EXPERT INSIGHT

Modern
Python
Cookbook

130+ updated recipes for modern Python 3.12
with new techniques and tools

& python™

\

\,

Third Edition

Steven F. Lot (pd Ckf)

Modern Python Cookbook

Third Edition

130+ updated recipes for modern Python 3.12 with
new techniques and tools

Steven F. Lott

Packt and this book are not officially connected with Python. This book is an effort from
the Python community of experts to help more developers.

Modern Python Cookbook

Third Edition
Copyright © 2024 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,

except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held

liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing

cannot guarantee the accuracy of this information.

Senior Publishing Product Manager: Denim Pinto
Acquisition Editor — Peer Reviews: Swaroop Singh
Project Editor: Parvathy Nair

Senior Development Editor: Elliot Dallow

Copy Editor: Safis Editing

Technical Editor: Karan Sonawane

Proofreader: Safis Editing

Indexer: Subalakshmi Govindhan

Presentation Designer: Ganesh Bhadwalkar

Developer Relations Marketing Executive: Vignesh Raju

First published: November 2016
Second edition: July 2020

Third edition: July 2024
Production reference: 1290724

Published by Packt Publishing Ltd.
Grosvenor House

11 St Paul’s Square

Birmingham

B3 1RB, UK.

ISBN 978-1-83546-638-4

www . packt.com

www.packt.com

Contributors

About the author

Steven F. Lott has been turning coffee into software since the days when computers were
large, expensive, and rare. Working for decades in high tech has given him exposure to a

lot of ideas and techniques, some bad, but most are useful and helpful to others.

Steven has been working with Python since the ‘90s, building a variety of tools and appli-

cations. He’s written a number of books, and sometimes manages to attend conferences.

Steven is currently a tech nomad who lives in various places on the East Coast of the US.
He tries to live by the words, “Don’t come home until you have a story.” You can find him

online at https://fosstodon.org/@slott56.

https://fosstodon.org/@slott56

About the reviewers

Abhijeet Jagutai Dada Mote is a software engineer with expertise in data engineering,
data analysis, data science, and automation. He has worked in AdTech, semiconductors,
IoT, and media industries and is currently working on a cutting-edge CTV ad platform. He
is proficient in Python, development of automation testing frameworks, advanced big data
pipelines, and Al-driven anomaly detection systems. He has also contributed to smart city
projects, holds various Al related patents, is working on several Al research papers, and
delivered a workshop at PyCon Italia. Find out more at: https://scholar.google.com/c

itations?user=v4tFOAgAAAAJ

I'would like to thank my wife, Priyanka, and our one-year-old child, Advaith, for
their support and patience. I also thank my Aai-Baba, friends, and colleagues

who have helped me become who I am today.

Francisco Benavides has over 20 years of experience in programming, with the last 10
focused on Python development for ETL server applications. He has been part of worldwide
teams spanning five continents, has been a team leader and specialist in the telecom sector,
a Python developer, and has now been a data engineer in the energy sector for over 5 years,
where he has developed a multitude of data ingestion platforms using Linux, Azure, and
AWS.

I thank God for the opportunities he has allowed me to take and a special thank
you for the blessings I received from my wife and kids, who have endured, at
times, long months apart, working and encouraging me to keep going. I also
thank the editorial team for trusting me and allowing me to collaborate in the

making of this book.

https://scholar.google.com/citations?user=v4tFOAgAAAAJ
https://scholar.google.com/citations?user=v4tFOAgAAAAJ

Join our community Discord space
Join our Python Discord workspace to discuss and find out more about the book:

https://packt.link/dHrHU

=] 4[]

https://packt.link/dHrHU

Table of Contents

Preface XV
Chapter 1: Numbers, Strings, and Tuples 1
Choosing between float, decimal, and fractioncoiiiiiii 2
Choosing between true division and floor division 9
String parsing with regular eXpressionsccooiiiiiiiiiiiiiiiiiiii 13
Building complicated strings with f-stringsco i 18
Building complicated strings from lists of stringsoo, 23
Using the Unicode characters that aren’t on our keyboards 26
Encoding strings — creating ASCIl and UTF-8 bytescoovviiiiiiiiiiiian. 29
Decoding bytes — how to get proper characters from some bytes 33
Using tuples of itemsooouii i 36
Using NamedTuples to simplify item access in tuplescooiiiin... 40
Chapter 2: Statements and Syntax 45
Writing Python script and module files — syntax basicscoooian. 47
Writing long lines of code ... oo 52
Including descriptions and documentationoooo 57
Writing better docstrings with RST markup i, 62
Designing complex if...elif chains o 67

Saving intermediate results with the := “walrus” operator 73

Avoiding a potential problem with break statementso 77

Leveraging exception matching rulescc. o i 81
Avoiding a potential problem with an except: clausel 86
Concealing an exception rOOt CAUSEeeutnteirneeunneiiiieeiineenineeenn. 38
Managing a context using the with statement 91
Chapter 3: Function Definitions 97
Function parameters and type hints o i 98
Designing functions with optional parametersoooiiiiiiiii 103
Using super flexible keyword parametersoiiiiiiiiiiii 109
Forcing keyword-only arguments with the * separator, 114
Defining position-only parameters with the / separatorco... 119
Picking an order for parameters based on partial functions 122
Writing clear documentation strings with RST markupoo. .. 129
Designing recursive functions around Python’s stack limits 134
Writing testable scripts with the script-library switch L. 139
Chapter 4: Built-In Data Structures Part 1. Lists and Sets 145
Choosing a data StrUCLUIEiiitt et 146
Building lists - literals, appending, and comprehensions 151
Slicing and dicing a list o 157
Shrinking lists — deleting, removing, and poppingccccooiiiiiiiiiiiin 163
Writing list-related type hints ... 169
Reversing a copy of a listo 173
Building sets — literals, adding, comprehensions, and operators 177
Shrinking sets — remove(), pop(), and difference 184
Writing set-related type hints 188
Chapter 5: Built-In Data Structures Part 2: Dictionaries 195

Creating dictionaries — inserting and updating oo, 196

Shrinking dictionaries — the pop() method and the del statement 202

Writing dictionary-related type hints o 205
Understanding variables, references, and assignment 211
Making shallow and deep copies of objectscoiiiiiiiiiiiiiiiiii 215
Avoiding mutable default values for function parameters 221
Chapter 6: User Inputs and Outputs 229
Using the features of the print() function i 230
Using input() and getpass() for user inputooiiiiiiiiiiiiiiii.. 235
Debugging with f*{value=}" stringsooiiiiiiiiiiii 241
Using argparse to get command-line input, 243
Using invoke to get command-line inputo 249
Using cmd to create command-line applicationsccooiiiiiiiiinnnn.. 253
Using the OS environment settingsoooiiiiiiiiiiiiiiiiii ... 257
Chapter 7: Basics of Classes and Objects 263
Using a class to encapsulate data and processingoooiiiiiiniiiiinnn.. 265
Essential type hints for class definitionscoiii 269
Designing classes with lots of processingoo i 274
Using typing.NamedTuple for immutable objectscciiiiiia.. 280
Using dataclasses for mutable objectscooo i 283
Using frozen dataclasses for immutable objectsci, 289
Optimizing small objects with __slots__ i 292
Using more sophisticated collectionso 297
Extending a built-in collection — a list that does statistics 303
Using properties for lazy attributes oo 307
Creating contexts and context Managersc..oveeuuniiiinieiineeenneeenn. 313
Managing multiple contexts with multiple resourcesc....ii 319

Chapter 8: More Advanced Class Design 327

Choosing between inheritance and composition — the “is-a” question 328

Separating concerns via multiple inheritanceo 335
Leveraging Python’s duck typing ... 342
Managing global and singleton objects oo 347
Using more complex structures — maps of lists ..., 353
Creating a class that has orderable objectsccoiiiiiiiiiiiiii . 358
Deleting from a list of complicated objectscoooiiiiiiiii 364
Chapter 9: Functional Programming Features 371
Writing generator functions with the yield statement 373
Applying transformations to a collectioncccoiiiiiiiiiiiiiii 381
Using stacked generator eXpressionseeuueoseeeeuiiinneeieiiiineeeeennnnn. 386
Picking a subset — three ways to filter, 394
Summarizing a collection —how toreducecoo i, 399
Combining the map and reduce transformationsc. 405
Implementing “there exiSts” ProCESSINGooveiieieeeeeeeeeiiiiiinnans 412
Creating a partial function ... 417
Writing recursive generator functions with the yield from statement 423
Chapter 10: Working with Type Matching and Annotations 431
Designing with type hints 432
Using the built-in type matching functions ..., 440
Using the match statement i 444
Handling type CONVErSIONSceuueiitte ittt 448
Implementing more strict type checks with Pydantico... 455
Including run-time valid value checks 462
Chapter 11: Input/Output, Physical Format, and Logical Layout 471
Using pathlib to work with filenames o 474

Replacing a file while preserving the previous versioncoooooo.. 482

Reading delimited files with the CSV module i, 488

Using dataclasses to simplify working with CSV fileso... 495
Reading complex formats using regular eXpressionscccceiiiiieiionn. 500
Reading JSON and YAML documentsovieiuiiiiinieiiineiiinaenaaan. 508
Reading XML doCUmentsoiouueiittt ittt 516
Reading HTML doCUMENES ..ottt ettt et 523
Chapter 12: Graphics and Visualization with Jupyter Lab 533
Starting a Notebook and creating cells with Pythoncode 535
Ingesting data into a notebook 540
Using pyplot to create a scatter plot 546
Using axes directly to create a scatter plot ..., 552
Adding details to markdown cells 558
Including Unit Test Cases in a Notebookooiiiiiiiiii i, 562
Chapter 13: Application Integration: Configuration 567
Finding configuration files 569
Using TOML for configuration files ... i, 575
Using Python for configuration fileso o 580
Using a class as a namespace for configurationccooioiiiiiii.. 585
Designing scripts for compositionooiiiiiiii i 591
Using logging for control and audit output i, 596
Chapter 14: Application Integration: Combination 605
Combining two applications into 0necooouiiiiiiiiiiiiiiiiiiin e 606
Combining many applications using the Command design pattern 614
Managing arguments and configuration in composite applications 620
Wrapping and combining CLI applicationscoooiiiiiiiiiiiiiinneenn... 627

Wrapping a program and checking the output ... 632

Chapter 15: Testing 641
Using docstrings for testingoooiiiiiiiiiiii i 643
Testing functions that raise exceptionscooiiiiiiiiiinn... 651
Handling common doctest iSSUeSuviiiiiiiiiniiiiiiiiinneieann. 654
Unit testing with the unittest module 661
Combining unittest and doctest tests ..., 667
Unit testing with the pytest module ...l 672
Combining pytest and doctest testsccoiiiiiiiiiiiiiiii 677
Testing things that involve dates or timesocoiiia... 681
Testing things that involve randomnessooooiiian.. 686
Mocking external 1€SOUICEScooiuuiiiiiiiiiiiieiiiiiii e, 693
Chapter 16: Dependencies and Virtual Environments 703
Creating environments using the built-invenv 706
Installing packages with a requirements.txtfile 711
Creating a pyproject.toml fileo 716
Using pip-tools to manage the requirements.txt file 723
Using Anaconda and the conda tool 727
Using the poetry toolo 732
Coping with changes in dependenciesccooiiiiiiiii 736
Chapter 17: Documentation and Style 743
The bare minimum: a README.rstfile ..., 744
Installing Sphinx and creating documentation 749
Using Sphinx autodoc to create the API reference 754
Identifying other CI/CD tools in pyproject.toml 760
Using tox to run comprehensive quality checks 764
Other Books You May Enjoy 773

Index 777

Preface

Python is the preferred language choice of developers, engineers, data scientists, and
hobbyists everywhere. It is a great scripting language that can power your applications
and provide speed, safety, and scalability. By exposing Python as a series of simple recipes,
this book can help you gain insights into specific language features in a concrete context.
The idea is to avoid abstract discussions of language features and focus on applying the

language to concrete data and processing problems.

What you need for this book

All you need to follow through the examples in this book is a computer running any
Python, version 3.12 or newer. Many of the examples can be adapted to work with Python
3 versions prior to 3.12. Material in Chapter 10 describes the match statement, introduced

with Python 3.10.

We strongly encourage installing a fresh copy of Python, avoiding any pre-installed operat-
ing system Python. The language run-time can be downloaded from

https://www.python.org/downloads/. An alternative is to start with the Miniconda tool
(https://docs.conda.io/en/latest/miniconda.html) and use conda to create a Python

3.12 (or newer) environment.

o Python 2 cannot be used anymore. Since 2020, Python 2 is no longer an

’@ alternative.

4

https://www.python.org/downloads/
https://docs.conda.io/en/latest/miniconda.html

xvi Preface

Who this book is for

The book is for web developers, programmers, enterprise programmers, engineers, and big
data scientists. If you are a beginner, this book can get you started. If you are experienced,
it will expand your knowledge base. A basic knowledge of programming will help; while

some foundational topics are covered, this is not a tutorial on programming or Python.

What this book covers

There are over 130 recipes in this book. We can decompose them into four general areas:
« Python Fundamentals

Chapter 1, Numbers, Strings, and Tuples, will look at the different kinds of numbers,
how to work with strings, how to use tuples, and how to use the essential built-in
types in Python. We will also show ways to exploit the full power of the Unicode

character set.

Chapter 2, Statements and Syntax, will cover some basics of creating script files. Then
we’ll move on to looking at some of the complex statements, including if, while,

for, break, try, raise, and with.

Chapter 3, Function Definitions, will look at a number of function definition techniques.
We'll devote several recipes to type hints for a variety of types. We’'ll also address an

element of designing a testable script by using functions and a main-import-switch.

Chapter 4, Built-In Data Structures Part 1: Lists and Sets, begins an overview of the
built-in data structures structures that are available and what problems they solve.
This includes a number of recipes showing list and set operations, including list and

set comprehensions.

Chapter 5, Built-In Data Structures Part 2: Dictionaries, continues examining the
built-in data structures, looking at dictionaries in detail. This chapter will also look
at some more advanced topics related to how Python handles references to objects.

It also shows how to handle mutable objects as function parameter default values.

Preface xvii

Chapter 6, User Inputs and Outputs, explains how to use the different features of the
print() function. We’ll also look at the different functions used to provide user
input. The use of f-strings for debugging and the argparse module for command-line

input are featured.
+ Object-Oriented and Functional Design Approaches

Chapter 7, Basics of Classes and Objects, begins the coverage of object-oriented
programming. It shows how to create classes and the type hints related to class
definitions. This section has been expanded from previous editions to cover data-
classes. It shows how to extend built-in classes, and how to create context managers

to manage resources.

Chapter 8, More Advanced Class Design, continues the exploration of object-oriented
design and programming. This includes an exploration of the composition vs. inheri-

tance question, and shows how to manage the “duck typing” principle of Python.

Chapter 9, Functional Programming Features, looks at Python’s functional program-
ming features. This style of programming emphasizes function definitions and
stateless, immutable objects. The recipes look at generator expressions, using the
map(), filter(), and reduce() functions. We also look at ways to create partial
functions and some examples of replacing stateful objects with data structures built

from collections of immutable objects.
» More Sophisticated Designs

Chapter 10, Working with Type Matching and Annotations, looks more closely at type
hints and the match statement. This includes using Pydantic to create classes with

more strict run-time type-checking. It also looks at introspection of annotated types.

Chapter 11, Input/Output, Physical Format, and Logical Layout, will work with paths
and files in general. It will look at reading and writing data in a variety of file
formats, including CSV, JSON (and YAML), XML, and HTML. The HTML section

will emphasize using Beautiful Soup for extracting data.

XViii

Preface

Chapter 12, Graphics and Visualization with Jupyter Lab, will use Jupyter Lab to
create notebooks that use Python for data analysis and visualization. This will show
ways to ingest data into a notebook to create plots, and how to use Markdown to

create useful documentation and reports from a notebook.

Chapter 13, Application Integration: Configuration, will start looking at ways that we
can design larger applications. The recipes in this chapter address different ways to

handle configuration files and how to manage logging.

Chapter 14, Application Integration: Combination, will continue looking at ways to
create composite applications from smaller pieces. This will look at object-oriented
design patterns and Command-Line Interface (CLI) applications. It will also look

at using the subprocess module to run existing applications under Python’s control.
Completing a Project: Fit and Finish

Chapter 15, Testing, provides recipes for using the built-in doctest and unittest

testing frameworks used in Python. Additionally, recipes will cover the pytest tool.

Chapter 16, Dependencies and Virtual Environments, covers tools used to manage
virtual environments. The built-in venv, as well as conda and poetry will be covered.
There are a lot of solutions to managing virtual environments, and we can’t cover all

of them.

Chapter 17, Documentation and Style, covers additional tools that can help to create
high-quality software. This includes a particular focus on sphinx for creating
comprehensive, readable documentation. We’ll also look at tox to automate running

tests.

To get the most out of this book

To get the most out of this book you can download the example code files and the color

images as per the instructions below.

Preface Xix

Download the example code files

The code bundle for the book is also hosted on GitHub at
https://github.com/PacktPublishing/Modexrn-Python-Cookbook-Third-Edition.
This repository is also the best place to start a conversation about specific topics discussed
in the book. Feel free to open an issue if you want to engage with the authors or other
readers. We also have other code bundles from our rich catalog of books and videos

available at https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this

book. You can download it here: https://packt.link/gbp/9781835466384.

Conventions used

In this book, you will find a number of text styles that distinguish between different kinds of

information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, path-
names, dummy URLs, user input, and Twitter handles are shown as follows: “We can

include other contexts through the use of the include directive.”
A block of code is set as follows:

if distance is None:

distance = rate * time
elif rate is None:

rate = distance / time
elif time is None:

time = distance / rate

Any command-line input or output is written as follows:

>>>

>>> math.factorial(52)

80658175170943878571660636856403766975289505440883277824000000000000

https://github.com/PacktPublishing/Modern-Python-Cookbook-Third-Edition
https://github.com/PacktPublishing/
https://packt.link/gbp/9781835466384

XX Preface

New terms and important words are shown in bold.

&

Warnings or important notes appear like this.

L Tips and tricks appear like this.

N\
/@\

Get in touch

Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com, and mention the book’s title in the
subject of your message. If you have questions about any aspect of this book, please email

us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book we would be grateful if you would
report this to us. Please visit, http://packtpub.com/support/errata, selecting your

book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet,
we would be grateful if you would provide us with the location address or website name.

Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise
in and you are interested in either writing or contributing to a book, please visit http:

//authors.packtpub.com.

http://packtpub.com/support/errata
http://authors.packtpub.com
http://authors.packtpub.com

Preface xxi

Share your thoughts
Once you’ve read Modern Python Cookbook, Third Edition, we’d love to hear your thoughts!
Scan the QR code below to go straight to the Amazon review page for this book and share

your feedback or leave a review on the site that you purchased it from.

https://packt.1link/r/1835466389

Your review is important to us and the tech community and will help us make sure we’re

delivering excellent quality content.

https://packt.link/r/1835466389

xxii Preface

Download a free PDF copy of this book

Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere? Is your

eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at

no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite

technical books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and

great free content in your inbox daily
Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781835466384
2. Submit your proof of purchase

3. That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781835466384

Numbers, Strings, and
Tuples

This chapter will look at some of the central types of Python objects. We’ll look at working
with different kinds of numbers, working with strings, and using tuples. These are the
simplest kinds of data that Python works with. In later chapters, we’ll look at data structures

built on these foundations.

While these recipes start with a beginner’s level of understanding of Python 3.12, they
also provide some deeper background for those familiar with the language. In particular,
we’ll look at some details of how numbers are represented internally, because this can help
when confronted with more advanced numerical programming problems. This will help us

distinguish the uses cases for the rich variety of numeric types.

We’ll also look at the two different division operators. These have distinct use cases, and

we’ll look at one kind of algorithm that demands truncated division.

When working with strings, there are several common operations that are important. We’ll

2 Numbers, Strings, and Tuples

explore some of the differences between bytes—as used by our OS files—and strings used
to represent Unicode text. We’ll look at how we can exploit the full power of the Unicode

character set.

In this chapter, we’ll show the recipes as if we’re working from the >>> prompt in interactive
Python. This is the prompt that’s provided when running python from the command line
or using the Python console in many Integrated Development Environment (IDE) tools.
This is sometimes called the read-evaluate-print loop (REPL). In later chapters, we’ll
change the style so it looks more like a script file. One goal of this chapter is to encourage

interactive exploration because it’s a great way to learn the language.
We’ll cover these recipes to introduce basic Python data types:

+ Choosing between float, decimal, and fraction

« Choosing between true division and floor division

o String parsing with regular expressions

o Building complicated strings with f-strings

o Building complicated strings from lists of strings

« Using the Unicode characters that aren’t on our keyboards

« Encoding strings — creating ASCII and UTF-8 bytes

« Decoding bytes — how to get proper characters from some bytes

« Using tuples of items

« Using NamedTuples to simplify item access in tuples

We'll start with numbers, work our way through strings, and end up working with simple

combinations of objects in the form of tuples and NamedTuple objects.

Choosing between float, decimal, and fraction

Python offers several ways to work with rational numbers and approximations of irrational

numbers. We have three basic choices:

Chapter 1 3

« Float
« Decimal
« Fraction

When we have choices, it helps to have some criteria for making a selection.

Getting ready

There are three general cases for expressions that involve numbers beyond integers, which

are:

1. Currency: Dollars, cents, euros, and so on. Currency generally has a fixed number

of decimal places and rounding rules to properly quantize results.

2. Rational Numbers or Fractions: When we scale a recipe that serves eight, for

example, down to five people, we're doing fractional math using a scaling factor of %.

3. Floating Point: This includes all other kinds of calculations. This also includes

irrational numbers, like 7, root extraction, and logarithms.

When we have one of the first two cases, we should avoid floating-point numbers.

How to doit...

We'll look at each of the three cases separately.

Doing currency calculations
When working with currency, we should always use the decimal module. If we try to use
the values of Python’s built-in float type, we can run into problems with the rounding

and truncation of numbers:

1. To work with currency, import the Decimal class from the decimal module:

>>> Decimal

2. We need to create Decimal objects from strings or integers. In this case, we want

4 Numbers, Strings, and Tuples

7.25%, which is %. We can compute the value using Decimal objects:

>>> tax_rate = Decimal('7.25")/Decimal(
>>> purchase_amount = Decimal('2.95")

>>> tax_rate * purchase_amount
Decimal('®.213875")

We could also use Decimal('@.0725") instead of doing the division explicitly.

3. To round to the nearest penny, create a penny object:

>>> penny = Decimal('0.01")

4. Quantize the result using the penny object:

>>> total_amount = purchase_amount + tax_rate * purchase_amount
>>> total_amount.quantize(penny)
Decimal('3.16")

This uses the default rounding rule of ROUND_HALF_EVEN. The Decimal module offers other

rounding variations. We might, for example, do something like this:

>>>

>>> total_amount.quantize(penny, decimal.ROUND_UP)
Decimal('3.17")

This shows the consequences of using a different rounding rule.

Fraction calculations

When we’re doing calculations that have exact fraction values, we can use the fractions
module to create rational numbers. In this example, we want to scale a recipe for eight
down to five people, using % of each ingredient. When the recipe calls for 2% cups of rice,

what does that scale down to?

To work with fractions, we’ll do this:

Chapter 1 5

1. Import the Fraction class from the fractions module:

>>> Fraction

2. Create Fraction objects from strings, integers, or pairs of integers. We created one
fraction from a string, ’2.5’. We created the second fraction from a floating-point

expression, 5 / 8. This only works when the denominator is a power of 2:

>>> sugar_cups = Fraction('2.5")
>>> scale_factor = Fraction(5/8)

>>> sugar_cups * scale_factor
Fraction(25, 16)

We can see that we’ll use almost a cup and a half of rice to scale the recipe for five people
instead of eight. While float values will often be useful for rational fractions, they may not

be exact unless the denominator is a power of two.

Floating-point approximations

Python’s built-in float type can represent a wide variety of values. The trade-off here is
that a float value is often an approximation. There may be a small discrepancy that reveals
the differences between the implementation of float and the mathematical ideal of an

irrational number:

1. To work with float, we often need to round values to make them look sensible. It’s

important to recognize that all float calculations are an approximation:

>>> (19/155)*(155/19)

0.9999999999999999

2. Mathematically, the value should be 1. Because of the approximations used, the
computed result isn’t exactly 1. We can use round(answer, 3) to round to three

digits, creating a value that’s more useful:

6 Numbers, Strings, and Tuples

>>> answer = (

>>> (answer,
1.0

Approximations have a very important consequence.

Don’t compare floating-point values for exact equality.
|

-/@_ Code that uses an exact == test between floating-point numbers has the

potential to cause problems when two approximations differ by a single bit.

The float approximation rules come from the IEEE, and are not a unique feature of Python.
Numerous programming languages work with float approximations and have identical

behavior.

How it works...

For these numeric types, Python offers a variety of operators: +, -, *, /, //, %, and **. These
are for addition, subtraction, multiplication, true division, truncated division, modulo, and
raising to a power, respectively. We’ll look at the two division operators, / and //, in the

Choosing between true division and floor division recipe.

Python will do some conversions between the various numeric types. We can mix int
and float values; the integers will be promoted to floating-point to provide the most
accurate answer possible. Similarly, we can mix int and Fraction as well as mixing int
and Decimal. Note that we cannot casually mix Decimal with float or Fraction; an explicit

conversion function will be required.

It’s important to note that float values are approximations. The Python syntax allows us
to write floating-point values using base 10 digits; however, that’s not how values are

represented internally.

We can write the value 8.066 x 107 like this in Python:

Chapter 1 7

>>>

8.066e+67

The actual value used internally will involve a binary approximation of the decimal value

we wrote. The internal value for this example is this:

>>> (/(* %))‘k(**

8.066e+67

The numerator is a big number, 6737037547376141. The denominator is always 2. This

is why values can get truncated.

We can use the math.frexp() function to see these internal details of a number:

>>>

>>> math. frexp()
(0.7479614202861186, 226)

The two parts are called the mantissa (or significand) and the exponent. If we multiply
the mantissa by 2°3, we always get a whole number, which is the numerator of the binary

fraction.

Unlike the built-in float, a Fraction is an exact ratio of two integer values. We can create
ratios that involve integers with a very large number of digits. We’re not limited by a fixed

denominator.

A Decimal value, similarly, is based on a very large integer value, as well as a scaling factor
to determine where the decimal place goes. These numbers can be huge and won’t suffer

from peculiar representation issues.

There's more...

The Python math module contains several specialized functions for working with floating-

point values. This module includes common elementary functions such as square root,

8 Numbers, Strings, and Tuples

logarithms, and various trigonometry functions. It also has some other functions such as

gamma, factorial, and the Gaussian error function.

The math module includes several functions that can help us do more accurate floating-
point calculations. For example, the math.fsum() function will compute a floating-point
sum more carefully than the built-in sum() function. It’s less susceptible to approximation

issues.

We can also make use of the math.isclose() function to compare two floating-point values,

an expression, and a literal 1.0, to see if they’re nearly equal:

>>> (19/ D
False

>>> math.isclose((
True

This function provides us with a way to compare two floating-point numbers meaningfully

for near-equality.

Python also offers complex numbers. A complex number has a real and an imaginary part.
In Python, we write 3.14+2.78j to represent the complex number 3.14 + 2.78 /—1. Python
will comfortably convert between float and complex. We have the usual group of operators

available for complex numbers.

To support complex numbers, there’s the cmath package. The cmath.sqrt() function, for
example, will return a complex value rather than raise an exception when extracting the

square root of a negative number. Here’s an example:

>>> math.sqrt(-2)

: math domain error

>>>

>>> cmath.sqrt(-2)

Chapter 1 9

1.4142135623730951]j

This module is helpful when working with complex numbers.

See also

« We'll talk more about floating-point numbers and fractions in the Choosing between

true division and floor division recipe.

« See https://en.wikipedia.org/wiki/IEEE_floating_point.

Choosing between true division and floor division

Python offers us two kinds of division operators. What are they, and how do we know
which one to use? We’ll also look at the Python division rules and how they apply to

integer values.

Getting ready

There are several general cases for division:

« A div-mod pair: We want both parts — the quotient and the remainder. The name
refers to the division and modulo operations combined together. We can summarize

the quotient and remainder as q,r = (|5],a mod b).

We often use this when converting values from one base into another. When we
convert seconds into hours, minutes, and seconds, we’ll be doing a div-mod kind of
division. We don’t want the exact number of hours; we want a truncated number of

hours, and the remainder will be converted into minutes and seconds.

o The true value: This is a typical floating-point value; it will be a good approximation
to the quotient. For example, if we’re computing an average of several measurements,
we usually expect the result to be floating-point, even if the input values are all

integers.

« A rational fraction value: This is often necessary when working in American units of

https://en.wikipedia.org/wiki/IEEE_floating_point

10 Numbers, Strings, and Tuples

feet, inches, and cups. For this, we should be using the Fraction class. When we

divide Fraction objects, we always get exact answers.

We need to decide which of these cases apply, so we know which division operator to use.

How to doit...

We'll look at these three cases separately.

Doing floor division

When we are doing the div-mod kind of calculations, we might use the floor division
operator, //, and the modulo operator, %. The expression a % b gives us the remainder
from an integer division of a // b. Or, we might use the divmod() built-in function to

compute both at once:

1. We’ll divide the number of seconds by 3,600 to get the value of hours. The modulo,
or remainder in division, computed with the % operator, can be converted separately

into minutes and seconds:

>>> total_seconds =

>>> hours = total_seconds //
>>> remaining_seconds = total_seconds %

2. Next, we’ll divide the number of seconds by 60 to get minutes; the remainder is the
number of seconds less than 60:

>>> minutes = remaining_seconds //
>>> seconds = remaining_seconds %

>>> hours, minutes, seconds
(2, 3, 9)

Here’s the alternative, using the divmod() function to compute quotient and modulo

together:

1. Compute quotient and remainder at the same time:

Chapter 1 11

>>> total_seconds =

>>> hours, remaining_seconds = (total_seconds,

2. Compute quotient and remainder again:

>>> minutes, seconds = (remaining_seconds,
>>> hours, minutes, seconds
(2, 3, 9)

Doing true division

Performing a true division calculation gives a floating-point approximation as the result.

7385

For example, about how many hours is 7,385 seconds? Here’s = using the true division

operator:

>>> total_seconds =
>>> hours = total_seconds /

>>> (hours, 4)
2.0514

We provided two integer values, but got a floating-point exact result. Consistent with our
previous recipe, when using floating-point values, we rounded the result to avoid having

to look at tiny error digits.

Rational fraction calculations
We can do division using Fraction objects and integers. This forces the result to be a

mathematically exact rational number:
1. Create at least one Fraction value:

>>> Fraction

>>> total_seconds = Fraction()

2. Use the Fraction value in a calculation. Any integer will be promoted to a Fraction:

12 Numbers, Strings, and Tuples

>>> hours = total_seconds /

>>> hours
Fraction(1477, 720)

The denominator of 720 doesn’t seem too meaningful. Working with fractions like
this requires a bit of finesse to find useful denominators that makes sense to people.

Otherwise, converting to a floating-point value can be useful.

3. If necessary, convert the exact Fraction into a floating-point approximation:

First, we created a Fraction object for the total number of seconds. When we do arithmetic
on fractions, Python will promote any integers to Fraction objects; this promotion means

that the math is done as precisely as possible.

How it works...

Python has two division operators:

« The / true division operator produces a true, floating-point result. It does this even
when the two operands are integers. This is an unusual operator in this respect. All
other operators preserve the type of the data. The true division operation — when

applied to integers — produces a float result.

« The // truncated division operator always produces a truncated result. For two
integer operands, this is the truncated quotient. When floating-point operands are

used, this is a truncated floating-point result:

>>> //

2.0

Chapter 1 13

See also
+ For more on the choice between floating-point and fractions, see the Choosing between

float, decimal, and fraction recipe.

« See PEP-238.

String parsing with regular expressions
How do we decompose a complex string? What if we have complex, tricky punctuation?
Or—worse yet—what if we don’t have punctuation, but have to rely on patterns of digits to

locate meaningful information?

Getting ready
The easiest way to decompose a complex string is by generalizing the string into a pattern

and then writing a regular expression that describes that pattern.

There are limits to the patterns that regular expressions can describe. When we’re con-
fronted with deeply nested documents in a language like HTML, XML, or JSON, we often

run into problems and be prohibited from using regular expressions.

The re module contains all of the various classes and functions we need to create and use

regular expressions.

Let’s say that we want to decompose text from a recipe website. Each line looks like this:

>>> ingredient = "Kumquat: 2 cups"

We want to separate the ingredient from the measurements.

How to doit...

To write and use regular expressions, we often do this:

1. Generalize the example. In our case, we have something that we can generalize as:

(ingredient woxrds): (amount digits) (unit words)

https://www.python.org/dev/peps/pep-0238

14

Numbers, Strings, and Tuples

2. We've replaced literal text with a two-part summary: what it means and how it’s

represented. For example, ingredient is represented as words, while amount is

represented as digits. Import the re module:

>>>

. Rewrite the pattern into regular expression (RE) notation:

>>> pattern_text = r' ([\w\s]+):\s+(\d+)\s+(\w+)'

We’ve replaced representation hints such as ingredient words, a mixture of letters and
spaces, with [\w\s]+. We’ve replaced amount digits with \d+. And we’ve replaced
single spaces with \s+ to allow one or more spaces to be used as punctuation. We’ve

left the colon in place because, in regular expression notation, a colon matches itself.

For each of the fields of data, we’ve used () to capture the data matching the pattern.
We didn’t capture the colon or the spaces because we don’t need the punctuation

characters.

REs typically use a lot of \ characters. To make this work out nicely in Python, we
almost always use raw strings. The r' tells Python not to look at the \ characters

and not to replace them with special characters that aren’t on our keyboards.

. Compile the pattern:

>>> pattern = re.compile(pattern_text)

. Match the pattern against the input text. If the input matches the pattern, we’ll get a

match object that shows details of the substring that matched:

>>> match = pattern.match(ingredient)
>>> match

False
>>> .groups()
('Kumquat', '2', 'cups')

Chapter 1 15

6. Extract the named groups of characters from the match object:

>>> .group(1l)
'Kumquat'
>>> .group(2)

X
>>> .group(3)
‘cups’

Each group is identified by the order of the capture () portions of the regular expression.
This gives us a tuple of the different fields captured from the string. We’ll return to the
use of the tuple data structure in the Using tuples of items recipe. This can be confusing in
more complex regular expressions; there is a way to provide a name, instead of the numeric

position, to identify a capture group.

How it works...

There are a lot of different kinds of string patterns that we can describe with regular

expressions.
We’ve shown a number of character classes:
« \w matches any alphanumeric character (a to z, A to Z, 0 to 9).
+ \d matches any decimal digit.
+ \s matches any space or tab character.
These classes also have inverses:
« \W matches any character that’s not a letter or a digit.
« \D matches any character that’s not a digit.
+ \S matches any character that’s not some kind of space or tab.

Many characters match themselves. Some characters, however, have a special meaning,

and we have to use \ to escape from that special meaning:

« We saw that + as a suffix means to match one or more of the preceding patterns. \d+

16 Numbers, Strings, and Tuples

matches one or more digits. To match an ordinary +, we need to use \+.

« We also have * as a suffix, which matches zero or more of the preceding patterns.

\w* matches zero or more characters. To match a *, we need to use *.

« We have ? as a suffix, which matches zero or one of the preceding expressions. This
character is used in other places, and has a different meaning in the other context.
We'll see it used in ?P<name>...)|, where it is inside \verb|)|to define special

properties for the grouping.

« The . character matches any single character. To match a . specifically, we need to

use \..

We can create our own unique sets of characters using [] to enclose the elements of the

set. We might have something like this:

(?P<name>\w+)\s*[=:]\s*(?P<value>.*)

This has a \w+ to match any number of alphanumeric characters. This will be collected
into a group called name. It uses \s* to match an optional sequence of spaces. It matches
any character in the set [=:]. Exactly one of the two characters in this set must be present.
It uses \s* again to match an optional sequence of spaces. Finally, it uses .* to match

everything else in the string. This is collected into a group named value.
We can use this to parse strings, like this:
size = 12

weight: 14

By being flexible with the punctuation, we can make a program easier to use. We’ll tolerate

any number of spaces, and either an = or a : as a separator.

There's more...

A long regular expression can be awkward to read. We have a clever Pythonic trick for

presenting an expression in a way that’s much easier to read:

Chapter 1 17

>>> ingredient_pattern = re.compile(
. I'(?P<ingredient>[\w\s]+):\s+' # name of the ingredient up to the

nwon

. I'(?P<amount>\d+)\s+' # amount, all digits up to a space

. I'(?P<unit>\w+)' # units, alphanumeric characters

)

This leverages three syntax rules:
« A statement isn’t finished until the () characters match.
+ Adjacent string literals are silently concatenated into a single long string.
+ Anything between # and the end of the line is a comment, and is ignored.

We’ve put Python comments after the important clauses in our regular expression. This

can help us understand what we did, and perhaps help us diagnose problems later.

We can also use the regular expression’s “verbose” mode to add gratuitous whitespace and
comments inside a regular expression string. To do this, we must use re.X as an option
when compiling a regular expression to make whitespace and comments possible. This

revised syntax looks like this:

>>> ingredient_pattern_x = re.compile(r'"'
(?P<ingredient>[\w\s]+):\s+ # name of the ingredient up to the ":"

(?P<amount>\d+)\s+ # amount, all digits up to a space

(?P<unit>\w+) # units, alphanumeric characters
't o re. X)

We can either break the pattern up into separate string components, or make use of extended
syntax to make the regular expression more readable. The benefit of providing names
shows up when we use the groupdict() method of the match object to extract parsed

values by the name associated with the pattern being captured.

See also

+ The Decoding bytes — how to get proper characters from some bytes recipe.

+ There are many books on regular expressions and Python regular expressions in

18 Numbers, Strings, and Tuples

particular, like Mastering Python Regular Expressions https://www.packtpub.com/a

pplication-development/mastering-python-regular-expressions.

Building complicated strings with f-strings

Creating complex strings is, in many ways, the polar opposite of parsing a complex string.

We generally use a template with substitution rules to put data into a more complex format.

Getting ready
Let’s say we have pieces of data that we need to turn into a nicely formatted message. We

might have data that includes the following:

location "Dulles Intl Airport"
max_temp
min_temp =

precipitation =

And we’d like a line that looks like this:

IAD : Dulles Intl Airport : 32 / 13 / 0.40

How to do it...
1. Create an f-string for the result, replacing all of the data items with placeholders.
Inside each placeholder, put a variable name (or an expression.) Note that the string
uses the prefix of f'. This prefix creates a sophisticated string object where values

are interpolated into the template when the string is used:

f'{id} : {location} : {max_temp} / {min_temp} / {precipitation}'

2. For each name or expression, an optional data type can be appended to the names in

the template string. The basic data type codes are:

« s for string

https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions

Chapter 1 19

« d for decimal number
« f for floating-point number

It would look like this:

f'{id:s} : {location:s} : {max_temp:d} / {min_temp:d} /

{precipitation:f}"'

Because the book’s margins are narrow, the string has been broken
\Q/ to fit on the page. It’s a single (very wide) line of code.

3. Add length information where required. Length is not always required, and in some
cases, it’s not even desirable. In this example, though, the length information ensures
that each message has a consistent format. For strings and decimal numbers, prefix
the format with the length like this: 19s or 3d. For floating-point numbers, use a
two-part prefix like 5. 2f to specify the total length of five characters, with two to
the right of the decimal point. Here’s the whole format:

>>> f'{id:3s} : {location:19s} : {max_temp:3d} / {min_temp:3d} /

{precipitation:5.2f}"
'"IAD : Dulles Intl Airport : 32 / 13 / 0.40'

How it works...

F-strings can do a lot of relatively sophisticated string assembly by interpolating data into

a template. There are a number of conversions available.

We've seen three of the formatting conversions—s, d, f—but there are many others. Details
can be found in the Formatted string literals section of the Python Standard Library: https:
//docs.python.org/3/reference/lexical_analysis.html#formatted-string-liter

als.
Here are some of the format conversions we might use:

« b is for binary, base 2.

https://docs.python.org/3/reference/lexical_analysis.html#formatted-string-literals
https://docs.python.org/3/reference/lexical_analysis.html#formatted-string-literals
https://docs.python.org/3/reference/lexical_analysis.html#formatted-string-literals

20 Numbers, Strings, and Tuples

« c is for Unicode character. The value must be a number, which is converted into a
character. Often, we use hexadecimal numbers for these characters, so you might

want to try values such as 0x2661 through 0x2666 to see interesting Unicode glyphs.
« dis for decimal numbers.

« E and e are for scientific notations. 6.626E-34 or 6.626e-34, depending on which E or

e character is used.

« F and f are for floating-point. For not a number, the f format shows lowercase nan;

the F format shows uppercase NAN.

« Gand g are for general use. This switches automatically between E and F (or e and
) to keep the output in the given sized field. For a format of 20.5G, up to 20-digit

numbers will be displayed using F formatting. Larger numbers will use E formatting.

« nis for locale-specific decimal numbers. This will insert , or . characters, depending
on the current locale settings. The default locale may not have 1,000 separators

defined. For more information, see the locale module.

o is for octal, base 8.

« s is for string.

« X and x are for hexadecimal, base 16. The digits include uppercase A-F and lowercase

a-f, depending on which X or x format character is used.

% is for percentage. The number is multiplied by 100 and the output includes a %

character.

We have a number of prefixes we can use for these different types. The most common
one is the length. We might use {name:5d} to put in a 5-digit number. There are several

prefixes for the preceding types:

« Fill and alignment: We can specify a specific filler character (space is the default)
and an alignment. Numbers are generally aligned to the right and strings to the left.

We can change that using <, >, or A. This forces left alignment, right alignment, or

Chapter 1 21

centering, respectively. There’s a peculiar = alignment that’s used to put padding

after a leading sign.

« Sign: The default rule is a leading negative sign where needed. We can use + to
put a sign on all numbers, - to put a sign only on negative numbers, and a space to
use a space instead of a plus for positive numbers. In scientific output, we often use
{value:5.3f}. The space makes sure that room is left for the sign, ensuring that all

the decimal points line up nicely.

Alternate form: We can use the # to get an alternate form. We might have something
like {@:#x}, {0:#0}, or {@:#b} to get a prefix on hexadecimal, octal, or binary values.
With a prefix, the numbers will look like @xnnn, @onnn, or @bnnn. The default is to

omit the two-character prefix.

« Leading zero: We can include 0 to get leading zeros to fill in the front of a number.
Something like {code:08x} will produce a hexadecimal value with leading zeroes to

pad it out to eight characters.

« Width and precision: For integer values and strings, we only provide the width.

For floating-point values, we often provide width.precision.

There are some times when we won’t use a {name: format} specification. Sometimes, we’ll

need to use a {name!conversion} specification. There are only three conversions available:
+ {name!r} shows the representation that would be produced by repr(name).

« {name!s} shows the string value that would be produced by str(name); this is the
default behavior if you don’t specify any conversion. Using ! s explicitly lets you add

string-type format specifiers.
+ {name!a} shows the ASCII value that would be produced by ascii(name).

« Additionally, there’s a handy debugging format specifier available. We can include a
trailing equals sign, =, to get a handy dump of a variable or expression. The following

example uses both forms:

22 Numbers, Strings, and Tuples

>>> value = 2**12-
>>> f'{value=} {2**7+1=}'

'value=4095 2**7+1=129'

The f-string showed the value of the variable named value and the result of an expression,

2%*7+1].

In Chapter 7, we’ll leverage the idea of the {name!r} format specification to simplify

displaying information about related objects.

There's more...

The f-string processing relies on the string format () method. We can leverage this method
and the related format_map() method for cases where we have more complex data struc-

tures.

Looking forward to Chapter 5, we might have a dictionary where the keys are simple strings

that fit with the format_map() rules:

>>> data = (
=id, location=location, max_temp=max_temp,
. min_temp=min_temp, precipitation=precipitation

)

>>> '{id:3s} : {location:19s} : {max_temp:3d} / {min_temp:3d} /
{precipitation:5.2f}'.format_map(data)
"IAD : Dulles Intl Airport : 32 / 13 / 0.40'

We’ve created a dictionary object, data, that contains a number of values with keys that
are valid Python identifiers: id, location, max_temp, min_temp, and precipitation. We
can then use this dictionary with the format_map() method to extract values from the

dictionary using the keys.

Note that the formatting template here is not an f-string. It doesn’t have the f" prefix. In-
stead of using the automatic formatting features of an f-string, we’ve done the interpolation

“the hard way” using the format_map () method of an f-string.

Chapter 1 23

See also
+ More details can be found in the Formatted string literals section of the Python
Standard Library:https://docs.python.org/3/reference/lexical_analysis.h

tml#formatted-string-literals.

Building complicated strings from lists of strings

How can we make complicated changes to an immutable string? Can we assemble a string

from individual characters?

In most cases, the recipes we’'ve already seen give us a number of tools for creating and
modifying strings. There are yet more ways in which we can tackle the string manipulation
problem. In this recipe, we’ll look at using a 1ist object as a way to decompose and rebuild

a string. This will dovetail with some of the recipes in Chapter 4.

Getting ready

Here’s a string that we’d like to rearrange:

>>> title = "Recipe 5: Rewriting an Immutable String"

We’d like to do two transformations:
« Remove the part before :.
+ Replace the punctuation with _ and make all the characters lowercase.

We’ll make use of the string module:

>>> whitespace, punctuation

This has two important constants:

« string.whitespace lists all of the whitespace characters that are also part of ASCII,

including space and tab.

https://docs.python.org/3/reference/lexical_analysis.html#formatted-string-literals
https://docs.python.org/3/reference/lexical_analysis.html#formatted-string-literals

24 Numbers, Strings, and Tuples

« string.punctuation lists punctuation marks that are also part of ASCIL Unicode

has a large domain of punctuation marks. This is a widely used subset.
How to doiit...
We can work with a string exploded into a list. We’ll look at lists in more depth in Chapter 4:

1. Explode the string into a 1ist object:

>>> title_list = (title)

2. Find the partition character. The index () method for a list has the same semantics

as the index () method has for a string. It locates the position with the given value:

>>> colon_position = title_list.index(':")

3. Delete the characters that are no longer needed. The del statement can remove items

from a list. Unlike strings, lists are mutable data structures:

>>> title_list[:colon_position+1]

4. Replace punctuation by stepping through each position. In this case, we’ll use a for

statement to visit every index in the string:

position ((title_list)):

title_list[position] whitespace+punctuation:
title_list[position]= '_

5. The expression range(len(title_list)) generates all of the values between 0 and
len(title_list)-1. This assures us that the value of position will be each value
index in the list. Join the list of characters to create a new string. It seems a little odd
to use a zero-length string, ' ', as a separator when concatenating strings together.

However, it works perfectly:

Chapter 1 25

>>> title = ''.join(title_list)

>>> title
'_Rewriting_an_Immutable_String'

We assigned the resulting string back to the original variable. The original string object,
which had been referred to by that variable, is no longer needed: it’s automatically removed
from memory (this is known as garbage collection). The new string object replaces the

value of the variable.

How it works...

This is a change in representation trick. Since a string is immutable, we can’t update it. We
can, however, convert it into a mutable form; in this case, a list. We can make whatever
changes are required to the mutable list object. When we’re done, we can change the

representation from a list back to a string and replace the original value of the variable.

Lists provide some features that strings don’t have. Conversely, strings provide a number
of features lists don’t have. As an example, we can’t convert a list into lowercase the way

we can convert a string.
There’s an important trade-off here:

« Strings are immutable, which makes them very fast. Strings are focused on Unicode
characters. When we look at mappings and sets, we can use strings as keys for

mappings and items in sets because the value is immutable.

« Lists are mutable. Operations are slower. Lists can hold any kind of item. We can’t
use a list as a key for a mapping or an item in a set because the list value could

change.

Strings and lists are both specialized kinds of sequences. Consequently, they have a number
of common features. The basic item indexing and slicing features are shared. Similarly, a
list uses the same kind of negative index values that a string does: the expression 1ist[-1]

is the last item in a list object.

26 Numbers, Strings, and Tuples

We'll return to mutable data structures in Chapter 4.

See also

« Sometimes, we need to build a string, and then convert it into bytes. See the Encoding

strings — creating ASCII and UTF-8 bytes recipe for how we can do this.

+ Other times, we’ll need to convert bytes into a string. See the Decoding bytes — how

to get proper characters from some bytes recipe for more information.

Using the Unicode characters that aren't on our
keyboards

A big keyboard might have almost 100 individual keys. Often, fewer than 50 of these keys
are letters, numbers, and punctuation. At least a dozen are function keys that do things
other than simply insert letters into a document. Some of the keys are different kinds of
modifiers that are meant to be used in conjunction with another key—for example, we

might have Shift, Ctrl, Option, and Command.

Most operating systems will accept simple key combinations that create about 100 or so
characters. More elaborate key combinations may create another 100 or so less popular
characters. This isn’t even close to covering the vast domain of characters from the world’s
alphabets. And there are icons, emojis, and dingbats galore in our computer fonts. How do

we get to all of those glyphs?

Getting ready

Python works in Unicode. There are thousands of individual Unicode characters available.

We can see all the available characters at https://en.wikipedia.org/wiki/List_of_Un

icode_characters, as well as at http://www.unicode.org/charts/.
We’ll need the Unicode character number. We may also want the Unicode character name.

A given font on our computer may not be designed to provide glyphs for all of those

characters. In particular, Windows computer fonts may have trouble displaying some of

https://en.wikipedia.org/wiki/List_of_Unicode_characters
https://en.wikipedia.org/wiki/List_of_Unicode_characters
http://www.unicode.org/charts/

Chapter 1 27

these characters. Using the following Windows command to change to code page 65001 is

sometimes necessary:

chcp 65001

Linux and macOS rarely have problems with Unicode characters.

How to doit...

Python uses escape sequences to extend the ordinary characters we can type to cover the
vast space of Unicode characters. Each escape sequence starts with a \ character. The next
character tells us exactly which of the Unicode characters to create. Locate the character
that’s needed. Get the name or the number. The numbers are always given as hexadecimal,
base 16. Websites describing Unicode often write the character as U+2680. The name might
be DIE FACE-1. Use \unnnn with up to a four-digit number, nnnn. Or, use \N{name} with
the spelled-out name. If the number is more than four digits, use \Unnnnnnnn with the
number padded out to exactly eight digits:

>>> 'You Rolled \u2680'
'You Rolled '

>>> 'You drew \UQQQ1F000Q'
'You drew Bi'

>>> 'Discard \N{MAHJONG TILE RED DRAGON}'
'Discard W

Yes, we can include a wide variety of characters in Python output. To place a \ in the string
without the following characters being part of an escape sequence, we need to use \\. For

example, we might need this for Windows file paths.

How it works...

Python uses Unicode internally. The 128 or so characters we can type directly using the

keyboard all have handy internal Unicode numbers.

28 Numbers, Strings, and Tuples

When we write:

"HELLO'

Python treats it as shorthand for this:

"\u@048\u0045\u004c\udd4c\u0o4f"

Once we get beyond the characters on our keyboards, the remaining thousands of characters

are identified only by their number.

When the string is being compiled by Python, \uxxxx, \Uxxxxxxxx, and \N{name} are all
replaced by the proper Unicode character. If we have something syntactically wrong—for
example, \N{name with no closing }—we’ll get an immediate error from Python’s internal

syntax checking.

Regular expressions use a lot of \ characters and that we specifically do not want Python’s
normal compiler to touch them; we used the r' prefix on a regular expression string to
prevent \ from being treated as an escape and possibly converted into something else. To

use the full domain of Unicode characters, we cannot avoid using \ as an escape.

What if we need to use Unicode in a regular expression? We’ll need to use \\ all over the
place in the regular expression. We might see something like this:

"\N\w+[\u2680\u2681\u2682\u2683\u2684\u2685]\\d+".

We couldn’t use the r' prefix on the string because we needed to have the Unicode escapes
processed. This forced us to use \\ for elements of the regular expression. We used \uxxxx
for the Unicode characters that are part of the pattern. Python’s internal compiler will

replace \uxxxx with Unicode characters and \\w will become the required \w internally.

When we look at a string at the >>> prompt, Python will display the string in its canonical
form. Python prefers to display strings with ' as a delimiter, using " when the string

contains a '. We can use either ' or " for a string delimiter when writing code. Python
doesn’t generally display raw strings; instead, it puts all of the necessary escape sequences

back into the string:

Chapter 1 29

We provided a string in raw form. Python displayed it in canonical form.

See also
« In the Encoding strings — creating ASCII and UTF-8 bytes and the Decoding bytes — how
to get proper characters from some bytes recipes, we’ll look at how Unicode characters
are converted into sequences of bytes so we can write them to a file. We’ll look
at how bytes from a file (or downloaded from a website) are turned into Unicode

characters so they can be processed.

« If you’re interested in history, you can read up on ASCII and EBCDIC and other

old-fashioned character codes here: http://www.unicode.org/charts/.

Encoding strings - creating ASCIl and UTF-8
bytes

Our computer files are bytes. When we upload or download from the internet, the commu-
nication works in bytes. A byte only has 256 distinct values. Our Python characters are

Unicode. There are a lot more than 256 Unicode characters.

How do we map Unicode characters to bytes to write to a file or for transmission?

Getting ready
Historically, a character occupied 1 byte. Python leverages the old ASCII encoding scheme
for bytes; this sometimes leads to confusion between bytes and text strings of Unicode

characters.

Unicode characters are encoded into sequences of bytes. There are a number of standardized

encodings and a number of non-standard encodings.

Plus, there also are some encodings that only work for a small subset of Unicode characters.

http://www.unicode.org/charts/

30 Numbers, Strings, and Tuples

We try to avoid these, but there are some situations where we’ll need to use a subset

encoding scheme.

Unless we have a really good reason not to, we almost always use UTF-8 encoding for
Unicode characters. Its main advantage is that it’s a compact representation of the Latin

alphabet, which is used for English and a number of European languages.

Sometimes, an internet protocol requires ASCII characters. This is a special case that
requires some care because the ASCII encoding can only handle a small subset of Unicode

characters.

How to doit...

Python will generally use our OS’s default encoding for files and internet traffic. The details

are unique to each OS:

1. We can make a general setting using the PYTHONIOENCODING environment variable.
We set this outside of Python to ensure that a particular encoding is used everywhere.
When using Linux or macOS, use the shell’s export statement to set the environment
variable. For Windows, use the set command, or the PowerShell Set-Item cmdlet.

For Linux, it looks like this:

(cookbook3) % export PYTHONIOENCODING=UTF-8

2. Run Python:

(cookbook3) % python

3. We sometimes need to make specific settings when we open a file inside our script.
We’ll return to this topic in Chapter 11. Open the file with a given encoding. Read or

write Unicode characters to the file:

>>> with open('some_file.txt', 'w', encoding='utf-8') as output:

print('You drew \UG@Q1F000', file=output)

>>> with open('some_file.txt', 'r', encoding='utf-8') as input:

text = input.read()

Chapter 1 31

>>> text
'You drew '

We can also manually encode characters, in the rare case that we need to open a file in

bytes mode; if we use a mode of wb, we’ll also need to use manual encoding of each string:

>>> string_bytes = 'You drew \UQ@Q1FQ0Q@'.encode('utf-8")

>>> string_bytes
b'You drew \xf@\x9f\x80\x80'

We can see that a sequence of bytes (\xf@\x9f\x80\x80) was used to encode a single

Unicode character, U+1F000, .

How it works...

Unicode defines a number of encoding schemes. While UTF-8 is the most popular, there
is also UTF-16 and UTF-32. The number is the typical number of bits per character. A
file with 1,000 characters encoded in UTF-32 would be 4,000 8-bit bytes. A file with 1,000
characters encoded in UTF-8 could be as few as 1,000 bytes, depending on the exact mix of
characters. In UTF-8 encoding, characters with Unicode numbers above U+007F require

multiple bytes.

Various OSes have their own coding schemes. macOS files can be encoded in Mac Roman

or Latin-1. Windows files might use CP1252 encoding,.

The point with all of these schemes is to have a sequence of bytes that can be mapped to a
Unicode character and—going the other way—a way to map each Unicode character to one
or more bytes. Ideally, all of the Unicode characters are accounted for. Pragmatically, some

of these coding schemes are incomplete.

The historical form of ASCII encoding can only represent about 100 of the Unicode charac-

ters as bytes. It’s easy to create a string that cannot be encoded using the ASCII scheme.

Here’s what the error looks like:

32 Numbers, Strings, and Tuples

>>> 'You drew \UQ@O1F@00'.encode('ascii')

'ascii' codec can't encode character '\U0001f000' in
position 9: ordinal not in range(128)

We may see this kind of error when we accidentally open a file with an encoding that’s not
the widely used standard of UTF-8. When we see this kind of error, we’ll need to change
our processing to select the encoding actually used to create the file. It’s almost impossible
to guess what encoding was used, so some research may be required to locate metadata

about the file that states the encoding.

Bytes are often displayed using printable characters. We’ll see b'hello' as shorthand for
a five-byte value. The letters are chosen using the old ASCII encoding scheme, where
byte values from 0x20 to 0x7F will be shown as characters, and outside this range, more

complex-looking escapes will be used.

This use of characters to represent byte values can be confusing. The prefix of b' is our

hint that we’re looking at bytes, not proper Unicode characters.

See also
+ There are a number of ways to build strings of data. See the Building complicated
strings with f-strings and the Building complicated strings from lists of stringsrecipes for
examples of creating complex strings. The idea is that we might have an application

that builds a complex string, and then we encode it into bytes.

+ For more information on UTF-8 encoding, see https://en.wikipedia.org/wiki/

UTF-8.

« For general information on Unicode encodings, see http://unicode.org/faq/utf_

bom.html.

https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
http://unicode.org/faq/utf_bom.html
http://unicode.org/faq/utf_bom.html

Chapter 1 33

Decoding bytes - how to get proper characters
from some bytes

How can we work with files that aren’t properly encoded? What do we do with files written

in ASCII encoding?

A download from the internet is almost always in bytes—not characters. How do we decode

the characters from that stream of bytes?

Also, when we use the subprocess module, the results of an OS command are in bytes. How

can we recover proper characters?

Much of this is also relevant to the material in Chapter 11. We’ve included this recipe here
because it’s the inverse of the previous recipe, Encoding strings — creating ASCII and UTF-8

bytes.

Getting ready
Let’s say we're interested in offshore marine weather forecasts. Perhaps this is because we

are departing the Chesapeake Bay for the Caribbean.

Are there any special warnings coming from the National Weather Services office in

Wakefield, Virginia?

Here’s the link:
https://forecast.weather.gov/product.php?site=AKQ&product=SMW&issuedby=AKQ.

We can download this with Python’s url1ib module:

>>>

>>> warnings_uri = (
"https://forecast.weather.gov/'
'product.php?site=AKQ&product=SMW&issuedby=AKQ'

urllib.request.urlopen(warnings_uri) source:
forecast_text = source.read()

https://forecast.weather.gov/product.php?site=AKQ&product=SMW&issuedby=AKQ

34 Numbers, Strings, and Tuples

Note that we’ve enclosed the URI string in () and broken it into two separate string literals.
Python will concatenate these two adjacent literals into a single string. We’ll look at this

in some depth in Chapter 2.

As an alterative, we can use programs like curl or wget to get this. At the OS Terminal

prompt, we might run the following (long) command:

(cookbook3) % curl 'https://forecast.weather.gov/product.php?site=AKQ&product=SMW&
issuedby=AKQ' -o AKQ.html

Typesetting this book tends to break the command onto many lines. It’s really one very

long line.

The code repository includes a sample file, ch@1/Text Products for SMW Issued
by AKQ.html.

The forecast_text value is a stream of bytes. It’s not a proper string. We can tell because

it starts like this:

>>> forecast_text[:80]
b'<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.0rg/TR/X"'

The data goes on for a while, providing details from the web page. Because the displayed
value starts with b', it’s bytes, not proper Unicode characters. It was probably encoded with
UTF-8, which means some characters could have weird-looking \xnn escape sequences

instead of proper characters. We want to have the proper characters.

While this data has many easy-to-read characters, the b' prefix shows that it’s a collection
of byte values, not proper text. Generally, a bytes object behaves somewhat like a string
object. Sometimes, we can work with bytes directly. Most of the time, we’ll want to decode

the bytes and create proper Unicode characters from them.

Chapter 1 35

How to doit...

1. Determine the coding scheme if possible. In order to decode bytes to create proper
Unicode characters, we need to know what encoding scheme was used. When we

read XML documents, there’s a big hint provided within the document:

<?xml version="1.0" encoding="UTF-8"?>

When browsing web pages, there’s often a header containing this information:

Content-Type: text/html; charset=IS0-8859-4

Sometimes, an HTML page may include this as part of the header:

<meta http-equiv="Content-Type" content="text/html; charset=utf-8">

In other cases, we're left to guess. In the case of US weather data, a good first guess
is UTF-8. Another good guess is ISO-8859-1. In some cases, the guess will depend on
the language.

2. The codecs — Codec registry and base classes section of the Python Standard Library

lists the standard encodings available. Decode the data:

>>> document = forecast_text.decode("UTF-8")
>>> document[:80]

'<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0xrg/TR/X"

The b' prefix is no longer used to show that these are bytes. We’ve created a proper

string of Unicode characters from the stream of bytes.

3. If this step fails with an exception, we guessed wrong about the encoding. We need

to try another encoding in order to parse the resulting document.

Since this is an HTML document, we should use Beautiful Soup to extract the data. See

http://www.crummy.com/software/BeautifulSoup/.

We can, however, extract one nugget of information from this document without completely

parsing the HTML:

http://www.crummy.com/software/BeautifulSoup/

36 Numbers, Strings, and Tuples

>>>

>>> content_pattern = re.compile(xr"// CONTENT STARTS(.*?)// CONTENT ENDS",
re MULTILINE | re.DOTALL)

>>> content_pattern.search(document)

<re.Match object; span=(8530, 9113), match='// CONTENT STARTS HERE

-->\n\n

This tells us what we need to know: there are no warnings at this time. This doesn’t mean
smooth sailing, but it does mean that there aren’t any major weather systems that could

cause catastrophes.

How it works...
See the Encoding strings — creating ASCII and UTF-8 bytes recipe for more information on
Unicode and the different ways that Unicode characters can be encoded into streams of

bytes.

At the foundation of the OS, files and network connections are built up from bytes. It’s our
software that decodes the bytes to discover the content. It might be characters, images,
or sounds. In some cases, the default assumptions are wrong and we need to do our own

decoding.

See also
« Once we’ve recovered the string data, we have a number of ways of parsing or
rewriting it. See the String parsing with regular expressions recipe for examples of

parsing a complex string.

» For more information on encodings, see https://en.wikipedia.org/wiki/UTF-8

and http://unicode.org/faq/utf_bom.html.

Using tuples of items

What'’s the best way to represent simple (x, y) and (r, g, b) groups of values? How can we

keep things that are pairs, such as latitude and longitude, together?

https://en.wikipedia.org/wiki/UTF-8
http://unicode.org/faq/utf_bom.html

Chapter 1 37

Getting ready
In the String parsing with regular expressions recipe, we skipped over an interesting data

structure.

We had data that looked like this:

>>> ingredient = "Kumquat: 2 cups"

We parsed this into meaningful data using a regular expression, like this:

>>>

>>> ingredient_pattern =
re.compile(r' (?P<ingredient>\w+) :\s+(?P<amount>\d+)\s+(?P<unit>\w+)")

>>> match = ingredient_pattern.match(ingredient)
>>> .groups()
('Kumquat', '2', 'cups')

The result is a tuple object with three pieces of data. There are lots of places where this

kind of grouped data can come in handy.

How to do it...
We'll look at two aspects to this: putting things into tuples and getting things out of tuples.

Creating tuples
There are lots of places where Python creates tuples of data for us. In the Getting ready
section of the String parsing with regular expressions recipe, we showed you how a regular

expression match object will create a tuple of text that was parsed from a string.
We can create our own tuples, too. Here are the steps:
1. Enclose the data in ().

2. Separate the items with ,.

>>> Fraction

>>> my_data = ('Rice', Fraction(1/4), 'cups')

38 Numbers, Strings, and Tuples

There’s an important special case for the one-tuple, or singleton. We have to include the ,

even when there’s only one item in the tuple:

>>> one_tuple = ('item',)

>>> (one_tuple)
1

The () characters aren’t always required. There are a few times where we can omit them.

It’s not a good idea to omit them.

It’s the comma that creates a tuple of values. This means we can see funny things when

we have an extra comma:

The comma after 355 turns the value into a singleton tuple.

We can also create a tuple by conversion from another sequence. For example, tuple([355])

creates a singleton tuple from a singleton list.

Extracting items from a tuple
The idea of a tuple is to be a container with a number of items that’s fixed by the problem
domain: for example, for (red, green, blue) color numbers, the number of items is always

three.

In our example, we've got an ingredient, and amount, and units. This must be a three-item

collection. We can look at the individual items in two ways:

+ By index position; that is, positions are numbered starting with zero from the left:

>>> my_datal[l]

Fraction(1, 4)

« Using multiple assignment:

Chapter 1 39

>>> ingredient, amount, unit = my_data
>>> ingredient

'Rice’
>>> unit
‘cups'’

Tuples—like strings—are immutable. We can’t change the individual items inside a tuple.

We use tuples when we want to keep the data together.

How it works...

Tuples are one example of the more general Sequence class. We can do a few things with

sequences.

Here’s an example tuple that we can work with:

'2', 'cups')

Here are some operations we can perform on this tuple:

+ How many items in t?

>>> (t)
B

« How many times does a particular value appear in t?

>>> t.count('2")
1

« Which position has a particular value?

>>> t.index('cups')
2
>>> t[2]

‘cups’

« When an item doesn’t exist, we’ll get an exception:

40 Numbers, Strings, and Tuples

>>> t.index('Rice')

: tuple.index(x): x not in tuple

« Does a particular value exist?

There's more...

A tuple, like a string, is a sequence of items. In the case of a string, it’s a sequence of
characters. In the case of a tuple, it’s a sequence of many things. Because they’re both
sequences, they have some common features. We’ve noted that we can pluck out individual
items by their index position. We can use the index() method to locate the position of an

item.

The similarities end there. A string has many methods it can use to create a new string that’s
a transformation of a string, plus methods to parse strings, plus methods to determine the
content of the strings. A tuple doesn’t have any of these bonus features. It’s—perhaps—the

simplest possible data structure.

See also
« We looked at one other sequence, the list, in the Building complicated strings from

lists of strings recipe.

« We’ll also look at sequences in Chapter 4.

Using NamedTuples to simplify item access in
tuples

When we worked with tuples, we had to remember the positions as numbers. When we

use a (r, g, b) tuple to represent a color, can we use “red” instead of zero, “green” instead of

Chapter 1 41

1, and “blue” instead of 2?

Getting ready
Let’s continue looking at items in recipes. The regular expression for parsing the string
had three attributes: ingredient, amount, and unit. We used the following pattern with

names for the various substrings:

r' (?P<ingredient>\w+) :\s+(?P<amount>\d+)\s+(?P<unit>\w+)")

The resulting data tuple looked like this:

>>> jtem = match.groups()

>>> jtem
('Kumquat', '2', 'cups')

While the matching between ingredient, amount, and unit is pretty clear, using something

like the following isn’t ideal. What does 1 mean? Is it really the quantity?

>>> Fraction

>>> Fraction(item[1])
Fraction(2, 1)

We want to define tuples with names, as well as positions.

How to doit...
1. We’ll use the NamedTuple class definition from the typing package:

>>> NamedTuple

2. With this base class definition, we can define our own unique tuples, with names for
the items:

(NamedTuple):

ingredient:
amount:

42 Numbers, Strings, and Tuples

.. unit:

3. Now, we can create an instance of this unique kind of tuple by using the classname:

>>> item_2 = Ingredient('Kumquat', '2', 'cups')

4. When we want a value from the tuple, we can use a name instead of the position:

>>> Fraction(item_2.amount)
Fraction(2, 1)

>>> f"Use {item_2.amount} {item_2.unit} fresh {item_2.ingredient}"
'Use 2 cups fresh Kumquat'

How it works...
The NamedTuple class definition introduces a core concept from Chapter 7. We’ve extended
the base class definition to add unique features for our application. In this case, we’ve

named the three attributes each Ingredient tuple must contain.

Because a subclass of NamedTuple class is a tuple, the order of the attribute names is
fixed. We can use a reference like the expression item_2[0] as well as the expression

item_2.ingredient. Both names refer to the item in index 0 of the tuple, item_2.

]

The core tuple types can be called “anonymous tuples” or maybe “index-only tuples’
This can help to distinguish them from the more sophisticated “named tuples” introduced

through the typing module.

Tuples are very useful as tiny containers of closely related data. Using the NamedTuple

class definition makes them even easier to work with.

There's more...
We can have a mixed collection of values in a tuple or a named tuple. We need to perform
conversion before we can build the tuple. It’s important to remember that a tuple cannot

ever be changed. It’s an immutable object, similar in many ways to the way strings and

Chapter 1 43

numbers are immutable.

For example, we might want to work with amounts that are exact fractions. Here’s a more

sophisticated definition:

NamedTuple

Fraction
(NamedTuple) :
ingredient:
amount: Fraction
unit:

These objects require some care to create. If we’re using a bunch of strings, we can’t simply
build this object from three string values; we need to convert the amount into a Fraction

instance. Here’s an example of creating an item using a Fraction conversion:

>>> jtem_3 = IngredientF('Kumquat', Fraction('2'), 'cups')

This tuple has a more useful value for the amount of each ingredient. We can now do

mathematical operations on the amounts:

>>> f'{item_3.ingredient} doubled: {item_3.amount * 2}

'Kumquat doubled: 4'

It’s very handy to explicitly state the data type within the NamedTuple class definition.
It turns out Python doesn’t use the type information directly. Other tools, for example,
mypy, can check the type hints in a NamedTuple against the operations in the rest of the

code to be sure they agree.

See also
« We'll look at class definitions in Chapter 7.

44 Numbers, Strings, and Tuples

Join our community Discord space

Join our Python Discord workspace to discuss and find out more about the book:

https://packt.link/dHrHU

=] 4[]

https://packt.link/dHrHU

Statements and Syntax

Python syntax is designed to be simple. In this chapter, we’ll look at some of the most
commonly used statements in the language as a way to understand the rules. Concrete

examples can help clarify the language’s syntax.

We’ll cover some of the basics of creating script files first. Then we’ll move on to looking
at some of the more commonly used statements. Python only has about 20 or so different
kinds of imperative statements in the language. We’ve already looked at two kinds of

statements in Chapter 1, the assignment statement and the expression statement.

When we write something like this:

>>> ("hello world")

hello world

We're actually executing a statement that contains only the evaluation of a function,
print(). This kind of statement—where we evaluate a function or a method of an object—is

comimon.

46 Statements and Syntax

The other kind of statement we’ve already seen is the assignment statement. Python has
many variations on this theme. Most of the time, we’re assigning a single value to a single
variable. When a function returns a tuple as a result, we can unpack that collection and
assign more than one variable at the same time in a single assignment statement. It is done

like this:

>>> quotient, remainder

The recipes in this chapter will look at the if, while, for, with, and try statements. We’ll

also touch on a few of the simpler statements as we go, like pass, break, and raise.

In later chapters, we’ll look at other statements. Here’s a summary:

Statement | Chapter
def Chapter 3
return Chapter 3
import Chapter 3
del Chapter 4
class Chapter 7
match Chapter 8
type Chapter 10
assert Chapter 10

Table 2.1: Python Statements and Chapters

In this chapter, we’ll look at the following recipes:
« Writing Python script and module files — syntax basics
« Writing long lines of code
o Including descriptions and documentation
« Writing better docstrings with RST markup
« Designing complex if...elif chains

« Saving intermediate results with the := "walrus" operator

Chapter 2 47

« Avoiding a potential problem with break statements
« Leveraging exception matching rules

« Avoiding a potential problem with an except: clause
« Concealing an exception root cause

« Managing a context using the with statement

We'll start by looking at the big picture — scripts and modules — and then we’ll move down

into details of individual statements.

Writing Python script and module files - syntax
basics

The point of Python (and programming in general) is to create automated solutions to
problems that involve data and processing. Further, the software we write is a kind of
knowledge representation; this means clarity is perhaps the most important quality aspect

of software.

In Python, we implement automated solutions by creating script files. These are the top-
level, main programs of Python programming. In addition to main scripts, we may also
create modules (and packages of modules) to help organize the software into intellectually
manageable chunks. A script is a module; however, it has a distinct intent to do useful

processing when started by the OS.

A key part of creating clear, readable Python files is making sure our code follows the

widely adopted conventions.

For example, we need to be sure to save our files in UTF-8 encoding. While ASCII encoding
is still supported by Python, it’s a poor choice for modern programming. We’ll also need to
be sure our editor uses spaces instead of the tab character. This is often a configuration

setting in programming editors. Using Unix newlines is also helpful for portability.

48 Statements and Syntax

Getting ready
To edit Python scripts, we’ll need a good programming editor. It’s nearly impossible to

suggest just one. So we’ll suggest a few.

The JetBrains PyCharm editor has numerous features. The community edition version is

free. See https://www.jetbrains.com/pycharm/download/.

ActiveState has Komodo IDE, which is also very sophisticated. The Komodo Edit version is
free and does some of the same things as the full Komodo IDE. See http://komodoide. co

m/komodo-edit/.
Notepad++ is good for Windows developers. See https://notepad-plus-plus.org.

BBEdit is very nice for macOS X developers. See http: //www.barebones.com/products

/bbedit/. Sublime is also popular on macOS X. See https://www.sublimetext.com.

For Linux developers, there are several built-in editors, including Vim and gedit. Since
Linux tends to be biased toward developers, the editors available are all suitable for writing

Python.
It is helpful is to have two windows open while working:
« An editor to create the final script or module file.

+ A terminal session with Python’s >>> prompt, where we can try things out to see

what works and what doesn’t.

Most editors recognize the .py extension and provide appropriate formatting based on

PEP-8. This generally includes the following:
+ The file encoding should be UTF-8.
+ Indentation should be four spaces.

« We want the Tab key on the keyboard to insert spaces instead of the tab character,
\t.

Once the editor is configured, we can write a script file that other people can easily use or

https://www.jetbrains.com/pycharm/download/
http://komodoide.com/komodo-edit/
http://komodoide.com/komodo-edit/
https://notepad-plus-plus.org
http://www.barebones.com/products/bbedit/
http://www.barebones.com/products/bbedit/
https://www.sublimetext.com
https://peps.python.org/pep-0008/

Chapter 2 49

extend.

How to doit...

Here’s how we create a script file:

1. The first line of most Python script files looks like this:

#!/usxr/bin/env python3

This sets an association between the file you’re writing and Python. If the file’s mode
is set to executable with the bash chmod command, and the directory is on the OS
PATH list, the script will be a first-class application, as usable as any of the built-in

commands.

For Windows, the filename-to-program association is done through a setting in the
Default Programs control panel. Find the panel for Set Associations, and make
sure . py files are bound to the Python program. This is often set by the installer, and

we rarely need to change it or set it manually.

2. After the preamble, convention suggests we include a triple-quoted block of text.
This is the documentation string (called a docstring) for the file we’re going to

create:

A summary of this script.

Because Python triple-quoted strings can be indefinitely long, feel free to write as
much as necessary. This should be the primary vehicle for describing the script or

library module. This can even include examples of how it works.

3. Now comes the interesting part of the script: the part that really does something.
We can write all the statements we need to get the job done. For now, we’ll use this

as a placeholder:

50 Statements and Syntax

print('hello world')

This isn’t much, but at least the script does something. It’s common to create function
and class definitions, as well as to write statements to use the functions and classes

to do things.

For our first, simple script, all of the statements must begin at the left margin and must be
complete on a single line. There are many Python statements that have blocks of statements
nested inside them. These internal blocks of statements will be indented to clarify their
scope. Generally—because we set indentation to four spaces—we can hit the Tab key to

properly indent the code.

Our file should look like this:

#!/usx/bin/env python3

My First Script: Calculate an important value.

print (355 / 113)

How it works...
Unlike other languages, there’s very little boilerplate in Python. There’s only one line of

overhead and even the #!/usx/bin/env python3 line is generally optional.

Why do we set the encoding to UTF-8? While the language was originally designed to
work using just the original 128 ASCII characters, we often find that ASCII is limiting. This
is legal Python if we save our file in UTF-8:

p = 355/113
print(u)

It’s important to be consistent when choosing between spaces and tabs in Python. They

are both more or less invisible, and mixing them up can easily lead to errors when trying

Chapter 2 51

to run the script. Spaces are suggested.

The initial #! line is a comment. Because the two characters are sometimes called sharp
and bang, the combination is called “shebang.” Everything between a # and the end of the
line is ignored. The Linux loader (a program named execve) looks at the first few bytes of
a file to see what the file contains. These first few bytes are sometimes called magic bytes
because the loader’s behavior seems magical. When present, this two-character sequence
of #! is followed by the path to the program responsible for processing the rest of the data
in the file. We prefer to use /usr/bin/env to start the Python program for us. We can

leverage the env program to make Python-specific environment settings.

There's more...

The Python Standard Library documents are derived, in part, from the documentation
strings present in the module files. It’s common practice to write sophisticated docstrings
in modules, packages, and scripts. There are tools like pydoc and Sphinx that can reformat
the module docstrings into elegant documentation. We’ll look at this in the Writing better
docstrings with RST markup recipe, as well as the Using Sphinx autodoc to create the API

reference recipe in Chapter 17.

Additionally, unit test cases can be included in the docstrings. Tools like doctest can extract
examples from the document strings and execute the code to see if the answers in the
documentation match the answers found by running the code. This is the subject of many

recipes in Chapter 15. Many examples in this book are validated by doctest.

Triple-quoted documentation strings are preferred over # comments. While all text between
and the end of the line is ignored, this is limited to a single line; the conventional approach

is to use it sparingly. A docstring can be of indefinite size; they are used widely.

There’s another bit of overhead that’s sometimes included. The Vim and gedit editors let
us keep edit preferences in the file. This is called a modeline. Here’s a typical modeline

that’s useful for Python:

vim: tabstop=8 expandtab shiftwidth=4 softtabstop=4

52 Statements and Syntax

This makes sure any tab characters will be transformed into eight spaces; when we hit the
Tab key, we’ll shift four spaces. This is widely used because tab characters are traditionally
indented eight spaces, and this replacement is likely to create proper indentation. This
setting is embedded in the code; we don’t have to do any Vim setup to apply these settings
to our Python script files.

See also
« We'll look at how to write useful document strings in the Including descriptions and

documentation and Writing better docstrings with RST markup recipes.

« For more information on suggested style, see PEP-8.

Writing long lines of code

There are many times when we need to write lines of code that are so long that they’re
very hard to read. Many people like to limit the length of a line of code to 80 characters or
fewer. It’s a well-known principle of graphic design that a narrower area of text is easier
to read. See http://webtypography.net/2.1.2 for a deeper discussion of line width and
readability.

While fewer characters per line is easier on the eyes, our code can refuse to cooperate with

this principle. How can we break long Python statements into more manageable pieces?

Getting ready

Let’s say we’ve got something like this:

example_value = (63/25) * (17+15*math.sqrt(5)) / (/+15*math.sqrt(5))

mantissa_fraction, exponent = math.frexp(example_value)
mantissa_whole = (mantissa_fraction*2**53)

>>> message_text = f'the internal representation is
{mantissa_whole:d}/2**53*2**{exponent:d}"'
>>> (message_text)

https://www.python.org/dev/peps/pep-0008/
http://webtypography.net/2.1.2

Chapter 2 53

the internal representation is 7074237752514592/2**53*2%*2

This code includes a long formula, and a long format string into which we’re injecting
values. This looks bad when typeset in a book; the f-string line may be broken incorrectly.
It may look bad on our screen when trying to edit this script. (For more on f-strings, see

Building complicated strings with f-strings in Chapter 1.)

We can’t haphazardly break Python statements into chunks. The syntax rules are clear that

a statement must be complete on a single logical line.

The term “logical line” provides a hint as to how we can proceed. Python makes a distinction
between logical lines and physical lines; we’ll leverage these syntax rules to break up long

statements.

How to doit...

Python gives us several ways to wrap long statements so they’re more readable:

» We can use \ at the end of a line to continue the logical line onto the next physical

line. While this always works, it can be hard to spot the \.

« Python has a rule that a statement can span multiple logical lines because the (),
[1, and {} characters must balance. Further, we can also exploit the way Python
automatically concatenates adjacent string literals to make a single, longer string

literal: ("a" "b") is the same as "ab".

+ In some cases, we can decompose a statement into multiple statements by assigning

intermediate results to separate variables.
We'll look at each one of these in separate parts of this recipe.

Using a backslash to break a long statement into logical lines

1. If there’s a meaningful break, insert the \ to separate the statement:

54 Statements and Syntax

>>> message_text = f'the internal representation is \

. {mantissa_whole:d}/2**53*2**{exponent:d}"'

For this to work, the \ must be the last character on the line. An extra space after the \
is fairly hard to see; some care is required. The PEP-8 proposal provides guidelines on

formatting and tends to discourage this technique.

In spite of this being a little hard to see, the \ can always be used. Think of it as the last

resort in making a line of code more readable.

Using the () characters to break a long statement into sensible pieces

1. Write the whole statement on one line, even if it’s confusing:

>>> example_valuel *math.sqrt(5)) /
(7+15*math.sqrt(5))

Add the extra () characters, which don’t change the value but allow breaking the

expression into multiple lines:

>>> example_value2 = (63/25) * ((17/+15*math.sqrt(5)) /
(7+15*math.sqrt(5)))

>>> example_value2 == example_valuel
True

2. Break the line inside the () characters:
>>> example_value3 = (63/25) * (
(17+15*math.sqrt(5))
)]

/ (7+15*math.sqrt(5))

>>> example_value3 == example_valuel

True

The matching () characters technique is quite powerful and will work in a wide variety of

https://www.python.org/dev/peps/pep-0008/

Chapter 2 55

cases. This is widely used and highly recommended.

We can almost always find a way to add extra () characters to a statement. In rare cases
when we can’t add () characters, we can fall back on using \ to break the statement into

sections.

Using string literal concatenation
We can combine the () characters with another rule that joins adjacent string literals. This

is particularly effective for long, complex format strings:
1. Wrap the long string value in the () characters.

2. Break the string into meaningful substrings:

>>> message_text = (
. f'the internal representation '
. f'is {mantissa_whole:d}/2**53*2**{exponent:d}"'

)

>>> message_text
'the internal representation is 7074237752514592/2**53*2%*2"

We can always break a long string literal into adjacent pieces. We can then use as many

physical line breaks as we need. With string literal values, no explicit operator is needed.

Assighing intermediate results to separate variables

Here’s the context for this technique:

>>> example_value *math.sqrt(5)) / (7/+15*math.sqrt(5))

We can break this into three intermediate values:

1. Identify sub-expressions in the overall expression. Assign these to variables:

56 Statements and Syntax

*math.sqrt(5))

*math.sqrt(5))

2. Replace the sub-expressions with the variables that were created:

>>> example_value = a * b / c

We can always take a sub-expression and assign it to a variable, and use the variable

everywhere the sub-expression was used. The 15*sqrt(5) product is repeated; this, too, is

a good candidate for refactoring the expression.

We didn’t give these variables descriptive names. In some cases, the sub-expressions have

some semantics that we can capture with meaningful names.

How it works...

The Python language manual makes a distinction between logical lines and physical lines.
A logical line contains a complete statement. It can span multiple physical lines through
a technique called line joining. The manual identifies two techniques: explicit line
joining and implicit line joining.

The use of \ for explicit line joining is sometimes helpful. Because it’s easy to overlook,

it’s not generally encouraged. PEP-8 suggests this should be the method of last resort.

The use of () for implicit line joining can be used in many cases. It often fits semantically

with the structure of the expressions, so it is encouraged.

There's more...

Expressions are used widely in a number of Python statements. Any expression can have

() characters added. This gives us a lot of flexibility.

There are, however, a few places where we may have a long statement that does not

specifically involve a long expression. The most notable example of this is the import

https://www.python.org/dev/peps/pep-0008/

Chapter 2 57

statement—it can become long, but doesn’t use any expressions. In spite of not having
a proper expression, it does, however, still permit the use of (). The following example

shows we can surround a very long list of imported names:

(

sin, cos, tan,
sqrt, log, frexp)

While the () characters are emphatically not part of an expression, they are part of the

syntax available to help make the statement more readable.

See also
« Implicit line joining also applies to the matching [] and {} characters. These apply

to collection data structures that we’ll look at in Chapter 4.

Including descriptions and documentation

When we have a useful script, we often need to leave notes for ourselves—and others—on
what it does, how it solves some particular problem, and when it should be used. This

recipe contains a suggested outline to help make the documentation reasonably complete.

Getting ready
If we've used the Writing Python script and module files — syntax basics recipe to start a script
file, we’ll have a small documentation string in place. We’ll expand on this documentation

string in this recipe.

There are other places where documentation strings should be used. We’ll look at these

additional locations in Chapter 3 and Chapter 7.
We have two general kinds of modules for which we’ll be writing summary docstrings:

+ Library modules: These files will contain mostly function definitions as well as
class definitions. The docstring summary should focus on the definitions in the

module, describing what the module is. The docstring can provide examples of using

58 Statements and Syntax

the functions and classes that are defined in the module. In Chapter 3, and Chapter 7,

we’ll look more closely at these modules.

« Scripts: These are files that we generally expect will do some real work. The
docstring should describe what the module does and how to use it. The options,

environment variables, and configuration files are important parts of this docstring.

We will sometimes create files that contain a little of both. This requires a proper balance

between doing and being.

How to doit...

The first step in writing documentation is the same for both library modules and scripts:

1. Write a brief summary of what the script or module is or does. The summary doesn’t
need to dig too deeply into how it works. Like a lede in a newspaper article, it
introduces the who, what, when, where, how, and why of the module. Details will

follow in the body of the docstring.

It can help to avoid needless phrases like This script. We might start our module docstring

like this:

Downloads and decodes the current Special Marine Warning (SMW)
for the area 'AKQ'.

We'll separate the other steps based on the general focus of the module.

Writing docstrings for scripts

When we document a script, we need to focus on the needs of a person who will use the

script.
1. Start as shown earlier, creating a summary sentence.

2. Sketch an outline for the rest of the docstring. We’ll be using ReStructuredText
(RST) markup. Write the topic on one line, then put a line of = under the topic to

Chapter 2 59

make it a proper section title. Remember to leave a blank line between each topic.
Topics may include:

« SYNOPSIS: A summary of how to run this script. If the script uses the
argparse module to process command-line arguments, the help text produced
by argparse is the ideal synopsis text. Other installable tools like click or
invoke can also produce elegant synopsis text. (See Using argparse to get

command-line input in Chapter 6.)
« DESCRIPTION: An explanation of what this script does.

« OPTIONS: This provides the details of all parameters and options. (See Using

argparse to get command-line input in Chapter 6.)

« ENVIRONMENT: This provides the place to describe the environment vari-
ables and what they mean. (See Using the OS environment settings in Chapter 6.)

+ FILES: The names of files that are created or read by a script are very important

pieces of information.

« EXAMPLES: Some examples of using the script are always helpful. In some

cases, this is the only part a user will read.
« SEE ALSO: Any related scripts or background information.

Other topics that might be interesting include EXIT STATUS, AUTHOR, BUGS,
REPORTING BUGS, HISTORY, or COPYRIGHT. In some cases, advice on re-
porting bugs, for instance, doesn’t really belong in a module’s docstring, but rather

elsewhere in the project’s GitHub or SourceForge pages.

3. Fill in the details under each topic. It’s important to be accurate. Since the docu-
mentation is in the same file as the code, it’s easier to be correct, complete, and

consistent.

Here’s an example of a docstring for a script:

60 Statements and Syntax

nun

Downloads and decodes the current Special Marine Warning (SMW)
for the area \textquotesingle AKQ\textquotesingle{}

SYNOPSIS

python3 akqg_weather.py

DESCRIPTION

Writes a file, ''AKW.html'"'.

EXAMPLES

Here's an example::

slott\$ python3 akg_weather.py
None issued by this office recently.

In the SYNOPSIS section, we used : : as a separate paragraph. In the EXAMPLES section, we
used :: at the end of a paragraph. Both versions are hints to the RST processing tools that
the indented section that follows should be typeset as code. See Chapter 17, Documentation
and Style.

Writing docstrings for library modules
When we document a library module, we need to focus on the needs of a programmer who

will import the module to use it in their code:

1. Sketch an outline for the rest of the docstring. We’ll be using RST markup. Write the

topic on one line. Include a line of = characters under each topic to make the topic

Chapter 2 61

into a proper heading. Remember to leave a blank line between each paragraph.
2. Start as shown previously, creating a summary sentence:

« DESCRIPTION: A summary of what the module contains and why the module

is useful
« MODULE CONTENTS: The classes and functions defined in this module
+ EXAMPLES: Examples of using the module

3. Fill in the details for each topic. The module contents may be a long list of class
or function definitions. The docstring should be a summary. Within each class or

function, we’ll have a separate docstring with the details for that item.

How it works...

Over the decades, the man page outline has evolved to contain a complete description of
Linux commands. This general approach to writing documentation has proven useful and
resilient. We can capitalize on a large body of experience, and structure our documentation

to follow the man page model.

We want to prepare module docstrings that can be used by the Sphinx Python docu-
mentation generator (see http://www.sphinx-doc.org/en/stable/). This is the tool
used to produce Python’s documentation files. The autodoc extension in Sphinx will
read the docstring headers on our modules, classes, and functions to produce the final

documentation that looks like other modules in the Python ecosystem.

There's more...

RST markup has a simple, central syntax rule: paragraphs are separated by blank lines.

This rule makes it easy to write documents that can be examined by the various RST

processing tools and reformatted to look nice.

It can be challenging to write good software documentation. There’s a broad chasm between

too little information and documentation that recapitulates details apparent from looking

http://www.sphinx-doc.org/en/stable/

62 Statements and Syntax

at the code.

What’s important is to focus on the needs of a person who doesn’t know too much about the
software or how it works, but can read the Python code. Provide this semi-knowledgeable
user with the information they need to understand what the software does and how to use

it.

See also

« We look at additional techniques in Writing better docstrings with RST markup.

« If we’ve used the Writing Python script and module files — syntax basics recipe, we’ll
have put a documentation string in our script file. When we build functions in
Chapter 3, and classes in Chapter 7, we’ll look at other places where documentation

strings can be placed.
« See http://www.sphinx-doc.org/en/stable/ for more information on Sphinx.

+ For more background on the man page outline, see https://en.wikipedia.org/w

iki/Man_page.

Writing better docstrings with RST markup

When we have a useful script, we often need to leave notes on what it does, how it works,
and when it should be used. Many tools for producing documentation, including Docutils,
work with RST markup. This allows us to write plain text documentation. It can include
some special punctuation to pick a bold or italic font variant to call attention to details. In

addition, RST permits organizing content via lists and section headings.

Getting ready
In the Including descriptions and documentation recipe, we looked at putting some basic
documentation into a module. We’ll look at a few of the RST formatting rules for creating

readable documentation.

http://www.sphinx-doc.org/en/stable/
https://en.wikipedia.org/wiki/Man_page
https://en.wikipedia.org/wiki/Man_page

Chapter 2 63

How to do it...
1. Start with an outline of the key point, creating RST section titles to organize the
material. A section title has a one-line title followed by a line of underline characters

using =, -, A, ~ as long as the title.

A heading will look like this:

The heading text is on one line and the underlining characters are on the next line.
This must be surrounded by blank lines. There can be more underline characters

than title characters, but never fewer.

The RST tools will infer our chosen pattern of using underlining characters. As long
as the underline characters are used consistently, the docutil tools will detect the

document’s structure.

When starting out, it can help to have an explicit standard for heading underlines:

Character Level

= 1

2
A 3
4

2. Fill in the various paragraphs. Paragraphs (including the section titles) are separated

by at least one empty line.

3. If the programming editor has a spell checker, use it. Doing this can be frustrating

because the code samples often have abbreviations that fail spell checking.

How it works...
The Docutils conversion programs will examine the document, looking for sections and

body elements. A section is identified by a title. The underlines are used to organize the

64 Statements and Syntax

sections into a properly nested hierarchy.

A properly nested document might have the following sequence of underline characters:

MORE

AAANAN

EXTRA

lAYAYAYAYAN

LEVEL 2

LEVEL 3

AANANANN

When an HTML file is created from the documentation it will have <h1>, <h2>, and <h3>
tags for the various levels. Creating a KIgX file requires some additional configuration
choices, but the common Article template means the resulting document will use \section,
\subsection, and \subsubsection headings. These final presentation choices aren’t our
primary concern when writing; the most important point is to use proper underlines to

reflect the desired organization.

There are several different kinds of body elements the RST parser can recognize. We've

shown a few. A more complete list includes:

» Paragraphs of text: These might use inline markup for different kinds of emphasis

or highlighting.

Chapter 2 65

« Literal blocks: These are introduced with : : and indented with four spaces. They
may also be introduced with the .. parsed-literal:: directive. A doctest block is

indented with four spaces and includes the Python >>> prompt.

« Lists, tables, and block quotes: We’ll look at these later. These can contain other

body elements.

« Footnotes: These are special paragraphs. When rendered, they may be displayed at
the bottom of a page or at the end of a section. These can also contain other body

elements.

+ Hyperlink targets, substitution definitions, and RST comments: These are

more specialized text items that we won’t look at closely here.

There's more...

In the Including descriptions and documentation recipe, we looked at several different kinds

of body elements we might use:

« Paragraphs of text: This is a block of text surrounded by blank lines. Within these,
we can make use of inline markup to emphasize words or phrases. We’ll look at

inline markup in the Writing better docstrings with RST markup recipe.

+ Lists: These are paragraphs that begin with something that looks like a number or a
bullet. We might have paragraphs like this.
It helps to have bullets because:

- They can help clarify

- They can help organize

Other characters can be used at the start of the line, but - and * seem to be the most

common choices.

« Numbered lists: There are a variety of patterns that are recognized. This includes
leading digits or letters followed by . or). Using # instead of a digit or letter will

continue from the previous paragraph value.

66 Statements and Syntax

+ Literal blocks: A code sample is presented literally, without looking for RST ele-
ments. The text for this must be indented. A handy prefixis ::. A .. code-block::

directive is also possible.

+ Directives: A directive is a paragraph that generally looks like .. directive::. It
may have some content that’s indented to be contained within the directive. It might

look like this:

important::
Do not flip the bozo bit.

The .. important:: text is the directive. This is followed by text indented within

the directive.

Using directives
Docutils has several built-in directives. The Sphinx tool adds a large number of additional

directives with a variety of features.

Some of the most commonly used directives are the admonitions: attention, caution,
danger, error, hint, important, note, tip, warning, and a generic admonition. These are
compound body elements because they have nested text within them. Above, we provided

an example of the important admonition.

Using inline markup

Within a paragraph, we have several forms of inline markup we can use:

« We can surround a word or phrase with * for *emphasis*. This is commonly typeset

as italic.

« We can surround a word or phrase with ** for **strong**. This is commonly typeset

as bold.

« We surround references with single back-ticks, ~. Links are followed by an underscore,

. We might use “section title~ to refer to a specific section within a document.

Chapter 2 67

We don’t generally need to put any markup around URLs. The Docutils tools
recognize these. Sometimes we want a word or phrase to be shown and the URL
concealed. We can use this: ~the \textbf{Sphinx} documentation

<http://www.sphinx-doc.org/en/stable/>"_.

« We can surround code-related words with a double back-tick, ~ ~, to make them look

like ~ ~code™ . This will be typeset as code.

There’s also a more general technique called a role. A role starts with :woxrd: as the role
name, followed by the applicable word or phrase in single ~ back-ticks. A text role looks

like this: :strong:~this".

There are a number of standard role names, including :emphasis:, :1iteral:,
:code:, :math:, :pep-reference:, :rfc-reference:, :strong:, :subscript:,
:superscript:, and :title-reference:. Some of these are also available with simpler

markup like *emphasis* or **strong**.

Also, we can define new roles with a directive. If we want to do very sophisticated
processing, we can provide the Docutils tool with class definitions for handling new roles.

This allows us to tweak the way our document is processed.

See also

« For more information on RST syntax, see http://docutils.sourceforge.net. This

includes a description of the Docutils tool.

« For information on Sphinx Python Documentation Generator, see http://www.

sphinx-doc.org/en/stable/.

Desighing complex if...elif chains

In most cases, our scripts will involve a number of choices. Sometimes the choices are
simple, and we can judge the quality of the design with a glance at the code. In other cases,
the choices are more complicated, and it’s not easy to determine whether or not our if

statements are designed properly to handle all of the conditions.

http://docutils.sourceforge.net
http://www.sphinx-doc.org/en/stable/
http://www.sphinx-doc.org/en/stable/

68 Statements and Syntax

In the simplest case, we have one condition, C, and its inverse, =C. These are the two
conditions for an if. . .else statement. One condition, C, is stated in the if clause; the

inversion condition, —C, is implied in the else clause.

This follows the Law of the Excluded Middle: we’re claiming there’s no missing alterna-
tive between the two conditions, C and —C. For a complex condition, though, this can be

difficult to visualize.

If we have something like:

if weather == Weather.RAIN and plan == Plan.GO_OUT:
bring("umbrella")

else:
bring("sunglasses")

It may not be immediately obvious, but we’ve omitted a number of possible alternatives.
The weather and plan variables have four different combinations of values. One of the

conditions is stated explicitly, the other three are assumed:
+ weather == RAIN and plan == GO_OUT. Bringing an umbrella seems right.
« weather != RAIN and plan == GO_OUT. Bringing sunglasses seems appropriate.

« weather == RAIN and plan != GO_OUT. If we're staying in, then neither accessory

seems right.

+ weather != RAIN and plan != GO_OUT. Again, the accessory question seems moot

if we’re not going out.

How can we be sure we haven’t missed anything? How can we be sure we have not

conflated too many things into a condition that’s assumed instead of being stated?

Getting ready
Let’s look at a concrete example of an if...elif chain. In the casino game of Craps, there
are a number of rules that apply to a roll of two dice. These rules apply on the first roll of

the game, called the come-out roll:

Chapter 2 69

« 2,3, 0r 12 is craps, which is a loss for most bets.
« 7 or 11 is a winner for most bets.

+ The remaining numbers establish a point. The dice-rolling continues based on

another set of rules.

We'll use this set of three conditions as an example for looking at this recipe because it has

a potentially vague clause in it.

How to doit...

When we write an if statement, even when it appears trivial, we need to be sure that all

conditions are covered.

1. Enumerate the conditions we know. In our example, we have three rules: the (2, 3,
12) rule, the (7, 11) rule, and a vague statement of “the remaining numbers” This can

form a first draft of an if statement.

2. Determine the universe of all possible alternatives. For this example, there are 11

alternative outcomes: the numbers from 2 to 12, inclusive.

3. Compare the various if and elif conditions, C, with the universe of alternatives, U.

There are three possible design patterns:

« We have more if conditions in the code than are possible in the universe of
alternatives, C C U. The most common cause is failing to completely enumerate
all possible alternatives in the universe. We might, for example, have modeled
dice using 0 to 5 instead of 1 to 6. The universe of alternatives appears to be

the values from 0 to 10, yet there are conditions for 11 and 12.

« We have gaps in the conditions in our code, U \ C # @. The most common
cause of alternatives in the universe without a clearly-stated if condition is
failing to fully understand the conditions in the code. We might, for example,
have enumerated the values as two tuples instead of sums. The numbers 2, 3

and 12 are defined by a number of pairs, including (1, 1), (1, 2), and (6, 6). It’s

70 Statements and Syntax

possible to overlook the condition (2, 1), leaving this untested by any clause of

the if statement.

« We can prove there’s a match between conditions expressed in the code and
the universe of alternatives, U = C. This is ideal. The universe of all possi-
ble alternatives matches all the conditions in the if and elif clauses of the

statement.

In this example, it’s easy to enumerate all of the possible alternatives. In other cases, it can

take some careful reasoning to understand any gaps or omissions.

In this example, we have a vague term, remaining numbers, which we can replace with

the list of values (4, 5, 6, 8, 9, 10). Supplying a list removes any possible gaps and doubts.

When there are exactly two alternatives, we can write a condition expression for one of

the alternatives. The other condition can be implied; an if and else will work.

When we have more than two alternatives, we can use this recipe to write a chain of if

and elif statements, one statement per alternative:

1. Write an if ... elif ... elif chain that covers all of the known alternatives. For our

example, it might start like this:

dice = die_1 + die_2

if dice in (2, 3, 12):
game.craps()

elif dice in (7, 11):
game.winner()

elif dice in (4, 5, 6, 8, 9, 10):
game.point(dice)

2. Add an else clause that raises an exception, like this:

else:
raise Exception('Design Problem')

This extra else gives us a way to positively identify when a logic problem is found. We

Chapter 2 71

can be sure that any design error we made will lead to a conspicuous problem when the

program runs. Ideally, we’ll find any problems while we’re unit testing.

In this case, it is clear that all 11 alternatives are covered by the if statement conditions.
The extra else can’t ever be used. Not all real-world problems have this kind of easy proof
that all the alternatives are covered by conditions. It can help to provide a noisy failure

mode.

How it works...

Our goal is to be sure that our program works reliably. While testing helps, we can still

have the same wrong assumptions when doing design and creating test cases.

While rigorous logic is essential, we can still make mistakes. Further, someone doing
ordinary software maintenance might introduce an error. Adding a new feature to a

complex if statement is a potential source of problems.

This Else-Raise design pattern forces us to be explicit for each and every condition.
Nothing is assumed. As we noted previously, any error in our logic will be uncovered if

the exception gets raised.

Crashing with an exception is sensible behavior in the presence of a design problem. While
an alternative is to write a message to an error log, a program with this kind of profound

design flaw should be viewed as fatally broken.

There's more...

In many cases, we can derive an if...elif...elif chain from an examination of the
desired post condition at some point in the program’s processing. For example, we may

need a statement that establishes something like m is equal to the larger of a or b.

(For the sake of working through the logic, we’ll avoid Python’s handy m = max(a, b),

and focus on the way we can compute a result from exclusive choices.)

We can formalize the final condition like this:

72 Statements and Syntax

(m=avm=b)Am>arm>b

We can work backward from this final condition, by writing the goal as an assert statement:

do something
assexrt (m == aor m==Db) and m >= a and m >= b

Once we have the goal stated, we can identify statements that lead to that goal. Clearly,
assignment statements like m = a orm = b would be appropriate, but each of these works

only under limited conditions.

We can derive the precondition that shows when these statements should be used. The

preconditions for an assignment statement will be written in if and elif expressions.

We need to use the statement m = a when a >= b. Similarly, we need to use the statement

m = b when b >= a. Rearranging logic into code gives us this:

if a >= b:
m=a
elif b >= a:
m=>b

else:

raise Exception('Design Problem')

assexrt (m == aorm==Db) and m >= a and m >= b

Note that our universe of conditions, U = {a > b,b > a}, is complete; there’s no other
possible relationship. Also notice that in the edge case of a = b, we don’t actually care
which assignment statement is used. Python will process the decisions in order and will
execute m = a. The fact that this choice is consistent shouldn’t have any impact on our
design of the if...elif...elif chain. We can design the conditions without regard to

the order of evaluation of the clauses.

Chapter 2 73

See also

« This is somewhat similar to the syntactic problem of the “dangling else” See

https://docs.oracle.com/javase/specs/jls/se9/html/jls-14. html.

This isn’t the same problem; Python’s indentation removes the “dangling else” syntax
problem. This is an adjacent semantic problem of trying to be sure that all conditions

are properly accounted for in a complex if...elif...elif chain.

Saving intermediate results with the := “walrus”
operator

Sometimes we’ll have a complex condition where we want to preserve an expensive
intermediate result for later use. Imagine a condition that involves a complex calculation;
the cost of computing is high measured in time, input-output operations, memory resources,

or all three.

An example includes doing repetitive searches using the Regular Expression (re) package.
A match() method can do quite a bit of computation before returning either a Match object
or a None object to show the pattern wasn’t found. Once this computation is completed,
we may have several uses for the result, and we emphatically do not want to perform the
computation again. Often, the initial use is the simple check to see if the result is a Match

object or None.

This is an example where it can be helpful to assign a name to the value of an expression
and also use the expression in an if statement. We’ll look at how to use the “assignment
expression” or “walrus” operator. It’s called the walrus because the assignment expression

operator, :=, looks like the face of a walrus to some people.

Getting ready
Here’s a summation where—eventually—each term becomes so small that there’s no point

in continuing to add it to the overall total:

https://docs.oracle.com/javase/specs/jls/se9/html/jls-14.html

74 Statements and Syntax

Z <2nl—i-1>2

0<n<oo

In effect, this is something like the following summation function:
>>> 5 = ((1L/ (2 *n+ 1)) ** n (0,))

What’s not clear is the question of how many terms are required. In the example, we’ve

summed 20,000 values. But what if 16,000 are enough to provide an accurate answer?

We don’t want to write a summation like this:

This example repeats an expensive computation, (1/(2*n+1))**2. We can avoid processing

that includes this kind of time-wasting overhead by using the walrus operator.

How to doit...

1. First we isolate an expensive operation that’s part of a conditional test. In this

example, the variable term is used to hold the expensive result:

term =

term >=
p = p + term

2. Rewrite the assignment statement to use the := assignment operator. This replaces

the simple condition of the if statement.

3. Add an else condition to break out of the for statement if no more terms are needed.

Here’s the results of these two steps:

Chapter 2 75

Note that we changed the summation variable. In the previous step of the recipe, it
was p. In this step, it’s g. This permits easy side-by-side comparisons to be sure the

results are still correct.

The assignment expression : = lets us do two things in the if statement.

How it works...

The assignment expression operator := saves an intermediate result. The operator’s re-
sult value is the same as the right-hand side operand. This means that the expression
a + (b := c+d) is the same as the expression a+(c+d). The difference between the ex-
pressiona + (b := c+d) and the expression a+(c+d) is the side-effect of setting the value

of the b variable partway through the evaluation.

An assignment expression can be used in almost any kind of context where expressions
are permitted in Python. The most common cases are if statements. Another good idea is

inside a while condition.

They’re also forbidden in a few places. They cannot be used as the operator in an expression
statement. We’re specifically prohibited from writing a := 2 as a statement: there’s a
perfectly good assignment statement for this purpose and an assignment expression, while

similar in intent, is potentially confusing.

There's more...

We can do some more optimization of our infinite summation example, shown earlier in
this recipe. The use of a for statement and a range () object seems simple. The problem is
that we want to end the for statement early—when the terms being added are so small

that they have no significant change in the final sum.

76 Statements and Syntax

We can combine the early exit with the term computation:

We’ve used a while statement with the assignment expression operator. This will compute a
value using (1/(2*n+1))**2, and assign this to the term variable. If the value is significant,
we’ll add it to the sum, r, and increment the value for the n variable. If the value assigned

to texm is too small to be significant, the while statement will end.

Here’s another example, showing how to compute running sums of a collection of values.
This looks forward to concepts in Chapter 4. Specifically, this shows a list comprehension

built using the assignment expression operator:

data = [
>>> total =
>>> running_sum = [(total := total + d)
>>> total
112

>>> running_sum
[11, 24, 41, 60, 83, 112]

We’ve started with some data, in the data variable. This might be minutes of exercise each
day for most of a week. The value of the final running_sum variable is a list object, built by
evaluating the expression (total := total + d) for each value, d, in the data variable.
Because the assignment expression changes the value of the total variable, the resulting

list is the result of each new value being accumulated.

See also
+ For details on assignment expression, see PEP-572, where the feature was first

described.

https://www.python.org/dev/peps/pep-0572/

Chapter 2 77

Avoiding a potential problem with break
statements

The common way to understand a for statement is that it creates a for all condition. At
the end of the statement, we can assert that, for all items in a collection, the processing in

the body of the statement has been done.

This isn’t the only meaning a for statement can have. When the break statement is used
inside the body of a for statement, it changes the semantics to there exists. When the break
statement leaves the for (or while) statement, we can assert there exists at least one item

that caused the enclosing statement to end.

There’s a side issue here. What if the for statement ends without executing the break
statement? Either way, we're at the statement after the for statement. The condition that’s
true upon leaving a for or while statement with a break statement can be ambiguous. We

can’t easily tell; this recipe gives some design guidance.

The problem is magnified when we have multiple break statements, each with its own
condition. How can we minimize the problems created by having these complicated

conditions for leaving a for or while statement?

Getting ready
When parsing configuration files, we often need to find the first occurrence of a : or =
character in a string. The property file format uses a property name and : or = followed

by a value.

Finding the punctuation mark is an example of a there exists modification to a for statement.
We don’t want to process all characters; we want to know where the leftmost : or = character

is found.

Here’s the sample data we're going use as an example:

>>> sample_1 = "some_name = the_value"

78 Statements and Syntax

Here’s a small for statement to locate the leftmost : or = character in the sample string

value:

position ((sample_1)):
sample_1[position] =1t

(f"name={sample_1[:position]!r}",
f"value={sample_1[position+1:]!x}")
'some_name ' value=' the_value'

When the = character is found, the break statement ends the for statement. The value of

the position variable shows where the desired character was found.

What about the following edge case?

>>> sample_2 = "name_only"
>>> position ((sample_2)):
sample_2[position] =t

(f"name={sample_2[:position]!r}",
f"value={sample_2[position+1:]!x}")
name='name_onl' value="'"

The result is awkwardly wrong: the y character got dropped from the value of name. Why
did this happen? And, more importantly, how can we make the condition at the end of the

for statement clearer?

How to doit...

Every statement establishes a post-condition. When designing a for or while statement,
we need to articulate the condition that should be true at the end of the statement. Ideally,
the post-condition is something simple like text[position] in '=:'. However, in the
case where there’s no = or : in the given text, the overly simple post-condition can’t be

true.
At the end of the for statement, one of these two things are true:

« Either the character with the index of positionis : or =

Chapter 2 79

« Or all characters have been examined and no character is : or =
Our application code needs to handle both cases.

1. Write the obvious post-condition. We sometimes call this the happy-path condition

because it’s the one that’s true when nothing unusual has happened:

assert text[position] in '=:' # We found a

2. Create the overall post-condition by adding the conditions for the edge cases. In this

example, we have two additional conditions:
« There’sno =or :.

« There are no characters at all. This means the len() is zero, and the for
statement never actually did anything. This also means the position variable

will never be created.
In this example, then, we have discovered a total of three conditions:

e len(text) ==

« not('=' in text or ':' in text), which can be stated in a number of ways.
not(text[position] == ':' or text[position] == '=') might be most
clear.

« text[position] in

3. A while statement can be redesigned to have the complete set of post conditions
in the while clause. This can eliminate the need for a break statement. Proper

initialization of variables is still required.

4. When a for statement is being used, proper initialization of variables is required.
Add if statements for the various terminating conditions after the body of the for
statement. Here’s the resulting for statement and a complicated if statement to

examine all of the possible post conditions:

80 Statements and Syntax

>>> position = -
>>> position ((sample_2)):
sample_2[position] "=

position == -1:

(f"name=None value=None")
(sample_2[position] == ':' sample_2[position] == '
(f"name={sample_2!r} value=None")

(f"name={sample_2[:position]!r}",
f"value={sample_2[position+l:]!x}")
name="'name_only' value=None

In the statements after the for statement, we’ve enumerated all of the terminating condi-

tions explicitly.

How it works...

This approach forces us to work out the post-condition carefully so that we can be absolutely

sure that we know all the reasons the for or while statement ended.

The idea here is to forego any assumptions or intuition. With a little bit of discipline, we
can be sure of the post-conditions. It’s imperative to be explicit about the condition that’s
true when a statement works. This is the goal of our software, and we can work backward

from the goal by choosing the simplest statements that will make the goal conditions true.

There's more...

We can also use an else clause on a for statement to determine if the statement finished

normally or a break statement was executed. We can use something like this:

position ((sample_2)):
sample_2[position] ="
name, value = sample_2[:position], sample_2[position+1:]

(sample_2) >

Chapter 2 81

name, value sample_2,

.. name, value = ,
>>> (f"{name=!r} {value=!r}")
name='name_only' value=None

Using an else clause in a for statement is sometimes confusing, and we don’t recommend
it. It’s not clear if this version is substantially better than any of the alternatives. It’s too

easy to forget the reason why the else is executed because it’s used so rarely.

See also
+ A classic article on this topic is by David Gries, A note on a standard strategy for
developing loop invariants and loops. See http://www.sciencedirect.com/scienc

e/article/pii/0167642383900151

Leveraging exception matching rules

The try statement lets us capture an exception. When an exception is raised, we have a

number of choices for handling it:

« Ignore it: If we do nothing, the program stops. We can do this in two ways—don’t
use a try statement in the first place, or don’t have a matching except clause in the

try statement.

« Log it: We can write a message and use a raise statement to let the exception

propagate after writing to a log. The expectation is that this will stop the program.

+ Recover from it: We can write an except clause to do some recovery action to

undo any effects of the partially completed try clause.

« Silence it: If we do nothing (that is, use the pass statement), then processing is
resumed after the try statement. This silences the exception, but does not correct

the underlying problem, or supply alternative results as a recovery attempt.

« Rewrite it: We can raise a different exception. The original exception becomes a

http://www.sciencedirect.com/science/article/pii/0167642383900151
http://www.sciencedirect.com/science/article/pii/0167642383900151

82 Statements and Syntax

context for the newly raised exception.

What about nested contexts? In this case, an exception could be ignored by an inner try
but handled by an outer context. The basic set of options for each try context is the same.

The overall behavior of the software depends on the nested definitions.

The design of a try statement depends on the way that Python exceptions form a class
hierarchy. For details, see the Exception hierarchy section of Python Standard Library. For
example, the ZeroDivisionError exception is also an ArithmeticError and an Exception.
For another example, the FileNotFoundError exception is also an 0SError as well as an

Exception.

This hierarchy can lead to confusion if we’re trying to handle detailed exceptions as well

as generic exceptions.

Getting ready

Let’s say we’re going to make use of the shutil module to copy a file from one place to
another. Most of the exceptions that might be raised indicate a problem too serious to
work around. However, in the specific event of a FileNotFoundError exception, we’d like

to attempt a recovery action.

Here’s a rough outline of what we’d like to do:

source_dir = Path.cwd()/"data"

target_dir = Path.cwd()/"backup"
source_path source_dir.glob('**/*.csv'):
source_name = source_path.relative_to(source_dir)
target_path = target_dir / source_name
shutil.copy(source_path, target_path)

We have two directory paths, source_dir and target_dir. We’ve used the glob() method

to locate all of the files under source_dir that have *.csv files.

Chapter 2 83

The expression source_path.relative_to(source_dir) gives us the tail end of the file-
name, the portion after the directory. We use this to build a new, similar path under the
target_dir directory. This assures that a file named wcl.csv in the source_dir directory

will have a similar name in the target_dir directory.

The problems arise with handling exceptions raised by the shutil.copy() function. We
need a try statement so that we can recover from certain kinds of errors. We’ll see this

kind of error if we try to run this:

[Exrno 2] No such file or directory:

(We’ve replaced some details with . .. because they’ll be different on your computer.)

This exception is raised when the backup directory hasn’t been created. It will also happen
when there are subdirectories inside the source_dir directory tree that don’t also exist in
the target_dir tree. How do we create a try statement that handles these exceptions and

creates the missing directories?

How to doit...

1. Write the code we want to use indented in the try block:

shutil.copy(source_path, target_path)

2. Include the most specific exception classes first in an except clause. In this case, we

have a meaningful response to the specific FileNotFoundError exception.

3. Include any more general exceptions later. In this case, we’ll report any generic

OSError exception that’s encountered. This leads to the following:

target = shutil.copy(source_path, target_path)

FileNotFoundError:

84 Statements and Syntax

target_path.parent.mkdir(exist_ok= , parents=
target = shutil.copy(source_path, target_path)

OSError ex:
(f"Copy {source_path} to {target_path} error {ex}")

We’ve matched exceptions with the most specific first and the more generic after that.

We handled the FileNotFoundExrror exception by creating the missing directories. Then

we tried the copy() again, knowing it would now work properly.

We logged any other exceptions of the class 0SError. For example, if there’s a permission
problem, that error will be written to a log and the next file will be tried. Our objective is
to try and copy all of the files. Any files that cause problems will be logged, but the overall

copying process will continue.

And, yes, the line of code to copy the files is repeated in two distinct contexts. The first
repetition is when there has been no error. The second is after attempted recovery from
the initial error. To an extent, this feels like breaking the Don’t Repeat Yourself principle.

Let’s look at the alternative, which doesn’t seem as good.

To meet the DRY standard, we could try to nest this operation in a for statement. The
break statement is used if things work, otherwise, multiple attempts can be made. The

extra complication of the for statement seems to be worse than the repetition.

A common compromise is to write a one-line function that reduces the repetition to the
name of the function. This has the advantage of making it possible to change to another of

the shutil copy functions in one place.

How it works...

Python’s matching rules for exceptions are intended to be simple:
« Process except clauses in order.

« Match the actual exception against the exception class (or tuple of exception classes).

A match means that the actual exception object (or any of the base classes of the

Chapter 2 85

exception object) is of the given class in the except clause.

These rules show why we put the most specific exception classes first and the more general
exception classes last. A generic exception class like Exception will match almost every

kind of exception. We don’t want this first, because no other clauses will be checked.

There’s an even more generic class, the BaseException class. There’s no good reason
to ever handle exceptions of this class. If we do, we will be catching SystemExit and
KeyboardInterrupt exceptions; this interferes with the ability to kill a misbehaving appli-
cation. We only use the BaseException class as a superclass when defining new exception

classes that exist outside the normal exception hierarchy.

There's more...
Our example includes a nested context in which a second exception can be raised. Consider

this except clause snippet (taken out of context):

FileNotFoundError:

target_path.parent.mkdir(exist_ok= , parents=
target = shutil.copy(source_path, target_path)

If the mkdir () method or shutil.copy () functions actually raise exceptions while handling
the original FileNotFoundError exception, it won’t be handled. Any exceptions raised
within an except clause can crash the program as a whole. Handling these nested exceptions

can involve nested try statements.

We can rewrite the exception clause to include a nested try during recovery:

target = shutil.copy(source_path, target_path)
FileNotFoundErroxr:

target_path.parent.mkdir(exist_ok= , parents=
target = shutil.copy(source_path, target_path)
OSError ex2:
(f"{target_path.parent} problem: {ex2}")

86 Statements and Syntax

OSError ex:

(f"Copy {source_path} to {target_path} error {ex}")

In this example, a nested context writes one message for an 0SExrror exception. In the
outer context, a slightly different error message is used to log a similar error. In both cases,
processing can continue. The distinct error messages can make it slightly easier to debug

the problems.

See also
« In the Avoiding a potential problem with an except: clause recipe, we look at some

additional considerations when designing exception handling statements.

Avoiding a potential problem with an except:
clause

There are some common mistakes in exception handling. These can cause programs to

become unresponsive.

One of the mistakes we can make is to use the except: clause with no named exception
class to match. There are a few other mistakes that we can make if we’re not cautious

about the exceptions we try to handle.

This recipe will show some common exception handling errors that we can avoid.

Getting ready
When code can raise a variety of exceptions, it’s sometimes tempting to try and match
as many as possible. Matching too many exception classes can interfere with stopping a

misbehaving Python program. We’ll extend the idea of what not to do in this recipe.

How to doit...

We need to avoid using the bare except: clause. Instead, use except Exception: to match

the most general kind of exception that an application can reasonably handle.

Chapter 2 87

Handling too many exception classes can interfere with our ability to stop a misbehaving
Python program. When we hit Ctrl + C, or send a SIGINT signal via the OS’s kill -2
command, we generally want the program to stop. We rarely want the program to write a
message and keep running. If we use a bare except: clause, we can accidentally silence

important exceptions.

There are a few other classes of exceptions that we should be wary of attempting to handle:
» SystemError
e RuntimeError
e MemoryError

Generally, these exceptions mean things are going badly somewhere in Python’s internals.
Rather than silence these exceptions, or attempt some recovery, we should allow the

program to fail, find the root cause, and fix it.

Further, if we capture any of these exceptions, we can interfere with the way these internal

exceptions are handled:
« SystemExit
» KeyboardInterrupt
e GeneratorExit
Trying to handle these exceptions can cause a program to become unresponsive at exactly

the time we need to stop it.

How it works...

There are three techniques we should avoid:
« Don’t match the BaseException class in an except BaseException: clause.

» Don’t use except: with no exception class. This matches all exceptions, including

exceptions we should avoid trying to handle.

88 Statements and Syntax

+ Don’t match exceptions from which there’s no sensible recovery.

If we handle too many kinds of exceptions, we may exacerbate a problem, transforming it

into a larger and more mysterious problem by way of flawed exception handling.

It’s a noble aspiration to write a program that never crashes. Interfering with some of
Python’s internal exceptions, however, doesn’t create a more reliable program. Instead, it

creates a program where a clear failure is masked and made into an obscure problem.

See also

« In the Leveraging exception matching rules recipe, we look at some considerations

when designing exception-handling statements.

Concealing an exception root cause

Exceptions contain a root cause. The default behavior of internally raised exceptions is to
use an implicit __context__ attribute to include the root cause of an exception. In some
cases, we may want to deemphasize the root cause because it’s misleading or unhelpful for

debugging.

This technique is almost always paired with an application or library that defines a unique
exception. The idea is to show the unique exception without the clutter of an irrelevant

exception from outside the application or library.

Getting ready
Assume we’re writing some complex string processing. We’d like to treat a number of
different kinds of detailed exceptions as a single generic error so that users of our software

are insulated from the implementation details. We can attach details to the generic error.

How to doit...

1. To create a new exception, we can do this:

Chapter 2 89

(Exception):

This creates a new, unique class of exception that our library or application can use.

2. When handling exceptions, we can conceal the root cause exception like this:

.some_method(42) # Raises an exception
AttributeError exception:

MyAppErrox ("Some Known Problem")

In this example, we raise a new instance of the module’s unique MyAppError exception
class. The new exception will not have any connection with the root cause AttributeError

exception.

How it works...

The Python exception classes all have a place to record the cause of the exception. We can
set this __cause__ attribute using the raise Visible from RootCause statement. This is

done implicitly using the exception context.

Here’s how it looks when this exception is raised:

.some_method(42)
AttributeError exception:

MyAppErrox("Some Known Problem")

: Some Known Problem

The underlying cause has been concealed. If we omit the from None in the raise statement,
then the exception will include two parts and will be quite a bit more complex. When the

root cause is shown, the output looks more like this:

90 Statements and Syntax

File , line 2, in <module>
.some_method(42)
VAVAVAYAVAVAVAVAVAVAVAVAVAVAVAVAY

'NoneType' object has no attribute 'some_method'

During handling of the above exception, another exception occurred:

: Some Known Problem

This shows the underlying AttributeError exception. This may be an implementation

detail that’s unhelpful and better left off the printed display of the exception.

The more useful part of the exception (with some details replaced by . . .) follows the initial

(and possibly irrelevant) root cause information.

There's more...

There are a number of internal attributes of an exception. These include __cause__,
__context__, __traceback__, and __suppress_context__. The overall exception context
is in the __context__ attribute. The cause, if provided via a raise from statement, is in
__cause__. The context for the exception is available but can be suppressed from being

printed.

See also

« In the Leveraging exception matching rules recipe, we look at some considerations

when designing exception-handling statements.

« In the Avoiding a potential problem with an except: clause recipe, we look at some

additional considerations when designing exception-handling statements.

Chapter 2 91

Managing a context using the with statement

There are many instances where our scripts will be entangled with external resources.
The most common examples are disk files and network connections to external hosts. A
common bug is retaining these entanglements forever, tying up these resources uselessly.
These are sometimes called a memory leak because the available memory is reduced each

time a new file is opened without closing a previously used file.

We’d like to isolate each entanglement so that we can be sure that the resource is acquired
and released properly. The idea is to create a context in which our script uses an external
resource. At the end of the context, our program is no longer bound to the resource and

we want to be guaranteed that the resource is released.

Getting ready

Let’s say we want to write lines of data to a file in CSV format. When we’re done, we want
to be sure that the file is closed and the various OS resources—including buffers and file
handles—are released. We can do this in a context manager, which guarantees that the file

will be properly closed.

Since we’ll be working with CSV files, we can use the csv module to handle the details of

the formatting:

>>>

We'll also use the pathlib module to locate the files we’ll be working with:

Path

For the purposes of having something to write, we’ll use this silly data source:

>>> some_source = [

[2,3,5],

[7,11,13],

92 Statements and Syntax

We’ll also need a working directory. In the examples, we're using data under the current
working directory. We can create this directory using a terminal window command, or we

can create it from within Python:

>>> Path.cwd().mkdir("data", exists=ok=

This will give us a context in which to learn about the with statement.

How to doit...
1. Create the context by opening the Path, or creating the network connection with
urllib.request.urlopen(). Other common contexts include creating archives like

zip files and tar files. Here’s the essential context creation for an open file:

>>> target_path = Path.cwd() / "data" / "test.csv"

>>> target_path.open('w', newline="") target_file:

2. Include all the processing, indented within the with statement:

>>> target_path = Path.cwd() / "data" / "test.csv"

>>> target_path.open('w', newline="") target_file:
writer = csv.writer(target_file)
writer.writerow(['column', 'data', 'heading'])
writer.writerows (some_source)

3. When we use a file as a context manager, the file is automatically closed at the end
of the indented context block. Even if an exception is raised, the file is still closed
properly. Outdent the processing that is done after the context is finished and the
resources are released:

>>> target_path = Path.cwd() / "data" / "test.csv"
>>> target_path.open('w', newline="") target_file:

writer = csv.writer(target_file)

Chapter 2 93

= writer.writerow(['column', 'data', 'heading'l])

writer.writerows (some_source)

>>> (f'finished writing {target_path.name}"')
finished writing test.csv

The statements outside the with context will be executed after the context is closed. The

named resource — the file opened by target_path.open() — will be properly closed.

(We assign the result of the writerow() method of a writer to the _ variable. This is a trick
required to avoid showing this result. It’s the number 21, telling us how many characters

were written.)

Even if an exception is raised inside the with context, the file is still properly closed. The
context manager is notified of the exception. It can close the file and allow the exception

to propagate.

How it works...

A context manager is notified of three significant events surrounding the indented block of

code:
« Entry to the context
« Normal exit from the context with no exception
« Exit from the context because of an exception

The context manager will—under all conditions—disentangle our program from external
resources. Files can be closed. Network connections can be dropped. Database transactions

can be committed or rolled back. Locks can be released.

We can experiment with this by including a manual exception inside the with statement.

This can show that the file was properly closed:

94 Statements and Syntax

1

target_path.open('w
writer = csv.writer(target_file)
= writer.writerow(['column', 'data', 'heading'l])
= writer.writerow(some_source[?])
Exception("Testing")

, hewline="") target_file:

Exception exc:
(f"{target_file.closed=}")
.. (f"{exc=}")
target_file.closed=True
exc=Exception('Testing"')
>>> (f"finished writing {target_path.name}")
finished writing test.csv

In this example, we’ve wrapped the real work in a try statement. This allows us to raise an
exception after writing the first line of data to the CSV file. Because the exception handling
is outside the with context, the file is closed properly. All resources are released and the

part that was written is properly accessible and usable by other programs.

The output confirms the expected file state:

target_file.closed=True

exc=Exception('Testing"')

This shows us that the file was properly closed. It also shows us the message associated
with the exception to confirm that it was the exception we raised manually. This kind
of technique allows us to work with expensive resources like database connections and

network connections and be sure these don’t “leak”

Resource leak is a common description used when resources are not released properly back
to the OS. It’s as if a pool is slowly drained away, and the application stops working because
there are no more available OS network sockets or file handles. The with statement can be

used to properly disentangle our Python application from OS resources.

Chapter 2 95

There's more...

Python offers us a number of context managers. We noted that an open file is a context, as

is an open network connection created by urllib.request.urlopen().

For all file operations, and all network connections, we should always use a with statement

as a context manager. It’s very difficult to find an exception to this rule.

It turns out that the decimal module makes use of a context manager to allow localized
changes to the way decimal arithmetic is performed. We can use the decimal.localcontext()
function as a context manager to change rounding rules or precision for calculations isolated

by a with statement.

We can define our own context managers, also. The contextlib module contains functions
and decorators that can help us create context managers around resources that don’t

explicitly offer them.

When working with locks, the with statement context manager is the ideal way to acquire
and release a lock. See https://docs.python.org/3/library/threading.html#with-1
ocks for the relationship between a lock object created by the threading module and a

context manager.

See also
« See PEP-343 for the origins of the with statement.

« Numerous recipes in Chapter 9, will make use of this technique. The recipes Reading
delimited files with the CSV module, Reading complex formats using regular expressions,

and Reading HTML documents, among others, will make use of the with statement.

https://docs.python.org/3/library/threading.html#with-locks
https://docs.python.org/3/library/threading.html#with-locks
https://www.python.org/dev/peps/pep-0343/

96 Statements and Syntax

Join our community Discord space

Join our Python Discord workspace to discuss and find out more about the book:

https://packt.link/dHrHU

=] 4[]

https://packt.link/dHrHU

Function Definitions

Function definitions are a way to decompose a large problem into smaller problems. Mathe-
maticians have been doing this for centuries. It’s a way to package our Python programming

into intellectually manageable chunks.

We'll look at a number of function definition techniques in these recipes. This will include
ways to handle flexible parameters and ways to organize the parameters based on some

higher-level design principles.

We'll also look at the typing module and how we can create more formal type hints for
our functions. Using type hints will prepare our code so we can use tools like mypy to
confirm the data types are used properly throughout a program. Type hints aren’t required,
but they often identify potential inconsistencies, allowing us to write code that prevents

problems.
In this chapter, we’ll look at the following recipes:
« Function parameters and type hints

« Designing functions with optional parameters

98 Function Definitions

« Using super flexible keyword parameters

« Forcing keyword-only arguments with the * separator

« Defining position-only parameters with the / separator

« Picking an order for parameters based on partial functions
« Writing clear documentation strings with RST markup

+ Designing recursive functions around Python’s stack limits

« Writing testable scripts with the script-library switch

Function parameters and type hints

Through a number of Python Enhancement Proposals, type hints have grown in sophisti-
cation. The mypy tool is one way to validate these type hints to be sure the hints and the
code agree. All the examples shown in this book have been checked with the mypy tool.

This extra syntax for the hints is optional. It has limited use at runtime and has no

performance costs.

Getting ready
We’ll need to download and install the mypy tool. Generally, this is done with the following

terminal command:

(cookbook3) % python -m pip install mypy

Using the python -m pip command ensures the pip command will be associated with
the currently active virtual environment. In this example, the prompt shows a virtual

environment named cookbook3.
We can also use the pyright tool to examine type hints.

For an example of type hints, we’ll look at some color computations. The first of these is

extracting the Red, Green, and Blue values from the color codes commonly used in the

Chapter 3 99

style sheets for HTML pages. There are a variety of ways of encoding the values, including

strings, integers, and tuples. Here are some of the varieties of data types:
+ A string of six hexadecimal characters with a leading # , for example, "#C62D42"
« A string of six hexadecimal characters, for example, "C62D42"
« A Python numeric value, for example, 0xC62D42
« A three-tuple of R, G, and B integers, for example, (198, 45, 66)

For strings and numbers, we use the type name directly, str or int. For tuples, we use a

more complicated-looking tuple[int, int, int].

The target is three integer values. A conversion from string or integer to three values

involves two separate steps:
1. If the value is a string, convert to a single integer using the int() function.

2. For single integer values, split the integer into three separate values using the >>
and & operators. This is the core computation for converting a single integer value,

hx_int, into three separate r, g, b values:

r, g, b = (hx_int >> 16) & OxFF, (hx_int >> 8) & OxFF, hx_int & @xFF

A single RGB integer has three separate values that are combined via bit shifting. The
red value was shifted left 16 bits. To extract this component, the value is shifted right 16
bits using the >> operator. The & operator applies 0xff as a “mask” to save only 8 bits of
a potentially larger number. To extract the green component, shift right 8 bits. The blue

value occupies the least-significant 8 bits.

How to doit...

For some functions, it can be easiest to start with a working implementation and add hints.

Here’s how it works:

1. Write the function without any hints:

100 Function Definitions

def hex2rgb_1(hx_int):
if isinstance(hx_int, str):
if hx_int[0] == "#":
hx_int = int(hx_int [1:], 16)
else:
hx_int = int(hx_int, 16)
r, g, b = (hx_int >> 16) & oxff, (hx_int >> 8) & Oxff, hx_int &
oxff
return r, g, b

2. Add the result hint. It’s based on the return statement. In this example, the return is

a tuple of three integers, tuple[int, int, int].

3. Add the parameter hints. In this case, we’ve got two alternative types for the pa-
rameter: it can be a string or an integer. In the formal language of the type hints,
this is a union of two types. The parameter can be described as Union[str, int]
or str | int. If Union is used, the definition must be imported from the typing

module.

Combining the hints into a function leads to the following definition:

def hex2rgb(hx_int: int | str) -> tuple[int, int, int]:
if isinstance(hx_int, str):
if hx_int[0] == "#":
hx_int = int(hx_int[1:], 16)
else:
hx_int = int(hx_int, 16)
r, g, b = (hx_int >> 16) & oxff, (hx_int >> 8) & Oxff, hx_int & Oxff
return r, g, b

How it works...

These type hints have no impact when the Python code is executed. The hints are designed
for people to read and for external tools, like mypy, to verify. A tool can confirm that the

hx_int variable is always used as either an integer or a string.

In the r, g, b = assignment statement, the value for hx_int is expected to be an integer.

Chapter 3 101

The mypy tool can confirm the operators are appropriate for integer values, and the return

type matches the computed types.

We can observe the mypy tool’s analysis of a type by inserting the reveal_type(hx_int)
function into our code. This statement has function-like syntax; it’s only used when
running the mypy tool. We will only see output from this when we run mypy, and we

have to remove this extra line of code before we try to do anything else with the module.

The output looks like this when we run mypy at the shell prompt on the
recipe_0@1_reveal.py file:
(cookbook3) % mypy src/ch@3/recipe_01_reveal.py

src/ch@3/recipe_01_reveal.py:15: note: Revealed type is "builtins.int"

Success: no issues found in 1 source file

The output from the reveal_type(hx_int) line tells us mypy is certain the variable will
have an integer value after the first if statement is complete. Once we’ve seen the revealed

type information, we need to delete the reveal_type (hx_int) line from the file.

There's more...

Let’s look at a related computation. This converts RGB numbers into Hue-Saturation-
Lightness (HSL) values. These HSL values can be used to compute complementary colors.
An additional algorithm required to convert from HSL back into RGB values can help

encode colors for a web page:
« RGB to HSL: We’ll look at this closely because it has complex type hints.

« HSL to complement: There are a number of theories on what the “best” complement

might be. We’ll gloss over the details.
« HSL to RGB: This will be the final step, but we’ll ignore the details of this computation.

We won’t look closely at two of the implementations. They are not horribly complicated,
but these computation details can be a distraction from understanding the types and type

hints. See https://www.easyrgb.com/en/math.php.

https://www.easyrgb.com/en/math.php

102 Function Definitions

We start by roughing out a definition of the function with a stub definition, like this:

def rgb_to_hsl_t(rgb: tuple[int, int, int]) -> tuple[float, float, float]:

This can help us visualize a number of related functions to be sure they all have consistent

types. The other two functions have stubs like these:

def hsl_comp_t(hsl: tuple[float, float, float]) -> tuple[float, float,
float]:

def hsl_to_rgb_t(hsl: tuple[float, float, float]) -> tuple[int, int, int]:

After writing down this initial list of stub definitions, we can see some type hints are
repeated in slightly different contexts. This suggests we need to create a separate named

type to avoid repetition of the details. We’ll provide a name for the repeated type detail:

from typing import TypeAlias

RGB_a: TypeAlias tuple[int, int, int]

HSL_a: TypeAlias = tuple[float, float, float]

def rgb_to_hsl(color: RGB_a) -> HSL_a:

def hsl_complement(color: HSL_a) -> HSL_a:

def hsl_to_rgb(color: HSL_a) -> RGB_a:

This overview of the various functions can be helpful for assuring that each function uses

Chapter 3 103

data in a way that’s consistent with other functions.

The names RGB_a and HSL_a include a suffix of _a to help distinguish these type aliases
from other examples in this recipe. In a practical application, the suffix strings like _a to

show the name is an alias are going to become visual clutter and should be avoided.

As noted in the Using NamedTuples to simplify item access in tuples in Chapter 1, we can

provide a more descriptive set of names for these tuple types:

from typing import NamedTuple

class RGB(NamedTuple):

red: int
green: int
blue: int

We’ve defined a unique, new NamedTuple subclass, called RGB. Using names can help clarify

the intent behind the code.

See also
+ The mypy project contains a wealth of information. See https://mypy.readthedo

cs. 1o for more information on the way type hints work.

+ The pyright project is another helpful type hint tool. See https://microsoft.gith

ub.io/pyright for more information.

Designing functions with optional parameters

When we define a function, we often have a need for optional parameters. This allows us

to write functions that are more flexible and easier to read.

We can also think of this as a way to create a family of closely related functions. Each
function has a slightly different collection of parameters — called the signature — but
all sharing the same simple name. This is sometimes called an “overloaded” function.
Within the typing module, an @overload decorator can help create type hints in the more

complicated cases.

https://mypy.readthedocs.io
https://mypy.readthedocs.io
https://microsoft.github.io/pyright
https://microsoft.github.io/pyright

104 Function Definitions

An example of an optional parameter is the built-in int() function. This function has two

signatures:

o int(str) -> int. For example, the value of int('355"') has a value of 355. An

optional base parameter defaults to a value of 10.

. int(str, base) -> int. For example, the value of int('163', 16) is 355. In this

case, the base parameter value is 16.

Getting ready
A great many games rely on collections of dice. The casino game of Craps uses two dice. A
game like Zonk (or Greed or Ten Thousand) uses six dice. It’s handy to have a dice-rolling

function that can handle all of these variations.

How to doit...

We have two approaches to designing a function with optional parameters:

+ General to particular: Start by designing the most general solution and provide

defaults for the most common case.

« Particular to general: Start by designing several related functions. We then merge
them into one general function that covers all of the cases, singling out one of the

original functions to be the default behavior.

We'll look at the particular to general approach first, because it’s often easier to start

with a number of concrete examples.

Particular to general design
Throughout this example, we’ll use slightly different names as the function evolves. This

simplifies unit testing the different versions and comparing them. Here’s how we’ll proceed:

1. Write one game function. We’'ll start with the Craps game because it seems to be the

simplest:

Chapter 3 105

impoxt random

def die() -> int:
return random.randint(1l, 6)

def craps() -> tuple[int, int]:
return (die(), die())

We defined a function, die(), to encapsulate a basic fact about standard dice. Five
platonic solids are often used, yielding four-sided, six-sided, eight-sided, twelve-sided,

and twenty-sided dice. The randint() expression assumes a six-sided cube.

2. Write the next game function. We’ll move on to the Zonk game:

def zonk() -> tuple[int, ...]:
return tuple(die() for x in range(6))

We’ve used a generator expression to create a tuple object with a collection of six

dice. We'll look at generator expressions in depth in Chapter 9.

The generator expression in the body of the zonk () function has a variable, x, which
is required syntax, but the value is ignored. It’s also common to see this written as
tuple(die() for _ in range(6)). The variable _ is a valid Python variable name,

often used when a variable name is required, but is never used.

3. Locate the common features in the craps() and zonk() functions. In this case, we
can refactor the design of the craps() function to follow the pattern set by the
zonk () function. Rather than building exactly two evaluations of the die() function,
we can introduce a generator expression based on range(2) that will evaluate the

die() function twice:

def craps_v2() -> tuple[int, ...]:
return tuple(die() for x in range(2))

Merge the two functions. This will often involve exposing a variable that had

106 Function Definitions

previously been a literal value:

def dice_v2(n: int) -> tuple[int, ...I1:
return tuple(die() for x in range(n))

This provides a general function that covers the needs of both the Craps and Zonk

games.

4. Identify the most common use case and make this the default value for any parameters

that were introduced. If our most common simulation was Craps, we might do this:

def dice_v3(n: int = 2) -> tuple[int, ...]1:
return tuple(die() for x in range(n))

Now, we can use dice_v3() for the Craps game. We’ll need to use the expression

dice_v3(6) for the first roll of a Zonk game.

5. Check the type hints to be sure they describe the parameters and the return values.
In this case, we have one parameter with an integer value, and the return is a tuple

of integers, described by tuple[int, ...].

Throughout this example, the name evolved from dice () to dice_v2() and then to dice_v3().
This can make it easier to see the differences here in the recipe. Once a final version is
written, it makes sense to delete the others and rename the final versions of these functions
to dice(), craps(), and zonk(). The story of their evolution may become a blog post, but

it doesn’t need to be preserved in the code.

General to particular design
When following the general to particular strategy, we’ll identify all of the needs first. It
can be difficult to foresee all the alternatives, making this more challenging. We’ll often do

this by introducing variables to the requirements:
1. Summarize the requirements for dice-rolling. We might start with a list like this:

+ Craps: Two dice

Chapter 3 107

« First roll in Zonk: Six dice
« Subsequent rolls in Zonk: One to six dice

2. Rewrite the requirements with an explicit parameter in place of any literal value.
We’ll replace all of our numbers with a parameter, n. This will take on values of 2, 6,
or a value in the range 1 < n < 6. We want to be sure we’ve properly parameterized

each of the various functions.

3. Write the function that fits the general pattern:

def dice_di1(n):
return tuple(die() for x in range(n))

In the third case — subsequent rolls in Zonk — we identified a constraint of 1 < n < 6,

imposed by the application program to play Zonk.
4. Provide a default value for the most common use case. If our most common simulation
was Craps, we might do this:

def dice_d2(n=2):
return tuple(die() for x in range(n))

5. Add type hints. These will describe the parameters and the return values. In this case,
we have one parameter with an integer value, and the return is a tuple of integers,

described by tuple[int, ...]:

def dice(n: int=2) -> tuple[int, ...]:
return tuple(die() for x in range(n))

Now, we can use this dice() function for Craps. We'll need to use dice(6) for the first roll

in Zonk.

In this recipe, the name didn’t need to evolve through multiple versions. The name evolution

is only useful in a book for unit testing each example.

This version looks precisely like dice_v2() from the previous recipe. This isn’t an accident

108 Function Definitions

— the two design strategies often converge on a common solution.

How it works...
Python’s rules for providing parameter values enable several ways to ensure that each

parameter is given an argument value. We can think of the process like this:

1. Where there are default values, set those parameters. Default values make these

optional.

2. For arguments without names — for example, dice(2) - the argument values are

assigned to the parameters by position.

3. For arguments with names - for example, dice(n=2) — the argument values are

assigned to parameters by name.
4. If any parameter still lacks a value, raise a TypeError exception.

The rules also allow us to mix positional values with named values. This make some

parameters optional by providing a default value.

There's more...
It helps to write functions that are specialized versions of our more generalized function.
These functions can simplify an application:

def craps_v3():
return dice(2)

def zonk_v3():
return dice(6)

Our application features — craps_v3() and zonk_v3() — depend on a general function,

dice().

These form layers of dependencies, saving us from having to understand too many details.
This idea of layered abstractions is sometimes called chunking, a way of managing

complexity by isolating the details.

Chapter 3 109

See also
« We'll extend on some of these ideas in the Picking an order for parameters based on

partial functions recipe, later in this chapter.

« We've made use of optional parameters that involve immutable objects. In this recipe,
we focused on numbers. In Chapter 4, we’ll look at mutable objects, which have an
internal state that can be changed. In the Avoiding mutable default values for function

parameters recipe, we’ll look at some additional considerations for optional values.

Using super flexible keyword parameters

Some design problems involve solving a simple equation for one unknown when given
enough known values. For example, rate, time, and distance have a simple linear relation-

ship. We can solve for any one when given the other two.

There are three related solutions tor xt = d:

e d=rxt
—d
.r_t
ot:d
r

When designing electrical circuits, for example, a similar set of equations is used based on

Ohm’s law. In that case, the equations tie together resistance, current, and voltage.

In some cases, we want an implementation that can perform any of the three different

calculations based on what’s known and what’s unknown.

Getting ready
We’ll build a single function that can solve a Rate-Time-Distance (RTD) calculation by
embodying all three solutions, given any two known values. With minor variable name

changes, this applies to a surprising number of real-world problems.

We don’t necessarily want a single value as an answer. We can slightly generalize this

110 Function Definitions

by creating a small Python dictionary with the three values in it; two are given, one is

computed. We’ll look at dictionaries in more detail in Chapter 5.

We'll use the warnings module instead of raising an exception when there’s a problem:

import warnings

Sometimes, it is more helpful to produce a result that is doubtful than to stop processing.

How to doit...

1. Solve the equation for each of the unknowns. There are three separate expressions:
» distance = rate * time

distance / time

e rate

distance / rate

e time

2. Wrap each expression in an if statement based on one of the values being None
when it’s unknown:

if distance is None:
distance = rate * time

elif rate is None:
rate = distance / time

elif time is None:
time = distance / rate

3. Refer to the Designing complex if...elif chains recipe from Chapter 2, for guidance on
designing these complex if...elif chains. Include a variation of the Else-Raise
option:

else:
warnings.warning("Nothing to solve for")

4. Build the resulting dictionary object:

Chapter 3 111

return dict(distance=distance, rate=rate, time=time)

5. Wrap all of this as a function using keyword parameters with default values of None.
This leads to parameter types of Optional[float], often stated as float | None.The
return type is a dictionary with string keys, summarized asdict[str, float | Nonel.

It looks like this:

def rtd(
distance: float | None = None,
rate: float | None = None,
time: float | None = None,

) -> dict[str, float | None]:

if distance is None and rate is not None and time is not None:
distance = rate * time

elif rate is None and distance is not None and time is not None:
rate = distance / time

elif time is None and distance is not None and rate is not None:
time = distance / rate

else:
warnings.warn("Nothing to solve for")

return dict(distance=distance, rate=rate, time=time)

The type hints tend to make the function definition so long it has to be spread across five

physical lines of code. The presence of so many optional values is difficult to summarize!

We can use the resulting function like this:

>>> rtd(distance= , rate=6)

{'distance': 31.2, 'rate': 6, 'time': 5.2}

This shows us that going 31.2 nautical miles at a rate of 6 knots will take 5.2 hours.

For a nicely formatted output, we might do this:

112 Function Definitions

>>> result = rtd(distance=

>>> ('At {rate}kt, it takes '

'{time}hrs to cover {distance}nm').format_map(result)
'"At 6kt, it takes 5.2hrs to cover 31.2nm'

To break up the long string, we used our knowledge from the Designing complex if...elif

chains recipe in Chapter 2.

To make the warning more visible, the warnings module can be used to set a filter that
elevates the warning to an error. Use the expression warnings.simplefilter('error')

to transform warnings into visible exceptions.

How it works...
Because we’ve provided default values for all of the parameters, we can provide argument
values for any two of the three parameters, and the function can then solve for the third

parameter. This saves us from having to write three separate functions.

Returning a dictionary as the final result isn’t essential to this. It’s a handy way to show
inputs and outputs. It allows the function to return a uniform result, no matter which

parameter values were provided.

There's more...

We have an alternative formulation for this, one that involves more flexibility. Python

functions have an all other keywords parameter, prefixed with **.

We can leverage the flexible keywords parameter and insist that all arguments be provided

as keywords:

def rtd2(**keywords: float) -> dict[str, float | None]:

rate = keywords.get('rate')
time = keywords.get('time')
distance = keywords.get('distance')

Chapter 3 113

etc.

The keywords type hint states that all of the values for these parameters will be float
objects. In some rare case, not all of the keyword parameters are the same type; in this

case, some redesign may be helpful to make the types clearer.

This version uses the dictionary get () method to find a given key in the dictionary. If the

key is not present, a default value of None is provided.

The dictionary’s get() method permits a second parameter, the default, which can be

provided instead of None if the key is not present.

This kind of open-ended design has the potential advantage of being much more flexible.
One potential disadvantage is that the actual parameter names are hard to discern, since
they’re not part of the function definition, but instead part of the function’s body. We can
follow the Writing better docstrings with RST markup recipe and provide a good docstring.
It seems much better, though, to provide the parameter names explicitly as part of the

Python code rather than implicitly through documentation.

This has another, and more profound, disadvantage. The problem is revealed in the follow-

ing bad example:

>>> rtd2(distnace= , Trate=6H)

{'distance': None, 'rate': 6, 'time': None}

This isn’t the behavior we want. The misspelling of “distance” is not reported as a TypeError
exception. The misspelled parameter name is not reported anywhere. To uncover these
errors, we'd need to add some programming to pop items from the keywords dictionary

and report errors on names that remain after the expected names were removed:

114 Function Definitions

def rtd3(**keywords: float) -> dict[str, float | None]:

rate = keywords.pop("rate", None)
time = keywoxrds.pop("time", None)
distance = keywords.pop("distance", None)
if keywords:
raise TypeErrox(
f"Invalid keyword parameter: {''.join(keywords.keys())}")

This design will spot spelling errors. The extra processing suggests explicit parameter

names might be better than the flexibility of an unbounded collection of names.

See also
» We look at the documentation of functions in the Writing better docstrings with RST
markup recipe in Chapter 2.

Forcing keyword-only arguments with the *
separator

There are some situations where we have a large number of positional parameters for
a function. Pragmatically, a function with more than about three parameters can be
confusing. A great deal of conventional mathematics seems to focus on one- and two-
parameter functions. There don’t seem to be too many common mathematical operators

that involve three or more operands.

When it gets difficult to remember the required order for the parameters, this suggests

there are too many parameters.

Getting ready
We’ll look at a function to prepare a wind-chill table and write the data to a CSV format
output file. We need to provide a range of temperatures, a range of wind speeds, and

information on the file we’d like to create. This is a lot of parameters.

One formula for the apparent temperature, the wind chill, T, is this:

Chapter 3 115

Towe(To, V) = 13.2 + 0.6215T, — 11.37V*16 + 0.3965T,V 16

The wind chill temperature, T,,., is based on the air temperature, T, in degrees C, and the

wind speed, V, in KPH.
For Americans, this requires some conversions:

« Convert the temperature, T,, from Farenheit, °F, into Celsius, °C: T, = @.

« Convert windspeed, V, from MPH, Vinph, into KPH: V' = 1.609344Vy, .
« The result, T,,., needs to be converted from °C back to °F: F = 32 + QT%

We won’t fold these American conversions into the solution. We’ll leave this as an exercise

for you.

The function to compute the wind-chill temperature, T_wc () looks like this:

def T_wc(T: float, V: float) -> float:
return 13.12 + 0.6215*T - 11.37*V**0.16 + 0.3965*T*V**0Q.16

This function has an unusual name, T_wc (). We’ve matched the formal definition of T,,.,
rather than enforcing the PEP-8 rule of beginning function names with a lowercase letter.
In this case, it seems better to stick with names used in the literature, rather than imposing

a name based on language conventions.

One approach to creating a wind-chill table is to create something like this:

import csv
from typing import TextIO

def wind_chill(
start_T: int, stop_T: int, step_T: int,
start_V: int, stop_V: int, step_V: int,
target: TextIO

) -> None:

116 Function Definitions

"""Wind Chill Table."""
writer= csv.writer(target)
heading = ['']+[stx(t) for t in range(start_T, stop_T, step_T)]
writer.writerow(heading)
for V in range(start_V, stop_V, step_V):
row = [float(V)] + [
T_wc(T, V)
for T in range(start_T, stop_T, step_T)
1

writer.writerow(row)

Before we get to the design problem, let’s look at the essential processing. We expect the
function using this will have opened an output file using the with context. This follows
the Managing a context using the with statement recipe in Chapter 2. Within this context,
we’ve created a write for the CSV output file. We look at this in more depth in Chapter 11.

The value for the heading variable includes a list literal and a comprehension that builds a
list. We look at lists in Chapter 4. We look at comprehensions and generator expressions in

Chapter 9.

Similarly, each row of the table is built by an expression that combines a single float value
with a list comprehension. The list consists of values computed by the wind-chill function,
T_wc (). We provide the wind velocity, V, based on the row in the table. We also provide a

temperature, T, based on the column in the table.

The wind_chill() function’s overall definition presents a problem: the wind_chill()
function has seven distinct positional parameters. When we try to use this function, we

wind up with code like the following:

e Path
>>> p = Path('data/wcl.csv')

>>> p.open('w',newline="") target:
wind_chill(e, -45, -5, @, 20, 2, target)

What are all those numbers? Is there something we can do to help explain the purposes

behind all those numbers?

Chapter 3 117

How to doit...

When we have a large number of parameters, it helps to require the use of keyword
arguments instead of positional arguments. We can use the * as a separator between two

groups of parameters.

For our example, the resulting function definition has the following stub definition:

def wind_chill_k(

*
’

start_T: int, stop_T: int, step_T: int,
start_V: int, stop_V: int, step_V: int,
target: Path

) -> None:

Let’s see how it works in practice with different kinds of parameters:

1. When we try to use the confusing positional parameters, we’ll see this:

>>> wind_chill_k(®, -45, - , 2, target)

: wind_chill_k() takes @ positional arguments but 7 were

2. We must use the function with explicit parameter names, as follows:

>>> p = Path('data/wc2.csv')
>> p.open('w', newline="") output_file:
wind_chill_k(start_T=0, stop_T=-45, step_T=-5,

start_V=0, stop_V=20, step_V=2,
target=output_file)

This use of mandatory keyword parameters forces us to write a longer, but clearer, statement

each time we use this complicated-seeming function.

118 Function Definitions

How it works...

The * character, when used as a parameter definition, separates two collections of parame-

ters:

+ Before *, we list the argument values that can be either positional or named by

keyword. In this example, we don’t have any of these parameters.

« After *, we list the argument values that must be given with a keyword. For our

example, this is all of the parameters.

The print () function exemplifies this. It has three keyword-only parameters for the output

file, the field separator string, and the line end string.

There's more...

We can, of course, combine this technique with default values for the various parameters.

We might, for example, make a change to this, thus introducing a single default value:

import sys
from typing import TextIO

def wind_chill_k2(

*
]

start_T: int, stop_T: int, step_T: int,
start_V: int, stop_V: int, step_V: int,
target: TextIO = sys.stdout

) -> None:

We can now use this function in two ways:

+ Here’s a way to print the table on the console, using the default target:

>>> wind_chill_k2(

start_T=0, stop_T=-45, step_T=-5,
start_V=0, stop_V=20, step_V=2)

« Here’s a way to write to a file using an explicit target:

Chapter 3 119

>>>

>>> path = pathlib.Path("data/wc3.csv")
>>> path.open('w', newline='") output_file:

wind_chill_k2(target=output_file,
start_T=0, stop_T=-45, step_T=-5,
start_V=0, stop_V=20, step_V=2)

We can be more confident in these changes because the parameters must be provided by

name. We don’t have to check carefully to be sure about the order of the parameters.

As a general pattern, we suggest doing this when there are more than three parameters for
a function. It’s easy to remember one or two. Most mathematical operators are unary or
binary. While a third parameter may still be easy to remember, the fourth (and subsequent)

parameter will become very difficult to recall.

See also

« See the Picking an order for parameters based on partial functions recipe for another

application of this technique.

Defining position-only parameters with the /
separator

We can use the / character in the parameter list to separate the parameters into two groups.
Before /, all argument values work positionally. After the / parameter, argument values

may be given positionally, or names may be used.

This should be used for functions where the following conditions are all true:
« A few positional parameters are used (no more than three).
+ And they are all required.
+ And the order is so obvious that any change might be confusing.

This has always been a feature of the standard library. As an example, the math.sin()

function can only use positional parameters. The formal definition is as follows:

120 Function Definitions

>>> help(math.sin)
Help on built-in function sin in module math:

sin(x, /)
Return the sine of x (measured in radians).

Even though there’s an x parameter name, we can’t use this name. If we try to, we’ll see

the following exception:

>>>

>>> math.sin(x=

: math.sin() takes no keyword arguments

The x parameter can only be provided positionally. The output from the help() function

provides a suggestion of how the / separator can be used to make this happen.

Getting ready

Position-only parameters are used by some of the internal built-ins; the design pattern can
also be helpful, though, in our functions. To be useful, there must be very few position-only
parameters. Since most mathematical operators have one or two operands, this suggests

one or two position-only parameters can be useful.

We'll consider two functions for conversion of units from the Fahrenheit system used in

the US and the Centigrade system used almost everywhere else in the world:

5(F—32)

« Convert from °F into °C: C = 5

« Convert from °C into °F: F = 32 + %

Each of these functions has a single argument, making it a reasonable example for a

position-only parameter.

Chapter 3 121

How to do it...
1. Define the function:

def F_1(c: float) -> float:
return 32 + 9 * ¢ / 5

2. Add the / parameter separator after the position-only parameters:

def F_2(c: float, /) -> float:
return 32 + 9 * ¢ / 5

For these examples, we put a _1 and _2 suffixes on the function names to make it clear
which definition goes with each step of the recipe. These are two versions of the same
function, and they should have the same name. They’re separated to show the history of
writing the functions; this is not a practical naming convention except when writing a

book where some partially complete functions have their own unit tests.

How it works...
The / separator divides the parameter names into two groups. In front of / are parameters
where the argument values must be provided positionally: named argument values cannot

be used. After the / are parameters where names are permitted.

Let’s look at a slightly more complex version of our temperature conversions:

def C(f: float, /, truncate: bool=False) -> float:
c=5%*(f-32)/79
if truncate:
return round(c, 0)
return c

This function has a position-only parameter named f. It also has the truncate parameter,
which can be provided by name. This leads to three separate ways to use this function, as

shown in the following examples:

122 Function Definitions

>>> (C()
22.22222222222222

>>> C(/2, truncate=
22.0

>>> (C(
22.0

’

The first example shows the position-only parameter and the output without any rounding.

This is an awkwardly complex-looking value.

The second example uses the named parameter style to set the non-positional parameter,

truncate, to True. The third example provides both argument values positionally.

There's more...

This can be combined with the * separator to create very sophisticated function signatures.

The parameters can be decomposed into three groups:
« Parameters before the / separator must be given by position. These must be first.
« Parameters after the / separator can be given by position or name.

« Parameters after the * separator must be given by name only. These names are

provided last, since they can never be matched by position.

See also
« See the Forcing keyword-only arguments with the * separator recipe for details on the

* separator.

Picking an order for parameters based on partial
functions

The term partial function is widely used to describe the partial application of a function.

Some of the argument values are fixed, while others vary. We might have a function,

Chapter 3 123

f(a,b,c), where there are fixed values for a and b. With fixed values, we have a new version

of the function, f,(c).

When we look at complex functions, we’ll sometimes see a pattern in the ways we use the
function. We might, for example, evaluate a function many times with some argument
values that are fixed by context, and other argument values that are changing with the

details of the processing. Having some fixed argument values suggests a partial function.

Creating a partial function can simplify our programming by avoiding code to repeat the

argument values that are fixed by a specific context.

Getting ready
We'll look at a version of the haversine formula. This computes distances between two

points, p; = (lony, lat;) and p, = (lony, lat,), on the surface of the Earth:

-1 lat, —
a= \/sinz (latg%) + cos(lat;) cos(lat;) sin? (%lah)

¢ = 2arcsina

The essential calculation yields the central angle, ¢, between two points. The angle is
measured in radians. We must convert this angle into distance by multiplying by the
Earth’s mean radius in some given units. If we multiply the angle ¢ by a radius of 3,959

miles, we’ll convert the angle into miles.

Here’s an implementation of this function:

from math import radians, sin, cos, sqrt, asin

MI = 3959
NM = 3440
KM = 6372

124 Function Definitions

def haversine(
lat_1: float, lon_1: float,
lat_2: float, lon_2: float, R: float
) -> float:
"""Distance between points.
R is Earth's radius.
R=MI computes in miles. Default is nautical miles.

>>> round(haversine(36.12, -86.67, 33.94, -118.40, R=6372.8), 5)
2887.25995

A_lat = radians(lat_2) - radians(lat_1)
A_lon radians(lon_2) - radians(lon_1)
lat_1 = radians(lat_1)
lat_2 = radians(lat_2)
a = sqrt(
sin(A_lat / 2) ** 2 +
cos(lat_1) * cos(lat_2) * sin(A_lon / 2) ** 2

)

return R * 2 * asin(a)

The doctest example uses an Earth radius with an extra decimal point that’s not used

elsewhere. This example’s output will match other examples found online.

The problem we often have is the value for R rarely changes for a specific context. One
context may use kilometers throughout the application, while another uses nautical miles.
We'd like to impose a context-specific default value like R = NM to get nautical miles in a

given context without having to edit the module.

We’ll look at several common approaches to providing a consistent value for an argument.

How to do it...
In some cases, an overall context will establish a single value for a parameter. The value
will rarely change. The following are three common approaches to providing a consistent

value for an argument:

« Wrap the function in a new function that provides the default value.

Chapter 3 125

« Create a partial function with the default value. This has two further refinements:
— We can provide defaults as a keyword parameters.
— We can provide defaults as positional parameters.

We'll look at each of these in separate variations in this recipe.

Wrapping a function

Here’s how we can revise the function, slightly, and create a wrapper:

1. Make some parameters positional and some parameters keywords. We want the
contextual features — the ones that rarely change - to be keywords. The parameters

that change more frequently should be left as positional:

def haversine_k(
lat_1: float, lon_1: float,
lat_2: float, lon_2: float, *, R: float
) -> float:
. # etc.

We can follow the Forcing keyword-only arguments with the * separator recipe.

2. We can then write a wrapper function that will apply all of the positional arguments,
unmodified. It will supply the additional keyword argument as part of the long-

running context:

def nm_haversine_1(*args):
return haversine_k(*args, R=NM)

We have the *args construct in the function declaration to accept all positional
argument values in a single tuple, args. We use a similar-looking *args when
evaluating the haversine() function to expand the tuple into all of the positional

argument values to this function.

In this case, all the types are float. We can use *args: float to provide a suitable hint.

This doesn’t always work out, and this style of handling arguments — while simple-looking

126 Function Definitions

— can hide problems.

Creating a partial function with keyword parameters
One approach to defining functions that work well as partial function is to use keyword

parameters:

1. We can follow the Forcing keyword-only arguments with the * separator recipe to do

this. We might change the basic haversine function so that it looks like this:

def haversine_k(
lat_1: float, lon_1: float,
lat_2: float, lon_2: float, *, R: float
) -> float:
. # etc.

2. Create a partial function using the keyword parameter:

from functools import partial
nm_haversine_3 = partial(haversine, R=NM)

The partial() function builds a new function from an existing function and a concrete set
of argument values. The nm_haversine_3() function has a specific value for R provided

when the partial was built.

We can use this like we’d use any other function:

>>> (nm_haversine_3(

1558.53

We get an answer in nautical miles, allowing us to do boating-related calculations. Having a
fixed value for R=NM leaves the code slightly simpler-looking, and much more trust-worthy.

The possibility of one computation having an incorrect value for R is eliminated.

Creating a partial function with positional parameters
If we try to use partial() with positional arguments, we’re constrained to providing the

leftmost parameter values in the partial definition. This leads us to think of the first few

Chapter 3 127

arguments to a function as candidates for being hidden by a partial function or a wrapper:

1. We need to change the basic haversine function to put the R parameter first. This

makes it slightly easier to define a partial function. Here’s the changed definition:

def p_haversine(

R: float,

lat_1: float, lon_1: float, lat_2: float, lon_2: float
) -> float:

etc.

2. Create a partial function using the positional parameter:

from functools import partial
nm_haversine_4 = partial(p_haversine, NM)

The partial() function builds a new function from an existing function and a
concrete set of argument values. The nm_haversine_4() function has a specific

value for the first parameter, R, that’s provided when the partial was built.

We can use this like we’d use any other function:

>>> (nm_haversine_4(

1558.53

We get an answer in nautical miles, allowing us to do boating-related calculations easily,
The code can use a version of the the haversine() function without the annoying detail of

repeating the R=NM argument value.

How it works...

A partial function is, essentially, identical to a wrapper function. We can build partials
freely in the middle of other, more complex, pieces of a program. Note that creating partial
functions leads to a few additional considerations when looking at the order for positional

parameters:

o If we try to use *args in the wrapper, these must be defined last. All of these

128 Function Definitions

parameters become anonymous. This anonymity means tools like mypy may have
problems confirming the parameters are being used correctly. The documentation

will not show the necessary details, either.

« The leftmost positional parameters are easiest to provide a value for when creating a

partial function.

+ Any keyword-only parameters, defined after the * separator, are also a good choice

to provide as part of a partial definition.

These considerations can lead us to look at the leftmost argument as being a kind of context:
these parameters are expected to change rarely and can be provided more easily by partial

function definitions.

There's more...

There’s yet another way to wrap a function — we can also build a lambda object. The

following example will also work:

nm_haversine_L = lambda *args: haversine_k(*args, R=NM)

This relies on the haversine_k() function definition, where the R parameter is marked as
keyword-only. Without this clear separation between positional and keyword argument
values, this lambda definition will result in a warning from mypy. If we use the original

haversine() function, the warning tells us that it’s possible for R to get multiple values.

A lambda object is a function that’s been stripped of its name and body. The function

definition is reduced to just two essentials:
+ The parameter list, *args, in this example.

« A single expression, which is the result, haversine_k(*args, R=NM). A lambda

cannot have any statements.

The lambda approach makes it difficult to create type hints. This limits its utility. Further,

the PEP-8 recommendations suggest assigning a lambda to a variable should never be done.

https://peps.python.org/pep-0008/

Chapter 3 129

See also

« We'll also look at extending this design further in the Writing testable scripts with the

script-library switch recipe.

« For more functional programming techniques, see Functional Python Programming:
https://www.packtpub.com/product/functional-python-programming-3rd-e
dition-third-edition/9781803232577. This has numerous examples of using

lambdas and partial functions.

Writing clear documentation strings with RST
markup

How can we clearly document what a function does? Can we provide examples? Of course
we can, and we really should. In the Including descriptions and documentation recipe in
Chapter 2, and in the Writing better docstrings with RST markup recipe, we looked at some
essential documentation techniques. Those recipes introduced ReStructuredText (RST)

for module docstrings.

We’ll extend those techniques to write RST for function docstrings. When we use a tool such
as Sphinx, the docstrings from our function will become elegant-looking documentation

that describes what our function does.

Getting ready
In the Forcing keyword-only arguments with the * separator recipe, we looked at a function

to compute wind-chill, given the temperature and wind-speed.

In the recipe, we’ll show several versions of the function with trailing _0 in the name.
Pragmatically, this name change is not a good idea. For the purposes of making the
evolution of this function clear in this book, however, it seems helpful to give each new

variant a distinct name.

We need to annotate this function with some more complete documentation.

https://www.packtpub.com/product/functional-python-programming-3rd-edition-third-edition/9781803232577
https://www.packtpub.com/product/functional-python-programming-3rd-edition-third-edition/9781803232577

130 Function Definitions

How to doiit...
We'll generally write the following things for a function description:
+ Synopsis
» Description
« Parameters
» Returns
» Exceptions
« Test cases
« Anything else that seems meaningful

Here’s how we’ll create documentation for a function. We can apply a similar method to a

method of a class, or even a module.

1. Write the synopsis. A proper subject isn’t required. Don’t write This function

computes...; we can start with Computes.... There’s no reason to overstate the context:

def T_wc_1(T, V):
"""Computes the wind chill temperature.

To help clarify the evolution of this function’s docstring in this book, we’ve appended

a suffix of _1 to the name.

2. Write the description and provide details:

def T_wc_2(T, V):
"""Computes the wind chill temperature.
The wind-chill, :math: T_{wc}",
is based on air temperature, T, and wind speed, V.

nun

In this case, we used a little block of typeset math in our description. The :math:
interpreted text role uses KIgXmath typesetting. Tools like Sphinx can use MathJax
or jsMath to do handle math typesetting.

Chapter 3 131

3. Describe the parameters. For positional parameters, it’s common to use : param name:
description. Sphinx will tolerate a number of variations, but this is common. For

parameters that must be keywords, it’s common to use :key name: as the prefix to

the description.

def T_wc_3(T: float, V: float):
"""Computes the wind chill temperature
The wind-chill, :math: T_{wc}",
is based on air temperature, T, and wind speed, V.

:param T: Temperature in °C
:param V: Wind Speed in kph

4. Describe the return value using :returns::

def T_wc_4(T: float, V: float) -> float:
"""Computes the wind chill temperature
The wind-chill, :math: T_{wc}",
is based on air temperature, T, and wind speed, V.

:param T: Temperature in °C
:param V: Wind Speed in kph

:returns: Wind-Chill temperature in °C

5. Identify the important exceptions that might be raised. Use the :raises exception:
markup to define the reasons for the exception. There are several possible variations,

but :raises exception: seems to be popular:

def T_wc_5(T: float, V: float) -> float:
"""Computes the wind chill temperature
The wind-chill, :math: T_{wc}",
is based on air temperature, T, and wind speed, V.

:param T: Temperature in °C
:param V: Wind Speed in kph

132 Function Definitions

:returns: Wind-Chill temperature in °C

:raises ValueError: for wind speeds under 4.8 kph or T above 10°C

6. Include a doctest test case, if possible:

def T_wc(T: float, V: float) -> float:
"""Computes the wind chill temperature
The wind-chill, :math: T_{wc}",
is based on air temperature, T, and wind speed, V.

:param T: Temperature in °C
:param V: Wind Speed in kph

:returns: Wind-Chill temperature in °C
:raises ValueError: for wind speeds under 4.8 kph or T above 10°C

>>> round(T_wc(-10, 25), 1)
-18.8

7. Write any additional notes and helpful information. We could add the following to
the docstring:

See https://en.wikipedia.org/wiki/Wind_chill
. math::

T_{wc}(T_a, V) = 13.2 + 0.6215 T_a - 11.37 V ~ {0.16} + 0.3965
T_a Vv A {0.16}

We’ve included a reference to a Wikipedia page that summarizes wind-chill calcula-

tions and has links to more detailed information.

We’ve also included a .. math:: directive with the LaTeX formula that’s used in
the function. This will often typeset nicely, providing a very readable version of the

code.

Chapter 3 133

How it works...

For more information on docstrings, see the Including descriptions and documentation recipe
in Chapter 2. While Sphinx is popular, it isn’t the only tool that can create documentation
from the docstring comments. The pydoc utility that’s part of the Python Standard Library

can also produce good-looking documentation from the docstring comments.

The Sphinx tool relies on the core features of RST processing in the Docutils package.

See https://pypi.python.org/pypi/docutils for more information.

The RST rules are relatively simple. Most of the additional features in this recipe leverage the
interpreted text roles of RST. Each of our :param T:, :returns:, and :raises ValueError:
constructs is a text role. The RST processor can use this information to decide on a style
and structure for the content. The style usually includes a distinctive font. The context

might be an HTML definition list format.

There's more...

In many cases, we’ll also need to include cross-references among functions and classes. For
example, we might have a function that prepares a wind-chill table. This function might

have documentation that includes a reference to the T_wc () function.

Sphinx will generate these cross-references using a special : func: text role:

def wind_chill_table() -> None:
"""Uses :func: T_wc ™ to produce a wind-chill
table for temperatures from -30°C to 10°C and
wind speeds from 5kph to 50kph.

. # etc.

We’ve used : func: Twc to create a reference from one function in the RST documentation

to another function. Sphinx will turn these into proper hyperlinks.

https://pypi.python.org/pypi/docutils

134 Function Definitions

See also

« See the Including descriptions and documentation and Writing better docstrings with

RST markup recipes in Chapter 2, for other recipes that show how RST works.

Designing recursive functions around Python's
stack limits

Some functions can be defined clearly and succinctly using a recursive formula. There are

two common examples of this.

The factorial function has the following recursive definition:

1 ifn=0,
n! =

nx(n—-1) ifn>0.

The recursive rule for computing a Fibonacci number, F,, has the following definition:

1 ifn=0vn=1,
F, =
FE,1+F_, ifn>1

Each of these involves a case that has a simple defined value and a case that involves

computing the function’s value, based on other values of the same function.

The problem we have is that Python imposes an upper limit for these kinds of recursive
function evaluations. While Python’s integers can easily compute the value of 1000!, the

stack limit prevents us from computing this casually.

Pragmatically, the filesystem is an example of a recursive data structure. Each directory
contains subdirectories. Recursive function definitions can be used on directory trees. The

cases with defined values come from processing the non-directory files.

We can often refactor a recursive design to eliminate the recursion and replace it with

Chapter 3 135

iteration. While doing recursion elimination, we’d like to preserve as much of the original

mathematical clarity as possible.

Getting ready
Many recursive function definitions follow the pattern set by the factorial function. This is
sometimes called tail recursion because the recursive case can be written at the tail of the
function body:
def fact_r(n: int) -> int:
if n ==

return 1
return n * fact_r(n - 1)

The last expression in the function refers to the same function, but uses a different argument

value.

We can restate this, avoiding the recursion limits in Python.

How to doit...

A tail recursion can also be described as a reduction. We’re going to start with a collection

of values, and then reduce them to a single value:

1. Expand the rule to show all of the details: n! =nx(n—1)x(n—2)x(n —3) x - x 1.

This helps ensure we understand the recursive rule.

2. Write a loop or generator to create all the values: N = {n,n—1,n—2,n-3,...,1}. In
Python, this can be as simple as range(1, n+1). In some cases, though, we might
have to apply some transformation function to the base values: N = {f(i) | 1 <
i < n+ 1}. This is a list comprehension; see Building lists — literals, appending, and

comprehensions in Chapter 4.

3. Incorporate the reduction function. In this case, we’re computing a large product,

using multiplication. We can summarize this as [[;< ., x.

Here’s an implementation in Python:

136 Function Definitions

def prod_i(int_iter: Iterable[int]) -> int:
p=1
for x in int_iter:
p*=x
return p

An equivalent function is available in the math module. Rather than write it out as

shown above, we can use from math import prod.

The prod_i() function can be used as follows to compute a factorial value:

>>> prod_i(
120

>>> fact(5)
120

This works nicely. We’ve optimized the prod_i () function into an iterative function. This

revision avoids the potential stack overflow problems the recursive version suffers from.

Note that the range object is lazy; it doesn’t create a big list object, avoiding the allocation
of a great deal of memory. A range object returns individual values as they are consumed

by the prod_i() function.

How it works...

A tail recursion definition is handy because it’s short and easy to remember. Mathematicians

like this because it can help clarify what a function means.

Many static, compiled languages create optimized code in a manner similar to the technique
we’ve shown here. This works by injecting a special instruction into the virtual machine’s
byte code — or the actual machine code — to re-evaluate the function without creating a
new stack frame. Python doesn’t have this feature. In effect, this optimization transforms a

recursion into a kind of while statement:

Chapter 3 137

def loop_fact(n: int) -> int:
p=n
while n != 1:
n=n-1
p*=n
return p

The injection of the special byte code instruction will lead to code that runs quickly, without
revealing the intermediate revisions. The resulting instructions will not be a perfect match

for the source text, however, leading to potential difficulties in locating bugs.

There's more...

Computing the F, Fibonacci number involves an additional problem. If we’re not careful,

we’ll compute a lot of values more than once:

To compute F5 = F; + F;, for example, we’ll evaluate this:

F=F+E)+(F+F)

Expanding the definition of F5 and F; shows a number of redundant computations.

The Fibonacci problem involves two recursions. If we write it naively, it might look like
this:
def fibo(n: int) -> int:
if n <= 1:
return 1

else:
return fibo(n-1) + fibo(n-2)

It’s difficult to do a simple mechanical transformation to turn something like this example

into a tail recursion. We have two ways to reduce the computation complexity of this:
» Use memoization

« Restate the problem

138 Function Definitions

The memoization technique is easy to apply in Python. We can use the @functools.cache

as a decorator. It looks like this:

from functools import cache

@cache
def fibo_r(n: int) -> int:
if n < 2:
return 1
else:

return fibo_r(n - 1) + fibo_r(n - 2)

Adding this decorator will optimize a more complex recursion.

Restating the problem means looking at it from a new perspective. In this case, we can
think of computing all Fibonacci numbers up to and including the desired F,. We only
want the last value in this sequence. Computing a number of intermediate values can be

reasonably efficient.

Here’s a generator function that does this:

from collections.abc import Iterator

def fibo_iter() -> Iterator[int]:
a=1
b=1
yield a
while True:
yield b
a, b=b, a+b

This function is an infinite iteration of Fibonacci numbers. It uses Python’s yield so that it
emits values in a lazy fashion. When a client function uses this iterator, the next number

in the sequence is computed as each number is consumed.

Here’s a function that consumes the values and also imposes an upper limit on the otherwise

infinite iterator:

Chapter 3 139

def fibo_i(n: int) -> int:
for i, f_i in enumerate(fibo_iter()):
if i == n:
break
return f_i

This function consumes a sequence of values from the fibo_iter() iterator. When the

desired number has been reached, the break statement ends the for statement.

We've optimized the recursive solution and turned it into an iteration that avoids the

potential for stack overflow.

See also

« See the Avoiding a potential problem with break statements recipe in Chapter 2.

Writing testable scripts with the script-library

switch
It’s often very easy to create a Python script file. When we provide a script file to Python,

it runs immediately. In some cases, there are no function or class definitions; the script file

is the sequence of Python statements.

These script files are very difficult to test. Additionally, they’re also difficult to reuse. When
we want to build larger and more sophisticated applications from a collection of script files,

we’re often forced to re-engineer a script into one or more functions.

Getting ready
Let’s say that we have a handy implementation of the haversine distance function called

haversine(), and it’s in a file named recipe_11.py.

The file contains the functions and definitions shown in the Picking an order for parameters
based on partial functions in this chapter. This includes a partial function, nm_haversine(),
to compute distances in nautical miles. The script also contains the following top-level

code:

140 Function Definitions

source_path = Path("data/waypoints.csv")
with source_path.open() as source_file:
reader = csv.DictReader(source_file)
start = next(reader)
for point in reader:

d = nm_haversine(
float(start['lat'])
float(start['lon']),
float(point['lat']),
float(point['lon'])

’

)
print(start, point, d)
start = point

This Python script opens a file, data/wapypoints.csv, and does some processing on that

file. While this is handy to use, we can’t easily test it.

If we try to import the haversine() function for a unit test, we’ll execute the other parts of
the script. How can we refactor this module so we can import the useful functions without

it printing a display of distances between waypoints in the wapypoints.csv file?

How to do it...

Writing a Python script can be called an attractive nuisance; it’s attractively simple, but
it’s difficult to test effectively. Here’s how we can transform a script into a testable and

reusable library:

1. Identify the statements that do the work of the script. This means distinguishing
between definitions and actions. Statements such as import, def, and class are
definitional - they create objects but don’t take a direct action to compute or produce
the output. Almost all other statements take some action. Because some assignment
statements might be part of type hint definition, or might create useful constants,

the distinction is entirely one of intent.

2. In our example, we have some assignment statements that are more definition than

action. These assignments are analogous to def statements; they only set variables

Chapter 3 141

that are used later. Here are the generally definitional statements:

from math import radians, sin, cos, sqrt, asin
from functools import partial

MI = 3959
NM = 3440
KM = 6373

def haversine(
lat_1: float, lon_1: float,
lat_2: float, lon_2: float, *, R: float) -> float:

etc.

nm_haversine = partial(haversine, R=NM)

The rest of the statements in the module are designed to take an action toward

producing the printed results.

3. Wrap the actions into a function. Try to pick a descriptive name. If there’s no better
name, use main(). In this example the action computes distances, so we’ll call the

function distances().

def distances_draft():
source_path = Path("data/waypoints.csv")
with source_path.open() as source_file:
reader = csv.DictReader(source_file)
start = next(reader)
for point in reader:

d = nm_haversine(
float(start['lat']
float(start['lon']
float(point['lat']
float(point['lon']

’
’
[

)
)
)
)

)
print(start, point, d)
start = point

In the above example, we named the function distances_draft() to assure that it’s

142 Function Definitions

clearly distinct from a more final version. Practically, using distinct names like this
as code evolves toward completion isn’t necessary, unless writing a book where it’s

essential to unit test intermediate steps.

4. Where possible, extract literals and turn them into parameters. This is often a simple

movement of the literal to a parameter with a default value.

def distances(
source_path: Path = Path("data/waypoints.csv")
) -> None:
etc.

This makes the script reusable because the path is now a parameter instead of an

assumption.

5. Include the following if statement as the only high-level action statements in the
script file:

if __name__ == "__main__":
distances()

We've packaged the action of the script as a function. The top-level action script is now
wrapped in an if statement so that it isn’t executed during import but is executed when

the script is run directly.

How it works...
An important rule for Python is that an import of a module is essentially the same as
running the module as a script. The statements in the file are executed, in order, from top

to bottom.

When we import a file, we’re generally interested in executing the def and class state-
ments. We might be interested in some assignment statements that define useful globals.

Sometimes, we’re not interested in executing the main program.

When Python runs a script, it sets a number of built-in special variables. One of these is

Chapter 3 143

__name__. This variable has two different values, depending on the context in which the

file is being executed:

+ The top-level script, executed from the command line: In this case, the value of the

built-in special name of __name__ is set to "__main__".

+ A file being executed because of an import statement: In this case, the value of
__name__is the name of the module being created from reading the file and executing

the Python statements.

The standard name of "__main__" may seem a little odd at first. Why not use the filename
in all cases? This special name is assigned because a Python script can be read from one of
many sources. It can be a file. Python can also be read from the stdin pipeline, or it can be

provided on the Python command line using the -c option.

There's more...

We can now build useful work around a reusable library. We might make an application

script file that look like this:

from pathlib import Path
from ch@3.recipe_11 impoxt distances

if __name__ == "__main__":
for trip in 'trip_l.csv', 'trip_2.csv':
distances(Path('data') / trip)
The goal is to decompose a practical solution into two collections of features:
« The definition of classes and functions

+ A very small action-oriented script that uses the definitions to do useful work

We often start with a script that conflates both sets of features. This kind of script can
be viewed as a spike solution. Our spike solution can evolve toward a more refined
solution as soon as we're sure that it works. A spike or piton is a piece of removable

mountain-climbing gear that enables us to climb safely.

144 Function Definitions

After starting with a spike, we can elevate our design and refactor the code into definitions
and actions. Tests can then import the module to test the various definitions without taking

actions that might overwrite important files.

See also
« In Chapter 7, we look at class definitions. These are another kind of widely used

definitional statement, in addition to function definitions.

+ The Reading delimited files with the CSV module recipe that we look at in Chapter 11
also addresses CSV file reading.

Join our community Discord space

Join our Python Discord workspace to discuss and find out more about the book:

https://packt.link/dHrHU

https://packt.link/dHrHU

Built-In Data Structures Part
1: Lists and Sets

Python has a rich collection of built-in data structures. These data structures are sometimes
called “containers” or “collections” because they contain a collection of individual items.

These structures cover a wide variety of common programming situations.

We'll look at an overview of the various collections that are built in and what problems

they solve. After the overview, we will look at the list and set collections in detail.

The built-in tuple and string types were part of Chapter 1, Numbers, Strings, and Tuples.
These structures are sequences, making them similar in many ways to the list collection.

However, strings and tuples seem to have more in common with immutable numbers.

The next chapter, Chapter 5, will look at dictionaries, as well as some more advanced topics
also related to lists and sets. In particular, it will look at how Python handles references to
mutable collection objects. This has consequences in the way functions need to be defined

that accept lists or sets as parameters.

146 Built-In Data Structures Part 1: Lists and Sets

In this chapter, we’ll look at the following recipes, all related to Python’s built-in data

structures:
« Choosing a data structure
o Building lists — literals, appending, and comprehensions
o Slicing and dicing a list
o Shrinking lists — deleting, removing, and popping
« Writing list-related type hints
+ Reversing a copy of a list
« Building sets — literals, adding, comprehensions, and operators
« Shrinking sets — remove(), pop(), and difference

« Writing set-related type hints

Choosing a data structure
Python offers a number of built-in data structures to help us work with collections of data.
It can be confusing to match the data structure features with the problem we’re trying to

solve.

How do we choose which structure to use?

Getting ready
Before we put data into a collection, we’ll need to consider how we’ll gather the data, and
what we’ll do with the collection once we have it. One big question is how to identify a

particular item within the collection. Python offers a variety of choices.

How to do it...
1. Is the programming focused on the existence of a value? An example of this is

validating an input value. When the user enters something that’s in a collection,

Chapter 4 147

their input is valid; otherwise, the entry is invalid. Simple membership tests suggest
using a set:
def confirm() -> bool:
yes = {"yes", "y"}
no = {"no", "n"}
while (answer := input("Confirm: ")).lower() not in (yes | no):

print("Please respond with yes or no")
return answer in yes

A set holds items in no particular order. If order matters, then a list is more appropri-

ate.

2. Are we going to identify items by their position in the collection? An example
includes the lines in an input file—the line number is its position in the collection.

When we identify an item using an index or position, we must use a list:

>>> month_name_list = ["Jan", "Feb"
.. "May", "Jun", "Jul", "Aug",
. "Sep", "Oct", "Nov", "Dec"]

>>> month_name_list[2]

'Sep'

>>> month_name_list.index("Feb")
1

We have created a list, month_name_list, with 12 string items in a specific order.
We can pick an item by providing the index position. We can also use the index ()
method to return the index position of an item in the list. List index values in Python
always start with zero. While a list has a simple membership test, the test can be
slow for a very large list, and a set might be a better idea if many such tests will be

needed.

If the number of items in the collection is fixed—for example, RGB colors have three
values—this suggests a tuple instead of a list. If the number of items will grow and

change, then the list collection is a better choice than the tuple collection.

3. Are we going to identify the items in a collection by a key value that’s distinct

148 Built-In Data Structures Part 1: Lists and Sets

from the item’s index? An example might include a mapping between strings of
characters—words, for example—and integers that represent the frequencies of those
words. Another example might be a mapping between a color name and the RGB
tuple for that color. We’ll look at mappings and dictionaries in Chapter 5, Built-In
Data Structures Part 2: Dictionaries. The important distinction is mappings do not

locate items by a numerical index position the way lists do.

4. Consider the mutability of items in a set collection (and the keys in a dictionary).
Each item in a set must be an immutable object. Numbers, strings, and tuples are all
immutable and can be collected into sets. Since list, dictionary, and set objects are
mutable, they can’t be used as items in a set. It’s impossible to build a set of list

objects, for example.

Rather than create a set of 1ist items, we can transform each item into an immutable
tuple object. Similarly, dictionary keys must be immutable. We can use a number,
a string, or a tuple as a dictionary key. We can’t use a 1ist, or a set, or any other

mutable object as a dictionary key.

How it works...

Each of Python’s built-in collections offers a specific set of unique features. The collections
also offer a large number of overlapping features. The challenge for programmers new to
Python is to map the unique features of each collection to the problem they are trying to

solve.

The collections.abc module provides a kind of road map through the built-in container
classes. This module defines the Abstract Base Classes (ABCs) underlying the concrete
classes we use. We'll use the names from this set of definitions to guide us through the

features.

From the ABCs, we can see that there are places for a total of three general kinds of

collections with six implementation choices:

« Set: Its unique feature is that items are either members or not. This means duplicates

Chapter 4 149

are ignored:
— Mutable set: The built-in set collection
— Immutable set: The built-in frozenset collection
« Sequence: Its unique feature is that items are provided with an index position:
— Mutable sequence: The built-in 1ist collection

— Immutable sequence: The built-in tuple collection. This is the subject of

some recipes in Chapter 1.
« Mapping: Its unique feature is that each item has a key that refers to a value:

— Mutable mapping: The built-in dict collection. This is the subject of Chap-
ter 5.

- Immutable mapping: Interestingly, there’s no built-in frozen mapping.

Python’s libraries offer additional implementations of these core collection types. The

collections module include:

+ namedtuple: A tuple that offers names for each item in a tuple. It’s slightly clearer

to use rgb_color.red than rgb_color[@].

+ deque: A double-ended queue. It’s a mutable sequence with optimizations for pushing
and popping from each end. We can do similar things with a list, but deque is more

efficient when changes at both ends are needed.
« defaultdict: A dict that can provide a default value for a missing key.

« Counter: A dict that is designed to count occurrences of a key. This is sometimes

called a multiset or a bag.
+ ChainMap: A dict that combines several dictionaries into a single mapping.

Additionally, there’s an older OrderedDict class. This class retains the keys in the order

in which they were created. Starting with Python 3.7, the dictionary keys for an ordinary

150 Built-In Data Structures Part 1: Lists and Sets

dictionary are retained in the order they were created, making the OrderedDict class

redundant.

There's more...

There’s still more in the Python Standard Library. We can also use the heapq module, which
defines a kind of list that acts as a high-performance priority queue. The bisect module
includes methods for searching a sorted list very quickly. This lets us create a 1ist object,

which can have performance that is a little closer to the very fast lookups of a dictionary.

We can find descriptions of data structures on summary web pages, like this one: https:

//thealgorist.com. We'll take a quick look at four additional families of data structures:

+ Arrays: The Python array module supports densely packed arrays of values. The

numpy module also offers very sophisticated array processing.

+ Trees: Generally, tree structures can be used to create sets, sequential lists, or key-
value mappings. We can look at a tree as an implementation technique for building

sets or dictionaries. We often build tree structures using objects and class definitions.

« Hashes: Python uses hashes to implement dictionaries and sets. This leads to good

speed but potentially large memory consumption.

» Graphs: Python doesn’t have a built-in graph data structure. However, we can
easily represent a graph structure with a dictionary where each node has a list
of adjacent nodes. External libraries like NetworkX, Pyoxigraph, and RDFLib
support sophisticated graph databases.

We can—with a little cleverness—implement almost any kind of data structure in Python.
While it’s often the case that the built-in structures have the essential we may be able to
locate a built-in structure that can be pressed into service. We’ll look at mappings and

dictionaries in Chapter 5, Built-In Data Structures Part 2: Dictionaries.

See also

« For high-performance array processing, see https://numpy.org.

https://thealgorist.com
https://thealgorist.com
https://numpy.org

Chapter 4 151

« For advanced graph analysis, see https://networkx.github.io.

« For graph manipulation and storage, see htthttps://pyoxigraph.readthedocs.i
o/en/stable/.

+ For graph manipulation, see htthttps://xdflib.readthedocs.io/en/stable/.

Building lists - literals, appending, and
comprehensions

If we’ve decided to create a collection based on each item’s position in the container—a
list—we have several ways of building this structure. We’ll look at a number of ways we

can assemble a list object from the individual items.

In some cases, we’ll need a list because it allows duplicate values, unlike a set. This is
common in statistical work. A different structure, called a multiset, can also be useful for a
statistically oriented collection that permits duplicates. This collection is available in the

standard library as collections.Counter.

Getting ready
Let’s say we need to do some statistical analyses of some file sizes. Here’s a short script

that will provide us with the sizes of some files:

>>> Path
>>> home = Path.cwd() / "data"
>>> path (home.glob('*.csv')):

. (path.stat().st_size, path.name)
260 binned.csv
250 chl4_x@3.csv
2060 chl4_x@4.csv
45 craps.csv

225 fuel.csv

156 fuel2.csv

28 output.csv
19760 output_0.csv
19860 output_1.csv
19645 output_2.csv

https://networkx.github.io
htthttps://pyoxigraph.readthedocs.io/en/stable/
htthttps://pyoxigraph.readthedocs.io/en/stable/
htthttps://rdflib.readthedocs.io/en/stable/

152 Built-In Data Structures Part 1: Lists and Sets

19971 output_3.csv

19588 output_4.csv

We've used a pathlib.Path object to represent a directory in our filesystem. The glob()

method expands all names that match a given pattern.

We'd like to accumulate a list object that has the various file sizes. From that list, we can

compute the total size and average size.

How to doit...

We have many ways to create list objects:

« Literal: We can create a literal display of a list using a sequence of values surrounded
by [] characters. For example, [1, 2, 3]. Python needs to match an opening [and
a closing] to see a complete logical line, so the literal can span physical lines. For

more information, refer to the Writing long lines of code recipe in Chapter 2.

+ Conversion function: We can convert some other data collection into a list using

the 1ist () function.

« Append method: We have list methods that allow us to build a list one item at
a time. These methods include append(), extend(), and insert(). We’ll look at
the append () method in the Building a list with the append() method section of this

recipe.

« Comprehension: A comprehension is a specialized generator expression that com-
putes a list from a source object. We’ll look at this in detail in the Writing a list

comprehension section of this recipe.

The first two ways to create a list are single Python expressions. The last two are more

complex, and we’ll show recipes for each of them.

Building a list with the append() method

1. Create an empty list using literal syntax, [], or the 1ist() function:

Chapter 4 153

>>> file_sizes = []

2. Tterate through some source of data. Append the items to the list using the append ()
method:

>>> home = Path.cwd() / "data"
>>> path (home.glob('*.csv')):
file_sizes.append(path.stat().st_size)

>>> (file_sizes)

[260, 250, 2060, 45, 225, 156, 28, 19760, 19860, 19645, 19971, 19588,
19999, 20000, 20035, 19739, 19941, 215, 412, 28, 166, 0, 1810, @, 0,
16437, 20295]

>>> ((file_sizes))

240925

When we print the list, Python displays it in literal notation. This is handy if we ever need

to copy and paste the list into another script.

It’s very important to note that the append () method does not return a value. The append()

method mutates the list object, and does not return anything.

Writing a list comprehension
The goal of a list comprehension is to create an object that occupies the syntax role of a

literal:
1. Write the wrapping [] brackets that surround the list object to be built.

2. Write the source of the data. This will include the target variable. Note that there’s

no : at the end of the for clause because we’re not writing a complete statement:

[... for path in home.glob('*.csv')]

3. Prefix the for clause with an expression to evaluate to create each value that goes
into the sequence from the value of target variable. Again, since this is only a single

expression, we cannot use complex statements here:

154 Built-In Data Structures Part 1: Lists and Sets

[path.stat().st_size
for path in home.glob('*.csv')]

Here’s an example of 1ist object construction:

>>> [path.stat().st_size
path (home.glob('*.csv'))]

[260, 250, 2060, 45, 225, 156, 28, 19760, 19860, 19645, 19971, 19588, 19999,
20000, 20035, 19739, 19941, 215, 412, 28, 166, 0, 1810, @, @, 16437, 20295]

Now that we’ve created a 1ist object, we can assign it to a variable and do other calculations

and summaries on the data.

The list comprehension is built around a central generator expression, called a compre-
hension in the language manual. The comprehension has two parts: the data expression
clause and a for clause. The data expression clause is evaluated repeatedly, driven by the

variables assigned in the for clause.

We can replace the enclosing [and] with the list() function. Using the explicit 1ist()
function had an advantage when we consider the possibility of changing the data structure.
We can easily replace 1ist () with set() or Counter() to make use of the core generator,

but creating a distinct collection type.

How it works...

A Python 1ist object has a dynamic size. The size is adjusted when items are appended
or inserted, or the list is extended with items from another sequence. Similarly, the size

shrinks when items are popped or deleted.

In rare cases, we might want to create a list with a given initial size, and then set the values

of the items separately. We can do this with a list comprehension, like this:

>>> sieve = [i ()]

This will create a list with an initial size of 100 items, each of which is True. We might

Chapter 4 155

need this kind of initialization to implement the Sieve of Eratosthenes algorithm:

>>> sieve[0] = sieve[l]
>>> p (DK

sieve[p]:
n
.. sievel[n]
>>> prime = [p p sieve[pl]]

The sieve collection has a sequence of True and False values. The index position of each
True is a prime number. Multiples of each prime, p, starting with p?, are set to False. The

prime collection is a sequence of values, p for which the expression sieve[p] is True.

There's more...

A common goal for creating a 1list object is to be able to summarize it. We can use a

variety of Python functions for this. Here are some examples:

>>> sizes = (path.stat().st_size
path home.glob('*.csv'))

>>> (sizes)

240925

>>> (sizes)

20295

>>> (sizes)

0

>>>

>>> (mean(sizes), 3)

8923.148

We've used the built-in sum(), min(), and max() methods to produce some descriptive
statistics of these document sizes. Which of these index files is the smallest? We want to
know the position of the minimum in the list of values. We can use the index () method

for this:

>>> sizes.index((sizes))

1

https://math.libretexts.org/Bookshelves/Combinatorics_and_Discrete_Mathematics/Elementary_Number_Theory_(Raji)/02%3A_Prime_Numbers/2.01%3A_The_Sieve_of_Eratosthenes

156 Built-In Data Structures Part 1: Lists and Sets

We found the minimum, and then used the index() method to locate the position of that

minimal value.

Other ways to extend a list

We can extend a list object, as well as insert one into the middle or beginning of a list.
We have two ways to extend a list: we can use the + operator or we can use the extend()
method. Here’s an example of creating two lists and putting them together with the +

operator:

>>> home = Path.cwd() / "src"
>>> ch3 = (path.stat().st_size
Ca path home.glob('ch@3/*.py"'))
>>> ch4 = (path.stat().st_size
path home.glob('cho4/*.py'))

>>> (ch3)

16

>>> (ch4)

6

>>> final = ch3 + ch4
>>> (final)

22

>>> (final)

34853

We have created a list of sizes of documents with names like Chapter_03/*.py. We
then created a second list of sizes of documents with a slightly different name pattern,

Chapter_04/*.py. We then combined the two lists into a final list.

We can insert a value prior to any particular position in a list. The insert () method accepts

the position of an item; the new value will be before the given position:

= [
p.insert (02,

p
12, 3, 5, i,

Chapter 4 157

>>> p.insert(3, 7)

>>> p
[2, 3, 5, 7, 11, 13]

We've inserted two new values into a list object. As with the append() and extend()

methods, the insert () method does not return a value. It mutates the list object.

See also
« Refer to the Slicing and dicing a list recipe for ways to copy lists and pick sublists

from a list.

« Refer to the Shrinking lists — deleting, removing, and popping recipe for other ways to

remove items from a list.
+ In the Reversing a copy of a list recipe, we’ll look at reversing a list.

« This article provides some insights into how Python collections work internally:

https://wiki.python.org/moin/TimeComplexity.

When looking at the tables, it’s important to note the expression O(1) means that
the cost is essentially constant. The expression O(n) means the cost grows as the

size of the collection grows.

Slicing and dicing a list

There are many times when we’ll want to pick items from a list. One of the most common
kinds of processing is to treat the first item of a list as a special case. This leads to a kind of
head-tail processing where we treat the head of a list differently from the items in the tail

of a list.
We can use these techniques to make a copy of a list too.
Getting ready

We have a spreadsheet that was used to record fuel consumption on a large sailboat. It has

rows that look like this:

https://wiki.python.org/moin/TimeComplexity

158 Built-In Data Structures Part 1: Lists and Sets

date engine on fuel height
engine off fuel height
Other notes
10/25/2013 08:24:00 AM 29
01:15:00 PM 27
calm seas — anchor solomon’s island
10/26/2013 09:12:00 AM 27
06:25:00 PM 22
choppy — anchor in jackson’s creek

Table 4.1: Example of sailboat fuel use

In this dataset, fuel is measured by height. This is because a sight-gauge is used, calibrated
in inches of depth. For all practical purposes, the tank is rectangular, so the depth shown

can be converted into volume since we know 31 inches of depth is about 75 gallons.

This example of spreadsheet data is not properly normalized. Ideally, all rows follow the
First Normal Form for data: a row should have identical content, and each cell should

have only atomic values. In this data, there are three subtypes of row:
1. The first row of a three-row group has engine on date, time, and a measurement.
2. The second row of a group has engine off time and a measurement.
3. The third row has some notes that aren’t too useful.

This kind of denormalized data includes the following two problems:

+ The .csv file has four rows of headings. (The fourth row is a blank line that’s not
shown here in this nicely formatted book.) This is something the csv module can’t

deal with directly.

« Each day’s travel is spread across three rows. These rows must be combined to make

it easier to compute an elapsed time and the number of inches of fuel used.

We can read the data with a function defined like this:

Chapter 4 159

import csv
from pathlib import Path

def get_fuel_use(path: Path) -> list[list[str]]:
with path.open() as source_file:
reader = csv.reader(source_file)
log_rows = list(reader)
return log_rows

We’ve used the csv module to read the log details. The object returned by the csv.reader()
function is iterable. In order to collect the items into a single list, we applied the 1ist()

function to the iterable; this creates a list object from the reader.

Each row of the original CSV file is a list. Here’s what the first and last rows look like:

>>> Jog_rows[0]

['date', 'engine on', 'fuel height']

>>> Jog_rows[-1]
['", "choppy -- anchor in jackson's creek",

For this recipe, we’ll use an extension of a list index expression to slice items from the list
of rows. The slice, like an index expression, follows the list object in [] characters. Python
offers several variations of the slice expression so that we can extract useful subsets of the

list of rows.

How to doit...

1. The first thing we need to do is remove the four lines of headings from the list of

rows. We'll use two partial slice expressions to divide the list by the fourth row:
>>> head, tail = log_rows[:4], log_rows[4:]

>>> head[?]
['date', 'engine on', 'fuel height']

>>> head[-1]
[|
>>> tail[0]

160 Built-In Data Structures Part 1: Lists and Sets

['10/25/13"', '08:24:00 AM', '29']

>>> tail[-1]
['", "choppy -- anchor in jackson's creek", '']

We’ve sliced the list into two sections using log_rows[:4] and log_rows[4:]. The
first slice expression selects the first four lines; this is assigned to the head variable.
The second slice expression selects rows from 4 to the end of the list. This is assigned

to the tail variable. These are the rows of the sheet we care about.

2. We'll use slices with steps to pick the interesting rows. The [start:stop:step]
version of a slice will pick rows in groups based on the step value. In our case, we’ll
take two slices. One slice starts on row zero—the “engine on” lines—and the other

slice starts on row one—the “engine off” lines.

Here’s a slice of every third row, starting with row zero:

>>> pprint(tail[®::3], width=64)
[['10/25/13', '©8:24:00 AM', '29'],

['10/26/13", '©9:12:00 AM', '27']]

We’ve used the pprint () function from the pprint module to make the output much

easier to read.

There’s additional data in every third row, starting with row one:

>>> pprint(tail[l::3], width=48)
[['', '@1:15:00 PM', '27'],
['', '06:25:00 PM', '22']]

3. These two slices can then be zipped together to create a list of pairs:

>>> paired_rows = ((tail[2::3], tail[1::31))
>>> pprint(paired_xrows)

[(['10/25/13", '@8:24:00 AM', '29'], ['', '01:15:00 PM', '27'])
(['10/26/13', '09:12:00 AM', '27'], ['', '06:25:00 PM', '22'])]

Chapter 4 161

This gives us a sequence that consists of pairs of three tuples. This is very close to

something we can work with.

4. Flatten the results:

>>> paired_rows = (tail[2::3], tail[1::31))
>>> combined = [a+b a, b paired_rows]

>>> pprint(combined)
[['10/25/13', '@8:24:00 AM', '29', '', 'Q1:15:00 PM', '27'],
["10/26/13', '©9:12:00 AM', '27', '', '06:25:00 PM', '22']]

We’ve used a list comprehension from the Building lists — literals, appending, and
comprehensions recipe to combine the two elements in each pair of rows to create
a single row. This has more properly normalized data describing each leg of the

voyage.

From the resulting list, we can now compute the difference in times to get the running
time for the boat. We can compute the difference in heights to estimate the fuel consumed
during each leg of the journey. This flat list with five useful items—date, time, height, time,
and height—has all the needed data in a single row. It also has a column that will generally

contain an empty string.

How it works...

The slice operator has several different forms:

« [:1: The start and stop are implied. The expression S[:] will create a copy of

sequence S.
+ [:stop]: This makes a new list from the beginning to just before the stop index.
« [start:]: This makes a new list from the given start to the end of the sequence.

« [start:stop]: This picks a sublist, starting from the start index and stopping just
before the stop index. Python works with half-open intervals. The start is included,

while the stop index is not included.

o [::step]l: The start and stop are implied and include the entire sequence. The

162 Built-In Data Structures Part 1: Lists and Sets

step—generally not equal to one—means we’ll skip through the list from the start
using the step. For a given step, s, and a list of size |L|, the index values are i € {sxn |

neNand0<sxn<|L|}

« [start::step]: The start is given, but the stop is implied. The idea is that the start
is an offset, and the step applies to that offset. For a given start, a, step, s, and a list

of size |L|, the index values arei € {sxn+a|ne€Nand0<sxn+a <|L}}.

« [:stop:stepl: This is used to prevent processing the last few items in a list. Since

the step is given, processing begins with element zero.

« [start:stop:step]: This will pick elements from a subset of the sequence. Items

prior to start and from stop to the end will not be used.

The slicing technique works for lists, tuples, strings, and any other kind of sequence. Slicing
does not cause the collection to be mutated; rather, slicing will make a copy of some part of

the sequence. The items within the source collection are now shared between collections.

There's more...

In the Reversing a copy of a list recipe, we’ll look at an even more sophisticated use of slice

expressions.

The copy of a sequence is called a shallow copy because there will be two collections that
each contain references to the same underlying objects. We’ll look at this in detail in the

Making shallow and deep copies of objects recipe.

For this specific example, we have another way of restructuring multiple rows of data into
single rows of data: we can use a generator function. We’ll look at functional programming

techniques online in Chapter 9.

See also
+ Refer to the Building lists — literals, appending, and comprehensions recipe for ways

to create lists.

« Refer to the Shrinking lists — deleting, removing, and popping recipe for other ways to

Chapter 4 163

remove items from a list.
« In the Reversing a copy of a list recipe, we’ll look at reversing a list.

+ The pandas package offers some additional ways to work with CSV files.

Shrinking lists - deleting, removing, and popping
There will be many times when we’ll want to remove items from a list collection. We might

delete items from a list, and then process the items that are left over.

Removing unneeded items has a similar effect to using filter() to create a copy that has
only the needed items. The distinction is that a filtered copy will use more memory than
deleting items from a list. We’ll show both techniques for removing unwanted items from

a mutable list.

Getting ready
We have a spreadsheet that is used to record fuel consumption on a large sailboat. See

Table 4.1 for the data.

For more background on this data, refer to the Slicing and dicing a list recipe earlier in this
chapter. The get_fuel_use() function will collect the raw data. It’s important to note that
the structure of this data—each fact spread among three separate rows—is perfectly awful

and requires considerable care to reconstruct something more useful.
Each row of the original CSV file is a list. Each of those lists contains three items. It’s

essential to remove some rows with titles and uninformative data.

How to doit...

We'll look at several ways to remove items from a list:
+ The del statement.
« The remove() method.

+ The pop() method.

https://pandas.pydata.org

164 Built-In Data Structures Part 1: Lists and Sets

+ We can also replace items in a list using slice assignment.

The del statement
We can remove items from a list using the del statement. We can provide an object and a

slice to remove a group of rows from the list object. Here’s how the del statement looks:

>>> log_rows[:4]
>>> log_rows[0]
['10/25/13"', '©8:24:00 AM', '29']

>>> Jog_rows[-1]
['", "choppy -- anchor in jackson's creek",

The del statement removed the first four rows, leaving behind the rows that we really need
to process. We can then combine these rows and summarize them using the Slicing and

dicing a list recipe.

The remove() method
We can remove items from a list using the remove () method. Given a specific value, this

removes matching items from a list.

We might have a list that looks like this:

>>> row = ['10/25/13', '08:24:00 AM', '29', '', '01:15:00 PM', '27']

[}

We can remove the useless ' ' item from the list:

>>> row.remove('"')

>>> TOW
['10/25/13", '©8:24:00 AM', '29', '01:15:00 PM', '27']

Note that the remove () method does not return a value. It mutates the list in place.

As noted in the Building lists — literals, appending, and comprehensions recipe, the following

code is incorrect:

Chapter 4 165

['some', 'data']
a.remove('data')

This is emphatically wrong. This will set a to None.

The pop() method
We can remove items from a list using the pop () method. This removes items from a list

based on their index.

We might have a list that looks like this:

>>> yrow = ['10/25/13', '08:24:00 AM', '29', '', '01:15:00 PM', '27']

This has a useless ' ' string in it. We can find the index of the item to pop and then remove

it. The code for this has been broken down into separate steps in the following example:

>>> target_position = row.index('")
>>> target_position
3

>>> row.pop(target_position)

>>> Tow
['10/25/13"', '08:24:00 AM', '29', '01:15:00 PM', '27']

Note that the pop () method does two things:
« It mutates the list object to remove an item.
« It also returns the item that was removed.

This combination of mutation and returning a value is rare, making this method distinctive.

Slice assignment
We can replace items in a list by using a slice expression on the left-hand side of the

assignment statement. This lets us replace items in a list. When the replacement is a

166 Built-In Data Structures Part 1: Lists and Sets

different size, it lets us expand or contract a list. This leads to a technique for removing

items from a list using slice assignment.

We'll start with a row that has an empty value in position 3. This looks like this:

>>> yrow = ['10/25/13', '08:24:00 AM', '29', '', '01:15:00 PM', '27']

>>> target_position = row.index('")
>>> target_position
3

We can assign an empty list to the slice that starts at index position 3 and ends just before
index position 4. This will replace a one-item slice with a zero-item slice, removing the

item from the list:

>>> yow[3:

>>> Tow
['10/25/13"', '©08:24:00 AM', '29', '01:15:00 PM', '27']

The del statement and methods like remove () and pop() seem to clearly state the intent
to eliminate an item from the collection. The slice assignment can be less clear because it
doesn’t have an obvious method name. It does work well, however, for removing a number

of items that can be described by a slice expression.

How it works...

Because a list is a mutable object, we can remove items from the list. This technique doesn’t

work for tuples or strings, because they are immutable.

We can only remove items with an index that’s present in the list. If we attempt to remove

an item with an index outside the allowed range, we’ll get an IndexExrror exception.

The following example tries to delete an item with an index of three from a list where the

index values are zero, one, and two:

Chapter 4 167

'06:25:00 PM', '22']

: list assignment index out of range

There's more...

There are a few places in Python where deleting from a list object may become complicated.
If we use a list object in a for statement, we can’t delete items from the list. Doing so
will lead to unexpected conflicts between the iteration control and the underlying object’s

internal state.

Let’s say we want to remove all even items from a list. Here’s an example that does not

work properly:

>>> data_items = [1, 1,

]

data_items:

f % 2 ==
.. data_items.remove(f)
>>> data_items
[1, 1, 3, 5, 10, 13, 21, 36, 55]

The source list had several even values. The result is clearly not correct; the values of 10

and 36 remained in the list. Why are some even-valued items left in the list?

Let’s look at what happens when processing data_items[5]; it has a value of 8. When the
remove (8) method is evaluated, the value will be removed, and all the subsequent values
will slide forward one position in the list. The 10 value will be moved into position 5, the
position formerly occupied by the 8 value. The iterator control value will advance to the

next position, which will have 13 in it. The 1@ value will never be processed.

We have several ways to avoid the skip-when-delete problem:

168 Built-In Data Structures Part 1: Lists and Sets

« Make a copy of the list:

data_items[:]:
f % 2 ==

data_items.remove(T)

+ Use awhile statement and maintain the index value explicitly:

>>> position =
>>> position != (data_items):
f = data_items[position]
f % 2 ==
data_items.remove(T)

position +=

We’ve designed a while statement to only increment the position variable if the
value of data_items [position] is odd. If the value is even, then the value is removed,
which also means the other items are moved forward one position in the list; it’s

essential the value of the position variable is left unchanged.

+ We can also traverse the list in reverse order. The expression range (len(row)-1, -1, -1)
will produce index descending from -1. This works because negative index values

work forward from the end of the list. The value row[-1] is the last item.

See also
« Refer to the Building lists — literals, appending, and comprehensions recipe for ways

to create lists.

« Refer to the Slicing and dicing a list recipe for ways to copy lists and pick sublists

from a list.

« In the Reversing a copy of a list recipe, we’ll look at reversing a list.

Chapter 4 169

Writing list-related type hints

The typing module provides a few essential type definitions for describing the contents
of a list object. The primary type definition is 1ist, which we can parameterize with the

types of items in the list. It often looks like 1ist[int].

Getting ready
We'll look at a list that has two kinds of tuples. Some tuples are simple RGB colors. Other
tuples are RGB colors that are the result of some computations. These are built from float

values instead of integers. We might have a heterogenous list structure that looks like this:

scheme = [

(' Brick_Red', (198, 45, 66)),

(' colorl', (198.00, 100.50, 45.00)),
(' color2', (198.00, 45.00, 142.50)),
1

Each item in the list is a two-tuple with a color name, and a tuple of RGB values. The RGB
values are represented as a three-tuple of either integer or float values. This is potentially

difficult to describe with type hints.

We have two related functions that work with this data. The first creates a color code from

RGB values.

The essential rule is to treat each component, red, green, or blue, as an 8-bit number, a
value between 0 and 255. These three are combined by shifting the red value by 16 bits and
shifting the green value by 8 bits. The Python << operator does the necessary bit shifting.
The | operator performs an “or” operation, combining the shifted bits to create a new

integer value.

The hints for this function aren’t very complicated:

def hexify(r: float, g: float, b: float) -> str:
return f'#{int(r) << 16 | int(g) << 8 | int(b):06X}"

170 Built-In Data Structures Part 1: Lists and Sets

The : 06X format specification produces a 6-position hexadecimal value.

An alternative is to treat each color as a separate pair of hex digits with an expression like
fr#{int(r):02X}{int(g):02X}{int(b):02X}". This uses three copies of the : 02X format

specification to produce 2-position hexadecimal values for each color component.

When we use this function to create a color string from an RGB number, it looks like this:

>>> hexify (

'#C62D42'

The other function, however, is potentially confusing. This function transforms a complex
list of colors into another list with the hexadecimal color codes:
def source_to_hex_@(src):

return [
(n, hexify(*color)) for n, color in src

We need to add type hints to be sure this function properly transforms a list of colors from

numeric form into string code form.

We've included a _0 suffix on the function name to distinguish it from the examples that
follow. This is not a best practice in general, but we find it helps clarify the code presented

in a book like this.

How to do it...
We'll start by adding type hints to describe the individual items of the input list, exemplified

by the scheme variable, shown previously:

1. Define the resulting type first. It often helps to focus on the outcomes and work
backward toward the source data required to produce the expected results. In this
case, the result is a list of two-tuples with the color name and the hexadecimal code
for the color. We could describe this as 1ist[tuple[str, str]], but that kind of

summary hides some important details. We prefer to expose the details as follows:

Chapter 4 171

ColorCode = tuple[str, str]
ColorCodelList = list[ColorCode]

This list can be seen as being homogeneous; each item will match the ColorCode

type definition.

2. Define the source type. In this case, we have two slightly different kinds of color
definitions. While they tend to overlap, they have different origins, and the processing

history is sometimes helpful as part of a type hint:

from typing import Union

RGB_I = tuple[int, int, int]

RGB_F = tuple[float, float, float]
ColoxrRGB = tuple[str, Union[RGB_I, RGB_F]]
ColorRGBList = 1ist[ColorRGB]

We've defined the two integer-based RGB three-tuple as RGB_I, and the float-based
RGB three-tuple as RGB_F. These two alternative types are combined into the ColorRGB
tuple definition. This is a two-tuple; the second element may be an instance of either
the RGB_I type or the RGB_F type. The presence of a Union type means that this list

is heterogenous.
We could also use RGB_I | RGB_F instead of Union[RGB_I, RGB_F].

3. Update the function to include the type hints. The input will be a list like the schema
object, shown previously. The result will be a list that matches the ColorCodelist
type description:

def source_to_hex(src: ColorRGBList) -> ColorCodelist:

return [
(n, hexify(*color)) for n, color in src

172 Built-In Data Structures Part 1: Lists and Sets

How it works...
The 1ist[T] type hint requires a single value, T, to describe all of the object types that can
be part of this list. For homogeneous lists, the type is stated directly. For heterogeneous

lists, a Union must be used to define the various kinds of types that may be present.
The approach we’ve taken breaks type hinting down into two layers:

« A “foundation” layer that describes the individual items in a collection. We’ve defined
three types of primitive items: the RGB_I and RGB_F types, as well as the resulting
ColoxCode type.

+ A number of “composition” layers that combine foundational types into descriptions
of composite objects. In this case, ColorRGB, ColorRGBList, and ColorCodelList are

all composite type definitions.

Once the types have been named, then the names are used with definition functions, classes,

and methods.

It’s important to define types in stages to avoid long, complex type hints that don’t provide
any useful insight into the objects being processed. It’s good to avoid type descriptions

like this:

list[tuple[str, Union[tuple[int, int, int], tuple[float, float, float]]ll

While this is technically correct, it’s difficult to understand because of its complexity. It

helps to decompose complex types into useful component descriptions.

There's more...

The type hints assume a single type for each item in the list. The syntax 1ist[T] states
that all items are of type T.

In the case of a heterogeneous list, with a number of distinct types, we need to define a
union of types. We can import the Union type from the typing module. Or we can use | to

provide the alternative types for a list.

Chapter 4 173

Using a construct like 1ist[RGB_I | RGB_F] describes a list that contains items with a

mixture of types.

See also

« In Chapter 1, the Using NamedTuples to simplify item access in tuples recipe provides

some alternative ways to clarify types hints for tuples.

+ The Writing set-related type hints recipe covers this from the view of set types.

Reversing a copy of a list

Some algorithms produce results in a reversed order. It’s common to collect the output in
a list and then reverse the list. As an example, we’ll look at the way numbers converted
into a specific base are often generated from least-significant to most-significant digit. We
generally want to display the values with the most-significant digit first. This leads to a

need to reverse the sequence of digits in a list.

Getting ready
Let’s say we’re doing a conversion among number bases. We’ll look at how a number is

represented in a base, and how we can compute that representation from a number.

Any value, v, can be defined as a polynomial function of the various digits, d,, in a given

base, b. A four-digit number would have (ds, dz, d;, dy) as the sequence of digits.

Note that the order we’re using here is reversed from the usual order of items in a Python

list.
The value, v, of this sequence of digits is given by the following polynomial:
V=dyxb"+dp g xb" +d,_yxb" 2+ +dy xb+d,

For example, the hexadecimal number @xBEEF has the following digits: (B = 11,E = 14,E =
14, F = 15), with base b = 16:

174 Built-In Data Structures Part 1: Lists and Sets

48879 = 11 x 16> + 14 x 16> + 14 x 16 + 15

There are many cases where the base isn’t a consistent power of some number. The ISO
date format, for example, has a mixed base that involves 7 days per week, 24 hours per day,

60 minutes per hour, and 60 seconds per minute.

Instead of b%, b3, b2, b = b, and b° = 1, we have 7 x 24 x 60 x 60, 24 x 60 x 60, 60 x 60, and

60 as the various values used to compute the polynomial.

Given a week number, a day of the week, an hour, a minute, and a second, we can compute

a timestamp of seconds, t;, within the given year:

ts = ((Wx7+d)x24+h)x60+m)x60+s

For example:

week

day =
hour =
minute
second

>>> t_s = (((week*7+day)*24+hour)*60+minute)*60+second
>>> t_s
8063599

This shows how we convert from the given moment into a timestamp. How do we invert

this calculation? How do we get the various fields from the overall timestamp?

We'll need to use divmod style division. For some background, refer to the Choosing between

true division and floor division recipe.

The algorithm for converting a timestamp in seconds, t;, into individual week, day, and

time fields looks like this:

Chapter 4 175

tm; S [ﬁj ts mod 60

th; m = |2]; t, mod 60

ty; h [;—J t, mod 24
[%dj t; mod 7

This has a handy pattern that leads to an implementation. It has the consequence of

producing the values in reverse order:

>>> t s =

>>> fields = []

>>> base , , 7
t_s, = (t_s, base)

. fields.append(f)
>>> fields.append(t_s)
>>> fields

[19, 53, 7, 2, 13]

We’ve applied the divmod() function four times to extract seconds, minutes, hours, days,
and weeks from a timestamp, given in seconds. These are in the wrong order. How can we

reverse them?

How to do it...

We have three approaches: we can use the reverse() method, we can use a [::-1] slice

expression, or we can use the reversed() built-in function. Here’s the reverse() method:

>>> fields_copyl = fields.copy()
>>> fields_copyl.reverse()

>>> fields_copyl
[13, 2, 7, 53, 19]

We made a copy of the original list so that we could keep an unmutated copy to compare

with the mutated copy. This makes it easier to follow the examples. We applied the

176 Built-In Data Structures Part 1: Lists and Sets

reverse () method to reverse a copy of the list.

This will mutate the list. As with other mutating methods, it does not return a useful value.

It’s incorrect to use a statement like a = b.reverse(); the value of a will always be None.

Here’s a slice expression with a negative step:

>>> fields_copy2 = fields[::-1]

>>> fields_copy2
[13, 2, 7, 53, 19]

In this example, we made a slice [::-1] that uses an implied start and stop, and a step of

-1. This picks all the items in the list in reverse order to create a new list.

The original list is emphatically not mutated by this slice operation. This creates a copy.

Check the value of the fields variable to see that it’s unchanged.

Here’s how we can use the reversed() function to create a reversed copy of a list of values:

>>> fields_copy3 = (fields))

>>> fields_copy3
[13, 2, 7, 53, 19]

It’s important to use the 1ist() function in this example. The reversed() function is a

generator, and we need to consume the items from the generator to create a new list.

How it works...

As we noted in the Slicing and dicing a list recipe, the slice notation is quite sophisticated.
Using a slice with a negative step size will create a copy (or a subset) with items processed

in right to left order, instead of the default left to right order.
It’s important to distinguish between these three methods:

+ The reverse () method modifies the list object itself. As with methods like append()
and remove (), there is no return value from this method. Because it changes the list,

it doesn’t return a value.

Chapter 4 177

« The [::-1] slice