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 To all the developers who just wanted to get the code working without reading all 
the math stuff first.
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Introduction

Well, times have changed since writing the first edition of this book. Between 
2014 and now there is more emphasis on data and what it can do for us but also 
how that power can be used against us. Hardware has gotten better, processing 
has gotten much faster, and the ability to classify, predict, and decide based on 
our data is extraordinary. At the same time, we’ve become much more aware 
of the risks of how data is used, the biases that can happen, and that a lot of 
black-box models don’t always get things right.

Still, it’s an exciting time to be involved. We still create more data than we can 
sensibly process. New ideas involving machine learning are being presented 
daily. The appetite for learning has grown rapidly, too.

Data mining and machine learning have been around a number of years 
already. When you look closely, the machine learning algorithms that are being 
applied aren’t any different from what they were years ago; what is new is how 
they are applied at scale. When you look at the number of organizations that 
are creating the data, it’s really, in my opinion, a minority. Google, Facebook, 
Twitter, Netflix, and a small handful of others are the ones getting the majority 
of mentions in the headlines with a mixture of algorithmic learning and tools 
that enable them to scale. So, the real question you should ask is, “How does 
all this apply to the rest of us?”

Data with large scale, near-instant processing, has come to the fore. The 
emphasis has moved from batch systems like Hadoop to more streaming-based 
systems like Kafka. I admit there will be times in this book when I look at the 
Big Data side of machine learning—it’s a subject I can’t ignore—but it’s only a 
small factor in the overall picture of how to get insight from the available data. 
It is important to remember that I am talking about tools, and the key is figuring 
out which tools are right for the job you are trying to complete.
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Aims of This Book

This book is about machine learning and not about Big Data. It’s about the var-
ious techniques used to gain insight from your data. By the end of the book, 
you will have seen how various methods of machine learning work, and you 
will also have had some practical explanations on how the code is put together, 
leaving you with a good idea of how you could apply the right machine learning 
techniques to your own problems.

There’s no right or wrong way to use this book. You can start at the beginning 
and work your way through, or you can just dip in and out of the parts you 
need to know at the time you need to know them.

“Hands-On” Means Hands-On

Many books on the subject of machine learning that I’ve read in the past have 
been very heavy on theory. That’s not a bad thing. If you’re looking for in-depth 
theory with really complex-looking equations, I applaud your rigor. Me? I’m 
more hands-on with my approach to learning and to projects. My philosophy 
is quite simple.

■■ Start with a question in mind.

■■ Find the theory I need to learn.

■■ Find lots of examples I can learn from.

■■ Put them to work in my own projects.

As a software developer, I like to see lots of examples. As a teacher, I like to 
get as much hands-on development time as possible but also get the message 
across to students as simply as possible. There’s something about fingers on keys, 
coding away on your IDE, and getting things to work that’s rather appealing, 
and it’s something that I want to convey in the book.

Everyone has his or her own learning styles. I believe this book covers the 
most common methods, so everybody will benefit.

“What About the Math?”

Like arguing that your favorite football team is better than another or trying to 
figure out whether Jimmy Page is a better guitarist than Jeff Beck (I prefer Beck), 
there are some things that will be debated forever and a day. One such debate is 
how much math you need to know before you can start doing machine learning.
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Doing machine learning and learning the theory of machine learning are 
two very different subjects. To learn the theory, a good grounding in math 
is required. This book discusses a hands-on approach to machine learning. 
With the number of machine learning tools available for developers now, the 
emphasis is not so much on how these tools work but on how you can make 
these tools work for you. The hard work has been done, and those who did it 
deserve credit and applause.

“But You Need a PhD!”
No, you don’t!

The long-running debate rages on about the level of knowledge you need 
before you can start doing analysis on data or claim that you are a data scien-
tist. I believe that if you’d like to take a few years completing a degree and then 
pursuing the likes of a master’s degree and then a PhD, you should feel free to 
go that route. I’m a little more pragmatic about things and like to get reading 
and start doing.

Academia is great; and with the large number of online courses, papers, 
websites, and books on the subject of math, statistics, and data mining, there’s 
enough to keep the most eager of minds occupied. I dip in and out of these 
resources a lot, and it’s definitely a good way to keep up-to-date and investigate 
what’s emerging.

For me, though, there’s nothing like getting my hands dirty, grabbing some 
data, trying out some methods, and looking at the results. If you need to brush 
up on linear regression theory, then let me reassure you now, there’s plenty out 
there to read, and I’ll also cover that in this book.

Lastly, can one person ever be a data scientist? I think it’s more likely for a 
team of people to bring the various skills needed for machine learning into an 
organization. I talk about this more in Chapter 2.

So, while others in the office are arguing whether to bring some PhD brains 
in on a project, you can be coding up a decision tree to see whether it’s viable.

Over the last few years the job title data scientist has been joined by other 
titles like data engineer and machine learning engineer. All are valid and all 
focus on aspects of the data science pipeline. They all have their place.

What Will You Have Learned by the End?

Assuming that you’re reading the book from start to finish, you’ll learn the 
common uses for machine learning, different methods of machine learning, 
and how to apply real-time and batch processing.
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There’s also nothing wrong with referencing a specific section that you want 
to learn. The chapters and examples were created in such a way that there’s no 
dependency to learn one chapter over another.

The aim is to cover the common machine learning concepts in a practical 
manner. Using the existing free tools and libraries that are available to you, 
there’s little stopping you from starting to gain insight from the existing data 
that you have.

Balancing Theory and Hands-on Learning

There are many books on machine learning and data mining available, and 
finding the balance of theory and practical examples is hard. When planning 
this book, I stressed the importance of practical and easy-to-use examples, 
providing step-by-step instructions, so you can see how things are put together.

I’m not saying that the theory is light, because it’s not. Understanding what 
you want to learn or, more importantly, how you want to learn will determine 
how you read this book.

You can think of the book split into three distinct sections. The first section 
covers the question, “What is machine learning?” and concentrates on planning 
for projects, data acquisition, and cleaning. For those wanting some refresher 
on the math and stats side of things, I’ve included a new chapter; it also covers 
linear regression and standard deviation.

The next section takes a closer look at some of the building-block algo-
rithms used in machine learning projects. Clustering, decision trees, support 
vector machine, association rules learning, and neural networks provide both 
a background to how they work and code examples for you to work with. It’s 
important to get the hands-on nature early on.

Lastly, I focus on the real-world tools used in enterprise; these are tools like 
Spark, Kafka, and R. Knowing how these frameworks and tools are put together 
will give you a grounding to know what to use when.

Source Code for This Book

All the code that is explained in the chapters of the book has been saved on 
a GitHub repository for you to download and try. For this edition, I’ve also 
included the Maven dependency file so you can easily build the project you 
are working on.

The address for the repository is https://github.com/jasebell/mlbook2nd­
edition. You can also find it on the Wiley website at www.wiley.com/go/ 
machinelearning2e.

https://github.com/jasebell/mlbook2ndedition
https://github.com/jasebell/mlbook2ndedition
http://www.wiley.com/go/machinelearning2e
http://www.wiley.com/go/machinelearning2e
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The examples are in either Java, Clojure, or R. If you want to extend your 
knowledge into other languages, then a search around the GitHub site might 
lead you to some interesting examples.

Code has been separated by chapter; there’s a folder in the repository for 
each of the chapters, and each has its own build file. The data is also within the 
repository in the data directory and has been split by each chapter.

Using Git

Git is a version control system that is widely used in business and the open 
source software community. If you are working in teams, it becomes useful 
because you can create branches of the codebase to work on then merge the 
changes afterward.

The uses for Git in this book are limited, but you need it for “cloning” the 
repository of examples if you want to use them.

To clone the examples for this book, use the following commands:

$mkdir mlbookexamples
$cd mlbookexamples
$git clone https://github.com/jasebell/mlbook2ndedition.git

You see the progress of the cloning, and when it’s finished, you’ll be able to 
change directories to the newly downloaded folder and look at the code samples.

https://github.com/jasebell/mlbook2ndedition.git
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Let’s start at the beginning, looking at what machine learning actually is, its 
history, and where it is used in industry. This chapter also describes some of 
the software used throughout the book so you can get everything installed and 
be ready to get working on the practical things.

History of Machine Learning

So, what is the definition of machine learning? Over the last six decades, several 
pioneers of the industry have worked to steer us in the right direction.

Alan Turing
In his 1950 paper, “Computing Machinery and Intelligence,” Alan Turing asked, 
“Can machines think?” (For the full paper, see the link.)

www.csee.umbc.edu/courses/471/papers/turing.pdf

The paper describes the “Imitation Game,” which involves three partici-
pants—a human acting as a judge, another human, and a computer that is 
attempting to convince the judge that it is human. The judge would type into a 
terminal program to “talk” to the other two participants. Both the human and the  

What Is Machine Learning?
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computer would respond, and the judge would decide which response came 
from the computer. If the judge couldn’t consistently tell the difference between 
the human and computer responses, then the computer won the game.

The test continues today in the form of the Loebner Prize, an annual compe-
tition in artificial intelligence. The aim is simple enough: convince the judges 
that they are chatting to a human instead of a computer chat bot program.

Arthur Samuel
In 1959, Arthur Samuel defined machine learning as a field of study that “gives 
computers the ability to learn without being explicitly programmed.” Samuel 
is credited with creating one of the first self-learning computer programs with 
his work at IBM. He focused on games as a way of getting the computer to 
learn things.

The game of choice for Samuel was checkers because it is a simple game but 
requires strategy from which the program could learn. With the use of alpha-
beta evaluation pruning (eliminating nodes that do not need evaluating) and 
minimax strategies (minimizing the loss for the worst case), the program would 
discount moves and thus improve costly memory performance of the program.

Samuel is widely known for his work in artificial intelligence, but he was also 
noted for being one of the first programmers to use hash tables, and he certainly 
made a big impact at IBM.

Tom M. Mitchell
Tom M. Mitchell is the chair of machine learning at Carnegie Mellon University. 
As author of the book Machine Learning (McGraw-Hill, 1997), his definition of 
machine learning is often quoted.

A computer program is said to learn from experience E with respect to 
some class of tasks T and performance measure P, if its performance at 
tasks in T, as measured by P, improves with the experience E.

The important thing here is that you now have a set of objects to define 
machine learning.

■■ Task (T), either one or more

■■ Experience (E)

■■ Performance (P)

So, with a computer running a set of tasks, the experience should be leading 
to performance increases.
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Summary Definition
Machine learning is a branch of artificial intelligence. Using computing, we design 
systems that can learn from data in a manner of being trained. The systems 
might learn and improve with experience and, with time, refine a model that 
can be used to predict outcomes of questions based on the previous learning.

Algorithm Types for Machine Learning

There are a number of different algorithms that you can employ in machine 
learning. The required output is what decides which to use. As you work through 
the chapters, you’ll see the different algorithm types being put to work. Machine 
learning algorithms characteristically fall into one of two learning types: super-
vised or unsupervised learning.

Supervised Learning
Supervised learning refers to working with a set of labeled training data. For every 
example in the training data you have an input object and an output object. 
An example would be classifying Twitter data. (Twitter data is used a lot in the 
later chapters of the book.) Assume you have the following data from Twitter; 
these would be your input data objects:

Really loving the new St Vincent album! 
#fashion I'm selling my Louboutins! Who's interested? #louboutins
I've got my Kafka cluster working on a load of data. #data

For your supervised learning classifier to know the outcome result of each 
tweet, you have to manually enter the answers; for clarity, I’ve added the result-
ing output object at the start of each line.

music    Really loving the new St Vincent album! 
clothing    #fashion I'm selling my Louboutins! Who's interested? 
#louboutins
bigdata    I've got my Kafka cluster working on a load of data. #data

Obviously, for the classifier to make any sense of the data when run properly, 
you have to work manually on a lot more input data. What you have, though, is 
a training set that can be used for the later classification of data.

There are issues with supervised learning that must be taken into account. 
The bias-variance dilemma is one of them: how the machine learning model 
performs accurately using different training sets. High-bias models contain 
restricted learning sets, whereas high-variance models learn with complexity 
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against noisy training data. There’s a trade-off between the two models. The 
key is where to settle with the trade-off and when to apply which type of model.

Unsupervised Learning
On the opposite end of this spectrum is unsupervised learning, where you let the 
algorithm find a hidden pattern in a load of data. With unsupervised learning 
there is no right or wrong answer; it’s just a case of running the machine learning 
algorithm and seeing what patterns and outcomes occur.

Unsupervised learning might be more a case of data mining than of actual 
learning. If you’re looking at clustering data, then there’s a good chance you’re 
going to spend a lot of time with unsupervised learning in comparison to 
something like artificial neural networks, which are trained prior to being used.

The Human Touch

Outcomes will change, data will change, and requirements will change. Machine 
learning cannot be seen as a write-it-once solution to problems. Also, it requires 
human hands and intuition to write these algorithms. Remember that Arthur 
Samuel’s checkers program basically improved on what the human had already 
taught it. The computer needed a human to get it started, and then it built on 
that basic knowledge. It’s important that you remember that.

Throughout this book I talk about the importance of knowing what question 
you are trying to answer. The question is the cornerstone of any data project, 
and it starts with having open discussions and planning. (Read more about this 
in Chapter 2, “Planning for Machine Learning.”)

It’s only in rare circumstances that you can throw data at a machine learning 
routine and have it start to provide insight immediately.

Uses for Machine Learning

So, what can you do with machine learning? Quite a lot, really. This section breaks 
things down and describes how machine learning is being used at the moment.

Software
Machine learning is widely used in software to enable an improved experience 
with the user. With some packages, the software is learning about the user’s 
behavior after its first use. After the software has been in use for a period of 
time, it begins to predict what the user wants to do.
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Spam Detection

For all the junk mail that gets caught, there’s a good chance a Bayesian classification 
filter is doing the work to catch it. From the early days of SpamAssassin to 
Google’s work in Google Mail, there’s been some form of learning to figure out 
whether a message is good or bad.

Spam detection is one of the classic uses of machine learning, and over time 
the algorithms have gotten better and better. Think about the e-mail program 
that you use. When it sees a message it thinks is junk, it asks you to confirm 
whether it is junk or isn’t. If you decide that the message is spam, the system 
learns from that message and from the experience. Future messages will, ide-
ally, be treated correctly from then on.

Voice Recognition

Apple’s Siri service that is on many iOS devices is another example of software 
machine learning. You ask Siri a question, and it works out what you want to 
do. The result might be sending a tweet or a text message, or it could be setting 
a calendar appointment. If Siri can’t work out what you’re asking of it, it per-
forms a Google search on the phrase you said.

Siri is an impressive service that uses a device and cloud-based statistical 
model to analyze your phrase and the order of the words in it to come up with 
a resulting action for the device to perform.

There’s been a huge adoption of voice-activated assistants in the home like 
Amazon’s Alexa and the Google Home device that take in voice commands and 
use machine learning to decide what the user is trying to do and come back 
with a response that is helpful.

Stock Trading
There are lots of platforms that aim to help users make better stock trades. 
These platforms have to do a large amount of analysis and computation to make 
recommendations. From a machine learning perspective, decisions are being 
made for you on whether to buy or sell a stock at the current price. It takes into 
account the historical opening and closing prices and the buy and sell volumes 
of that stock.

With four pieces of information (the low and high prices plus the daily open-
ing and closing prices) a machine learning algorithm can learn trends for the 
stock. Apply this with all stocks in your portfolio, and you have a system to aid 
you in the decision whether to buy or sell.

Bitcoins are a good example of algorithmic trading at work; the virtual coins 
are bought and sold based on the price the market is willing to pay and the 
price at which existing coin owners are willing to sell.
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The media is interested in the high-speed variety of algorithmic trading. The 
ability to perform many thousands of trades each second based on algorithmic 
prediction is a very compelling story. A huge amount of money is poured into 
these systems and how close they can get the machinery to the main stock 
trading exchanges. Milliseconds of network latency can cost the trading house 
millions in trades if they aren’t placed in time.

About 70 percent of trades are performed by machine and not by humans on 
the trading floor. This is all very well when things are going fine, but when a 
problem occurs, it can be minutes before the fault is noticed, by which time many 
trades have happened. The flash crash in May 2010, when the Dow Jones industrial 
average dove 600 points, is a good example of when this problem occurred.

Robotics
Using machine learning, robots can acquire skills or learn to adapt to the envi-
ronment in which they are working. Robots can acquire skills such as object 
placement, grasping objects, and locomotion skills through either automated 
learning or learning via human intervention.

With the increasing number of sensors within robotics, other algorithms 
could be employed outside of the robot for further analysis.

We can’t talk about robotics without mentioning the self-driving car. Huge 
strides have been made since the first edition of this book. Tesla has the autopilot 
feature enabling the car to self-drive while the driver is still close by with hands 
near the wheel. It’s still in the early days, and there is the obvious discussion 
about job displacement and the resulting new job creation.

Medicine and Healthcare
The race is on for machine learning to be used in healthcare analytics. A number 
of startups are looking at the advantages of using machine learning with Big 
Data to provide healthcare professionals with better-informed data to enable 
them to make better decisions.

IBM’s famed Watson supercomputer, once used to win the television quiz 
program Jeopardy against two human contestants, is being used to help doc-
tors. Using Watson as a service on the cloud, doctors can access learning on 
millions of pages of medical research and hundreds of thousands of pieces of 
information on medical evidence.

With the number of consumers using smartphones and the related devices 
for collating a range of health information—such as weight, heart rate, pulse, 
pedometers, blood pressure, and even blood glucose levels—it’s now possible 
to track and trace user health regularly and see patterns in dates and times. 
Machine learning systems can recommend healthier alternatives to the user 
via the device.
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Image processing has gotten more powerful, and it’s becoming easier to 
diagnose via X-ray and MRI scans to detect various cancers and other disease 
pointers.

Although it’s easy enough to analyze data, protecting the privacy of user 
health data is another story. Obviously, some users are more concerned about 
how their data is used, especially in the case of it being sold to third-party com-
panies. The increased volume of analytics in healthcare and medicine is new, 
but the privacy debate will be the deciding factor about how the algorithms 
will ultimately be used.

Advertising
For as long as products have been manufactured and services have been offered, 
companies have been trying to influence people to buy their products. Since 
1995, the Internet has given marketers the chance to advertise directly to our 
screens without needing television or large print campaigns. Remember the 
thought of cookies being on our computers with the potential to track us? The 
race to disable cookies from browsers and control who saw our habits was big 
news at the time.

Log file analysis is another tactic that advertisers use to see the things that 
interest us. They are able to cluster results and segment user groups according 
to who may be interested in specific types of products. Couple that with mobile 
location awareness and you have highly targeted advertisements sent directly 
to you.

There was a time when this type of advertising was considered a huge inva-
sion of privacy, but we’ve gradually gotten use to the idea, and some people 
are even happy to “check in” at a location and announce their arrival. If you’re 
thinking your friends are the only ones watching, think again. In fact, plenty 
of companies are learning from your activity. With some learning and analysis, 
advertisers can do a good job of figuring out where you’ll be on a given day and 
attempt to push offers your way.

Retail and E-commerce
Machine learning is heavily used in retail, both in e-commerce and in bricks-and-
mortar retail. At a high level, the obvious use case is the loyalty card. Retailers 
that issue loyalty cards often struggle to make sense of the data that’s coming 
back to them. Because I worked with one company that analyzes this data, I 
know the pain that supermarkets go through to get insight.

UK supermarket giant Tesco is the leader when it comes to customer loyalty 
programs. The Tesco Clubcard is used heavily by customers and gives Tesco a 
great view of customer purchasing decisions. Data is collected from the point of 
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sale (POS) and fed back to a data warehouse. In the early days of the Clubcard, 
the data couldn’t be mined fast enough; there was just too much. As processing 
methods improved over the years, Tesco and marketing company Dunn Humby 
have developed a good strategy for understanding customer behavior and 
shopping habits and encouraging customers to try products similar to their 
usual choices.

An American equivalent is Target, which runs a similar sort of program that 
tracks every customer engagement with the brand, including mailings, website 
visits, and even in-store visits. From the data warehouse, Target can fine-tune 
how to get the right communication method to the right customers in order for 
them to react to the brand. Target learned that not every customer wants an 
e-mail or an SMS message; some still prefer receiving mail via the postal service.

The uses for machine learning in retail are obvious: Mining baskets and 
segmenting users are key processes for communicating the right message to 
the customer. On the other hand, it can be too accurate and cause headaches. 
Target’s “baby club” story, which was widely cited in the press as a huge privacy 
danger in Big Data, showed us that machine learning can easily determine that 
we’re creatures of habit, and when those habits change, they will get noticed.

TARGET’S PRIVACY ISSUE

Target’s statistician, Andrew Pole, analyzed basket data to see whether he could 
determine when a customer was pregnant. A select number of products started to 
show up in the analysis, and Target developed a pregnancy prediction score. Coupons 
were sent to customers who were predicted to be pregnant according to the newly 
mined score. That was all very well until the father of a teenage girl contacted his local 
store to complain about the baby coupons that were being sent to his daughter. It 
turned out that Target predicted the girl’s pregnancy before she had told her father 
that she was pregnant.

For all the positive uses of machine learning, there are some urban myths, 
too. For example, you might have heard the “beer and diapers” story associ-
ated with Walmart and other large retailers. The idea is that the sales of beer 
and diapers both increase on Fridays, suggesting that mothers were going out 
and dads would stock up on beer for themselves and diapers for the little ones 
they were looking after. It turned out to be a myth, but this still doesn’t stop 
marketing companies from wheeling out the story (and believing it’s true) to 
organizations who want to learn from their data.

Another myth is that the heavy-metal band Iron Maiden would mine Bit-
Torrent data to figure out which countries were illegally downloading their 
songs and then fly to those locations to play concerts. That story got the mar-
keters and media very excited about Big Data and machine learning, but sadly 
it’s untrue. That’s not to say that these things can’t happen someday; they just 
haven’t happened yet.
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Gaming Analytics
We’ve already established that checkers is a good candidate for machine learning. 
Do you remember those old chess computer games with the real plastic pieces? 
The human player made a move, and then the computer made a move. Well, 
that’s a case of machine learning planning algorithms in action. Fast-forward a 
few decades (the chess computer still feels like yesterday to me) to today when 
the console market is pumping out analytics data every time you play your 
favorite game.

Microsoft has spent time studying the data from Halo 3 to see how players 
perform on certain levels and also to figure out when players are using cheats. 
Fixes have been created based on the analysis of data coming back from the 
consoles. Other games producers like Blizzard (Overwatch), Epic Games (Fort-
nite), and Respawn Entertainment (Apex Legends) use large matrix calculations 
to ensure that players are suitably matched before a game can start.

Microsoft also worked on Drivatar, which is incorporated into the driving 
game Forza Motorsport. When you first play the game, it knows nothing about 
your driving style. Over a period of practice laps the system learns your style, 
consistency, exit speeds on corners, and positioning on the track. The sampling 
happens over three laps, which is enough time to see how your profile behaves. 
As time progresses, the system continues to learn from your driving patterns. 
After you’ve let the game learn your driving style, the game opens up new levels 
and lets you compete with other drivers and even your friends.

Even within story-based games like The Last of Us by Naughty Dog, characters 
within gameplay scenes are aware of their surroundings and other characters 
within the gameplay. For example, if a bottle is thrown and smashes, enemies, 
friends, and infected alike would be alerted and their next moves decided by 
in-play artificial intelligence.

If you have children, you might have seen the likes of Nintendogs (or cats), a 
game in which a person is tasked with looking after an on-screen pet. (Think 
Tamagotchi, but on a larger scale.) Algorithms can work out when the pet needs 
to play, how to react to the owner, and how hungry the pet is.

It’s still the early days of game companies putting machine learning into 
infrastructure to make the games better. With more and more games appearing 
on small devices, such as those with the iOS and Android platforms, the real 
learning is in how to make players come back and play more and more. Anal-
ysis can be performed about the “stickiness” of the game—do players return 
to play again, or do they drop off over a period of time in favor of something 
else? Ultimately there’s a trade-off between the level of machine learning and 
gaming performance, especially in smaller devices. Higher levels of machine 
learning require more memory within the device. Sometimes you have to factor 
in the limit of what you can learn from within the game.
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The Internet of Things
Connected devices that can collate all manner of data are sprouting up all over 
the place. Device-to-device communication is hardly new, but it hadn’t really 
hit the public minds until fairly recently. With the low cost of manufacture and 
distribution, now devices are being used in the home just as much as they are 
in industry.

Uses include home automation, shopping, and smart meters for measuring 
energy consumption. These things are in their infancy, and there’s still a lot of 
concern about the security aspects of these devices. In the same way mobile 
device location is a concern, companies can pinpoint devices by their unique 
IDs and eventually associate them to a user.

On the plus side, the data is so rich that there’s plenty of opportunity to put 
machine learning in the heart of the data and learn from the devices’ output. 
This may be as simple as monitoring a house to sense ambient temperature—for 
example, is it too hot or too cold?

Languages for Machine Learning

This book uses the Java and Clojure programming languages for the working 
examples. The reasons are simple: Java is a widely used language, especially 
in the enterprise, and the libraries are well supported. Clojure gives better data 
handling abilities thanks to its functional nature: data goes into a function, and 
the result is output as data. Java isn’t the only language to be used for machine 
learning—far from it. If you’re working for an existing organization, you may 
be restricted to the languages used within it.

With most languages, there is a lot of crossover in functionality. With the lan-
guages that access the Java Virtual Machine (JVM) there’s a good chance that 
you’ll be accessing Java-based libraries. There’s no such thing as one language 
being “better” than another. It’s a case of picking the right tool for the job. The 
following sections describe some of the other languages that you can use for 
machine learning.

Python
The Python language has increased in usage because it’s easy to learn and easy 
to read. It also has some good machine learning libraries, such as scikit-learn, 
PyML, and pybrain. Jython was developed as a Python interpreter for the JVM, 
which may be worth investigating.

If you are looking at the Tensorflow libraries, then Python is an obvious choice, 
and while there are Java extensions available, I’d recommend using Python in 
the first instance.
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R
R is an open source statistical programming language. The syntax is not the eas-
iest to learn, but I do encourage you to take a look at it. It also has a large number 
of machine learning packages and visualization tools. The RJava project allows 
Java programmers to access R functions from Java code. For a basic introduction 
to R, take a look at Chapter 14, “Machine Learning with R.”

Matlab
The Matlab language is used widely within academia for technical computing 
and algorithm creation. Like R, it also has a facility for plotting visualizations 
and graphs.

Scala
A new breed of languages is emerging that takes advantage of Java’s runtime 
environment, which potentially increases performance, based on the threading 
architecture of the platform. Scala (which is an acronym for Scalable Language) 
is one of these, and it is being widely used by a number of startups.

There are machine learning libraries, such as ScalaNLP, but Scala can access 
Java JAR files, and it can also implement the likes of Classifier4J and Mahout. It’s 
also core to the Apache Spark project, which is covered in Chapter 13, “Apache 
Spark”

Ruby
Many people know about the Ruby language by association with the Ruby on 
Rails web development framework, but it’s also used as a stand-alone language. 
The best way to integrate machine learning frameworks is to look at JRuby, 
which is a JVM-based alternative that enables you to access the Java machine 
learning libraries.

Software Used in This Book

The hands-on elements in the book use a number of programs and packages to 
get the algorithms and machine learning working.

To keep things easy, I strongly advise that you create a directory on your 
system to install all these packages. I’m going to call mine mlbook.

$mkdir ~/mlbook
$cd ~/mlbook
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Checking the Java Version
As the programs used in the book rely on Java, you need to quickly check the 
version of Java that you’re using. The programs require Java 1.8, or newer. To 
check your version, open a terminal window and run the following:

$ java -version
java version "1.7.0_40"
Java(TM) SE Runtime Environment (build 1.7.0_40-b43)
Java HotSpot(TM) 64-Bit Server VM (build 24.0-b56, mixed mode)

If you are running a version older than 1.6, then you need to upgrade your 
Java version. You can download the current version from

www.oracle.com/technetwork/java/javase/downloads/index.html

Weka Toolkit
Weka (Waikato Environment for Knowledge Acquisition) is a machine learning 
and data mining toolkit written in Java by the University of Waikato in New 
Zealand. It provides a suite of tools for learning and visualization via the sup-
plied workbench program or the command line. Weka also enables you to 
retrieve data from existing data sources that have a JDBC driver. With Weka 
you can do the following:

■■ Preprocessing data

■■ Clustering

■■ Classification

■■ Regression

■■ Association rules

The Weka toolkit is widely used and now supports the Big Data aspects by 
interfacing with Hadoop for clustered data mining.

You can download Weka from the University of Waikato website at

www.cs.waikato.ac.nz/ml/weka/downloading.html

There are versions of Weka available for Linux, macOS, and Windows. To 
install Weka on Linux, you just need to unzip the supplied file to a directory. 
On macOS and Windows, an installer program is supplied that will unzip all 
the required files for you.

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.cs.waikato.ac.nz/ml/weka/downloading.html
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DeepLearning4J
For the more involved neural networks, I’ll be using the DeepLearning4J library. 
As it is written in Java, it scales well, but even better is that it can use Spark for 
some of its preprocessing. This means it can scale with Big Data where other 
languages might struggle.

In this book I’m using the required libraries within the Maven dependency 
file (pom.xml), but if you want to read more about what DeepLearning4J can do, 
then please visit https://deeplearning4j.org.

Kafka
In the first edition of the book I made the decision to use SpringXD as the data 
ingestion engine. Since then, Kafka has proven itself to be a market leader when 
it comes to streaming data. There are two community editions that you can 
download; there’s the Apache Kafka distribution and the community edition 
from Confluent, which is the commercial arm of Kafka.

For the examples in this book and especially in Chapter 12, “Machine Learning 
Streaming with Kafka,” where I use Kafka for self-training machine learning 
applications, I’ll be using the Apache Kafka distribution.

Spark and Hadoop
Customers using Hadoop are still out there, but they are beginning to be treated 
in the same way that legacy databases are. Spark made inroads within the Big 
Data community, and it’s becoming the de facto processing framework for data 
at scale.

In this book, I’ll be using version 2.4.4 against the Hadoop 2.7 binaries. For 
more information on Spark, please visit https://spark.apache.org.

Text Editors and IDEs
Some discussions seem to spark furious debate in certain circles—for example, 
favorite actor/actress, best football team, and best integrated development envi-
ronment (IDE).

I now use the IntelliJ IDEA Java development platform for my Java-based 
development. For Clojure development, I use Emacs with a host of packages 
installed. For a look at the Emacs packages, see the Home Light Sabre Kit on 
my GitHub account.

https://github.com/jasebell/home-lightsaber-kit

It’s a fork from Bruce Durling’s original project.

https://deeplearning4j.org
https://spark.apache.org
https://github.com/jasebell/home-lightsaber-kit
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Data Repositories

One question that comes up again and again in my classes is “Where can I get 
data?” There are a few answers to this question, but the best answer depends 
on what you are trying to learn.

Data comes in all shapes and sizes, which is something discussed in the next 
chapter. I strongly suggest you take some time to hunt around the Internet for 
different datasets and look through them. You’ll get a feel for how these things 
are put together. Sometimes you’ll find comma-separated variable (CSV) data, 
or you might find JSON or XML data.

Remember, some of the best learning comes from playing with the data. Hav-
ing a question in mind that you are trying to answer with the data is a good 
start (and something you will see me refer to a number of times in this book), 
but learning comes from experimentation and improvement on results. So, I’m 
all for playing around with the data first and seeing what works. I hail from a 
pragmatic background when it comes to development and learning. Although 
the majority of publications about machine learning have come from people with 
academic backgrounds—and I fully endorse and support them—we shouldn’t 
discourage learning by doing.

The following sections describe some places where you can get plenty of data 
with which to play.

UC Irvine Machine Learning Repository
This machine learning repository consists of more than 270 datasets. Included 
in these sets are notes on the variable name, instances, and tasks the data would 
be associated with. You can find this repository at http://archive.ics.uci.edu 
/ml/datasets.

Kaggle
The competitions that Kaggle runs have gained a lot of interest over the last 
couple of years. The 101 section on the site offers some datasets with which to 
experiment. You can find them at www.kaggle.com/competitions.

Summary

This chapter looked at what machine learning is, how it can be applied to dif-
ferent areas of business, and what tools you need to follow along with the 
remainder of the book.

The next chapter introduces you to planning for machine learning. It covers 
data science teams, cleaning, and different methods of processing data.

http://archive.ics.uci.edu/ml/datasets
http://archive.ics.uci.edu/ml/datasets
http://www.kaggle.com/competitions
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This chapter looks at planning your machine learning projects, storage types, 
processing options, and data input. The chapter also covers data quality and 
methods to validate and clean data before you do any analysis.

The Machine Learning Cycle

A machine learning project is basically a cycle of actions that need to be per-
formed (see Figure 2.1).

Planning for Machine Learning

Acquisition

Prepare

Process

Report
• Present the results

• Run machine tools

• Data cleaning and quality

• Collate the data

Figure 2.1:  The machine learning process



16	 Chapter 2 ■ Planning for Machine Learning

You can acquire data from many sources; it might be data that’s held by your 
organization or open data from the Internet. There might be one dataset, or 
there could be 10 or more.

You must come to accept that data will need to be cleaned and checked for 
quality before any processing can take place. These processes occur during the 
prepare phase.

The processing phase is where the work gets done. The machine learning 
routines that you have created perform this phase.

Finally, the results are presented. Reporting can happen in a variety of ways, 
such as reinvesting the data into a data store or reporting the results as a spread-
sheet or report.

It All Starts with a Question

There seems to be a misconception that machine learning, like Big Data, is 
a case of throwing enough data at the problem that the answers magically 
appear. As much as I’d like to say this happens all the time, it doesn’t. Machine 
learning projects start with a question or a hunch that needs investigating. I’ve 
encountered this quite a few times in speaking to people about their companies’ 
data ambitions and what they are looking to achieve with the likes of machine 
learning and Hadoop.

Using a whiteboard, sticky notes, or even a sheet of paper, start asking ques-
tions like the following:

■■ Is there a correlation between our sales and the weather?

■■ Do sales on Saturday and Sunday generate the majority of revenue to the 
business compared to the other five days of the week?

■■ Can we plan what fashions to stock in the next three months by looking 
at Twitter data for popular hashtags?

■■ Can we tell when our customers become pregnant?

All these examples are reasonable questions, and they also provide the basis 
for proper discussion. Stakeholders will usually come up with the questions, and 
then the data project team (which might be one person—you!) can spin into action.

Without knowing the question, it’s difficult to know where to start. Anyone 
who thinks the answers just pop out of thin air needs a polite, but firm, expla-
nation of what has to happen for the answers to be discovered.

I Don’t Have Data!

This sounds like a silly statement when you have a book on machine learning 
in your hands, but sometimes people just don’t have the data.
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In an ideal world, we expect companies to have well-groomed customer rela-
tionship management (CRM) systems and neat repositories of data that could 
be retrieved on a whim and copied nicely into a Hadoop filesystem, so count-
less MapReduce jobs could run (read more about MapReduce in Chapter 13, 
“Apache Spark and MLLib”).

Data comes from a variety of sources. Plenty of open data initiatives are avail-
able, so you have a good chance of being able to find some data to work with.

Starting Local
Perhaps you could make a difference in your local community; see what data 
they have open with which you can experiment. New York City has a whole 
portal of open data with more than 1,100 datasets for citizens to download and 
learn from. Hackathons and competitions encourage people to get involved and 
give back to the community. The results of the hackathons make a difference 
because insights about how the local community is run are fed back to the event 
organizers. If you can’t find the dataset you want, then you are also encouraged 
to request it.

Transfer Learning
With the amount of machine learning now being executed out in the field, it 
may be worth looking into existing models and altering certain parameters to 
fit in with your prediction data, especially if you don’t have much in the way of 
training data. This is called transfer learning. It’s perfect for models that require 
large scale datasets for training, such as images, video, and large text corpus. 
I’ll highlight some transfer learning examples in later chapters.

Competitions
If you fancy a real challenge, then think about entering competitions. One of 
the most famous was the Netflix Prize, which was a competition to improve 
the recommendation algorithm for the Netflix film service.

Teams that were competing downloaded sample sets of user data and worked 
on an algorithm to improve the predictions of movies that customers would 
like. The winning team was the one that improved the results by 10 percent. In 
2009, the $1 million prize was awarded to “BellKor’s Pragmatic Chaos.” This 
triggered a new wave of competitions, letting the data out into the open so col-
laborative teams could improve things.

In 2010, Anthony Goldbloom founded Kaggle.com, which is a platform for 
predictive modeling and analytics competitions. Each competition posted has 
sample datasets and a brief of the desired outcome. Either teams or individ-
uals can enter, and the most effective algorithms, similar to the Netflix Prize, 
decide the winner.

http://kaggle.com
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Is competition effective? It seems to be. Kaggle has more than 100,000 data 
scientists registered from across the world. Organizations such as Facebook, 
NASA, GE, Wikipedia, and AllState have used the service to improve their 
products and even head-hunt top talent.

One Solution Fits All?

Machine learning is built up from a varying set of tools, languages, and tech-
niques. It’s fair to say that there is no one solution that fits most projects. As you 
will find in this chapter and throughout the book, I’ll refer to various tools to get 
certain aspects of the job done. For example, there might be data in a relational 
database that needs extracting to a file before you can process it.

Over the last few years, I’ve seen managers and developers with faces of 
complete joy and happiness when a data project is assigned. It’s new, it’s hip, and, 
dare I say it, it’s funky to be working on data projects. Then after the scale of the 
project comes into focus, I’ve seen the color drain from their faces. Usually this 
happens after the managers and developers see how many different elements 
are required to get things working for the project to succeed. And, like any major 
project, the specification from the stakeholders will change things along the way.

Defining the Process

Making anything comes down to process, whether that’s baking a cake, brew-
ing a cup of coffee, or planning a machine learning project. Processes can be 
refined as time goes on, but if you’ve never developed one before, then you can 
use the following process as a template.

Planning
During the late 1980s, I wrote many assignments and papers on the upcoming 
trend of the paperless office and how computers would one day transform the 
way day-to-day operations would be performed. Even without the Internet, it 
was easy to see that computers were changing how things were being done.

Skip ahead to the present day and you’ll see that my desk is littered with 
paper, notebooks, sticky notes, and other scraps of information. The paperless 
office didn’t quite make the changes I was expecting, and you need no more 
evidence than the state of my desk. I would show you a photograph, but it might 
prove embarrassing.

What I have found is that all projects start on paper. For me, it doesn’t work to 
jump in and code; I find that method haphazard and error prone. I need to plan 
first. I use A5 Moleskin notebooks for notes and use A4 and A3 artist drawing 
pads for large diagrams. They’re on my desk, in my bag, and in my jacket pocket.
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Whiteboards are good, too. Whiteboards hold lots of ideas and diagrams, but 
I find they can get out of control and messy after a while. There was once an 
office wall in Santa Clara that I covered in sticky notes. (I did take them down 
once I was finished. The team thought I was mad.)

Planning might take into account where the data is coming from, if it needs 
to be cleaned, what learning methods to use, and what the output is going to 
look like. The main point is that these things can be changed at any time—the 
earlier in the process they change, the better. So, it’s worth taking the time to 
sit around a table with stakeholders and the team and figure out what you are 
trying to achieve.

Developing
This process might involve algorithm development or code development. The 
more iterations you perform on the code, the better it will be. Agile development 
processes work best; in agile development, you work only on what needs to be 
done without trying to future-proof the software as you go along. It’s worth 
using some form of code repository site like GitHub or Bitbucket to keep all 
your work private; it also means you can roll back to earlier versions if you’re 
not happy with the way things are going.

Testing
In this case, testing means testing with data. You might use a random sample 
of the data or the full set. The important thing is to remind yourself that you’re 
testing the process, so it’s okay for things to not go as planned. If you push 
things straight to production, then you won’t really know what’s going to hap-
pen. With testing you can get an idea of the pain points. You might find data-
loading issues, data-processing issues, or answers that just don’t make sense. 
When you test, you have time to change things.

Reporting
Sit down with the stakeholders and discuss the test results. Do the results make 
sense? The developers and mathematicians might want to amend algorithms 
or the code. Stakeholders might have a new question to ask (this happens a lot), 
or perhaps you want to introduce some new data to get another angle on the 
answers. Regardless of the situation, make sure the original people from the 
planning phase are back around the table again.

Refining
When everyone is happy with the way the process is going, it’s time to refine 
code and, if possible, the algorithms. With huge volumes of data, if you squeeze 
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every ounce of performance you can from your code, the quicker the overall 
processing time will be. Think of a bobsled run; a slower start converts to a 
much slower finish.

Production
When all is tested, reviewed, and refined by the team, moving to production 
shouldn’t be a big job. Be sure to give consideration to when this project will 
be run—is it an hourly/daily/weekly/monthly job? Will the data change wildly 
between the project going into production and the next run?

Make sure the team reviews the first few production runs to ensure the 
results are as expected and then look at the project as a whole to see whether 
it’s meeting the criteria of the stakeholders. Things might need to be refined. 
As you probably already know, software is rarely finished.

Avoiding Bias
Let’s not forget that machine learning is hard; getting models that avoid bias is 
hard. It’s important to get the teams talking to each other about how to avoid 
introducing any form of bias into the final solution.

Dataset choice is important. Make sure that it’s evenly weighted. Whether it’s 
gender, age, location, or another parameter, if the quantity of that source data 
type is too heavy, then your model is going to bias toward it.

Try using different model types and evaluate the training and the test pre-
dictions. Unsupervised models can introduce bias with tighter correlations 
when clustering from the training data, and supervised models can creep in 
bias when human intervention is brought in to control either the model or the 
training data. Care must be taken.

Building a Data Team

A data scientist is someone who can bring the facets of data processing, analytics, 
statistics, programming, and visualization to a project. With so many skill sets 
in action, even for the smallest of projects, it’s a lot to ask for one person to have 
all the necessary skills. In fact, I’d go as far as to say that such a person might not 
exist—or is at least extremely rare. A data science team might touch on some, 
or all, of the following areas of expertise.

Mathematics and Statistics
Someone on the team needs to have a good head for mathematics—someone 
who isn’t going to flinch when the words linear regression are mentioned in the 
interview. I’m not saying there’s a minimum level of statistics you should know 
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before embarking on any project, but knowledge of descriptive statistics (the 
mean, the mode, and the median), distributions, and outliers will give you a 
good grounding to start.

The debate will rage on about the level of mathematics needed in any machine 
learning project, but my opinion is that every project comes with its own set of 
complications. If new information needs to be learned, then there are plenty of 
sources out there from which you can learn.

If you have access to talented mathematicians, then your data team is a blessed 
group indeed.

Programming
Good programming talent is hard to come by, but I’m assuming that if you have 
this book in your hand, then there’s a good chance you’re a programmer already. 
Taking algorithms and being able to transfer that to workable code can take 
time and planning. It’s also worth knowing some of the Big Data tools, such as 
the Spark framework and Kafka. (Read Chapters 12 and 13 for a comprehensive 
walk-through on both technologies.)

Graphic Design
Visualizing data is important; it tells the story of your findings to the stake-
holders or end users. Although much emphasis has been placed on the Web 
for presentation with technologies such as D3 and Processing, don’t forget the 
likes of BIRT, Jasper Reports, and Crystal Reports.

This book doesn’t touch on visualization, but Appendix D, “Further Reading,” 
includes some titles that will point you in the right direction.

Domain Knowledge
If, for example, you are working with medical data, then it would be beneficial 
to have someone who knows the medical field well. The same goes for retail; 
there’s not much point trawling through rows of transactions if no one knows 
how to interpret how customers behave. Domain experts are the vital heroes in 
guiding the team through a project. There are some decisions that the domain 
expert will instinctively know.

Think of a border crossing with passport control. There might be many per-
mutations of rules that are given depending on nationality, immigration rules, 
and so on. A domain expert would have this knowledge in place and make 
your life as the developer much easier and would help to get a solution up and 
running more quickly.

There’s a notion that we don’t need domain experts. I’m of the mind that we 
do, even if you only sit down and have coffee with someone who knows the 
domain. Always take a notebook and keep notes.
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Data Processing

After you have a team in place and a rough idea of how all of this is going to 
get put together, it’s time to turn your attention to what is going to do all the 
work for you. You must give thought to the frequency of the data process jobs 
that will take place. If it will occur only once in a while, then it might be false 
economy investing in hardware over the long term. It makes more sense to start 
with what you have in hand and then add as you go along and as you notice 
growth in processing times and frequency.

Using Your Computer
Yes, you can use your own machine, either a desktop or a laptop. I do my 
development on an Apple MacBook Pro. I run the likes of Kafka, Spark, and 
Hadoop on this machine as it’s pretty fast, and I’m not using terabytes of data. 
There’s nothing to stop you from using your own machine; it’s available, and 
it saves financial outlay to get more machines. Obviously, there can be limi-
tations. Processing a heavy job might mean you have to turn your attention 
to less processor-intensive things, but never rule out the option of using your 
own machine.

Operating systems like Linux and macOS tend to be preferred over Windows, 
especially for Big Data–based operations. The best choice comes down to what 
you know best and what suits the project best in order to get the job done effi-
ciently. I don’t believe there’s only one right way to do things.

A Cluster of Machines
Eventually you’ll come across a scenario that requires you to use a cluster of 
machines to do the work. Frameworks like Hadoop are designed for use over 
clusters of machines, which make it possible for the distribution of work to be 
done in parallel. Ideally the machines should be on the same network to reduce 
network traffic latency.

At this point in time, it’s also worthwhile to add a good system administrator 
to the data science team. Any performance that can be improved over the cluster 
will bring a marked performance improvement to the whole project.

Cloud-Based Services
If the thought of maintaining and paying for your own hardware does not 
appeal, then consider using some form of cloud-based service. Vendors such as 
Amazon, Rackspace, and others provide scalable servers where you can increase, 
or decrease, the number of machines and amount of power that you require. 
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The advantage of these services is that they are “turn on/turn off” technology, 
enabling you to use only what you need.

Keep a close eye on the cost of cloud-based services, as they can sometimes 
prove more expensive than just using a standard hosting option over longer time 
periods. Some companies provide dedicated Big Data services if you require 
the likes of Spark to do your processing. With cloud-based services, it’s always 
important to turn the instance off; otherwise, you’ll be charged for the usage 
while the instance is active.

Data Storage

There are some decisions to make on how the data is going to be stored. This 
might be on a physical disc or deployed on a cloud-based solution.

Physical Discs
The most common form of storage is the one that you will more than likely 
have in your computer to start off with. The hard disc is adequate for testing 
and small jobs. You will notice a difference in performance between physical 
discs and solid-state drives (SSDs); the latter provides much faster performance. 
External drives are cheap, too, and provide a good storage solution for when 
data volumes increase.

Cloud-Based Storage
Plenty of cloud-based storage facilities are available to store your data as required. 
If you are looking at cloud-based processing, then you’ll more than likely be 
purchasing some form of cloud-based storage to go with it. For example, if you 
use Amazon’s Elastic Map Reduce (EMR) system, then you would be using it 
alongside the S3 storage solution; other storage solutions exist for the Microsoft 
Azure platform and Google Cloud Compute.

Like cloud processing, storage based on the cloud will cost you on a monthly 
or annual basis. You also have to think about the bandwidth implications of 
moving large volumes of data from your office location to the cloud system, 
which is another cost to keep in mind.

Data Privacy

Data is power and with it comes an awful lot of responsibility. The privacy issue 
will always rage on in the hearts and minds of the users and the general public. 
Everyone has an opinion on the matter, and often people err on the side of caution.
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In the last five years there has been a huge emphasis on how user data is used. 
In Europe, the General Data Protection Regulations control how business can 
use personal data within their organizations.

Ultimately, with great power comes great responsibility, and it will be up to 
you how that data is protected and processed.

Cultural Norms
Cultural expectations are difficult to measure. As the World Wide Web has 
progressed since the mid-1990s, there has been a privacy battle about every-
thing from how cookies were stored on your computer to how a multitude of 
companies are tracking locations, social interactions, ratings, and purchasing 
decisions through your mobile devices.

If you’re collecting data via a website or mobile application, then there’s an 
expectation that you will be giving something in return for user information. 
When you collect that information, it’s only right to tell the user what you intend 
to do with the data.

Supermarket loyalty card schemes are a simple data-collecting exercise. 
For every basket that goes through the checkout, there’s the potential that the 
customer has a loyalty card. In associating that customer with that basket of 
products you can start to apply machine learning. Over time you will be able 
to see the shopping habits of that customer—her average spend, the day of the 
week she shops—and the customer expects some form of discount promotion 
for telling you all this information.

So, how do you keep cultural norms onside? By giving customers a clear 
opt-in or opt-out strategy.

Generational Expectations
During sessions of my iPhone development class, I open up with a discussion 
about personal data. I can watch the room divide instantly, and I can easily see 
the deciding factor: age.

Some people are more than happy to share with their friends, and the rest of 
the world, their location, what they are doing, and with whom. These people 
post pictures of their activities and tag them so they could be easily searched, 
rated, and commented on. They use Facebook, Instagram, YouTube, Twitter, 
and other apps as a normal, everyday part of their lives.

The other group of people, who were older, are not comfortable with the concept 
of handing over personal information. Some of them think that no one in their 
right minds would be interested in such information. Most can’t see the point.

Although the generation gap might be closing and there is a steady relaxation 
of what people are willing to put on the Internet, developers have a responsibility 
to the suppliers of the information. You have to consider whether the results 
you generate will cause a concern to them or enhance their lives.
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The Anonymity of User Data
You can learn from data, but users get touchy when their names are attached 
to it. Creating hashes of important data is a starting point, but it’s certainly not 
the end game. Consider my name as an MD5 hash. Using the Linux md5sum 
command, I can find it out easily, as shown here:

$ printf '%s' "Jason Bell" | md5sum 
a7b19ed2ca59f8e94121b54f9f26333c  -

Now, I have a hash value, which is a good start, but it’s still not really protect-
ing my identity. You now know it and what it would possibly relate to if it were 
used as a user key in a machine learning process. It wouldn’t take much time 
for a decent programmer with a list of first and last names to generate all the 
md5 values for all the combinations.

Using a salt value is a better solution. A salt value is random data that’s used 
with the piece of data to make it more secure and harder to crack.

Let’s assume the salt value is the number of nanoseconds from January 1, 
1970. You take that and the string you’re looking to hash.

$ printf '%s' "Jason Bell $(date +%sN)" | md5sum 
40e46b48a873c30c80469dbbefaa5e16  -

There are different ways of handling the input string. You might want to 
remove spaces, but the concept remains the same. The security of these hashes 
has to be maintained by you so when the time comes to interpret the answers, 
you’ll know which customers are doing the actions you are seeking. Hashes 
aren’t just restricted to usernames or customer names; they can be applied to 
any data. Anything that you consider private information (known as personally 
identifiable information [PII])—something that you don’t want any third party 
to see—must be hashed.

Don’t Cross the “Creepy Line”
Be careful not to make the customer freak out by crossing the line in the sand 
that I call the “creepy line.” It’s the point where the horrified customer would 
shriek, “How did they know that?” For an example of a company and what 
they know about you, visit the settings pages of your Google account and take 
a look at your web search history or your location history:

https://www.google.com/settings/dashboard

One near-legendary example in data science, Big Data, and machine learning 
circles is the story of Target and pregnant mothers, which was widely cited 
on the Internet because of Charles Duhigg’s book The Power of Habit (Random 

https://www.google.com/settings/dashboard
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House, 2011). What readers of the Internet forgot to realize was that Target had 
been using the same practice for years; the concept was originally run in 2002 
as an exercise to see if there was a correlation between two things.

Good mathematics and item matching isolated a number of items that mothers-
to-be started to buy. Target has enough data to predict what trimester of the 
pregnancy the mother is in. With an opt-in to the baby club, this might have 
all passed without problem. But when an angry father rolls up to the store to 
inquire why his teenage daughter is receiving baby promotions and coupons, 
well, that’s a different matter.

What does this example highlight? Well, apart from freaking out the customer, 
it causes undue pressure on the in-store staff. Everyone in the organization 
needs to be aware of the work that’s going on. Also, the data team needs to be 
acutely aware of the social effect of their learning.

The UK supermarket chain Tesco started the Clubcard loyalty scheme in 1995; 
it holds more data than some governments on customer purchasing behavior, 
social classes, and income bracket. The store’s data processing power is controlled 
by a marketing company, Dunn Humby, which runs the Clubcard and analyzes 
the data. What is the upside for the customer? Four times a year Clubcard mem-
bers receive coupons for money off and incentives to buy items they normally 
purchase. The offers resemble the customers’ typical shopping patterns, but 
other items are thrown in so it doesn’t look like they’ve been stalked.

Mining the baskets is hardly a new idea (you’ll be reading about other tech-
niques in later chapters), but when the supermarket becomes large and the 
volumes of data are huge, the insight that can be gained becomes an enormous 
commercial advantage. The cost of this advantage is appearing to know the 
intimate shopping details of the customer even when they’ve not overtly given 
permission for you to send offers.

Data Quality and Cleaning

In an ideal world, you’d receive data and put it straight into the system for 
processing. Then your favorite actor or actress would hand you your favorite 
drink and pat you on the back for a job well done.

In the real world, data is messy, usually unclean, and error prone. The fol-
lowing sections offer some basic checks you should do, and I’ve included some 
sample data so you can see clearly what to look for.

The example data is a simple address book with a first name, last name, 
e-mail address, and age.

Presence Checks
First things first, check that data has been entered at all. Within web-based 
businesses, registration usually involves at least an e-mail address, first name, 
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and last name. It’s amazing how many times users will try to avoid putting in 
their names.

The presence check is simple enough. If the field length is empty or null and 
that piece of data is important in the analysis, then you can’t use records from 
which the data is missing.

FIRSTNAME LASTNAME E-MAIL AGE

Correct Jason Bell me@domain.com 42

Incorrect Bell 42

The first name and e-mail are missing from the example, so the record should 
really be fixed or rejected. In theory, the data could be used if knowing the cus-
tomer was not important.

Type Checks
With relational databases you have schemas created, so there’s already an 
expectation of what type of data is going where. If incorrect data is written to 
a field of a different data type, then the database engine will throw an error 
and complain at you.

In text data, such as CSV files, that’s not the case, so it’s worth looking at each 
field and ensuring that what you’re expecting to see is valid.

#firstname, lastname, email, age
Jason,Bell,me@domain.com,42
42,Bell,me@domain.com,Jason

From the example, you can see that the first row of data is correct, but the second 
is wrong because the firstname field has a number in it and not a string type. 
There are a couple of things you could do here. The first option is to ignore the 
record, as it doesn’t fit the data-quality check. The other option is to see if any other 
records have the same e-mail address and check the name against those records.

Length Checks
Field lengths must be checked, too; once again, relational databases exercise a 
certain amount of control, but textual data can be error-prone if people don’t 
go with the general rules of the schema.

FIELD LENGTH GOOD BAD

Firstname 10 Jason Mr Jason Bell

Email 20 me@domain.com jason.bell@thing.
domain.com

mailto:me@domain.com
mailto:me@domain.com
mailto:jason.bell@thing.domain.com
mailto:jason.bell@thing.domain.com
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Range Checks
Range or reasonableness checks are used with numeric or date ranges. Age 
ranges are the main talking point here. Until there are advances in scientific 
medicine to prolong life, you can make a fairly good assumption that the upper 
lifespan of someone is about 120. You can even play it safe and extend the upper 
range to 150; anyone who is older than that is lying or just trying to put a false 
value in to trip up the system.

FIELD LOWER RANGE UPPER RANGE

Age 0 120

Month 1 12

Format Checks
When you know that certain data must follow a given format, then it’s always 
good to check it. Regular expression knowledge is a big advantage here if you 
know it. E-mail addresses can be used and abused in web forms and database 
tables, so it’s always a good idea to validate what you can at the source.

There’s much discussion in the developer world about what a correct e-mail 
regular expression actually is. The official standard for the e-mail address 
specification is RFC 5322. Correctly matching the e-mail address as a regular 
expression is a huge pattern. What you’re looking for is something that will 
catch the majority of e-mail addresses.

[a-z0-9!#$%&'*+/=?^_`{|}~-]+(?:\.[a-z0-9!#$%&'*+/=?^_`{|}~-]+)*@ (?:[a-
z0-9](?:[a-z0-9-]*[a-z0-9])?\.)+[a-z0-9](?:[a-z0-9-]*[a-z0-9])?

The main thing to do is create a run of test cases with all the eventualities of 
an e-mail address you think you will come across. Don’t just test it once; keep 
retesting it over time.

Postcodes and ZIP codes are another source of formatting woe—especially 
UK postcodes. Regular expressions also help in this case, but sometimes an odd 
one slips through the testing. At the end of the day, this sort of thing is better 
left to specialized software or expert services.

The Britney Dilemma
Users being users will input all sorts of things, and it’s really up to us to make 
sure that our software catches what it can. Although search strings aren’t specific 
to machine learning, it is, however, an interesting case of how different names 
can really mess up the results.
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For instance, take the variations of the search term Britney Spears in a well-known 
search engine. In an ideal and slightly utopian vision, everyone would type her 
name perfectly into a text field box.

britney spears 

Life rarely goes as planned, and users type what they think is right, such as 
the following:

brittany spears
brittney spears
britany spears
britny spears
briteny spears
britteny spears
briney spears
brittny spears
brintey spears
britanny spears
britiny spears
britnet spears
britiney spears
britaney spears
britnay spears
brithney spears
brtiney spears
birtney spears
brintney spears
briteney spears
bitney spears
brinty spears
brittaney spears
brittnay spears
britey spears
brittiny spears

If you were to put that through a Hadoop cluster looking for unique singer 
search terms, you’d be in a bit of a mess, as each of these would register a new 
result count.

What you want is something to weigh each term and see what it resembles. 
The simplest approach is to use a classifier to weigh each search term as it comes 
in. You know the correct term, so it’s a case of running the incoming terms 
against the correct one and seeing what the confidence scoring is.

package mlbook.ch02.examples;
 
import java.util.ArrayList;
import java.util.List;
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import net.sf.classifier4J.ClassifierException;
import net.sf.classifier4J.vector.HashMapTermVectorStorage;
import net.sf.classifier4J.vector.TermVectorStorage;
import net.sf.classifier4J.vector.VectorClassifier;
 
public class BritneyDilemma {
 
    public BritneyDilemma() {
        List<String> terms = new ArrayList<String>();
        terms.add("brittany spears");
        terms.add("brittney spears");
        terms.add("britany spears");
        terms.add("britny spears");
        terms.add("briteny spears");
        terms.add("britteny spears");
        terms.add("briney spears");
        terms.add("brittny spears");
        terms.add("brintey spears");
        terms.add("britanny spears");
        terms.add("britiny spears");
        terms.add("britnet spears");
        terms.add("britiney spears");
        terms.add("christina aguilera");
 
        TermVectorStorage storage = new HashMapTermVectorStorage();
        VectorClassifier vc = new VectorClassifier(storage);
        String correctString = "britney spears";
 
        for (String term : terms) {
          try {
            vc.teachMatch("sterm", correctString);
            double result = vc.classify("sterm", term);
            System.out.println(term + " = " + result);
          } catch (ClassifierException e) {
            e.printStackTrace();
          }
        }
    }
 
    public static void main(String[] args) {
        BritneyDilemma bd = new BritneyDilemma();
    }
}

This code sample uses the Classifer4J library to run a basic vector space search 
on the incoming spellings of Britney; it then ranks them against the correct 
string. When this code is run, you get the following output:

brittany spears = 0.7071067811865475
brittney spears = 0.7071067811865475
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britany spears = 0.7071067811865475
britny spears = 0.7071067811865475
briteny spears = 0.7071067811865475
britteny spears = 0.7071067811865475
briney spears = 0.7071067811865475
brittny spears = 0.7071067811865475
brintey spears = 0.7071067811865475
britanny spears = 0.7071067811865475
britiny spears = 0.7071067811865475
britnet spears = 0.7071067811865475
britiney spears = 0.7071067811865475
britaney spears = 0.7071067811865475
britnay spears = 0.7071067811865475
brithney spears = 0.7071067811865475
brtiney spears = 0.7071067811865475
birtney spears = 0.7071067811865475
brintney spears = 0.7071067811865475
briteney spears = 0.7071067811865475
bitney spears = 0.7071067811865475
brinty spears = 0.7071067811865475
brittaney spears = 0.7071067811865475
brittnay spears = 0.7071067811865475
britey spears = 0.7071067811865475
brittiny spears = 0.7071067811865475
christina aguilera = 0.0

The confidence is always a number between 0 and 0.9999. Just to prove that, 
putting the correct spelling in the list and running the program again would 
generate a positive score.

britney spears = 0.9999999999999998

Obviously, there’s some preparation required, as you need to know the correct 
spellings of the search terms before you can run the classifier. This example 
just proves the point.

What’s in a Country Name?
Data cleaning needs to be done in a variety of circumstances, but the most 
common reason is too many options were given in the first place.

A few years ago, I was looking at a database for a hotel. Its data was 
gathered via a web-based inquiry form, but instead of offering a selection 
of countries from a drop-down list of countries, there was just an open text 
field. (Always remember that freedom of input, where it can be avoided, 
should be avoided.)
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Let’s consider this for a moment. If you take a country like Ireland, then you 
might have the following entries for country name:

■■ Ireland

■■ Republic of Ireland

■■ Eire

■■ EIR

■■ Rep. of Ireland

All these are essentially the same place; the only exception would be Northern 
Ireland, which is still part of the United Kingdom.

What you have is a huge job to clean up the country field of a database. To 
fix this, you would have to find all the distinct names in the country field and 
associate them with a two-letter country code. So, Ireland and all the other names 
that were associated with Ireland become IE. You would have to do this for all 
the countries. Where possible, it’s better to have tight control of the input data, 
as this will make things a lot easier when it comes to processing.

In programming terms, you could make each of the distinct countries a key in 
a HashMap and add a method to get the value of the corresponding input name.

package mlbook.ch02.examples;
 
import java.util.HashMap;
import java.util.Map;
 
public class CountryHashMap {
 
    private Map<String, String> countries = new HashMap<String, String>();
 
    public CountryHashMap() {
        countries.put("Ireland", "IE");
        countries.put("Eire", "IE");
        countries.put("Republic of Ireland", "IE");
        countries.put("Northern Ireland", "UK");
        countries.put("England", "UK");
        // you could add more or generate from a database.
    }
 
    public String getCountryCode(String country) {
        return countries.get(country);
    }
 
    public static void main(String[] args) {
        CountryHashMap chm = new CountryHashMap();
        System.out.println(chm.getCountryCode("Ireland"));
        System.out.println(chm.getCountryCode("Northern Ireland"));
    }
}
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The preceding example is a basic piece of code that would automate the cleaning 
process in a short amount of time. However, you are strongly advised to look 
at the source of the problem and refactor the input. If no change is made, then 
the same cost to the business will occur, as you’ll have to clean the data again.

Ideally, to avoid having to do this sort of cleaning, you would employ verifi-
cation strategies at the input stage. So, for example, if you’re using web forms, 
you should use JavaScript to validate the input before it’s saved to the database. 
Other times you inherit data and occasionally have to employ such methods.

Dates and Times
For time series processing, you must ensure that you have a consistent set of dates 
to read. The format you choose is really up to you. International Standard ISO 
8601 lays out the specification for date and time representations in a numerical 
format. The issue with the ISO 8601 standard is that it’s not immune to the 
Y10K bug when timestamps will be incorrect after January 19, 2038. The Temps 
Atomique International (TAI) standard takes into account these issues.

Regardless of the language you are using, make yourself aware of how the 
date formatting and parsing routines work. For Java, take a look at the Simple-
DateFormat API, which gives you a rundown on all the settings along with 
some useful examples. Use caution when running code on distributed systems 
and also with different time zones.

Table 2.1 shows some of the commonly used date/time formats.

I’ve seen many a database table with different date formats that have been 
saved as string types. Things have gotten better, but it’s still something I keep 
in mind.

Final Thoughts on Data Cleaning
Data cleaning is a big deal, because it increases the chances of getting better 
results. For some Big Data projects, 80 percent of the project time is spent on 
data cleaning before the actual analysis starts. It’s important to keep this step 
high up in the project plan and manage time accordingly.

Table 2.1: Commonly Used Date/Time Formats

DATE/TIME FORMAT SIMPLEDATEFORMAT REPRESENTATION

2014-01-01 Yyyy-MM-dd

2014-01-01 11:59:00 Yyyy-MM-dd hh:mm:ss

1388577540 (Unix timestamps are like long variable types but with nano 
seconds added.)
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Thinking About Input Data

With any machine learning project, you need to think about the incoming data, 
what format it’s in, and how it will be accessed by the code that’s being built.

Data comes in all sorts of forms, so it’s a good idea to know what you’re dealing 
with before you start crafting any code. The following sections describe some 
of the more common data formats.

Raw Text
Basic raw text files are used in many publications. If you look at the likes of the 
Guttenberg Project, you’ll see that you can download works in a raw text file. The 
data is unstructured, so it rarely has a proper form with which you can work.

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse 
eget metus quis erat tempor hendrerit. Vestibulum turpis ante, bibendum 
vitae nisi non, euismod blandit dui. Maecenas tristique consectetur est 
nec elementum. Maecenas porttitor, arcu sed gravida tempus, purus tellus 
lacinia erat, dapibus euismod felis enim eget nisl. Nunc mollis volutpat 
ligula. Etiam interdum porttitor nulla non lobortis.

Common formats for text files are Unicode, ASCII, or UTF-8. If there’s any 
international encoding required, UTF-8 and Unicode are most common. Note 
that PDF documents, Rich Text Format files, and Word documents are not raw 
text files. Microsoft Office documents (such as Word files) are particularly trou-
blesome because of “smart quotes” and other nontext extraneous characters that 
wreak havoc in Java programs.

Comma-Separated Variables
The CSV format is widely used across the data landscape. The comma character 
is used between each field of data. You might find that other delimiters are 
used, such as tabulation (TSV) and the pipe (|) symbol (PSV). Delimiters are 
not limited to one character either. If you look at something like the USDA Food 
Database, you’ll see ~^~ used as a delimiter. The following CSV file is gener-
ated from a fake name generator site. (It’s always good to use fake data when 
you’re testing things.)

1,male,Mr.,Joe,L,Perry,50 Park Row,EDERN,,LL53 2SQ,GB,United 
Kingdom,JoePerry@einrot.com,Annever,eiThahph9Ah,077 6473 
7650,Fry,7/4/1991,Visa,4539148712302735,342,2/2018,YB 20 98 
60 A,1Z 23F 389 61 4167 727 1,Blue,Nephrology nurse,Friendly 
Advice,1999 Alfa Romeo 145,BadProtection.co.uk,O+,169.4,77.0,5' 
10",177,a617f840-6e42-4146-b743-090ee59c2c9f,52.806493,-4.72918
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2,male,Mr.,Daniel,J,Carpenter,51 Guildford Rd,EAST 
DRAYTON,,DN22 3GT,GB,United Kingdom,DanielCarpenter@teleworm.
us,Reste1990,Eich1Kiegie,079 2890 2948,Harris,3/26/1990,MasterCard, 
5353722386063326,717,7/2018,KL 50 03 59 C,1Z 895 362 50 0377 620 
2,Blue,Corporate administrative assistant,Hit or Miss,2000 Jeep Grand 
Cherokee,BiologyConvention.co.uk,AB+,175.3,79.7,5' 7",169,ac907a59-a091-
4ba2-9b0f-a1276b3b5ada,52.801024,-0.719021
 
3,male,Mr.,Harvey,A,Hawkins,37 Shore Street,STOKE TALMAGE,,OX9 
4FY,GB,United Kingdom,HarveyHawkins@armyspy.com,Spicionly,UcheeGh9xoh,077 
7965 0825,Rees,3/1/1974,MasterCard,5131613608666799,523,7/2017,SS 81 32 
33 C,1Z Y11 884 19 7792 722 8,Black,Education planner,Monsource,1999 BMW 
740,LightingShadows.co.uk,A-,224.8,102.2,6' 1",185,6cf865fb-81ae-42af-
9a9d-5b86d5da7ce9,51.573674,-1.179834
 
4,male,Mr.,Kyle,E,Patel,97 Cloch Rd,ST MARTIN,,TR12 6LT,GB,United 
Kingdom,KylePatel@superrito.com,Wilvear,de2EeJew,079 2879 6351,Hancock, 
6/7/1978,Visa,4916480323599950,960,4/2016,MH 93 02 76 D,1Z 590 692 
15 4564 674 8,Blue,Interior decorator,Grade A Investment,2002 Proton 
Juara,ConsumerMenu.co.uk,AB+,189.2,86.0,5' 10",179,e977c58e-ba61-406e-
a1d1-2904807be365,49.957435,-5.258628
 
5,male,Mr.,Dylan,A,Willis,66 Temple Way,WINWICK,,WA2 5HE,GB,United 
Kingdom,DylanWillis@cuvox.de,Hishound,shael7Foo,077 1105 4178,Kelly,
8/16/1948,Visa,4485311140499796,423,11/2016,WG 24 10 62 D,1Z 538 4E0 
39 8247 102 7,Black,Community health educator,Mr. Steak,2002 Nissan 
X-Trail,FakeRomance.co.uk,A+,170.1,77.3,5' 9",175,335c2508-71be-43ad-
9760-4f5c186ec029,53.443749,-2.631634
 
6,female,Mrs.,Courtney,R,Jordan,42 Kendell Street,SHARLSTON,,WF4 
1PZ,GB,United Kingdom,CourtneyJordan@fleckens.hu,Ponforsittle, 
Hi2oteel1,070 3469 5710,Payne,2/23/1982,MasterCard,55708 
15007804057,456,12/2019,CJ 87 95 98 D,1Z 853 489 84  
8609 859 3,Blue,Mechanical inspector,Olson Electronics,2000 
Chrysler LHS,LandscapeCovers.co.uk,B+,143.9,65.4,5' 
3",161,27d229b0-6106-4700-8533-5edc2661a0bf,53.645118,-1.563952

People might refer to files as CSV files even though they are not comma sep-
arated. The best way to find out if something is really a CSV file is to open up 
the data and take a look.

JSON
JavaScript Object Notation (JSON) is a commonly used data format that uti-
lizes key-value pairs to communicate data between machines and the Web. It 
was designed as an alternative to XML. Don’t be fooled by the use of the word 



36	 Chapter 2 ■ Planning for Machine Learning

JavaScript; you don’t need JavaScript to use this data format. There are JSON 
parsers for various languages. The earlier CSV example used fake name data; 
here’s the first entry of the CSV in JSON notation:

[
  {
    "Number":1,
    "Gender":"male",
    "Title":"Mr.",
    "GivenName":"Joe",
    "MiddleInitial":"L",
    "Surname":"Perry",
    "StreetAddress":"50 Park Row",
    "City":"EDERN",
    "State":"",
    "ZipCode":"LL53 2SQ",
    "Country":"GB",
    "CountryFull":"United Kingdom",
    "EmailAddress":"JoePerry@einrot.com",
    "Username":"Annever",
    "Password":"eiThahph9Ah",
    "TelephoneNumber":"077 6473 7650",
    "MothersMaiden":"Fry",
    "Birthday":"7/4/1991",
    "CCType":"Visa",
    "CCNumber":4539148712302735,
    "CVV2":342,
    "CCExpires":"2/2018",
    "NationalID":"YB 20 98 60 A",
    "UPS":"1Z 23F 389 61 4167 727 1",
    "Color":"Blue",
    "Occupation":"Nephrology nurse",
    "Company":"Friendly Advice",
    "Vehicle":"1999 Alfa Romeo 145",
    "Domain":"BadProtection.co.uk",
    "BloodType":"O+",
    "Pounds":169.4,
    "Kilograms":77.0,
    "FeetInches":"5' 10\"",
    "Centimeters":177,
    "GUID":"a617f840-6e42-4146-b743-090ee59c2c9f",
    "Latitude":52.806493,
    "Longitude":-4.72918
  }
]

Many application programming interfaces (APIs) use JSON to send response 
data back to the requesting program. Some parsers might take the JSON data 
and represent it as an object. Others might be able to create a hash map of the 
data for you to access.
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YAML
Whereas JSON is a document markup format, YAML (meaning “YAML Ain’t 
Markup Language”) is most certainly a data format. It’s not as widely used as 
JSON but from a distance looks similar.

date   : 2014-01-02
bill-to: &id001
    given  : Jason
    family : Bell
    address:
        lines: |
            458 Some Street Somewhere
            In Some Suburb
        city    : MyCity
        state   : CA
        postal  : 55555

XML
The Extensible Markup Language (XML) followed on from the popular use of 
Standard Generalized Markup Language (SGML) for document markup. The 
idea was for XML to be easily read by humans and also by machines. On first 
inspection, XML is like Hypertext Markup Language (HTML); later versions 
of HTML use strict XML formatting types.

XML gets criticism for its complexity, especially when reading large struc-
tures. That’s one reason it’s popular for web-based APIs to use JSON data as 
its response. There are a large number of APIs delivering XML response data, 
so it’s worthwhile to look at how it works:

<?xml version="1.0" encoding="UTF-8" ?>
    <Customer>
        <Number>1</Number>
        <Gender>male</Gender>
        <Title>Mr.</Title>
        <GivenName>Joe</GivenName>
        <MiddleInitial>L</MiddleInitial>
        <Surname>Perry</Surname>
        <StreetAddress>50 Park Row</StreetAddress>
        <City>EDERN</City>
        <State></State>
        <ZipCode>LL53 2SQ</ZipCode>
        <Country>GB</Country>
        <CountryFull>United Kingdom</CountryFull>
        <EmailAddress>JoePerry@einrot.com</EmailAddress>
        <Username>Annever</Username>
        <Password>eiThahph9Ah</Password>
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        <TelephoneNumber>077 6473 7650</TelephoneNumber>
        <MothersMaiden>Fry</MothersMaiden>
        <Birthday>7/4/1991</Birthday>
        <CCType>Visa</CCType>
        <CCNumber>4539148712302735</CCNumber>
        <CVV2>342</CVV2>
        <CCExpires>2/2018</CCExpires>
        <NationalID>YB 20 98 60 A</NationalID>
        <UPS>1Z 23F 389 61 4167 727 1</UPS>
        <Color>Blue</Color>
        <Occupation>Nephrology nurse</Occupation>
        <Company>Friendly Advice</Company>
        <Vehicle>1999 Alfa Romeo 145</Vehicle>
        <Domain>BadProtection.co.uk</Domain>
        <BloodType>O+</BloodType>
        <Pounds>169.4</Pounds>
        <Kilograms>77</Kilograms>
        <FeetInches>5' 10&quot;</FeetInches>
        <Centimeters>177</Centimeters>
        <GUID>a617f840-6e42-4146-b743-090ee59c2c9f</GUID>
        <Latitude>52.806493</Latitude>
        <Longitude>-4.72918</Longitude>
    </Customer> 

Most of the common languages have XML parsers available using either a 
document object model (DOM) parser or the Simple API for XML (SAX) parser. 
Both types come with advantages and disadvantages depending on the size and 
complexity of the XML document with which you are working.

Spreadsheets
Talk to any finance person in your organization, and you’ll discover that their 
entire world revolves around spreadsheets. Programmers have a tendency to 
shun spreadsheets in favor of data formats that make their lives easier. You can’t 
totally ignore them, though. Spreadsheets are the lifeblood of an organization, 
and they probably hold most of the organization’s data.

There are lots of different spreadsheet programs, but the most commonly used 
applications are Microsoft Excel, Google Docs Spreadsheet, and LibreOffice.

Fortunately, there are programming APIs that you can use to extract the 
data from spreadsheets directly, which saves a lot of work in converting the 
spreadsheet to the likes of CSV files. It’s worth studying the formulas in the 
spreadsheets, because there might be some algorithms lurking there that are 
worth their weight in gold.

If you want your finance person to be supportive of the project, tell that 
person that the results will be in a spreadsheet and you’ll have a friend for a 
long time after.
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The Java programming language has a few APIs to choose from that will 
enable you to read and write spreadsheets. The Apache POI project and JExcel 
API are the two most popular.

Databases
If you’ve been brought up with web programming, then you might have had 
some exposure to databases and database tables. Common ones are MySQL, 
Postgres, Microsoft SQL Server, and Oracle.

Recently, there’s been an explosion of NoSQL (meaning Not Only SQL), such 
as MongoDB, CouchDB, Cassandra, Redis, and HBase, which all bring their own 
flavors to data storage. These document and key-value stores move away from 
the rigid table-like structures of traditional databases.

In addition, there are graph databases such as Apache Giraph and Neo4J and 
in-memory systems such as Spark, memcached, and Storm. Chapter 13 is an 
introduction to Spark.

In my opinion, all databases have their place and are worth investigating. 
There’s nothing wrong with having relational, document, and graph databases 
running concurrently for the project. Each has its advantages to the project 
that you might not have considered. As with all these things, there might be a 
learning curve that you need to factor into your project time.

Images

The common data formats previously mentioned mainly deal with text or num-
bers in different shades, but you can’t discount images. There are a number of 
things you can learn from images. Whether you’re trying to use facial recogni-
tion or emotion tracking or you’re trying to determine whether an image is a 
cat or dog (yes, it has been done), there are several APIs that will help.

The most popular formats are Portable Network Graphics (PNG) and JPEG 
images; these are regularly used on the Web. If processing power is freely 
available, then TIFF or BMP are much larger files, but they contain more image 
information.

Ultimately our job is to convert images to numbers so the algorithms can 
work with the vectors of number information. This will require reducing image 
size and then doing the conversion. More of these techniques are covered in 
Chapter 11, “Machine Learning from Image Information.”

Thinking About Output Data

Now it’s time to turn your attention to the output data. This is where the stake-
holders might have a say in how things are going to be done, because ultimately 
it will be those people who deal with the results.
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The primary question about the output of machine learning data is “Who 
is the intended audience?” Depending on the answer to that question, your 
output will vary. You might need a spreadsheet for the financial folks to see 
the results. If the audience is comprised of website users, then it makes sense to 
put the data back into a database table. The machine learning results could be 
merged with other data to define more learning. It really comes down to what 
was defined in the project.

There are a number of paid and free reporting tools available. Some are 
full-blown systems, such as Jasper Reports, BIRT, and Tableau. If you are report-
ing to a web-based audience, then the likes of D3 and Processing might be of 
help to you.

Don’t Be Afraid to Experiment

It’s safe to say that there is no “one solution fits all.” There are many components, 
formats, tools, and considerations to ponder on any project. In effect, every 
machine learning project starts with a clean sheet and communication among 
all involved, from stakeholders all the way through to visualization. Tools and 
scripts can be reused, but every case is going to be different, so things need 
minor adjustments as you go along. Don’t be afraid to play around with data as 
you acquire it; see whether there’s anything you can glean from it.

It’s also worth taking time to grab some open data and make your own scenarios 
and ask your own questions. It’s like a musician practicing an instrument; it’s 
worth putting in the hours so you are ready for the day when the big gig arrives.

The machine learning community is large, and there are plenty of blog posts, 
articles, videos, and books produced by the community. Forums are the perfect 
place to swap stories and experiences, too. As with most things, the more you 
put in, the more you will get out of it.

Over the years, I’ve found that people are more than willing to help contribute 
to a solution if you’re stuck on a problem. If you haven’t looked at the likes of 
http://stackoverflow.com, a collaborative question-and-answer platform for 
software developers, then have a search around. Chances are that someone will 
have encountered the same problem as you.

Summary

As with any project, planning is a key and essential part of machine learning 
and shouldn’t be taken lightly. This chapter covered many aspects of planning, 
including processing, storage, privacy, and data cleaning. You were also intro-
duced to some useful tools and commands that will help in the cleaning phases 
and some validation checks.

http://stackoverflow.com
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The planning phase is a constantly evolving process, and the more machine 
learning projects you and the team perform, the more you will learn from 
previous mistakes.

The key is to start small. Take a snapshot of the data and take a random sample 
with a size of 10 percent of the total. Get the team to inspect the data. Can you 
work with it? Do you anticipate any problems with the processing of this data?

Cleaning the data might take the most time of the project; the actual processing 
might consume only a fraction of the overall project time. If you can supply 
clean data, then your results will be refined.

Regardless of whether you are working on a 10-person team or on your own, 
be aware of your network of contacts; some might have domain knowledge that 
will be useful. Ask lots of questions, too. You’d be surprised how many folks 
are willing to answer questions in order to see you succeed.

The next few chapters examine some different machine learning techniques 
and put some sample code together, so you can start to apply them to your 
own projects.
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“Computers aren’t the thing. They’re the thing that gets us to the thing.”

—Joe MacMillan

This quote comes from the television program Halt and Catch Fire; perhaps we 
should reconsider that statement for our purposes: “Data isn’t the thing. Data 
is the thing that gets us to the thing.” The question to ask is where is the data 
coming from and does it need cleaning or transforming?

When it comes to machine learning and machine learning projects, you’ll 
spend a large portion of your time on getting the data into the right shape so 
it can be processed. Welcome to the dark art that is extracting, transforming, 
and loading data.

Scraping Data

The sad fact of reality is that data is rarely neatly packaged the way we want. 
Sure, there are exceptions like WikiData and the Facebook Graph API, and 
there are application programming interfaces (APIs) that will give you nicely 
prepared data (more on that shortly). But you must be prepared to work with 
the messy world of scraping data.

Data Acquisition Techniques
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Processing scraped data requires a few steps to get it from the usual messy 
state it’s in to something usable.

1.	 Figure out where the data is coming from.

2.	 Figure out how you’re going to get it.

3.	 Make it machine readable.

4.	 Make sure the values are workable.

5.	 Figure out where to store it.

Copy and Paste
There will be a day you’ll have to extract data from a web page or a series of web 
pages. Truth be told, they tend to be a mess, but some are better than others. 
A first attempt would be to copy and paste the data from the page and then 
figure a way out to remove the HTML tags. There are, however, easier ways. 
Let’s look at an example.

Suppose we’ve been tasked with extracting airport data. I’d like to see the 
busiest airports in the United Kingdom. I’ve found a page on Wikipedia, and 
I’d like to get the data (see Figure 3.1).

The link to visit is here:

https://en.wikipedia.org/wiki/List_of_busiest_airports_in_the_United_
Kingdom

Figure 3.1:  Wikipedia list of the busiest airports in United Kingdom

https://en.wikipedia.org/wiki/List_of_busiest_airports_in_the_United_Kingdom
https://en.wikipedia.org/wiki/List_of_busiest_airports_in_the_United_Kingdom
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There are several tables that have the information I’m looking for. For this 
example, I want to look at the 2017–2018 figures. If I were to copy/paste the 
2017–2018 into a text file, the output is okay but needs cleaning (see Figure 3.2).

The actual data doesn’t start until line 9. Fortunately, the copy and paste that 
I’ve done has preserved the tab characters, but it does require some work. I can 
run a command-line operation and apply a regular expression on the data to 
convert the tabs to pipes so I have a visual reference for the columns.

I’m using Perl to do the search and replace. Then to inspect the results, I use 
the head command, which will display the first 20 lines of the output.

$ cp copypaste_airport_data.txt copypaste_airport_data_piped.txt
$ perl -i -p -e "s/\t/\|/g;" copypaste_airport_data_piped.txt
$ head -n 20 copypaste_airport_data_piped.txt
2017 / 2018 data
The following is a list of the 40 largest UK airports by total passenger 
traffic in 2018, from UK CAA statistics.[5]
 
Rank
2018[nb 1]|Airport|Total Passengers[nb 2]|Aircraft Movements[nb 3]
2017|2018|Change
2017 / 18|2017|2018|Change
2017 / 18

Figure 3.2:  Text file of 2017–2018 data
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1|London-Heathrow|78,012,825|80,124,537|2.72.7%|475,783|477,604|0.40.4%
2|London-Gatwick|45,556,899|46,086,089|1.21.2%|285,912|283,919|-0.70.7%
3|Manchester|27,826,054|28,292,797|1.21.2%|203,689|201,247|-1.21.2%
4|London-Stansted|25,904,450|27,996,116|8.18.1%|189,919|201,614|6.26.2%
5|London-Luton|15,990,276|16,769,634|4.94.9%|133,743|136,511|2.12.1%
6|Edinburgh|13,410,343|14,294,305|6.66.6%|128,675|130,016|1.01.0%
7|Birmingham|12,990,303|12,457,051|-4.14.1%|122,067|111,828|-8.48.4%
8|Glasgow|9,897,959|9,656,227|-2.42.4%|102,766|97,157|-5.55.5%
9|Bristol|8,239,250|8,699,529|5.65.6%|76,199|72,927|-4.34.3%
10|Belfast-International|5,836,735|6,268,960|7.47.4%|58,152| 
60,541|4.14.1%
11|Newcastle|5,300,274|5,334,095|0.60.6%|57,808|53,740|-7.07.0%
12|Liverpool|4,901,157|5,046,995|3.03.0%|56,643|59,320|4.74.7%

Let’s review that Perl script again.

$ perl -i -p -e "s/\t/\|/g;" copypaste_airport_data_piped.txt

The flags set up things for us. The -i flag sets the output of the script to the 
same as the filename that was read. It’s worth working on a backup copy of the 
source data. If it all goes wrong, then you can copy the source file again and 
give it another go. An input loop is constructed around the script with -p, and 
the -e flag is to enter a single line of script, that being the regular expression.

The regular expression is a simple search and replace.

"s/<replace this>/<with this>/g;" 

At the end of the expression is g;, which means applying it globally to the 
entire string.

Going back to the output, that Perl script seems to have worked! I’m excited 
now and a little bit closer to getting the data I need. However, on inspection, I 
start to see issues with the data. Looking at the first row, I see things like 2.72.7% 
and 0.40.4%, so there’s a data issue. I could hand edit them to the correct values, 
but that’s time intensive. Or I could craft another regular expression, but that 
could create errors that are then difficult to pick up. The more processes you 
add to parse or fix your data, the more chance you have to add errors to the 
resulting output. I’m now at the point where I want another approach.

Google Sheets
The spreadsheet program that Google supplies has a function that not many 
people talk about. So, I’ll let you in on the secret.

Create a new sheet from the main Drive menu. Once you get the blank spread-
sheet, type in the following formula command in the first cell (A1):

=importhtml("https://en.wikipedia.org/wiki/List_of_busiest_airports_in_
the_United_Kingdom","table",1)
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The function is in three parts. The first is the URL that you want to load into 
the spreadsheet. Second, there’s the entity type you want to extract; in this 
example, it’s the table. The last part is the instance of the entity to extract. For 
the airports, it’s the first table I want.

You’ll see the first cell change to “Loading” while the spreadsheet fetches 
the page, and after a few seconds, the data will appear all nice and neat in the 
spreadsheet (see Figure 3.3).

To export the data to CSV format, click the File tab at the top of the spread-
sheet, then click Download, and then save it to a comma-separated values file. 
This version of the data doesn’t have the issues that the copy-and-paste version 
did. One thing to keep in mind is that the data is still text based; looking at the 
numbers, you can see they still have commas in their format.

While this method saves you a lot of time, there are still things you need to 
keep in mind. You’ll have to do another round of cleaning to remove the commas 
on some of the number values. The best place to do that is in the spreadsheet 
itself and then export the data to CSV.

Using an API

When the whole Web 2.0 thing was being talked about in the early 2000s, the 
consensus was that everyone would have an API and we’d all acquire data 
from each other to power the Web. Personally, I’m not 100 percent convinced 
that happened. It did for some, but not many had the skills to acquire data in a 
machine-friendly and automated way.

Figure 3.3:  Spreadsheet of the busiest airports in the United Kingdom
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An API is a set of routines supplied by a system or a website that lets you 
request and receive data or talk to a system directly. Most of the time you will 
have some sort of authority to talk to the service; this might be a token key or 
username and password combination, for example. Some APIs are public and 
don’t require any sign-up, but those are rarer now because suppliers like to know 
who’s calling, see what data you’re taking, and know how often you’re taking it.

Acquiring Weather Data
The website OpenWeather (https://openweathermap.org) has a full suite of APIs 
to retrieve weather information. There are various endpoints to get things like 
weather for a city or a three-day forecast and historical weather data. When 
you call the API service, you can specify the format you want the data to be in, 
whether that be JSON, CSV, or HTML.

Before you start, you will need to sign up at openweathermap.org. Once an 
account is created, you will need to take a copy of the API key that has been 
generated for you. Once your key is active, it can take a couple of hours; then 
you can try the examples.

For this example, I’m going to retrieve data from the API using three methods: 
the command line, Java, and then Clojure.

Using the Command Line

The curl command appears in most Linux distributions. There is a lot of power 
in this simple command that is worth investigating. For our uses now, it’s quite 
simple because the weather API is a GET-based HTTP call. Using the -o flag, 
you can output the results to a file.

In the code repository for this book, there is a shell scripts directory and 
within the ch03 folder a script that looks like the following:

#!/bin/bash
 
# Add your API key from openweathermaps.org
API_KEY=<<add your api key here>>
 
curl -o londonweather.json https://api.openweathermap.org/data/2.5/
weather?q=London\&APPID=${API_KEY}

You will need to add your API key from openweathermap.org to the shell script. 
When you run this from the command line, you’ll see the following output:

$ ./openweather.sh
  % Total    % Received % Xferd  Average Speed Time    Time Time Current
                                 Dload  Upload   Total Spent    Left 
Speed
100   457 100   457 0   0 3255 0 --:--:-- --:--:-- --:--:--  3264

https://openweathermap.org
http://openweathermap.org
http://openweathermap.org
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When you open the londonweather.json file, you will see the JSON output.

{"coord":{"lon":-0.13,"lat":51.51},"weather":[{"id":800,"main":"Clear","d
escription":"clear sky","icon":"01n"}],"base":"stations","main":{"temp": 
290.84,"pressure":1022,"humidity":68,"temp_min":288.15,"temp_max":294.15}, 
"visibility":10000,"wind":{"speed":3.6,"deg":90},"clouds":{"all":0},"dt":
1566593517,"sys":{"type":1,"id":1414,"message":0.009,"country":"GB","sunr
ise":1566536298,"sunset":1566587317},"timezone":3600,"id":2643743,"name":
"London","cod":200}

Using Java

The process of handling the URL and retrieving the content is all done by classes 
from the java.io and java.net packages. To convert the resulting string into a 
JSONObject, I’m using the org.json Java library.

When this code is executed, the first thing that happens is that the readUrl 
method is called with the URL to get data from. This is stored as a String object 
that is passed to the stringToJSON method to be converted into a JSON object 
(see Listing 3.1).

Listing 3.1:  Using Java to Acquire Weather Data

import org.json.JSONObject;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.MalformedURLException;
import java.net.URL;
import java.net.URLConnection;
 
public class ReadURL {
   public String readUrl(String urlstring) {
       StringBuffer sb = new StringBuffer();
       try {
           URL url = new URL(urlstring);
           URLConnection urlConnection = url.openConnection();
           BufferedReader in = new BufferedReader(new 
InputStreamReader(urlConnection.getInputStream()));
           String inputLine;
           while ((inputLine = in.readLine()) != null)
               sb.append(inputLine);
           in.close();
       } catch (MalformedURLException e) {
       } catch (IOException e) {
       }
       return sb.toString();
   }
 
   public JSONObject stringToJSON(String rawjson) {
       return new JSONObject(rawjson);
   }
 

http://java.net
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   public static void main(String[] args) throws Exception {
       String apikey = "Add your key here.....";
       ReadURL r = new ReadURL();
       String rawstring =r.readUrl("https://api.openweathermap.org/
data/2.5/weather?q=London&APPID=" + apikey);
       JSONObject j = r.stringToJSON(rawstring);
       System.out.println(j.toString());
   }
}

Using Clojure

The Clojure language takes the power of the JVM but provides a functional 
and far more concise method of retrieving data. The slurp function can read 
in a file or a URL, and using the additional clojure.data.json library, you have 
a simple three-line function to read and convert JSON data from an API call.

(ns ch03.core
  (:require [clojure.data.json :as json])
  (:gen-class))
 
(def baseurl "https://api.openweathermap.org/data/2.5/weather?q=London& 
APPID=")
(def apikey "Add your key here....")
 
(defn get-json []
  (let [rawstring (slurp (str baseurl apikey))]
    (json/read-str rawstring :key-fn keyword)))

It’s worth noting that the :key-fn option is using the keyword function to 
convert JSON keys to map key identifiers that are used with Clojure.

ch03.core> (get-json)
{:coord {:lon -0.13, :lat 51.51}, :timezone 3600, :cod 200, :name 
"London", :dt 1566597508, :wind {:speed 3.1, :deg 90}, :id 2643743, 
:weather [{:id 800, :main "Clear", :description "clear sky", :icon 
"01n"}], :clouds {:all 0}, :sys {:type 1, :id 1414, :message 0.0099, 
:country "GB", :sunrise 1566536298, :sunset 1566587317}, :base 
"stations", :main {:temp 289.73, :pressure 1022, :humidity 77, :temp_min 
287.04, :temp_max 293.15}, :visibility 10000}
ch03.core> 

Migrating Data

Acquiring data is one part of the equation; migrating and transforming it will 
also be requested at some point. For some jobs, writing a small program or script 
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to import/export data would be fine, but as the volumes grow and the demands 
from stakeholders get more complex, we need to start looking at alternative tools.

Embulk is an open source bulk loading tool. It provides a number of plugins 
to read, write, and transform data. For example, if you wanted to read a directory 
of CSV files, transform them to JSON, and write them to AWS S3, that can be 
done with Embulk with a single configuration file. If you are using the OpenJDK, 
then it uses version 8 without any issues.

Installing Embulk
Embulk works on Linux, Mac, and Windows platforms. To install it on Linux 
and macOS, you will need to open a terminal window and execute the follow-
ing four commands:

$curl --create-dirs -o ~/.embulk/bin/embulk -L "https://dl.embulk.org/
embulk-latest.jar"
$chmod +x ~/.embulk/bin/embulk
$echo 'export PATH="$HOME/.embulk/bin:$PATH"' >> ~/.bashrc
$source ~/.bashrc

Once it’s installed, you can run Embulk from the command line as you would 
any other application.

Using the Quick Run
Embulk has a feature that will attempt to guess the schema of incoming data. 
In the data/ch03/embulkdata directory, you will see a CSV file generated from 
http://www.fakenamegenerator.com, which is a free service that generates test 
user data. Also in the same directory is the configuration file simpleconfig.yml.

The configuration file has an input step (in:) and an output step (out:).

in:
  type: file
  path_prefix: '/path/to/repo/./embulkdata/sample_'
out:
  type: stdout

When you execute Embulk, it will attempt to parse the CSV file and work out 
an input schema for you. Using the -o option, it will write the output YAML 
to a file.

$embulk guess ./embulkscripts/sampledata/simpleconfig.yml \
-o config.yml

If you take a look at the output file, you’ll see that Embulk has now populated 
things like the delimiter type, whether to skip header lines and a representa-
tion of the schema.

http://www.fakenamegenerator.com
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in:
  type: file
  path_prefix: /path/to/repo/./embulkdata/sample_
  parser:
    charset: UTF-8
    newline: LF
    type: csv
    delimiter: ','
    quote: '"'
    escape: '"'
    trim_if_not_quoted: false
    skip_header_lines: 1
    allow_extra_columns: false
    allow_optional_columns: false
    columns:
    - {name: Number, type: long}
    - {name: Title, type: string}
    - {name: GivenName, type: string}
    - {name: MiddleInitial, type: string}
    - {name: Surname, type: string}
    - {name: City, type: string}
    - {name: ZipCode, type: string}
    - {name: Country, type: string}
    - {name: EmailAddress, type: string}
    - {name: Username, type: string}
    - {name: Age, type: long}
    - {name: Occupation, type: string}
    - {name: Company, type: string}
    - {name: GUID, type: string}
    - {name: Latitude, type: double}
    - {name: Longitude, type: double}
out: {type: stdout}

Installing Plugins
The core Embulk engine doesn’t know the input and output types of the data 
it’s working with; it’s just coordinating the job that’s being executed. Plugins 
are where the power of Embulk lies. For a full list of the plugins available, visit 
the www.embulk.org website.

Plugin installation is done from the command line. Use the following com-
mands to either install a plugin or list the installed plugins on your machine:

$embulk gem install <embulk-plugin-name>
$embulk gem list 

Now you know how to install plugins, I will cover two scenarios that com-
monly happen: migrating file-based data to a database and converting data 
from one type to another.

http://www.embulk.org


	 Chapter 3 ■ Data Acquisition Techniques	 53

Migrating Files to Database
You’ve been asked to migrate some online review stats from a file dump in CSV 
format and migrate them to MySQL. While I appreciate it’s easy to migrate a 
single file to MySQL database with the mysqlimport command, when there are 
many files in a directory, a more managed approach is required.

The schema for the MySQL database is in the same directory as the config-
uration. To install it, assuming you have MySQL installed (it will also be used 
in Chapter 12, “Machine Learning Streaming with Kafka”), run the following 
command to create the database:

$ mysqladmin -u root -p<yourpassword> create embulktest

Then import the schema.

$ mysql -u root -p<yourpassword> embulktest < schema.sql

The next job is to install the MySQL plugin from the Embulk repository. From 
the command line, run the following Embulk command:

$ embulk gem install embulk-output-mysql
2019-01-01 01:01:01.000 +0100: Embulk v0.9.17
Gem plugin path is: /home/jason/.embulk/lib/gems
Fetching: embulk-output-mysql-0.8.2.gem (100%)
Successfully installed embulk-output-mysql-0.8.2
1 gem installed

I’m using the simple config principle that I used in the previous example; I’m 
going to let Embulk do the work for me. This time, however, I’ve crafted the 
required output element with the information about the MySQL database and 
username and password information.

in:
  type: file
  path_prefix: '/path/to/repo/./embulkdata/file_to_db/output'
out:
  type: mysql
  host: localhost
  user: root
  password: xxxxx
  port: 3306
  table: scenario1
  database: embulktest
  mode: insert

When I run the guess function on Embulk, it will generate the config.yml as 
shown earlier, keeping the output element intact and updating the input element 
with the new information it’s learned from the CSV file.
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in:
  type: file
  path_prefix: /home/jason/./work/embulkscripts/sampledata/scenario1/
output
  parser:
    charset: UTF-8
    newline: CRLF
    type: csv
    delimiter: ','
    quote: '"'
    escape: '"'
    trim_if_not_quoted: false
    skip_header_lines: 1
    allow_extra_columns: false
    allow_optional_columns: false
    columns:
    - {name: userid, type: long}
    - {name: itemid, type: long}
    - {name: rating, type: double}
    - {name: timestamp, type: long}
out: {type: mysql, host: localhost, user: root, password: admin, port: 
3307, table: scenario1,
  database: embulktest, mode: insert}

The final step is to run Embulk and apply the configuration. This will take 
data in the directory and insert it into the database.

$ embulk run config.yml 

There will be a lot of message output while the job runs. Once it has com-
pleted, open up your MySQL database and then do a quick check.

$ mysql -u root -p<yourpassword> embulktest
 
mysql> select * from scenario1 limit 10;
+--------+--------+--------+------------+
| userid | itemid | rating | timestamp  |
+--------+--------+--------+------------+
|    548 |      5 |      3 |  857405447 |
|    292 |   1721 |    4.5 | 1140051202 |
|     73 |   3706 |    4.5 | 1464750953 |
|    378 |  95873 |    3.5 | 1443294223 |
|    165 |   1393 |      5 | 1111612302 |
|    553 |  59369 |      3 | 1423010662 |
|    104 |  42738 |    3.5 | 1446674082 |
|    283 |   6296 |      3 | 1115170015 |
|    548 |    544 |      3 |  857407872 |
|    353 |   1220 |      3 | 1157420794 |
+--------+--------+--------+------------+
10 rows in set (0.00 sec)
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Bulk Converting CSV to JSON
One common request is converting data from one type to another. In this final 
example, I’ll use Embulk to convert a CSV file to JSON. While it seems trivial, it 
can be done in code. What I’m doing is thinking forward to when the volumes 
of data are too big for single programs to handle.

The first thing to do is install the filter plugin, which will transform the data 
to JSON.

$ embulk gem install embulk-filter-to_json
2019-01-01 01:01:01.000 +0100: Embulk v0.9.17

In the csv_to_json example directory, you will see a data.csv file with scor-
ing data. This is what will be converted to JSON. The same directory also has 
the configuration file for Embulk.

in:
  type: file
  path_prefix: data.csv
  parser:
    type: csv
    charset: UTF-8
    newline: CRLF
    null_string: 'NULL'
    skip_header_lines: 1
    comment_line_marker: '#'
    columns:
      - {name: time,  type: timestamp, format: "%Y-%m-%d"}
      - {name: id, type: long}
      - {name: name, type: string}
      - {name: score, type: double}
filters:
  - type: to_json
    column:
      name: test
      type: string
    skip_if_null: [id]
    default_timezone: Asia/Tokyo
out:
  type: stdout

Remember that the filter is not a CSV-to-JSON conversion; it’s transforming to 
JSON anything that’s passed in the process stream. When this example is run, 
the CSV data is passed through the input and then into the filter, and the result-
ing JSON output is sent to the console through the standard output channel.

$embulk run config.yml
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Here’s the sample output from my job execution. Note how any erroneous 
lines are skipped from the filter.

2019-08-24 10:42:04.983 +0100 [INFO] (0001:transaction): Loading files 
[data.csv]
2019-08-24 10:42:05.180 +0100 [INFO] (0001:transaction): Using local 
thread executor with max_threads=8 / output tasks 4 = input tasks 1 * 4
2019-08-24 10:42:05.198 +0100 [INFO] (0001:transaction): {done:  0 / 1, 
running: 0}
2019-08-24 10:42:05.495 +0100 [WARN] (0014:task-0000): Skipped line  
/home/jason/work/embulkscripts/sampledata/scenario3/data.csv:100  
(org.embulk.spi.time.TimestampParseException: text is null or empty 
string.): ,,,9170
{"score":1370.0,"name":"Vqjht6YEUBsMPXmoW1iOGFROZF27pBzz0TUkOKeDXEY","t
ime":"2015-07-13 09:00:00.000000000 +0900","id":0}
{"score":3962.0,"name":"VmjbjAA0tOoSEPv_vKAGMtD_0aXZji0abGe7_
VXHmUQ","time":"2015-07-13 09:00:00.000000000 +0900","id":1}
{"score":7323.0,"name":"C40P5H1WcBx-aWFDJCI8th6QPEI2DOUgupt_
gB8UutE","time":"2015-07-13 09:00:00.000000000 +0900","id":2}
{"score":5905.0,"name":"Prr0_u_T1ts4myUofBorOJFpCYcOTLOmNBMuRmKIPJU","t
ime":"2015-07-13 09:00:00.000000000 +0900","id":3}
{"score":8378.0,"name":"AEGIhHVW5cV6Xlb62uvx3TVl3kmh3Do8AvvtLDS7MDw","t
ime":"2015-07-13 09:00:00.000000000 +0900","id":4}
{"score":275.0,"name":"eupqWLrnCHr_1UaX4dUInLRxx5Q_cyQ4t0oSJBcw0MA","t
ime":"2015-07-13 09:00:00.000000000 +0900","id":5}
{"score":9303.0,"name":"BN8cQ47EXRb_oCGOoN96bhBldoiyoCp5O_
vGHwg0XCg","time":"2015-07-13 09:00:00.000000000 +0900","id":6}

Summary

In this chapter, I outlined a few techniques for acquiring data, whether that be 
via page scraping, using Google Sheets to import table data, or using scripting 
languages to clean up files. If an API is available, then it makes sense to maxi-
mize the potential gains from it whenever you can.

When the volumes of data start to build, then it’s worth using tools designed 
for the job instead of crafting your own. The open source Embulk application 
is an excellent example of what has been created in the open source world. You 
can leverage it to speed up and streamline your data acquisition and migration 
strategies.
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After acquiring and cleaning our data, it’s now time to focus our attention 
on some numbers. As a gentle introduction, it’s a good idea to revisit some 
statistics and how they can be used. In addition, I’ll cover standard deviation, 
Bayesian techniques, forms of linear regression, and the power of random 
numbers.

The code to accompany this chapter will be in both Java and Clojure and will 
show you how to use some libraries as well as how to code these algorithms 
yourself.

Working with a Basic Dataset

Before we dive into this chapter, we require some data to work from. I have 
prepared a dataset of 474 scores from the judging of a television program 
(more on this later). They’re all integers and give us a nice introduction into 
statistics.

As the chapter progresses, we’ll add to this dataset and do some prediction 
work.

Statistics, Linear Regression, 
and Randomness
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Loading and Converting the Dataset
You can download the dataset from the GitHub repository. In the folder /data 
/ch04 there is a file called stats.txt. As we are dealing with the text of num-
bers, there are some tasks that are required before we can start any work. Let’s 
look at the file first, shown here:

2
5
3
4
...
3
9
8
8
 
/data/ch04/stats.txt

While it appears that there are numbers on each line of the text file, they are 
still treated as text. If we were to use mathematical notation at this point, our 
list of numbers would look like this:

{2, 5, 3, 4,...3,  9, 8, 8}

Our first task is to convert the contents of each line of the text file and convert 
them to an integer type that our program can understand.

Loading Data with Clojure

Reading a text file in Clojure can be done in one command using slurp and 
taking the file path as an argument. Slurping the file will consume it all, so 
there’s some modification to do. This is called transforming.

Currently the file is one long line of numbers and newlines.

2\n5\n3\n4\n...3\n9\n8\n8

The split command in the clojure.string library will split on a given reg-
ular expression. This will produce a collection of strings. The last thing to do is 
to map through each string and cast it to a double value. The double parsing is 
using a Java function, as Clojure is a JVM language. We can call Java with ease 
using Java Interop.

(defn load-file [filepath]
  (map (fn [v] (Double/parseDouble v))
       (-> (slurp filepath)
           (s/split #"\n"))))
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Loading Data with Java

The process is identical to the Clojure process, though in the Java language it’s a 
little more involved in terms of code. Using the BufferedReader and FileReader 
objects, a stream is created to read in the file. After iterating each line, it converts 
the value to an integer and adds it to the list.

Notice the use of the Double object to call the parseDouble method. It’s the 
same method as used by the Clojure program.

package ch04;
import java.io.*;
import java.util.ArrayList;
import java.util.List;
 
public class LoadFileExample {
    public List<Double> loadFile(String filename) throws Exception {
        List<Double> numList = new ArrayList<Double>();
        File file = new File(filename);
        BufferedReader br = new BufferedReader(new FileReader(file));
        String s;
        while ((s = br.readLine()) != null) {
            numList.add(Double.parseDouble(s));
        }
        return numList;
    }
 
    public static void main(String[] args) throws Exception {
        List<Double> nums = new  LoadFileExample()
          .loadFile("/stats.txt");
        System.out.println(nums);
    }
}

Regardless of the method, the output is basically the same, a list of numbers.

[2, 5, 3, 4,.... 3, 9, 8, 8]

Assuming the resulting functions have been stored in a new object, then it’s 
ready for use to get some summary statistics. In the following sections, we’ll 
look at calculating some basis statistics with our vector of numbers.

Introducing Basic Statistics

I don’t know why, but the mere mention of the word statistics can bring either a 
wide smile or a breakout of panic. There was a time I was in the former camp 
but transferred to the smiling camp. Regardless of how you feel about them, 
statistics are straightforward enough in code. I also include the mathematical 
notation for each of the summary statistic methods.
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Covered in the section are the basic summary statistics: the sum, minimum 
and maximum, mean, mode, median, range, variance, and standard deviation.

Once again, I’ll cover both Java and Clojure variations. With Clojure we have 
the bonus of having something called a REPL, which stands for “read, evaluate, 
print, loop,” meaning you can type the commands out and get the results of 
code easily. Java sadly does not have this luxury in version 1.8, but there are 
services on the Internet that do provide REPL-like interfaces for Java if you 
want to experiment.

I will assume from this point on that you have the collection of scores in a 
value called numList.

Minimum and Maximum Values
Finding the minimum and maximum values of a list of numbers, while not 
seemingly groundbreaking in terms of stats or machine learning, is still worth-
while to know.

Mathematical Notation

It’s perfectly fine to use the words min and max, but it’s also acceptable to use  
an upper and lower arrow.

˄ for the minimum value.

˅ for the maximum value.

Clojure

With Clojure we apply a function to the collection. This takes a function (in this 
instance either min or max) and uses the contents of the collection as an argument. 
If I were to pass directly to min or max, I would get the whole collection returned 
as it is classed as one argument.

(defn find-min-value [v]
  (apply min v))
 
(defn find-max-value [v]
  (apply max v))
 
;; Run on the REPL
ch04.core> (find-min-value numlist)
2.0
ch04.core> (find-max-value numlist)
10.0
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Java

The Collections object will give you access to the methods min and max assuming 
that the input type is a collection. The List<Integer> type covered in the file 
loading example earlier in the chapter will work here.

Collections.min(numList);
Collections.max(numList);

Sum
The sum, or rather summation, is the addition of a sequence of numbers. The 
result is a single value of the total. The order of the numbers is not important in 
summation. For example, the summation of [1, 2, 3, 4] is the same as [3, 1, 4, 2].

Mathematical Notation

The mathematical notation for summation is the Greek letter sigma, which looks 
like a big E: ∑. The more we look at the algorithms used in machine learning, the 
more you’ll see the adding up of a sequence or collection of numbers happens a lot.

Clojure

We’re using the apply function against the collection again; the only change is 
the function that’s being applied. The + is classed as a function.

(defn find-sum [v]
  (apply + v))
 
;; Run on the REPL
ch04.core> (find-sum numlist)
3113.0

Java

With Java, things require a little more thought, as we are dealing with a collection 
of objects. At this point, I could write a method to get the sum for me, iterating 
each value in the collection and adding to the accumulative total.

public int getSum(List<Integer> numList) {
    int total = 0;
    for(Integer i : numList){
        total += i.intValue();
    }
    return total;
}
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An alternative would be to use the Arrays class and use the stream() method. 
Be aware that this method uses only primitive arrays as it’s input, so you need 
to convert the List first.

int[] pNumList = list.stream()
                     .mapToInt(Integer::intValue)
                     .toArray();
int total = Arrays.stream(pNumList).sum();

Mean
The mean, or the average, is one of the first statistical methods you’ll learn at 
school. When we say “the mean” or “the average,” we are normally referencing 
the arithmetic mean. The mean gives us a good idea of where the middle is in 
a set of data.

However, there is a caveat to that: a nice smooth average is working with the 
assumption that the dataset is evenly distributed. If there are outliers within 
the dataset, then the average can be heavily distorted and incorrect. When there 
are outliers in the data, then it’s wiser to use the median as a gauge.

Arithmetic Mean

To calculate the arithmetic mean, take the set of numbers and sum them. The 
last step is to divide that summed number by the number of items in the dataset.

1 + 2 + 3 = 6

6 / 3 = 2

Harmonic Mean

The harmonic mean is calculated differently. There are three steps to complete 
the calculation.

1.	 For each value, calculate the reciprocal value.

2.	 Find the average of the reciprocal values.

3.	 Calculate the reciprocal of the average.

1/1 = 1, 1/2 = 0.5, 1/3 = 0.3333

1 + 0.5 + 0.3333 = 1.8333

3/1.8333 = 1.6366
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Geometric Mean

If the values in your dataset are widely different, then it’s worth using the 
geometric mean to find the average. The calculation is made by multiplying 
the set of numbers and finding the nth root of the total. For example, if your set 
had two numbers in it, you’d square root the total; if it had three numbers, you 
would cube root; and so on.

The following are two examples, one with a set of three numbers and another 
with a set of six numbers.

1 x 2 x 3 = 6
3√6 = 1.81712

The second example.

1 × 2 × 3 × 4 × 5 × 6 = 720
6√720 = 2.9937

The Relationship Between the Three Averages

There is a theory of mathematics called the inequality of arithmetic and geometric 
means, also known as the AM-GM inequality.

Within a list of numbers with no negative values, the arithmetic mean should 
be greater or equal to the geometric mean. The means of each type should be 
equal only when the values of the list are the same.

As a guide, the arithmetic mean should be equal or greater than the geometric 
mean, and the geometric mean should be equal or greater than the harmonic 
mean.

AM ≥ GM ≥ HM

In the examples for each of the means, we have the following outputs:

2 ≥ 1.81712 ≥ 1.6366

Now let’s turn our attention to code and how to perform each of the mean 
types.

Clojure

For some of the Clojure code samples, I am using the kixi.stats library:

https://github.com/MastodonC/kixi.stats

https://github.com/MastodonC/kixi.stats
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You can easily run the examples from the REPL. Using the original dataset 
that was loaded in, you will get the following output:

(defn basic-arithmetic-mean [v]
  (/ (find-sum v) (count v)))
 
;; From the REPL
ch04.core> (basic-arithmetic-mean numlist)
6.567510548523207
 
(defn harmonic-mean [v]
  (transduce identity ks/harmonic-mean v))
 
;; From the REPL
ch04.core> (harmonic-mean numlist)
5.669668073229876
 
(defn geometric-mean [v]
  (transduce identity ks/geometric-mean v))
 
;; From the REPL
ch04.core> (geometric-mean (take 100 numlist))
5.917692496564965

The last example is slightly different from the others; I’ve used the take 
command to use the first 100 values from the dataset. The reason for this is that 
when all the values in the dataset are multiplied, the answer is infinity, meaning 
that the number has passed the maximum value of the data type. Using a subset 
of the full dataset reduces the chance of error.

Java

The Apache Commons Math library provides a useful set of summary statistics 
classes. Using the StatUtils.mean method will take a double primitive array 
and return the mean.

public double getMean(List<Double> nums) {
   double[] pNumList = nums.stream().mapToDouble(Double::doubleValue)
                           .toArray();
   return StatUtils.mean(pNumList);
}
 
 
public double getHarmonicMean(List<Double> nums) {
   double[] pNumList = nums.stream().mapToDouble(Double::doubleValue)                
                           .toArray();
   double reciprocolTotal = 0.0;
   for(int i = 0 ; i < pNumList.length - 1 ; i++) {
       reciprocolTotal += 1/pNumList[i];
   }
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   double harmonicMean = pNumList.length/reciprocolTotal;
   return harmonicMean;
}
 
public double getGeometricMean(List<Double> nums) {
   double[] pNumList = nums.stream().mapToDouble(Double::doubleValue)
                           .toArray();
   return StatUtils.geometricMean(pNumList);
}

Mode
To find the most commonly used number in the dataset, we use the mode.

Clojure

The frequencies command will tell you how many times a value has occurred 
in the dataset. This gives a map of value and frequency counts.

ch04.core> (frequencies numlist)
{2.0 15, 4.0 39, 8.0 91, 9.0 76, 5.0 43, 10.0 16, 3.0 36, 6.0 74, 7.0 84}

The next step is to use the group-by function to return another map, with the 
frequency value first and then a vector of the value/frequencies.

ch04.core> (group-by second (frequencies numlist))
{74 [[6.0 74]], 39 [[4.0 39]], 15 [[2.0 15]], 91 [[8.0 91]], 36 [[3.0 36]], 
43 [[5.0 43]], 76 [[9.0 76]], 16 [[10.0 16]], 84 [[7.0 84]]}

Sorting that map gives you the frequencies in order. It’s the last value we’re 
interested in.

ch04.core> (last (sort (group-by second (frequencies numlist))))
[91 [[8.0 91]]]

We know value 8 has 91 occurrences; it’s only the value 8 that we’re want-
ing to return as the mode. Using the map function to find the first value of the 
second part of the vector (which is another vector, [8.0 91]), we get the result of 
the first element. That’s the mode.

ch04.core> (map first (second (last (sort (group-by second (frequencies 
numlist))))))
(8.0)



66	 Chapter 4 ■ Statistics, Linear Regression, and Randomness

That can be wrapped up in a function; you can see this in the full code listing.

(defn find-mode [v]
  (map first (second
              (last
               (sort
                (group-by second
                          (frequencies v)))))))

Java

Use the StatUtils.mode method in Apache Commons Math to get the mode of 
a double primitive array. Notice it returns a double primitive array.

public double[] getMode(List<Double> nums) {
   double[] pNumList = nums.stream().mapToDouble(Double::doubleValue) 
.toArray();
   return StatUtils.mode(pNumList);
}

Median
To find the middle number of the dataset, you use the median. Finding the 
median number involves listing the dataset in ascending order and finding 
the middle number.

If the total number of values in the dataset is odd, then the middle number is 
going to be a value from the dataset. On the other hand, if the dataset has an even 
set of values, then the average of the middle two numbers of the dataset is used.

Clojure

The kixi.stats library takes in a collection and will return the median.

(defn find-median [v]
  (transduce identity ks/median v))

Java

Using the DescriptionStatistics class, the getPercentile method will give 
the median from a collection. You will have to iterate the collection and add the 
double value to the instance of the class with the addValue method.

public double getMeadian(List<Double> nums) {
   double[] pNumList = nums.stream().mapToDouble(Double::doubleValue).
toArray();
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   DescriptiveStatistics ds = new DescriptiveStatistics();
   for(int i = 0; i < pNumList.length -1 ; i++ ) {
       ds.addValue(pNumList[i]);
   }
   return ds.getPercentile(50);
}

Range
The range of the dataset is calculated by taking the minimum value of the set 
from the maximum value. So, for example, the dataset looks like this:

[2,2,3,4,5,7,7]

Then the range is 7 – 2 = 5.

Clojure

You’ve seen the functions to find the minimum and the maximum values of the 
collection. Taking one away from the other will give you the range.

(defn find-range [numlist]
  (- (find-max-value numlist) (find-min-value numlist)))

Java

The same goes for the Java implementation. The methods for minimum and 
the maximum have already been established; it’s just a case of reusing them.

public double getRange(List<Double> nums) {
   return (getMaxValue(nums) - getMinValue(nums));
}

Interquartile Ranges
As already discussed, if a dataset has outliers, the arithmetic mean will not be 
the centered average you are looking for. It’s best using either the harmonic or 
geometric mean. The range gives a complete spread of the data, start to end. 
The interquartile range gives you the bulk of the values, also known as “the 
middle 50.”

Subtracting the third quartile of the dataset from the first quartile will give 
you the interquartile range.
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Clojure

The kixi.stats library has a function for the interquartile range.

(defn interquartile-range [v]
  (transduce identity ks/iqr v))

Java

In the same way as finding the median, using the DescriptiveStatistics class 
will give you the interquartile range by subtracting the last quarter from the 
first quarter of the dataset.

public double getIQR(List<Double> nums) {
   double[] pNumList = nums.stream().mapToDouble(Double::doubleValue)
                           .toArray();
   DescriptiveStatistics ds = new DescriptiveStatistics();
   for(int i = 0; i < pNumList.length -1 ; i++ ) {
       ds.addValue(pNumList[i]);
   }
   return ds.getPercentile(75) - ds.getPercentile(25);
}

Variance
The variance will give you the spread of the dataset. If you have a variance of 
zero, then all the values of the dataset are the same. There is a process to working 
out the variance of a dataset.

1.	 Work out the mean of the dataset.

2.	 For each number in the dataset, subtract the mean and then square the result.

3.	 Calculate the average of the squared differences.

Clojure

The variance can be found in the dataset with the kixi.stats library.

(defn find-variance [numlist]
  (transduce identity ks/variance numlist))

Java

The SummaryStatistics class has a getVariance method. As with other exam-
ples, you will have to add values into the instance of the class with the addValue 
method.
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public double getVariance(List<Double> nums){
   double[] pNumList = nums.stream().mapToDouble(Double::doubleValue)
                           .toArray();
   SummaryStatistics ss = new SummaryStatistics();
   for(int i = 0; i < pNumList.length -1 ; i++ ) {
       ss.addValue(pNumList[i]);
   }
   return ss.getVariance();
}

Standard Deviation
The standard deviation (sometimes called SD) is a number that tells us how the 
values for a dataset are spread out from the mean. If the standard deviation is 
low, then that means that most of the numbers in the dataset are close to the 
average. A large standard deviation will show that the numbers in the set are 
more spread out from the average.

The majority of the working out for the standard deviation is done by calcu-
lating the variance. The missing step is to square root the variance of the dataset.

The values that lie in the distribution can be calculated once you have the 
standard deviation. Called the empirical rule (or the 68-95-99.7 rule), it will tell 
you that 68 percent of the values will lie within two standard deviations to the 
mean, 95 percent within three and 99.7 percent within four.

Clojure

Standard deviation can be calculated with kixi.stats.

(defn find-standard-deviation [v]
  (transduce identity ks/standard-deviation v))

Java

The SummaryStatistics class supports standard deviation.

public double getStandardDeviation(List<Double> nums) {
   double[] pNumList = nums.stream().mapToDouble(Double::doubleValue)
                           .toArray();
   SummaryStatistics ss = new SummaryStatistics();
   for(int i = 0; i < pNumList.length -1 ; i++ ) {
       ss.addValue(pNumList[i]);
   }
   return ss.getStandardDeviation();
}
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Using Simple Linear Regression

While linear regression is not a machine learning algorithm, it is classed as a 
statistical method. Regardless, being able to predict a value from historical data 
is a worthwhile skill to have at your disposal. Simple linear regression plots 
an independent variable (the predictor) against a dependent variable (criterion 
variable).

A good example uses the two commonly used temperature scales, Fahrenheit 
and Celsius, because there’s a relationship between the two. It’s illustrated with 
the following regression equation:

Fahrenheit = 1.8x + 32

Say we have a temperature reading of 28 Celsius. To find the Fahrenheit 
reading, we multiply 28 by 1.8 and add 32. The answer is 82.4f.

You can generate your own linear regression calculations easily either by 
using a spreadsheet or by using a library. In this example, we’re going to use 
the comma-separated value file called ch4slr.csv and generate a simple linear 
regression by using an application and writing some code.

The data is comprised of two sets of scores from a competition. With the 
scores of the first judge, is it possible to reliably predict the scores of the second 
judge? We can find out by using simple linear regression.

Using Your Spreadsheet
No one that I’m aware of sits down and writes things out on paper that often. 
This is even more true when you have a lot of data, as we do with our score 
data. To impress your friends at dinner parties and other social gatherings, 
you can show them that you can do simple linear regression on a spreadsheet.

Using Excel

Within the graph functions of Excel, there are tools to enable linear regression. 
For this example, I’m using Microsoft Excel Office 365 edition. The same func-
tionality exists in Libre Office and Open Office, and you can also work out 
simple linear regression in Google Sheets.

Loading the CSV Data

Start Excel, and the opening home screen will give you the option to create a 
new file or open an existing one. Click the Open button on the left.

Find the file ch4slr.csv and open it into Excel. This is just a two-column file 
representing two judges’ scores from a competition (see Figure 4.1).
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Creating a Scatter Plot

The next step is to create a simple scatter plot graph. Select all the numbers in 
both columns and click Insert at the top. The top section of Excel will display 
a new set of icons; look for the Graph section, and you will see a scatter plot 
diagram. Clicking this will open a dialog box with scatter plot options.

Choose the Scatter option, which is the basic plot (see Figure 4.2).

Figure 4.1:  Excel file showing two judges’ scores

Figure 4.2:  Scatter plot of the two judges’ scores



72	 Chapter 4 ■ Statistics, Linear Regression, and Randomness

The values of the CSV file will be displayed within the plot. There’s little 
meaning in terms of regression, so let’s add that in.

Showing the Trendline

First, I’d like to see a trendline to show where the data lies relative to the 
slope. Click the displayed scatter plot, and the options in the top menu will 
change. Click Add Chart Element, and a drop-down menu will appear. Select 
Trendline; then move your mouse across to the new menu and select Linear 
(see Figure 4.3).

Showing the Equation and R2 Value

Next up is the R2 value. As before, click Add Chart Element and select “Trendline. 
This time use the bottom option, More Trendline Options. This will bring a 
panel on the right side of the spreadsheet.

Scrolling down to the bottom of the panel, you will see three checkbox items. 
Click “Display Equation on chart” and “Display R-squared value on chart.” The 
R2 value and the equation will appear on your chart (see Figure 4.4).

Figure 4.3:  Trendline added to the scatter plot
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Making a Prediction

At this point you can use a calculator to make a prediction. Looking at the 
graph, I can see this equation:

y = 0.6735x + 3.0788

Assuming I want to predict what the judge’s score will be if I rate a 6 in the 
competition, I can find out with the following equation:

Judge’s score = (my score * 0.6735) + 3.0788

Or:

Judge’s score = (6 * 0.6735) + 3.0788 = 7.1198

Rounding down, I get the score of 7.

Writing a Program
There comes a time when you will want to progress past a spreadsheet. This 
might be because there’s so much data to process, for example.

When using Java, the Apache Commons Math library has an implementa-
tion of simple linear regression. The process is straightforward. The first step 
is to load the text file and add each comma pair into a collection (an ArrayList 
in this case). Using the addData method, the double values for both scores are 
passed in; the string to primitive double data type conversion happens during 
this step. The code for this is shown in Listing 4.1.

Figure 4.4:  R2 value and equation
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Listing 4.1:  Using AddData for Simple Linear Regression

package mlbook.chapter4.slr;
 
import org.apache.commons.math3.stat.regression.SimpleRegression;
import java.io.*;
import java.util.ArrayList;
import java.util.List;
import java.util.Random;
import java.util.UUID;
 
public class LinearRegressionBuilder {
    private static String path = "/path/to/ch4slr.csv";
 
    public LinearRegressionBuilder() {
        List<String> lines = loadData(path);
        SimpleRegression sr = getLinearRegressionModel(lines);
 System.out.println(runPredictions(sr, 40));
    }
 
    private SimpleRegression getLinearRegressionModel(List<String> 
lines) {
        SimpleRegression sr = new SimpleRegression();
        for(String s : lines) {
            String[] ssplit = s.split(",");
            double x = Double.parseDouble(ssplit[0]);
            double y = Double.parseDouble(ssplit[1]);
            sr.addData(x,y);
        }
        return sr;
    }
 
    private String runPredictions(SimpleRegression sr, int runs) {
        StringBuilder sb = new StringBuilder();
        // Display the intercept of the regression
        sb.append("Intercept: " + sr.getIntercept());
        sb.append("\n");
        // Display the slope of the regression.
        sb.append("Slope: " + sr.getSlope());
        sb.append("\n");
        
        sb.append("\n");
        sb.append("");
        Random r = new Random();
        for (int i = 0 ; i < runs ; i++) {
            int rn = r.nextInt(10);
            sb.append("Input score: " + rn + " prediction: " + 
                Math.round(sr.predict(rn)));
            sb.append("\n");
        }
        return sb.toString();
    }
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    private List<String> loadData (String filename) {
        List<String> lines = new ArrayList<String>();
        try {
            FileReader f = new FileReader(filename);
            BufferedReader br;
            br = new BufferedReader(f);
            String line = "";
            while ((line = br.readLine()) != null) {
                lines.add(line);
            }
        } catch (FileNotFoundException e) {
            System.out.println("File not found.");
        } catch (IOException e) {
            System.out.println("Error reading file");
        }
 
        return lines;
    }
 
    public static void main(String[] args) {
        LinearRegressionBuilder dlr = new LinearRegressionBuilder();
    }
}

Running the program in Listing 4.1 will give different responses as the input 
scores are based on a random number. It will look something like this:

Intercept: 3.031026812343159
Slope: 0.6769332768870359
Running random predictions......
Input score: 4 prediction: 6
Input score: 5 prediction: 6
Input score: 2 prediction: 4
Input score: 5 prediction: 6
Input score: 3 prediction: 5
Input score: 8 prediction: 8
Input score: 4 prediction: 6
Input score: 9 prediction: 9
Input score: 8 prediction: 8
Input score: 3 prediction: 5

Embracing Randomness

It’s not always essential for you to have data at hand to do any work. Random 
numbers can bring up some interesting experiments and code. In this section, 
we’re going to look at two aspects of using random numbers. First we’ll look 
at finding Pi using some basic math and Monte Carlo methods; second we’ll 
look at random walks.
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Finding Pi with Random Numbers
The Monte Carlo method is the concept of emulating a random process. When 
the process is repeated many times, it will give rise to the approximation of 
some mathematical quantity of interest. So, in theory with enough random darts 
thrown at a circle, you should be able to find the number of Pi.

Figure 4.5 shows our square.

Now draw a circle within the square (see Figure 4.6).

Placing enough random data in the square will give you darts that are in the 
square, and some of them will be within the circle (see Figure 4.7). These are 
the darts that we’re really interested in.

Figure 4.5:  Initial drawing of a square

Figure 4.6:  Circle within a square

Figure 4.7:  Random darts within the circle and the square
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These are random throws. You might throw 10 times; you might throw 1 mil-
lion times. At the end of the dart throws, you count the number of darts within 
the circle, divide that by the number of throws (10 million, 1 million, and so 
on), and then multiply it by 4.

ℼ = 4 × (darts within the circle / total points)

The more throws we do, the better chance we get of finding a number near Pi. 
This is the law of large numbers at work. It’s a classic computer science problem, 
and I’m going to solve it by writing a program in Clojure to do the simulation for us.

Using Monte Carlo Pi in Clojure
I’m going to create a function that simulates a single dart throw. I want to break 
down my Clojure code into as many simple functions as possible. This makes 
testing and bug finding far easier.

(defn throw-dart []
  {:x (calc-position 0)
   :y (calc-position 0)})

What I’m creating is a map with an x,y coordinate with a 0,0 center point and 
then passing the coordinate for x and y through another function to calculate 
the position (calc-position).

(def side-of-square 2)
(defn calc-position [v]
  (* (/ (+ v side-of-square) 2) (+ (- 1) (* 2 (Math/random)))))

The calc-position function takes the value of either x and y and applies 
the calculation. This is somewhere -side-of-square/2 and +side-of-square/2 around 
the center point.

Running this function in a REPL, we can see the x or y position.

mathematical.programming.examples.montecarlo> (calc-position 0)
0.4298901518005238

Is the Dart Within the Circle?

Now I have an x,y position as a map, {:x some random throw value :y some 
random throw value}, and I want to confirm that the throw is within the circle.

Using the side-of-square value again (hence it’s a def), I can figure out if 
the dart hits within the circle. I’ll pass the map with x,y coords in and take the 
square root of the added squared coordinates.
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(defn is-within-circle [m]
  (let [distance-from-center (Math/sqrt (+ (Math/pow (:x m) 2) 
                             (Math/pow (:y m) 2)))]
     (< distance-from-center (/ side-of-square 2))))

This function will return true or false. If I check this in the REPL, it looks 
like this:

mathematical.programming.examples.montecarlo> (throw-dart)
{:x 0.22535085231582297, :y 0.04203583357796781}
mathematical.programming.examples.montecarlo> (is-within-circle *1)
true

Now Throw Lots of Darts!

So far, there are functions to simulate a dart throw and confirm it’s within the 
circle. Now I need to repeat this process as many times as required.

I’m creating two functions: compute-pi-throwing-dart to run a desired 
number of throws and throw-range to do the actual working to find the number 
of true hits in the circle.

(defn throw-range [throws]
  (filter (fn [t] (is-within-circle (throw-dart))) (range 0 throws)))
 
(defn compute-pi-throwing-dart [throws]
  (double (* 4 (/ (count (throw-range throws)) throws))))

The throw-range function executes the throw-dart function, and is-within-
circle evaluates the map to see whether the value is either true or false. The 
filter functions will return a list of true values. So, for example, if out of 10 
throws the first, third, and fifth are within the circle, I’ll get (1,3,5) as the result 
from the function.

Calling the function compute-pi-throwing-dart sets all this into motion. As 
I said at the beginning, taking the number of darts in the circle and dividing 
that by the number of throws taken and multiplying that by 4 should give a 
number close to Pi.

The more throws you do, the closer it should get.
Via the REPL, there is proof of an emergent behavior. The value of Pi comes 

from the large number of throws we did at the dart board.
The last thing I’ll do is build a function to run the simulation.

(defn run-simulation [iter]
  (map (fn [i]
    (let [throws (long (Math/pow 10 i))]
      (compute-pi-throwing-dart throws))) (range 0 iter)))
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If I run four simulations, I’ll get 1, 10, 100, and 1,000 throws computed. These 
are then returned as a list. If I run nine simulations (which can take some time 
depending on the machine you’re using) in the REPL, I get the following:

mathematical.programming.examples.montecarlo> (run-simulation 9)
(0.0 3.6 3.28 3.128 3.1176 3.1428 3.142932 3.1425368 3.14173752)

That’s a nice approximation. Pi is 3.14159265, so getting the Monte Carlo method 
to compute Pi by random evaluations is good. Here is the final code listing:

(ns ch04.montecarlo)
 
(def side-of-square 2)
 
(defn calc-position [v]
  (* (/ (+ v side-of-square) 2) (+ (- 1) (* 2 (Math/random)))))
 
(defn throw-dart []
  {:x (calc-position 0)
   :y (calc-position 0)})
 
(defn is-within-circle [m]
  (let [distance-from-center (Math/sqrt (+ (Math/pow (:x m) 2) 
                             (Math/pow (:y m) 2)))]
    (< distance-from-center (/ side-of-square 2))))
 
(defn throw-range [throws]
  (filter (fn [t] (is-within-circle (throw-dart))) (range 0 throws)))
 
(defn compute-pi-throwing-dart [throws]
  (double (* 4 (/ (count (throw-range throws)) throws))))
 
(defn run-simulation [iter]
  (map (fn [i]
         (let [throws (long (Math/pow 10 i))]
           (compute-pi-throwing-dart throws))) (range 0 iter)))
 
mathematical.programming.examples.montecarlo> (run-simulation 3)
(4.0 3.6 3.28)
mathematical.programming.examples.montecarlo> (run-simulation 9)
(0.0 4.0 3.28 3.056 3.1392 3.146 3.139848 3.1414404 3.14128264)
mathematical.programming.examples.montecarlo> 
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Summary

Mathematics underpins everything that is done within machine learning. This 
chapter acts as a reminder to some of the basic summary statistics, building on 
this knowledge to produce techniques like linear regression, standard deviation, 
and Monte Carlo methods.

Adding simple programming functions with Java and Clojure, you now have 
a suite of tools at your disposal whenever you need them. Don’t forget there are 
times when a spreadsheet wins.
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5

Do not be deceived by the decision tree; at first glance it might look like a simple 
concept, but within the simplicity lies its power. This chapter shows you how 
decision trees work. The examples use Weka to create a working decision tree 
that will also create the Java code for you.

The Basics of Decision Trees

The aim of any decision tree is to create a workable model that will predict 
the value of a target variable based on the set of input variables. This section 
explains where decision trees are used along with some of the advantages and 
limitations of decision trees. In this section, you also find out how a decision 
tree is calculated manually so you can see the math involved.

Uses for Decision Trees
Think about how you select different options within an automated telephone call. 
The options are essentially decisions that are being made for you to get to the desired 
department. These decision trees are used effectively in many industry areas.

Financial institutions use decision trees. One of the fundamental use cases is 
in option pricing, where a binary-like decision tree is used to predict the price 
of an option in either a bull or bear market.

Working with Decision Trees
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Marketers use decision trees to establish customers by type and predict 
whether a customer will buy a specific type of product.

In the medical field, decision tree models have been designed to diagnose 
blood infections or even predict heart attack outcomes in chest pain patients. 
Variables in the decision tree include diagnosis, treatment, and patient data.

The gaming industry now uses multiple decision trees in movement recog-
nition and facial recognition. The Microsoft Kinect platform uses this method 
to track body movement. The Kinect team used one million images and trained 
three trees. Within one day and using a 1,000-core cluster, the decision trees 
were classifying specific body parts across the screen.

Advantages of Decision Trees
There are some good reasons to use decision trees. For one thing, they are easy 
to read. After a model is generated, it’s easy to report to others regarding how the 
tree works. Also, with decision trees you can handle numerical or categorized 
information. Later, this chapter demonstrates how to manually work through an 
algorithm with category values; the example walk-through uses numerical data.

In terms of data preparation, there’s little to do. As long as the data is formal-
ized in something like comma-separated variables, then you can create a working 
model. This also makes it easy to validate the model using various tests. With 
decision trees you use white-box testing—meaning the internal workings can 
be observed but not changed; you can view the steps that are being used when 
the tree is being modeled.

Decision trees perform well with reasonable amounts of computing power. 
If you have a large set of data, then decision tree learning will handle it well.

Limitations of Decision Trees
With every set of advantages there’s usually a set of disadvantages sitting in 
the background. One of the main issues of decision trees is that they can create 
overly complex models, depending on the data presented in the training set. 
To avoid the machine learning algorithm’s over-fitting the data, it’s sometimes 
worth reviewing the training data and pruning the values to categories, which 
will produce a more refined and better-tuned model.

Some of the decision tree concepts can be hard to learn because the model 
cannot express them easily. This shortcoming sometimes results in a larger-than-
normal model. You might be required to change the model or look at different 
methods of machine learning.

Different Algorithm Types
Over the years, there have been various algorithms developed for decision tree 
analysis. Some of the more common ones are listed here.
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ID3

The ID3 (Iterative Dichotomiser 3) algorithm was invented by Ross Quinlan to 
create trees from datasets. By calculating the entropy for every attribute in the 
dataset, this could be split into subsets based on the minimum entropy value. 
After the set had a decision tree node created, all that was required was to 
recursively go through the remaining attributes in the set.

ID3 uses the method of information gain—the measure of difference in entropy 
before and after an attribute is split—to decide on the root node (the node with 
the highest information gain).

ID3 suffered from over-fitting on training data, and the algorithm was better 
suited to smaller trees than large ones. The ID3 algorithm is used less these 
days in favor of the C4.5 algorithm, which is outlined next.

C4.5

Quinlan came back for an encore with the C4.5 algorithm. It’s also based on the 
information gain method, but it enables the trees to be used for classification. 
This is a widely used algorithm in that many users run in Weka with the open 
source Java version of C4.5, the J48 algorithm.

There are notable improvements in C4.5 over the original ID3 algorithm. With the 
ability to work on continuous attributes, the C4.5 method will calculate a threshold 
point for the split to occur. For example, with a list of values like the following:

85,80,83,70,68,65,64,72,69,75,75,72,81,71

C4.5 will work out a split point for the attribute (a) and give a simple decision 
criterion of:

a <= 80 or a > 80

C4.5 has the ability to work despite missing attribute values. The missing 
values are marked with a question mark (?). The gain and entropy calculations 
are simply skipped when there is no data available.

Trees created with C4.5 are pruned after creation; the algorithm will revisit 
the nodes and decide if a node is contributing to the result in the tree. If it isn’t, 
then it’s replaced with a leaf node.

CHAID

The CHAID (Chi-squared Automatic Interaction Detection) technique was devel-
oped by Gordon V. Kass in 1980. The main use of it was within marketing, but 
it was also used within medical and psychiatric research.
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MARS

For numerical data, it might be worth investigating the MARS (multivariate 
adaptive regression splines) algorithm. You might see this as an open source 
alternative called “Earth,” as MARS is trademarked by Salford Systems.

How Decision Trees Work
Every tree is comprised of nodes. Each node is associated with one of the input 
variables. The edges coming from that node are the total possible values of 
that node. A leaf represents the value based on the values given from the input 
variable in the path running from the root node to the leaf. Because a picture 
paints a thousand words, see Figure 5.1 for an example.

Decision trees always start with a root node and end on a leaf. Notice that 
the trees don’t converge at any point; they split their way out as the nodes are 
processed.

Figure 5.1 shows a decision tree that classifies a loan decision. The root node 
is “Age” and has two branches that come from it, whether the customer is 
younger or older than 55.

The age of the client determines what happens next. If the person is younger 
than 55, then the tree prompts you to find out if he or she is a student. If the 
client is older than 55, then you are prompted to check his or her credit rating.

With this type of machine learning, you are using supervised learning to 
deduce the optimal method to make a prediction; what I mean by “supervised 
learning” is that you give the classifier data with the outcomes. The real question 
is, “What’s the best node to start with as the root node?” The next section exam-
ines how that calculation is done.

AGE

Home Owner?

Loan LoanNo Loan No Loan

Good Credit?

Y YN N

<55 >55

Figure 5.1:  A decision tree
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Building a Decision Tree

Decision trees are built around the basic concept of this algorithm.

■■ Check the model for the base cases.

■■ Iterate through all the attributes (attr).

■■ Get the normalized information gain from splitting on attr.

■■ Let best_attr be the attribute with the highest information gain.

■■ Create a decision node that splits on the best_attr attribute.

■■ Work on the sublists that are obtained by splitting on best_attr and add 
those nodes as child nodes.

That’s the basic outline of what happens when you build a decision tree. 
Depending on the algorithm type, like the ones previously mentioned, there 
might be subtle differences in the way things are done.

Manually Walking Through an Example

If you are interested in the basic mechanics of how the algorithm works and 
want to follow along, this section walks through the basics of calculating entropy 
and information gain. If you want to get to the hands-on part of the chapter, 
then you can skip this section.

The method of using information gain based on pre- and post-attribute entropy 
is the key method used within the ID3 and C4.5 algorithms. As these are the 
commonly used algorithms, this section concentrates on that basic method of 
finding out how the decision tree is built.

With machine learning–based decision trees, you can get the algorithm to 
do all the work for you. It will figure out which is the best node to use as the 
root node. This requires finding out the purity of each node. Consider Table 5.1, 
which includes only true/false values, of some user purchases through an 
e-commerce store.

Table 5.1: Users’ Purchase History

HAS CREDIT 
ACCOUNT?

READ 
REVIEWS?

PREVIOUS 
CUSTOMER?

DID 
PURCHASE?

User A N Y Y Y

User B Y Y Y Y

User C N N Y N

User D Y N N Y

User E Y Y Y Y
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There are four nodes in the table:

■■ Does the customer have an account?

■■ Did the customer read previous product reviews?

■■ Is the customer a returning customer?

■■ Did the customer purchase the product?

At the start of calculating the decision tree there is no awareness of the node 
that will give the best result. You’re looking for the node that can best predict 
the outcome. This requires some calculation. Enter entropy.

Calculating Entropy

Entropy is a measure of uncertainty and is measured in bits and comes as a 
number between zero and 1 (entropy bits are not the same bits as used in com-
puting terminology). Basically, you are looking for the unpredictability in a 
random variable.

There are two entropy types to work out; the first is entropy on a single attri-
bute, and the second is entropy for two attributes. With this example, I’ll use 
the Had Credit Account as our target attribute for our working example. By 
the end of the exercise, we will know the next node to use in the decision tree.

The single attribute for the Has Credit Account attribute has two outcomes 
(Yes or No).

HAS CREDIT ACCOUNT

Yes No

3 2

The entropy calculation looks as follows:

	

Entropy(Has Credit Account) Entropy
Entropy

2 3
0 4 0 6

,
. , .

00 4 0 4 0 6 0 6
0 97095

2 2. log . . log .
. 	

When two attributes are applied, the values are mapped as in the following 
table:

HAS CREDIT ACCOUNT

Y N

Reads Reviews Y 2 1 3

N 1 1 2



	 Chapter 5 ■ Working with Decision Trees	 87

With two attributes, we end up with the following entropy calculation:

	

Entropy Credit Account, Reads Reviews
P Y E P N

Has
2 1, E

/ /
1 1

2 5 0 971 1 5 1
0 5884

,
.

. 	

So, you have two gains: one before the split (Has Credit Account, which is 
0.97095) and one after the split (Has Credit Account/Reads Reviews, which is 
0.5884).

You’re nearly done on this attribute. The next step is to calculate the information 
gain.

Information Gain

When you know the gain before and after the split in the attribute, you can 
calculate the information gain. With the attribute to see if the customer has a 
credit account, your calculation will be the following:

	

InformationGain Gain before the split Gain(after the spli( ) tt 
with Reads Reviews)
0 97095 0 5884
0 38255
. .
.

	

So, the information gain on the Has Credit Account attribute is 0.38255.

Rinse and Repeat

The previous two sections covered the calculation of information gain for one 
attribute, Has Credit Account. You need to work on the other two attributes 
to find their information gain. With the values of information gain for all the 
attributes, you can now make a decision on which node to start with in the tree.

ATTRIBUTE INFORMATION GAIN

Reads Reviews 0.38255

Did Make Purchase 0.48672

Is Previous Customer 0.37095

Now things are becoming clearer; assuming the Has Credit Account is the 
root node, the Did Make Purchase attribute has the highest information gain 
and therefore, should be the next deciding node in the tree.
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The order of information gain determines where the node will appear in the 
decision tree model. The node with the highest gain becomes the root node. 
Working out all the gains on each attribute and their information gains will 
mathematically give you the tree.

As the decision tree algorithm is calculated iteratively, smaller trees can be 
worked out easily. Though it’s easy to assume that with several hundreds of 
instances no one really wants to work it all out by hand. At that point it’s time 
to bring in software to help.

Decision Trees in Weka

In this section, you’ll use the Weka data-mining tool to work through some 
training data of the optimum sales of Lady Gaga’s CDs depending on specific 
factors within the store. I explain the factors in question as you walk though 
that data. While I appreciate the world has leaned towards streaming and 
downloading music, people still do buy CDs.

The Requirement
The requirement is to create a model that will be able to predict a customer sale 
on Lady Gaga CDs depending on the CDs’ placement within the store. You’ve 
been given some data by the record store about where the product was placed, 
whether it was at eye level or not, and whether the customer actually purchased 
the CD or put it back on the shelf.

The client wants to be able to run other sets of data through the model to 
determine how sales of a product will fare.

Working through this methodically, you need to do the following:

1.	 Run through the training data supplied and turn it into a definition file 
for Weka.

2.	 Use the Weka workbench to build the decision tree for you and plot an 
output graph.

3.	 Export some generated Java code with the new decision tree classifier.

4.	 Test the code against some test data.

5.	 Think about future iterations of the classifier.

It feels like there’s a lot to do, but after you get into the routine, it’s quite simple 
to accomplish with the tools at hand. First look at the training data.
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Training Data
Before anything else happens, you need some training data. The client has 
given you some in a .csv file, but it would be nice to formalize this. This is 
what you received:

Placement,prominence, pricing, eye_level, customer_purchase
end_rack,85,85,FALSE,yes
end_rack,80,90,TRUE,yes
cd_spec,83,86,FALSE,no
std_rack,70,96,FALSE,no
std_rack,68,80,FALSE,no
std_rack,65,70,TRUE,yes
cd_spec,64,65,TRUE,yes
end_rack,72,95,FALSE,yes
end_rack,69,70,FALSE,yes
std_rack,75,80,FALSE,no
end_rack,75,70,TRUE,no
cd_spec,72,90,TRUE,no
cd_spec,81,75,FALSE,yes
std_rack,71,91,TRUE,yes

Weka saves the file as an .arff file to set up the attributes and let you give it 
some data from which to train. The .arff file is a text file that outlines the data 
model you are going to use:

@relation ladygaga
 
@attribute placement {end_rack, cd_spec, std_rack}
@attribute prominence numeric
@attribute pricing numeric
@attribute eye_level {TRUE, FALSE}
@attribute customer_purchase {yes, no}
 
@data
end_rack,85,85,FALSE,yes
end_rack,80,90,TRUE,yes
cd_spec,83,86,FALSE,no
std_rack,70,96,FALSE,no
std_rack,68,80,FALSE,no
std_rack,65,70,TRUE,yes
cd_spec,64,65,TRUE,yes
end_rack,72,95,FALSE,yes
end_rack,69,70,FALSE,no
std_rack,75,80,FALSE,no
end_rack,75,70,TRUE,no
cd_spec,72,90,TRUE,no
cd_spec,81,75,FALSE,yes
std_rack,71,91,TRUE,yes
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The data file has a few elements to it, so let’s look through it one section at 
a time.

Relation

The @relation tag is the name of the dataset you are using. In this instance it’s 
Lady Gaga’s CDs, so I’ve called it ladygaga.

Attributes

Next, you have the attributes that are used within your data model. There are 
five attributes in this set that are the top line of raw CSV data that you received 
from the client.

Placement: What type of stand the CD is displayed on: an end rack, a special 
offer bucket, or a standard rack?

Prominence: What percentage of the CDs on display are Lady Gaga CDs?

Pricing: What percentage of the full price was the CD at the time of purchase? 
Rarely is a CD sold at full price, unless it is an old, back-catalog title.

Eye Level: Was the product displayed at eye-level position? The majority of 
sales will happen when a product is displayed at eye level.

Customer Purchase: What was the outcome? Did the customer purchase?

The Prominence and Pricing attributes are both numeric values. The other 
three are given the nominal values that are to be expected when the algorithm 
is being run. Placement has three: end_rack, cd_spec, or std_rack. The Eye Level 
attribute is either true or false, and the Customer Purchase attribute has two 
nominal values of either yes or no to show that the customer bought the product.

Data

Finally, you have the data. It’s comma separated in the order of the attributes 
(Placement, Prominence, Pricing, Eye Level, and Customer Purchase). In this 
sample, you know the outcomes—whether a customer purchased or not; this model 
is about using regression to get your predictions in tune for new data coming in.

You can find all the code for this chapter on the book’s companion website at

www.wiley.com/go/machinelearning2e

Using Weka to Create a Decision Tree
Now that you have your data model in place, you can get started. When you 
open the Weka program, you are presented with a small opening screen  

http://www.wiley.com/go/machinelearning2e
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(see Figure 5.2) with four buttons: Explorer, Experimenter, KnowledgeFlow, and 
Simple CLI. Click the Explorer button.

When the Explorer opens, you will be confronted with another window with 
a number of sections and an array of buttons (see Figure 5.3). Don’t worry if it all 
looks confusing right now; this walk-through takes you through it step by step.

Click the Open File button and select the data file called ladygaga.arff. Weka 
parses the data model and preprocesses the data. Within no time you’re already 
getting information based on the preprocessing of the data model and the data.

Figure 5.2:  The Weka GUI Chooser

Figure 5.3:  The basic Explorer window
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The Select Attribute pane on the right side of the Explorer window in 
Figure 5.4 shows the three distinct nominal values of the customer _ pur-

chase attribute. Weka has also noticed that you have 14 instance rows and 
the five attributes.

After preprocessing comes classification. Click the Classify button in the top 
row of buttons. You’re going to use the C4.5 classification algorithm; within 
Weka this is called the J48 algorithm. In the Classifier pane (see Figure 5.5), 
click the Choose button and select the J48 option under the Trees menu head-
ing. The selection pane closes automatically, and you see that the name of 
the classifier has changed from the default ZeroR to J48 –C 0.25 –M 2  
(see Figure 5.5).

The option flags used in the default J48 classifier are setting the pruning 
confidence (the –C flag) and the minimum number of instances (-M).

To run the classifier, click the Start button and watch the Classifier output 
window (see Figure 5.6). You see the information on the run appear. The run 
information tells you about the scheme used and gives a run-down on the model 
on which Weka has worked.

Figure 5.4:  The preprocess pane with data
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Interesting data starts to emerge. The J48 pruned tree gives results on, in this 
case, the placement, as it has the highest information gain:

J48 pruned tree
------------------
 
placement = end_rack: yes (5.0/1.0)
placement = cd_spec
|   pricing <= 80: yes (2.0)
|   pricing > 80: no (2.0)
placement = std_rack
|   eye_level = TRUE: yes (2.0)
|   eye_level = FALSE: no (3.0)
 
Number of Leaves  :       5
 
Size of the tree :  8
 
 
Time taken to build model: 0 seconds 

It appears that placing the product on the end rack is good for sales. For the 
special offer rack, it seems that pricing plays a part; if the product is too cheap 
customers, walk away. On the standard racks, the placement of the product is 
a factor for sales; it sells if it’s at eye level.

Figure 5.5:  Selecting the classifier
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Finally you want to plot the visualization of the tree for the management team 
to look at because pictures speak louder than words. On the Results List pane 
on the bottom left of the Explorer window you can see the time and algorithm 
that was run. Right-click (use Alt+click if you are using a macOS machine) and 
select the Visualize Tree option to see the tree in its visual representation, as 
shown in Figure 5.7.

It’s usually at this point where everyone pats each other on the back and says, 
“Job well done,” but you’re not finished yet. You don’t want to have to run the 
Weka Explorer every time you have data to run. What you want is some code 
that you can reuse.

Creating Java Code from the Classification
As mentioned in Chapter 2, there is no one tool that really fits all. Weka is 
excellent, but you want code that you can safely run in an existing codebase. 
Perhaps you want to hook your newly created classification to a Hadoop job, if 
the incoming volume of data was sufficient to do so.

With the existing classifier, click the More Options button, and a new window 
opens with the options for the current evaluator. (See Figure 5.8.)

The last option is to output to source code. By default, the class name will be 
WekaClassifier. It won’t save your Java code, but it will output in the Classifier 
output window.

Figure 5.6:  Classifier with output
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Figure 5.7:  J48 visualization

Figure 5.8:  Evaluation options pane
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Start the classifier again, and in the output window you see the Java code at 
the end of the output information.

package mlbook.ch5.decisiontrees;
 
import weka.core.Attribute;
import weka.core.Capabilities;
import weka.core.Capabilities.Capability;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.RevisionUtils;
import weka.classifiers.Classifier;
 
public class WekaWrapper
  extends Classifier {
 
  /**
   * Returns only the toString() method.
   *
   * @return a string describing the classifier
   */
  public String globalInfo() {
    return toString();
  }
 
  /**
   * Returns the capabilities of this classifier.
   *
   * @return the capabilities
   */
  public Capabilities getCapabilities() {
    weka.core.Capabilities result = new weka.core.Capabilities(this);
 
    result.enable(weka.core.Capabilities.Capability.NOMINAL_ATTRIBUTES);
    result.enable(weka.core.Capabilities.Capability.NUMERIC_ATTRIBUTES);
    result.enable(weka.core.Capabilities.Capability.DATE_ATTRIBUTES);
    result.enable(weka.core.Capabilities.Capability.MISSING_VALUES);
    result.enable(weka.core.Capabilities.Capability.NOMINAL_CLASS);
    result.enable(weka.core.Capabilities.Capability.MISSING_CLASS_
VALUES);
 
    result.setMinimumNumberInstances(0);
 
    return result;
  }
 
  /**
   * only checks the data against its capabilities.
   *
   * @param i the training data
   */
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  public void buildClassifier(Instances i) throws Exception {
    // can classifier handle the data?
    getCapabilities().testWithFail(i);
  }
 
  /**
   * Classifies the given instance.
   *
   * @param i the instance to classify
   * @return the classification result
   */
  public double classifyInstance(Instance i) throws Exception {
    Object[] s = new Object[i.numAttributes()];
    
    for (int j = 0; j < s.length; j++) {
      if (!i.isMissing(j)) {
        if (i.attribute(j).isNominal())
          s[j] = new String(i.stringValue(j));
        else if (i.attribute(j).isNumeric())
          s[j] = new Double(i.value(j));
      }
    }
    
    // set class value to missing
    s[i.classIndex()] = null;
    
    return WekaClassifier.classify(s);
  }
 
  /**
   * Returns the revision string.
   * 
   * @return        the revision
   */
  public String getRevision() {
    return RevisionUtils.extract("1.0");
  }
 
  /**
   * Returns only the classnames and what classifier it is based on.
   *
   * @return a short description
   */
  public String toString() {
    return "Auto-generated classifier wrapper, based on weka.
classifiers.trees.J48 (generated with Weka 3.6.10).\n" + this.
getClass().getName() + "/WekaClassifier";
  }
 
  /**
   * Runs the classfier from commandline.
   *
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   * @param args the commandline arguments
   */
  public static void main(String args[]) {
    runClassifier(new WekaWrapper(), args);
  }
}
 
class WekaClassifier {
 
  public static double classify(Object[] i)
    throws Exception {
 
    double p = Double.NaN;
    p = WekaClassifier.N32ec89882(i);
    return p;
  }
  static double N32ec89882(Object []i) {
    double p = Double.NaN;
    if (i[0] == null) {
      p = 0;
    } else if (i[0].equals("end_rack")) {
      p = 0;
    } else if (i[0].equals("cd_spec")) {
    p = WekaClassifier.N473959d63(i);
    } else if (i[0].equals("std_rack")) {
    p = WekaClassifier.N63915224(i);
    } 
    return p;
  }
  static double N473959d63(Object []i) {
    double p = Double.NaN;
    if (i[2] == null) {
      p = 0;
    } else if (((Double) i[2]).doubleValue() <= 80.0) {
      p = 0;
    } else if (((Double) i[2]).doubleValue() > 80.0) {
      p = 1;
    } 
    return p;
  }
  static double N63915224(Object []i) {
    double p = Double.NaN;
    if (i[3] == null) {
      p = 0;
    } else if (i[3].equals("TRUE")) {
      p = 0;
    } else if (i[3].equals("FALSE")) {
      p = 1;
    } 
    return p;
  }
} 
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Open your text editor of choice and then copy and paste the Java code. Save 
the file as WekaClassifier.java (or the name of the class you specified in the 
options pane).

In the source code, there are actually two classes: a wrapper class that Weka 
generates and a main method from which to run. The core of the classifier is in 
the second class, WekaClassifier. This is basically a set of if/then statements 
based on the classified tree.

Testing the Classifier Code
Make a copy of the .arff file to test your coded classifier. Where the outcomes 
are yes or no, replace them with question marks (?). This means you want the 
classifier to work out the answer for you:

end_rack,85,85,FALSE,?
end_rack,80,90,TRUE,?
cd_spec,83,86,FALSE,?
std_rack,70,96,FALSE,?
std_rack,68,80,FALSE,?
std_rack,65,70,TRUE,?
cd_spec,64,65,TRUE,?
end_rack,72,95,FALSE,?
end_rack,69,70,FALSE,?
std_rack,75,80,FALSE,?
end_rack,75,70,TRUE,?
cd_spec,72,90,TRUE,?
cd_spec,81,75,FALSE,?
std_rack,71,91,TRUE,?

You need to write a new class to load in your test data and run each instance 
against the coded classifier.

package chapter3;
 
import java.io.BufferedReader;
import java.io.FileReader;
 
import weka.core.Instances;
 
public class TestClassifier {
    public static void main(String[] args) {
        WekaWrapper ww = new WekaWrapper();
        try {
            Instances unlabeled = new Instances(new BufferedReader(
                    new FileReader("lg2.arff")));
 
            unlabeled.setClassIndex(unlabeled.numAttributes() - 1);
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            for (int i = 0; i < unlabeled.numInstances(); i++) {
                double clsLabel = 
   ww.classifyInstance(unlabeled.instance(i));
                System.out.println(clsLabel + " -> " + 
   unlabeled.classAttribute().value((int) clsLabel));
            }
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
 
}

The instances are loaded in, and then the for loop iterates and uses the gen-
erated classifyInstance() method to get the scoring from the classifier. In this 
example, you’re looking for the decision of whether a sale will happen.

Because the classifyInstance() returns the value as a double data type, 
you reference that against the class attribute array position. In this case, the 
customer _ purchase attribute has two elements only, “yes” and “no.” The first 
element in the array (0) points to “yes,” and the second element (1) points to “no.”

Running this example generates the following output:

0.0 -> yes
0.0 -> yes
1.0 -> no
1.0 -> no
1.0 -> no
0.0 -> yes
0.0 -> yes
0.0 -> yes
0.0 -> yes
1.0 -> no
0.0 -> yes
1.0 -> no
0.0 -> yes
0.0 -> yes

You could develop this basic code further to pull the required information 
from a database via Java Database Connectivity (JDBC) and then store the results 
again. You could even dump the results into a text file by making a copy of the 
instances first and updating them in the for loop.

Instances unlabeled = new Instances(new BufferedReader(
                    new FileReader("lg2.arff")));
unlabeled.setClassIndex(unlabeled.numAttributes() - 1);
Instances trained = new Instances(unlabeled);
            
for (int i = 0; i < unlabeled.numInstances(); i++) {
    double clsLabel = ww.classifyInstance(unlabeled.instance(i));
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    trained.instance(i).setClassValue(clsLabel);
    System.out.println(clsLabel + " -> " + 
      unlabeled.classAttribute().value((int) clsLabel));
}

The changes required are labeled in bold. This would be useful if you were 
to output the changes of the instances to a text file, for example.

In terms of the actual work, you’re done. You can deliver some solid code.

Thinking About Future Iterations
This chapter covered a lot of ground in a short space: putting an .arff file 
together to create a classifier and generating the Java code with Weka and test-
ing it with more unclassified data.

The test data you had was small, which is fine for getting everything working. 
In the real world, though, you’d be processing much more data. The question is, 
how much data should you retain for training? As a guide, I use 10 percent of 
the total data as a starting point and work from there. It’s also worth thinking 
about the seasonality of data, especially if you are working in retail. Creating 
models for certain seasonal periods can boost the information gain in your 
training sets.

Time waits for no one, and the same applies here. Data changes, trends change, 
and so do management decisions, and so on. It’s important to keep the classi-
fier up-to-date by means of running new test data and seeing if the model can 
improve.

Summary

You’ve seen how decision trees work and the different algorithm types that 
are available. At a hands-on level, you’ve worked on a full project to create a 
working classifier based on the C4.5 (J48, which is the Java open source imple-
mentation as used in Weka) algorithm to predict customer purchasing behavior 
on products determined by placement, prominence, and pricing. Although many 
people perceive decision trees as simple, do not underestimate their uses. They 
are easy to understand and don’t need a huge amount of preparation. They are 
often useful regardless of whether you have category or numerical data.
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6

One of the more common machine learning strands you’ll come across is clus-
tering, mainly because it’s very useful. For example, marketing companies love 
it because they can group customers into segments. This chapter describes the 
details of clustering and illustrates how clusters work and where they are used.

	 N OT E     Please don’t confuse machine learning clustering with clusters of machines 
in a networking sense; we’re talking about something very different here.

What Is Clustering?

If you boil down all the definitions of clustering out there, you get “organizing 
a group of objects that share similar characteristics.” It’s classed as an unsuper-
vised learning method, which means there’s no prior training data from which 
to learn. In Figure 6.1 you see there are three distinct groupings of data; each 
one of those groups is a cluster.

The main aim is to find structure within a given set of data. Because there 
are a lot of algorithms to choose from, clustering casts a wide net. This is where 
experimentation comes in handy; which algorithm is the right choice? Sometimes 
you just need to put some code together and play with it. You’ll do that shortly.

Clustering
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Where Is Clustering Used?

Clustering is a widely used machine learning approach. Although it might 
seem simple, do not underestimate the importance of grouping multivariate 
data into refined groupings.

The Internet
Social media network analysis uses clustering to determine communities of users. 
With so many users on Facebook, for example, using these sorts of techniques 
can refine advertising so that certain ads go to specific groups of customers.

If you’ve ever searched on one of many mapping websites, you might have 
seen clustering at work when there are a lot of interest pins built up in a given 
location. Instead of showing all the pins, which would provide a bad user expe-
rience, clustering is used to define the group of pins within the given location.

Website logs and search results are often clustered to show more relevant 
search result groups. A number of companies are using clustering to refine 
search engine queries.

Business and Retail
Market research companies use clustering a lot. With surveys that contain many 
variables, a multivariate system like clustering gives marketers a better defini-
tion of groups of customers in relation to the answers given in the survey. This 
might be broken down by population, location, and previous buying habits, for 
example. With the clusters defined, the marketing companies can try to develop 
new products or think about testing products for certain clusters in the results.

In Red Dots Blue Dots

Green Dots

Figure 6.1:  A graph representation of a cluster
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Along with association rules learning (discussed in Chapter 7), clustering is 
also used for basket analysis. Certain auction sites use clustering because there 
is no defined stock number in the listings. It’s easier to run clustering and group 
items and preferences than use association rules.

Law Enforcement
Crimes are logged with all the aspects of the felony listed. Police departments 
are running clustering and other machine learning algorithms to predict when 
and where future crimes will happen. The result of this might be that patrol 
cars are deployed to certain problem areas at certain times, or specialist help is 
sent to areas where certain sorts of crimes show high numbers.

Computing
With the rise of the “Internet of Things,” we are now collecting more data 
from sensors than ever before. Clustering can be used to group the results of 
the sensors. For example, thinking of a temperature sensor, you might cluster 
date and time against the temperature. Another example would be motion 
detection; a number of passive infrared sensors could be generating data on 
movement within a location. Is a certain location a hotspot at a specific time? 
This information can be easily clustered and inspected.

Course work in the education sector, especially with the advent of large-scale 
learning online, can be clustered into student groups and results. For example, 
do certain clusters of students excel at courses compared to other students?

Clustering is used often in digital imaging. When large groups of images 
need to be segmented, it’s usually a cluster algorithm that works on the set 
and defines the clusters. Algorithms can be trained to recognize faces, specific 
objects, or borders, for example.

Clustering Models

As previously mentioned, the goal of clustering is to segment data into specific 
groups. There are many different clustering algorithms for the simple fact that 
there is really only one common denominator among all clusters—that you’re 
trying to find groups of objects.

For example, there are distribution models that use multivariate distributions 
for their modeling. Graph models can show cluster-like properties when the 
nodes start showing as small subsets connected with one main edge, as shown 
in Figure 6.2.

You can also approach simple clustering with groups in the same way you 
group in a structured query language.
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One of the more commonly used cluster models is the centroid model, which 
is where the k-means algorithm comes in. The k-means algorithm is basically 
vector quantization. This chapter concentrates on the k-means algorithm and 
creates a basis of the walk-through later in the chapter.

How the K-Means Works
If you have a group of objects, the idea of the k-means algorithm is to define a 
number of clusters. What’s important is that it’s up to you to define how many 
clusters you want. For example, say I have 1,000 objects and I want to find 4 clusters:

n objects
k clusters

1000
4

Each one of the clusters has a centroid (sometimes called the mean, hence the 
name k-means), a point where the distance of the objects will be calculated. The 
clusters are defined by an iterative process on the distances of the objects to 
calculate which are nearest to the centroid. This is all done unsupervised; you 
just have to let the algorithm do its processing and inspect the results. After the 
iterations have taken place to the point where the objects don’t move to different 
centroids, then it’s assumed that the k-means clustering is complete.

The following pseudocode describes what’s happening:

calculate inital values for means m[1],m[2],m[3],m[4]
 
assign object to nearest center
 
while(there are changes in the mean position) {
    estimate the means to classify into clusters
    for(i in 1 to k) {
        m[i] = mean of the samples for cluster i
    }
}

Figure 6.2:  Nodes and edges as clusters
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Initialization

First, the algorithm must initialize by assigning a cluster to every observation 
made. The random partition method places the cluster points toward the center of 
the dataset. Another initialization method is the Forgy method, which spreads 
out the randomness of the initial location of the cluster.

After the initial cluster observations are assigned, you can look at the assign-
ment and updating of the algorithm.

Assignments

Each observed object is assigned to the cluster to find out which cluster cen-
troid it’s assigned to; the algorithm uses a Euclidean distance measurement. 
The sum of squares is then calculated by squaring the Euclidean distances to 
each cluster centroid, and the one with the smallest value is the cluster that the 
object is assigned to.

Calculating the Euclidean distance is quite simple and requires only some 
entry-level math; if you can remember how to do Pythagoras’ theorem, then 
you are already there.

Assume a basic grid of six positions on the X-axis (horizontal) and four posi-
tions on the Y-axis (vertical). The center point of my cluster is currently at 1,6, 
and the object is located at 3,1, as shown in Figure 6.3.

The distance is 3-1=2 on the vertical side and 6-1=5 on the horizontal axis. 
Using Pythagoras’ theorem, the squared distance is

	 2 2 5 2 4 25 29	
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1

1

2

3

4

5

6 (1,6)

= Object Position

= Cluster Centroid Position

(3,1)
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5

Figure 6.3:  Euclidean distances
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The square root of 29 is 5.38. This carries on for all the objects in the dataset 
that are assigned to the clusters.

Update

In the update step, you assign the object values to the cluster. The recalculation 
of the center points of the cluster (the centroids) is taken as the average of the 
values of the objects that are part of the cluster. This process carries on as a loop 
until the entities in each group no longer change.

The k-means algorithm is very effective, but it’s not without its problems. 
It can take a few runs with the data to get a decent fit of clusters. When you 
choose too few, objects can easily spill into the incorrect cluster over a period 
of time during the processing.

Calculating the Number of Clusters in a Dataset
When presented with a dataset, it can be hard to define the number of clus-
ters that you want to classify against. Sometimes this number will already be 
determined by a stakeholder. For example, in a marketing initiative you might 
have the following:

■■ Low-frequency, low-value customers

■■ Low-frequency, high-value customers

■■ High-frequency, low-value customers

■■ High-frequency, high-value customers

There are times when this information is not available, and you have to find 
a balance for making your decisions. There are a number of methods for cal-
culating the optimum.

The Rule of Thumb Method

Nothing beats wetting your finger and sticking it in the air to see which way 
the wind is blowing. There’s a simple calculation that is roughly the equivalent 
for clusters: the number of clusters (k) is equal to the square root of the number 
of objects divided by 2.

K objects/ 2

If you have 250 objects, then half of that is 125, and the square root of 125 
is 11.18—so, there are 11 clusters. This can obviously be tested and reapplied 
depending on how the trial runs go.
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The Elbow Method

You can calculate the variance of the dataset as a percentage and plot against  
the number of clusters. There’s a point at which the clusters are at an optimum—that  
point after which adding more clusters will not make a huge difference to  
the final classifications. You can see in Figure 6.4 how the elbow method shows the 
optimum number of clusters is four, which has classified 80 percent of the data.

The Cross-Validation Method

By splitting the dataset into separate partitions, you can apply the analysis on 
the dataset and then on the remaining partitions. By averaging the results of 
the sum of squares, you can determine the number of clusters to use.

Weka supports cross-validation with the weka.clusterers.MakeDensity Based-
Clusterer class. This class is covered in more detail in the command-line-based 
walk-through later in the chapter.

The Silhouette Method

Peter J. Rousseeuw first described the silhouette method in 1986. It is a method for 
suggesting a way of validating where the objects lay within a cluster.

For any object, you can calculate how similar an object is with another object 
within the same cluster. By calculating the averages of objects that connect to 
a cluster and then evaluating how dissimilar they are in relation to the other 
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Figure 6.4:  The elbow method graph
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clusters, you can determine an average score. The main aim is to measure the 
grouping of the objects in the cluster—the lower the number the better. When 
comparing the averages for each cluster, they are expected to be similar. When 
silhouettes are very narrow and others are large, it might point to the fact that 
not enough clusters have been defined when the computation process began.

K-Means Clustering with Weka

The Weka machine learning application comes with an algorithm for processing 
k-means clusters, a class called SimpleKMeans. In this walk-through, you’ll work 
with three approaches: one from the workbench application, one that works 
directly from the command line, and finally one that’s a Java coded example.

The aim is to take some marketing data and use the k-means to generate 
some segmentation of the customers; this will potentially give the marketing 
department an increase in successful transactions in the long run.

Before you get into the three walk-throughs, you need to prepare some data 
with which to work.

Preparing the Data
The following Java code generates 75 instances of random numbers for two 
integer variables, x and y. You import the saved file (kmeansdata.csv) into Weka 
and also load it in programmatically.

import java.io.BufferedWriter;
import java.io.FileWriter;
import java.io.IOException;
import java.util.Random;
 
public class DataSet3D {
    public static void main(String[] args) {
        Random r = new Random(System.nanoTime());
        try {
            BufferedWriter out = 
new BufferedWriter(new FileWriter("kmeansdata.csv"));
            out.write("x,y\n");
            for(int count = 0; count < 75; count++) {
                out.write(r.nextInt(125) + "," + r.nextInt(150) + "\n");
            }
            out.close();
        } catch (IOException e) {
            e.printStackTrace();
        }
        
    }
}
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The output looks something like this:

x,y
78,29
0,55
101,19
52,146
49,140
44,97
65,45
41,49
66,141
111,100
23,128
101,1
1,113
88,100

If you want to create more instances, you can do so by adjusting the number 
of iterations in the for loop of the code. I’ve set it to 75 as a starting point. The 
upper limit is really based on the amount of memory your computer has.

Have a look at the Weka workbench method first.

The Workbench Method
The workbench method uses the Weka user interface to load, cluster, and then 
visualize the data. There’s no actual programming involved, but it’s useful to 
see what Weka is doing before you progress on to the command line and coded 
samples.

Loading Data

The process for the workbench is similar to other examples you’ve run though. 
The first thing you need to do is load in the CSV data.

Click the Open File button and select the kmeansdata.csv file you created 
earlier. Ensure that the file format drop-down menu shows CSV and not ARFF 
(see Figure 6.5); otherwise, you won’t be able to open the file.

When the data has loaded, the explorer shows various pieces of information. 
The Current Relation pane shows that there are two attributes and 75 instances. 
(See Figure 6.6.) The attribute information shows the two attributes: x and y.

On the right-hand panel, the Selected Attribute pane shows some statistics of 
the data that’s been loaded, which includes the minimum and maximum values 
along with the mean and the standard deviation. Finally, there’s a graph of the 
distribution of the values and the frequency of them.
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Figure 6.5:  Loading CSV data into Weka

Figure 6.6:  The Preprocess window
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Clustering the Data

Click the Cluster tab at the top to select the clustering method. By default, the 
Weka clusterer uses the Simple EM method (expectation maximization). Clicking 
the Choose button displays a tree of other cluster algorithms that you can use. 
For this example, select SimpleKMeans and then click Close; finally, click Start 
to run the algorithm, as shown in Figure 6.7.

The clusterer line in the Clusterer output pane has updated and shows the 
new cluster algorithm you’ll be using:

SimpleKMeans –N 2 –A "weka.core.EuclideanDistance –R \
first –last" –l 500 –S 10

There are a few flags that need a little explanation.

■■ -N determines the number of clusters that the SimpleKMeans is going to 
create.

■■ -A is the distance function used. It defaults to Euclidean distance and uses 
the entire range of values as its range to act on (-R first –last).

■■ The –l flag defines the number of iterations the k-means does to define 
the cluster.

■■ -S is a random number seed. It can be any value you want.

Figure 6.7:  Selecting SimpleKMeans
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Clicking the line with all the command options shown next to the Choose 
button displays a pop-up window where you can alter the values. In the num-
Clusters field, change the number from 2 to 4. (See Figure 6.8.) You’re going to 
create four clusters with this data. Click OK to close the window.

Start the clustering process by clicking the Start button. For long periods of 
processing, it’s worth keeping an eye on the status in the bottom-left corner of 
the explorer.

When the process is complete, you see the output appear in the Clusterer 
Output window. The following sections describe the output.

Run Information

The first block of information gives the settings of the data and the algorithm 
selected.

Scheme:weka.clusterers.SimpleKMeans -N 4 -A  
"weka.core.EuclideanDistance -R first-last" -I 500 -S 10
Relation:     td
Instances:    75
Attributes:   2
              x
              y
Test mode:evaluate on training data

Figure 6.8:  Changing the SimpleKMeans options



	 Chapter 6 ■ Clustering	 115

K-Means

The k-means output shows the actual work that Weka did to reach the results. 
This includes the number of iterations that were performed on the data and the 
sum of squared errors.

Number of iterations: 3
Within cluster sum of squared errors: 0.8072960323968902
Missing values globally replaced with mean/mode
 
Cluster centroids:
                         Cluster#
Attribute    Full Data          0          1          2          3
                  (75)       (15)       (23)       (17)       (20)
==================================================================
x                54.88    68.9333     43.913    98.1765      20.15
y              92.0267       19.4   146.0435   114.8824      64.95

The cluster centroid data information is shown in relation to the instance data, 
showing the final value locations of the centroids for each cluster.

Clustered Instances

Finally, the percentage of the data within each cluster is shown. It gives you an 
idea of how the data is distributed.

Clustered Instances
 
0      15 ( 20%)
1      23 ( 31%)
2      17 ( 23%)
3      20 ( 27%)

Visualizing the Data

The last thing to do is look at the visualization of the clustering. In the explorer 
window, you see the result list on the bottom left. Right-clicking (or Alt+clicking 
on the Mac) the SimpleKMeans brings up the visualize window, as shown in 
Figure 6.9.

Each cluster has its own color scheme, and the plot shows values. Along the 
top of the visualization window are two, drop-down menus. To alter the plot, 
select a value from each drop-down menu. To show the x and y instance values, 
select the X: x(Num) and Y: y(Num) values, and you see the plot update.
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Using the workbench method gives you a quick route to some insight, and 
it is useful if you want to get a grasp on where the clusters lie. To start auto-
mating the process, you need to look at the other two approaches, starting with 
the command-line method.

The Command-Line Method
The command-line method is similar to the workbench method, but it gives you 
a little more flexibility in terms of running within cron jobs. This means that 
you can collate more data and rerun the analysis on a regular basis.

Converting CSV File to ARFF

Weka uses the .arff format to determine object types and have data ready for 
processing. The GUI enables you to import .csv files directly, but it’s nice to 
have a tool that converts files for you.

You can use the CVSLoader class on the command line to convert .csv files to 
.arff. For example, the .csv file you created in the previous walk-through was 
kmeansdata.csv. Use the converter by running the following from the terminal 
command line:

java –cp weka.jar weka.core.converters.CSVLoader \
kmeansdata.csv > kmeansdata.arff

	 N OT E     If you’re using the Windows operating system then you can omit the –cp 
weka.jar from the java command.

Figure 6.9:  Visualize window
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The command-line output might give some warnings about database drivers 
not being available, but there’s no need to worry about that. The main thing is 
that in the .arff file you have the proper definition.

Do a quick inspection to see the following definition:

@relation kmeansdata
 
@attribute x numeric
@attribute y numeric
 
@data

The First Run

Test the command-line methods by starting with just running the SimpleKMeans 
class as- is on the .arff file. This is your training file:

java -cp /path/to/weka.jar weka.clusterers.SimpleKMeans \
 -t kmeandata.arff

The –t flag gives you the name of the training file that Weka is attempting 
to cluster. Running this as-is gives the following output:

kMeans
======
 
Number of iterations: 3
Within cluster sum of squared errors: 5.839457872519278
Missing values globally replaced with mean/mode
 
Cluster centroids:
                         Cluster#
Attribute    Full Data          0          1
                  (75)       (35)       (40)
============================================
x                54.88    41.0571     66.975
y              92.0267    45.4286      132.8
 
 
 
 
=== Clustering stats for training data ===
 
Clustered Instances
0      35 ( 47%)
1      40 ( 53%)

That works okay, but it’s only two clusters, and there’s a good chance there 
are more.
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Refining the Optimum Clusters

Working out the optimum with the rule of thumb method described earlier 
in the chapter is easy enough. You can find out the number of object instances 
using the UNIX wc command.

wc kmeansdata.csv 
      75      76     494 kmeansdata.csv

There are 74 lines (excluding the top line, which gives you the data labels x 
and y). A quick calculation of 75 divided by 2 results in 37.5, and the square 
root of that is 6.12.

By altering the command line, you can add that target cluster number (using 
the –N flag) along with a random seed number to work off (using the –S flag).

java -cp /path/to/weka.jar weka.clusterers.SimpleKMeans \
-t kmeansdata.arff -N 6 -S 42

The output this time gives the same output but with more clusters.

kMeans
======
 
Number of iterations: 3
Within cluster sum of squared errors: 0.523849925862059
Missing values globally replaced with mean/mode
 
Cluster centroids:
                         Cluster#
Attribute  Full Data    0         1         2       3       4       5
            (75)      (10)      (12)      (15)     (5)    (10)    (23)
========================================================================
x          54.88      11.8    105.0833   68.9333  81.6    28.5   43.913
y          92.0267    65.9    118.3333   19.4    106.6    64    146.0435
 
 
 
 
=== Clustering stats for training data ===
 
Clustered Instances
0      10 ( 13%)
1      12 ( 16%)
2      15 ( 20%)
3       5 (  7%)
4      10 ( 13%)
5      23 ( 31%)
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Now, you have six clusters with a good definition of objects going into their 
specific clusters. The only problem is that you don’t know to which cluster the 
objects belong.

Name That Cluster

From the command line, the –p flag tells Weka to display the assignment of 
each row’s cluster instance. To use this feature, you have to instruct Weka which 
data attribute to use for each row. From the command line, use the following:

java -cp /path/to/weka.jar weka.clusterers.SimpleKMeans \
-t kmeansdata.arff -N 6 -S 42 -p 0

The –p 0 flag tells Weka to display the row and cluster based on the row 
number of the data. When this is run, you see the following output to the console:

0 0 
1 0 
2 0 
3 0 
4 0 
5 0 
6 0 
7 0 
8 0 
9 0 
10 4 
11 4 
12 4 
13 4 
14 4 
15 4 
16 4 
17 4 
18 4 
19 4

All that’s being shown is the row number and the numeric identifier of the 
cluster to which the row belongs. If you set the –p flag to 1 or 2, then you’d get 
the value of the x or y positions, respectively.

With these workbench and command-line examples, you should now have 
a good idea how all this is put together. Take a look at the Java coded method 
using the Weka application programming interface (API). It demonstrates how 
you can integrate these clustering methods into your own server-side projects.
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The Coded Method
The workbench works well, and the command line suits development needs 
better when scheduled jobs need to be done. But, for ultimate flexibility, there’s 
nothing better than coding your own program using the API to get things done.

The same core Weka classes are used by the workbench, command line, and 
Java coded examples. It’s a case of figuring out how the data is loaded and the 
clustering done with the options you’ve used in previous examples.

Creating a k-means cluster in Java is actually a fairly trivial matter; it’s a matter of 
knowing what elements go where. You are going to create a simple Java program to 
complete what you’ve done in the previous two walk-throughs. I’ll be using Eclipse.

Create the Project

Select File ➪ New ➪ Java Project and call it WekaCluster, as shown in Figure 6.10.

There’s only one library to install; that is the weka.jar file. On macOS machines, 
Weka is usually installed within the Applications directory. The location on 
Windows machines varies depending on the specific operating system.

With the WekaCluster project selected, click File ➪ Properties and look for Java 
Build Path. Then, click the Libraries tab. Add the external jar file by clicking Add 
External JARs. In the File dialog box, find the weka.jar file, as shown in Figure 6.11.

Figure 6.10:  Eclipse New Java Project dialog box
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The last thing to do is create a new class called WekaCluster.java (use File ➪ 
New ➪ Class); see Figure 6.12 for what this should look like.

Figure 6.11:  Adding an external JAR

Figure 6.12:  Creating a new class file
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The Cluster Code

You’re going to do the following actions to get your cluster working:

■■ Write the main method, passing in the location of the .arff file.

■■ Write a rule of thumb routine to advise the number of clusters you should 
be aiming for.

■■ Use Weka’s SimpleKMeans class to build the cluster model.

■■ Print out the location of the centroids of the cluster.

■■ Print out to which cluster each instance object belongs.

This sounds like a lot of work, but it’s actually quite simple. The following 
sections break down each individual step.

The main Method

The main method is the starting point for the program. It’s simple—just one line 
to create an instance of the constructor and pass in the location of the .arff file.

public static void main(String[] args) {
    // Pass the arff location and the number of clusters we want
    WekaCluster wc = new WekaCluster("/path/to/kmeandata.arff");
}

Because you’re passing the filepath as a string, you need to reflect that in the 
constructor for the class. I talk more about this in a moment.

Working Out the Cluster Rule of Thumb

Earlier, I established that you could quickly estimate the optimum number of 
clusters to generate. I’ve included a method to give you the number of clusters 
to generate based on the instance rows.

public int calculateRuleOfThumb(int rows) {
    return (int)Math.sqrt(rows/2);
}

The number of rows is passed in as an integer variable. You return the square 
root of the row count divided by two. If you already know how many clusters 
you want, just hard-code that number.

Building the Cluster

The main constructor handles the building of the cluster using the Weka API. As 
in the previous examples, you’re using the SimpleKMeans class to build the cluster.
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It’s a small block of code. Weka handles things for you, so there’s not a large 
amount of preparation to do.

public WekaCluster(String filepath) {
        try {
            Instances data = DataSource.read(filepath);
            int clusters = calculateRuleOfThumb(data.numInstances());
            System.out.println("Creating k-means model with " 
+ clusters + " clusters.");
            SimpleKMeans kMeans = new SimpleKMeans();
            kMeans.setNumClusters(clusters);
            kMeans.buildClusterer(data);
            
            showCentroids(kMeans);
            showInstanceInCluster(kMeans, data);
 
            testRandomInstances(kMeans);            
        } catch (Exception e) {
            e.printStackTrace();
        }
        
    }

The data is read in using the DataSource.read() method. This takes the string 
path name (or an InputStream is preferred) and saves the data as instances.

Next, you calculate the number of clusters to define using the method you 
created earlier with the rule of thumb calculation.

The actual building of the cluster is handled in the next four lines. The Sim-
pleKMeans class is the same as the one used in the workbench and command 
line. You set the number of clusters you want to define (setNumClusters()) and 
a random number seed (with setSeed()) and then build the cluster.

Finally, you call two methods: one shows the location of the centroids of each 
cluster, and the second shows in which clusters the instances are located.

Printing the Centroids

Now that the model is built, you can start to show some results from it. First 
you print out the location of each cluster centroid.

public void showCentroids(SimpleKMeans kMeans) {
        Instances centroids = kMeans.getClusterCentroids();
        for(int i = 0; i < centroids.numInstances(); i++) {
            System.out.println("Centroid: " + i + ": " +
 centroids.instance(i));
        }
    }



124	 Chapter 6 ■ Clustering

The getClusterCentroids() method returns a set of instances. It’s a case of 
iterating through these and printing the result of each instance. As six clusters 
were created (via the rule of thumb method calculation), there should be six 
instances printed.

Printing the Cluster Information

To show which cluster the instance belongs to, the showInstanceInCluster() 
method takes the k-means model and the assigned instances. The code then iter-
ates each of the instances and prints which it is assigned to based on the model.

    public void showInstanceInCluster(SimpleKMeans kMeans, Instances 
data) {
        try {
            for(int i = 0; i < data.numInstances(); i++) {
                System.out.println("Instance " + i + " is in cluster "  
+ kMeans.clusterInstance(data.instance(i)));
            }
        } catch(Exception e) {
            e.printStackTrace();
        }
    }

Making Predictions

The program so far covers the creation of clusters and reporting the results of 
the instances. What happens when new data comes in? At present, you’re not 
able to predict anything. It would be nice to have a method you can access that 
takes new values and predicts in which cluster the result would be grouped.

Instances can be created within code and then run against the clustering model 
to see where the new values would lie. You need to create another method to 
return the cluster prediction.

public int predictCluster(SimpleKMeans kMeans, double x, double y) {
        int clusterNumber = -1;
        try {
            double[] newdata = new double[] { x, y };
            Instance testInstance = new Instance(1.0, newdata);
            clusterNumber = kMeans.clusterInstance(testInstance);
        } catch (Exception e) {
            e.printStackTrace();
        }
        return clusterNumber;
    }
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You’re passing the model and the values of the x and y variables (in the same 
way the original data was in two attributes). A double array is created, and the 
two values are stored.

The Instance class is created. The first value is the weight that is to be assigned 
to the instance. This is a value between 0 and 1. The second value is the double 
array that you’ve just created with the x and y values.

In the same way that you showed the cluster by using the clusterInstance() 
method, you run the new instance and get the cluster number. This value is 
then returned to the calling method.

To test this, I’m going to create another method, which will iterate 100 times 
and generate random values. Obviously, in your code you’ll be calling the pre-
dictor as required.

public void testRandomInstances(SimpleKMeans kMeans) {
        Random rand = new Random();
        for (int i = 0; i < 100; i++) {
            double x = rand.nextInt(200);
            double y = rand.nextInt(200);
            System.out.println(x + "/" + y + 
" test in cluster " + predictCluster(kMeans, x, y));
        }
    }

The method is generating random numbers for the x and y values and passing 
them to the prediction method. Add this to the main constructor after the cen-
troids and clusters are first printed by inserting the following line:

testRandomInstances(kMeans);

before the catch block is reached in the WekaCluster constructor.

The Final Code Listing

Here’s the code assembled and ready to run:

import java.util.Random;
 
import weka.clusterers.SimpleKMeans;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.converters.ConverterUtils.DataSource; 
public class WekaCluster {
 
    public WekaCluster(String filepath) {
        try {
            Instances data = DataSource.read(filepath);
            
            int clusters = calculateRuleOfThumb(data.numInstances());
            System.out.println("Rule of Thumb Clusters = " + clusters);
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            SimpleKMeans kMeans = new SimpleKMeans();
            kMeans.setNumClusters(clusters);
            kMeans.setSeed(42);
            kMeans.buildClusterer(data);
            
            showCentroids(kMeans, data);
            showInstanceInCluster(kMeans, data);
            
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
    
    public int calculateRuleOfThumb(int rows) {
        return (int)Math.sqrt(rows/2);
    }
 
    public void showCentroids(SimpleKMeans kMeans, Instances data) {
        Instances centroids = kMeans.getClusterCentroids();
        for (int i = 0; i < centroids.numInstances(); i++) {
            System.out.println("Centroid: " + i + ": " 
+ centroids.instance(i));
        }
    }
 
    public void showInstanceInCluster(SimpleKMeans kMeans, Instances 
data) {
        try {
            for (int i = 0; i < data.numInstances(); i++) {
                System.out.println("Instance " + i + " is in cluster "
                        + kMeans.clusterInstance(data.instance(i)));
            }
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
 
    public static void main(String[] args) {
        // Pass the arff location and the number of clusters we want
        WekaCluster wc = new
 WekaCluster("/Users/Jason/kmeandata.arff");
    }
 
}
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Running the Program

With the hard work done, you can run the program and inspect the results. 
From Eclipse, select Run ➪ Run, and the program will start. The output in the 
console window should look something like this:

Rule of Thumb Clusters = 6
Centroid: 0: 11.8,65.9
Centroid: 1: 105.083333,118.333333
Centroid: 2: 68.933333,19.4
Centroid: 3: 81.6,106.6
Centroid: 4: 28.5,64
Centroid: 5: 43.913043,146.043478
Instance 0 is in cluster 0
Instance 1 is in cluster 0
Instance 2 is in cluster 0
Instance 3 is in cluster 0
Instance 4 is in cluster 0
Instance 5 is in cluster 0
Instance 6 is in cluster 0
Instance 7 is in cluster 0
Instance 8 is in cluster 0
Instance 9 is in cluster 0
Instance 10 is in cluster 4
....

As you can see, the rule of thumb calculation recommended creating six 
clusters. After executing the k-means clustering method, you displayed the 
centroid of each cluster in order to “eyeball” the distances of any data point in 
the cluster from its cluster’s center; finally, you displayed cluster membership 
for each element of our original object data.

Finally, here’s the output of the predictions and their output cluster class:

146.0/167.0 test in cluster 1
109.0/67.0 test in cluster 1
95.0/80.0 test in cluster 3
29.0/160.0 test in cluster 5
165.0/193.0 test in cluster 1
33.0/167.0 test in cluster 5
108.0/73.0 test in cluster 1
63.0/63.0 test in cluster 2
186.0/176.0 test in cluster 1
67.0/47.0 test in cluster 2
43.0/5.0 test in cluster 2
85.0/9.0 test in cluster 2
152.0/60.0 test in cluster 1
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Further Development

You will discover putting together a basic cluster algorithm with SimpleKMeans 
is a fairly straightforward matter. I’ve covered the main aspects of coding a 
solution. There are obvious developments from this point, such as connecting 
to a database table with Java Database Connectivity (JDBC) and extracting the 
data into instances.

One thing to remember with Weka is that when huge volumes of data are 
applied, the memory performance can suffer. I suggest that most needs of enter-
prises are still covered using this method and can be developed with scale in 
mind. In particular, sampling the data to fit in Weka memory will give you 
very good results.

Summary

Clustering will be one of those machine learning techniques that you’ll pull out 
again and again. To that end, it does need some thought before you go building 
clusters and seeing what happens.

You’ve created simple k-means clusters in Weka via the workbench, on the 
command line, and within code. Obviously, there are plenty of options from 
this point on, but with what you’ve read in this chapter, you’ll be able to get a 
system up and working quickly.
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7

Among the machine learning methods available, association rules learning is 
probably the most used. From point-of-sale systems to web page usage mining, 
this method is employed frequently to examine transactions. It finds out the 
interesting connections among elements of the data and the sequence (behav-
iors) that led to some correlated result.

This chapter describes how association rules learning methods work and 
also goes through an example using Apache Mahout for mining baskets of 
purchases. This chapter also touches on the myth, the reality, and the legend 
of using this type of machine learning.

Where Is Association Rules Learning Used?

The retail industry is tripping over itself to give you, the customer, offers on 
merchandise it thinks you will buy. To do that, though, it needs to know what 
you’ve bought previously and what other customers, similar to you, have bought. 
Brands such as Tesco and Target thrive on basket analysis to see what you’ve 
purchased previously. If you think the amount of content that Twitter produces 
is big, then just think about point-of-sale data; it’s another world. Some super-
markets fail to adopt this technology and never look into baskets, much to their 
competitive disadvantage. If you can analyze baskets and act on the results, 
then you can see how to increase bottom-line revenue.

Association Rules Learning
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Association rules learning isn’t only for retail and supermarkets, though. In 
the field of web analytics, association rules learning is used to track, learn, and 
predict user behavior on websites.

There are huge amounts of biological data being mined to gain knowledge. 
Bioinformatics uses association rules learning for protein and gene sequencing. 
It’s on a smaller scale compared to something like computational biology, as it 
homes in on specifics compared to something like DNA. So, studies on mutations 
of genomes are part of a branch of bioinformatics that’s probably working with it.

Web Usage Mining
Knowing which pages a user is looking at and then suggesting which pages 
might be of interest to the user is commonplace to keep a website more com-
pelling and “sticky.” For this type of mining, you require a mechanism for 
knowing which user is looking at which pages; the user could be identified by 
a user session, a cookie ID, or a previous user login where sites require users 
to log in to see the information.

If you have access to your website log files, then there is opportunity for you 
to mine the information. Many companies use the likes of Google Analytics 
as it saves them mining logs themselves, but it’s worthwhile doing your own 
analysis if you can.

The basic log file, for example, has information against which you could run 
some basic association rules learning. Looking at the Apache Common Log 
Format (CLF), you can see the IP address of the request and the file it was try-
ing to access.

86.78.88.189 - thisuserid [10/May/2014:13:55:59 -0700] 
"GET /myinterestingarticle.html HTTP/1.0" 200 2326

By extracting the URL and the IP address, the association rules could even-
tually suggest related content on your site that would be of interest to the user.

Beer and Diapers
It is written on parchment dating back many years, the parable of the beer and 
the diapers (or nappies, as I will always call them).

Tis written on this day that the American male of the species would fre-
quent the larger markets of super the day prior to the Sabbath. Newly 
attired with sleeping eyes and new child, said American male would buy 
device of child’s dropping catching of cloth and safety pin, when, lo, he 
spotteth the beer of delights full appreciating he shall not make it to the 
inn after evensong, such be his newly acquired fatherly role. And Mart of 
Wal did look upon this repeated behavior and move the aisles according 
to the scriptures of the product of placement, thus increasing the bottom 
line.
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This story has been preached by marketing departments the world over 
(possibly not in the style presented here), and it’s been used in everything from 
keynotes to short talks, from hackathons to late night code jams. However, it’s 
a case of fact mixed with myth.

When he was CEO of a company called Mindmeld, Thomas Blischok was 
also on the panel of a webcast on the past, present, and future of data mining 
and had managed the study on data that spawned the beer and nappies story. 
The study went back to the early 1990s when his team was looking at the basket 
data for Osco Drug. They did see a correlation on basket purchases between 5 
p.m. and 7 p.m. and presented the findings to their client.

After that point, there’s some confusion about where the story actually goes. 
Many versions are basically myth and legend; they’ve generated great chat 
and debate around the water cooler for years and will continue to do so. I had 
the pleasure of meeting Mark Madsen from Third Nature who also has a large 
interest in the story; it’s amazing how this story has been borrowed, used, 
referenced, and carried forward. Ultimately, it was just good use of Structured 
Query Language (SQL).

The myth has now been superseded by the privacy-fearing consumer story 
known as the “Target can predict whether I’m pregnant or not” scenario. I, for 
one, have two reasons why Target could never predict my outcome: I’ve never 
shopped there, and it’s biologically impossible. You don’t need a two-node 
decision tree to figure that out. (Read Chapter 5, “Working with Decision Trees,” 
for more information on that subject.)

	 N OT E     For the full story on the beer and diapers legend, take a look at D.J. Power’s 
article from November 2002 at

http://www.dssresources.com/newsletters/66.php

The myth will live on forever, I’m sure (especially if you’re in marketing), and it makes 
for good reading.

How Association Rules Learning Works

The basket analysis scenario is a good example to explain with, so I’ll continue 
with it. Consider the following table of transactions:

TRANSACTIONID PRODUCT1 PRODUCT2 PRODUCT3 PRODUCT4

1 True True False False

2 False False True False

3 False False False True

http://www.dssresources.com/newsletters/66.php
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TRANSACTIONID PRODUCT1 PRODUCT2 PRODUCT3 PRODUCT4

4 True True True False

5 False True False False

This is essentially an item set of transactions with a transaction ID and the 
products (could be milk, nappies, beer, and beans, for example).

Ultimately you’re looking for associations in the products. For example, if a 
customer buys products 1 and 2, he is likely to buy product 4.

So here is a set of items:

	 I product product product product1 2 3 4, , , 	

And here is a set of transactions:

	 T product product product1 2 4, , 	

Each transaction must have a unique ID for the rule to glean any information. 
Also, it’s worth noting that this sort of rule needs hundreds of transactions 
before it starts to generate anything of value to you. The larger the transaction 
set, the better the statistical output will be and the better the predictions will be.

The rule is defined as an implication; what you’re looking at is the following:

	 X Y I X Y, , / .where  	

In plain English, what you’re saying is X and Y are a subset of the item set in 
the intersection of X and Y.

They take on the form of a set as items denoted as X and Y. In scary math 
books, it will look like this: X ⇒ Y. The X denotes the items set before (or left 
of) the rule, called the antecedent, and the Y is the item set after (or right of) the 
rule, called the consequent.

Getting back to the products in the basic item set:

	 I product product product product1 2 3 4, , , 	

The true/false statements show whether the item is in that basket transac-
tion or not.

To get the true picture of how the rules work, you need to investigate a little 
further into the concepts of support, confidence, lift, and conviction.



	 Chapter 7 ■ Association Rules Learning	 133

Support
Support is defined as the proportion of items in the data that contain the item 
set. It’s written like so:

	
Supp X

transactions containing X
total number of transacti

_ _
_ _ _ oons 	

If you were to take transaction number 1, as an example, you’d have the fol-
lowing equation:

	 supp
,

X
product product1 2

5
0 2. 	

The item set appears only once in the transaction log, and there are five trans-
actions, so the support is 1/5, which is 0.2.

Confidence
Confidence in the rule is measured as

	 conf X Y X Y Xsupp supp / 	

What you’re defining here is the proportion of transactions containing set 
X that also contain Y. This can be interpreted as the probability of finding the 
right-hand side of transactions under the condition of finding them on the 
left-hand side.

To use an analogy, think of parimutuel betting. All bets are placed together 
in a pool, and after the race has finished, the payout is calculated based on the 
total pool (minus the commission to the agent). For example, assume there are 
five horses racing and bets have been placed against each one:

HORSE NUMBER BET

1 $40

2 $150

3 $25

4 $40

5 $30
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The total pool comes to $285, and after the event is run and the winner is 
confirmed, the payout can be calculated. Assuming that horse number 4 was 
the winner, the calculation would be as follows:

Pool size after commission = $285 × (1 – 0.15) = $242.25

Payout per $1 on outcome 4 = $6.05 per $1 wagered

Lift
Lift is defined as the ratio of the observed if the X and Y item sets were independent. 
It’s written as follows:

	
Lift X Y

X Y

X Y

supp

supp supp



	

Conviction
Finally there’s conviction, which is defined as the ratio of the expected frequency 
that X occurs without Y:

	
conv X Y

Y

conf X Y

1

1

supp
	

Defining the Process
Association rules are defined to satisfy two user-defined criteria, a minimum 
support value and a minimum confidence. The rules generation is done in two 
parts.

First the minimum support is applied to all the frequent item sets in the data-
base (or file or data source). The frequent item sets along with the minimum 
confidence are used to form the rules.

Finding frequent item sets can be hard; it involves trawling through all the 
possible item combinations in the item sets. The number of possible item sets 
is the “power set” over the item set.

For example, if you have the following:

	 I p p p1 2 3, , 	

then the power set of I would be this:

	 p p p p p p p p p p p p1 2 3 1 2 1 3 2 3 1 2 3, , , , , , , , , , , 	
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Notice that the empty set ({}) is omitted in the power set; this formulation 
gives you a size of 2n-1, where n is the number of items. A small increase in 
the number of items causes the size of the power set to increase enormously; 
therefore, this method is quite hungry in memory when using something like 
the Apriori algorithm. Obviously, the power set of all combinations of baskets 
does not occur, and the calculation will be based only on those basket combi-
nations that do. Nonetheless, it is still very expensive in time and memory to 
run calculations based on this method.

Algorithms

There are several algorithms used in association rule learning that you’ll come 
across; the two described in this section are the most prevalent.

Apriori
Using a bottom-up approach, the Apriori algorithm works through item sets 
one at a time. Candidate groups are tested against the data; when no exten-
sions to the set are found, the algorithm will stop. The support threshold for 
the example is 3.

Consider the following item set:

{1,2,3,4}

{1,3,4}

{1,2}

{2,3,4}

{3,4}

{2,4}

First, it counts the support of each item:

{1} = 3

{2} = 5

{3} = 4

{4} = 5

The next step is to look at the pairs:

{1,2} = 2

{1,3} = 2

{1,4} = 2
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{2,3} = 2

{2,4} = 3

{3,4} = 4

As {1,2}, {1,3}, {1,4}, and {2,3} are under the chosen support threshold you can 
reject them from the triples that are in the database. In the example, there is 
only one triple:

{2,3,4} = 1 (we’ve discounted one from the {1,2} group)
From that deduction, you have the frequent item sets.

FP-Growth
The Frequent Pattern Growth (FP-Growth) algorithm works as a tree structure 
(called an FP-Tree). It creates the tree by counting the occurrences of the items 
in the database and storing them in a header table.

In a second pass, the tree is built by inserting the instances it sees in the data 
as it goes along the header table. Items that don’t meet the minimum support 
threshold are discarded; otherwise, they are listed in descending order.

You can think of the FP-Growth algorithm like a graph, as is covered in the 
chapter about Bayesian Networks (Chapter 4). With a reduced dataset in a tree 
formation, the FP-Growth algorithm starts at the bottom—the place with the 
longest branches—and finds all instances of the given condition. When no more 
single items match the attribute’s support threshold, the growth ends, and then 
it works on the next part of the FP-Tree.

Mining the Baskets—A Walk-Through

There are a few libraries that deal with association rule learning; in this chapter, 
I’ll be once again using Weka and moving away from Mahout, which I covered 
in the first edition of this book. With the Apache Spark MLLib project, there are 
the FPGrowth and association rule learning packages, but I will save those for 
the Spark, which is covered in Chapter 13.

The Raw Basket Data
Within the Weka application distribution there is a test training set of  
basket data, so to keep things simple, I’m going to use that. If you open the 
supermarket.arff file, you will see the standard Weka data representation. 
Each basket item is an attribute,

@attribute 'tea' { t}
@attribute 'biscuits' { t}
@attribute 'canned fish-meat' { t}
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@attribute 'canned fruit' { t}
@attribute 'canned vegetables' { t}
@attribute 'breakfast food' { t}
@attribute 'cleaners-polishers' { t}
@attribute 'soft drinks' { t}
@attribute 'health food other' { t}
@attribute 'beverages hot' { t}
@attribute 'health&beauty misc' { t}
@attribute 'deodorants-soap' { t}
@attribute 'mens toiletries' { t}
@attribute 'medicines' { t}
@attribute 'haircare' { t}
@attribute 'total' { low, high} % low < 100

There are two attribute values, either true or false (which is represented as a 
space character). If the value is true, then the attribute has been purchased for 
that transaction. The last line of the attribute list is the basket value, whether 
it was high or low.

After the line with @data, you then have all the basket transactions. One line 
has all the attributes separated by commas. Where there is a t, that indicates 
a purchase.

?,?,?,?,?,?,?,?,?,?,?,t,t,t,?,t,?,t,?,?,t,?,?,?,t,t,t,t,?,t,?,t,t,?,?,?,?, 
?,?,t,t,t,?,?,?,?,?,?,?,t,?,?,?,?,?,?,?,?,t,?,t,?,?,t,?,t,?,?,?,?,?,?,?,?,?, 
?,?,?,?,?,?,?,t,?,?,t,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?, 
?,?,?,?,?,?,?,?,t,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?, 
?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,t,?,?,?,?,?,?,?,
?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,high

Using the Weka Application
Open the Weka application and from the menu select the Explorer options. This 
will take you to the main Weka workbench where all the work will be done 
(see Figure 7.1).

Figure 7.1:  The Weka Explorer
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The data file is in the data directory of the Weka distribution. Click the Open 
File button and locate the data file supermarket.arff (see Figure 7.2).

Once the file is open, you will see the Preprocess pane appear. There should 
be 4,627 instances of basket data. In the attributes pane are the basket items, 
the departments, and the total. With the data looking right, it’s time to click the 
Associate tab (see Figure 7.3).

Within the Associate pane the main work of the algorithm is done. From here 
you can change the options of the algorithm. If you click the Choose button, 
you can change the algorithm used for the association (see Figure 7.4). For now 
let’s keep with Apriori.

The settings for the Apriori algorithm are shown in the bar next to the Choose 
button. If you click the bar, you will open a new window where you can alter 
the options (see Figure 7.5). Click OK to accept the options and return to the 
Associate pane.

To the left of the pane you will see the Start button; clicking it will start the 
learning process on the basket data. After a short period of time, the Associator 
output pane will report findings from the training (see Figure 7.6).

Figure 7.2:  Weka File Explorer
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Figure 7.3:  The Data Preprocess section

Figure 7.4:  Weka Associate tab
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Figure 7.5:  The Options pane

Figure 7.6:  The generated results
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Inspecting the Results
As we asked for 10 rules in the options and there is sufficient data to get a pre-
diction, the output specifies the items that are frequently used. As you can see, 
“bread and cake” has a repeated high confidence and lift.

Size of set of large itemsets L(5): 105
Size of set of large itemsets L(6): 1
Best rules found:
 
 1. biscuits=t frozen foods=t fruit=t total=high 788 ==> bread and 
cake=t 723    <conf:(0.92)> lift:(1.27) lev:(0.03) [155] conv:(3.35)
 2. baking needs=t biscuits=t fruit=t total=high 760 ==> bread and 
cake=t 696    <conf:(0.92)> lift:(1.27) lev:(0.03) [149] conv:(3.28)
 3. baking needs=t frozen foods=t fruit=t total=high 770 ==> bread and 
cake=t 705    <conf:(0.92)> lift:(1.27) lev:(0.03) [150] conv:(3.27)
 4. biscuits=t fruit=t vegetables=t total=high 815 ==> bread and cake=t 
746    <conf:(0.92)> lift:(1.27) lev:(0.03) [159] conv:(3.26)
 5. party snack foods=t fruit=t total=high 854 ==> bread and cake=t 779    
<conf:(0.91)> lift:(1.27) lev:(0.04) [164] conv:(3.15)
 6. biscuits=t frozen foods=t vegetables=t total=high 797 ==> bread and 
cake=t 725    <conf:(0.91)> lift:(1.26) lev:(0.03) [151] conv:(3.06)
 7. baking needs=t biscuits=t vegetables=t total=high 772 ==> bread and 
cake=t 701    <conf:(0.91)> lift:(1.26) lev:(0.03) [145] conv:(3.01)
 8. biscuits=t fruit=t total=high 954 ==> bread and cake=t 866    
<conf:(0.91)> lift:(1.26) lev:(0.04) [179] conv:(3)
 9. frozen foods=t fruit=t vegetables=t total=high 834 ==> bread and 
cake=t 757    <conf:(0.91)> lift:(1.26) lev:(0.03) [156] conv:(3)
10. frozen foods=t fruit=t total=high 969 ==> bread and cake=t 877    
<conf:(0.91)> lift:(1.26) lev:(0.04) [179] conv:(2.92)

Let’s break these rules down a little.

1. biscuits=t frozen foods=t fruit=t total=high 788 ==> bread and cake=t 
723    <conf:(0.92)> lift:(1.27) lev:(0.03) [155] conv:(3.35)

We have a format that’s presented, and the => tells us that there are four items 
that were preceding (were the antecedent of) the consequent value of “bread 
and cake.” Biscuits, frozen food, fruit, and a high total value were reported 788 
times in the dataset. The result also appeared 723 times.

There’s a confidence value of 92 percent (0.92 in the output). The minMetric 
setting in the algorithm options means we can tune this value; the default is 
set to 0.9. This is useful when working with large sets of data while doing dis-
covery phases of a project. Working with a lower value and working up until 
the results start to look refined and useful to the project.
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Summary

Association rules learning is domain specific, so how it will work in your orga-
nization will vary from case to case. This chapter offered a brief overview and a 
working demo with Weka. Other libraries are available, so it’s also worth taking 
the time to evaluate them and see if they fit with your strategy.
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8

With most machine learning tasks, the aim is usually to classify something into 
a group that you can then inspect later. When it’s a couple of class types that 
you’re trying to classify, then it’s a trivial matter to perform the classification. 
When you are dealing with many types of classes, the process becomes more 
of a challenge. Support vector machines help you work through the challeng-
ing classifications.

This chapter looks at support vector machines: how the basic algorithm works 
in a binary classification sense, and then an expanded discussion on the tool.

What Is a Support Vector Machine?

A support vector machine is essentially a technique for classifying objects. It’s a 
supervised learning method, so the usual route for getting a support vector 
machine set up would be to have some training data and some data to test the 
algorithm. With support vector machines, you have the linear classification—it’s 
either that object or it’s that object—or nonlinear. This chapter looks at both types.

There is a lot of comparison of using a support vector machine versus the 
artificial neural network, especially as some methods of finding minimum 
errors and the Sigmoid function are used in both.

Support Vector Machines
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It’s easy to imagine a support vector machine as either a two- or three-dimensional 
plot with each object located within. Essentially, every object is a point in that 
space. If there’s sufficient distance in the area, then the process of classifying 
is easy enough.

Where Are Support Vector Machines Used?

Support vector machines are used in a variety of classification scenarios, such 
as image recognition and handwriting pattern recognition.

Image classification can be greatly improved with the use of support vector 
machines. Being able to classify thousands or millions of images is becoming 
more and more important with the use of smartphones and applications like 
Instagram. Support vector machines can also do text classification on normal 
text or web documents, for instance.

Medical science has long used support vector machines for protein classification. 
The National Institute of Health has even developed a support vector machine 
protein software library. It’s a web-based tool that classifies a protein into its 
functional family.

Some people criticize the support vector machine because it can be difficult to 
understand, unless you are blessed with a good mathematician who can guide 
and explain to you what is going on. In some cases you are left with a black-box 
implementation of a support vector machine that is taking in input data and 
producing output data, but you have little knowledge in between.

Machine learning with support vector machines takes the concept of a per-
ceptron (as explained in Chapter 9) a little bit further to maximize the geometric 
margin. It’s one of the reasons why support vector machines and artificial neural 
networks are frequently compared in function and performance.

The Basic Classification Principles

For those who’ve not immersed themselves in the way classification works, this 
section offers an abridged version. The next section covers how the support 
vector machine works in terms of the classification. I’m keeping the math as 
simple as possible.

Binary and Multiclass Classification
Consider a basic classification problem. You want to figure out which objects 
are squares and which are circles. These squares and circles could represent 
anything you want—cats and dogs, humans and aliens, or something else. 
Figure 8.1 illustrates the two sets of objects.
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This task would be considered a binary classification problem, because there 
are only two outcomes; it’s either one object or the other. Think of it as a 0 or a 
1. With some supervised learning, you could figure out pretty quickly where 
those classes would lie with a reasonable amount of confidence.

What about when there are more than two classes? For example, you can add 
triangles to the mix, as shown in Figure 8.2.

Binary classification isn’t going to work here. You’re now presented with a 
multiclass classification problem. Because there are more than two classes, you 
have to use an algorithm that can classify these classes accordingly. It’s worth 
noting, though, that some multiclass methods use pair-wise combinations of 
binary classifiers to get to a prediction.

Figure 8.1:  Two objects to classify

Figure 8.2:  Three objects to classify
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Linear Classifiers
To determine in which group an object belongs, you use a linear classifier to 
establish the locations of the objects and see if there’s a neat dividing line—called 
a hyperplane—in place; there should be a group of objects clearly on one side of 
the line and another group of objects just as clearly on the opposite side. (That’s 
the theory, anyway. Life is rarely like that, which is something that’s covered 
more later in the chapter.) Assume that all your ducks are in a row. . .well, two 
separate groups.

As shown in Figure 8.3, visually it looks straightforward, but you need to 
compute it mathematically. Every object that you classify is called a point, and 
every point has a set of features.

For each point in the graph, you know there is an x-axis value and there is a 
y-axis value. The classification point is calculated as follows:

	 sign ax by c 	

The values for a, b, and c are the values that define the line; these values are 
ones that you choose, and you’ll need to tweak them along the way until you 
get a good fit (clear separation). What you are interested in, though, is the result; 
you want a function that returns +1 if the result of the function is positive, signi-
fying the point is in one category, and returns -1 when the point is in the other 
category. The function’s resulting value (+1 or -1) must be correct for every point 
that you’re trying to classify.

Don’t forget that you have a training file with the correctly classified data 
so that you can judge the function’s correctness; this approach is a supervised 

Figure 8.3:  Linear classification with a hyperplane



	 Chapter 8 ■ Support Vector Machines	 147

method of learning. This step has to be done to figure out where the line fits. 
Points that are further away from the line show more confidence that they 
belong to a specific class.

Confidence
You’ve just established that each point has a confidence based on its distance 
from the hyperplane line. The confidence can be translated into a probability. 
That gives the following equation:

	

P l x
ax by c

1
1

1
|

exp 	

This is for one point. What you need is the probability for every set of lines; 
these are then assigned to each of the objects in the training data.
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Probabilities are multiplied because the points have been drawn indepen-
dently. You have an equation for each point that indicates how probable it is that 
a hyperplane is producing the correct categorization. Combining the probabil-
ities for each point produces what is commonly defined as the “likelihood of 
the data”; you are looking for a number as close to 1 as possible.

Remember that probability is based on a value between 0 and 1. Within a set 
of objects, you’re looking for a set of line parameters with the highest probability 
that confirms the categorization is correct.

Maximizing and Minimizing to Find the Line
Using a log function that is always increasing maximizes values that are above 
the equation. So, you end up with a function written as follows:

	 i

N

i i il ax by c
1

1log exp
	

To achieve minimization, you just multiply the equation by -1. It then becomes 
a “cost” or “loss” function. The goal is to find line parameters that minimize 
this function.

Linear classifiers are usually fast; they will process even large sets of objects 
with ease. This is a good thing when using them for document classification 
where the word frequencies might require measuring.
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How Support Vector Machines Approach Classification

The basic explanation of linear classification is that the hyperplane creates the 
line that classifies one object and another. Support vector machines take that 
a step further.

Within the short space available, I outline how support vector machines work 
in both linear and nonlinear form. I also show you how to use Weka to do some 
practical work for you.

Using Linear Classification
Look at the set of circle and square objects again. You know how a hyperplane 
divides the objects into either 1 or -1 on the plane.

Extending that notion further, support vector machines define the maximum 
margin, assuming that the hyperplane is separated in a linear fashion. You can 
see this in Figure 8.4 with the main hyperplane line giving the following writ-
ten notation:

	 w x b• 0	

This dot product shows the normal vector, and x is the point of the object. 
There is an offset of the hyperplane that goes from the origin to the normal vector.

b|| w ||

2|| w ||

X1

X2

Figure 8.4:  Support vector machines max margin hyperplane
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As the objects are linearly separable, you can create another two hyper-
planes—edge hyperplanes—that define the offset on either side of the main 
hyperplane. There are no objects within the region that spans between the main 
hyperplane and the edge hyperplanes.

On one side, there’s the equation

	 w x b• 1	

and on the other side there’s

	 w x b v• 1 	

The objects that lie on the edge hyperplanes are the support vectors (see 
Figure 8.5).

When new objects are added to the classification, then the hyperplane and its 
edges might move. The key objective is to ensure a maximum margin between 
the +1 edge hyperplane and the -1 edge hyperplane.

If you can manage to keep a big gap between the categories, then there’s an 
increase in confidence in your predictions. Knowing the values of the hyper-
plane edges gives you a feel for how well your categories are separated.

After minimizing the value w (called ||w|| in mathematical notation), you 
can look at optimizing w by applying the following equation:

	

1
2

2w
	

Support
Vector

Support
Vector

Figure 8.5:  The support vectors on the hyperplane edges
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Basically, you’re taking half of ||w|| squared instead of using the square 
root of ||w||. Based on Lagrange multipliers, to find the maxima and minima 
in the function, you can now look for a saddle point and discount other points 
that don’t match zero (fit inside the saddle).

	 N OT E     For those that don’t know, a saddle point is a mathematical function where 
you have two variables that meet at a critical point when both function values are 
zero. It’s called a saddle point as that’s the shape it produces in graphic form. You can 
read more about it at http://wikipedia.org/wiki/Saddle_point.

You’re shaping the graph into a multidimensional space and seeing where the 
vectors lie in order to make the category distinctions as big as possible. With 
standard quadratic programming, you then apply the function expressing the 
training vectors as a linear combination

	
w y x

i

n

i i i
1

.
	

Where αi is greater than zero, the xi value is a support vector.

Using Non-Linear Classification
In an ideal world, the objects would lie on one side of the hyperplane or the 
other. Life, unfortunately, is rarely like that. Instead, you see objects straying 
from the hyperplane, as shown in Figure 8.6.

Figure 8.6:  Objects rarely go where you want them to go.

http://wikipedia.org/wiki/Saddle_point
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By applying the kernel function (sometimes referred to as the “kernel trick”), 
you can apply an algorithm to fit the hyperplane’s maximum margin in a fea-
ture space. The method is similar to the dot products discussed in the linear 
methods, but this replaces the dot product with a kernel function.

With a radial basis function, you have a few kernel types to choose from: the 
hyperbolic tangent, Gaussian radial basis function (or RBF, which is supported 
in Weka), and two polynomial functions—one homogenous and the other 
inhomogeneous.

The full scope of nonlinear classification is beyond the means of the intro-
ductory nature of this book. If you want to try implementing them, then look 
at the radial basis functions in the LibSVM classes when you use Weka. Now 
take a look at what Weka can do for you to perform support vector machine 
classification.

Using Support Vector Machines in Weka

Weka can classify objects using the support vector machines algorithm, but the 
implementation isn’t complete and requires a download before you can use it. 
This section shows you how to set it up and run the support vector machines 
algorithm on some test data.

Installing LibSVM
The LibSVM library is an implementation of the support vector machines 
algorithm. It was written by Chih-Chung Chang and Chih-Jen Lin from the 
National Taiwan University. The library supports a variety of languages as well 
as Java including C, Python, .NET, MatLab, and R.

Weka LibSVM Installation

Using the LibSVM libraries within the Weka GUI application requires an instal-
lation of a JAR file. You can install LibSVM from GitHub. You can clone the 
binary distribution by running the following command (assuming you have 
Git installed):

git clone https://github.com/cjlin1/libsvm.git 

The required files download into a clean directory.
You need to copy the libsvm.jar file to the same directory as your Weka 

installation directory (usually in the /Applications directory). You can easily 
drag and drop the file if desired; I work from the command line most of the time:

cp ./libsvm-3.18/java/libsvm.jar /Applications/weka-3-6-10
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With the library in place, you can start Weka. If you are a Windows user just 
start Weka as normal, but if you run macOS or Linux, then you have to do it 
from the command line:

java -cp weka.jar:libsvm.jar weka.gui.GUIChooser

If you do not start Weka from the command line, then the classifier gives you 
an error to let you know that the SVM libraries were not found in the classpath.

With later versions of Weka, it’s possible to install the LibSVM library from the 
package manager. The package manager is located from the main GUI Chooser 
application. From the list of packages, select the LibSVM package and click Install.

For using LibSVM in an application, the option is to either reference the JAR 
file in your classpath (which is covered further in this chapter) or use Maven 
and have the LibSVM library as a dependency reference.

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0  
http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>
 
    <groupId>mlbook</groupId>
    <artifactId>Chapter8</artifactId>
    <version>1.0-SNAPSHOT</version>
    <dependencies>
        <!-- https://mvnrepository.com/artifact/nz.ac.waikato.cms.weka/
weka-stable -->
        <dependency>
            <groupId>nz.ac.waikato.cms.weka</groupId>
            <artifactId>weka-stable</artifactId>
            <version>3.6.7</version>
        </dependency>
        <!-- https://mvnrepository.com/artifact/tw.edu.ntu.csie/libsvm 
-->
        <dependency>
            <groupId>tw.edu.ntu.csie</groupId>
            <artifactId>libsvm</artifactId>
            <version>3.23</version>
        </dependency>
    </dependencies>
</project>

A Classification Walk-Through
You will see the GUI Chooser application open as you would when you open 
Weka by starting the GUI instead of using the command line (see Figure 8.7). 
Choose the Explorer option.
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I’m going to use the 100,000 rows of vehicle data that is in the code and data 
repository that accompanies the book. Find the .csv file in the data/ch08 folder 
and open it in Weka, as shown in Figure 8.8. Don’t forget to change the file type 
from .arff to .csv.

Figure 8.7:  GUI Chooser

Figure 8.8:  Loading the .csv file
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Setting the Options

Click the Classify tab and then click the Choose button to select a different 
classification algorithm. Within the tree of algorithms, click Functions and then 
select LibSVM, as shown in Figure 8.9.

There are a couple of changes to make before you set the classifier off to work. 
First, you want a percentage split of training data against test data. In this case, 
you can be fairly confident that the data is not going to be difficult to classify 
and it’s not going to be a nonlinear classification problem; you can train with 
10 percent of the data (10,000 rows) and test with the 90 percent to see how it 
performs.

Click the Percentage Split option and change the default value of 66 percent 
to 10 percent, as shown in Figure 8.10.

You want the results of the test data, the 90 percent to be output to the Weka 
console so you can see how it’s performing. Click the Options button and ensure 
that the Output Predictions checkbox is ticked, as shown in Figure 8.11.

The LibSVM wrapper defaults to a radial basis function for its kernel type. 
Change that to the linear version you’ve been concentrating on by clicking the 
line with all the LibSVM options. This is located next to the Choose button 
within the Classifier pane.

Figure 8.9:  Choosing the LibSVM classifier
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Figure 8.10:  Changing the percentage split

Figure 8.11:  Classifier Evaluation Options dialog box
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Change the kernelType drop-down menu from Radial Basis Function to 
Linear. Leave the other options as they are (see Figure 8.12).

Running the Classifier

With everything set, you can run the classifier. Click the Start button, and you 
see the output window start to output information on the classification.

First, you have the run information, or all the options that you just set.

=== Run information ===
Scheme:weka.classifiers.functions.LibSVM -S 0 -K 0 -D 3 -G 0.0 -R 0.0
 -N 0.5 -M 40.0 -C 1.0 -E 0.001 -P 0.1 -seed 1
Relation:     v100k
Instances:    100000
Attributes:   4
              wheels
              chassis
              pax
              vtype
Test mode:split 10.0% train, remainder test

Figure 8.12:  Changing the kernel type
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Next, you get some general information on the classifier model.

=== Classifier model (full training set) ===
LibSVM wrapper, original code by Yasser EL-Manzalawy (= WLSVM)
Time taken to build model: 3.08 seconds

On my machine, the classifier trained on 10,000 instances in just over three 
seconds, which is 3,246 rows per second.

As you’ve set the output for the predictions to be shown, you get that next.

=== Predictions on test split ===
inst#,    actual, predicted, error, probability distribution
     1     4:Bike     4:Bike          0      0      0     *1    
     2     4:Bike     4:Bike          0      0      0     *1    
     3    3:Truck    3:Truck          0      0     *1      0    
     4      1:Bus      1:Bus         *1      0      0      0    
     5      1:Bus      1:Bus         *1      0      0      0    
     6      2:Car      2:Car          0     *1      0      0    
     7     4:Bike     4:Bike          0      0      0     *1    
     8    3:Truck    3:Truck          0      0     *1      0    
     9    3:Truck    3:Truck          0      0     *1      0    
    10      2:Car      2:Car          0     *1      0      0    
    11     4:Bike     4:Bike          0      0      0     *1    
    12      2:Car      2:Car          0     *1      0      0    
    13    3:Truck    3:Truck          0      0     *1      0    
    14    3:Truck    3:Truck          0      0     *1      0    
    15     4:Bike     4:Bike          0      0      0     *1    
    16      1:Bus      1:Bus         *1      0      0      0    
    17      1:Bus      1:Bus         *1      0      0      0    
    18      2:Car      2:Car          0     *1      0      0    
    19      1:Bus      1:Bus         *1      0      0      0

Based on the training data of 10,000, you’ve instructed Weka to try to predict 
the remaining 90,000 rows of data. The output window will have all 90,000 rows 
there, but the main things to watch out for are the actual and predicted results.

You get the evaluation on the test data showing the correct and incorrect 
assignments:

=== Evaluation on test split ===
=== Summary ===
Correctly Classified Instances       90000              100      %
Incorrectly Classified Instances         0                0      %
Kappa statistic                          1     
Mean absolute error                      0     
Root mean squared error                  0     
Relative absolute error                  0      %
Root relative squared error              0      %
Total Number of Instances            90000     
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The confusion matrix shows the breakdown of the test data and how it was 
classified:

=== Confusion Matrix ===
     a     b     c     d   <-- classified as
 22486     0     0     0 |     a = Bus
     0 22502     0     0 |     b = Car
     0     0 22604     0 |     c = Truck
     0     0     0 22408 |     d = Bike

Dealing with Errors from LibSVM

There are variations of the LibSVM library around the Internet and also different 
ways the random number generator handles numbers on differing operating 
systems. If you come across an error like the following:

java.lang.NoSuchFieldException: rand
java.lang.Class.getField(Unknown Source)
weka.classifiers.functions.LibSVM.buildClassifier(LibSVM.java:1618)
weka.gui.explorer.ClassifierPanel$16.run(ClassifierPanel.java:1432)
at java.lang.Class.getField(Unknown Source)
at weka.classifiers.functions.LibSVM.buildClassifier(LibSVM.java:1618)
at weka.gui.explorer.ClassifierPanel$16.run(ClassifierPanel.java:1432)

then it’s worth looking at later versions of Weka with the new package manager 
(version 3.7 and later).

Saving the Model

You can save the model for this classification. On the result list, you see the date 
and time that the LibSVM classification was run. Right-click (Alt-click if you 
are a Mac user) functions.LibSVM and select Save Model. Find a safe place to 
save the model for future use.

Implementing LibSVM with Java
Using LibSVM within the Weka toolkit is easy to implement, but there comes 
a time when you’ll want to use it within your own code so you can integrate it 
within your own systems.

Converting .csv Data to .arff Format

.csv files don’t contain the data that Weka will need. You could implement the 
CSVLoader class, but I prefer to know that the .arff data is ready for use. It also 
makes it easier for others to decode the data model if they need to.
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From the command line, you can convert the data from a .csv file to .arff 
in one command.

java -cp /Applications/weka-3-6-10/weka.jar \
weka.core.converters.CSVLoader v100k.csv > v100k.arff

To ensure that the conversion has worked, you can output the first 20 lines 
with the head command (your output should look like the following sample):

$ head -n 20 v100k.arff 
@relation v100k
 
@attribute wheels numeric
@attribute chassis numeric
@attribute pax numeric
@attribute vtype {Bus,Car,Truck,Bike}
 
@data
6,20,39,Bus
8,23,11,Bus
5,3,1,Car
4,3,4,Car
5,3,1,Car
4,18,37,Bus

With everything looking fine, you can now set your attention on the Eclipse 
side of the project.

Setting Up the Project and Libraries

Using the same data, create a coded example with Java using Eclipse to create 
the project. Create a new Java Project (select File ➪ New ➪ Java Project) and call 
it MLLibSVM, as shown in Figure 8.13.

The Weka API and the LibSVM API need to be added to the project. Select 
File ➪ Properties and then select Java Build Path. Click the Add External JARs 
button. When the File dialog box displays, locate the weka.jar and libsvm.jar 
files and click Open (see Figure 8.14).

You have everything in place, so you can create a new Java class (File ➪ New 
➪ Class) called MLLibSVMTest.java (see Figure 8.15) and put some code in place.

The basic code to get a support vector machine working in Weka is a fairly 
easy task.
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Figure 8.13:  Creating the new Java project

Figure 8.14:  Adding the required JAR files
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public class MLLibSVMTest {
    public MLLibSVMTest(String filepath){
        Instances data;
        try {
            data = DataSource.read(filepath);
            
 
               if (data.classIndex() == -1)
                 data.setClassIndex(data.numAttributes() - 1);
            LibSVM svm = new LibSVM();
            String[] options = weka.core.Utils
             .splitOptions("-K 0 -D 3");
            svm.setOptions(options);
                svm.buildClassifier(data);
        } catch (Exception e) {
            e.printStackTrace();
        }
      }
    
    public static void main(String[] args) {
        MLLibSVMTest mllsvm = 
         new MLLibSVMTest("/path/to/data/ch08/v100k.arff");
    }
}

Figure 8.15:  Creating a new Java class
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There are a lot of option settings for the LibSVM library, but the main one I 
want to focus on is the kernel type. As in the Weka workbench, the default is 
the radial basis function. In the options, 2 designates this. For the linear kernel 
function, you change that to zero.

To run the code from Eclipse, select Run ➪ Run. This takes the training data 
and makes the model. It won’t do anything else just yet.

Zero Weights processed. Default weights will be used
*
optimization finished, #iter = 9
nu = 7.999320068325541E-7
obj = -0.019999999949535163, rho = 2.1200468836658968
nSV = 4, nBSV = 0
*
optimization finished, #iter = 9
nu = 5.508757892156424E-7
obj = -0.013793103448275858, rho = -1.013793103448276
nSV = 5, nBSV = 0
*
optimization finished, #iter = 3
nu = 3.801428938130698E-7
obj = -0.009478672985781991, rho = 1.2180094786729856
nSV = 2, nBSV = 0
*
optimization finished, #iter = 5
nu = 1.8774340639289764E-7
obj = -0.004705882352941176, rho = -1.6070588235294119
nSV = 4, nBSV = 0
*
optimization finished, #iter = 6
nu = 8.90259889118131E-6
obj = -0.22222222222222227, rho = 1.6666666666666679
nSV = 3, nBSV = 0
*
optimization finished, #iter = 3
nu = 1.2308677001852457E-7
obj = -0.003076923076923077, rho = 1.1107692307692307
nSV = 2, nBSV = 0
Total nSV = 14

The output looks confusing, but what it is telling you is the number of support 
vectors (nSV), the number of bound support vectors (nBSV), and obj is the optimum 
objective value of the dual support vector machine.

Training and Predicting with the Existing Data

So far, you’ve trained with the full 100,000 lines of data from the .arff file. I 
want to train with 10 percent and then predict the remaining 90 percent in the 
same way as the workbench walkthrough.
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The Weka API lets you add the options as you would in the workbench, so 
where you split the data for training, you can do the same within the code.

Amend the options line and add the training split percentage like so:

String[] options = weka.core.Utils.splitOptions("-K 0 -D 3");

It now becomes the following:

String[] options = weka.core.Utils
  .splitOptions("-K 0 -D 3 -split-percentage 10");

To show the predictions of the data, add a new method that iterates through 
the instance data.

public void showInstanceClassifications(LibSVM svm, Instances data) {
         try {
             for (int i = 0; i < data.numInstances(); i++) {
                 System.out.println("Instance " + i 
                    + " is classified as a "
                         + 
data.classAttribute().value((int)svm.classifyInstance(data.
              instance(i))));             
            }
         } catch (Exception e) {
             e.printStackTrace();
         }
     }

The classifier always returns a numerical value as its result; it’s up to you to 
turn that number into an integer and run it past the class attribute value to find 
out whether it’s a bike, car, bus, or truck.

When you run the code again, you see the classifier generate as before with 
10 percent of the training data, and then it classifies the whole data set.

Instance 99991 is classified as a Truck
Instance 99992 is classified as a Bus
Instance 99993 is classified as a Car
Instance 99994 is classified as a Truck
Instance 99995 is classified as a Car
Instance 99996 is classified as a Bus
Instance 99997 is classified as a Bike
Instance 99998 is classified as a Truck
Instance 99999 is classified as a Bike
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Summary

This chapter was a whistle-stop tour of support vector machines. Whole books 
have been written on the subject, going deep into the intricacies of the vector 
machine and its kernel methods.

From a developer’s point of view, treat this chapter as a launch pad for further 
investigation. In a practical scenario, you might gloss over the heavy theory and 
make Weka do the heavy lifting on a sample or subset of your data.
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9

There’s something about gathering knowledge about the human brain that makes 
people tick. Many people think that if we can mimic how the brain works, we’ll 
be able to make better decisions.

In this chapter, you look at how artificial neural networks work and how they 
are applied in the machine learning arena. If you are looking for how convo-
lutional neural networks function, that will be covered in Chapter 11 when we 
look at image processing.

What Is a Neural Network?

Artificial neural networks are essentially modeled on the parallel architecture of 
animal brains, not necessarily human ones. The network is based on a simple 
form of inputs and outputs.

. . .a computing system made up of a number of simple, highly 
interconnected processing elements, which process information by their 
dynamic state response to external inputs.

Dr. Robert Hecht-Nielson as  
quoted in “Neural Network Primer:  

Part I” by Maureen Caudill, AI Expert, Feb. 1989

Artificial Neural Networks



166	 Chapter 9 ■ Artificial Neural Networks

In biology terms, a neuron is a cell that can transmit and process chemical 
or electrical signals. The neuron is connected with other neurons to create a 
network; picture the notion of graph theory with nodes and edges, and then 
you’re picturing a neural network.

Within humans, there are a huge number of neurons interconnected with 
each other—tens of billions of interconnected structures. Every neuron has an 
input (called the dendrite), a cell body, and an output (called the axon), as shown 
in Figure 9.1.

Outputs connect to inputs of other neurons, and the network develops. Bio-
logically, neurons can have 10,000 different inputs, but their complexity is much 
greater than the artificial ones I’m talking about here.

Neurons are activated when the electrochemical signal is sent through the 
axon. The cell body determines the weight of the signal, and if a threshold is 
passed, the firing continues through the output, along the dendrite.

Artificial Neural Network Uses

Artificial neural networks thrive on data volume and speed, so they are used 
within real-time or very near real-time scenarios. The following sections describe 
some typical use cases where artificial neural networks are used.

High-Frequency Trading
With the way artificial neural networks mimic the brain but with a much increased 
speed factor, they are perfect for high-frequency trading (HFT). Because HFT 
can make decisions far faster than a human can—thousands of transactions 

Dendrites
Cell Body

Axon

Figure 9.1:  The neuron structure
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can be done in the same time it takes a human to make one—it’s obvious why 
the majority of stock market systems have gone to the automated trading side.

High-frequency trading is usually done on a supervised learning method; 
there is a lot of training data available from which to learn. The artificial neural 
network is looking for entropy from the incoming data.

Credit Applications
Although many examples of credit applications are performed with decision 
trees, they are often run with artificial neural networks. With the variety of 
application data available, it’s a fairly straightforward task to train the model 
to spot good and bad credit factors.

Data Center Management
Google uses neural networks for data center management. With incoming data 
on loads, operating temperatures, network equipment usage, and outside air 
temperatures, Google can calculate efficiency of the data center and be able to 
adjust the settings on monitoring and cooling equipment.

Jim Gao started this exercise as a Google 20 percent project (a program in 
which Google employees are encouraged to use 20 percent of their work time 
on their own projects) and, over time, has trained the model to be 99.6 percent 
accurate. If you are interested in reading more on this, check out Google’s blog 
post on the subject here:

http://googleblog.blogspot.ca/2014/05/better-data-centers-through-

machine.html

Robotics
Artificial intelligence has been used in robotics for several years. Some artificial 
intelligence requires pattern recognition, and some requires huge amounts of 
sensor data to be fed into a neural network to determine what movement or 
action to take.

Training models in robotics takes an awful long time to create, mainly because 
there are potentially so many different inputs and output variables to process 
and learn from. For example, developers of autonomous driving vehicles need 
hundreds of thousands of hours of previous driving data to make a model that 
can handle many road conditions.

The car manufacturer Tesla collates the live driving data from its vehicles; 
this means it is generating knowledge 24 hours a day. This data is used to enrich 
the self-driving experience in its vehicles. Personally, I still prefer my hands on 
the wheel; that’s just my preference.

http://googleblog.blogspot.ca/2014/05/better-data-centers-through-machine.html
http://googleblog.blogspot.ca/2014/05/better-data-centers-through-machine.html
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Medical Monitoring
Medical machinery can be monitored via artificial neural networks, which involves 
the constant updating of many variables, such as heart rate, blood pressure, and 
so on. Conditions that have multiple variations and trigger symptoms can be 
calculated and monitored, and staff can be alerted when the variables go over 
certain thresholds.

There have been huge advances in medical imaging and using deep learning 
techniques such as convolutional neural networks to predict disease areas and 
support decision-making for the consultants and doctors.

Trusting the Black Box

There has been large-scale adoption of neural networks since the first edition 
of this book. While the volumes of data have increased, meaning that there is 
enough data to support accurate predictions, it’s difficult to explain how these 
black-box algorithms are working.

The rule of thumb has been this: if you are unsure of the relationship between 
input and output of your model, then investigating with a neural network is a 
good way to go. If you have a good understanding of the input/output relation-
ship, then chances are other traditional methods would be used.

I’ve always encouraged students, software professionals, and management to 
explore all the algorithmic options before settling on a neural network, especially 
if your findings will eventually end up scrutinized by another professional or 
the public at large.

Over time there has been much coverage on the incorrect predictions made 
by many strands of artificial intelligence. The term explainable AI has taken the 
forefront of the discussion when it comes to creating algorithms that are going 
to predict on behalf of others.

Furthermore, it’s important you have sufficient volumes of training data for 
training neural networks. Small volumes of training will produce low accuracy 
scores, and there are times other machine learning algorithms, even linear 
regression, will perform better than a neural network.

It’s also important to look at the quality of the training data. Does it evenly 
cover the spectrum of the question you are trying to answer? Biased data will 
give you incorrect predictions, and you will have no way of explaining why.

Ultimately, before you invest time, data, and money into a neural network, 
it’s really worth asking yourself if this is the best way to do this task.
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Breaking Down the Artificial Neural Network

Before you jump into data and a few examples, I will cover the rationale and 
working of the neural network.

Perceptrons
The basis for a neural network is the perceptron. Its role is quite simple. It receives 
an input signal and then passes the value through some form of function. It 
outputs the result of the function. (See Figure 9.2.)

Perceptrons deal with numbers when a number or vector of numbers is 
passed to the input. It is then passed to a function that calculates the outgoing 
value; this is called the activation function. The node can handle any number of 
inputs—Figure 9.3 shows two inputs passing into the function—and it takes 
the weighted sum of all the inputs.

Assuming the input is a vector Z, you’d end up with something like this:

Z 1 = 2

Z 2 = 5

Z 3 = 1

Or (2,5,1)

The weighted sum of all the inputs is calculated as follows:

	
i

wiZi	

In other words, “add it all up.” So for the likes of me, who is not used to too 
much math notation, it looks like the following:

	 2 5 11 2 3w w w 	

The outgoing part of the node has a set threshold. If the summed value is 
over the threshold, then the output, denoted by the y variable, is 1, and if it’s 
below the threshold, then y is 0 (zero).

Input

2.5 1.5

Output

Figure 9.2:  A simple perceptron
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You end up with the following equation:

	 if wiZi t theny

elsey
i

1

0

	

The weight of the perceptron can be zero or any other value. If the weight value 
is zero, then it does not alter the input node value coming into the perceptron. 
Likewise, inputs can be positive or negative numbers. The key to the output is 
based on the weighted sum against the threshold.

That’s the basis of a single-node perceptron. When you strip the components 
apart, it’s quite basic in composition.

Activation Functions
The activation function is the processing that happens after the input is passed 
into the neuron. The result of this function determines whether the value is 
passed to the output axon and onto the next neuron in the network.

Commonly, the Sigmoid function (see Figure 9.4) and the hyperbolic tangent 
are used as activation functions to calculate the output.

The Sigmoid function outputs only one of two values: 0 and 1. For the pro-
grammers, the function is written as follows:

return 1.0 / (1.0 + Math.exp(-x));

The sharpness of the curve could also be altered if required, but for most 
applications a straight function is fine.

1.5 0.2

0.2

1 0.5
0.5

Figure 9.3:  Perceptron with two inputs
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Multilayer Perceptrons
The problem with single-layer perceptrons is that they are linearly separable. 
The output is either one value or another.

If you think of an AND gate in logic theory, there is only one outcome if you 
have two inputs, as shown in Table 9.1.

The perceptron would be fashioned as shown in Figure 9.5.

0

0.5

1

1−1

Figure 9.4:  Sigmoid function

Table 9.1: AND Gate Output Table

INPUT OUTPUT

Off and On Off

On and Off Off

Off and Off Off

On and On On

W0 = 0.5

W1 = 0.5

I0

I1

T > 0

Figure 9.5:  AND gate perceptron
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The network output equation would be the following:

	
Output

if W I W I1 00 0 01 1 0
0 Otherwise

	

So far, I’ve covered the processing of one perceptron. Artificial neural net-
works have many interconnected neurons, each with its own input, output, and 
activation function.

For most machine learning functions, artificial neural networks are used 
for solving problems of a nonlinear fashion. Many problems cannot be solved 
in a purely linear fashion, so using a single-layer perceptron for this kind of 
problem-solving was never worth considering. If you think of an XOR gate 
(Exclusive OR) with the input types shown in Table 9.2, you could easily think 
of the network shown in Figure 9.6.

Multilayer perceptrons have one or more layers between the input nodes 
and the eventual output nodes. The XOR example has a middle layer, called a 
hidden layer, between the input and the output (see Figure 9.7). Although you 
and I know what the outputs of an XOR gate would be (I’ve just outlined them 
in the table) and we could define the middle layer ourselves, a truly automated 
learning platform would take some time.

The question is, what happens in the hidden layer? Going back to the XOR 
example for a moment, you can see the two input nodes with their values. These 
would then be fed to the hidden layer, and the input is dependent on the output 
of the input layer.

Table 9.2: Exclusive OR Output Table

INPUT OUTPUT

Off and On On

On and Off On

Off and Off Off

On and On Off

0.5

0.5

1

1

1

1
1

−1
1.5

Figure 9.6:  XOR gate network



	 Chapter 9 ■ Artificial Neural Networks	 173

This is where the neural network becomes useful. You can train the network 
for classification and pattern recognition, but it does require training. You can 
train an artificial neural network by unsupervised or supervised means.

The issue is that you don’t know what the weight values should be for the 
hidden layer. By changing the bias in the Sigmoid function, you can vary the 
output layer, an error function can be applied, and the aim is to get the value 
of the error function to a minimum value.

I described the threshold function within the perceptron previously in the 
chapter, but this isn’t suitable for your needs. You need something that is con-
tinuous and differentiable. With the bias option implemented in the Sigmoid 
function, each run of the network refines the output and the error function. This 
leads to a better-trained network and more reliable answers.

Back Propagation
Within the multilayer perceptron is the concept of back propagation, short for the 
“backward propagation of errors.” Back propagation calculates the gradients 
and maps the correct inputs to the correct outputs.

There are two steps to back propagation: the propagation phase and the 
updating of the weight. This would occur for all the neurons in the network.

If you were to look at this as pseudocode—assuming an input layer, a single 
hidden layer, and an output layer—it would look like this:

initialize weights in network (random values)
 
while(examples to process)
  for each example x 
    prediction = neural_output(network, x)
    actual = trained-output(x)
    error is (prediction – actual) on output nodes
 
backwardpass:
  compute weights from hidden layer to the output layer
  compute weights from input layer to hidden layer

Figure 9.7:  Multilayer perceptron with one hidden layer
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  update network weights
  until all classified correctly against training data
  return finalized network

Propagation happens, and the training is input through the network and 
generates the activations of the output. It then backward propagates the output 
activations and generates deltas of all the output and hidden layers of the net-
work based on the target of the training pattern.

In the second phase, the weight update is calculated by multiplying the output 
delta and input activation. This gives you the gradient weight. The percentage 
ratio is then subtracted from the weight. The second part is done for all the 
weight axons in the network.

The percentage ratio is called the learning rate. The higher the ratio, the faster 
the learning. With a lower ratio you know the accuracy of the learning is good.

	 N OT E     I appreciate that it’s difficult to grasp mathematical concepts on neural 
networks in a book that focuses on the practical aspects of getting machine learning 
up and running quickly. This overview gives a general idea of how they work. The 
main concepts of input and output layers, perceptrons, and the notion of forward and 
backward propagation provide a good, although simple, grounding in the thought 
process.

Data Preparation for Artificial Neural Networks

For creating an artificial neural network, it’s worth using a supervised learning 
method. However, this requires some thought about the data that you are going 
to use to train the network.

Artificial neural networks work only with numerical data values. So, if there 
are normalized things with text values, they need to be converted. This isn’t so 
much an issue with the likes of gender, where the common output would be Male 
= 0 and Female = 1, for example. Raw text wouldn’t be suitable, so it will either 
need to be tidied up, hashed to numeric values, or removed from the test data.

As with all data strategies, it’s a case of thinking about what’s important and 
what data you can live without.

As more variables increase in your data for classification, you will come across 
the phenomenon called “the curse of dimensionality.” This is when added vari-
ables increase the total volume of training data required to get reasonable results 
and insight. So, when you are thinking of adding another variable, make sure you 
have enough training data to cover eventualities across all the other variables.

Although neural networks are pretty tolerant to noisy data, it’s worth try-
ing to ensure that there aren’t large outliers that could potentially cause issues 
with the results. Either find and remove the wayward digits or turn them into 
missing values.
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Artificial Neural Networks with Weka

The Weka framework supports a multilayer perceptron and trains it with the 
back propagation technique I just described. In this walk-through, you create 
some data and then generate a neural network.

Generating a Dataset
My dataset is going to contain classifications for different types of vehicles. I’m 
first going to create a Java program that generates some random, but weighted, 
data to give us four types of vehicles: bike, car, bus, and truck.

Here’s the code listing:

import java.io.BufferedWriter;
import java.io.FileWriter;
import java.io.IOException;
import java.util.Random;
 
public class MLPData {
 
    private String[] classtype = new String[] { "Bike", "Car", "Bus", 
"Truck" };
 
    public MLPData() {
 
        Random rand = new Random(System.nanoTime());
 
        try {
            BufferedWriter out = new BufferedWriter(new FileWriter(
                    "vehicledata.csv"));
    out.write("wheels,chassis,pax,vtype\n");
            for (int i = 0; i < 100; i++) {
                StringBuilder sb = new StringBuilder();
                switch (rand.nextInt(3)) {
                case 0:
                    sb.append((rand.nextInt(1) + 1) + ","); 
                    sb.append((rand.nextInt(1) + 1) + ","); 
                    sb.append((rand.nextInt(1) + 1) + ","); 
                    sb.append(classtype[0] + "\n");
                    break;
                case 1:
                    sb.append((rand.nextInt(2) + 4) + ","); 
                    sb.append((rand.nextInt(4) + 1) + ","); 
                    sb.append((rand.nextInt(4) + 1) + 
                    sb.append(classtype[1] + "\n");
                    break;
                case 2:
                    sb.append((rand.nextInt(6) + 4) + ","); 
                    sb.append((rand.nextInt(12) + 12) + ","); 
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sb.append((rand.nextInt(30) + 10) + ","); // passenger number
 
sb.append(classtype[2] + "\n");
                    break;
                case 3:
                    sb.append("18,"); // num of wheels
                    sb.append((rand.nextInt(10) + 20) + ","); 
                    sb.append((rand.nextInt(2) + 1) + 
                    sb.append(classtype[3] + "\n");
                    break;
                default:
                    break;
                }
                out.write(sb.toString());
 
            }
            out.close();
        } catch (IOException e) {
            e.printStackTrace();
        }
 
    }
 
    public static void main(String[] args) {
        MLPData mlp = new MLPData();
 
    }
 
}

When run, the preceding code creates a CSV file called vehicledata.csv. Start 
by creating 100 rows of output.

4,2,4,Car
9,20,25,Bus
5,14,18,Bus
5,2,1,Car
9,17,25,Bus
1,1,1,Bike
4,4,2,Car
9,15,36,Bus
1,1,1,Bike
5,1,4,Car
4,2,1,Car

As discussed previously, you need to perform a fair amount of training to 
make the neural network accurate in its predictions.
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Loading the Data into Weka
Open the Weka toolkit and select the Explorer function to display the Explorer 
shown in Figure 9.8.

You’re going to import the CSV file that’s been created. Make sure that the 
Preprocess window is selected; then click the Open File button and select the 
vehicledata.csv file. Don’t forget to change the File Format drop-down menu 
from .arff to .csv, as shown in Figure 9.9.

Figure 9.8:  Weka Explorer

Figure 9.9:  Weka File dialog box
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You see the data loaded with the basic representation of the relation and 
attribute information.

Configuring the Multilayer Perceptron
The neural network function of Weka comes with its own graphic user inter-
face. When run, you can see the graphical representation of the neural network.

Click the Classify panel. Where the default classifier is ZeroR, click Choose 
and change it to MultilayerPerceptron (see Figure 9.10), which is in the Functions 
branch of the tree listing.

You see the classifier change to MultilayerPerceptron with a lot of options next 
to it. If you click that line, a window of options opens, as shown in Figure 9.11.

Change the GUI setting to True. This setting makes the neural network 
display in a graphic form; the display is also interactive, and you can change 
the network. If the GUI setting is set to False, then Weka generates the network 
for you without your intervention.

Although this version of the multilayer perceptron converts and handles 
your nominal values for you, it’s still prudent to take the time to ensure that 
your data is prepared properly. The network autobuilds by default. If you want 
to create your own, then you can turn this off and craft the network by hand.

Figure 9.10:  Changing the classifier
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There are a few values that are worth keeping an eye on before you let the 
network do its training.

Learning Rate

The amount the weights are updated is defaulted at 0.3. If that seems a little 
heavy or too light, then you can adjust as desired.

Hidden Layers

You can define how many hidden layers the neural network will have. By default, 
Weka builds four (attributes and classes/2) (set to “a”), but you can also have 
just the attributes (“i”), just the classes (“o”), and the attributes and classes 
complete (“t”).

Training Time

The number of epochs through which Weka iterates during training is set to 
500. The higher the number, the lower the error rate will be. As you’ll see in a 
moment, this can give varying results in the output.

When you are happy with the options, you can click OK and go back to the 
Classify window.

Figure 9.11:  Options dialog box for MultilayerPerceptron
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Training the Network
You have to do a few runs of neural networks to find the sweet spot where the 
network is coming up with good classifications. With 100 rows of data, you’re 
not going to be solving much of any worth; regardless, it gives you an idea of 
how it works.

Make sure the test options are set to use the whole training set. The cross-
validation is fine, but it ends up running the training through all 10 folds, and 
that can get time-consuming when you just want to test. Click Start, and the 
neural network window shown in Figure 9.12 displays.

Click Start, and you see the epoch count rise and the error rate decrease. If 
you click Accept by accident, then no data will have been classified, and the 
results will be wrong.

After the neural network has run, click the Accept button, and you will be 
returned to the classification output screen.

The full classifier output gives the output for the hidden layer nodes. Nodes 
0, 1, 2, and 3, and the four nodes on the right side of Figure 9.12 are the output 
connections. The class attributes for classification are shown as bike, car, bus, 
or truck on the right side of the neural network output (refer to Figure 9.12).

Sigmoid Node 0
    Inputs    Weights
    Threshold    0.018993883149676594

Figure 9.12:  Neural network GUI window



	 Chapter 9 ■ Artificial Neural Networks	 181

    Node 4    -0.04038638643499096
    Node 5    0.0065483634965212145
    Node 6    -0.03873854654480489
Sigmoid Node 1
    Inputs    Weights
    Threshold    -0.0451840582741909
    Node 4    -0.002851224687941599
    Node 5    -0.012455737520358182
    Node 6    -0.0491382673800735
Sigmoid Node 2
    Inputs    Weights
    Threshold    -0.010479295335213488
    Node 4    0.02129170595398988
    Node 5    0.02877248387280648
    Node 6    -0.001813155428890656
Sigmoid Node 3
    Inputs    Weights
    Threshold    0.02680212410425596
    Node 4    0.006810392393573984
    Node 5    -0.04968676115705444
    Node 6    -0.015015642691489917

Nodes 4, 5, and 6 comprise the hidden layer that takes the input from the 
input attributes for wheels, chassis, and passenger count.

Sigmoid Node 4
    Inputs    Weights
    Threshold    0.011850776365702677
    Attrib wheels    0.0429940506718635
    Attrib chassis    -0.035625493582980464
    Attrib pax    -0.021284810000068835
Sigmoid Node 5
    Inputs    Weights
    Threshold    0.011165074786232076
    Attrib wheels    -0.018370069737576836
    Attrib chassis    -0.030938315802372954
    Attrib pax    0.01567513412449774
Sigmoid Node 6
    Inputs    Weights
    Threshold    -0.04753959806853169
    Attrib wheels    -0.00211881373779247
    Attrib chassis    0.040431974347463484
    Attrib pax    -0.017943250444400316

Each node has the input type and the weight values of the corresponding 
input node.

The summary shows how many instances have been correctly classified, 
along with other values for the error data if it has occurred.
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In the last section, you can see how the classification counts added up in the 
Confusion Matrix, as shown here:

=== Confusion Matrix ===
 
  a  b  c  d   <-- classified as
 33  0  0  0 |  a = Bus
  0 27  0  0 |  b = Car
  0  0 20  0 |  c = Bike
  0  0  0 20 |  d = Truck

Altering the Network
With the GUI option set to True, you can add nodes and also remove input paths 
to parts of the hidden layer. If you make any changes, you need to retrain the 
neural network; the updated network will display in the GUI.

Which Bit Is Which?

Working from left to right on the GUI, you see the raw input nodes as labels in 
the yellow boxes. Red dots are the hidden layer nodes, and the orange dots are 
the output nodes. The orange labels are the classes with which the orange dot 
nodes are associated.

Adding Nodes

You can add a new node by clicking the GUI. The red dot appears to signify a 
hidden layer node. It won’t be connected to anything, unless you have already 
selected nodes in the GUI.

Connecting Nodes

With the node selected, you can click another node to see the connection being 
made.

Removing Connections

To remove a connection, select one of the connected nodes and then right-click 
the other connected node. The connecting line disappears.

Removing Nodes

Right-clicking a node removes it and all the connections to it. Be careful to 
make sure that there aren’t any other selected nodes; otherwise they, and their 
connections, will be removed, too.
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Increasing the Test Data Size
Within the for loop of the MLPData.java program you created earlier in the 
chapter, change the loop count from 100 rows to 100,000 rows. Go back to the 
Preprocess window and load the new CSV file. It might take some time to load.

Now, go back to the Classify window and rerun the neural network. When the 
GUI window opens, you see the network looks the same as before in terms of the 
hidden layers. Where you had 500 epochs running against the 100 rows of data, 
you now have the same epoch number against all 100,000 rows of training data.

Click Start and the training begins. You’ll notice a difference in response 
time from the GUI as it trains all 100,000 rows. The main thing to look at is the 
errors per epoch; the number keeps reducing to the point where you get minute 
changes per 100 to 200 epochs. By the time the training has finished, you will 
have a very accurate training model.

All this comes at a price of memory, though. My training set took more than 
two minutes.

Time taken to build model: 124.52 seconds

Two minutes isn’t a huge amount of time in the grand scheme of things, but as 
I previously mentioned in regard to gathering data for neural networks, adding 
more variables gives the curse of dimensionality.

The more rows you can use for training, the better the prediction results will 
be. There is a point in time to figure out when there’s too much training data 
against the errors per epoch. It takes some practice (and everyone’s data is dif-
ferent, so there’s no hard or fast rule), and it’s a case of experiment, measure, 
and try again.

Implementing a Neural Network in Java

With the Weka API, you can build a neural network with the same multilayer 
perceptron that Weka uses within the GUI.

Creating the Project
Select File ➪ New ➪ Java Project and call it MLPProcessor, as shown in Figure 9.13.

You need to tell Eclipse where the Weka API is; it’s called weka.jar. On macOS 
machines, Weka is usually installed within the Applications directory. The 
location on Windows machines varies depending on the specific operating 
system and Weka installation. In most cases, it will be /Program Files (x86)/
Weka-3-8/weka.jar.

With the WekaCluster project selected, select File ➪ Properties and look for 
the Java Build Path. Then click the Libraries tab. Add the external jar file by 
clicking Add External JARs; then in the file dialog box find the weka.jar file, as 
shown in Figure 9.14.
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Figure 9.13:  Eclipse New Project dialog box

Figure 9.14:  Adding external JARs
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The last thing to do is create a new class called MLPProcessor.java (using File 
➪ New ➪ Class), as shown in Figure 9.15.

Writing the Code
The actual Java is straightforward. You’re going to do the following:

1.	 Open the training data .arff file.

2.	 Create a multilayer perceptron and set the same options as the Weka GUI 
example.

3.	 Build the classifier.

4.	 Load some test data.

5.	 Run an evaluation test with the test data against the trained data.

You need to create a small test data file to test against the model. In a text file 
called testdata.arff, enter the following:

@relation vehicledata
 
@attribute wheels numeric
@attribute chassis numeric

Figure 9.15:  Creating a new class file
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@attribute pax numeric
@attribute vtype {Bus,Car,Truck,Bike}
 
@data
18,25,2,Truck
8,21,24,Bus
18,27,2,Truck
1,1,1,Bike
7,23,21,Bus
18,20,1,Truck
8,16,30,Bus
18,28,2,Truck
7,18,36,Bus
8,21,27,Bus
5,2,4,Car
18,28,1,Truck
5,1,1,Car
1,1,1,Bike
18,27,1,Truck
5,1,1,Car
6,15,38,Bus
7,21,38,Bus
18,20,2,Truck
1,1,1,Bike
18,28,2,Truck
18,24,2,Truck
18,20,1,Truck
1,1,1,Bike
5,17,18,Bus
18,27,1,Truck
4,4,3,Car
18,21,1,Truck
5,2,3,Car
4,3,3,Car
18,23,1,Truck
5,20,30,Bus
5,3,3,Car
18,28,1,Truck
5,3,1,Car
9,13,19,Bus
1,1,1,Bike
18,26,2,Truck

After you’ve created the test file, use the following code:

import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
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import weka.classifiers.Evaluation;
import weka.classifiers.functions.MultilayerPerceptron;
import weka.core.Instances;
import weka.core.Utils;
 
public class MLPProcessor {
 
    public MLPProcessor() {
        try {
            FileReader fr = new FileReader("vehicledata.arff");
            
            Instances training = new Instances(fr);
            
            training.setClassIndex(training.numAttributes() -1);
            
            MultilayerPerceptron mlp = new MultilayerPerceptron();
            mlp.setOptions(Utils.splitOptions(“-L 0.3 -M 0.2 -N 500 
-V 0 -S 0 -E 20 -H 4”));
 
 
            mlp.buildClassifier(training);
 
            FileReader tr = new FileReader(“testdata.arff”);
            Instances testdata = new Instances(tr);
            testdata.setClassIndex(testdata.numAttributes() -1);
            
            Evaluation eval = new Evaluation(training); 
            eval.evaluateModel(mlp, testdata); 
System.out.println(eval.toSummaryString(“\nResults\n*******\n”, false));
            
            tr.close();
            fr.close();
            
        } catch (FileNotFoundException e) {
            e.printStackTrace();
        } catch (IOException e) {
            e.printStackTrace();
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
    
    public static void main(String[] args) {
        MLPProcessor mlp = new MLPProcessor();
    }
 
}

The actual neural network is taken care of within three lines of code. Create 
the multilayer perceptron, set which class you want to determine, and then 
build the classifier. The rest of the code is loading the training and test data in.
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Converting from CSV to Arff
CSV files don’t contain the data that Weka needs. You could implement the 
CSVLoader class, but I prefer to know that the .arff data is ready for use. It also 
makes it easier for others to decode the data model if they need to.

From the command line, you can convert the data from a .csv file to .arff 
in one command.

java -cp /Applications/weka-3-6-10/weka.jar 
weka.core.converters.CSVLoader \
vehicledata.csv > vehicledata.arff

If you inspect the .arff file, you see the attribute information set up for you.

@relation vehicledata
 
@attribute wheels numeric
@attribute chassis numeric
@attribute pax numeric
@attribute vtype {Bus,Car,Truck,Bike}
 
@data
6,20,39,Bus
8,23,11,Bus
5,3,1,Car
4,3,4,Car
5,3,1,Car
4,18,37,Bus
18,23,2,Truck

Running the Neural Network
The code listing doesn’t include any output messages while it’s running, with 
the exception of the output of the evaluation. I say this because the training data 
could have 100,000 rows in it, and it’s going take a few minutes to run.

Run the class with Run ➪ Run from Eclipse, and it starts to generate the 
model. After a while, you see the output from the evaluation.

Results
======
 
Correctly Classified Instances          38              100      %
Incorrectly Classified Instances         0                0      %
Kappa statistic                          1     
Mean absolute error                      0.0003
Root mean squared error                  0.0004
Relative absolute error                  0.0795 %
Root relative squared error              0.0949 %
Total Number of Instances               38 
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Instances can be easily classified by using the multilayer perceptron clas-
sifyInstance() method, which takes in a single Instance class and outputs a 
numeric representation of the result. This result corresponds to your output 
class in the .arff training file.

Developing Neural Networks with DeepLearning4J

The Weka framework gives a good working system for creating neural net-
works. The system that you’re using will obviously determine how long the 
model training will take. From experience I’ve found that there’s a point in the 
training when Weka starts to struggle. When this happens, I look for the alter-
natives that I can use. As a Java developer, I use the DeepLearning4J framework; 
it scales well and also can be used with Spark to let you scale out large datasets 
across a cluster.

Let’s take the vehicle data and use DL4J to create a multilayer perceptron 
neural network.

Modifying the Data
As Weka has the Arff data file, it knows that the output class is a vehicle type. 
The training data for DL4J is based on a CSV file, but it requires a numerical 
output class instead of a text one. So I’ve changed the output classifications to 
the following:

VEHICLE CLASS DL4J NUMERICAL OUTPUT CLASS

Bus 0

Car 1

Truck 2

Bike 3

The data now looks like the following:

wheels,chassis,pax,vtype
6,20,39,0
8,23,11,0
5,3,1,1
4,3,4,1
5,3,1,1
4,18,37,0
18,23,2,2
5,4,2,1
1,1,1,3
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18,26,2,2
1,1,1,3
1,1,1,3
1,1,1,3
8,21,28,0
5,4,2,1

Viewing Maven Dependencies
In the code repository there is a pom.xml file with the required dependencies 
for DL4J. I’m not using any form of a graphical processor unit (GPU) for the 
calculations, just the CPU of the machine I’m working on.

<properties>
   <nd4j.backend>nd4j-native-platform</nd4j.backend>
   <dl4j.version>0.9.1</dl4j.version>
   <nd4j.version>0.9.1</nd4j.version>
</properties>
<dependencies>
   <dependency>
       <groupId>org.nd4j</groupId>
       <artifactId>${nd4j.backend}</artifactId>
       <version>${nd4j.version}</version>
   </dependency>
   <!-- Core DL4J functionality -->
   <dependency>
       <groupId>org.deeplearning4j</groupId>
       <artifactId>deeplearning4j-core</artifactId>
       <version>${dl4j.version}</version>
   </dependency>
   <dependency>
       <groupId>org.deeplearning4j</groupId>
       <artifactId>deeplearning4j-nlp</artifactId>
       <version>${dl4j.version}</version>
   </dependency>
   <dependency>
       <groupId>org.apache.httpcomponents</groupId>
       <artifactId>httpclient</artifactId>
       <version>4.3.5</version>
   </dependency>
   <!-- logging -->
   <dependency>
       <groupId>org.slf4j</groupId>
       <artifactId>slf4j-log4j12</artifactId>
       <version>1.7.13</version>
   </dependency>
   <!-- end logging -->
</dependencies>

With that in place, we can now look at the steps to creating the neural network.
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Handling the Training Data
As there are various data formats that DL4J can handle, it’s important to pick 
the right one to use for the training data; the CSVRecordReader is used to read 
in CSV files. The header row will be skipped; this row is text and contains the 
names of the columns. If this row is read, our model will break when being built.

int numLinesToSkip = 1;
String delimiter = ",";
RecordReader recordReader = new CSVRecordReader(numLinesToSkip,
 delimiter);
recordReader.initialize(new FileSplit(
 new File("/path/to/data/ch09/dl4j/")));

The next stage is to convert each CSV into an object for DL4J to read. The 
labeled value we’re wanting to predict is the fourth column, the vehicle type, 
so the labelIndex value is set to 3 (counting from zero). There are four classes 
in each object, and in this example there are 100,000 rows of data.

I’m going to use 65 percent of the data for training and the remaining 35 per-
cent for evaluating the newly created model. Notice how the dataset is shuffled, 
so there is some randomness to the training and evaluation data.

int labelIndex = 3;
int numClasses = 4;
int batchSize = 100000;
double evalsplit = 0.65;
 
DataSetIterator iterator = new RecordReaderDataSetIterator(recordReader,
 batchSize,labelIndex,numClasses);
 
DataSet allData = iterator.next();
allData.shuffle();
SplitTestAndTrain testAndTrain = allData.splitTestAndTrain(evalsplit
 
DataSet trainingData = testAndTrain.getTrain();
DataSet testData = testAndTrain.getTest();

The resulting split leaves us with two new DataSet objects, a collection of 
training objects, and a collection of evaluation objects. The next step is to nor-
malize the data.

Normalizing Data
In preparing the data for building the neural network, the process of normali-
zation takes places. The aim is to change the values of the vectors to a common 
scale number but do it without distorting the actual differences of the data 
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being used. The DL4J framework provides a class to do this; in this example, 
I’m using it to normalize both the training and test vectors.

DataNormalization normalizer = new NormalizerStandardize();
normalizer.fit(trainingData);
normalizer.transform(trainingData);
normalizer.transform(testData);

Building the Model
Using the NeuralNetConfiguration.Builder class, the neural network is con-
structed. Information about the layers, the hidden nodes, and the output are 
all created here.

The seed is purely a random number that is used during the model build. 
We are also required to specify which activation function to use. The Tahn acts 
very much like a sigmoid function but gives an S curve from -1 to 1, whereas 
the sigmoid works from 0 to 1.

I’m creating a four-layer network. The input layer has three nodes, the two 
hidden layers have four nodes for each layer, and the output layer had four 
nodes, one for each prediction vehicle type. With the DenseLayer class, you can 
see how the nIn method handles the input edges and how the nOut method sets 
the output edges for the next connecting layer.

final int numInputs = 3;
final int hiddenNodes = 4;
int outputNum = 4;
int iterations = 2000;
long seed = 6;
 
log.info("Building model....");
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
  .seed(seed)
  .iterations(iterations)
  .activation(Activation.TANH)
  .weightInit(WeightInit.XAVIER)
  .learningRate(0.1)
  .regularization(true).l2(1e-4)
  .list()
  .layer(0, new DenseLayer.Builder().nIn(numInputs).nOut(hiddenNodes)
.build())
  .layer(1, new DenseLayer.Builder().nIn(hiddenNodes).nOut(hiddenNodes)
.build())
  .layer(2, new DenseLayer.Builder().nIn(hiddenNodes).nOut(hiddenNodes)
.build())
  .layer(3, new  

http://log.info
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     OutputLayer.Builder(
LossFunctions.LossFunction.NEGATIVELOGLIKELIHOOD)
       .activation(Activation.SOFTMAX)
       .nIn(hiddenNodes).nOut(outputNum).build())
               .backprop(true).pretrain(false)
               .build();

With the configuration of the network set, the next stage is to train the model 
with the configuration and the training dataset that we defined earlier.

MultiLayerNetwork model = new MultiLayerNetwork(conf);
model.init();
model.setListeners(new ScoreIterationListener(100));
model.fit(trainingData);

Once the model build is complete, it’s time to run the evaluation with the 
other dataset.

Evaluating the Model
The Evaluation class takes an integer with the number of output classes it will 
evaluate the data against. The model generates an output feature matrix from 
the test data, and it is evaluated and reported to the console.

Evaluation eval = new Evaluation(4);
log.info("Getting evaluation");
INDArray output = model.output(testData.getFeatureMatrix());
log.info("Getting evaluation output");
eval.eval(testData.getLabels(), output);
System.out.println(eval.stats());

Saving the Model
The resulting model can be persisted to a file for use again later. To illustrate 
this, I’ve added the code to save the model to the filesystem of the local machine.

File locationToSave = new File("/path/to/models/basicmlpmodel.zip");
boolean saveUpdater = false;
ModelSerializer.writeModel(model, locationToSave, saveUpdater);

The output file type is a zip file. In this example the zip file has two files, a 
configuration JSON file, which has all the model configuration as created in the 
code illustrated and a bin file with the generated coefficients.

This model can be loaded and be used to run predictions against new data.

http://log.info
http://log.info
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Building and Executing the Program
To enable us to execute the application, I’m going to add the Java execution 
plugin in to the pom.xml file.

<build>
   <plugins>
       <plugin>
           <groupId>org.codehaus.mojo</groupId>
           <artifactId>exec-maven-plugin</artifactId>
           <version>1.2.1</version>
           <executions>
               <execution>
                   <goals>
                       <goal>java</goal>
                   </goals>
               </execution>
           </executions>
           <configuration>
               <mainClass>mlbook.ch09.ann.dl4j.BasicMLP</mainClass>
           </configuration>
       </plugin>
   </plugins>
</build>

The mainClass tag is set to the Java class for our program. To run this, type 
the following from the command line:

$ mvn exec:java -Dexec="mlbook.ch09.ann.dl4j.BasicMLP"

You will see the Maven output and, after a few minutes, the results of the 
evaluation of the neural network model.

[INFO] Scanning for projects...
[INFO]
[INFO] --------------------------< mlbook:Chapter9 >--------------------
-------
[INFO] Building Machine Learning:Hands On 2nd Edition - 
Chapter 9 - Artificial Neural Networks 1.0-SNAPSHOT
[INFO] --------------------------------[ jar ]--------------------------
-------
[INFO]
[INFO] >>> exec-maven-plugin:1.2.1:java (default-cli) > 
validate @ Chapter9 >>>
[INFO]
[INFO] <<< exec-maven-plugin:1.2.1:java (default-cli) < validate @ 
Chapter9 <<<
[INFO]
[INFO]
[INFO] --- exec-maven-plugin:1.2.1:java (default-cli) @ Chapter9 ---
log4j:WARN No appenders could be found for 
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logger (org.nd4j.linalg.factory.Nd4jBackend).
log4j:WARN Please initialize the log4j system properly.
log4j:WARN See http://logging.apache.org/log4j/1.2/faq.html#
noconfig for more info.
 
Examples labeled as 0 classified by model as 0: 8725 times
Examples labeled as 1 classified by model as 1: 8861 times
Examples labeled as 2 classified by model as 2: 8762 times
Examples labeled as 3 classified by model as 3: 8652 times
 
==========================Scores========================================
 # of classes:    4
 Accuracy:        1.0000
 Precision:       1.0000
 Recall:          1.0000
 F1 Score:        1.0000
Precision, recall & F1: macro-averaged (equally weighted avg. 
of 4 classes)
========================================================================
[INFO] -----------------------------------------------------------------
-------
[INFO] BUILD SUCCESS
[INFO] -----------------------------------------------------------------
-------
[INFO] Total time:  03:10 min
[INFO] Finished at: 2019-10-28T14:30:52Z
[INFO] -----------------------------------------------------------------
-------

Our model took just over three minutes to build, train, and evaluate with 
100,000 lines of data. The resulting model was saved to the filesystem, so the 
model can be reused.

Summary

This is an involved chapter, covering the core concepts of how neural networks 
actually work. It’s worth exploring both the Weka and DeepLearning4J (DL4J) 
libraries and seeing which one fits the best for your work and projects.

Like I said early in the chapter, it’s worth exploring all the other algorithmic 
options before settling on using a neural network. It’s better to have a model 
that’s explainable than not. The black-box nature of these network models makes 
it incredibly difficult to justify the predictions if anyone questions them.

Care must be taken going forward, especially with live customer data. While 
it’s a computer doing the work and making the predictions, it’s still our respon-
sibility to make sure they are fair, are correct, and do not negatively impact 
another party.

http://logging.apache.org/log4j/1.2/faq.html
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While this chapter has focused on the multilayer perceptron as the neural 
network of choice, the next two chapters use some of these concepts with convo-
lutional neural networks. With these deep learning algorithms, we can explore 
large text corpus, images, and video in a machine learning context.
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The word document sounds too formal when you take a moment to consider 
the amount of text that is stored. That may take the form of a word-processed 
document, a blog post, an email, a news article, or an academic paper. When 
you pause to consider the amount of text data held on the Internet and the Web, 
well, it’s a lot, making sense of it is going to take some doing.

Text analysis, and the machine learning from it, is not the easiest thing in the 
world to do. Documents are messy, there’s a fair amount of cleaning to do, and 
they come in all sorts of different formats, which usually presents challenges too.

For this chapter I will describe various working methods of finding information 
from text documents but will also cover the steps of getting data ready for anal-
ysis. From there I’ll show you three methods to learning from your text: TF/
IDF, Word2Vec, and using neural networks to generate new text.

As a further study of text analysis, it’s worth looking into the more advanced 
techniques like using Long Short Term Memory (LSTM) for improved results espe-
cially in context awareness. Google has designed a neural network architecture 
called Bidirectional Encoder Representations from Transformers (BERT); a basic 
overview is available here:

https://colab.research.google.com/github/google-research/bert/

blob/master/predicting _ movie _ reviews _ with _ bert _ on _ tf _ hub 

.ipynb#scrollTo=hsZvic2YxnTz

Machine Learning with Text 
Documents

https://colab.research.google.com/github/google-research/bert/blob/master/predicting_movie_reviews_with_bert_on_tf_hub.ipynb#scrollTo=hsZvic2YxnTz
https://colab.research.google.com/github/google-research/bert/blob/master/predicting_movie_reviews_with_bert_on_tf_hub.ipynb#scrollTo=hsZvic2YxnTz
https://colab.research.google.com/github/google-research/bert/blob/master/predicting_movie_reviews_with_bert_on_tf_hub.ipynb#scrollTo=hsZvic2YxnTz
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Preparing Text for Analysis

Let’s start at the start; someone, somewhere is going to present you with docu-
ments. Previous experience has told me it’s going to be in the format you least 
expect. When we say “text document,” some may think of plain text (.txt), while 
others might think of a Rich Text Format document (.rtf) or even a Microsoft 
Word document (.doc/.docx). For text analysis we want plain text, so there is 
usually going to be some data scrubbing to do first.

Apache Tika
If you are totally unsure what kind of document type you are dealing with, 
then it’s worth taking a look at the Apache Tika library to inspect the content 
metadata.

You can download Tika from http://tika.apache.org/, and it can be used 
either as a command-line tool or embedded into an application.

Tika isn’t just limited to text documents; it can read image, video, sound, 
email, and other file types. To the see the full list of supported types, please 
look at the support page on the Apache Tika website.

http://tika.apache.org/1.22/formats.html#Full _ list _ of _ Supported _

Formats

Downloading Tika

For the command-line examples, I’m going to download the JAR file from the 
Apache mirror site. To choose your closest mirror, go to the following website 
and choose from the list:

https://www.apache.org/dyn/closer.cgi/tika/tika-app-1.22.jar

Once you have saved the JAR file (you may get a security warning about the 
downloading of a JAR file), you can now reference it from the command line.

A built-in GUI is available to you; from the command line, run the following 
command.

$ java -jar tika-app-1.22.jar 

Once the GUI (see Figure 10.1) has loaded, find a text file and drag it over the 
GUI and then drop it there. You’ll see the metadata for the file you’ve dropped.

http://tika.apache.org/
http://tika.apache.org/1.22/formats.html#Full_list_of_Supported_Formats
http://tika.apache.org/1.22/formats.html#Full_list_of_Supported_Formats
https://www.apache.org/dyn/closer.cgi/tika/tika-app-1.22.jar
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Tika from the Command Line

The same JAR file offers processing from the command line. Using the --list-
parsers flag, you will see all the supported file types that Tika will read meta-
data for.

$ java -jar tika-app-1.22.jar --list-parsers
Aug 28, 2019 9:27:33 PM 
org.apache.tika.config.InitializableProblemHandler
$3 handleInitializableProblem
WARNING: J2KImageReader not loaded. JPEG2000 files will not be 
processed.
See https://pdfbox.apache.org/2.0/dependencies.html#jai-image-io
for optional dependencies.
Aug 28, 2019 9:27:33 PM 
org.apache.tika.config.InitializableProblemHandler
$3 handleInitializableProblem
WARNING: org.xerial's sqlite-jdbc is not loaded.
Please provide the jar on your classpath to parse sqlite files.
See tika-parsers/pom.xml for the correct version.
   org.apache.tika.parser.AutoDetectParser (Composite Parser):
      org.apache.tika.parser.DefaultParser (Composite Parser):
         org.apache.tika.parser.apple.AppleSingleFileParser
         org.apache.tika.parser.asm.ClassParser
         org.apache.tika.parser.audio.AudioParser

Figure 10.1:  Apache Tika GUI
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         org.apache.tika.parser.audio.MidiParser
         org.apache.tika.parser.chm.ChmParser
         org.apache.tika.parser.code.SourceCodeParser
         org.apache.tika.parser.crypto.Pkcs7Parser
         org.apache.tika.parser.crypto.TSDParser
         org.apache.tika.parser.csv.TextAndCSVParser
         org.apache.tika.parser.dbf.DBFParser
         org.apache.tika.parser.dif.DIFParser
         org.apache.tika.parser.dwg.DWGParser
         org.apache.tika.parser.epub.EpubParser
         org.apache.tika.parser.executable.ExecutableParser
         org.apache.tika.parser.feed.FeedParser
         org.apache.tika.parser.font.AdobeFontMetricParser
         org.apache.tika.parser.font.TrueTypeParser
         org.apache.tika.parser.gdal.GDALParser
         org.apache.tika.parser.geo.topic.GeoParser
         org.apache.tika.parser.geoinfo.GeographicInformationParser
         org.apache.tika.parser.grib.GribParser
         org.apache.tika.parser.hdf.HDFParser
              .....
         org.apache.tika.parser.sas.SAS7BDATParser
         org.apache.tika.parser.video.FLVParser
         org.apache.tika.parser.wordperfect.QuattroProParser
         org.apache.tika.parser.wordperfect.WordPerfectParser
         org.apache.tika.parser.xml.DcXMLParser
         org.apache.tika.parser.xml.FictionBookParser
         org.gagravarr.tika.FlacParser
         org.gagravarr.tika.OggParser
         org.gagravarr.tika.OpusParser
         org.gagravarr.tika.SpeexParser
         org.gagravarr.tika.TheoraParser
         org.gagravarr.tika.VorbisParser

I’m going to use a text file I have on hand; my nidcclean.txt file contains all 
the conference talk descriptions from a local developer conference.

First, I want some metadata on the file.

$ java -jar tika-app-1.22.jar -m ~/nidcclean.txt
Aug 28, 2019 9:36:23 PM org.apache.tika.config.Initializable
ProblemHandler$3 handleInitializableProblem
WARNING: J2KImageReader not loaded. JPEG2000 files will not be 
processed.
See https://pdfbox.apache.org/2.0/dependencies.html#jai-image-io
for optional dependencies.
Aug 28, 2019 9:36:23 PM org.apache.tika.config.Initializable
ProblemHandler$3 handleInitializableProblem
WARNING: org.xerial's sqlite-jdbc is not loaded.
Please provide the jar on your classpath to parse sqlite files.
See tika-parsers/pom.xml for the correct version.
Content-Encoding: UTF-8
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Content-Length: 38222
Content-Type: text/plain; charset=UTF-8
X-Parsed-By: org.apache.tika.parser.DefaultParser
X-Parsed-By: org.apache.tika.parser.csv.TextAndCSVParser
resourceName: nidcclean.txt

The -m option flag will output the meta data. Supposing I want to dump out 
of the file to XML instead, that can be done from the command line too.

$ java -jar tika-app-1.22.jar -x ~/nidcclean.txt
Aug 28, 2019 9:44:33 PM org.apache.tika.config.Initializable
ProblemHandler$3 handleInitializableProblem
WARNING: J2KImageReader not loaded. JPEG2000 files will not be 
processed.
See https://pdfbox.apache.org/2.0/dependencies.html#jai-image-io
for optional dependencies.
 
Aug 28, 2019 9:44:33 PM org.apache.tika.config.Initializable
ProblemHandler$3 handleInitializableProblem
WARNING: org.xerial's sqlite-jdbc is not loaded.
Please provide the jar on your classpath to parse sqlite files.
See tika-parsers/pom.xml for the correct version.
<?xml version="1.0" encoding="UTF-8"?>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta name="X-Parsed-By" 
content="org.apache.tika.parser.DefaultParser"/>
<meta name="X-Parsed-By" content="org.apache.tika.parser.csv.
TextAndCSVParser"/>
<meta name="Content-Encoding" content="UTF-8"/>
<meta name="resourceName" content="nidcclean.txt"/>
<meta name="Content-Length" content="38222"/>
<meta name="Content-Type" content="text/plain; charset=UTF-8"/>
<title/>
</head>
<body><p>visualising biological information is challenging at the best 
of times at axial3d we accelerate that understanding by providing 
machine learning ml backed annotations
....
 aimed at beginners mostly because i am one tootestcontainers is an 
open source library that allows you to containerise your external 
resource dependencies like databases web browsers or anything that can 
run in a docker container!by making use of testcontainers we can to 
develop and run our tests easier in a more productionlike environment 
with only docker as a prerequisite</p>
</body></html>

With Tika you can safely do text extraction. Let’s look at a résumé for an 
example (also joyously called a curriculum vitae if you’re in the United Kingdom). 
My file is in PDF format, but I want to quickly extract the text.
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$ java -jar tika-app-1.22.jar -t ~/Documents/JasonBellCV2018.pdf
Aug 28, 2019 9:48:39 PM     org.apache.tika.config.Initializable
ProblemHandler$3 handleInitializableProblem
WARNING: J2KImageReader not loaded. JPEG2000 files will not be 
processed.
See https://pdfbox.apache.org/2.0/dependencies.html#jai-image-io
for optional dependencies.
Aug 28, 2019 9:48:39 PM org.apache.tika.config.Initializable
ProblemHandler$3 handleInitializableProblem
WARNING: org.xerial's sqlite-jdbc is not loaded.
Please provide the jar on your classpath to parse sqlite files.
See tika-parsers/pom.xml for the correct version.
 
Profile
Highly proficient machine learning and data engineer with experience 
in building and
maintaining high volume data pipelines, realtime stream 
processing systems and
machine learning solutions for a variety of customers. 
Experienced in data cleaning
and preparation for use within data intensive systems.
 
Comfortable in both the development process and the customer facing/
communication process and is involved in the software industry 
as a respected voice in
the data community and is asked to speak at various events 
on Artificial Intelligence,
Machine Learning and anything to do with data.

The -t option will take the file content and output the text. You can direct 
that to a file if you want.

Tika Within an Application

In the code repository there is a code folder for this chapter. The Apache Tika 
libraries are available in two versions depending on the use you need. The core 
libraries contain everything for extracting metadata; if you want to extract text 
and conversions, you will need the parsers release.

package mlbook.ch10.tika;
import org.apache.tika.exception.TikaException;
import org.apache.tika.metadata.Metadata;
import org.apache.tika.parser.AutoDetectParser;
import org.apache.tika.parser.pdf.PDFParser;
import org.apache.tika.sax.BodyContentHandler;
import org.xml.sax.SAXException;
import java.io.BufferedInputStream;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStream;
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public class TextExtraction {
   public String toPlainText(String filename) {
       BodyContentHandler handler = new BodyContentHandler();
       AutoDetectParser parser = new AutoDetectParser();
       Metadata metadata = new Metadata();
       String output = "";
       try {
           InputStream stream = new BufferedInputStream(
new FileInputStream(filename));
           parser.parse(stream, handler, metadata);
           output =  handler.toString();
       } catch (IOException e) {
           e.printStackTrace();
       } catch (TikaException e) {
           e.printStackTrace();
       } catch (SAXException e) {
           e.printStackTrace();
       }
       return output;
   }
 
   public static void main(String[] args) {
       TextExtraction t = new TextExtraction();
       String output = t.toPlainText("/path/to/your/file.pdf");
       System.out.println(output);
   }
}

Cleaning the Text Data
When presented with text data, you will usually need to do some form of cleaning. 
What needs cleaning is down to the specification of the project, but you’ll come 
across a few commonalities.

1.	 Extract text from document (if not a plain text document).

2.	 Convert all words to lowercase.

3.	 Remove any punctuation.

4.	 Remove stopwords.

Convert Words to Lowercase

Lowercase and uppercase characters will be treated as separate words in any 
analysis, so it’s important to convert the entire text to one or the other. Consider 
the following sentence:

You are worthy, you are family. Focus on what you have to be 
grateful for.
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The words You and you would be treated as two separate words by any 
algorithm, and this would influence any weights or scorings.

In Java the .toLowerCase method will transform the string to lowercase.

public static String convertToLowerCase(String in) {
   return in.toLowerCase();
}

Using Clojure the lowercase function in the clojure.string library will do 
the same.

user=> (clojure.string/lower-case "You are worthy, you are family.
 Focus on what you have to be grateful for.")
"you are worthy, you are family. focus on what you have to be
 grateful for."

Remove Punctuation

In the same way that words with uppercase and lowercase instances will be 
recognized twice, the same applies to words with punctuation attached.

Let’s get back to the example text in its current state.

"you are worthy, you are family. focus on what you have to be 
grateful for."

The words worthy, family, and for have punctuation in the way of commas and 
full stops. If the punctuation is not removed, then these also become classed as 
separate words in any analysis. If family and family. were in the same paragraph, 
then there would be two instances recorded.

Using the regular expressions package in Java gives us a usable solution. The 
Pattern class takes the actual regular expression we want to use (\w is a word 
class that is any word containing ASCII letters, numbers, or an underscore [_] 
character). The Matcher class then gives the results of the regular expression 
applied to the input string. I’m using a StringBuilder to create an output string 
that can be used.

public String removePunctuation(String in) {
   String patternString = "[\\w]+";
 
   Pattern pattern = Pattern.compile(patternString);
   Matcher matcher = pattern.matcher(convertToLowerCase(in));
   StringBuilder sb = new StringBuilder();
 
   while(matcher.find()) {
       sb.append(matcher.group() + " ");
   }
   return sb.toString().trim();
}
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Clojure uses the same Java function, but it’s wrapped in a handy sequence so 
you can iterate through the results.

user=> (re-seq #"[\w]+" "you are worthy, you are family. focus on 
what you have to be grateful for.")
("you" "are" "worthy" "you" "are" "family" "focus" "on" "what" 
"you" "have" "to" "be" "grateful" "for")

Stopwords
It’s worth pausing for a moment to consider stopwords. In most cases, there are 
common words that you want to remove so as not to get in the way of analysis. 
For a list of common stopwords, this list is a good starting point.

$ cat stopwords.txt
a about above after again against all am an and any are as at be 
because been before being below between both but by can did do does 
doing don down during each few for from further had has have having he 
her here hers herself him himself his how i if in into is it its itself 
just me more most my myself no nor not now of off on once only or other 
our ours ourselves out over own s same she should so some such t than 
that the their theirs them themselves then there these they this those 
through to too under until up very was we were what when where which 
while who whom why will with you your yours yourself yourselves

You may find that a list of common stopwords is not enough. The domain that 
you work in may have common words that, while not commonly used words 
generally, are distorting the results of your analysis. At this point, you have a 
decision to make: either append your domain-level words to the same stopword 
file or have a separate file of domain-specific words.

With the use of the Java Collections API, there is the option to use the Stream 
API to convert a string to an ArrayList. Using the removeAll method, the 
stopwords can be passed in. The resulting string is the content with the stop 
words removed.

First load in your text file and then convert it to lowercase.

    rawtext = new String(Files.readAllBytes(
Paths.get("yourdatafile.txt")));
    rawtext = rawtext.toLowerCase();

Next, load in the stopwords.

    stopwords = Files.readAllLines(Paths.get("stopwords.txt"));

With the raw text loaded and converted to lowercase, the stopwords are also 
loaded. The next step is to convert the raw text string to an array and remove 
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all the occurrences that appear in the stopwords. Lastly, the outgoing string is 
joined by a space, so you are left with one cleaned string.

public String removeAll() {
    ArrayList<String> importtext =
      Stream.of(rawtext.split(" "))
            .collect(Collectors.toCollection(ArrayList<String>::new));
    importtext.removeAll(stopwords);
    return importtext.stream().collect(Collectors.joining(" "));
}

Stemming
Though not essential, it can be useful to stem phrases down to their root form. 
Word derivations are common, and for some analysis converting all those dif-
ferent forms to a root word can be useful.

If we look at the word like, for example, you may come across instances in 
your corpus of likes, likely, liked, and liking. When a stemming function is applied, 
then you’d return with the root of the word, like.

Care must be given with stemming text as there is a risk of over stemming, 
where the text is cut back to a root that actually may have two different meanings 
and your analysis will then miss out on the context.

The Apache OpenNLP project (https://opennlp.apache.org) provides a 
number of stemming applications for your text. It also offers language detec-
tion, tagging, and other tools.

N-grams
N-grams are sequences of words and are often used in natural language 
processing.

you are worthy you are family focus on what you have to be grateful for

The previous line has 15 words, so it’s a 15-gram. If this is split into more sen-
sible two- or three-word n-grams, it may be possible to predict the next word 
groupings based on the n-gram sequences.

A two-gram sequence of the sentence would look something like this:

(you are), (are worthy), (worthy you), (you are), (are family)....

And so on. Interestingly, there are two 2-gram sequences of (you are) with two 
following word patterns, the worthy and the word family.

The three-word n-gram sequence would look like this:

(you are worthy), (are worthy you), (worthy you are), (you are 
family)....

https://opennlp.apache.org
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Having n-gram sequences of words can be used against algorithms such as 
Term Frequency/Inverse Document Frequency, which will be covered later in 
this chapter. Each sequence in the n-gram can then be used as a term. Some-
times this will give more meaningful scorings than single words; it also means 
that we are scoring within the context of the corpus text.

TF/IDF

One useful technique is to find out how important a word or phrase is within a 
corpus of text or a collection of documents. Term Frequency/Inverse Document 
Frequency (TF/IDF) is a method of giving a numerical value to the importance 
of a word. TF/IDF is used widely within recommendation systems, and it’s 
quite easy to implement.

To give you an idea of how it works, let’s work through some sample code to 
build a TF/IDF algorithm in Java.

Loading the Documents
Before any calculations can be done, we need to load the documents into the 
application. The documents are loaded and split on the space character; each 
word is then added to a List collection and returned. The reason for using a List 
of words is simple; it will be easier to iterate and count the word frequencies.

I’m assuming that the document is clean, as in it has been converted to lowercase 
and the punctation has already been removed.

For every document that you want included in your document set, you would 
execute this step and load the document.

public List<String> loadDocToStrings(String filepath) {
       List<String> words = new ArrayList<String>();
       try {
           File file = new File(filepath);
           BufferedReader br = new BufferedReader(new FileReader(file));
           String s;
           while ((s = br.readLine()) != null) {
               String[] ws = s.split(" ");
               for (int i = 0; i < ws.length; i++) {
                   words.add(ws[i]);
               }
           }
       } catch(IOException e) {
           e.printStackTrace();
       }
       return words;
   }
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Finally, with all the documents loaded into separate List objects, a final List 
of documents is then created.

List<List<String>> allDocuments = Arrays.asList(wordDoc1, wordDoc2, 
wordDoc3, wordDoc4, wordDoc5);

Calculating the Term Frequency
The term frequency is the number of times a phrase is in the document; in this 
example we’re using an iterator over the list of words and seeing whether the 
term matches.

If there is a match, then the count is increased by one.

public double getTermFrequency(List<String> doc, String term) {
       double result = 0;
       for (String word : doc) {
           if (term.equalsIgnoreCase(word))
               result++;
       }
       return result / doc.size();
   }

The final step of calculating the term frequency is to divide the number of 
occurrences against the size of the document.

Calculating the Inverse Document Frequency
The inverse document frequency is calculated against all the documents in the 
corpus, this is why the collection of word lists was created when the files were 
loaded. This measure provides us with an indication of how common, or rare, 
the term is against the complete corpus of documents.

Similarly, the term frequency calculation is counted against all the documents, 
iterating through each word.

public double getInverseDocumentFrequency(List<List<String>> 
allDocuments, String term) {
       double wordOccurances = 0;
       for (List<String> document : allDocuments) {
           for (String word : document) {
               if (term.equalsIgnoreCase(word)) {
                   wordOccurances++;
                   break;
               }
           }
       }
       return Math.log(allDocuments.size() / wordOccurances);
   }



	 Chapter 10 ■ Machine Learning with Text Documents	 209

The result is the number of documents divided by the number of times the 
term was found in those documents; the logarithm of the quotient is the value 
passed back.

Computing the TF/IDF Score
The final step is to compute the TF/IDF score. This is done by simply multi-
plying the result of the term frequency with the score of the inverse document 
frequency.

   public double computeTfIdf(List<String> doc, List<List<String>> 
docs, String term) {
       return getTermFrequency(doc, term) * 
getInverseDocumentFrequency(docs, term);
   }

Assuming we are looking for the score for the term dapibus, the document 
with the term frequency we want to calculate, along with the entire corpus and 
the term, is passed into the computeTfIdf method.

double score = tfidf.computeTfIdf(wordDoc4, allDocuments, "dapibus");

If the term were to appear in more documents, then the score would begin 
to reach the value of 1. In this instance, dapibus does not appear in the corpus 
often and has little weight in the scoring.

Term Frequency for dapibus in wordDoc4 = 0.009009009009009009
Inverse Doc Frequency for dapibus = 1.6094379124341003
TF-IDF score for the word: dapibus = 0.014499440652559462

Reviewing the Final Code Listing
Listing 10.1 is the full code for the basic TF/IDF algorithm that has been explained. 
Other implementations exist in both Spark and DeepLearning4J, which will give 
you better control and handling of larger corpus datasets.

Listing 10.1:  Basic TF/IDF Algorithm

package mlbook.ch10.tfidf;
 
import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
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public class TFIDFExample {
   public double getTermFrequency(List<String> doc, String term) {
       double result = 0;
       for (String word : doc) {
           if (term.equalsIgnoreCase(word))
               result++;
       }
       return result / doc.size();
   }
  
   public double getInverseDocumentFrequency(List<List<String>> 
allDocuments, String term) {
       double wordOccurances = 0;
       for (List<String> document : allDocuments) {
           for (String word : document) {
               if (term.equalsIgnoreCase(word)) {
                   wordOccurances++;
                   break;
               }
           }
       }
       return Math.log(allDocuments.size() / wordOccurances);
   }
 
   public double computeTfIdf(List<String> doc, List<List<String>> 
docs, String term) {
       return getTermFrequency(doc, term) * 
getInverseDocumentFrequency(docs, term);
   }
 
   public List<String> loadDocToStrings(String filepath) {
       List<String> words = new ArrayList<String>();
       try {
           File file = new File(filepath);
           BufferedReader br = new BufferedReader(new FileReader(file));
           String s;
           while ((s = br.readLine()) != null) {
               String[] ws = s.split(" ");
               for (int i = 0; i < ws.length; i++) {
                   words.add(ws[i]);
               }
           }
       } catch(IOException e) {
           e.printStackTrace();
       }
       return words;
   }
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   public static void main(String[] args) {
       String docspath = "/path/to/data/ch10";
       TFIDFExample tfidf = new TFIDFExample();
 
       List<String> wordDoc1 = tfidf.loadDocToStrings(docspath + 
"/doc1.txt");
       List<String> wordDoc2 = tfidf.loadDocToStrings(docspath + 
"/doc2.txt");
       List<String> wordDoc3 = tfidf.loadDocToStrings(docspath + 
"/doc3.txt");
       List<String> wordDoc4 = tfidf.loadDocToStrings(docspath + 
"/doc4.txt");
       List<String> wordDoc5 = tfidf.loadDocToStrings(docspath + 
"/doc5.txt");
 
       List<List<String>> allDocuments = Arrays.asList(wordDoc1, 
wordDoc2, wordDoc3, wordDoc4, wordDoc5);
 
       double score = tfidf.computeTfIdf(wordDoc4, allDocuments, 
"dapibus");
       System.out.println("TF-IDF score for the word: dapibus = " + 
score);
   }
}

Word2Vec

The Word2Vec algorithm was developed by Google. It comprises a neural network 
of two layers. With a large corpus of text you can achieve some very accurate 
vector results. Groups of words will appear closer within the vectors. It’s not 
just limited to text; you can use this method on pretty much anything where 
patterns of associations would occur; this might be personality scorings in a 
social network or what kind of music you are into.

The Word2Vec algorithm is based on vectors, called neural word embeddings, 
representing a word with numbers. Word2Vec trains words against other words 
in the input text. This is done in one of two ways, either using a continuous bag 
of words (CBOW), which is a context of words to predict a target word, or using 
skip grams, which takes a word and predicts a context of words.

Words are read in the vector one at a time and then scanned within a certain 
range of words; these skip-grams are an n-gram with items dropped. During 
the training, the vector contains the context of each word and the similarity 
against other words in the vector space.

In this section, I will outline how to construct a Word2Vec implementation 
using DeepLearning4J. First I’ll explain what’s going on in the code, and then 
you’ll be able to see the full code listing at the end.
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Loading the Raw Text Data
The first job is to load in the raw text. The LineSentenceIterator will give an 
iterator and preprocess the file with the preProcess method within the inner class.

Here I’m going to convert the string to lowercase.

public SentenceIterator createSentenceIterator(String filepath) {
       SentenceIterator iter = new LineSentenceIterator(new 
File(filepath));
       iter.setPreProcessor(new SentencePreProcessor() {
           public String preProcess(String sentence) {
               return sentence.toLowerCase();
           }
       });
       return iter;
   }

Tokenizing the Strings
The next job is to tokenize the strings. For the basic one-word tokenizer splitting 
on a whitespace, the CommonPreprocessor will work fine for us.

public TokenizerFactory createTokenizer() {
      
       TokenizerFactory t = new DefaultTokenizerFactory();
       t.setTokenPreProcessor(new CommonPreprocessor());
       return t;
}

Creating the Model
With our sentence iterator and tokenizer created, we can now build the model. 
DeepLearning4J provides a convenient Word2Vec model that we can implement.

public Word2Vec createWord2VecModel(SentenceIterator iter, 
TokenizerFactory t) {
       Word2Vec vec = new Word2Vec.Builder()
               .minWordFrequency(5)
               .layerSize(100)
               .seed(42)
               .windowSize(5)
               .iterate(iter)
               .tokenizerFactory(t)
               .build();
       vec.fit();
       return vec;
   }



	 Chapter 10 ■ Machine Learning with Text Documents	 213

There are some parameters that are set. The minimumWordFrequency value is 
the number of times the word must appear in the corpus. The number of fea-
tures in a vector is set with the layerSize method; in our example, there are 
100 features in this vector space.

The final step in the model is vec.fit() where the training begins. When 
finished, it returns the model.

Evaluating the Model
The feature vector values for the model are written to disk. It is possible to load 
and update the model when new data is added.

   public void evaluateModel(Word2Vec vec) {
       try {
           System.out.println("Serializing the model to disk.");
           WordVectorSerializer.writeWordVectors(vec, 
"word2vecoutput.txt");
       } catch(IOException e) {
           e.printStackTrace();
       }
       
   }

So, how does our new model look? Let’s run some basic tests and see what 
the output looks like. First let’s look at the word associations; I want to know 
the words that are nearest to the word data.

Collection<String> lst = vec.wordsNearest("data", 10);

The wordsNearest method takes the word we want the associations for and 
how many words to return. That will return a collection of strings that I can 
iterate over and process.

[in, machine, are, learning, over, a, can, out, it, good]

Note there are a few common words; it’s a good idea to strip these words out 
prior to training.

Now I’d like to see the closeness between the word machine and the words 
data, retail, and games. For this I need to use the similarity() method. It takes 
two strings that are words from the corpus, and it outputs a number indicating 
the cosine similarity.

System.out.println("Similarity score for data:machine - " + 
vec.similarity("data", "machine"));
System.out.println("Similarity score for retail:machine - " + 
vec.similarity("retail", "machine"));
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System.out.println("Similarity score for games:machine - " + 
vec.similarity("games", "machine"));
 
Similarity score for data:machine - 0.9937633872032166
Similarity score for retail:machine - 0.6593816876411438
Similarity score for games:machine - 0.9365512132644653

The higher the number value, the “closer” in similarity that word is to the 
target word within the corpus. In the previous example, we see that data is very 
close to the word machine as is games.

Reviewing the Final Code
Listing 10.2 is the final, complete code for our Word2Vec model. Word2Vec 
works best with large datasets; the smaller the corpus of text, the less quality 
you’ll see in your associated word collections.

Listing 10.2:  Word2Vecmodel

package mlbook.ch10.word2vec;
import org.deeplearning4j.models.embeddings.loader.WordVectorSerializer;
import org.deeplearning4j.models.word2vec.Word2Vec;
import org.deeplearning4j.text.sentenceiterator.LineSentenceIterator;
import org.deeplearning4j.text.sentenceiterator.SentenceIterator;
import org.deeplearning4j.text.sentenceiterator.SentencePreProcessor;
import org.deeplearning4j.text.tokenization.tokenizer.preprocessor.
CommonPreprocessor;
import org.deeplearning4j.text.tokenization.tokenizerfactory.
DefaultTokenizerFactory;
import org.deeplearning4j.text.tokenization.tokenizerfactory.
TokenizerFactory;
import java.io.File;
import java.io.IOException;
import java.util.Collection;
 
public class Word2VecExample {
 
   public Word2VecExample() {
       System.out.println("Creating sentence iterator");
       SentenceIterator iter = createSentenceIterator("/path/to/data/
ch10/ word2vec_test.txt");
 
       System.out.println("Creating tokenizer.");
       TokenizerFactory t = createTokenizer();
       System.out.println("Creating word2vec model.");
       Word2Vec vec = createWord2VecModel(iter, t);
       System.out.println("Evaluating the model.");
       evaluateModel(vec);
   }
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   public Word2Vec createWord2VecModel(SentenceIterator iter, 
TokenizerFactory t) {
       Word2Vec vec = new Word2Vec.Builder()
               .minWordFrequency(5)
               .layerSize(100)
               .seed(42)
               .windowSize(5)
               .iterate(iter)
               .tokenizerFactory(t)
               .build();
       vec.fit();
       return vec;
   }
 
   public SentenceIterator createSentenceIterator(String filepath) {
       SentenceIterator iter = new LineSentenceIterator(new 
File(filepath));
       iter.setPreProcessor(new SentencePreProcessor() {
           public String preProcess(String sentence) {
               return sentence.toLowerCase();
           }
       });
       return iter;
   }
 
   public TokenizerFactory createTokenizer() {
       // Split on white spaces in the line to get words
       TokenizerFactory t = new DefaultTokenizerFactory();
       t.setTokenPreProcessor(new CommonPreprocessor());
       return t;
   }
 
   public void evaluateModel(Word2Vec vec) {
       try {
           System.out.println("Serializing the model to disk.");
           WordVectorSerializer.writeWordVectors(vec, 
"word2vecoutput.txt");
       } catch(IOException e) {
           e.printStackTrace();
       }
 
       System.out.println("Finding words nearest the word 'machine'.");
       Collection<String> lst = vec.wordsNearest("retail", 10);
       System.out.println(lst);
System.out.println("Similarity score for data:machine - " + 
vec.similarity("data", "machine"));
System.out.println("Similarity score for retail:machine - " + 
vec.similarity("retail", "machine"));
System.out.println("Similarity score for games:machine - " +  
vec.similarity("games", "machine"));
   }
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   public static void main(String[] args) {
       Word2VecExample w2ve = new Word2VecExample();
   }
}

Basic Sentiment Analysis

There is always a lot of interest around sentiment analysis, especially with the 
amount of data generated by social media. My first investigations into Big Data 
were around large volumes of Twitter data from things like the MTV Music 
Awards. Some of the techniques I used then I still use now, because they are 
simple and work nicely. It also means they are easy for anyone else to pick up.

The basic process works like this:

■■ Load in a set of positive words.

■■ Load in a set of negative words.

■■ Load in a set of sentences to measure the sentiment of.

■■ For each sentence, split on the space character so there is a collection of 
words.

■■ Set the score variable to zero.

■■ Iterate the collection, and for each positive word found, add one to the 
score; if a negative word is found, subtract one from the score.

While not overly exciting as machine learning or processing goes, it works 
and can also be implemented in most languages easily. Let’s take a look at a 
basic Java implementation.

Loading Positive and Negative Words
The loadWords method loads in a text file with either positive or negative words. 
As the file has comments that start with a semicolon character (;), we need to 
ignore these lines and just add the words to the Set.

 public Set<String> loadWords(String filepath) {
       Set<String> words = new HashSet<String>();
       try {
           File file = new File(filepath);
           BufferedReader br = new BufferedReader(new FileReader(file));
           String s;
           while ((s = br.readLine()) != null) {
              if(!s.startsWith(";")) {
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                  words.add(s);
              }
           }
       } catch(IOException e) {
           e.printStackTrace();
       }
       return words;
   }

This is done for both positive and negative word sets.

Loading Sentences
The sentences that we want to measure sentiment against are loaded in and 
added to a List of Strings. In this example, the assumption is that the data is 
cleaned, converted to lowercase, and has the punctuation removed.

  public List<String> loadSentences(String filepath) {
       List<String> sentences = new ArrayList<String>();
       try {
           File file = new File(filepath);
           BufferedReader br = new BufferedReader(new FileReader(file));
           String s;
           while ((s = br.readLine()) != null) {
               sentences.add(s);
           }
       } catch(IOException e) {
           e.printStackTrace();
       }
       return sentences;
   }

Calculating the Sentiment Score
Now let’s talk about the main part of the program, the sentiment score itself. The 
calculateSentimentScore takes three parameters: the sentence to be scored, the 
positive word set, and the negative word set. The sentence is split by the space 
character, which gives us a primitive String array (String[]).

  public int calculateSentimentScore(String sentence, Set<String> 
pwords, Set<String> nwords) {
       int score = 0;
       String[] words = sentence.split(" ");
       for (int i = 0; i < words.length; i++) {
           if(pwords.contains(words[i])) {
               System.out.println("Contains the positive word: " + 
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words[i]);
               score = score + 1;
           } else if (nwords.contains(words[i])) {
               System.out.println("Contains the negative word: " + 
words[i]);
               score = score - 1;
           }
       }
       return score;
   }

The score is calculated by iterating the sentence string array. If the word in 
the loop is within the positive word set, we add one to the count. If it appears in 
the negative set, then we subtract one from the score. Once all the words have 
been iterated, the score is returned.

Reviewing the Final Code
Listing 10.3 is the final code for the sentiment analysis program. The sentences 
and positive and negative word sets are loaded and then processed.

Listing 10.3:  Sentiment Analysis Program

package mlbook.ch10.sentiment;
 
import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.io.IOException;
import java.util.*;
 
public class BasicSentimentAnalysis {
   public BasicSentimentAnalysis() {}
 
   public void runSentimentAnalysis(List<String> sentences) {
       Set<String> pwords = loadWords("/path/to/data/ch10/
sentiment/positive-words.txt");
       Set<String> nwords = loadWords("/path/to/data/ch10/
sentiment/negative-words.txt");
       for(String s : sentences) {
           System.out.println("Sentence: " + s);
           System.out.println("Score: " + calculateSentimentScore(s, 
pwords, nwords));
           System.out.println("*******");
       }
   }
 
   public int calculateSentimentScore(String sentence, Set<String> 
pwords,      Set<String> nwords) {
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       int score = 0;
       String[] words = sentence.split(" ");
       for (int i = 0; i < words.length; i++) {
           if(pwords.contains(words[i])) {
               System.out.println("Contains the positive word: " + 
words[i]);
               score = score + 1;
           } else if (nwords.contains(words[i])) {
               System.out.println("Contains the negative word: " + 
words[i]);
               score = score - 1;
           }
       }
       return score;
   }
 
   public List<String> loadSentences(String filepath) {
       List<String> sentences = new ArrayList<String>();
       try {
           File file = new File(filepath);
           BufferedReader br = new BufferedReader(new FileReader(file));
           String s;
           while ((s = br.readLine()) != null) {
               sentences.add(s);
           }
       } catch(IOException e) {
           e.printStackTrace();
       }
       return sentences;
   }
 
   public Set<String> loadWords(String filepath) {
       Set<String> words = new HashSet<String>();
       try {
           File file = new File(filepath);
           BufferedReader br = new BufferedReader(new FileReader(file));
           String s;
           while ((s = br.readLine()) != null) {
              if(!s.startsWith(";")) {
                  words.add(s);
              }
           }
       } catch(IOException e) {
           e.printStackTrace();
       }
       return words;
   }
 
   public static void main(String[] args) {
       BasicSentimentAnalysis bsa = new BasicSentimentAnalysis();
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       List<String> sentences = bsa.loadSentences("/path/to/data/
ch10/sentiment/sentences.txt");
       bsa.runSentimentAnalysis(sentences);
   }
}

Performing a Test Run
Let’s give the sentiment analysis a run and see how it’s working. In the data 
directory there are some sample sentences.

i loved receiving the gifts from you it was like it was my birthday
i hated that movie
this is the best meal i've ever had
this is the worst meal i've ever had

Now let’s run those sentences through the program and see how the output 
looks.

Sentence: i loved receiving the gifts from you it was like it was my 
birthday
Contains the positive word: loved
Contains the positive word: like
Score: 2
*******
Sentence: i hated that movie
Contains the negative word: hated
Score: -1
*******
Sentence: this is the best meal i've ever had
Contains the positive word: best
Score: 1
*******
Sentence: this is the worst meal i've ever had
Contains the negative word: worst
Score: -1
*******

I’ve added some verbose statements so you can see where the scoring is hap-
pening. In most cases, you wouldn’t be overly interested in knowing which 
words were triggering the scores but just the final sentiment score.

Further Development
There is plenty of scope to improve on the basic sentiment analysis code, espe-
cially where the data is coming from. For me, the next obvious point of call 
would be the source data. In Appendix B, there are instructions on how to set 
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up a Twitter app through the developer account. With that in place, you can 
start to pull public tweets and apply sentiment analysis.

The same functions could also be used with Kafka and Spark to allow sen-
timent scoring at volume and velocity.

Summary

This chapter dealt with various considerations when working with text data. It 
covered the acquisition, conversion, and cleanup data as well as the analysis of 
it. It also covered how to find the importance of words with Term Frequency/
Inverse Document Frequency, word groupings with Word2Vec, and sentiment 
scoring.

With the text dealt with, the next logical step is to look at how to process images.
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So far in this book the training and classification of information has been based 
around either datasets of numbers or, as in Chapter 10, text.

In this chapter, we’ll take a brief look at image processing and classification, 
starting with using a basic neural network and then extending that knowledge 
to use convolutional neural networks for image classification.

Over the last few years there have been huge leaps forward in image processing 
with machine learning. The addition of graphic processing units (GPUs) will 
speed up the training of models. To get an idea of how good things have gotten, 
take a look at the website This Person Does Not Exist (https://thispersondoes-
notexist.com). Using the StyleGAN model developed by Nvidia, each of the 
images is generated and is not a real person, but they look alarmingly realistic!

What Is an Image?

In its basic form, a computer-based image is a grid of numbers. Each “square” 
is called a pixel. Figure 11.1 is an example of an 8 pixel by 8–pixel image.

Not overly artistic I agree, but it’s a starting point. Let’s assume this is an 
image of two colors: black and white. When there is a pixel colored black, then 
it’s given the value of one, and all the others are zero. From a numeric point of 
view, our image looks like Figure 11.2.

What we have is a 1 bitmap image representation. Each bit represents the 
color, black or white.

Machine Learning with Images

https://thispersondoesnotexist.com
https://thispersondoesnotexist.com
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Introducing Color Depth
The more bits available, the more information you can store in the image. Table 11.1 
shows the image information that can be handled depending on the image 
depth; the larger the depth, the more colors that can be introduced.

Figure 11.1:  An 8 x 8–pixel image
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Figure 11.2:  Numeric image of an 8 x 8–pixel

Table 11.1: Image Color Depth

COLOR DEPTH IN BITS NUMBER OF COLORS EXAMPLE BINARY

1 2 0,1

2 4 00,01,10,11

3 8 000,001,011, etc.

4 14 0000,0001,0011, etc.

8 256 01001001, 11100011, etc.

24 16,777,216 010110101010011011111101
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Even at 24 bits, an image, such as Figure 11.3, is just a collection of numbers 
in grid form; there’s just more information going on. The image illustrated in 
Figure 11.1 is 8 × 8 pixels and has only two colors (black or white, zero or one). 
On the other hand, the sunflower was a 24-bit color image and has 15,360,000 bits 
of information. In the context of machine learning, it may be prudent to reduce 
the color depth to speed up training; reducing the image size will help too.

Images in Machine Learning
As you are aware from reading this book and working through the examples, 
most of what we are doing with machine learning is feeding information, usu-
ally in number form, and finding patterns that can then be defined into models.

So, if we can convert image data into a grid of numbers, what we are left with 
is a matrix grid of numbers that a machine learning algorithm can train against.

You will find that most of the machine learning examples use a fairly small 
grid of numbers; images that are 16 × 16 and 28 × 28 pixels are used a lot. The 
reason for this is processing time; if an image is too large, then it will take a long 
time, depending on machine performance, to convert and process the image. 
When you are dealing with tens of thousands of images, these processes can 
take hours.

Figure 11.3:  24-bit image
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In most cases, it is prudent to be prepared and size the images small enough 
for processing. It’s also important to ensure that the image set is using the same 
height and width in pixels.

With all this in mind, let’s take a look at processing images with a basic 
neural network.

Basic Classification with Neural Networks

We’ve already covered how neural networks function in Chapter 9; the same 
multilayer perceptron can be applied to images. The work is in converting the 
image information into numerical form.

The DeepLearning4J framework provides several file input classes to use, so 
it’s possible to read in a directory of images and convert them to be ready for 
training.

If you’ve spent any time looking in books or across the Internet for machine 
learning examples when it comes to images, then you may have seen the Modified 
National Institute of Standards and Technology database (MNIST database). It’s 
a large database of handwritten digits, and it’s widely used for training image 
processing systems. The original database has 60,000 images for training and 
10,000 for testing and evaluation.

To help even further, they are sized as 28 × 28 pixels and are black and white 
using a grayscale palette.

For the following example using a multilayer neural network, I’ll use this 
dataset. You don’t have to download the actual images yourself; within the 
DeepLearning4J libraries are helper functions to do that for you.

Basic Settings
The image size, we’ve established, is 28 × 28 pixels. There are 10 output classes 
0–9. Training will happen in batches of 64 images. The rate is the learning rate 
of the multilayer perceptron.

int imageHeight = 28;
int imageWidth = 28;
int outputClasses = 10; 
int batchSize = 64; 
int randomSeed = 123; 
int epochs = 15; 
double rate = 0.0015; 

Loading the MNIST Images
We need to define two datasets, one for the training data and another for the 
test data to evaluate the model. The DeepLearning4J framework provides some 
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helper classes to load in the MNIST image data set; this means we’re not wast-
ing time having to reinvent the wheel.

MnistDataSetIterator takes the batch size (64) and a Boolean value to indi-
cate whether we are dealing with a training or a test data set. The random seed 
value is used so we get some shuffling going on in the dataset and not the same 
files back each time.

DataSetIterator mnistTrain = new MnistDataSetIterator(batchSize, true, 
randomSeed);
DataSetIterator mnistTest = new MnistDataSetIterator(batchSize, false, 
randomSeed);

Model Configuration
The model we’re going to use is a basic three-layer neural network with an input 
layer, a hidden layer, and then the output layer.

Our input layer is made up of 784 input nodes; this represents each pixel in 
the image (28 × 28), and the output of this input layer is sent to the hidden layer. 
The hidden layer is made up of 500 nodes and outputs to a 100-node output layer.

The final layer then uses the Softmax activation method to determine the 
output class, which consists of 10 different numbers in the MNIST dataset.

MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
    .seed(randomSeed)
    .activation(Activation.RELU)
    .weightInit(WeightInit.XAVIER)
    .updater(new Nadam())
    .l2(rate * 0.005)
    .list()
    .layer(new DenseLayer.Builder() 
            .nIn(imageHeight * imageWidth)
            .nOut(500)
            .build())
    .layer(new DenseLayer.Builder() 
            .nIn(500)
            .nOut(100)
            .build())
    .layer(new OutputLayer.Builder(LossFunction.NEGATIVELOGLIKELIHOOD) 
            .activation(Activation.SOFTMAX)
            .nOut(outputClasses)
            .build())
    .build();

With the configuration in place, it’s assigned to the model and initialized. To 
see how the model is performing while training, we add a score iteration listening 
to the model. During the training, the score will be output to the console.

MultiLayerNetwork model = new MultiLayerNetwork(conf);
model.init();
model.setListeners(new ScoreIterationListener(5));
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Model Training
To start the training of the model, we execute the fit() method with the training 
data set and the number of epochs we want to run.

model.fit(mnistTrain, numEpochs);

Once it’s started, you will see the scores of the model update.

Model Evaluation
Once the training of the model is complete, it’s time to evaluate the model with 
the test data from the MNIST dataset. The statistics from the evaluation will 
then be shown in the console.

Evaluation eval = model.evaluate(mnistTest);
log.info(eval.stats());

As you can see, the only real change from the neural networks created in 
Chapter 9 is how the input data is handled. The configuration, training, and 
evaluation are handled in the same way. Now that you’ve seen a basic multilayer 
perceptron configuration, let’s cover a new algorithm type, convolutional neural 
networks, which are used widely in image processing applications.

Convolutional Neural Networks

The convolutional neural network (I’ll refer to them as CNNs from this point on)  
was introduced into the machine learning word in 1998 where Yann LeCun, 
Leon Bottou, Yoshua Bengio, and Patrick Haffer published a paper outlining 
their work on a neural network called LeNet-5. As is tradition, the paper was 
using the MNIST number recognition dataset for both training and evaluation.

How CNNs Work
There are two parts to the CNN; the first is feature extraction, and the second is 
classification. Let’s break these two elements down and examine them further.

Feature Extraction

The feature extraction element is the core part of the CNN algorithm. A convo-
lution is a mathematical and integral function that will express the amount of 
overlap from one function to another.

These features could be elements of handwriting such as vertical or 
horizontal lines. If it were a car, it could be a wheel, a window, or a bumper. The  
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convolution doesn’t know what these things actually are; it’s just noticing them 
in a numerical form.

Within a CNN the convolution is acting as a filter passing over the image. For 
example, if we were working with a 5 × 5–pixel image, such as Figure 11.4, the 
filter could be 3 × 3 pixels in size and scan the image from top left to bottom 
right, one pixel step across at a time.

The filter is a small matrix of values and layers over the image; the initial 
values are usually based on a random distribution (see Figure 11.5).

By passing the filter over the image, the filter multiplies its own values with 
the values of the values on the input image. For example, if the filter was in the 
top-left position of the image, the filter calculation would look like this:

1 0 0 1 1 1 0 1 1 0 1 0 0 0 0 1 0 0
1
x x x x x x x x x

This is the receptive field—the output value of the CNN. The filter would 
move one step to the right and repeat the process until the entire image was 
covered. Note that the filter is overlapping the previous filter calculation; even-
tually you will end up with CNN output values for each step the filter has made 
(see Figure 11.6).
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Figure 11.4:  5 x 5–pixel image
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Figure 11.5:  Filter matrix
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Figure 11.6:  CNN output values
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The filter values can be set in such a way that if we are looking for vertical 
features, then the vertical aspect of the filter could be set to 1, for example (see 
Figure 11.7). Or if looking for horizontal features, the filter could be set for that.

How the filter is configured will determine the output of the CNN; features 
that are not featured in the filter will be dimmed from the outgoing computed 
CNN value.

Activation Functions

As we established in Chapter 9, there is an activation layer that is usually done 
by way of a Sigmoid function (or TANH if you prefer). The ANN is a linear 
combination of its own inputs.

Nonlinear functions let us perform classification of data even when it’s not 
linearly separable. In the CNN, once the filter has passed the part of the image, it 
will be passed through to another mathematical function, an activation function.

The commonly used function for this operation is a Rectified Linear Unit, or 
ReLU for short. What the ReLU is doing is converting all the negative values 
to zero and leaving the positive values as they are. At this point, the resulting 
dimming created by the filter will be enhanced.

Pooling

The convolution layer, as described earlier, leaves us with a set of feature maps. 
Common among CNN implementations is to add a subsampling layer, also 
known as pooling. Performing pooling reduces the number of parameters and 
computations in the network and, therefore, reduces the dimensionality. With 
reduced dimension, this will decrease the time taken to train the network.

With max-pooling, we are looking at a window, similar to our feature filter, 
and moving across the feature map. This time, however, we are only finding 
the maximum value of the window and registering that value in the new filter.

Classification

So far, we’ve covered the steps of building the CNN; these are the convolution 
(our filter steps), using Rectified Linear Unit (ReLU) to enhance the feature map 
and then pooling to reduce the filter map again.

1 1 1

0 0 0

1 1 1

1 0

Vertical Horizontal

1

1 0 1

1 0 1

Figure 11.7:  Filter values set at vertical and horizontal
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The CNNs are usually run over several iterations, so you end up with a 
process along the lines of: Convolution ➪ ReLU ➪ Max Pooling ➪ Convolution 
➪ ReLU ➪ Max-Pooling and then ending with some form of classification, to 
give you a fully connected layer.

The max-pooling outputs are fed into a neural network for classification. In 
most cases, this is a multilayer perceptron, the same that’s covered in Chapter 9. 
The weights of the MLP will determine the classification.

The CNN is a powerful algorithm, and it’s used widely for object detection, 
speech recognition, and image processing. There are various frameworks and 
architectures using CNNs, and it’s worth taking the time to investigate how 
they are being implemented and used.

CNN Demonstration
Let’s walk through a coded CNN. There are a number of steps to take in order 
to get the program working.

1.	 Acquire image data to train on.

2.	 Code the CNN.

3.	 Perform the training.

4.	 Save the generated model.

Downloading the Image Data

The Caltech101 image dataset is a training set comprised of 101 categories of 
images; there are between 40–800 images per category. For our use here, that’s 
perfectly fine.

Download the .tar.gz file from

http://www.vision.caltech.edu/Image _ Datasets/Caltech101/ 

101_ObjectCategories.tar.gz

Unarchive the dataset to a location on your machine.

$ cp /your/downloads/folder/101_ObjectCategories.tar.gz /your/ 
data/folder
$ gunzip 101_ObjectCategories.tar.gz 
$ tar xvf 101_ObjectCategories.tar

If you look at the directory, you will see the folders; these are going to be used 
at the label names for the model training.

$ ls -l
total 0
drwxr-xr-x@ 470 jasebell  staff  15040  9 Nov  2004 BACKGROUND_Google
drwxr-xr-x@ 437 jasebell  staff  13984  9 Nov  2004 Faces
drwxr-xr-x@ 437 jasebell  staff  13984  9 Nov  2004 Faces_easy
drwxr-xr-x@ 202 jasebell  staff   6464  9 Nov  2004 Leopards

http://www.vision.caltech.edu/Image_Datasets/Caltech101/101_ObjectCategories.tar.gz
http://www.vision.caltech.edu/Image_Datasets/Caltech101/101_ObjectCategories.tar.gz
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drwxr-xr-x@  57 jasebell  staff   1824  9 Nov  2004 accordion
drwxr-xr-x@ 802 jasebell  staff  25664  9 Nov  2004 airplanes
drwxr-xr-x@  44 jasebell  staff   1408  9 Nov  2004 anchor
drwxr-xr-x@  44 jasebell  staff   1408  9 Nov  2004 ant
drwxr-xr-x@  49 jasebell  staff   1568  9 Nov  2004 barrel
drwxr-xr-x@  56 jasebell  staff   1792  9 Nov  2004 bass
.......
drwxr-xr-x@  41 jasebell  staff   1312  9 Nov  2004 wrench
drwxr-xr-x@  62 jasebell  staff   1984  9 Nov  2004 yin_yang

With the training data in place, we can now take a look at the code that will do 
the training. I’m going to break this down into step-by-step pieces and explain 
what’s going on.

Basic Setup

The first step is to set up some constant values; these will be used in the training. 
The path to the training data, the image set you’ve downloaded and unarchived, 
is set.

public static final String pathToImages 
"/path/to/data/101_ObjectCategories";

The image height, width, and color depth are set. As the images are RGB 
color, the depth is 3.

int imageHeight = 200;
int imageWidth = 300;
int channels = 3;

The next step is to set up the relevant values for the CNN itself; as with other 
neural nets, we set up a random seed value. The CNN will process in batches of 
50 images. The output class value (which image category it is when predicted) 
is set to 101, which is the number of categories in the dataset.

int seed = 123;
Random randNumGen = new Random(seed);
int batchSize = 50;
int numOutputClasses = 101;
int epoch = 10;

Depending on your machine, you may get out-of-memory errors during 
training; this isn’t because of the Java Virtual Machine but another dependency 
used by Apache OpenCV. To avoid the program from halting during training, 
I’ve found setting the properties of the following two values solves the problem:

System.setProperty("org.bytedeco.javacpp.maxphysicalbytes", "0");
System.setProperty("org.bytedeco.javacpp.maxbytes", "0");
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Handling the Training and Test Data

The model needs to know the file paths for all the files. The FileSplit class 
takes all the file paths and makes sure they are suitable for training. We’re 
looking for images.

File trainingData = new File(pathToImages);
FileSplit trainingDataSplit = new FileSplit(trainingData, 
NativeImageLoader.ALLOWED_FORMATS, randNumGen);

The folder names within the dataset directory are going to be used as the 
names for the output classes. The ParentPathLabelGenerator handles the 
directory names and converts them to class names for the model.

ParentPathLabelGenerator labelMaker = new ParentPathLabelGenerator();

We want the CNN to be evenly balanced across the class label directories; 
some may contain more images than others, for example. For a good balanced 
model, we need to ensure the training data is balanced too. This is handled by 
the BalancedPathFilter class. After that is set, we then split the input data into 
a training data set with 80 percent of the image data and a test data set with 
the remaining 20 percent.

BalancedPathFilter pathFilter = new BalancedPathFilter(randNumGen, 
labelMaker,0, numOutputClasses, batchSize);
InputSplit[] filesInDirSplit = trainingDataSplit.sample(
pathFilter, 80, 20); 
InputSplit trainingSet = filesInDirSplit[0];
InputSplit testingSet = filesInDirSplit[1];

Image Preparation

We set up three image transformations that will be used in the training. In the 
first two, the image is flipped either by its x- or y-axis, or not at all. The last 
transform of the image is randomly warped.

ImageTransform tf1 = new FlipImageTransform(randNumGen);
ImageTransform tf2 = new FlipImageTransform(new Random(seed));
ImageTransform warptransform = new WarpImageTransform(randNumGen,42);
List<ImageTransform> tranforms = Arrays.asList(new ImageTransform[] {
tf1, warptransform, tf2});

The images are loaded by the ImageRecordReader, passing in the height, the 
width, the number of channels, and the previously created label maker. Once 
initialized, the program now has the information for that image set.

ImageRecordReader recordReader = new ImageRecordReader(imageHeight, 
imageWidth, channels, labelMaker);
recordReader.initialize(trainingSet);
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Lastly, we reduce the scale from the values 0 to 255, down to 0 to 1.

DataNormalization scaler = new ImagePreProcessingScaler(0, 1);
       DataSetIterator dataSetIterator;

CNN Model Configuration

Now it’s time to create the CNN model configuration, shown in Listing 11.1. 
There are 14 layers to this neural network. See Table 11.2 for the layer steps.

Listing 11.1:  CNN Model Configuration

MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder().
trainingWorkspaceMode(WorkspaceMode.SEPARATE)
        .inferenceWorkspaceMode(WorkspaceMode.SINGLE)
        .seed(seed)
        .iterations(1)
        .activation(Activation.IDENTITY).weightInit(WeightInit.XAVIER)
        .optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADI

Table 11.2: CNN Layers

LAYER FUNCTION

1 Convolution layer, with a 1 × 1 pixel filter step with 3 input nodes and 16 
output nodes.

2 Normalization layer.

3 ReLU Activation layer.

4 Convolutional layer with another 1 × 1-pixel filter step, this time with 16 input 
nodes and 16 output nodes.

5 Normalization layer.

6 ReLU Activation layer.

7 Pooling layer.

8 Convolution layer with 2 × 2-pixel filter step, 16 input nodes, and 16 output 
nodes.

9 Normalization layer.

10 ReLU Activation layer.

11 Pooling layer.

12 A drop-out layer; features that are not important to the CNN are dropped.

13 The Dense layer flattens the data and combines with all the neurons.

14 The Softmax layer then gives the classifier on all 101 output classes.
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ENT_DESCENT)
        .learningRate(.006)
        .updater(Updater.NESTEROVS)
        .regularization(true).l2(.0001)
        .convolutionMode(ConvolutionMode.Same).list()
        // block 1
        .layer(0, new ConvolutionLayer.Builder(new int[] {5, 5})
.name("image_array").stride(new int[]{1, 1})
                .nIn(3)
                .nOut(16).build())
        .layer(1, new BatchNormalization.Builder().build())
        .layer(2, new ActivationLayer.Builder(
).activation(Activation.RELU).build())
        .layer(3, new ConvolutionLayer.Builder(new int[] {5, 5})
.stride(new int[]{1, 1}).nIn(16).nOut(16)
                .build())
        .layer(4, new BatchNormalization.Builder().build())
        .layer(5, new ActivationLayer.Builder()
.activation(Activation.RELU).build())
        .layer(6, new SubsamplingLayer
.Builder(SubsamplingLayer.PoolingType.AVG,
                new int[] {2, 2}).build())
        .layer(7, new ConvolutionLayer.Builder(new int[] {5, 5})
.stride(new int[]{2, 2}).nIn(16).nOut(16)
                .build())
        .layer(8, new BatchNormalization.Builder().build())
        .layer(9, new ActivationLayer.Builder()
.activation(Activation.RELU).build())
        .layer(10, new SubsamplingLayer
.Builder(SubsamplingLayer.PoolingType.AVG,
                new int[] {2, 2}).build())
        .layer(11, new DropoutLayer.Builder(0.5).build())
        .layer(12, new DenseLayer.Builder().name("ffn2").nOut(256)
.build())
        .layer(13, new OutputLayer
.Builder(LossFunctions.LossFunction.NEGATIVELOGLIKELIHOOD)
                .name("output").nOut(numOutputClasses)
.activation(Activation.SOFTMAX).build())
        
.setInputType(InputType.convolutional(imageHeight, imageWidth, 
channels))
        .backprop(true)
        .pretrain(false)
        .build();

Each step on the CNN is a layer. With the configuration done, it’s time to 
move on and use this configuration to create the model.

MultiLayerNetwork model = new MultiLayerNetwork(conf);
model.init();
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During the training, we want to see some progress of how the model is doing. 
The ScoreIterationListen will give us the output; this is set to the model.

model.setListeners(new ScoreIterationListener(10));
 //To see our model's progress

With the model initialized, we can now start training.

Model Training

The training happens on each of the image transformations that were defined 
earlier: two flipped image transformations and the warped image transformation.

for (ImageTransform transform: tranforms) {
    System.out.println("Training using image transform: "
+transform.getClass().toString());
    recordReader.initialize(trainingSet,transform);
    dataSetIterator = new RecordReaderDataSetIterator(recordReader, 
batchSize, 1, numOutputClasses);
    scaler.fit(dataSetIterator);
    dataSetIterator.setPreProcessor(scaler);
    for (int j = 0; j < epoch; j++) {
        model.fit(dataSetIterator);
    }
}
recordReader.reset();

With that complete, the training is then performed on the original image 
dataset that was registered with the training set.

recordReader.initialize(trainingSet);
dataSetIterator = new RecordReaderDataSetIterator(recordReader, 
batchSize, 1, numOutputClasses);
scaler.fit(dataSetIterator);
dataSetIterator.setPreProcessor(scaler);
for (int j = 0; j < epoch; j++) {
    model.fit(dataSetIterator);
}

Please note this training will take some time to complete. Depending on the 
specification of your machine, it’s probably a good time to make several cups 
of tea or coffee, tidy up the house, or even go for a walk.

Model Evaluation

With the model trained, it’s now time to evaluate the model with the other 20 
percent of the dataset. The record reader is reset and then initialized with the 
training dataset.
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The evaluation is then created and run against the test dataset. Results of the 
evaluation are then output to the console.

recordReader.reset();
recordReader.initialize(testingSet);
DataSetIterator testIter = new RecordReaderDataSetIterator(recordReader,
batchSize,1,numOutputClasses);
scaler.fit(testIter);
testIter.setPreProcessor(scaler);
 
Evaluation eval = new Evaluation(numOutputClasses);
while(testIter.hasNext()){
    DataSet next = testIter.next();
    INDArray output = model.output(next.getFeatureMatrix());
    eval.eval(next.getLabels(),output);
 
}
 
log.info(eval.stats()); 

Saving the Model

The final step of our CNN is to persist the model to a zip file so it can be reused 
for other predictions.

File locationToSave = new File(System.getProperty("user.dir"),
"mycnntest.zip");
ModelSerializer.writeModel(model,locationToSave,false);

Transfer Learning

So far, we’ve covered two potential ways of classifying images through neural 
networks: the multilayer perceptron and convolutional neural network. As you 
may have noticed, these can take time to train. Using a technique called transfer 
learning, we can use existing models and use their weights to do predictions or 
create a newly updated model based on the pretrained model.

Model training on images and video are intensive on your time and your 
computing power, so finding that someone else has done all the work so we 
can reuse the model is great. Keep in mind that if you are training ImageNets 
with a large number of images, the training time can take weeks.

The DeepLearning4J website has a model zoo that lets you use existing models 
in your work. You’ll see examples for CNNs that you’ve just learned about and 
other model types such as Long Short Term Memory (LSTM) models.

Convolutional neural networks do not show the specific features until the 
later layers; this means that most of the generic training happens up front. There 
are two possible processes we can use to make use of what’s already out there.
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With something like a CNN, we can make use of the classifier layer and 
replace it with the version of the classifier we want to use. This means we are 
not replicating huge amounts of training where the heavy work is happening, 
meaning the convolution, normalization, pooling, and activation steps.

Within DeepLearning4J, there is a TransferLearning API that will help you 
refine the output classifier and save the newly trained model. This is useful for 
ImageNet-like models.

If you are in a situation where you find yourself with a small training dataset 
or a dataset that you know is similar to features that were present in the origi-
nally trained model, then applying transfer learning will save you development 
and training time. Where possible, always reuse.

Summary

In this chapter, we covered using neural networks to process images. First we 
used the multilayer perceptron to work on the MNIST number data set and 
then we introduced the more complete convolutional neural network for a more 
thorough way of extracting features from image data.

While these approaches are good to know in theory, their training and appli-
cation times can run into hours and days, depending on the volume of images 
and the way you want to train your model. So, if possible, seek out pretrained 
models and investigate using transfer learning to update the classifier output 
layer to match the domain you’re working in.

In Chapter 12 we bring in a streaming data application, Kafka, and inves-
tigate how to develop a self-training and updating machine learning system.
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Within this book we have mainly concentrated on machine learning as a singular 
process: acquiring data, training a model, and then making predictions. In this 
chapter, we will look at streaming data and how that can affect model training 
and predictions.

What You Will Learn in This Chapter

This is an involved chapter with a lot of code examples and process to work 
through. By the end of the chapter, you’ll have a proof-of-concept application 
that takes in streaming data, events, and multiple machine learning models.

First, we’ll cover setting up Kafka, one of the main applications used in 
streaming log-like data. Then we’ll move on to how topics work and the methods 
used to produce and consume messages. Lastly, we’ll look at how these fit into 
a machine learning framework and design a system that continuously trains 
itself and handles multiple prediction models.

This chapter does not concentrate on how the models work but on how they 
can be involved in an actual application. The perspective changes from machine 
learning to engineering. It will also bridge several JVM-based languages like 
Java and Clojure and present a path of least resistance to easily create REST-
based APIs that can be called from Kafka-based applications.

Machine Learning Streaming  
with Kafka
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From Machine Learning to Machine Learning Engineer

It’s fair to say that some of the concepts covered in this book have been around 
for a long time. Neural networks have been around for more than 50 years, for 
example. What has changed over that time period is the growth of computing 
power and other related factors such as the reduced cost of storage. It’s become 
easier to process more data cheaply over time. This brings with it some inter-
esting developments in how quickly we can process data, run algorithmic com-
putations, and, in turn, generate predictions to stakeholders.

These types of system, however, are not easy to build. Cloud-based  
infrastructures such Amazon’s AWS Sagemaker, Google’s ML Engine (now 
Cloud AI), and Microsoft’s Azure Machine Learning platform aim to make 
things easier, but the skills required to get any of these solutions performing 
well are still hard to come by.

The rise of the data engineer or machine learning engineer as a job function 
is becoming more important than ever before. A hybrid of a software developer 
and a system administrator and a smattering of a data scientist, the machine 
learning engineer now stands between a machine learning model being created 
and how it’s deployed into production-based systems.

Engineering skills are always in demand, and anyone who can acquire, clean, 
and prepare data for production and piece together the required components to 
create an end-to-end solution is like gold dust on a team. You’ll see all manner 
of blog posts telling you what you should know to be an ML engineer, but the 
basics are simple when they are broken down.

■■ Knowledge in how machine learning models work

■■ Able to prepare data

■■ Proficient in at least one development language, preferably the one that 
those creating the models are using

■■ Core Linux skills (do you know your cat from your ls?)

■■ Deployment methods and being able to install all manner of tools to get 
this end-to-end solution working

There will always be raging debates on whether it’s better to be a specialist 
or a generalist. Personally, I’ve found it more helpful to know as much as I can, 
so I’ve always considered myself a generalist. I’d never even considered being a 
machine learning engineer until I was told by a manager that’s basically what 
I was doing.
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From Batch Processing to Streaming Data Processing

When the first edition of this book was written, the explosion of Big Data tech-
nologies was all over the technical publications, blogs, and news sites. From the 
benefits to the scary stories (predicting pregnancy from shopping cart data, for 
example), you could not escape that Hadoop was changing the world.

The emphasis was on batch data. Huge piles of structured and unstructured 
data could be stored on Hadoop’s filesystem (HDFS) or a storage solution like 
Amazon Web Services Simple Storage System (S3).

When Spark arrived, it made big leaps in improving the performance in the 
Big Data systems. In addition, it provided an effective SQL-like way of que-
rying the data with SparkQL and a streaming system called Spark Streaming. 
The streaming system wasn’t exactly what we’d considered true streaming; it 
was based on windows of batch data processed by the Spark job. This is best 
described as micro-batching. It works well and is still widely used.

The increase in the volume and velocity of Internet of Things (IoT) data and 
social media data has increased the need for true streaming frameworks to 
handle the data. A number of streaming frameworks existed including Rab-
bitMQ, Storm, and SpringXD (which I covered in the first edition of this book 
but reached end of life in 2017), plus more traditional message brokers like 
ActiveMQ. One name that kept being repeated was Apache Kafka, and that’s 
what we’ll concentrate on in this chapter.

What Is Kafka?

Kafka is a stream processing platform. It was originally developed by LinkedIn 
and then open sourced in 2011. Kafka provides a high-performance, fault-tolerant 
streaming data service. It acts on a publisher/subscriber (pub/sub) message 
queue, and if you want real-time data feeds, then Kafka is an option that should 
be seriously considered.

How Does It Work?
The true power behind Kafka is that it’s scalable and can be run on one or 
multiple servers, known as brokers. Messages are sent to topics, producers send 
messages to the broker, and consumers take messages from the broker.

To the producers and consumers subscribed to the system, it would appear 
as a stand-alone processing engine, but production systems are built on many 
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Figure 12.2:  Relationship of producers to the Kafka cluster and consumers

machines. It can handle millions of messages of throughput, dependent on the 
physical disk and RAM on the machines, and is fault tolerant.

Messages are sent to topics, which are written sequentially in an immutable 
log. Kafka can support many topics and can be replicated and partitioned (see 
Figure 12.1).

Once the records are appended to the topic log, they can’t be deleted or 
amended. It’s a simple data structure where each message is byte encoded. 
Producers and consumers can serialize and deserialize data to various formats.

Messages are sent to the Kafka cluster by producers, and these messages 
are stored by the broker in topics. Consumers subscribe to topics and poll the 
topic for messages to read. The broker nodes are dumb; it’s the producers and 
consumers that are doing the smart work (see Figure 12.2).

Topics can grow in size, and they can be split into partitions (see Figure 12.3). 
As far as the producers and consumers are concerned, it’s a single log of mes-
sages, and there’s no concern about which partition the messages are in. The 
important thing to remember is that messages are read from the consumer in 
the order they were sent from the producer.

Next topic record
to be written

First record
offset in topic

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 12.1:  Topics written sequentially in Kafka
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Fault Tolerance
Partition data is replicated over a number of brokers. If a broker dies, then data 
is still available over the remaining brokers. One broker is designated the leader 
and is the node that all data to the partition is written to and read from.

If the leader fails, then the cluster will assign a new lead broker, and the 
other brokers will follow that one. The registry of brokers, including which is 
the leader, is maintained by Zookeeper.

Further Reading
For more information about the workings of Kafka, I’ve included some reading 
material in Appendix D, “Further Reading.” In this chapter, I concentrate on 
the more practical aspects of getting Kafka running and then doing machine 
learning with it.

Installing Kafka

There are two versions of Kafka that can be downloaded. There’s the open 
source Apache version, and there’s the Confluent Community version. They 
both operate in the same way; the main difference is when we bring the SQL 
query language KSQL into the mix.

For this chapter, I’m going to use the Apache Kafka distribution, which is 
available at https://kafka.apache.org. This is the download link that I’m using:

https://www.apache.org/dyn/closer.cgi?path=/kafka/2.2.0/kafka _ 2.12-

2.2.0.tgz

You will need to choose a mirror website to download your Kafka distribu-
tion from.

0 1 2 3 4 5 6 7 8 9 10 11 12Partition 0

Topic Writes0 1 2 3 4 5 6 7 8 9 10 11 12Partition 1

0 1 2 3 4 5 6 7 8 9Partition 2

Figure 12.3:  Topics split into partitions

https://kafka.apache.org
https://www.apache.org/dyn/closer.cgi?path=/kafka/2.2.0/kafka_2.12-2.2.0.tgz
https://www.apache.org/dyn/closer.cgi?path=/kafka/2.2.0/kafka_2.12-2.2.0.tgz
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Download the TGZ file and store it in the directory where you want to install 
Kafka. Installing Kafka is simple; the first step is to expand the zipped TAR 
file into a directory.

$ tar -zxf kafka_2.12-2.2.0.tgz
$ cd kafka_2.12-2.2.0

As Kafka relies on Zookeeper for broker identification, Zookeeper needs to be 
running before we start Kafka. There are various configuration files that are used 
within Kafka, but there are two specifically that I’ll focus on here: zookeeper.
properties and server.properties. How these files are used depends on the 
type of cluster you want to operate. I will cover two in this book: a single-node 
cluster and a multinode cluster running on the same machine.

Kafka as a Single-Node Cluster
It’s always a good idea to practice on a single-node cluster configuration of Kafka. 
A single machine will handle both Zookeeper and Kafka. I use the single-node 
configuration for developing and testing producers, consumers, and streaming 
applications. Once I’m happy that the applications are performing as expected, 
then I can look at deploying them on a multinode cluster.

The first application to start is Zookeeper. Kafka requires Zookeeper to maintain 
the state of the brokers. If it’s not live, then Kafka will not work. In development, 
I have multiple terminal window sessions open—one for Zookeeper, one for 
Kafka, and another for whatever producer or consumers I’m working on.

Starting Zookeeper

Let’s start a single-node Kafka installation. The first thing to do is open a terminal 
window and go to the directory where you installed Kafka. From the command 
line, type bin/zookeeper-server-start.sh config/zookeeper.properties.

$ bin/zookeeper-server-start.sh config/zookeeper.properties
[2019-06-18 07:43:12,238] INFO Reading configuration from: config/
zookeeper.properties (org.apache.zookeeper.server.quorum.
QuorumPeerConfig)
[2019-06-18 07:43:12,241] INFO autopurge.snapRetainCount set to 3 (org.
apache.zookeeper.server.DatadirCleanupManager)
[2019-06-18 07:43:12,241] INFO autopurge.purgeInterval set to 0 (org.
apache.zookeeper.server.DatadirCleanupManager)
[2019-06-18 07:43:12,243] INFO Purge task is not scheduled. (org.apache.
zookeeper.server.DatadirCleanupManager)
[2019-06-18 07:43:12,243] WARN Either no config or no quorum defined in 
config, running  in standalone mode (org.apache.zookeeper.server.quorum.
QuorumPeerMain)
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[2019-06-18 07:43:12,260] INFO Reading configuration from: config/
zookeeper.properties (org.apache.zookeeper.server.quorum.
QuorumPeerConfig)

Starting Kafka

Once Zookeeper is running, you can now start the Kafka broker. Open a new 
terminal window and go to the same directory from where you started Zookeeper. 
Now type bin/kafka-server-start.sh config/server.properties.

$ bin/kafka-server-start.sh config/server.properties
[2019-06-18 07:43:45,792] INFO Registered kafka:type=kafka.
Log4jController MBean (kafka.utils.Log4jControllerRegistration$)
[2019-06-18 07:43:46,536] INFO starting (kafka.server.KafkaServer)
[2019-06-18 07:43:46,538] INFO Connecting to zookeeper on localhost:2181 
(kafka.server.KafkaServer)
[2019-06-18 07:43:46,562] INFO [ZooKeeperClient] Initializing a new 
session to localhost:2181. (kafka.zookeeper.ZooKeeperClient)
[2019-06-18 07:43:46,568] INFO Client environment:zookeeper.
version=3.4.13-2d71af4dbe22557fda74f9a9b4309b15a7487f03, built on 
06/29/2018 00:39 GMT (org.apache.zookeeper.ZooKeeper)
[2019-06-18 07:43:46,568] INFO Client environment:host.
name=192.168.1.102 (org.apache.zookeeper.ZooKeeper)
[2019-06-18 07:43:46,568] INFO Client environment:java.version=1.8.0_45 
(org.apache.zookeeper.ZooKeeper)

Kafka is now ready for use, although it’s not doing anything useful at the 
moment; we’ll move on to that shortly. In this development setup, the correct 
routine to close it down is to close Kafka first (Ctrl+C will stop the application) 
and then do the same with Zookeeper. If you close Zookeeper while Kafka is 
running, the broker will not be able to connect to anything and start feeding 
out errors in the console.

Kafka as a Multinode Cluster
Whereas the single-node cluster has just one broker connected to Zookeeper, 
a multinode cluster has many brokers connected to Zookeeper, and the log is 
distributed across the cluster. You can create this cluster locally, but it’s not a 
configuration that should really be used in a production setting. It does, however, 
give a good foundation for how the multinode cluster works. In this example, 
I’ll set up a three-broker configuration running on a single Zookeeper cluster.

There are some configuration aspects that we need to do before we start Kafka. 
In the config directory, there is the server.properties file; this is the config-
uration for a single broker. If you open the file and look for the broker.id key, 
you will see the value 0 for it. The comments also give important information.
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############################# Server Basics #############################
 
# The id of the broker. This must be set to a unique integer for each broker.
broker.id=0

The keyword here is unique, so we need another two broker IDs (1 and 2 for 
this example). Our first task is to create a copy of the server properties file for 
the other two brokers.

$ cp server.properties server1.properties
$ cp server.properties server2.properties

Each of these new configuration files needs editing. Open your text editor, 
edit the server1.properties file so that it has the same values as in Table 12.1, 
and then make the changes in server2.properties.

What have we changed? There are three changes. First, there’s the broker ID 
as these must be unique, so we now have broker 0, 1, and 2. Second, each broker 
needs a port address that’s different from the other brokers as they are going to 
be operating on the same machine. Last, the directory of the log information, 
the actual messages, changed, as each broker needs its own location for the 
messages and other associated files.

Starting the Multibroker Cluster

As with the stand-alone node, Zookeeper needs starting. Open a terminal 
window and run the startup command as before:

$ bin/zookeeper-server-start.sh config/zookeeper.properties

To start the brokers, open three new terminal windows and ensure that each 
is in the directory where Kafka was installed. One broker is started in each 
terminal window.

Starting the first broker, broker 0, is the same as previously shown.

$ bin/kafka-server-start.sh config/server.properties

Table 12.1: Server 1 and 2 Properties

SETTING NAME SERVER1.PROPERTIES SERVER2.PROPERTIES

broker.id 1 2

listeners PLAINTEXT://:9093* PLAINTEXT://:9094*

log.dirs /tmp/kafka-logs1 /tmp/kafka-logs2

* Remove the comment character (#) from the listeners line of the properties file.
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The remaining brokers can now be started; next is broker 1.

$ bin/kafka-server-start.sh config/server.properties1

Then comes broker 2 (see Figure 12.4).

$ bin/kafka-server-start.sh config/server.properties2

For the remainder of this chapter any commands or programs run using 
Kafka will assume that your Kafka broker is running in stand-alone mode and 
using localhost as the hostname.

Topics Management

Any message that you send within the Kafka system is sent to a topic. You are 
free to create as many topics as you want. There are some general rules of thumb 
about the optimum number of topics you can have on a cluster depending on 
how many nodes you have.

Within the bin directory of your Kafka distribution, there are several shell 
scripts that will do the required tasks for topic management. The main one to 
focus on here is the kafka-topic.sh command.

Figure 12.4:  Multibroker cluster
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In this short introduction, you will see how to create, list, and delete topics 
and how to send messages to the log and receive them.

Creating Topics
Topics can be created in one of two ways. The first is with the command-line 
tool, and the second is from within a producer application, which will create 
the topic if it does not exist.

It’s worth working with the command line as that will give you an under-
standing of what’s required within the topic creation, the required settings 
for replication and partitions, and how the broker and Zookeeper settings are 
handled.

Let’s create a test topic now; we’ll call it testtopic for ease of demonstration. 
Within the bin directory of the Kafka distribution, you will see a shell script file 
called kafka-topic.sh. This is the main command for topic-related activities. To 
create the topic, execute the following command from your terminal window:

$KAFKA_HOME/bin/kafka-topics.sh --zookeeper localhost:2181 --create 
--topic testtopic --replication-factor 1 --partitions 1
Created topic "testtopic".

Let’s break this command down into smaller segments and break down what 
the script is doing. The first setting is telling Kafka which Zookeeper server we 
are using. This is a required setting, as we’re using the local deployment, and 
the Zookeeper server is running on localhost on port 2181 (the default port for 
Zookeeper).

Next --create is telling the application we want to create a topic. The name 
of the topic is handled next with the --topic flag. As the cluster is just for 
development, I’m not concerned about the replication factor or the number of 
partitions, so this is set to 1.

Finding Out Information About Existing Topics
With the same command, you can find out information about the topics that 
are available on the cluster. To generate a list of all the topics on the cluster, run 
the following command:

bin/kafka-topics --zookeeper localhost:2181 --list
testtopic

If you’ve created only one topic, then you may be surprised to see more topics 
than you were expecting. The Kafka cluster creates internal topics for moni-
toring and metrics. All the offset information, including the message positions 
of the associated consumers, is held within a topic as well.
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The application can expand on the information for the topic by using the 
--describe flag.

$ bin/kafka-topics --zookeeper localhost:2181 --describe --topic testtopic
Topic:testtopic    PartitionCount:1    ReplicationFactor:1    Configs:
    Topic: testtopic    Partition: 0    Leader: 0    Replicas: 0    Isr: 
0

Describing the topic produces a multiline output that expands on how Kafka 
is using the cluster for that topic. On the first line is the partition count and 
replication factor. In this example it’s only 1, as it was when the topic was cre-
ated earlier.

The second line gives more information on the broker ID that’s the leader 
and the IDs of the broker replicas.

Deleting Topics
Topics, regardless of whether they have messages in them or not, use resources 
on the cluster. It’s good practice to remove topics that you are not using. The 
deletion of topics is done through the kafka-topics command-line program, 
but will work only if delete.topic.enable is set to true.

Any other value for that setting will mean that the delete topic command 
will be ignored.

$ bin/kafka-topics --zookeeper localhost:2181 --delete --topic testtopic
Topic testtopic is marked for deletion.
Note: This will have no impact if delete.topic.enable is not set to true.

Sending Messages from the Command Line
The best way to test that the cluster is working is by using the command-line 
tools to create and consume messages. The kafka-console-producer application 
enables you to send messages from the command line.

$ bin/kafka-console-producer --broker-list localhost:9092 --topic testtopic

Once the application starts, you can start typing data into the terminal window. 
Each time you press the Return key, your message is sent to the broker with the 
desired topic. If you want to exit the application, press the key combination of 
Ctrl+C, and the application will stop and return you to the terminal command 
line.

With some test data in Kafka, now it’s time to turn our attention to reading 
the messages in the log.
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Figure 12.5:  Control center

Receiving Messages from the Command Line
As well as a command-line application to create messages and push them to the 
message log, there is the equivalent to read messages from the log too.

$ bin/kafka-console-consumer --bootstrap-server localhost:9092 --topic 
testtopic --from-beginning

The --from-beginning flag reads messages from the start of the message 
log. If you leave it out, the application will read messages from the last offset 
position. The application will continue running until you close it with Ctrl+C.

Kafka Tool UI

For those who aren’t used to or just don’t like using the command line, there 
are tools available that will make looking after the Kafka cluster a little easier.

If you are using the Confluent Kafka distribution, you have access to the control 
center, which is a web-based tool for visualizing your cluster (see Figure 12.5). 
To access it, point your web browser to the IP address of your cluster along with 
port 9021, for example.

http://192.168.1.102:9021
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As I can never tell what type of Kafka cluster I’ll be working on, I use a generic 
tool called Kafka Tool (see Figure 12.6), which is available from http://www.kaf-
katool.com and free for personal use. It runs on macOS, Linux, and Windows.

Once it’s installed, you have an overview of your cluster and can inspect the 
general cluster information, get the Zookeeper status, and view your topic and 
consumer group information. It’s useful for inspecting message contents and 
checking the offset information of topics too. Sometimes this is hard to read 
from the command line, and a tool such as this one can make life a little easier.

Writing Your Own Producers and Consumers

So far, the emphasis has been on the Kafka brokers and the command-line tools 
to do some basic tasks such as create topics and manage them. Now it’s time to 
concentrate on writing some basic applications to send messages to the brokers 
and read messages from them too.

Various client libraries cover the majority of languages; for a list of what’s 
available, take a look at the list here:

https://cwiki.apache.org/confluence/display/KAFKA/Clients

For this chapter, there are examples of producers and consumers in Java. Later 
in the chapter, you’ll see Kafka code written in both Java and Clojure; they both 
run off the same client APIs.

Producers in Java
As you’ll see in both these sections, the process of producing and consuming 
messages is quite simple. There is some preliminary setup that is required 
before you can start working with the broker. Each segment of the application 
is explained first, and you can then see the completed code.

Figure 12.6:  Kafka Tool

http://www.kafkatool.com
http://www.kafkatool.com
https://cwiki.apache.org/confluence/display/KAFKA/Clients
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Table 12.2: Kafka Producer Acks

ACKS SETTING MEANING

acks=0 The producer does not receive any confirmation that the broker has 
received the message. This is basically a fire-and-forget setting, and 
there is no guarantee the message has reached the broker.

acks=1 The producer will receive an acknowledgment from the lead broker 
(the leader), but it will have been received without the confirmation 
that all the brokers that follow that leader have received the message.

acks=all or 
acks=-1

The producer will receive an acknowledgment once the leader has 
received confirmation that the message is with the in-sync replicas.

Properties

Any Java application that communicates with a Kafka cluster is set up via the 
Java Properties class. The key-pair values are required by the Kafka API to 
send default settings and flags to the brokers.

Properties props = new Properties();
      props.put("bootstrap.servers", "localhost:9092");
      props.put("acks", "all");
      props.put("retries", 0);
      props.put("key.serializer", 
         "org.apache.kafka.common.serialization.StringSerializer");
      props.put("value.serializer", 
         "org.apache.kafka.common.serialization.StringSerializer");

Looking at this properties setup, we can see some settings that are familiar 
from previous examples in the chapter but also some new ones.

Bootstrap Servers

The bootstrap.servers key is telling the application where the brokers are. In 
the stand-alone development cluster, this is only one node and hence one boot-
strap server. It acts as a starting point for the application to discover the other 
brokers in the cluster. If you have more than one broker, you can use comma-
separated servers in the value.

props.put("bootstrap.servers", "server1.localhost:9092, server2.localhost: 
9093");

Acks

Next is the key acks, which is short for acknowledgments. When a producer 
sends a message to the broker, it can receive an ack to say that the broker has 
received the message. While this is good from an application safety point of 
view, it’s worth keeping in mind there is a small amount of latency introduced. 
Three settings are available for the acks key. Table 12.2 explains the settings.
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Retries

The producer client will try to resend the message when a failed send occurs. 
In this example, the zero value means the client isn’t going to attempt a resend. 
Using retries can cause issues with message ordering. If a client fails at sending 
a batch of messages and then succeeds with a second batch, there is a chance 
that the second message batch will be available before the first.

Deserializers

Kafka treats messages as a binary payload. This means that messages need to 
be serialized by a producer and then desterilized by the consumer when the 
message is eventually read. The properties configuration sets the producer seri-
alizer, which is in two parts; there’s a key and a value. In this example, there’s 
a string-based key, and the message payload is a string too.

The Producer

With the configuration all set up in the Properties class, it’s now time to create 
the actual producer. The Producer class takes the key and value object types 
that are specified in the key and value serializer settings. The Producer is cre-
ated in one line, passing in the configuration properties.

Producer<String, String> producer = new KafkaProducer
         <String, String>(props);

Messages

Now we’re at the stage where we can send messages to the broker. The send() 
method sends a ProducerRecord object, which takes the topic name, the key, 
and the message.

producer.send(new ProducerRecord<String, String>(topicName, 
            keyName, payLoad));
               System.out.println(keyName + " - Message sent 
successfully: " + payLoad);
               producer.close();

The Final Code

Those three steps—configuring the properties, creating a producer, and then 
sending the message—create the basic components of a producer application. 
The following code is the finished application; notice that there is a for loop in 
there to send 10 messages to the broker.
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import java.util.Properties;
import org.apache.kafka.clients.producer.Producer;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerRecord;
 
public class ExampleProducer {
   public static void main(String[] args) throws Exception{
      String topicName = "testtopic";
      
      Properties props = new Properties();
      props.put("bootstrap.servers", "localhost:9092");
      props.put("acks", "all");
      props.put("retries", 0);
      props.put("batch.size", 16384);
      props.put("linger.ms", 1);
      props.put("buffer.memory", 33554432);
      props.put("key.serializer", 
         "org.apache.kafka.common.serializa-tion.StringSerializer");
      props.put("value.serializer", 
         "org.apache.kafka.common.serializa-tion.StringSerializer");
      
      Producer<String, String> producer = new KafkaProducer
         <String, String>(props);
            
      for(int i = 0; i < 10; i++)
         producer.send(new ProducerRecord<String, String>(topicName, 
            Integer.toString(i), Integer.toString(i)));
               System.out.println("Message sent successfully");
               producer.close();
   }
}

Message Acknowledgments

The responsibility for processing the acks comes down to the producer appli-
cation. Using the ProducerInterceptor class in Java, for example, gives you a 
callback method that is triggered when the ack is acknowledged.

import org.apache.kafka.clients.producer.ProducerInterceptor;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.clients.producer.RecordMetadata;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import java.util.Map;
 
public class ProducerWithCallback implements ProducerInterceptor{
    private int onSendCount;
    private int onAckCount;
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    private final Logger logger = LoggerFactory.
getLogger(ProducerWithCallback.class);
 
    @Override
    public ProducerRecord onSend(final ProducerRecord record) {
        onSendCount++;
 
        System.out.println(String.format("onSend topic=%s key=%s value=%s 
%d \n",
                record.topic(), record.key(), record.value().toString(),
                record.partition()
        ));
        return record;
    }
 
    @Override
    public void onAcknowledgement(final RecordMetadata metadata, final 
Exception exception) {
        onAckCount++;
        System.out.println(String.format("onAck topic=%s, part=%d, offset= 
%d\n",
                metadata.topic(), metadata.partition(), metadata.offset()
        ));
    }
 
    @Override
    public void close() {
        System.out.println("Total sent: " + onSendCount);
        System.out.println("Total acks: " + onAckCount);
    }
 
    @Override
    public void configure(Map<String,?> configs) {
    }
}

Consumers in Java
As with producers, the consumer code is straightforward. Let’s break down 
the steps again.

Properties

The properties, as before, set up the various configuration settings for the 
consumer application. The application needs to know the Kafka cluster to con-
nect to; this is done with the bootstrap.server setting.
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Consumer applications are members of consumer groups. It’s not essential to 
specify one, but Kafka will assign one during runtime if a group name is not 
given. It’s worth using your own group names for ease of searching for metrics 
on consumers.

As previously shown in the producer application, we are aware that the key 
and payload data for our messages are both strings. The producer application 
serialized the data with the key.serializer and value.serializer settings. 
Consumers require the deserializers for the message. When the message is 
consumed by the consumer, it arrives as a byte array; it’s then deserialized to 
the format specified in the properties.

Properties props = new Properties();
      
      props.put("bootstrap.servers", "localhost:9092");
      props.put("group.id", "testcg");
      props.put("enable.auto.commit", "true");
      props.put("auto.commit.interval.ms", "1000");
      props.put("session.timeout.ms", "30000");
      props.put("key.deserializer", 
         "org.apache.kafka.common.serialization.StringDeserializer");
      props.put("value.deserializer", 
         "org.apache.kafka.common.serialization.StringDeserializer");
      

Fetching Consumer Records

Consumer applications poll records from the broker. The .poll() method takes 
an integer value with the number of records you want the consumer to process. 
Depending on the message load from the brokers, if you pull too many messages, 
you can have a slow-running consumer. Take time to test and experiment with 
the number of records you are polling.

During the polling and processing of records, the commit position of the topic 
is being written back to the log. If the properties of the consumer enable the auto 
setting of the message offset, this will be performed while your application is 
running. The duration between each setting of the offset is determined by the 
value of the auto.commit.interval.ms setting; in this application example, it’s 
set to 1000ms, or 1 second.

KafkaConsumer<String, String> consumer = new KafkaConsumer
         <String, String>(props);
ConsumerRecords<String, String> records = consumer.poll(100);

The Consumer Record

With the ConsumerRecords class polling the broker and fetching records to process, 
the last step is to do something with the message contents. The ConsumerRecord 
class is the representation of a single record.
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Each consumer record contains the following information:

■■ The topic name

■■ The partition number of where the record was received

■■ The offset position in the partition

■■ The timestamp as created by the producer

■■ The key value

■■ The actual message payload

You don’t need to concern yourself with setting the offset of the record you’re 
reading; this is handled by the consumer application itself. The following snip-
pet writes out the offset, key, and message to the console:

for (ConsumerRecord<String, String> record : records)
         System.out.printf("offset = %d, key = %s, value = %s\n", 
            record.offset(), record.key(), record.value());

The Final Code

When all this is put together, you have the basics of a stand-alone consumer appli-
cation. The main components are setting the properties, creating the consumer, 
polling the broker for a batch of records to process, and then iterating the col-
lection and working with each record.

import java.util.Properties;
import java.util.Arrays;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.ConsumerRecord;
 
public class ExampleConsumer {
   public static void main(String[] args) throws Exception {
      String topicName = "testtopic";
      Properties props = new Properties();
      
      props.put("bootstrap.servers", "localhost:9092");
      props.put("group.id", "testcg");
      props.put("enable.auto.commit", "true");
      props.put("auto.commit.interval.ms", "1000");
      props.put("session.timeout.ms", "30000");
      props.put("key.deserializer", 
         "org.apache.kafka.common.serializa-tion.StringDeserializer");
      props.put("value.deserializer", 
         "org.apache.kafka.common.serializa-tion.StringDeserializer");
      KafkaConsumer<String, String> consumer = new KafkaConsumer
         <String, String>(props);
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      consumer.subscribe(Arrays.asList(topicName))
      
      
      System.out.println("Subscribed to topic " + topicName);
      int i = 0;
      
      while (true) {
         ConsumerRecords<String, String> records = consumer.poll(100);
         for (ConsumerRecord<String, String> record : records)
         
         
         System.out.printf("offset = %d, key = %s, value = %s\n", 
            record.offset(), record.key(), record.value());
      }
   }
}

Building and Running the Applications
Now that you’ve seen how the applications are built, let’s build them and run 
them. From the command line, run Maven to build the package.

$ mvn package

If that’s successful, you’ll see the path to the full JAR file with all the depen-
dencies included.

[INFO] Building jar: /path/to/your/files/target/MLChapter12Kafka/target/
ch12kafka-jar-with-dependencies.jar
[INFO] -----------------------------------------------------------------
[INFO] BUILD SUCCESS
[INFO] -----------------------------------------------------------------
[INFO] Total time:  9.477 s

Start up your Kafka stand-alone cluster (if you need help, then you can find the 
full rundown earlier in this chapter). Once Zookeeper and Kafka are running, 
then you can execute the JAR file and produce and then consume some messages.

With everything running, open a new terminal window. Now it’s time to 
run the applications in turn.

The Consumer Application

Before we send any messages to the cluster, let’s get the consumer application 
running first. Open a terminal window and type in the following command 
from the project directory:

$ java -cp target/ch12kafka-jar-with-dependencies.jar mlbook.ch12.
examples.ExampleProducer
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You’ll see the application start and wait for messages.

$ java -cp target/ch12kafka-jar-with-dependencies.jar mlbook.ch12.
examples.ExampleConsumer
SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder".
SLF4J: Defaulting to no-operation (NOP) logger implementation
SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further 
details.
Subscribed to topic testtopic

Now it’s time to send some messages to the topic with the producer application.

The Producer Application

Open another terminal window separate from the consumer application. This 
application will send 10 messages to the testtopic topic.

$ java -cp target/ MLChapter12Kafka/target/ch12kafka-jar-with-
dependencies.jar mlbook.ch12.examples.ExampleProducer

The output will display that the messages have been sent.

$ java -cp target/ch12kafka-jar-with-dependencies.jar mlbook.ch12.
examples.ExampleProducer
SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder".
SLF4J: Defaulting to no-operation (NOP) logger implementation
SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further 
details.
Messages sent successfully

Switch back to the consumer application and take a look at the output; it 
should look something like the following:

Subscribed to topic testtopic
offset = 0, key = 0, value = 0
offset = 1, key = 1, value = 1
offset = 2, key = 2, value = 2
offset = 3, key = 3, value = 3
offset = 4, key = 4, value = 4
offset = 5, key = 5, value = 5
offset = 6, key = 6, value = 6
offset = 7, key = 7, value = 7
offset = 8, key = 8, value = 8
offset = 9, key = 9, value = 9

The offset is the position in the Kafka topic log, the key is the given key of 
the message (that could be a UUID, for example), and the value is the actual 
message value. If I send more messages from the producer application (a simple 
case of rerunning the application), another 10 messages will be sent, and the 
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consumer will poll the topic again. The output will show the new messages. 
If you take a look at the offset, you’ll see that it has increased, but the key and 
values will be the same as the previous payload.

Subscribed to topic testtopic
offset = 0, key = 0, value = 0
offset = 1, key = 1, value = 1
offset = 2, key = 2, value = 2
offset = 3, key = 3, value = 3
offset = 4, key = 4, value = 4
offset = 5, key = 5, value = 5
offset = 6, key = 6, value = 6
offset = 7, key = 7, value = 7
offset = 8, key = 8, value = 8
offset = 9, key = 9, value = 9
offset = 10, key = 0, value = 0
offset = 11, key = 1, value = 1
offset = 12, key = 2, value = 2
offset = 13, key = 3, value = 3
offset = 14, key = 4, value = 4
offset = 15, key = 5, value = 5
offset = 16, key = 6, value = 6
offset = 17, key = 7, value = 7
offset = 18, key = 8, value = 8
offset = 19, key = 9, value = 9

If you were to close the consumer application and send more messages from 
the producer application another two times, when you start the consumer appli-
cation, it will pick up from the last offset (position 20) and process the new 20 
messages sent from the consumer. To quit from the consumer application, press 
Ctrl+C, and you will return to the command line.

The Streaming API
The consumer application processes messages. On the surface it’s quite basic, 
and that’s where the beauty lies with Kafka. If you need more power and fea-
tures, then the streaming API is going to be a better bet.

With a streaming application, you have access to both the producer and 
consumer APIs and access to lambda-like functions that enable you to map, 
filter, and reduce on messages passing through the application. If you require 
aggregation functions like sliding and fixed windows and tabling, then the 
streaming API is the perfect platform to do it on.

The following code listing outlines the basics of the classic word count applica-
tion. You’ll see the properties configured the same as the producer and consumer 
applications already covered in this chapter. Within the listing, the core of the 
application is in the createWordCountStream method.
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The KTable then converts each line into an array of lowercase words using a 
regular expression. The words are mapped and grouped by each word. At this 
point, there’s no processing on the key as it’s not required; it’s just the word that 
we’re after. Lastly, the groups are then counted and sent to the output topic.

static void createWordCountStream(final StreamsBuilder builder) {
       final KStream<String, String> lines = builder.stream(inputTopic);
       final Pattern pattern = Pattern.compile("\\W+", Pattern.UNICODE_
CHARACTER_CLASS);
 
       final KTable<String, Long> counts = lines
               .flatMapValues(value -> Arrays.asList(pattern.
split(value.toLowerCase())))
               .groupBy((keyIgnored, word) -> word)
               .count();
       counts.toStream().to(outputTopic, Produced.with(Serdes.String(), 
Serdes.Long()));
   }

Streaming Word Counts

This application is moving forward from the old word count examples in batch 
processing from the time when the world was adopting Hadoop. The challenge 
back then was how to do that kind of processing in a real-time (or near-real-time) 
setting. The Kafka Streaming API gives you the tools to do this.

import org.apache.kafka.common.serialization.Serdes;
import org.apache.kafka.streams.KafkaStreams;
import org.apache.kafka.streams.StreamsBuilder;
import org.apache.kafka.streams.StreamsConfig;
import org.apache.kafka.streams.kstream.KStream;
import org.apache.kafka.streams.kstream.KTable;
import org.apache.kafka.streams.kstream.Produced;
 
import java.util.Arrays;
import java.util.Properties;
import java.util.regex.Pattern;
 
public class ExampleStreamingAPI {
   static final String inputTopic = "wcinput";
   static final String outputTopic = "wcoutput";
 
   static Properties getStreamsConfiguration(final String 
bootstrapServers) {
       final Properties sConfig = new Properties();
       sConfig.put(StreamsConfig.APPLICATION_ID_CONFIG, "streaming-api-
example-app");
       sConfig.put(StreamsConfig.CLIENT_ID_CONFIG, "streaming-api-example-
client");
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       sConfig.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, 
bootstrapServers);
       sConfig.put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG, Serdes.
String().getClass().getName());
       sConfig.put(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG, 
Serdes.String().getClass().getName());
       return sConfig;
   }
 
   static void createWordCountStream(final StreamsBuilder builder) {
       final KStream<String, String> lines = builder.stream(inputTopic);
       final Pattern pattern = Pattern.compile("\\W+", Pattern.UNICODE_
CHARACTER_CLASS);
 
       final KTable<String, Long> counts = lines
               .flatMapValues(value -> Arrays.asList(pattern.
split(value.toLowerCase())))
               .groupBy((keyIgnored, word) -> word)
               .count();
       counts.toStream().to(outputTopic, Produced.with(Serdes.String(), 
Serdes.Long()));
   }
 
   public static void main(final String[] args) {
       final String bootstrapServers = "localhost:9092";
       final Properties streamsConfiguration = getStreamsConfiguration(b
ootstrapServers);
       final StreamsBuilder builder = new StreamsBuilder();
       createWordCountStream(builder);
       final KafkaStreams streams = new KafkaStreams(builder.build(), 
streamsConfiguration);
       streams.cleanUp();
       streams.start();
       Runtime.getRuntime().addShutdownHook(new Thread(streams::close));
   }
}

Building a Streaming Machine Learning System

So far in this chapter you have learned about Kafka, the message log, the required 
code, and how it is all put together. Now it’s time to turn this knowledge into 
a proof-of-concept machine learning system.

The remainder of this chapter concentrates on the machine learning aspects, 
including planning the system and putting the parts together. At the end of this 
chapter, you’ll have a self-learning machine learning system built on Kafka.

To illustrate what’s possible, I’ll use a simple dataset to enable predictions. 
By creating different machine learning and statistical models (a decision tree, a 
multilayer perceptron, and linear regression), you have a system that can give 
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predictions across all three models, over time one model may give a more robust 
prediction than the others.. On the surface, the data will look basic, but it will 
give you a framework for what’s required if you want to combine streaming 
data with machine learning prediction.

Planning the System
To start, it’s worth writing down what’s required to acquire the data, train the 
models, and deal with predictions. Also consider such things as where you 
will persist the data and the models. Will they be on the file system? Or are 
you going to persist them on a storage service like Amazon S3 or on Azure’s 
storage facility?

So, here’s a quick list of questions to consider during the planning stage:

■■ What topics do we require?

■■ Where is the data coming from?

■■ What format is the data in?

■■ What algorithms are we going to use?

■■ How will the training be triggered?

■■ Where will the models be saved?

■■ How do we determine which models to use for predictions?

■■ How do we perform a prediction?

Figure 12.7 shows a sample plan.
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Figure 12.7:  System plan
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What Topics Do We Require?

This system is performing a couple of functions. First, there’s data going into 
the system, so there needs to be a topic that’s dedicated for events. This will 
be the first port of call for our event messages; we’ll look at the actual message 
content shortly.

Event data comes in two forms, training data and commands, and will be 
handled by a streaming API application. If the event contains a command, then 
it should be executed within the application; otherwise, the event is training 
data, and the system will push that to another topic, the training data topic.

The training data topic is accepting the actual content, which is a line of 
comma-separated variables. There’s no custom-made consumer application 
handling this information; this will be completed by using Kafka Connect, 
which will consume the CSV data for us and persist it to a file.

Predictions require two topics, one for the request and one for the response. 
The prediction request will take on a JSON payload with a key to request a 
model type to use and a feature value to make the prediction with.

The final breakdown looks like Table 12.3.

What Format Is the Data In?

The message format for this project is JSON. As we are handling different 
actions in each event, there may be a command event or a training data event. 
The prediction requests are also in JSON format. The reason for this is a simple 
matter of future proofing.

Events

Events can take one of two forms, a command event and a training data event.

{"type":"command", "payload":"build_mlp"}

Table 12.3: Topic Breakdown

TOPIC NAME DESCRIPTION

event _ stream Incoming event messages with either a 
command or a training type.

training _ data _ topic The topic handles raw CSV entries.

prediction _ request _ topic When the user wants to run a prediction, it’s via 
this topic. The JSON message will have a model 
type and a feature value to predict against.

prediction _ response _ topic Results from the prediction are sent to this 
topic.
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The command event is basically an instruction to trigger a build of the machine 
learning model. They’re not built all at the same time as that would start to drag 
down the system and degrade performance. So, the idea is that we can trigger 
any build type at any time. So, for example, build _ mlp will trigger the build 
for our neural network multilayer perceptron.

{"type":"training", "payload":"3,4,5,6"}

The training data just consists of the CSV values in the payload.

Predictions

To make a prediction via Kafka, the process is to send a JSON message to the 
prediction request topic. The payload contains the values of the three values 
from the scores, and the model returns the predicted value.

{"model":"mlp", "payload":"3,4,5"}

The responses from the model aren’t returned in a traditional programming 
sense but sent as a message to the prediction response topic. It’s up to the devel-
oper to create a consumer application to read the response from Kafka.

Continuous Training
There are numerous options for how to update our trained models. As data 
passes through the training topic and is persisted to disk through the connector, 
there needs to be some form of mechanism to trigger the training commands.

One approach is to send an event to the event topic itself. Once the Kafka 
streaming job parses the message, it will send a request to the API to start the 
required model build.

The alternative to sending a payload message is to use a scheduled cron job 
on the server. This does have one downside; it means that there’s a command 
action that isn’t registered in the event stream.

How to Install the Crontab Entries

If you want to install the cron entries, then you must do this via the crontab 
command. Open a terminal window and type the following:

crontab -e

Depending on the editor you have set as the default (it could be vi or nano, 
for example), the current crontab will be displayed.
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Either type or copy and paste the following lines into the editor and then 
save the file:

# Crontab entry for Kafka DL4J MLP training.
#
# Daily run at 0100
# Run the decision tree builder
0 1 * * * /opt/mlbook/projects/dl4j.mlp/scripts/rundtr.sh > /var/log/
kafka-dl4j-training.log 2>&1
# Run the linear regression builder
30 1 * * * /opt/mlbook/projects/dl4j.mlp/scripts/runslr.sh > /var/log/
kafka-dl4j-training.log 2>&1
# Run the multi layer perceptron builder.
45 1 * * * /opt/mlbook/projects/dl4j.mlp/scripts/runmlp.sh > /var/log/
kafka-dl4j-training.log 2>&1

Once saved, crontab will schedule the model builds for the times shown in 
Table 12.4.

Determining Which Models to Use for Predictions
We need to persist these results when they are performed. I’m going to use a 
relational database to save these results, and for this walk-through, I will use 
MySQL as it’s commonly used and widely installed. If you are more comfort-
able using another database, then the schemas used can be easily modified.

As you have seen, when the models perform their training, each of the algo-
rithms will output the results of the training. With the decision tree and the 
neural network, the model accuracy, the UUID of the model, and the training 
time are persisted in a table called training _ log.

The linear regression model is handled differently, as we are not saving a 
trained model to the filesystem, the outputs need to be persisted to the database. 
The slope and the intercept are persisted along with the UUID and training 
time in the linear _ model table.

When the Kafka streaming API jobs are running, they will refer to the training 
information in the tables to select the best models to run.

Table 12.4: Crontab Model Builds

MODEL NAME BUILD TIME

Decision tree 01:00am

Simple linear regression 01:30am

Neural network 01:45am
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Setting Up the Database

The schema of the database is in the repository for this chapter. To create the 
database in MySQL, do each of the instructions from the command line.

$ mysqladmin -u root -p<your admin password> create mlchapter12

Replace <your admin password> with your admin password when you set 
up MySQL. If you don’t have one, then you can remove the -p flag. Next run 
the MySQL client again and read in the schema.sql file.

The next step is to create the schema file. Open your text editor of choice and 
reproduce the schema shown here:

DROP TABLE IF EXISTS `linear_model`;
/*!40101 SET @saved_cs_client     = @@character_set_client */;
/*!40101 SET character_set_client = utf8 */;
CREATE TABLE `linear_model` (
  `id` int(11) NOT NULL AUTO_INCREMENT,
  `uuid` varchar(255) NOT NULL DEFAULT '',
  `createdate` datetime DEFAULT NULL,
  `slope` double DEFAULT NULL,
  `intercept` double DEFAULT NULL,
  `rsq` double DEFAULT NULL,
  `logoutput` text,
  PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=6 DEFAULT CHARSET=latin1;
/*!40101 SET character_set_client = @saved_cs_client */;
 
 
DROP TABLE IF EXISTS `training_log`;
/*!40101 SET @saved_cs_client     = @@character_set_client */;
/*!40101 SET character_set_client = utf8 */;
CREATE TABLE `training_log` (
  `id` int(11) NOT NULL AUTO_INCREMENT,
  `uuid` varchar(100) NOT NULL DEFAULT '',
  `training_date` datetime DEFAULT NULL,
  `train_eval_split` double NOT NULL DEFAULT '0.65',
  `execution_time` int(11) NOT NULL DEFAULT '-1',
  `model_accuracy` double NOT NULL DEFAULT '0',
  `training_output` text,
  `model_type` varchar(50) NOT NULL DEFAULT '',
  PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=14 DEFAULT CHARSET=latin1;

With that saved, you can now install it into MySQL. Run the following command 
from the same directory that you saved the schema file in:

$ mysql -u root -p<your admin password> mlchapter12 < schema.sql
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With the database set up, you can now turn your attention to the models that 
are going to be used in the project.

Determining Which Algorithms to Use
So far in this book we’ve looked at a single set of data against a single type of 
algorithm in a “Well, it’s this, so let’s do this” manner. Depending on the data 
volumes, some algorithms may be better suited than others. With the streaming 
nature of the data, some algorithms may be more favorable than others.

For example, a J48 decision tree algorithm may be far more effective than a 
neural network to start off with, but over time it may be less effective for training 
with large volumes of data. What if we want to test different types of neural 
networks with different numbers of hidden nodes?

With this proof-of-concept project, we have the chance to try any model we 
want. For this chapter, I’m going to concentrate on three: the J48 decision tree 
built from Weka, which is an old but very effective Java-based machine learning 
library; a multilayer perceptron using DL4J; and, finally, a model using simple 
linear regression from the Apache Commons Math library.

The beauty of this system is that you can hold different model types in memory 
and predict against one or all of them. If you decide to add another model, like a 
support vector machine, then you can do so once you have the basic model coded.

Let’s take a closer look at the three models I’m going to use.

Decision Trees

The Weka machine learning library has been around a few years now. For some 
personal projects, it’s still my go-to library as the footprint is small. And for 
most things like CSV files, it’s perfect. For a more comprehensive look at Weka, 
please refer to Chapter 5, “Working with Decision Trees.”

The process for this model is simple. Let’s walk through the steps.

Creating the J48 Instance

The main class for Weka-based decision trees is the J48 algorithm. Once the class 
has created the instances, the data is loaded in via a buffered reader stream.

With the data loaded, the next job is to is define the index of the data, which 
is the main output class. When predictions are made, it’s this class that we’re 
predicting. The last step is to then build the J48 classifier.

J48 cls = new J48();
 
Instances inst = new Instances(new BufferedReader(new FileReader("/opt/
mlbook/testdata/alldata.arff")));
 
inst.setClassIndex(inst.numAttributes() - 1);
cls.buildClassifier(inst);
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Running the Evaluation

With the classifier built, we want to see how the model is performing. Running 
the evaluation will produce some resulting data that we’ll persist in the training 
database.

Evaluation evaluation = new Evaluation(inst);
Random rand = new Random(1);
int folds = 10;
evaluation.crossValidateModel(cls, inst, folds, rand);

The cross-validation method takes the model, the instances, the number 
of folds (the number of sets to create from the training data to train and test 
against), and a random number seed.

Persisting the Model

The model can be serialized and persisted to the file system for reuse. I’m using 
a generated UUID that will also be written to the database so the streaming 
API job can retrieve the model later.

public void persistModel(J48 cls, String uuid) {
    try {
      SerializationHelper.write("/path/to/models/" + uuid+ ".model", cls);
    } catch (Exception e) {
      e.printStackTrace();
    }
}

Updating the Database

With the model persisted, the evaluation data and the time taken to create the 
model can be written to the database. The main metric I’m interested in is the 
accuracy of the model, and the pctCorrect() method in the evaluation class will 
produce this information. There is a class within the project called DBTools.java 
that acts as the helper class to update and retrieve the model metadata from the 
models when they are built and also when predictions are made.

DBTools.writeResultsToDBuuid, -1, (stop - start), evaluation.
pctCorrect()/100, evaluation.toSummaryString(), "dtr");

The Final Code

This is the full code listing for the J48 decision tree model generator. Essentially 
this is a stand-alone application, as are the other two models. So, this can be 
run in isolation as a generator for decision tree applications.
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package mlbook.ch12.kafka.mlp;
 
import weka.classifiers.Evaluation;
import weka.classifiers.trees.J48;
import weka.core.Instances;
import weka.core.SerializationHelper;
import weka.gui.treevisualizer.PlaceNode2;
import weka.gui.treevisualizer.TreeVisualizer;
 
import java.awt.*;
import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.util.Random;
import java.util.UUID;
 
public class DecisionTreeBuilder {
 
    public DecisionTreeBuilder() {
 
        String uuid = UUID.randomUUID().toString();
 
 
        // build the classifier
        J48 cls= buildModel(uuid);
 
        // persist the model to the file system
        persistModel(cls, uuid);
 
    }
 
    public J48 buildModel(String uuid) {
 
        //Classifier cls = new J48();
        J48 cls = new J48();
        try {
            Instances inst = new Instances(new BufferedReader(new 
FileReader("/opt/mlbook/testdata/alldata.arff")));
            inst.setClassIndex(inst.numAttributes() - 1);
            try {
                long start = System.currentTimeMillis();
                cls.buildClassifier(inst);
 
                Evaluation evaluation = new Evaluation(inst);
                Random rand = new Random(1);
                int folds = 10;
 
                evaluation.crossValidateModel(cls, inst, folds, rand);
                long stop = System.currentTimeMillis();
 
                DBTools.writeResultsToDB(uuid, -1, (stop - start), 
evaluation.pctCorrect()/100, evaluation.toSummaryString(), "dtr");
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            } catch (Exception e) {
                e.printStackTrace();
            }
        } catch (FileNotFoundException e) {
            e.printStackTrace();
        } catch (Exception e) {
            e.printStackTrace();
        }
 
        return cls;
 
    }
 
    public void persistModel(J48 cls, String uuid) {
        try {
            SerializationHelper.write("/opt/mlbook/testdata/models/" + uuid+ 
".model", cls);
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
 
    public static void main(String[] args) {
        DecisionTreeBuilder ddt = new DecisionTreeBuilder();
    }
}

Simple Linear Regression
There are times when linear regression beats everything else. As this proof of 
concept is with basic data, it makes sense to put this model into the mix too. 
Part of this code is covered in Chapter 4.

Creating the Model

Using the Apache Commons Math library, we build a linear regression with 
the SimpleRegression class. As each line of the data file are strings, each line 
needs splitting (on the comma), resulting in a string array (a String[] type). 
I’m using the parseDouble() function of the Double class to parse the first and 
second elements of the string array.

With the two double values, they are added to the regression model. With 
every line added, the model is returned.

SimpleRegression sr = new SimpleRegression();
    for(String s : lines) {
      String[] ssplit = s.split(",");
      double x = Double.parseDouble(ssplit[0]);
      double y = Double.parseDouble(ssplit[1]);
      sr.addData(x,y);
    }
return sr;
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Evaluating

There’s no actual model evaluation as with the neural network or the decision 
tree. The SimpleRegression class does give some output in terms of the slope, 
intercept values, the standard error value, and the R2 value to see the variance 
of the data covered in the regression. The adjusted R2 value is used as the rank 
of the model in the database.

As a final step to prove the model is working, the program will run some 
predictions against the model. It shows the input score (a random number) and 
the prediction from the regression model.

All this output is returned as a string.

sb.append("Intercept: " + sr.getIntercept());
        sb.append("\n");
        sb.append("SloComp: " + sr.getSlope());
        sb.append("Standard Error: " + sr.getSlopeStdErr());
        sb.append("Adjusted R2 value: " + sr.getRSquare());
 
Random r = new Random();
        for (int i = 0 ; i < runs ; i++) {
            int rn = r.nextInt(10);
            sb.append("Input score: " + rn + " prediction: " + Math.
round(sr.predict(rn)));
            sb.append("\n");
        }

Saving the Model to the Database

There’s no model to save as such like we do with the neural network and the 
decision tree. All we have to do is persist the values into the database. The slope 
and intercept are required to make future predictions against. We also write 
the R2 value for our accuracy ranking. The time it took to create the model and 
also the evaluation that we created are also persisted.

DBTools.writeLinearResults(uuid, sr.getIntercept(), sr.getSlope(), 
sr.getRSquare(), time, runPredictions(sr, 20));

The Final Code

The code loads the data, creates the model, and persists the results to the data-
base. There’s no model to serialize. It’s just the slope and intercept being saved 
for use later when the streaming API requests it.

package mlbook.ch12.kafka.mlp;
 
import org.apache.commons.math3.stat.regression.SimpleRegression;
 
import java.io.*;
import java.util.ArrayList;



	 Chapter 12 ■ Machine Learning Streaming with Kafka	 273

import java.util.List;
import java.util.Random;
import java.util.UUID;
 
public class LinearRegressionBuilder {
 
    private static String path = "/opt/mlbook/testdata/alloutput.csv";
 
    public LinearRegressionBuilder() {
        List<String> lines = loadData(path);
        long start = System.currentTimeMillis();
        SimpleRegression sr = getLinearRegressionModel(lines);
 
        long stop = System.currentTimeMillis();
        long time = stop - start;
 
        String uuid = UUID.randomUUID().toString();
        DBTools.writeLinearResults(uuid, sr.getIntercept(), 
sr.getSlope(), sr.getRSquare(), time, runPredictions(sr, 20));
        runPredictions(sr, 40);
    }
 
    private SimpleRegression getLinearRegressionModel(List<String> 
lines) {
        SimpleRegression sr = new SimpleRegression();
        for(String s : lines) {
            String[] ssplit = s.split(",");
            double x = Double.parseDouble(ssplit[0]);
            double y = Double.parseDouble(ssplit[1]);
            sr.addData(x,y);
        }
 
        return sr;
    }
 
    private String runPredictions(SimpleRegression sr, int runs) {
        StringBuilder sb = new StringBuilder();
        // Display the intercept of the regression
        sb.append("Intercept: " + sr.getIntercept());
        sb.append("\n");
        // Display the slope of the regression.
        sb.append("SloComp: " + sr.getSlope());
        sb.append("\n");
        // Display the slope standard error
        sb.append("Standard Error: " + sr.getSlopeStdErr());
        sb.append("\n");
        // Display adjusted R2 value
        sb.append("Adjusted R2 value: " + sr.getRSquare());
        sb.append("\n");
        sb.append("*************************************************");
        sb.append("\n");
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        sb.append("Running random predictions......");
        sb.append("\n");
        sb.append("");
        Random r = new Random();
        for (int i = 0 ; i < runs ; i++) {
            int rn = r.nextInt(10);
            sb.append("Input score: " + rn + " prediction: " + Math.
round(sr.predict(rn)));
            sb.append("\n");
        }
        return sb.toString();
    }
 
    private List<String> loadData (String filename) {
        List<String> lines = new ArrayList<String>();
        try {
            FileReader f = new FileReader(filename);
            BufferedReader br;
            br = new BufferedReader(f);
            String line = "";
            while ((line = br.readLine()) != null) {
                lines.add(line);
            }
        } catch (FileNotFoundException e) {
            System.out.println("File not found.");
        } catch (IOException e) {
            System.out.println("Error reading file");
        }
 
        return lines;
    }
 
    public static void main(String[] args) {
        LinearRegressionBuilder dlr = new LinearRegressionBuilder();
    }
 
}

Neural Network
If I’m totally honest, running a neural network against the current dataset prob-
ably isn’t the best idea. The quantity of data isn’t going to be enough to get any 
accurate results. . .yet. Planning for the future, though, is a good idea, and you 
want a model that can work with the unknown, so having this neural network 
in place is worthwhile.

Working on the assumption that data will be continuously streaming in via 
Kafka, then there’s a strong case for having a neural network over the long 
term. So, I’m going to build a multilayer perceptron to handle the scoring data.
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With things being so variable over time, it does raise some interesting ques-
tions on how the model is going to be built. With simple linear regression and 
decision trees the training and model require no configuration or planning: 
the training is run against the data, the model is created, and the evaluation is 
performed. A neural network, on the other hand, needs a little more crafting 
to get the best performance out of it.

Data Importing

I’m using the DeepLearning4J library to create this neural network application. 
One of the positive aspects of DL4J is the amount of thought that’s gone into 
loading the data.

To import the CSV data, there’s a dedicated CSVRecordReader class that will 
import the data based on a passed-in delimiter. As there is no header record, 
there are no lines to skip, so that value is set to zero.

        int numLinesToSkip = 0;
        String delimiter = ",";
        RecordReader recordReader = new CSVRecordReader(numLinesToSkip,d
elimiter);
 
        recordReader.initialize(new FileSplit(new File("/opt/mlbook/
testdata/")));

Hidden Nodes

How many hidden nodes should we use in our model? Given that the volume 
of data is going to increase as time goes on, it’s going to be difficult to know 
how many hidden nodes to have.

There are a few scenarios for training our neural network. We could train 
against the full dataset as set intervals (more on that shortly) or, if the data vol-
umes are huge, split out random datasets and train on those, creating several 
potential models to use.

With so many permutations of training data, it’s hard to say how many hidden 
nodes the neural network would require. There is, however, a method to give a 
rough calculation of how many hidden nodes to use (see Figure 12.8).

samples
S * (i + o)

Figure 12.8:  Calculation for hidden nodes
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private static long getHiddenNodeEstimate(int inputs, int outputs, int 
samplesize) {
        Random r = new Random();
        double out  = (samplesize / ((inputs + outputs) * r.nextInt(9) + 
1));
        return Math.round(out);
    }

The previous code takes the number of input nodes, the number of output 
nodes, and the sample size (number of lines in a CSV file, for example). For the 
calculation to take place, we need to add some randomness so there’s a random 
number introduced into the equation. The result of the method is the number of 
hidden nodes to use. Over time, with more training, you will build up a picture 
of the sweet spot of hidden nodes. It’s not an exact science, but it’s something 
that needs to be repeated so we get the most accurate model.

When we talk about neural networks, it tends to be about a fixed set of param-
eters. There are x inputs, y outputs, and z hidden nodes. The data tends to be 
a fixed quantity with no forward planning and rerunning. Data, however, is 
ever evolving.

Model Configuration

The configuration for the neural network is a simple multilayer perceptron. I’m 
using four layers: an input layer, output layer, and two hidden layers. Deciding 
on how many hidden nodes are in the hidden layers comes down to the result 
of the getHiddenNodesEstimate method, as discussed earlier.

MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
            .seed(seed)
            .iterations(iterations)
            .activation(Activation.TANH)
            .weightInit(WeightInit.XAVIER)
            .learningRate(0.1)
            .regularization(true).l2(1e-4)
            .list()
            .layer(0, new DenseLayer.Builder().nIn(numInputs).
nOut(hiddenNodes).build())
            .layer(1, new DenseLayer.Builder().nIn(hiddenNodes).
nOut(hiddenNodes).build())
            .layer(2, new DenseLayer.Builder().nIn(hiddenNodes).
nOut(hiddenNodes).build())
                .layer(3, new OutputLayer.Builder(LossFunctions.
LossFunction.NEGATIVELOGLIKELIHOOD)
                .activation(Activation.SOFTMAX)
                .nIn(hiddenNodes).nOut(outputNum).build())
            .backprop(true).pretrain(false)
            .build();
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Model Training

With the configuration completed, the model is then created. The training split 
is set for 65 percent of the training data, with the remaining 35 percent being 
used for evaluation. As the model is being trained, the application will output 
the progress every 100 iterations; the training of the model is set in the appli-
cation at 2,000 iterations.

        MultiLayerNetwork model = new MultiLayerNetwork(conf);
        model.init();
        model.setListeners(new ScoreIterationListener(100));
 
        model.fit(trainingData);

Evaluation

The evaluation steps don’t require any intervention from the application itself; 
it’s more a reporting exercise. With our 11 output nodes, the evaluation class 
generates an output based on the feature matrix of the test data. Once the eval-
uation is complete, it’s output to the console.

Evaluation eval = new Evaluation(11);
        log.info("Getting evaluation");
        INDArray output = model.output(testData.getFeatureMatrix());
        log.info("Getting evaluation output");
        eval.eval(testData.getLabels(), output);
        System.out.println(eval.stats());

Saving the Model Results to the Database

As with the other models, the evaluation results are stored in the database.  
A figure of the split of training data is taken, along with the time taken to create 
the model, and the final F1 score of the model. When the prediction events hap-
pen, the criteria on what model will be used will be determined by the F1 score.

// Write output results to database
        DBTools.writeResultsToDB(uuid, evalsplit, timetaken, eval.f1() , 
eval.stats(), "mlp");

Persisting the Model

Models generated in DeepLearning4Java are persisted as ZIP files. The 
ModelSerializer class gives us an easy way to persist the generated model. In 
our demo system, there’s no need to update models; we are only creating new 
models each run, so we set the saveUpdater Boolean value to false.
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In this example, we’re passing the generated UUID as the filename of the ZIP 
file. This UUID will be the same one persisted in the database table.

        // Save model
        File locationToSave = new File("/opt/mlbook/testdata/models/" + 
uuid + ".zip");
        boolean saveUpdater = false;
        ModelSerializer.writeModel(model, locationToSave, saveUpdater);

The Final Code

Here’s the full code for the neural network. This includes all the steps that I’ve 
walked through and also implements CSVRecordReader, which is a helper class 
to parse the CSV file.

This model also implements the hidden node method, taking the input and 
output nodes plus the number of samples in the dataset.

package mlbook.ch12.kafka.mlp;
 
import org.datavec.api.records.reader.RecordReader;
import org.datavec.api.records.reader.impl.csv.CSVRecordReader;
import org.datavec.api.split.FileSplit;
import org.deeplearning4j.datasets.datavec.RecordReaderDataSetIterator;
import org.deeplearning4j.eval.Evaluation;
import org.deeplearning4j.nn.conf.MultiLayerConfiguration;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.conf.layers.DenseLayer;
import org.deeplearning4j.nn.conf.layers.OutputLayer;
import org.deeplearning4j.nn.multilayer.MultiLayerNetwork;
import org.deeplearning4j.nn.weights.WeightInit;
import org.deeplearning4j.optimize.listeners.ScoreIterationListener;
import org.deeplearning4j.util.ModelSerializer;
import org.nd4j.linalg.activations.Activation;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.dataset.DataSet;
import org.nd4j.linalg.dataset.SplitTestAndTrain;
import org.nd4j.linalg.dataset.api.iterator.DataSetIterator;
import org.nd4j.linalg.dataset.api.preprocessor.DataNormalization;
import org.nd4j.linalg.dataset.api.preprocessor.NormalizerStandardize;
import org.nd4j.linalg.lossfunctions.LossFunctions;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
 
import java.io.File;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.SQLException;
import java.util.Random;
import java.util.UUID;
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public class ANNBuilder {
 
    private static Logger log = LoggerFactory.getLogger(ANNBuilder.class);
 
 
    private static long getHiddenNodeEstimate(int inputs, int outputs, 
int samplesize) {
        Random r = new Random();
        double out  = (samplesize / ((inputs + outputs) * r.nextInt(9) + 
1));
        return Math.round(out);
    }
 
    public static void main(String[] args) throws  Exception {
    // Everything is classed as a new run so we want a UUID for each 
model run.
 
        String uuid = UUID.randomUUID().toString();
    long start = System.currentTimeMillis();
        //First: get the dataset using the record reader. 
CSVRecordReader handles loading/parsing
        int numLinesToSkip = 0;
        String delimiter = ",";
        RecordReader recordReader = new CSVRecordReader(numLinesToSkip, 
delimiter);
 
        recordReader.initialize(new FileSplit(new File("/opt/mlbook/
testdata/")));
 
 
        //Second: the RecordReaderDataSetIterator handles conversion to 
DataSet objects, ready for use in neural network
        int labelIndex = 3;     //4 values in each row of the CSV: 3 
input features followed by an integer label (class) index.
        int numClasses = 11;     //11 classes
        int batchSize = 474;
        double evalsplit = 0.65;
 
        DataSetIterator iterator = new RecordReaderDataSetIterator(record
Reader,batchSize,labelIndex,numClasses);
 
        DataSet allData = iterator.next();
        allData.shuffle();
        SplitTestAndTrain testAndTrain = allData.
splitTestAndTrain(evalsplit);  //Use 65% of data for training
 
        DataSet trainingData = testAndTrain.getTrain();
        DataSet testData = testAndTrain.getTest();
 
        //We need to normalize our data. We'll use NormalizeStandardize 
(which gives us mean 0, unit variance):
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        DataNormalization normalizer = new NormalizerStandardize();
        normalizer.fit(trainingData);
        normalizer.transform(trainingData);
        normalizer.transform(testData);
 
 
        final int numInputs = 3;
        int outputNum = 11;
        int iterations = 2000;
        long seed = 6;
 
        int hiddenNodes = (int)getHiddenNodeEstimate(numInputs, 
outputNum, batchSize);
 
 
 
        log.info("Build model....");
        MultiLayerConfiguration conf = new NeuralNetConfiguration.
Builder()
            .seed(seed)
            .iterations(iterations)
            .activation(Activation.TANH)
            .weightInit(WeightInit.XAVIER)
            .learningRate(0.1)
            .regularization(true).l2(1e-4)
            .list()
            .layer(0, new DenseLayer.Builder().nIn(numInputs).
nOut(hiddenNodes).build())
            .layer(1, new DenseLayer.Builder().nIn(hiddenNodes).
nOut(hiddenNodes).build())
            .layer(2, new DenseLayer.Builder().nIn(hiddenNodes).
nOut(hiddenNodes).build())
                .layer(3, new OutputLayer.Builder(LossFunctions.
LossFunction.NEGATIVELOGLIKELIHOOD)
                .activation(Activation.SOFTMAX)
                .nIn(hiddenNodes).nOut(outputNum).build())
            .backprop(true).pretrain(false)
            .build();
 
        //run the model
        MultiLayerNetwork model = new MultiLayerNetwork(conf);
        model.init();
        model.setListeners(new ScoreIterationListener(100));
 
        model.fit(trainingData);
 
        log.info("Made it here.....");
        long stop = System.currentTimeMillis();
        long timetaken = stop - start;
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        System.out.println("Took " + timetaken + " millis");
 
        //evaluate the model on the test set
        Evaluation eval = new Evaluation(11);
        log.info("Getting evaluation");
        INDArray output = model.output(testData.getFeatureMatrix());
        log.info("Getting evaluation output");
        eval.eval(testData.getLabels(), output);
        System.out.println(eval.stats());
 
        // Write output results to database
        DBTools.writeResultsToDB(uuid, evalsplit, timetaken, eval.f1() , 
eval.stats(), "mlp");
 
        // Save model
        File locationToSave = new File("/opt/mlbook/testdata/models/" + 
uuid + ".zip");
        boolean saveUpdater = false;
        ModelSerializer.writeModel(model, locationToSave, saveUpdater);
 
    }
 
}

Kafka Topics

In this application, there are four topics. First, there’s the event stream topic; 
this contains the messages for either the training data or the commands to run 
a build on one of the three models we have. If the message contains training 
data, the streaming application will push the contents of the message, the CSV 
data, to the training data topic.

With the commands and training data taken care of, it’s just the predictions 
that we need to think about. To make a prediction, messages are sent to the 
prediction request topic. This is another JSON payload with the model type to 
run and the data required to make a prediction. The prediction response topic 
is a topic that the results are sent to. The streaming application handling the 
predictions publishes the result responses to this topic. For this proof of concept, 
I’m going to assume that there’s a consumer handling this.

Creating the Topics
The topic creation is done using the kafka-topics command that was covered 
earlier in the chapter. I’ve created a shell script that creates all four topics for you. 
There are three pieces of information the topic command requires: the hostname 
and port for Zookeeper, the replication factor, and the number of partitions.
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For learning purposes, I’ve kept the replication factor and partitions to 1. 
If this system were put into a production setting, then I would be looking at 
increasing those numbers to give some resilience of the overall application. The 
following is the full shell script to create the topics required:

KAFKA_HOME=/usr/local/kafka_2.11-1.0.0/ 
ZK_CONNECT=localhost:2181 
REPLICATION_FACTOR=1 
PARTITIONS=1 
 
# training_data_topic - Where the raw data will be transported for 
training. Using Kafka Connect to push the data to a filestore. 
echo "Creating topic: training_data_topic" 
 
$KAFKA_HOME/bin/kafka-topics.sh --create --topic training_data_topic 
--zookeeper $ZK_CONNECT --partitions $PARTITIONS --replication-factor 
$REPLICATION_FACTOR 
 
# event_stream_topic - Events are sent to the Events Kafka Streaming API 
application. 
echo "Creating topic: event_topic" 
$KAFKA_HOME/bin/kafka-topics.sh --create --topic event_topic --zookeeper 
$ZK_CONNECT --partitions $PARTITIONS --replication-factor $REPLICATION_
FACTOR 
 
# prediction_request_topic - Sends data to the Prediction Streaming 
application. 
echo "Creating topic: prediction_request_topic" 
$KAFKA_HOME/bin/kafka-topics.sh --create --topic prediction_request_
topic --zookeeper $ZK_CONNECT --partitions $PARTITIONS --replication-
factor $REPLICATION_FACTOR 
 
# prediction_response_topic - The prediction response from the original 
prediction_request_topic 
echo "Creating topic: prediction_response_topic" 
$KAFKA_HOME/bin/kafka-topics.sh --create --topic prediction_response_
topic --zookeeper $ZK_CONNECT --partitions $PARTITIONS --replication-
factor $REPLICATION_FACTOR

Assuming Zookeeper and Kafka are running, open a terminal window and 
go to the directory with the script and execute it. If you’re running Kafka as the 
root user, then you will need to run the script as root too.

sudo ./create_topics.sh

It’s wise to confirm that the topics have been created, so run the Kafka topics 
command again to list the topics.

./kafka-topics --list --zookeeper localhost:2181
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Kafka Connect

Within the Kafka ecosystem is Kafka Connect, which is basically a consumer 
application that can act either as a source, consuming data from an application, 
or as a sink, persisting or sending data to an application.

For this application there are two Connect sinks in operation—one to back 
up all the messages passing through the event topic and the other that persists 
the training data for the models to train against.

Why Persist the Event Data?
As you have seen throughout this chapter, the Kafka system is an immutable 
message log. Brokers have configurations, and as you’d expect, one of these 
settings is log retention, in other words, how long messages within the cluster 
are kept to be available to consumers.

Once the log retention threshold passes for a message, then it’s marked for 
deletion and won’t be available to any consumers depending on it. For most 
things, this is no issue. For this proof of concept, though, I may want to replay 
messages from the very start, including commands.

The reason for creating the event data sink, even though it’s not used by an 
application, is to create a record of each data event in case we ever need to run 
it from scratch. If that needs to happen, then all that’s required is to play the 
JSON payloads through the event _ topic again. It would be prudent to reset all 
the models and start from scratch. It gives a mechanism for disaster recovery.

Persisting Event Data

The event data passes through the event topic. While the actual payload is han-
dled by the streaming application, it’s prudent to back up the message data too. 
This Connect configuration persists the JSON payloads to a file called events.
json. There’s no transformation happening on the actual JSON messages; they 
are just appended to the file.

The Connect configuration requires a name and a topic to read from. The 
key and value converters will deserialize the data so it can be persisted safely. 
Connect requires a file path to write the data to.

With the configuration options put together, the final Connect configuration 
looks like this:

name=dl4j-eventsw-file-sink 
connector.class=FileStreamSink 
tasks.max=1 
file=/opt/mlbook/testdata/events/events.json 
topic=event_topic 
key.converter=org.apache.kafka.connect.storage.StringConverter value.
converter=org.apache.kafka.connect.storage.StringConverter
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Persisting Training Data

The training data sink works in the same way as the event topic backup sink. 
Changing the topic and the output file path are the only actions required. All 
that’s being written to the file is CSV data.

name=dl4j-training-data-file-sink 
connector.class=FileStreamSink 
tasks.max=1 
file=/opt/mlbook/testdata/connect/trainingdata.csv 
topics=training_data_topic 
key.converter=org.apache.kafka.connect.storage.StringConverter value.
converter=org.apache.kafka.connect.storage.StringConverter

Installing the Connector Configurations

The Kafka Connect scripts come in two types—one for stand-alone operation 
and the other for a distributed cluster. To start Kafka Connect on the stand-alone 
development cluster, you are required to pass in the Connect properties first 
and then the subsequent properties files of your connectors.

For this project example the following would be run (as one command) on 
the command line.  
 # bin/connect-standalone.sh config/connect-standalone.properties \
/path/to/repo/config/dl4j_event_to_fs_sink.properties \
/path/to/repo/config/dl4j_to_fs_sink.properties

Kafka will load in the required plugins and start Connect. If there is an error 
with the properties file, Connect will close, and you will return to the command 
line. When that happens, check your properties files for any errors and try again.

When Connect starts up correctly, you should see something like the fol-
lowing output. The main thing to look for are things like “Sink task finished 
initialization and start,” meaning the connector has installed and is waiting.

[2019-08-11 14:36:38,032] INFO WorkerSinkTask{id=dl4j-eventsw-file-
sink-0} Sink task finished initialization and start (org.apache.kafka.
connect.runtime.WorkerSinkTask:301)
[2019-08-11 14:36:38,078] INFO Cluster ID: eh574OwJRguX33YZfyyVgg  
(org.apache.kafka.clients.Metadata:365)
[2019-08-11 14:36:38,853] INFO [Consumer clientId=consumer-1, 
groupId=connect-dl4j-eventsw-file-sink] Discovered group coordinator 
192.168.1.102:9092 (id: 2147483647 rack: null) (org.apache.kafka.
clients.consumer.internals.AbstractCoordinator:675)
[2019-08-11 14:36:38,856] INFO [Consumer clientId=consumer-1, 
groupId=connect-dl4j-eventsw-file-sink] Revoking previously assigned 
partitions [] (org.apache.kafka.clients.consumer.internals.
ConsumerCoordinator:459)
[2019-08-11 14:36:38,856] INFO [Consumer clientId=consumer-1, 
groupId=connect-dl4j-eventsw-file-sink] (Re-)joining group (org.apache.
kafka.clients.consumer.internals.AbstractCoordinator:491)
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[2019-08-11 14:36:38,894] INFO [Consumer clientId=consumer-1, 
groupId=connect-dl4j-eventsw-file-sink] (Re-)joining group (org.apache.
kafka.clients.consumer.internals.AbstractCoordinator:491)
[2019-08-11 14:36:38,988] INFO [Consumer clientId=consumer-1, 
groupId=connect-dl4j-eventsw-file-sink] Successfully joined group 
with generation 1 (org.apache.kafka.clients.consumer.internals.
AbstractCoordinator:455)
[2019-08-11 14:36:38,991] INFO [Consumer clientId=consumer-1, 
groupId=connect-dl4j-eventsw-file-sink] Setting newly assigned 
partitions: event_topic-0 (org.apache.kafka.clients.consumer.internals.
ConsumerCoordinator:290)
[2019-08-11 14:36:39,024] INFO [Consumer clientId=consumer-1, 
groupId=connect-dl4j-eventsw-file-sink] Resetting offset for partition 
event_topic-0 to offset 0. (org.apache.kafka.clients.consumer.internals.
Fetcher:584)

The REST API Microservice

The backbone of the system is a prediction HTTP API. This accepts requests 
from the two streaming applications and can also accept requests directly to 
the endpoint, which could be via a web page using an asynchronous Ajax call, 
for example.

Using the CompojureAPI library, it’s a fairly trivial matter to create REST-based 
APIs that also include the Swagger front end, which makes testing a lot easier.

There are number of handlers that need to be implemented. Table 12.5 breaks 
down the endpoints, any required values, and the function of the endpoint.

Table 12.5: Breakdown of Endpoints

ENDPOINT PARAMETERS FUNCTION

/api/build _ dtr None Triggers the build script for decision 
tree model

/api/build _ slr None Triggers the build script for simple 
linear regression

/api/build _ mlp None Triggers the build script for the 
multilayer perceptron neural network 
build

/api/predict/dtr/:d Three-part CSV line Predicts the score against the 
decision tree model

/api/predict/slr/:d Three-part CSV line Predicts the score against the simple 
linear regression model

/api/predict/mlp/:d Three-part CSV line Predicts the score against the 
multilayer perceptron neural network
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Using the framework to compose the API, there’s little in the way of coding 
to do. Each function is essentially a GET handler that performs a function and 
returns a JSON payload as a response.

(GET "predict/dtr/:d" []
                 :path-params [d :- String]
                 :summary "Runs a prediction against the decision tree  
model"
                 (ok (json/write-str (dtr/predict-decision-tree d))))

The full code for the REST API handler is shown here:

(ns prediction.http.api.handler
  (:require [compojure.api.sweet :refer :all]
            [ring.util.http-response :refer :all]
            [prediction.http.api.linear :as slr]
            [prediction.http.api.decisiontree :as dtr]
            [prediction.http.api.mlp :as mlp]
            [clojure.data.json :as json]
            [schema.core :as s]))
 
;; A very basic API to build and predict against the models.
;; Swagger interface is built as well so you can test.
(def app
  (api
   {:swagger
    {:ui "/"
     :spec "/swagger.json"
     :data {:info {:title "Prediction.http.api"
                   :description "Strata 2018 - Kafka/DL4J/Weka/Commons Demo"}
            :tags [{:name "api", :description "prediction api"}]}}}
 
   (context "/api" []
            :tags ["api"]
 
            (GET "/build_dtr" []
                 :return {:result String}
                 :summary "Builds the decision tree model"
                 (ok {:result (dtr/run-model-build)}))
 
            (GET "/build_mlp" []
                 :return {:result String}
                 :summary "Builds the neural network model"
                 (ok {:result (mlp/run-model-build)}))
 
            (GET "/build_slr" []
                 :return {:result String}
                 :summary "Builds the simple linear regression model"
                 (ok {:result (slr/run-model-build)}))
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            (GET "/predict/mlp/:d" []
                 :path-params [d :- String]
                 :summary "Runs a prediction against the neural network 
model"
                 (ok (json/write-str (mlp/predict-mlp d))))
 
            (GET "predict/dtr/:d" []
                 :path-params [d :- String]
                 :summary "Runs a prediction against the decision tree  
model"
                 (ok (json/write-str (dtr/predict-decision-tree d))))
 
            (GET "/predict/slr/:d" []
                 :path-params [d :- String]
                 :summary "Runs a prediction against simple linear 
regression models"
                 (ok (json/write-str (slr/predict-simple-linear d)))))))

The Swagger interface gives you an accessible browser-based page where you 
can test the API and run commands and see the API responses (see Figure 12.9).

Processing Commands and Events

The core of this system revolves around two Kafka streaming applications. One 
processes the commands and events coming in from the event topic, and the 

Figure 12.9:  Swagger interface to test the API
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other streams the application to handle the predictions. Figure 12.10 shows the 
flow of how a message is mapped.

I decided to write these in Clojure, mainly for ease of testing. When functions 
are small, they can be easily tested. When working with the REPL, it’s easy to 
build out functions quickly in the REPL and then transfer them to your main 
codebase.

This streaming application uses the Java APIs to set up the streaming job, like 
the Java example you saw earlier in the chapter. There are a few features that 
I’ve added, though, to make starting the application and configuration easier.

Finding Kafka Brokers
As you’ve realized from using the Kafka command-line tools, there’s a lot of 
specifying where broker lists and Zookeeper servers reside. After a while, it 
becomes hard to find and configure all of them, especially when it’s a large cluster.

Within this application, there are two functions that will create the broker 
list for us at runtime, so there’s no need for configuration or hard coding. The 
base Zookeeper server address is within the EDN configuration file.

(defn get-broker-list
  [zk-conf]
  (let [c (merge (zk-defaults/zk-client-defaults) zk-conf)]
    (with-open [u (client/make-zk-utils c false)]
      (cluster/all-brokers u))))
 
(defn broker-str [zkconf]
  (let [zk-brokers (get-broker-list zkconf)
        brokers (map (fn [broker] (str (get-in broker [:endpoints : 
plaintext :host]) ":" (get-in broker [:endpoints :plaintext :port])) ) 
zk-brokers)]
    (if (= 1 (count brokers))
      (first brokers)
      (cstr/join "," brokers))))

Event Stream
Processor .branch

It’s a training
data event.

Extract data
and

training_data

Send command
to HTTP API

It’s a model
build event.

event_topic

Figure 12.10:  Flow of a message
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The first function, get-broker-list, takes the Zookeeper client and returns all 
the brokers from the Zookeeper nodes. This is returned as a map; the broker-
str function maps through the entries and retrieves the host name and port. 
The final step is to return the string. Depending on how many broker names 
exist, this is either a single entry or a comma-separated list of broker addresses.

A Command or an Event?
When a message passes through the event topic, the application needs to deter-
mine whether the payload is a training event containing a line of CSV data or 
a command.

Within the streaming API, there’s a method to branch the stream. By test-
ing on a condition, in this case whether our payload key is a command or a 
training line, the message values can be directed to the correct element of an 
array. This partitioned stream can then be processed correctly by accessing the 
position of the array.

For this example, the first array element consists of the commands; these are 
handled by the process-command function. At the processing of the command, 
the model type is taken and set to the API to start a model training job.

The training data messages are handled by the process-training function, 
and the CSV data is extracted from the payload and is returned. The stream 
then acts as a producer sending the raw data to the training data topic. Data 
going to this topic is persisted via the Kafka Connect job and appended to the 
training data file on the filesystem.

    (do
      (let [partitioned-stream
            (.branch
             (.stream builder input-topic)
             (into-array Predicate [(reify
                                      Predicate
                                      (test [_ _ v]
                                        (do
                                          (log/info "p0 " v)
                                          (->> v
                                               (pre-process-data)
                                               (pred-key-type 
"command")))))
                                    (reify
                                      Predicate
                                      (test [_ _ v]
                                        (do
                                          (log/info "p1 " v)
                                          (->> v
                                               (pre-process-data)
                                               (pred-key-type 
"training")))))]))
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            training-topic-stream (.stream builder training-topic)]
        (log/info partitioned-stream)
        (log/info training-topic-stream)
        (-> (aget partitioned-stream 0)
            (.mapValues (reify ValueMapper (apply [_ v] (process-command 
v))))
            (.print))
        (-> (aget partitioned-stream 1)
            (.mapValues (reify ValueMapper (apply [_ v] (process-
training v))))
            (.to training-topic-name)))

The final code listing takes the previous elements and also has the deserial-
ization function to convert from a byte array to a string. Configuration is stored 
in an EDN file, which is basically a map of keys and values.

 (ns kafka.stream.events.core
  (:require [franzy.admin.zookeeper.defaults :as zk-defaults]
            [franzy.admin.zookeeper.client :as client]
            [franzy.admin.cluster :as cluster]
            [clojure.java.io :as io]
            [clojure.string :as cstr]
            [taoensso.timbre :as log]
            [clojure.data.json :as json]
            [aero.core :as aero]
            [environ.core :refer [env]])
  (:import [org.apache.kafka.streams.kstream KStreamBuilder Predicate 
ValueMapper]
           [org.apache.kafka.streams KafkaStreams StreamsConfig]
           [org.apache.kafka.common.serialization Serdes])
  (:gen-class))
 
(def api-endpoint "http://localhost:3000/api/")
 
(defn config [profile]
  (aero/read-config (io/resource "config.edn") {:profile profile}))
 
(defn get-broker-list
  [zk-conf]
  (let [c (merge (zk-defaults/zk-client-defaults) zk-conf)]
    (with-open[u (client/make-zk-utils c false)]
      (cluster/all-brokers u))))
 
(defn broker-str [zkconf]
  (let [zk-brokers (get-broker-list zkconf)
        brokers (map (fn [broker] (str (get-in broker [:endpoints : 
plaintext :host]) ":" (get-in broker [:endpoints :plaintext :port])) ) 
zk-brokers)]
    (if (= 1 (count brokers))
      (first brokers)
      (cstr/join "," brokers))))
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;; Kafka messages are still byte arrays at this point. Convert them to 
strings.
(defn deserialize-message [bytes]
  (try (-> bytes
           java.io.ByteArrayInputStream.
           io/reader
           slurp)
       (catch Exception e (log/info (.printStackTrace e)))
       (finally (log/info ""))))
 
;; Function takes the byte array message and converts it to a Clojure 
map.
(defn pre-process-data [data-in]
  (log/info "Pre process data")
  (log/info data-in)
  (let [message (-> data-in
                    deserialize-message
                    )
        json-out (json/read-str message :key-fn keyword)]
    (log/info json-out)
    json-out))
 
;; Process any commands, basically fire them at the HTTP API.
(defn process-command [data-in]
  (let [jsonm (pre-process-data data-in)]
    (slurp (str api-endpoint (:payload jsonm)))))
 
;; Extract the CSV training data and return it.
(defn process-training [data-in]
  (let [jsonm (pre-process-data data-in)]
    (.getBytes (:payload jsonm))))
 
;; Test the type key against the message, returns true/false
(defn pred-key-type [key message]
  (log/infof "Checking %s for key %s" message key)
  (let [b (if (= key (:type message))
            true
            false)]
    (log/infof "key %s - result is %b" key b)
    b))
 
;; This is the actual Kafka streaming application.
;; All the config is read in and then the app will figure out the rest.
;; The stream is branched to process the event stream (either a command 
or training data)
(defn start-stream []
  (let [{:keys [kafka zookeeper] :as configuration} (config (keyword 
(env :profile)))
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        _ (log/info "PROFILE" (env :profile))
        broker-list (broker-str {:servers zookeeper})
        props {StreamsConfig/APPLICATION_ID_CONFIG,  (:consumer-group 
kafka)
               StreamsConfig/BOOTSTRAP_SERVERS_CONFIG, broker-list
               StreamsConfig/ZOOKEEPER_CONNECT_CONFIG, zookeeper
               StreamsConfig/TIMESTAMP_EXTRACTOR_CLASS_CONFIG  
"org.apache.kafka.streams.processor.WallclockTimestampExtractor"
               StreamsConfig/KEY_SERDE_CLASS_CONFIG,   (.getName 
(.getClass (Serdes/String)))
               StreamsConfig/VALUE_SERDE_CLASS_CONFIG, (.getName 
(.getClass (Serdes/ByteArray)))}
        builder (KStreamBuilder.)
        config (StreamsConfig. props)
        input-topic (into-array String [(:topic kafka)])
        training-topic-name (:training-data kafka)
        training-topic (into-array String [training-topic-name])]
    (log/infof "Zookeeper Address: %s" zookeeper)
    (log/infof "Broker List: %s" broker-list)
    (log/infof "Kafka Topic: %s" (:topic kafka))
    (log/infof "Kafka Consumer Group: %s" (:consumer-group kafka))
    (do
      (let [partitioned-stream
            (.branch
             (.stream builder input-topic)
             (into-array Predicate [(reify
                                      Predicate
                                      (test [_ _ v]
                                        (do
                                          (log/info "p0 " v)
                                          (->> v
                                               (pre-process-data)
                                               (pred-key-type 
"command")))))
                                    (reify
                                      Predicate
                                      (test [_ _ v]
                                        (do
                                          (log/info "p1 " v)
                                          (->> v
                                               (pre-process-data)
                                               (pred-key-type 
"training")))))]))
            training-topic-stream (.stream builder training-topic)]
        (log/info partitioned-stream)
        (log/info training-topic-stream)
        (-> (aget partitioned-stream 0)
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            (.mapValues (reify ValueMapper (apply [_ v] (process-command 
v))))
            (.print))
        (-> (aget partitioned-stream 1)
            (.mapValues (reify ValueMapper (apply [_ v] (process-
training v))))
            (.to training-topic-name)))
      (KafkaStreams. builder config))))
 

Making Predictions

With Kafka handling the incoming events and training data, it's now time to turn 
your attention to making predictions against the built models. In the event topic 
streaming application, you may have noticed a reference to the API endpoint.

(def api-endpoint "http://localhost:3000/api/")

The code for the API is covered earlier in the chapter. For making predictions, 
the three prediction endpoints are used. They all work in the same way.

/predict/<model to use>/<csv values>

The model used in this instance is either the simple linear regression model 
(slr), the decision tree (dtr), or the neural network (mlp). The CSV values are the 
three scores, and the model will output the fourth. So, for example, a call to the 
API to predict the scores 3, 4, and 5 to the decision tree would look like this:

http://localhost:3000/api/predict/dtr/3,4,5 

For predictions being made through Kafka via prediction _ request _ topic, 
there needs to be an application that will read the payload and run the predic-
tion against the API.

Prediction Streaming API
The streaming application reads the message from the topic and deserializes it 
to a JSON format. The configuration of the application is similar to that of the 
event processing application shown earlier.

The real work happens in the run-prediction function.

(defn run-prediction [data-in]
  (let [jsonm (pre-process-data data-in)
        prediction-json (p/make-prediction jsonm)]
    (->> prediction-json
         (.getBytes))))
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The value from the make-prediction function is returned and stored in the 
prediction-json value; at this point, it’s a JSON format message but must be 
converted into a byte array so it can be sent to the prediction-response topic.

The following is the full code for the prediction streaming application:

(ns kafka.stream.prediction.core
  (:require [franzy.admin.zookeeper.defaults :as zk-defaults]
            [franzy.admin.zookeeper.client :as client]
            [franzy.admin.cluster :as cluster]
            [clojure.java.io :as io]
            [clojure.string :as cstr]
            [taoensso.timbre :as log]
            [clojure.data.json :as json]
            [aero.core :as aero]
            [environ.core :refer [env]]
            [kafka.stream.prediction.predict :as p])
  (:import [org.apache.kafka.streams.kstream KStreamBuilder ValueMapper]
           [org.apache.kafka.streams KafkaStreams StreamsConfig]
           [org.apache.kafka.common.serialization Serdes])
  (:gen-class))
 
 (def api-endpoint "http://localhost:3000/api/")
 
(defn config [profile]
  (aero/read-config (io/resource "config.edn") {:profile profile}))
 
(defn get-broker-list
  [zk-conf]
  (let [c (merge (zk-defaults/zk-client-defaults) zk-conf)]
    (with-open[u (client/make-zk-utils c false)]
      (cluster/all-brokers u))))
 
(defn broker-str [zkconf]
  (let [zk-brokers (get-broker-list zkconf)
        brokers (map (fn [broker] (str (get-in broker [:endpoints : 
plaintext :host]) ":" (get-in broker [:endpoints :plaintext :port])) ) 
zk-brokers)]
    (if (= 1 (count brokers))
      (first brokers)
      (cstr/join "," brokers))))
 
;; Kafka messages are still byte arrays at this point. Convert them to 
strings.
(defn deserialize-message [bytes]
  (try (-> bytes
           java.io.ByteArrayInputStream.
           io/reader
           slurp)
       (catch Exception e (log/info (.printStackTrace e)))
       (finally (log/info ""))))
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;; Function takes the byte array message and converts it to a Clojure 
map.
(defn pre-process-data [data-in]
  (log/info "Pre process data")
  (log/info data-in)
  (let [message (-> data-in
                    deserialize-message
                    )
        json-out (json/read-str message :key-fn keyword)]
    (log/info json-out)
    json-out))
 
;; Process any commands, basically fire them at the HTTP API.
(defn run-prediction [data-in]
  (let [jsonm (pre-process-data data-in)
        prediction-json (p/make-prediction jsonm)]
    (->> prediction-json
         (.getBytes))))
 
;; This is the actual Kafka streaming application.
;; All the config is read in and then the app will figure out the rest.
(defn start-stream []
  (let [{:keys [kafka zookeeper] :as configuration} (config (keyword 
(env :profile)))
        _ (log/info "PROFILE" (env :profile))
        broker-list (broker-str {:servers zookeeper})
        props {StreamsConfig/APPLICATION_ID_CONFIG,  (:consumer-group 
kafka)
               StreamsConfig/BOOTSTRAP_SERVERS_CONFIG, broker-list
               StreamsConfig/ZOOKEEPER_CONNECT_CONFIG, zookeeper
               StreamsConfig/TIMESTAMP_EXTRACTOR_CLASS_CONFIG  
"org.apache.kafka.streams.processor.WallclockTimestampExtractor"
               StreamsConfig/KEY_SERDE_CLASS_CONFIG,   (.getName 
(.getClass (Serdes/String)))
               StreamsConfig/VALUE_SERDE_CLASS_CONFIG, (.getName 
(.getClass (Serdes/ByteArray)))}
        builder (KStreamBuilder.)
        config (StreamsConfig. props)
        input-topic (into-array String [(:input-topic kafka)])
        response-topic-name (:output-topic kafka)]
    (log/infof "Zookeeper Address: %s" zookeeper)
    (log/infof "Broker List: %s" broker-list)
    (log/infof "Kafka Topic: %s" (:input-topic kafka))
    (log/infof "Kafka Consumer Group: %s" (:consumer-group kafka))
    (do
      (->
       (.stream builder input-topic)
       (.mapValues (reify ValueMapper (apply [_ v] (run-prediction v))))
       (.to response-topic-name)))
    (KafkaStreams. builder config)))
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Prediction Functions
When the streaming application calls the make-prediction function, it’s referring 
to the predict namespace. Clojure has a mechanism for this called multi-methods, 
which enable you to create a single function name but have various functions 
complete the work.

Multi-methods are perfect for the prediction mechanism as we’re passing in 
the JSON payload and dealing with two aspects, the model type and the values 
to predict against.

Each function has the same structure:

(defmethod make-prediction :my-model-type [event]
  (json/write-str (my-model-type-function/predict-model (:payload 
event))))

It’s the same function throughout; it’s just the model name that changes. This 
makes our application extendable easily. Perhaps I decide to add a support vector 
machine model to the system. All I have to do is add a new multi-method to call 
the prediction on the support vector machine code I’ve written. In the predict 
namespace, I’d add the following:

(defmethod make-prediction :svm [event]
  (json/write-str (svm/predict-model (:payload event))))

And that’s it—there’s no refactoring of the streaming application required. 
For now, there are three models in the project, and the code listing for the pre-
diction calls looks like this:

(ns kafka.stream.prediction.predict
  (:require [kafka.stream.prediction.decisiontree :as dt]
            [kafka.stream.prediction.linear :as lr]
            [kafka.stream.prediction.mlp :as mlp]
            [clojure.data.json :as json]))
 
 (defn get-model-type [event]
  (keyword (:model event)))
 
(defmulti make-prediction (fn [event] (get-model-type event)))
 
(defmethod make-prediction :mlp [event]
  (json/write-str (mlp/predict-mlp (:payload event))))
 
(defmethod make-prediction :slr [event]
  (json/write-str (lr/predict-simple-linear (:payload event))))
 
(defmethod make-prediction :dtr [event]
  (json/write-str (dt/predict-decision-tree (:payload event))))



	 Chapter 12 ■ Machine Learning Streaming with Kafka	 297

The last thing to look at is how the three models make predictions; they all do 
predictions differently as they all use different Java APIs. First is the decision tree.

Predicting with Decision Tree Models

The decision tree model uses Weka, and this namespace handles both the model 
build (via a shell script) and the predictions.

When the prediction mechanism calls a :dtr event, it executes the predict-
decision-tree function. This does several tasks:

■■ It creates an ARFF format instance.

■■ It performs a query against the MySQL database to find the most accurate 
decision tree model, and the query returns the UUID.

■■ With the UUID, it then loads the model into memory.

■■ The prediction is made against the model.

■■ A JSON payload is created and returned to the calling function from the 
streaming application.

(ns prediction.http.api.decisiontree
  (:require [prediction.http.api.db :as db]
            [clj-time.core :as t]
            [clj-time.format :as f])
  (:use [clojure.java.shell :only [sh]])
  (:import [java.io ByteArrayInputStream InputStream InputStreamReader 
BufferedReader]
           [weka.core Instances SerializationHelper]))
 
(def script-path "/opt/mlbook/work/strata-2018-kafka-dl4j-clojure/
projects/dl4j.mlp/scripts/rundtr.sh")
 
(defn run-model-build []
  (sh script-path)
  "Decision Tree built.")
 
(defn get-most-accurate-model []
  (first (db/load-accurate-model-by-type {:model-type "dtr"})))
 
(defn create-instance [input]
  (let [header (slurp "/opt/mlbook/testdata/wekaheader.txt")]
    (->> (str header input ",?")
         .getBytes
         (ByteArrayInputStream.)
         (InputStreamReader.)
         (BufferedReader.)
         (Instances.)) ))
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(defn load-model [uuid]
  (let [model-path (str "/opt/mlbook/testdata/models/" uuid ".model")]
    (SerializationHelper/read model-path)))
 
(defn classify-instance [model instance]
  (do
    (.setClassIndex instance(- (.numAttributes instance) 1))
    (.classifyInstance model (.instance instance 0))))
 
(defn predict-decision-tree [x]
  (let [instance (create-instance x)
        model-info (get-most-accurate-model)
        model (load-model (:uuid model-info))
        result (classify-instance model instance)]
    {:input x
     :result result
     :accuracy (:model_accuracy model-info)
     :modelid (:uuid model)
     :prediction-date (f/unparse (f/formatters :mysql) (t/now))}))

Predicting Linear Regression
Both the decision tree and neural network models have serialized model builds 
persisted to disk. With the linear regression model, the slope and the intercept 
are stored within the MySQL database and therefore, don’t need to deserialize 
anything; all that is required is a query to find the model with the highest R2 
score.

This model does not use all four values to get a prediction, so there is a 
function to parse out the first value and convert it to an integer. This is what 
the prediction will be made against.

Notice that the majority of the code is parsing and converting. The actual 
work is done in two lines of code.

(defn calc-linear [slope intercept x]
  (+ intercept (* x slope)))

One of the beauties of the Clojure language is that you can achieve a high 
level of functionality with some concise code. The full code listing for the linear 
regression builder and predictor is shown here:

(ns prediction.http.api.linear
  (:require [prediction.http.api.db :as db]
            [clojure.string :as s]
            [clj-time.core :as t]
            [clj-time.format :as f])
  (:use [clojure.java.shell :only [sh]]))
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(def script-path "/opt/mlbook/work/strata-2018-kafka-dl4j-clojure/
projects/dl4j.mlp/scripts/runslr.sh")
 
(defn run-model-build []
  (sh script-path)
  "Linear model built.")
 
(defn load-simple-linear []
  (db/load-linear-model))
 
(defn calc-linear [slope intercept x]
  (+ intercept (* x slope)))
 
(defn convert-input-to-integer [input]
  (-> input
      (s/split #",")
      first
      (Integer/parseInt)))
 
;; load highest r2 valued model
(defn predict-simple-linear [x]
  (let [model (first (load-simple-linear))
        input (convert-input-to-integer x)
        result (calc-linear (:slope model)
                            (:intercept model)
                            input)]
    {:input input
     :result result
     :accuracy (:rsq model)
     :modelid (:uuid model)
     :prediction-date (f/unparse (f/formatters :mysql) (t/now))}))

Predicting the Neural Network Model
Similar to the decision tree model, the system has to do a number of steps before 
it gets to its prediction.

1.	 Find the most accurate model from the database, returning the UUID of 
the model.

2.	 Load the model into memory.

3.	 Parse the input query string from the API.

4.	 Run the prediction.

5.	 Build a JSON payload to return to the API as a response.

The full code listing takes care of the model build and the prediction. Building 
the model is a case of triggering the shell script in the project.
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(ns prediction.http.api.mlp
  (:require [prediction.http.api.db :as db]
            [clojure.string :as s]
            [clj-time.core :as t]
            [clj-time.format :as f])
  (:use [clojure.java.shell :only [sh]])
  (:import [org.deeplearning4j.util ModelSerializer]
           [org.nd4j.linalg.factory Nd4j]))
 
(def script-path "/opt/mlbook/work/strata-2018-kafka-dl4j-clojure/
projects/dl4j.mlp/scripts/runmlp.sh")
 
(defn run-model-build []
  (sh script-path)
  "Neural Network built.")
 
(defn get-most-accurate-model []
  (first (db/load-accurate-model-by-type {:model-type "mlp"})))
 
(defn build-model-filepath [uuid]
  (str "/opt/mlbook/testdata/models/" uuid ".zip"))
 
(defn load-mlp-model [uuid]
  (ModelSerializer/restoreMultiLayerNetwork (build-model-filepath 
uuid)))
 
(defn split-input [input]
  (double-array
   (map #(Double/parseDouble %)
        (-> input
            (s/split #",")))))
 
(defn make-prediction [model input]
  (let [input-vector (Nd4j/create (split-input input))
        prediction (.output model input-vector)]
    (.iamax (Nd4j/getBlasWrapper) prediction)))
 
(defn predict-mlp [x]
  (let [model-info (get-most-accurate-model)
        model (load-mlp-model (:uuid model-info))
        prediction (make-prediction model x)]
    {:input x
     :result prediction
     :accuracy (:model_accuracy model-info)
     :modelid (:uuid model-info)
     :prediction-date (f/unparse (f/formatters :mysql) (t/now))}))
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Running the Project

This is a big project with a lot of services that are running. Here’s a quick run-
down of how to get it all running. I’m assuming you are in the root directory 
of the project.

Run MySQL
Assuming MySQL is already running, create the tables.

$ mysqladmin -u root -p<your admin password> create mlchapter12
$ mysql -u root -p<your admin password> mlchapter12 < schema.sql

Run Zookeeper
Open a new terminal window and run the following command as the root user:

$ /path/to/kafka/bin/zookeeper-server-start.sh /path/to/kafka/config/
zookeeper.properties

Run Kafka
Open a new terminal window and run the following command as the root user:

$ /path/to/kafka/bin/kafka-server-start.sh /path/to/kafka/config/server.
properties

Create the Topics
Create the topics (in the scripts directory).

$ /path/to/project/scripts/create-topics.sh

Run Kafka Connect
Run as the root user and change the directory names to reflect your directory 
names.

$ /path/to/kafka/bin/connect-standalone.sh /path/to/kafka/config/
connect-standalone.properties
/path/to/project/config/dl4j_event_to_fs_sink.properties /path/to/
project/config/dl4j_to_fs_sink.properties
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Model Builds
Go to the dl4j.mlp project in the projects folder and run the following in a 
new terminal window:

$ mvn package

Run Events Streaming Application
Go to the kafka.stream.events project in the projects folder and run the fol-
lowing command:

$ lein uberjar
$ java -jar target/uberjar/kafka-stream-events.jar

Run Prediction Streaming Application
Go to the kafka.stream.prediction project in the projects folder and run the 
following command:

$ lein uberjar
$ java -jar target/uberjar/kafka-stream-prediction.jar

Start the API
Go to the prediction.http.api project in the projects folder and run the fol-
lowing command:

$ lein uberjar
$ java -jar target/server.jar

Send JSON Training Data
With Zookeeper, Kafka, and Kafka Connect running, you can now send some 
data to event _ topic. The following script will iterate each line of the JSON file 
in the data directory and pipe it to a Kafka console producer:

for i in `cat data/trainingdata.json` ; do echo $i ;done | /path/to/
kafka/bin/kafka-console-producer.sh --broker-list localhost:9092 --topic 
event_topic

Train a Model
In the messages directory of the project you’ll find three payloads to send a 
command event to event _ topic. To request a build of the simple linear regres-
sion model, you can run the following command from the command line:

cat build_slr.json | /path/to/kafka/bin/kafka-console-producer.sh 
--broker-list localhost:9092 --topic event_topic
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Make a Prediction
There is a sample prediction message in the messages directory. In the same way you 
requested a model build, sample _ predict.json to prediction _ request _ topic.

cat sample_predict.json | /path/to/kafka/bin/kafka-console-producer.sh 
--broker-list localhost:9092 --topic prediction_request_topic

If you are running a consumer on the prediction _ response _ topic, you 
will see the JSON output with the prediction.

{"input": "3,4,5"
 "result": 5.27
 "accuracy":76.876
 "modelid" "32201ab39be3745e5e9a7e576827cc59"
 "predicton-date": "2019-08-11 18:58:00"}

Summary

Kafka provides us with a solid system to produce and consume messages in near 
real time. By combining it with other technologies from your acquired machine 
learning knowledge you can build a system that uses streaming data to create 
a set of models to make predictions, over time improving on the accuracy of 
the models as new data is added.

While the components of the Kafka framework are simple the potential to 
create streaming intelligence applications are huge. It’s about knowing how to 
connect each element together and refining the process. This chapter covered 
many aspects of data collection, processing, training, and prediction.
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13

The Apache Spark project was created by the AMPLab at UC Berkeley as a data 
analytics cluster computing framework. This chapter is a quick overview of the 
Scala language and its use within the Spark framework. The chapter also looks 
at the external libraries for machine learning, SQL-like queries, and streaming 
data with Spark.

Spark: A Hadoop Replacement?

The debate about whether Spark is a Hadoop replacement might rage on longer 
than some would like. One of the problems with Hadoop is the same thing that 
made it famous: MapReduce. The programming model can take time to master 
for certain tasks. If it’s a case of straight totaling up frequencies of data, then 
MapReduce is fine, but after you get past that point, you’re left with some hard 
decisions to make.

Hadoop2 gets beyond the issue of using Hadoop only for MapReduce. With 
the introduction of YARN (Yet Another Resource Negotiator), Hadoop acts 
as an operating system for data with YARN controlling resources against the 
cluster. These resources weren’t limited to MapReduce jobs; they could be any 
job that could be executed.

The Spark project doesn’t rely on MapReduce, which gives it a speed advantage. 
The claim is that it’s 100 times faster than in-memory Hadoop and 10 times faster 

Apache Spark
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on disk. If speed is an issue for you, then Spark is certainly up there on the list 
of things to look at. As for the argument that it’s a replacement for Hadoop, 
well, there’s a time and place to use Hadoop, and the same goes for Spark; it’s 
all about the project that you are completing and picking the right tools for the 
job. The tools are just that—tools.

Java, Scala, or Python?

Spark jobs can be written in Java, Scala, or Python. As usual, which language 
you use tends to be a matter of personal preference.

The book has so far concentrated on Java as its core language of choice, and I 
will continue using the Java language for the Spark examples. During the first 
edition of this book, the Python libraries for Spark were classed as experimental; 
these have been updated and more widely used as Python, as a language, was 
more widely adopted for data science.

As you progress through this chapter, you might come to the conclusion 
that Java is too bulky for quickly writing Spark jobs. Remember, it’s a matter 
of personal preference, so you should use the language in which you’re most 
comfortable.

Downloading and Installing Spark

There are a few ways to download and use Spark. The easiest way is to use the 
prebuilt packages that are available from the Spark website. Before you down-
load one, check which version of Hadoop you (or your organization) is running 
as it will determine the download you want. If you are still running Hadoop, 
then it’s preferable to match your Spark download to the core Hadoop version 
you’re running. For most developers, I would wager this is no longer an issue.

After you have downloaded the file for your Hadoop version, you can install 
it by moving the downloaded file to the directory you want to install it to. The 
file is a .tgz file, so you can unarchive it in one command.

tar xvzf spark-2.4.4-bin-hadoop2.7.tgz

The contents of the file will unarchive and be ready for use.

A Quick Intro to Spark

The interactive shell in Scala gives you a quick and easy way to see what Spark 
can do in a short span of time. Don’t worry if you haven’t used Scala before; the 
examples shown here are simple. It’s handy to know a few of the basic Spark 
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lines in Scala so you can inspect data from the REPL and not have to create 
code to accomplish the task. I’ll pick up on how to do full applications in Spark 
after this short introduction.

Starting the Shell
From the directory where you installed Spark, type the following command 
to launch the shell:

./bin/spark-shell

You see the following output while Spark boots up:

$ bin/spark-shell
19/10/20 09:24:25 WARN NativeCodeLoader: Unable to load native-hadoop
 library for your platform... using builtin-java classes where 
applicable
Using Spark's default log4j profile: org/apache/spark/log4j-
defaults.properties
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, 
use setLogLevel(newLevel).
Spark context Web UI available at http://192.168.1.102:4040
Spark context available as 'sc' (master = local[*], 
app id = local-1571559873516).
Spark session available as 'spark'.
Welcome to
      ____              __
     / __/__  ___ _____/ /__
    _\ \/ _ \/ _ `/ __/  '_/
   /___/ .__/\_,_/_/ /_/\_\   version 2.4.4
      /_/
 
Using Scala version 2.11.12 (Java HotSpot(TM) 64-Bit Server VM, 
Java 1.8.0_45)
Type in expressions to have them evaluated.
Type :help for more information.
 
scala>

I’m showing all the messages, because there are a few interesting things I 
want to show you in a moment. For now, though, you should see the scala> 
prompt at the bottom, which means you’re ready.

Data Sources
Spark supports the same input file systems as Hadoop. If your data store is sup-
ported by the InputFormat method in Hadoop, then you can read it into Spark 
without too much effort.
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The obvious ones that come to mind are the local filesystem, Amazon S3 
buckets, HBase, Cassandra, and files already on a Hadoop Distributed File System 
(HDFS). As you see in the next section, you’re using the sc.textFile method 
to load in data. This isn’t limited to specific files; you can use that method to 
process wildcards on files, zipped files, and directories as well.

Testing Spark
Find a text file with which to test Spark and follow along with the rest of this 
section. I’m using a file from the local filesystem for this example.

Load the Text File

First, load the text file. From the Scala command line, type the following:

scala> var textF = sc.textFile("/path/to/data/ch13/mobydick.txt")

Basically you’re storing the contents of the text file into a Scala variable called 
textF. Spark responds with output along the lines of the following:

textF: org.apache.spark.rdd.RDD[String] = 
/path/to/data/ch13/mobydick.txt MapPartitionsRDD[3] at textFile at 
<console>:24

Spark uses a concept called resilient distributed datasets (RDDs), so in the output 
you can see that you now have a MappedRDD containing strings. With the text 
file loaded, you can start to inspect it and get some results.

Make Some Quick Inspections

With the data loaded, you can do some quick inspections. First, how many ele-
ments of data do you have in the RDD?

scala> textF.count()
You get the following output:

res1: Long = 7182
scala>

This count represents the number of elements in the RDD and not the number 
of lines in the text file. You can pull the first element from the RDD, as shown here:

scala> textF.first()
res2: String = CHAPTER 1
scala>
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As you can see from the output, these results are returning quickly as the 
RDD is based in memory.

Filter Text from the RDD

With the .filter function, you can start to inspect specific things within the 
text file. Assuming that you want to see how many times the word statistical 
occurs in the document, you can run the following:

scala> textF.filter(line => line.contains("whale")).count()

One line in Scala and the Spark filter iterate the RDD and inspect the lines. 
Because you’ve appended the count at the end, you get the following result:

res3: Long = 316

So, there are 316 mentions of the word whale in the entire document. If required, 
you could save this output to another Scala array.

scala> var filtered = textF.filter(line => line.contains("whale"))
filtered: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[6] 
at filter at <console>:25
 
scala> filtered.count()
res4: Long = 316

With the aid of concise commands in Scala and the power of in-memory 
processing of distributed datasets (the RDDs), you have a neat system to get 
large amounts of crunching done quickly.

Spark Monitor
Earlier, I mentioned that when you start Spark, a few things are being 
run. One of them is the web-based monitor. If you point your browser to 
http://<yourdomain>:4040, you should get the website shown in Figure 13.1, 
assuming Spark is still running.

As far as Spark is concerned, every line you run is a job, so Spark logs it 
accordingly, giving its duration and outcome. There’s also information on the 
storage and runtime environment.

You can click each of the stages to see full details of the job and its execution 
output. If one of your jobs is causing trouble, then it’s handy to look here first 
and get a bird’s-eye view of things.

http://<yourdomain>:4040
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Comparing Hadoop MapReduce to Spark

So, how does a basic Spark job compare to the same Hadoop job? Let’s look at 
an example. Hadoop jobs usually are built around the MapReduce paradigm 
that contains, not surprisingly, a map phase and a reduce phase.

The basic Java code boilerplate is usually along the lines of the following:

public static class Map extends MapReduceBase implements
            Mapper<LongWritable, Text, Text, IntWritable> {
        private final static IntWritable one = new IntWritable(1);
        private Text word = new Text();
 
        public void map(LongWritable key, Text value,
                OutputCollector<Text, IntWritable> output, 
Reporter reporter)
                throws IOException {
            // ususally emit something to the reducer here....
        }
    }
 
    public static class Reduce extends MapReduceBase implements
            Reducer<Text, IntWritable, Text, IntWritable> {
        public void reduce(Text key, Iterator<IntWritable> values,
                OutputCollector<Text, IntWritable> output, 

Figure 13.1:  Spark web console
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Reporter reporter)
                throws IOException {
            // reducer would add the value +1 for example
            
        }
    }

Then a job definition enables it to run within the Hadoop framework; addi-
tional information is added like the input and output formats and the paths to 
use to read the input data and where to write the results.

public static void main(String[] args) throws IOException {
        JobConf conf = new JobConf(BlankHadoopJob.class);
        conf.setJobName("BlankHadoopJob");
 
        conf.setOutputKeyClass(Text.class);
        conf.setOutputValueClass(IntWritable.class);
 
        conf.setMapperClass(Map.class);
        conf.setCombinerClass(Reduce.class);
        conf.setReducerClass(Reduce.class);
 
        conf.setInputFormat(TextInputFormat.class);
        conf.setOutputFormat(TextOutputFormat.class);
 
        FileInputFormat.setInputPaths(conf, new Path(args[0]));
        FileOutputFormat.setOutputPath(conf, new Path(args[1]));
 
        JobClient.runJob(conf);
 
    }

Some developers complain about the amount of code you need to write in 
Java to get MapReduce working. It’s never been an issue for me (as I have tem-
plates set up), but when I show you how it works in Spark, you’ll realize why 
they were complaining.

In Spark, you can put together a quick word count MapReduce routine that 
demonstrates how easy it is to do. Using the same text file you used earlier, 
you can run a MapReduce process from the Spark shell. First load the text file.

scala> var textF = sc.textFile("/path/to/data/ch13/mobydick.txt")

Then create a new variable with the results of the MapReduce.

scala> var mapred = textF.flatMap(line => line.split(" ")).
map(word => (word, 1)).reduceByKey((a,b) => a+b)
mapred: org.apache.spark.rdd.RDD[(String, Int)] = ShuffledRDD[9] 
at reduceByKey at <console>:25
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Then output the results.

scala> mapred.collect

You see a block of the output appear in the shell:

res5: Array[(String, Int)] = Array((shelf,,2), (Ah!,5), (bone,6), 
(lug,1), (roses.,1), (dreamiest,,1), (dotings,1), (Fat-Cutter;,1), 
(seems--aye,,1), (Boat,1), (countrymen.,1), (consideration,,1), 
(chapters,3), (sweat.,1), (pants.,1), (wasn't,3), (been,116), (they,,2), 
(chests,,1), (proceedings;,1), (battering,2), (contemptible,2), 
(salt-sea,2), (knows,8), (fowl,1), (inch.,1), (Nathan,1), (surf.,1), 
(ignore,1), (greenness,,1), (angels,,1), (smooth,1), (stern,5), 
(casket,--the,1), (completing,1), (seductive,1), (disdain,,1), 
(disclosures,,1), (snuffing,1), (southward;,1), (Steady,,1), 
(erected,3), (hypocrisies,1), (dead,20), (savages,,1), (eloquently,1), 
(Pots.,1), (thee,,6), (regardful,1), (startling,2), (thus,15), 
(Huzza,4), (historians,1), (descending,3), (crowned,1), (iron,13), 
(seve...

To save the results, use the .saveAsTextFile method on the RDD to output as 
text (change the output directory to match your home directory, for example).

scala> mapred.saveAsTextFile("/path/to/output/mapred_testoutput")

Spark, in the same way as Hadoop, saves the files in a directory (I called this 
one testoutput). Within it you see the part-00000 files.

-rw-r--r-- 1 1234 1234 52961 Jul  8 13:47 part-00000
-rw-r--r-- 1 1234 1234 52861 Jul  8 13:47 part-00001
-rw-r--r-- 1 1234 1234     0 Jul  8 13:47 _SUCCESS

The output of those files contains the basic word count.

$ less /path/to/output/mapred_testoutput/part-00000
(shelf,,2)
(Ah!,5)
(bone,6)
(lug,1)
(roses.,1)
(dreamiest,,1)
(dotings,1)
(Fat-Cutter;,1)
(seems--aye,,1)
(Boat,1)
(countrymen.,1)
(consideration,,1)
(chapters,3)
(sweat.,1)
(pants.,1)
(wasn't,3)
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(been,116)
(they,,2)
(chests,,1)
(proceedings;,1)
(battering,2)
(contemptible,2)

In three lines you performed a basic MapReduce program on some raw text. 
Notice that I didn’t remove odd characters and convert everything to lowercase, 
but essentially it gave us the word count output.

Writing Stand-Alone Programs with Spark

While it is possible to perform some basic transforms and applications of scripts 
with the Spark REPL, the real power comes from the APIs that are available. This 
means that it’s possible to build big data applications in Java, Python, Scala, or 
any other supported language. For the duration of this chapter, I will keep with 
Java. If you are a Clojure developer, then it’s worth investigating the Sparkling 
Spark wrappers for Clojure (http://gorillalabs.github.io/sparkling/).

Spark Programs in Java
Earlier in the chapter I showed you how to perform a basic word count on the 
Moby Dick text. For this example, I’ll cover the basics of writing an application 
in Java to do the same in Spark. The workflow is broken down into three parts.

■■ The code

■■ The Maven build file (pom.xml)

■■ Deployment to Spark to run the application

The following Java code is the basic word count application:

package mlbook.ch13.spark;
 
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.sql.SparkSession;
import scala.Tuple2;
import org.apache.spark.api.java.JavaPairRDD;
import java.util.Arrays;
import java.util.List;
import java.util.regex.Pattern;
 
public final class BasicSparkWordCount {
   private static final Pattern SPACE = Pattern.compile(" ");
 

http://gorillalabs.github.io/sparkling/
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   public static void main(String[] args) throws Exception {
       System.out.println("Starting BasicSparkWordCount....");
       if (args.length < 1) {
           System.err.println("Usage: BasicSparkWordCount <file>");
           System.exit(1);
       }
 
       SparkSession sparkSession = SparkSession
               .builder()
               .appName("BasicSparkWordCount")
               .getOrCreate();
 
       JavaRDD<String> linesOfText = sparkSession.read()
.textFile(args[0]).javaRDD();
       JavaRDD<String> wordsInEachLine = linesOfText
.flatMap(s -> Arrays.asList(SPACE.split(s)).iterator());
       JavaPairRDD<String, Integer> allTheOnes = wordsInEachLine
.mapToPair(singleWord -> new Tuple2<>(singleWord, 1));
       JavaPairRDD<String, Integer> finalCounts = allTheOnes
.reduceByKey((i1, i2) -> i1 + i2);
 
       List<Tuple2<String, Integer>> output = finalCounts.collect();
       for (Tuple2<?, ?> tuple : output) {
           System.out.println("Segment " + tuple._1() + " found " 
+ tuple._2() + " times.");
       }
       sparkSession.stop();
       System.out.println("Finishing BasicSparkWordCount....");
   }
}

The process flow of the application works as follows. The SparkSession han-
dles all the setup for the Spark application. Any specific config settings and 
naming would happen at this point. The following four lines are where the 
real work is happening.

The first stage is using the sparkSession.read() function to load the data 
into RDDs. These are just blocks of strings from the text file. The second stage 
is to split the words in each line of text by the space character. The resulting 
transform is an array of words.

Now we’re at the third stage, where the mapToPair function generates a new 
RDD with the word as the key and the number 1 as a value. The final RDD 
reduces each instance of the word/value pairs in the allTheOnes RDD.

To output the results, the .collect function is used. This applies the Spark job 
in the session and collects the reduced results from the finalCounts RDD. The 
resulting list is iterated, and the results are displayed to the standard output.
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Using Maven to Build the Project

Maven is now used as the build tool of choice for the majority of Java appli-
cations. If you don’t have Maven installed, you can download it from http://
maven.apache.org and unarchive the file.

For every project, you need a Maven build file; this is called pom.xml. For this 
application, the build file looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
        xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
        xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/xsd/maven-4.0.0.xsd">
   <modelVersion>4.0.0</modelVersion>
   <groupId>mlbook</groupId>
   <artifactId>Chapter13</artifactId>
   <version>1.0.0-SNAPSHOT</version>
 
   <properties>
       <sbt.project.name>sparkChapter13</sbt.project.name>
       <java.version>1.8</java.version>
       <maven.compiler.source>1.8</maven.compiler.source>
       <maven.compiler.target>1.8</maven.compiler.target>
       <build.testJarPhase>none</build.testJarPhase>
       <build.copyDependenciesPhase>package
</build.copyDependenciesPhase>
   </properties>
 
   <dependencies>
       <dependency>
           <groupId>org.apache.spark</groupId>
           <artifactId>spark-core_2.11</artifactId>
           <version>2.2.0</version>
       </dependency>
       <dependency>
           <groupId>org.apache.spark</groupId>
           <artifactId>spark-sql-kafka-0-10_2.11</artifactId>
           <version>2.2.0</version>
       </dependency>
       <dependency>
           <groupId>org.apache.spark</groupId>
           <artifactId>spark-sql_2.11</artifactId>
           <version>2.2.0</version>
       </dependency>
   </dependencies>
 

http://maven.apache.org
http://maven.apache.org
http://maven.apache.org/POM/4.0.0
http://www.w3.org/2001/XMLSchema-instance
http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd
http://sbt.project.name
http://sbt.project.name


316	 Chapter 13 ■ Apache Spark

   <build>
       <outputDirectory>target/scala-2.11/classes</outputDirectory>
       <testOutputDirectory>target/scala-2.11/test-classes
</testOutputDirectory>
       <plugins>
           <plugin>
               <groupId>org.apache.maven.plugins</groupId>
               <artifactId>maven-deploy-plugin</artifactId>
               <configuration>
                   <skip>true</skip>
               </configuration>
           </plugin>
           <plugin>
               <groupId>org.apache.maven.plugins</groupId>
               <artifactId>maven-install-plugin</artifactId>
               <configuration>
                   <skip>true</skip>
               </configuration>
           </plugin>
           <plugin>
               <groupId>org.apache.maven.plugins</groupId>
               <artifactId>maven-jar-plugin</artifactId>
               <configuration>
                   <outputDirectory>${jars.target.dir}</outputDirectory>
               </configuration>
           </plugin>
       </plugins>
   </build>
</project>

This gives you the basic outline of the project and which repositories to pull 
any required dependencies from. For Spark projects, you need to have the Spark 
API in the dependency declaration. As this chapter continues, you will be adding 
more dependencies as you go along; the full pom build file is in the code repos-
itory that accompanies the book if you don’t want to type in the entire build file.

Creating Packages in Maven

To create the package, you run Maven from the command line.

mvn package

The Maven build tool looks after the downloading of the dependencies, cre-
ates the class files, and then packages the .jar file with the required classes. 
After the package is built, a directory called target is created, and you see the 
.jar file there.

$ pwd
/path/to/code/java/ch13/target
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$ ls -l
total 16
-rw-r--r--  1 jasebell staff  5917 22 Oct 09:49 
Chapter13-1.0.0-SNAPSHOT.jar
drwxr-xr-x  3 jasebell staff    96 21 Oct 10:44 generated-sources
drwxr-xr-x  3 jasebell staff    96 21 Oct 10:44 maven-archiver
drwxr-xr-x  3 jasebell staff    96 21 Oct 10:42 maven-status
drwxr-xr-x  3 jasebell staff    96 21 Oct 11:25 scala-2.11

To run the project with Spark, you need to use the spark-submit program 
like you did in the previous Scala example (make sure it’s one continuous line 
in your terminal window).

$ /usr/local/spark-2.4.4-bin-hadoop2.7/bin/spark-submit --class \
"mlbook.ch13.spark.BasicSparkWordCount" --master local[4] \
/path/to/Chapter13/target/Chapter13-1.0.0-SNAPSHOT.jar \
/path/to/data/ch13

Let’s take a closer look at the command line; there are a few things to explain. 
First, there’s the --class flag that tells Spark which class to run; it’s using the full 
package name, and it’s encased in quotes. The --master flag tells Spark which 
cluster to run the job on; in this instance, it’s on the local machine and using 
four threads to run the job on. The last two parts are the location of the JAR file 
and then any other arguments for the executing application (in this case, the 
path to the text file directory).

Spark executes the .jar file, and you see the MapReduce output in the console, 
shown here:

Starting BasicSparkWordCount....
Segment Ah! found 5 times.
Segment Let found 11 times.
Segment lug found 1 times.
Segment roses. found 1 times.
Segment bone found 6 times.
Segment dreamiest, found 1 times.
Segment Fat-Cutter; found 1 times.
Segment seems--aye, found 1 times.
Segment Boat found 1 times.
Segment wasn't found 3 times.
Segment Imperial found 1 times.
Segment been found 116 times.
Segment end found 10 times.
Segment they, found 2 times.

While the Spark application has done exactly what was expected, it would 
be prudent as an exercise to tidy up the data before processing. Take a look at 
Chapter 3 for further information.
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Spark Program Summary
With our first Spark application created, let’s expand on this knowledge and 
look at some of the other APIs that Spark provides: SparkSQL, Spark Streaming, 
and MLLib.

You can build all the applications in the same way. By refactoring the pom.
xml build file, you can quickly expand the Spark libraries to your applications.

Spark SQL

The Big Data world has moved on a lot since its Hadoop heyday. Sadly, no one 
really talks about Pig scripts anymore. The introduction of SparkSQL gave us 
a system to run high-performance queries against large datasets.

Since the first edition of this book, the Spark SQL system went through an 
overhaul that introduced data frames and a more robust way of handling queries. 
In this section, you will see how to build up a Java Spark application to load 
CSV data and run queries against it.

Basic Concepts
As you’ll remember from the previous Spark application example, SparkSession 
creates the Spark environment that will run your application in the cluster. The 
SparkSQL libraries work in the same way.

To illustrate the different layers of the SparkSQL functionality, I’m going to 
start with a basic Spark job and add the SQL methods to do different things 
from the API.

package mlbook.ch13.spark;
 
import org.apache.spark.sql.AnalysisException;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SparkSession;
 
public class BasicSparkSQL {
   private static String airportDataPath = 
"/path/to/data/ch13/sql/airports.csv";
 
   public static void main(String[] args) throws AnalysisException {
       SparkSession spark = SparkSession
               .builder()
               .appName("ML Book Spark SQL Example")
               .getOrCreate();
       // we'll add more here soon!
       spark.stop();
   }
}
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I’ve added a string that contains the path to the data you will be querying 
against. It’s a CSV file of airport data. From here, I’ll start adding some methods 
to do the work.

Let’s start by creating some output to make sure the data file is being loaded 
in properly; if problems are going to occur, I’ve found it’s usually finding the 
data in the first place.

In your code, create a new method called runShowAirports.

public static void runShowAirports(SparkSession spark) 
throws AnalysisException {
   Dataset<Row> df = spark.read().csv(airportDataPath);
   df.show();
}

Spark will read the CSV file into a data frame; there’s no converting or iterating 
over the data to get the rows into RDDs. Add the method call in your main() 
method after the Spark session is created.

runShowAirports(spark);

The next step is to build and run the application. Like earlier, run mvn package 
to create a new JAR file in the same target location as the previous application. 
The next step is to execute it.

$ /usr/local/spark-2.4.4-bin-hadoop2.7/bin/spark-submit \
--class "mlbook.ch13.spark.BasicSparkSQL" --master local[4] target/
Chapter13-1.0.0-SNAPSHOT.jar

Notice that I’ve removed the reference to the data path; the other thing that 
has changed is the package and class name to execute. When you run the appli-
cation, you’ll see Spark start up, load the data, and dump the first 20 rows to 
the console.

19/10/22 14:20:58 INFO TaskSchedulerImpl: Removed TaskSet 1.0, whose 
tasks have all completed, from pool
19/10/22 14:20:58 INFO DAGScheduler: ResultStage 1 (show at 
BasicSparkSQL.java:27) finished in 0.139 s
19/10/22 14:20:58 INFO DAGScheduler: Job 1 finished: show at 
BasicSparkSQL.java:27, took 0.143854 s
+---+--------------------+--------------+----------------+----+----+----
-----+----------+----+--------+----+--------------------+
|_c0|                 _c1| _c2|           _c3| _c4| _c5| _c6| _c7| _c8|  
      _c9|_c10| _c11|
+---+--------------------+--------------+----------------+----+----+----
-----+----------+----+--------+----+--------------------+
| id|                name| city|         country|iata|icao| lat|       
lon| alt|timezone| dst|       tz|
|  1|             Goroka| Goroka|Papua New Guinea| GKA|AYGA|- 
6.081689|145.391881|5282|      10| U|Pacific/Port_Moresby|
|  2|             Madang| Madang|Papua New Guinea| MAG|AYMD|-5.207083|  
145.7887| 20| 10| U|Pacific/Port_Moresby|
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|  3|         Mount Hagen|   Mount Hagen|Papua New Guinea| HGU|AYMH|- 
5.826789|144.295861|5388|      10| U|Pacific/Port_Moresby|
|  4|             Nadzab| Nadzab|Papua New Guinea| 
LAE|AYNZ|-6.569828|146.726242| 239|      10| U|Pacific/Port_Moresby|
|  5|Port Moresby Jack...|  Port Moresby|Papua New Guinea| 
POM|AYPY|-9.443383| 147.22005| 146|      10| U|Pacific/Port_Moresby|
|  6|         Wewak Intl|         Wewak|Papua New Guinea| 
WWK|AYWK|-3.583828|143.669186|  19| 10| U|Pacific/Port_Moresby|
|  7|         Narsarsuaq| Narssarssuaq|       Greenland| 
UAK|BGBW|61.160517|-45.425978| 112|      -3| E| America/Godthab|
|  8|               Nuuk| Godthaab|       Greenland| 
GOH|BGGH|64.190922|-51.678064| 283|      -3| E| America/Godthab|
|  9|   Sondre Stromfjord|   Sondrestrom| Greenland| 
SFJ|BGSF|67.016969|-50.689325| 165|      -3| E| America/Godthab|
| 10|      Thule Air Base|         Thule| Greenland| 
THU|BGTL|76.531203|-68.703161| 251|      -4| E| America/Thule|
| 11|            Akureyri| Akureyri|         Iceland|  
AEY|BIAR|65.659994|-18.072703|   6| 0| N| Atlantic/Reykjavik|
| 12|         Egilsstadir| Egilsstadir|         Iceland| 
EGS|BIEG|65.283333|-14.401389|  76| 0| N| Atlantic/Reykjavik|
| 13|        Hornafjordur|          Hofn| Iceland| 
HFN|BIHN|64.295556|-15.227222|  24| 0| N| Atlantic/Reykjavik|
| 14|             Husavik| Husavik|         Iceland| 
HZK|BIHU|65.952328|-17.425978|  48| 0| N| Atlantic/Reykjavik|
| 15|          Isafjordur| Isafjordur|         Iceland|  
IFJ|BIIS|66.058056|-23.135278|   8| 0| N| Atlantic/Reykjavik|
| 16|Keflavik Internat...|      Keflavik| Iceland| KEF|BIKF|   63.985|-
22.605556| 171| 0| N| Atlantic/Reykjavik|
| 17|      Patreksfjordur|Patreksfjordur|         Iceland| 
PFJ|BIPA|65.555833| -23.965|  11| 0| N| Atlantic/Reykjavik|
| 18|           Reykjavik| Reykjavik|         Iceland| RKV|BIRK| 64.13|-
21.940556|  48| 0| N| Atlantic/Reykjavik|
| 19|        Siglufjordur|  Siglufjordur|       Iceland| 
SIJ|BISI|66.133333|-18.916667|  10| 0| N| Atlantic/Reykjavik|
+---+--------------------+--------------+----------------+----+----+----
-----+----------+----+--------+----+--------------------+
only showing top 20 rows

Now let’s add a query. Suppose I want to list all the airports in Ireland. Looking 
at the previous output, we know that the country is in the _ c3 column. Create 
a new function called runShowIrishAirports.

public static void runShowIrishAirports(SparkSession spark) 
throws AnalysisException {
   Dataset<Row> df = spark.read().csv(airportDataPath);
   df.createTempView("airports");
   Dataset<Row> irishAirports = spark
.sql("SELECT _c1, _c4, _c5 FROM airports WHERE _c3='Ireland'");
   irishAirports.show();
}
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The function reads in the CSV file in the same way as before, but this time 
we give a temporary view name called airports so the raw SQL query has a 
view to reference. The SQL is a simple SELECT statement to read the name of the 
airport, the respective IATA (the three-letter code), and the ICAO codes. The 
.show method is called finally, so the top 20 results are output to the console. 
Add the new method name to the main method so it is executed at runtime.

Build with Maven as before, which will update the JAR file. You can use the 
same terminal execution script to run the application. If all is successful, you 
will see the following output:

19/10/22 14:36:00 INFO TaskSchedulerImpl: Removed TaskSet 3.0, 
whose tasks have all completed, from pool
19/10/22 14:36:00 INFO DAGScheduler: 
ResultStage 3 (show at BasicSparkSQL.java:33) finished in 0.213 s
19/10/22 14:36:00 INFO DAGScheduler: Job 3 finished: 
show at BasicSparkSQL.java:33, took 0.222565 s
+--------------------+----+----+
|                 _c1| _c4| _c5|
+--------------------+----+----+
|                Cork| ORK|EICK|
|              Galway| GWY|EICM|
|              Dublin| DUB|EIDW|
|  Ireland West Knock| NOC|EIKN|
|               Kerry| KIR|EIKY|
|            Casement|null|EIME|
|             Shannon| SNN|EINN|
|               Sligo| SXL|EISG|
|           Waterford| WAT|EIWF|
|      Weston Airport|null|EIWT|
|     Donegal Airport| CFN|EIDL|
|   Inishmore Airport| IOR|EIIM|
|Connemara Regiona...| NNR|EICA|
|             Thurles|null| \N|
|            Limerick|null|  \N|
|            Inisheer| INQ|EIIR|
|              Cashel|null| \N|
| Inishmaan Aerodrome| IIA|EIMN|
|               Alpha|null| \N|
|  Newcastle Airfield|null|EINC|
+--------------------+----+----+
only showing top 20 rows

Instead of relying on raw SQL queries, you can do column-based querying 
by method calls. Consider the following function:

public static void runShowIrishAirportsByCols(SparkSession spark) 
throws AnalysisException {
   Dataset<Row> df = spark.read().csv(airportDataPath);
   Dataset<Row> filtered = df.filter(col("_c3").contains("Ireland"));
   filtered.show();
}
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The filter method allows you to create predicate conditions against specific 
columns. The country column will return the rows that contain the word Ire-
land. The code will show all the columns of the dataset. When executed, it looks 
like this:

19/10/22 14:56:58 INFO TaskSchedulerImpl: Removed TaskSet 1.0,
 whose tasks have all completed, from pool
19/10/22 14:56:58 INFO DAGScheduler: ResultStage 1 
(show at BasicSparkSQL.java:40) finished in 0.290 s
19/10/22 14:56:58 INFO DAGScheduler: Job 1 finished:
 show at BasicSparkSQL.java:40, took 0.293577 s
+----+--------------------+----------+-------+----+----+----------+-----
-----+---+---+----+-------------+
| _c0|                 _c1| _c2| _c3| _c4| _c5|       _c6| _c7|_c8|_c9|_
c10| _c11|
+----+--------------------+----------+-------+----+----+----------+-----
-----+---+---+----+-------------+
| 596|                Cork| Cork|Ireland| ORK|EICK| 51.841269| 
-8.491111|502|  0| E|Europe/Dublin|
| 597|              Galway| Galway|Ireland| GWY|EICM| 53.300175| 
-8.941592| 81|  0| E|Europe/Dublin|
| 599|              Dublin| Dublin|Ireland| DUB|EIDW| 53.421333| 
-6.270075|242|  0| E|Europe/Dublin|
| 600|  Ireland West Knock| Connaught|Ireland| NOC|EIKN| 53.910297| 
-8.818492|665|  0| E|Europe/Dublin|
| 601|               Kerry| Kerry|Ireland| KIR|EIKY| 52.180878| 
-9.523783|112|  0| E|Europe/Dublin|
| 602|            Casement| Casement|Ireland|null|EIME| 53.301667| 
-6.451333|319|  0| E|Europe/Dublin|
| 603|             Shannon| Shannon|Ireland| SNN|EINN| 52.701978| 
-8.924817| 46|  0| E|Europe/Dublin|
| 604|               Sligo| Sligo|Ireland| SXL|EISG| 54.280214| 
-8.599206| 11|  0| E|Europe/Dublin|
| 605|           Waterford| Waterford|Ireland| WAT|EIWF|   52.1872| 
-7.086964|119| 0| E|Europe/Dublin|
|5578|      Weston Airport|   Leixlip|Ireland|null|EIWT| 53.351333|   
-6.4875|150| 0| E|Europe/Dublin|
|5577|     Donegal Airport|   Dongloe|Ireland| CFN|EIDL| 55.044192|    
-8.341| 30| 0| E|Europe/Dublin|
|6421|   Inishmore Airport|  Inis Mor|Ireland| IOR|EIIM|   53.1067| 
-9.65361| 24| 0| U|Europe/Dublin|
|6422|Connemara Regiona...|Indreabhan|Ireland| NNR|EICA|   53.2303| 
-9.46778| 0| 0| U|Europe/Dublin|
|6901|             Thurles| Thurles|Ireland|null|  \N| 52.67888| 
-7.814369|500| 0|   U|Europe/Dublin|
|6900|            Limerick| Limerick|Ireland|null|  \N| 52.659| 
-8.624|500| 0| U|Europe/Dublin|
|7030|            Inisheer| Inisheer|Ireland| INQ|EIIR|   53.0647| 
-9.5109| 40| 0| E|Europe/Dublin|
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|7034|              Cashel| Cashel|Ireland|null|  \N|52.5158333|-
7.8855556|440| 0|   U|Europe/Dublin|
|7468| Inishmaan Aerodrome| Inishmaan|Ireland| IIA|EIMN| 53.091944|     
-9.57| 13| 0| U|Europe/Dublin|
|8464|               Alpha| Cork|Ireland|null|  \N| 51.400377| 
-7.901464|100| 0|   U| \N|
|8683|  Newcastle Airfield| Newcastle|Ireland|null|EINC| 53.073056| 
-6.039722| 14|  0| E|Europe/Dublin|
+----+--------------------+----------+-------+----+----+----------+-----
-----+---+---+----+-------------+
only showing top 20 rows

Wrapping Up SparkSQL
The SparkSQL API is a good way to extract data from large datasets before you 
start any machine learning. There’s little point in using every column of data 
when you know it’s going to provide any value in the final model.

It’s perfect for segmenting large volumes of data; it’s a big data tool after all. 
For example, if you were collating data from lots of point-of-sale terminals and 
you wanted to start running analysis on specific stock item types, using Spark 
SQL you could pull all the POS data in, query against the type, and then run 
your machine learning training on the saved output data.

Spark Streaming

In the previous chapter, you learned how Kafka functions as a streaming mes-
sage log. Within Kafka there are various ways of consuming and transforming 
the stream of messages. Spark has a streaming API that enables the cluster to 
process blocks of messages as they are set from a data source. In this section, 
you will see how the streaming API functions and how it connects with other 
data sources.

Basic Concepts
Spark Streaming can ingest data from a range of sources, such as ZeroMQ, 
Kafka, Flume, and raw TCP sockets. As with Spring XD, after data has entered 
the system, you have the option to process and manipulate the data coming in 
and then to store it to an outbound location.

Spark Streaming divides data into batches for processing, rather than handling 
one piece of data at a time like Kafka does. Then Spark Streaming processes 
and hands those batches to the requested output. Spark calls them micro batches.
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You can use the raw TCP socket to emit some data and Spark Streaming to 
ingest it. Spark Streaming uses the concept of a DStream—a discretized stream—
which is a continuous stream of data coming in for processing.

Creating Your First Spark Stream
In this example, we will use the Linux nc command to produce data and get 
Spark Streaming to read it in and do a basic word count. Before code is applied, 
you will need to add the Spark Streaming library dependency to the Maven 
pom.xml file. Add the following dependency block to your build file:

<dependencies>
.....
 <dependency>
   <groupId>org.apache.spark</groupId>
   <artifactId>spark-streaming_2.11</artifactId>
   <version>2.2.0</version>
 </dependency>
</dependencies>

The Java code for the Spark Streaming job is straightforward.

package mlbook.ch13.spark;
 
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.StorageLevels;
import org.apache.spark.streaming.Durations;
import org.apache.spark.streaming.api.java.JavaDStream;
import org.apache.spark.streaming.api.java.JavaPairDStream;
import org.apache.spark.streaming.api.java.JavaReceiverInputDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;
import scala.Tuple2;
import java.util.Arrays;
import java.util.regex.Pattern;
 
public class BasicSparkStreaming {
   private static final Pattern SPACE = Pattern.compile(" ");
   public static void main(String[] args) throws Exception {
       String hostname = "192.168.1.103";
       int port = 9999;
 
       SparkConf sparkConf = new SparkConf()
.setAppName("BasicSparkStreaming");
       JavaStreamingContext ssc = new JavaStreamingContext(sparkConf, 
Durations.seconds(1));
 
       JavaReceiverInputDStream<String> lines = ssc.socketTextStream(
               hostname, port, StorageLevels.MEMORY_AND_DISK_SER);
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       JavaDStream<String> wordsOnEachLine = lines
.flatMap(line -> Arrays.asList(SPACE.split(line)).iterator());
       JavaPairDStream<String, Integer> wordCounts = wordsOnEachLine
.mapToPair(s -> new Tuple2<>(s, 1))
               .reduceByKey((i1, i2) -> i1 + i2);
 
       wordCounts.print();
       ssc.start();
       ssc.awaitTermination();
   }
}

Once again, there are a number of steps for the application to work. JavaS-
treamingContext sets up the core context with the Spark configuration. The other 
thing that is set is the duration between the streamed blocks being processed 
by Spark. In this example, I’ve set it to one second.

The next step is to set up an input stream with the context, adding the host-
name (set it to the IP address of your machine and the port number to whatever 
you run with nc; more on that in a moment). The receiver stream will consume 
data from the source and then, in the same way as the core Spark word count 
application, use a flat map on the lines. The split is done on each space character 
and this is contained with the DStream. The final step is to do the reduce step 
and add up the keys.

Build the application with Maven as shown previously in this chapter. Once the 
JAR file is created, you will need to start a fresh terminal window and start nc.

If you are using Linux, use the following:

nc -lk 9999

The -k option is not available in macOS, so you will have to omit it.
Once nc is running, paste some text into the nc window. Nothing will happen 

apart from seeing the text you pasted in. With the nc server running, you can 
now start the Spark Streaming job.

$ /usr/local/spark-2.4.4-bin-hadoop2.7/bin/spark-submit
 --class "mlbook.ch13.spark.BasicSparkStreaming" --master local[4] 
target/Chapter13-1.0.0-SNAPSHOT.jar

Spark will generate a lot of console output as it will attempt to retrieve data 
from the source every second as instructed. You will, however, see the word 
counted stream in the output.

19/10/23 09:24:31 INFO Executor: Finished task 0.0 in stage 10.0 (TID 
10). 1517 bytes result sent to driver
19/10/23 09:24:31 INFO TaskSetManager: Finished task 0.0 in stage 10.0 
(TID 10) in 35 ms on localhost (executor driver) (1/1)
19/10/23 09:24:31 INFO TaskSchedulerImpl: Removed TaskSet 10.0, whose 
tasks have all completed, from pool
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19/10/23 09:24:31 INFO DAGScheduler: ResultStage 10 (print at 
BasicSparkStreaming.java:34) finished in 0.044 s
19/10/23 09:24:31 INFO DAGScheduler: Job 5 finished: print at 
BasicSparkStreaming.java:34, took 0.259986 s
-------------------------------------------
Time: 1571819071000 ms
-------------------------------------------
(interdum,1)
(egestas.,1)
(erat,3)
(faucibus,2)
(sapien,2)
(urna,1)
(pretium,,1)
(Suspendisse,1)
(fringilla.,1)
(laoreet,,1)
...

As you paste more text into the nc window, the streaming job will update the 
word counts to the console window.

Spark Streams from Kafka
With some minor modifications, it is easy to convert the streaming job to consume 
Kafka messages. The setup is straightforward, creating a properties configuration 
and adding a consumer group name and a topic (or topics) to consume from.

There is another library that you will have to add to your Maven dependencies.

<dependency>
   <groupId>org.apache.spark</groupId>
   <artifactId>spark-streaming-kafka-0-10_2.11</artifactId>
   <version>2.2.0</version>
</dependency>

As in the previous chapter, any application consuming from Kafka needs to 
know the broker location, a topic name, and a consumer group so the reads can 
happen. If a consumer group isn’t given, Kafka will assign one, but it’s best to 
create your own so you are in control; it also makes monitoring easier.

  String brokers = "localhost:9092";
  String topicName = "testtopic";
  String groupId = "testtopic-group";

Next are the Spark context and configuration; there’s no real setup to do here 
apart from assigning a name. JavaStreamingContext takes the context config-
uration and also a duration; for this example, I’ve set it to five seconds.
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  SparkConf sparkConf = new SparkConf()
.setAppName("BasicSparkStreamingKafka");
       JavaStreamingContext streamingContext = 
new JavaStreamingContext(sparkConf, Durations.seconds(5));

The configuration parameters are put into a Java hash map.

Map<String, Object> params = new HashMap<>();
       params.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, brokers);
       params.put(ConsumerConfig.GROUP_ID_CONFIG, groupId);
       params.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG,
 StringDeserializer.class);
       params.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,
 StringDeserializer.class);

Topics are specified in a Java Set; there could be more than one topic that is 
being processed. The string defining the topics should be comma-separated or 
could just be passed in as a Set.

 Set<String> topics = new HashSet<>(Arrays
.asList(topicName.split(",")));

The input stream is configured as a direct stream to the Kafka cluster. The 
topic information and Kafka properties are passed in. With this in place, the 
only things that remain are reading in the Kafka messages consumed, using 
the DStream to create a stream of lines to be split by spaces, and then mapping/
reducing the words.

KafkaUtils.createDirectStream(
               streamingContext,
               LocationStrategies.PreferConsistent(),
               ConsumerStrategies.Subscribe(topics, params));
 
       JavaDStream<String> lines = messages.map(ConsumerRecord::value);
       JavaDStream<String> words = lines.flatMap(x -> Arrays
.asList(SPACE.split(x)).iterator());
       JavaPairDStream<String, Integer> wordCounts = words
.mapToPair(s -> new Tuple2<>(s, 1))
               .reduceByKey((i1, i2) -> i1 + i2);
       wordCounts.print();

MLib: The Machine Learning Library

So far in this book I’ve covered using machine learning libraries such as Weka, 
DeepLearning4J, and even Apache Commons Math for some operations. The 
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Spark framework has a set of machine learning libraries for large-scale learning. 
It supports a number of algorithm types.

■■ Logistic regression

■■ Naïve Bayes

■■ Decision trees

■■ Random forests

■■ K-means clustering

■■ Association rules

■■ Latent Dirichlet allocation (LDA) topic modeling

For the remainder of this chapter, I’ll show you three machine learning types: 
decision trees, K-means clustering, and association rules with FP-Growth. Before 
we can do any of that, we need to add the machine learning library dependencies 
to the Maven build file.

Dependencies
Open pom.xml and add the following dependency with the others we’ve added 
for SparkSQL and Spark Streaming APIs:

<dependency>
   <groupId>org.apache.spark</groupId>
   <artifactId>spark-mllib_2.11</artifactId>
   <version>2.2.0</version>
   <scope>provided</scope>
</dependency>

With the dependencies in place, let’s look at the three algorithms that have 
been covered in previous chapters.

Decision Trees
The basis for Spark jobs is pretty much the same throughout the examples. Create 
a context, build a configuration, and set a location where the training data is.

The use of the JavaRDD gives us a data placeholder for each step of the learning. 
With the decision tree, you have to set the number of classes that the algorithm 
will work with (2 in this example), as well as adding the depth of the tree (with 
huge volumes of data, you can end up with very large trees).

Passing the RDD data path it will read in the file contents, the next step is to 
split the data into training and evaluation data. This is done to an RDD array, 
and this has only two elements, one for the training data and one for the eval-
uation data.
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The work for the entire model is done in one line.

DecisionTreeModel model = DecisionTree
.trainClassifier(trainingData, numberOfClasses, categoricalFeaturesInfo, 
impurity, maximumTreeDepth, maximumBins);

Once complete, the model is evaluated with the evaluation data, and the results 
are output to the console output. The final code is shown here:

package mlbook.ch13.spark;
import java.util.HashMap;
import java.util.Map;
import scala.Tuple2;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.mllib.regression.LabeledPoint;
import org.apache.spark.mllib.tree.DecisionTree;
import org.apache.spark.mllib.tree.model.DecisionTreeModel;
import org.apache.spark.mllib.util.MLUtils;
 
public class BasicMLLibDecisionTree {
   public static void main(String[] args) {
       int numberOfClasses = 2;
       Map<Integer, Integer> categoricalFeaturesInfo = new HashMap<>();
       String impurity = "gini";
       int maximumTreeDepth = 7;
       int maximumBins = 48;
 
       SparkConf sparkConf = new SparkConf()
.setAppName("BasicMLLibDecisionTree");
       JavaSparkContext jsc = new JavaSparkContext(sparkConf);
 
       String datapath = "/path/to/data/ch13/mllib/dtree.txt";
       JavaRDD<LabeledPoint> data = MLUtils
.loadLibSVMFile(jsc.sc(), datapath).toJavaRDD();
       JavaRDD<LabeledPoint>[] splits = data
.randomSplit(new double[]{0.7, 0.3});
       JavaRDD<LabeledPoint> trainingData = splits[0];
       JavaRDD<LabeledPoint> testData = splits[1];
 
       DecisionTreeModel model = DecisionTree
.trainClassifier(trainingData, numberOfClasses,
categoricalFeaturesInfo, impurity, maximumTreeDepth, maximumBins);
 
       JavaPairRDD<Double, Double> predictionAndLabel =
               testData.mapToPair(p -> new Tuple2<>(model
.predict(p.features()), p.label()));
       double predictionTestErrorValue =
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               predictionAndLabel.filter(pl -> !pl._1().equals(pl._2()))
.count() / (double) testData.count();
 
       System.out.println("Prediction test error value: "            + 
predictionTestErrorValue);
       System.out.println("Output classification tree:\n" + 
model.toDebugString());
   }
}

Run Maven to compile and repackage the JAR file with the new application.

mvn package

Using spark-submit, you can then test the application against the training 
data supplied.

$ /usr/local/spark-2.4.4-bin-hadoop2.7/bin/spark-submit \
 --class "mlbook.ch13.spark.BasicMLLibDecisionTree" --master local[4] 
target/Chapter13-1.0.0-SNAPSHOT.jar

You will see Spark start a local cluster and process the training data. Eventu-
ally you will see the output of the decision tree along with the test error value.

19/10/24 11:28:54 INFO DAGScheduler: ResultStage 8 
(count at BasicMLLibDecisionTree.java:42) finished in 0.015 s
19/10/24 11:28:54 INFO DAGScheduler: Job 6 finished: 
count at BasicMLLibDecisionTree.java:42, took 0.017851 s
Prediction test error value: 0.047619047619047616
Output classification tree:
DecisionTreeModel classifier of depth 1 with 3 nodes
  If (feature 406 <= 12.0)
   Predict: 0.0
  Else (feature 406 > 12.0)
   Predict: 1.0

Clustering
Spark includes a K-means clustering implementation. Again, the emphasis is 
on large-scale data. These processing steps during training can be partitioned 
and clustered over many machines. For this example, I will keep it simple and 
on the local cluster.

The training data for this example is basic doubles; these will be read and 
clustered into three cluster classifications. The data has been kept isolated to 
illustrate the clusters clearly.

0.0 0.0 0.0
0.1 0.1 0.1
0.2 0.2 0.2
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5.0 5.1 5.1
5.2 5.0 5.2
5.0 5.3 5.4
5.0 5.1 5.3
9.0 9.0 9.0
9.1 9.1 9.1
9.2 9.2 9.2

The code is made up of the following steps. First, the test data is loaded and 
split by the space character. This is then iterated and stored in a Vector class. 
Each Vector RSS contains a dense vector of each of the values from that line.

Once the number of desired clusters and number of iterations to train the 
model are set, it’s a case of creating the model. This is done in one line, passing 
in the RDD of vectors, the number of clusters required, and the iteration count.

KMeansModel kMeansClusters = KMeans.train(parsedData.rdd(),
 numberOfClassClusters, numberOfIterations);

The final steps of the application are to report the findings of the model 
training. The cost value is calculated and output to the console; then the full 
clusters are displayed.

package mlbook.ch13.spark;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.mllib.clustering.KMeans;
import org.apache.spark.mllib.clustering.KMeansModel;
import org.apache.spark.mllib.linalg.Vector;
import org.apache.spark.mllib.linalg.Vectors;
 
public class BasicMLLibKMeans {
       public static void main(String[] args) {
           SparkConf sparkConf = new SparkConf()
.setAppName("BasicMLLibKMeans");
           JavaSparkContext sparkContext = new 
JavaSparkContext(sparkConf);
           JavaRDD<String> data = sparkContext
.textFile("/path/to/data/ch13/mllib/kmeans.txt");
           JavaRDD<Vector> parsedData = data.map(s -> {
               String[] sarray = s.split(" ");
               double[] values = new double[sarray.length];
               for (int i = 0; i < sarray.length; i++) {
                   values[i] = Double.parseDouble(sarray[i]);
               }
               return Vectors.dense(values);
           });
           parsedData.cache();
 



332	 Chapter 13 ■ Apache Spark

           int numberOfClassClusters = 3;
           int numberOfIterations = 50;
           KMeansModel kMeansClusters = KMeans.train(parsedData.rdd(), 
numberOfClassClusters, numberOfIterations);
 
           double cost = kMeansClusters.computeCost(parsedData.rdd());
           System.out.println("Computed cost: " + cost);
 
           System.out.println("Showing cluster centres: ");
           for (Vector center: kMeansClusters.clusterCenters()) {
               System.out.println(" " + center);
           }
 
           sparkContext.stop();
       }
}

Again, run Maven to compile and repackage the JAR file with the new K-means 
application code.

mvn package

Using spark-submit, you can then test the application against the training 
data supplied.

$ /usr/local/spark-2.4.4-bin-hadoop2.7/bin/spark-submit \
--class "mlbook.ch13.spark.BasicMLLibKMeans" --master local[4] target/
Chapter13-1.0.0-SNAPSHOT.jar

Spark will go through the usual startup process and then will output the cost 
function and the clusters.

19/10/24 11:48:56 INFO DAGScheduler: ResultStage 11 
(sum at KMeansModel.scala:105) finished in 0.018 s
19/10/24 11:48:56 INFO DAGScheduler: Job 9 finished: 
sum at KMeansModel.scala:105, took 0.021366 s
19/10/24 11:48:56 INFO TorrentBroadcast: Destroying Broadcast(17) 
(from destroy at KMeansModel.scala:106)
Computed cost: 0.24749999999988637
Showing cluster centres:
 [5.05,5.125,5.25]
 [0.1,0.1,0.1]
 [9.1,9.1,9.1]

Association Rules with FP-Growth
As we’ve previously seen, it’s possible to suggest items for a customer based on 
historical shopping basket contents. Spark has an implantation of the FP-Growth 
algorithm within Spark MLLib to do basket (or any other data) analysis at volume.
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First, I need some shopping basket transactions. This is just a simple text file 
of items; each line represents the contents of one basket checked out.

milk tea fruit flour pencils
tea cake biscuits beans peas hot_chocolate eggs coffee
coffee biscuits pasta newspaper milk
biscuits tea cake soap eggs coffee paper books
tea
biscuits tea cake milk paper eggs pencils

The supporting Spark code does similar functions as to the decision tree and 
K-means examples. The context is set up, and then the data is read and parsed 
into an RDD.

For FP-Growth, we need to set the minimum support and the number of 
partitions to create while the associations are computed.

As you may remember from the previous association rule example in Weka, 
we want to show only the associations with a minimum confidence level. For 
this example, it’s set to 70 percent (set as a double value of 0.7 in the code).

The final step is to generate the association rules and output them to the 
console. We also want to see the antecedent item and the item consequent along 
with the confidence score for that rule.

package mlbook.ch13.spark;
import java.util.Arrays;
import java.util.List;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.mllib.fpm.AssociationRules;
import org.apache.spark.mllib.fpm.FPGrowth;
import org.apache.spark.mllib.fpm.FPGrowthModel;
import org.apache.spark.SparkConf;
 
public class BasicMLLibFPGrowth {
   public static void main(String[] args) {
       SparkConf conf = new SparkConf().setAppName("BasicMLLibFPGro
wth");
       JavaSparkContext sc = new JavaSparkContext(conf);
 
       JavaRDD<String> data = sc
.textFile("/path/to/data/ch13/mllib/fpgrowth_items.txt");
       JavaRDD<List<String>> basketItems = data.map(line -> Arrays
.asList(line.split(" ")));
 
       FPGrowth fpg = new FPGrowth()
               .setMinSupport(0.2)
               .setNumPartitions(10);
       FPGrowthModel<String> model = fpg.run(basketItems);
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       for (FPGrowth.FreqItemset<String> itemset: model.freqItemsets()
.toJavaRDD().collect()) {
           System.out.println("(" + itemset.javaItems() + "), " + 
itemset.freq());
       }
 
       double minConfidence = 0.7;
       for (AssociationRules.Rule<String> rule
               : model.generateAssociationRules(minConfidence)
.toJavaRDD().collect()) {
           System.out.println(
                   rule.javaAntecedent() + " => " + 
rule.javaConsequent() + ", " + rule.confidence());
       }
       sc.stop();
   }
}

For one last time, run Maven to compile and repackage the JAR file with the 
association rules application code.

mvn package

Using spark-submit, you can then test the application against the shopping 
basket data.

$ /usr/local/spark-2.4.4-bin-hadoop2.7/bin/spark-submit \
 --class "mlbook.ch13.spark.BasicMLLibFPGrowth" --master local[4] 
target/Chapter13-1.0.0-SNAPSHOT.jar

Spark will start, read in the data, and compute the association rules model. 
Once complete, the results of the model will be output to the console.

19/10/24 11:01:03 INFO TaskSchedulerImpl: Removed TaskSet 8.0,
 whose tasks have all completed, from pool
19/10/24 11:01:03 INFO DAGScheduler: ResultStage 8 
(collect at BasicMLLibFPGrowth.java:32) finished in 0.144 s
19/10/24 11:01:03 INFO DAGScheduler: Job 3 finished: 
collect at BasicMLLibFPGrowth.java:32, took 0.485325 s
[cake, eggs, coffee] => [biscuits], 1.0
[cake, eggs, coffee] => [tea], 1.0
[paper, eggs, tea] => [cake], 1.0
[paper, eggs, tea] => [biscuits], 1.0
[eggs, coffee, tea] => [biscuits], 1.0
[eggs, coffee, tea] => [cake], 1.0
[coffee] => [biscuits], 1.0
[paper, cake, biscuits] => [tea], 1.0
[paper, cake, biscuits] => [eggs], 1.0
[eggs, coffee] => [biscuits], 1.0
[eggs, coffee] => [tea], 1.0
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[eggs, coffee] => [cake], 1.0
[eggs, biscuits] => [tea], 1.0
[eggs, biscuits] => [cake], 1.0

Summary

The Spark framework has changed a lot since it was covered in the first edition 
of this book. The APIs are a lot easier to code with, especially for Java. If you 
use Python, then it’s worth looking at the PySpark REPL for doing Spark work. 
If you are a Clojure user, then there are a number of Spark wrappers available 
to you as well.

Remember, this framework is for large-scale data. If you have medium or 
small amounts of data, then look at the alternatives that were shown earlier in 
the book first. If those seem to struggle while training, then it’s worth looking 
at Spark as the next stage of your development pipeline.
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14

When you’re in a room of data scientists, statisticians, and math types, you’ll 
hear one letter crop up again and again: the letter R. R is a programming lan-
guage, and it’s basically command-line driven. In addition to being used in the 
command-line shell, R can be written in code form and run.

Why am I telling you all this? Well, on top of the programming skills that get 
mentioned, you might also be asked, “Do you do R?” After this chapter, you’ll 
hopefully have a starting point to reply, “Yes!”

Installing R

The R language comes ready to use for a number of operating systems. The 
download page at http://www.r-project.org has a number of mirror sites, so 
pick a mirror that’s closest to you. From the mirror, choose the download for 
your operating system.

macOS
The current version of R (3.6 at time of writing) will run on the 64-bit Intel-based 
Macs. Download the file and open it to install it. It installs the R binaries into 
the /Applications folder.

Machine Learning with R

http://www.r-project.org
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Windows
The .exe download for Windows provides binaries for running on 32- or 64-bit 
machines. The base package download will provide you with everything you 
need to get started.

Linux
Binary downloads are available for Debian, Ubuntu, Red Hat, and SUSE Linux 
distributions. If you want to save some time (and effort) and you’re running 
Debian or Ubuntu, then you can use apt-get to install the r-base and r-base-dev 
packages. Ensure that the repository package base is up-to-date first. For users 
of the Red Hat family of distributions, use the command sudo yum install R.

Your First Run

When you run R, you’re presented with the basic R shell, as shown in Figure 14.1. 
This is the main place where the work is done. It’s sparse, but it does the job 
fine.

Use this to
quit the shell

Figure 14.1:  The R shell
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If at any time you want help on a topic, you can use the help command. For 
example, if you want to know about Standard Deviation, just type help(sd), 
and R opens a new window with the information (see Figure 14.2).

You can quit the shell either by clicking the light switch on the top right of the 
program window (refer to Figure 14.1) or by typing quit() on the command line.

For basic needs, the R shell is fine and does the job well. For an actual 
development environment, you have to install some more software such as 
R-Studio.

Installing R-Studio

The R-Studio project (see Figure 14.3) is a commercial integrated development 
environment (IDE) for R. It comes in an open source community edition that 
is free to use. To download R-Studio IDE, visit the following website and select 
your operating system type:

http://www.rstudio.com/products/rstudio/download

Figure 14.2:  R’s help system

http://www.rstudio.com/products/rstudio/download
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Make sure that the R base binary is installed as described in the preceding 
section before you download R-Studio.

The R Basics

To run through the R basics, I’m going to use the standard R development envi-
ronment. The command-line prompt is a simple greater-than sign (>).

You can perform calculations on the command line, so adding numbers 
together is a trivial process, like so:

> 1+2
[1] 3
>

To get proper use from R, though, you need to think a little more program-
matically.

Variables and Vectors
R supports variables as you would expect. To assign them, you can either use 
the equal sign (=) or the less-than sign and a hyphen together (<-):

> myage = 21
> myageagain <- 21

Figure 14.3:  R-Studio
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> myage
[1] 21
> myageagain
[1] 21
>

Variables can also store string variables and other data types. The ones you’ll 
use most are numeric values.

Lists of data are held in arrays, called vectors in R, and are defined with the 
c() function.

> lotterynums <- c(2,7,20,35,36,42)
> lotterynums
[1]  2  7 20 35 36 42

Vectors can also hold strings. Using the length() function tells you how many 
elements are in the array.

> kc <- c("Robert", "Jakko", "Tony", "Mel", "Pat",
 "Jeremy","Gavin","Bill")
> kc
[1] "Robert" "Jakko" "Tony" "Mel" "Pat" "Jeremy" "Gavin" "Bill"
> length(kc)
[1] 8
>

To show specific values in the array, you can use the variable name and the 
element you want to show.

> kc[5]
[1] "Pat"

Matrices
Now that you know how vector lists of numbers work, you can convert them 
into a matrix. To define a matrix, you take the data and then define how many 
rows and columns you require.

> mymatrix <- matrix(c(1,2,3,4,5,6,7,8,9,10), nrow=2, ncol=5,
  byrow=TRUE)
> mymatrix
     [,1] [,2] [,3] [,4] [,5]
[1,]    1    2    3    4    5
[2,]    6    7    8    9   10
>
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You can then retrieve data based on the row and column position.

> # by row, col
> mymatrix[2,4]
[1] 9
> # entire row
> mymatrix[2,]
[1]  6  7  8  9 10
> # entire col
> mymatrix[,4]
[1] 4 9
>

Instead of numeric row and column names, you can define text label names 
to make things more readable.

> dimnames(mymatrix) <- list(c("row1","row2"),c("c1","c2",
  "c3","c4","c5"))
> mymatrix
     c1 c2 c3 c4 c5
row1  1  2  3  4  5
row2  6  7  8  9 10
>

You can reference data by row and column by using the row and column 
names you’ve just defined.

> mymatrix["row2", "c5"]
[1] 10

Lists
A list is a vector containing other objects. This can be a mixture of objects 
(numeric, Boolean, and strings, for example) or other vectors within the list.

> nums <- c(1,2,3,4,5)
> strings <- c("hello", "world", "again")
> bools <- (TRUE, FALSE)
Error: unexpected ',' in "bools <- (TRUE,"
> bools <- c(TRUE, FALSE)
> mylist <- list(bools, strings, nums)
> mylist
[[1]]
[1]  TRUE FALSE
 
[[2]]
[1] "hello" "world" "again"
 
[[3]]
[1] 1 2 3 4 5
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To retrieve the strings on their own, you can slice the list accordingly with 
the [] notation.

> mylist[2]
[[1]]
[1] "hello" "world" "again"

To reference a member of the listed object directly, you have to use a double 
squared bracket. You can modify the member within the list as well.

> mylist[[2]][1]
[1] "hello"
> mylist[[2]][1] <- "goodbye"
> mylist
[[1]]
[1]  TRUE FALSE
 
[[2]]
[1] "goodbye" "world"   "again"  
 
[[3]]
[1] 1 2 3 4 5
 
>

Data Frames
Data frames are basically lists of vectors. The column count is the same in the 
vectors. R comes with some predefined data frames to play with. Using the 
head() function, you can see the top few lines of the data frame. This saves the 
entire contents of the frame being shown in the command line.

> data(USArrests)
> head(USArrests)
           Murder Assault UrbanPop Rape
Alabama      13.2     236       58 21.2
Alaska       10.0     263       48 44.5
Arizona       8.1     294       80 31.0
Arkansas      8.8     190       50 19.5
California    9.0     276       91 40.6
Colorado      7.9     204       78 38.7

You can reference data with the row and column positioning like you did 
with the matrices.

> USArrests["New York",]
         Murder Assault UrbanPop Rape
New York   11.1     254       86 26.1
> USArrests["New York", "Assault"]
[1] 254
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Installing Packages
R comes with a comprehensive selection of packages that are available to down-
load. You can see the Comprehensive R Archive Network (usually referred to 
as CRAN) packages that are available on the R website at www.r-project.org/. 
They are a broad spectrum of statistics, data-processing, and other tools.

To install the packages, you use the install.packages() function from the R 
command line. It takes care of everything for you.

For example, to install the tools for Approximate Bayesian Computation (ABC), 
you install the abc package:

>install.packages("abc")

Some packages might require dependencies to be installed first, so it’s prudent 
to use the dependencies flag to ensure they are installed, too.

> 
also installing the dependencies 'SparseM', 'quantreg', 'locfit'
 
trying URL 'http://cran.rstudio.com/bin/macosx/mavericks/contrib/3.1/
SparseM_1.03.tgz'
Content type 'application/x-gzip' length 825491 bytes (806 Kb)
opened URL
==================================================
downloaded 806 Kb
 
trying URL 'http://cran.rstudio.com/bin/macosx/mavericks/contrib/3.1/
quantreg_5.05.tgz'
Content type 'application/x-gzip' length 1846783 bytes (1.8 Mb)
opened URL
==================================================
downloaded 1.8 Mb
 
trying URL 'http://cran.rstudio.com/bin/macosx/mavericks/contrib/3.1/
locfit_1.5-9.1.tgz'
Content type 'application/x-gzip' length 597404 bytes (583 Kb)
opened URL
==================================================
downloaded 583 Kb
 
trying URL 'http://cran.rstudio.com/bin/macosx/mavericks/contrib/3.1/
abc_2.0.tgz'
Content type 'application/x-gzip' length 5303210 bytes (5.1 Mb)
opened URL
==================================================
downloaded 5.1 Mb
 
 

http://www.r-project.org/
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The downloaded binary packages are in
/var/folders/b5/fz_57qk522nd6vqk2pd4lytr0000gn/T//RtmpOqHaEV/
downloaded_packages

To use the library after it’s installed, you call it with the library() function. 
It initializes and gives notice of the dependencies it has also loaded.

> library(abc)
Loading required package: nnet
Loading required package: quantreg
Loading required package: SparseM
 
Attaching package: 'SparseM'
 
The following object is masked from 'package:base':
 
    backsolve
 
Loading required package: MASS
Loading required package: locfit
locfit 1.5-9.1 2013-03-22

Loading in Data
With the basic notions of variables, lists, and vectors in place, it’s time to look 
at getting some data loaded into R.

CSV Files

The read.csv function reads a .csv file and loads it into a data frame.

> trans <- read.csv('vdata.csv', header=TRUE, sep=',')
> head(trans)
  wheels chassis pax vtype
1      4       2   4   Car
2      9      20  25   Bus
3      5      14  18   Bus
4      5       2   1   Car
5      9      17  25   Bus
6      1       1   1  Bike
>
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If your .csv file has the column names in the first line, then use header=TRUE; 
otherwise, set it to FALSE. The separator is defined with the sep keyword, and 
you define whatever delimiter you want. If you have missing values, then it’s 
wise to use the fill flag as well to ensure that your data will have the correct 
number of elements in each row.

MySQL Queries

Installing the RMySQL package gives you access to MySQL databases. You can 
pull queries into R so they can be processed.

>install.packages("RMySQL", dependencies=TRUE)

If you are working on a Windows-based system, then the library requires 
building for the source files. Two environment variables are required for the 
library to compile.

> Sys.setenv(PKG_CPPFLAGS = "-I/path/to/mysql/include/dir")
> Sys.setenv(PKG_LIBS = "-L/path/to/library/dir -lmysqlclient")
> install.packages("RMySQL", type = "source")

As with Java code, you need to define a connection to the database before 
you can query it.

> con <- dbConnect(MySQL(), user="myuser", password="mypass",
  dbname="mydb", host="localhost")

From there, after you have a connection, you can see what tables are in the 
database.

> dbListTables(con)

You then query a table. The data from the query is returned as a data frame.

>dta <- dbGetQuery(con, "SELECT * FROM mytable")

There are a number of other databases supported in R, including SQLite3, 
PostgreSQL, and Oracle.

Creating Random Sample Data

Perhaps you don’t have any data to load or you just want to have a random 
sample of numbers to play with. Using the sample function, you can create a 
handy vector of numbers.

> sam <- sample.int(1000, 20, replace=TRUE)
> sam
 [1]  32 192 783 654 250 261 150 687 619 332 549 225 545 175 
508 782 237 748 334 804



	 Chapter 14 ■ Machine Learning with R	 347

Plotting Data
R supports basic plots of your data. They can take a little amount of getting use 
to with regard to the syntax, so the following sections provide a short primer.

Bar Charts

How many bar charts did you draw at school? I drew far more than I care to 
remember, but R makes it easy for me now. (See Figure 14.4.)

> sam <- sample.int(1000, 20, replace=TRUE)
> sam
 [1]  32 192 783 654 250 261 150 687 619 332 549 225 545 175 
508 782 237 748 334 804
> barplot(sam, main="My first plot", horiz=TRUE)

If you remove the horiz option, you get the bars traveling in a vertical direction, 
as shown in Figure 14.5.

> barplot(sam, main="My first plot")

Pie Charts

The pie charts in R are basic (see Figure 14.6), but they get the job done. It’s just 
a case of giving the pie chart values and labels. You can easily expand on this 
if necessary.

> pie(sam, main="First Pie Chart", labels=sam)

Figure 14.4:  Horizontal bar chart
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Dot Plots

The dot plot function (see Figure 14.7) is a simple case of specifying a vector. 
You can also group the dot plot into specific sections if required.

> dotchart(sam, main="My Dot Chart", labels="Value", xlab="Frequency")

Figure 14.5:  Vertical bar chart

Figure 14.6:  Simple pie chart
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Line Charts

With two vectors of numbers, you can create a line chart, as shown in Figure 14.8.

> sam1 <- sample.int(10, 12, replace=TRUE)
> sam1
 [1]  5 10  4  8  2  2  2  4  2  5  2  6
> sam2 <- sam1
> plot(sam1, sam2)
> lines(sam1, sam2, type="l")

Figure 14.7:  Simple dot plot

Figure 14.8:  Simple line chart
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Simple Statistics

R is about statistics; that’s what it’s built for. Unlike Java, Scala, or Python, R’s 
syntax is a little unforgiving, but after a few sessions, it becomes more natural.

Try creating a simple vector of numbers, and then you can work through 
some functions. Start with the basics.

> s <- sample(100, 12, replace=TRUE)
> # get a basic summary of the vector: lowest value, 1st quartile,
 median, mean, 3rd quartile and maximum value
> summary(s)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
   1.00    9.25   28.50   37.58   58.25   97.00 
> # just get the minimum
> min(s)
[1] 1
> # get the maximum value
> max(s)
[1] 97
> # get the average
> mean(s)
[1] 37.58333
> # get the median
> median(s)
> # get the standard deviation
> sd(s)
[1] 31.57807
> # use the table function to see the frequency of the data
> table(s)
s
 1  5  7 10 22 25 32 55 57 62 78 97 
 1  1  1  1  1  1  1  1  1  1  1  1

Obviously, you can reassign these function results as new variables or vectors. 
This gives you the basic outline of how the summaries work.

Simple Linear Regression

This section gives an example of simple linear regression in R. It will give you 
a good idea of how things are put together. Here’s the story: you have made 
profit based on the number of seconds that the sales team is on a call. If you 
know the profit made, can you calculate how long the call took?
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Creating the Data
First, create two separate vectors: one for the number of seconds in the call  
(secondsCall) and another for the amount of profit that was made (dollarProfit).

> # setup the data
> secondsCall <- c(23,28,39,48,64,75,88,96,97,109,118,149,150,156,165)
> dollarProfit <- c(1,2,3,3,4,4,5,6,6,7,8,8,9,10,10)

The Initial Graph
You can create a simple plot for those values (see Figure 14.9) by using the plot 
command.

> # create a simple plot
> plot(secondsCall, dollarProfit)

Regression with the Linear Model
Within R, there is a command that will do the linear model for you: lm. You can 
define the model and save it as a variable. The order of variables is dependent 
(secondsCall), followed by a tilde symbol (̃ ), and finally the independent  
variables (dollarProfit).

> # define the linear model
> model <- lm(secondsCall ~ dollarProfit)

Figure 14.9:  Seconds/dollar plot
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> model
 
Call:
lm(formula = secondsCall ~ dollarProfit)
 
Coefficients:
 (Intercept)  dollarProfit  
      0.6226       16.2286  
 
>

Now that you know the intercept (0.6226) and the dollar profit amount of 
16.22, you can expand on the model information using the summary command.

> # expend the summary of the model
> summary(model)
 
Call:
lm(formula = secondsCall ~ dollarProfit)
 
Residuals:
    Min      1Q  Median      3Q     Max 
-12.451  -5.151  -1.308   4.734  18.549 
 
Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept)    0.6226     4.8981   0.127    0.901    
dollarProfit  16.2286     0.7681  21.129  1.9e-11 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
 
Residual standard error: 8.306 on 13 degrees of freedom
Multiple R-squared:  0.9717, Adjusted R-squared:  0.9695 
F-statistic: 446.4 on 1 and 13 DF,  p-value: 1.898e-11

So, you have a basic model that gives you a regression equation of secondsCall 
= 0.6226 + 16.2268 * profit amount. To put the regression line on the plot, use the 
abline function.

> abline(model)

Making a Prediction
Assume that someone made a $5 profit, and you want to know the duration of 
the call based on the model you’ve just created. Using the predict command, 
you can make the prediction.

> # make a basic prediction of someone making $5. 
> predict(model, newdata=data.frame(dollarProfit=5))
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       1 
81.76568 
>

The prediction is that the person was on a call for 81 seconds. You can extend 
that by adding different interval types, which will give you the upper and 
lower prediction amounts based on the model.

> predict(model, newdata=data.frame(dollarProfit=5), interval="pred")
       fit      lwr      upr
1 81.76568 63.19372 100.3376
> predict(model, newdata=data.frame(dollarProfit=5),
 interval="confidence")
       fit      lwr      upr
1 81.76568 76.97553 86.55583

Basic Sentiment Analysis

Mining Twitter data and measuring the positive or negative sentiment can be 
done in R easily. You will require an application to be registered on your Twitter 
Developer account. The text to rate could be anything from simple sentences 
typed in to reading in a Twitter stream or a file.

To learn how to create a Twitter Developer application with the required 
tokens and keys, please refer to Appendix B. There is a full walk-through on 
how to do this. Once you have the required tokens and keys, you can continue.

Using Functions to Load in Word Lists
You need two sets of text files: one with the positive words and one with the 
negative words. You can write two quick functions to load the text files and 
save them to two separate lists.

LoadPosWordSet<-function(){
 iu.pos = scan("positive-words.txt", what='character', comment.char=";")
 pos.words = c(iu.pos)
 return(pos.words)
}

Then you do the same for the negative word list:

LoadNegWordSet<-function(){
 iu.neg = scan("negative-words.txt", what='character', comment.char=";")
 neg.words = c(iu.neg)
 return(neg.words)
}
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Writing a Function to Score Sentiment
You have a function that takes in a sentence and two word lists (positive and 
negative sentiment words). Now you can test it.

GetScore<-function(sentence, pos.words, neg.words) {
 sentence = gsub('[[:punct:]]', '', sentence)
 sentence = gsub('[[:cntrl:]]', '', sentence)
 sentence = gsub('\\d+', '', sentence)
 
 sentence = tolower(sentence)
 
 word.list = str_split(sentence, '\\s+')
 words = unlist(word.list)
 
 pos.matches = match(words, pos.words)
 neg.matches = match(words, neg.words)
 
 pos.matches = !is.na(pos.matches)
 neg.matches = !is.na(neg.matches)
 score = sum(pos.matches) - sum(neg.matches)
 
 return(score)
}

The first thing that happens is the sentence is cleaned up with punctuation, 
control characters, and numbers removed. That should give you just a sentence 
of words; you then convert it into all lowercase letters.

You split the sentence into a list of words and find out how many times the 
words match in the positive word list. You also do the same with the negative 
word list.

With a positive score and negative score, you take the negative away from 
the positive to get the final score.

You can save the functions as an R source file. You can either create it in a 
text editor or use the R-Studio editor to create the source file. For this example, 
I save it all in a file called sentiment.r.

Testing the Function
To test the sentiment code, you first need to load the code and the required 
library into R.

>install.packages("stringr")
>library(stringr)
>source('sentiment.r')
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> pos.words <- LoadPosWordSet() 
Read 2006 items
 
> neg.words <- LoadNegWordSet() 
Read 4783 items

Now you have 2,006 positive words and 4,783 negative words loaded. By 
using the GetScore method, you can get a score now on some text, and you can 
make up some to test. For example, here’s a positive one:

> testscore<-GetScore("This concert is the best thing I've been to!",
 pos.words, neg.words) 
> testscore 
[1] 1

As you can see, the sentiment analysis gave a score of +1, so it’s positive. Try 
a negative sentence:

> testscore2<-GetScore("That's bad real bad, horrible", pos.words, 
 neg.words) 
> testscore2 
[1] -3

With a negative string, you get a score of −3. With this basic function, you 
could process a list of sentences and create a bar graph of the scoring.

Apriori Association Rules

With a set of transactions, you can run a basic Apriori algorithm. The R base 
system requires a package called arules to be installed before use.

Installing the arules Package
Before you get started, you have to install the arules package.

> install.packages("arules", dependencies=TRUE)
also installing the dependencies 'colorspace', 'TSP', 'gclus', 
'scatterplot3d', 'vcd', 'seriation', 'igraph', 'pmml', 'XML', 
'arulesViz', 'testthat'
The downloaded binary packages are in 
/var/folders/b5/fz_57qk522nd6vqk2pd4lytr0000gn/T//Rtmpgp3zNQ/downloaded_
packages
> library(arules)
Loading required package: Matrix
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Attaching package: 'arules'
 
The following objects are masked from 'package:base':
%in%, write
 
>

Gathering the Training Data
I have prepared a basic .csv file with the basket ID and one item per line. You 
can see that there are repeating basket IDs to show that the basket contains 
multiple items. I’ve called my file transactions.csv.

1001,Fries
1001,Coffee
1001,Milk
1002,Coffee
1002,Fries
1003,Coffee
1003,Coke
1003,Eraser
1004,Coffee
1004,Fries
1004,Cookies
1005,Milk
1006,Coffee
1006,Milk
1007,Coffee
1007,Fries
1008,Fries
1008,Coke

Importing the Transaction Data
With the read.transactions method, you load the .csv data into a transac-
tions object. It works in a similar way to the read.csv function you saw at the 
start of the chapter.

I’m setting the rm.duplicates flag to FALSE, because I don’t want basket items 
to be removed.

> transactions <- read.transactions(file="transactions.csv", 
rm.duplicates=FALSE, format="single", sep=",", cols=c(1,2))
> transactions
transactions in sparse format with
 8 transactions (rows) and
 6 items (columns)
>
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As you can see, the transaction object knows there are eight transactions with 
six items. You can see the relative frequency of items graphically by using the 
itemFrequencyPlot function, which generates a graph like the one in Figure 14.10.

> itemFrequencyPlot(transactions)

Running the Apriori Algorithm
The function to run the algorithm is done in one line. You supply the transaction 
objects and a set of parameters. When you run the algorithm, you’re presented 
with the resulting output. So, with a support of 0.5 and a confidence of 0.8 (the 
system is 80 percent confident), you get one association rule.

> minedbasketrules <- apriori(transactions, parameter=list(sup=0.5, 
conf=0.8, target="rules"))
 
parameter specification:
 
 confidence minval smax arem  aval originalSupport support minlen maxlen 
target   ext
        0.8    0.1    1 none FALSE            TRUE     0.5      1     10  
rules FALSE
 
algorithmic control:
 filter tree heap memopt load sort verbose
    0.1 TRUE TRUE  FALSE TRUE    2    TRUE
 

Figure 14.10:  Transaction frequencies
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apriori - find association rules with the apriori algorithm
version 4.21 (2004.05.09)        (c) 1996-2004   Christian Borgelt
set item appearances ...[0 item(s)] done [0.00s].
set transactions ...[6 item(s), 8 transaction(s)] done [0.00s].
sorting and recoding items ... [2 item(s)] done [0.00s].
creating transaction tree ... done [0.00s].
checking subsets of size 1 2 done [0.00s].
writing ... [1 rule(s)] done [0.00s].
creating S4 object  ... done [0.00s].
>

Inspecting the Results
Take a look at the one rule and see what it is. You use the inspect command 
to look at the result.

> inspect(minedbasketrules)
  lhs        rhs      support confidence     lift
1 {Fries} => {Coffee}     0.5        0.8 1.066667
>

There’s an 80 percent chance that if someone buys fries, they’ll also buy a 
coffee. If you had thousands or tens of thousands of transactions, then you 
would raise the confidence level and also be able to see more rules appearing.

Accessing R from Java

Like the power of the Weka workbench can be accessed from a Java program, 
so too can R code. With the rJava bridge, you can run R within Java code and 
Java within R code.

Installing the rJava Package
Originally the rJava package was split along with the JRI package; installing 
them was a technical process at the time. Fortunately, that has all been replaced 
with a single binary that covers both packages.

> install.packages("rJava")
trying URL 'http://cran.rstudio.com/bin/macosx/mavericks/contrib/3.1/
rJava_0.9-6.tgz'
Content type 'application/x-gzip' length 600621 bytes (586 Kb)
opened URL
==================================================
downloaded 586 Kb
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The downloaded binary packages are in
/var/folders/b5/fz_57qk522nd6vqk2pd4lytr0000gn/T//Rtmpgp3zNQ/downloaded_
packages
>

The rJava package uses JNI to talk to Java libraries. From the point of view of 
working within R, things might seem a little cumbersome, but they do work fine.

Creating Your First Java Code in R
Open your R console or R-Studio. Assuming you’ve installed the package as 
described earlier in this chapter, you can do the following:

> library(rJava)
> .jinit()
> stringobj <- .jnew("java/lang/String", "This is a string as a Java 
object, in R!")
> stringobj
[1] "Java-Object{This is a string as a Java object, in R!}"

After the library is loaded, you need to initialize the rJava system with the 
.jinit() method. You then create a new variable in R that is going to contain a 
Java string object. The .jnew() method creates a new String object and popu-
lates the string. Notice that you have to put the full Java package name in with 
a slashed notation and not the dotted one.

If you want to find the location of the word Java in the string, you use Java’s 
indexOf method. You can call it with rJava by executing the following:

[1] "Java-Object{This is a string as a Java object, in R!}"
> .jcall(stringobj, "I", "indexOf", "Java")
[1] 22

The command looks involved. The first parameter is the existing object you 
previously created. The next is the return type from method; because the indexOf 
method returns an integer, you use the "I" in the calling method. Next is the 
method name—"indexOf"—and last is the thing you’re looking for, "Java". You 
see the result on the line underneath.

For the full package information for the rJava interface, take a look at the 
method list at

http://rforge.net/doc/packages/rJava/00Index.html

Calling R from Java Programs
The interface for calling R from Java is called JRI. The files required to do this 
are all in the library that was installed from R. There are two components that 
your Java project requires: the jar file (called JRI.jar) and the native library 

http://rforge.net/doc/packages/rJava/00Index.html
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file (the name changes depending on the operating system you are using—on 
macOS, it’s called libjri.jnilib).

Jason-Bells-MacBook-Pro:jri Jason$ pwd
/Library/Frameworks/R.framework/Resources/library/rJava/jri
Jason-Bells-MacBook-Pro:jri Jason$ ls -l 
total 256
-rw-r--r--  1 Jason  admin  31384 24 Apr 16:02 JRI.jar
-rw-r--r--  1 Jason  admin  10272 24 Apr 16:02 JRIEngine.jar
-rw-r--r--  1 Jason  admin  32354 24 Apr 16:02 REngine.jar
drwxr-xr-x  8 Jason  admin    272 24 Apr 16:02 examples
-rwxr-xr-x  1 Jason  admin  47500 24 Apr 16:02 libjri.jnilib
-rwxr-xr-x  1 Jason  admin    833 24 Apr 16:02 run
Jason-Bells-MacBook-Pro:jri Jason$ 

You’ll set up a basic Eclipse project, and then you can see how the parts fit 
together. I developed the example on the macOS operating system, but the 
variations on the other operating systems, such as Windows or Linux, are not 
that different.

Setting Up an Eclipse Project
Create a Java project and call it JRITest. Go to the properties, click the Java 
Build Path, and add an external jar file. Now look for the JRI.jar file, which is 
normally located in the /Library/Frameworks/R.framework/Resources/library/
rJava/jri folder. (See Figure 14.11.)

Figure 14.11:  Adding the JRI.jar file to the project
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To make sure the R engine is working within Java, you’re going to create a 
small test file to initialize the engine, load the built-in iris dataset, and iterate 
through an evaluation.

Creating the Java/R Class
To create a new class, select File ➪ New ➪ Class and call the new file TestR.java.

import java.util.Enumeration;
 
import org.rosuda.JRI.REXP;
import org.rosuda.JRI.RVector;
import org.rosuda.JRI.Rengine;
 
public class TestR {
    
    public static void main(String[] args) {
        Rengine rEngine = new Rengine(new String[] { "--vanilla" }, 
false, null);
        System.out.println("Waiting for R to create the engine.");
 
        if (!rEngine.waitForR()) {
            System.out.println("Cannot load R engine.");
            return;
        }
 
        rEngine.eval("data(iris)", false);
        REXP exp = rEngine.eval("iris");
        RVector vector = exp.asVector();
        System.out.println("Outputting data:");
        for (Enumeration e = vector.getNames().elements(); 
e.hasMoreElements();) {
            System.out.println(e.nextElement());
        }
      }
}

The first thing that happens within the main method is to start up an R engine. 
Nothing works until this step is complete.

Next, you pass an R command to load the iris data using the REngine.eval 
function. Last, you initialize an R vector within Java, convert the iris data to a 
vector, and then iterate the output.

Running the Example
If you attempt to run the class now, you will get an error from Eclipse, because 
the R runtime library isn’t linked to the project. You get the following error if 
the library isn’t linked:

Cannot find JRI native library!
Please make sure that the JRI native library is in a directory listed 
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in java.library.path.
 
java.lang.UnsatisfiedLinkError: no jri in java.library.path
    at java.lang.ClassLoader.loadLibrary(ClassLoader.java:1764)
    at java.lang.Runtime.loadLibrary0(Runtime.java:823)
    at java.lang.System.loadLibrary(System.java:1044)
    at org.rosuda.JRI.Rengine.<clinit>(Rengine.java:19)
    at TestR.main(TestR.java:10)

To set that up, you need to look at the run configurations for the project. Select 
Run ➪ Run Configurations and then click the TestR class. On the Arguments 
tab, you need to add a –D flag to the virtual machine arguments, as shown in 
Figure 14.12.

If you get an error about the R _ HOME path not being set, then reopen the 
run configuration and click the Environments tab, as shown in Figure 14.13. If 
you use Windows, locate the R.dll file on your system and add it to your path.

Figure 14.12:  Adding the JRI library path
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Click Run and try again. This time you should see the correct output.

Waiting for R to create the engine.
Outputting names:
Sepal.Length
Sepal.Width
Petal.Length
Petal.Width
Species

Extending Your R Implementations
The code you’ve just walked through gives you the basic framework for getting 
R functions and commands working from a Java program. The R examples 
you’ve seen in this chapter could be easily converted to a Java program using 
this method if you want. If you have an R expert on your team, then it might be 
prudent to have that person write the R functions first and then port them to Java.

Figure 14.13:  Adding the environment R_HOME path
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Connecting to Social Media with R
I know, another mention of the Twitter application program interface (API). 
This sort of data is important and not just for sentiment analysis. The majority 
of news, social graphs, and conversations happen on these platforms, and it’s 
increasingly important to keep on top of developments. This goes for R, too; 
being able to connect to Twitter is important.

In the previous examples you used Twitter’s development account to create 
the authorization keys for the application. You’re essentially forcing your appli-
cation to use these pre-existing keys. That works fine, but you have to approach 
things a little differently for the twitteR library.

Make a note of the consumer key and secret as you’ll need those, but there 
are couple of other things you need to confirm.

First, make sure there’s no callback URL. You confirm this on the Settings tab 
of your application. Make sure the Allow This Application to Be Used to Sign 
In to Twitter check box is set to true as well. Don’t forget to update the settings 
for them to take effect. Refresh the page until you see the settings are correct.

Now that the Twitter side of things is set up, you can look at some R code to 
help you log in to Twitter.

You need to open a text editor and use the following code:

library(twitteR)
cred <- OAuthFactory$new(consumerKey="xxxxxxxxxxxxx",
 consumerSecret="xxxxxxxxxxxx",
 requestURL="http://api.twitter.com/oauth/request_token",
 accessURL="http://api.twitter.com/oauth/access_token",
 authURL="http://api.twitter.com/oauth/authorize")
download.file(url="http://curl.haxx.se/ca/cacert.pem", 
destfile="cacert.pem")
cred$handshake(cainfo="cacert.pem")

Replace the consumer key and secret values with the ones you have for your 
application. Save the file as twitterconnect.r and then quit the text editor.

Back in the R command line, you load the source file, and it runs as soon as 
it’s loaded.

>source(twitterconnect.r')

You see the twitteR library load the dependencies and then attempt to con-
nect to Twitter.

> source("twitterconnect.r")
Loading required package: ROAuth
Loading required package: RCurl
Loading required package: bitops
Loading required package: digest
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Loading required package: rjson
trying URL 'http://curl.haxx.se/ca/cacert.pem'
Content type 'text/plain' length 251338 bytes (245 Kb)
opened URL
==================================================
downloaded 245 Kb
To enable the connection, please direct your web browser to: 
 
http://api.twitter.com/oauth/authorize?oauth_token=cv88UGfPrAJnraJPqdGje
g5QJEUMk185jOUncJhDk
 
When complete, record the PIN given to you and provide it here:

The main thing to look out for is the connecting URL with the oauth _ token 
key. Copy the whole URL and paste it into a browser. You go to the Twitter site 
where you’re asked to authorize your application request. When you accept 
this, you’d normally return to the application, but because you’ve disabled that 
feature, you get a personal identification number (PIN) instead.

Back at the R command line, the program you have written is currently 
waiting for input—the PIN—so type that in the R window.

As soon as the PIN is entered, you’re returned to the R prompt. You need to 
register the oauth with the twitteR library, which you do with the following 
command:

>registerTwitterOAuth(cred)

The R command line responds with TRUE when the credentials are registered. 
After that’s done, you can run a quick test.

searchTwitter("#bigdata")

You start to see results come through to the command line.

[[1]]
[1] "eriksmits: #BigData could generate millions of new jobs  
http://t.co/w1FGdxjBI9 via @FortuneMagazine, is a Java Hadoop developer 
key for creating value?"
[[2]]
[1] "MobileBIAus: RT @BI_Television: RT @DavidAFrankel: Big Data 
Collides with Market Research http://t.co/M36yXMWJbg #bigdata 
#analytics"
[[3]]
[1] "alibaba_aus: @PracticalEcomm discusses how the use of #BigData can 
combat #ecommerce fraud http://t.co/fmd9m0wWeH"
[[4]]
[1] "alankayvr: RT @ventanaresearch: It's not too late! Join us in S.F. 
for the 2013 Technology Leadership Summit - sessions on #BigData #Cloud 
&amp; more http. . ."
[[5]]
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[1] "DelrayMom: MT @Loyalty360: White Paper 6 #Tips for turning 
#BigData into key #insights, http://t.co/yuNRWxzXfZ, @SAS, #mktg #data 
#contentmarketing"

It’s worth saving the credentials so you don’t have to keep re-authorizing the 
access tokens via Twitter. You can save them to a file.

>save(cred,file="credentials.RData")

The next time you want to use the Twitter credentials, you can do it in two lines.

>load("credentials.RData")
>registerTwitterOAuth(cred)

Summary

R is a complex piece of software, but it’s well-loved by data scientists (new and 
old ones alike), and also it’s become the de facto statistics software for the open 
source generation.

There are hundreds of well-developed and documented libraries for R within 
the CRAN package library.

Development does come at a cost; it can be memory intensive for large and 
complex jobs. It doesn’t handle huge amounts of data well, but this is improved 
by the work done by Revolution Analytics and Purdue University bringing 
Hadoop processing power to the R engine.

If you still prefer the comfort of your “normal” programming language, such 
as Java, then use the JRI/RJava combinations; they work very well. Think about 
real-time analytics to your Java web servlets, for example—very powerful indeed.

Regardless of whether you’re processing social media feeds, evaluating e-com-
merce shopping baskets, or reading sensor data from temperature gauges, look 
at R as an alternative for processing the data.
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For a full explanation of how Kafka works and the full walk-through of pro-
ducers and consumers, please look at Chapter 12.

You can download the open source version of Kafka from this link:

https://www.apache.org/dyn/closer.cgi?path=/kafka/2.2.0/ 

kafka_2.12-2.2.0.tgz

Installing Kafka

The downloaded distribution comes with both Zookeeper and Kafka and all the 
command-line tools explained in this appendix. Before you can use it, create a 
directory to work from and untar the distribution file.

$ tar -zxf kafka_2.12-2.2.0.tgz
$ cd kafka_2.12-2.2.0

Starting Zookeeper

For development, a stand-alone cluster will work fine, so there are no changes 
required to any of the configuration files. The first thing to start is Zookeeper. 

Kafka Quick Start

https://www.apache.org/dyn/closer.cgi?path=/kafka/2.2.0/kafka_2.12-2.2.0.tgz
https://www.apache.org/dyn/closer.cgi?path=/kafka/2.2.0/kafka_2.12-2.2.0.tgz
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In a terminal window, run the following as the root user (if you don’t use the 
root user, you may get file permission issues):

$ bin/zookeeper-server-start.sh config/zookeeper.properties
[2019-06-18 07:43:12,238] INFO Reading configuration from: 
config/zookeeper.properties (org.apache.zookeeper.server.quorum.
QuorumPeerConfig)
[2019-06-18 07:43:12,241] INFO autopurge.snapRetainCount set to 3 
(org.apache.zookeeper.server.DatadirCleanupManager)
[2019-06-18 07:43:12,241] INFO autopurge.purgeInterval set to 0 
(org.apache.zookeeper.server.DatadirCleanupManager)
[2019-06-18 07:43:12,243] INFO Purge task is not scheduled. 
(org.apache.zookeeper.server.DatadirCleanupManager)
[2019-06-18 07:43:12,243] WARN Either no config or no quorum defined in 
config, running  in standalone mode 
(org.apache.zookeeper.server.quorum.QuorumPeerMain)
[2019-06-18 07:43:12,260] INFO Reading configuration from: 
config/zookeeper.properties (org.apache.zookeeper.server.quorum.
QuorumPeerConfig)

Starting Kafka

Once Zookeeper is running, open a new terminal window and start the Kafka 
broker with the following command:

$ bin/kafka-server-start.sh config/server.properties
[2019-06-18 07:43:45,792] INFO Registered kafka:type=kafka.Log4jController 
MBean 
(kafka.utils.Log4jControllerRegistration$)
[2019-06-18 07:43:46,536] INFO starting (kafka.server.KafkaServer)
[2019-06-18 07:43:46,538] INFO Connecting to zookeeper on localhost:2181 
(kafka.server.KafkaServer)
[2019-06-18 07:43:46,562] INFO [ZooKeeperClient] Initializing a new
session to localhost:2181. (kafka.zookeeper.ZooKeeperClient)
[2019-06-18 07:43:46,568] INFO Client environment:zookeeper.version=3.4.13-
2d71af4dbe22557fda74f9a9b4309b15a7487f03, 
built on 06/29/2018 00:39 GMT (org.apache.zookeeper.ZooKeeper)
[2019-06-18 07:43:46,568] INFO Client environment:
host.name=192.168.1.102 (org.apache.zookeeper.ZooKeeper)
[2019-06-18 07:43:46,568] INFO Client environment:
java.version=1.8.0_45 (org.apache.zookeeper.ZooKeeper)

Creating Topics

To write messages to Kafka, you require a topic. To create a topic from the 
command line, use the following command. Note that the minimum replication 
factor and partition count is 1. You can increase it if required in the future, but 



	 Appendix A ■ Kafka Quick Start	 369

you cannot reduce those figures once set; the only way to do that is to delete 
the topic and start again.

$KAFKA_HOME/bin/kafka-topics.sh --zookeeper localhost:2181 --create 
--topic testtopic --replication-factor 1 --partitions 1
Created topic “testtopic”.

Listing Topics

To list the topics, use the --list flag from the kafka-topics command. Note 
that all topics will be listed including the internal ones used by Kafka for offset 
counts and metrics.

bin/kafka-topics --zookeeper localhost:2181 --list
__confluent.support.metrics
__consumer_offsets
_confluent-command
_confluent-metrics
_confluent-monitoring
_schemas
connect-configs
connect-offsets
connect-statuses
testtopic

Describing a Topic

The describe topic flag, --describe, will output to the console the general 
information plus any other added configuration settings of a given topic.

$ bin/kafka-topics --zookeeper localhost:2181 --describe 
--topic testtopic
Topic:testtopic    PartitionCount:1    ReplicationFactor:1    Configs:
    Topic: testtopic    Partition: 0    Leader: 0    Replicas: 0    
Isr: 0

Deleting Topics

Deleting a topic is done within the same kafka-topics command with the --delete 
flag. If your broker or topic configuration contains delete.topic.enable=false, 
then your request will be ignored, but no warning will be given. Depending 
on the size of your topic log, it may not delete immediately; it’s worth checking 
again with the --list flag to confirm.
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$ bin/kafka-topics --zookeeper localhost:2181 --delete --topic testtopic
Topic testtopic is marked for deletion.
Note: This will have no impact if delete.topic.enable is not set to 
true.

Running a Console Producer

You are able to create test messages from the command line using the kafka-
console-producer script. When it is run, you will be able to either type or copy/
paste information into the terminal window, and it will be sent to the specified 
topic.

$ bin/kafka-console-producer --broker-list localhost:9092 
--topic testtopic

Running a Console Consumer

To read the messages from a topic from the terminal, use the kafka-console-
consumer command.

$ bin/kafka-console-consumer --bootstrap-server localhost:9092 
--topic testtopic --from-beginning
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Before you can start consuming data from Twitter into an application, you need 
to set up a development account and install the Twitter development environ-
ment. This setup process uses Twitter’s developer site (http://dev.twitter.com) 
and requires you to have an existing Twitter account. If you don’t have a Twitter 
account, you can sign up for one at http://www.twitter.com.

The developer website enables users to create keys for their applications to 
access Twitter’s APIs. I’m going step-by-step, assuming you’ve never done it 
before. If you already know how to create Twitter developer access and the 
required credentials, then you can skip the remainder of this section.

1.	 Open a web browser and go to http://dev.twitter.com. Log in with your 
Twitter credentials.

2.	 Find your Twitter avatar image at the top right. Hover your mouse pointer 
over the arrow next to it. Click the My Applications link in the drop-down 
menu.

3.	 Click the Create A New Application button, as shown in Figure B.1.

4.	 Fill in the required fields for the application name, the description, and a 
URL for your website (see Figure B.2). This information is required if 
Twitter users decide to use their accounts with your application. You can 
leave the callback URL blank, because you won’t be using it.

The Twitter API Developer 

Application Configuration

http://dev.twitter.com
http://www.twitter.com
http://dev.twitter.com
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You need to agree to Twitter’s terms and conditions as well as fill in a 
captcha code. Click the Create Your Twitter Application button.

Figure B.1:  Creating a new Twitter application page

Figure B.2:  Completing the application detail page
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Assuming that all went well, you are directed to the Details configuration 
screen of your application. These settings include organization, autho-
rization, settings, access keys, and an option to delete the application.

5.	 In the OAuth Settings area of the Details tab (see Figure B.3) is the infor-
mation you require for the Spring XD system to collect Twitter streaming 
data. Make a note of the consumer key and the consumer secret.

6.	 Twitter requires an access token to go with your consumer key and secret. 
The easiest way to get one is to click the Create My Access Token button 
below the OAuth settings. It can take a moment for the access token to 
appear in the Details page. If it takes longer than 30 seconds or if the access 
token remains empty, refresh the page in your browser, and the tokens 
appear.

When the process is complete, you will see the access token, an access token 
secret key, and the access level. A read-only token is fine for your purposes, 
because you’ll be consuming data and not writing new tweets.

Figure B.3:  OAuth details
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Regardless of the operating system you use on a daily basis, there’s nothing 
wrong with learning some handy Unix commands. The commands covered in 
this section will help you on the day-to-day tasks of quickly testing, parsing, 
and searching through your text data.

If you’re a Windows user, you can still join in by downloading Cygwin, which 
is a Unix shell command interpreter. Cygwin is a shell that sits on top of the 
Windows Command application and behaves like it’s a Unix install.

Some of these commands will appear from time to time in the chapters of 
this book, so it’s worth reviewing them now. Experiment with them and study 
the output so you have an idea of what to expect.

Using Sample Data

Before you get started with the tools, you need some sample data. With a text 
editor, type out the following lines and separate each value with a tab:

987    1391548780   hhh bbb
988    1391548781   sda jjj
989    1391548782   asd asd
990    1391548783   gjh jkl
991    1391548784   abc abc
992    1391548785   ghj gjh

Useful Unix Commands
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993    1391548785   hhh bbb
994    1391548785   sda jjj
995    1391548786   asd asd
996    1391548787   gjh jkl
997    1391548787   abc abc
998    1391548787   ghj gjh

Name the text file text.txt, and then you can follow along with the follow-
ing commands and see the output. The sample data is basically comprised of 
a unique ID, a timestamp, and some text. It’s the sort of thing you would see 
within a database table but is output as text. This example uses a tab delimiter, 
but you might find data with commas, semicolons, and other characters used 
as a delimiter.

Showing the Contents: cat, more, and less

The cat command concatenates and prints the contents of one or more files to 
the console output.

Example Command
cat text.txt text2.txt text3.txt

Expected Output

987    1391548780   hhh bbb
988    1391548781   sda jjj
989    1391548782   asd asd
990    1391548783   gjh jkl
991    1391548784   abc abc
992    1391548785   ghj gjh
993    1391548785   hhh bbb
994    1391548785   sda jjj
995    1391548786   asd asd
996    1391548787   gjh jkl
997    1391548787   abc abc
998    1391548787   ghj gjh

Adding –b to the options gives you the line numbers, too.

$ cat -b sample.txt 
     1 987    1391548780   hhh bbb
     2 988    1391548781   sda jjj
     3 989    1391548782   asd asd
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     4 990    1391548783   gjh jkl
     5 991    1391548784   abc abc
     6 992    1391548785   ghj gjh
     7 993    1391548785   hhh bbb
     8 994    1391548785   sda jjj
     9 995    1391548786   asd asd
    10 996    1391548787   gjh jkl
    11 997    1391548787   abc abc
    12 998    1391548787   ghj gjh

If too much content is showing in the console for you to keep up with, you 
can add the more command after the cat command.

$ cat sample | more

Alternatively, the less command gives you a controlled environment for 
viewing the contents of files but does not let you edit them.

Filtering Content: grep

For matching patterns within text, grep is your friend. It’s one of those utilities 
you’ll use again and again after you get used to it. The syntax is very basic: grep 
[options] [pattern to find] [name of file(s)].

Example Command for Finding Text
$grep 'bbb bbb' sample.txt

Example Output
To invert the output, find the lines that don’t match the pattern and then add 
the –v flag before the pattern. Table C.1 shows other handy option flags you 
can use with grep.

Table C.1: grep Option Flags

FLAG EFFECT ON OUTPUT

-c Outputs the number of times the pattern was matched in the file

-v Inverts the output to show lines that don’t match the pattern

-i Ignores the case on the input line so BBB and bbb would match

-n Displays the line number on which the pattern match occurs

-l Lists the filenames where the pattern matches
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The pattern matching can be taken a step further by introducing Perl-like 
patterns with the –P option. There are numerous books on the subject of Perl 
and regular expressions.

$ grep -e '[1-5]\tsda' sample.txt 
988    139154878    sda jjj
994    1391548785   sda jjj

Sorting Data: sort

The sort command takes the input file and sorts in ascending or descending 
order. By default, sort assumes that everything is a string. (You’ll read about 
number values in a moment.)

Example Command for Basic Sorting
$sort sample.txt

Example Output

987    1391548780   hhh bbb
988    1391548781   sda jjj
989    1391548782   asd asd
990    1391548783   gjh jkl
991    1391548784   abc abc
992    1391548785   ghj gjh
993    1391548785   hhh bbb
994    1391548785   sda jjj
995    1391548786   asd asd
996    1391548787   gjh jkl
997    1391548787   abc abc
998    1391548787   ghj gjh

The –r flag outputs the results in descending order.

$ sort -r sample.txt 
998    1391548787   ghj gjh
997    1391548787   abc abc
996    1391548787   gjh jkl
995    1391548786   asd asd
994    1391548785   sda jjj
993    1391548785   hhh bbb
992    1391548785   ghj gjh
991    1391548784   abc abc
990    1391548783   gjh jkl
989    1391548782   asd asd
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988    1391548781   sda jjj
987    1391548780   hhh bbb

So far, the example has covered sorting strings. Consider the following list 
of numbers:

10
18
1
20
17
15
103
110
12
22
21
201

Running a default sort command would sort the number values as strings, so 
the output would be correct, but it probably would not be what you hoped for.

$ sort sample2.txt 
1
10
103
110
12
15
17
18
20
201
21
22

The –n option treats the input data as numeric.

$ sort -n sample2.txt 
1
10
12
15
17
18
20
21
22
103
110
201
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The final useful option is the –k flag, which splits the input data into columns 
and lets you sort on a specific column. In the sample data, the first three-letter 
text column is the third, so by using the option –k3, you sort on the text column.

$ sort -k3 sample.txt 
991    1391548784   abc abc
997    1391548787   abc abc
989    1391548782   asd asd
995    1391548786   asd asd
992    1391548785   ghj gjh
998    1391548787   ghj gjh
990    1391548783   gjh jkl
996    1391548787   gjh jkl
987    1391548780   hhh bbb
993    1391548785   hhh bbb
988    1391548781   sda jjj
994    1391548785   sda jjj

When combining the sort option flags, you can output pretty much anything 
you want. For example, you could reverse sort the second column as a numeric 
value using the following code:

$ sort -k2nr sample.txt 
996    1391548787   gjh jkl
997    1391548787   abc abc
998    1391548787   ghj gjh
995    1391548786   asd asd
992    1391548785   ghj gjh
993    1391548785   hhh bbb
994    1391548785   sda jjj
991    1391548784   abc abc
990    1391548783   gjh jkl
989    1391548782   asd asd
988    1391548781   sda jjj
987    1391548780   hhh bbb

The combination of the –k, -n, and –r flags is suitable for most applications 
when you’re running through basic delimited data.

Finding Unique Occurrences: uniq

Sometimes data will have repeat lines in them because of a data entry error or 
a slightly error-prone database query. Before raising your voice at the database 
operator (I have to look in the mirror to talk to my DBA), you can use the uniq 
command to extract all the unique lines.

$ uniq sample.txt 
987    1391548780   hhh bbb
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988    1391548781   sda jjj
989    1391548782   asd asd
990    1391548783   gjh jkl
991    1391548784   abc abc
992    1391548785   ghj gjh
993    1391548785   hhh bbb
994    1391548785   sda jjj
995    1391548786   asd asd
996    1391548787   gjh jkl
997    1391548787   abc abc
998    1391548787   ghj gjh

Using uniq in combination with the –c flag, the output will contain the number 
of repeats that were found within the file. If you do not need to see the counts, 
then you can use the –u flag in the sort command.

Showing the Top of a File: head

When you’ve downloaded a 10,000-line file and you want to quickly inspect it, 
it’s easy to use the cat command and dump the whole file out. Obviously, you 
can’t read it as the lines are appearing faster than your eyes. The head command 
shows the output of a defined number of lines.

$ head -n 5 sample.txt 
987    1391548780   hhh bbb
988    1391548781   sda jjj
989    1391548782   asd asd
990    1391548783   gjh jkl
991    1391548784   abc abc

If you want to show the last number of lines of the file, then use the tail 
command.

Counting Words: wc

Using wc counts the number of lines, words, and characters used within the 
text document.

$ wc sample.txt 
      13      48     277 sample.txt

If you want to see only the number of lines, then use –l as an option, -w for 
words, and –m for characters.
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Locating Anything: find

The find command is one of my favorites. It takes a little getting used to, but 
once you do, it will be a big help to you.

The syntax starts with a source directory (using a period [.] if you want to 
start in the current directory) and various text options. For example, here’s what 
it looks like to run the find command on the home directory on my machine:

$ find . -type f -name '*.txt' -print
./.gradle/caches/1.10/scripts/build_361heej71i7errcd096649rjns/
ProjectScript/buildscript/classes/emptyScript.txt
./.gradle/caches/1.8/scripts/build_4p3rjceekul5gbo8of3d9h4hso/
ProjectScript/buildscript/classes/emptyScript.txt
./.rvm/config/displayed-notes.txt
./.rvm/gems/ruby-1.9.2-p320/gems/arel-3.0.2/History.txt
./.rvm/gems/ruby-1.9.2-p320/gems/arel-3.0.2/Manifest.txt

With the –type flag, I am looking for files (f). –name gives the types of file I’m 
looking for—in this instance any file with the extension .txt. I print the results 
with the –print flag.

So far, there’s nothing here that a few Unix commands couldn’t do. The great 
thing about find is that you can use Unix commands within the command 
itself. Imagine you’re looking for any files with the phrase “SOFTWARE IS 
PROVIDED” in the body of the text file.

$ find . -type f -name "*.txt" -exec grep "SOFTWARE IS PROVIDED" {} \; 
-print
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
./.rvm/gems/ruby-1.9.2-p320/gems/arel-3.0.2/MIT-LICENSE.txt
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
./.rvm/gems/ruby-1.9.2-p320/gems/polyglot-0.3.3/License.txt
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
./.rvm/gems/ruby-1.9.2-p320/gems/polyglot-0.3.3/README.txt
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 
EXPRESS OR
./.rvm/gems/ruby-1.9.2-p320/gems/rack-test-0.6.1/MIT-LICENSE.txt
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 
EXPRESS OR
./.rvm/gems/ruby-1.9.2-p320/gems/rack-test-0.6.2/MIT-LICENSE.txt
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
./.rvm/gems/ruby-1.9.2-p320/gems/uglifier-1.2.6/LICENSE.txt
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
./.rvm/gems/ruby-1.9.2-p320/gems/uglifier-1.3.0/LICENSE.txt

This example uses the standard grep command that is covered earlier in this 
appendix, but it replaces the filename with {}, which is a placeholder for the 
filename on which the find command is working.
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find has saved my programming sanity many times over, and if I’m looking 
for a file that has a method name but I can’t remember where it is (this happens 
a lot with large codebases), I don’t have to fire up my IDE. I just use find from 
the command line.

Combining Commands and Redirecting Output

The explanations for the Unix commands showed you how to use one command 
at a time. Using the pipe symbol (|), you can chain these commands together. 
With the greater-than symbol (>), you can redirect output to a new file.

$ grep 'hhh' sample.txt | sort | less
987    1391548780   hhh bbb
993    1391548785   hhh bbb

The preceding command uses grep to search for 'hhh' in the sample.txt file 
and then runs the result through the sort command; this is then written to a 
new file called newsample.txt. Finally, the output of the new file is sent to the 
console with cat.

Picking a Text Editor

The choice of text editor is a personal one, akin to liking a specific music group, 
sports team, or favorite actor or actress. I’m not saying fights have broken out 
about these editors, but conversations over coffee and beer have sometimes been 
emotional. If you want to work out the personality type of a software developer, 
just ask him what text editor he uses.

Ultimately, it’s up to you what sort of text editor you’ll use. You might not be 
using it all the hours of the day, but for the times you need to quickly look at or 
edit something, you’ll want an editor that you can use fluently and without fuss.

Colon Frenzy: Vi and Vim
Vi was written in 1976 by Bill Joy and was introduced in 1978 when it was 
released as part of BSD Unix. Pronounced “vee eye,” it’s been the mainstay 
of Unix system administrators for a long time. It’s still one of the most widely 
used text editors today.

The thing that makes vi challenging is the concept of modes for the arcane 
commands: There are line-oriented “ex” commands that operate on lines of text; 
they are needed to write the file (:w) or quit the application (:q). If you want to 
quit without saving, then :q! is needed. Likewise, overwriting an existing file 
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uses :w!. There is an insert mode while you are entering new text, and there 
is an edit mode for moving and changing text. Vi is so simple there is a coffee 
mug available with all (100 percent) of the vi commands on it.

It takes time to learn the commands, such as how to delete lines, yank text into 
“buffers” and then paste it, search for text, and do other basic functions. After 
a bit of time, the modes actually become second nature. Vi includes a powerful 
“macro language” for adding your own commands or command sequences.

I’m still a user of vi; it covers most of my needs. However, I have to admit it 
drove me mad when I first used it in 1995. I’ve still not moved over to vim (Vi 
iMproved), though it has windows, better editing, mouse support, and colorful 
syntax highlighting.

Nano
For those who can’t cope with the colon command, the nano editor provides 
command-line heaven without all the complication. The nano editor lets you 
navigate around using the arrow keys (vi uses the h, j, k, and l keys for navi-
gating). The editor includes a decent number of hints at the bottom of the screen, 
so you can see how you can save and quit.

For sheer speed of loading, editing, saving, and exiting a document, nano is 
a good choice.

Emacs
Compared to vi and nano, Emacs is the big gun of the text editors. It’s highly 
customizable and configurable. With the resurgence in Lisp-like languages, 
Clojure being an example, the usage of Emacs is on the rise. For all my Clojure 
development, I use Emacs. Along with CIDER, it gives me editing, a REPL, and 
debugging all in one place.

If you want to try Emacs, I recommend the xemacs version of the program.
Emacs bypasses the whole insert mode issue that vi users are willing to adopt. 

Like nano, in Emacs you type on the screen and see the changes. It also has 
more than 2,000 built-in commands for those who are happy to use Emacs as 
their main editor for everything. It is extensible by writing Lisp programs. To 
exit Emacs if you start it accidentally, press Ctrl-X and then Ctrl-C.
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A P P E N D I X

Machine learning is only part of the story; it’s the application of knowing what 
to use to get the insight you need. The domain of data science combines several 
disciplines that cover programming, math, domain knowledge, and visualization.

It’s rare for one book to cover it all. To that end, I’ve included some further 
reading that will be of help to you on your machine learning and data journey. (I 
know what you’re thinking, and yes, I have bought and read all of these books.)

Machine Learning

The machine learning arena is a huge domain and the majority of the books 
written are big, in-depth, heavy affairs that can take time to read, digest, and 
appreciate. Two stand out:

Data Mining – Practical Machine Learning Tools and Techniques by Ian H. Witten, 
Eibe Frank, and Mark A. Hall (Morgan Kaufmann, 2011, ISBN 9780123748560)

Collective Intelligence in Action by Satnam Alag (Manning, 2008, ISBN 
9781933988313)

Further Reading
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Statistics

More and more emphasis is being put on statistical knowledge and its applica-
tion. Sometimes it feels hard to get into, especially for software developers, so 
these titles will help you along:

The Art of Statistics by David Spielgalhalter (Pelican Books, 2019, ISBN 
9780241398630)

Naked Statistics: Stripping the Dread from the Data by Charles Wheelan (Norton, 
2013, ISBN 9780393071955)

Keeping Up with the Quants: Your Guide to Understanding and Using Analytics by 
Thomas H. Davenport and Jinho Kim (Harvard Business Review Press, 
2013, ISBN 9781422187258)

Big Data and Data Science

Regardless of whether you are a supporter of the term Big Data, there’s no 
denying the impact that data has on industry. In Big Data, planning is key, and 
it’s important to have a proper understanding of the implications of planning 
and insight.

Data Just Right: Introduction to Large-Scale Data & Analytics by Michael 
Manoochehri (Addison-Wesley, 2014, ISBN 9780321898654)

Big Data: Understanding How Data Powers Big Business by Bill Schmarzo (Wiley, 
2013, ISBN 9781118739570)

Big Data @ Work: Dispelling the Myths, Uncovering the Opportunities by Thomas 
H. Davenport (Harvard Business Review Press, 2014, 9781422168165)

Big Data: A Revolution That Will Transform How We Live, Work, and Think by 
Viktor Mayer-Schonberger and Kenneth Cukier (Eamon Dolan/Houghton 
Mifflin Harcourt, 2013, ISBN 9780544002692)

Data Smart: Using Data Science to Transform Information into Insight by John W. 
Foreman (Wiley, 2013, ISBN 9781118661468)

Data Science for Business: What You Need To Know About Data Mining and Data-
Analytic Thinking by Foster Provost and Tom Fawcett (O’Reilly Media, 2013, 
ISBN 9781449361327)
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Visualization

My book concentrates on the pure back-end processing of data with machine 
learning techniques, but do not discount the power of visualization to commu-
nicate your results. These books will help:

Visualize This: The Flowing Data Guide to Design, Visualization, and Statistics 
by Nathan Yau (Wiley, 2011, ISBN 9780470944882)

Information Is Beautiful by David McCandless (Harper Collins, 2012, ISBN 
9780007492893)

Facts Are Sacred by Simon Rogers (Faber & Faber, 2013, ISBN 9780571301614)

Making Decisions

The key to machine learning projects is making good decisions. With insight in 
hand, you can form next steps. The books listed here aren’t software oriented 
at all, but they will give you vast pools of thinking about how to process and 
make decisions with the information you have.

Thinking in Bets by Annie Duke (Portfolio/Penguin, 2018, ISBN 9780735216358)

How to Develop Your Thinking Ability by Kenneth S. Keyes, Jr. (McGraw/Hill 
Paperbacks, 1963)

A brilliant book, now out of print but can be found by various sellers on 
the Internet. If it’s good enough for Marilyn Monroe, it’s good enough 
for me.

Eyes Wide Open by Noreena Hertz (HarperCollins, 2013, ISBN 9780062268617)

The Signal and the Noise: Why So Many Predictions Fail—but Some Don’t by Nate 
Silver (Penguin Books, 2012, ISBN 9781594204111)

Lean Analytics: Use Data to Build a Better Startup Faster by Alistair Croll and 
Benjamin Yoskovitz (O’Reilly Media, 2013, ISBN 9781449335670)

Obviously Awesome by April Dunford (Ambient Press, 2019, ISBN 9781999023003)

Not strictly a decision-making book, but if you are a startup doing anything, 
then this is the book you need.
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Datasets

Sometimes it’s hard to find data to play with. Luckily, there are a few websites 
with loads of the stuff to download.

■■ UCI Machine Learning Repository: http://archive.ics.uci.edu/ml/

The UCI maintains 290 datasets covering many different domains. What’s 
the most popular downloaded dataset? It’s still the iris.

■■ Quora: http://www.quora.com/Where-can-I-find-large-datasets- 
open-to-the-public

Here you’ll find a long list of URLs covering all sorts of topics that you 
can investigate. (This site requires you to sign in.)

■■ Kaggle: https://www.kaggle.com

There are plenty of datasets, advice, tutorials, and competitions to pour 
through here.

Blogs

And they said RSS feeds were dead. . .I don’t think so! There are a few blogs 
that I keep an eye on regularly, and these are the ones that relate to what is 
covered in this book:

■■ FiveThirtyEight: http://www.fivethirtyeight.com

Nate Silver and a team of contributors build this daily digest of stories 
with data, covering everything from politics to which is the best bur-
rito in the United States.

■■ Radar: http://radar.oreilly.com

This site for emerging technologies is worth checking out for the daily 
“Four Short Links,” which pinpoints some interesting programs, stories, 
and case studies from around the Internet.

■■ MathBabe: http://mathbabe.org

Cathy O’Neill’s blog discusses data, quantitative issues, and other subjects 
within the analytics arena.

http://archive.ics.uci.edu/ml/
http://www.quora.com/Where-can-I-find-large-datasets-open-to-the-public
http://www.quora.com/Where-can-I-find-large-datasets-open-to-the-public
https://www.kaggle.com
http://www.fivethirtyeight.com
http://radar.oreilly.com
http://mathbabe.org


	 Appendix D ■ Further Reading	 389

Useful Websites

Although Google does a good job of showing you where to find the best sites, 
I still refer to the following sites when I’m looking for specifics:

■■ Wiley: www.wiley.com

This is the main website for all Wiley books and also the place to go for 
the sample code examples for this book.

■■ Stack Overflow: www.stackoverflow.com

A community of developers helping a community of developers, what’s 
not to like? This site is definitely worth a quick look for answers on 
coding, servers, and machine learning.

The Tools of the Trade

Here are the links to the tools that are used in this book. It’s worth having them 
bookmarked for updates and announcements.

■■ Apache Spark: http://spark.apache.org

■■ Weka: htwww.cs.waikato.ac.nz/ml/weka

■■ Kafka: http://kafka.apache.org

■■ DeepLearning4J: https://deeplearning4j.org

http://www.wiley.com
http://www.stackoverflow.com
http://spark.apache.org
http://www.cs.waikato.ac.nz/ml/weka
http://kafka.apache.org
https://deeplearning4j.org
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uses, 166–168
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support vector machines
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model creation, 212–213
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YouTube, 24
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