

JavaScript®
Essentials

by Paul McFedries

JavaScript® Essentials For Dummies®

Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, www.wiley.com

Copyright © 2024 by John Wiley & Sons, Inc., Hoboken, New Jersey

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise,
except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without
the prior written permission of the Publisher. Requests to the Publisher for permission should be
addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything
Easier, and related trade dress are trademarks or registered trademarks of John Wiley & Sons,
Inc. and may not be used without written permission. JavaScript is a registered trademark of
Oracle and/or its affiliates. All other trademarks are the property of their respective owners. John
Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: WHILE THE PUBLISHER AND AUTHORS HAVE
USED THEIR BEST EFFORTS IN PREPARING THIS WORK, THEY MAKE NO REPRESENTATIONS
OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF
THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION
ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES REPRESENTATIVES, WRITTEN
SALES MATERIALS OR PROMOTIONAL STATEMENTS FOR THIS WORK. THE FACT THAT AN
ORGANIZATION, WEBSITE, OR PRODUCT IS REFERRED TO IN THIS WORK AS A CITATION AND/
OR POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE PUBLISHER
AND AUTHORS ENDORSE THE INFORMATION OR SERVICES THE ORGANIZATION, WEBSITE, OR
PRODUCT MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. THIS WORK IS SOLD WITH
THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING PROFESSIONAL
SERVICES. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR
YOUR SITUATION. YOU SHOULD CONSULT WITH A SPECIALIST WHERE APPROPRIATE. FURTHER,
READERS SHOULD BE AWARE THAT WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED
OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.
NEITHER THE PUBLISHER NOR AUTHORS SHALL BE LIABLE FOR ANY LOSS OF PROFIT OR ANY
OTHER COMMERCIAL DAMAGES, INCLUDING BUT NOT LIMITED TO SPECIAL, INCIDENTAL,
CONSEQUENTIAL, OR OTHER DAMAGES.

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-
4002. For technical support, please visit https://hub.wiley.com/community/support/dummies.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some
material included with standard print versions of this book may not be included in e-books or in
print-on-demand. If this book refers to media such as a CD or DVD that is not included in the
version you purchased, you may download this material at http://booksupport.wiley.com. For
more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2024933533

ISBN 978-1-394-26321-9 (pbk); ISBN 978-1-394-26323-3 (ebk); ISBN 978-1-394-26322-6 (ebk)

http://www.wiley.com
http://www.wiley.com/go/permissions
http://Dummies.com
https://hub.wiley.com/community/support/dummies
http://booksupport.wiley.com
http://www.wiley.com

Contents at a Glance
Introduction ... 1
CHAPTER 1: JavaScript: The Big Picture ... 5
CHAPTER 2: Programming with Variables .. 17
CHAPTER 3: Building Expressions .. 31
CHAPTER 4: Controlling the Flow of JavaScript .. 39
CHAPTER 5: Harnessing the Power of Functions ... 55
CHAPTER 6: Coding the Document Object Model ... 73
CHAPTER 7: Working with Arrays ...105
CHAPTER 8: Coding Strings and Dates ..117
CHAPTER 9: Debugging JavaScript ...129
CHAPTER 10: Dealing with Form Data ...141
CHAPTER 11: Ten JavaScript Debugging Strategies ...161

INDEX ...165

Table of Contents v

Table of Contents
INTRODUCTION ... 1

About This Book ... 2
Foolish Assumptions .. 2
Icons Used in This Book ... 3
Where to Go From Here .. 3

CHAPTER 1: JavaScript: The Big Picture ... 5
Adding JavaScript Code to a Web Page .. 5

The <script> tag ... 5
Where do you put the <script> tag? ... 6
Example #1: Displaying a message to the user........................... 7
Example #2: Writing text to the page ... 8

What You Need to Get Started ... 10
Dealing with Two Exceptional Cases .. 10

Handling browsers with JavaScript turned off 10
Handling very old browsers ... 12

Commenting Your Code .. 13
Moving to External JavaScript Files .. 14

CHAPTER 2: Programming with Variables ... 17
Getting Your Head around Variables ... 17

Declaring a variable with let .. 18
Storing a value in a variable... 19
Checking out another way to declare a variable: const 21
Using variables in statements ... 22

Naming Variables: Rules and Best Practices 24
Rules for naming variables .. 24
Ideas for good variable names .. 24

Understanding Literal Data Types .. 26
Working with numeric literals ... 26
Working with string literals .. 28
Working with Boolean literals ... 30

CHAPTER 3: Building Expressions ... 31
Understanding How Expressions Are Structured 31
Creating Numeric Expressions ... 32
Building String Expressions ... 33

vi JavaScript Essentials For Dummies

Building Comparison Expressions.. 34
Building Logical Expressions ... 34
Understanding Operator Precedence ... 35

The order of precedence ... 35
Controlling the order of precedence .. 37

CHAPTER 4:	 Controlling	the	Flow	of JavaScript 39
Decision-Making with if Statements... 40
Branching with if. . .else Statements .. 41
Understanding the Value of Code Looping 43
Working with while Loops ... 44
Working with for Loops ... 47
Working with do. . .while Loops .. 51

CHAPTER 5:	 Harnessing	the	Power	of Functions 55
Getting to Know the Function Structure .. 55
Making a Function Call ... 56

When the browser parses the <script> tag 57
When the page load is complete .. 58
When an event fires .. 60

Passing One or More Values to a Function 61
Passing one value to a function .. 62
Passing two or more values to a function 63

Getting a Value from a Function ... 65
Working with Anonymous Functions ... 66

Assigning an anonymous function to a variable 67
Replacing a function call with an anonymous function 68

Working with Arrow Functions ... 70

CHAPTER 6: Coding the Document Object Model.......................... 73
Getting Familiar with Objects .. 73

Working with object properties ... 74
Working with object methods ... 76

Introducing the Document Object Model 77
Specifying Elements in Your Code .. 79

Specifying an element by id ... 79
Specifying elements by tag name ... 79
Specifying elements by class name .. 80
Specifying elements by selector .. 80
Working with collections of elements .. 81

Table of Contents vii

Touring the DOM with Code ... 83
Getting the children of a parent element 84
Getting the parent of a child element .. 87
Getting the siblings of an element .. 87

Adding, Modifying, and Removing Elements 89
Adding an element to the page ... 89
Inserting text or HTML into an element 92
Removing an element .. 93

Using Code to Mess Around with CSS ... 94
Changing an element’s styles .. 94
Adding a class to an element .. 94

Using Code to Tweak HTML Attributes .. 97
Reading an attribute value... 98
Setting an attribute value... 98
Removing an attribute .. 99

Listening for Page Events ..100

CHAPTER 7: Working with Arrays ...105
What Is an Array? ..105
Declaring an Array ..106
Populating an Array ...106

Declaring and populating an array at the same time107
Populating an array using a loop ..108

Iterating Arrays ...109
Iterating an array: forEach() ...109
Iterating to create a new array: map()110
Iterating an array down to a value: reduce()111
Iterating to locate an element: find() ..112

Manipulating Arrays ...114
The length property ..114
Some useful array methods ..114

CHAPTER 8: Coding Strings and Dates ..117
Manipulating Strings ..117

Working with string templates ..118
Determining the length of a string ...121
Searching for substrings ..121
Learning the methods that extract substrings122

viii JavaScript Essentials For Dummies

Dealing with Dates and Times ..123
Learning the arguments used with the Date object124
Getting to know the Date object ...125
Getting info about a date ...126
Setting the date ...126

CHAPTER 9: Debugging JavaScript ..129
Laying Out Your Debugging Tools ..129
Debugging 101: Using the Console ..131

Getting the console onscreen ...132
Printing program data in the Console132
Running code in the Console ...133

Putting Your Code into Break Mode ..134
Invoking break mode ..135
Getting out of break mode ..137

Stepping Through Your Code..137
Stepping one statement at a time ..138
Stepping into some code ...138
Stepping over some code ..139
Stepping out of some code ..140

CHAPTER 10: Dealing with Form Data ...141
Coding Text Fields ..141

Referencing by field type ...142
Getting a text field value ..143
Setting a text field value ...143

Programming Checkboxes ..144
Referencing checkboxes ..145
Getting the checkbox state ..145
Setting the checkbox state ...146

Coding Radio Buttons ..147
Referencing radio buttons ...148
Getting a radio button state ..148
Setting the radio button state ...150

Programming Selection Lists ..150
Referencing selection list options ...151
Getting the selected list option ...152
Changing the selected option ..153

Table of Contents ix

Working with Form Events ..154
Setting the focus ...155
Monitoring the focus event ...155
Monitoring the blur event ..156
Listening for element changes ..156

Handling Form Data ...158

CHAPTER 11: Ten JavaScript Debugging Strategies161
Get Thee to Your Dev Tools ..161
The Console Is Your Best Debugging Friend162
Give Your Code a Break(point) ..162
Step Through Your Code ...162
Monitor Variable and Object Property Values163
Indent Your Code ...163
Break Down Complex Tasks..163
Break Up Long Statements ...163
Comment Out Problem Statements ..164
Use Comments To Document Your Scripts164

INDEX ...165

Introduction 1

Introduction

HTML and CSS are awesome technologies, and you can use
them to create pages that look amazing. But after you fun-
nel your page to your web server and look at it a few

(dozen) times, you may notice a subtle feeling of disappointment
creeping in. Why? It can be hard to pin down, but that hint of dis-
may comes from a stark fact: Your web page just kind of sits there.

Sure, you probably have a link or three to click, but most likely
those links just take you to more of your pages that also just kind
of sit there. Or maybe a link takes you to another site altogether,
one that feels dynamic and alive and interactive. Ah, engagement!
Ooh, excitement!

What’s the difference between a page that does nothing and a
page that seems to be always dancing? One word: JavaScript. If
you want your pages to be dynamic and interactive, you need a bit
of behind-the-scenes JavaScript to make it so.

“But,” I hear you object, “HTML isn’t that hard to learn. JavaScript
is a programming language, for crying out loud!” I hear you. It’s
true that anyone can learn HTML as long as they start with the
basic tags, examine lots of examples of how they work, and slowly
work their way up to more complex pages. It’s just a matter of
creating a solid foundation and then building on it.

I’m convinced that JavaScript can be approached in much the
same way. I’m certainly not going to tell you that JavaScript is
as easy to learn as HTML. That would be a bald-faced lie. How-
ever, I will tell you that there is nothing inherently difficult about
JavaScript. I believe that if you begin with the basic syntax and
rules, study tons of examples to learn how they work, and then
slowly build up to more complex scripts, you can learn JavaScript
programming. I predict here and now that by the time you finish
this book, you’ll even be a little bit amazed at yourself and at what
you can do.

2 JavaScript Essentials For Dummies

About This Book
Welcome, then, to JavaScript Essentials For Dummies. This book
gives you a solid education on the standard programming lan-
guage underlying the World Wide Web. You learn how to set up
the tools you need and, given any web pages you have (or some-
one else has) built with HTML and CSS, you learn how to use
JavaScript to program those pages. My goal is to show you that
adding a sprinkling of JavaScript magic to a page isn’t hard to
learn, and that even the greenest rookie programmer can learn
how to create dynamic and interactive web pages that will amaze
their family and friends (and themselves).

If you’re looking for lots of programming history, computer sci-
ence theory, and long-winded explanations of concepts, I’m
sorry, but you won’t find it here. My philosophy throughout this
book comes from Linus Torvalds, the creator of the Linux operat-
ing system: “Talk is cheap. Show me the code.” I explain what
needs to be explained and then I move on without further ado (or,
most of the time, without any ado at all) to examples and scripts
that do more to illuminate a concept that any verbose explana-
tions I could muster (and believe me, I can muster verbosity with
the best of them).

Foolish Assumptions
This book is not a primer on the internet or on using the World
Wide Web. This is a book on coding web pages, pure and simple.
This means I assume the following:

 » You know how to operate a basic text editor, and how to get
around the operating system and file system on your
computer.

 » You have an internet connection.

 » You know how to use your web browser.

 » You know the basics of HTML and CSS.

Yep, that’s it.

Introduction 3

Icons Used in This Book
This icon points out juicy tidbits that are likely to be repeatedly
useful to you — so please don’t forget them.

Think of these icons as the fodder of advice columns. They offer
(hopefully) wise advice or a bit more information about a topic
under discussion.

Look out! In this book, you see this icon when I’m trying to help you
avoid mistakes that can cost you time, money, or embarrassment.

Where to Go From Here
How you approach this book depends on your current level of
coding and/or JavaScript expertise (or lack thereof):

 » If you’ve never programmed before, begin at the beginning
with Chapter 1 and work at your own pace sequentially
through Chapters 2, 3, 4, and 5. This will give you all the
knowledge you need to pick and choose what you want to
learn throughout the rest of the book.

 » If you’ve done some non-JavaScript programming, start with
Chapter 1, skim through Chapters 2 through 5 to see how
JavaScript does the standard programming tasks, and then
pick and choose your topics from there.

 » If you’ve done some JavaScript coding already, I suggest
working quickly through the material in Chapters 2
through 5, and then diving into the all-important material
on the Document Object Model in Chapter 6. From there,
you can peruse the rest of the chapters as you see fit.

CHAPTER 1 JavaScript: The Big Picture 5

Chapter 1

IN THIS CHAPTER

 » Getting a feel for programming in
general, and JavaScript in particular

 » Checking out the tools you need
to get coding

 » Adding comments to your
JavaScript code

 » Storing your code in a separate
JavaScript file

JavaScript: The Big
Picture

In this chapter, you explore some useful JavaScript basics. Don’t
worry if you’ve never programmed before. I take you through
everything you need to know, step-by-step, nice and easy. As

you’re about to find out, it really is fun to program.

Adding JavaScript Code to a Web Page
Okay, it’s time to roll up your sleeves, crack your knuckles, and
start coding. This section describes the standard procedure for
constructing and testing a script and takes you through a couple
of examples.

The <script> tag
The basic container for a script is, naturally enough, the HTML
<script> tag and its associated </script> end tag:

<script>
 JavaScript statements go here
</script>

6 JavaScript Essentials For Dummies

Where do you put the <script> tag?
With certain exceptions, it doesn’t matter a great deal where you
put your <script> tag. Some people place the tag between the
page’s </head> and <body> tags. The HTML standard recom-
mends placing the <script> tag within the page header (that is,
between <head> and </head>), so that’s the style I use in this
book:

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Where do you put the script tag?

</title>
 <script>
 JavaScript statements go here
 </script>
 </head>
 <body>
 </body>
</html>

Here are the exceptions to the put-your-script-anywhere
technique:

 » If your script is designed to write data to the page, the
<script> tag must be positioned within the page body
(that is, between the <body> and </body> tags) in the
exact position where you want the text to appear.

 » If your script refers to an item on the page (such as a form
object), the script must be placed after that item.

 » With many HTML tags, you can add one or more JavaScript
statements as attributes directly within the tag.

It’s perfectly acceptable to insert multiple <script> tags within
a single page, as long as each one has a corresponding </script>
end tag, and as long as you don’t put one <script> block within
another one.

CHAPTER 1 JavaScript: The Big Picture 7

Example #1: Displaying a message
to the user
You’re now ready to construct and try out your first script. This
example shows you the simplest of all JavaScript actions: display-
ing a basic message to the user. The following code shows the
script within an HTML file:

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Displaying a Message to the User

</title>
 <script>
 alert("Hello JavaScript World!");
 </script>
 </head>
 <body>
 </body>
</html>

As shown in here, place the script within the header of a page,
save the file, and then open the HTML file within your browser.

This script consists of just a single line:

alert("Hello JavaScript World!");

This is called a statement, and each statement is designed to per-
form a single JavaScript task. Your scripts will range from simple
programs with just a few statements to huge projects consisting
of hundreds of statements.

You may be wondering about the semicolon (;) that appears at the
end of the statement. Good eye. You use the semicolon to mark the
end of each of your JavaScript statements.

8 JavaScript Essentials For Dummies

In the example, the statement runs the JavaScript alert()
method, which displays to the user whatever message is enclosed
within the parentheses (which could be a welcome message, an
announcement of new features on your site, an advertisement
for a promotion, and so on). Figure 1-1 shows the message that
appears when you open the file.

How did the browser know to run the JavaScript statement? When
a browser processes (parses, in the vernacular) a page, it basically
starts at the beginning of the HTML file and works its way down,
one line at a time. If it trips over a <script> tag, it knows one
or more JavaScript statements are coming, and it automatically
executes those statements, in order, as soon as it reads them. The
exception is when JavaScript statements are enclosed within a
function, which I explain in Chapter 5.

One of the cardinal rules of JavaScript programming is “one
statement, one line.” That is, each statement must appear on only
a single line, and there should be no more than one statement
on each line. I said “should” in the second part of the previous
sentence because it is possible to put multiple statements on a
single line, as long as you separate each statement with a semi-
colon (;). There are rare times when it’s necessary to have two or
more statements on one line, but you should avoid it for the bulk
of your programming because multiple-statement lines are dif-
ficult to read and to troubleshoot.

Example #2: Writing text to the page
One of JavaScript’s most powerful features is the capability to
write text and even HTML tags and CSS rules to the web page
on-the-fly. That is, the text (or whatever) gets inserted into the

FIGURE 1-1: This “alert” message appears when you open the HTML file
containing the example script.

CHAPTER 1 JavaScript: The Big Picture 9

page when a web browser loads the page. What good is that? For
one thing, it’s ideal for time-sensitive data. For example, you may
want to display the date and time that a web page was last modi-
fied so that visitors know how old (or new) the page is. Here’s
some code that shows just such a script:

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Writing Data to the Page</title>
 </head>
 <body>
 This is a regular line of text.

 <script>
 document.write("Last modified: " +

document.lastModified)
 </script>

This is another line of regular text.
 </body>
</html>

Notice how the script appears within the body of the HTML docu-
ment, which is necessary whenever you want to write data to the
page. Figure 1-2 shows the result.

This script makes use of the document object, which is a built-
in JavaScript construct that refers to whatever HTML file
(document) the script resides in (check out Chapter 6 for more
about the document object). The document.write() statement
tells the browser to insert whatever is within the parentheses to

FIGURE 1-2: When you open the file, the text displays the date and time the
file was last modified.

10 JavaScript Essentials For Dummies

the web page. The document.lastModified portion returns the
date and time the file was last changed and saved.

What You Need to Get Started
One of the nicest things about HTML and CSS is that the hurdles
you have to leap to get started are not only short but few in num-
ber. In fact, you really need only two things, both of which are free:
a text editor to enter the text, tags, and properties; and a browser
to view the results. (You’ll also need a web server to host the fin-
ished pages, but the server isn’t necessary when you’re creating
the pages.) Yes, there are high-end text editors and fancy graphics
programs, but these fall into the “Bells and Whistles” category;
you can create perfectly respectable web pages without them.

The basic requirements for JavaScript programming are exactly
the same as for HTML: a text editor and a browser. Again, pro-
grams are available to help you write and test your scripts, but
you don’t need them.

Dealing with Two Exceptional Cases
In this book, I make a couple of JavaScript assumptions related to
the people who’ll be visiting the pages you post to the web:

 » Those people have JavaScript enabled in their web browser.

 » Those people are using a relatively up-to-date version of a
modern web browser, such as Chrome, Edge, Safari, or
Firefox.

These are pretty safe assumptions, but it pays to be a bit paranoid
and wonder how you may handle the teensy percentage of people
who don’t pass one or both tests.

Handling browsers with
JavaScript turned off
You don’t have to worry about web browsers not being able to
handle JavaScript, because all modern browsers have supported
JavaScript for a very long time. You may, however, want to worry

CHAPTER 1 JavaScript: The Big Picture 11

about people who don’t support JavaScript. Although rare, some
folks have turned off their browser’s JavaScript functionality. Why
would someone do such a thing? Many people disable JavaScript
because they’re concerned about security, they don’t want cookies
written to their hard drives, and so on.

To handle these iconoclasts, place the <noscript> tag within the
body of the page:

<noscript>
 <p>
 Hey, your browser has JavaScript turned

off!
 </p>
 <p>
 Okay, cool, perhaps you'll prefer this non-JavaScript version of
the page.

 </p>
</noscript>

If the browser has JavaScript enabled, the browser doesn’t
display any of the text within the <noscript> tag. However, if
JavaScript is disabled, the browser displays the text and tags
within the <noscript> tag to the user.

To test your site with JavaScript turned off, here are the tech-
niques to use in some popular browsers:

 » Chrome (desktop): Open Settings, click Privacy and Security,
click Site Settings, click JavaScript, and then select the Don’t
Allow Sites to Use JavaScript option.

 » Chrome (Android): Open Settings, tap Site Settings, tap
JavaScript, and then tap the JavaScript switch to off.

 » Edge: Open Settings, click the Settings menu, click Cookies
and Site Permissions, click JavaScript, and then click the
Allowed switch to off.

 » Safari (macOS): Open Settings, click the Advanced tab, select
the Show Develop Menu in Menu Bar, and then close
Settings. Choose Develop ➪ Disable JavaScript.

12 JavaScript Essentials For Dummies

 » Safari (iOS or iPadOS): Open Settings, tap Safari, tap
Advanced, and then tap the JavaScript switch to off.

 » Firefox (desktop): In the Address bar, type about:config
and press Enter or Return. If Firefox displays a warning page,
click Accept the Risk and Continue to display the Advanced
Preferences page. In the Search Preference Name box, type
javascript. In the search results, look for the javascript.
enabled preference. On the far right of that preference, click
the Toggle button to turn the value of the preference from
true to false.

Handling very old browsers
In this book, you learn the version of JavaScript called ECMAScript
2015, also known as ECMAScript 6, or just ES6. Why this version,
in particular, and not any of the later versions? Two reasons:

 » ES6 has excellent browser support, with more than 98 percent
of all current browsers supporting the features released in
ES 6. Later versions of JavaScript have less support.

 » ES6 has everything you need to add all kinds of useful
and fun dynamic features to your pages. Unless you’re a
professional programmer, the features released in subse-
quent versions of JavaScript are way beyond what you need.

Okay, so what about that couple of percent of browsers that don’t
support ES6?

First, know that the number of browsers that choke on ES6 fea-
tures is getting smaller every day. Sure, it’s 2 percent now (about
1.7 percent, actually), but it will be 1 percent in six months, a
0.5 percent in a year, and so on until the numbers just get too
small to measure.

Second, the percentage of browsers that don’t support ES6 varies
by region (it’s higher in many countries in Africa, for example)
and by environment. Most of the people running browsers that
don’t fully support ES6 are using Internet Explorer 11, and most of
those people are in situations in which they can’t upgrade (some
corporate environments, for example).

CHAPTER 1 JavaScript: The Big Picture 13

If luck has it that your web pages draw an inordinate share of
these older browsers, you may need to eschew the awesomeness
of ES6 in favor of the tried-and-true features of ECMAScript 5.
To that end, as I introduce each new JavaScript feature, I point
out those that arrived with ES6 and let you know if there’s a sim-
ple fallback or workaround (known as a polyfill in the JavaScript
trade) if you prefer to use ES5.

Commenting Your Code
A script that consists of just a few lines is usually easy to read
and understand. However, your scripts won’t stay that simple
for long, and these longer and more complex creations will be
correspondingly more difficult to read. (This difficulty will be
particularly acute if you’re looking at the code a few weeks or
months after you first coded it.) To help you decipher your code,
it’s good programming practice to make liberal use of comments
throughout the script. A comment is text that describes or explains
a statement or group of statements. Comments are ignored by the
browser, so you can add as many as you deem necessary.

For short, single-line comments, use the double-slash (//). Put
the // at the beginning of the line, and then type your comment
after it. Here’s an example:

// Display the date and time the page was last
modified

document.write("This page was last modified on " +
document.lastModified);

You can also use // comments for two or three lines of text, as
long as you start each line with //. If you have a comment that
stretches beyond that, however, you’re better off using multiple-
line comments that begin with the /* characters and end with the
*/ characters. Here’s an example:

/*
This script demonstrates JavaScript's ability
to write text to the web page by using the

14 JavaScript Essentials For Dummies

document.write() method to display the date and
time the web page file was last modified.

This script is Copyright Paul McFedries.
*/

Although it’s fine to add quite a few comments when you’re just
starting out, you don’t have to add a comment to everything. If a
statement is trivial or its purpose is glaringly obvious, forget the
comment and move on.

Moving to External JavaScript Files
Earlier in this chapter, I talk about adding JavaScript code to a
web page by inserting the <script> and </script> tags into the
page header (that is, between the <head> and </head> tags), or
sometimes into the page body (that is, between the <body> and
</body> tags). You then write your code between the <script>
and </script> tags.

Putting a script inside the page in this way isn’t a problem if the
script is relatively short. However, if your script (or scripts) take
up dozens or hundreds of lines, your HTML code can look clut-
tered. Another problem you may run into is needing to use the
same code on multiple pages. Sure, you can just copy the code into
each page that requires it, but if you make changes down the road,
you need to update every page that uses the code.

The solution to both problems is to move the code out of the
HTML file and into an external JavaScript file. Moving the
code reduces the JavaScript presence in the HTML file to a single
line (as you’ll learn shortly) and means that you can update
the code by editing only the external file.

Here are some things to note about using an external
JavaScript file:

 » The file must use a plain text format.

 » Use the .js extension when you name the file.

CHAPTER 1 JavaScript: The Big Picture 15

 » Don’t use the <script> tag within the file. Just enter your
statements exactly as you would within an HTML file.

 » The rules for when the browser executes statements within
an external file are identical to those used for statements
within an HTML file. That is, statements outside of functions
are executed automatically when the browser comes across
your file reference, and statements within a function aren’t
executed until the function is called. (Not sure what a
“function” is? You get the full scoop in Chapter 5.)

To let the browser know that an external JavaScript file exists, add
the src attribute to the <script> tag. For example, if the exter-
nal file is named myscripts.js, your <script> tag is set up as
follows:

<script src="myscripts.js">

This example assumes that the myscripts.js file is in the
same directory as the HTML file. If the file resides in a different
directory, adjust the src value accordingly. For example, if the
myscripts.js file is in a subdirectory named scripts, you use
this:

<script src="scripts/myscripts.js">

You can even specify a file from another site (presumably your
own!) by specifying a full URL as the src value:

<script src="http://www.host.com/myscripts.js">

As an example, the following code shows a one-line external
JavaScript file named footer.js:

document.write("This page is Copyright "
+ new Date().getFullYear());

This statement writes the text “Copyright” followed by the current
year. (I know: This code looks like some real gobbledygook right
now. Don’t sweat it, because you’ll learn exactly what’s going on
here when I discuss the JavaScript Date object in Chapter 8.)

16 JavaScript Essentials For Dummies

The following code shows an HTML file that includes a reference
for the external JavaScript file:

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Using an External JS File</title>
 </head>
 <body>
 <p>
 Regular page doodads go here.
 </p>
 <hr>
 <footer>
 <script src="footer.js">
 </script>
 </footer>
 </body>
</html>

When you load the page, the browser runs through the HTML line
by line. When it gets to the <footer> tag, it notices the external
JavaScript file that’s referenced by the <script> tag. The browser
loads that file and then runs the code within the file, which writes
the Copyright message to the page, as shown in Figure 1-3.

FIGURE 1-3: This page uses an external JavaScript file to display a
footer message.

CHAPTER 2 Programming with Variables 17

Chapter 2

IN THIS CHAPTER

 » Understanding variables

 » Assigning names to variables

 » Introducing JavaScript data types

 » Figuring out numbers

 » Stringing strings together

Programming with
Variables

By default, JavaScript programs live a life without short-
term memory. The web browser executes your code one
statement at a time until there are no more statements left

to process. It all happens in the perpetual present. Ah, but notice
that I refer to this lack of short-term memory as the “default”
state of your scripts. It’s not the only state, so that means things
can be different. You have the power to give your scripts the gift
of short-term memory, and you do that by using handy little
chunks of code called variables. In this chapter, you delve into
variables, which is a fundamental and crucial programming topic.
You investigate what variables are, what you can do with them,
and how to wield them in your JavaScript code.

Getting Your Head around Variables
Why would a script need short-term memory? Because one of the
most common concepts that crops up when coding is the need to
store a temporary value for use later on. In most cases, you want
to use that value a bit later in the same script. However, you may
also need to use it in some other script, to populate an HTML
form, or as part of a larger or more complex calculation.

18 JavaScript Essentials For Dummies

For example, your page may have a button that toggles the page
text between a larger font size and the regular font size, so you
need some way to “remember” that choice. Similarly, if your
script performs calculations, you may need to set aside one or
more calculated values to use later. For example, if you’re con-
structing a shopping cart script, you may need to calculate taxes
on the order. To do that, you must first calculate the total value of
the order, store that value, and then later take a percentage of it
to work out the tax.

In programming, the way you save a value for later use is by stor-
ing it in a variable. A variable is a small area of computer memory
that’s set aside for holding a chunk of program data. The good
news is that the specifics of how the data is stored and retrieved
from memory happen well behind the scenes, so it isn’t some-
thing you ever have to worry about. As a coder, working with vari-
ables involves just three things:

 » Creating (or declaring) variables

 » Assigning values to those variables

 » Including the variables in other statements in your code

The next three sections fill in the details.

Declaring a variable with let
The process of creating a variable is called declaring in program-
ming terms. All declaring really means is that you’re supplying
the variable with a name and telling the browser to set aside a bit
of room in memory to hold whatever value you end up storing in
the variable. To declare a variable in JavaScript, you use the let
keyword, followed by a space, the name of the variable, and the
usual line-ending semicolon. For example, to declare a variable
named interestRate, you use the following statement:

let interestRate;

Here are a few things to bear in mind when you’re declaring vari-
ables in your scripts:

 » Declare a variable only once: Although you’re free to use a
variable as many times as you need to within a script, you
declare the variable only once. Trying to declare a variable
more than once will cause an error.

CHAPTER 2 Programming with Variables 19

 » Use a comment to describe each variable: Variables tend
to proliferate to the point where it often becomes hard to
remember what each variable represents. You can make the
purpose of each variable clear by adding a comment right
after the variable declaration, like so:

let interestRate; // Annual interest rate for
loan calculation

 » Declare each variable before you use it: If you use a
variable before you declare it, you’ll get an error.

In the first two items here, when I say that you’ll “get an
error,” I don’t mean that an error message will pop up on the
screen. The only thing you’ll notice is that your script doesn’t
run. To read the error message, you need to access your
browser’s web development tools, a task I go into in
satisfying detail in Chapter 9.

 » Declare each variable right before you first use it: You’ll
make your programming and debugging (refer to Chapter 9)
life much easier if you follow this one simple rule: Declare
each variable just before (or as close as possible to) the first
use of the variable.

The let keyword was introduced in ECMAScript 2015 (ES6). If you
need to support really old browsers — I’m looking at you, Internet
Explorer 11 and earlier — then use the var keyword instead.

Storing a value in a variable
After your variable is declared, your next task is to give it a value.
You use the assignment operator — the equals (=) sign — to store
a value in a variable, as in this general statement:

variableName = value;

Here’s an example that assigns the value 0.06 to a variable named
interestRate:

interestRate = 0.06;

20 JavaScript Essentials For Dummies

Note, too, that if you know the initial value of the variable in
advance, you can combine the declaration and initial assignment
into a single statement, like this:

let interestRate = 0.06;

It’s important to remember that, given a variable declared with
the let keyword, you’re free to change that variable’s value
any time you want. For example, if the value you assign to the
interestRate variable is an annual rate, later on your code may
need to work with a monthly rate, which is the annual rate divided
by 12. Rather than calculate that by hand, just put it in your code
using the division operator (/):

interestRate = 0.06 / 12;

As a final note about using a variable assignment, take a look at
a variation that often causes some confusion among new pro-
grammers. Specifically, you can set up a statement that assigns a
new value to a variable by changing its existing value. Here’s an
example:

interestRate = interestRate / 12;

If you’ve never come across this kind of statement before, it
probably looks a bit illogical. How can something equal itself
divided by 12? The secret to understanding such a statement is
to remember that the browser always evaluates the right side of
the statement — that is, the expression to the right of the equals
sign (=) — first. In other words, it takes the current value of
interestRate, which is 0.06, and divides it by 12. The resulting
value is what’s stored in interestRate when all is said and done.
For a more in-depth discussion of operators and expressions,
head over to Chapter 3.

Because of this evaluate-the-expression-and-then-store-the-
result behavior, JavaScript assignment statements shouldn’t be
read as “variable equals expression.” Instead, it makes more sense
to think of them as “variable is set to expression” or “variable
assumes the value given by expression.” Reading assignment state-
ments this way helps to reinforce the important concept that the
expression result is being stored in the variable.

CHAPTER 2 Programming with Variables 21

Checking out another way to
declare a variable: const
The word variable implies that the value assigned to a variable is
allowed to vary, which is the case for most variables you declare.
Most, but not all. Sometimes your scripts will need to use a value
that remains constant. For example, suppose you’re building a
calculator that converts miles to kilometers. The conversion fac-
tor is 1.60934, and that value will remain constant throughout
your script.

It’s good programming practice to store such values in a variable
for easier reading. However, if you use let for this declaration,
you run the risk of accidentally changing the value somewhere in
your code because variables declared with let can change.

To avoid accidentally changing a value that you want to remain
constant, you can declare the variable using the const keyword
instead. Here’s the general syntax:

const variableName = value;

Note that, unlike with let, you must assign a value to the variable
when you declare it with const. Here’s an example that declares
a variable named milesToKilometers and assigns it the value
1.60934:

const milesToKilometers = 1.60934;

Are there any real advantages to using const over let in cases
where a variable’s value must never change? Yep, there are two
pretty good ones:

 » Using the const keyword is a reminder that you’re dealing
with a nonchanging value, which helps you to remember
not to assign the variable a new value.

 » If you do try to change the value of a variable declared with
const, you’ll generate an error, which is another way to
remind you that the variable’s value is not to be messed with.

22 JavaScript Essentials For Dummies

Given these advantages, many JavaScript programmers declare
every variable with const and use let only for the variables that
they know will change. As your code progresses, if you find that
a const variable needs to change, you can go back and change
const to let.

Using variables in statements
With your variable declared and assigned a value, you can then
use that variable in other statements. When the browser comes
across the variable, it goes to the computer’s memory, retrieves
the current value of the variable, and then substitutes that value
into the statement. The following code presents an example:

let interestRate = 0.06;
interestRate = interestRate / 12;
document.write(interestRate);

This code declares a variable named interestRate with the value
0.06; it then divides that value by 12 and stores the result in the
variable. The document.write() statement then displays the cur-
rent value of the variable, as shown in Figure 2-1.

The following code shows a slightly different example:

let firstName;
firstName = prompt("Please tell me your first

name:");
document.write("Welcome to my website, " +

firstName);

This script uses the prompt() method (explained shortly) to ask
the user to enter their first name, as shown in Figure 2-2. When
the user clicks OK, their name is stored in the firstName variable.

FIGURE 2-1: The browser substituting the current value of a variable.

CHAPTER 2 Programming with Variables 23

The script then uses a document.write() statement to display a
personalized welcome message using the value of the firstName
variable, as shown in Figure 2-3.

When you need to get data from the user, run the prompt()
method:

prompt(string, default);

Here’s what the various parts are:

 » string: A string that instructs the user what to enter into the
prompt box.

 » default: An optional string that specifies the initial value
that appears in the prompt box.

The prompt() method always returns a value:

 » If the user clicks OK, prompt() returns the value entered into
the prompt text box.

 » If the user clicks Cancel, prompt() returns null.

FIGURE 2-2: The script first prompts for the user’s first name.

FIGURE 2-3: The script then uses the name to display a personalized welcome
message.

24 JavaScript Essentials For Dummies

Naming Variables: Rules
and Best Practices

If you want to write clear, easy-to-follow, and easy-to-debug
scripts (and who doesn’t?), you can go a long way toward that
goal by giving careful thought to the names you use for your vari-
ables. This section helps by running through the rules you need
to follow and by giving you some tips and guidelines for creating
good variable names.

Rules for naming variables
JavaScript has only a few rules for variable names:

 » The first character must be a letter or an underscore (_).
You can’t use a number as the first character.

 » The rest of the variable name can include any letter, any
number, or the underscore. You can’t use any other charac-
ters, including spaces, symbols, and punctuation marks.

 » As with the rest of JavaScript, variable names are case
sensitive. That is, a variable named InterestRate is
treated as an entirely different variable than one named
interestRate.

 » There’s no limit to the length of the variable name.

 » You can’t use one of JavaScript’s reserved words as a variable
name (such as let, const, var, alert, or prompt). All
programming languages have a supply of words that are
used internally by the language and that can’t be used for
variable names, because doing so would cause confusion
(or worse).

Ideas for good variable names
The process of declaring a variable doesn’t take much thought,
but that doesn’t mean you should just type in any old variable
name that comes to mind. Take a few extra seconds to come up
with a good name by following these guidelines:

CHAPTER 2 Programming with Variables 25

 » Make your names descriptive. Sure, using names that are
just a few characters long makes them easier to type, but
I guarantee you that you won’t remember what the variables
represent when you look at the script down the road. For
example, if you want a variable to represent an account
number, use accountNumber or accountNum instead of,
say, acnm or accnum.

 » Mostly avoid single-letter names. Although it’s best to
avoid single-letter variable names, such short names are
accepted in some places, such as when constructing loops,
as described in Chapter 4.

 » Use multiple words with no spaces. The best way to
create a descriptive variable name is to use multiple words.
However, because JavaScript doesn’t take kindly to spaces in
names, you need some way of separating the words to keep
the name readable. The two standard conventions for using
multi-word variable names are camelCase, where you cram
the words together and capitalize all but the first word (for
example, lastName), or to separate each word with an
underscore (for example, last_name). I prefer the former
style, so I use it throughout this book.

 » Use separate naming conventions. Use one naming
convention for JavaScript variables and a different one for
HTML identifiers and CSS classes. For example, if you use
camelCase for multiword JavaScript variables, use dashes
to separate words for id values and class names.

 » Differentiate your variable names from JavaScript
keywords. Try to make your variable names look as different
from JavaScript’s keywords and other built-in terms (such as
alert) as possible. Differentiating variable names helps avoid
the confusion that can arise when you look at a term and you
can’t remember if it’s a variable or a JavaScript word.

 » Don’t make your names too long. Although short,
cryptic variable names are to be shunned in favor of longer,
descriptive names, that doesn’t mean you should be using
entire sentences. Extremely long names are inefficient
because they take so long to type, and they’re dangerous
because the longer the name, the more likely you are to
make a typo. Names of 2 to 4 words and 8 to 20 characters
should be all you need.

26 JavaScript Essentials For Dummies

Understanding Literal Data Types
In programming, a variable’s data type specifies what kind of
data is stored within the variable. The data type is a crucial idea
because it determines not only how two or more variables are
combined (for example, mathematically), but also whether they
can be combined at all. Literals are a special class of data type,
and they cover those values that are fixed (even if only tempo-
rarily). For example, consider the following variable assignment
statement:

let todaysQuestion = "What color is your
parachute?";

Here, the text "What color is your parachute?" is a literal
string value. JavaScript supports three kinds of literal data types:
numeric, string, and Boolean. The next three sections discuss
each type.

Working with numeric literals
Unlike many other programming languages, JavaScript treats all
numbers the same, so you don’t have to do anything special when
working with the two basic numeric literals, which are integers
and floating-point numbers:

 » Integers: These are numbers that don’t have a fractional or
decimal part. So, you represent an integer using a sequence
of one or more digits, as in these examples:

0

42

2001

-20

CHAPTER 2 Programming with Variables 27

 » Floating-point numbers: These are numbers that do have
a fractional or decimal part. Therefore, you represent a
floating-point number by first writing the integer part,
followed by a decimal point, followed by the fractional
or decimal part, as in these examples:

0.07

3.14159

-16.6666667

7.6543e+21

1.234567E-89

Exponential notation
The last two floating-point examples require a bit more explana-
tion. These two use exponential notation, which is an efficient way
to represent really large or really small floating-point numbers.
Exponential notation uses an e (or E) followed by the exponent,
which is a number preceded by a plus sign (+) or a minus sign (-).

You multiply the first part of the number (that is, the part before
the e or E) by 10 to the power of the exponent. Here’s an example:

9.87654e+5;

The exponent is 5, and 10 to the power of 5 is 100,000. So, multi-
plying 9.87654 by 100,000 results in the value 987,654.

Here’s another example:

3.4567e-4;

The exponent is -4, and 10 to the power of -4 is 0.0001. So, mul-
tiplying 3.4567 by 0.0001 results in the value .00034567.

Hexadecimal integer values
You’ll likely deal with the usual decimal (base-10) number system
throughout most of your JavaScript career. However, just in case
you have cause to work with hexadecimal (base-16) numbers, this
section shows you how JavaScript deals with them.

28 JavaScript Essentials For Dummies

The hexadecimal number system uses the digits 0 through 9 and
the letters A through F (or a through f), where these letters repre-
sent the decimal numbers 10 through 15. So, what in the decimal
system would be 16 is actually 10 in hexadecimal. To specify a
hexadecimal number in JavaScript, begin the number with a 0x
(or 0X), as shown in the following examples:

0x23;
0xff;
0X10ce;

Working with string literals
A string literal is a sequence of one or more letters, numbers, or
punctuation marks, enclosed either in double quotation marks (")
or single quotation marks ('). Here are some examples:

"JavaScript Essentials";
'August 23, 1959';
"";
"What's the good word?";

The string "" (or '' — two consecutive single quotation marks)
is called the null string. It represents a string that doesn’t contain
any characters.

Using quotation marks within strings
The final example in the previous section shows that it’s okay to
insert one or more instances of one of the quotation marks (such
as ') inside a string that’s enclosed by the other quotation mark
(such as "). Being able to nest quotation marks comes in handy
when you need to embed one string inside another, which is very
common (particularly when using bits of JavaScript within HTML
tags). Here’s an example:

onsubmit="processForm('testing')";

However, it’s illegal to insert in a string one or more instances
of the same quotation mark that encloses the string, as in this
example:

"This is "illegal" in JavaScript.";

CHAPTER 2 Programming with Variables 29

Understanding escape sequences
What if you must include, say, a double quotation mark within a
string that’s enclosed by double quotation marks? Having to nest
the same type of quotation mark is rare, but it is possible if you
precede the double quotation mark with a backslash (\), like this:

"The double quotation mark (\") encloses this
string.";

The \" combination is called an escape sequence. You can combine
the backslash with a number of other characters to form other
escape sequences, and each one enables the browser to repre-
sent a character that, by itself, would be illegal or not represent-
able otherwise. Table 2-1 lists the most commonly used escape
sequences.

The following code shows an example script that uses the \n
escape sequence to display text on multiple lines with an alert box.

alert("This is line 1.\nSo what. This is line 2.");

Figure 2-4 shows the result.

TABLE 2-1	 Common JavaScript Escape Sequences
Escape Sequence Character It Represents

\' Single quotation mark

\" Double quotation mark

\b Backspace

\f Form feed

\n New line

\r Carriage return

\t Tab

\\ Backslash

30 JavaScript Essentials For Dummies

To learn how to combine two or more string literals, check out
Chapter 3. Also, JavaScript has a nice collection of string manipu-
lation features, which I discuss in Chapter 8.

Working with Boolean literals
Booleans are the simplest of all the literal data types because they
can assume only one of two values: true or false. That simplicity
may make it seem as though Booleans aren’t particularly useful,
but the capability to test whether a particular variable or condi-
tion is true or false is invaluable in JavaScript programming.

You can assign Boolean literals directly to a variable, like this:

taskCompleted = true;

Alternatively, you can work with Boolean values implicitly using
expressions:

currentMonth === "August"

The comparison expression currentMonth === "August" asks
the following: Does the value of the currentMonth variable equal
the string "August"? If it does, the expression evaluates to the
Boolean value true; if it doesn’t, the expression evaluates to
false. I discuss much more about comparison expressions in
Chapter 3.

FIGURE 2-4: Using the \n escape sequence enables you to format text so
that it displays on different lines.

CHAPTER 3 Building Expressions 31

Chapter 3

IN THIS CHAPTER

 » Understanding what expressions are

 » Figuring out numeric expressions

 » Tying up string expressions

 » Getting the hang of comparison
expressions

 » Learning about logical expressions

Building Expressions

When coding in JavaScript, you use expressions constantly,
so it’s vital to understand what they are and to get com-
fortable with the types of expressions that are available

to you. Every JavaScript coder is different, but I can say without
fear of contradiction that every good JavaScript coder is fluent in
expressions.

This chapter takes you through everything you need to know
about expressions. You discover some expression basics and then
explore a number of techniques for building powerful expressions
using numbers, strings, and Boolean values.

Understanding How Expressions
Are Structured

A JavaScript expression takes one or more inputs, such as a bill
total and a tip percentage, and combines them in some way — for
example, by using multiplication. In expression lingo, the inputs
are called operands, and they’re combined by using special sym-
bols called operators.

32 JavaScript Essentials For Dummies

 » operand: An input value for an expression. It is, in other
words, the raw data that the expression manipulates to
produce its result. It could be a number, a string, a variable,
a function result (refer to Chapter 5), or an object property
(refer to Chapter 6).

 » operator: A symbol that represents a particular action
performed on one or more operands. For example, the *
operator represents multiplication, and the + operator
represents addition. I discuss the various JavaScript
operators throughout this chapter.

For example, here’s an expression that calculates a tip amount
and assigns the result to a variable:

tipAmount = billTotal * tipPercentage;

The expression is everything to the right of the equals sign (=).
Here, billTotal and tipPercentage are the operands, and the
multiplication sign (*) is the operator.

Creating Numeric Expressions
In JavaScript, a mathematical calculation is called a numeric
expression, and it combines numeric operands and arithmetic
operators to produce a numeric result. This section discusses all
the JavaScript arithmetic operators and shows you how best to use
them to build useful and handy numeric expressions.

Table 3-1 lists the basic arithmetic operators you can use in your
JavaScript expressions.

JavaScript also comes with a few extra operators that combine
some of the arithmetic operators and the assignment opera-
tor, which is the humble equals sign (=) that assigns a value to
a variable. Table 3-2 lists these so-called arithmetic assignment
operators.

CHAPTER 3 Building Expressions 33

Building String Expressions
A string expression is one where at least one of the operands is a
string, and the result of the expression is another string. String
expressions are straightforward in the sense that there is only
one operator to deal with: concatenation (+). You use this opera-
tor to combine (or concatenate) strings within an expression. For
example, the expression "Java" + "Script" returns the string
"JavaScript". Note, however, that you can also use strings with
the comparison operators discussed in the next section.

TABLE 3-1	 The JavaScript Arithmetic Operators
Operator Name Example Result

+ Addition 10 + 4 14

++ Increment 10++ 11

- Subtraction 10 - 4 6

- Negation -10 -10

-- Decrement 10-- 9

* Multiplication 10 * 4 40

/ Division 10 / 4 2.5

% Modulus 10 % 4 2

TABLE 3-2	 The JavaScript Arithmetic Assignment
Operators

Operator Example Equivalent

+= x += y x = x + y

-= x -= y x = x - y

*= x *= y x = x * y

/= x /= y x = x / y

^= x ^= y x = x ^ y

%= x %= y x = x % y

34 JavaScript Essentials For Dummies

Building Comparison Expressions
You use comparison expressions to compare the values of two or
more numbers, strings, variables, properties, or function results.
If the expression is true, the expression result is set to the Bool-
ean value true; if the expression is false, the expression result
is set to the Boolean value false. You’ll use comparisons with
alarming frequency in your JavaScript code, so it’s important to
understand what they are and how you use them.

Table 3-3 summarizes JavaScript’s comparison operators.

Building Logical Expressions
You use logical expressions to combine or manipulate Boolean
values, particularly comparison expressions. For example, if your
code needs to test whether two different comparison expressions
are both true before proceeding, you can do that with a logical
expression.

Table 3-4 lists JavaScript’s logical operators.

TABLE 3-3	 The JavaScript Comparison Operators
Operator Name Example Result

== Equality 10 == 4 false

!= Inequality 10 != 4 true

> Greater than 10 > 4 true

< Less than 10 < 4 false

>= Greater than or equal 10 >= 4 true

<= Less than or equal 10 <= 4 false

=== Strict equality "10" === 10 false

!== Strict inequality "10" !== 10 true

CHAPTER 3 Building Expressions 35

Understanding Operator Precedence
In complex expressions, the order in which the calculations are
performed becomes crucial. For example, consider the expression
3+5*2. If you calculate from left to right, the answer you get is 16
(3+5 equals 8, and 8*2 equals 16). However, if you perform the
multiplication first and then the addition, the result is 13 (5*2
equals 10, and 3+10 equals 13).

To control this ordering problem, JavaScript evaluates an expres-
sion according to a predefined order of precedence. This order of
precedence lets JavaScript calculate an expression unambiguously
by determining which part of the expression it calculates first,
which part second, and so on.

The order of precedence
The order of precedence that JavaScript uses is determined by the
various expression operators that I’ve covered so far in this chap-
ter. Table 3-5 summarizes the complete order of precedence used
by JavaScript.

For example, Table 3-5 tells you that JavaScript performs mul-
tiplication before addition. Therefore, the correct answer for the
expression 3+5*2 (just discussed) is 13.

TABLE 3-4	 The JavaScript Logical Operators
Operator Name General Syntax Returned Value

&& AND expr1 && expr2 true if both expr1 and expr2 are
true; false otherwise.

|| OR expr1 || expr2 true if one or both of expr1 and
expr2 are true; false otherwise.

! NOT !expr true if expr is false; false if expr
is true.

36 JavaScript Essentials For Dummies

TABLE 3-5	 The JavaScript Order of Precedence
for Operators

Operator Operation
Order of
Precedence

Order of
Evaluation

++ Increment First R -> L

-- Decrement First R -> L

— Negation First R -> L

! NOT First R -> L

*, /, % Multiplication, division,
modulus

Second L -> R

+, — Addition, subtraction Third L -> R

+ Concatenation Third L -> R

<, <= Less than, less than or
equal

Fourth L -> R

>, >= Greater than, greater
than or equal

Fourth L -> R

== Equality Fifth L -> R

!= Inequality Fifth L -> R

=== Strict equality Fifth L -> R

!== Strict inequality Fifth L -> R

&& AND Sixth L -> R

|| OR Sixth L -> R

?: Ternary Seventh R -> L

= Assignment Eighth R -> L

+=, -=, etc. Arithmetic assignment Eighth R -> L

CHAPTER 3 Building Expressions 37

Controlling the order of precedence
Sometimes you want to take control of the situation and override
the order of precedence. That may seem like a decidedly odd thing
to do, so perhaps an example is in order. Suppose you know the
final price of an item and, given the tax rate, you want to know
the original (that is, pre-tax) price.

A first pass at the JavaScript calculation may look something
like this:

retailPrice = totalPrice / 1 + taxRate;

This won’t work, though. Why not? Well, according to the rules of
precedence, JavaScript performs division before addition, so the
totalPrice value first is divided by 1 and then is added to the
taxRate value, which isn’t the correct order.

To get the correct answer, you have to override the order of prec-
edence so that the addition 1 + taxRate is performed first. You
override precedence by surrounding that part of the expression
with parentheses, as shown in the following code:

const retailPrice = totalPrice / (1 + taxRate);

In general, you can use parentheses to control the order that
JavaScript uses to calculate expressions. Terms inside paren-
theses are always calculated first; terms outside parentheses are
calculated sequentially (according to the order of precedence).

CHAPTER 4 Controlling the Flow of JavaScript 39

Chapter 4

IN THIS CHAPTER

 » Setting up your code to make decisions

 » Understanding code looping

 » Setting up code loops

Controlling the Flow
of JavaScript

With the default script flow, the browser processes the
code inside a script element or an external JavaScript
file one statement at a time. The browser reads and

then executes the first statement, reads and then executes the
second statement, and so on until it has no more JavaScript left to
read and execute.

That statement-by-statement flow seems reasonable, but it’s
extremely limited. What if you want your code to test some con-
dition and then branch to a specific chunk of code depending on
the result of that test? What if you want your code to repeat some
statements multiple times, with some change occurring in each
repetition? Code that runs tests and code that repeats itself all
fall under the rubric of controlling the flow of JavaScript. In this
chapter, you explore this fascinating and powerful subject.

40 JavaScript Essentials For Dummies

Decision-Making with if Statements
A smart script performs tests on its environment and then decides
what to do next based on the results of each test. For example,
suppose you’ve declared a variable that you later use as a divisor
in an expression. You should test the variable before using it in
the expression to make sure that the variable’s value isn’t 0.

The most basic test is the simple true/false decision (which could
also be thought of as a yes/no or an on/off decision). In this case,
your program looks at a certain condition, determines whether
it’s currently true or false, and acts accordingly. Comparison and
logical expressions (covered in Chapter 3) play a big part here
because they always return a true or false result.

In JavaScript, simple true/false decisions are handled by the if
statement. You can use either the single-line syntax:

if (expression) statement;

or the block syntax:

if (expression) {
 statement1;
 statement2;
 ...
}

In both cases, expression is a comparison or logical expres-
sion that returns true or false, and statement(s) represent the
JavaScript statement or statements to run if expression returns
true. If expression returns false, JavaScript skips over the
statements.

This is a good place to note that JavaScript defines the following
values as the equivalent of false: 0, "" (that is, the empty string),
null, and undefined. Everything else is the equivalent of true.

This is the first time you’ve encountered JavaScript’s braces ({
and }), so take a second to understand what they do because they
come up a lot. The braces surround one or more statements that
you want JavaScript to treat as a single entity. This entity is a kind

CHAPTER 4 Controlling the Flow of JavaScript 41

of statement itself, so the whole caboodle — the braces and the
code they enclose — is called a block statement. Also, any Java-
Script construction that consists of a statement (such as if) fol-
lowed by a block statement is called a compound statement. And,
just to keep you on your toes, note that the lines that include the
braces don’t end with semicolons.

Whether you use the single-line or block syntax depends on the
statements you want to run if the expression returns a true
result. If you have only one statement, you can use either syntax.
If you have multiple statements, use the block syntax.

Consider the following example:

if (totalSales != 0) {
 const grossMargin = (totalSales -

totalExpenses) / totalSales;
}

This code assumes that earlier, the script has calculated the total
sales and total expenses, which are stored in the totalSales
and totalExpenses variables, respectively. The code now cal-
culates the gross margin, which is defined as gross profit (that
is, sales minus expenses) divided by sales. The code uses if to
test whether the value of the totalSales variable is not equal to
zero. If the totalSales != 0 expression returns true, the gross
Margin calculation is executed; otherwise, nothing happens. The
if test in this example is righteous because it ensures that the
divisor in the calculation — totalSales — is never zero.

Branching with if. . .else Statements
Using the if statement to make decisions adds a powerful new
weapon to your JavaScript arsenal. However, the simple version
of if suffers from an important limitation: A false result only
bypasses one or more statements; it doesn’t execute any of its
own. This is fine in many cases, but there will be times when
you need to run one group of statements if the condition returns

42 JavaScript Essentials For Dummies

true and a different group if the result is false. To handle these
scenarios, you need to use an if...else statement:

if (expression) {
 statements-if-true
} else {
 statements-if-false
}

The expression is a comparison or logical expression that
returns true or false. statements-if-true represents the block
of statements you want JavaScript to run if expression returns
true, and statements-if-false represents the block of state-
ments you want executed if expression returns false.

As an example, consider the following code:

let discountRate;
if (currMonth === "December") {
 discountRate = 0.2;
} else {
 discountRate = 0.1;
}
const discountedPrice = regularPrice *

(1 – discountRate);

This code calculates a discounted price of an item, where the dis-
count depends on whether the current month is December. The
code assumes that earlier, the script set the value of the current
month (currMonth) and the item’s regular price (regularPrice).
After declaring the discountRate variable, an if...else state-
ment checks whether currMonth equals December. If it does,
discountRate is set to 0.2; otherwise, discountRate is set to
0.1. Finally, the code uses the discountRate value to calculate
discountedPrice.

if...else statements are much easier to read when you indent
the statements within each block, as I’ve done in my examples.
This indentation lets you easily identify which block will run if
there is a true result and which block will run if the result is
false. I find that an indent of four spaces does the job, but many
programmers prefer either two spaces or a tab.

CHAPTER 4 Controlling the Flow of JavaScript 43

Understanding the Value
of Code Looping

There are some who would say that the only real goal of the
programmer should be to get the job done. As long as the code
produces the correct result or performs the correct tasks in the
correct order, everything else is superfluous. Perhaps, but real
programmers know that the true goal of programming is not only
to get the job done, but to get it done as efficiently as possible. Effi-
cient scripts run faster, take less time to code, and are usually
(not always, but usually) easier to read and troubleshoot.

One of the best ways to introduce efficiency into your coding is
to avoid reinventing too many wheels. For example, consider the
following code fragment:

let sum = 0;
let num = prompt("Type a number:", 1);
sum += Number(num);
num = prompt("Type a number:", 1);
sum += Number(num);
num = prompt("Type a number:", 1);
sum += Number(num);
document.write("The total of your numbers

is " + sum);

This code first declares a variable named sum. The code prompts
the user for a number (using the prompt method with a default
value of 1) that gets stored in the num variable, adds that value to
sum, and then repeats this prompt-and-sum routine two more
times. (Note my use of the Number function, which ensures that
the value returned by prompt is treated as a number rather than
a string.) Finally, the sum of the three numbers is displayed to
the user.

Besides being a tad useless, this code just reeks of inefficiency
because most of the code consists of the following two lines
appearing three times:

num = prompt("Type a number:", 1);
sum += Number(num);

44 JavaScript Essentials For Dummies

Wouldn’t it be more efficient if you put these two statements just
once in the code and then somehow get JavaScript to repeat these
statements as many times as necessary?

Why, yes, it would, and the good news is that not only is it possi-
ble to do this, but JavaScript also gives you a number of different
methods to perform this so-called looping. I spend the rest of this
chapter investigating each of these methods.

Working with while Loops
The most straightforward of the JavaScript loop constructions is
the while loop, which uses the following syntax:

while (expression) {
 statements
}

Here, expression is a comparison or logical expression (that
is, an expression that returns true or false) that, as long as it
returns true, tells JavaScript to keep executing the statements
within the block.

Essentially, JavaScript interprets a while loop as follows: “Okay,
as long as expression remains true, I’ll keep running through
the loop statements, but as soon as expression becomes false,
I’m out of there.”

Here’s a closer look at how a while loop works:

1. Evaluate the expression in the while statement.

2. If expression is true, continue with Step 3; if expression is
false, skip to Step 5.

3. Execute each of the statements in the block.

4. Return to Step 1.

5. Exit the loop (that is, execute the next statement that occurs
after the while block).

CHAPTER 4 Controlling the Flow of JavaScript 45

The following code demonstrates how to use while to rewrite the
inefficient code shown in the previous section:

let sum = 0;
let counter = 1;
let num;
while (counter <= 3) {
 num = prompt("Type a number:", 1);
 sum += Number(num);
 counter += 1;
}
document.write("The total of your numbers

is " + sum);

To control the loop, the code declares a variable named counter
and initializes it to 1, which means that the expression counter
<= 3 is true, so the code enters the block, does the prompt-and-
sum thing, and then increments counter. This is repeated until
the third time through the loop, when counter is incremented to
4, at which point the expression counter <= 3 becomes false
and the loop is done.

To make your loop code as readable as possible, always use a two-
or four-space indent for each statement in the while block. The
same applies to the for and do...while loops that I talk about
later in this chapter.

The while statement isn’t the greatest loop choice when you
know exactly how many times you want to run through the loop.
For that, use the for statement, described in the next section.
The best use of the while statement is when your script has some
naturally occurring condition that you can turn into a comparison
expression. A good example is when you’re prompting the user
for input values. You’ll often want to keep prompting the user
until they click the Cancel button. The easiest way to set that up is
to include the prompt inside a while loop, as shown here:

let sum = 0;
let num = prompt("Type a number or click

Cancel:", 1);

46 JavaScript Essentials For Dummies

while (num != null) {
 sum += Number(num);
 num = prompt("Type a number or click

Cancel:", 1);
}
document.write("The total of your numbers

is " + sum);

The first prompt method displays a dialog box like the one shown
in Figure 4-1 to get the initial value; then it stores it in the num
variable.

Then the while statement checks the following expression:

num != null

Two things can happen here:

 » If the user enters a number, this expression returns true
and the loop continues. In this case, the value of num is
added to the sum variable, and the user is prompted for the
next number.

 » If the user clicks Cancel, the value returned by prompt
is null, so the expression becomes false and the
looping stops.

FIGURE 4-1: Set up your while expression so that the prompting stops when
the user clicks the Cancel button.

CHAPTER 4 Controlling the Flow of JavaScript 47

Working with for Loops
Although while is the most straightforward of the JavaScript
loops, the most common type by far is the for loop. This fact is
slightly surprising when you consider (as you will shortly) that
the for loop’s syntax is a bit more complex than that of the while
loop. However, the for loop excels at one thing: looping when
you know exactly how many times you want to repeat a group of
statements. This is extremely common in all types of program-
ming, so it’s no wonder for is so often used in scripts.

The structure of a typical for loop looks like this:

for (let counter = start; counterExpression;
counterUpdate) {
 statements
}

There’s a lot going on here, so I’ll take it one bit at a time:

 » counter: A numeric variable used as a loop counter. The loop
counter is a number that counts how many times the
procedure has gone through the loop. (Note that you need
to include let only if this is the first time you’ve used the
variable in the script.)

 » start: The initial value of counter. This value is usually 1,
but you can use whatever value makes sense for your script.

 » counterExpression: A comparison or logical expression
that determines the number of times through the loop. This
expression usually compares the current value of counter
to some maximum value.

 » counterUpdate: An expression that changes the value of
counter. This expression is evaluated after each turn
through the loop. Most of the time, you’ll increment the
value of counter with the expression counter += 1.

 » statements: The statements you want JavaScript to execute
each time through the loop.

48 JavaScript Essentials For Dummies

When JavaScript stumbles upon the for statement, it changes
into its for-loop outfit and follows this seven-step process:

1. Set counter equal to start.

2. Evaluate the counterExpression in the for statement.

3. If counterExpression is true, continue with Step 4; if
counterExpression is false, skip to Step 7.

4. Execute each of the statements in the block.

5. Use counterUpdate to increment (or whatever) counter.

6. Return to Step 2.

7. Exit the loop (that is, execute the next statement that occurs
after the for block).

As an example, the following code shows how to use for to rewrite
the inefficient code shown earlier in this chapter:

let sum = 0;
let num;
for (let counter = 1; counter <= 3; counter += 1) {
 num = prompt("Type a number:", 1);
 sum += Number(num);
}
document.write("The total of your numbers

is " + sum);

This is the most efficient version yet because the declaring, ini-
tializing, and incrementing of the counter variable all take place
within the for statement.

To keep the number of variables declared in a script to a mini-
mum, always try to use the same name in all your for loop coun-
ters. The letters i through n traditionally are used for counters in
programming. For greater clarity, you may prefer full words, such
as count or counter.

Here’s a slightly more complex example:

let sum = 0;
for (let counter = 1; counter < 4; counter += 1) {
 let num;

CHAPTER 4 Controlling the Flow of JavaScript 49

 let ordinal;
 switch (counter) {
 case 1:
 ordinal = "first";
 break;
 case 2:
 ordinal = "second";
 break;
 case 3:
 ordinal = "third";
 }
 num = prompt("Enter the " + ordinal + "

number:", 1);
 sum += Number(num);
}
document.write("The average is " + sum / 3);

The purpose of this script is to ask the user for three numbers
and then to display the average of those values. The for state-
ment is set up to loop three times. (Note that counter < 4 is the
same as counter <= 3.) The first thing the loop block does is use
switch to determine the value of the ordinal variable: If counter
is 1, ordinal is set to "first"; if counter is 2, ordinal becomes
"second"; and so on. These values enable the script to customize
the prompt message with each pass through the loop (check out
Figure 4-2). With each loop, the user enters a number, and that
value is added to the sum variable. When the loop exits, the aver-
age is displayed.

FIGURE 4-2: This script uses the current value of the counter variable to
customize the prompt message.

50 JavaScript Essentials For Dummies

It’s also possible to use for to count down. You do this by using
the subtraction assignment operator instead of the addition
assignment operator:

for (let counter = start; counterExpression;
counter -= 1) {

 statements
}

In this case, you must initialize the counter variable to the max-
imum value you want to use for the loop counter, and use the
counterExpression to compare the value of counter to the mini-
mum value you want to use to end the loop.

In the following example, I use a decrementing counter to ask the
user to rank, in reverse order, their top three CSS colors:

for (let rank = 3; rank >= 1; rank -= 1) {
 let ordinal;
 let color;
 switch (rank) {
 case 1:
 ordinal = "first";
 break;
 case 2:
 ordinal = "second";
 break;
 case 3:
 ordinal = "third";
 }
 color = prompt("What is your " + ordinal +

"-favorite CSS color?", "");
 document.write(rank + ". " + color + "
");
}

The for loop runs by decrementing the rank variable from 3 down
to 1. Each iteration of the loop prompts the user to type a favorite
CSS color, and that color is written to the page, with the cur-
rent value of rank being used to create a reverse-ordered list, as
shown in Figure 4-3.

CHAPTER 4 Controlling the Flow of JavaScript 51

There’s no reason why the for loop counter has to be only incre-
mented or decremented. You’re actually free to use any expres-
sion to adjust the value of the loop counter. For example, suppose
you want the loop counter to run through only the odd numbers 1,
3, 5, 7, and 9. Here’s a for statement that will do that:

for (let counter = 1; counter <= 9; counter += 2)

The expression counter += 2 uses the addition assignment oper-
ator to tell JavaScript to increase the counter variable by 2 each
time through the loop.

Working with do. . .while Loops
JavaScript has a third and final type of loop that I’ve left until the
last because it isn’t one that you’ll use all that often. To under-
stand when you might use it, consider this code snippet:

let sum = 0;
let num = prompt("Type a number or click

Cancel:", 1);
while (num != null) {
 sum += Number(num);
 num = prompt("Type a number or click

Cancel:", 1);
}

The code needs the first prompt statement so that the while loop’s
expression can be evaluated. The user may not feel like entering
any numbers, and they can avoid it by clicking Cancel in the first
prompt box so that the loop will be bypassed.

FIGURE 4-3: The decrementing value of the rank variable is used to create a
reverse-ordered list.

52 JavaScript Essentials For Dummies

That seems reasonable enough, but what if your code requires
that the user enter at least one value? The following presents one
way to change the code to ensure that the loop is executed at least
once:

let sum = 0;
let num = 0;
while (num !== null || sum === 0) {
 num = prompt("Type a number; when you're

done, click Cancel:", 1);
 sum += Number(num);
}
document.write("The total of your numbers

is " + sum);

The changes here are that the code initializes both sum and num as
0. Initializing both to 0 ensures that the while expression — num
!== null || sum === 0 — returns true the first time through
the loop, so the loop will definitely execute at least once. If the
user clicks Cancel right away, sum will still be 0, so the while
expression — num !== null || sum === 0 — still returns true
and the loop repeats once again.

This approach works fine, but you can also turn to JavaScript’s
third loop type, which specializes in just this kind of situation. It’s
called a do...while loop, and its general syntax looks like this:

do {
 statements
}
while (expression);

Here, statements represents a block of statements to execute
each time through the loop, and expression is a comparison or
logical expression that, as long as it returns true, tells JavaScript
to keep executing the statements within the loop.

This structure ensures that JavaScript executes the loop’s state-
ment block at least once. How? Take a closer look at how JavaScript
processes a do...while loop:

CHAPTER 4 Controlling the Flow of JavaScript 53

1. Execute each of the statements in the block.

2. Evaluate the expression in the while statement.

3. If expression is true, return to Step 1; if expression is
false, continue with Step 4.

4. Exit the loop.

For example, the following shows you how to use do...while
to restructure the prompt-and-sum code I showed you earlier:

let sum = 0;
let num;
do {
 num = prompt("Type a number; when you're done,

click Cancel:", 1);
 sum += Number(num);
}
while (num !== null || sum === 0);
document.write("The total of your numbers

is " + sum);

This code is very similar to the while code I show earlier in this
section. All that’s really changed is that the while statement and
its expression have been moved after the statement block so that
the loop must be executed once before the expression is evaluated.

CHAPTER 5 Harnessing the Power of Functions 55

Chapter 5

IN THIS CHAPTER

 » Getting to know JavaScript functions

 » Creating and using custom functions

 » Passing and returning function values

 » Working with anonymous and arrow
functions

Harnessing the Power
of Functions

Almost every JavaScript project beyond the simplest scripts
will require one or more (usually a lot more) tasks or cal-
culations that aren’t part of the JavaScript language or any

Web API. What’s a coder to do? You roll up your sleeves and then
roll your own code that accomplishes the task or runs the
calculation.

This chapter shows you how to create such do-it-yourself code.
In the pages that follow, you explore the powerful and infinitely
useful realm of custom functions, where you craft reusable code
that performs tasks that out-of-the-box JavaScript can’t do.

Getting to Know the Function Structure
A function is a group of JavaScript statements that are separate
from the rest of the script and that perform a designated task.
When your script needs to perform that task, you tell it to run —
or execute, in the vernacular — the function.

56 JavaScript Essentials For Dummies

The basic structure of a function looks like this:

function functionName([arguments]) {
 JavaScript statements
}

Here’s a summary of the various parts of a function:

 » function: Identifies the block of code that follows it as a
function.

 » functionName: A unique name for the function. The naming
rules and guidelines that I outline for variables in Chapter 2
also apply to function names.

 » arguments: One or more values that are passed to the
function and that act as variables within the function.
Arguments (or parameters, as they’re sometimes called) are
typically one or more values that the function uses as the
raw materials for its tasks or calculations. You always enter
arguments between parentheses after the function name,
and you separate multiple arguments with commas. If you
don’t use arguments, you must still include the parentheses
after the function name.

 » JavaScript statements: This is the code that performs the
function’s tasks or calculations.

Note, too, the use of braces ({ and }). These are used to enclose
the function’s statements within a block, which tells you (and the
browser) where the function’s code begins and ends. There are
only two rules for where these braces appear:

 » The opening brace must appear after the function’s parentheses
and before the first function statement.

 » The closing brace must appear after the last function
statement.

Making a Function Call
After your function is defined, you’ll eventually need to tell the
browser to execute — or call — the function. There are three main
ways to do this:

CHAPTER 5 Harnessing the Power of Functions 57

 » When the browser parses the <script> tag

 » After the page is loaded

 » In response to an event, such as the user clicking a button

The next three sections cover each of these scenarios.

When the browser parses
the <script> tag
The simplest way to call a function is to include in your script
a statement consisting of only the function name, followed by
parentheses (assuming for the moment that your function uses
no arguments). The following code provides an example. (I’ve
listed the entire page to show you where the function and the
statement that calls it appear in the page code.)

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>Calling a function when the <script>

tag is parsed</title>
 <script>
 function displayGreeting() {
 const currentHour = new Date().

getHours();
 if (currentHour < 12) {
 console.log("Good morning!");
 } else {
 console.log("Good day!");
 }
 }
 displayGreeting();
 </script>
</head>
<body>
</body>
</html>

58 JavaScript Essentials For Dummies

The <script> tag includes a function named displayGreeting,
which determines the current hour of the day and then writes a
greeting to the console (check out Figure 5-1; you learn about the
console in Chapter 9) based on whether it’s currently morning.
The function is called by the displayGreeting statement that
appears just after the function.

When the page load is complete
If your function references a page element, then calling the func-
tion from within the page’s head section won’t work because
when the browser parses the script, the rest of the page hasn’t
loaded yet, so your element reference will fail.

To work around this problem, place another <script> tag at the
end of the body section, just before the closing </body> tag, as
shown here:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>Calling a function after the page is

loaded</title>
 <script>
 function makeBackgroundRed() {
 document.body.style.backgroundColor =

"red";

FIGURE 5-1: An example of calling a function when the <script> tag is
parsed.

CHAPTER 5 Harnessing the Power of Functions 59

 console.log("The background is now
red.");

 }
 </script>
</head>
<body>
 <!-- Other body elements go here -->

 <script>
 makeBackgroundRed();
 </script>
</body>
</html>

The makeBackgroundRed function does two things: It uses
document.body.style.backgroundColor to change the back-
ground color of the body element to red, and it uses console.log
to write a message to that effect on the console.

In the function, document.body is a reference to the body ele-
ment, which doesn’t “exist” until the page is fully loaded. That
means that if you try to call the function with the initial script,
you’ll get an error. To execute the function properly, a second
<script> tag appears at the bottom of the body element, and that
script calls the function with the following statement:

makeBackgroundRed();

By the time the browser executes that statement, the body ele-
ment exists, so the function runs without an error (check out
Figure 5-2).

FIGURE 5-2: An example of calling a function after the page has loaded.

60 JavaScript Essentials For Dummies

When an event fires
One of the most common ways that JavaScript functions are called
is in response to some event. Events are such an important topic
that I devote a big chunk of Chapter 6 to them. For now, check
out a relatively straightforward application: executing the func-
tion when the user clicks a button. The following code shows one
way to do it:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>Calling a function in response to an

event</title>
 <script>
 function makeBackgroundRed() {
 document.body.style.backgroundColor=

"red";
 }
 function makeBackgroundWhite() {
 document.body.style.backgroundColor=

"white";
 }
 </script>
</head>
<body>
 <button onclick="makeBackgroundRed()">
 Make Background Red
 </button>
 <button onclick="makeBackgroundWhite()">
 Make Background White
 </button>
</body>
</html>

What I’ve done here is place two functions in the script: make
BackgroundRed changes the page background to red, as before,
and makeBackgroundWhite changes the background color back to
white.

CHAPTER 5 Harnessing the Power of Functions 61

The buttons are standard HTML button elements (check out
Figure 5-3), each of which includes the onclick attribute. This
attribute defines a handler — that is, the function to execute —
for the event that occurs when the user clicks the button. For
example, consider the first button:

<button onclick="makeBackgroundRed()">

The onclick attribute here says, in effect, “When somebody
clicks this button, call the function named makeBackgroundRed.”

Passing One or More Values to a Function
One of the main reasons to use functions is to gain control over
when some chunk of JavaScript code gets executed. The previous
section, for example, discusses how easy it is to use functions
to set things up so that code doesn’t run until the user clicks a
button.

However, there’s another major reason to use functions: to
avoid repeating code unnecessarily. To understand what I mean,
consider the two functions from the previous section:

function makeBackgroundRed() {
 document.body.style.backgroundColor= "red";
}
function makeBackgroundWhite() {
 document.body.style.backgroundColor= "white";
}

FIGURE 5-3: An example of calling a function in response to an event.

62 JavaScript Essentials For Dummies

These functions perform the same task — changing the back-
ground color — and the only difference between them is that one
changes the color to red and the other changes it to white. When-
ever you end up with two or more functions that do essentially the
same thing, you know that your code is inefficient.

So how do you make the code more efficient? That’s where the
arguments mentioned earlier come into play. An argument is a
value that is “sent” — or passed, in programming terms — to the
function. The argument acts just like a variable, and it automati-
cally stores whatever value is sent.

Passing one value to a function
As an example, you can take the previous two functions, reduce
them to a single function, and set up the color value as an argu-
ment. Here’s a new function that does just that:

function changeBackgroundColor(newColor) {
 document.body.style.backgroundColor =

newColor;
}

The argument is named newColor and is added between the
parentheses that occur after the function name. JavaScript
declares newColor as a variable automatically, so you don’t need
a separate let or const statement. The function then uses the
newColor value to change the background color. So how do you
pass a value to the function? The following code presents a sample
file that does so:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>Passing a single value to a function</

title>
 <script>
 function changeBackgroundColor(newColor) {
 document.body.style.backgroundColor =

newColor;
 }
 </script>

CHAPTER 5 Harnessing the Power of Functions 63

</head>
<body>
 <button onclick="changeBackgroundColor

('red')">
 Make Background Red
 </button>
 <button onclick="changeBackgroundColor

('white')">
 Make Background White
 </button>
</body>
</html>

The key here is the onclick attribute that appears in both
<button> tags. For example:

onclick="changeBackgroundColor('red')"

The string 'red' is inserted into the parentheses after the func-
tion name, so that value is passed to the function itself. The other
button passes the value 'white', and the function result changes
accordingly.

In the two onclick attributes in the example code, notice that
the values passed to the function are enclosed in single quotation
marks ('). This is necessary because the onclick value as a whole
is enclosed in double quotation marks (").

Passing two or more values
to a function
For more complex functions, you may need to use multiple argu-
ments so that you can pass different kinds of values. If you use
multiple arguments, separate each one with a comma, like this:

function changeColors(newBackColor, newForeColor)
{

 document.body.style.backgroundColor =
newBackColor;

 document.body.style.color = newForeColor;
}

64 JavaScript Essentials For Dummies

In this function, the document.body.style.color statement
changes the foreground color (that is, the color of the page text).
The following code shows a revised page where the buttons pass
two values to the function:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>Passing multiple values to a function</

title>
 <script>
 function changeColors(newBackColor,

newForeColor) {
 document.body.style.backgroundColor =

newBackColor;
 document.body.style.color =

newForeColor;
 }
 </script>
</head>
<body>
 <h1>Passing Multiple Values to a Function</h1>
 <button onclick="changeColors('red', 'white')">
 Red Background, White Text
 </button>
 <button onclick="changeColors('white', 'red')">
 White Background, Red Text
 </button>
</body>
</html>

If you define a function to have multiple arguments, you must
always pass values for each of those arguments to the function.
If you don’t, the “value” undefined is passed, instead, which can
cause problems.

CHAPTER 5 Harnessing the Power of Functions 65

Getting a Value from a Function
So far, I’ve outlined two major advantages of using functions:

 » You can use them to control when code is executed.

 » You can use them to consolidate repetitive code into a single
routine.

The third major benefit that functions bring to the JavaScript
table is that you can use them to perform calculations and then
return the result. As an example, here’s a function that calculates
the tip on a restaurant bill:

function calculateTip(preTip, tipPercent) {
 const tipResult = preTip * tipPercent;
 return tipResult;
}

const preTipTotal = 100.00;
const tipPercentage = 0.15;
const tipCost = calculateTip(preTipTotal,

tipPercentage);
const totalBill = preTipTotal + tipCost;
document.write("Your total bill is $" +

totalBill);

The function named calculateTip takes two arguments: preTip
is the total of the bill before the tip, and tipPercent is the per-
centage used to calculate the tip. The function then declares a
variable named tipResult and uses it to store the calculation —
preTip multiplied by tipPercent. The key for this example is the
second line of the function:

return tipResult;

The return statement is JavaScript’s way of sending a value back
to the statement that called the function. That statement comes
after the function:

tipCost = calculateTip(preTipTotal,
tipPercentage);

66 JavaScript Essentials For Dummies

This statement first passes the value of preTipTotal (initialized as
100.00 earlier in the script) and tipPercentage (initialized as 0.15
earlier) to the calculateTip function. When that function returns
its result, the entire expression calculateTip(preTipTotal,
tipPercentage) is replaced by that result, meaning that it gets
stored in the tipCost variable. Then preTipTotal and tipCost
are added together, the result is stored in totalBill, and a
document.write statement displays the final calculation (check
out Figure 5-4).

Working with Anonymous Functions
Here’s another look at the function syntax from earlier in this
chapter:

function functionName([arguments]) {
 JavaScript statements
}

This version of function syntax creates a so-called named function
because — you guessed it — the function has a name.

However, creating a function that doesn’t have a name is also
possible:

function ([arguments]) {
 JavaScript statements
}

This variety of function syntax creates a so-called anonymous
function because — that’s right — the function has no name.

FIGURE 5-4: The output includes the return value of the custom function
calculation.

CHAPTER 5 Harnessing the Power of Functions 67

Why use anonymous functions? Well, first, you don’t have to if
you don’t want to. Second, the main reason to use anonymous
functions is to avoid creating a named object when you don’t need
to. Every large web project has a huge namespace, which refers to
the full collection of identifiers you assign to things like variables
and functions. The larger the namespace, the greater the chance
of a namespace collision, where you use the same identifier for two
different things. Bad news!

Anonymous functions were introduced in ES6, so don’t use
them if you need to support very old browsers, such as Internet
Explorer 11.

If you have a function that will be used only once in your project,
it’s considered good modern programming practice to make that
an anonymous function so that you have one less identifier in
your namespace.

Okay, I hear you thinking, earlier you said we invoke a function by
using the function name. If an anonymous function has no name,
how are we supposed to run it? Excellent question! There are two
main methods to look at:

 » Assigning the function to a variable

 » Replacing a function call with the function itself

Assigning an anonymous function
to a variable
The example code from the previous section defines the named
function calculateTip() and later uses the tipCost variable
to store the function result. This is a perfect example of when
a named function is not needed because you only ever use the
named function to calculate the tipCost value. Adding an iden-
tity to the namespace when you don’t have to is called pollut-
ing the namespace, and it’s a big no-no in modern JavaScript
programming.

You can rewrite this code to use an anonymous function instead:

const preTipTotal = 100.00;
const tipPercentage = 0.15;

68 JavaScript Essentials For Dummies

// Declare tipCost using an anonymous function
const tipCost = function (preTip, tipPercent) {
 const tipResult = preTip * tipPercent;
 return (tipResult);
}
const totalBill = preTipTotal +

tipCost(preTipTotal, tipPercentage);
document.write("Your total bill is $" +

totalBill);

The big change here is that now I declare the value of the tipCost
variable to be an anonymous function. That anonymous func-
tion is the same as the calculateTip() named function from
before, just without the name. In the second-last statement,
I invoke the anonymous function by using tipCost(preTipTotal,
tipPercentage).

Replacing a function call with
an anonymous function
One of the most common uses for anonymous functions is when
you need to pass a function as an argument to another function.
The passed function is known as a callback function.

First, here’s an example that uses named functions:

<body>
 <button id="bgRed">
 Make Background Red
 </button>
 <button id="bgWhite">
 Make Background White
 </button>
 <script>
 function makeBackgroundRed() {
 document.body.style.backgroundColor=

'red';
 }
 function makeBackgroundWhite() {
 document.body.style.backgroundColor=

'white';
 }

CHAPTER 5 Harnessing the Power of Functions 69

 document.getElementById('bgRed').
addEventListener(

 'click',
 makeBackgroundRed
);
 document.getElementById('bgWhite').

addEventListener(
 'click',
 makeBackgroundWhite
);
 </script>
</body>

The script declares two named functions: makeBackgroundRed()
and makeBackgroundWhite(). The code then creates two event
listeners. One of them listens for clicks on the button that has the
id value bgRed and, when a click is detected, runs the makeBack
groundRed() callback function. The other event listener listens
for clicks on the button that has the id value bgWhite and, when a
click is detected, runs the makeBackgroundWhite() callback func-
tion. Refer to Chapter 6 to get the details on the document object
and the getElementById() and addEventListener() methods.

Again, you have two functions that don’t need to be named, so
you can remove them from the namespace by replacing the call-
backs with anonymous functions. Here’s the revised code:

<body>
 <button id="bgRed">
 Make Background Red
 </button>
 <button id="bgWhite">
 Make Background White
 </button>
 <script>
 document.getElementById('bgRed').

addEventListener(
 'click',
 function() {
 document.body.style.

backgroundColor= 'red';
 }

70 JavaScript Essentials For Dummies

);
 document.getElementById('bgWhite').

addEventListener(
 'click',
 function() {
 document.body.style.

backgroundColor= 'white';
 }
);
 </script>
</body>

Working with Arrow Functions
As you progress in JavaScript, you’ll find yourself using anony-
mous functions constantly. When you get to that stage, you’ll be
happy to know that ES6 also offers a simpler anonymous function
syntax. That is, instead of using this:

function ([arguments]) {
 JavaScript statements
}

you can use this:

([arguments]) => {
 JavaScript statements
}

All I’ve done here is remove the function keyword and replaced it
with the characters = and > between the arguments and the open-
ing brace. The characters => look like an arrow (JavaScripters call
it a fat arrow), so this version of the syntax is known as an arrow
function.

Arrow functions are an ES6 invention, so don’t use them if you
need to support very old browsers, such as Internet Explorer 11.

For example, here’s an anonymous function from a bit earlier (the
“Assigning an anonymous function to a variable” section):

CHAPTER 5 Harnessing the Power of Functions 71

// Declare tipCost using an anonymous function
const tipCost = function (preTip, tipPercent) {
 const tipResult = preTip * tipPercent;
 return (tipResult);
}

You can rewrite this using an arrow function:

// Declare tipCost using an arrow function
const tipCost = (preTip, tipPercent) => {
 const tipResult = preTip * tipPercent;
 return (tipResult);
}

If your anonymous function consists of a single statement, you
can take advantage of an arrow function feature called implicit
return:

([arguments]) => statement

Here, JavaScript assumes that a single-statement function means
that the function returns right after executing the statement, so
you can leave out the braces and the return keyword. Here’s an
example:

// Declare tipCost using an arrow function with
implicit return

const tipCost = (preTip, tipPercent) => preTip *
tipPercent;

Similarly, here’s one of the anonymous callback functions from
the previous section:

document.getElementById('bgRed').addEventListener(
 'click',
 function() {
 document.body.style.backgroundColor=

'red';
 }
);

72 JavaScript Essentials For Dummies

You can rewrite this code as follows to use an arrow function with
implicit return:

document.getElementById('bgRed').addEventListener(
 'click',
 () => document.body.style.backgroundColor=

'red'
);

CHAPTER 6 Coding the Document Object Model 73

Chapter 6

IN THIS CHAPTER

 » Understanding objects

 » Messing with object properties and
methods

 » Taking a deep dive into the Document
Object Model

 » Figuring out events

Coding the Document
Object Model

I’ve talked a lot of JavaScript over the past few chapters, but in a
very real sense all that has been just the programming equiva-
lent of noshing on a few appetizers. Now it’s time to sit down

for the main course: programming the Document Object Model.

In this chapter, you explore the fascinating world of the Docu-
ment Object Model. You learn lots of powerful coding techniques
that enable you to make your web pages do almost anything you
want them to do. You learn, too, that this is where web coding
becomes fun and maybe just a little addictive (in a good way,
I promise).

Getting Familiar with Objects
To write truly useful scripts, you have to do what JavaScript was
designed to do from the start: Manipulate the web page that it’s
displaying. That’s what JavaScript is all about, and that manipu-
lation can come in many different forms:

 » Add text and HTML attributes to an element.

 » Modify a CSS property of a class or other selector.

74 JavaScript Essentials For Dummies

 » Store some data in the browser’s internal storage.

 » Validate a form’s data before submitting it.

The bold items in this list are examples of the “things” that
you can work with, and they’re special for no other reason than
they’re programmable. In JavaScript parlance, these “program-
mable things” are called objects.

You can work with objects in JavaScript in any of the following
three ways:

 » You can read and make changes to the object’s properties.

 » You can make the object perform a task by activating a
method associated with the object.

 » You can define a procedure that runs whenever a particular
event happens to the object.

Working with object properties
You refer to a property by using the syntax in the following
generic expression:

object.property

 » object: The object that has the property

 » property: The name of the property you want to work with

For example, consider the following expression:

document.location

This expression refers to the document object’s location prop-
erty, which holds the address of the document currently dis-
played in the browser window. (In conversation, you’d pronounce
this expression as “document dot location.”) The following code
shows a simple one-line script that displays this property in the
console, as shown in Figure 6-1.

console.log(document.location);

CHAPTER 6 Coding the Document Object Model 75

Because the property always contains a value, you’re free to
use property expressions in just about any type of JavaScript
statement and as an operand in a JavaScript expression. For
example, the following statement assigns the current value of the
document.location property to a variable named currentUrl:

const currentUrl = document.location;

Similarly, the following statement includes document.location
as part of a string expression:

const message = "The current address is " +
document.location + ".";

Some properties are “read only,” which means your code can
only read the current value and can’t change it. However, many
properties are “read/write,” which means you can also change
their values. To change the value of a property, use the following
generic syntax:

object.property = value

Here’s what the various parts are:

 » object: The object that has the property

 » property: The name of the property you want to change

 » value: A literal value (such as a string or number) or an
expression that returns the value to which you want to set
the property

FIGURE 6-1: This script displays the document.location property in a
console message.

76 JavaScript Essentials For Dummies

Here’s an example:

const newAddress = prompt("Enter the address you
want to surf to:");

document.location = newAddress;

This script prompts the user for a web page address and stores
the result in the newAddress variable. This value is then used to
change the document.location property, which in this case tells
the browser to open the specified address.

Working with object methods
To run a method, begin with the simplest case, which is a method
that takes no arguments:

object.method()

Here’s what the various parts are:

 » object: The object that has the method you want to work
with

 » method: The name of the method you want to execute

For example, consider the following statement:

history.back();

This runs the history object’s back() method, which tells the
browser to go back to the previously visited page.

If a method requires arguments, you use the following generic
syntax:

object.method (argument1, argument2, ...)

For example, consider the confirm() method, used in the fol-
lowing statement, which takes a single argument — a string that
specifies the text to display to the user:

confirm("Do you want to go back?")

CHAPTER 6 Coding the Document Object Model 77

Finally, as with properties, if the method returns a value, you can
assign that value to a variable (as I do with the confirm() method
in the earlier example) or you can incorporate the method into an
expression.

Introducing the Document Object Model
Here’s some source code for a simple web page:

<html lang="en">
 <head>
 <title>So Many Kale Recipes</title>
 </head>
 <body>
 <header>
 <h1>Above and Beyond the Kale of

Duty</h1>
 </header>
 <main>
 <p>
 Do you love to cook with kale?
 </p>
 </main>
 </body>
</html>

One way to examine this code is hierarchically. That is, the html
element is, in a sense, the topmost element because every other
element is contained within it. The next level down in the hier-
archy contains the head and body elements. The head element
contains a title element, which contains the text So Many Kale
Recipes. Similarly, the body element contains a header element
and a main element.

Hierarchies are almost always more readily grasped in visual
form, so Figure 6-2 graphs the page elements hierarchically.

78 JavaScript Essentials For Dummies

When speaking of object hierarchies, if object P contains object
C, object P is said to be the parent of object C, and object C is said
to be the child of object P. In Figure 6-2, the arrows represent
parent-to-child relationships. Also, elements on the same level —
such as the header and main elements — are known as siblings.

You have several key points to consider here:

 » Every box in Figure 6-2 represents an object.

 » Every object in Figure 6-2 is one of three types: element, text,
or attribute.

 » Every object in Figure 6-2, regardless of its type, is called
a node.

 » The page as a whole is represented by the document object.

Therefore, this hierarchical object representation is known as the
Document Object Model, or the DOM as it’s usually called. The
DOM enables your JavaScript code to access the complete struc-
ture of an HTML document.

FIGURE 6-2: The web page code as a hierarchy.

CHAPTER 6 Coding the Document Object Model 79

Specifying Elements in Your Code
Elements represent the tags in a document, so you’ll be using
them constantly in your code. This section shows you several
methods for referencing one or more elements.

Specifying an element by id
If it’s a specific element you want to work with in your script, you
can reference the element directly by first assigning it an identi-
fier using the id attribute:

<div id="kale-quotations">

With that done, you can then refer to the element in your code by
using the document object’s getElementById() method:

document.getElementById(id)

Note: id is a string representing the id attribute of the element
you want to work with.

For example, the following statement returns a reference to the
previous <div> tag (the one that has id="kale-quotations"):

document.getElementById("kale-quotations")

When you’re coding the document object, don’t put your <script>
tag in the web page’s head section (that is, between the <head>
and </head> tags). If you place your code there, the web browser
will run the code before it has had a chance to create the document
object, which means your code will fail, big time. Instead, place
your <script> tag at the bottom of the web page, just before the
</body> tag.

Specifying elements by tag name
Besides working with individual elements, you can also work with
collections of elements. One such collection is the set of all ele-
ments in a page that use the same tag name. For example, you
could reference all the <a> tags or all the <div> tags.

80 JavaScript Essentials For Dummies

The mechanism for returning a collection of elements that have
the same tag is the getElementsByTagName() method:

document.getElementsByTagName(tag)

Note: tag is a string representing the HTML name used by the tags
you want to work with.

This method returns an array-like collection that contains all the
elements in the document that use the specified tag. (Refer to
Chapter 7 to find out how arrays work. Also check out “Working
with collections of elements,” later in this chapter.) For example,
to return a collection that includes all the div elements in the cur-
rent page, you’d use the following statement:

const divs = document.getElementsByTagName("div");

Specifying elements by class name
Another collection you can work with is the set of all elements in a
page that use the same class. The JavaScript tool for returning all
the elements that share a specific class name is the getElements
ByClassName() method:

document.getElementsByClassName(class)

Note: class is a string representing the class name used by the
elements you want to work with.

This method returns an array-like collection that contains all the
elements in the document that use the specified class name. The
collection order is the same as the order in which the elements
appear in the document. Here’s an example:

const keywords = document.getElementsByClassName("
keyword");

Specifying elements by selector
The same selectors and combinators that you use with CSS are
also available in your JavaScript code to reference page elements
by using the document object’s querySelector() and query
SelectorAll() methods:

CHAPTER 6 Coding the Document Object Model 81

document.querySelector(selector)
document.querySelectorAll(selector)

Note: selector is a string representing the selector or combinator
for the element or elements you want to work with.

The difference between these methods is that querySelector
All() returns a collection of all the elements that match your
selector, whereas querySelector() returns only the first element
that matches your selector.

For example, the following statement returns the collection of all
section elements that are direct children of an article element:

const articles = document.
querySelectorAll("article > section");

Working with collections of elements
The getElementsByTagName(), getElementsByClassName(), and
querySelectorAll() methods each return an array-like collec-
tion that contains all the elements in the document that use the
specified tag, class, or selector, respectively. The collection order
is the same as the order in which the elements appear in the doc-
ument. For example, consider the following HTML code:

<div id="div1">
 This, of course, is div 1.
</div>
<div id="div2">
 Yeah, well this is div 2!
</div>
<div id="div3">
 Ignore those dudes. Welcome to div 3!
</div>

Now consider the following statement:

divs = document.getElementsByTagName("div");

In the resulting collection, the first item (divs[0]) will be the
<div> element with id equal to div1; the second item (divs[1])
will be the <div> element with id equal to div2; and the third
item (divs[2]) will be the <div> element with id equal to div3.

82 JavaScript Essentials For Dummies

You can also refer to elements directly using their id values. For
example, the following statements are equivalent:

const firstDiv = divs[0];
const firstDiv = divs.div1;

To learn how many items are in a collection, use the length
property:

const totalDivs = divs.length;

To perform one or more operations on each item in the collection,
you can use a for...of loop to run through the collection one
item at a time. In the JavaScript trade, this is known as iterating
over the collection. Here’s the syntax to use:

for (const item of collection) {
 statements
}

Here’s what the various parts are:

 » item: A variable that holds an item in the collection. The first
time through the loop, item is set to the first element in the
collection; the second time through the loop, item is set to
the second element; and so on.

 » collection: The collection of elements you want to
iterate over.

 » statements: The JavaScript code you want to use to
manipulate (or view, or whatever) item.

For example, here’s some code that iterates over the preceding div
elements and displays each item’s id value in the console (refer
to Chapter 9 for details on the console), as shown in Figure 6-3:

divs = document.getElementsByTagName("div");
for (const d of divs) {
 console.log(d.id);
}

CHAPTER 6 Coding the Document Object Model 83

The for...of loop is an ECMAScript 2015 (ES6) addition. If you
need to support ancient browsers such as Internet Explorer 11, you
can use a regular for loop, instead:

for (var i = 0; i < collection.length; i += 1) {
 statements
 // Use collection[i] to refer to each item
}

Touring the DOM with Code
One common task in JavaScript code is working with the children,
parent, or siblings of some element in the page. This is known as
traversing the DOM, because you’re using these techniques to move
up, down, and along the DOM hierarchy.

In the sections that follow, I use the following HTML code for
each example technique:

<html lang="en">
 <head>
 <title>So Many Kale Recipes</title>
 </head>
 <body>
 <header id="page-banner">
 <h1>Above and Beyond the Kale of

Duty</h1>
 </header>

FIGURE 6-3: The output of the script that iterates over the div elements.

84 JavaScript Essentials For Dummies

 <main id="page-content">
 <p>
 Do you love to cook with kale?
 </p>
 </main>
 </body>
</html>

Getting the children of a parent
element
When you’re working with a particular element, it’s common to
want to perform one or more operations on that element’s chil-
dren. Every parent element offers several properties that enable
you to work with all or just some of its child nodes:

 » All the child nodes

 » The first child node

 » The last child node

Getting all the child nodes
To return a collection of all the child elements of a parent, you use
the children property:

parent.children

Note: parent is the parent element.

For example, the following statement stores the all the child ele-
ment nodes of the body element in a variable:

const bodyChildElements = document.body.children;

The result is an HTMLCollection object, which is an array-like
collection of element nodes. If you were to use the console (refer
to Chapter 9) to display the value of bodyChildElements, you’d
get the output shown in Figure 6-4.

CHAPTER 6 Coding the Document Object Model 85

Here’s the output:

HTMLCollection { 0: header, 1: main, length: 2 }

The numbers 0 and 1 are the index numbers of each child. For
example, you could use bodyChildElements[0] to refer to the
first element in the collection, which in this example is the header
element.

Getting the first child node
If you use a parent element’s childNodes or children property
to return the parent’s child nodes, as I describe in the previous
section, you can refer to the first item in the resulting collection
by tacking [0] on to the collection’s variable name. For example:

bodyChildren[0]
bodyChildElements[0]

However, the DOM offers a more direct route to the first child
node:

parent.firstChild

Note: parent is the parent element.

FIGURE 6-4: The value of the bodyChildElements variable displayed in the
console.

86 JavaScript Essentials For Dummies

For example, suppose you want to work with the first child node
of the main element from the HTML example at the beginning of
this section. Here’s some code that’ll do the job:

const content = document.
getElementById("page-content");

const firstContentChildNode = content.firstChild;

In this example, the resulting node is a text node (the white space
between the <main> and <p> tags). If you want the first child ele-
ment node, use the firstElementChild property, instead:

parent.firstElementChild

Note: parent is the parent element.

To get the first child element node of the main element from the
code at the beginning of this section, you’d do something like this:

const content = document.
getElementById("page-content");

const firstContentChildElement = content.
firstElementChild;

In this example, this code returns the p element.

Getting the last child node
If your code needs to work with the last child node, use the
lastChild property of the parent element:

parent.lastChild

Note: parent is the parent element.

For example, suppose you want to work with the last child node
of the p element from the HTML example at the beginning of this
section. Here’s some code that’ll do the job:

const para = document.querySelector("main > p");
const lastParaChildNode = para.lastChild;

CHAPTER 6 Coding the Document Object Model 87

In this example, the resulting node is a text node representing the
question mark (?) and the white space to the </p> tag. If you want
the last child element node, use the lastElementChild property,
instead:

parent.lastElementChild

Note: parent is the parent element.

To get the last child element node of the p element from the code
at the beginning of this section, you could do this:

const para = document.querySelector("main > p");
const lastParaChildElement = para.

lastElementChild;

In the example, this code returns the a element.

Getting the parent of a child element
If your code needs to work with the parent of a child element, use
the child element’s parentNode property:

child.parentNode

Note: child is the child element.

For example, suppose you want to work with the parent element
of the h1 element from the HTML example at the beginning of this
section. Here’s some code that’ll do the job:

const childElement = document.querySelector("h1");
const parentElement = childElement.parentNode;

Getting the siblings of an element
A parent’s child nodes appear in the DOM in the same order in
which they appear in the HTML code, which means the siblings
also appear in the order they appear in the HTML. Therefore, for a
given child element, there are two sibling possibilities:

 » Previous sibling: This is the sibling that appears in the DOM
immediately before the child element you’re working with. If the
child element is the first sibling, it will have no previous sibling.

88 JavaScript Essentials For Dummies

 » Next sibling: This is the sibling that appears in the DOM
immediately after the child element you’re working with.
If the child element is the last sibling, it will have no next
sibling.

Getting the previous sibling
To return the previous sibling of a particular element, use the
previousElementSibling property:

element.previousElementSibling

Note: element is the element you’re working with.

For example, the following statement stores the previous sibling
of the main element in a variable:

const currElement = document.
querySelector("main");

const prevSib = currElement.
previousElementSibling;

Getting the next sibling
To return the next sibling of a particular element, use the
nextElementSibling property:

element.nextElementSibling

Note: element is the element you’re working with.

For example, the following statement stores the next sibling of
the header element in a variable:

const currElement = document.
querySelector("header");

const nextSib = currElement.nextElementSibling;

CHAPTER 6 Coding the Document Object Model 89

Adding, Modifying, and
Removing Elements

After you’ve got a reference to one or more elements, you can
then use code to manipulate those elements in various ways, as
shown in the next few sections.

Adding an element to the page
One of the most common web development chores is to add ele-
ments to a web page on the fly. When you add an element, you
always specify the parent element to which it will be added, and
then you decide whether you want the new element added to the
end or to the beginning of the parent’s collection of children.

To add an element to the page, you follow three steps:

1. Create an object for the type of element you want to add.

2. Add the new object from Step 1 as a child element of an
existing element.

3. Insert some text and tags into the new object from Step 1.

Step 1: Creating the element
For Step 1, you use the document object’s createElement()
method:

document.createElement(elementName)

Note: elementName is a string containing the HTML element name
for the type of the element you want to create.

This method creates the element and then returns it, which means
you can store the new element in a variable. Here’s an example:

const newArticle = createElement("article");

90 JavaScript Essentials For Dummies

Step 2: Adding the new element as a child
With your element created, Step 2 is to add it to an existing parent
element. You have four choices:

 » Append the new element to the end of the parent’s
collection of child elements: Use the append() method:

parent.append(child)

Here are the parts of the append() method:

• parent: A reference to the parent element to which the
new element will be appended.

• child: A reference to the child element you’re append-
ing. Note that you can append multiple elements at the
same time by separating each element with a comma.
The child parameter can also be a text string.

 » Prepend the new element to the beginning of the
parent’s collection of child elements: Use the prepend()
method:

parent.prepend(child)

Here are the parts of the prepend() method:

• parent: A reference to the parent element to which the
new element will be prepended.

• child: A reference to the child element you’re prepend-
ing. Note that you can prepend multiple elements at the
same time by separating each element with a comma.
The child parameter can also be a text string.

 » Insert the new element just after an existing child
element of the parent: Use the after() method:

child.after(sibling)

Here are the parts of the after() method:

• child: A reference to the child element after which the
new element will be inserted.

• sibling: A reference to the new element you’re insert-
ing. Note that you can insert multiple elements at the
same time by separating each element with a comma.
The sibling parameter can also be a text string.

CHAPTER 6 Coding the Document Object Model 91

 » Insert the new element just before an existing child
element of the parent: Use the before() method:

child.before(sibling)

Here are the parts of the before() method:

• child: A reference to the child element before which the
new element will be inserted.

• sibling: A reference to the new element you’re insert-
ing. Note that you can insert multiple elements at the
same time by separating each element with a comma.
The sibling parameter can also be a text string.

Here’s an example that creates a new article element and then
appends it to the main element:

const newArticle = document.createElement("article");
document.querySelector("main").append(newArticle);

Here’s an example that creates a new nav element and then pre-
pends it to the main element:

const newNav = document.createElement("nav");
document.querySelector("main").prepend(newNav);

Step 3: Adding text and tags
to the new element
With your element created and appended to a parent, the final
step is to add some text and tags using the innerHTML property:

element.innerHTML = text

Here’s what the various parts are:

 » element: A reference to the new element within which you
want to add the text and tags

 » text: A string containing the text and HTML tags you want to
insert

92 JavaScript Essentials For Dummies

Whatever value you assign to the innerHTML property completely
overwrites an element’s existing text and tags, so use caution
when wielding innerHTML. Check out the next section to learn
how to insert text and tags rather than overwrite them.

In this example, the code creates a new nav element, prepends it
to the main element, and then adds a heading:

const newNav = document.createElement("nav");
document.querySelector("main").prepend(newNav);
newNav.innerHTML = "<h2>Navigation</h2>";

Inserting text or HTML into
an element
It’s often the case that you want to keep the element’s existing
tags and text and insert new tags and text. Each element offers a
couple of methods that enable you do to do this:

 » To insert just text into an element: Use the insertAdjacent
Text() method:

element.insertAdjacentText(location, text)

Here’s what the various parts are:

• element: A reference to the element into which the new
text will be inserted.

• location: A string specifying where you want the text
inserted. I outline your choices here shortly.

• text: A string containing the text you want to insert.

 » To insert tags and text into an element: Use the insert
AdjacentHTML() method:

element.insertAdjacentHTML(location, data)

Here’s what the various parts are:

• element: A reference to the element into which the new
tags and text will be inserted.

CHAPTER 6 Coding the Document Object Model 93

• location: A string specifying where you want the tags
and text inserted. I outline your choices here shortly.

• data: A string containing the tags and text you want to
insert.

For both methods, you can use one of the following strings for the
location argument:

 » "beforebegin": Inserts the data outside of and just before
the element

 » "afterbegin": Inserts the data inside the element, before
the element’s first child

 » "beforeend": Inserts the data inside the element, after the
element’s last child

 » "afterend": Inserts the data outside of and just after the
element

For example, suppose your document has the following element:

<h2 id="nav-heading">Navigation</h2>

If you want to change the heading to Main Navigation, the fol-
lowing code will do the job:

const navHeading = document.
getElementById("nav-heading");

navHeading.insertAdjacentText("afterbegin",
"Main ");

Removing an element
If you no longer require an element on your page, you can use the
element’s remove() method to delete it from the DOM:

element.remove()

For example, the following statement removes the element with
an id value of temp-div from the page:

document.getElementById("temp-div").remove();

94 JavaScript Essentials For Dummies

Using Code to Mess Around with CSS
Although you specify your CSS rules in a static stylesheet (.css)
file, that doesn’t mean that the rules themselves have to be static.
With JavaScript on the job, you can modify an element’s CSS in a
number of ways.

Changing an element’s styles
Most elements have a style property that enables you to get and
modify a tag’s styles. It works like this: The style property actu-
ally returns a style object that has properties for every CSS prop-
erty. When referencing these style properties, you need to keep
two things in mind:

 » For single-word CSS properties (such as color and
visibility), use all-lowercase letters.

 » For multiple-word CSS properties, drop the hyphen and use
uppercase for the first letter of the second word and for
each subsequent word if the property has more than two.
For example, the font-size and border-left-width CSS
properties become the fontSize and borderLeftWidth
style object properties.

Here’s an example:

const pageTitle = document.querySelector("h1");
pageTitle.style.fontSize = "64px";
pageTitle.style.color = "maroon";
pageTitle.style.textAlign = "center";
pageTitle.style.border = "1px solid black";

This code gets a reference to the page’s first <h1> element. With
that reference in hand, the code then uses the style object to style
four properties of the heading: fontSize, color, text-align, and
border.

Adding a class to an element
If you have a class rule defined in your CSS, you can apply that
rule to an element by adding the class attribute to the element’s
tag and setting the value of the class attribute equal to the name
of your class rule.

CHAPTER 6 Coding the Document Object Model 95

First, you can get a list of an element’s assigned classes by using
the classList property:

element.classList

Note: element is the element you’re working with.

The returned list of classes is an array-like object that includes an
add() method that you can use to add a new class to the element’s
existing classes:

element.classList.add(class)

Here’s what the various parts are:

 » element: The element you’re working with.

 » class: A string representing the name of the class you want
to add to element. You can add multiple classes by separat-
ing each class name with a comma.

Here’s an example, and Figure 6-5 shows the result.

CSS:

.my-class {
 display: flex;
 justify-content: center;

FIGURE 6-5: This code uses the add() method to add the class named
my-class to the <div> tag.

96 JavaScript Essentials For Dummies

 align-items: center;
 border: 6px dotted black;
 font-family: Verdana, serif;
 font-size: 2rem;
 background-color: lightgray;
}

HTML:

<div id="my-div">
 Hello World!
</div>

JavaScript:

document.getElementById('my-div').classList.
add('my-class');

If the class attribute doesn’t exist in the element, the addClass()
method inserts it into the tag. So in the previous example, after
the code executes, the <div> tag now appears like this:

<div id="my-div" class="my-class">

Removing a class
To remove a class from an element’s class attribute, the
classList object offers the remove() method:

element.classList.remove(class)

Here’s what the various parts are:

 » element: The element you’re working with.

 » class: A string representing the name of the class you want
to remove from element. You can remove multiple classes
by separating each class name with a comma.

Here’s an example:

document.getElementById('my-div').classList.
remove('my-class');

CHAPTER 6 Coding the Document Object Model 97

Toggling a class
The classList object offers the toggle() method, which toggles
a class on and off an element. That is, it checks the element for
the specified class; if the class is there, JavaScript removes it; if
the class isn’t there, JavaScript adds it. Sweet! Here’s the syntax:

element.classList.toggle(class)

Here’s what the various parts are:

 » element: The element you’re working with

 » class: A string representing the name of the class you want
to toggle for element

Here’s an example:

document.getElementById('my-div').classList.
toggle('my-class');

Using Code to Tweak HTML Attributes
One of the key features of the DOM is that each tag on the page
becomes an element object. You may be wondering, do these ele-
ment objects have any properties? Yep, they have tons. In partic-
ular, if the tag included one or more attributes, those attributes
become properties of the element object.

For example, consider the following tag:

<img id="header-image"
 src="mangosteen.png"
 alt="Drawing of a mangosteen">

This tag has three attributes: id, src, and alt. In the DOM’s rep-
resentation of the tag, these attributes become properties
of the img element object. Here’s some JavaScript code that refer-
ences the img element:

const headerImage = document.
getElementById("header-image");

98 JavaScript Essentials For Dummies

The headerImage variable holds the img element object, so your
code could now reference the img element’s attribute values with
any of the following property references:

headerImage.id
headerImage.src
headerImage.alt

However, the DOM doesn’t create properties either for custom
attributes or for attributes added programmatically. Fortunately,
each element object also offers methods that enable you to read
any attribute, as well as add, modify, or remove the element’s
attributes. The next few sections tell all.

Reading an attribute value
If you want to read the current value of an attribute for an ele-
ment, use the element object’s getAttribute() method:

element.getAttribute(attribute)

Here’s what the various parts are:

 » element: The element you want to work with

 » attribute: The name of the attribute you want to read

Here’s an example that gets the src attribute of the element with
an id value of header-image:

const headerImage = document.
getElementById("header-image");

const srcHeaderImage = headerImage.
getAttribute("src");

Setting an attribute value
To set an attribute value on an element, use the element object’s
setAttribute() method:

element.setAttribute(attribute, value);

CHAPTER 6 Coding the Document Object Model 99

Here’s what the various parts are:

 » element: The element you want to work with

 » attribute: The name of the attribute you want to set

 » value: The string value you want to assign to attribute

If the attribute already exists, setAttribute overwrites the attri-
bute’s current value; if the attribute doesn’t exist, setAttribute
adds it to the element.

Here’s an example that sets the alt attribute for the element with
an id value of header-image:

const headerImage = document.
getElementById("header-image");

headerImage.setAttribute("alt", "Lithograph of a
mangosteen");

Removing an attribute
To remove an attribute from an element, use the element object’s
removeAttribute() method:

element.removeAttribute(attribute);

Here’s what the various parts are:

 » element: The element you want to work with

 » attribute: A string specifying the name of the attribute you
want to remove from the element

Here’s an example:

const headerImage = document.getElementById
("header-image");

headerImage.removeAttribute("id");

100 JavaScript Essentials For Dummies

Listening for Page Events
In web development, an event is an action that occurs in response
to some external stimulus. A common type of external stimulus is
when a user interacts with a web page. Here are some examples:

 » Surfing to or reloading the page

 » Clicking a button

 » Pressing a key

 » Scrolling the page

Why don’t web pages respond to events automatically? Why do
they just sit there? Because web pages are static by default, mean-
ing that they ignore the events that are firing all around them.
Your job as a web developer is to change that behavior by making
your web pages “listen” for particular events to occur. You do that
by setting up special chunks of code called event handlers. An event
handler consists of two parts:

 » Event listener: An instruction to the web browser to watch
out (“listen”) for a particular event occurring on a particular
element.

 » Callback function: The code that the web browser executes
when it detects that the event has occurred.

You configure your code to listen for and react to an event by set-
ting up an event handler using the element object’s addEvent
Listener() method. Here’s the syntax:

element.addEventListener(event, callback);

Here’s what the various parts are:

 » element: The web page element to be monitored for the
event. The event is said to be bound to the element.

 » event: A string specifying the name of the event you want
the browser to listen for. For the main events I mention in
the previous section, use one of the following, enclosed in
quotation marks: DOMContentLoaded, click, dblclick,
mouseover, keypress, focus, blur, change, submit,
scroll, or resize.

CHAPTER 6 Coding the Document Object Model 101

 » callback: The callback function that JavaScript executes
when the event occurs. The callback can be an anonymous
function or a reference to a named function.

Here’s an example:

HTML:

<div id="my-div"></div>
<button id="my-button">Click to add some text,

above</button>

JavaScript:

const myButton = document.
getElementById('my-button');

myButton.addEventListener('click', function() {
 const myDiv = document.

getElementById('my-div');
 myDiv.innerHTML = '<h1>Hello Click World!</

h1>';
});

The HTML sets up an empty div element and a button element.
The JavaScript code attaches a click event listener to the but-
ton, and the callback function adds the HTML string <h1>Hello
Click World!</h1> to the div. Figure 6-6 shows the resulting
page after the button has been clicked.

FIGURE 6-6: The click event callback function adds some HTML and text to
the div element.

102 JavaScript Essentials For Dummies

If you want to run some code after the web page document has
loaded, add an event handler to the document object that listens
for the DOMContentLoaded event:

document.addEventListener('DOMContentLoaded',
function() {

 console.log('We are loaded!');
});

When an event fires, the DOM creates an Event object, the proper-
ties of which contain info about the event, including the following:

 » target: The web page element to which the event occurred.
For example, if you set up a click handler for a div
element, that div is the target of the click.

 » which: A numeric code that specifies the key that was
pressed during a keypress event.

 » pageX: The distance (in pixels) that the mouse pointer was
from the left edge of the browser’s content area when the
event fired.

 » pageY: The distance (in pixels) that the mouse pointer was
from the top edge of the browser’s content area when the
event fired.

 » metaKey: A Boolean value that equals true if the user had
the Windows key () or the Mac Command key (⌘  ) held
down when the event fired.

 » shiftKey: A Boolean value that equals true if the user had
the Shift key held down when the event fired.

To access these properties, you insert a name for the Event object
as an argument in your event handler’s callback function:

element.addEventListener(event, function(e) {
 This code runs when the event fires
});

Note: e is a name for the Event object that the DOM generates
when the event fires. You can use whatever name you want, but
most coders use e (although evt and event are also common).

For example, when handling the keypress event, you need access
to the which property to find out the code for the key the user

CHAPTER 6 Coding the Document Object Model 103

pressed. Here’s an example page that can help you determine
which code value to use:

HTML:

<div>
 Type a key:
</div>
<input id="key-input" type="text">
<div>
 Here's the code of the key you pressed:
</div>
<div id="key-output">
</div>

JavaScript:

const keyInput = document.
getElementById('key-input');

keyInput.addEventListener('keypress', function(e)
{

 const keyOutput = document.
getElementById('key-output');

 keyOutput.innerHTML = e.which;
});

The HTML sets up an <input> tag to accept a keystroke, and a
<div> tag with id="key-output" to use for the output. The Java
Script code adds a keypress event listener to the input element,
and when the event fires, the callback function writes e.which to
the output div. Figure 6-7 shows the page in action.

FIGURE 6-7: The keypress event callback function uses e.which to write
the numeric code of the pressed key to the div element.

CHAPTER 7 Working with Arrays 105

Chapter 7

IN THIS CHAPTER

 » Declaring an array variable

 » Populating an array with data

 » Iterating an array

 » Working with JavaScript’s Array object

Working with Arrays

In this chapter, you take your coding efficiency to an even higher
level by exploring one of JavaScript’s most important concepts:
the array. Arrays are important not only because they’re

extremely efficient and very powerful but also because after you
know how to use them, you’ll think of a thousand and one uses for
them. To make sure you’re ready for your new array-filled life,
this chapter explains what they are and why they’re so darn use-
ful, and then explores all the fantastic ways that arrays can make
your coding life easier.

What Is an Array?
In JavaScript, whenever you have a collection of variables with
related data, you can group them together into a single variable
called an array. You can enter as many values as you want into the
array, and JavaScript tracks each value using an index number. For
example, the first value you add is given the index 0. The second
value you put into the array is given the index 1; the third value
gets 2; and so on. You can then access any value in the array by
specifying the index number you want.

106 JavaScript Essentials For Dummies

Declaring an Array
Because an array is a type of variable, you need to declare it before
using it. There are four syntaxes you can use. Here’s the syntax
that’s the most informative:

const arrayName = new Array();

Here, arrayName is the name you want to use for the array variable.

In JavaScript, an array is actually an object, so what the new key-
word is doing here is creating a new Array object. The Array()
part of the statement is called a constructor because its job is to
construct the object in memory. For example, to create a new
array named dogPhotos, you’d use the following statement:

const dogPhotos = new Array();

The second syntax is useful if you know in advance the number of
values (or elements) you’ll be putting into the array:

const arrayName = new Array(num);

Here’s what the various parts are:

 » arrayName: The name you want to use for the array variable

 » num: The number of values you’ll be placing into the array

For example, here’s a statement that declares a new dogPhotos
array with five elements:

const dogPhotos = new Array(5);

Populating an Array
After your array is declared, you can start populating it with
the data values you want to store. Here’s the general syntax for
doing this:

arrayName[index] = value;

CHAPTER 7 Working with Arrays 107

Here’s what the various parts are:

 » arrayName: The name of the array variable

 » index: The array index number where you want the value
stored

 » value: The value you’re storing in the array

JavaScript is willing to put just about any type of data inside an
array, including numbers, strings, Boolean values, and even other
arrays! You can even mix multiple data types within a single array.

As an example, here are a few statements that declare a new array
named dogPhotos and then enter five string values into the array:

const dogPhotos = new Array(5);
dogPhotos[0] = "dog-1";
dogPhotos[1] = "dog-2";
dogPhotos[2] = "dog-3";
dogPhotos[3] = "dog-4";
dogPhotos[4] = "dog-5";

To reference an array value (say, to use it within an expression),
you specify the appropriate index:

strURL + dogPhotos[3]

Declaring and populating an array
at the same time
Earlier, I mentioned that JavaScript has two other syntaxes for
declaring an array. Both enable you to declare an array and popu-
late it with values by using just a single statement.

The first method uses the Array() constructor in the following
general format:

const arrayName = new Array(value1, value2, ...);

108 JavaScript Essentials For Dummies

Here’s what the various parts are:

 » arrayName: The name you want to use for the array variable

 » value1, value2, ...: The initial values with which you
want to populate the array

Here’s an example:

const dogPhotos = new Array("dog-1", "dog-2",
"dog-3", "dog-4", "dog-5");

JavaScript also supports the creation of array literals. You create an
array literal by enclosing one or more values in square brackets.
Here’s the general format:

const arrayName = [value1, value2, ...];

Here’s what the various parts are:

 » arrayName: The name you want to use for the array variable

 » value1, value2, ...: The initial values with which you
want to populate the array

An example:

const dogPhotos= ["dog-1", "dog-2", "dog-3",
"dog-4", "dog-5"];

Most JavaScript programmers prefer this syntax over using the
Array constructor.

Populating an array using a loop
You can populate an array using a loop and some kind of coun-
ter variable to access an array’s index number programmatically.
Here’s an example:

const dogPhotos = [];
for (let counter = 0; counter < 5; counter += 1) {
 dogPhotos[counter] = "dog-" + (counter + 1);
}

CHAPTER 7 Working with Arrays 109

The statement inside the for() loop uses the variable counter as
the array’s index. For example, when counter is 0, the statement
looks like this:

dogPhotos[0] = "dog-" + (0 + 1);

In this case, the expression to the right of the equals sign evalu-
ates to "dog-1", which is the correct value.

Iterating Arrays
Arrays can really help make your code more efficient by enabling
you to reduce these kinds of long-winded procedures to a much
shorter routine that fits inside a function. These routines are iter-
ative methods of the Array object, where iterative means that the
method runs through the items in the array, and for each item,
a function (called a callback) performs some operation on or with
the item.

The Array object actually has 14 iterative methods. I don’t cover
them all, but over the next few sections I talk about the most use-
ful ones.

Iterating an array: forEach()
The Array object’s forEach() method runs a callback function
for each element in the array. That callback takes up to three
arguments:

 » value: The value of the element

 » index: (Optional) The array index of the element

 » array: (Optional) The array being iterated

You can use any of the following syntaxes:

array.forEach(namedFunction);
array.forEach(function (value, index, array) {

code });
array.forEach((value, index, array) => { code });

110 JavaScript Essentials For Dummies

Here’s what the various parts are:

 » array: The Array object you want to iterate over.

 » namedFunction: The name of an existing function. This
function should accept the value argument and perhaps
also the optional index and array arguments.

 » code: The statements to run during each iteration.

Here’s an example:

// Declare the array
const dogPhotos= ["dog-1", "dog-2", "dog-3",

"dog-4", "dog-5"];

// Iterate through the array
dogPhotos.forEach((value, index) => {
 console.log("Element " + index + " has the

value " + value);
});

Iterating to create a new array: map()
When you iterate over an array, it’s common to apply some oper-
ation to each element value. In some cases, however, you want
to preserve the original array values and create a new array that
contains the updated values.

The easiest way to create a new array that stores updated values of
an existing array is to use the Array object’s map() method. There
are three syntaxes you can use:

array.map(namedFunction);
array.map(function (value, index, array) { code });
array.map((value, index, array) => { code });

Here’s what the various parts are:

 » array: The Array object with the values you want to use.

 » namedFunction: The name of an existing function that
performs the operation on each array value. This function

CHAPTER 7 Working with Arrays 111

should accept the value argument and perhaps also the
optional index and array arguments.

 » code: The statements to run during each iteration to
perform the operation on each value.

The map() method returns an Array object that contains the
updated values, so be sure to store the result in a variable.

Here’s an example:

// Declare an array of Fahrenheit temperatures
const tempsFahrenheit = [-40, 0, 32, 100, 212];

// Convert each array value to Celsius
const tempsCelsius = tempsFahrenheit.

map(currentTemp => {
 return (currentTemp - 32) * 0.5556;
});

// Output the result
console.log(tempsCelsius);

Iterating an array down to a value:
reduce()
One common iteration pattern is to perform a cumulative opera-
tion on every element in an array to produce a value. For example,
you may want to know the sum of all the values in the array.

Iterating an array in this way to produce a value is the job of the
Array object’s reduce() method. There are three syntaxes you
can use:

array.reduce(namedFunction, initialValue);
array.reduce(function (accumulator, value, index,

array) { code }, initialValue);
array.reduce((accumulator, value, index, array) =>

{ code }, initialValue);

112 JavaScript Essentials For Dummies

Here’s what the various parts are:

 » array: The Array object with the values you want to reduce.

 » namedFunction: The name of an existing function that
performs the reducing operation on each array value. This
function should accept the accumulator and value
arguments and perhaps also the optional index and array
arguments.

 » code: The statements to run during each iteration to
perform the reducing operation on each value.

 » initialValue: The starting value of accumulator. If you
omit initialValue, JavaScript uses the value of the first
element in array.

Here’s an example:

// Declare an array of product inventory
const unitsInStock = [547, 213, 156, 844, 449, 71,

313, 117];

// Get the total units in stock
const initialUnits = 0;
const totalUnits = unitsInStock.reduce

((accumulatedUnits, currentInventoryValue) => {
 return accumulatedUnits +

currentInventoryValue;
}, initialUnits);

// Output the result
console.log("Total units in stock: " + total

Units);

Iterating to locate an element: find()
To search within an array for the first element that matches some
condition, use the Array object’s find() method. There are three
syntaxes you can use:

CHAPTER 7 Working with Arrays 113

array.find(namedFunction);
array.find(function (value, index, array) { code });
array.find((value, index, array) => { code });

Here’s what the various parts are:

 » array: The Array object with the values in which you want
to search.

 » namedFunction: The name of an existing function that
applies the condition to each array value. This function
should accept the value argument and perhaps also the
optional index and array arguments.

 » code: The statements to run during each iteration to apply
the condition to each value.

In the namedFunction or code, you set up a logical condition that
tests each element in the array and use a return statement to
send the result of the test back to the find() method. The final
value returned by find() is the first element for which the test is
true, or undefined if the test is false for all the array elements.

Here’s an example:

// Declare an array of product objects
const products = [
 { name: 'doodad', units: 547 },
 { name: 'gizmo', units: 213 },
 { name: 'gimcrackery', units: 156 },
 { name: 'knickknack', units: 844 },
 { name: 'bric-a-brac', units: 449 },
 { name: 'thingamajig', units: 71 },
 { name: 'watchamacallit', units: 313 },
 { name: 'widget', units: 117 }
];

// Query the array
const strQuery = "gizmo";

114 JavaScript Essentials For Dummies

const stock = products.find((currentProduct) => {
 return currentProduct.name === strQuery;
});

// Output the result
if (stock) {
 console.log("Product " + stock.name + " has "

+ stock.units + " units in stock.");
 } else {
 console.log("Product " + strQuery + " not

found.");
}

Manipulating Arrays
Like any good object, Array comes with a large collection of prop-
erties and methods that you can work with and manipulate. The
rest of this chapter takes a look at a few of the most useful of
these properties and methods.

The length property
The Array object has just a couple of properties, but the only one
of these that you’ll use frequently is the length property:

array.length

The length property returns the number of elements that are
currently in the specified array.

Some useful array methods
Many methods are associated with arrays, but the proverbial
space limitations prevent me from going into them in any detail.
To whet your appetite, Table 7-1 lists a few of the most useful
array methods.

CHAPTER 7 Working with Arrays 115

TABLE 7-1	 Useful Array Methods
Method Syntax Description

concat() array.concat(array1,
array2, ...)

Takes the elements of one or more
existing arrays and concatenates
them to an existing array to create
a new array.

join() array.join(separator) Takes the existing values in an
array and concatenates them to
form a string.

pop() array.pop() Removes the last element from an
array and returns the value of that
element.

push() array.push(value1,
value2, ...)

Adds one or more elements to the
end of an array.

reverse() array.reverse() Reverses the order of the element
in the specified array.

shift() array.shift() Removes the first element from an
array and returns the value of that
element.

slice() array.slice(start, end) Returns a new array that contains
a subset of the elements in an
existing array.

sort() array.sort() Sorts the specified array.

unshift() array.unshift(value1,
value2, ...)

Inserts one or more values at the
beginning of an array and returns
the new length of the array.

CHAPTER 8 Coding Strings and Dates 117

Chapter 8

IN THIS CHAPTER

 » Stringing together strings

 » Dealing with dates

 » Tinkering with times

Coding Strings and Dates

Although your JavaScript code will spend much of its time
dealing with web page knickknacks such as HTML tags and
CSS properties, it will also perform lots of behind-the-

scenes chores that require manipulating strings and dealing with
dates and times. To help you through these tasks, in this chapter
you explore two of JavaScript’s built-in objects: the String object
and the Date object. You investigate the most important proper-
ties of each object and master the most used methods.

Manipulating Strings
I’ve used dozens of examples of strings so far in this book. These
include not only string literals (such as "JavaScript Essentials
For Dummies") but also methods that return strings (such as the
prompt() method). So, it should be clear by now that strings play
a major role in all JavaScript programming, and it will be a rare
script that doesn’t have to deal with strings in some fashion.

For this reason, it pays to become proficient at manipulating
strings, which includes locating text within a string and extract-
ing text from a string. You’ll find out about all that and more in
this section.

118 JavaScript Essentials For Dummies

Any string you work with — whether it’s a string literal or
the result of a method or function that returns a string — is a
String object. So, for example, the following two statements are
equivalent:

const bookName = new String("JavaScript Essentials
For Dummies");

const bookName = "JavaScript Essentials For
Dummies";

This means that you have quite a bit of flexibility when applying
the properties and methods of String objects. For example, the
String object has a length property that I describe in the next
section. The following are all legal JavaScript expressions that use
this property:

bookName.length;
"JavaScript Essentials For Dummies".length;
prompt("Enter the book name:").length;
myFunction().length;

The last example assumes that myFunction() returns a string
value.

Working with string templates
Before diving in to the properties and methods of the String
object, take a second to examine a special type of string that’s
designed to solve three string-related problems that will come up
again and again in your coding career:

 » Handling internal quotation marks: String literals are
surrounded by quotation marks, but what do you do when
you need the same type of quotation mark inside the string?

One solution is to use a different type of quotation mark to
delimit the string. For example, this is illegal:

'There's got to be some better way to do this.'

CHAPTER 8 Coding Strings and Dates 119

But this is fine:

"There's got to be some better way to do this."

A second solution is to escape the internal quotation mark
with a slash, like so:

'There\'s got to be some better way to do this.'

These solutions work fine, but remembering to use them is
harder than you may think!

 » Incorporating variable values: When you need to use the
value of a variable inside a string, you usually end up with
something ungainly, such as the following:

const adjective = "better";

const lament = "There's got to be some " +
adjective + " way to do this.";

 » Multiline strings: It’s occasionally useful to define a string
using multiple lines. However, if you try the following, you’ll
get a string literal contains an unescaped line
break error:

const myHeader = '

 <nav class="banner">

 <h3 class="nav-heading">Navigation</h3>

 <ul class="nav-links">

 Home

 Away

 In Between

 </nav>'

You can solve all three problems by using a string template (also
called a template literal), which is a kind of string literal where the
delimiting quotation marks are replaced by back ticks (`):

`Your string goes here`

120 JavaScript Essentials For Dummies

String templates were introduced as part of ECMAScript 2015
(ES6), so use them only if you don’t need to support ancient web
browsers such as Internet Explorer 11.

Here’s how you can use a string template to solve each of the
three problems just described:

 » Handling internal quotation marks: You’re free to plop
any number of single or double quotation marks inside a
string template:

`Ah, here's the better way to do this!`

 » Incorporating variable values: String templates support
something called variable interpolation, which is a technique
for referencing a variable value directly within a string. Here’s
an example:

const adjective = "better";

const paean = `Ah, here's the ${adjective} way
to do this!`;

Within any string template, using ${variable} inserts the
value of variable, no questions asked. Actually, you don’t
have to stick to just variables. String templates can also
interpolate any JavaScript expression, including function
results.

 » Multiline strings: String templates are happy to work error
free with strings that are spread over multiple lines:

const myHeader = `

 <nav class="banner">

 <h3 class="nav-heading">Navigation</h3>

 <ul class="nav-links">

 Home

 Away

 In Between

 </nav>`

CHAPTER 8 Coding Strings and Dates 121

Determining the length of a string
The most basic property of a String object is its length, which
tells you how many characters are in the string:

string.length

All characters within the string — including spaces and punctua-
tion marks — are counted toward the length. The only exceptions
are escape sequences (such as \n), which always count as one
character. The following code grabs the length property value for
various String object types.

function myFunction() {
 return "filename.htm";
}
const bookName = "JavaScript Essentials For

Dummies";

length1 = myFunction().length; // Returns 12
length2 = bookName.length; // Returns 37
length3 = "123\n5678".length; // Returns 8

What the String object lacks in properties, it more than makes
up for in methods. There are dozens, and they enable your code to
perform many useful tasks, from converting between uppercase
and lowercase letters, to finding text within a string, to extracting
parts of a string.

Searching for substrings
A substring is a portion of an existing string. For example, some
substrings of the string "JavaScript" would be "Java", "Script",
"vaSc", and "v". When working with strings in your scripts,
you’ll often have to determine whether a given string contains a
given substring. For example, if you’re validating a user’s email
address, you should check that it contains an @ symbol.

Table 8-1 lists the several String object methods that find sub-
strings within a larger string.

122 JavaScript Essentials For Dummies

Learning the methods that
extract substrings
Finding a substring is one thing, but you’ll often have to extract a
substring, as well. For example, if the user enters an email address,
you may need to extract just the username (the part to the left of
the @ sign) or the domain name (the part to the right of @). For
these kinds of operations, JavaScript offers six methods, listed in
Table 8-2.

TABLE 8-1	 String Object Methods for Searching
for Substrings

Method What It Does

string.endsWith(substring,
start)

Tests whether substring appears at the
end of string

string.includes(substring,
start)

Tests whether substring appears in
string

string.indexOf(substring,
start)

Searches string for the first instance of
substring

string.lastIndexOf(substring,
start)

Searches string for the last instance of
substring

string.startsWith(substring,
start)

Tests whether substring appears at the
beginning of string

TABLE 8-2	 String Object Methods for Extracting
Substrings

Method What It Does

string.charAt(index) Returns the character in string that’s at the
index position specified by index

string.
charCodeAt(index)

Returns the code of the character in string
that’s at the index position specified by index

string.slice(start,
end)

Returns the substring in string that starts at
the index position specified by start and ends
immediately before the index position specified
by end

CHAPTER 8 Coding Strings and Dates 123

Dealing with Dates and Times
Dates and times seem like the kind of things that ought to be
straightforward programming propositions. After all, there are
only 12 months in a year, 28 to 31 days in a month, seven days in a
week, 24 hours in a day, 60 minutes in an hour, and 60 seconds in
a minute. Surely something so set in stone couldn’t get even the
least bit weird, could it?

You’d be surprised. Dates and times can get strange, but they get
much easier to deal with if you always keep three crucial points
in mind:

 » JavaScript time is measured in milliseconds, or thousandths
of a second. More specifically, JavaScript measures time by
counting the number of milliseconds that elapsed between
January 1, 1970 and the date and time in question. So, for
example, you might come across the date January 1, 2001,
and think, “Ah, yes, the start of the new millennium.”
JavaScript, however, comes across that date and thinks
“978220800000.”

 » In the JavaScript world, time began on January 1, 1970, at
midnight Greenwich Mean Time. Dates before that have
negative values in milliseconds.

Method What It Does

string.split(separator,
limit)

Returns an array where each item is a substring in
string, where those substrings are separated by
the separator character

string.substr(start,
length)

Returns the substring in string that starts at the
index position specified by start and is length
characters long

string.substring(start,
end)

Returns the substring in string that starts at
the index position specified by start and ends
immediately before the index position specified
by end

124 JavaScript Essentials For Dummies

 » Because your JavaScript programs run inside a user’s
browser, dates and times are almost always the user’s local
dates and times. That is, the dates and times your scripts will
manipulate will not be those of the server on which your
page resides. This means that you can never know what time
the user is viewing your page.

Learning the arguments used
with the Date object
Before getting to the nitty-gritty of the Date object and its
 associated methods, I’ll take a second to run through the various
arguments that JavaScript requires for many date-related fea-
tures. This will save me from repeating these arguments tediously
later on. Table 8-3 has the details.

TABLE 8-3	 Arguments Associated with the Date Object
Argument What It Represents Possible Values

date A variable name A Date object

yyyy The year Four-digit integers

yy The year Two-digit integers

month The month The full month name from "January"
to "December"

mth The month Integers from 0 (January) to 11
(December)

dd The day of the month Integers from 1 to 31

hh The hour of the day Integers from 0 (midnight) to
23 (11:00 PM)

mm The minute of the hour Integers from 0 to 59

ss The second of the
minute

Integers from 0 to 59

ms The milliseconds of the
second

Integers from 0 to 999

CHAPTER 8 Coding Strings and Dates 125

Getting to know the Date object
Whenever you work with dates and times in JavaScript, you work
with an instance of the Date object. More to the point, when
you deal with a Date object in JavaScript, you deal with a spe-
cific moment in time, down to the millisecond. A Date object can
never be a block of time, and it’s not a kind of clock that ticks
along while your script runs. Instead, the Date object is a tempo-
ral snapshot that you use to extract the specifics of the time it was
taken: the year, month, date, hour, and so on.

Specifying the current date and time
The most common use of the Date object is to store the current
date and time. You do that by invoking the Date() function, which
is the constructor function for creating a new Date object. Here’s
the general format:

const dateToday = new Date();

Specifying any date and time
If you need to work with a specific date or time, you need to use
the Date() function’s arguments. There are five versions of the
Date() function syntax (refer to the list of arguments near the
beginning of this chapter):

const date = new Date("month dd, yyyy hh:mm:ss");
const date = new Date("month dd, yyyy");
const date = new Date(yyyy, mth, dd, hh, mm, ss);
const date = new Date(yyyy, mth, dd);
const date = new Date(ms);

The following statements give you an example for each syntax:

const myDate = new Date("August 23, 2024
3:02:01");

const myDate = new Date("August 23, 2024");
const myDate = new Date(2024, 8, 23, 3, 2, 1);
const myDate = new Date(2024, 8, 23);
const myDate = new Date(1692763200000);

126 JavaScript Essentials For Dummies

Getting info about a date
When your script just coughs up whatever Date object value you
stored in the variable, the results aren’t particularly appealing. If
you want to display dates in a more attractive format, or if you
want to perform arithmetic operations on a date, you need to dig
a little deeper into the Date object to extract specific information
such as the month, year, hour, and so on. You do that by using the
Date object methods listed in Table 8-4.

Setting the date
When you perform date arithmetic, you often have to change the
value of an existing Date object. For example, an e-commerce
script may have to calculate a date that is 90 days from the date
that a sale occurs. It’s usually easiest to create a Date object and
then use an expression or literal value to change the year, month,
or some other component of the date. You do that by using the
Date object methods listed in Table 8-5.

TABLE 8-4	 Date Object Methods That Extract Date Values
Method Syntax What It Returns

date.getFullYear() The year as a four-digit number (1999, 2000,
and so on)

date.getMonth() The month of the year; from 0 (January) to 11
(December)

date.getDate() The date in the month; from 1 to 31

date.getDay() The day of the week; from 0 (Sunday) to 6 (Saturday)

date.getHours() The hour of the day; from 0 (midnight) to
23 (11:00 PM)

date.getMinutes() The minute of the hour; from 0 to 59

date.getSeconds() The second of the minute; from 0 to 59

date.getMilliseconds() The milliseconds of the second; from 0 to 999

date.getTime() The milliseconds since January 1, 1970 GMT

CHAPTER 8 Coding Strings and Dates 127

TABLE 8-5	 Date Object Methods That Set Date Values
Method Syntax What It Sets

date.setFullYear(yyyy) The year as a four-digit number (1999, 2000,
and so on)

date.setMonth(mth) The month of the year; from 0 (January)
to 11 (December)

date.setDate(dd) The date in the month; from 1 to 31

date.setHours(hh) The hour of the day; from 0 (midnight) to
23 (11:00 PM)

date.setMinutes(mm) The minute of the hour; from 0 to 59

date.setSeconds(ss) The second of the minute; from 0 to 59

date.setMilliseconds(ms) The milliseconds of the second; from 0 to 999

date.setTime(ms) The milliseconds since January 1, 1970 GMT

CHAPTER 9 Debugging JavaScript 129

Chapter 9

IN THIS CHAPTER

 » Debugging errors using the Console

 » Setting breakpoints

 » Stepping through JavaScript code

Debugging JavaScript

JavaScript and modern web browsers offer a ton of top-notch
debugging tools that can remove some of the burden of pro-
gram problem solving. In this chapter, you delve into these

tools to explore how they can help you find and fix most pro-
gramming errors. You also investigate a number of tips and tech-
niques that can go a long way in helping you avoid coding errors
in the first place.

Laying Out Your Debugging Tools
All the major web browsers come with a sophisticated set of
debugging tools that can make your life as a web developer much
easier and much saner. Most web developers debug their scripts
using Google Chrome, so I focus on that browser in this chapter.
But in this section, I give you an overview of the tools that are
available in all the major browsers and how to get at them.

Here’s how you open the web development tools in Chrome,
Firefox, Microsoft Edge, and Safari:

 » Chrome for Windows: Click Customize and Control Google
Chrome (the three vertical dots to the right of the address
bar) and then select More Tools ➪ Developer Tools. Shortcut:
Ctrl+Shift+I.

130 JavaScript Essentials For Dummies

 » Chrome for Mac: Select View ➪ Developer ➪ Developer
Tools. Shortcut: Option+⌘    +I.

 » Firefox for Windows: Click Open Application Menu (the
three horizontal lines on the far right of the toolbar) and
then select More Tools  ➪ Web Developer Tools. Shortcut:
Ctrl+Shift+I.

 » Firefox for Mac: Select Tools ➪ Browser Tools ➪ Web
Developer Tools. Shortcut: Option+⌘    +I.

 » Microsoft Edge: Click Settings and More (the three vertical
dots to the right of the address bar) and then select More
Tools ➪ Developer Tools. Shortcut: Ctrl+Shift+I.

 » Safari: Select Develop ➪ Show Web Inspector. Shortcut:
Option+⌘    +I. If you don’t have the Develop menu, select
Safari ➪ Settings, click the Advanced tab, and then select the
Show Develop Menu in Menu Bar checkbox.

These development tools vary in the features they offer, but each
one provides the same set of basic tools, which are the tools you’ll
use most often. These basic web development tools include the
following:

 » HTML viewer: This tab (called Inspector in Firefox and
Elements in the other browsers) shows the HTML source
code used in the web page. When you hover the mouse
pointer over a tag, the browser highlights the element in the
displayed page and shows its width and height, as shown in
Figure 9-1. When you click a tag, the browser shows the CSS
styles applied with the tag, as well as the tag’s box dimen-
sions (again, refer to Figure 9-1).

 » Console: This tab enables you to view error messages, log
messages, test expressions, and execute statements. I cover
the Console in more detail in the next section.

 » Debugging tool: This tab (called Debugger in Firefox and
Sources in the other browsers) enables you to pause code
execution, step through your code, watch the values of
variables and properties, and much more. This is the most
important JavaScript debugging tool, so I cover it in detail
later in this chapter.

CHAPTER 9 Debugging JavaScript 131

 » Network: This tab tells you how long it takes to load each
file referenced by your web page. If you find that your page
is slow to load, this tab can help you find the bottleneck.

 » Web storage: This tab (called Application in Chrome and
Edge and Storage in Firefox and Safari) enables you to
examine data stored in the browser.

Debugging 101: Using the Console
If your web page is behaving strangely — for example, the page is
blank or missing elements — you should first check your HTML
code to make sure it’s correct. (Common HTML errors are not fin-
ishing a tag with a greater than sign (>), not including a closing
tag, and missing a closing quotation mark for an attribute value.) If
your HTML checks out, there’s a good chance that your JavaScript
code is wonky. How do you know? A trip to the Console window is
your first step.

The Console is an interactive browser window that shows warn-
ings and errors, displays the output of console.log() state-
ments, and enables you to execute expressions and statements
without having to run your entire script. The Console is one of the

FIGURE 9-1: The HTML viewer, such as Chrome’s Elements tab, enables you to
inspect each element’s styles and box dimensions.

132 JavaScript Essentials For Dummies

handiest web browser debugging tools, so you need to know your
way around it.

Getting the console onscreen
To display the Console, open your web browser’s development
tools and then click the Console tab. You can also use the follow-
ing keyboard shortcuts:

 » Chrome for Windows: Press Ctrl+Shift+J.

 » Chrome for Mac: Press Option+⌘    +J.

 » Firefox for Windows: Press Ctrl+Shift+K.

 » Firefox for Mac: Press Option+⌘    +K.

 » Microsoft Edge: Press Ctrl+Shift+J.

 » Safari: Press Option+⌘    +C.

Printing program data in the Console
You can use the console.log() method of the special Console
object to print text and expression values in the Console:

console.log(output)

Note: output is the expression you want to print in the Console.

The output expression can be a text string, a variable, an object
property, a function result, or any combination of these.

You can also use the handy console.table() method to output
the values of arrays or objects in an easy-to-read tabular format:

console.table(output)

Note: output is the array or object (as a variable or as a literal) you
want to view in the Console.

For debugging purposes, you most often use the Console to keep
an eye on the values of variables, object properties, and expres-
sions. That is, when your code sets or changes the value of
something, you insert a console.log() (or console.table())
statement that outputs the new value. When the script execution

CHAPTER 9 Debugging JavaScript 133

is complete, you can open the Console and then check out the
logged value or values.

Running code in the Console
One of the great features of the Console is that it’s interactive,
which means that you can not only read messages generated by
the browser or by your console.log() statements but also type
code directly into the Console. That is, you can use the Console to
execute expressions and statements. There are many uses for this
feature:

 » You can try some experimental expressions or statements to
determine their effect on the script.

 » When the script is paused, you can output the current value
of a variable or property.

 » When the script is paused, you can change the value of a
variable or property. For example, if you notice that a
variable with a value of zero is about to be used as a divisor,
you can change that variable to a nonzero value to avoid
crashing the script.

 » When the script is paused, you can run a function or method
to determine whether it operates as expected under the
current conditions.

Each browser’s Console tab includes a text box (usually marked by
a greater-than > prompt) that you can use to enter your expres-
sions or statements.

You can execute multiple statements in the Console by separat-
ing each statement with a semicolon. For example, you can test
a for... loop by entering a statement similar to the following:

for (let i=1; i < 10; i += 1){console.log(i**2); console.log(i**3);}

If you want to repeat an earlier code execution in the Console, or if
you want to run some code that’s very similar to code you ran ear-
lier, you can recall statements and expressions that you used in
the current browser session. Press the Up Arrow key to scroll back
through your previously executed code; press the Down Arrow key
to scroll forward through your code.

134 JavaScript Essentials For Dummies

Putting Your Code into Break Mode
Pausing your code midstream lets you examine certain elements
such as the current values of variables and properties. It also lets
you execute program code one statement at a time so that you can
monitor the flow of the script.

When you pause your code, JavaScript enters break mode, which
means that the browser displays its debugging tool and highlights
the current statement (the one that JavaScript will execute next).
Figure 9-2 shows a script in break mode in Chrome’s debugger
(the Sources tab).

FIGURE 9-2: When you invoke break mode, the web browser displays its
debugging tool and highlights the statement that it will execute next.

CHAPTER 9 Debugging JavaScript 135

Invoking break mode
JavaScript gives you two ways to enter break mode:

 » By setting breakpoints

 » By using a debugger statement

Setting a breakpoint
If you know approximately where an error or logic flaw is occur-
ring, you can enter break mode at a specific statement in the
script by setting up a breakpoint. Here are the steps to set up a
breakpoint:

1. Display your web browser’s developer tools and switch to
the debugging tool (such as the Sources tab in Chrome).

2. Open the file that contains the JavaScript code you want
to debug.

How you do this depends on the browser: in Chrome (and
most browsers), you have two choices:

• In the left pane, click the HTML file (if your JavaScript code
is within a script element in your HTML file) or the
JavaScript (.js) file (if your code resides in an external
JavaScript file).

• Press Ctrl+P (Windows) or ⌘    +P (macOS) and then click
the file in the list that appears.

3. Locate the statement where you want to enter
break mode.

JavaScript will run every line of code up to, but not including,
this statement.

4. Click the line number to the left of the statement to set
the breakpoint, as shown in Figure 9-3.

136 JavaScript Essentials For Dummies

To remove a breakpoint, most browsers give you three choices:

 » To disable a breakpoint temporarily, deselect the break-
point’s checkbox in the Breakpoints list.

 » To disable all your breakpoints temporarily, click the Deactivate
Breakpoint button. Chrome’s version of this button is shown
here in the margin. Click this button again to reactivate all the
breakpoints.

 » To remove a breakpoint completely, click the statement’s line
number.

Adding a debugger statement
When developing your web pages, you’ll often test the robust-
ness of a script by sending it various test values or by trying it out
under different conditions. In many cases, you’ll want to enter
break mode to make sure things appear okay. You could set break-
points at specific statements, but you lose them if you close the

FIGURE 9-3: In the browser’s debugging tool, click a line number to set a
breakpoint on that statement.

CHAPTER 9 Debugging JavaScript 137

file. For something a little more permanent, you can include a
debugger statement in a script. JavaScript automatically enters
break mode whenever it encounters a debugger statement.

Here’s a bit of code that includes a debugger statement:

// Add the sentence to the <div>
document.querySelector('div').innerHTML =

sentence;
// Generate random colors (use values < 128 to

keep the text dark)
const randomRed = parseInt(Math.random() * 128);
const randomGreen = parseInt(Math.random() * 128);
const randomBlue = parseInt(Math.random() * 128);
debugger;

Getting out of break mode
To exit break mode, you can use either of the following methods
in the browser’s debugging tool:

 » Click the Resume button. Chrome’s version of this button
is shown here in the margin.

 » Press the browser’s Resume keyboard shortcut. In
Chrome (and most browsers), either press F8 or press Ctrl+\
(Windows) or ⌘    +\ (macOS).

Stepping Through Your Code
One of the most common (and most useful) debugging techniques
is to step through the code one statement at a time. Doing so lets
you get a feel for the program flow to make sure that things such
as loops and function calls are executing properly. You can use
four techniques:

 » Stepping one statement at a time

 » Stepping into some code

 » Stepping over some code

 » Stepping out of some code

138 JavaScript Essentials For Dummies

Stepping one statement at a time
The most common way of stepping through your code is to step
one statement at a time. In break mode, stepping one statement
at a time means two things:

 » You execute the current statement and then pause on the
next statement.

 » If the current statement to run is a function call, stepping
takes you into the function and pauses at the function’s
first statement. You can then continue to step through the
function until you execute the last statement, at which
point the browser returns you to the statement after the
function call.

To step through your code one statement at a time, set a break-
point and then, after your code is in break mode, do one of the
following to step through a single statement:

 » Click the Step button. Chrome’s version of this button is
shown here in the margin.

 » Press the browser’s Step keyboard shortcut. In Chrome
(and most browsers, except Firefox, which doesn’t support
Step as of this writing; use the Step Into button, instead),
press F9.

Keep stepping through until the script ends or until you’re ready
to resume normal execution (by clicking Resume).

Stepping into some code
In all the major browsers (except Firefox), stepping into some
code is exactly the same as stepping through the code one state-
ment at a time. The difference comes when a statement executes
asynchronously (that is, it performs its operation after some delay
rather than right away).

To understand the difference, consider the following code (I’ve
added line numbers to the left; they’re not part of the code):

1 setTimeout(() => {
2 console.log('Inside the setTimeout()

block!');

CHAPTER 9 Debugging JavaScript 139

3 }, 5000);
4 console.log('Outside the setTimeout) block!');

This code uses setTimeout() to execute an anonymous function
after five seconds. Suppose you enter break mode at the set
Timeout() statement (line 1). What happens if you use Step versus
Step Into here? Check it out:

 » Step: Clicking the Step button doesn’t take you to line 2,
as you may expect. Instead, because setTimeout() is
asynchronous, Step essentially ignores the anonymous
function and takes you directly to line 4.

 » Step Into: Clicking the Step Into button does take you to
line 2, but only after the specified delay (five seconds, in this
case). You can then step through the anonymous function as
needed.

To step into your code, set a breakpoint and then, after your code
is in break mode, do one of the following:

 » Click the Step Into button. Chrome’s version of this button
is shown here in the margin.

 » Press the browser’s Step Into keyboard shortcut. In
Chrome (and most browsers), either press F11 or press Ctrl+;
(Windows) or ⌘    +; (macOS).

My description of Step Into here doesn’t apply (at least as I write
this) to Firefox. Instead, the Firefox Step Into feature works like
the Step feature I describe in the previous section.

Stepping over some code
Some statements call other functions. If you’re not interested in
stepping through a called function, you can step over it. Stepping
over a function means that JavaScript executes the function nor-
mally and then resumes break mode at the next statement after
the function call.

140 JavaScript Essentials For Dummies

To step over a function, first either step through your code until
you come to the function call you want to step over, or set a
breakpoint on the function call and refresh the web page. When
you’re in break mode, you can step over the function using any of
the following techniques:

 » Click the Step Over button. Chrome’s version of this button
is shown here in the margin.

 » Press the browser’s Step Over keyboard shortcut. In
Chrome (and most browsers), either press F10 or press Ctrl+’
(Windows) or ⌘    +’ (macOS).

Stepping out of some code
I’m always accidentally stepping into functions I’d rather step
over. If the function is short, I just step through it until I’m back
in the original code. If the function is long, however, I don’t want
to waste time stepping through every statement. Instead, I invoke
the Step Out feature using any of these methods:

 » Click the Step Out button. Chrome’s version of this button
is shown here in the margin.

 » Press the browser’s Step Out keyboard shortcut. In
Chrome (and most browsers), either press Shift+F11 or press
Ctrl+Shift+; (Windows) or ⌘    +Shift+; (macOS).

JavaScript executes the rest of the function and then reenters
break mode at the first line after the function call.

CHAPTER 10 Dealing with Form Data 141

Chapter 10

IN THIS CHAPTER

 » Coding text boxes

 » Programming checkboxes, radio buttons,
and selection lists

 » Monitoring and triggering form events

 » Dealing with the form data

Dealing with Form Data

In this chapter, you learn how to “wire up” your HTML forms by
plugging them into some JavaScript code. You explore various
form-related objects and then get right to work coding text

fields, checkboxes, radio buttons, and selection lists. You also dive
into the useful world of form events and even learn how to
enhance your form controls with keyboard shortcuts. To top it all
off, you go hog wild and learn how to store form data using the
Web Storage API.

Coding Text Fields
Text-based fields are the most commonly used form elements,
and most of them use the <input> tag. The input element has
tons of attributes, but from a coding perspective, you’re generally
interested in only four:

<input id="textId" type="textType" name="textName"
value="textValue">

Here’s what the various parts are:

 » textId: A unique identifier for the text field

 » textType: The kind of text field you want to use in your form

142 JavaScript Essentials For Dummies

 » textName: The name you assign to the field

 » textValue: The initial value of the field, if any

Referencing by field type
One common form-scripting technique is to run an operation on
every field of the same type. For example, you may want to apply
a style to all the URL fields. Here’s the JavaScript selector to use to
select all input elements of a given type:

document.querySelectorAll('input[type=fieldType]')

Note: fieldType is the type attribute value you want to select,
such as text or url.

Here’s an example where the JavaScript returns the set of all
input elements that use the type url:

HTML:

<label for="url1">
 Site 1:
</label>
<input id="url1" type="url" name="url1"

value="https://">
<label for="url2">
 Site 2:
</label>
<input id="url2" type="url" name="url2"

value="https://">
<label for="url3">
 Site 3:
</label>
<input id="url3" type="url" name="url3"

value="https://">

JavaScript:

const urlFields = document.querySelectorAll('input
[type=url]');

console.log(urlFields);

CHAPTER 10 Dealing with Form Data 143

Getting a text field value
Your script can get the current value of any text field by using one
of the field object’s value-related properties:

field.value
field.valueAsDate
field.valueAsNumber

Here’s an example:

HTML:

<label for="search-field">
 Search the site:
</label>
<input id="search-field" name="q" type="search">

JavaScript:

const searchString = document.
getElementById('search-field').value;

console.log(searchString);

Setting a text field value
To change a text field value, assign the new string to the field
object’s value property:

field.value = value

Here’s what the various parts are:

 » field: A reference to the form field object you want to work
with

 » value: The string you want to assign to the text field

144 JavaScript Essentials For Dummies

Here’s an example:

HTML:

<label for="homepage-field">
 Type your homepage address:
</label>
<input id="homepage-field" name="homepage"

type="url" value="HTTPS://PAULMCFEDRIES.COM/"">

JavaScript:

const homepageField = document.
getElementById('homepage-field');

const homepageURL = homepageField.value;
homepageField.value = homepageURL.toLowerCase();

The HTML defines an input element of type url where the default
value is in all-uppercase letters. The JavaScript code grabs a URL,
converts it to all-lowercase characters, and then returns it to the
same url field. As shown in Figure 10-1, the text box now displays
all-lowercase letters.

Programming Checkboxes
You use a checkbox in a web form to toggle a setting on (that is,
the checkbox is selected) and off (the checkbox is deselected). You
create a checkbox by including in your form the following version
of the <input> tag:

<input id="checkId" type="checkbox"
name="checkName" value="checkValue" [checked]>

FIGURE 10-1: The script converts the input element’s default text to
all-lowercase letters.

CHAPTER 10 Dealing with Form Data 145

Here’s what the various parts are:

 » checkId: A unique identifier for the checkbox.

 » checkName: The name you want to assign to the checkbox.

 » checkValue: The value you want to assign to the checkbox.
Note that this is a hidden value that your script can access
when the form is submitted; the user never encounters it.

 » checked: When this optional attribute is present, the
checkbox is initially selected.

Referencing checkboxes
If your code needs to reference all the checkboxes in a page, use
the following selector:

document.querySelectorAll('input[type=checkbox]')

If you just want the checkboxes from a particular form, use a
descendent or child selector on the form’s id value:

document.querySelectorAll('#formid
input[type=checkbox]')

Or:

document.querySelectorAll('#formid >
input[type=checkbox]')

Getting the checkbox state
Your code will want to know whether a checkbox is selected or
deselected. This is called the checkbox state. In that case, you need
to examine the checkbox object’s checked property instead:

checkbox.checked

The checked property returns true if the checkbox is selected, or
false if the checkbox is deselected.

146 JavaScript Essentials For Dummies

Here’s an example:

HTML:

<label>
 <input id="autosave" type="checkbox"

name="autosave">
 Autosave this project
</label>

JavaScript:

const autoSaveCheckBox = document.
querySelector('#autosave');

if (autoSaveCheckBox.checked) {
 console.log(`${autoSaveCheckBox.name}

is checked`);
} else {
 console.log(`${autoSaveCheckBox.name}

is unchecked`);
}

The JavaScript code stores a reference to the checkbox object
in the autoSaveCheckBox variable. Then an if statement
 examines the object’s checked property and displays a different
message in the console, depending on whether checked returns
true or false.

Setting the checkbox state
To set a checkbox field to either the selected or deselected state,
assign a Boolean expression to the checked property:

checkbox.checked = true|false

For example, suppose you have a form with a large number of
checkboxes and you want to set up that form so that the user
can select at most three checkboxes. Here’s some code that does
the job:

CHAPTER 10 Dealing with Form Data 147

document.querySelector('form').
addEventListener('click', event => {

 // Make sure a checkbox was clicked
 if (event.target.type === 'checkbox') {

 // Get the total number of selected

checkboxes
 const totalSelected = document.querySelect

orAll('input[type=checkbox]:checked').length;

 // Are there more than three selected

checkboxes?
 if (totalSelected > 3) {

 // If so, deselect the checkbox that

was just clicked
 event.target.checked = false;
 }
 }
});

This event handler runs when anything inside the form element is
clicked, and it passes a reference to the click event as the parame-
ter event. Then the code uses the :checked selector to return the
set of all checkbox elements that have the checked attribute, and
the length property tells you how many are in the set. An if test
checks whether more than three are now selected. If that’s true,
the code deselects the checkbox that was just clicked.

Coding Radio Buttons
You create a radio button using the following variation of the
<input> tag:

<input id="radioId" type="radio" name="radioGroup"
value="radioValue" [checked]>

148 JavaScript Essentials For Dummies

Here’s what the various parts are:

 » radioId: A unique identifier for the radio button.

 » radioGroup: The name you want to assign to the group of
radio buttons. All the radio buttons that use the same name
value belong to that group.

 » radioValue: The value you want to assign to the radio
button. If this radio button is selected when the form is
submitted, this is the value that’s included in the submission.

 » checked: When this optional attribute is present, the radio
button is initially selected.

Referencing radio buttons
If your code needs to work with all the radio buttons in a page, use
this JavaScript selector:

document.querySelectorAll('input[type=radio]')

If you want the radio buttons from a particular form, use a
descendent or child selector on the form’s id value:

document.querySelectorAll('#formid
input[type=radio]')

Or:

document.querySelectorAll('#formid > input
[type=radio]')

If you require just the radio buttons from a particular group, use
the following JavaScript selector, where radioGroup is the com-
mon name of the group:

document.querySelectorAll('input[name=
radioGroup]')

Getting a radio button state
If your code needs to know whether a particular radio button is
selected or deselected, you need to determine the radio button

CHAPTER 10 Dealing with Form Data 149

state. You do that by examining the radio button’s checked attri-
bute, like so:

radio.checked

The checked attribute returns true if the radio button is selected,
or false if the button is deselected.

For example, consider the following HTML:

<form>
 <fieldset>
 <legend>
 Select a delivery method
 </legend>
 <label>
 <input type="radio" id="carrier-

pigeon" name="delivery" value="pigeon"
checked>Carrier pigeon

 </label>
 <label>
 <input type="radio" id="pony-express"

name="delivery" value="pony">Pony express
 </label>
 <label>
 <input type="radio" id="snail-mail"

name="delivery" value="postal">Snail mail
 </label>
 <label>
 <input type="radio" id="some-punk"

name="delivery" value="bikecourier">Some punk on
a bike

 </label>
 </fieldset>
</form>

If your code needs to know which radio button in a group is
selected, you can do that by applying the :checked selector to the
group and then getting the value property of the returned object:

const deliveryMethod = document.querySelector('inp
ut[name=delivery]:checked').value;

150 JavaScript Essentials For Dummies

Setting the radio button state
To set a radio button field to either the selected or deselected
state, assign a Boolean expression to the checked attribute:

radio.checked = true|false

For example, in the HTML code from the previous section, the
initial state of the form group had the first radio button selected.
You can reset the group by selecting that button. You could get a
reference to the id of the first radio button, but what if later you
change (or someone else changes) the order of the radio buttons?
A safer way is to get a reference to the first radio button in the
group, whatever it may be, and then select that element. Here’s
some code that does this:

const firstRadioButton = document.querySelectorAll
('input[name=delivery]')[0];

firstRadioButton.checked = true;

This code uses querySelectorAll() to return a NodeList collec-
tion of all the radio buttons in the delivery group; then it uses
[0] to reference just the first element in the collection. Then that
element’s checked property is set to true.

Programming Selection Lists
Selection lists are common sights in HTML forms because they
enable the web developer to display a relatively large number of
choices in a compact control that most users know how to operate.

To create the list container, you use the <select> tag:

<select id="selectId" name="selectName"
size="selectSize" [multiple]>

Here’s what the various parts are:

 » selectId: A unique identifier for the selection list.

 » selectName: The name you want to assign to the
selection list.

CHAPTER 10 Dealing with Form Data 151

 » selectSize: The optional number of rows in the selection
list box that are visible. If you omit this value, the browser
displays the list as a drop-down box.

 » multiple: When this optional attribute is present, the user is
allowed to select multiple options in the list.

For each item in the list, you add an <option> tag between the
<select> and </select> tags:

<option value="optionValue" [selected]>

Here’s what the various parts are:

 » optionValue: The value you want to assign to the list option.

 » selected: When this optional attribute is present, the list
option is initially selected.

Referencing selection list options
If your code needs to work with all the options in a selection list,
use the selection list object’s options property:

document.querySelector(list).options

To work with a particular option within a list, use JavaScript’s
square brackets operator ([]) to specify the index of the option’s
position in the list:

document.querySelector(list).options[n]

Here’s what the various parts are:

 » list: A selector that specifies the select element you want
to work with

 » n: The index of the option in the returned NodeList
collection (where 0 is the first option, 1 is the second option,
and so on)

152 JavaScript Essentials For Dummies

To get the option’s text (that is, the text that appears in the list),
use the option object’s text property:

document.querySelector(list).options[2].text

Getting the selected list option
If your code needs to know whether a particular option in a selec-
tion list is selected or deselected, examine the option’s selected
property, like so:

option.selected

The selected attribute returns true if the option is selected, or
false if the option is deselected.

For example, consider the following selection list:

<select id="hair-color" name="hair-color">
 <option value="black">Black</option>
 <option value="blonde">Blonde</option>
 <option value="brunette" selected>Brunette

</option>
 <option value="red">Red</option>
 <option value="neon">Something neon</option>
 <option value="none">None</option>
</select>

Your code will likely want to know which option in the selec-
tion list is selected. You do that via the list’s selectedOptions
property:

const hairColor = document.querySelector('#hair-
color').selectedOptions[0];

This isn’t a multi-select list, so specifying selectedOptions[0]
returns the selected option element. In this example, your code
could use hairColor.text to get the text of the selected option.

If the list includes the multiple attribute, the selectedOptions
property may return an HTMLCollection object that contains
multiple elements. Your code needs to allow for that possibility
by, say, looping through the collection:

CHAPTER 10 Dealing with Form Data 153

HTML:

<select id="hair-products" name="hair-products"
size="5" multiple>

 <option value="gel" selected>Gel</option>
 <option value="grecian-formula"

selected>Grecian Formula</option>
 <option value="mousse">Mousse</option>
 <option value="peroxide">Peroxide</option>
 <option value="shoe-black">Shoe black</option>
</select>

JavaScript:

const selectedHairProducts = document.
querySelector('#hair-products').selectedOptions;

for (const hairProduct of selectedHairProducts) {
 console.log(hairProduct.text);
}

Changing the selected option
To set a selection list option to either the selected or deselected
state, assign a Boolean expression to the option object’s selected
property:

option.selected = Boolean

Here’s what the various parts are:

 » option: A reference to the option element you want to
modify.

 » Boolean: The Boolean value or expression you want to
assign to the option. Use true to select the option; use
false to deselect the option.

Using the HTML code from the previous section, the following
statement selects the third option in the list:

document.querySelector('#hair-products').
options[2].selected = true;

154 JavaScript Essentials For Dummies

You can reset the list by deselecting all the options. You do that by
setting the selection list object’s selectedIndex property to -1:

document.querySelector('#hair-products').
selectedIndex = -1

Working with Form Events
With all the clicking, typing, tabbing, and dragging that goes on,
web forms are veritable event factories. Fortunately, you can let
most of these events pass you by, but a few do come in handy,
both in running code when the event occurs and in triggering the
events yourself.

Most form events are clicks, so you can handle them by setting
click event handlers using JavaScript’s addEventListener()
method (which I cover in Chapter 6). Here’s an example:

HTML:

<form>
 <label for="user">Username:</label>
 <input id="user" type="text" name="username">
 <label for="pwd">Password:</label>
 <input id="pwd" type="password"

name="password">
</form>

JavaScript:

document.querySelector('form').
addEventListener('click', () => {

 console.log('Thanks for clicking the form!');
});

This example listens for clicks on the entire form element, but you
can also create click event handlers for buttons, input elements,
checkboxes, radio buttons, and more.

CHAPTER 10 Dealing with Form Data 155

Setting the focus
One simple feature that can improve the user experience on your
form pages is to set the focus on the first form field when your
page loads. Setting the focus saves the user from having to make
that annoying click inside the first field.

To get this done, run JavaScript’s focus() method on the element
you want to have the focus at startup:

field.focus()

Here’s an example that sets the focus on the text field with id
equal to user at startup:

HTML:

<form>
 <label for="user">Username:</label>
 <input id="user" type="text" name="username">
 <label for="pwd">Password:</label>
 <input id="pwd" type="password"

name="password">
</form>

JavaScript:

document.querySelector('#user').focus();

Monitoring the focus event
Rather than set the focus, you may want to monitor when a par-
ticular field gets the focus (for example, by the user clicking or
tabbing into the field). You can monitor that by setting up a focus
event handler on the field:

field.addEventListener('focus', () => {
 Focus code goes here
});

156 JavaScript Essentials For Dummies

Here’s an example:

document.querySelector('#user').
addEventListener('focus', () => {

 console.log('The username field has the
focus!');

});

Monitoring the blur event
The opposite of setting the focus on an element is blurring an ele-
ment, which removes the focus from the element. You blur an
element by running the blur() method on the element, which
causes it to lose focus:

field.blur()

However, rather than blur an element, you’re more likely to
want to run some code when a particular element is blurred (for
example, by the user clicking or tabbing out of the field). You can
monitor for a particular blurred element by setting up a blur()
event handler:

field.addEventListener('blur', () => {
Blur code goes here
});

Here’s an example:

document.querySelector('#user').
addEventListener('blur', () => {

 console.log('The username field no longer has
the focus!');

});

Listening for element changes
One of the most useful form events is the change event, which
fires when the value or state of a field is modified in some way.
When this event fires depends on the element type:

CHAPTER 10 Dealing with Form Data 157

 » For a textarea element and the various text-related input
elements, the change event fires when the element loses the
focus.

 » For checkboxes, radio buttons, selection lists, and pickers,
the change event fires as soon as the user clicks the element
to modify the selection or value.

You listen for a field’s change events by setting up a change()
event handler:

field.addEventListener('change', () => {
 Change code goes here
});

Here’s an example:

HTML:

<label for="bgcolor">Select a background color
</label>

<input id="bgcolor" type="color" name="bg-color"
value="#ffffff">

JavaScript:

document.querySelector('#bgcolor').
addEventListener('change', (event) => {

 const backgroundColor = event.target.value;
 document.body.bgColor = backgroundColor;
});

The HTML code sets up a color picker. The JavaScript code applies
the change event handler to the color picker. When the change
event fires on the picker, the code stores the new color value in
the backgroundColor variable by referencing event.target.
value, where event.target refers to the element to which the
event listener is bound (the color picker, in this case). The code
then applies that color to the body element’s bgColor property.

158 JavaScript Essentials For Dummies

Handling Form Data
There’s one form event that I didn’t cover earlier, and it’s a big-
gie: the submit event, which fires when the form data is to be sent
to the server.

However, if your scripts deal with form data only locally — that
is, you never send the data to a server — then you don’t need
to bother with submitting the form. Instead, it’s more straight-
forward to add a button to your form and then use that button’s
click event handler to process the form data in whatever way
you need.

Here’s an example:

HTML:

<form>
 <fieldset>
 <legend>
 Settings
 </legend>
 <label for="background-color">Select a

background color</label>
 <input id="background-color" type="color"

name="bg-color" value="#ffffff">
 <label for="text-color">Select a text

color</label>
 <input id="text-color" type="color"

name="text-color" value="#000000">
 <label for="font-stack">Select a

typeface:</label>
 <select id="font-stack" name="font-stack">
 <option value="Georgia, 'Times New

Roman', serif" selected>Serif</option>
 <option value="Verdana, Tahoma, sans-

serif">Sans-serif</option>
 <option value="'Bradley Hand', Brush

Script MT, cursive">Cursive</option>
 <option value="Luminari">Fantasy</

option>

CHAPTER 10 Dealing with Form Data 159

 <option value="Monaco, Courier,
monospace">Monospace</option>

 </select>
 <button>
 Save Your Settings
 </button>
 </fieldset>
</form>

JavaScript:

// Listen for changes on the #background-color
color picker

document.querySelector('#background-color').
addEventListener('change', function() {

const backgroundColor = this.value;
document.body.style.backgroundColor =

backgroundColor;
});
// Listen for changes on the #text-color color

picker
document.querySelector('#text-color').

addEventListener('change', function() {
const textColor = this.value;
document.body.style.color = textColor;
});
// Listen for changes on the #font-stack selection

list
document.querySelector('#font-stack').

addEventListener('change', function() {
const fontStack = this.selectedOptions[0].value;
document.body.style.fontFamily = fontStack;
});
// Listen for the button being clicked
document.querySelector('button').

addEventListener('click', () => {
// Store the form data in a JavaScript object
const userSettings = {
backgroundColor: document.

querySelector('#background-color').value,

160 JavaScript Essentials For Dummies

textColor: document.querySelector('#text-color').
value,

fontStack: document.querySelector('#font-stack').
selectedOptions[0].value

}
// Save the settings in local storage
localStorage.setItem('user-settings', JSON.

stringify(userSettings));
});

The HTML sets up a form (check out Figure 10-2) to gather
some user settings — background color, text color, and typeface
style — as well as a button. The JavaScript sets up change event
handlers for the two color pickers and the selection list. Finally,
the code listens for click events on the button, and the handler
stores the form data in a JavaScript object and then saves the data
to local storage.

FIGURE 10-2: A form used to gather user settings for the page.

CHAPTER 11 Ten JavaScript Debugging Strategies 161

Chapter 11

IN THIS CHAPTER

 » Debugging with the Console,
breakpoints, and other dev power tools

 » Writing code to make it easier to debug

 » Craftily debugging with comments

Ten JavaScript
Debugging Strategies

Given any nontrivial JavaScript code, it’s a rare (probably
nonexistent!) script that runs perfectly the first (or even
the tenth!) time. Script bugs happen to even the most

experienced developers, so having errors in your code does not
mean you’re a failure as a coder! All it means is that you’re a
coder.

But when bugs get into your code, you’ll want to exterminate
them as quickly as you can. This chapter provides you with ten
debugging strategies that can help.

Get Thee to Your Dev Tools
All web page debugging begins with a visit to your web browser
development tools. In every browser, the quickest way to open the
dev tools is to right-click a page element and then click Inspect.
You can also press Ctrl+Shift+I (Windows) or Option⌘  +I (macOS).

162 JavaScript Essentials For Dummies

The Console Is Your Best
Debugging Friend

In your code, you can see the current value of a variable or object
property by outputting that value to the dev tools Console tab:

console.log(output);

Replace output with the expression you want to print in the Con-
sole. The output expression can be a text string, a variable, an
object property, a function result, or any combination of these.

Give Your Code a Break(point)
Pausing your code enables you to see what’s going on and to run
some commands in the console. You have two ways to pause your
code mid-execution:

 » Set a breakpoint. In the dev tools, open the file that
contains the JavaScript code, locate the statement where you
want to pause, then click the line number to the left of that
statement.

 » Add a debugger statement. In your JavaScript code, on the
line just before the statement where you want to pause, add
a debugger statement.

Step Through Your Code
Once you have some JavaScript code in break mode, use the dev
tools execution controls to step through the code. You can step one
statement at a time, step over functions, or step into functions.

CHAPTER 11 Ten JavaScript Debugging Strategies 163

Monitor Variable and Object
Property Values

Either use console.log() statements to output values to the con-
sole or, when your code is in break mode, hover the mouse pointer
over the variable or object to see its current value in a tooltip. You
can also create watch expressions to monitor values.

Indent Your Code
JavaScript code is immeasurably more readable when you indent
the code within each statement block. Readable code is that much
easier to trace and decipher, so your debugging efforts have one
less hurdle to negotiate. Indenting each statement by two or four
spaces is typical.

Break Down Complex Tasks
Don’t try to solve all your problems at once. If you have a large
script or function that isn’t working right, test it in small chunks
to try to narrow down the problem.

Break Up Long Statements
One of the most complicated aspects of script debugging is mak-
ing sense out of long statements (especially expressions). The
Console window can help (you can use it to print parts of the
statement), but it’s usually best to keep your statements as short
as possible. Once you get things working properly, you can often
recombine statements for more efficient code.

164 JavaScript Essentials For Dummies

Comment Out Problem Statements
If a particular statement is giving you problems, you can tempo-
rarily deactivate it by placing two slashes (//) at the beginning
of the line. This tells JavaScript to treat the line as a comment.
If you have a number of statements you want to skip, place /* at
the beginning of the first statement and */ at the end of the last
statement.

Use Comments To Document
Your Scripts

Speaking of comments, it’s a programming truism that you can
never add enough explanatory comments to your code. The more
comments you add, the easier your scripts will be to debug.

Index 165

Index

SYMBOLS
- (minus sign), 27
" (quotation marks)

handling internal, 118–120
string literals, 28

' (single quotation marks)
onclick attribute, 63
string literals, 28

/ (division operator), 20
/* (multiline comment), 13–14
// (double-slash), 13
; (semicolon), 7
\ (backslash), 29
_ (underscore), 24
` (back ticks), 119
|| (OR operator), 35
+ (concatenation sign), 33
+ (plus sign), 27
= (equals sign), 19–20
=> (arrow functions), 70
! (NOT operator), 35
&& (AND operator), 35
* (multiplication sign), 32
[] (brackets operator), 150
{} (braces)
if statements and, 40–41
as part of function, 56

A
add() method, 95
addEvent.Listener() method, 100
after() method, 90
alert() method, 7–8
AND operator (&&), 35

anonymous functions
assigning to variables, 67–68
overview, 66–70
replacing function call with, 68–70

append() method, 90
arguments

defined, 61
for Date object, 124
function, 56
location, 93

arithmetic assignment operators, 32–33
arrays

declaring, 106
elements and, 80
index numbers and, 105
iterating
find() method, 112–114
forEach() method, 109–110
map() method, 110–111
reduce() method, 111–112

length property, 114
manipulating, 114–115
methods, 114–115
overview, 105
populating, 106–109
specifying elements by class and tag

name, 80
arrow functions (=>), 70
attributes

HTML, 97–99
id, 79
 tag, 97
onclick, 61, 63
radio button state, 147–148
single quotation marks and, 63
src, 15

166 JavaScript Essentials For Dummies

B
back ticks (`), 119
backslash (\), 29
before() method, 91
block statements, 40–41
block syntax, 40
blur events, 156
blur() method, 156
<body> tag, 6
Boolean

event values, 102
expressions

assigning to object options, 153
operators, 34

literals, 30
braces ({})
if statements and, 40–41
as part of function, 56

brackets operator ([]), 150
break mode
debugger statement, 136–137
entering into, 135–137
exiting, 137
overview, 134–137
Step Into button, 138–139
Step Out button, 140
Step Over button, 139–140
stepping through, 162

breakpoints
as debugging strategy, 162
overview, 135–136

browsers
break mode
debugger statement, 136–137
entering into, 135–137
exiting, 137
overview, 134–137
Step Into button, 138–139
Step Out button, 140
Step Over button, 139–140
stepping through code, 162

Console
accessing, 132
overview, 130–133
printing program data in, 132–133
running code in, 133
testing code in, 162

ECMAScript 6 and, 12
enabling JavaScript in, 10–12
JavaScript and, 10–13
outdated

anonymous functions, 67
arrow functions, 70
for loop and, 83
overview, 12–13

parsing <script> tag, 57–58
as requirement to test code, 10
web development tools in

as debugging strategy, 161
overview, 129–131

C
callback functions

overview, 100
replacing with anonymous functions, 68–71

Cascading Style Sheets (CSS)
adding classes to element, 94–96
changing element styles, 94–97
removing classes, 96
toggling classes, 97

change() event handler, 157
checkboxes

overview, 144–147
referencing, 145

children (Document Object Model)
adding element, 89–91
getting element, 87
nodes, 84–87
overview, 83–84

Chrome, 129–130
classes

elements and

Index 167

adding to, 94–96
specifying by name, 80

removing, 96
toggling, 97

classList property, 95–97
code

adding to web pages, 5–10
browsers not supporting, 10–12
commenting

as debugging strategy, 164
overview, 13–14
syntax for, 13–14
using to describe actions, 19

debugging, 137–140
efficiency of
do ... while loop, 51–53
if statement, 40–41
if.else statement, 41–42
importance of, 43–44
for loop, 47–51, 83, 109
for ... of loop, 82–83
loops, 43–44
loops and arrays, 108–109
overview, 39
while loop, 44–46

indenting
as debugging strategy, 163
syntax, 42

pausing
as debugging strategy, 162
overview, 134–137

running, 133
testing, 162

comparison expressions and operators, 34
compound statements, 41
concat() method, 115
concatenation sign (+), 33
Console

accessing, 132
overview, 130–133
printing program data in, 132–133
running code in, 133
testing code in, 162

console.log() method
as debugging strategy, 163
overview, 132–133

const keyword, 21–22
constructors, 106
controlling flow of JavaScript

loops
for ... of, 82–83
for, 83, 109
populating arrays with, 108–109

loops
do ... while, 51–53
for, 47–51
importance of, 43–44
structure of, 47
while, 44–46

overview, 39
statements
if, 40–41
if.else, 41–42

counter variable, 47–48
counterExpression, 47
counterUpdate expression, 47
CSS (Cascading Style Sheets)

adding classes to element, 94–96
changing element styles, 94–97
removing classes, 96
toggling classes, 97

D
data types

Boolean literals, 30
floating-point numbers, 27
integers, 26
numeric literals

exponential notation, 27
hexadecimal integer values, 27–28
overview, 26–28

string literals
escape sequences, 29–30
overview, 28–30
quotation marks within strings, 28

168 JavaScript Essentials For Dummies

Date() function, 125
dates and times
Date object

arguments for, 124
methods, 126
overview, 125–126
setting dates, 126–127
specifying, 125

overview, 123–127
debugger statement, 162
debugging

break mode
breakpoints, 135–136, 162
debugger statement, 136–137
entering into, 135–137
exiting, 137
overview, 134–137
Step Into button, 138–139
Step Out button, 140
Step Over button, 139–140
stepping through code, 162

breaking down complex tasks, 163
code

commenting, 164
overview, 137–140

Console
accessing, 132
overview, 130–133
printing program data in, 132–133
running code in, 133
testing code in, 162

indenting code, 163
monitoring variable and object property

values, 163
Network tool, 131
statements

commenting on, 164
overview, 138–140
shortening, 163

strategies, 161–164
web development tools in browsers

as debugging strategy, 161
overview, 129–131

Web storage tool, 131
declaring

arrays, 106
variables

with const, 21–22
with let, 18–19

development tools in browsers, 129–131
division operator (/), 20
do ... while loop

overview, 51–53
while loop, 44–46

document object, 9
Document Object Model (DOM)

elements
adding as child, 89–91
adding text and tags to, 91–92
class, adding to, 94–96
class, removing, 96
class, toggling, 97
collections of, 81–83
creating, 89
inserting text HTML into, 92–93
modifying, 92–93
overview, 89–92, 94
removing, 93
specifying by class name, 80
specifying by id attribute, 79
specifying by selector methods, 80–81
specifying by tag name, 79–80
styles, changing, 94–97

hierarchies
child nodes, 84–87
getting children of parent element, 84–87
getting parent of child element, 87
getting siblings of element, 87–88
overview, 83–84

listening for page events, 100–103
objects

methods, 76–77
overview, 73–77
properties of, 74–76

overview, 77–78

Index 169

tweaking HTML attributes
overview, 97–99
reading values, 98
removing, 99
setting values, 98–99

document.body function, 59
document.lastModified statement, 9–10
document.write() statement

overview, 9–10
variables, 22–23

double-slash (//), 13

E
ECMAScript 5

overview, 13
var keyword, 19

ECMAScript 6
new features, 67, 70
overview, 12

Edge, 130
elements

adding as child, 89–91
adding text and tags to, 91–92
buttons, 61
changing styles, 94–97
children and, 87
classes

adding to, 94–96
removing, 96
toggling, 97

collections of, 81–83
creating, 89
listening for changes in form data events,

156–157
modifying, 92–93
overview, 89–92, 94
parents and, 84–87
removing, 93
siblings and, 87–88
specifying

by class name, 80
by id attribute, 79

by selector methods, 80–81
by tag name, 79–80

equals sign (=), 19–20
ES 5, 13, 19
ES 6, 12, 67, 70
escape sequence (\n), 29–30
events

executing functions and, 60–61
listening for, 100–103

events
form data

listening for element changes, 156–157
monitoring blur, 156
monitoring focus, 155–156
overview, 154–157
setting focus, 155

executing function
browser parsing <script> tag, 57–58
events and, 60–61
loading web page and, 58–59
overview, 56–57
replacing with anonymous functions, 68–70

exponential notation, 27
expressions

Boolean, assigning to object options, 153
comparison, 34
controlling, 37
counterExpression, 47
counterUpdate, 47
defined, 31
in do ... while loop, 52
logical, 34–35
NOT operator, 35
numeric, 32–33
operands and operators, 31–32
AND operator, 35
OR operator, 35
operator precedence, 35–37
overview, 35–37
string, 33
structure of, 31–32
in while loop, 44

extracting substrings, 122–123

170 JavaScript Essentials For Dummies

F
files, external, 14–16
find() method, 112–114
Firefox, 130
floating-point numbers, 27
flow of JavaScript, controlling

loops
for ... of, 82–83
do ... while, 51–53
for, 47–51, 83, 109
importance of, 43–44
populating arrays with, 108–109
structure of, 47
while, 44–46

overview, 39
statements
if, 40–41
if.else, 41–42

focus events, 155–156
focus() method, 155–156
for ... of loop, 82–83
for loop

outdated browsers and, 83
overview, 47–51
populating arrays with, 109

forEach() method, 109–110
form data

checkboxes
getting state of, 145–146
overview, 144–147
referencing, 145
setting state of, 146–147

events
listening for element changes, 156–157
monitoring blur, 156
monitoring focus, 155–156
overview, 154–157
setting focus, 155

handling, 158–160
radio buttons

getting state of, 148–149
overview, 147–150

referencing, 148
setting state of, 150

selection lists
changing options, 153–154
getting options, 152–153
overview, 150–154
referencing options, 151–152

submitting, 158–160
text fields

getting values, 143–144
overview, 141–144
referencing by type, 142

functions
anonymous

assigning to variables, 67–68
overview, 66–70
replacing function call with, 68–70

arguments, 56
arrow, 70–72
callback, 68–71, 100
Date(), 125
defined, 8
document.body, 59
executing

browser parsing <script> tag, 57–58
events, 60–61
loading web page, 58–59
overview, 56–57

find(), 112–114
forEach(), 109–110
map(), 110–111
named, 66
overview, 55
reduce(), 111–112
structure of, 55–56
values and

getting from, 64–66
passing to, 61–64

G
getAttribute() method, 98

Index 171

H
handlers, 61
<head> tag, 6
headerImage variable, 98
hexadecimal integer values, 27–28
hierarchies

child nodes, 84–87
getting children of parent element, 84–87
getting parent of child element, 87
getting siblings of element, 87–88
overview, 83–84

HTML (HyperText Markup Language)
<body> tag, 6
buttons elements, 61
debugging tool, 130–131
<head> tag, 6
JavaScript vs., 1
<script> tag

displaying message to user with, 7–8
location of, 6
overview, 5
writing text to page, 8–10

tweaking attributes, 97–99

I
id attribute, 79
if statement, 40–41
if.else statement, 41–42
 tag, 97
indenting code

as debugging strategy, 163
syntax, 42

index numbers, 105
innerHTML property, 91–92
<input> tag

radio buttons, 147–148
text fields, 141–145

insert.AdjacentHTML() method, 92
insertAdjacent.Text() method, 92
integers, 26
internet browsers

break mode
breakpoints, 135–136, 162
debugger statement, 136–137
entering into, 135–137
exiting, 137
overview, 134–137
Step Into button, 138–139
Step Out button, 140
Step Over button, 139–140
stepping through code, 162

Console
accessing, 132
overview, 130–133
printing program data in, 132–133
running code in, 133
testing code in, 162

ECMAScript 6 and, 12
enabling JavaScript in, 10–12
JavaScript and, 10–13
outdated

anonymous functions, 67
arrow functions, 70
for loop and, 83
overview, 12–13

parsing <script> tag, 57–58
as requirement to test code, 10
web development tools in

as debugging strategy, 161
overview, 129–131

iterating
arrays
find() method, 112–114
forEach() method, 109–110
map() method, 110–111
reduce() method, 111–112

over collections, 82

J
JavaScript

browsers and
not supporting code, 10–12

172 JavaScript Essentials For Dummies

JavaScript (continued)

outdated, 12–13
overview, 10–13

code to web pages, adding, 5–10
enabling in browsers, 11
HTML versus, 1
moving to external files, 14–16
program requirements for, 10

join() method, 115

K
keyboard shortcuts for debugging tools

break mode, 137, 139–140
Console, 132
overview, 129–130

keywords
const, 18–19
let, 18–19
var, 18–19

L
literals

arrays, 108
Boolean, 30
numeric

exponential notation, 27
hexadecimal integer values, 27–28
overview, 26–28

string
escape sequences, 29–30
overview, 28–30
quotation marks within strings, 28

location argument, 93
logical expressions, 34–35
loops
for ... of, 82–83
do ... while, 51–53
for, 47–51, 83, 109
importance of, 43–44
populating arrays with, 108–109
structure of, 47
while, 44–46

M
manipulating

arrays, 114–115
Strings objects, 117–118

map() method, 110–111
methods
before(), 91
add(), 95
addEvent.Listener(), 100
after(), 90
append(), 90
arrays
find(), 112–114
forEach(), 109–110
list, 114–115
map(), 110–111
reduce(), 111–112

blur(), 156
concat(), 115
console.log()

as debugging strategy, 163
overview, 132–133

for date and time, 126–127
for extracting substrings, 122–123
focus(), 155–156
getAttribute(), 98
insert.AdjacentHTML(), 92
insertAdjacent.Text(), 92
join(), 115
objects and, 76–77
pop(), 115
prepend(), 90
prompt(), 22–23
push(), 115
remove()

classes, 96
elements, 93

removeAttribute(), 99
reverse(), 115
selector, 80–81
setAttribute(), 98–99
shift(), 115
slice(), 115

Index 173

sort(), 115
string.charAt(), 122
string.charCodeAt(), 122
string.slice(), 122
string.split(), 123
string.substr(), 123
string.substring(), 123
unshift(), 115

Microsoft Edge, 130
minus sign (-), 27
multiline comment (/*), 13–14
multiplication sign (*), 32

N
\n (escape sequence), 29–30
named functions, 66
namespaces, 67
next sibling, 87
nodes, children, 84–87
<noscript> tag, 11
NOT operator (!), 35
null string, 28
numeric

expressions, 32–33
literals

exponential notation, 27
hexadecimal integer values, 27–28
overview, 26–28

O
objects
Date

arguments for, 124
methods, 126
overview, 125–126
setting dates, 126–127
specifying date and time, 125

document, 9
methods and, 76–77
monitoring values, 163
overview, 73–77

properties of, 74–76
Strings

determining length of, 121
manipulating, 117–118
substrings, 121–123
templates, 118–120

onclick attribute
example code, 63
overview, 61

operands and operators, 31–32
options in selection lists

changing, 153–154
getting, 152–153
referencing, 151–152

OR operator (||), 35

P
parents (Document Object Model), 83–84
parsing, browsers and <script> tag, 57–58
plus sign (+), 27
polluting namespace, 67
pop() method, 115
populating arrays

with loops, 108–109
overview, 106–109

prepend() method, 90
previous sibling, 87–88
program data, printing in Console, 132–133
prompt() method, 22–23
properties

array length, 114
checkbox state, 145–147
classList, 95–97
innerHTML, 91–92
monitoring object values, 163

push() method, 115

Q
quotation marks (")

handling internal, 118–120
string literals, 28

174 JavaScript Essentials For Dummies

R
reduce() method, 111–112
referencing form data

checkboxes, 145
selection lists, 151–152
text fields, 142

remove() method, 93, 96
removeAttribute() method, 99
reserved words, 24
reverse() method, 115

S
Safari, 130
<script> tag

browsers parsing, 57–58
displaying message to user with, 7–8
executing functions and, 57–58
external files and, 15
location of, 6, 79
overview, 5
writing text to page, 8–10

<select> tag, 150
selection lists

changing options, 153–154
getting options, 152–153
overview, 150–154
referencing options, 151–152

semicolon (;), 7
setAttribute() method, 98–99
shift() method, 115
siblings (Document Object Model), 83–84
single quotation marks (')
onclick attribute, 63
string literals, 28

single-line syntax, 40
slice() method, 115
sort() method, 115
src attribute, 15
start value, 47
state of checkboxes, 145–147
statements

block, 40–41

commenting on, 164
compound, 41
debugging

Console, 162
overview, 137–140

defined, 7
indenting

as debugging strategy, 163
overview, 42

document.lastModified, 9–10
document.write(), 9–10, 22–23
functions in, 8, 56
if, 40–41
if.else, 41–42
loops
for ... of, 82–83
do ... while, 52
for, 47
while, 44

methods
alert(), 7–8
find(), 112–114
forEach(), 109–110
map(), 110–111
reduce(), 111–112

multiple, managing, 8
shortening, 163
Step Out/Over/Into buttons and, 137–140
using variables in, 22–23

Step Into button (web development tool),
138–139

Step Out button (web development tool), 140
Step Over button (web development tool),

139–140
string.charAt() method, 122
string.charCodeAt() method, 122
strings

incorporating value of variables in,
119–120

expressions, 33
literals

escape sequences, 29–30
overview, 28–30
quotation marks within strings, 28

Index 175

methods
string.slice(), 122
string.split(), 123
string.substr(), 123
string.substring(), 123

multiline, 119–120
null, 28
object

determining length of, 121
manipulating, 117–118
substrings, 121–123
templates, 118–120

prompt() method, part of, 23
substrings

methods for extracting, 122–123
searching for, 121–122

styles of element, changing, 94–97
subtraction assignment, 50
syntax
addEvent.Listener() method, 100
block, 40
Date() function, 125
declaring arrays, 106
for ... of loop, 82–83
objects, 74–77
single-line, 40

T
tags

adding to elements, 91–92
<body>, 6
<head>, 6
, 97
<input>

radio buttons, 147–148
text fields, 141–145

<noscript>, 11
<script>

browsers parsing, 57–58
displaying message to user with, 7–8
executing functions and, 57–58
external files and, 15

location of, 79
location within code, 6
overview, 5
writing text to page, 8–10

<select>, 150
specifying elements by name, 79–80

templates, strings, 118–120
text

adding to elements, 91–92
displaying to user, 7–8
editors, 10
writing to web pages, 8–10

text fields
overview, 141–144
referencing by type, 142
values and, 142–144

times and dates
Date object

arguments for, 124
methods, 126
overview, 125–126
setting dates, 126–127
specifying, 125

overview, 123–127
time-sensitive data, displaying on web

pages, 9
tools in browsers for web development,

129–131
Torvalds, Linus, 2

U
underscore (_), 24
unshift() method, 115
users, displaying messages to

overview, 7–8
prompts, 22–23

V
values

Boleean event, 102
functions and

176 JavaScript Essentials For Dummies

values (continued)

getting from, 64–66
passing to, 61–64

hexadecimal integer, 27–28
index numbers, 105
monitoring, 163
negative time, 123
start, 47
text fields, 142–144
variables

incorporating in strings, 119–120
storing in, 19–20

variables
assigning anonymous functions to, 67–68
counter, 47–48
data types

Boolean literals, 30
numeric literals, 26–28
overview, 26
string literals, 28–30

declaring
with const, 21–22
with let, 18–19

defined, 18
headerImage, 98
naming

examples, 24–25
overview, 24–25
rules, 24

overview, 17–18
reserved words and, 24
statements, using in, 22–23
values and

incorporating in strings, 119–120
monitoring, 163
storing in, 19–20

var keyword, 19

W
web browsers

break mode
breakpoints, 135–136, 162

debugger statement, 136–137
entering into, 135–137
exiting, 137
overview, 134–137
Step Into button, 138–139
Step Out button, 140
Step Over button, 139–140
stepping through code, 162

Console
accessing, 132
overview, 130–133
printing program data in, 132–133
running code in, 133
testing code in, 162

ECMAScript 6 and, 12
enabling JavaScript in, 10–12
JavaScript and, 10–13
outdated

anonymous functions and, 67
arrow functions and, 70
for loop and, 83
overview, 12–13

parsing <script> tag, 57–58
as requirement to test code, 10
web development tools in

as debugging strategy, 161
overview, 129–131

web development tools in browsers
as debugging strategy, 161
overview, 129–131

web pages
code to, adding, 5–10
displaying messages to user

overview, 7–8
prompts, 22–23

executing functions and, 58–59
listening for events, 100–103
loading, 58–59
time-sensitive data, displaying on, 9
writing text to, 8–10

while loop
do ... while, 51–53
overview, 44–46

About the Author
Information appears to stew out of me naturally, like the precious ottar
of roses out of the otter.

—MARK TWAIN

Paul McFedries is a technical writer who spends his days
writing books just like the one you’re holding in your hands. In
fact, Paul has written more than 100 such books that have sold
over four million copies worldwide. Paul invites everyone to drop
by his personal website at https://paulmcfedries.com, or to
follow him on X (www.twitter.com/paulmcf) or Facebook (www.
facebook.com/PaulMcFedries).

Dedication
To Karen, my lobster.

Author’s Acknowledgments
Each time I complete a book, the publisher sends me a heavy box
filled with a few so-called “author” copies. Opening that box,
lifting out a book, feeling the satisfying weight of something that
has, up to now, been weightlessly digital, and seeing my name
printed on the cover, well, it’s a pretty fine feeling, let me tell
you. That’s pretty cool, but you know what’s really cool? That I’ve
done that over a hundred times in my writing career, and seeing
my name on the cover has never gotten old.

But just because mine is the only name you see on the cover,
doesn’t mean this book was a one-man show. Far from it. Sure,
I did write this book’s text and take its screenshots, but those
represent only a part of what constitutes a “book.” The rest of it
is brought to you by the dedication and professionalism of Wiley’s
editing, graphics, and production teams, who toiled long and hard
to turn my text and images into an actual book.

I offer my heartfelt thanks to everyone at Wiley who made this
book possible, but I’d like to extend some special thank-yous to
the folks I worked with directly: Executive Editor Lindsay Berg
and Editor Elizabeth Kuball.

https://paulmcfedries.com/
https://www.twitter.com/paulmcf
https://www.facebook.com/PaulMcFedries
https://www.facebook.com/PaulMcFedries

Publisher’s Acknowledgments

Executive Editor: Lindsay Berg

Editor: Elizabeth Kuball

Production Editor:
Saikarthick Kumarasamy

Cover Design and Image: Wiley

Take dummies with you
everywhere you go!
Whether you are excited about e-books, want more

from the web, must have your mobile apps, or are swept
up in social media, dummies makes everything easier.

dummies.com

Find us online!

http://dummies.com

Leverage the power

Dummies is the global leader in the reference category and one
of the most trusted and highly regarded brands in the world. No
longer just focused on books, customers now have access to the
dummies content they need in the format they want. Together
we’ll craft a solution that engages your customers, stands out
from the competition, and helps you meet your goals.

Connect with an engaged audience on a powerful multimedia site,
and position your message alongside expert how-to content.
Dummies.com is a one-stop shop for free, online information
and know-how curated by a team of experts.

• Targeted ads
• Video
• Email Marketing

• Microsites
• Sweepstakes

sponsorship

Advertising & Sponsorships

MILLION
PAGE VIEWS

M IL L I O N

NEWSLETTER

300,000 UNIQUE INDIVIDUALS
EVERY WEEK

UNIQUE

SUBSCRIPTIONS

EVERY SINGLE MONTH

15

700,000

20

43%
OF ALL VISITORS
ACCESS THE SITE
VIA THEIR MOBILE DEVICES

VISITORS PER MONTH

TO THE INBOXES OF

http://Dummies.com

you from competitors, amplify your message, and encourage customers to make a
buying decision.

Leverage the strength of the world’s most popular reference brand to reach new
audiences and channels of distribution.

For more information, visit dummies.com/biz

• Apps
• Books

• eBooks
• Video

• Audio
• Webinars

Custom Publishing

Brand Licensing & Content

of dummies

http://dummies.com/biz

9781119187790
USA $26.00
CAN $31.99
UK £19.99

9781119179030
USA $21.99
CAN $25.99
UK £16.99

9781119293354
USA $24.99
CAN $29.99
UK £17.99

9781119293347
USA $22.99
CAN $27.99
UK £16.99

9781119310068
USA $22.99
CAN $27.99
UK £16.99

9781119235606
USA $24.99
CAN $29.99
UK £17.99

9781119251163
USA $24.99
CAN $29.99
UK £17.99

9781119235491
USA $26.99
CAN $31.99
UK £19.99

9781119279952
USA $24.99
CAN $29.99
UK £17.99

9781119283133
USA $24.99
CAN $29.99
UK £17.99

9781119287117
USA $24.99
CAN $29.99
UK £16.99

9781119130246
USA $22.99
CAN $27.99
UK £16.99

PERSONAL ENRICHMENT

9781119311041
USA $24.99
CAN $29.99
UK £17.99

9781119255796
USA $39.99
CAN $47.99
UK £27.99

9781119293439
USA $26.99
CAN $31.99
UK £19.99

9781119281467
USA $26.99
CAN $31.99
UK £19.99

9781119280651
USA $29.99
CAN $35.99
UK £21.99

9781119251132
USA $24.99
CAN $29.99
UK £17.99

9781119310563
USA $34.00
CAN $41.99
UK £24.99

9781119181705
USA $29.99
CAN $35.99
UK £21.99

9781119263593
USA $26.99
CAN $31.99
UK £19.99

9781119257769
USA $29.99
CAN $35.99
UK £21.99

9781119293477
USA $26.99
CAN $31.99
UK £19.99

9781119265313
USA $24.99
CAN $29.99
UK £17.99

9781119239314
USA $29.99
CAN $35.99
UK £21.99

9781119293323
USA $29.99
CAN $35.99
UK £21.99

PROFESSIONAL DEVELOPMENT

dummies.com

http://dummies.com

WILEY END USER LICENSE AGREEMENT

Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Title Page
	Copyright Page
	Table of Contents
	Introduction
	About This Book
	Foolish Assumptions
	Icons Used in This Book
	Where to Go From Here

	Chapter 1 JavaScript: The Big Picture
	Adding JavaScript Code to a Web Page
	The <script> tag
	Where do you put the <script> tag?
	Example #1: Displaying a message to the user
	Example #2: Writing text to the page

	What You Need to Get Started
	Dealing with Two Exceptional Cases
	Handling browsers with JavaScript turned off
	Handling very old browsers

	Commenting Your Code
	Moving to External JavaScript Files

	Chapter 2 Programming with Variables
	Getting Your Head around Variables
	Declaring a variable with let
	Storing a value in a variable
	Checking out another way to declare a variable: const
	Using variables in statements

	Naming Variables: Rules and Best Practices
	Rules for naming variables
	Ideas for good variable names

	Understanding Literal Data Types
	Working with numeric literals
	Exponential notation
	Hexadecimal integer values

	Working with string literals
	Using quotation marks within strings
	Understanding escape sequences

	Working with Boolean literals

	Chapter 3 Building Expressions
	Understanding How Expressions Are Structured
	Creating Numeric Expressions
	Building String Expressions
	Building Comparison Expressions
	Building Logical Expressions
	Understanding Operator Precedence
	The order of precedence
	Controlling the order of precedence

	Chapter 4 Controlling the Flow of JavaScript
	Decision-Making with if Statements
	Branching with if. . .else Statements
	Understanding the Value of Code Looping
	Working with while Loops
	Working with for Loops
	Working with do. . .while Loops

	Chapter 5 Harnessing the Power of Functions
	Getting to Know the Function Structure
	Making a Function Call
	When the browser parses the <script> tag
	When the page load is complete
	When an event fires

	Passing One or More Values to a Function
	Passing one value to a function
	Passing two or more values to a function

	Getting a Value from a Function
	Working with Anonymous Functions
	Assigning an anonymous function to a variable
	Replacing a function call with an anonymous function

	Working with Arrow Functions

	Chapter 6 Coding the Document Object Model
	Getting Familiar with Objects
	Working with object properties
	Working with object methods

	Introducing the Document Object Model
	Specifying Elements in Your Code
	Specifying an element by id
	Specifying elements by tag name
	Specifying elements by class name
	Specifying elements by selector
	Working with collections of elements

	Touring the DOM with Code
	Getting the children of a parent element
	Getting all the child nodes
	Getting the first child node
	Getting the last child node

	Getting the parent of a child element
	Getting the siblings of an element
	Getting the previous sibling
	Getting the next sibling

	Adding, Modifying, and Removing Elements
	Adding an element to the page
	Step 1: Creating the element
	Step 2: Adding the new element as a child
	Step 3: Adding text and tags to the new element

	Inserting text or HTML into an element
	Removing an element

	Using Code to Mess Around with CSS
	Changing an element’s styles
	Adding a class to an element
	Removing a class
	Toggling a class

	Using Code to Tweak HTML Attributes
	Reading an attribute value
	Setting an attribute value
	Removing an attribute

	Listening for Page Events

	Chapter 7 Working with Arrays
	What Is an Array?
	Declaring an Array
	Populating an Array
	Declaring and populating an array at the same time
	Populating an array using a loop

	Iterating Arrays
	Iterating an array: forEach()
	Iterating to create a new array: map()
	Iterating an array down to a value: reduce()
	Iterating to locate an element: find()

	Manipulating Arrays
	The length property
	Some useful array methods

	Chapter 8 Coding Strings and Dates
	Manipulating Strings
	Working with string templates
	Determining the length of a string
	Searching for substrings
	Learning the methods that extract substrings

	Dealing with Dates and Times
	Learning the arguments used with the Date object
	Getting to know the Date object
	Specifying the current date and time
	Specifying any date and time

	Getting info about a date
	Setting the date

	Chapter 9 Debugging JavaScript
	Laying Out Your Debugging Tools
	Debugging 101: Using the Console
	Getting the console onscreen
	Printing program data in the Console
	Running code in the Console

	Putting Your Code into Break Mode
	Invoking break mode
	Setting a breakpoint
	Adding a debugger statement

	Getting out of break mode

	Stepping Through Your Code
	Stepping one statement at a time
	Stepping into some code
	Stepping over some code
	Stepping out of some code

	Chapter 10 Dealing with Form Data
	Coding Text Fields
	Referencing by field type
	Getting a text field value
	Setting a text field value

	Programming Checkboxes
	Referencing checkboxes
	Getting the checkbox state
	Setting the checkbox state

	Coding Radio Buttons
	Referencing radio buttons
	Getting a radio button state
	Setting the radio button state

	Programming Selection Lists
	Referencing selection list options
	Getting the selected list option
	Changing the selected option

	Working with Form Events
	Setting the focus
	Monitoring the focus event
	Monitoring the blur event
	Listening for element changes

	Handling Form Data

	Chapter 11 Ten JavaScript Debugging Strategies
	Get Thee to Your Dev Tools
	The Console Is Your Best Debugging Friend
	Give Your Code a Break(point)
	Step Through Your Code
	Monitor Variable and Object Property Values
	Indent Your Code
	Break Down Complex Tasks
	Break Up Long Statements
	Comment Out Problem Statements
	Use Comments To Document Your Scripts

	Index
	EULA

