

2

First Edition

Published by Scatterplot Press

All rights reserved. No part of this publication may be reproduced, distributed,

or transmitted in any form or by any means, including photocopying, recording,
or other electronic or mechanical methods, without the prior written permission
of the publisher, except in the case of brief quotations embodied in critical
reviews and certain other non-commercial uses permitted by copyright law.

www.scatterplotpress.com

Please contact the author at oliver.theobald@scatterplotpress.com for
feedback, media contact, omissions or errors regarding this book.

Copyright © 2024 by Oliver Theobald

3

FIND US ON:

Newsletter

http://eepurl.com/gKjQij

Enjoy book recommendations, free giveaways of future book releases from the

author, and other blog posts and news concerning machine learning, trends, and

data science.

Teachable

http://scatterplotpress.com

For introductory video courses on machine learning.

Skillshare

www.skillshare.com/user/machinelearning_beginners

For introductory video courses on machine learning and video lessons from other

instructors.

Instagram

machinelearning_beginners

For mini-lessons, book quotes, and more!

http://eepurl.com/gKjQij
http://scatterplotpress.com/
http://www.skillshare.com/user/machinelearning_beginners
https://www.instagram.com/machinelearning_beginners/

4

TABLE OF CONTENTS

FOREWORD ... 5

DATASETS USED IN THIS BOOK .. 8

INTRODUCTION ... 10

DEVELOPMENT ENVIRONMENT .. 17

MACHINE LEARNING LIBRARIES .. 20

EXPLORATORY DATA ANALYSIS... 26

DATA SCRUBBING .. 38

PRE-MODEL ALGORITHMS .. 49

SPLIT VALIDATION .. 64

MODEL DESIGN .. 69

LINEAR REGRESSION .. 79

LOGISTIC REGRESSION .. 92

SUPPORT VECTOR MACHINES ... 105

K-NEAREST NEIGHBORS .. 114

TREE-BASED METHODS... 122

NEXT STEPS .. 137

APPENDIX 1: INTRODUCTION TO PYTHON ... 138

APPENDIX 2: PRINT COLUMNS .. 144

5

FOREWORD

While it’s luring to see trends rise quickly, it’s important to see long periods of

resilience before the curve. For those pursuing a career in machine learning, it’s

reassuring to know this field of study not only predates the Internet and the moon

landing but also most readers of this book.

Machine learning is not an overnight movement and the path to the present day

has been anything but smooth sailing. Conceptual theories emerged in the 1950s

but progress was stalled by computational constraints and limited data. This

resulted in a logjam of research and good intentions as theoretical models of

prediction, algorithm design, and extrapolation of future possibilities accumulated

in research institutions until powerful processing chips and large datasets emerged

in the 1990s. Renewed interest helped to breach the gap between theory and

capability during this decade but it still wasn’t enough to push field-altering

breakthroughs in the space of deep learning.

That breakthrough came in 2009 when Adjunct Professor Andrew Ng and his team

at Stanford University experimented with tethering gaming chips—better known for

image rendering—to solve complex data problems. The combination of inexpensive

GPU (graphic processing unit) chips and compute-intensive algorithms pushed the

lead domino in the development of deep learning. This crucial breakthrough

coalesced with other developments in reinforcement learning to spark a surge in

interest, an oversupply of newspaper analogies to Hollywood movies, and an

international hunt for AI talent.

In 2016, media interest climbed to a new high at the glitzy Four Seasons Hotel in

Seoul, where TV cameras locked lenses on an 18-by-18 Go board with the world

champion on one side and an AI program on the other. The game of Go consists of

billions of permutations and commentators described the then world champion, Lee

Sodol, as having a sixth sense for interpreting the state of play. His opponent was

AlphaGo, a sophisticated deep learning model designed to outperform any

opponent—mortal or synthetic.

The team of human developers responsible for designing the AlphaGo program

scarcely knew the rules of the game when they began work on the project, but

they watched on excitedly as AlphaGo performed its first move.

The AI model unsettled Lee early—forcing him to take a nervous cigarette break—

before systemically defeating the South Korean four games to one. News headlines

of AlphaGo’s cold and mechanistic victory beamed across the globe—as had been

the case with other televised AI feats before it. Predictably, these reports focused

on the superiority of machine intelligence over humans.

Contrary to these initial headlines, the 2017 Netflix documentary AlphaGo helped

to later realign attention towards the human ingenuity behind AlphaGo’s victory.

The documentary details the lead-up to Seoul and in doing so shines the light on a

team of talented employees thriving in a new and far-reaching line of work.

Dressed in casual attire, the AlphaGo team can be seen working hard behind their

screens stocking the model with training data, optimizing its hyperparameters, and

6

coordinating vital computational resources before extracting game tactics from

human experts honed over many years of competition.

Despite its prolific success, the AlphaGo program has not replaced any of the

programmers who worked on its source code or taken away their salaries. In fact,

the development of AlphaGo has helped to expand the size and profile of the

company DeepMind Technologies, which was acquired by Alphabet Inc earlier in

2014.

Working in AI

After two AI winters and ongoing battles for academic funding, we have entered a

golden age in industry employment. Complex databases, fast and affordable

processing units, and advanced algorithms have rejuvenated established fields of

human expertise in mathematics, statistics, computer programming, graphics and

visualization as well as good old problem-solving skills.

In a global job market steadily automated and simplified by Web 2.0 technology,

the field of machine learning provides a professional nirvana for human ingenuity

and meaningful work. It’s a cognitively demanding occupation; one that goes far

beyond tuning ad campaigns or tracking web traffic on side-by-side monitors. With

jobs in this industry demanding expertise in three distinct fields, achieving machine

intelligence is far from easy and demands a high level of expertise.

The ideal skillset for a machine learning developer spans coding, data management,

and knowledge of statistics and mathematics. Optional areas of expertise include

data visualization, big data management, and practical experience in distributed

computing architecture. This book converges on the vital coding part of machine

learning using Python.

Released in 1991 by Guido van Rossum, Python is widely used in the field of

machine learning and is easy to learn courtesy of van Rossum’s emphasis on code

readability. Python is versatile too; while other popular languages like R offer

advantages in advanced mathematical operations and statistical functions, they

offer limited practical use outside of hard data crunching. The utility of Python,

however, extends to data collection (web scraping) and data piping (Hadoop and

Spark), which are important for sending data to the operating table. In addition,

Python is convertible to C and C++, enabling practitioners to run code on graphic

processing units reserved for advanced computation.

The other advantages of learning a popular programming language (such as Python)

are the depth of jobs and the spread of relevant support. Access to documentation,

tutorials, and assistance from a helpful community to troubleshoot code problems

cannot be overlooked and especially for anyone beginning their journey in the

complex world of computer programming.

As a practical introduction to coding machine learning models, this book falls short

of a complete introduction to programming with Python. Instead, general nuances

are explained to enlighten beginners without stalling the progress of experienced

programmers. For those new to Python, a basic overview of Python can be found

in the Appendix section of this book. It’s also recommended that you spend 2-3

7

hours watching introductory Python tutorials on YouTube or Udemy if this is your

first time working with Python.

What You Will Learn

As the second book in the Machine Learning for Beginner’s Series, the key premise

of this title is to teach you how to code basic machine learning models. The content

is designed for beginners with general knowledge of machine learning, including

common algorithms such as logistic regression and decision trees. If this doesn’t

describe your experience or you’re in need of a refresher, I have summarized key

concepts from machine learning in the opening chapter and there are overviews of

specific algorithms dispersed throughout the book. For a gentle and more detailed

explanation of machine learning theory minus the code, I suggest reading the first

title in this series Machine Learning for Absolute Beginners (Third Edition), which

is written for a more general audience.

Finally, it’s important to note that as new versions of Python code libraries become

available, it’s possible for small discrepancies to materialize between the code

shown in this book and the actual output of Python in your development

environment. To clarify any discrepancies or to help troubleshoot your code, please

contact me at oliver.theobald@scatterplotpress.com for assistance. General code

problems can also be solved by searching for answers on Stack Overflow

(www.stackoverflow.com) or by Google searching the error message outputted by

the Python interpreter.

Conventions Used in This Book

- Italic indicates the introduction of new technical terms

- lowercase bold indicates programming code in Python

- the terms “target variable” and “output” are used interchangeably

- the terms “variable” and “feature” are used interchangeably

- Typical of machine learning literature, “independent variables” are

expressed as an uppercase “X” and the “dependent variable” as a lowercase

“y”

8

DATASETS USED IN THIS BOOK

For any issues accessing and downloading these three datasets, please
contact the author at oliver.theobald@scatterplotpress.com

Advertising Dataset

Overview: This dataset contains fabricated information about the features of users

responding to online advertisements, including their sex, age, location, daily time

spent online, and whether they clicked on the target advertisement. The dataset

was created by Udemy course instructor Jose Portilla of Pierian Data and is used in

his course Python for Data Science and Machine Learning Bootcamp.

Features: 10

Missing values: No

File name: advertising.csv

http://scatterplotpress.com/p/datasets

Melbourne Housing Market Dataset

Overview: This dataset contains data on house, unit, and townhouse prices in

Melbourne, Australia. This dataset comprises data scraped from publicly available

real estate listings posted weekly on www.domain.com.au. The full dataset contains

21 variables including address, suburb, land size, number of rooms, price, longitude,

latitude, postcode, etc.

Features: 21

Contains missing values: Yes

File name: Melbourne_housing_FULL.csv

https://www.kaggle.com/anthonypino/melbourne-housing-market/#Melbourne_housing_FULL.csv

Berlin Airbnb Dataset

Overview: Airbnb has exploded in growth following its humble beginnings in 2008,

and Berlin is one of the biggest markets for alternative accommodation in Europe,

with over 22,552 Airbnb listings recorded as of November 2018. The dataset

contains detailed data, including location, price, and reviews.

Features: 16

Contains missing values: Yes

File name: listings.csv

http://scatterplotpress.com/p/datasets

Kickstarter Dataset

Overview: Kickstarter.com is the world's largest crowd-funding platform for

creative projects and this dataset was created using data extracted from the

Kickstarter website.

Features: 35

http://scatterplotpress.com/p/datasets
https://www.kaggle.com/anthonypino/melbourne-housing-market/#Melbourne_housing_FULL.csv
http://scatterplotpress.com/p/datasets

9

Contains missing values: Yes

File name: 18k_Projects.csv

https://www.kaggle.com/tayoaki/kickstarter-dataset

https://www.kaggle.com/tayoaki/kickstarter-dataset

10

1

INTRODUCTION

As an empirical and specialized field of data science and a dominant sub-field of AI,

machine learning1 describes the ability of computer models to learn from data and

perform cognitive reasoning without direct programming.2 This is a process known

as self-learning—an exciting but somewhat vague concept that underpins machine

learning. While the human programmer maintains ownership of variable selection

and setting algorithm learning hyperparameters (settings), the decision model

interprets patterns and generates an output without a direct command. This course

of action serves as a major distinction from traditional computer programming

where computers are designed to produce fixed outputs in response to pre-

programmed commands.

The initial blueprints for machine learning were conceived by Arthur Samuel while

working for IBM as an engineer in the late 1950s. Samuel defined machine

learning as a subfield of computer science that provides computers the ability to

learn without being explicitly programmed.3 Incorporating probability theory and

statistical modeling, Samuel outlined the potential for machines to detect patterns

and improve performance based on data and empirical information; all without

direct programming commands.

Samuel held that by using data as input, machines could mimic the ability of

humans to learn and identify optimal decisions without explicit code commands

from the programmer. While human programmers were required to facilitate the

input of data and the selection of algorithm(s), they would forego the role of rule-

maker under Samuel’s radical new theory.

In 1959, Samuel published a paper in the IBM Journal of Research and

Development investigating the application of machine learning in the game of

checkers. The goal of his research was to program a computer to gradually exceed

the capabilities of the person who programmed it. The machine was designed to

assess the state of a checkers board and incorporated probability theory to identify

a move that would best lead to a winning outcome. After each game, the program

integrated experience and logged new strategies to refine its performance for play

against the next opponent. This process repeated until the computer program was

able to consistently beat its programmer.

Samuel’s chess program held a competitive edge over symbolic systems that were

in vogue at this time and which relied on pre-programmed knowledge. Unlike

1 The word “machine” was a common byname for computers during this time and the moniker has stuck
over the decades.
2 Aurélien Géron, “Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and

Techniques to Build Intelligent Systems,” O’Reilly Media, 2017.
3 Arthur Samuel, “Some Studies in Machine Learning Using the Game of Checkers,” IBM Journal of

Research and Development, Vol. 3, Issue. 3, 1959.

11

symbolic systems, human experts weren’t needed to predefine steps or game

strategy. Instead, the machine developed intelligence by reviewing data to

determine patterns and then codifying these patterns to inform game strategy.

Validation of Samuel’s work came in 1961 when his checkers program claimed

victory in a live match played against a professional and competitively ranked

human player.

While Samuel made significant progress in machine learning research and model

design during his time at IBM, it wasn’t until after his retirement in 1966 that the

full scope of his findings spread to the broader artificial intelligence community.

According to the authors of Human + Machine: Reimagining Work in the Age of AI,

Paul R. Daugherty and H. James Wilson, news of Samuel’s work was partly inhibited

by his modest character and reluctance to self-promote.4

Over the next two decades, attention took a backseat as other fields of artificial

intelligence including symbolic systems and expert systems5 took precedence in

industry and academic funding. Artificial intelligence, itself, underwent two periods

of declined interest, better known as the two AI winters.

The dot-com era in the 1990s eventually revived investment in machine learning

as a solution to maximize the value of data collected from online retail and digital

systems. While it seems trivial now, access to a large and cheap supply of data to

facilitate learning was a major constraint for AI researchers before this period.

Drastic advances in computer storage and processing capacity also provided the

infrastructure desperately needed to cross the chasm between theory and practical

application.

A new supply of data and cheap computing power handed machine learning a

decisive victory over expert systems as it became more efficient to derive

knowledge from data rather than task experts to configure code as an elaborate

series of if/else rules. Machine learning also offered a comparative advantage in

tackling complex and unknown problems where known steps of reasoning and

action weren’t available, such as detecting fraud and classifying spam email

messages.

Dependent and Independent Variables

As with other fields of statistical inquiry, machine learning is based on the cross-

analysis of dependent and independent variables. The dependent variable (y) is the

output you wish to predict and the independent variable (X) is an input that

supposedly impacts the dependent variable (output). The goal of machine learning

is to then find how the independent variable/s (X) affect the dependent variable

(y).

To predict the value of a house, for example, a machine learning framework called

supervised learning analyzes the relationship between house features (distance to

the city, suburb, number of rooms, land size, etc.) as independent variables and

4 Paul R. Daugherty and H. James Wilson, “Human + Machine: Reimagining Work in the Age of AI,”

Harvard Business Review Press, 2018.
5 Systems that enabled machines to perform rudimentary reasoning using if/else rules as an alternative

to strict predetermined code.

12

the selling price of other houses in the neighborhood as the dependent variable to

design a prediction model. The prediction model can then predict the value (y) of

a house with an unknown selling price by inputting its features (X) into the

prediction model.

Figure 1: House value prediction model

Supervised, Unsupervised & Reinforcement Learning

Self-learning can be divided into three categories: supervised, unsupervised, and

reinforcement.

Supervised learning decodes known relationships between independent variables

and the dependent variable. This involves feeding the machine sample data with

various features (X) and their known output value (y). The fact that the input and

output values are known qualifies the dataset as “labeled” or “supervised.” The

algorithm deciphers patterns that exist in the dataset and creates a model that

interprets new data based on the underlying rules of the labeled data.

The house model mentioned earlier is a typical example of supervised learning in

which a set of input features (i.e. rooms, distance to the city, etc.) are analyzed in

response to their labeled output (house value) across many examples to build a

prediction model. Using rules learned from the existing data, the model is then able

to predict the output of new data based on the input features.

In the case of unsupervised learning, the dependent variables aren’t known or

labeled and the model looks at patterns among independent variables to create a

new output. In the case of clustering analysis, this can be achieved by grouping

similar data points and finding connections that generalize patterns, such as the

grouping of suburbs with two-bedroom apartments that generate a high property

valuation. In the case of dimensionality reduction, the goal of unsupervised

learning is to create an output with fewer dimensions (features) than the original

input data.

As there are no known output observations available to check and validate the

model, there is no true output in unsupervised learning and predictions are more

subjective than that of supervised learning.

Unsupervised learning is useful in situations where there’s no single clear prediction

goal and exploratory data analysis is required to uncover new categories and

13

subgroups. Unsupervised learning is also useful for taking complex unlabeled data

with a high number of variables and transforming that data into a low number of

synthesized variables that are plottable on a 2-D or 3-D plot as output. Although

the input data has been transformed, the goal is to preserve as much of the data’s

original structure as possible, allowing you to better understand the structure of

the data and identify unsuspected patterns.6

Other popular unsupervised learning tasks include anomaly detection such as

fraudulent transactions or catching manufacturing defects, and automatically

removing outliers and complexity from a dataset before feeding the data to a

supervised learning algorithm.

Reinforcement learning is the third and most advanced category of machine

learning and is generally used for performing a sequence of decisions, such as

playing chess or driving an automobile.

Reinforcement learning is the opposite of unsupervised learning as the output (y)

is known but the inputs (X) are unknown. The output can be considered as the

intended goal (i.e. win a game of chess) and the optimal input is found using a

brute force technique based on trial and error. Random input data is fed to the

model and graded according to its relationship to the target output. In the case of

self-driving vehicles, movements to avoid a crash are graded positively, and in the

case of chess, moves to avoid defeat are rewarded. Over time, the model leverages

this feedback to progressively improve its choice of input variables to achieve its

desired output goal.

The AI company Wayve has released a live video recording of a car learning to

drive, which demonstrates the random and iterative nature of reinforcement

learning. Using sensors and a safety driver who intervenes when the car drifts off-

course, the car learns to navigate the circuit within just 20 minutes of training.

Video link: http://bit.ly/2YZHaLS

6 Aurélien Géron, “Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and

Techniques to Build Intelligent Systems,” O’Reilly Media, 2017.

http://bit.ly/2YZHaLS

14

QUIZ

1) A model that predicts the height of adult students based on the height

of their adult relatives is an example of:

a. Supervised learning

b. Unsupervised learning

c. Reinforcement learning

d. Classification

2) What type of machine learning model is most likely to perform a never-

seen-before move in a video game to defeat its human opponent?

a. Supervised learning

b. Unsupervised learning

c. Extra supervised learning

d. Reinforcement learning

3) What type of machine learning model can we use to filter customers

into unlabeled groups based only on known inputs such as age, average

spending amount, and nationality?

a. Supervised learning

b. Unsupervised learning

c. Reinforcement learning

d. Extra supervised learning

4) Arthur Samuel’s checkers program is an example of:

a. Supervised learning

b. Unsupervised learning

c. Reinforcement learning

d. Extra supervised learning

5) Which is not an example of an independent variable for predicting house

prices as part of a supervised learning model?

15

a. Distance to city

b. Year built

c. Suburb

d. Price of house

16

SOLUTIONS

1) a, Supervised learning

2) d, Reinforcement learning

3) b, Unsupervised learning

4) a, Supervised learning

5) d, Price of house

17

2

DEVELOPMENT ENVIRONMENT

As the practical exercises delivered in this book use Jupyter Notebook as the

development environment for Python 3, this chapter serves as an optional guide

for installing Jupyter Notebook. If you have prior experience using Jupyter

Notebook or have read my earlier title Machine Learning for Absolute Beginners,

then you may wish to proceed to the next chapter.

Jupyter Notebook is a popular choice for practitioners and online courses alike, as

it combines live code, explanatory notes, and visualizations into one convenient

workspace and runs from any web browser.

Jupyter Notebook can be installed using the Anaconda Distribution or Python’s

package manager, pip. As an experienced Python user, you may wish to install

Jupyter Notebook via pip, and there are instructions available on the Jupyter

Notebook website (http://jupyter.org/install.html) outlining this option. For

beginners, I recommend choosing the Anaconda Distribution option, which offers

an easy click-and-drag setup (https://www.anaconda.com/products/individual/).

This installation option will direct you to the Anaconda website. From there, you

can select your preferred installation for Windows, macOS, or Linux. Again, you

can find instructions available on the Anaconda website based on your operating

system.

After installing Anaconda on your machine, you’ll have access to a number of data

science applications including rstudio, Jupyter Notebook, and graphviz for data

visualization through the Anaconda application. Next, you need to select Jupyter

Notebook by clicking on “Launch” inside the Jupyter Notebook tab.

https://www.anaconda.com/products/individual/).

18

Figure 2: The Anaconda Navigator portal

To initiate Jupyter Notebook, run the following command from the Terminal (for

Mac/Linux) or Command Prompt (for Windows):

jupyter notebook

Terminal/Command Prompt then generates a URL for you to copy and paste it into

your web browser.

Figure 3: Copy URL and paste it in into your browser

Copy and paste the generated URL into your browser to access Jupyter Notebook.

Once you have Jupyter Notebook open in your browser, click on “New” in the top

right-hand corner of the web application to create a new notebook project, and

select “Python 3.”

Figure 4: Inside Jupyter Notebook

19

You’ve now successfully set up a sandbox environment in your web browser using

Jupyter Notebook. This means that the following experimentation and code

changes will not affect resources outside of the isolated testing environment.

Figure 5: A new Jupyter notebook ready for coding

20

3

MACHINE LEARNING LIBRARIES

Data scientists rarely work alone. This means it’s vital to maintain consistent code

that can be read and reused by other programmers. Similar to using WordPress

plugins with websites, code libraries make it easy for data scientists to perform

common tasks using pre-written modules of code.

With WordPress, for example, you can install a comments management plugin

called Discuz on a portfolio of websites. Using the same plugin for each website

eliminates the need for developers to familiarize themselves with each site’s

underlying code. They simply need to familiarize themselves with the basic

interface and customization settings of the Discuz plugin.

The same logic and benefits apply to machine learning libraries, as complex

algorithms and other functions can be called through the same code interface.

Moreover, rather than writing the statistical requirements of a regression algorithm

over many lines of code, you can call the algorithm from a library such as Scikit-

learn using just one line of code.

Example:

my_model = LinearRegression()

The libraries themselves are imported on a project-by-project basis according to

the scope of your project, i.e. data visualization, deep learning, exploratory data

analysis, shallow algorithms, data scrubbing, decision tree flow maps, ensemble

modeling using multiple algorithm types, etc.

The remainder of this chapter provides a brief rundown of the most popular Python

libraries used within machine learning.

Pandas

Pandas is a library for managing and presenting your data. The name “Pandas”

comes from the term “panel data,” which refers to Panda’s ability to create a series

of panels, similar to sheets in Excel.

Pandas can be used to organize structured data as a dataframe, which is a two-

dimensional data structure (tabular dataset) with labeled rows and columns, similar

to a spreadsheet or SQL table. You can also use Pandas to import and manipulate

an external dataset including CSV files as a dataframe without affecting the source

file as modifications take place inside your development environment.

21

Figure 6: Example of a Pandas’ dataframe

NumPy

NumPy is often used in combination with Pandas and is short for “numeric Python.”

On its own, NumPy is used for managing multi-dimensional arrays and matrices,

merging and slicing datasets, and offers a collection of mathematical functions

including min, max, mean, standard deviation, and variance.

NumPy consumes less memory and is said to perform better than Pandas with

50,000 rows or less.7 NumPy, though, is often used in conjunction with Pandas as

the latter is more user-friendly and easier to interpret in an interactive environment

such as Jupyter Notebook. A Pandas dataframe is also more suitable for managing

a mix of data types, whereas a NumPy array is designed for dealing with numerical

data, especially multi-dimensional data.8

Most machine learning models demonstrated to beginners in massive open online

courses and textbooks structure data as a Pandas dataframe rather than a NumPy

array but often draw on the NumPy library for mathematical and other

miscellaneous operations.

Scikit-learn

Scikit-learn is the core library for general machine learning. It offers an extensive

repository of shallow algorithms9 including logistic regression, decision trees, linear

regression, gradient boosting, etc., a broad range of evaluation metrics such as

mean absolute error, as well as data partition methods including split validation

and cross validation.

Scikit-learn is also used to perform a number of important machine learning tasks

including training the model and using the trained model to predict the test data.

The following table is a brief overview of common terms and functions used in

machine learning from Scikit-learn.

7 Goutham Balaraman, “NumPy Vs Pandas Performance Comparison,” gouthamanbalaraman.com,

March 14, 2017, http://gouthamanbalaraman.com/blog/numpy-vs-pandas-comparison.html
8 Dimensions are the number of variables characterizing the data, such as the city of residence, country

of residence, age, and sex of a user. Up to four variables can be plotted on a scatterplot but three-
dimensional and two-dimensional plots are easier for human eyes to interpret.
9 Shallow algorithms can be roughly characterized as non-deep learning approaches that aren’t

structured as part of a sophisticated network. In shallow learning, the model predicts outcomes directly

from the input features, whereas in deep learning, the output is based on the output of preceding layers

in the model and not directly from the input features.

22

Table 1: Overview of key Scikit-learn terms and functions

Matplotlib

Matplotlib is a visualization library you can use to generate scatterplots, histograms,

pie charts, bar charts, error charts, and other visual charts with just a few lines of

code. While Matplotlib offers detailed manual control over line styles, font

properties, colors, axes, and properties, the default visual presentation is not as

striking and professional as other visualization libraries and is generally used in

conjunction with Seaborn themes.

Seaborn

Seaborn is a popular Python visualization library based on Matplotlib. This library

comes with numerous built-in themes for visualization and complex visual

techniques including color visualization of dependent and independent variables,

sophisticated heatmaps, cluster maps, and pairplots. The combination of

Seaborn’s pre-formatted visual design and Matplotlib’s customizability make it

easy to generate publication-quality visualizations.

Other popular visualization libraries include Plotly (an interactive visualization

Python library) and Cufflinks (which connects Plotly directly

with Pandas dataframes to create graphs and charts).

TensorFlow

A round-up of popular machine learning libraries wouldn’t be complete without an

introduction to Google’s TensorFlow. While Scikit-learn offers a broad set of popular

23

shallow algorithms, TensorFlow is the library of choice for deep learning and

artificial neural networks (ANN).

TensorFlow was created at Google and supports various advanced distributed

numerical computation techniques. By distributing computations on a network with

up to thousands of GPU instances, TensorFlow supports advanced algorithms

including neural networks that would be impossible to run on a single server.

Unfortunately for Mac users, TensorFlow is only compatible with the Nvidia GPU

card, which is no longer available with Mac OS X. Mac users can still run TensorFlow

on their CPU but will need to run their workload on the cloud to access the GPU.

24

QUIZ

1) Which library is better for managing a mix of data types (numeric and

non-numerical data)?

a. NumPy

b. Pandas

c. Seaborn

d. Matplotlib

2) Which Python library should we use for importing common shallow

algorithms?

a. Scikit-learn

b. Pandas

c. Tensorflow

d. Seaborn

3) Which Python libraries can be used for visualizing data relationships?

a. Scikit-learn

b. Cuffles-learn

c. Matplotlib

d. Seaborn

4) Which of the following is a dataframe?

a. A NumPy data structure

b. A Pandas data structure

c. A Scikit-learn function

d. An Excel pivot table

5) Tensorflow is generally used for deep learning. True or False?

25

SOLUTIONS

1) b, Pandas

2) a, Scikit-learn

3) c & d, Matplotlib and Seaborn

4) b, A Pandas data structure

5) True

26

4

EXPLORATORY DATA ANALYSIS

In this chapter, we introduce managing data as a Pandas dataframe and common

exploratory data analysis (EDA) techniques.

As a key part of data inspection, EDA involves summarizing the salient

characteristics of your dataset in preparation for further processing and analysis.

This includes understanding the shape and distribution of the data, scanning for

missing values, learning which features are most relevant based on correlation,

and familiarizing yourself with the overall contents of the dataset. Gathering this

intel helps to inform algorithm selection and highlight parts of the data that require

cleaning in preparation for further processing.

Using Pandas, there’s a range of simple techniques we can use to summarize data

and additional options to visualize the data using Seaborn and Matplotlib.

Let’s begin by importing Pandas, Seaborn, and Matplotlib inline using the following

code in Jupyter Notebook.

import pandas as pd

import seaborn as sns

%matplotlib inline

Note that using the inline feature of Matplotlib, we can display plots directly below

the applicable code cell within Jupyter Notebook or other frontends.

Import Dataset

Datasets can be imported from a variety of sources, including internal and external

files as well as random self-generated datasets called blobs.

The following sample dataset is an external dataset originally downloaded from

Kaggle.com, called the Berlin Airbnb dataset. This data was scraped from

airbnb.com and contains detailed listings of accommodation available in Berlin,

including location, price, and reviews.

27

Table 2: Overview of the Berlin Airbnb dataset

The dataset can be downloaded from the following link:

http://scatterplotpress.com/p/datasets

After downloading the dataset, import the CSV file into Jupyter Notebook as a

Pandas dataframe using pd.read_csv.

For Mac users

df = pd.read_csv('~/Downloads/listings.csv')

Keep in mind that you’ll need to assign a variable name to store the dataset for

ongoing reference. Common variable names for dataframes are “df” or “dataframe,”

but you can also choose another variable name that complies with the naming of

variables in Python.10 In this book, we use “df” as the variable name for dataframes.

Please also note that the file path of your dataset will vary depending on its saved

location and your computer’s operating system. If saved to Desktop on Windows,

you would import the .csv file using a structure similar to this example:

For Windows users

df = pd.read_csv('C:\Users\John\Desktop\listings.csv')

As the backward slash is used as the 'escape' character in Python, you may need

to add the "r" prefix to your pathname to indicate a "raw" string of text.

For Windows users

df = pd.read_csv(r'C:\Users\John\Desktop\listings.csv')

10 Information regarding variable naming conditions in Python can be located in Appendix 1 of this book.

28

Documentation for Read_CSV: http://bit.ly/2H1UNnP

Preview the Dataframe

We can now use the Pandas’ head() command to preview the dataframe in Jupyter

Notebook. The head() function must come after the variable name of the dataframe,

which in this case is df.

df.head()

To preview the dataframe, run the code by using right-click and selecting “Run” or

navigating from the Jupyter Notebook menu: Cell > Run All

Figure 7: Run All from the navigation menu

After the code has run, Pandas will populate the imported dataset as a dataframe

as shown in the next screenshot.

Figure 8: Previewing a dataframe in Jupyter Notebook using head()

Notice that the first row (id 2015, located in Mitte) is indexed at position 0 of the

dataframe. The fifth row, meanwhile, is indexed at position 4. The indexing of

elements in Python starts at 0, which means you will need to subtract 1 from the

actual number of rows when calling a specific row from the dataframe.

http://bit.ly/2H1UNnP

29

The dataframe’s columns, while not labeled numerically, follow the same logic. The

first column (id) is indexed at 0 and the fifth column (neighbourhood_group) is

indexed at 4. This is a fixed feature of working in Python and something to keep in

mind when calling specific rows or columns.

By default, head() displays the first five rows of the dataframe, but you can increase

the number of rows by specifying n number of rows inside parentheses, as

demonstrated in Figure 9.

Figure 9: Previewing the first ten rows of a dataframe

The argument head(10) is used to preview the first ten rows of the dataframe. You

can also view columns concealed to the right by scrolling to the right inside Jupyter

Notebook. Regarding rows, you can only preview the number of rows specified in

the code.

Lastly, you will sometimes see n= inserted inside head(), which is an alternative

method to specify n number of previewed rows.

Example code:

df.head(n=10)

Documentation for Dataframe Head: http://bit.ly/2ZQxIvy

Dataframe Tail

The inverse operation of head()and previewing the top n rows of the dataframe is

the tail() method, which displays the bottom n rows of the dataframe. Below, we

can see an example of previewing the dataframe using tail(), which also by default

displays five rows. Again, you will need to run the code to view the output.

http://bit.ly/2ZQxIvy

30

Figure 10: Previewing the last five rows of a dataframe using tail()

Documentation for Dataframe Tail: http://bit.ly/2McjqCa

Shape

A quick method to inspect the size of the dataframe is the shape method, which

returns the number of rows and columns contained in the dataframe. This is useful

because the size of the dataset is likely to change as you remove missing values,

transform features or delete features.

To query the number of rows and columns in the dataframe, you can use the shape

method preceded by the name of the dataset (parentheses are not used with this

method).

df.shape

Figure 11: Inspecting the shape (number of rows and columns) of the dataframe

In the case of this dataframe, there are 22,552 rows and 16 columns.

Columns

Another useful method is columns, which prints the dataframe’s column titles. This

is useful for copying and pasting columns back into the code or clarifying the name

of specific variables.

df.columns

http://bit.ly/2McjqCa

31

Figure 12: Print columns

Describe

The describe() method is convenient for generating a summary of the dataframe’s

mean, standard deviation, and IQR (interquartile range) values. Note that this

method performs optimally with continuous values (integers or floating-point

numbers that can be easily aggregated).

df.describe()

Figure 13: Using the describe method to summarize the dataframe

By default, describe() excludes columns that contain non-numeric values and

instead provides a statistical summary of those columns that do contain numeric

values. However, it’s also possible to run this method on non-numerical values by

adding the argument include='all’ within parentheses to obtain the summary

statistics of both numeric and non-numeric columns (where applicable).

df.describe(include='all')

32

Figure 14: All variables added to the description

Having consolidated methods to inspect and query the size of the dataframe using

Pandas, we’ll now move on to generating visual summaries of the data using

Seaborn and Matplotlib.

Documentation for Describe: http://bit.ly/31BVQ5L

Pairplots

One of the most popular exploratory techniques for understanding patterns

between two variables is the pairplot. A pairplot takes the form of a 2-D or 3-D grid

of plots that display variables against other variables taken from the dataframe as

shown in Figure 15.

sns.pairplot(df,vars=['price','number_of_reviews','availability_365'])

http://bit.ly/31BVQ5L

33

Figure 15: Example of a pairplot grid based on three chosen variables

Using pairplot from Seaborn, we’ve plotted three chosen variables against each

other, which helps us to understand the relationships and variance between those

variables. When plotted against other variables (multivariant), the visualization

takes the form of a scatterplot, and when plotted against the same variable

(univariant), a simple histogram is generated.

Documentation for Seaborn Pairplot: http://bit.ly/2McQASq

Heatmaps

Heatmaps are also useful for inspecting and understanding relationships between

variables. The variables are structured as both columns and rows on a matrix, with

individual values represented as colors on a heatmap.

We can build a heatmap in Python using the corr (correlation) function from Pandas

and then visualize the results using a Seaborn heatmap.

df_corr = df.corr()

sns.heatmap(df_corr,annot=True,cmap='coolwarm')

http://bit.ly/2McQASq

34

Figure 16: Example of a heatmap with annotated correlation scores

Documentation for Seaborn Heatmaps: http://bit.ly/2yShE0I

http://bit.ly/2yShE0I

35

QUIZ

1) Which method can we use to view the bottom n rows of a Pandas

dataframe?

a. head()

b. tail()

c. describe()

d. columns

2) Which method can we use to view the top n rows of a Pandas dataframe?

a. head()

b. tail()

c. describe()

d. columns

3) Which method can we use to generate a summary of the dataframe’s

mean, standard deviation, and IQR values?

a. head()

b. tail()

c. describe()

d. columns

4) Which technique is not an example of exploratory data visualization?

a. heatmap

b. pairplot

c. shape

d. scatterplot

5) Which code command can we use to preview a Pandas dataframe (df)

inside a notebook?

a. df.head()

36

b. df_head()

c. df.header()

d. df.shape()

37

SOLUTIONS

1) b, tail()

2) a, head()

3) c, describe()

4) c, shape

5) a, df.head()

38

5

DATA SCRUBBING

Similar to Swiss or Japanese watch design, a good machine learning model should

run smoothly and contain no extra parts. This means avoiding syntax or other

errors that prevent the code from executing and removing redundant variables that

might clog up the model’s decision path.

This inclination towards simplicity extends to beginners coding their first model.

When working with a new algorithm, it helps to create a minimal viable model and

add complexity to the code later. If you find yourself at an impasse, look at the

troublesome element and ask, “Do I need it?” If the model can’t handle missing

values or multiple variable types, the quickest cure is to remove those variables.

This should help the afflicted model spring to life and breathe normally. Once the

model is working, you can go back and add complexity to your code.

Let’s now take a look at specific data scrubbing techniques to prepare, streamline,

and optimize the data for analysis.

What is Data Scrubbing?

Data scrubbing is an umbrella term for manipulating data in preparation for analysis.

Some algorithms, for example, don’t recognize specific data types or return an

error message in response to missing values or non-numeric input. Variables, too,

may need to be scaled to size or converted to a more compatible data type. Linear

regression, for example, analyzes continuous variables, whereas gradient boosting

asks that both discrete (categorical) and continuous variables are expressed

numerically as an integer or floating-point number.

Duplicate information, redundant variables, and errors in the data are other

problems that often conspire to derail the model’s capacity to dispense valuable

insight. Another potential consideration when working with data, and specifically

private data, is removing personal identifiers that could contravene relevant data

privacy regulations or damage the trust of customers, users, and other

stakeholders. This is less of a problem for publicly available datasets but something

to be mindful of when working with private data.

Removing Variables

Preparing the data for further processing generally starts with removing variables

that aren’t compatible with the chosen algorithm or variables that are deemed less

relevant to your target output. Determining which variables to remove from the

dataset is assessed using exploratory data analysis and domain knowledge.

In regards to exploratory data analysis, checking the data type of your variables

(i.e. string, Boolean, integer, etc.) and the correlation between variables is a useful

39

measure to eliminate variables.11 Domain knowledge, meanwhile, is useful for

spotting duplicate variables such as country and country code, and eliminating less

relevant variables like latitude and longitude, for example.

In Python, variables can be removed from the dataframe using the del function

alongside the variable name of the dataframe and the title of the column you wish

to remove. The column title should be nested inside quotation marks and square

brackets as shown here.

del df['latitude']

del df['longitude']

Note that this code example, in addition to other changes made inside your

notebook, won’t affect or alter the source file of the dataset. You can even restore

variables removed from the development environment by deleting the relevant

line(s) of code. In fact, it’s common to reverse the removal of features when testing

the model using different combinations of variables.

One-hot Encoding

In data science, it’s common to have a mismatch or compatibility issue between

the data and the algorithm. While the contents of the variable might be relevant,

the algorithm might not be able to read the data in its default form. Text-based

categorical values, for example, can’t be parsed and mathematically modeled using

general clustering and regression algorithms.

One quick remedy is to re-express categorical variables as a numeric categorizer.

This can be performed using a common technique called one-hot encoding that

converts categorical variables into binary form, represented as “1” or “0”—“True”

or “False.”

import pandas as pd

df = pd.read_csv('~/Downloads/listings.csv')

df = pd.get_dummies(df, columns = ['neighbourhood_group', 'neighbourhood'])

df.head()

Run the code in Jupyter Notebook.

11 Conversely, exploratory analysis of variables may impact the choice of algorithm, i.e. matching a

flexible algorithm like gradient boosting or random forests to a mix of data types.

40

Figure 17: Example of one-hot encoding

One-hot encoding expands the dataframe horizontally with the addition of new

columns. While expanding the dataset isn’t a major issue, you can simplify the

dataframe and enjoy faster processing speed using a parameter to remove

expendable columns. Using the logic of deduction, this parameter reduces one

column for each original variable. To illustrate this concept, consider the following

example:

Table 3: Original dataframe

Table 4: Simplified dataframe with dropped columns

While it appears that information has been removed from the second dataframe,

the Python interpreter can deduct the true value of each variable without referring

to the expendable (removed) columns. In the case of Mariko, the Python interpreter

can deduct that the subject is from Tokyo based on the false argument of the other

two variables. In statistics, this concept is known as multi-collinearity and describes

the ability to predict a variable based on the value of other variables.

To remove expendable columns in Python we can add the parameter

drop_first=True, which removes the first column for each variable.

df = pd.get_dummies(df, columns = ['neighbourhood_group', 'neighbourhood'] ,

drop_first = True)

41

Drop Missing Values

Another common but more complicated problem is deciding what to do with missing

data. Missing data can be split into three categories: missing completely at random

(MCAR), missing at random (MAR), and nonignorable.

MCAR occurs when there’s no relationship between a missing value and other

values in the dataset. Oftentimes, the value is not readily available and is therefore

left out of the dataset.

Missing at random means the missing value is not related to its own value but to

the values of other variables. In census surveys, for example, a respondent might

skip an extended response question because relevant information was inputted in

a previous question, or alternatively, they fail to complete the census survey due

to low levels of language proficiency as stated by the respondent elsewhere in the

survey (i.e. a question about the respondent’s level of English fluency). In other

words, the reason why the value is missing is linked to another variable in the

dataset and not due directly to the value itself.

Lastly, nonignorable missing data constitutes the absence of data due directly to

its own value or significance of the information. Tax evading citizens or respondents

with a criminal record may decline to supply information to certain questions due

to feelings of sensitivity towards that question, for example.

The irony of these three categories is that because the data is missing, it’s difficult

to diagnose why the data is missing. Problem-solving skills and awareness of these

three categories can help to diagnose and correct the root cause of missing values.

This might include rewording surveys for second-language speakers and adding

translations of the questions to solve data missing at random or through a redesign

of data collection methods, such as observing sensitive information rather than

asking for this information directly from participants, to find nonignorable missing

values.

A rough understanding of why certain data is missing can also help to influence

how you manage and treat missing values. If male participants, for example, are

more willing to supply information about their salary than female participants, this

would eliminate using the mean (of mostly male respondents) from the existing

data to populate the missing values (of mostly female respondents).

Managing MCAR is relatively straightforward as the data values collected can be

considered a random sample and are more easily aggregated or estimated. We’ll

discuss common methods for filling missing values in this chapter, but first, let’s

review the code in Python for inspecting missing values.

df.isnull().sum()

42

Figure 18: Inspecting missing values using isnull().sum()

Using this method, we can obtain a general overview of missing values for each

feature. From here, we can see that four variables contain missing values, which is

high in the case of last_review (3908) and reviews_per_month (3914). While this

won’t be necessary for use with all algorithms, there are several options we can

consider to fill in these missing values. The first approach is to fill the missing

values with the average value for that variable using the fill.na method.

df['reviews_per_month'].fillna((df['reviews_per_month'].mean()),inplace=True)

This line of code replaces the missing values for the variable reviews_per_month

with the mean (average) value of that variable, which is 1.135525 for this variable.

Note that the mean method does not apply to non-numeric data such as strings—

as these values can’t be aggregated to the mean. One-hot encoded variables and

Boolean variables expressed as 0 or 1 should also not be filled using the mean

method. For variables expressed as 0 or 1, it’s not possible to aggregate these

values to say 0.5 or 0.75 as this changes the meaning of the variable.

Another way of using the fill.na method is to approximate missing values with

the mode (the most common value in the dataset for that variable).

df['reviews_per_month'].fillna(df['reviews_per_month'].mode(),inplace=True)

In the case of our dataset, the mode value for this variable is ‘NAN’ (Not a Number),

and there isn’t a reliable mode value we can use. This is common when variable

43

values are expressed as a floating-point number rather than an integer (whole

number).

To fill missing values with a customized value, such as ‘0’, we can specify that

target value inside the parentheses.

df['reviews_per_month'].fillna(0)

A more drastic measure is to drop rows or columns with large amounts of missing

values from the analysis. Removing missing values becomes necessary when

neither the mean and mode nor finding an artificial value are reliable stop-gap

solutions. Removing values is also recommended when missing values are confined

to a small percentage of data points or for removing a variable that’s not central

to your analysis.12

There are two primary methods for removing missing values. The first is to

manually remove entire columns with missing values using the del function as

demonstrated earlier. The second method is the dropna method (demonstrated

below) which automatically removes columns or rows that contain missing values

on a case-by-case basis.

df.dropna(axis = 0, how = 'any', subset = None, inplace = True)

As datasets typically have more rows than columns, it’s usually best to drop rows

rather than columns as this helps to retain more of the original data. A detailed

explanation of the parameters for this technique is included in Table 5.

Table 5: Dropna parameters

In summary, there isn’t always a simple solution for dealing with missing values

and your response will often depend on the data type and the frequency of the

missing values. In the case of the Berlin Airbnb dataset, there is a high number of

missing values for the variables last_review and reviews_per_month, which

warrants removing these variables. Alternatively, we could use the mean to fill

12 Sarah Boslaugh, “Statistics in a Nutshell,” O'Reilly Media, Second Edition, 2012.

44

reviews_per_month given these values are expressed numerically and can be

easily aggregated. The other variable last_review cannot be aggregated because

it’s expressed as a timestamp rather than as an integer or floating-point number.

The other variables containing missing values, name and host_name, are also

problematic and cannot be filled with artificial values. Given these two variables

are discrete variables, they cannot be estimated using the mean and mode, and

should perhaps be removed on a row-by-row basis given the low number of missing

values for these two variables.

Documentation for Dropna: http://bit.ly/2KqV1a7

Dimension Reduction

Dimension reduction, known also as descending dimension algorithms, is a method

of transforming data to a lower dimension, which can help to lessen computational

resources and visualize patterns in the data.

Dimensions are the number of variables describing the data, such as the city of

residence, country of residence, age, and sex of a user. Up to four variables can be

plotted on a scatterplot but three-dimensional and two-dimensional plots are

easiest for human eyes to interpret.

The goal of descending dimension algorithms is to arrive at a minimal set of

variables that mimic the distribution of the original dataset’s variables. Reducing

the number of variables makes it easier to recognize patterns, including natural

groupings as well as outliers and anomalies.

It’s important to note that dimension reduction isn’t a case of deleting columns but,

rather, mathematically transforming information contained in those columns in

such a way that the information is captured using fewer variables (columns). If, for

example, we look at house prices, we might find multiple correlated variables (such

as house area and postcode) that we can merge into a new variable that adequately

represents those two variables. By applying dimension reduction before running

the core algorithm, the model will run faster, consume less computational

resources, and may actually provide more accurate predictions.

Another side benefit of this technique is the opportunity to visualize multi-

dimensional data. Given the maximum number of plottable dimensions for a

scatterplot is four, and two or three dimensions is ideal (the fourth dimension is

time13), descending dimension algorithms can be used to streamline a dataset with

more than four dimensions into four or fewer variables and project the synthetic

variables onto the visual workspace of a scatterplot.

13 A 4-D plot is essentially a dynamic/moving 3-D plot, such as visualizing a patient’s internal anatomy

moving in real-time.

http://bit.ly/2KqV1a7

45

Figure 19: Three-dimensional scatterplot with three variables

The ability to visualize relationships and patterns on a scatterplot is useful for both

explanatory and exploratory graphics. Exploratory graphics are typically generated

on the fly to aid internal understanding when the analysis is in progress, whereas

explanatory graphics are delivered to an external audience in the post-analysis

stage.

Bear in mind, though, that streamlining a multidimensional dataset into four or

fewer variables (suitable for a scatterplot) isn’t a prerequisite for machine learning.

Models that analyze the input of 20 variables, for instance, can’t be visualized on a

scatterplot but can still be processed by the model to identify patterns and aid

decision-making by producing a binary output such as 1 (True) and 0 (False) or

another form of output.

46

QUIZ

1) Which technique is not an example of data scrubbing?

a. Scaling the data using StandardScaler

b. Removing discrete variables using the delete method

c. Visualizing variables on a scatterplot

d. Reducing the dataset to a fewer number of variables using a descending

dimension algorithm

2) Principal component analysis can be applied to both discrete and

continuous variables. True or False?

3) Which code example will delete the “age” variable from a dataframe

saved as “df”?

a. delete.age

b. del age

c. df[“age”]

d. del df[“age”]

4) Which line of code can we use to inspect missing values in a dataframe

(df)?

a. df.isnull().sum()

b. df.missingvalues()

c. df.isfull().sum

d. find_missing_values

5) Which code command can we use to perform one-hot encoding using

Pandas?

a. df.isnull().sum()

b. pandas_get_dummies

c. pd.get_dummies

47

d. pd_get.dummies

48

SOLUTIONS

1) c, Visualizing variables on a scatterplot

2) False, (PCA can only be applied to continuous variables)

3) d, del df[“age”]

4) a, df.isnull().sum()

5) c, pd.get_dummies

49

6

PRE-MODEL ALGORITHMS

As an extension of the data scrubbing process, unsupervised learning algorithms

are sometimes used in advance of a supervised learning algorithm to prepare the

data for prediction modeling. In this way, unsupervised algorithms are used to

clean or reshape the data rather than to derive actionable insight.

Examples of pre-model algorithms include dimension reduction techniques, as

introduced in the previous chapter, as well as k-means clustering. Both of these

algorithms are examined in this chapter.

Principal Component Analysis

One of the most popular dimension reduction techniques is principal component

analysis (PCA). Known also as general factor analysis, PCA is useful for dramatically

reducing data complexity and visualizing data in fewer dimensions. The practical

goal of PCA is to find a low-dimensional representation of the dataset that preserves

as much of the original variation as possible. Rather than removing individual

features from the dataset, PCA recreates dimensions as a linear combination of

features called components and then ranks components that contribute most to

patterns in the data, allowing you to drop components that have the least impact

on data variability.

In practice, the initial aim of PCA is to place the first axis in the direction of the

greatest variance of the data points and maximize the variance depicted along that

axis. A second axis is then placed perpendicular (on a 90-degree angle) to the first

axis to form an orthogonal line, which creates the first two components. 1 In a two-

dimensional setting, the location of the second axis is fixed according to the position

of the first axis. In a three-dimensional space, where there are more options to

place the second axis perpendicular to the first axis, the aim is to position it in a

way that maximizes the variance on its axis.

An example of PCA in a two-dimensional space is demonstrated in Figure 20.

50

Figure 20: PCA deconstructed

Above are four horizontal axes. The first two axes measure the x and y values from

the original data. The second two axes measure the distance from the x and y

values when rotated 90 degrees. To visualize the rotated axes, the orthogonal line

can be used as an artificial y-axis and the linear regression line assumes the role

of the x-axis as shown in Figure 20.

These new axes provide us with the first two components of this dataset. The new

x-axis is principal component 1 (PC 1) and the new y-axis is principal component

2 (PC 2). Using PC1 and PC2 values (depicted on the third and fourth axis), we can

see a new range of variance among the data points. The variance in PC1 has

expanded in comparison to the original x values (seen on the first axis). Meanwhile,

the variance in PC2 has shrunk significantly as all the data points are close to zero

and virtually stacked on top of each other.

Given that PC2 contributes the least to overall variance, we can focus our attention

on studying the variance contained in PC1. While PC1 doesn’t contain 100% of the

51

original information, it captures the variable relationship that has the most impact

on data patterns while minimizing computational resources.

In this example, we divided the dataset into two components before selecting one

principal component. In other scenarios, you might select two or three principal

components containing 75% of the original data from a total of ten components.

Of course, insisting on 100% of the information would defeat the purpose of data

reduction and maximizing performance. In addition, there is no well-accepted

method for determining an appropriate number of principal components to achieve

an optimal representation of the data. Selecting the number of components to

analyze is a subjective decision that is judged by the size of the dataset and to

what extent you wish to shrink the data.

Exercise 1

In this first code exercise, we will reduce a dataset to its two principal components.

The dataset used for this exercise is the Advertising Dataset, which is available for

download at http://scatterplotpress.com/p/datasets.

Table 6: Advertising dataset

1) Import libraries

Let’s begin by importing the following Python libraries: NumPy, Pandas, Seaborn,

Matplotlib Pyplot, and Matplotlib inline. Each of these libraries can be imported by

entering the following code inside a new Jupyter notebook.

import numpy as np

import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

%matplotlib inline

2) Import dataset

The second step is to import the dataset into the same cell. After downloading,

import the CSV file into Jupyter Notebook using pd.read_csv() and add the file

directory according to your operating system.

http://scatterplotpress.com/p/datasets

52

df = pd.read_csv('~/Downloads/advertising.csv')

This loads the dataset into a Pandas dataframe. You can review the dataframe

using the head() command and clicking “Run” or by navigating to Cell > Run All

from the top menu.

df.head()

We can see that the dataset comprises 10 features including Daily Time Spent on

Site, Age, Area Income, Daily Internet Usage, Ad Topic Line, City, Male, Country,

Timestamp, and Clicked on Ad.

3) Remove features

Next, we need to remove non-numerical features that can’t be parsed by this

algorithm, which includes Ad Topic Line, City, Country, and Timestamp. Although

the Timestamp values are expressed in numerals, their special formatting is not

compatible with the mathematical calculations that must be made between

variables using this algorithm.

We also need to remove the discrete variable Male, which is expressed as an integer

(0 or 1), as our model only examines continuous input features.14

Let’s remove the five features from the dataset using the del function and

specifying the column titles we wish to remove.

del df['Ad Topic Line']

del df['City']

del df['Country']

del df['Timestamp']

del df['Male']

14 PCA is commonly used with continuous variables and also in preparation for use with supervised

algorithms that run only with continuous variables. There are more appropriate techniques to handle a

mix of continuous and discrete variable types including Multiple Factor Analysis.

53

4) Scale data

Next we will import the Scikit-learn function StandardScaler, which will be used to

standardize features by using zero as the mean for all variables and scaling to unit

variance. The mean and standard deviation are then stored and used later with

the transform method (recreates the dataframe with the requested transformed

values).

#Import StandardScaler

from sklearn.preprocessing import StandardScaler

After importing StandardScaler, we can assign it as a new variable, fit the function

to the features contained in the dataframe, and transform those values under a

new variable name.

scaler = StandardScaler()

scaler.fit(df)

scaled_data = scaler.transform(df)

StandardScaler is often used in conjunction with PCA and other algorithms

including k-nearest neighbors and support vector machines to rescale and

standardize data features. This gives the dataset the properties of a standard

normal distribution with a mean of zero and a standard deviation of one.

Without standardization, the PCA algorithm is likely to lock onto features that

maximize variance but that could be exaggerated by another factor. To provide an

example, the variance of Age changes dramatically when measured in days in place

of years, and if left unchecked, this type of formatting might mislead the selection

of components which is based on maximizing variance. StandardScaler helps to

avoid this problem by rescaling and standardizing variables.

Conversely, standardization might not be necessary for PCA if the scale of the

variables is relevant to your analysis or consistent across variables.

Further information regarding StandardScaler can be found at https://scikit-

learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html.

5) Assign algorithm

Having laid much of the groundwork for our model, we can now import the PCA

algorithm from Scikit-learn’s decomposition library.

from sklearn.decomposition import PCA

Take careful note of the next line of code as this is where we reshape the

dataframe’s features into a defined number of components. For this exercise, we

want to find the components that have the most impact on data variability. By

setting the number of components to 2 (n_components=2), we’re asking PCA to find

54

the two components that best explain variability in the data. The number of

components can be modified according to your requirements, but two components

is the simplest to interpret and visualize on a scatterplot.

pca = PCA(n_components=2)

Next, we need to fit the two components to our scaled data and recreate the

dataframe’s values using the transform method.

pca.fit(scaled_data)

scaled_pca = pca.transform(scaled_data)

Let’s check the transformation using the shape command to compare the two

datasets.

#Query the number of rows and columns in the scaled dataframe

scaled_data.shape

Output: (1000, 5)

Now query the shape of the scaled PCA dataframe.

#Query the number of rows and columns in the scaled PCA dataframe

scaled_pca.shape

Output: (1000, 2)

We can see that the scaled dataframe has been compressed from 1,000 rows with

5 columns to 1,000 rows with 2 columns using PCA.

6) Visualize the output

Let’s use the Python plotting library Matplotlib to visualize the two principal

components on a 2-D scatterplot, with principal component 1 marked on the x-axis

and principal component 2 on the y-axis.

We’ll visualize the two principal components without a color legend in the first

version of the code before adding code for the color legend in the second version.

Version 1: Visualized plot

#State the size of the plot

plt.figure(figsize=(10,8))

55

#Configure the scatterplot’s x and y axes as principal components 1 and 2, and color-

coded by the variable Clicked on Ad.

plt.scatter(scaled_pca[:, 0],scaled_pca[:, 1],c=df['Clicked on Ad'])

#State the scatterplot labels

plt.xlabel('First Principal Component')

plt.ylabel('Second Principal Component')

Click Run to generate the plot in Jupyter Notebook.

The two components are color-coded to delineate the outcome of Clicked on Ad

(Clicked/Did not click). Keep in mind that components don’t correspond to a

single variable but rather a combination of variables.

Finally, we can modify the code to add a color legend. This is a more advanced set

of code and requires the use of a for-loop in Python and RGB color codes that can

be found at Rapidtables.com.

Version 2: Visualized plot with color legend

plt.figure(figsize=(10,8))

legend = df['Clicked on Ad']

#Add indigo and yellow RGB colors

colors = {0: '#4B0082', 1: '#FFFF00'}

labels = {0: 'Clicked', 1: 'Did not click'}

https://www.rapidtables.com/web/color/purple-color.html

56

#Use a for-loop to set color for each data point

for t in np.unique(legend):

ix = np.where(legend == t)

plt.scatter(scaled_pca[ix,0], scaled_pca[ix,1], c=colors[t], label=labels[t])

plt.xlabel('First Principal Component')

plt.ylabel('Second Principal Component')

plt.legend()

plt.show()

From this visualization, we can see the clear separation of outcomes with the aid

of a color legend in the top right corner. The output of PCA is now ready for

further analysis using a supervised learning technique such as logistic regression

or k-nearest neighbors.

Documentation for PCA: http://bit.ly/31ythG2

k-Means Clustering

Another popular technique to reduce data complexity is k-means clustering, which

is used for identifying groups of data points without prior knowledge of existing

classes.

http://bit.ly/31ythG2

57

Figure 21: Comparison of original data and clustered data using k-means clustering

K-means clustering splits the dataset into k number of clusters, with k representing

the number of clusters. Setting k to “3,” for example, splits the data into three

clusters.

Each cluster is assigned a random centroid, which is a data point that becomes the

epicenter of an individual cluster. The remaining data points are assigned to the

closest centroid. The centroid coordinates are then updated based on the mean of

the new cluster. This update may cause some data points to switch allegiance and

join a new cluster based on comparative proximity with a different centroid. If so,

the centroid coordinates are recalculated and updated. The algorithm reaches

completion when all data points remain in the same cluster following an update in

centroid coordinates, which will produce the final set of clusters.

Exercise 2

In this second exercise we will generate an artificial dataset and use k-means

clustering to split the data into four natural groupings.

1) Import libraries

The artificial dataset used for this exercise is generated using make_blobs from

Scikit-learn and grouped using the k-means algorithm. Visualization will be

required for this exercise using Matplotlib Pyplot and Matplotlib inline.

import numpy as np

from sklearn.datasets import make_blobs

from sklearn.cluster import KMeans

import matplotlib.pyplot as plt

%matplotlib inline

2) Create blobs

58

Rather than import a dataset for this exercise, we are using make_blobs to generate

an artificial dataset with 300 samples, 2 features, and 4 centers with a cluster

standard deviation of 4.

X, y = make_blobs(n_samples=300, n_features=2, centers=4, cluster_std=4,

random_state=10)

Let’s now plot the artificial dataset using a scatterplot from Matplotlib Pyplot.

plt.figure(figsize=(7,5))

plt.scatter(X[:, 0], X[:, 1])

Run the model in Jupyter Notebook to generate the following scatterplot.

3) Set algorithm

We now want to use k-means clustering to discover natural groupings among data

points that share similar attributes. By establishing a new variable (model), we can

call the KMeans algorithm from Scikit-learn and assign the initial number of clusters

to 4, before fitting the model to the artificial data (X).

model = KMeans(n_clusters=4)

model.fit(X)

4) Predict

Using the predict function under a new variable (model_predict), we can execute

the model and generate the centroid coordinates using cluster_centers_.

model_predict = model.predict(X)

59

centroids = model.cluster_centers_

print(model.cluster_centers_)

Run the model in Jupyter Notebook to print the x and y coordinates of the model’s

cluster centers (centroids).

[[3.23209343 4.94623366]

 [6.24946744 -9.70847466]

 [-1.01492539 -5.23271226]

 [-7.03502629 4.80055552]]

This prints the four centroid positions, which we will use in Step 5.

5) Visualize the output

It’s now time to plot the clusters on a scatterplot using two sets of elements. The

first is the four color-coded clusters produced using the k-means model stored

under the variable named model_predict. The second is the cluster centroids,

stored under the variable named centroids.

The centroids are represented in black with a marker size (s) of 200 and an alpha

of 1. Alpha can take any float number between 0 and 1.0, with 0 equal to maximum

transparency and 1 equal to opaque. As we are superimposing the four cluster

centroids over the four clusters, we need the alpha to be 1 (opaque).

More information about Matplotlib scatterplot features can be found at

https://matplotlib.org/3.1.1/api/_as_gen/matplotlib.pyplot.scatter.html.

plt.figure(figsize=(7,5))

plt.scatter(X[:, 0], X[:, 1], c=model_predict, s=50, cmap='rainbow')

plt.scatter(centroids[:, 0], centroids[:, 1], c='black', s=200, alpha=1);

Run the model in Jupyter Notebook to produce the following scatterplot with the

four clusters and their corresponding centroids superimposed in front.

https://matplotlib.org/3.1.1/api/_as_gen/matplotlib.pyplot.scatter.html

60

As a result of k-means clustering, we have identified four previously unknown

groupings within our dataset and streamlined 300 data points into four centroids

that we can use to generalize the data.

As mentioned in the previous chapter, k-means clustering is useful for reducing a

dataset with a very high number of rows/data points into a more manageable

number of cluster centroids before feeding that data into a supervised learning

algorithm. Alternatively, you may wish to further analyze the data points contained

in individual clusters using supervised learning or another unsupervised learning

technique. You may even wish to apply k-means clustering to one of the identified

clusters, which is useful in the case of market research such as identifying subsets

of customers.

Scree plot

To optimize k, you may wish to analyze a scree plot for guidance. A scree plot

visualizes the degree of scattering (variance) by comparing the distortion for each

variation of clusters. Distortion is measured (usually using Euclidean distance) as

the average of the squared distance between the centroid and the other data points

in that cluster.

To determine the optimal number of clusters, we have to select the value of k

where distortion subsides dramatically to the left of the scree plot but before it

reaches a point of negligible change with cluster variations to the right. This means

that from the optimal data point (the “elbow” point), distortion should start

decreasing linearly to the right.

61

In the case of our model, the optimal number appears to be 3 or 4 clusters—as

there exists a significant kink to the left of these two cluster combinations due to

a pronounced drop-off in distortion. Meanwhile, there is also a linear decline to the

right, especially for k=4. This also makes sense given that the dataset was

artificially generated with centers set to 4.

Using Python, we can code the scree plot above by iterating the values of k from 1

to 10 and calculating the values of distortion for each k value. This involves using

the for loop function in Python and then using Matplotlib to plot the scree plot as

shown below.

#Using a for loop, iterate the values of k with a range of 1-10 and find the values

of distortion for each k value.

distortions = []

K = range(1,10)

for k in K:

model = KMeans(n_clusters=k)

model.fit(X, y)

distortions.append(model.inertia_)

#Generate plot with k on the x-axis and distortions on the y_axis using matplotlib

plt.figure(figsize=(16,8))

plt.plot(K, distortions)

plt.xlabel('k')

plt.ylabel('Distortion')

plt.show()

Documentation for k-means Clustering: http://bit.ly/2Z2IDkQ

http://bit.ly/2Z2IDkQ

62

QUIZ

1) Which solution will best shrink and simplify the original dataset?

a. pca = PCA(n_components=10)

b. pca = PCA(n_components=12)

c. pca = PCA(n_components=3)

d. pca = PCA(n_components=max)

2) StandardScaler is often used in conjunction with PCA and which other

algorithm to rescale and standardize features?

a. Support vector machines

b. Linear regression

c. Multiple linear regression

d. Support vector machines

3) For k-means clustering, which technique might we use to find the

appropriate number of clusters?

a. Big elbow method

b. Mean absolute error

c. Scree plot

d. One-hot encoding

4) Using k-means clustering, the total number of centroids should be lower

than the total number of variables in the original dataset. True or False?

5) In Python, you can use ___ to code a scree plot.

a. object-orientated programming

b. polymorphism

c. the Elbow method

d. a for loop

63

SOLUTIONS

1) c, pca = PCA(n_components=3)

2) a, Support vector machines

3) c, Scree plot

4) True

5) d, a for loop

64

7

SPLIT VALIDATION

A crucial part of machine learning is partitioning the data into two separate sets

using a technique called split validation. The first set is called the training data and

is used to build the prediction model. The second set is called the test data and is

kept in reserve and used to assess the accuracy of the model developed from the

training data. The training and test data is typically split 70/30 or 80/20 with the

training data representing the larger portion. Once the model has been optimized

and validated against the test data for accuracy, it’s ready to generate predictions

using new input data.

Although the model is used on both the training and test sets, it’s from the training

data alone that the model is built. The test data is used as input to form predictions

and assess the model’s accuracy, but it is never decoded and should not be used

to create the model. As the test data cannot be used to build and optimize the

model, data scientists sometimes use a third independent dataset called the

validation set. After building an initial model with the training set, the validation

set can be fed to the prediction model and used as feedback to optimize the model’s

hyperparameters. The test set is then used to assess the prediction error of the

final model.

To maximize data utility, it is possible to reuse the validation and test data as

training data. This would involve bundling the used data with the original training

data to optimize the model just before it’s put into use. However, once the original

validation or test set has been used for training, it can no longer be used as a

validation or test set.

To perform split validation in Python we can use train_test_split from Scikit-learn,

which requires an initial import from the sklearn.model_selection library.

from sklearn.model_selection import train_test_split

Before using this code library, we first need to set our X and y values.

import pandas as pd

df = pd.read_csv('~/Downloads/advertising.csv')

X = df[['Daily Time Spent on Site', 'Age', 'Area Income', 'Daily Internet Usage', 'Ad

Topic Line', 'Country']]

y = df['Clicked on Ad']

65

We are now ready to create our training and test data using the following

parameters: train_size (optional), test_size, random_state (optional), and shuffle

(optional).

Table 7: Split validation parameters

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3,

random_state=10, shuffle=True)

In this example, the training/test data is split 70/30 and shuffled, with a random

seed of 10 ‘bookmarked’ for future code replication.

Train Test Split Documentation: http://bit.ly/2KqPv7s

Validation Set

At the time of writing, Scikit-learn does not provide a specific function to create a

three-way train/validation/test split. However, one quick solution is to split the test

data into two partitions as demonstrated below.

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4)

This sets the training data to 60% and the test data to 40%. The test data is then

split 50/50 so that the test data and validation set are each equivalent to 20% of

the original data.

X_test, X_val, y_test, y_val = train_test_split(X_test, y_test, test_size=0.5)

http://bit.ly/2KqPv7s

66

QUIZ

1) Which code argument can we use to replicate the same random spit of

the same data?

a. shuffle

b. random_state

c. train_size

d. test_size

2) The following code is an example of which technique?

X_test, X_val, y_test, y_val = train_test_split(X_test, y_test,

test_size=0.7)

a. Split validation

b. Cross validation

c. Bucketing

d. Exploratory data analysis

3) Which argument should we use to set the training data to 60% of the

original dataset as part of split validation?

a. test_size =0.4

b. training_size = 0.6

c. test_size=0.6

d. random_state=True

4) Which library should we use to perform split validation?

a. Pandas

b. Scikit-learn

c. Seaborn

d. NumPy

67

5) The training set is usually smaller than the test set to ensure higher

prediction accuracy. True or False?

68

SOLUTIONS

1) b, random_state

2) a, Split validation

3) a, test_size = 0.4

4) b, Scikit-learn

5) False (More data is required in training to build the model)

69

8

MODEL DESIGN

Before we explore specific supervised learning algorithms, it’s useful to pause and

take a high-level look at the full procedure of building a machine learning model.

This involves reviewing a number of steps examined in the preceding chapters as

well as new methods including evaluate and predict. These 10 steps take place

inside your development environment and follow a relatively fixed sequence. Once

you are familiar with this framework, you will find it easy to design your own

machine learning models from start to finish.

Figure 22: An overview of designing a machine learning model

1) Import libraries

Given the Python interpreter works from top to bottom through your code, it’s vital

to import libraries before calling any of their specific functions. If you attempt to

create a heatmap or pairplot without first importing Seaborn and Matplolib, the

Python interpreter won’t be able to process your request.

70

The libraries don’t necessarily need to be placed in the top section of your notebook.

Some data scientists, for instance, prefer to import specific algorithm-based

libraries in sections where they are used—as long as the import is made ahead of

code references to that library.

2) Import dataset

Datasets are generally imported from your organization’s records or public

repositories such as Kaggle.com. While Kaggle.com has a fantastic offering of

datasets, it’s worth mentioning that Scikit-learn offers a number of small built-in

datasets that don’t necessitate an external download. As noted by Scikit-learn,

these datasets are useful for beginners to gain a feel for new algorithms. Scikit-

learn’s datasets are summarized below and can be imported directly into your

notebook.

Table 8: Built-in datasets available with Scikit-learn, http://scikit-learn.org/stable/datasets/index.html

Code example:

from sklearn.datasets import load_breast_cancer

cancer = load_breast_cancer()

Make Blobs

Using Scikit-learn, you can self-generate a random dataset using a function called

make blobs, as used in Chapter 6 with k-means clustering. Again, this data is useful

for gaining confidence with a new algorithm rather than unearthing meaningful

insight.

Code example:

from sklearn.datasets import make_blobs

data = make_blobs(n_samples=200, n_features=2, centers=4, cluster_std=1.8,

random_state=101)

71

Table 9: Parameters for making blobs

Documentation for Make Blobs: http://bit.ly/2GYV0Ir

3) Exploratory data analysis

The third step, exploratory data analysis (EDA), provides an opportunity to get

familiar with your data including distribution and the state of missing values.

Exploratory data analysis also drives the next stage of data scrubbing and your

choice of algorithm. In addition, EDA may come into play in other sections of your

code as you check the size and structure of your dataset and integrate that

feedback to direct model optimization.

4) Data scrubbing

The data scrubbing stage, as detailed in Chapter 5, usually consumes the most

time and effort in developing a prediction model. Like looking after a good pair of

dress shoes, it’s important to pay attention to the quality and composition of your

data. This means cleaning up the data, inspecting its value, making repairs, and

also knowing when to throw it out.

5) Pre-model algorithm (optional)

As an optional extension of the data scrubbing process, unsupervised learning

techniques including k-means clustering analysis and descending dimension

algorithms are sometimes used in preparation for analyzing large and complex

datasets. The technique k-means clustering, as explored in Chapter 6, can be used

to reduce row volume by compressing rows into a lower number of clusters based

on similar values, before conducting further analysis using supervised learning.

This step, though, is optional and does not apply to every model, particularly for

small datasets with a low number of dimensions (features) or rows.

6) Split validation

As described in Chapter 7, split validation is used to partition the data for the

purpose of training and test analysis. It’s also useful to randomize your data at this

point using the shuffle feature and to set a random state if you want to replicate

the model’s output in the future.

7) Set algorithm

http://bit.ly/2GYV0Ir

72

Algorithms are the headline act for every machine learning model and must be

chosen carefully. The algorithm itself is a mathematical-based sequence of steps

that reacts to changing patterns to generate a decision or output. By executing a

series of steps defined by the algorithm, the model reacts to input variables to

interpret patterns, make calculations, and reach decisions.

As input data is variable, algorithms can produce different outputs based on the

input data. Algorithms are also malleable in that they have hyperparameters, which

can be adjusted to create a more customized model. Algorithms are, thus, a moving

framework rather than a concrete equation and are customizable based on the

target output and the characteristics of the input data.

For context, the algorithm should not be confused or mistaken for the model. The

model is the final state of the algorithm (after hyperparameters are consolidated in

response to patterns learned from the data) and the combination of data scrubbing,

split validation, and evaluation techniques.

Below is a list of popular algorithms used in machine learning and their common

characteristics.

Table 10: Overview of popular algorithms used in machine learning

8) Predict

After devising an initial model using patterns extracted from the training data, the

predict function is called on the test data to validate the model. In the case of

regression problems, the predict function generates a numeric value such as price

or a numeric indicator of correlation, and in the case of classification, the predict

function is used to generate discrete classes, such as the movie category or

spam/non-spam classification.

9) Evaluate

The next step is to evaluate the results. The method of evaluation will depend on

the scope of your model, and specifically, whether it is a classification or regression

73

model. In the case of classification, the common evaluation methods are the

confusion matrix, classification report, and accuracy score.

Accuracy Score: This is a simple metric measuring how many cases the model

classified correctly divided by the full number of cases. If all predictions are correct,

the accuracy score is 1.0, and 0 if all cases are predicted incorrectly.

While accuracy alone is normally a reliable metric of performance, it may hide a

lopsided number of false-positives or false-negatives. This isn’t a problem if there’s

a balanced number of false-positives and false-negatives, but this isn’t something

we can ascertain using accuracy alone, which leads us to the following two

evaluation methods.

Documentation for Accuracy Score: http://bit.ly/2OQ1jV7

Confusion Matrix: A confusion matrix, also known as an error matrix, is a simple

table that summarizes the performance of the model, including the exact number

of false-positives and false-negatives.

Table 11: A confusion matrix generated using Seaborn

As seen in the top left box, the model in this example predicted 134 data points

correctly as “0” and 125 cases correctly as “1”. The model also mispredicted 12

data points as “1” and 29 cases as “0”. This means that the 12 data points that

http://bit.ly/2OQ1jV7

74

were predicted “1” (false-positive) should have been classified as “0” and 29 data

points predicted as “0” (false-negative) should have been classified as “1.”

Using the confusion matrix, we can analyze the ratio of false-positives to false-

negatives as well as calculate the final accuracy of the predictions by dividing the

total of false-positive (12) and false-negatives (29) by the total number of data

points, which in this case is 300.

(False-positives + False-negatives) / Total Data Points

(12 + 29) / 300 = 0.1366

The model misclassified 13.66% of data points, and if we take the complement of

the percentage, we have the accuracy score of the model, which is 86.34%.

Documentation for Confusion Matrix: http://bit.ly/2YKC5vW

Classification Report: Another popular evaluation technique is the classification

report, which generates three evaluation metrics as well as support.

Figure 23: A classification report generated using Scikit-learn

a) Precision is the ratio of correctly predicted true-positives to the total of

predicted positive cases. A high precision score translates to a low occurrence of

false-positives.

This metric addresses the question of how accurate the model is when predicting a

positive outcome? This, in other words, is the ability of the model not to label a

negative case as positive, which is important in the case of drug tests, for example.

b) Recall is similar to precision but represents the ratio of correctly predicted true-

positives to the total of actual positive cases. This metric addresses the question

of how many positive outcomes were rightly classified as positive? This can be

understood as the ability of the model to identify all positive cases.

http://bit.ly/2YKC5vW

75

Note that the numerator (top) is the same for both precision and recall, while the

denominators (below) are different.

c) F1-score is a weighted average of precision and recall. It’s typically used as a

metric for model-to-model comparison rather than for stand-alone model accuracy.

In addition, the f1-score is generally lower than the accuracy score due to the way

recall and precision are calculated.

d) Support is not an evaluation metric per se but rather a tally of the number of

positive and negative cases respectively.

Documentation for Classification Report: http://bit.ly/2YDqKgV

In regards to evaluating regression problems (predicting continuous variables), the

two most common measures are mean absolute error (MAE) and root mean square

error (RMSE).

MAE measures the average of the errors in a set of predictions, i.e. how far the

regression line is from the actual data points. RMSE, meanwhile, measures the

standard deviation of the prediction errors, which informs how concentrated or

spread out prediction errors are in relation to an optimal fit.

Given errors are squared before they are averaged, RMSE is far more sensitive to

large errors than MAE. On the other hand, RMSE is not as easy to interpret as MAE

as it doesn’t describe the average error of the model’s predictions. Subsequently,

RMSE is used more as a feedback mechanism to penalize poor predictions rather

than to investigate the average error for each prediction.

10) Optimize

The final step is to optimize the model. For clustering analysis techniques, this

might mean going back and modifying the number of clusters, or changing the

hyperparameters of a tree-based learning technique.

Model optimization can be performed manually using a trial and error system or

via automation using a method like grid search. This particular technique allows

you to trial a range of configurations for each hyperparameter and methodically

test each of those possible hyperparameters. An automated voting process then

takes place to determine the optimal model.

As the model must examine each possible combination of hyperparameters, grid

search can take a long time to run (in line with the number of combinations you

set for each hyperparameter). We will practice implementing grid search in Chapter

11.

http://bit.ly/2YDqKgV

76

77

QUIZ

1) The Python interpreter works:

a. from top to bottom through your code

b. through all your code in one single go

c. from the last line of your code up

d. from where you first call the algorithm

2) Which evaluation technique is likely to hide a lopsided number of false-

positives or false-negatives?

a. Precision

b. F1-score

c. Accuracy

d. Confusion matrix

3) A confusion matrix is used to evaluate classification models? True or

False?

4) Which technique can we use to optimize an existing prediction model?

a. Grid search

b. k-means clustering

c. Precision

d. Cross validation

5) Exploratory data analysis is typically performed after which two steps?

a. Scrub data

b. Select algorithm

c. Import dataset

d. Import libraries

78

SOLUTIONS

1) a, From top to bottom through your code

2) c, Accuracy

3) True

4) a, Grid search

5) c & d, Import dataset & Import libraries

79

9

LINEAR REGRESSION

This chapter describes the code for building a supervised learning model to predict

a numerical target variable using linear regression.

Linear regression, as you may know, plots a straight line or plane called the

hyperplane that predicts the target value of data inputs by determining the

dependence between the dependent variable (y) and its changing independent

variables (X). In a p-dimensional space, a hyperplane is a subspace equivalent to

dimension p−1. Thus, in a two-dimensional space, a hyperplane is a one-

dimensional subspace/flat line. In a three-dimensional space, a hyperplane is

effectively a two-dimensional subspace. Although it becomes difficult to visualize a

hyperplane in four or more dimensions, the notion of a p−1 hyperplane also applies.

Figure 24: The distance of the data points to the hyperplane

The goal of the hyperplane is to dissect the known data points with minimal

distance between itself and each data point. This means that if you were to draw

a perpendicular line (90-degree angle) from the hyperplane to every data point on

the plot, the distance of each data point would equate to the smallest possible

distance of any potential hyperplane.

In preparation for building a linear regression model, we first need to remove or fill

missing values and confirm that the independent variables are those most

correlated with the dependent variable. Those same independent variables,

however, should not be correlated with each other. If a strong linear correlation

exists between two or more independent variables, this leads to a problem called

collinearity (in the case of two variables) or multi-collinearity (in the case of more

80

than two correlated variables) where individual variables are not considered unique.

While this doesn’t affect the overall accuracy of the model, it affects the calculations

and interpretation of individual (independent) variables. This means you can still

reliably predict the output (dependent variable) using collinear variables, but it’s

difficult to say which variables are influential and which variables are redundant in

deciding the model’s outputs.

Exercise

To demonstrate this algorithm, we will code a linear regression model to predict

house prices based on four independent variables. By adding the correlation

coefficient for each independent variable with the y-intercept, we can then predict

the value of the dependent variable (price).

The dataset used for this model is the Melbourne Housing Dataset, which contains

data scraped from real estate property listings in Melbourne, Australia. The full

dataset includes 21 variables including address, suburb, land size, number of rooms,

price, longitude, latitude, postcode, etc.

The CSV file dataset can be downloaded from this link:

https://www.kaggle.com/anthonypino/melbourne-housing-market/#Melbourne_housing_FULL.csv

1) Import libraries

Let’s begin by importing the following Python libraries.

import pandas as pd

import seaborn as sns

%matplotlib inline

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LinearRegression

from sklearn import metrics

2) Import dataset

Using the Pandas pd.read_csv command, load the CSV dataset into a dataframe

and assign the dataframe as a variable called df using the equals operator.

df = pd.read_csv('~/Downloads/Melbourne_housing_FULL.csv')

https://www.kaggle.com/anthonypino/melbourne-housing-market/#Melbourne_housing_FULL.csv

81

Table 12: Melbourne housing dataset variables

Please note that the variables Lattitude and Longtitude are misspelled in this

dataset, but this won’t affect our code, as we’ll remove these two variables in Step

3.

3) Remove variables

Regression models can be developed following the principle of parsimony15 (using

a limited or small number of variables that explain a large proportion of the

variance) or capturing maximum variance (using more variables including variables

that explain a small proportion of variance).16 There are pros and cons to both

methods, in addition to other considerations such as computational resources and

model complexity.

For our model, we will focus on using a limited number of variables for reasons of

convenience. We will also build our model using variables already expressed

numerically, including Price, Distance, BuildingArea, Bedroom2, Bathroom, Rooms,

Car, Propertycount, and Landsize. This means we can ignore and remove non-

numerical variables such as Address, Method, SellerG, Date, etc., which would

otherwise need to be transformed into a numerical format in order for the algorithm

to read them.

del df['Address']

15 Also known as Occam’s razor.
16 Sarah Boslaugh, “Statistics in a Nutshell,” O'Reilly Media, Second Edition, 2012.

82

del df['Method']

del df['SellerG']

del df['Date']

del df['Postcode']

del df['YearBuilt']

del df['Type']

del df['Lattitude']

del df['Longtitude']

del df['Regionname']

del df['Suburb']

del df ['CouncilArea']

Let’s use the head function to preview the dataframe.

df.head()

Run the model by right-clicking and selecting “Run” or navigating from the Jupyter

Notebook menu: Cell > Run All.

As seen in the output above, we have removed more than half of the variables from

the original dataframe. We can also see there’s a high number of missing values in

the form of NaN (not a number), which is common with real-life datasets. To inspect

the full extent of missing values, we can use the isnull().sum() function.

df.isnull().sum()

83

Run the model in Jupyter Notebook.

The number of missing values ranges from as few as 1 (Distance) to as many as

21,115 in the case of BuildingArea. We’ll discuss how to manage these missing

values in the next section. For now, let’s finish our exploratory analysis and use a

heatmap to analyze the correlation (corr) between all variable combinations.

df_heat = df.corr()

sns.heatmap(df_heat,annot=True,cmap='coolwarm')

Run the model in Jupyter Notebook.

84

Lastly, let’s inspect the shape of the dataset.

df.shape

Run the model in Jupyter Notebook.

Output: (34857, 9)

The output from df.shape shows the dataframe has 34,857 rows and 9 columns

(features).

Other variables to remove

Bedroom2 is highly correlated with Rooms (0.95). As mentioned earlier, we want

to avoid adding independent variables that are strongly correlated to each other.

This means that we need to remove one of these two variables.

In terms of choosing which variable to remove, we can remove either variable

depending on the knowledge we want to gain from our model. The variable

Bedroom2 (the second bedroom) might be useful for decision-making as it’s more

narrowly defined than Rooms. This explicit knowledge, for example, might be useful

for making decisions regarding renovations and adding an extra bedroom to the

property. However, because there are no missing values for the variable Rooms,

and 8,226 missing values for Bedroom2, we will include the former in our model

and remove the latter.

Landsize (0.033) and Propertycount (0.059) can also be removed as these

variables show a low correlation to the dependent variable of Price, which is again

undesirable for our linear regression model.

#Remove variables

del df ['Bedroom2']

del df ['Landsize']

del df ['Propertycount']

4) Remove or modify variables with missing values

Based on our exploratory data analysis, we know that missing values pose a

problem with this dataset and especially as linear regression does not run smoothly

with missing values. We therefore need to estimate or remove these values from

the dataframe. The size of the dataframe, though, will be greatly reduced if we

choose to remove all missing values on a row-by-row basis. The variable

BuildingArea, for instance, has 21,115 missing rows, which makes up two-thirds

of the dataframe!

To preserve row depth, we can remove this variable entirely, especially since it’s

not highly correlated with the dependent variable of Price (0.1).

85

The remaining variables can be removed on a row-by-row basis or filled with the

mean value. Based on exploratory data analysis, we can:

a) Use the mean to fill variables with partial correlation to Price (i.e. Car)

b) Remove rows for variables with a small number of missing values (i.e.

Distance)

c) Avoid filling values for variables with significant correlation to Price and

instead remove those missing values row-by-row (i.e. Bathroom)

Table 13: Managing missing values

You’ll notice that the default option for most variables is to remove the missing

rows rather than to remove the entire variable or to artificially fill row values with

the mean. The majority of the missing values appear in the same reoccurring rows,

which means we’ll have a hard time holding on to those rows unless we remove all

the variables containing missing values.

To continue building our model, let’s start the next round of code to fill or remove

the missing values.

#Remove variable BuildingArea

del df ['BuildingArea']

#Fill missing values with the mean for the variable Car

df['Car'].fillna(df['Car'].mean(),inplace=True)

#Drop remaining missing values on a row-by-row basis

df.dropna(axis=0, how='any', subset=None, inplace=True)

It’s important to drop missing rows after removing BuildingArea and filling the

missing values for Car as this will help to preserve more rows.

Let’s now inspect the number of remaining rows in the dataframe.

df.shape

Run the model.

86

Output: (20800, 8)

We now have 20,800 rows or just over half of the original dataset, which is

sufficient to build our linear regression model.

5) Set X and y variables

Next, let’s assign our X and y variables. The X array contains the independent

variables, and y is the dependent variable that we wish to predict (Price).

X = df[['Rooms', 'Distance', 'Bathroom', 'Car']]

y = df['Price']

Let’s also shuffle and sub-divide the data into training and test sets using a

standard 70/30 split. To make the results replicable in the future, we also need to

control how the data is partitioned using a random seed number, which is set to

“10” for this exercise.

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3,

random_state=10, shuffle=True)

6) Set algorithm

Assign the Scikit-learn linear regression algorithm as a variable (i.e. model or

linear_reg) using the equals operator. The naming of the variable isn’t important

as long as it’s an intuitive description and fulfills the basic syntax for assigning

variables in Python (i.e. no spaces, cannot begin with a number, etc.).

model = LinearRegression()

Use fit to link the training data to the algorithm stored in the variable model.

model.fit(X_train, y_train)

7) Find y-intercept and X coefficients

Using the following code, we can inspect the y-intercept of our model and the

coefficients for each of the four independent variables. Note that you will need to

run these two functions one-by-one (remove one function from the model to run

the other) or run them in separate cells to view each output.

#Find y-intercept

model.intercept_

Run the model in Jupyter Notebook.

87

282725.3156777688

Find x coefficients

model.coef_

Run the model.

array([269450.10790036, -37787.76622417, 207173.05927097, 47417.17159475])

Let’s tidy up the X coefficients using a two-column table for easy reference.

model_results = pd.DataFrame(model.coef_, X.columns, columns=['Coefficients'])

model_results

Run the model in Jupyter Notebook.

8) Predict

Let’s now run the model to value an individual property by creating a new variable

(new_house) using the following input features.

new_house = [

2, #Rooms

2.5, #Distance

1, #Bathroom

1, #Car

]

new_house_predict = model.predict([new_house])

new_house_predict

88

Run the model.

array([981746.34678378])

The predicted value of this house is AUD $981,746.347. The actual value of this

house, according to the dataset, is AUD $1,480,000.

Table 14: Model calculations for predicting house value

9) Evaluate

Using mean absolute error from Scikit-learn, we can next compare the difference

between the model’s expected price predictions for the test set and the actual price.

prediction = model.predict(X_test)

metrics.mean_absolute_error(y_test, prediction)

Run the model.

363782.9423236326

The mean absolute error is 363782.9423236326, which means that on average, the

model miscalculated the actual property listing’s price by approximately $363,782.

As we removed 16 variables from the original dataset, this relatively high error rate

is not unexpected. The Type (house, unit, or apartment) variable, for example, is

a major indicator of house value—but as this variable is expressed non-numerically,

we didn’t include it in our model. We could, though, decide to rebuild the model

and convert Type into numeric variables using one-hot encoding.

Also, while linear regression is extremely fast to run, it’s not known for prediction

accuracy and there are more reliable algorithms out there, as we will cover in the

following chapters.

For more information about linear regression, Scikit-learn provides detailed

documentation for this algorithm including a practical code example. Please note,

though, that the documentation does not demonstrate linear regression using split

validation (training and test split) as demonstrated in this chapter.

Documentation for Linear Regression: http://bit.ly/2Z0SmvK

http://bit.ly/2Z0SmvK

89

90

QUIZ

1) It’s important for the independent variables to be strongly correlated

with the dependent variable and one or more of the other independent

variables. True or False?

2) Linear regression can be used for predicting:

a. Species of penguins

b. Fraudulent transactions

c. Groups of customers

d. House prices

3) Linear regression can be used even if the dataset has missing values.

True or False?

4) Which evaluation technique can we use to evaluate the performance of

a regression model?

a. Classification report

b. Mean absolute error

c. Accuracy

d. Confusion matrix

5) What is the price of a three-bedroom house with a y-intercept of

100,000 and a coefficient of 100,000 for each bedroom?

a. 400,000

b. 300,000

c. 100,000

d. 500,000

91

SOLUTIONS

1) False (Ideally, the independent variables should not be strongly correlated with

each other.)

2) d, House price

3) False (The linear regression algorithm does not run with missing values.)

4) b, Mean absolute error

5) a, 400,000

92

10

LOGISTIC REGRESSION

Machine learning generally involves predicting a quantitative outcome or a

qualitative class. The former is commonly referred to as a regression problem, and

in the case of linear regression, this involves predicting a numeric outcome based

on the input of continuous variables. When predicting a qualitative outcome (class),

the task is considered a classification problem. Examples of classification problems

include predicting what products a user will buy or predicting if a target user will

click on an online advertisement (True/False).

Not all algorithms, though, fit cleanly into this simple dichotomy and logistic

regression is a notable example. Logistic regression is part of the regression family

because, as with linear regression, it involves predicting outcomes based on

analyzing quantitative relationships between variables. But unlike linear regression,

it accepts both continuous and discrete variables as input and its output is

qualitative; it predicts a discrete class such as Yes/No or Customer/Non-customer.

In practice, the logistic regression algorithm analyzes relationships between

variables and assigns probabilities to discrete outcomes using the Sigmoid function,

which converts numerical results into an expression of probability between 0 and

1.0.

A value of 0 represents no chance of occurring, whereas 1 represents a certain

chance of occurring. For binary predictions, we can assign two discrete classes with

a cut-off point of 0.5. Anything above 0.5 is classified as class A and anything below

0.5 is classified as class B.

93

Figure 25: A sigmoid function used to classify data points

After assigning data points to a class using the Sigmoid function, a hyperplane is

used as a decision boundary to split the two classes (to the best of its ability). The

decision boundary can then be used to predict the class of future data points.

Figure 26: Logistic regression hyperplane is used to split the two classes

Logistic regression can also be used to classify multiple outcomes but is generally

used for binary classification (predicting one of two discrete classes). Other

techniques including the Naive Bayes’ classifier and support vector machines (SVM)

are considered to be more effective at classifying multiple discrete outcomes.

Exercise

In this next code exercise, we will use logistic regression to predict the outcome of

a Kickstarter campaign, and specifically, whether the campaign will reach its target

funding in the form of a binary “0” (No) or “1” (Yes) output. Kickstarter.com is an

online crowd-funding platform for creative projects and new products.

1) Import libraries

The libraries used for this exercise are Pandas, Seaborn, Matplotlib and Pyplot (a

MATLAB-like plotting framework that combines Pyplot with NumPy), as well as

Scikit-learn.

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

%matplotlib inline

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LogisticRegression

94

from sklearn.metrics import confusion_matrix, classification_report

2) Import dataset

The next important step is to import the CSV dataset into Jupyter Notebook as a

Pandas dataframe after downloading it from

https://www.kaggle.com/tayoaki/kickstarter-dataset.

df = pd.read_csv('~/Downloads/18k_Projects.csv')

Table 15: Kickstarter Projects dataset

3) Remove variables

Step three is to remove non-essential variables using the delete function.

del df ['Id']

del df ['Name']

del df ['Url']

del df ['Location']

del df ['Pledged']

del df ['Creator']

del df ['Category']

https://www.kaggle.com/tayoaki/kickstarter-dataset

95

del df ['Updates']

del df ['Start']

del df ['End']

del df ['Latitude']

del df ['Longitude']

del df ['Start Timestamp (UTC)']

del df ['End Timestamp (UTC)']

del df ['Creator Bio']

del df ['Creator Website']

This removes 16 variables from the dataframe. Some variables were removed

because they are strings or timestamps that cannot be parsed and interpreted as

numeric values by the logistic regression algorithm. Not all non-numeric variables

were removed, as we’ll be transforming some of these variables using one-hot

encoding in Step 4.

4) Convert non-numeric values

Logistic regression accepts discrete variables as input, provided they are expressed

numerically. Consequently, we need to convert the remaining categorical features

into numeric values using one-hot encoding.

df = pd.get_dummies(df, columns=['State', 'Currency', 'Top Category', 'Facebook

Connected', 'Has Video'], drop_first = True)

Finally, let’s inspect the shape of the dataframe for future reference.

df.shape

Run the model.

Output: (18142, 36)

The dataframe has 18,142 rows and 36 columns/features.

5) Remove and fill missing values

Let’s now inspect the dataframe for missing values.

df.isnull().sum()

Run the model.

96

The output shows that four of the 36 variables contain missing values. These four

variables and their correlation to the y (dependent) variable (State_successful) are

summarized in Table 16.

#Code for obtaining correlation coefficients

df['State_successful'].corr(df['Facebook Friends'])

df['State_successful'].corr(df['Creator - # Projects Backed'])

df['State_successful'].corr(df['# Videos'])

df['State_successful'].corr(df['# Words (Risks and Challenges)'])

Table 16: Summary of variables with missing values

The variables Facebook Friends and Creator - # Projects Backed have a high

number of missing values but their correlation to the dependent variable

(State_successful) is significant for analysis. Removing rows containing missing

values from these two variables would also cut the dataset in half (from 18,142

rows to 9,532 rows).

Regarding the other two variables, we can remove the missing rows given their low

frequency (101). Alternatively, you could opt to remove these two variables given

their low correlation with the dependent variable.

Next, let’s use the describe() method to inspect the standard deviation and range

of the two remaining variables.

df.describe()

97

The standard deviation (std) and range (max – min) for the variable Facebook

Friends are high but much lower for the variable Creator - # Projects Backed.

Let’s take one final look at these variables using a distribution plot using Seaborn

and Matplotlib/Pyplot.

#Distribution plot of variable 'Facebook Friends'

plt.figure(figsize=(12,6))

sns.distplot(df['Facebook Friends'], kde=True, hist=0)

#Distribution plot of variable 'Creator - # Projects Backed'

plt.figure(figsize=(12,6))

sns.distplot(df['Creator - # Projects Backed'], kde=True, hist=0)

98

Owing to high variance, it’s challenging to fill the variable Facebook Friends with

the mean, mode, or another artificial value, as none of these methods provide a

reliable fill value. Also, due to the significant correlation of this variable to the

dependent variable, we don’t necessarily want to remove it from the model. We’ll

therefore proceed by retaining this variable and removing rows with missing values.

We have a similar problem with the variable Creator - # Projects Backed, but due

to its lower range, standard deviation, and correlation to the dependent variable,

we can fill this variable with the mean without significantly altering patterns in the

data.

Fill missing values for 'Creator - # Projects Backed' with the mean value

df['Creator - # Projects Backed'].fillna(df['Creator - # Projects Backed'].mean(),

inplace=True)

Drop remaining missing values for remaining variables

df.dropna(axis=0, how='any', subset=None, inplace=True)

df.shape

Run the model.

Output: (12215, 36)

Following these alterations, we have 12,215 rows, equivalent to two-thirds of the

original dataset.

6) Set X and y variables

The dependent variable (y) for this model is the binary variable State_successful.

The remaining variables are the independent variables (X). Rather than calling each

variable in the code separately as performed in the previous exercise, we can call

the full dataframe and remove the y variable using the drop method.

99

X = df.drop('State_successful',axis=1)

y = df['State_successful']

Shuffle and split data 70/30.

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3,

random_state=10, shuffle=True)

7) Set algorithm

Assign LogisticRegression() to the variable model or a variable name of your

choosing.

model = LogisticRegression()

Fit the algorithm to the training data.

model.fit(X_train, y_train)

9) Evaluate

Using the predict function on the X_test data, let’s compare the predicted results

with the actual outcome of the y_test set using a confusion matrix and classification

report from Scikit-learn.

model_predict = model.predict(X_test)

#Confusion matrix

print(confusion_matrix(y_test, model_predict))

#Classification report

print(classification_report(y_test, model_predict))

The confusion matrix indicates that we had 171 false-positive predictions and 211

false-negative predictions. The overall performance of the model, though, is

100

favorable when we consider the high precision, recall, and f1-score conveyed in the

classification report.

8) Predict

Let’s now use our model to predict the likely outcome of an individual Kickstarter

campaign based on the input of its independent variables.

new_project = [

0, #Comments

9, #Rewards

2500, #Goal

157, #Backers

31, #Duration in Days

319, #Facebook Friends

110, #Facebook Shares

1, #Creator - # Projects Created

0, #Creator - # Projects Backed

0, ## Videos

12, ## Images

872, ## Words (Description)

65, ## Words (Risks and Challenges)

0, ## FAQs

0, #Currency_AUD

1, #Currency_CAD

0, #Currency_EUR

0, #Currency_GBP

0, #Currency_NZD

0, #Currency_USD

0, #Top Category_Art

0, #Top Category_Comics

0, #Top Category_Crafts

0, #Top Category_Dance

0, #Top Category_Design

0, #Top Category_Fashion

1, #Top Category_Film & Video

0, #Top Category_Food

0, #Top Category_Games

0, #Top Category_Journalism

0, #Top Category_Music

0, #Top Category_Photography

0, #Top Category_Publishing

101

0, #Top Category_Technology

0, #Top Category_Theater

0, #Facebook Connected_No

0, #Facebook Connected_Yes

0, #Has Video_No

1, #Has Video_Yes

]

You can generate the section of code above manually or you may like to use a

temporary code shortcut included in Appendix 2 of this book.

Let’s now call predict on the model using the new_project as new input data.

new_pred = model.predict([new_project])

new_pred

Run the model.

Output: array([1], dtype=uint8)

According to the positive binary outcome of our model [1], the new campaign is

predicted to reach its target funding based on its input variables and the rules of

our model. A negative binary outcome of [0], meanwhile, would classify the

campaign as unsuccessful.

Documentation for Logistic Regression: http://bit.ly/2N0DXcu

http://bit.ly/2N0DXcu

102

QUIZ

1) We need to build a prediction model to predict the sex of five different

species of penguins based on their weight, height, and color. How many

output variables will our model have?

a. 3

b. 2

c. 5

d. 1

2) Logistic regression can be used interchangeably with linear regression

to predict the same output variable. True or False?

3) How many false-positives did the model produce based on the results

of the confusion matrix?

a. 1658

b. 171

c. 211

d. 1625

4) Which function can we use to apply our trained model to new data in

order to produce a prediction?

a. test()

b. head()

c. predict()

d. print()

5) Logistic regression excels at:

a. Binary classification

b. Reducing the number of components

c. Predicting a high number of discrete categories

103

d. Visualizing data patterns

104

SOLUTIONS

1) b, 2

2) False (Logistic regression is a classification technique, whereas linear regression

is a regression technique that predicts a continuous and numerical value)

3) b, 171

4) c, predict()

5) a, Binary classification

105

11

SUPPORT VECTOR MACHINES

In this chapter, we discuss a relatively new regression analysis technique called

support vector machines, or SVM for short. SVM is considered one of the best

classifiers in supervised learning for analyzing complex data and downplaying the

influence of outliers.

Developed within the computer science community in the 1990s, SVM was initially

designed for predicting numeric and categorical outcomes as a double-barrel

prediction technique. Today, SVM is mostly used as a classification technique for

predicting categorical outcomes—similar to logistic regression.

Figure 27: Logistic regression versus SVM

In binary prediction scenarios, SVM mirrors logistic regression as it attempts to

separate classes based on the mathematical relationship between variables. Unlike

logistic regression, however, SVM attempts to separate data classes from a position

of maximum distance between itself and the partitioned data points. Its key feature

is the margin, which is the distance between the boundary line and the nearest

data point, multiplied by two. The margin provides support to cope with new data

points and outliers that would otherwise infringe on a logistic regression boundary

line.

106

Figure 28: A new data point is added to the scatterplot

Exercise

In this chapter we will use the support vector machines algorithm as a binary

classifier to predict the outcome of a user clicking on an online advertisement.

Using the Advertising dataset introduced in Chapter 6, the model’s input variables

include Age, Male (sex), Daily Time Spent On Site, Area Income, and Daily Internet

Usage.

1) Import libraries

We will be using SVC (Support Vector Classifier) from the Scikit-learn library to

implement this model and evaluate the predictions using a classification report and

a confusion matrix. We will later optimize the model using grid search.

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.svm import SVC

from sklearn.metrics import classification_report, confusion_matrix

from sklearn.model_selection import GridSearchCV

2) Import dataset

Use pd.read_csv to import the Advertising dataset.

df = pd.read_csv('~/Downloads/advertising.csv')

3) Remove variables

Next, remove the following two variables from the dataframe.

107

del df ['Ad Topic Line']

del df ['Timestamp']

4) Convert non-numeric variables

Using one-hot encoding, convert Country and City variables to numeric values.

df = pd.get_dummies(df, columns=['Country','City'])

5) Set X and y variables

Assign Clicked on Ad as the y target variable and the remaining variables as X.

X = df.drop('Clicked on Ad',axis=1)

y = df['Clicked on Ad']

Split the data into training and test tests.

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3,

random_state=10)

6) Set algorithm

Assign a new variable to Scikit-learn’s SVC (support vector classifier) algorithm.

Note that for regression problems, you will need to use SVR (support vector

regression) from Scikit-learn.17

model = SVC()

Fit the algorithm to the training data.

model.fit(X_train, y_train)

7) Evaluate

Assign a new variable to the prediction of the X test data using the model created

in Step 6.

model_predict = model.predict(X_test)

17 For more information about SVR, please see https://scikit-

learn.org/stable/modules/generated/sklearn.svm.SVR.html

108

Next, generate a confusion matrix and classification report to evaluate the results

of the model using the test input data (X_test) contained in model_predict against

the true output (y_test).

#Confusion matrix

print(confusion_matrix(y_test, model_predict))

#Classification report

print(classification_report(y_test, model_predict))

Run the model.

The current performance of the model isn’t as accurate as we might hope. The

confusion matrix reports a high occurrence of false-negatives (68), and the

classification report states that precision, recall, and the f1-score are all below 0.75.

8) Grid search

We can improve the accuracy of our model using a special technique called grid

search to help us find the optimal hyperparameters for this algorithm. While there

are many hyperparameters belonging to SVC, we will focus on C and gamma, which

generally have the biggest impact on prediction accuracy using this algorithm.

The hyperparameter C controls the cost of misclassification on the training data. In

other words, C regulates the extent to which misclassified cases (placed on the

wrong side of the margin) are ignored. This flexibility in the model is referred to as

a “soft margin” and ignoring cases that cross over the soft margin can lead to a

better fit. In practice, the lower C is, the more errors the soft margin is permitted

to ignore. A C value of ‘0’ enforces no penalty on misclassified cases.

Gamma refers to the Gaussian radial basis function and the influence of the support

vector. In general, a small gamma produces high bias and low variance models.

Conversely, a large gamma leads to low bias and high variance in the model.

109

Grid search allows us to list a range of values to test for each hyperparameter. An

automated voting process then takes place to determine the optimal value for each

hyperparameter. Note that as grid search must examine each combination of

hyperparameters, it can take a long time to run—particularly as you add more

values for testing. In this exercise, we will test three values for each

hyperparameter.

The following code should be used in a new cell within the same notebook.

Begin by stating the hyperparameters you wish to test.

hyperparameters = {'C':[10,25,50],'gamma': [0.001,0.0001,0.00001]}

Link your specified hyperparameters to GridSearchCV and the SVC algorithm under

a new variable name.

grid = GridSearchCV(SVC(),hyperparameters)

Next, fit grid search to the X and y training data.

grid.fit(X_train, y_train)

We can now use the grid.best_params_ function to review the optimal combination

of hyperparameters. This may take 30 seconds or longer to run on your machine.

grid.best_params_

After testing each possible permutation provided for C and Gamma, grid search has

found that 50 for C and 0.0001 for gamma are the ideal hyperparameters for this

model.

9) Grid search predict

Let’s link the test data with the model using the new hyperparameters supplied by

grid search, and review the prediction results inside a new cell.

grid_predictions = grid.predict(X_test)

110

#Confusion matrix

print(confusion_matrix(y_test,grid_predictions))

#Classification report

print(classification_report(y_test,grid_predictions))

Run the model.

As evidenced in the confusion matrix and classification report, the new

hyperparameters have improved the prediction performance of this model, with an

almost evenly split number of false-positives (17) and false-negatives (15), and

0.89 for precision, recall, and f1-score.

Documentation for SVC: http://bit.ly/2YYxfdy

Documentation for Grid Search: http://bit.ly/2P6tq2v

http://bit.ly/2YYxfdy
http://bit.ly/2P6tq2v

111

QUIZ

1) What is the margin?

a. The middle of the dataset

b. The classification boundary line

c. The distance between the boundary line and the nearest data point

d. A scatterplot axis

2) Support vector machines can be used for:

a. Regression only

b. Classification only

c. Classification and regression

d. Clustering

3) Support vector machines are more effective at classifying multiple

discrete outcomes than logistic regression. True or False?

4) What is the name of the classification version of support vector

machines in Scikit-learn?

a. SVClassification()

b. SVC()

c. SVR()

d. SVC(1)

5) What is a feature of a soft margin?

a. Ignoring data points that cross over into the margin

b. No leeway for data points that cross over into the margin

c. A very narrow margin

d. A very wide margin

112

6) In general, a small gamma produces:

a. Low bias and low variance models

b. High bias and low variance models

c. Low bias and high variance models

d. High bias and high variance models

113

SOLUTIONS

1) c. The distance between the boundary line and the nearest data point

2) c, Classification and regression

3) True

4) b, SVC()

5) a, Ignoring data points that cross over into the margin

6) b, High bias and low variance models

114

12

k-NEAREST NEIGHBORS

Our next supervised learning classification technique is k-nearest neighbors, which

classifies new unknown data points based on their proximity to known data points.

This process of classification is determined by setting “k” number of data points

closest to the target data point. If we set k to 3, for example, k-NN analyzes the

nearest three data points (neighbors) to the target data point.

Figure 29: An example of k-NN clustering used to predict the class of a new data point

The k-nearest neighbors technique is sometimes referred to as a “memory-based

procedure” because the full training data is used each time a prediction is made.18

For this reason, k-NN is generally not recommended for analyzing large datasets

and measuring multiple distances in high-dimensional data. Reducing the number

of dimensions, through the use of a descending dimension algorithm such as

principal component analysis (PCA) or by merging variables, is a common strategy

to simplify and prepare a dataset for k-NN analysis.

Exercise

18 Gareth James, Daniela Witten & Trevor Hastie Robert Tibshirani, “An Introduction to Statistical

Learning with Applications in R,” Springer, 2017.

115

In the following code exercise, we will practice using k-nearest neighbors to predict

the outcome of a user clicking on an online advertisement based on the class of

nearby data points.

1) Import libraries

This model is built using the KNeighborsClassifier from Scikit-learn. We’ll also be

relying on StandardScaler to standardize the data, as we did earlier with principal

component analysis.

import pandas as pd

from sklearn.preprocessing import StandardScaler

from sklearn.model_selection import train_test_split

from sklearn.neighbors import KNeighborsClassifier

from sklearn.metrics import classification_report, confusion_matrix

2) Import dataset

For this exercise, we are again using the Advertising dataset.

df = pd.read_csv('~/Downloads/advertising.csv')

3) Remove variables

Next, we’ll remove the discrete variables from the dataframe, including Ad Topic

Line, Timestamp, Male, Country, and City. k-NN generally works best with

continuous variables such as age and area income.

del df ['Ad Topic Line']

del df ['Timestamp']

del df['Male']

del df ['Country']

del df ['City']

Let’s preview the updated dataframe and the remaining variables using the head

command.

df.head()

Run the model.

116

4) Scale data

Given that the scale of variables has a major impact on the output of this algorithm,

we’ll use StandardScaler() from Scikit-learn to standardize the variance of the

independent variables (while dropping the dependent variable Clicked on Ad). This

transformation will help to avoid one or more variables with a high range unfairly

pulling the focus of the model.

scaler = StandardScaler()

scaler.fit(df.drop('Clicked on Ad',axis=1))

scaled_features = scaler.transform(df.drop('Clicked on Ad',axis=1))

5) Set X and y values

Assign X and y variables, with the standardized independent variables assigned as

X and the dependent variable of Clicked on Ad as y.

X = scaled_features

y = df['Clicked on Ad']

We’ll again use a standard 70/30 split with a test_size of 0.3 and random_state

bookmarked as 10.

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3,

random_state=10, shuffle=True)

6) Set algorithm

Assign and configure the k-NN algorithm to an initial number of neighbors, which

in this case is matched to reflect the default number for this algorithm (5). Note

117

that setting k to an uneven number helps to eliminate the possibility of a prediction

stalemate in the case of a binary prediction.

model = KNeighborsClassifier(n_neighbors=5)

Fit the algorithm to the training data.

model.fit(X_train, y_train)

7) Evaluate

Using the predict function, we can compare the model’s predictions for the test

data against the y test data to evaluate the accuracy of the model.

model_predict = model.predict(X_test)

print(confusion_matrix(y_test, model_predict))

print(classification_report(y_test, model_predict))

Run the model.

The model returns favorable results with a low number of false-positives (2) and

false-negatives (10), and an f1-score of 0.96.

8) Optimize

We can now experiment with the number of neighbors chosen in step 5 and attempt

to reduce the number of incorrectly predicted outcomes.

Table 17: Results from different n_neighbors combinations

118

Based on manual trial and error, we can improve the model by opting for 3

neighbors.

9) Predict

As the final step of this exercise, we can deploy our model (n_neighbors=3) on the

first 10 rows of the scaled_features dataframe to predict the likely outcome.

model.predict(scaled_features)[0:10]

Based on the nearest 3 neighbors, only one user is expected to click on the

advertisement (1) according to our prediction model. As we can expect, the model’s

predictions are accurate if we compare the results with the data used for training.

Documentation for k-NN: http://bit.ly/31wc6oC

http://bit.ly/31wc6oC

119

QUIZ

1) Using Scikit-learn, the default number of variables using the

KNeighborsClassifier is:

a. 5

b. 3

c. 4

d. 1

2) Which of the following evaluation techniques can we use to evaluate

the accuracy of a k-nearest neighbors model?

a. Classification report

b. Mean absolute error

c. Elbow method

d. Grid search

3) Which metric can we use to compare the accuracy of different k-NN

models?

a. Support

b. f1 score

c. Precision

d. Accuracy

4) Which algorithm is sometimes used to simplify and prepare a dataset

for k-NN analysis?

a. Grid search

b. k-means clustering

c. Linear regression

d. Principal component analysis

120

5) k-nearest neighbors is both a classification and a regression technique.

True or False?

121

SOLUTIONS

1) c. The distance between the boundary line and the nearest data point

2) a, Classification report

3) b, F1 score

4) d, Principal component analysis

5) a, False (k-NN is a classification technique only)

122

13

TREE-BASED METHODS

Tree-based learning algorithms, also known as Cart (Classification and Regression

Trees), are a popular technique for predicting numeric and categorical outputs.

Tree-based methods, which include decision trees, bagging, random forests, and

boosting, are considered highly effective in the space of supervised learning. This is

partly due to their high accuracy and versatility as they can be used to predict both

discrete and continuous outcomes.

Decision Trees

Decision trees create a decision structure to interpret patterns by splitting data into

groups using variables that best split the data into homogenous or numerically

relevant groups based on entropy (a measure of variance in the data among

different classes). The primary appeal of decision trees is they can be displayed

graphically as a tree-like graph and they’re easy to explain to non-experts.

Unlike an actual tree, the decision tree is displayed upside down with the leaves

located at the bottom or foot of the free. Each branch represents the outcome of a

decision/variable and each leaf node represents a class label, such as “Go to beach”

or “Stay in.” Decision rules are subsequently marked by the path from the root of

the tree to a terminal leaf node.

Figure 30: Decision Tree For What To Do Today, Source: https://towardsdatascience.com/

Exercise 1

Let’s use a decision tree classifier to predict the outcome of a user clicking on an

advert using the Advertising dataset.

https://towardsdatascience.com/https-medium-com-lorrli-classification-and-regression-analysis-with-decision-trees-c43cdbc58054

123

1) Import libraries

While decision trees can be used for solving regression or classification problems,

this model uses the classification version of the algorithm as we are predicting a

discrete variable. Using the DecisionTreeClassifier algorithm from Scikit-learn, we

will attempt to predict the dependent variable Clicked on Ad (0 or 1).19 The

performance of the model will be evaluated using a classification report and a

confusion matrix.

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.tree import DecisionTreeClassifier

from sklearn.metrics import classification_report, confusion_matrix

2) Import dataset

Import the Advertising Dataset as a dataframe and assign a variable name for the

dataset.

df = pd.read_csv('~/Downloads/advertising.csv')

3) Convert non-numeric variables

Convert the Country and City variables to numeric values using one-hot encoding.

df = pd.get_dummies(df, columns=['Country',’City’])

4) Remove columns

Remove the discrete variables Ad Topic Line and Timestamp, which aren’t relevant

and practical for use with this model.

del df['Ad Topic Line']

del df['Timestamp']

Let’s now inspect the dataframe.

df.head()

19 The alternative to DecisionTreeClassifier in Scikit-learn is DecisionTreeRegressor, which is

used for solving regression problems.

124

5) Set X and y variables

Clicked on Ad serves as the dependent variable (y) for this exercise, while the

remaining variables constitute our independent variables (X). The independent

variables are Daily Time Spent on Site, Age, Area Income, Daily Internet Usage,

Male, Country, and City.

X = df.drop('Clicked on Ad',axis=1)

y = df['Clicked on Ad']

Split the data 70/30, shuffle, and set the random state to 10.

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3,

random_state=10, shuffle=True)

6) Set algorithm

Assign DecisionTreeClassifier() to the variable model.

model = DecisionTreeClassifier()

Now fit this variable containing the decision tree algorithm to the X and y training

data to build our model.

model.fit(X_train,y_train)

7) Evaluate

Test the training model on the X test data using the predict function and assign a

new variable name.

125

model_predict = model.predict(X_test)

Use a confusion matrix and classification report to review the predictions of the

model against the y test data.

print(confusion_matrix(y_test, model_predict))

print(classification_report(y_test, model_predict))

Run the model.

The model produced 10 false-positives and 9 false-negatives. Let’s see if we can

improve predictive accuracy using multiple decision trees in the next exercise.

Documentation for Decision Trees: http://bit.ly/2YVVeu4

Random Forests

While decision trees are useful for explaining a model’s decision structure, this

technique is also prone to overfitting.

In general, decision trees are accurate at decoding patterns using the training data,

but because there is a fixed sequence of decision paths, any variance in the test

data or new data can result in poor predictions. The fact that there is only one tree

design also limits the flexibility of this method to manage variance and future

outliers.

A solution for mitigating overfitting is to grow multiple trees using a different

technique called random forests. This method involves growing multiple decision

trees using a randomized selection of input data for each tree and combining the

results by averaging the output for regression or class voting for classification.

The variables selected for dividing the data are also randomized and capped. If the

entire forest inspected a full set of variables, each tree would look similar, as the

trees would each attempt to maximize information gain at the subsequent layer

and thereby select the optimal variable at each split.

Unlike a standard decision tree, though, which has a full set of variables to draw

from, the random forests algorithm has an artificially limited set of variables

available to build decisions. Due to fewer variables shown and the randomized data

provided, random forests are less likely to generate a collection of similar trees.

Embracing randomness and volume, random forests are subsequently capable of

http://bit.ly/2YVVeu4

126

providing a reliable result with potentially less variance and overfitting than a single

decision tree.

Exercise 2

This exercise is a repeat attempt of the previous exercise, again using the

Advertising dataset and the same dependent and independent variables but built

using RandomForestClassifier from Scikit-learn.

1) Import libraries

Note there are two separate algorithms from Scikit-learn for building random

forests based on classification or regression. In this exercise, we are utilizing the

classification form of the algorithm using Scikit-learn’s RandomForestClassifier

rather than RandomForestRegressor, which is used for regression.

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import classification_report, confusion_matrix

2) Import dataset

Import the advertising dataset.

df = pd.read_csv('~/Downloads/advertising.csv')

3) Convert non-numeric variables

Use one-hot encoding to convert the variables Country and City to numeric values.

df = pd.get_dummies(df, columns=['Country', ‘City'])

4) Remove variables

Remove the following two variables from the dataframe.

del df['Ad Topic Line']

del df['Timestamp']

5) Set X and y variables

Assign the same X and y variables, and split the data 70/30.

X = df.drop('Clicked on Ad',axis=1)

y = df['Clicked on Ad']

127

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3,

random_state=10, shuffle=True)

6) Set algorithm

Assign a variable name to RandomForestClassifier and specify the number of

estimators. Starting with 100-150 estimators (trees) is generally a good starting

point for this algorithm.

model = RandomForestClassifier(n_estimators=150)

Fit the algorithm to the training data.

model.fit(X_train, y_train)

7) Evaluate

Using the predict method, let’s predict the X test values and assign them as a new

variable.

model_predict = model.predict(X_test)

Using a confusion matrix and classification report, evaluate the predictions of the

model using the X test data contained in model_predict against the true output

(y_test).

print(confusion_matrix(y_test, model_predict))

print(classification_report(y_test, model_predict))

Run the model.

The model has performed well on the test data with a comparatively lower

occurrence of false-positives (5) and false-negatives (7), and a higher f1-score of

0.96, which was 0.94 in the case of the decision tree classifier used in the previous

exercise.

Documentation for Random Forests: http://bit.ly/2YYzGwI

http://bit.ly/2YYzGwI

128

Gradient Boosting

Like random forests, boosting provides yet another regression/classification

technique for aggregating the outcome of multiple decision trees.

Rather than building random independent variants of a decision tree in parallel,

gradient boosting is a sequential method that aims to improve the performance of

each subsequent tree. This works by evaluating the performance of weak

models and then overweighting subsequent models to mitigate the outcome of

instances misclassified in earlier rounds. Instances that were classified correctly at

the previous round are also replaced with a higher proportion of instances that

weren’t accurately classified. While this in effect creates another weak model, the

modifications derived from the previous model help the new model to key in on the

mistakes made by the previous tree.

The adept ability of the algorithm to learn from its mistakes makes gradient

boosting one of the most popular algorithms in machine learning today.

Exercise 3

In this third exercise, we will use gradient boosting to predict the outcome of the

Advertising dataset in order to compare the results with the two previous

algorithms.

Readers of Machine Learning for Absolute Beginners Second Edition will be familiar

with the regression variant of gradient boosting, but in this exercise we use the

classification version of this algorithm, which predicts a discrete variable and comes

with slightly different hyperparameters.

1) Import libraries

This model uses the classification form of Gradient Boosting from Scikit-learn’s

ensemble package.

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn import ensemble

from sklearn.metrics import classification_report, confusion_matrix

2) Import dataset

Import the advertising dataset and assign it as a variable.

df = pd.read_csv('~/Downloads/advertising.csv')

3) Convert non-numeric variables

Use one-hot encoding to convert the variables Country and City to numeric values.

df = pd.get_dummies(df, columns=['Country', 'City'])

129

4) Remove variables

Remove the following two variables from the dataframe.

del df['Ad Topic Line']

del df['Timestamp']

5) Set X and y variables

Assign the same X and y variables, and split the data 70/30.

X = df.drop('Clicked on Ad',axis=1)

y = df['Clicked on Ad']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3,

random_state=10, shuffle=True)

6) Set algorithm

Assign a variable name to GradientBoostingClassifier and specify the number of

estimators. A good starting point for this algorithm is 150-250 estimators (trees),

with a learning rate of 0.1 and the default loss argument set to 'deviance'.

model = ensemble.GradientBoostingClassifier(

n_estimators = 250,

learning_rate = 0.1,

max_depth = 5,

min_samples_split = 4,

min_samples_leaf = 6,

max_features = 0.6,

loss = 'deviance'

)

Fit the algorithm to the training data.

model.fit(X_train, y_train)

7) Evaluate

Use the predict method to predict the X test values and assign it as a new variable.

model_predict = model.predict(X_test)

130

Using a confusion matrix and classification report, evaluate the model using the X

test data contained in model_predict against the true output (y_test).

print(confusion_matrix(y_test, model_predict))

print(classification_report(y_test, model_predict))

Run the model.

The model has performed marginally better than random forests with one less

prediction error. The f1-score is still 0.96, which is the same as random forests but

an improvement on the earlier decision tree classifier (0.94).

Documentation for Gradient Boosting Classifier: http://bit.ly/2ZT7ZCJ

Exercise 4

In this fourth and final exercise, we will use gradient boosting to predict a numeric

target output (regression) in the form of the nightly fee for Airbnb accommodation

in Berlin, Germany. After devising our initial model, we will then test a sample

listing.

1) Import libraries

Import the following libraries.

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn import ensemble

from sklearn.metrics import mean_absolute_error

2) Import dataset

For this regression exercise we are using the Berlin Airbnb dataset, which can be

downloaded from http://scatterplotpress.com/p/datasets.

http://bit.ly/2ZT7ZCJ
http://scatterplotpress.com/p/datasets

131

Table 18: Berlin Airbnb dataset

Use the pd.read_csv command to load the Berlin Airbnb dataset into a Pandas

dataframe.

Read in data from CSV

df = pd.read_csv('~/Downloads/listings.csv')

3) Remove variables

We won’t be using all X variables for our model, partly because there is some

information overlap between variables (i.e. host_name and host_id, as well as

neighborhood and neighbourhood_group). In addition, some variables aren’t

relevant (i.e. last_review), and others are discrete and difficult to parse (i.e.

longitude and latitude).

del df['id']

del df['name']

del df['host_name']

del df['last_review']

del df['calculated_host_listings_count']

del df['availability_365']

del df['longitude']

del df['neighbourhood']

del df['latitude']

4) Convert non-numeric values

Convert columns that contain non-numeric data to numeric values using one-hot

encoding, which in this case is neighbourhood_group and room_type.

132

df = pd.get_dummies(df, columns = ['neighbourhood_group', 'room_type'])

Remove remaining missing values on a row-by-row basis.

df.dropna(axis = 0, how = 'any', subset = None, inplace = True)

5) Set X and y variables

Assign the X and y variables. The X array contains the independent variables, and

the y array contains the dependent variable of price.

X = df.drop('price',axis=1)

y = df['price']

We are now at the stage of splitting the data into training and test segments. For

this exercise, we’ll proceed with a standard 70/30 split by calling the Scikit-learn

command below with a test_size of 0.3 (30%).

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3,

random_state=10, shuffle=True)

6) Set algorithm

Assign a variable name to GradientBoostingRegressor imported from Scikit-learn’s

ensemble library, and set the initial hyperparameters as demonstrated below.

model = ensemble.GradientBoostingRegressor(

n_estimators = 350,

learning_rate = 0.1,

max_depth = 5,

min_samples_split = 4,

min_samples_leaf = 6,

max_features = 0.6,

loss = 'huber'

)

Use the fit function to assign the algorithm to the training data.

model.fit(X_train, y_train)

7) Evaluate

133

Use mean_absolute_error from Scikit-learn to compare the difference between the

model’s expected predictions using X_train and the actual values of y_train. In

this example, the accuracy of the model will display up to two decimal places (%.2f).

mae_train = mean_absolute_error(y_train, model.predict(X_train))

print ("Training Set Mean Absolute Error: %.2f" % mae_train)

The same process is repeated using the test data.

mae_test = mean_absolute_error(y_test, model.predict(X_test))

print ("Test Set Mean Absolute Error: %.2f" % mae_test)

Run the entire model. The results will appear in your notebook after completion.

Training Set Mean Absolute Error: 22.94

Test Set Mean Absolute Error: 22.93

After running our model, the training set’s mean absolute error is $22.94, and the

test set’s mean absolute error is $22.93. This means that on average, the training

set miscalculated the actual listing price by $22.94 and the test set by $22.93. The

almost identical prediction error between the training and test data indicates low

overfitting in our model.

8) Predict

Let’s now use our model to predict the overnight price of an individual listing.

new_property = [

2217, #host_id

4, #minimum_nights

118, #number_of_reviews

3.76, #reviews_per_month

0, #neighbourhood_group_Charlottenburg-Wilm.

0, #neighbourhood_group_Friedrichshain-Kreuzberg

0, #neighbourhood_group_Lichtenberg

0, #neighbourhood_group_Marzahn - Hellersdorf

1, #neighbourhood_group_Mitte

0, #neighbourhood_group_Neukölln

0, #neighbourhood_group_Pankow

0, #neighbourhood_group_Reinickendorf

0, #neighbourhood_group_Spandau

0, #neighbourhood_group_Steglitz - Zehlendorf

134

0, #neighbourhood_group_Tempelhof - Schöneberg

0, #neighbourhood_group_Treptow - Köpenick

1, #room_type_Entire home/apt

0, #room_type_Private room

0, #room_type_Shared room

]

new_pred = model.predict([new_property])

new_pred

The model predicts that an entire home/apartment located in the neighborhood of

Mitte is priced at approximately $67.79 per night. The actual price for this listing is

$60 per night and was taken from the first row of the Berlin Airbnb dataset.20

Lastly, please take into account that because the training and test data are shuffled

randomly, and data is fed to decision trees at random, the predicted results will

differ slightly when replicating this model on your own machine.

Documentation for Gradient Boosting Regressor: http://bit.ly/2YGoohl

20 This sample data point may have been included as part of the model’s training data, which perhaps

explains the low error.

http://bit.ly/2YGoohl

135

QUIZ

1) Which tree-based technique can be easily visualized?

a. Decision trees

b. Gradient boosting

c. Random forests

d. Bagging

2) Which tree-based technique is prone to overfitting?

a. Decision trees

b. Gradient boosting

c. Random forests

d. Bagging

3) Gradient boosting is an example of a sequential processing algorithm.

True or False?

4) Which is not an accurate description of random forests?

a. Ensemble technique

b. Parallel processing algorithm

c. Visualization algorithm

d. Classification technique

5) What is generally a good number of initial estimators (trees) for a

gradient boosting classifier?

a. 100

b. 1000

c. 2

d. 150-250

136

SOLUTIONS

1) a, Decision trees

2) a, Decision trees

3) True

4) c, Visualization algorithm

5) d, 150-250

137

NEXT STEPS

Having reached the end of this book you are well on your way to coding machine

learning models in Python.

Now is also an opportune moment to consider future specializations in machine

learning, including recommender systems, natural language processing, fraud

detection, and image recognition using artificial neural networks. To learn more

about recommender systems, the third book in this series Machine Learning:

Make Your Own Recommender System provides a beginner’s introduction to

coding recommender systems using collaborative and content-based filtering.

You can also follow and find free learning materials and videos on my Instagram

channel at machinelearning_beginners and sign up for my Newsletter:

http://eepurl.com/gKjQij

If you have any direct feedback about aspects of the book you strongly liked or

dislike, please feel free to write to me at oliver.theobald@scatterplotpress.com.

This feedback is highly valued and I look forward to hearing from you.

Oliver Theobald

August 2019

138

APPENDIX 1: INTRODUCTION TO PYTHON

Python was designed by Guido van Rossum at the National Research Institute for

Mathematics and Computer Science in the Netherlands during the late 1980s and

early 1990s. Derived from the Unix shell command-line interpreter and other

programming languages including C and C++, it was designed to empower

developers to write programs with fewer lines of code than other languages.21

Unlike other programming languages, Python also incorporates many English

keywords where other languages use punctuation symbols.

In Python, the input code is read by the Python interpreter to perform an output.

Any errors, including poor formatting, misspelled functions, or random characters

left someplace in your script are picked up by the Python interpreter and cause a

syntax error.

In this chapter we will discuss the basic syntax to help you write fluid and effective

code.

Comments

Adding comments is good practice in computer programming to signpost the

purpose and content of your code. In Python, comments can be added to your code

using the # (hash) symbol. Everything placed after the hash symbol (on that line

of code) is then ignored by the Python interpreter.

Import Melbourne Housing dataset from my Downloads folder

dataframe = pd.read_csv('~/Downloads/Melbourne_housing_FULL.csv')

In this example, the second line of code will be executed, while the first line of code

will be ignored by the Python interpreter.

Indentation & Spaces

Unlike other programming languages, Python uses indentation to group code

statements, such as functions and loops, rather than keywords or punctuation to

separate code blocks.

new_user = [

66.00, #Daily Time Spent on Site

48, #Age

24593.33, #Area Income

131.76, #Daily Internet Usage

1, #Male

0, #Country_Afghanistan

21 Mike McGrath, “Python in easy steps: Covers Python 3.7,” In Easy Steps Limited, Second Edition,

2018.

139

1, #Country_ Albania

0, #Country_Algeria

]

Spaces, though, in expressions are ignored by the Python interpreter, i.e. 8+4 or

8 + 4, but can be added for (human) clarity.

Python Data Types

Common data types in Python are shown in the following table.

Table 19: Common Python data types

In machine learning, you’ll most commonly be working with lists containing strings,

integers, or floating-point numbers. String variables are also called character or

alphanumeric variables and can include alphabetic letters, numbers, and symbols

such as a hashtag (#) or underscore (_).

Arithmetic in Python

Commonly used arithmetical operators in Python are displayed in Table 20.

Table 20: Commonly used arithmetical operators in Python

140

Python adheres to the standard mathematical order of operations, such that

multiplication or division, for example, is executed before addition or subtraction.

2 + 2 * 3

The output of this equation is 8.

As with standard arithmetic, parentheses can be added to modify the sequence of

operations, as shown below.

(2 + 2) * 3

The output of this equation is 12.

Variable Assignment

In computer programming, the role of a variable is to store a data value in the

computer’s memory for later use. This enables earlier code to be referenced and

manipulated by the Python interpreter calling that variable name. You can select

any name for the variable granted it fits with the following rules:

• It contains only alpha-numeric characters and underscores (A-Z, 0-9, _)

• It starts with a letter or underscore and not a number

• It does not imitate a Python keyword such as “print” or “return”

In addition, variable names are case-sensitive, such that dataframe and Dataframe

are considered two separate variables.

Variables are assigned in Python using the = operator.

dataset = 8

Python, though, does not support blank spaces between variable keywords and an

underscore must be used to link variable keywords.

my_dataset = 8

The stored value (8) can now be referenced by calling the variable name my_dataset.

Variables also have a “variable” nature, in that we can reassign the variable to a

different value, such as:

my_dataset = 8 + 8

The value of the my_dataset is now 16.

It’s important to note that the equals operator in Python does not serve the same

function as equals in mathematics. In Python, the equals operator assigns variables

141

but does not follow mathematical logic. If you wish to solve a mathematical

equation in Python you can simply run the code without adding an equals operator.

2 + 2

Python will return 4 in this case.

If you want to confirm whether a mathematical relationship in Python is True or

False, you can use ==.

2 + 2 == 4

Python will return True in this case.

The Print Function

The print() function is used to print a message within its parentheses and is one

of the most used functions in Python. Given its uncomplicated utility—returning

exactly what you want printed—it might not seem an important programming

function or even necessary. But this is not true.

Firstly, print is useful for debugging (finding and fixing code errors). After adjusting

a variable, for example, you can check the current value using the print function.

my_dataset = 8

my_dataset = 8 + 8

print(my_dataset)

Output: 16

Another common use case is to print non-processible information as a string. This

means that the statement/string enclosed in the parentheses is directly printed and

doesn’t interact with other elements of the code. This feature is useful for adding

context and clarity to your code by annotating aspects of the code—especially as

code comments (#) don’t show as an output.

Input: print ("Training Set Mean Absolute Error: %.2f" % mae_train)

Output: Training Set Mean Absolute Error: 27834.12

This print statement, for example, informs the end-user of what was processed by

the Python interpreter to deliver that result. Without print(“Test Set Mean Absolute

Error:”), all we’d see is unlabeled numbers after the code has been executed.

Please note the string inside the parentheses must be wrapped with double-quote

marks “ ” or single quote marks ‘ ’. A mixture of single and double-quote marks is

142

invalid. The print function automatically removes the quote marks after you run

the code. If you wish to include quote marks in the output, you can add single

quote marks inside double-quote marks as shown here:

Input: print("'Test Set Mean Absolute Error'")

Output: 'Test Set Mean Absolute Error'

Input: print("What’s your name?")

Output: What’s your name?

Indexing

Indexing is a method of selecting a single element from inside a data type, such as

a list or string. Each element in a data type is numerically indexed beginning at 0,

and elements can be indexed by calling the index number inside square brackets.

Example 1

my_string = "hello_world"

my_string[1]

Indexing returns the value e in this example.

Example 2

my_list = [10, 20 , 30 , 40]

my_list[0]

Indexing returns the value 10 in this example.

Slicing

Rather than pull a single element from a collection of data, you can use slicing to

grab a customized subsection of elements using a colon (:).

Example 1

my_list = [10, 20, 30, 40]

143

my_list[:3]

Slicing, here, goes up to but does not include the element at index position 3,

thereby returning the values 10, 20, and 30.

Example 2

my_list = [10, 20, 30, 40]

my_list[1:3]

Slicing, here, starts at 1 and goes up to but does not include the element at index

position 3, thereby returning the values 20 and 30 in this example.

144

APPENDIX 2: PRINT COLUMNS

A code shortcut for printing columns with the necessary formatting to use as input

for model prediction, as discussed in Chapter 10, can be generated using the

following code.

cols = df.columns.tolist()

print("new_project = [")

for item in cols:

print("\t0, "+"#"+item)

print("]")

Run the temporary code in Jupyter Notebook.

Now copy and paste the code output you have generated back into the notebook

for the next section of your code. Also note that this temporary code prints all

variables (including X and y variables) and you may need to remove the dependent

variable (y) from the code, which in this case is State_successful.

145

OTHER BOOKS BY THE AUTHOR

AI for Absolute Beginners

Published in 2023, this book is the complete guide for beginners to AI, including
easy-to-follow breakdowns of natural language processing, generative AI, deep

learning, recommender systems, and computer vision.

Generative AI Art for Beginners

Master the use of text prompts to generate stunning AI art in seconds.

ChatGPT Prompts Book

Maximize your results with ChatGPT using a series of proven text prompt strategies.

Machine Learning for Absolute Beginners
Learn the fundamentals of machine learning, explained in plain English.

Machine Learning: Make Your Own Recommender System
Learn how to make your own machine learning recommender system in an

afternoon using Python.

Data Analytics for Absolute Beginners

Make better decisions using every variable with this deconstructed introduction to
data analytics.

Statistics for Absolute Beginners
Master the fundamentals of inferential and descriptive statistics with a mix of

practical demonstrations, visual examples, historical origins, and plain English
explanations.

Python for Absolute Beginners
Master the essentials of Python from scratch with beginner-friendly guidance.

146

	FOREWORD
	DATASETS USED IN THIS BOOK
	INTRODUCTION
	DEVELOPMENT ENVIRONMENT
	MACHINE LEARNING LIBRARIES
	EXPLORATORY DATA ANALYSIS
	DATA SCRUBBING
	PRE-MODEL ALGORITHMS
	SPLIT VALIDATION
	LOGISTIC REGRESSION
	SUPPORT VECTOR MACHINES
	k-NEAREST NEIGHBORS
	TREE-BASED METHODS
	NEXT STEPS
	APPENDIX 1: INTRODUCTION TO PYTHON
	APPENDIX 2: PRINT COLUMNS
	Blank Page
	Blank Page

