the assert statement is not true, an

AssertException is raised. This will stop the notebook, revealing a problem.

Getting ready
We’ll start with the notebook from Using axes directly to create a scatter plot, as it has

a complicated cell to ingest data that can be converted into a function and some class

definitions that can be supplemented with doctest examples.

How to do it...
1. Refactor the data ingestion cell to be a function with a name like ingest(). The

parameter should be the Path and the return value should be the dictionary with the

four Anscombe series. The original side-effect of this cell will be created in a cell

below. Here’s the function definition:

def ingest(source: Path) -> dict[str, Series]:
"""
>>> doctest example
"""
with source.open() as source_file:

json_document = json.load(source_file)
source_data = (Series.model_validate(s) for s in
json_document)
quartet = {s.series: s for s in source_data}

return quartet

We haven’t filled in the doctest example; we’ve only left reminder text. These kinds

of examples are the subject of recipes in Chapter 15.
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2. Add a cell to ingest the test data:

source = Path.cwd().parent.parent / "data" / "anscombe.json"
quartet = ingest(source)

3. Add some assert statements to show the expected properties of the quartet object.

These combine an expression and the expected output into a single statement:

assert len(quartet) == 4, f"read {len(quartet)} series"
assert list(quartet.keys()) == ["I", "II", "III", "IV"], f"keys were
{list(quartet.keys())}"

Often, we’ll replace an informal test cell with a more formal assertion. It’s common

to have a cell with an expression like quartet.keys(). When developing a notebook,

we’ll look at the results of this expression to confirm that the data ingestion worked.

This manual test case can be upgraded with an automated test in the form of assert

statements.

4. Be sure to save the notebook. We’ll assume it’s called recipe_06.ipynb.

5. Open a new terminal window and enter the following command:

(cookbook3) % jupyter execute src/ch12/recipe_06.ipynb

The notebook should execute flawlessly. There are two important lines in the output:

[NbClientApp] Executing src/ch12/recipe_06.ipynb

[NbClientApp] Executing notebook with kernel: python3

These lines confirm the file and the kernel being used. The absence of other output

tells us no exceptions were raised.

How it works...
The jupyter execute command will start a kernel and run the notebook’s cells to comple-

tion. This is handy for confirming that it works.



Chapter 12 565

We have to be sure to reject the false negative of a test procedure that fails to uncover a

problem. To be sure the testing approach is sound, we can inject a failing assertion into the

notebook and observe the expected error.

Add a cell like the following:

value = 355/113
assert value == 3.14, f"invald {value}"

This will compute a value and then make a demonstrably false assertion about it. This will

lead to a very visible failure when we use the jupyter execute command. The output will

result in the following:

---------------------------------------------------------------------------

AssertionError Traceback (most recent call last)

Cell In[4], line 2

1 value = 355/113

----> 2 assert value == 3.14, f"invald {value}"

AssertionError: invald 3.1415929203539825

The OS status code will also be non-zero, indicating a failure to execute properly. This

provides ample confirmation that an error will produce a noisy, explicit failure. Once we’re

sure this works, we can remove it from the notebook, confident that the other tests really

will discover problems.

There’s more...
For the special case of comparing float values, we shouldn’t use simple == comparison. As

noted in Choosing between float, decimal, and fraction, float values are an approximation,

and small changes to the order of operations can influence the right-most digits.

For float values, the math.isclose() function is essential. Look back at the notebook for

Using axes directly to create a scatter plot. The Series class definition computed a correlation

and a linear regression value. We might create a cell like the following to test this:
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from math import isclose
test = Series(

series="test",
data=[Pair(x=2, y=4), Pair(x=3, y=6), Pair(x=5, y=10)]

)
assert isclose(test.correlation, 1.0)
assert isclose(test.regression.slope, 2.0)
assert isclose(test.regression.intercept, 0.0)

This test case creates a sample Series object. It then confirms that the results are very

close to the target values. The default settings have a relative tolerance value of 10−9, which

will include nine digits.

See also
• Chapter 15 covers testing and unit tests in some depth.

• In Writing better docstrings with RST markup in Chapter 2, the idea of doctest examples

is also mentioned.

• See Ingesting data into a notebook for the seed notebook to which we want to add

assertions.

Join our community Discord space
Join our Python Discord workspace to discuss and find out more about the book:

https://packt.link/dHrHU

https://packt.link/dHrHU


13
Application Integration:
Configuration

Python’s concept of an extensible library gives us rich access to numerous computing re-

sources. The language provides avenues to make even more resources available. This makes

Python programs particularly strong at integrating components to create sophisticated

composite processing. In this chapter, we’ll address the fundamentals of creating complex

applications: managing configuration files, logging, and a design pattern for scripts that

permits automated testing.

These new recipes leverage ideas shown in recipes in other chapters. Specifically, in the

Using argparse to get command-line input, Using cmd to create command-line applications,

and Using the OS environment settings recipes in Chapter 6, some specific techniques for

creating top-level (main) application scripts were shown. It may help to review those

recipes to see examples of Python application scripts. In Chapter 11, we looked at filesystem

input and output.
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In this chapter, we’ll look at a number of ways to handle configuration files. There are

many file formats that can be used to store long-term configuration information:

• The INI file format as processed by the configparser module.

• The TOML file format is very easy to work with but requires an add-on module that’s

not currently part of the Python distribution. We’ll look at this in the Using TOML

for configuration files recipe.

• The properties file format is typical of Java programming and can be handled in

Python without writing too much code. Some of the syntax overlaps with Python

scripts and TOML files. A switch from the properties file format to TOML only

requires changing any name: value to name = "value", permitting use of the TOML

parser.

• For Python scripts, a file with assignment statements looks a lot like a properties file,

and is very easy to process using the compile() and exec() functions. We’ll look at

this in the Using Python for configuration files recipe.

• A Python module with class definitions is a variation that uses Python syntax but

isolates the settings into separate classes. This can be processed with the import

statement. We’ll look at this in the Using a class as a namespace for configuration

recipe.

Some recipes in this chapter will extend some of the concepts from Chapter 7, and Chapter 8.

This chapter will apply those concepts to defining configuration files using classes.

It’s important to consider the kinds of information required in configuration files. Carelessly

including passwords or security tokens in a configuration file can be fatal to secure use

of data. Including personal information in a configuration file is also a common security

weakness. See the Common Weakness Enumeration for other more specific issues with

poorly designed configuration files.

In this chapter, we’ll look at the following recipes:

• Finding configuration files

https://cwe.mitre.org/index.html
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• Using TOML for configuration files

• Using Python for configuration files

• Using a class as a namespace for configuration

• Designing scripts for composition

• Using logging for control and audit output

We’ll start with a recipe for handling multiple configuration files that must be combined.

This gives users some helpful flexibility. From there, we can dive into the specifics of a few

of the common configuration file formats.

Finding configuration files
Many applications will have a hierarchy of configuration options. The foundation of the

hierarchy is often the default values built into the application. These might be supplemented

by server-wide (or cluster-wide) values from centralized configuration files. There might

also be user-specific files, or perhaps even configuration files provided when starting a

program.

In many cases, configuration parameters are written in text files, so they are persistent and

easy to change. The common tradition in Linux is to put system-wide configuration in the

/etc directory. A user’s personal changes would be in their home directory, often named

~username or $HOME.

In this recipe, we’ll see how an application can support a rich hierarchy of locations for

configuration files.

Getting ready
The example we’ll use is an application to simulate dice rolling. The application is shown in

several recipes throughout Chapter 6. Specifically, look at Using argparse to get command-

line input and Using cmd to create command-line applications.

We’ll follow the design pattern of the Bash shell, which looks for configuration files in the
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following places:

1. It starts with the /etc/profile file, applicable to everyone using the system.

2. After reading that file, it looks for one of these files, in this order:

(a) ~/.bash_profile

(b) ~/.bash_login

(c) ~/.profile

Other shells, like zsh, use some additional files but follow this pattern of working through

a sequence of files in order.

In a POSIX-compliant operating system, the shell expands the ~ to be the home directory

for the logged-in user. In general, the Python pathlib module handles this for Windows,

Linux, and macOS automatically via the Path.home() method.

In later recipes, we’ll look at ways to parse and process specific formats of configuration

files. For the purposes of this recipe, we won’t pick a specific format. Instead, we’ll assume

that an existing function, load_config_file(), has been defined that will load a specific

configuration mapping from the contents of the configuration files.

The function looks like this:

def load_config_file(config_path: Path) -> dict[str, Any]:
"""Loads a configuration mapping object with the contents
of a given file.
:param config_path: Path to be read.
:returns: mapping with configuration parameter value
"""
# Details omitted.

We’ll look at a number of different ways to implement this function.

Why so many choices?

There’s a side topic that sometimes arises when discussing this kind of design – why have

so many choices? Why not specify exactly one place?
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It’s common to offer variations typical for one distribution, but atypical for another. Also,

user expectations depend on software with which they’re already familiar; this is very

difficult to anticipate. And, of course, when dealing with Windows, there will be the

possibility of yet more variant file paths that are unique to that platform. For these reasons,

it’s easier to offer multiple locations and permit the user or administrator to pick the one

they prefer.

How to do it...
We’ll make use of the pathlib module to provide a handy way to work with files in various

locations. We’ll also use the collections module to provide the very useful ChainMap

class:

1. Import the Path class and the ChainMap class. There are several type hints that are

also required:

from pathlib import Path
from collections import ChainMap
from typing import TextIO, Any

2. Define an overall function to get the configuration files:

def get_config() -> ChainMap[str, Any]:

3. Create paths for the various locations of the configuration files. These are called pure

paths and start with the names of potential files. We can decompose these locations

into a system path and a sequence of local paths. Here are the two assignment

statements:

system_path = Path("/etc") / "some_app" / "config"
local_paths = [
".some_app_settings",
".some_app_config",
]

4. Define the application’s built-in defaults as a list of dictionaries:
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configuration_items = [
dict(

some_setting="Default Value",
another_setting="Another Default",
some_option="Built-In Choice",

)
]

Each individual configuration file is a mapping from keys to values. Each of these

mapping objects is combined to form a list; this becomes the final ChainMap configu-

ration mapping.

5. If the system-wide configuration file exists, load this file:

if system_path.exists():
configuration_items.append(

load_config_file(system_path))

6. Iterate through other locations looking for a file to load. This loads the first file that

it finds and uses a break statement to stop after the first file is found:

for config_name in local_paths:
config_path = Path.home() / config_name
if config_path.exists():

configuration_items.append(
load_config_file(config_path))

break

7. Reverse the list and create the final ChainMap mapping:

configuration = ChainMap(
*reversed(configuration_items)

)

The list needs to be reversed so that the local file (appended last) is searched first,

then the system settings, and finally the application default settings. It’s certainly

possible to assemble the list in the reverse order to avoid the reversed() function;
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we’ve left this possible change as an exercise for you.

Once we’ve built the configuration object, we can use the final configuration like a simple

mapping. This object supports all of the expected dictionary operations.

How it works...
In the Creating dictionaries – inserting and updating recipe in Chapter 5, we looked at the

basics of using a dictionary. Here, we’ve combined several dictionaries into a chain. When

a key is not located in the first dictionary of the chain, then later dictionaries in the chain

are checked. This is a handy way to provide default values for each key in the mapping.

Because the ChainMap is nearly indistinguishable from the built-in dict class, it permits a

lot of flexibility in the implementation details: any kind of configuration file that can be

read to create a dictionary is perfectly acceptable. The rest of the application can be based

on the dictionary without being exposed to the details of how the configuration was built.

There’s more...
The subtle distinction between the single system-wide configuration file and the collection

of alternative names for the local configuration files isn’t ideal. This distinction between

a singleton and a list of choices doesn’t seem to serve any particular purpose. Often, we

want to extend this design and the tiny asymmetry leads to complications.

We’ll consider changing the configuration to have the following four tiers:

1. The built-in defaults.

2. A host-wide configuration in a central directory like /etc or /opt. This is often used

for details of the OS or network context for this container.

3. A home directory configuration for the user running the app. This may be used for

distinguishing test and production instances.

4. A local file in the current working directory. This may be used by a developer or

tester.

This suggests a modification to the recipe to use nested lists of paths. The outer list contains
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all of the tiers of configuration. Within each tier, a list will contain the alternative locations

for a configuration file.

local_names = ('.some_app_settings', '.some_app_config')
config_paths = [

[
base / 'some_app' / 'config'
for base in (Path('/etc'), Path('/opt'))

],
[

Path.home() / name
for name in local_names

],
[

Path.cwd() / name
for name in local_names

],
]

This list[list[Path]] structure provides three tiers of configuration files. Each of the

tiers has a number of alternative names. The order of the tiers and the names within each

tier are important. The lower tiers provide overrides to the upper tiers. We can then use

nested for statements to examine all of the alternative locations.

def get_config_2() -> ChainMap[str, Any]:
configuration_items = [

DEFAULT_CONFIGURATION
]
for tier_paths in config_paths:

for alternative in tier_paths:
if alternative.exists():

configuration_items.append(
load_config_file(alternative))

break
configuration = ChainMap(

*reversed(configuration_items)
)
return configuration

We’ve factored out the default configuration into a global variable with the name
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DEFAULT_CONFIGURATION. We have conspicuously left the collection of configuration paths

with the name config_paths. It’s not perfectly clear if this should be global (and have

a global variable name in ALL-CAPITALS) or if this should be part of the get_config()

function. We’ve adopted a bit of both by using a lowercase name and putting it outside the

function.

The value of config_paths is unlikely to be needed elsewhere, making it a bad choice for

being a global variable. It is, however, something that may change – perhaps in the next

major release – and deserves to be exposed so it can be changed.

See also
• In the Using TOML for configuration files and Using Python for configuration files

recipes in this chapter, we’ll look at ways to implement the load_config_file()

function.

• In the Mocking external resources recipe in Chapter 15, we look at ways to test

functions such as this, which interact with external resources.

• The pathlib module is central to this processing. This module provides the Path

class definition, which provides a great deal of sophisticated information about the

OS’s files. For more information, see the Using pathlib to work with filenames recipe

in Chapter 11.

Using TOML for configuration files
Python offers a variety of ways to package application inputs and configuration files. We’ll

look at writing files in TOML notation because this format is elegant and simple. For more

information on this format, see https://toml.io/en/.

Most TOML files look quite a bit like INI-format files. This overlap is intentional. When

parsed in Python, a TOML file will be a nested dictionary structure.

We might have a file like this:

https://toml.io/en/
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[some_app]
option_1 = "useful value"
option_2 = 42

[some_app.feature]
option_1 = 7331

This will become a dictionary like the following:

{'some_app': {'feature': {'option_1': 7331},
'option_1': 'useful value',
'option_2': 42}}

The [some_app.feature] is called a “table”. The use of a . in the key creates a nested table.

Getting ready
We’ll often use the Finding configuration files recipe, shown earlier in this chapter, to check

a variety of locations for a given configuration file. This flexibility is often essential for

creating an application that’s easy to use on a variety of platforms.

In this recipe, we’ll build the missing part of the Finding configuration files recipe, the

load_config_file() function. Here’s the template that needs to be filled in:

def load_config_file_draft(config_path: Path) -> dict[str, Any]:
"""Loads a configuration mapping object with contents
of a given file.

:param config_path: Path to be read.

:returns: mapping with configuration parameter values
"""
# Details omitted.

In this recipe, we’ll fill in the space held by the Details omitted line to load configuration

files in TOML format.
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How to do it...
This recipe will make use of the tomllib module to parse a YAML-TOML file:

1. Import the tomllib module along with the Path definition and the type hints required

by the load_config_file() function definition:

from pathlib import Path
from typing import Any
import tomllib

2. Use the tomllib.load() function to load the TOML-syntax document:

import tomllib

def load_config_file(config_path: Path) -> dict[str, Any]:
"""Loads a configuration mapping object with contents
of a given file.
:param config_path: Path to be read.
:returns: mapping with configuration parameter values
"""
with config_path.open('b') as config_file:

document = tomllib.load(config_file)

An unusual requirement of TOML parsing in Python requires us to open the file in

“binary” mode when using the load() function. We can use 'rb' as the mode to be

explicit that the file is opened for reading.

The alternative is to use the loads() function on a block of text. It looks like this:

document = tomllib.loads(config_path.read_text())

This load_config_file() function produced the required dictionary structure. It can be

fit into the design from the Finding configuration files recipe to load a configuration file

using TOML syntax.
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How it works...
As noted above, the idea of TOML syntax is to be easy to read and map directly to a Python

dictionary. There is some intentional overlap between TOML notation and INI file syntax.

There is also some overlap with some aspects of property file syntax.

The core of TOML syntax is key-value pairings generally written as key = value. The keys

include valid Python symbols. This means that any sort of dataclass or Pydantic structure

with a dictionary mapping can be mapped into TOML syntax, too.

It’s valid for a TOML key to have a hyphen, which is not part of allowed Python names.

A key can be a quoted string, too. This permits quite a wide variety of alternative keys.

These features may need some caution depending on ultimate use for the configuration

dictionary objects.

A key can also be dotted; this will create sub-dictionaries. Here’s an example of dotted

keys:

some_app.option_1 = "useful value"
some_app.option_2 = 42
some_app.feature.option_1 = 7331

This looks quite a bit like a properties file often used with Java applications. This creates

nested dictionaries by decomposing the keys at the . character.

A wide variety of values are available, including string values, integer values, float values,

and Boolean values (using true and false as the literal values). Additionally, TOML

recognizes ISO date-time strings; see RFC 3339 for the formats supported.

TOML permits two data structures:

• An array is enclosed in [ and ]. We can use sizes = [1, 2, 3] to create a Python

list value.

• An in-line table can be created using { and } around one or more key = value items.

For example, sample = {x = 10, y = 8.4} creates a nested dict value.

https://tools.ietf.org/html/rfc3339
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One of the most important features of TOML syntax is using [table] as the key for a

nested dictionary. We’ll often see this:

[some_app]
option_1 = "useful value"
option_2 = 42

[some_app.feature]
option_1 = 7331

The [some_app] is a key for a dictionary containing the indented key-value pairs. TOML

syntax of [some_app.feature] defines a more deeply nested dictionary. The use of a dotted

key means the string "some_app" will be a key for a dictionary containing the key feature.

The value associated with this key will be a dictionary with the key "option_1". In TOML

the [table] prefix for nested values creates a visual organization, making it easier to find

and change configuration settings.

There’s more...
TOML notation is used for a the overall pyproject.toml file that can be used to describe a

Python project. This file often has two top-level tables: [project] and [build-system].

The project table will have some metadata about the [project]. Here’s an example:

[project]
name = "python_cookbook_3e"
version = "2024.1.0"
description = "All of the code examples for Modern Python Cookbook, 3rd Ed."
readme = "README.rst"
requires-python = ">=3.12"
license = {file = "LICENSE.txt"}

The [build-system] table provides information on tools needed to install the module,

package, or application. Here’s an example:
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[build-system]
build-backend = 'setuptools.build_meta'
requires = [

'setuptools',
]

This file provides a few essential pieces of information about the project. The use of TOML

notation makes it relatively easy to read and change.

See also
• See the Finding configuration files recipe earlier in this chapter to see how to search

multiple filesystem locations for a configuration file. We can easily have application

defaults, system-wide settings, and personal settings built into separate files and

combined by an application.

• For more information on TOML syntax, see https://toml.io/en/.

• For more information on the pyproject.toml file, see the Python Packaging Au-

thority document https://pip.pypa.io/en/stable/reference/build-system/

pyproject-toml/.

Using Python for configuration files
In addition to syntax like TOML for providing configuration data, we can also write files

in Python notation; it’s elegant and simple. It offers tremendous flexibility, since the

configuration file is a Python module.

Getting ready
Python assignment statements are particularly elegant for creating configuration files. The

syntax can be simple, easy to read, and extremely flexible. If we use assignment statements,

we can import an application’s configuration details from a separate module. This could

have a name like settings.py to show the module’s focus on configuration parameters.

Because Python treats each imported module as a global Singleton object, we can have

https://toml.io/en/
https://pip.pypa.io/en/stable/reference/build-system/pyproject-toml/
https://pip.pypa.io/en/stable/reference/build-system/pyproject-toml/
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several parts of an application all use an import settings statement to get a consistent

view of the current, global application configuration parameters. We don’t need to worry

about managing an object using the Singleton design pattern, since that’s already part of

Python.

We’d like to be able to provide definitions in a text file that look like this:

"""Weather forecast for Offshore including the Bahamas
"""

query = {'mz':
['ANZ532',
'AMZ117',
'AMZ080']

}

base_url = "https://forecast.weather.gov/shmrn.php"

This configuration is a Python script. The parameters include two variables, query and

base_url. The value of the query variable is a dictionary with a single key, 'mz', and a

sequence of values.

This can be seen as a specification for a number of related URLs that are all similar to

http://forecast.weather.gov/shmrn.php?mz=ANZ532.

We’ll often use the Finding configuration files recipe to check a variety of locations for a

given configuration file. This flexibility is often essential for creating an application that’s

easily used on a variety of platforms.

In this recipe, we’ll build the missing part of the Finding configuration files recipe, the

load_config_file() function. Here’s the template that needs to be filled in:

def load_config_file_draft(config_path: Path) -> dict[str, Any]:
"""Loads a configuration mapping object with contents
of a given file.

:param config_path: Path to be read.

http://forecast.weather.gov/shmrn.php?mz=ANZ532
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:returns: mapping with configuration parameter values
"""
# Details omitted.

In this recipe, we’ll fill in the space held by the # Details omitted line to load configuration

files in Python format.

How to do it...
We can make use of the pathlib module to locate the files. We’ll also leverage the built-in

compile() and exec() functions to process the code in the configuration file:

1. Import the Path definition and the type hints required by the load_config_file()

function definition:

from pathlib import Path
from typing import Any

2. Use the built-in compile() function to compile the Python module into an executable

form. This function requires the source text as well as the filename from which the

text was read. The filename is essential for creating trace-back messages that are

useful and correct:

def load_config_file(config_path: Path) -> dict[str, Any]:
code = compile(

config_path.read_text(),
config_path.name,
"exec")

In rare cases where the code doesn’t come from a file, the general practice is to

provide a name such as <string> for the filename.

3. Execute the code object created by the compile() function. This requires two

contexts. The global context provides any previously imported modules, plus the

__builtins__ module. The local context is the locals dictionary; this is where new
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variables will be created:

locals: dict[str, Any] = {}
exec(

code,
{"__builtins__": __builtins__},
locals

)
return locals

This load_config_file() function produces the required dictionary structure. It can be

fit into the design from the Finding configuration files recipe to load a configuration file

using Python syntax.

How it works...
The details of the Python language – the syntax and semantics – are embodied in the

built-in compile() and exec() functions. The three essential steps are these:

1. Read the text.

2. Compile the text with the compile() function to create a code object.

3. Use the exec() function to execute the code object.

The exec() function reflects the way Python handles global and local variables. There are

two namespaces (mappings) provided to this function. These are visible via the globals()

and locals() functions.

We can provide two distinct dictionaries to the exec() function:

• A dictionary of global objects. The most common use is to provide access to the

imported modules, which are always global. The __builtins__ module can be

provided in this dictionary. In some cases, other modules like pathlib should be

added.

• A dictionary for the locals that will be created (or updated) by each assignment

statement. This local dictionary allows us to capture the variables created when

executing the settings module.
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The locals dictionary will be updated by the exec() function. We don’t expect the globals

to be updated and will ignore any changes that happen to this collection.

There’s more...
This recipe suggests a configuration file is entirely a sequence of name = value assignment

statements. The assignment statement is in Python syntax, as are the variable names and

the literal syntax. This permits the configuration to leverage Python’s large collection of

built-in types. Additionally, the full spectrum of Python statements is available. This leads

to some engineering trade-offs.

Because any statement can be used in the configuration file, it can lead to complexity.

If the processing in the configuration file becomes too complex, the file ceases to be

configuration and becomes a first-class part of the application. Very complex features

should be implemented by modifying the application programming, not hacking around

with the configuration settings. Python applications include the full source, as it is generally

easier to fix the source than create hyper-complex configuration files. The goal is for a

configuration file to provide values to tailor operations, not provide plug-in functionality.

We might want to include the OS environment variables as part of the global variables

used for configuration. Doing this helps ensure the configuration values match the current

environment settings. This can be done with the os.environ mapping.

It can also be sensible to do some processing for related settings. For example, it can be

helpful to write a configuration file with a number of adjacent paths like this:

"""Config with related paths"""
base = Path(os.environ.get("APP_HOME", "/opt/app"))
log = base / 'log'
out = base / 'out'

In many cases, the settings file is edited by a person who can be trusted. Mistakes do

happen, though, and it’s wise to be careful about what functions are available in the

dictionary of globals provided to the exec() function. Providing the narrowest set of
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functions to support configuration is the recommended practice.

See also
• See the Finding configuration files recipe earlier in this chapter to learn how to search

multiple filesystem locations for a configuration file.

Using a class as a namespace for configuration
Python offers a variety of ways to package application inputs and configuration files. We’ll

continue to look at writing files in Python notation because it’s elegant and the familiar

syntax can lead to easy-to-read configuration files. A number of projects allow us to use a

class definition to provide configuration parameters. This uses Python syntax, of course. It

also uses the class definition as a namespace to allow multiple configurations to be provided

in a single module. The use of a class hierarchy means that inheritance techniques can be

used to simplify the organization of parameters.

This avoids the use of a ChainMap to permit user-specific overrides of generic settings.

Instead, this uses ordinary inheritance.

We’re never going to create instances of these classes. We’re going to use the attributes of

the class definition and rely on class inheritance methods to track down the appropriate

value for an attribute. This will differ from the other recipes in this chapter because it will

produce a ConfigClass object, instead of a dict[str, Any] object.

In this recipe, we’ll look at how we can represent configuration details in Python class

notation.

Getting ready
Python notation for defining the attributes of a class can be simple, easy to read, and

reasonably flexible. We can, with a little work, define a sophisticated configuration language

that allows someone to change configuration parameters for a Python application quickly

and reliably.

We can base this language on class definitions. This allows us to package a number of
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configuration alternatives in a single module. An application can load the module and pick

the relevant class definition from the module.

We’d like to be able to provide definitions that look like this:

class Configuration:
"""
Generic Configuration with a sample query.
"""
base = "https://forecast.weather.gov/shmrn.php"
query = {"mz": ["GMZ856"]}

We can create this class definition in a settings.py file to create a settings module. To

use the configuration, the main application could do this:

>>> from settings import Configuration
>>> Configuration.base
'https://forecast.weather.gov/shmrn.php'

The application will gather the settings using the module name of settings with a class

name of Configuration.

The configuration file locations follow Python’s rules for finding modules. Rather than

implementing our own search for the configuration, we can leverage Python’s built-in

search of sys.path, and the use of the PYTHONPATH environment variable.

In this recipe, we’ll build a missing part that’s similar to the Finding configuration files

recipe, the load_config_file() function. However, there will be an important difference:

we’ll return an object instead of a dictionary. We can then refer to configuration values by

attribute name instead of using the more cumbersome notation of a dictionary. Here’s the

revised template that needs to be filled in:

ConfigClass = type[object]

def load_config_file_draft(
config_path: Path, classname: str = "Configuration"
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) -> ConfigClass:
"""Loads a configuration mapping object with contents
of a given file.

:param config_path: Path to be read.

:returns: mapping with configuration parameter values
"""
# Details omitted.

We’ve used a similar template in a number of recipes in this chapter. For this recipe, we’ve

added a parameter to this definition and changed the return type. The classname parameter

is not present in previous recipes, but it is used here to select one of the classes from a

module at the location in the filesystem named by the config_path parameter.

How to do it...
We can make use of the pathlib module to locate the files. We’ll leverage the built-in

compile() and exec() functions to process the code in the configuration file:

1. Import the Path definition and the type hints required by the load_config_file()

function definition:

from pathlib import Path
import platform

2. Use the built-in compile() function to compile the Python module into an executable

form. This function requires the source text as well as a filename from which the

text was read. The filename is essential for creating trace-back messages that are

useful and correct:

def load_config_file(
config_path: Path, classname: str = "Configuration"

) -> ConfigClass:
code = compile(

config_path.read_text(),
config_path.name,
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"exec")

3. Execute the code object created by the compile() method. We need to provide two

contexts. The global context can provide the __builtins__ module, plus the Path

class and the platform module. The local context is where new variables will be

created:

globals = {
"__builtins__": __builtins__,
"Path": Path,
"platform": platform}

locals: dict[str, ConfigClass] = {}
exec(code, globals, locals)
return locals[classname]

This locates the named class in the locals() mapping and returns the class as the

configuration object. This does not return a dictionary.

This variation on the load_config_file() function produces a useful structure that can

be accessed using attribute names. It does not provide the design expected by the Finding

configuration files recipe. The resulting configuration object does – because it uses attribute

names – more useful than a simple dictionary.

How it works...
We can load a Python module by using compile() and exec(). From the module, we can

extract an individual class name that contains the various application settings. Overall, it

looks like the following example:

>>> configuration = load_config_file(
... Path('src/ch13/settings.py'), 'Chesapeake')

>>> configuration.__doc__.strip()
'Weather for Chesapeake Bay'
>>> configuration.query
{'mz': ['ANZ532']}
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>>> configuration.base
'https://forecast.weather.gov/shmrn.php'

We can put any kind of object into the attributes of the configuration class. Our example

showed lists of strings and strings. Any object of any class becomes a possibility when

using class definitions.

We can have complex calculations within the class statement. We can use this to create

attributes that are derived from other attributes. We can execute any kind of statement,

including if statements and for statements, to create attribute values.

We will not, however, create an instance of the given class. Tools like Pydantic will

validate instances of a class, but aren’t helpful for validating a class definition. Any kind of

validation rules would have to be defined in a metaclass that is used to build the resulting

configuration class. Additionally, ordinary methods of the class will not be used. If a

function-like definition is needed, it would have to be decorated with @classmethod to be

useful.

There’s more...
Using a class definition means that we will leverage inheritance to organize the configura-

tion values. We can easily create multiple subclasses of Configuration, one of which will

be selected for use in the application.

The configuration might look like this:

class Configuration:
"""
Generic Configuration with a sample query.
"""
base = "https://forecast.weather.gov/shmrn.php"
query = {"mz": ["GMZ856"]}

class Bahamas(Configuration):
"""
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Weather forecast for Offshore including the Bahamas
"""
query = {"mz": ["AMZ117", "AMZ080"]}

class Chesapeake(Configuration):
"""
Weather for Chesapeake Bay
"""
query = {"mz": ["ANZ532"]}

Our application must choose an appropriate class from the available classes in the settings

module. We might use an OS environment variable or a command-line option to specify

the class name to use. The idea is that our program can be executed like this:

(cookbook3) % python3 some_app.py -c settings.Chesapeake

This would locate the Chesapeake class in the settings module. Processing would then be

based on the details in that particular configuration class. This idea leads to an extension

to the load_config_class() function.

In order to pick one of the available classes, we can separate the module name and class

name by looking for a "." separator in the command-line argument value:

import importlib

def load_config_class(name: str) -> ConfigClass:
module_name, _, class_name = name.rpartition(".")
settings_module = importlib.import_module(module_name)
result: ConfigClass = vars(settings_module)[class_name]
return result

Rather than manually compiling and executing the module, we’ve used the higher-level

importlib module. This module contains functions implementing the import statement

semantics. The requested module is imported, then compiled and executed, and the resulting

module object is assigned to the variable named result.
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Now we can use this function as follows:

>>> configuration = load_config_class(
... 'settings.Chesapeake')

>>> configuration.__doc__.strip()
'Weather for Chesapeake Bay'
>>> configuration.query
{'mz': ['ANZ532']}
>>> configuration.base
'https://forecast.weather.gov/shmrn.php'

We’ve located the Chesapeake configuration class in the settings module and extracted

the various settings the application needs from this class.

See also
• We’ll look at class definitions in detail in Chapter 7, and Chapter 8.

• See the Finding configuration files recipe in this chapter for an alternative approach

that doesn’t use class definitions.

Designing scripts for composition
An important part of overall application design is creating a script that can process

command-line arguments and configuration files. Further, it’s very important to design

a script so that it can be tested as well as combined with other scripts into a composite

application.

The idea is that many good ideas evolve through a series of stages. One such evolution

might be the following path:

1. The idea starts as a collection of separate notebooks for separate parts of a larger

task.

2. After the initial period of exploration and experimentation, this becomes a simple

repetitive task. Rather than open and click manually to run the notebook, it’s saved

into a script file, Then the script files can be run from the command line.
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3. After an initial period of making this a regular part of the organization’s operations,

the three-part script needs to be consolidated into a single script. At this point,

refactoring is needed.

The most painful time to refactor is after combining a number of scripts into a single

application and uncovering unexpected problems. This often happens because global

variables will be shared when multiple scripts are integrated.

A much less painful time is earlier in the life of the project. As soon as a script is created,

some effort should be made to design the script for testing and composition into a larger

application.

Getting ready
In this recipe, we’ll look at what constitutes a good design for a script. In particular, we

want to be sure that parameters and configuration files are considered in the design.

The target is to have a structure like the following:

• A docstring for the module or script as a whole.

• The imports. There’s an internal ordering to these. Tools like isort and ruff can

handle this.

• The class and function definitions that apply to the script.

• A function to gather the configuration file options and runtime parameters into a

single object that can be used by other classes and functions.

• A single function that does the useful work. This is often called main(), but there’s

nothing sacred about this name.

• A small block of code that is executed only when the module is run as a script, and

never when the module is imported:

if __name__ == "__main__":
main()
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How to do it...
With the target design as our goal, here is one approach:

1. Start by writing a summary docstring at the top of the file. It’s important to start

with something and add details later. Here’s an example:

"""
Some Script.
What it does. How it works.
Who uses it. When do they use it.

"""

2. The import statements go after the docstring. It’s not always possible to foresee all

of the imports in advance. As the module is being written and modified, imports will

be added and removed.

3. The class and function definitions go next. The order is important for resolving the

type names in the def or class statements. This means the most fundamental type

definitions must go first.

Again, it’s not always possible to write all the definitions in their proper order during

the first wave of design. What’s important is keeping them together in a logical

organization and rearranging them so the order makes sense to someone reading

the code.

4. Write a function (with a name like get_config()) to get all of the configuration

parameters. Generally, there are two parts to this; sometimes they need to be

decomposed into two separate functions because each part can be rather complicated.

5. Then we have the main() function. This does the essential work of the script. When

evolving from a notebook, this can be built from the sequence of cells.

6. Add the Main-Import Switch code block at the end:

if __name__ == "__main__":
main()
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The resulting module will work properly as a script. It can also be tested more easily

because testing tools like pytest can import the module without it making changes to the

filesystem when it tries to starting processing data. It can be integrated with other scripts

to create a useful composite application.

How it works...
The core consideration in designing a script is distinguishing between two use cases for a

module:

• When run from the command line. In this case, the built-in global variable __name__

will have a value of "__main__".

• When imported for testing or as part of a larger, composite application. In this case,

__name__ will have a value that is the name of the module.

When a module is imported, we do not want it to start doing work. During import, we

don’t want the module to open files, read data, do computations, or produce output. All of

this work is something that can only happen when the module is run as the main program.

The original cells of the notebook or script statements are now part of the body of the

main() function, so the script will work properly. It will, however, it will also be in a form

that can be tested. It can also be integrated into a larger and more sophisticated application.

There’s more...
When starting the conversion to an application, the main() function is often quite lengthy.

There are two ways to make the processing clear:

• Large, prominent billboard comments

• Refactoring to create a number of smaller functions

We might start with a script that has comments like these:
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# # Some complicated process
#
# Some additional markdown details.

# In[12]:

print("Some useful code here")

# In[21]:

print("More code here")

The In[n]: comments are provided by JupyterLab to identify the cells in a notebook. We

can create billboard comments like these:

####################################
# Some complicated process #
# #
# Some additional markdown details.#
####################################

print("Some useful code here")

####################################
# Another step in the process #
####################################

print("More code here")

This is less than ideal. It’s an acceptable temporary measure, but these steps should be

proper functions, each with a docstring and test cases. Billboard comments are traditional

in languages that don’t have proper docstrings and lack documentation generators that

exploit the docstrings.

Python has docstrings and several tools – like Sphinx – to create documentation from the

docstrings.
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See also
• See the Using argparse to get command-line input recipe in Chapter 6, for background

on using argparse to get inputs from a user.

• See Using TOML for configuration files, Using Python for configuration files, and

Using a class as a namespace for configuration in this chapter for recipes related to

configuration files.

• The Using logging for control and audit output recipe later in this chapter looks at

logging.

• In the Combining two applications into one recipe in Chapter 14, we’ll look at ways to

combine applications that follow this design pattern.

• The details of testing and integration are covered in separate chapters. See Chapter 15

for details on creating tests. See Chapter 14 for details on combining applications.

Using logging for control and audit output
When we consider an application, we can decompose the overall computation into three

distinct aspects:

• Gathering input

• The essential processing that transforms the input into the output

• Producing output

There are several different kinds of output that applications produce:

• The main output that helps a user make a decision or take action. In some cases, this

might be a JSON-formatted document downloaded by a web server. It might be a

more complicated collection of documents that – together – will create a PDF file.

• Control information that confirms that the program worked completely and correctly.

• Audit summaries that can be used to track the history of state changes in a persistent

databases.
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• Any error messages that indicate why the application didn’t work.

It’s less than optimal to lump all of these various aspects into print() requests that write

to standard output. Indeed, it can lead to confusion because too many different outputs

can be interleaved in a single stream.

The OS provides each running process with two output files, standard output and standard

error. These are visible in Python through the sys module with the names sys.stdout

and sys.stderr. By default, the print() function writes to the sys.stdout file. We can

change the target file and write the control, audit, and error messages to sys.stderr. This

is an important step in the right direction.

Python also offers the logging package, which can be used to direct the ancillary output

to a separate file (and/or other output channels, such as a database). It can also be used to

format and filter that additional output.

In this recipe, we’ll look at good ways to use the logging module.

Getting ready
One approach to meeting a variety of output needs is to create multiple loggers, each with

a different intent. It’s common to name loggers around the module or class associated with

the logger. We can also name loggers around an overall purpose, like audit or control.

The names of loggers form a hierarchy, punctuated by .. The root logger is the parent of all

loggers and has a name of "". This suggests that we can have families of loggers focused

on particular classes, modules, or features.

A set of top-level loggers can include a number of separate focus areas, including:

• error will preface all loggers for warnings and errors.

• debug will preface all loggers for debugging messages.

• audit will name loggers with counts and totals used to confirm that data was pro-

cessed fully.
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• control will name loggers that provide information about when the application was

run, the environment, configuration files, and command-line argument values.

In most cases, it is helpful to have errors and debugging in a single logger. In other cases –

for example, a web server – the request error response log should be separate from any

internal error or debugging log.

A complicated application might have several loggers with names like audit.input and

audit.output to show the counts of data consumed and the counts of data produced.

Keeping these separate can help focus attention on problems with data providers.

A severity level serves as a kind of filter for each logger. The severity levels defined in the

logging package include the following:

DEBUG : These messages are not generally shown since their intent is to support debug-

ging. Above, we suggested this is a distinct variety of debugging. We suggest an application

create a logging debugger, and use ordinary INFO messages for the debugging entries.

INFO : These messages provide information on the normal, happy-path processing.

WARNING : These messages indicate that processing may be compromised in some way.

The most sensible use case for a warning is when functions or classes have been deprecated:

they still work, but they should be replaced.

ERROR : Processing is invalid and the output is incorrect or incomplete. In the case of a

long-running server, an individual request may have problems, but the server as a whole

can continue to operate.

CRITICAL : A more severe level of error. Generally, this is used by long-running servers

where the server itself can no longer operate and is about to crash.

Each logger has method names that are similar to the severity levels. We use the info()

method to write a message with the INFO severity level.

For error handling, the severity levels are mostly appropriate. A debugging logger, however,

often produces volumes of data that need to be kept separate. Further, any audit and control
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output doesn’t seem to have a severity level. The severity level seems to be focused only

on error logging. For this reason, it seems to be better to have distinct logs with names

like debug.some_function. We can then configure debugging by enabling or disabling the

output from these loggers, and configure the severity level to be INFO.

How to do it...
We’ll look at logging in a class as well as a function in two mini-recipes.

Logging in a class

1. Be sure the logging module is imported.

2. In the __init__() method, include the following to create an error and debug loggers:

self.err_logger = logging.getLogger(
f"error.{self.__class__.__name__}")

self.dbg_logger = logging.getLogger(
f"debug.{self.__class__.__name__}")

3. In any method that might require future debugging, use the debug logger’s methods

to write details to the log. While f-strings can be used to write log messages, they

involve a bit of overhead to interpolate values into the text. Using the logger’s

formatting options and separate argument values involves slightly less computation

when the configuration silences the logger’s output:

self.dbg_logger.info(
"Some computation with %r", some_variable)

# Some complicated computation with some_variable
self.dbg_logger.info(

"Result details = %r", result)

4. In a few key places, include overall status messages. These are often in the overall

application control classes:

# Some complicated input processing and parsing
self.err_logger.info("Input processing completed.")
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Logging in a function

1. Be sure the logging module is imported.

2. For larger and more complicated functions, it makes sense to include the logger

inside the function:

def large_and_complicated(some_parameter: Any) -> Any:
dbg_logger = logging.getLogger("debug.large_and_complicated")
dbg_logger.info("some_parameter= %r", some_parameter)

Because the loggers are cached, only the first request to get_logger() involves any

significant overhead. All subsequent requests are dictionary lookups.

3. For smaller functions, it can make sense to have a globally defined logger. This can

help to reduce visual clutter within a function’s body:

very_small_dbg_logger = logging.getLogger("debug.very_small")

def very_small(some_parameter: Any) -> Any:
very_small_dbg_logger.info("some_parameter= %r", some_parameter)

Note that without any further configuration, no output will be produced. This is because

the default severity level for each logger will be WARNING, which means the handler will

not show INFO- or DEBUG-level messages..

How it works...
There are three parts to introducing logging into an application:

• Creating Logger objects with the getLogger() function.

• Placing log messages near important state changes with one of the methods similar

to info() or error() for each logger.

• Configuring the logging system as a whole when the application is run. This is

essential for seeing output from the loggers. We’ll look at this in the There’s more...

section of this recipe.
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Creating loggers can be done in a variety of ways. A common approach is to create one

logger with the same name as the module:

logger = logging.getLogger(__name__)

For the top-level main script, this will have the name __main__. For imported modules, the

name will match the module name.

In more complex applications, there could be a variety of loggers serving a variety of

purposes. In these cases, simply naming a logger after a module may not provide the

required level of flexibility.

It’s also possible to use the logging module itself as the root logger. This means a module

can use the logging.info() function, for example. This isn’t recommended because the

root logger is anonymous, and we sacrifice the possibility of using the logger name as an

important source of information.

This recipe suggests naming loggers based on the audience or use case. The topmost name

– for example, debug. – will distinguish the audience or purpose for the log. This can make

it easy to route all loggers under a given parent to a specific handler.

It’s helpful to associate logging messages with the important state changes

made by the code.

The third aspect of logging is configuring the loggers so that they route the requests to the

appropriate destination. By default, with no configuration at all, the logger instances will

quietly ignore the various messages being created.

With a minimal configuration, we can see all of the log events on the console. This can be

done with the following:

if __name__ == "__main__":
logging.basicConfig(level=logging.INFO)
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There’s more...
In order to route the different loggers to different destinations, we’ll need a more sophisti-

cated configuration. Often, this goes beyond what we can build with the basicConfig()

function. We’ll need to use the logging.config module and the dictConfig() function.

This can provide a complete set of configuration options. The easiest way to use this

function is to write the configuration in TOML:

version = 1
[formatters.default]

style = "{"
format = "{levelname}:{name}:{message}"

[formatters.timestamp]
style = "{"
format = "{asctime}//{levelname}//{name}//{message}"

[handlers.console]
class = "logging.StreamHandler"
stream = "ext://sys.stderr"
formatter = "default"

[handlers.file]
class = "logging.FileHandler"
filename = "data/write.log"
formatter = "timestamp"

[loggers]
overview_stats.detail = {handlers = ["console"]}
overview_stats.write = {handlers = ["file", "console"] }
root = {level = "INFO"}

Here are some key points in this TOML configuration:

• The value of the version key must be 1. This is required.

• The values in the formatters table define the log formats available. If a formatter is

not specified, a built-in formatter will display the message body only:

– The default formatter defined in the example mirrors the format created by
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the basicConfig() function. This includes the message severity level and the

logger name.

– The new timestamp formatter defined in the example is a more complex format

that includes the date-time stamp for the record. To make the file easier to

parse, a column separator of // was used.

• The handlers table defines the handlers available for loggers to use:

– The console handler writes to the sys.stderr stream and uses default for-

matter. The text starting "ext://..." is how a configuration file can refer to

objects defined in the Python environment – in this case, the sys.stderr value

from the sys module.

– The file handler uses the FileHandler class to write to a file. The default

mode for opening the file is a, which will append to any existing log file. The

configuration specifies the timestamp formatter that will be used for the file.

• The loggers table provides a configuration for two specific named loggers that the

application will use. Any logger name that begins with overview_stats.detail

will be handled only by the console handler. Any logger name that begins with

overview_stats.write will go to both the file handler and the console handler.

• The special root key defines the top-level logger. Within an application, it has a

name of "" (empty string) when referred to in code. Within the configuration file, it

has the key root.

Setting the severity level on the root logger will set the level used to show – or hide

– messages for all of the children of this logger. This will show messages with the

severity INFO or higher, which includes warnings, errors, and severe errors.

Assuming the contents of this file are present in a variable named config_toml, the config-

uration to wrap the main() function will look like this:
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if __name__ == "__main__":
logging.config.dictConfig(

tomllib.loads(config_toml))
main()
logging.shutdown()

This will start the logging in a known state. It will do the processing of the application. It

will finalize all of the logging buffers and properly close any files.

See also
• See the Designing scripts for composition recipe earlier in this chapter for the comple-

mentary part of this application.

• See the Using TOML for configuration files recipe in this chapter for more on parsing

TOML documents.

Join our community Discord space
Join our Python Discord workspace to discuss and find out more about the book:

https://packt.link/dHrHU

https://packt.link/dHrHU


14
Application Integration:
Combination

The Python language is designed to permit extensibility. We can create sophisticated

programs by combining a number of smaller components. In this chapter, we’ll look at

ways to combine modules and scripts.

We’ll look at the complications that can arise from composite applications and the need to

centralize some features, like command-line parsing. This will enable us to create uniform

interfaces for a variety of closely related programs.

We’ll extend some of the concepts from Chapter 7 and Chapter 8, and apply the idea of

the Command design pattern to Python programs. By encapsulating features in class

definitions, we’ll find it easier to combine and extend programs.

In this chapter, we’ll look at the following recipes:

• Combining two applications into one
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• Combining many applications using the Command design pattern

• Managing arguments and configuration in composite applications

• Wrapping and combining CLI applications

• Wrapping a program and checking the output

We’ll start with a direct approach to combining multiple Python applications into a single,

more sophisticated application. We’ll expand this to apply object-oriented design techniques

and create an even more flexible composite. Then, we’ll apply uniform command-line

argument parsing for composite applications.

Combining two applications into one
For this recipe, we’ll look at two scripts that need to be combined. One script emits data

from a Markov chain process, and the second script summarizes those results.

What’s important here is the Markov chain application is (intentionally) a bit mysterious.

For the purposes of several recipes, we’ll treat this as opaque software, possibly written in

another language.

(The GitHub repository for this book has the Markov chain written in Pascal to be reasonably

opaque.)

For reference, here’s a depiction of the Markov chain state changes:
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Start

Succeed Fail

GrowUntil(point)

point established
“0.222” “0.111”

“0.667”

“0.167”“0.083|0.111|0.139”

“not (fail or point)”

Figure 14.1: Markov chain states

The Start state will either succeed, fail, or generate a “point” value. There are a number

of values, each with distinct probabilities that sum to 𝑃 = 0.667. The GrowUntil state

generates values that may match the point, not match the point, or indicate failure. In

the cases of a non-match and non-failure, the chain transitions back to this state. The

exact probability of a match depends on the starting-point value, which is why the state

transition is labeled with three probabilities.

The generator application emits a TOML-format file with some configuration details and a

collection of individual samples. The file looks like this:
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# file = "../../data/ch14/data.csv"
# samples = 10
# randomize = 0
# -----
outcome,length,chain
"Success",1,"7"
"Success",2,"10;10"

A summary application reads all of these generated files to create some simple statistics to

describe the raw data. This summary was originally done with Jupyter Notebook. While

these can be executed with the jupyter execute command, an alternative approach is to

save the notebook as a script and then execute the script.

We want to be able to combine this generator and the summary applications to reduce the

manual steps in using the generator. There are several common approaches to combining

multiple applications:

• A shell script can run the generator application and then run the summary application.

• A Python program can implement the high-level operation, using the runpy module

to run each of the two applications.

• We can build a composite application from the essential components of each applica-

tion.

In this recipe, we’ll look at the third path of combining the essential components of each

application by writing a new composite application.

Getting ready
In the Designing scripts for composition and Using logging for control and audit output recipes

in Chapter 13, we followed a design pattern that separated the input gathering, the essential

processing, and the production of output. The objective of that design pattern was to

gather the interesting pieces together to combine and recombine them into higher-level

constructs.

Note that we have a tiny mismatch between the two applications. We can borrow a phrase
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from database engineering (and also electrical engineering) and call this an “impedance

mismatch.”

When building this composite application, the impedance mismatch is a cardinality problem.

The data generator process is designed to run more frequently than the statistical summary

process. We have a couple of choices for addressing issues such as this one:

• Total redesign: We can rewrite the generator to an iterator as desired, producing

multiple sets of samples.

• Add the iterator: We can build the composite application to do bulk data genera-

tion processing. After all the data is produced, the composite application can then

summarize it.

The choice between these design alternatives depends on the user stories for this application.

It may also depend on the established base of users. For this recipe, the users would like

to follow the Add the iterator design to create a composite process without touching the

underlying generator.

Looking inside the two module implementation choices, we see two distinct design patterns

for top-level applications:

• The markov_gen module has the following main() function definition:

def main(argv: list[str] = sys.argv[1:]) -> None:

• The markov_summ module, on the other hand, is a script, exported from a notebook. A

direct Command-Line Interface (CLI) is not part of this script, and some rewriting

is required. See the Designing scripts for composition recipe in Chapter 13 for details

on this.

To create a more useful script, we need to add a def main(): line and indent the entire

script inside the body of this function. At the end of the indented main() function, the

if __name__ == "__main__": block can be added. Without creating a function that can

be imported, the script is very difficult to test and integrate.
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How to do it...
1. Import the other modules required:

import argparse
import contextlib
import logging
from pathlib import Path
import sys

2. Import the modules with the constituent applications. This is generally done after

all standard library modules:

import markov_gen
import markov_summ

3. Create a new function to combine the existing functions from the other applications.

We’re including the iteration in this function to meet the expectation of generating

1,000 sample files. It looks like this:

def gen_and_summ(iterations: int, samples: int) -> None:
for i in range(iterations):

markov_gen.main(
[

"--samples", str(samples),
"--randomize", str(i + 1),
"--output", f"data/ch14/markov_{i}.csv",

]
)

markov_summ.main()

4. The overall problem statement has two parameters, with fixed values: the users

would like 1,000 iterations of 1,000 samples. This provides a large collection of large

files to work with. We can define command-line arguments with these values as

defaults:
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def get_options(argv: list[str]) -> argparse.Namespace:
parser = argparse.ArgumentParser(description="Markov Chain
Generator and Summary")
parser.add_argument("-s", "--samples", type=int, default=1_000)
parser.add_argument("-i", "--iterations", type=int, default=10)
return parser.parse_args(argv)

For more on how to use the argparse module, see the recipes in Chapter 6.

5. The final report is sent to standard output, sys.stdout, by the print() function

in the markov_summ application. This isn’t ideal, so we’ll use a contextlib context

manager to redirect the output to a file:

def main(argv: list[str] = sys.argv[1:]) -> None:
options = get_options(argv)
target = Path.cwd() / "summary.md"
with target.open("w") as target_file:

with contextlib.redirect_stdout(target_file):
gen_and_summ(options.iterations, options.samples)

6. The combined functionality is now a new module with a function, main(), that we

can invoke from a block of code like the following:

if __name__ == "__main__":
logging.basicConfig(stream=sys.stderr, level=logging.INFO)
main()

This gives us a combined application written entirely in Python. We can write unit tests

for this composite, as well as for each of the two steps that make up the overall application.

How it works...
The central feature of this design is importing useful functionality from existing, working,

and tested modules. This avoids the problems with copy-and-paste programming. Copying

code from one file and pasting it into another means that any change made to one is

unlikely to be made to any of the copies. As the various copies of a function slowly diverge,
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problems fixed in one place surface in another. This phenomenon is sometimes called code

rot.

The copy-and-paste approach is made more complicated when a class or function does

several things. Too many features reduces the potential for reuse. We summarize this as

the Inverse Power Law of Reuse – the reusability of a class or function, 𝑅(𝑐), is related to

the inverse of the number of features in that class or function, 𝐹(𝑐):

𝑅(𝑐) ∝
1

𝐹(𝑐)

The idea of counting features depends, of course, on the level of abstraction. It can help

to consider the processing that maps inputs to outputs. Too many input-process-output

mappings will limit reuse.

The SOLID design principles provide guidance for keeping components small and narrowly

focused. These principles apply to applications as well as components. In particular, the

Single Responsibility Principle suggests that an application should do one thing. It’s

better to have many small applications – like bricks – that can easily be combined than to

have one large application that’s an imponderable big ball of mud.

There’s more...
We’ll look at two additional areas of rework of the application:

• Structure: Using the top-level main() function treats each component as an opaque

container. When trying to create a composite application, we may need to refactor

the component modules to look for better organization of the features.

• Logging: When multiple applications are combined, the combined logging can

become complicated. To improve observability, we may need to refactor the logging.

We’ll go through these in turn.
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Structure

In some cases, it becomes necessary to rearrange software to expose useful features. For ex-

ample, the main() function inside the markov_gen.py module relies on a write_samples()

function. This function creates a single file with the required number of samples, which

are (outcome, chain) two-tuples.

The input to the summary processing is a sequence of these (outcome, chain) two-tuples.

The composite application doesn’t really need to process 1,000 separate files. It needs to

process 1,000 collections of 1,000 two-tuples.

Doing the refactoring to expose this detail will make this feature available for the composite

application. This can make the composite easier to understand and maintain.

Logging

In the Using logging for control and audit output recipe in Chapter 13, we looked at how

to use the logging module for control, audit, and error outputs. When we build a com-

posite application, we’ll have to combine the logging features from each of the original

applications.

The logging configuration for a composite application needs to be examined carefully. If we

don’t ensure that the logging configuration is done only once in the top-level application,

then combining applications can lead to multiple, conflicting logging configurations. There

are two approaches that a composite application can follow:

• The composite application manages the logging configuration. This may mean

overwriting all previously defined loggers. This is the default behavior and can be

stated explicitly via incremental = false in a TOML configuration document.

• The composite application can preserve other application loggers and merely modify

the configuration. This is not the default behavior and requires including

incremental = true in the TOML configuration document.

The use of incremental configuration can be helpful when combining Python applications

that don’t properly isolate the logging configuration into the __name__ == "__main__"
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block of code. It’s often easier to refactor logging configuration to put it into the top-level

block of code; this permits the composite application to more simply configure logging for

all of the components.

See also
• In the Designing scripts for composition recipe in Chapter 13, we looked at the core

design pattern for a composable application.

• Books and articles on Clean Architecture and Hexagonal Architecture can be

very helpful. Titles on design patterns are also helpful, such as Mastering Python

Design Patterns – Third Edition.

Combining many applications using the
Command design pattern
Many complex suites of applications follow a design pattern similar to the one used by

the Git program. There’s a base command, git, with a number of subcommands. These

include git pull, git commit, and git push.

What’s central to this design is the idea of a collection of individual commands under

a common parent command. Each of the various features of Git can be thought of as a

separate subclass definition that performs a given function.

Getting ready
We’ll build a composite application from two commands. This is based on the Combining

two applications into one recipe from earlier in this chapter.

These features are based on modules with names such as markov_gen, markov_summ, and

markov_analysis. The idea is that we can restructure separate modules into a single class

hierarchy following the Command design pattern.

There are two key ingredients to this design pattern:

1. A client class depends only on the methods of the abstract superclass, Command.

https://www.packtpub.com/en-de/product/mastering-python-design-patterns-9781837639618
https://www.packtpub.com/en-de/product/mastering-python-design-patterns-9781837639618
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2. Each individual subclass of the Command superclass has an identical interface. We can

substitute any one of them for any other.

An overall application script can then create and execute any one of the Command subclasses.

Note that any feature that can be wrapped into a class is a candidate for this design.

Consequently, some rework to create a single Facade class is sometimes required for

sprawling, poorly designed applications.

How to do it...
We’ll start by creating a superclass for all of the related commands. We’ll then extend that

superclass for the subcommands that are part of the overall application.

1. Here’s the Command superclass:

import argparse

class Command:
def __init__(self) -> None:

pass

def execute(self, options: argparse.Namespace) -> None:
pass

It helps to rely on argparse.Namespace to provide a very flexible collection of options

and arguments to each subclass.

We’ll use this also in the Managing arguments and configuration in composite applica-

tions recipe in this chapter.

2. Create a subclass of the Command superclass for the Generate class. This will wrap

the processing and output from the example module in the execute() method of

this class:

from pathlib import Path
from typing import Any
import markov_gen
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class Generate(Command):
def __init__(self) -> None:

super().__init__()
self.seed: Any | None = None
self.output: Path

def execute(self, options: argparse.Namespace) -> None:
self.output = Path(options.output)
with self.output.open("w") as target:

markov_gen.write_samples(target, options)
print(f"Created {str(self.output)}")

3. Create a subclass of the Command superclass for the Summarize class. For this class,

we’ve wrapped the file creation and file processing into the execute() method of

the class:

import contextlib
import markov_summ_2

class Summarize(Command):
def execute(self, options: argparse.Namespace) -> None:

self.summary_path = Path(options.summary_file)
with self.summary_path.open("w") as result_file:

output_paths = [Path(f) for f in options.output_files]
outcomes, lengths =
markov_summ_2.process_files(output_paths)
with contextlib.redirect_stdout(result_file):

markov_summ_2.write_report(outcomes, lengths)

4. The overall composite processing can be performed by the following main() function:

def main() -> None:
options_1 = argparse.Namespace(samples=1000, output="data/x.csv")
command1 = Generate()
command1.execute(options_1)

options_2 = argparse.Namespace(
summary_file="data/report.md", output_files=["data/x.csv"]

)
command2 = Summarize()
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command2.execute(options_2)

We’ve created two commands: one is an instance of the Generate class, and the other is an

instance of the Summarize class. These commands can be executed to provide a combined

feature that both generates and summarizes data.

How it works...
Creating interchangeable, polymorphic classes for the various subcommands is a handy

way to provide an extensible design. The Command design pattern strongly encourages

each individual subclass to have an identical signature. Doing this makes it easier for the

command subclasses to be created and executed. Also, new commands can be added that

fit this pattern.

One of the SOLID design principles is the Liskov Substitution Principle (LSP). It suggests

any of the subclasses of the Command abstract class can be used in place of the parent class.

Each Command instance has a consistent interface. The use of the Command design pattern

makes it easy to be sure that Command subclasses can be interchanged with each other.

The overall main() script can create instances of the Generate or Summarize classes. The

substitution principle means that either instance can be executed because the interfaces

are the same. This flexibility makes it easy to parse the command-line options and create

an instance of either of the available classes. We can extend this idea and create sequences

of individual command instances.

There’s more...
One of the more common extensions to this design pattern is to provide for composite

commands. In the Combining two applications into one recipe, we showed one way to create

composites. This is another way, based on defining a new Command class that implements a

combination of existing Command class instances:
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class CmdSequence(Command):
def __init__(self, *commands: type[Command]) -> None:

super().__init__()
self.commands = [command() for command in commands]

def execute(self, options: argparse.Namespace) -> None:
for command in self.commands:

command.execute(options)

This class will accept other Command classes via the *commands parameter. From the classes,

it will build the individual class instances.

We might use this CmdSequence class like this:

>>> from argparse import Namespace
>>> options = Namespace(
... samples=1_000,
... randomize=42,
... output="data/x.csv",
... summary_file="data/y.md",
... output_files=["data/x.csv"]
... )

>>> both_command = CmdSequence(Generate, Summarize)
>>> both_command.execute(options)
Created data/x.csv

This design exposes some implementation details. In particular, the two class names and

the intermediate x.csv file are details that seem superfluous.

We can create a slightly nicer subclass of the CmdSequence argument if we focus specifically

on the two commands being combined. This will have an __init__() method that follows

the pattern of other Command subclasses:

class GenSumm(CmdSequence):
def __init__(self) -> None:

super().__init__(Generate, Summarize)
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def execute(self, options: argparse.Namespace) -> None:
self.intermediate = Path("data") / "ch14_r02_temporary.toml"
new_namespace = argparse.Namespace(

output=str(self.intermediate),
output_files=[str(self.intermediate)],
**vars(options),

)
super().execute(new_namespace)

This class definition incorporates two other classes into the already defined CmdSequence

class structure. The super().__init__() expression invokes the parent class initialization

with the Generate and Summarize classes as argument values.

This provides a composite application definition that conceals the details of how a file is

used to pass data from the first step to a subsequent step. This is purely a feature of the

composite integration and doesn’t lead to any changes in either of the original applications

that form the composite.

See also
• In the Designing scripts for composition and Using logging for control and audit output

recipes in Chapter 13, we looked at the constituent parts of this composite application.

• In the Combining two applications into one recipe earlier in this chapter, we looked

at the constituent parts of this composite application. In most cases, we’ll need to

combine elements of all of these recipes to create a useful application.

• We’ll often need to follow the Managing arguments and configuration in composite

applications recipe, which comes next in this chapter.

• For other advanced design patterns, see Mastering Python Design Patterns – Third

Edition.

https://www.packtpub.com/en-de/product/mastering-python-design-patterns-9781837639618
https://www.packtpub.com/en-de/product/mastering-python-design-patterns-9781837639618
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Managing arguments and configuration in
composite applications
When we have a complex suite (or system) of individual applications, they may share com-

mon features. The coordination of common features among many applications can become

awkward. As a concrete example, imagine defining the various one-letter abbreviated

options for command-line arguments. We might want all of our applications to use the -v

option for verbose output. Ensuring that there are no conflicts among all the applications

might require keeping some kind of master list of all options.

This kind of common configuration should be kept in only one place. Ideally, it would be

in a common module, used throughout a family of applications.

Additionally, we often want to divorce the modules that perform useful work from the CLI.

This lets us refactor the internal software design without changing the user’s understanding

of how to use the application.

In this recipe, we’ll look at ways to ensure that a suite of applications can be refactored

without creating unexpected changes to the CLI.

Getting ready
We’ll imagine an application suite built from three commands. This is based on the applica-

tions shown in the Combining two applications into one recipe earlier in this chapter. We’ll

have a markov application with three subcommands: markov generate, markov summarize,

and the combined application, markov gensumm.

We’ll rely on the subcommand design from the Combining many applications using the

Command design pattern recipe earlier in this chapter. This will provide a handy hierarchy

of Command subclasses:

• The Command class is an abstract superclass.

• The Generate subclass performs the chain-generating functions from Chapter 13

recipe the Designing scripts for composition recipe.
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• The Summarize subclass performs summarizing functions from Chapter 13 recipe the

Using logging for control and audit output recipe.

• A GenSumm subclass can perform combined chain generation and summarization,

following the ideas of the Combining many applications using the Command design

pattern recipe.

In order to create a simple command-line application, we’ll need appropriate argument

parsing. For more on argument parsing, see Chapter 6.

This argument parsing will rely on the subcommand-parsing capability of the built-in

argparse module. We can create a common set of command options that apply to all

subcommands. We can also create unique options for each of the distinct subcommands.

How to do it...
This recipe will start with a consideration of what the CLI commands need to look like.

A first release often involves some prototypes or examples to be sure that the commands

are truly useful to the user. After learning the user’s preferences, we can change how we

implement the argument definitions in each of the Command subclasses.

1. Define the CLI. This is an exercise in User Experience (UX) design. While a

great deal of UX design is focused on web and mobile device applications, the core

principles are appropriate for CLI applications as well. Earlier, we noted that the root

application will be called markov. It will have the following three subcommands:

markov generate -o detail_file.csv -s samples
markov summarize -o summary_file.md detail_file.csv ...

markov gensumm -g samples

The gensumm command combines the generate and summarize commands into a

single operation that does both.

2. Define the root Python application. We’ll call it markov.py. It’s common to have a

package __main__.py file that contains the application. It’s often simpler to use an
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OS alias to provide the UX name.

3. We’ll import the class definitions from the Combining many applications using the

Command design pattern recipe. This will include the Command superclass and the

Generate, Summarize, and GenSumm subclasses. We’ll extend the Command class with

an additional method, arguments(), to set the unique options in the argument parser

for this command. This is a class method and is called on the class as a whole, not an

instance of the class:

class Command:
@classmethod
def arguments(

cls,
sub_parser: argparse.ArgumentParser

) -> None:
pass

def __init__(self) -> None:
pass

def execute(self, options: argparse.Namespace) -> None:
pass

4. Here are the unique options for the generate subcommand. We won’t repeat the

entire class definition, only the new arguments() method. This creates arguments

that are unique to the markov generate subcommand:

class Generate(Command):
@classmethod
def arguments(

cls,
generate_parser: argparse.ArgumentParser

) -> None:
default_seed = os.environ.get("RANDOMSEED", "0")
generate_parser.add_argument(

"-s", "--samples", type=int, default=1_000)
generate_parser.add_argument(

"-o", "--output", dest="output")
generate_parser.add_argument(
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"-r", "--randomize", default=default_seed)
generate_parser.set_defaults(command=cls)

5. Here is the new arguments() method of the Summarize subcommand:

class Summarize(Command):
@classmethod
def arguments(

cls,
summarize_parser: argparse.ArgumentParser

) -> None:
summarize_parser.add_argument(

"-o", "--output", dest="summary_file")
summarize_parser.add_argument(

"output_files", nargs="*", type=Path)
summarize_parser.set_defaults(command=cls)

6. Here is the new arguments() method for the composite command, GenSumm:

class GenSumm(Command):
@classmethod
def arguments(

cls,
gensumm_parser: argparse.ArgumentParser

) -> None:
default_seed = os.environ.get("RANDOMSEED", "0")
gensumm_parser.add_argument(

"-s", "--samples", type=int, default=1_000)
gensumm_parser.add_argument(

"-o", "--output", dest="summary_file.md")
gensumm_parser.add_argument(

"-r", "--randomize", default=default_seed)
gensumm_parser.set_defaults(command=cls)

7. Create the overall argument parser. Use this to create a subparser builder. For

each subcommand, create a subparser and add arguments that are unique to that

command:
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import argparse

def get_options(
argv: list[str]

) -> argparse.Namespace:
parser = argparse.ArgumentParser(prog="Markov")
subparsers = parser.add_subparsers()
generate_parser = subparsers.add_parser("generate")
Generate.arguments(generate_parser)

summarize_parser = subparsers.add_parser("summarize")
Summarize.arguments(summarize_parser)
gensumm_parser = subparsers.add_parser("gensumm")
GenSumm.arguments(gensumm_parser)

8. Parse the command-line values. In most cases, the argument definitions include

validation rules. In this case, there’s an additional validation check to make sure a

command was provided. Here are the final parsing and validating steps:

options = parser.parse_args(argv)
if "command" not in options:

parser.error("No command selected")
return options

The overall parser includes three subcommand parsers. One will handle the markov

generate command, another handles markov summarize, and the third handles a com-

bined markov gensumm. Each subcommand has slightly different combinations of options.

The command option is set via the set_defaults() method. This also provides useful

additional information about the command to be executed. In this case, we’ve provided the

class that must be instantiated.

The overall application is defined by the following main() function:

from typing import cast

def main(argv: list[str] = sys.argv[1:]) -> None:



Chapter 14 625

options = get_options(argv)
command = cast(type[Command], options.command)()
command.execute(options)

The resulting object will have an execute() method that does the real work of this com-

mand.

How it works...
There are two parts to this recipe:

• Using the Command design pattern to define a related set of classes that are poly-

morphic. For more information on this, see the Combining many applications using

the Command design pattern recipe.

• Using features of the argparse module to handle subcommands.

The argparse module feature that’s important here is the add_subparsers() method of

a parser. This method returns an object to build each distinct subcommand parser. We

assigned this object to the subparsers variable.

We also used the set_defaults() method of a parser to add a command argument to each

of the subparsers. This argument will be populated by the defaults defined for one of the

subparsers. The value assigned by the set_defaults() method actually used will show

which of the subcommands was invoked.

Consider the following OS command:

(cookbook3) % markov generate -s 100 -o x.csv

This command will be parsed to create a Namespace object that looks like this:

Namespace(command=<class '__main__.Generate'>, output='x.csv', samples=100)

The command attribute in the Namespace object is the default value provided as part of the



626 Application Integration: Combination

subcommand definition. The values for output and samples come from the -o and -g

options.

There’s more...
The get_options() function has an explicit list of classes that it incorporates into the

overall command. As shown, a number of lines of code are repeated, and this could be

optimized. We can provide a data structure that replaces a number of lines of code:

def get_options_2(argv: list[str] = sys.argv[1:]) -> argparse.Namespace:
parser = argparse.ArgumentParser(prog="markov")
subparsers = parser.add_subparsers()
sub_commands = [

("generate", Generate),
("summarize", Summarize),
("gensumm", GenSumm),

]

for name, subc in sub_commands:
cmd_parser = subparsers.add_parser(name)
subc.arguments(cmd_parser)

# The parsing and validating remains the same...

This variation on the get_options() function uses a sequence of two-tuples to provide

the command name and the relevant class to implement the command. Iterating through

this list ensures that all of the various subclasses of the Command class are processed in a

perfectly uniform manner.

See also
• See the Designing scripts for composition and Using logging for control and audit

output recipes in Chapter 13 for the basics of building applications focused on being

composable.

• See the Combining two applications into one recipe from earlier in this chapter for

the background on the components used in this recipe.

• See the Using argparse to get command-line input recipe in Chapter 6 for more on the
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background of argument parsing.

• Other tools for creating CLIs include click, hydra, and invoke.

Wrapping and combining CLI applications
One common kind of automation involves running several programs, some of which are

not Python applications. This commonly arises when integrating multiple tools, which

are often applications used to build applications or documents. Since the programs aren’t

written in Python, it’s impossible to refactor each program to create a composite Python

application. When using a non-Python application, we can’t follow the Combining two

applications into one recipe shown earlier in this chapter.

Instead of aggregating the Python components, an alternative is to wrap the other programs

in Python, creating a composite application. The use case is very similar to the use case

for writing a shell script. The difference is that Python is used instead of a shell language.

Using Python has some advantages:

• Python has a rich collection of data structures. Most shell languages are limited to

strings and arrays of strings.

• Python has several outstanding unit test frameworks. Rigorous unit testing gives us

confidence that the combined application will work as expected.

In this recipe, we’ll look at how we can run other applications from within Python.

Getting ready
In the Designing scripts for composition recipe in Chapter 13, we identified an application

that did some processing that led to the creation of a rather complex result. For the purposes

of this recipe, we’ll assume that the application is not written in Python.

We’d like to run this program several thousand times, but we don’t want to copy and paste

the necessary commands into a script. Also, because the shell is difficult to test and has so

few data structures, we’d like to avoid using the shell.

For this recipe, we’ll work with an application as if it were a native binary application,

https://click.palletsprojects.com/en/8.1.x/
https://hydra.cc/docs/intro/
https://www.pyinvoke.org
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written in Rust, Go, or Pascal. There are two ways to explore this:

• The markov_gen.pas file in this book’s Git repository can be used to build a working,

native binary application. The Free Pascal Compiler project (https://www.free

pascal.org) has compilers for a large number of platforms.

• Another common situation is the need to execute a Jupyter notebook using the

jupyter execute command. We can’t directly import a notebook, but must execute

it via a separate command.

Another alternative that can help with exploring these design alternatives is to make a

Python application behave like a binary executable by adding a shebang line as the first

line in the file. In many cases, the following can be used as the first line of a Python script:

#!/usr/bin/env python

For macOS and Linux, use the following to change the mode of the file to executable:

% chmod +x your_application_file.py

Working with a native binary application means that we can’t import a Python module

that comprises the application. Instead, the application is run as a separate OS process.

This limits interaction to command-line argument values and OS environment variables.

To run a native binary application, we use the subprocess module. There are two common

design patterns for running another program from within Python:

• The other program doesn’t produce any output, or we don’t want to gather the

output in our Python program. The first situation is typical of OS utilities that return

a status code when they succeed or fail. The second situation is typical of programs

that update files and produce logs.

• The other program produces the output; the Python wrapper needs to capture and

process it. This may happen when the Python wrapper needs to take extra actions

to clean up or retry in the event of failure.

https://www.freepascal.org
https://www.freepascal.org
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In this recipe, we’ll look at the first case: the output isn’t something we need to capture.

In the Wrapping a program and checking the output recipe, we’ll look at the second case,

where the output will be scrutinized by the Python wrapper program.

In many cases, one benefit of wrapping an existing application with Python is the ability

to dramatically rethink the UX. This lets us redesign the CLI to better fit the user’s needs.

Let’s look at wrapping a program that’s normally started with the src/ch14/markov_gen

command. Here’s an example:

(cookbook3) % src/ch14/markov_gen -o data/ch14_r04.csv -s 100 -r 42
# file = "data/ch14_r04.csv"
# samples = 100
# randomize = 42

The output filename needs to be flexible so that we can run the program hundreds of times.

This is often done by interpolating a sequence number into the filename. For example,

f"data/ch14/samples_{n}.csv" would be used in Python to create unique filenames.

How to do it...
In this recipe, we’ll start by creating a small demonstration application. This is a spike

solution (https://wiki.c2.com/?SpikeSolution). This will be used to be sure we

understand how the other application works. Once we have the correct OS command, we

can wrap this in a function call to make it easier to use:

1. Import the argparse and subprocess modules and the Path class. We’ll also need

the sys module:

import argparse
import subprocess
from pathlib import Path
import sys

2. Write the core processing using the subprocess module to invoke the target appli-

cation. This can be tested separately to ensure it can execute the application. In

https://wiki.c2.com/?SpikeSolution
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this case, subprocess.run() will execute the given command, and the check=True

option will raise an exception if the status is non-zero. Here’s the spike solution that

demonstrates the essential processing:

directory, n = Path("/tmp"), 42
filename = directory / f"sample_{n}.csv"
command = [

"markov_gen",
"--samples", "10",
"--output", str(filename),

]
subprocess.run(command, check=True)

This minimal spike can be run to make sure things work before proceeding to refactor

the spike into something more useful.

3. Wrap the spike solution in a function that reflects the desired behavior. The process-

ing looks like this:

def make_files(directory: Path, files: int = 100) -> None:
for n in range(files):

filename = directory / f"sample_{n}.csv"
command = [

"markov_gen",
"--samples", "10",
"--output", str(filename),

]
subprocess.run(command, check=True)

4. Write a function to parse the command-line options. In this case, there are two

positional parameters: a directory and a number of chain samples to generate. The

function looks like this:

def get_options(argv: list[str]) -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument("directory", type=Path)
parser.add_argument("samples", type=int)
options = parser.parse_args(argv)
return options
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5. Write a main function to do the parsing and processing:

def main(argv: list[str] = sys.argv[1:]) -> None:
options = get_options(argv)
make_files(options.directory, options.samples)

We now have a function that’s testable using any of the Python unit-testing frameworks.

This can give us real confidence that we have a reliable application built around an existing

non-Python application.

How it works...
The subprocess module is how Python runs other programs. The run() function does a

number of things for us.

In a POSIX (such as Linux or macOS) context, the steps are similar to the following sequence:

1. Prepare the stdin, stdout, and stderr file descriptors for the child process.

2. Invoke a function like the os.execve() function to start the child process.

3. Wait for the child process to finish and collect the final status.

An OS shell, such as bash, conceals these details from application developers and users.

The subprocess.run() function, similarly, hides the details of creating and waiting for a

child process.

Using the subprocess module to run a separate executable allows Python to integrate a

wide variety of software components into a unified whole. Using Python offers a much

richer collection of data structures than the shell, proper exception handling instead of

checking the final status code, and a way to unit test.

There’s more...
We’ll add a simple clean-up feature to this script. The idea is that all of the output files

should be created as an atomic operation.

In order to clean up, we’ll need to wrap the core processing in a try: block. We’ll write
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a second function, make_files_clean(), that uses the original make_files() function to

include a clean-up feature. A new overall function, make_files_clean(), would look like

this:

def make_files_clean(directory: Path, files: int = 100) -> None:
"""Create sample data files, with cleanup after a failure."""
try:

make_files(directory, files)
except subprocess.CalledProcessError as ex:

# Remove any files.
for partial in directory.glob("sample_*.csv"):

partial.unlink()
raise

The exception-handling block does two things. First, it removes any incomplete files from

the current working directory. Second, it re-raises the original exception so that the failure

will propagate to the client application.

Any test cases for this application would need to make use of mock objects. See the Mocking

external resources recipe in Chapter 15.

See also
• This kind of automation is often combined with other Python processing. See the

Designing scripts for composition recipe in Chapter 13.

• The goal is often to create a composite application; see the Managing arguments and

configuration in composite applications recipe earlier in this chapter.

• For a variation on this recipe, see the Wrapping a program and checking the output

recipe, which is up next in this chapter.

Wrapping a program and checking the output
One common kind of automation involves wrapping a program. The advantage of a Python

wrapper is the ability to perform detailed aggregation and analysis of the output files.

A Python program might transform, filter, or summarize the output from a subprocess.
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In this recipe, we’ll see how to run other applications from within Python, and collect and

process the output.

Getting ready
In the Designing scripts for composition recipe in Chapter 13, we identified an application

that did some processing, leading to the creation of a rather complex result. We’d like to

run this program several hundred times, but we don’t want to copy and paste the necessary

commands into a script. Also, because the shell is difficult to test and has so few data

structures, we’d like to avoid using the shell.

For this recipe, we’ll work with a native binary application written in some compiled

language like Ada, Fortran, or Pascal. This means that we can’t simply import the Python

module that comprises the application. Instead, we’ll have to execute this application by

running a separate OS process with the subprocess module. There are two common use

cases for running another binary program from within Python:

• Either there isn’t any output, or we don’t want to process the output file in our

Python program.

• We need to capture and possibly analyze the output to retrieve information or

ascertain the level of success. We might need to transform, filter, or summarize the

log output.

In this recipe, we’ll look at the second case: the output must be captured and summarized.

In the Wrapping and combining CLI applications recipe in this chapter, we looked at the

first case, where the output is simply ignored.

Here’s an example of running the markov_gen application:

(cookbook3) % RANDOMSEED=42 src/ch14/markov_gen --samples 5 --output t.csv
# file = "t.csv"
# samples = 5
# randomize = 42

There were three lines of output written to the OS standard output file, all starting with
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#. These show the file being created, the number of samples, and the random number

generator seed being used. This output is confirmation the data was correctly created.

We want to capture the details of these lines from this application and summarize them.

The total of all the generated samples should match the number of samples summarized,

confirming that all of the data was processed.

How to do it...
We’ll start by creating a spike solution (https://wiki.c2.com/?SpikeSolution) to

confirm the command and arguments needed to run another application. We’ll transform

the spike solution into a function that captures output for further analysis.

1. Import the argparse and subprocess modules and the Path class. We’ll also need

the sys module and the Any type hint:

import argparse
from collections.abc import Iterable, Iterator
from pathlib import Path
import subprocess
import sys
from typing import Any

2. Write the core processing, using the subprocess module to invoke the target appli-

cation. Here’s a spike solution that demonstrates the essential processing:

directory, n = Path("/tmp"), 42
filename = directory / f"sample_{n}.toml"
temp_path = directory / "stdout.txt"
command = [

"src/ch14/markov_gen",
"--samples", "10",
"--output", str(filename),

]
with temp_path.open("w") as temp_file:

process = subprocess.run(
command,
stdout=temp_file, check=True, text=True

)

https://wiki.c2.com/?SpikeSolution
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output_text = temp_path.read_text()

This spike does two things: it builds a complicated command line for a subprocess

and it also collects the output from the subprocess. A temporary file allows the

subprocess module to run a process that creates a very large file.

The idea is to create a script with this minimal spike and be sure things work before

proceeding to refactor the spike into something more useful.

3. Refactor the spike to create a function that runs a command and collects the output.

Here’s a command_output() function:

def command_output(
temporary: Path, command: list[str]

) -> str:
temp_path = temporary / "stdout"
with temp_path.open("w") as temp_file:

subprocess.run(
command,
stdout=temp_file, check=True, text=True

)
output_text = temp_path.read_text()
temp_path.unlink()
return output_text

4. Refactor the rest of the spike into a function to generate the commands. It makes

sense for this function to be a generator so it can create a collection of similar

commands.

def command_iter(options: argparse.Namespace) -> Iterable[list[str]]:
for n in range(options.iterations):

filename = options.directory / f"sample_{n}.csv"
command = [

"src/ch14/markov_gen",
"--samples", str(options.samples),
"--output", str(filename),
"--randomize", str(n+1),

]
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yield command

5. Define a function to parse the expected output from a command. We’ll decompose the

parsing into a sequence of generators that create regular expression Match objects,

extract the matched groups, and build a final dictionary reflecting the content. The

function can look like this:

def parse_output(result: str) -> dict[str, Any]:
matches = (

re.match(r"^#\s*([^\s=]+)\s*=\s*(.*?)\s*$", line)
for line in result.splitlines()

)
match_groups = (

match.groups()
for match in matches
if match

)
summary = {

name: value
for name, value in match_groups

}
return summary

6. Here’s the high-level function to extract useful information from the command

output. The generator function looks like this:

import tempfile

def summary_iter(options: argparse.Namespace) -> Iterator[dict[str,
Any]]:

commands = command_iter(options)
with tempfile.TemporaryDirectory() as tempdir:

results = (
command_output(Path(tempdir), cmd)
for cmd in commands

)
for text in results:

yield parse_output(text)
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This function will use a stack of generator expressions. For more background, see the

Using stacked generator expressionsrecipe in Chapter 9. Since these are all generator

expressions, each individual result is processed separately. This can allow large files

to be digested as small summaries one at a time.

7. Write a function to parse the command-line options. In this case, the target directory

is a positional parameter, and the number of samples in each file and the number of

files to generate are options. The function looks like this:

def get_options(argv: list[str]) -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument("directory", type=Path)
parser.add_argument("-s", "--samples", type=int, default=1_000)
parser.add_argument("-i", "--iterations", type=int, default=10)
options = parser.parse_args(argv)
return options

8. Combine the parsing and execution into a main function:

def main(argv: list[str] = sys.argv[1:]) -> None:
options = get_options(argv)
parsed_results = list(summary_iter(options))
print(f"Built {len(parsed_results)} files")
# print(parsed_results)
total = sum(

int(rslt['samples']) for rslt in parsed_results
)
print(f"Total {total} samples")

Now we can run this new application and have it execute the underlying application and

also gather the output, producing a helpful summary. We’ve built this using Python instead

of a bash (or other shell) script. We can make use of Python’s data structures and unit

testing.

How it works...
The subprocess module is how Python programs run other programs available on a given

computer. For more background, see the Wrapping and combining CLI applications recipe
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in this chapter.

The subprocess module gives us access to one of the most important parts of the operating

system: launching a subprocess and collecting the output. The underlying OS can direct

output to the console, or files, or through “pipes” to another process. The default behavior

when launching a subprocess is to inherit the parent process definitions for the three

standard files, stdin, stdout, and stderr. In this recipe, we’ve replaced the default stdout

assignment with a file that permits us to gather (and analyze) output that would have gone

to the console.

There’s more...
Once we’ve wrapped the markov_gen binary application within a Python application, we

have a number of alternatives available to us for improving the output.

Because we’ve wrapped the underlying application, we don’t need to change this code to

change the results it produces. We can modify our wrapper program, leaving the original

data generator intact.

We can refactor the main() function to replace the print() functions with processing to

create a more useful format. A possible rewrite would emit a CSV file with the detailed

generator information:

import csv

def main_2(argv: list[str] = sys.argv[1:]) -> None:
options = get_options(argv)

total_counter = 0
wtr = csv.DictWriter(sys.stdout, ["file", "samples", "randomize"])
wtr.writeheader()
for summary in summary_iter(options):

wtr.writerow(summary)
total_counter += int(summary["samples"])

wtr.writerow({"file": "TOTAL", "samples": total_counter})

The list of files and numbers of samples can be used to partition the data for model training
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purposes.

We are able to build useful features separately by creating layers of features. Leaving the

underlying application untouched can help us to perform regression tests to be sure the

core statistical validity has not been harmed by adding new features.

See also
• See the Wrapping and combining CLI applications recipe from earlier in this chapter

for another approach to this recipe.

• This kind of automation is often combined with other Python processing. See the

Designing scripts for composition recipe in Chapter 13.

• The goal is often to create a composite application; see the Managing arguments and

configuration in composite applications recipe from earlier in this chapter.

• Many practical applications will work with more complex output formats. For

information on processing complex line formats, see the String parsing with regu-

lar expressions recipe in Chapter 1 and the Reading complex formats using regular

expressions recipe in Chapter 11. Much of Chapter 11, relates to the details of parsing

input files.

• For more information on interprocess communication, see The Linux Documentation

Project: Interprocess Communication Mechanisms.

https://tldp.org/LDP/tlk/ipc/ipc.html
https://tldp.org/LDP/tlk/ipc/ipc.html
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Join our community Discord space
Join our Python Discord workspace to discuss and find out more about the book: https:

//packt.link/dHrHU.

https://packt.link/dHrHU
https://packt.link/dHrHU
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Testing

Testing is central to creating working software. Here’s the canonical statement describing

the importance of testing:

“Any program feature without an automated test simply doesn’t exist”. (Kent

Beck, Extreme Programming Explained: Embrace Change)

We can distinguish several kinds of testing:

Unit testing: This applies to independent units of software: functions, classes, or modules.

The unit is tested in isolation to confirm that it works correctly.

Integration testing : This combines units to be sure they integrate properly.

System testing : This tests an entire application or a system of interrelated applications

to be sure that the suite of software components works properly. This is also called end-to-

end testing or functional testing. This is often used for acceptance testing to confirm

that software is fit for use.

Performance testing : This ensures that a unit, subsystem, or whole system meets
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performance objectives (also often known as load testing). In some cases, performance

testing includes the study of resources such as memory, threads, or file descriptors. The goal

is to be sure that software makes appropriate use of system resources. This is sometimes

called benchmarking, when the goal is to measure resource usage instead of ensuring

that the usage is below some threshold.

These are some of the more common types. In this chapter, we’ll focus on unit testing since

it is foundational to creating trust that software works reliably. Other forms of testing rest

on the foundation of reasonably complete unit tests.

It’s sometimes helpful to summarize a test scenario following the Gherkin language. In

this test specification language, each scenario is described by GIVEN-WHEN-THEN steps.

Here’s an example:

Scenario: Binomial coefficient typical case.

Given n = 52
And k = 5
When The binomial coefficient is computed with c = binom(n, k)
Then the result, c, is 2,598,960

This approach to writing tests describes the given starting state or arrangement, an action

to perform, and one or more assertions about the resulting state after the action. This is

sometimes called the “arrange-act-assert” pattern.

In this chapter, we’ll look at the following recipes:

• Using docstrings for testing

• Testing functions that raise exceptions

• Handling common doctest issues

• Unit testing with the unittest module

• Combining unittest and doctest tests

• Unit testing with the pytest module
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• Combining pytest and doctest tests

• Testing things that involve dates or times

• Testing things that involve randomness

• Mocking external resources

We’ll start by including tests within the docstring of a module, class, or function. This makes

the test case act as both documentation of the design intent and a verifiable confirmation

that it really does work as advertised.

Using docstrings for testing
Good Python includes docstrings inside every module, class, function, and method. Many

tools can create useful, informative documentation from docstrings. Refer back to the

Writing clear documentation strings with RST markup recipe in Chapter 3 for an example of

how to create docstrings.

One important element of a docstring is a concrete example. The examples provided in

docstrings can become unit-test cases that are exercised by Python’s doctest tool.

In this recipe, we’ll look at ways to turn examples into proper automated test cases.

Getting ready
We’ll look at a small function definition as well as a class definition. Each of these will

contain docstrings that include examples that can be used as automated tests.

We’ll use a function to compute the binomial coefficient of two numbers. It shows the

number of combinations of 𝑛 things taken in groups of size 𝑘. For example, how many

ways a 52-card deck can be dealt into 5-card hands is computed like this:

(
𝑛
𝑘)

=
𝑛!

𝑘!(𝑛 − 𝑘)!

This can be implemented by a Python function that looks like this:
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from math import factorial

def binom_draft(n: int, k: int) -> int:
return factorial(n) // (factorial(k) * factorial(n - k))

Functions, generally, have no internal state, making a function like this relatively easy to

test. This will be one of the examples used for showing the unit testing tools available.

We’ll also look at a class that uses lazy calculation of the mean and median of a collection

of numbers. Objects often have internal state, defined by the various self. attributes.

State changes are often difficult. This is similar to the classes shown in Chapter 7. The

Designing classes with lots of processing and Using properties for lazy attributes recipes both

have classes similar to this.

Here is an outline of the Summary class, with some implementation details omitted:

from collections import Counter

class Summary:
def __init__(self) -> None:

self.counts: Counter[int] = collections.Counter()

def __str__(self) -> str:
...

def add(self, value: int) -> None:
self.counts[value] += 1

@property
def mean(self) -> float:

...

@property
def median(self) -> float:

...

The add() method changes the internal state of a Summary object. Because of this state

change to the self.counts attribute, we’ll need to provide more sophisticated examples to
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show how an instance of the Summary class behaves.

How to do it...
We’ll show two variations in this recipe. The first variation can be applied to functions like

the binom() function where there is no object with a mutable state. The second is more

appropriate for stateful operations, such as the Summary class. We’ll look at them together

because they’re very similar, even though they apply to different kinds of applications.

Writing examples for functions

This recipe starts by creating the function’s docstring, and then adds an example of how

the function works:

1. Start the docstring with a summary:

def binom(n: int, k: int) -> int:
"""
Computes the binomial coefficient.
This shows how many combinations exist of
*n* things taken in groups of size *k*.

2. Include the parameter definitions and the return value definition:

:param n: size of the universe
:param k: size of each subset
:returns: the number of combinations

3. Mock up an example of using the function at Python’s >>> prompt:

>>> binom(52, 5)
2598960

4. Close the docstring with the appropriate quotation marks:

"""
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Writing examples for stateful objects

This recipe also starts with writing a docstring. The docstring will show several steps using

the stateful object to show the object’s internal state changes:

1. Write a class-level docstring with a summary. It can help to leave some blank lines

in front of the doctest example:

class Summary:
"""
Computes summary statistics.

2. Extend the class-level docstring with a concrete example of how the class works. In

this case, we’ll show how the add() method sets the state of the object. We’ll also

show how to interrogate the state of the object:

>>> s = Summary()
>>> s.add(8)
>>> s.add(9)
>>> s.add(9)
>>> round(s.mean, 2)
8.67
>>> s.median
9
>>> print(str(s))
mean = 8.67
median = 9

3. Finish with the triple quotes to end the docstring for this class:

"""

Because this example uses floating-point values, we’ve rounded the result of the mean in the

docstring example. Floating-point values might not have the exact same text representation

on all platforms and an exact test for equality may fail unexpectedly.
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Running the tests

When we run the doctest program, we’ll generally get a silent response because the test

passed.

The interaction looks like this:

(cookbook3) % python -m doctest recipe_01.py

When the tests pass, there is no output. We can add a -v command-line option to see an

enumeration of the tests run. This can be helpful to confirm that all of the tests in the

module were found.

What happens when something doesn’t work? We’ll modify a test case to have a wrong

answer and force a failure. When we run the doctest program – using a broken test case –

we’ll see output like this:

(cookbook3) % python -m doctest recipe_01.py
**********************************************************************
File "/Users/slott/Documents/Writing/Python/Python Cookbook
3e/src/ch15/recipe_01.py", line 29, in recipe_01.Summary
Failed example:

s.median
Expected:

10
Got:

9
**********************************************************************
1 items had failures:

1 of 7 in recipe_01.Summary
***Test Failed*** 1 failures.

This shows where the error is. It shows an expected value from the test example, and the

actual answer that failed to match the expected answer. Ordinarily – without the -v option

– silence means all tests were passed successfully.
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How it works...
The doctest module includes a main program – as well as several functions – that scan

a Python file for examples. The scanning operation looks for blocks of text that have a

characteristic pattern of the Python REPL: a >>> prompt with code, followed by lines that

show the response from the code, followed by a blank line to end the example output.

Clearly, these must be formatted to precisely match the Python REPL output to be found.

The doctest parser creates a small test case object from the prompt line and the block of

response text. There are three common cases:

• No expected response text: We saw this pattern when we defined the tests for the

add() method of the Summary class.

• A single line of response text: This was exemplified by the binom() function and

the mean() method of the Summary class.

• Multiple lines of response: Responses are bounded by either the next >>> prompt

or a blank line. This was exemplified by the str() example of the Summary class.

Unless special annotations are used, the output text must precisely match the expectation

text. In general, every space counts.

This testing protocol imposes some software design constraints. Functions and classes

must be designed to work from the >>> prompt. Because it can become awkward to create

very complex objects as part of a docstring example, class designs must be kept simple

enough to be demonstrated at the interactive prompt. These constraints often have the

benefit of keeping a design understandable.

The simplicity of the final comparison with the expected result can create some complica-

tions. In the example, we rounded the value of the mean to two decimal places. This is

because the display of floating-point values may vary slightly from platform to platform.
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There’s more...
One of the important considerations in test design is identifying edge cases. An edge case

generally focuses on the limits for which a calculation is designed.

There are, for example, two edge cases for the binomial function:

(
𝑛
0)

= (
𝑛
𝑛)

= 1

We can add these to the examples to be sure that our implementation is sound. This leads

to a docstring that looks like the following:

"""
Computes the binomial coefficient.
This shows how many combinations exist of
*n* things taken in groups of size *k*.

:param n: size of the universe
:param k: size of each subset
:returns: the number of combinations

>>> binom(52, 5)
2598960
>>> binom(52, 0)
1
>>> binom(52, 52)
1

"""

To keep the examples straight in the source code files, we’ve changed the

name of this function to binom2. This hack lets us keep both examples in a

single Python module.

In some cases, we might need to test values that are outside the valid range of values. These

cases raise exceptions, which means they aren’t really ideal for putting into the docstring.

The examples can clutter the explanation with details of things that should never normally
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happen. Fortunately, we have a place to put additional examples.

In addition to reading docstrings, the tool also looks for test cases in a global variable

named __test__. This variable must refer to a mapping. The keys to the mapping will be

test case names, and the values of the mapping must be doctest examples. Generally, each

value will need to be a triple-quoted string.

Because the examples in the __test__ variable are not inside the docstrings, they don’t

show up when using the built-in help() function. Nor do they show up when using other

tools to create documentation from source code. This might be a place to put examples of

failures or complex exceptions.

We might add something like this:

__test__ = {
"GIVEN_binom_WHEN_0_0_THEN_1": """

>>> binom(0, 0)
1
""",

"GIVEN_binom_WHEN_52_52_THEN_1": """
>>> binom(52, 52)
1
""",

}

We can use this for tests that don’t need to be as visible as the docstring examples.

See also
• In the Testing functions that raise exceptions and Handling common doctest issues

recipes later in this chapter, we’ll look at two additional doctest techniques.

• For more background to the concept of stateless functions, see Chapter 3 and Chap-

ter 9.
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Testing functions that raise exceptions
Python permits docstrings inside packages, modules, classes, functions, and methods. A

good docstring should contain an example of how the feature is used. The example may

need to include common exceptions, too. There’s one complicating factor, however, to

including exceptions.

When an exception is raised, the traceback messages created by Python are not completely

predictable. The message may include object ID values that are impossible to predict or

module line numbers that may vary slightly depending on the context in which the test

is executed. The general matching rules for doctest compare expected and actual results

precisely. In this recipe, we’ll look at additional techniques to add flexibility.

Getting ready
We’ll look at a small function definition as well as a class definition. Each of these will

contain docstrings that include examples that can be used as formal tests.

We’ll use the function from the Using docstrings for testing recipe, shown earlier in this

chapter, that computes the binomial coefficient of two numbers. It shows the number of

combinations of 𝑛 things taken in groups of 𝑘. For example, it shows how many ways a

52-card deck can be dealt into 5-card hands.

This function does a simple calculation and returns a value; it lacks any internal state,

making each request independent. We’d like to include some additional test cases in the

__test__ variable to show what this does when given values outside the expected ranges.

How to do it...
We start by running the binom function we defined previously. This output provides a

handy template to show the expected output:

1. Run the function manually at the interactive Python prompt to collect the actual

exception details. Copy and paste these results.

2. Create a global __test__ variable at the end of the module. One approach is to build
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the mapping from all global variables with names that start with test_:

recipe_02
2 items passed all tests:

2 tests in recipe_02.__test__.test_GIVEN_n_5_k_52_THEN_ValueError
3 tests in recipe_02.binom

5 tests in 3 items.

3. Define each test case as a global variable with a block of text containing the doctest

example. This can include additional notes about the scenario. These variables must

be set before the final creation of the __test__ mapping.

4. Paste in the interactive session session output.

It will start like this:

test_GIVEN_n_5_k_52_THEN_ValueError_1 = """
GIVEN n=5, k=52 WHEN binom(n, k) THEN exception
>>> binom(52, -5)
Traceback (most recent call last):
File
"/Users/slott/miniconda3/envs/cookbook3/lib/python3.12/doctest.py",
line 1357, in __run
exec(compile(example.source, filename, "single",

File "<doctest
recipe_02.__test__.test_GIVEN_n_5_k_52_THEN_ValueError[0]>",
line 1, in <module>
binom(52, -5)

File "/Users/slott/Documents/Writing/Python/Python Cookbook
3e/src/ch15/recipe_02.py", line 29, in binom
return factorial(n) // (factorial(k) * factorial(n - k))

^^^^^^^^^^^^
ValueError: factorial() not defined for negative values

"""

5. Replace the traceback details with .... Leave the initial line and the final exception

in place. Add a directive to doctest, by putting # doctest: +ELLIPSIS after the line

to be executed. It will look like this:
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test_GIVEN_n_5_k_52_THEN_ValueError_2 = """
GIVEN n=5, k=52 WHEN binom(n, k) THEN exception
>>> binom(5, 52)
Traceback (most recent call last):
...
ValueError: factorial() not defined for negative values

"""

We can now use a command like this to test the entire module’s features:

(cookbook3) % python -m doctest recipe_02.py

Because each test is a separate global variable, we can easily add test scenarios. All of the

names starting with test_ will become part of the final __test__ mapping that’s used by

the doctest tool.

How it works...
Because eliding traceback details is so common, the doctest tool recognizes the ellipsis

(...) in the context of a traceback. The ellipsis is also available in other contexts as one

of many directives to modify the testing behavior. The directives are included as special

comments with the line of code that performs the test action. They can also be provided as

general instructions on the command line.

We have two additional ways to handle tests that include an exception:

• We can use a # doctest: +IGNORE_EXCEPTION_DETAIL directive on the line of code

that will raise the exception. This lets us provide a full traceback error message. The

details of the traceback are ignored, and only the final exception line is matched

against the expected value. This makes it possible to copy an actual error and paste

it into the documentation.

• We can use a # doctest: +ELLIPSIS directive and replace parts of the traceback

message with .... This directive is redundant for traceback messages.

The use of an explicit directive can help to make it clear what the intent is.
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There’s more...
There are two more directives that are often useful:

• +NORMALIZE_WHITESPACE: Using this directive allows some flexibility in the whites-

pace for the expected value.

• +SKIP: The test is skipped.

There are a few more directives, but they’re rarely needed.

See also
• See the Using docstrings for testing recipe earlier in this chapter. This recipe shows

the basics of doctest.

• See the Handling common doctest issues recipe next in this chapter. This shows other

special cases that require doctest directives.

Handling common doctest issues
A docstring that contains an example is part of good Python programming. The way

the doctest tool uses literal matching of the expected text output against the actual

text can make testing complicated for Python objects that do not have a consistent text

representation.

For example, object hash values are randomized. This often results in the order of elements

in a set collection being unpredictable. We have several choices for creating test case

example output:

• Write examples that can tolerate randomization. One technique is by sorting the

elements of a set into a defined order.

• Stipulate a specific value for the PYTHONHASHSEED environment variable.

There are several other considerations beyond simple variability in the location of keys or

items in a set. Here are some other concerns:
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• The id() and repr() functions may expose an internal object ID. No guarantees can

be made about these values.

• Floating-point values may vary across platforms.

• The current date, time, and local timezone cannot meaningfully be used in a test

case.

• Random numbers using the default seed are difficult to predict.

• OS resources may not exist, or may not be in the proper state.

It’s important to note that doctest examples require an exact match with the text. This

means our test cases must avoid unpredictable results stemming from hash randomization

or floating-point implementation details.

Getting ready
We’ll look at three separate versions of this recipe. The first will include a function where

the output includes the contents of a set. Because the order of items in a set can vary, this

isn’t as easy to test as we’d like. Here’s the function definition:

from string import ascii_letters

def unique_letters(text: str) -> set[str]:
letters = set(text.lower())
non_letters = letters - set(ascii_letters)
return letters - non_letters

Testing the unique_letters() function is difficult because the order of items within a set

is unpredictable.

The second example will be a class that doesn’t define a unique __repr__() definition. The

default definition of the __repr__() method will expose an internal object ID. Since these

vary, the test results will vary. Here’s the class definition:



656 Testing

class Point:
def __init__(self, lat: float, lon: float) -> None:

self.lat = lat
self.lon = lon

@property
def text(self) -> str:

ns_hemisphere = "S" if self.lat < 0 else "N"
ew_hemisphere = "W" if self.lon < 0 else "E"
lat_deg, lat_ms = divmod(abs(self.lat), 1.0)
lon_deg, lon_ms = divmod(abs(self.lon), 1.0)
return (

f"{lat_deg:02.0f}°{lat_ms*60:4.3f}′{ns_hemisphere}"
f" {lon_deg:03.0f}°{lon_ms*60:4.3f}′{ew_hemisphere}"

)

For the third example, we’ll look at a real-valued function so that we can work with

floating-point values:

𝜙(𝑛) =
1
2
[1 + erf

𝑛√
2
]

This function is the cumulative probability density function for standard z-scores. See

the Creating a partial function recipe in Chapter 9, for more information on the idea of

normalized scores.

Here’s the Python implementation:

from math import sqrt, pi, exp, erf

def phi(n: float) -> float:
return (1 + erf(n / sqrt(2))) / 2

def frequency(n: float) -> float:
return phi(n) - phi(-n)

The phi() and frequency() functions involve some rather complicated numeric processing.

The unit tests have to reflect the floating-point precision issues.
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How to do it...
We’ll look at set ordering and object representation in three mini-recipes. We’ll start with

set ordering, then look at object IDs, and finally, floating-point values.

Writing doctest examples with unpredictable set ordering

1. Write a draft of the test that seems to capture the essence:

>>> phrase = "The quick brown fox..."
>>> unique_letters(phrase)
{'b', 'c', 'e', 'f', 'h', 'i', 'k', 'n', 'o', 'q', 'r', 't', 'u', 'w',
'x'}

This test will work when the hash values for these strings happen to fall into this

specific order.

2. One possible fix is to sort the results to impose an order.

Another alternative is to compare the output to a set object. The two choices look

like this:

>>> phrase = "The quick brown fox..."
>>> sorted(unique_letters(phrase))
['b', 'c', 'e', 'f', 'h', 'i', 'k', 'n', 'o', 'q', 'r', 't', 'u', 'w',
'x']
>>> (unique_letters(phrase) ==
... {'b', 'c', 'e', 'f', 'h', 'i', 'k', 'n', 'o', 'q', 'r', 't',
'u', 'w', 'x'}
... )
True

A third choice is to set the PYTHONHASHSEED environment variable to force known orderings.

We’ll look at this alternative below.

Writing doctest examples with object IDs

Ideally, our applications won’t display object IDs. These are essentially impossible to

predict. Here’s what we can do:
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1. Define a happy path doctest scenario to show that the class performs its essential

methods correctly. In this case, we’ll create a Point instance and use the text

property to see a representation of the point:

>>> Point(36.8439, -76.2936).text
'36°50.634′N 076°17.616′W'

2. When we define a test that displays the object’s representation string, the test will

include results that include the unpredictable object ID. The doctest might look like

the following:

>>> Point(36.8439, -76.2936)
<recipe_03.Point object at 0x107910610>

We need to change the test by using a # doctest: +ELLIPSIS directive. This means

changing the >>> Point(36.8439, -76.2936) line in the test, and using an ellipsis

on the exception displayed in the expected output to look like this:

>>> Point(36.8439, -76.2936) # doctest: +ELLIPSIS
<recipe_03.Point object at ...>

This kind of test suggest a design improvement. It’s often best to define __repr__().

Another choice is to avoid tests where __repr__() may be used.

Writing doctest examples for floating-point values

We have two choices when working with float values. We can round the values to a certain

number of decimal places. An alternative is to use the math.isclose() function. We’ll

show both:

1. Import the necessary libraries and define the phi() and frequency() functions as

shown previously.

2. For each example, include an explicit use of round():
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>>> round(phi(0), 3)
0.5
>>> round(phi(-1), 3)
0.159
>>> round(phi(+1), 3)
0.841

3. An alternative is to use the isclose() function from the math module:

>>> from math import isclose
>>> isclose(phi(0), 0.5)
True
>>> isclose(phi(1), 0.8413, rel_tol=.0001)
True
>>> isclose(phi(2), 0.9772, rel_tol=1e-4)
True

Because float values can’t be compared exactly, it’s best to display values that have been

rounded to an appropriate number of decimal places. It’s sometimes nicer for readers of

examples to use round() because it may be slightly easier to visualize how the function

works, compared to the isclose() alternative.

How it works...
Because of hash randomization, the hash keys used for sets are unpredictable. This is an

important security feature, used to defeat a subtle denial-of-service attack. For details, see

url: http://www.ocert.org/advisories/ocert-2011-003.html.

Since Python 3.7, dictionary keys are guaranteed to be kept in insertion order. This means

that an algorithm that builds a dictionary will provide a consistent sequence of key values.

The same ordering guarantee is not made for sets. Interestingly, sets of integers tend to

have a consistent ordering because of the way hash values are computed for numbers. Sets

of other types of objects, however, will not show consistent ordering of items.

When confronted with unpredictable results like set ordering or internal object identifica-

tion revealed by the __repr__() method, we have a testability issue. We can either change

http://www.ocert.org/advisories/ocert-2011-003.html
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the software to be more testable, or we can change the test to tolerate some unpredictability.

Most floating-point implementations are reasonably consistent. However, there are few

formal guarantees about the last few bits of any given floating-point number. Rather than

trusting that all of the bits have exactly the right value, it’s often a good practice to round

the value to a precision consistent with other values in the problem domain.

Being tolerant of unpredictability can be taken too far, allowing the test to tolerate bugs.

For more in-depth testing of mathematical functions, the hypothesis package provides

ways to define a domain of robust test cases.

There’s more...
We can run the tests with the PYTHONHASHSEED environment variable set. In Linux (and

macOS X) we can do this in a single command-line statement:

(cookbook3) % PYTHONHASHSEED=42 python3 -m doctest recipe_03.py

This will provide a fixed, reproducible hash randomization while running doctest. We can

also use PYTHONHASHSEED=0 to disable hash randomization.

The tox tool has a --hashseed=x option to allow setting a consistent hash seed to an

integer value prior to running tests.

See also
• The Testing things that involve dates or times recipe, in particular, the now() method

of datetime requires some care.

• The Testing things that involve randomness recipe shows how to test processing that

involves using the random module.

• We’ll look at how to work with external resources in the Mocking external resources

recipe later in this chapter.

https://hypothesis.readthedocs.io/en/latest/
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Unit testing with the unittest module
The unittest module allows us to step beyond the examples used by doctest. Each test

case can have one more scenario built as a subclass of the TestCase class. These use result

checks that are more sophisticated than the literal text matching used by the doctest tool.

The unittest module also allows us to package tests outside docstrings. This can be helpful

for tests for edge cases that might be too detailed to be helpful documentation. Often,

doctest cases focus on the happy path – the most common use cases, where everything

works as expected. We can use the unittest module to more easily define test cases that

diverge from the happy path.

This recipe will show how we can use the unittest module to create more sophisticated

tests.

Getting ready
It’s sometimes helpful to summarize a test following ideas behind the Gherkin language. In

this test specification language, each scenario is described by GIVEN-WHEN-THEN steps.

For this case, we have a scenario like this:

Scenario: Summary object can add values and compute statistics.

Given a Summary object
And numbers in the range 0 to 1000 (inclusive) shuffled randomly
When all numbers are added to the Summary object
Then the mean is 500
And the median is 500

The TestCase class doesn’t precisely follow this three-part given-when-then (or arrange-

act-assert) structure. A TestCase class generally has two parts:

• A setUp() method must implement the Given steps of the test case.

• A runTest() method must handle the Then steps to confirm the results using a

number of assertion methods to confirm the actual results match the expected results.
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The When steps can be in either method. The choice of where to implement the When

steps is often tied to the question of reuse. For example, a class or function may have a

number of methods to take different actions or make a number of state changes. In this

case, it makes sense to pair each When step with distinct Then steps to confirm correct

operation. The runTest() method can implement both When and Then steps. A number of

subclasses can share the common setUp() method.

As another example, a class hierarchy may offer a number of alternative implementations

for the same algorithm. In this case, the Then step confirmation of correct behavior is in the

runTest() method. Each alternative implementation has a distinct subclass with a unique

setup() method for the Given and When steps.

An optional tearDown() method is available for those tests that need to perform some

cleanup of left-over resources. This is outside the test’s essential scenario specification.

We’ll create some tests for a class that is designed to compute some basic descriptive

statistics. The unittest test cases let us define sample data that’s larger than anything

we’d ever choose to enter as doctest examples. We can easily use thousands of data points

rather than two or three as part of evaluating performance.

The bulk of the code that we’re going to test was shown in the Using docstrings for testing

recipe earlier in this chapter.

Because we’re not looking at the implementation details, we can think of this as opaque-box

testing; the implementation details are not known to the tester.

We’d like to be sure that when we use thousands of samples, the class performs correctly.

We’d also like to ensure that it works quickly; we’ll use this as part of an overall performance

test, as well as a unit test.

How to do it...
We’ll need to create a separate module and a subclass of TestCase in that module. Tools

like pytest can discover test modules if their names begin with test_, giving us a naming

convention for these additional modules. Here’s how we can creates tests separate from
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the module’s code:

1. Create a file with a name related to the module under test. If the module was named

summary.py, then a good name for a test module would be test_summary.py. Using

the test_ prefix makes it easier for tools like pytest to find the test.

2. We’ll use the unittest module for creating test classes. We’ll also be using the

random module to scramble the input data. We’ll also import the module under test:

import unittest
import random

from recipe_01 import Summary

3. Create a subclass of TestCase. Provide this class with a name that shows the intent

of the test. We’ve chosen a name with a summary of the three steps:

class
GIVEN_Summary_WHEN_1k_samples_THEN_mean_median(unittest.TestCase):

4. Define a setUp() method in this class that handles the Given step of the test. We’ve

created a collection of 1,001 samples shuffled into a random order:

def setUp(self) -> None:
self.summary = Summary()
self.data = list(range(1001))
random.shuffle(self.data)

5. Define a runTest() method that handles the When step of the test:

def runTest(self) -> None:
for sample in self.data:

self.summary.add(sample)

6. Add assertions to the runTest() method to implement the Then steps of the test:
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self.assertEqual(500, self.summary.mean)
self.assertEqual(500, self.summary.median)

If our test module is called recipe_04.py, we can use the following command to find

TestCase classes in the recipe_04 module and run them:

(cookbook3) % python -m unittest recipe_04.py

If all of the assertions pass, then the test suite will pass and the test run will be successful

overall.

How it works...
The TestCase class is used to define one test case. The class can have a setUp() method to

create the unit and possibly the request. The class must have at least a runTest() method

to make a request of the unit and check the response.

A single test often isn’t sufficient. If we created three separate test classes in the recipe_04.py

module, then we would see output that looks like this:

(cookbook3) % python -m unittest recipe_04.py
...
----------------------------------------------------------------------
Ran 3 tests in 0.003s

OK

As each test is passed, a . is displayed. This shows that the test suite is making progress.

The summary shows the number of tests run and the time. If there are failures or exceptions,

the counts shown at the end will reflect these.

Finally, there’s a summary line. In this case, it consists of OK, showing that all the tests

passed.

If we include a test that fails, we’ll see the following output when we use the -v option to
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get verbose output:

(cookbook3) % python -m unittest -v recipe_04.py

runTest (recipe_04.GIVEN_Summary_WHEN_1k_samples_THEN_mean_median.runTest) ... ok

test_mean (recipe_04.GIVEN_Summary_WHEN_1k_samples_THEN_mean_median_2.test_mean) ... FAIL

test_median (recipe_04.GIVEN_Summary_WHEN_1k_samples_THEN_mean_median_2.test_median) ... ok

test_mode (recipe_04.GIVEN_Summary_WHEN_1k_samples_THEN_mode.test_mode) ... ok

======================================================================

FAIL: test_mean (recipe_04.GIVEN_Summary_WHEN_1k_samples_THEN_mean_median_2.test_mean)

----------------------------------------------------------------------

Traceback (most recent call last):

File "/Users/slott/Documents/Writing/Python/Python Cookbook 3e/src/ch15/recipe_04.py",

line 122, in test_mean

self.assertEqual(501, self.summary.mean)

AssertionError: 501 != 500.0

----------------------------------------------------------------------

Ran 4 tests in 0.004s

FAILED (failures=1)

There’s a final summary of FAILED. This includes (failures=1) to show how many tests

failed.

There’s more...
In these examples, we have two assertions for the two Then steps inside the runTest()

method. If one fails, the test stops as a failure, and the other step is not exercised.

This is a weakness in the design of this test. If the first assertion fails, we may not get

all of the diagnostic information we might want. We should avoid having a sequence of

otherwise independent assertions in the runTest() method.

When we want more diagnostic details, we have two general choices:

• Use multiple test methods instead of a single runTest(). We can create multiple

methods with names that start with test_. The default implementation of the test
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loader will execute the setUp() method prior to each separate test_ method when

there is no overall runTest() method. This is often the simplest way to group a

number of related tests together.

• Use multiple subclasses of the TestCase subclass, each with a separate Then step

implementation. When the setUp() is inherited, this will be shared by each subclass.

Following the first alternative, the test class would look like this:

class GIVEN_Summary_WHEN_1k_samples_THEN_mean_median_2(unittest.TestCase):
def setUp(self) -> None:

self.summary = Summary()
self.data = list(range(1001))
random.shuffle(self.data)

for sample in self.data:
self.summary.add(sample)

def test_mean(self) -> None:
self.assertEqual(500, self.summary.mean)

def test_median(self) -> None:
self.assertEqual(500, self.summary.median)

We’ve refactored the setUp() method to include the Given and When steps of the test.

The two independent Then steps are refactored into their own separate test_mean() and

test_median() methods. These two methods are used instead of the runTest() method.

Since each test is run separately, we’ll see separate error reports for problems with com-

puting the mean or with computing the median.

The TestCase class defines numerous assertions that can be used as part of the Then

steps. We encourage careful study of the unittest section of the Python Standard Library

documentation to see all of the variations available.

In all but the smallest projects, it’s common practice to sequester the test files into a separate

directory, often called tests. When this is done, we can rely on the discovery application

that’s part of the unittest framework.



Chapter 15 667

The unittest loader can search each module in a given directory for all classes that are

derived from the TestCase class. This collection of classes within the larger collection of

modules becomes the complete TestSuite.

We can do this with the discover command of the unittest package:

(cookbook3) % (cd src; python -m unittest discover -s ch15)
...............
----------------------------------------------------------------------
Ran 15 tests in 0.008s

OK

This will locate all test cases in all test modules in the tests directory of a project.

See also
• We’ll combine unittest and doctest in the Combining pytest and doctest tests recipe

next in this chapter. We’ll look at mocking external objects in the Mocking external

resources recipe later in this chapter.

• The Unit testing with the pytest module recipe later in this chapter covers the same

test case from the perspective of the pytest tool.

Combining unittest and doctest tests
In some cases, we’ll want to combine tests written for the unittest and doctest tools. For

examples of using the doctest tool, see the Using docstrings for testing recipe earlier in

this chapter. For examples of using the unittest tool, see the Unit testing with the unittest

module recipe earlier in this chapter.

The doctest examples are an essential element of the documentation strings on modules,

classes, methods, and functions. The unittest cases will often be in a separate tests

directory in files with names that match the pattern test_*.py. An important part of

creating trustworthy software is running as wide a variety of tests as possible.

In this recipe, we’ll look at ways to combine a variety of tests into one tidy package.
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Getting ready
We’ll refer back to the example from the Using docstrings for testing recipe, shown earlier

in this chapter. This recipe created tests for a class, Summary, that does some statistical

calculations. In that recipe, we included examples in the docstrings.

In the Unit testing with the unittest module recipe earlier in this chapter, we wrote some

TestCase classes to provide additional tests for this class.

As context, we’ll assume there’s a project folder structure that looks like the following

directory tree:

project-name/
src/

summary.py
tests/

test_summary.py
README
pyproject.toml
requirements.txt
tox.ini

This means tests are in both the src/summary.py module and in the tests/test_summary.py

file.

We need to combine all of the tests into a single, comprehensive test suite.

The recipe examples use recipe_01.py instead of some cooler name such as summary.py.

Ideally, a module should have a memorable, meaningful name. The book content is quite

large, and the names are designed to match the overall chapter and recipe outline.

How to do it...
To combine unittest and doctest test cases, we’ll start with an existing test module, and

add a load_tests() function to merge the relevant doctest with the existing unittest

test cases. A function named load_tests() must be provided. This name is required so

the unittest loader will use it:
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1. To use doctest tests, import the doctest module. To write TestCase classes, import

the unittest module. We’ll also need the random module so we can control the

random seeds in use:

import unittest
import doctest
import random

2. Import the modules containing doctest examples:

import recipe_01

3. To implement the load_tests protocol, define a load_tests() function in the test

module. We’ll combine the standard tests automatically discovered by unittest with

the additional tests found by the doctest module:

def load_tests(
loader: unittest.TestLoader, standard_tests: unittest.TestSuite,
pattern: str

) -> unittest.TestSuite:
dt = doctest.DocTestSuite(recipe_01)
standard_tests.addTests(dt)
return standard_tests

The loader argument value to the load_tests() function is the test case loader currently

being used; this is generally ignored. The standard_tests argument value will be all

of the tests loaded by default. Generally, this is the suite of all subclasses of TestCase.

The function updates this object with the additional tests. The pattern value is the value

provided to the loader to locate tests; this is also ignored.

When we run this from the OS command prompt, we see the following:

(cookbook3) % python -m unittest -v recipe_05.py
test_mean
(recipe_05.GIVEN_Summary_WHEN_1k_samples_THEN_mean_median.test_mean) ... ok
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test_median
(recipe_05.GIVEN_Summary_WHEN_1k_samples_THEN_mean_median.test_median) ...
ok
Summary (recipe_01)
Doctest: recipe_01.Summary ... ok
Twc (recipe_01)
Doctest: recipe_01.Twc ... ok
GIVEN_binom_WHEN_0_0_THEN_1 (recipe_01.__test__)
Doctest: recipe_01.__test__.GIVEN_binom_WHEN_0_0_THEN_1 ... ok
GIVEN_binom_WHEN_52_52_THEN_1 (recipe_01.__test__)
Doctest: recipe_01.__test__.GIVEN_binom_WHEN_52_52_THEN_1 ... ok
binom (recipe_01)
Doctest: recipe_01.binom ... ok
binom2 (recipe_01)
Doctest: recipe_01.binom2 ... ok

----------------------------------------------------------------------
Ran 8 tests in 0.006s

OK

This shows us that the unittest test cases were included as well as doctest test cases.

How it works...
The unittest.main() application uses a test loader to find all of the relevant test cases.

The loader is designed to find all classes that extend TestCase. It will also look for a

load_tests() function. This function can provide a suite of additional tests. It can also do

non-default searches for tests when that’s needed.

Generally, we can import a module with docstrings and use a DocTestSuite to build a test

suite from the imported module. We can, of course, import other modules or even scan the

README file for more examples to test. The goal is to make sure every example in both the

code and the documentation actually works.

There’s more...
In some cases, a module may be quite complicated; this can lead to multiple test modules.

The test modules may have names such as tests/test_module_feature_X.py to show
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that there are tests for separate features of a very complex module. The volume of code for

test cases can be quite large, and keeping the features separate can be helpful.

In other cases, we might have a test module that has tests for several different but closely

related small modules. A single test module may employ inheritance techniques to cover

all the modules in a package.

When combining many smaller modules, there may be multiple suites built in the

load_tests() function. The body might look like this:

import doctest
import unittest

import recipe_01 as ch15_r01
import recipe_02 as ch15_r02
import recipe_03 as ch15_r03
import recipe_05 as ch15_r04

def load_tests(
loader: unittest.TestLoader, standard_tests: unittest.TestSuite,
pattern: str

) -> unittest.TestSuite:
for module in (ch15_r01, ch15_r02, ch15_r03, ch15_r04):

dt = doctest.DocTestSuite(module)
standard_tests.addTests(dt)

return standard_tests

This will incorporate doctest examples from multiple modules into a single, comprehensive

test suite.

See also
• For examples of doctest, see the Using docstrings for testing recipe earlier in the

chapter. For examples of unittest, see the Unit testing with the unittest module recipe

earlier in this chapter.
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Unit testing with the pytest module
The pytest tool allows us to step beyond the examples used by doctest in docstrings.

Instead of using a subclass of TestCase, the pytest tool lets us use function definitions.

The pytest approach uses Python’s built-in assert statement, leaving the test case looking

somewhat simpler.

The pytest tool is not part of Python; it needs to be installed separately. Use a command

like this:

(cookbook3) % python -m pip install pytest

In this recipe, we’ll look at how we can use pytest to simplify our test cases.

Getting ready
The Gherkin language can help to structure a test. For this recipe, we have a scenario like

this:

Scenario: Summary object can add values and compute statistics.

Given a Summary object
And numbers in the range 0 to 1000 (inclusive) shuffled randomly
When all numbers are added to the Summary object
Then the mean is 500
And the median is 500

A pytest test function doesn’t precisely follow the Gherkin three-part structure. A test

function generally has two parts:

• If necessary, fixtures are defined to establish the Given steps. Fixtures are designed

for reuse as well as composition. A fixture can also tear down resources after a test

has finished.

• The body of the function will usually handle the When steps to exercise the object

being tested and the Then steps to confirm the results.
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These boundaries are not fixed. A fixture might, for example, create an object and also take

action, executing both the Given and When steps. This permits multiple test functions to

apply several independent Then steps.

We’ll create some tests for a class that is designed to compute some basic descriptive

statistics. The bulk of the code was shown in the Using docstrings for testing recipe.

This is an outline of the class, provided as a reminder of what the method names are:

class Summary:
def __init__(self) -> None: ...
def __str__(self) -> str: ...
def add(self, value: int) -> None: ...
@property
def mean(self) -> float: ...
@property
def median(self) -> float: ...
@property
def count(self) -> int: ...
@property
def mode(self) -> list[tuple[int, int]]: ...

We want to duplicate testing shown in the Unit testing with the unittest module recipe. We’ll

use the pytest features to do this.

How to do it...
It’s often best to start with a separate test file, perhaps even a separate tests directory:

1. Create a test file with a name similar to the module under test. If the module file was

named summary.py, then a good name for a test module would be test_summary.py.

Using the test_ prefix makes the test easier to find.

2. We’ll use the pytest module for creating test classes. We’ll also be using the random

module to scramble the input data. Also, we need to import the module under test:
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import random
import pytest
from recipe_01 import Summary

3. Implement the Given step as a fixture. This is marked with the @pytest.fixture

decorator. It creates a function that can return a useful object, data for creating an

object, or a mocked object:

@pytest.fixture()
def flat_data() -> list[int]:

data = list(range(1001))
random.shuffle(data)
return data

4. Implement the When and Then steps as a test function with a name visible to pytest.

This means the function name must begin with test_:

def test_flat(flat_data: list[int]) -> None:

When a parameter name in a test function definition is the name of a fixture function,

the fixture function is evaluated automatically. The results of the fixture function

are provided at runtime. This means the shuffled set of 1,000 values will be provided

as an argument value for the flat_data parameter.

5. Implement a When step to perform an operation on an object:

summary = Summary()
for sample in flat_data:

summary.add(sample)

6. Implement the Then steps to validate the outcome:

assert summary.mean == 500
assert summary.median == 500

If our test module is called test_summary.py, we can often execute the tests found in it
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with a command like the following:

(cookbook3) % python -m pytest test_summary.py

This will invoke the main application that’s part of the pytest package. It will search the

given file for functions with names starting with test_ and execute those test functions.

How it works...
We’re using several parts of the pytest package:

• The @fixture decorator can be used to create reusable test fixtures with objects in

known states, ready for further processing.

• The pytest application to do several things:

– Discover tests. By default, it searches a directory named tests for module

names starting with test_. Within those, it looks for functions with names

starting with test_. It also finds unittest.TestCase classes.

– Run all of the tests, evaluating the fixtures as needed.

– Display a summary of the results.

When we run the pytest command, we’ll see output that looks like this:

(cookbook3) % python -m pytest recipe_06.py
=========================== test session starts ============================
platform darwin -- Python 3.12.0, pytest-7.4.3, pluggy-1.3.0
rootdir: /Users/slott/Documents/Writing/Python/Python Cookbook 3e
configfile: pytest.ini
plugins: anyio-4.0.0
collected 3 items

recipe_06.py ... [100%]

============================ 3 passed in 0.02s =============================

As each test is passed, a . is displayed. This shows that the test suite is making progress.
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The summary shows the number of tests run and the time. If there are failures or exceptions,

the counts on the last line will reflect this.

If we change one test slightly to be sure that it fails, we’ll see the following output:

(cookbook3) % python -m pytest recipe_06.py
=========================== test session starts ============================
platform darwin -- Python 3.12.0, pytest-7.4.3, pluggy-1.3.0
rootdir: /Users/slott/Documents/Writing/Python/Python Cookbook 3e
configfile: pytest.ini
plugins: anyio-4.0.0
collected 3 items

recipe_06.py F.. [100%]

================================= FAILURES =================================
________________________________ test_flat _________________________________

flat_data = [883, 104, 898, 113, 519, 94, ...]

def test_flat(flat_data: list[int]) -> None:
summary = Summary()
for sample in flat_data:

summary.add(sample)
> assert summary.mean == 501
E assert 500.0 == 501
E + where 500.0 = <recipe_01.Summary object at 0x10fdcb350>.mean

recipe_06.py:57: AssertionError
========================= short test summary info ==========================
FAILED recipe_06.py::test_flat - assert 500.0 == 501
======================= 1 failed, 2 passed in 0.17s ========================

This shows a summary of passing and failing tests and the details of each failure.

There’s more...
In this example, we have two Then steps inside the test_flat() function. These are

implemented as two assert statements. If the first one fails, the test stops as a failure,

and the following step will be skipped. This means we might not see all the diagnostic

information we might need.
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A better design is to use multiple test functions. All of the functions can share a common

fixture. In this case, we can create a second fixture that depends on the flat_data fixture

and builds a Summary object to be used by a number of tests:

@pytest.fixture()
def summary_object(flat_data: list[int]) -> Summary:

summary = Summary()
for sample in flat_data:

summary.add(sample)
return summary

def test_mean(summary_object: Summary) -> None:
assert summary_object.mean == 500

def test_median(summary_object: Summary) -> None:
assert summary_object.median == 500

Since each of these test functions are run separately, we’ll see separate error reports for

problems when computing the mean and the median, or possibly when computing both.

See also
• The Unit testing with the unittest module recipe in this chapter covers the same test

case from the perspective of the unittest module.

Combining pytest and doctest tests
In most cases, we’ll have a combination of pytest and doctest test cases. For examples of

using the doctest tool, see the Using docstrings for testing recipe. For examples of using

the pytest tool, see the Unit testing with the pytest module recipe.

Frequently, documentation will contain doctest. We need to be sure all examples – in

docstrings and documentation – work correctly. In this recipe, we’ll combine these doctest

examples and the pytest test cases into one tidy package.
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Getting ready
We’ll refer back to the example from the Using docstrings for testing recipe. This recipe

created tests for a class, Summary, that does some statistical calculations. In that recipe, we

included examples in the docstrings.

In the Unit testing with the pytest module recipe, we wrote some test functions to provide

additional tests for this class. These tests were put into a separate module, with a name

starting with test_, specifically, test_summary.py.

Following the Combining unittest and doctest tests recipe, we’ll also assume there’s a project

folder structure that looks like the following directory tree:

project-name/
src/

summary.py
tests/

test_summary.py
README
pyproject.toml
requirements.txt
tox.ini

The tests directory should contain all the module files with tests. We’ve chosen the

directory named tests and a module named test_*.py so that they fit well with the

automated test discovery features of the pytest tool.

The recipe examples use recipe_07 instead of a cooler name such as summary. As a general

practice, a module should have a memorable, meaningful name. The book’s content is quite

large, and the names are designed to match the overall chapter and recipe outline.

How to do it...
It turns out that we don’t need to write any Python code to combine the tests. The pytest

module will locate test functions. It can also be used to locate doctest cases:

1. Create a shell command to run the test suite in the recipe_07.py file, as well as to

examine the recipe_01.py module for the additional doctest cases:
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% pytest recipe_07.py --doctest-modules recipe_01.py

When we run this from the OS command prompt, we see the following:

(cookbook3) % pytest recipe_07.py --doctest-modules recipe_01.py
=========================== test session starts ============================
platform darwin -- Python 3.12.0, pytest-7.4.3, pluggy-1.3.0
rootdir: /Users/slott/Documents/Writing/Python/Python Cookbook 3e
configfile: pytest.ini
plugins: anyio-4.0.0
collected 7 items

recipe_07.py .. [ 28%]
recipe_01.py ..... [100%]

============================ 7 passed in 0.06s =============================

The pytest command worked with both files. The dots after recipe_07.py show that two

test cases were found in this file. This was 28% of the test suite. The dots after recipe_01.py

show that five test cases more were found; this was the remaining 72% of the suite.

This shows us that the pytest test cases were included as well as doctest test cases. What’s

helpful is that we don’t have to adjust anything in either of the test suites to execute all of

the available test cases.

How it works...
The pytest application has a variety of ways to search for test cases. The default is to

search the given paths for all functions with names that start with test_ in a given module.

It will also search for all subclasses of TestCase. If we provide a directory, it will search it

for all modules with names that begin with test_. Often, we’ll collect our test files in a

directory named tests because this is the default directory that will be searched.

The --doctest-modules command-line option is used to mark modules that contain doctest

examples. These examples are also added to the test suite as test cases.

This level of sophistication in finding and executing a variety of types of tests makes
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pytest a very powerful tool. It makes it easy to create tests in a variety of forms to create

confidence that our software will work as intended.

There’s more...
Adding the -v option provides a more detailed view of the tests found by the pytest tool.

Here’s how the additional details are displayed:

(cookbook3) % python -m pytest -v recipe_07.py --doctest-modules
recipe_01.py
=========================== test session starts ============================
platform darwin -- Python 3.12.0, pytest-7.4.3, pluggy-1.3.0 --
/Users/slott/miniconda3/envs/cookbook3/bin/python
cachedir: .pytest_cache
rootdir: /Users/slott/Documents/Writing/Python/Python Cookbook 3e
configfile: pytest.ini
plugins: anyio-4.0.0
collected 7 items

recipe_07.py::recipe_07.__test__.test_example_class PASSED [ 14%]
recipe_07.py::test_flat PASSED [ 28%]
recipe_01.py::recipe_01.Summary PASSED [ 42%]
recipe_01.py::recipe_01.__test__.GIVEN_binom_WHEN_0_0_THEN_1 PASSED [ 57%]
recipe_01.py::recipe_01.__test__.GIVEN_binom_WHEN_52_52_THEN_1 PASSED [ 71%]
recipe_01.py::recipe_01.binom PASSED [ 85%]
recipe_01.py::recipe_01.binom2 PASSED [100%]

============================ 7 passed in 0.05s =============================

Each individual test is identified, providing us with a detailed explanation of the test

processing. This can help confirm that all of the expected doctest examples were properly

located in the module under test.

See also
• For examples of doctest, see the Using docstrings for testing recipe earlier in this

chapter.

• The Unit testing with the pytest module recipe earlier in this chapter has the pytest

test cases used for this recipe.
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• For examples of the unittest version of these tests, see the Unit testing with the unittest

module recipe earlier in this chapter.

Testing things that involve dates or times
Many applications rely on functions like datetime.datetime.now() or time.time() to

create a timestamp. When we use one of these functions with a unit test, the results are

essentially impossible to predict. This is an interesting dependency injection problem here:

our application depends on a class that we would like to replace only when we’re testing.

One option is to design our application to avoid functions like now(). Instead of using this

method directly, we can create a factory function that emits timestamps. For test purposes,

this function can be replaced with one that produces known results.

The alternative is called monkey-patching – injecting a new object at test time. This can

reduce the design complexity; it tends to increase the test complexity.

In this recipe, we’ll write tests with datetime objects. We’ll need to create mock objects for

datetime instances to create repeatable test values. We’ll use the pytest package features

for monkey-patching.

Getting ready
We’ll work with a small function that creates a CSV file. This file’s name will include the

date and time in the format of YYYYMMDDHHMMSS as a long string of digits. This kind of

file-naming convention might be used by a long-running server application. The name

helps match a file and related log events. It can help to trace the work being done by the

server.

The application uses this function to create these files:

import datetime
import json
from pathlib import Path
from typing import Any
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def save_data(base: Path, some_payload: Any) -> None:
now_date = datetime.datetime.now(tz=datetime.timezone.utc)
now_text = now_date.strftime("extract_%Y%m%d%H%M%S")
file_path = (base / now_text).with_suffix(".json")
with file_path.open("w") as target_file:

json.dump(some_payload, target_file, indent=2)

This function has the use of now(), which produces a distinct value each time this is run.

Since this value is difficult to predict, it makes test assertions difficult to write.

To create a reproducible test output, we can create a mock version of the datetime module.

We can then monkey patch the test context to use this mock object instead of the actual

datetime module. Within the mocked module, we can create a mock class with a mock

now() method to provide a fixed, easy-to-test response.

For this case, we have a scenario like this:

Scenario: save_date function writes JSON data to a date-stamped file.

Given a base directory Path
And a payload object {"primes": [2, 3, 5, 7, 11, 13, 17, 19]}
And a known date and time of 2017-9-10 11:12:13 UTC
When save_data(base, payload) function is executed
Then the output file of "extract_20170910111213.json" is found in the base
directory
And the output file has a properly serialized version of the payload
And the datetime.datetime.now() function was called once to get the date and
time

This can be implemented as a test case using the pytest constructs.

How to do it...
This recipe will create and patch mock objects to create a test fixture:

1. We’ll need to import a number of modules required by the module we’re testing:
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import datetime
import json
from pathlib import Path

2. We’ll also need the core tools for creating mock objects and test fixtures. Also, we’ll

need the module we’re going to test:

from unittest.mock import Mock
import pytest

import recipe_08

3. We must create an object that will behave like the datetime module for the purposes

of the test scenario. This mocked module must contain a name that appears to be

a class, also named datetime. The class must appear to contain a method, now(),

which returns a known object rather than a date that changes each time the test is

run. We’ll create a fixture, and the fixture will return this mock object with a small

set of attributes and behaviors defined:

@pytest.fixture()
def mock_datetime() -> Mock:

return Mock(
name="mock datetime",
datetime=Mock(

name="mock datetime.datetime",
now=Mock(return_value=datetime.datetime(2017, 9, 10, 11,
12, 13)),

),
timezone=Mock(name="mock datetime.timezone",
utc=Mock(name="UTC")),

)

The Mock object is a namespace, a feature that packages, modules, and classes all share.

In this example, each attribute name is another Mock object. The most deeply-buried

object has a return_value attribute to make it behave like a function.

4. We also need a way to isolate the behavior of the filesystem into test directories. The
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tmppath fixture is built in to pytest and provides temporary directories into which

test files can be written safely.

5. We can now define a test function that will use the mock_datetime fixture and the

tmppath fixture. It will use the monkeypatch fixture to adjust the context of the

module under test:

def test_save_data(
mock_datetime: Mock, tmp_path: Path, monkeypatch:
pytest.MonkeyPatch

) -> None:

6. We can use the monkeypatch fixture to replace an attribute of the recipe_08 module.

The datetime attribute value will be replaced with the Mock object created by the

mock_datetime fixture:

monkeypatch.setattr(recipe_08, "datetime", mock_datetime)

Between the fixture definitions and this patch, we’ve created a Given step that defines

the test arrangement.

7. We can now exercise the save_data() function in a controlled test environment.

This is the When step that exercises the code under test:

data = {"primes": [2, 3, 5, 7, 11, 13, 17, 19]}
recipe_08.save_data(tmp_path, data)

8. Since the date and time are fixed by the Mock object, the output file has a known,

predictable name. We can read and validate the expected data in the file. Further,

we can interrogate the Mock object to be sure it was called exactly once with no

argument values. This is a Then step to confirm the expected results:

expected_path = tmp_path / "extract_20170910111213.json"
with expected_path.open() as result_file:

result_data = json.load(result_file)
assert data == result_data
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mock_datetime.datetime.now.assert_called_once_with(tz=mock_datetime.
timezone.utc)

This test confirms the application’s save_data() function will create the expected file with

the proper content.

How it works...
The unittest.mock module has a wonderfully sophisticated class definition, the Mock class.

A Mock object can behave like other Python objects, while offering a limited subset of

behaviors. In this example, we’ve created three different kinds of Mock objects.

The Mock(wraps="datetime", ...) object mocks a complete module. It will behave, to

the extent needed by this test scenario, like the standard library datetime module. Within

this object, we created a mock class definition but didn’t assign it to any variable.

The Mock(now=...) object behaves like a mock class definition inside the mock module.

We’ve created a single now attribute value, which will behave like a static function.

The Mock(return_value=...) object behaves like an ordinary function or method. We

provide the return value required for this test.

In addition to returning the given value, a Mock object records the history of calls. This

means an assertion can checks those calls. The call() function from the Mock module

provides a way to describe the arguments that are expected in the function call.

There’s more...
In this example, we created a mock for the datetime module that had a very narrow feature

set for this test. The module contained a mocked class named datetime. This class has a

single attribute, a mocked function, now().

Instead of the return_value attribute, we can use the side_effect attribute to raise an

exception instead of returning a value. We can use this to spot code that’s not using the

now() method properly, but using the deprecated utcnow() or the today() methods.
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We can extend this pattern and mock more than one attribute to behave like a function.

Here’s an example that mocks several functions:

@pytest.fixture()
def mock_datetime_now() -> Mock:

return Mock(
name="mock datetime",
datetime=Mock(

name="mock datetime.datetime",
utcnow=Mock(side_effect=AssertionError("Convert to now()")),
today=Mock(side_effect=AssertionError("Convert to now()")),
now=Mock(return_value=datetime.datetime(2017, 7, 4, 4, 2, 3)),

),

Two of the mocked methods, utcnow() and today(), each define a side effect that will raise

an exception. This allows us confirm legacy code has been converted to make proper use

of the now() method.

See also
• The Unit testing with the unittest module recipe earlier in this chapter has more

information about the basic use of the unittest module.

Testing things that involve randomness
Many applications rely on the random module to create random values or put values into a

random order. In many statistical tests, repeated random shuffling or random selection is

done. When we want to test one of these algorithms, any intermediate results or details of

the processing are essentially impossible to predict.

We have two choices for trying to make the random module predictable enough to write

detailed unit tests:

• Use the random module with a known seed value.

• Use a Mock object to replace the random module with a Mock object to produce

predictable values.
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In this recipe, we’ll look at ways to unit test algorithms that involve randomness.

Getting ready
Given a sample dataset, we can compute a statistical measure such as a mean or median. A

common next step is to determine the likely values of these statistical measures for some

overall population. This can be done by a technique called bootstrapping.

The idea is to resample the initial set of data repeatedly. Each of the resamples provides a

different estimate of the statistical measures for the population.

In order to be sure that a resampling algorithm is implemented correctly, it helps to eliminate

randomness from the processing. We can resample a carefully planned set of data with a

non-randomized version of the random.choice() function. If this works properly, then we

have confidence that the randomized version will also work.

Here’s our candidate resampling function:

from collections.abc import Iterator
import random

def resample(population: list[int], N: int) -> Iterator[int]:
for i in range(N):

sample = random.choice(population)
yield sample

For our example, we’ll compute alternative values of the mean based on resampling. The

overall resampling procedure looks like this:

from collections import Counter
import statistics

def mean_distribution(population: list[int], N: int) -> Counter[float]:
means: Counter[float] = Counter()
for _ in range(1000):

subset = list(resample(population, N))
measure = round(statistics.mean(subset), 1)
means[measure] += 1
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return means

This evaluates the resample() function to create a number of subsets. Each subset’s

mean populates the means collection. The histogram created by this mean_distribution()

function will provide a helpful estimate for population variance.

Here’s what the output looks like:

>>> random.seed(42)
>>> population = [8.04, 6.95, 7.58, 8.81, 8.33, 9.96, 7.24, 4.26, 10.84,
4.82, 5.68]

>>> mean_distribution(population, 4).most_common(5)
[(7.8, 51), (7.2, 45), (7.5, 44), (7.1, 41), (7.7, 40)]

This shows us that the most likely value for the mean of the overall population could be

between 7.1 and 7.8. There’s more to this kind of analysis than we’re showing here. Our

focus is limited to the narrow question of testing the resample() function.

The test for resampling involves a scenario like the following:

Scenario: Resample example

Given a random number generator where choice() always return the sequence
[23, 29, 31, 37, 41, 43, 47, 53]
When we evaluate the expression resample(any 8 values, 8)
Then the expected results are [23, 29, 31, 37, 41, 43, 47, 53]
And the choice() function was called 8 times

How to do it...
We’ll define a mock object that can be used instead of the random.choice() function. With

this fixture in place, the results are fixed and predictable:

1. We’ll need the core tools for creating mock objects and test fixtures. Also, we’ll need

the module we’re going to test:
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from unittest.mock import Mock
import pytest
import recipe_09

2. We’ll need an object that will behave like the choice() function. We’ll create a

fixture built on another fixture:

@pytest.fixture()
def expected_resample_data() -> list[int]:

return [23, 29, 31, 37, 41, 43, 47, 53]

@pytest.fixture()
def mock_random_choice(expected_resample_data: list[int]) -> Mock:

mock_choice = Mock(name="mock random.choice",
side_effect=expected_resample_data)
return mock_choice

The expected_resample_data fixture provides a specific list of values that will pro-

vide expected results. Using this fixture, the mock_random_choice choice fixture

returns the expected values in response to the choice() function.

3. We can now define a test function that will use the mock_random_choice fixture,

which creates a mock object, and the monkeypatch fixture, which lets us adjust the

context of the module under test:

def test_resample(
mock_random_choice: Mock,
expected_resample_data: list[int],
monkeypatch: pytest.MonkeyPatch,

) -> None:

4. We can use the monkeypatch fixture to replace the choice attribute of the random

module with the Mock object created by the mock_random_choice fixture:

monkeypatch.setattr(recipe_09.random, "choice",
mock_random_choice) # type: ignore [attr-defined]
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Between the fixture definitions and this patch, we’ve created a Given step that defines

the test arrangement.

5. We can now exercise the resample() function in a controlled test environment. This

is the When step that exercises the code under test:

data = [2, 3, 5, 7, 11, 13, 17, 19]
resample_data = list(recipe_09.resample(data, 8))

6. Since the random choices are fixed by the Mock object, the result is fixed. We can

confirm that the data created by the mock_random_choice fixture was used for re-

sampling. We can also confirm that the mocked choice function was properly called

with the input data:

assert resample_data == expected_resample_data
assert mock_random_choice.mock_calls == 8 * [call(data)]

This test helps to confirm that our resample() function will create the output based on

the given input and the random.choice() function.

How it works...
When we create a Mock object, we must provide the methods and attributes to define the

behavior of the object being mocked. When we create an instance of Mock that provides

the side_effect argument value, we’re creating a callable object. The callable object will

return the next value from the side_effect sequence each time the Mock object is called.

This gives us a handy way to mock iterators.

If any value in side_effect is an exception, this is raised.

We can also see the call history using the mock_calls attribute of a Mock object. This lets

us confirm that the callable was provided proper argument values.
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There’s more...
The resample() function has an interesting pattern to it. When we take a step back from

the details, we see this:

def resample_pattern(X: Any, Y: Any) -> Iterator[Any]:
for _ in range(Y):

yield another_function(X)

The X argument value is simply passed through to another function without any processing.

For testing purposes, it doesn’t matter what the value of X is. What we’re testing is that

the parameter’s value in the resample() function is provided to the another_function()

function, untouched.

The mock library provides an object called sentinel that can be used to create an opaque

argument value in these circumstances. When we refer to an attribute of the sentinel

object, this reference creates a distinct object. We might use sentinel.POPULATION as a

kind of mock for a collection of values. The exact collection doesn’t matter since it’s simply

passed as an argument to another function (called random.choice() in the actual code).

Here’s how this use of a sentinel object can change this test:

from unittest.mock import Mock, call, sentinel

@pytest.fixture()
def mock_choice_s() -> Mock:

mock_choice = Mock(name="mock random.choice()",
return_value=sentinel.CHOICE)
return mock_choice

def test_resample_2(
mock_choice_s: Mock, monkeypatch: pytest.MonkeyPatch

) -> None:
monkeypatch.setattr(

recipe_09.random, "choice", mock_choice_s # type: ignore
[attr-defined]

)
resample_data = list(recipe_09.resample(sentinel.POPULATION, 8))
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assert resample_data == [sentinel.CHOICE] * 8

The output from the mocked choice() function is a recognizable sentinel object. Similarly,

the parameter to the resample() function is a different sentinel object. We expect this to

be called 8 times, because the N parameter is set to 8 in the test case.

When an object should pass through a function untouched, we can write test assertions

to confirm this expected behavior. If the code we’re testing uses the population object

improperly, the test can fail when the result is not the untouched sentinel object.

The 1.7.1 release of the mypy tool struggles with the imports in the recipe_09

module. We used a # type: ignore [attr-defined] comment to suppress

a confusing mypy message.

This test gives us confidence that the population of values is provided, untouched, to the

random.choice() function and the N parameter value defines the size of the returned set

of items from the population.

See also
• The Building sets – literals, adding, comprehensions, and operators recipe in Chapter 4,

and the Creating dictionaries – inserting and updating recipe in Chapter 5, the Using

cmd to create command-line applications recipe in Chapter 6 show how to seed the

random number generator to create a predictable sequence of values.

• In Chapter 7, there are several other recipes that show an alternative approach, for

example, Using a class to encapsulate data and processing, Designing classes with lots

of processing, Optimizing small objects with __slots__, and Using properties for lazy

attributes.

• Also, in Chapter 8, see the Choosing between inheritance and composition – the "is-a"

question, Separating concerns via multiple inheritance, Leveraging Python’s duck typing,

and Creating a class that has orderable objects recipes.
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Mocking external resources
In earlier recipes in this chapter, namely, Testing things that involve dates or times and

Testing things that involve randomness, we wrote tests for involving resources with states

that we could predict and mock. In one case, we created a mock datetime module that had

a fixed response for the current time. In the other case, we created a mock function from

the random module.

A Python application can use the os, subprocess, and pathlib modules to make significant

changes to the internal states of a running computer. We’d like to be able to test these

external requests in a safe environment, using mocked objects, and avoid the horror of

corrupting a working system with a misconfigured test. Another example is database access,

which requires mock objects to respond to create, retrieve, update, and delete requests.

In this recipe, we’ll look at ways to create more sophisticated mock objects. These will

allow the safe testing of changes to precious OS resources like files and directories.

Getting ready
We’ll revisit an application that makes a number of OS changes. In Chapter 11, the Replacing

a file while preserving the previous version recipe showed how to write a new file and then

rename it so that the previous copy was always preserved.

A thorough set of test cases would present a variety of failure modes. Having tests for

several different kinds of errors can help provide confidence that the function behaves

properly.

The essential design was a definition of a class of objects, Quotient, and a save_data()

function to write one of those objects to a file. Here’s an overview of the code:

from pathlib import Path
import csv
from dataclasses import dataclass, asdict, fields

@dataclass
class Quotient:
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numerator: int
denominator: int

def save_data(output_path: Path, data: Quotient) -> None:

... # Details omitted

Consider what happens when there’s a failure in the middle of the save_data() function.

Outcomes include a file that’s partially rewritten, and useless to other applications. To

prevent this, the recipe presented a safe_write() function that included several steps to

create a temporary file and then rename that file to be the desired output file. Essentially,

the function looked like this:

def safe_write(output_path: Path, data: Quotient) -> None:

... # Details omitted

The safe_write() function is shown in detail in Chapter 11. This is designed to handle a

number of scenarios:

1. Everything works – sometimes called the “happy path” – and the file is created

properly.

2. The save_data() function raises an exception. The corrupted file is removed and

the original left in place.

3. Failure occurs elsewhere in the processing of the safe_write() processing. There

are three scenarios where a Path method raises an exception.

Each of the above scenarios can be translated into Gherkin to help clarify precisely what it

means; for example:
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Scenario: save_data() function is broken.

Given some faulty set of data, "faulty_data", that causes a failure in the
save_data() function
And an existing file, "important_data.csv"
When safe_write("important_data.csv", faulty_data) is processed
Then safe_write raises an exception
And the existing file, "important_data.csv" is untouched

Detailing each of the five scenarios helps us define Mock objects to provide the various

kinds of external resource behaviors we need. Each scenario suggests a distinct fixture to

reflect the distinct failure mode.

How to do it...
We’ll use a variety of testing techniques. The pytest package offers the tmp_path fixture,

which can be used to create isolated files and directories. In addition to an isolated directory,

we’ll also want to use a Mock to stand in for the parts of the application that we’re not

testing:

1. Identify all of the fixtures required for the various scenarios. For the happy path,

where the mocking is minimal, the tmp_path fixture is all we need. For scenario two,

where the save_data() function is broken, this function should be mocked. For the

remaining three scenarios, mock objects can be defined that will replace methods of

Path objects.

2. This test will use a number of features from the pytest and unittest.mock modules.

It will be creating Path objects and test functions defined in the recipe_10 module:

from pathlib import Path
from typing import Any

from unittest.mock import Mock, sentinel
import pytest

import recipe_10
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3. Write a test fixture to create the original file, which should not be disturbed unless

everything works correctly. We’ll use a sentinel object to provide some text that is

unique and recognizable as part of this test scenario:

@pytest.fixture()
def original_file(tmp_path: Path) -> Path:

precious_file = tmp_path / "important_data.csv"
precious_file.write_text(hex(id(sentinel.ORIGINAL_DATA)),
encoding="utf-8")
return precious_file

4. Write a mock to replace the save_data() function. This will create mock data used

to validate that the safe_write() function works. In this, too, we’ll use a sentinel

object to create a unique string that is recognizable later in the test:

def save_data_good(path: Path, content: recipe_10.Quotient) -> None:
path.write_text(hex(id(sentinel.GOOD_DATA)), encoding="utf-8")

5. Write the happy path scenario. The save_data_good() function can be given as the

side_effect of a Mock object and used in place of the original save_data() function.

Using a Mock means the call history will be tracked. This helps to confirm that the

overall safe_write() function being tested really does use the save_data() function

to create the expected resulting file:

def test_safe_write_happy(original_file: Path, monkeypatch:
pytest.MonkeyPatch) -> None:

mock_save_data = Mock(side_effect=save_data_good)
monkeypatch.setattr(recipe_10, "save_data", mock_save_data)
data = recipe_10.Quotient(355, 113)
recipe_10.safe_write(Path(original_file), data)
actual = original_file.read_text(encoding="utf-8")

assert actual == hex(id(sentinel.GOOD_DATA))

6. Write a mock for scenario two, in which the save_data() function fails to work cor-

rectly. The mock can rely on a save_data_failure() function to write recognizably

corrupt data, and then also raise an unexpected exception:
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def save_data_failure(path: Path, content: recipe_10.Quotient) ->
None:

path.write_text(hex(id(sentinel.CORRUPT_DATA)), encoding="utf-8")
raise RuntimeError("mock exception")

7. Write the test case for scenario two, using the save_data_failure() function as the

side_effect of a Mock object:

def test_safe_write_scenario_2(
original_file: Path, monkeypatch: pytest.MonkeyPatch

) -> None:
mock_save_data = Mock(side_effect=save_data_failure)
monkeypatch.setattr(recipe_10, "save_data", mock_save_data)
data = recipe_10.Quotient(355, 113)
with pytest.raises(RuntimeError) as ex:

recipe_10.safe_write(Path(original_file), data)
actual = original_file.read_text(encoding="utf-8")
assert actual == hex(id(sentinel.ORIGINAL_DATA))

The save_data_failure() function wrote corrupt data, but the safe_write() func-

tion preserved the original file.

This recipe produced two test scenarios that confirm the safe_write() function will work.

We’ll turn to the remaining three scenarios in the There’s more. . . section later in this recipe.

How it works...
When testing software that makes OS, network, or database requests, it’s imperative to

include cases where the external resource fails to operate as expected. The principal tools

for doing this are Mock objects and the monkeypatch fixture. A test can replace Python

library functions with Mock objects that raise exceptions instead of working correctly.

For the happy path scenario, we replaced the save_data() function with a Mock object

that wrote some recognizable data. Because we’re using the tmp_path fixture, the file was

written into a safe, temporary directory, where it could be examined to confirm that new,

good data replaced the original data.
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For the first of the failure scenarios, we used the monkeypatch fixture to replace the

save_data() function with a function that both wrote corrupt data and also raised an

exception as if an OS problem occurred. This is one way to simulate a broad spectrum

of application failures that involve some kind of persistent filesystem artifact. In simpler

cases, where there is no artifact, a Mock object with an exception class as the value of the

side_effect parameter is all that’s required to simulate a failure.

These test scenarios also made use of unique sentinel objects. Evaluating the value of the

hex(id(x)) provides a distinct string value that’s difficult to predict.

There’s more...
The remaining scenarios are very similar; they can all share the following test function:

def test_safe_write_scenarios(
original_file: Path,
mock_pathlib_path: Mock,
monkeypatch: pytest.MonkeyPatch

) -> None:
mock_save_data = Mock(side_effect=save_data_good)
monkeypatch.setattr(recipe_10, "save_data", mock_save_data)
data = recipe_10.Quotient(355, 113)
with pytest.raises(RuntimeError) as exc_info:

recipe_10.safe_write(mock_pathlib_path, data)
actual = original_file.read_text(encoding="utf-8")
assert actual == hex(id(sentinel.ORIGINAL_DATA))
mock_save_data.assert_called_once()
mock_pathlib_path.with_suffix.mock_calls == [

call("suffix.new"), call("suffix.old")
]
# Scenario-specific details...

This function uses the save_data_good() function as the side effect when the mocked

save_data() function is invoked. The given save_data_good() function will be executed

and will write a known good test file. Each of these scenarios involve exceptions from Path

operations after the good file was created.

We’ve omitted showing any scenario-specific details. The key feature of this test is pre-
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serving the original good data in spite of exceptions.

To support multiple exception scenarios, we want to use three different versions of the

mock_pathlib_path mock object.

We can use a parameterized fixture to spell out these three alternative configurations of the

mock objects. First, we’ll package the choices as three separate dictionaries that provide

the side_effect values:

scenario_3 = {
"original": None, "new": None, "old": RuntimeError("3")}

scenario_4 = {
"original": RuntimeError("4"), "new": None, "old": None}

scenario_5 = {
"original": None, "new": RuntimeError("5"), "old": None}

We’ve used RuntimeError as the exception to raise, triggering alternative execution paths.

In some cases, it may be necessary to use a IOError exception. In this case, any exception

would be fine.

Given these three dictionary objects, we can plug the values into a fixture via the

request.params option provided by pytest:

@pytest.fixture(
params=[scenario_3, scenario_4, scenario_5],

)
def mock_pathlib_path(request: pytest.FixtureRequest) -> Mock:

mock_mapping = request.param
new_path = Mock(rename=Mock(side_effect=mock_mapping["new"]))
old_path = Mock(unlink=Mock(side_effect=mock_mapping["old"]))
output_path = Mock(

name="mock output_path",
suffix="suffix",
with_suffix=Mock(side_effect=[new_path, old_path]),
rename=Mock(side_effect=mock_mapping["original"]),

)
return output_path
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Because this fixture has three parameter values, any test using this fixture will be run three

times, once with each of the values. This lets us reuse the test_safe_write_scenarios()

test case to be sure it works with a variety of system failures.

We’ve created a variety of mock objects to inject failures throughout the processing in a

complex function. Using parameterized fixture helps to define consistent mock objects for

these tests.

There’s yet another scenario that involves a successful operation followed by a failing

operation on the same file. This doesn’t fit the above pattern and requires another test case

with a slightly more sophisticated set of mock objects. We leave this as an exercise for you.

See also
• The Testing things that involve dates or times and Testing things that involve randomness

recipes earlier in this chapter show techniques for dealing with unpredictable data.

• Elements of this can be tested with the doctest module. See the Using docstrings for

testing recipe earlier in this chapter for examples. It’s also important to combine

these tests with any doctests. See the Combining pytest and doctest tests recipe earlier

in this chapter for more information on how to do this.
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16
Dependencies and Virtual
Environments

Python runs in an environment defined by the OS. There are some slight differences

between Windows, macOS, and most Linux environments. We’ll set aside micro-controller

environments, since the ability to tailor those environments is quite a bit more involved.

We’ll try to minimize the OS differences to focus on the common aspects that are universally

available.

There are several common aspects within run-time environments. We can divide these

into two groups:

Persistent Aspects of the environment that change slowly.

• The Python run-time in use. This includes a binary application and often includes a

number of external libraries.

• The standard libraries available. These are accessed via the importer, and are generally

available via the import statement. They are generally found by their path, relative
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to the Python binary.

• The other libraries installed as site packages. These are also accessed by the importer.

These libraries are also found by their path, relative to the Python binary.

• Libraries found by other mechanisms available in the sites package. Most notably,

the PYTHONPATH environment variable.

Transient Aspects of the environment can change each time the Python run-time is

started.

• The environment variables defined by the shell in use. These are available through

the os module.

• The current working directory and user information, defined by the OS. This is

available through the os, os.path, and pathlib modules.

• The command line used to start Python. This is available through several attributes

of the sys module, including sys.argv, sys.stdout, sys.stdin, and sys.stderr.

The persistent environment is managed via OS-level commands, outside of our application

programs. Changes to the persistent aspects of the environment are generally examined

once when Python starts. This means an application we write can’t easily install a package

and then use that package.

The persistent environment has two viewpoints:

The Actual Environment : A single site is handled by the system administrator and

requires elevated privileges. For example, the Python run-time is often in a path owned

by the root user and made visible through a common, system-wide value of the PATH

environment variable.

Virtual Environments : Any number of virtual environments are localized by individual

users and require no special privileges. Multiple Python run-times and their associated site

packages can be owned by a single user.

Once upon a time — in the long-past olden days, when computer capabilities were tiny



Chapter 16 705

— a single actual environment was all that could be managed. Adding and changing the

collection of installed packages required cooperation among Python users. An administrator

with elevated privileges implemented any changes.

Now that computers are vastly more capable, each individual user can easily have multiple

virtual environments. Indeed, we often build and test modules with numerous virtual

environments reflecting different releases of the Python run-time. Each individual is able

to manage their own virtual environments.

When working cooperatively, it becomes important to share the details of virtual environ-

ments so that multiple users can recreate a common virtual environment. The effort of

sharing a single actual environment is shifted to each user having to prepare and manage

their own virtual environment.

Environment management seems to parallel Ginsberg’s Theorem and the

Laws of Thermodynamics:

• The overall environment management workload is neither created

nor destroyed.

• Any change to an environment requires work.

• Nothing is free from change (unless it’s utterly isolated from all ex-

ternal considerations).

While most Linux distributions come with Python pre-installed, there’s no compelling

reason to use this version of Python for any purpose. It’s generally much easier to install a

personal version of Python and manage virtual environments with that personal version.

Having an individual Python installation permits ready updates to new releases without

waiting for a Linux distribution to catch up with the state of the art.

There are two broad classes of tools involved in managing environments:

• OS-specific tools required to install the Python binary. This varies by OS and can be

challenging to new developers. We’ll avoid the complications involved in these tools
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and refer readers to the https://www.python.org/downloads/ page.

• Python-based tools, like PIP, used to install Python libraries. Since these tools depend

on Python, the commands are universal for all OSs. This chapter will focus on these

tools.

In this chapter, we’ll look at the following recipes for managing virtual environments:

• Creating environments using the built-in venv

• Installing packages with a requirements.txt file

• Creating a pyproject.toml file

• Using pip-tools to manage the requirements.txt file

• Using Anaconda and the conda tool

• Using the poetry tool

• Coping with changes in dependencies

We’ll start with creating virtual environments using the built-in tools.

Creating environments using the built-in venv
Once Python is installed, creating virtual environments unique to each project can be done

with the internal venv module.

There are two principle use cases for a virtual environment:

• Manage the Python version. We might have distinct virtual environments for Python

3.12 and Python 3.13. In some cases, we may need to manage multiple minor releases

of Python 3.13.

• Manage the mix of site-specific packages required by our project. Rather than trying

to update the single actual environment, we can create new virtual environments as

new releases of packages become available.

https://www.python.org/downloads/
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These two use cases overlap a great deal. Each release of Python will have distinct versions

of the standard library packages and may have distinct versions of external site-specific

packages.

The most important part of using a virtual environment is making sure that it has been

activated. A number of scenarios will change the internal state of the browser, deactivating

the virtual environment. Closing a terminal window and rebooting the computer are two

of the most common ways to deactivate an environment.

Changing terminal windows or opening a new terminal window may start a shell environ-

ment in which the virtual environment is not active. This is easily remedied by activating

the environment before starting to use it.

Getting ready
It’s important to note that Python must be installed. Python may not be present, and

whatever Python version is part of the OS should not be used for development or experi-

mentation. For macOS and Windows, it’s common to install a pre-built binary. This may

involve downloading a disk image and running an installer or downloading an installer

application and running it.

For Linux, it’s common to build Python from source for the given distribution. An alterna-

tive is to use an administrative tool like rpm, pkg, yum, or aptitude to install a pre-built

Python for the specific distribution.

Most Python releases will include the pip and venv packages. Microcontroller Python and

WASM-based Python are often difficult to update using desktop tools; they’re outside the

scope of this book.

How to do it...
First, we’ll look at creating a virtual environment that can be used to install packages

and resolve imports. Once the environment has been created, we’ll look at activating

and deactivating it. The environment must be active in order to properly install and use

packages.
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It’s important to avoid putting a virtual environment under configuration control. Instead,

the configuration details required to recreate the environment are put under configuration

control.

When using tools like Git, a .gitignore file can be used to ignore any virtual environment

details of a project. An alternative approach is to separate virtual environment definitions

from specific project directories.

Create a virtual environment

1. First, create the project directory. For very small projects, no additional files are

needed. For most projects, src, tests, and docs directories are often helpful for

organizing the project code, the test code, and the documentation.

2. Choose between a “concealed” or a visible file. In Linux and macOS, files with names

that start with . are generally not shown by most commands. Since the virtual

environment is not a directory we’ll ever work with, it’s often simplest to use the

name .venv.

In some cases, we want the directory to be visible. Then, the venv name would be

the best choice.

3. The following command will create a virtual environment:

% python -m venv .venv

The virtual environment will be in the .venv directory within the project directory.

After this is done, the virtual environment must be activated. Any time a new terminal

window is opened, the environment in that window needs to be activated.

Activate and deactivate an environment

Activating a virtual environment requires an OS-specific command. The Python Standard

Library documentation provides all of the variant commands. We’ll show the two most

common variants:
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• For Linux and macOS, using bash or zsh, enter the following command to activate a

virtual environment:

% source .venv/bin/activate

• For Windows, enter the following command to activate a virtual environment:

> .venv\Scripts\activate

Once the virtual environment has been activated, a number of environment variables will

change. Most notably, the PATH environment variable will include the virtual environ-

ment’s bin directory. This will, for example, make the deactivate command available.

Additionally, the prompt will change to include the virtual environment’s name. It might

look like the following:

C:\Users\Administrator>.venv\Scripts\activate
(.venv) C:\Users\Administrator>

On the first line, the default prompt shows the directory. On the second line, the prompt

has (.venv) as a prefix to show that the virtual environment is now active.

Once the virtual environment has been activated, all further use of the pip command to

install packages will be directed to the active environment. Any Python application that’s

run will search the active environment to install packages.

To deactivate an environment, use the following command:

% deactivate

The activate command created this new command as part of the virtual environment, so

it’s universally available for all OSs.
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How it works...
For most OSs, there are a few key environment variables that define a virtual environment.

The PATH environment variable generally provides locations for finding the Python exe-

cutable. In a Windows environment, this will also make the launcher, the py command,

available.

The locations of the remaining Python elements are all relative to the executable. In

particular, the standard library is an adjacent path, and this library has the sites package

that handles all of the other details of locating installed packages.

The details of the virtual environment are defined by three directories and a configuration

file.

The configuration file, pyvenv.cfg, provides a few important settings. The three directories

are bin, include, and lib. (For Windows, these names are Scripts, Include, and Lib).

The bin directory has script files that perform activation of the virtual environment. Setting

the PATH environment variable makes these scripts available. This includes the deactivate

command. Additionally, the bin directory contains a pip executable command and a link

to the proper python binary.

There’s more...
There are a number of options in the venv command. Of these, two seem to be particularly

useful:

• The --without-pip option skips the installation of a venv-specific copy of PIP. It

seems better to use python -m pip than to rely on the virtual environment installa-

tion.

• The --prompt option can set a nicer environment name than .venv.

We’ll often use a command like the following to activate an environment:

% python -m venv --prompt ch17 --without-pip .venv



Chapter 16 711

This will ensure the prompt becomes (ch17) instead of the vague and potentially confusing

(.venv).

See also
• Once a virtual environment is created, we can add external libraries. See Installing

packages with a requirements.txt file for advice on managing dependencies.

Installing packages with a requirements.txt file
One of the significant strengths of Python is the vast ecosystem of packages available in

libraries like the Python Package Index (PyPI) at https://pypi.org. It’s easy to use the

PIP tool to add libraries to an environment.

In some cases, this is — perhaps — too easy. All of the dependencies, starting with the

libraries on which the Python run-time is built, are in a constant state of flux. Each has

a distinct tempo for updates. In some cases, there is limited cooperation among the vast

number of people involved.

To manage the constant change, it’s important for people developing applications to

track dependencies carefully. We suggest decomposing dependencies into three levels of

specificity:

• Generic, name-only dependencies: For example, an application might need Beautiful

Soup.

• Filtered: As the Beautiful Soup project evolves, there may be versions with known

bugs, or that are missing essential features. We might want to narrow the dependency

to omit or exclude a specific version, or require a version that is >= 4.0.

• Pinned (or Locked): When it is time to build (and test) a specific virtual environment,

it is essential to have a detailed list of the exact version numbers used for testing.

When we’re first exploring data or a problem domain or candidate solutions, we may

download a great many packages into a development environment. As a project matures,

the virtual environment contents will shift. In some cases, we’ll learn we don’t need a

https://pypi.org
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package; the unused packages will be ignored and should be removed. In other cases, the

mix of packages will expand as new options are explored. Throughout this, the pinned

version numbers may change to track acceptable versions of packages on which our project

depends.

Getting ready
It works out well to record generic dependencies in places like a pyproject.toml file. (We’ll

look at this in the Creating a pyproject.toml file recipe.)

The specific, pinned dependencies can be separated into a collection of requirements files.

There are a number of dependency use cases, leading to a collection of closely related files.

The format for a requirements file is defined as part of the PIP documentation. See the

Requirements File Format page of https://packaging.python.org.

How to do it...
1. Gather the general requirements. It’s best to look at the import statements to discern

what packages are direct dependencies. We might find that a project uses pydantic,

beautifulsoup4, jupyterlab, matplotlot, pytest, and memray.

2. Open a file named requirements.txt in the top-level directory of the project.

3. Each line of the file will have a requirements specifier with four pieces of information:

• The package name. Note that typo-squatting is a prevalent problem with open

source; be sure to find the correct, current repository for a package, not a

similar-looking name.

• Any extras needed. If present, these are enclosed in [ ]. For example,

rich [jupyter] might be used when using the rich package for text styling

with Jupyter Lab.

• A version specifier. This has a comparison (==, >=, etc.), and a version as a

dotted sequence of numbers. For example, pillow>=10.2.0 selects any version

https://pip.pypa.io/en/stable/reference/requirements-file-format/
https://packaging.python.org
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of the pillow package at or after version 10.2.0, avoiding a known vulnerability

with version 10.1.0.

• If necessary, any further environment constraints separated by a ;. For exam-

ple, sys_platform == 'win32' might be used to provide a platform-specific

requirement.

While complex conditions can be created, they’re not often needed. It’s best to avoid

writing version information unless a specific bug fix, missing feature, or compatibility

problem surfaces.

The full set of rules for this file is in the PEP 508 document.

Version specifiers are defined in the Python Packaging Guide. See the Version

specifiers page of https://packaging.python.org.

For example, here is the list of dependencies:

pydantic
beautifulsoup4
types-beautifulsoup4
jupyterlab
matplotlib
pytest
memray

4. Activate the project’s virtual environment (if it’s not already activated):

% source .venv/bin/activate

5. Run the following command to install the latest versions of the named packages:

(ch17) % python -m pip install -r requirements.txt

The PIP application will find matching versions of the various packages and install

them. Because some of these packages have complex layers of dependencies, the

installation can be rather time-consuming the first time it’s attempted.

https://peps.python.org/pep-0508/
https://packaging.python.org/en/latest/specifications/version-specifiers
https://packaging.python.org/en/latest/specifications/version-specifiers
https://packaging.python.org
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This list of seven packages expands to about 111 packages in total that must be

installed.

For many projects, this is all that’s required to build a useful environment definition. In

many cases, this base definition needs to have more specific version information provided.

This is a separate recipe; see Using pip-tools to manage the requirements.txt file.

How it works...
The PIP application uses the -r option to parse a file with required packages. Within this

file, we can have simple lists of packages, and complex rules for locating the proper version

of a package. We can even have other -r options to incorporate other files of requirements.

Using multiple files can help organize very complex projects.

When we name a package PIP, it will examine the target’s metadata to locate packages on

which it depends. These transitive dependencies must be installed before the target package

is installed. This means an internal lattice structure showing all of the dependencies must

be built. This can involve downloading multiple copies of a package, as version constraints

are resolved into a single, final list of packages to install.

While it’s easy to use PIP to manually install a single package, this leads to confusion about

what a project needs and what’s currently installed in the virtual environment. Avoiding

this requires a disciplined approach of always doing these two things when exploring a

new package:

• Add the package to the requirements.txt file.

• Run python -m pip install -r requirements.txt to add packages to the current

virtual environment.

When removing packages from the requirements.txt file, we can generally proceed by

deleting the virtual environment and creating an entirely new one. This leads to the

following sequence of commands being used:
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% (ch17) deactivate
% python -m venv --clear --prompt ch17 .venv
% source .venv/bin/activate
% (ch17) python -m pip install -r requirements.txt

Because PIP maintains a cache of downloaded files, this environment will be rebuilt

relatively quickly. The use of requirements.txt ensures the environment is built in a

repeatable fashion.

There’s more...
It’s very common to install components manually and uncover conflicts. For example, a col-

league clones a repository and cannot run the unit test suite because the requirements.txt

file is incomplete.

Another case is an audit of development environments. As new people join a team, they

may install new releases of a package named in the requirements.txt file. To be confident

everyone has the same version, it helps to freeze the version information for the packages

in a virtual environment.

For both use cases, the python -m pip freeze command can be used. This will report all

of the installed packages and the versions that were used. The output from this is in the

same format as a requirements file.

We can use a command like the following:

% source .venv/bin/activate
% (ch17) python -m pip freeze >audit_sfl.txt

These output files can be compared to locate differences and repair environments that are

not consistent with expectations.

Additionally, the output from the pip freeze subcommand can be used to replace a generic

requirements.txt file with a file that specifically pins each and every package in use. While

this is very easy, it’s not terribly flexible because it provides specific versions. There are
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better ways to build a requirements.txt file using pip-tools. We’ll look at this in Using

pip-tools to manage the requirements.txt file.

See also
• See the Creating environments using the built-in venv recipe to see how to create a

virtual environment.

• See the Using pip-tools to manage the requirements.txt file recipe for a way to manage

dependencies.

Creating a pyproject.toml file
In addition to a virtual environment and a clear list of dependencies, a project also benefits

from an overall summary, in the form of a pyproject.toml file.

A pyproject.toml file is required by some Python tools and is helpful to have in general.

It provides a central summary of the technical details of the project.

With the adoption of PEP 621, this file has become the expected place for metadata about a

project. It replaces the older setup.py module.

This recipe is based on the Sample Project project in the packaging authority Git repository

at https://github.com/pypa. The recipe is also based on the Packaging Python Projects,

page, one of the Packaging Authority tutorials. See https://packaging.python.org.

Getting ready
We’ll assume the project is not a trivial single-file module but something larger. This means

there will be a directory structure somewhat like the following:

https://peps.python.org/pep-0621/
https://github.com/pypa/sampleproject
https://github.com/pypa
https://packaging.python.org/en/latest/tutorials/packaging-projects/
https://packaging.python.org
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Your Project
LICENSE
README.md
pyproject.toml
docs

conf.py
index.rst

src

your_package
__init__.py
module.py

tests
test_module.py

Figure 16.1: Project files

We’ve shown a common structure that applies broadly to many projects. The top-level

name, Your Project, is a name that works for your collection of projects.

The name your_package inside the src directory is the name by which the package will

be known when it is imported. This does not have to precisely match the overall project

name, but it should have a clear relationship. As an example, the Beautiful Soup project

has a PYPI entry with the name beautifulsoup4, but the imported package is named bs4

in your Python’s local site packages. The connection is clear.

We’ve shown the README.md file with an extension that indicates it’s written in Markdown

notation. Common alternatives are README.rst and README.

The LICENSE file can be a difficult choice. See https://spdx.org/licenses/ for a

comprehensive list of open-source licenses. See GNU License List at https://www.gnu.

org for advice on various open source licenses.

The content of the docs directory is often built using tools like Sphinx. We’ll address

documentation in Chapter 17.

https://spdx.org/licenses/
https://www.gnu.org/licenses/license-list.en.html
https://www.gnu.org
https://www.gnu.org
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How to do it...
1. Make sure the README.md has a summary of how to install and use the project. This

is subject to change as the project evolves.

There are six essential questions: “who?”, “what?”, “why?”, “when?”, “where?”, and

“how?” that can help write a short paragraph to describe the project. The C4 model

offers additional help on how to describe software. See C4 Model.

2. Determine which build system will be used. Choices include setuptools, hatch,

and poetry. Parts of content of the pyproject.toml file will be unique to the build

system.

For this recipe, we’ll use setuptools as the build tool.

3. There are numerous templates available for a pyproject.toml file. The PYPA sample

project example is comprehensive, and perhaps a bit daunting. There are two tables

in the TOML that are required: [project] and [build-system]. The rest can be

ignored when getting started.

Here’s a short template for the [project] table:

[project]
name = "project_name"
version = "2024.1.0"
description = "A useful description."
requires-python = ">=3.12"
authors = [

{email = "your.email@example.com", name = "Your Name"}
]
dependencies = [

your dependencies
]
readme = "README.md"
license = {file = "LICENSE"}

The first six items need to have values replaced with facts about your project. The

last two items, readme and license, don’t often change because they’re references

to files in the project directory.

https://c4model.com
https://github.com/pypa/sampleproject/blob/main/pyproject.toml
https://github.com/pypa/sampleproject/blob/main/pyproject.toml
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The name must be a valid identifier for a project. They are defined by PEP-508. They

are names made of letters, digits, and the special characters -, _, and .. Interestingly,

they can’t include spaces or end with a punctuation mark. ch17-recipe3 is acceptable,

but ch17_ is invalid.

The dependencies must be a list of the direct requirements that must be installed in

order for this project to work. These are the same kinds of dependency specifications

provided in a requirements.txt file. See Installing packages with a requirements.txt

file for more information.

Here’s a template for the [build-system] table. This uses the small, widely available

setuptools tool:

[build-system]
build-backend = "setuptools.build_meta"
requires = [

"setuptools",
]

4. It can help to open this file with tomllib to confirm it’s formatted properly. This

can be done interactively in the Python console as follows:

>>> from pathlib import Path
>>> import tomllib
>>> doc = Path("pyproject.toml").read_text()
>>> tomllib.loads(doc)

If the file is invalid in some way, this will raise a tomllib.TOMLDecodeError exception.

The exception will provide the line and column for the syntax error, or it will say “at

end of document” when a structure isn’t terminated properly.

How it works...
A number of tools make use of the pyproject.toml contents. There is a complicated

relationship between PIP and the build tool named in the pyproject.toml file. For this

recipe, we’re using setuptools.

https://peps.python.org/pep-0508/


720 Dependencies and Virtual Environments

The following diagram summarizes some of the steps involved in downloading and installing

a library:

your computer

site-packages

PYPI

PIP

download

Build Tool

wheeltarget

pkg

PyPI Package

pip install

1. gets

2. caches

3. get_requires... hook

4. build_wheel hook

reads

5. creates

reads

6. installs

Figure 16.2: How PIP and the build tool collaborate

This summary diagram is neither an exhaustive nor definitive look at how packages are

installed. For more information, see PEP-517.

The processing begins with the pip install command, shown with a boundary icon. The

PIP operation proceeds through the numbered steps:

1. PIP starts by getting the compressed archive from a package index like PYPI.

2. The archive is cached on the local computer for future use.

3. PIP uses the get_requires_for_build_wheel build-tool hook to gather require-

ments. The build tool gets dependency information from the pyproject.toml file

and provides this to PIP. The PIP tool will download these additional projects. These

https://peps.python.org/pep-0517
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projects have their own requirements. The graph of requirements is resolved to

identify all of the required installations.

4. In some cases, a new wheel-format file is required. In other cases, the project provides

a wheel-formatted file. The PIP tool can use the build_wheel build-tool hook to

combine the downloaded files into an installable form.

Some distributions include the source files, and may include data files or scripts that

aren’t trivially copied to the site-packages directory.

5. PIP then installs the wheel in the virtual environment’s appropriate site-packages

directory.

Possible build tools to build a package include setuptools, build, hatch, and poetry. All

of these build tools can be used by PIP. They all make use of pyproject.toml.

There’s more...
In addition to the dependencies required for the project to work, additional dependencies

are often based on other things we may do with the project. Common additional use cases

are running tests, developing new features, and fixing bugs.

Tools for these additional use cases are optional dependencies. They are generally listed in

a separate table, with sub-tables for each use case. For example, we might add the following

table with two sub-tables to list the tools used for testing, and additional tools for more

general development:

[project.optional-dependencies]
test = [

"tox",
"ruff",
"mypy",
"pytest",
"pytest-cov"

]
dev = [

"pip-tools",
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"sphinx"
]

These additional lists permit someone to install the test suite to confirm the downloaded

project passes all of its test cases. They also permit someone to download appropriate tools

for maintaining the documentation and the detailed lists of dependencies.

Note that in these examples, none of the dependencies are named with a specific, pinned

version. This is because we’re going to use pip-tools to build a requirements.txt file

from the information available in the pyproject.toml file. See Using pip-tools to manage

the requirements.txt file.

Tools like flit and twine are often used to upload to a repository like PYPI. For enter-

prise developers, there may be an enterprise Python repository. These tools make use of

additional tables in the pyproject.toml file.

The flit tool, for example, uses additional [tool.flit.sdist] and

[tool.flit.external-data] tables to provide information required to perform an upload.

See also
• See https://python-semantic-release.readthedocs.io/en/latest/ for the

Python Semantic Release tool that can modify version names based on Git commit

messages.

• See Using TOML for configuration files in Chapter 13 for more information on TOML

files.

• See Using pip-tools to manage the requirements.txt file for our approach to refining

the list of requirements into a line of pinned version numbers.

• The Hypermodern Python project has a template usable with the Cookie-Cutter tool

to build a directory structure. See https://github.com/cjolowicz. This template

relies on Poetry for managing dependencies and virtual environments.

https://python-semantic-release.readthedocs.io/en/latest/
https://github.com/cjolowicz/cookiecutter-hypermodern-python
https://github.com/cjolowicz
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• Chapter 17 contains the The bare minimum: a README.rst file recipe to address the

README file in more depth.

Using pip-tools to manage the requirements.txt
file
Above, we noted that a project’s dependencies have three levels of specificity:

Generic : Name-only dependencies

Filtered : With a very general constraint like >= 4.0

Pinned : With a specific version like == 4.12.2

How do we align these levels? One easy way is with the pip-tools package. This package

includes the pip-compile tool, which will digest requirements, resolve dependencies, and

create a derivative requirements.txt file with pinned version numbers.

A companion tool, pip-sync, can be used to ensure that the active virtual environment

matches the requirements.txt file. This can be considerably faster than dropping and

recreating a virtual environment.

Getting ready
PIP-tools must be downloaded and installed. Generally, this is done with the following

terminal command:

(ch17) % python -m pip install pip-tools

This assumes the virtual environment is active; in the example, it’s named ch17. Using the

python -m pip command ensures that we will use the pip command that goes with the

currently active virtual environment.

The pip-compile tool will locate requirements in a pyproject.toml or requirements.in

file. From this information, it builds a detailed requirements.txt file that can be used with

pip or pip-sync to create the virtual environment.
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How to do it...
1. Make sure the dependencies are in the pyproject.toml file. In some cases, an old

requirements.txt file may have been used to get started. It’s a good idea to confirm

that the information is in the pyproject.toml file because the requirements.txt

file will be replaced.

2. The first time you do this, it helps to delete any old requirements.txt file not created

by pip-compile.

3. To build the core requirements.txt file, run the pip-compile command:

(ch17) % pip-compile

This will locate the dependencies in the pyproject.toml file. It will then locate all of

the transitive requirements and build a set of requirements with conflicts resolved.

It will both write a requirements.txt file and also display this file on the console.

4. To build a requirements-test.txt file, run the pip-compile command with the

--extra option:

(ch17) % pip-compile --extra test -o requirements-test.txt

This creates a file with the optional dependencies from the test = [...] section of

the [project.optional-dependencies] table.

5. To build a comprehensive requirements-dev.txt file that contains all of the extras,

run the pip-compile command with the --all-extras option:

(ch17) % pip-compile --all-extras -o requirements-dev.txt

This creates a file with all of the optional dependencies in the

[project.optional-dependencies] table.

6. When needed, use the pip-sync command to rebuild the current virtual environment

to match changes to one of the requirements.txt files.
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It’s common practice to use this with the tox tool. In the commands_pre section

of a test environment description, use pip-sync requirements.txt to make sure

the test virtual environment is synchronized with the package versions in the

requirements.txt file.

How it works...
The pip-compile tool will look for information in three places:

• The pyproject.toml file.

• A requirements.in file, if present. This isn’t needed, since the same information is

in the pyproject.toml file.

• Any previously created requirements.txt file.

Using both the pyproject.toml and any previously created requirements.txt file allows

the tool to properly reflect incremental changes. This means it can minimize the work

required to analyze projects that haven’t changed much. When starting a new project, it’s

sometimes helpful to delete the requirements.txt file entirely after making significant

changes.

There’s more...
When making changes, there are two options that can help rebuild the requirements.txt

details:

• The --rebuild option will clear caches and redo the analysis of dependencies.

• The --upgrade some-package option will look for upgrades for the named

some-package package only. This prevents analysis of other packages that should be

left alone. Multiple --upgrade options can be supplied to track multiple changes.

These two commands let us manage incremental change, upgrade requirements.txt,

rebuild the virtual environment, and test with new versions of packages. This ensures the

description of the environment matches the actual environment. We can share the project

with confidence.
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There are times when packages have conflicting requirements. Assume our project depends

on project A and project T. It turns out project A also requires project T. Problems can arise

when our project requires T >= 10.11 that’s distinct from the version required by the A

project, for example, T < 10.9. This can be challenging to resolve.

We can hope our project’s limitation of T >= 10.11 is too specific; we can weaken the

constraint and find a compatible version. In other cases, the requirements stated by project

A might be too specific, and we need to consider making a change to the other project’s

code. Ideally, this is a proper issue and pull request, but it may require forking the project

to offer distinct constraints. The worst case requires re-engineering our project to change

the nature of the dependencies or — perhaps — stop using project A.

In some cases, there are obscure errors in pyproject.toml and the pip-compile tool reports

an infuriatingly opaque error message:

(ch17) % pip-compile
Backend subprocess exited when trying to invoke get_requires_for_build_wheel
Failed to parse /Users/slott/Documents/Writing/Python/Python Cookbook
3e/src/ch17/pyproject.toml

This is a problem with the formatting of the pyproject.toml file.

One way to uncover the problem is to attempt to do an “editable” installation of the project

in the current working directory. This will use the pip install command with the -e .

option to use the current directory as the project to install.

It looks like this:

(ch17) % pip install -e .

This will report the specific error found in the pyproject.toml file. We can then repair the

error and run pip-compile again.

See also
• For more background on projects as a whole, see the PYPA Sample Project.

https://github.com/pypa/sampleproject
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• For information on licenses, see SPDX.

• The Installing packages with a requirements.txt file recipe describes using a file to

drive PIP installations.

• See PEP-517 for more information on how a build system works.

Using Anaconda and the conda tool
There are some limitations on the kinds of packages the PIP tool can install. The most

notable limitation involves projects that involve extension modules written in a compiled

language like Rust or C. The variations among platforms — including hardware and OS —

can make it difficult to distribute all the required variants of the package’s binary files.

In a Linux environment, where compilers like GNU CC are readily available, a package

with an extension module can include source code. The PIP tool can use the compiler to

build the necessary binaries.

For macOS and Windows, additional tools are required to create binaries. Free compilers

are not as readily available as they are in a Linux environment, presenting a potential

problem.

Conda solves the problems with binaries by making a wide selection of pre-built binaries

available in their repository. It also makes sure a compiler is available on the target platform

for the cases where a pre-built binary isn’t available.

The conda tool is a virtual environment manager and package installer. It fulfills the same

use cases as PIP, combined with venv and pip-tools. This includes builds of packages that

include binaries, often used for high-performance numeric applications. The command-

line interface for conda is the same on all platforms, permitting simpler, more consistent

documentation.

The Anaconda package index is curated by the Anaconda company. Check out their website,

https://anaconda.com, for prices and fees. The packages provided have been integrated

and tested. This testing takes time, and the official Anaconda distribution can lag behind

https://spdx.org/licenses/
https://peps.python.org/pep-0517
https://anaconda.com
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what’s available in PYPI. Further, it’s a subset of what’s available on PYPI because it tends

to focus on data analytics and data science.

A separate package index, conda-forge (https://conda-forge.org) is community based.

This channel contains packages that more closely mirror what’s in PYPI. In many cases,

we’ll install packages from this channel because we want something new, or we want

something outside the curated subset available from Anaconda.

Getting ready
There are two ways to get the conda tool:

• Download and install the full Anaconda distribution. This is a large download,

anywhere from 900 MB for Windows to over 1,000 MB for more Linux distributions.

• Download and install miniconda and use it to install only the desired packages. This

is a much smaller download, generally about 100 MB.

For the full Anaconda install, see https://www.anaconda.com/download. There are two

varieties of the installer:

Graphical : These installers use the OS interactive tools to support some configuration.

Command-line : These installers are sophisticated shell archives that run in a terminal

window. They provide the same options for installation as the graphical installer. There’s

more typing and less pointing and clicking.

For a miniconda install, see https://docs.conda.io/projects/miniconda/en/latest/i

ndex.html. Each OS has slightly different kinds of installers:

Windows : The installer is an executable program that uses the Windows installer.

macOS : There are PKG images that can be downloaded and double-clicked to use a macOS

UI. There are also command-line images that can be executed from the terminal window.

Linux : These are shell-archive files that are started from a terminal window.

While there are a lot of choices here, we recommend using a command-line installer for

https://conda-forge.org
https://www.anaconda.com/download
https://docs.conda.io/projects/miniconda/en/latest/index.html
https://docs.conda.io/projects/miniconda/en/latest/index.html
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Miniconda.

See the Miniconda page for recommended shell commands to use the curl program to

fetch the image and then perform the installation.

Once the conda tool has been installed, it can be used to create and populate virtual

environments. Note that the conda tool creates a base virtual environment. When conda

is installed, the (base) environment should be shown as part of terminal window prompts.

This serves as a visual cue that no other environment has been activated. It may help to

exit and restart all terminal windows to be sure conda is working.

How to do it...
It’s essential that the conda tool is installed. See the Getting ready section of this recipe for

advice on installing conda.

1. Use the conda create command to create a new virtual environment:

% conda create -n cookbook3 python=3.12

Note the commands are the same on all operating systems.

The virtual environment’s files are kept outside the project directory. For macOS,

there will be a ~/miniconda3/envs directory that has all of the virtual environment

files.

2. Use the conda activate command to activate this new virtual environment:

(base) % conda activate cookbook3

3. Use the conda install command to install a list of packages in the virtual envi-

ronment. Conda has its own conflict resolver that’s separate from the one used

by the PIP tool or pip-compile. While we can use the requirements.txt file, we

don’t really need all of those details. It’s often easier to provide the package name

information as shown in this command:

https://docs.conda.io/projects/miniconda/en/latest/index.html
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(cookbook3) % conda install pydantic beautifulsoup4 jupyterlab
matplotlib pytest memray

4. To create a shareable definition of the current virtual environment, use the

conda env export command:

(cookbook3) % conda env export >environment.yml

This uses the shell redirect feature to save the exported information into a YAML-

formatted file that lists all of the requirements. This file can be used by

conda env create to recreate this environment.

How it works...
The virtual environment created by conda has the proper PATH environment variable set to

point to a specific Python binary. The standard library packages and site-specific packages

are located in nearby directories.

This parallels the virtual environments created by the built-in venv module. It follows the

rules of PEP-405, which defines the rules for virtual environments.

In order to work consistently, the conda command must be visible. This means a base

conda installation must also be named in the system PATH environment variable. This is a

crucial step in using conda. The Windows installer has the option to either update the

system path or to create special command windows in which the necessary path setting

has been made. Similarly, the macOS installer requires an extra step to make the conda

command available to the zsh shell.

The Anaconda repositories may have pre-built binaries, which can be downloaded and used

by the conda tool. In cases where binaries aren’t available, the conda tool will download

the source and build the binaries as needed.

https://peps.python.org/pep-0405/
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There’s more...
One of the most common use cases is upgrading to the latest releases of packages. This is

done with the conda update command:

(cookbook3) % conda update pydantic

This will look for the version of the package available in the various channels being searched.

It will compare the available version with what’s currently installed in the active virtual

environment.

To collaborate politely with tools like tox for testing, it helps to use the pip freeze

command to create a requirements.txt file. By default, tox uses pip to build virtual

environments. The PIP tool will not overwrite packages installed by conda, allowing them

to coexist peacefully.

Another choice is to use the tox-conda plug-in to allow the tox tool to use conda to create

and manage virtual environments. See the tox-conda repository at https://github.com

/tox-dev/tox-conda.

Not all libraries and packages are part of the Anaconda-supported, curated library. In many

cases, we’ll need to step outside Anaconda and use the community conda-forge channel

in addition to the Anaconda channel.

We’ll often need to use a command like the following to use the conda-forge channel:

(cookbook3) % conda install --channel=conda-forge tox

We can also use pip to add packages to a conda environment. It’s rarely needed, but it does

work nicely.

See also
• See Creating environments using the built-in venv for more information on virtual

environments.

https://github.com/tox-dev/tox-conda
https://github.com/tox-dev/tox-conda
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• See https://www.anaconda.com/download for the full Anaconda installation.

• See https://docs.conda.io/projects/miniconda/en/latest/index.html for the

Miniconda installation.

Using the poetry tool
The combination of the venv, pip, and pip-tools packages allows us to create virtual

environments and populate them with packages from the PYPI package index.

The poetry tool is a virtual environment manager and package installer combined into a

single tool. It fulfills the same use cases as PIP, combined with venv and pip-tools. It also

fulfills the same use cases as conda. The CLI is the same on all platforms, permitting simpler,

more consistent documentation for developers using Poetry to manage environments.

There are some minor differences in the way Poetry enables a virtual environment. Rather

than tweaking the current shell’s environment variables, it launches a sub-shell. The

sub-shell has the required virtual environment settings.

Getting ready
Note that the Poetry tool must be installed in its own virtual environment, separate from

any project managed by Poetry. This is best done by using the Poetry installer. This

involves OS-specific commands to download and execute the installer. The installer is

written in Python, which makes the task somewhat more consistent across OSs.

See https://python-poetry.org/docs for details.

There are two steps:

• Download from https://install.python-poetry.org.

• Execute the downloaded Python script.

The recommended commands vary slightly between operating systems:

• macOS, Linux, and Windows Subsystem for Linux: The curl command is gener-

ally available for doing the download. This command can be used:

https://www.anaconda.com/download
https://docs.conda.io/projects/miniconda/en/latest/index.html
https://python-poetry.org/docs
https://install.python-poetry.org
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% curl -sSL https://install.python-poetry.org | python3 -

After this, the follow-on step will update the system PATH environment variable. The

output from the installation will provide the location to use. These two examples are

for macOS, where the file is in ~/.local/bin.

Edit the ~/.zshrc file to add the following line:

export PATH="~/.local/bin:$PATH"

As an alternative, it is possible to define an alias for the location of the poetry

command. This is often ~/.local/bin/poetry.

• Windows Powershell: The Invoke-WebRequest Powershell command performs

the download. The Python launcher, py, runs the appropriate version of Python:

PS C:\> (Invoke-WebRequest -Uri https://install.python-poetry.org
-UseBasicParsing).Content | py -

The script for poetry is placed in the AppData\Roaming\Python\Scripts sub-directory.

Either add this to the PATH environment variable or use the path explicitly, for exam-

ple: AppData\Roaming\Python\Scripts\poetry --version.

Changing the current working directory with chdir means explicitly referring to

your home directory’s AppData sub-directory.

Once the poetry tool has been installed, it can be used to create and populate virtual

environments.

How to do it...
1. Use the poetry new command to create a new project directory. This will not only

create a virtual environment; it will also create a directory structure and create a

pyproject.toml file:
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% poetry new recipe_05

The virtual environment’s files are kept outside the project directory. For macOS,

there will be a ~/Library/Caches/pypoetry directory that has all of the virtual

environment files.

Note that poetry tries to cooperate with other virtual environment tools. This means

you can use a venv activate command to set the environment variables.

2. Rather than activate the environment within a shell’s environment, it’s often easier

to start a sub-shell with the appropriate environment settings.

Use the poetry shell command to start a shell that has the virtual environment

activated:

% poetry shell

Use the shell’s exit command to terminate this sub-shell and return to the previous

environment.

3. Use the poetry add command to add packages to the environment. This will both

update the pyproject.toml file and install the packages:

% (recipe-05-py3.11) poetry add pydantic beautifulsoup4 jupyterlab
matplotlib pytest memray

This also creates a poetry.lock file that defines the exact versions of each depen-

dency.

How it works...
The virtual environment created by poetry has the proper PATH environment variable

set to point to a specific Python binary. The standard library packages and site-specific

packages are located in nearby directories. Poetry properly leverages the information in
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the pyproject.toml file, reducing the number of additional files required to define the

working environment.

In order to work consistently, the poetry command must be visible. This means either

adding the poetry location to the system PATH environment variable or using an alias. This

is a crucial step in using poetry.

The alternative to an alias is what is shown in the recipe, using ~/.local/bin/poetry

explicitly. This is less than optimal, but it makes the relationship between the current

working virtual environment and the poetry command more clear.

There’s more...
One of the most common use cases for an environment and tool like Poetry is upgrading to

the latest releases of packages. This is done with the poetry update command. A specific

list of packages can be provided. With no parameters, all packages are examined.

Here’s an example:

% (recipe-05-py3.11) poetry update pydantic

This will look for the version of the pydantic package available in the various channels

being searched and compare that version with what’s currently installed in the active

virtual environment. This will also update the poetry.lock file after installing the updates.

To collaborate politely with tools like tox for testing, some additional options are required

in the tox.ini file. One easy-to-use approach is to skip the default install procedure that

tox uses and use poetry commands to run commands in a poetry-managed environment.

Here’s a suggestion of how to use poetry with tox:

[tox]
isolated_build = true

[testenv]
skip_install = true



736 Dependencies and Virtual Environments

allowlist_externals = poetry
commands_pre =

poetry install
commands =

poetry run pytest tests/ --import-mode importlib

Using poetry run means the command will be executed in the virtual environment. This

makes it possible to use tox to define multiple environments, and rely on Poetry to assemble

the various environments for testing purposes.

See also
• See https://python-poetry.org/docs for details on Poetry.

• See https://tox.wiki/en/4.15.1/ for details on Tox.

Coping with changes in dependencies
As we noted in the Installing packages with a requirements.txt file, all packages on which

an application is built are in a constant state of flux. Each project has a distinct tempo for

updates. To manage the constant change, it’s important for people developing applications

to track dependencies carefully.

A common complaint about Python is sometimes summarized as dependency hell. This

summarizes the work required to track and test with new dependencies, some of which

may be in conflict. This work to manage change is essential; it’s the minimum required to

maintain a viable product. Instead of adding features, it preserves functionality in a world

of constant change.

There are two common cases where upgrades turn into more than simply installing and

testing with upgraded packages:

• Changes that break our application in some way

• Incompatibilities among packages our application depends on

In the first case, our software fails to work. In the second case, we can’t even build a virtual

https://python-poetry.org/docs
https://tox.wiki/en/4.15.1/
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environment in which to test. This second case is often the most frustrating.

Getting ready
We’ll consider a hypothetical project, the applepie application. This application has several

dependencies:

• A single module from the apple project’s package, named apple.granny_smith

• Some classes from the pie_filling project

• Several classes from the pastry_crust project

• An oven implementation

The general dependencies are named in the pyproject.toml file as a list of projects. We

can imagine the detailed requirements.txt (or poetry.lock) file looks like the following:

apple == 2.7.18
pie_filling = 3.1.4
pastry_crust >= 4.2
oven == 0.9.1a

Using this framework for an application, we’ll look at what changes we need to make

when we see changes in the dependencies. One change will remove needed functionality;

the other change will be an incompatibility between releases of the pie_filling and

pastry_crust projects. We’ll need to make appropriate changes in our application based

on these changes occurring in the larger Python ecosystem.

How to do it...
We’ll decompose this into two sub-recipes: one for a dependency that leads to a test failure,

and the second for dependencies that are incompatible. We need to adjust our project so it

continues to work in the presence of ongoing change.

A change caused a test failure

To continue our example, the oven tool has had a significant change to the API. The

new release, oven version 1.0, doesn’t have the same interface version 0.9.1a had. The
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consequence is a failure in our code:

1. Clarify what the failure is and what caused it. Ask “why?” enough times to identify

the root cause. There are several aspects of the failure that may need to be explored.

Be sure to understand the top layer of the problem: how the failure manifested itself.

Ideally, a unit test failed. Another good avenue for detection is to use a tool like

mypy or ruff to identify a potential for failure. Less helpful is an acceptance or

system test that failed even though unit tests all passed. Perhaps the worst case is

failure after deployment, in the hands of a customer.

Also, be sure to understand what changed. It’s common to introduce a number of

version upgrades all at once. It may be necessary to reverse those changes and then

upgrade each required package one at a time to identify the source of the failure.

2. Failures after a release often lead to problem reports in issue-tracking tools. Update

any issue-tracking software with the root cause analysis.

Failures during testing should also lead to an internal report of a problem. The repair

may require extensive rework, and it is generally helpful to track the reason for the

rework.

3. Choose among the four kinds of fixes that are possible:

(a) Your code needs to be fixed. The change to oven version 1.0 is a clear improve-

ment.

(b) The change to oven introduced a bug, and you need to report the problem to

the maintainers of oven or fix their code.

(c) Revise the dependencies to pin oven version 0.9.1a in pyproject.toml to pre-

vent upgrades.

(d) Looking closely at the oven project, it may be clear it is no longer a good fit

with this project, and it needs to be replaced.

These are not exclusive choices. In some cases, multiple paths will be followed.
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There may be a pervasive change to our project required to accommodate the changes

to oven 1.0. This may be an opportunity to refactor our code to more carefully isolate

this dependency to simplify making changes in the future.

When a project seems to have a bug, we have two choices: we can report the issue

and hope it’s fixed, or we can clone the repository, make a fix, and submit a pull

request to pull our changes into the next release. The benefit of open source is the

reduced cost to begin a project. Ongoing maintenance, however, is an eternal feature

of a landscape that thrives on innovation. While we benefit from other’s work in

open source, we also need to contribute by proposing fixes.

In some cases, we will pin a specific version while we decide what to do about a

dependency. We may pin an old version while choosing among alternatives and

rewriting our project to replace the old oven with the new convection_cooker.

In effect, code that breaks due to an upgrade is a bug fix. It may be a bug fix for a project

we require. More often, the fix is applied in our project to make use of a change in other

projects. Managing changes to our application is the price we pay for innovation in the

broad ecosystem of Python packages.

A changed dependency is incompatible with another dependency

In this case, the pastry_crust version 4.3 uses sugar version 2.0. Sadly, the pie_filling

version 3.1.4 uses the older sugar version 1.8.

1. Identify the root cause of the conflict, to the extent possible. Trying to discern why

the pie_filling project team has not upgraded to sugar version 2.0 may be very

difficult. A common observation is a lack of activity in the pie_filling project; but

without knowing the principal contributors well, it’s difficult to ask why they aren’t

making changes.

Be perfectly clear in identifying what changed. It’s common to introduce a number

of version upgrades all at once. It may be necessary to reverse those changes and

then upgrade each required package one at a time to identify the source of the failure.
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These conflicts are not in a direct dependency, but in an indirect dependency.

We value the idea of encapsulation and abstraction right up until we observe conflict-

ing requirements that are encapsulated by a project. When these conflicts appear,

the obscurity of encapsulation becomes a burden.

2. Document the conflict as an issue in issue-tracking software. Be sure to provide

links to the conflicting projects and their issue trackers. The resolution may involve

extended side-bar conversations with other projects to understand the nature of the

conflicting requirements. It helps to keep notes on these conversations.

3. Choose among the four kinds of fixes that are possible:

(a) It’s unlikely any small change to your code will resolve the problem. The

change required is replacing the pie_filling requirement with something else

and making sweeping changes.

(b) It’s possible that changes to the pie_filling project may correct the problem.

This may involve a great deal of work on someone else’s project.

(c) Revise the dependencies to pin pastry_crust version 4.2 in pyproject.toml

to prevent upgrades.

(d) Looking closely at the pie_filling project, it may be clear it is no longer a

good fit for this project and needs to be replaced. This is a sweeping change to

the project.

These choices are not exclusive. In some cases, multiple paths will be followed.

Perhaps the most popular choice is pinning the version that prevents the compatibility

problem.

The rework to the pie_filling project can involve two activities: we can report

the issue and hope they fix it, or we can clone their repository, make a fix, and

submit a pull request to pull our changes into their next release. This kind of ongoing

maintenance of open source software created by others is an eternal feature of a

landscape that thrives on innovation.
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Incompatibilities among the required supporting projects is an architectural problem. It’s

rarely solved quickly. An important lesson learned from this kind of problem is that all

architectural decisions need to be revocable: any choice needs to have an alternative, and

the software needs to be written so that either alternative can be exercised.

How it works...
The essential step here is doing root cause analysis: asking “why?” something fails to pass

tests when upgrades are attempted.

For example, our applepie project’s dependencies may pin oven version 0.9.1a because

version 1.0 introduced a failure. The pinned version may be appropriate for a few hours

until the oven project fixes a bug, or it could remain in place for a much longer period

of time. Our project may go through several releases before the problem with oven 1.0 is

finally fixed by release 1.1.

It requires some discipline to review the requirements and make sure any pinned versions

still need to be pinned.

There’s more...
One source of frustration with dependency hell is the lack of time budgeted for finding and

fixing dependency problems. In an enterprise context, this is an acute problem because

project sponsors and managers are often narrowly focused on budget and the time required

to implement new features. Time to resolve dependency issues is rarely part of the budget

because these problems are so difficult to anticipate.

A terrible situation can arise where fixing dependency problems is counted against a team’s

velocity metric. This can happen when there are no “story points” assigned to upgrading

the dependencies and rerunning the test suite. In this case, the organization has created a

perverse incentive to pin versions forever, without following the progress of other projects.

It’s imperative to have a periodic task to review each and every requirement. This task

involves seeing what changes have been made and what may have been deprecated since

the last review. This may lead to modifying project version constraints. For example,
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we may be able to relax the requirement from a strict oven==0.9.1a to a more lenient

oven!=1.0.

A periodic task to review all requirements is an essential ingredient in

managing change and innovation.

Look for updates as well as deprecations.

Allocate time to run tests with new versions and report the bugs discovered.

See also
• See Using pip-tools to manage the requirements.txt file for a very good dependency

resolver.

• See Using Anaconda and the conda tool for an approach to using the conda repository

of curated, compatible software releases.

Join our community Discord space
Join our Python Discord workspace to discuss and find out more about the book:

https://packt.link/dHrHU

https://packt.link/dHrHU
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Documentation and Style

We’ve combined two topics into a single chapter. They’re often looked at as “extras” in

a project’s life-cycle. The deliverable code is often considered to be the most important

thing.

Some developers will try to argue that test cases and documentation aren’t the code with

which the user interacts, and therefore, these additional pieces aren’t as important as the

code.

This is false.

While it is true the users don’t interact directly with test cases, the presence of test cases

is what gives people the confidence to use the code. Without the test cases, there’s no

evidence the code does anything useful at all.

Documentation provides essential information that can – eventually – be extracted from

the code. A project with a prominent docs folder is considerably more trustworthy than a

project that lacks documentation.
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Code “style” is a relatively minor point. However, it’s also part of the static assessment of

code, including type hint analysis, quality metrics, and more specific “lint” checks. There

are many software implementation practices that can be confusing, or rely on poorly

documented language or library features. These are the “fuzzy edges” of the software. A

lint tool acts like a lint trap in an electric clothes dryer, catching highly flammable lint so

it doesn’t clog the vents, preventing a fire. Removing software fuzz can prevent bugs. In

some cases, it may only reduce the possibility of problems.

We’ll consider linting and formatting to be quality assurance steps as important as test

cases and static type checking.

In this chapter, we’ll look at the following recipes for creating useful documentation:

• The bare minimum: a README.rst file

• Installing Sphinx and creating documentation

• Using Sphinx autodoc to create the API reference

• Identifying other CI/CD tools in pyproject.toml

• Using tox to run comprehensive quality checks

The bare minimum: a README.rst file
In Chapter 16, the Creating a pyproject.toml file recipe described how to create a

pyproject.toml file with a reference to a README file.

For the purposes of that recipe, we suggested the file is a summary of how to install and

use the project.

We also noted there are six essential questions: “who?”, “what?”, “why?”, “when?”, “where?”,

and “how?” that can help in writing a short lede paragraph to describe the project.

There are two common challenges when writing a README file:

• Writing too much
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• Writing too little

A good package will include a separate docs folder with detailed documentation. The

README file is only an introduction and a roadmap through the project’s various files

and folders. In many cases, where concrete examples are called for, it’s important to

very judiciously repeat information provided elsewhere in the documentation to avoid

contradictions.

A project without a README is visibly deficient. Locating good examples can help provide

guidance on what is needed. Some developers feel the code should somehow speak for

itself, and serve as documentation. The code, unfortunately, only really answers the “how?”

question effectively. Questions about who the users are and how the software should be

deployed require statements that must exist outside the software.

In this recipe, we’ll dive into what makes a useful README file.

Getting ready
A preliminary step is to choose the markup that will be used for the README file. There are

three common choices:

• Plain text

• Markdown

• ReStructured Text (RST)

The advantage of plain text is the simplicity of avoiding additional formatting elements.

The disadvantage is the lack of typographic hints like font changes to provide important

context.

The Markdown markup has the advantage of having a small set of elements. These overlap

with a number of common practices in writing natural-language text in a file. Showing

indented text in a distinct font for example, and treating a paragraph starting with a

punctuation mark and a space as a bulleted list item.

Using RST provides a comprehensive set of elements that covers a wide variety of typo-
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graphic details. This is the preferred markup language for Python’s internal documentation

projects. In some cases, the docs folder may be built with RST, but the README file may be

in plain text.

The choice is free of long-term consequences, since this file is essentially isolated from the

rest of the project’s documentation. When in doubt, it can help to toss a three-sided coin

to make the choice. The file is not large, and making changes is relatively easy.

How to do it...
1. Write an introduction, or lede, with information about who would use this package,

why they would use it, and what it does. In some cases, it may be helpful to state

when and where an application is used; this may be needed to clarify client-vs.-server

hosting or admin-vs.-user roles. Keep this short; details will follow. This is sometimes

called the “elevator pitch” because you can state it during an elevator ride in an office

building.

2. Summarize the important features of the software. This is often a bulleted list. It

may include screen grabs to show a user interface, if that’s an important feature. It’s

important to summarize and not overwrite all the details here. The details should be

in the separate docs folder.

3. Detail any requirements or dependencies. This may include hardware and operating

system if that’s important. It must include any Python version constraints. This

may repeat the dependencies in the pyproject.toml in the case where a library or

package is a plug-in or extension to another package or module.

4. Provide installation instructions. Often this is the python -m pip command re-

quired to download and install the package. If there are optional features, these will

be summarized here, also.

5. Provide an introduction to usage or operation. This is not the user guide, but it is

what most people will see first, and the usage section should provide a tidy, clear,

working example.
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There are two distinct approaches to writing this, depending on what the software is:

• For modules and packages that will be imported, a doctest example is ideal. The

README can then be tested to confirm the example really is correct and works

as expected.

• For applications, the usage may include step-by-step instructions for a common

use case, possibly with screen-grab images.

For some simple applications, this may be the entire user guide. Generally, it’s only

going to show a single, simple use case.

6. Provide the type of license and a link.

7. Provide a section on contributing to the project. This may be a link to a separate

contributor guide document, or it may be a short description of how to make changes

and submit a pull request.

In some cases, information about the integration, testing, and deployment may be

helpful here. For complicated applications, the build process may involve steps that

aren’t obvious.

This should also include information about documenting issues and making feature

requests.

8. It’s also polite to include credits or acknowledgments for the work of other

contributors. This may include information about backers and sponsors.

How it works...
The key ingredient of a README file is concrete examples of commands and features that

actually work. It shows what the software is, how to install it, how to use it, and how to

maintain it.

Examining READMEs from popular repositories reveals some common features. There’s a

Make a README web site that can help create a file in case additional guidance is required.

https://www.makeareadme.com
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While there will be additional documentation elsewhere, the README is the first thing most

people read. In some cases, it’s also the last thing they read. Therefore, it must be clear

what the software is and how it will be used.

There’s more...
A common feature of README files is badges showing the general health of the project.

There are several sources for these graphical summaries.

The https://shields.io site provides a number of static and dynamic badges. A dynamic

badge can interrogate services like PyPI or GitHub to post the current status.

In Markdown, something like the following might be used to build a badge.

![release](https://img.shields.io/pypi/v/<project>.svg)

This would show a small graphic badge with pypi on the left, and the current PyPI release

number on the right side.

Figure 17.1: Badge Example

The badge can also be a link, and can provide more detailed information.

[![release](https://img.shields.io/pypi/v/<name>.svg)]
(https://pypi.org/project/<name>)

See also
• The C4 model offers additional help on how to describe software. See https://c4mo

del.com.

• See the https://github.com/matiassingers/awesome-readme project on GitHub

for good examples.

https://shields.io
https://c4model.com
https://c4model.com
https://github.com/matiassingers/awesome-readme
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• Cookie-cutter templates are available with a search for “cookiecutter” repositories:

GitHub search. This is quite a large list with 1000’s of cookie-cutter templates:

https://github.com/search?q=cookiecutter&amp%3Btype=Repositories&type=

repositories.

Installing Sphinx and creating documentation
A README file is a summary of the software touching on a few key points. Proper documen-

tation often parallels the important topics of the README, but in more depth.

Important adjuncts to the essential “how-to” guides include two important topics:

• What the software does. This is often a detailed description of the observable features.

• How the software works, showing the implementation concepts.

The C4 model suggests four tiers of abstraction in the description:

1. The context in which an application is used.

2. The containers in which the software runs.

3. Component diagrams showing the architecture of the software.

4. Code diagrams showing the implementation details.

This organization offers the necessary focus for documentation.

We’ll write in RST or Markdown format. Tools like Sphinx then build output documents in

a variety of target formats.

We often want to provide an API document with the implementation details, extracted

from the docstrings present in our modules, classes, methods, and functions. In Chapter 2,

the Including descriptions and documentation recipe described how to add docstrings to

various Python structures. The Sphinx tool autodoc extension extracts the docstrings to

produce detailed API documentation.

Further, the Sphinx tool makes it easy to decompose the documentation source into smaller

files that are easier to edit and manage.

https://github.com/search?q=cookiecutter&amp%3Btype=Repositories&type=repositories
https://github.com/search?q=cookiecutter&amp%3Btype=Repositories&type=repositories
https://github.com/search?q=cookiecutter&amp%3Btype=Repositories&type=repositories
https://c4model.com
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Getting ready
We’ll need to download and install the Sphinx tool. Generally, this is done with the following

terminal command:

(cookbook3) % python -m pip install sphinx

Using the python -m pip command ensures that we will use the pip command that goes

with the currently active virtual environment.

There are several built-in themes, plus numerous third-party themes. See https://sphinx

-themes.org for dozens of additional themes.

How to do it...
1. Make sure the project directory has at least the following sub-directories:

• The source. This may use the package’s name or it may be called src.

• The tests, often called tests.

• The documentation, often called docs.

2. Change the working directory to the docs directory with a cd or chdir command.

From there, run the sphinx-quickstart command.

(cookbook3) recipe_02 % cd docs
(cookbook3) docs % sphinx-quickstart
Welcome to the Sphinx 7.2.6 quickstart utility.

Please enter values for the following settings (just press Enter to
accept a default value, if one is given in brackets).

This will embark on an interactive conversation to gather details about your project

and seed your docs folder with the files required to run Sphinx.

The result will be several directories and files for the documentation:

• conf.py has the project configuration.

https://sphinx-themes.org
https://sphinx-themes.org
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• index.rst is the root document.

• Makefile can be used in all other environments to build the documentation.

• A make.bat for use in a Windows environment may also be present.

3. Edit the index.rst file to write an initial summary. This might be copied from the

README file.

4. Run the make html command to build the initial documentation. This is a shell

command, run in the terminal window. Make sure the current working directory is

the docs directory.

How it works...
The Sphinx tool starts processing by reading the root document. The root_doc configura-

tion parameter names index. The source_suffix configuration parameter sets the suffix

for this file to .rst.

Generally, this file will name the other files in the documentation. The .. toctree::

directive is used to specify the other files in the documentation.

Let’s say we need to write several sections for installation, usage, maintenance, design, and

API reference. The index.rst will have this as the primary content.

The recipe_02 project
=====================

The **recipe_02** project is an example of Sphinx documentation.

.. toctree::
:maxdepth: 2
:caption: Contents:

installation
usage
maintenance
design
api
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The file created by the sphinx-quickstart tool will create a preamble in front of the above

example. We’ve omitted them from this example, since there’s no good reason to change

them.

The toctree directive has two parameters, :maxdepth: 2 and :caption: Contents:. These

tailor the behavior of the directive’s output.

Note that content inside a directive must be indented consistently. Often the initial file will

have an indent of three spaces. Some editors work with a default indent of four spaces, so

some changes to settings can be helpful.

Each of the names in the toctree body refers to a file with the configured suffix, in our

case, .rst.

The installation.rst, usage.rst, maintenance.rst, design.rst, and api.rst docu-

ments must start with a proper RST title line. The initial content can come from notes

or the README. For more help on RST, see Writing better docstrings with RST markup in

Chapter 2.

The content of the api.rst document will make use of the autodoc extension. We’ll look

at this in Using Sphinx autodoc to create the API reference.

There’s more...
There are many useful extensions for Sphinx. We’ll look at including a to-do list.

Enable an extension by adding sphinx.ext.todo to the list of extensions in the conf.py

configuration file:

extensions = [
'sphinx.ext.autodoc',
'sphinx.ext.todo',

]

This will introduce two new directives to the available markup:

• The .. todo:: directive creates a to-do item.
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• The .. todolist:: directive will be replaced by the content of all the todo items.

The todo items produce no other output. It’s easy to find them; some IDEs will automatically

scan the files for the letters todo and keep this as a list of things for a developer to address.

Editing the conf.py configuration file to add the following line will enable the .. todolist::

directive to include the items in the documentation:

todo_include_todos = True

With this, the todo items are elevated from personal notes to public items in the documen-

tation.

Sphinx comes with a number of themes that define the styles to use. The default theme

is called alabaster. Changing to one of the other built-in themes can be done with the

html_theme setting in the conf.py configuration file.

Change to the sphinxdoc theme with a setting like the following:

html_theme = 'sphinxdoc'

Many themes have further customizations possible. Providing an html_theme_options

dictionary tailors the theme.

See also
• See Sphinx https://www.sphinx-doc.org/en/master/ for details on the Sphinx

project.

• See https://sphinx-themes.org for some additional Sphinx themes.

• See Using Sphinx autodoc to create the API reference to see how to build API docu-

mentation from code.

https://www.sphinx-doc.org/en/master/
https://sphinx-themes.org
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Using Sphinx autodoc to create the API reference
One of the huge strengths of Sphinx is being able to generate the API documentation using

the autodoc extension. A series of commands can extract the docstrings from modules,

classes, functions, and methods. Options are available to fine-tune exactly what members

are included or excluded.

We’ll refer back to Chapter 7, the Extending a built-in collection – a list that does statistics

recipe. In there is this Statslist class:

class StatsList(list[float]):
def sum(self) -> float:

return sum(v for v in self)
def size(self) -> float:

return sum(1 for v in self)
def mean(self) -> float:

return self.sum() / self.size()
# etc...

Because this inherits methods from the list class, there are a large number of available

methods. By default, only those methods with docstrings, excluding private methods (those

with a leading _), will be examined and included in the documentation. We have a number

of other choices of which methods to include in the documentation:

• We can name specific methods, and only those will be documented.

• We can ask to include methods without docstrings; the signature will be shown.

• We can ask for private members (those with a leading _).

• We can ask for special members (those with double leading __).

• We can ask for inherited members to see members from the superclasses.

We’ll start by putting docstrings into this class definition. Once that task is finished, we

can include the necessary configuration and directives in the documentation directory.
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Getting ready
The first step is to add docstrings to the module, the class, and the methods. In some cases,

partial docstrings are in place and the task is to expand them to be more complete.

We might, for example, have already added the following kinds of comments:

class StatsList(list[float]):
"""
A list of float (or int) values that computes some essential statistics.

>>> x = StatsList([1, 2, 3, 4])
>>> x.mean()
2.5
"""

def sum(self) -> float:
"""
Sum of items in the list.
"""
return sum(v for v in self)

This started to provide some useful documentation in an API reference. The class docstring

has a doctest example to show how it works. The method has a docstring with a summary

of what it does.

We need to extend this to add details on parameters, return values, and exceptions raised.

This is done with additional syntax called a “field list”.

Each item in a field list has a name and a body. The general syntax is this:

:name: body

The Sphinx tool defines a large number of field list names that are used to format docu-

mentation for a function or method. Here are a few of the most useful ones:

• :param name: Description of a parameter

• :key name: Description of a keyword parameter
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• :raises exception: Description of the reason for the exception

• :var name: Details for internal variables of a class that are exposed

• :returns: The return value from a method or function

These permit the writing of detailed descriptions of methods.

How to do it...
1. Edit the docstrings to include details.

We might, for example, want to expand on the method definition as follows:

def sum(self) -> float:
"""
Computes the sum of items in the list.

:returns: sum of the items.
"""
return sum(v for v in self)

For a function as simple as this, the :returns: part of the field list seems redundant.

2. Edit the conf.py file to add the 'sphinx.ext.autodoc' string to the list extensions:

extensions = [
'sphinx.ext.autodoc'

]

3. Add the src directory to sys.path in the conf.py configuration file:

import sys
sys.path.append('../src')

This works because the conf.py file is a Python module, and can execute any Python

statements. Adding the src directory to the path means Sphinx can import the

module.

4. Put the following directive in the api.rst document.
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.. automodule:: stats
:undoc-members:

This will import the module, extract the docstring, and then attempt to create doc-

umentation for all of the members, including those that do not – as yet – have

docstrings.

The Sphinx quickstart created a Makefile to help build the final PDF or HTML file from

the source material; see the Installing Sphinx and creating documentation recipe for more

information. Run the make html shell command in the docs directory, The build directory

will have a static website with the project’s documentation.

How it works...
The examination of docstrings to extract the detailed documentation starts with an elegantly

clever feature of the Python language: the documentation string. The rules of RST markup

continue a path toward elegant-looking documentation. The resulting Sphinx page looks

like this:
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Figure 17.2: Sphinx Output Example

Note the variance() method includes a .. math:: directive with details on how the

computation is performed. This requires some care because the LATEXmath syntax involves

a fair number of \ characters.

There are two ways to deal with LATEXmath in docstrings:

• Use a “raw” string literal and single \:

r"""
A docstring with :math:`\alpha \times \beta`
"""

This means that no other escaped characters can be used. This may prevent using
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Unicode characters, for example.

• Use a \ to escape the special meaning of \:

"""
A docstring with :math:`\\alpha \\times \\beta`
"""

This permits including Unicode escape sequences like \N{Black Spade Suit} in the

docstring.

In both cases, note that RST uses back-ticks ` around the content that has a role, like

:math:.

There’s more...
A cross-reference to another class, module, or method uses :role:`value` syntax. The

:role: portion is the specific kind of reference to help distinguish modules, classes, and

functions. The value is a name that has a definition directive somewhere in the documen-

tation.

A cross-reference will generate appropriately formatted text with a hypertext link to the

the definition for the name.

Here’s an example:

Uses the :py:class:`~stats.StatsList` class in the :py:mod:`stats` module.

The :py:class:`~stats.StatsList` has the role of :py:class: to create a class reference

to the StatsList class definition. The use of ~ in the name means that only the last level

of the name will be shown. The full path is required to generate a correct reference to the

class. The :py:mod:`stats` reference is a role of :py:mod: and names the stats module.

See also
• See Installing Sphinx and creating documentation for more information on Sphinx.
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• See Chapter 7, the Extending a built-in collection – a list that does statistics recipe for

the example this is built around.

• See Chapter 2, the Including descriptions and documentation recipe for more informa-

tion on docstrings.

Identifying other CI/CD tools in pyproject.toml
The terms Continuous Integration (CI) and Continuous Deployment (CD) are often

used to describe the process of publishing a Python package for use by others. The idea

of doing a number of quality checks for integration and deployment is central to good

software engineering. Running a test suite is one of many ways to affirm that software is

fit for the intended purpose.

Additional tools might include memray, which is used to check the use of memory resources.

A tool like ruff is also an effective linter.

In Chapter 16, the Creating a pyproject.toml file recipe, and also In Chapter 15, the Combining

unittest and doctest tests recipe, both talk about defining test tools in addition to the

dependencies required to install the project.

This suggests there are several layers of requirements (also called dependencies):

• Requirements needed to install the application in the first place. Within this book,

this includes projects like pydantic, beautifulsoup4, jupyterlab, and matplotlib.

• Optional requirements for special features, plug-ins, or extensions. These aren’t

required to install the project. They are named in configuration files and applied

when the software is used. As an example, the pydantic package has an optional

validator for email addresses. If your application requires this, it needs to be named

as part of the dependency.

• Requirements to run the test suite. For the most part, this has been pytest and mypy.

It hasn’t been emphasized, but the unit test cases for the examples in this book all

use tox for test automation.
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• Packages and tools needed for development. This includes tools like memray and

sphinx. A tool like ruff or black might be part of this set of requirements.

The dependency information is used to install the software properly. It’s also used to create

development environments for collaboration. The Python ecosystem of packages is in a

constant state of flux.

It’s imperative to record which versions a package was tested with. This detail makes it

possible for tools like PIP to download and install the required components in the virtual

environment.

Getting ready
The first step is to create the base pyproject.toml file. See the Creating a pyproject.toml

file recipe in Chapter 16 for another recipe closely related to this. This should have a

dependencies item in the [project] table. It might look like this:

[project]
# details omitted

dependencies = [
"pydantic",
"beautifulsoup4",
"types-beautifulsoup4",
"jupyterlab",
"matplotlib"

]

When using Poetry, this information is in a slightly different format. The information goes

in the [tool.poetry.dependencies] table. Often, we’ll build this by using the poetry add

command-line tool.

Note that Poetry commands offer some additional syntax:

% poetry add pydantic@^2.6.0

The ^ prefix is a sophisticated rule that permits a larger version number for the minor

or patch level. It does not permit any changes to the left-most, major version number, 2,
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in this case. This means that any version of Pydantic at or after 2.6.0 will be considered.

Versions above 3.x will not be considered.

How to do it...
1. Add the test dependencies in a table named [project.optional-dependencies].

This will be a list named test. It looks like this:

[project.optional-dependencies]
test = [

"tox",
"pytest",
"mypy"

]

This name of test can be used by pip-compile to build a detailed

requirements-test.txt for the test tools.

When using Poetry, this optional dependency group is in a different table. We use

the --group option to specify the group.

The command line would look like this:

% poetry add tox@^4.0 --group test

2. Add the development dependencies in a table named

[project.optional-dependencies] Generally, the name dev is used. It looks like

this:

[project.optional-dependencies]
dev = [

"ruff",
"pip-tools",
"memray"

]

This name of dev can be used by pip-compile to build a detailed

requirements-dev.txt for the entire suite of tools, plus the base dependencies.
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When using Poetry, the --group option specifies the group. An add command might

include --group dev to add an item to the dev group.

How it works...
The goal is to provide ranges and patterns in the pyproject.toml file, offering flexibility in

version identification. Separate requirements*.txt files record specific version numbers

used for the current release. This generic-specific distinction supports the integration and

reuse of complex packages.

There’s more...
When working with tools like tox, we can create multiple virtual environments to test our

software with variants on the dependencies.

Package installation often uses a requirements.txt file with specific version identification.

Development efforts, on the other hand, may involve a number of alternative virtual

environments.

We can use tools like pip-compile to create the mix of packages to permit testing in a

number of alternative virtual environments. See Workflow for layered requirements at

https://pip-tools.readthedocs.io/en/latest/ for more information.

We’ll often create a base requirements.in file to define the common requirements across

all virtual environments. For more information on this, see Chapter 16, Dependencies and

Virtual Environments. This is often a simple list of the packages required:

# requirements.in
this_package
sphinx

This provides the baseline set of packages unique to the project.

We can then create layered requirements-dev_x.in files for various test environments.

Each of these files will include the base layer requirements.txt and an additional set of

constraints. The file might look like this:

https://pip-tools.readthedocs.io/en/latest/
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# requirements_dev_x.in
# Anticipation of new release. See ... for details.
-c requirements.txt
some_package>2.6.1

We’ve included a comment that provides information on why this distinct development

virtual environment is required. These reasons change frequently, and it’s helpful to leave

reminders on why a particular environment is helpful.

Within a tox.ini file, the pip-sync command will build a distinct virtual environment for

testing. We’ll look at this in the Using tox to run comprehensive quality checks recipe.

See also
• In Chapter 16, the Creating a pyproject.toml file recipe shows a way to start a

pyproject.toml file.

• See Using tox to run comprehensive quality checks for more information on using the

tox tool to run a test suite.

Using tox to run comprehensive quality checks
When we start using multiple CI/CD tools, it’s essential to make sure all of the tools are

used consistently. The virtual environments must also be built consistently.

Traditionally, a tool like makewas used to rebuild target files when source files were modified.

This requires a great deal of care because Python doesn’t really fit the compiler-centric

model of make.

Tools like tox and nox are far more helpful for running comprehensive sequences of test

and CI/CD tools on Python code.

Getting ready
For careful software development, a variety of tools can be useful:

Unit testing : We can use the built-in doctest or unittest modules. We can also use
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tools like pytest to find and run a test suite.

Benchmarking : Also called performance testing. The pytest-benchmark project offers

a handy fixture for assuring performance meets expectations.

Acceptance testing : A tool like behave or the pytest-bdd plug-in can help by stating

acceptance test cases in Gherkin to make them more readily understood by product owners.

Type hint checking : This is often handled by tools like mypy, pyre, pyright, or pytype.

Linting : While the term “linting” is in common use, this is really better termed “lint

blocking”. There are numerous tools, including ruff, pylint, flake8, and pylama.

Style and formatting : Two popular tools for this are ruff and black.

Documentation : This is often built with Sphinx.

This means we’ll need to install the chosen suite of tools. One more tool can be helpful to

find them all and bind them into a usable form. The tox tool can create and run tests in

multiple virtual environments.

We’ll need to download and install the tox tool. Generally, this is done with the following

terminal command:

(cookbook3) % python -m pip install tox

Using the python -m pip command ensures that we will use the pip command that goes

with the currently active virtual environment.

How to do it...
1. There are two ways to provide configuration files for tox. We can embed the con-

figuration in the pyproject.toml. While this fits the philosophy of the file, the tox

tool doesn’t handle TOML options. It relies on a string with INI-formatted options

in the TOML file.

A better alternative is to create a separate tox.ini file. In this file, create an initial
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[tox] table with core configuration options. The following are appropriate for many

projects:

[tox]
description = "Your project name goes here."
min_version = 4.0

2. For applications or scripts that don’t need to be installed, the following two lines are

appropriate to avoid trying to prepare and install a package:

skip_sdist = true
no_package = true

For packages that will be distributed and installed, add nothing.

3. Create a [testenv] table with general information about test environments. In some

cases, a single environment is sufficient. When multiple, distinct environments are

required, there will be multiple [testenv] sections.

[testenv]

4. Inside this [testenv] table, the deps= value lists the test tools that will be used. It

might look like this:

deps =
pytest>=7
pip-tools
ruff>=0.1.4
mypy>=1.7

The tox tool uses a pip command to build the items listed in the deps section. It can,

of course, be used to install all of the requirements. Using -r requirements.txt

will do this.

It’s somewhat more efficient to use the pip-sync tool because it can avoid reinstalling

any dependencies that are already present in the environment. When using pip-sync,
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we do not use -r requirements.txt in the deps= list.

5. If pip-sync is being used to install requirements, this is given as the commands_pre=

value:

commands_pre = pip-sync requirements.txt

6. If any unique environment variables are required, they’re set by the setenv= value:

setenv =
PYTHONPATH=src/ch03

7. Finally, provide the sequence of commands to execute:

commands =
pytest --doctest-glob='*.txt' src
ruff format src
ruff check src
mypy --strict src

8. After closing this file, use the following command to run the test suite:

(cookbook3) % tox

How it works...
A great many assumptions and defaults are built into tools like tox. This saves us from

having to write clever shell scripts or tinker with the assumptions present in a makefile.

Instead, we can provide a few lines of configuration and a sequence of commands.

Ideally, using tox always looks like this:

(cookbook3) % tox
... details omitted

congratulations :) (4.09 seconds)

The final congratulations is an apt summary.
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There’s more...
In many cases, a project has multiple virtual environments. Virtual environments are dis-

tinguished using extended names. These will have the general pattern of [testenv:name]

where name is something descriptive.

In the [tox] section of the configuration, env_list lists the environments to process

automatically. Environments not listed can be executed manually by using the -e option

on the tox command.

To test with another version of Python, we add the following to our tox.ini file:

[testenv:py311]
base_python = py311

This will inherit the details of the master testenv settings. An override is applied to change

the base Python version to 3.11.

The py311 name is a handy tox shorthand for a longer specification like python>=3.11.

The tool will search the system-wide PATH for candidate Python implementations. To test

with multiple Python versions, they all need to be installed in directories named in the

PATH.

See also
• See Identifying other CI/CD tools in pyproject.toml

• See Chapter 15 for more information on testing.

• See Chapter 16 for recipes related to virtual environments.

• See https://tox.wiki/en/latest/ for more information on the tox tool.

• See https://nox.thea.codes/en/stable/ for information on the nox tool, which

offers similar functionality.

https://tox.wiki/en/latest/
https://nox.thea.codes/en/stable/
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used, for optimizing small objects

292–296

A
abstract superclass 343

acceptance testing 641

add method 179

used, for building set 179, 180

aggregation 330, 331

alabaster 753

Anaconda

Command-line installers 728

download link 728, 732

Graphical installers 728

URL 727

using 727–730

annotations 432

anonymous tuples 42

Anscombe’s Quartet 540

API reference

creating, with Sphinx autodoc

754–759

append operations 428

append() method 152

used, for building list 152, 153

application

logging 612–614

structure 612, 613

aptitude 707

argparse

used, for obtaining command-line

input 243–248
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arguments

managing, in composite

applications

620–626

arrange-act-assert pattern 642

arrays 150

ASCII bytes

creating 29–32

assignment 211–214

association 329

associative array 195

associative store 202

autodoc 61

axes

using, directly to create scatter

plot 552–556

B
backslash

using, to break long statement into

logical lines 53, 54

bag 149, 298

bang 51

bash 637, 709

BBEdit 15

download link 48

Beautiful Soup 35

reference link 35, 524

benchmarking 642, 765

billboard comments 595

binary mode 472

black 765

block devices 471

blocks and statements

reference link 73

bootstrapping 687

break statements

used, for avoiding potential

problem 77–80

built-in collection

extending 303–307

built-in type matching functions

using 440–442

built-in venv

used, for creating environments

706–708, 710

bytes

decoding 33–36

C
C3 algorithm 336, 342

Cascading Style Sheet (CSS) 525

cells

creating, with Python code

535–540

changed dependency

incompatible, with another

dependency

739–741

character devices 472

chunking 108

CI/CD tools

identifying, in pyproject.toml

760–763

class

creating, for orderable objects
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358–363

designing, with multiple

processing 274–279

used, for encapsulating data and

processing 265–268

using, as namespace for

configuration

585–589

class definitions

essential type hints 269–273

using 589, 590

class pattern 446

class-level static variables 351, 352

clean-up feature

adding, to script 631

clear documentation strings

writing, with RST markup

129–133

CLI applications

combining 627–631

wrapping 627–631

Click 59

reference link 239

closure 418

cmath package 8

cmd

used, for creating command-line

applications

253–256

cmd module

interaction via 240

Code cell 538

code first design 436–439

code rot 612

collections 145, 195

summarizing 399–402

transformations, applying to

381–385

using 297–301

color math and programming code

examples

reference ink 101

come-out roll 68

comma-separated values (CSV) 354,

488, 495

Command design pattern 605, 625

used, for combining multiple

applications

614–617

command-line applications

creating, with cmd 253–256

command-line arguments 257

processing 248, 249

command-line input

obtaining, with argparse

243–248

obtaining, with invoke 249–252

Command-Line Interface (CLI) 609

complex data structure

serializing 513–516

complex files

rewriting, into easier-to-process

format 506, 507

complex formats

reading, with regular expressions
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500–505

complex if...elif chains

designing 67–72

complex numbers 8

complex structures

using 353–357

complex text 240

complexity of algorithm 300, 301

complicated strings

building, from lists of strings

23–25

building, with f-strings 18–22

composite applications

arguments, managing 620–626

issues 609

composite object validation 239

composites 413

creating 617–619

composition 329–331

scripts, designing 591–594

comprehension 152, 154, 179, 198

dictionary, building as 199, 200

comprehensive quality checks

running, with tox 764–767

compute-intensive processing

Eager 275

Lazy 275

concrete paths 475, 480

Conda 534

obtaining 728

using 727–730

conda-forge

URL 728

configuration

class, using as namespace

585–589

managing, in composite

applications

620–626

configuration files 258

finding 569–573

handling, methods 568

options 570, 571

Python, using for 580–584

tiers 573, 574

TOML, using for 575–579

container architectures 539

containers 145, 195

context managers 324

creating 313–317

contexts

creating 313–317

managing, using with statement

91–94

control and audit output

logging, used for 596–601

conversion function 152, 179, 198

copy of list

reversing 173–177

Craps 68

CRUD operations 202

CSV dialect 488

CSV files

dataclasses, using to simplify

working with

495–498
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CSV module

used, for reading delimited files

488–491

curl command 732

currency

performing, calculations 3, 4

D
Dask 302

data

ingesting, into notebook

540–544

data and processing

encapsulating, with class

265–268

data model

reference link 297

data structure

selecting 146–150

data structures and algorithms

reference link 150

data type validation 239

dataclasses

using, for mutable objects

283–287

using, to simplify working with

CSV files 495–498

datetime objects

used, for writing tests 681–685

decimal 6, 7

deep copies of objects

creating 215–220

definition list 133

del statement 164, 204

delimited files

reading, with CSV module

488–491

dependencies 760

levels of specificity 723

modifications, caused test failure

737–739

modifications, managing 736,

737, 741

descriptions

including 58, 61

including, in script 57

deserialization 472

dictionaries

building, as comprehension 199,

200

building, by setting items 198,

199

creating 196–198, 200, 201

shrinking 202–204

dictionary objects

building 198

dictionary-related type hints

writing 205–210

difference() method 186

directives

using 66

div-mod pair 9

docstrings 49

used, for testing 643–645, 648

writing, for library modules 60,

61
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writing, for scripts 58–60

writing, with RST markup

62–65

doctest 51, 180

doctest block 65

doctest examples

writing, for floating-point values

658, 659

writing, with object IDs 657, 658

writing, with unpredictable set

ordering 657

doctest issues

handling 654–657, 659, 660

doctest parser

test case 648

doctest tool 643, 647, 653

Document Object Model (DOM) 530

documentation 743, 765

creating 749–752

including 58, 61

including, in script 57

writing, for library modules 58

writing, scripts 58

Docutils 62, 67, 133, 561

reference link 67, 133

domain validation 239

Don’t Repeat Yourself (DRY) 84

duck typing 343

dynamic content

creating, methods 558, 559

E
eager function 374

eager processing 307, 308

edge case 649

elevator pitch 746

else clause

using, on for statement 80

Else-Raise design pattern 71, 110

end-to-end testing 641

environment variables 257

environments

creating, with built-in venv

706–708, 710

escape sequences 27

essential features 336

except:clause

used, for avoiding issue 86–88

exception matching rules

leveraging 81–84

exception root cause

concealing 88–90

exceptions

handling, options 81

internal attributes 90

raising, functions testing

651–653

execve 51

explicit line joining 56

exponent 7

Extensible Markup Language (XML)

516

extensions for Sphinx 752

external resources
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mocking 693–698

F
f-strings

reference link 23

used, for building complicated

strings 18–22

Facade class 615

factory function/factory class 225,

338

fail-safe file output 483

Fibonacci number

computing 137–139

field list 755

field() function 291

file dates

comparing 478

filenames

pathlib, using to work with

474–480

files 471, 472

finding, to match given pattern

478, 479

replacing, while preserving

previous version

482–486

filesystem

modifying, method 480, 481

filter() function 368

applying, ways 394–398

using 397, 398

using, in generator expression

396, 397

First Normal Form (1NF) 158, 489,

505

First-In-First-Out (FIFO) 299

flake8 765

flit 722

float 6, 7

floating point 3

floating-point approximations 5, 6

floating-point values

used, for writing doctest examples

658, 659

floor division

performing 10

for statement

using 383

format_map() method 22

fraction 6, 7

fraction calculations 4, 5

frozen dataclasses

using, for immutable objects

289–291

function definitions 97

function parameters 98–101

mutable default values, avoiding

221–225

functional programming 371

functional testing 641

functions

designing, with optional

parameters 103,

104, 108

examples, writing 645

logging 599
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testing, that raise exceptions

651–653

wrapping 125

functools.partial()

using 420

f“{value=}” strings

debugging with 241, 242

G
garbage collection 25

gedit 48, 51

general to particular design approach

106–108

generalization-specialization

relationship 305,

328

generator expression

filter, using 396, 397

using 383, 384

generator functions

writing, with yield statement

373–379

get_options() function 626

getpass()

using, for user input 235–239

Git 708

GIVEN-WHEN-THEN 642

global object

managing 347–349, 352, 353

globbing feature 247

GNU License List

URL 717

graphs 150

H
happy path 661

has-a relationship 329

hashes 150

hatch 718

header row

excluding 390

higher-order function 422

HTML documents

reading 523–530

Hue-Saturation-Lightness (HSL) values

converting, RGB numbers

101–103

I
identity element 404, 405

IEEE Standard for Floating-Point

Arithmetic (IEEE 754)

reference link 9

immutable mapping 149

immutable objects 283

frozen dataclasses, using for

289–291

typing.NamedTuple, using for

280–282

immutable sequence 149

immutable set 149

implicit line joining 56

index-only tuples 42

inheritance

and extension 332, 333

inheritance and composition

selecting between 328–331, 333,
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334

inline markup

using 66, 67

input filename’s suffix

output filename, created by

modifying 476, 477

input()

using, for user input 235–239

insertion 198

Integrated Development Environment

(IDE) 2, 533

integration testing 641

interactive input 257

intermediate results

assigning, to separate variables

55, 56

saving, with := walrus operator

73–75

Internet of Things 462

Inverse Power Law of Reuse 612

invoke 59

reference link 253

used, for obtaining command-line

input 249–252

Invoke-WebRequest Powershell

command 733

is-a relationship 328, 330

isinstance() function 443

items

adding, to set 182, 183

extracting, from tuple 38, 39

removing, from set 186, 187

J
JavaScript Object Notation (JSON)

508

URL 508

JSON documents

reading 508–512

structures 512

Jupyter Lab 533

ways, to stop processing 540

Jupyter Book 558, 561

K
keyword parameters

used, for creating partial function

126

keyword-only arguments

forcing, with * separator 114–118

Komodo IDE

download link 48

L
lambda object

building 128

Last-In-First-Out (LIFO) 205, 299

Law of the Excluded Middle 68

lazy attributes

properties, using for 307–312

lazy generator 373

lazy processing 307, 308

library modules 57

docstrings, writing for 60, 61

line joining 56

linting 765
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Liskov Substitution Principle (LSP)

329, 617

list

building 151, 152, 154, 155

building, with append() method

152, 153

dicing 157–162

extending, ways 156, 157

shrinking 163, 164, 166

slicing 157–162

list comprehension

writing 153, 154

list function

using 226

list, of complicated objects

deleting from 364–367

list-related type hints

writing 169–172

lists of strings

complicated strings, building from

23–25

literal 152, 179, 198

load testing 642

locks, using in with statement

reference link 95

log_parser() function

using 504, 505

logging

used, for control and audit output

596–601

logical layout

handling, in CSV files 488, 489

logical line 53

logical reduction functions 404

long lines of code

writing 52, 53, 56

long statement

breaking, into logical lines with

backslash 53, 54

breaking, into sensible pieces

with () characters 54

M
magic bytes 51

man page

reference link 62

mantissa/significand 7

map and reduce transformations

combining 405–411

map() function 384–386

markdown cells 538

details, adding to 558–560

Markdown markup 745

Markov chain state changes 606

match statement

using 444–446

math module 7, 8

matplotlib 533, 546, 555

Matplotlib Examples Gallery 551

measure

reference link 52

memoization technique 138

memory leak 91

memray 760

Method Resolution Order (MRO) 333,

339
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miniconda

Linux installer 728

macOS installer 728

reference link 728

Windows installer 728

mixed content model 519

mixin 327, 336

design concerns, separating

340

mkdir() method

keyword parameters 481

model validation 462

modeline 51

module files

writing 47–51

module global variables 349–351

monotonic superclass linearization for

Dylan

reference link 342

multiple applications

combining, with Command design

pattern 614–617

multiple contexts

managing, with multiple resources

319–324

multiple hosts 302

multiple inheritance

using, to separate rules for specific

games 335–340

multiple processes 302

multiple processing

classes, designing with 274–279

multiset 149, 151, 298

mutable default values

avoiding, for function parameters

221–225

mutable mapping 149

mutable objects 283

dataclasses, using for 283–287

mutable sequence 149

mutable set 149

mypy 43, 97, 98, 100, 101, 128, 209,

269, 270, 272, 273,

303, 313, 318, 334, 337,

341, 346, 432, 436, 692,

738, 765

N
NamedTuples

using, to simplify item access in

tuples 40–42

narrow data validation rules

applying 467–469

National Oceanographic and

Atmospheric

Administration (NOAA)

462

National Weather Service

reference link 33

nested try statements

including 85

NetworkX 150

reference link 151

Newline Delimited JSON

URL 513
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NIST Aerosol Particle Size 274, 308

notebook

cells, updating to add linear

regression

computation 556

data, ingesting into 541–544

unit test cases, including

562–565

working with 535–540

Notepad++

URL 48

nox 764

number of sibling output files

creating, with distinct names

477, 478

numeric tower 448, 449

NumPy

URL 150

O
object IDs

used, for writing doctest examples

657, 658

operating system (OS) 471

operation definition 403

optional parameters

used, for designing functions

103, 104, 108

orderable objects

class, creating 358–363

ordinary input 235

OS environment settings

using 257–261

OS-specific tools 705

output

checking 632–637

output filename

created, by modifying input

filename’s suffix 476,

477

overloaded function 103

P
packages

installing, with requirements.txt

file 711–715

Pandodc 561

parse() function 453

defining 502, 503

partial function

creating 417–421

creating, with keyword

parameters 126

creating, with positional

parameters 126, 127

order for parameters, selecting

based on 122, 124,

125

particular to general design approach

104–106

pathlib 487

using, to work with filenames

474–480

pattern for collections

aggregation 329

composition 329
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inheritance 330

patterns, for applying function to set of

data

filtering 372

mapping 372

reducing 372

performance testing 641, 642, 765

persistent environment, viewpoints

Actual Environment 704

Virtual Environment 704

physical format decoding 473

PIP 706, 714, 719, 727, 729, 731, 761

PIP operation 720, 721

pip-compile 723, 729

pip-sync 723

pip-tools

used, for managing

requirements.txt file

723–725

pkg 707

plain text 745

poetry tool 718, 761, 762

download link 732

reference link 732, 736

using 732–735

pop() method 165, 184, 186, 187, 204,

205

popitem() method 205

position-only parameters

defining, with / separator

119–122

prefixes, for types 20

print() function

features, using 230–234

program

wrapping 628, 632–637

properties

using, for lazy attributes

307–312

property file format 77

Property Inspector 561

protocol

defining 346

pure paths 475, 571

PyCharm Professional

download link 48

Pydantic 210, 462, 547, 553, 589

reference link 211

supporting, for JSON Schema

460, 461

used, for implementing strict type

checks 455–460

validation features 464

pydoc 51, 133

pylama 765

pylint 765

Pyoxigraph 150

pyoxigraph 0.3.22

reference link 151

pyplot 546

using, to create scatter plot

546–550

pyproject.toml file

CI/CD tools, identifying

760–763

creating 716–721
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pyre 765

pyright 98, 765

reference link 103

pytest 594, 662, 682

pytest and doctest tests

combining 677–680

pytest module

used, for unit testing 672–676

Python

download link 706

duck typing, leveraging

342–346

using, for configuration files

580–584

Python code

used, for creating cells 535–539

Python Package Index (PyPI)

URL 711

Python Packaging User Guide

reference link 712

Python script

writing 47–51

Python Semantic Release

reference link 722

Python syntax 45, 46

Python-based tools 706

Python’s stack limits

recursive functions, designing

134–137

pytype 765

PyYAML 6.0.1

reference link 508

Q
Quarto 558, 561

R
randomness

involving, items testing

686–688, 690

Rate-Time-Distance (RTD) 109

rational fraction calculations 11, 12

rational fraction value 9

rational numbers/fractions 3

Raw cell 538

RDFLib 150

rdflib 7.0

reference link 151

read-evaluate-print loop (REPL) 2,

253

README file

writing, challenges 744

README.rst file 744–748

recursive functions

designing, around Python’s stack

limits 134–137

recursive generator functions

writing, with yield from statement

423–427

reduction 135

references 211–214

regular expressions

syntax rules 17

used, for reading complex

formats 500–502,

505
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used, for string parsing 13–16

remove() method 164, 165, 184, 186,

187

requirements.txt file

managing, with pip-tools

723–725

used, for installing packages

711–715

ReStructured Text (RST) 58, 745

syntax rule 61

used, for writing clear

documentation strings

129–133

used, for writing docstrings

62–65

RGB numbers

converting, into Hue-Saturation-

Lightness (HSL) values

101–103

Rich’s documentation

reference link 239

role 67

row objects

creating 390–392

row-level cleansing function

492–494

rows

restructuring 388, 389

rpm 707

ruff 738, 760, 765

run-time environment

Persistent Aspects 703, 704

Transient Aspects 704

run-time valid value checks

including 462–467

S
scatter plot

creating, with axes directly

552–556

creating, with pyplot 546–550

schema 488

script-library switch

used, for writing testable scripts

139–143

scripts 58

designing, for composition

591–594

docstrings, writing for 58–60

secure, no echo input 235

sequence 149

serialization 472

set builder 372

set comprehension 372

writing 180, 181

set operators 183, 184

set-related type hints

writing 188–192

setdefault() method 201

sets 148

building 177–179, 181, 182

building with add method 179,

180

shrinking 184–186

setuptools 718, 719

severity levels, logging package
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CRITICAL 598

DEBUG 598

ERROR 598

INFO 598

WARNING 598

shallow copies of objects

creating 215–220

shallow copy 162

shared global state 353

sharp 51

shebang 51

Shields.io

reference link 748

sight-gauge 158

signature 103

single process 302

Single Responsibility Principle 612

singleton object 347, 580, 581

managing 347–349, 352, 353

skip-when-delete problem

avoiding 167, 168

slice assignment 165, 166

slice operator 161, 162

Slide Type 561

small objects

optimizing, with __slots__

292–296

SOLID design principles 268, 269,

329, 612

solid-state drives (SSD) 471

Spark 302

SPDX License List

URL 717

Sphinx 51, 61, 66, 133, 561, 595, 765

installing 749–752

reference link 62, 67

used, for creating API reference

754–759

Sphinx Themes Gallery

reference link 750

spike solution 143

reference link 629, 634

stacked generator expressions

using 386–392

stateful objects

examples, writing 646

strict type checks

implementing, with Pydantic

455–460

string

encoding 30–32

parsing, with regular expressions

13–16

string literal concatenation

using 55

style and formatting 765

Sublime Text

URL 48

subset

selecting 394–398

Summation of Primes

reference link 416

super flexible keyword parameters

using 109–114

sys module 234

system testing 641
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T
table 576

tail recursion 135

testable scripts

writing, with script-library switch

139–143

testing 641

docstrings, used for 643–645,

648

tests

running 647

writing, with datetime objects

681–685

text mode 472

there exists processing

implementing 412–415

TimeComplexity

reference link 157

TOML

configuration

points 602, 603

reference link 575

using, for configuration files

575–579

Tox 725, 763, 765

reference link 736

using, to run comprehensive

quality checks

764–767

transformations

applying, to collection 381–385

trees 150

true division

performing 11

true division and floor division

selecting, between 9, 10

true value 9

tuples 218

creating 37, 38

items, extracting from 38, 39

NamedTuples, using to simplify

item access 40–42

tuples of items

using 36–40

twine 722

two applications

combining, into single application

606–612

type conversions

handling 448–452

type hint checking 765

type hinting

composition layer 172

foundation layer 172

type hints 98–101, 312

designing with 432–434, 437,

438

using, aspects 432, 433

type hints first design 434–436, 439

typing.NamedTuple

using, for immutable objects

280–282

U
Unicode 15.1 Character Code Charts

reference link 29
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Unicode characters

reference link 26

using 26–29

Unicode encodings

reference link 32

unit test cases

including, in notebook 562–565

unit testing 641, 764

with pytest module 672–676

with unittest module 661–667

unittest and doctest tests

combining 667–670

unpredictable set ordering

used, for writing doctest examples

657

unsafe hash 287

User Experience (UX) design 621

user input

getpass(), using for 235–239

input(), using for 235–239

reference link 240

UTF-8 bytes

creating 29–32

reference link 36

V
variables 211–214

assigning to 214

venv 727

Vim 48, 51, 52

virtual environment

activating 708, 709

creating 708

deactivating 709

principle use cases 706

W
with statement

used, for managing context

91–94

X
XML documents

reading 516–522

XML Path Language (XPath) 522

Y
YAML Ain’t Markup Language (YAML)

URL 508

YAML documents

reading 508–512

yield from statement

used, for writing recursive

generator functions

423–427

yield statement

used, for writing generator

functions 373–379

using 383

yum 707

Z
z-scores 418

zsh 258, 570, 709, 730
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