

JavaScript®
A L L - I N - O N E

by Chris Minnick

JavaScript® All-in-One For Dummies®

Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, www.wiley.com

Copyright © 2023 by John Wiley & Sons, Inc., Hoboken, New Jersey

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections
107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the Publisher. Requests to
the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River
Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything Easier, and related
trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc., and may not be used without written
permission. All other trademarks are the property of their respective owners. John Wiley & Sons, Inc., is not associated
with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: WHILE THE PUBLISHER AND AUTHORS HAVE USED THEIR
BEST EFFORTS IN PREPARING THIS WORK, THEY MAKE NO REPRESENTATIONS OR WARRANTIES WITH RESPECT
TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM
ALL WARRANTIES, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES
REPRESENTATIVES, WRITTEN SALES MATERIALS OR PROMOTIONAL STATEMENTS FOR THIS WORK. THE
FACT THAT AN ORGANIZATION, WEBSITE, OR PRODUCT IS REFERRED TO IN THIS WORK AS A CITATION AND/
OR POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE PUBLISHER AND AUTHORS
ENDORSE THE INFORMATION OR SERVICES THE ORGANIZATION, WEBSITE, OR PRODUCT MAY PROVIDE OR
RECOMMENDATIONS IT MAY MAKE. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER
IS NOT ENGAGED IN RENDERING PROFESSIONAL SERVICES. THE ADVICE AND STRATEGIES CONTAINED HEREIN
MAY NOT BE SUITABLE FOR YOUR SITUATION. YOU SHOULD CONSULT WITH A SPECIALIST WHERE APPROPRIATE.
FURTHER, READERS SHOULD BE AWARE THAT WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR
DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ. NEITHER THE PUBLISHER
NOR AUTHORS SHALL BE LIABLE FOR ANY LOSS OF PROFIT OR ANY OTHER COMMERCIAL DAMAGES, INCLUDING
BUT NOT LIMITED TO SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR OTHER DAMAGES.

For general information on our other products and services, please contact our Customer Care Department within
the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002. For technical support, please visit
https://hub.wiley.com/community/support/dummies.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with
standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to
media such as a CD or DVD that is not included in the version you purchased, you may download this material at
http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2023933800

ISBN 978-1-119-90683-4 (pbk); ISBN 978-1-119-90684-1 (ebk); ISBN 978-1-119-90685-8 (ebk)

http://www.wiley.com
http://www.wiley.com/go/permissions
https://hub.wiley.com/community/support/dummies
http://booksupport.wiley.com
http://www.wiley.com
http://Dummies.com

Contents at a Glance
Introduction . 1

Book 1: JavaScript Fundamentals . 7
CHAPTER 1: Jumping into JavaScript . 9
CHAPTER 2: Filling Your JavaScript Toolbox . 41
CHAPTER 3: Using Data . 63
CHAPTER 4: Working with Operators and Expressions . 81
CHAPTER 5: Controlling Flow . 91
CHAPTER 6: Using Arrays . 105
CHAPTER 7:	 Making	and	Using Objects . 125
CHAPTER 8: Writing and Running Functions . 139
CHAPTER 9:	 Getting	Oriented	with Classes . 167
CHAPTER 10: Making Things Happen with Events . 181
CHAPTER 11: Writing Asynchronous JavaScript . 197
CHAPTER 12: Using JavaScript Modules . 223

Book 2: Meet Your Web Browser . 231
CHAPTER 1: What a Web Browser Does . 233
CHAPTER 2: Programming the Browser . 241

Book 3: React . 261
CHAPTER 1:	 Getting	Started	with React . 263
CHAPTER 2: Writing JSX . 281
CHAPTER 3: Building React Components . 297
CHAPTER 4:	 Using	Data	and	Events in React . 327

Book 4: Vue . 341
CHAPTER 1: Getting an Overview of Vue . 343
CHAPTER 2: Introducing Vue Components . 357
CHAPTER 3: Making Vue Templates . 369
CHAPTER 4: Using Data and Reactivity . 395
CHAPTER 5: Responding to Events . 411

Book 5: Svelte . 421
CHAPTER 1:	 Getting	Started	with Svelte . 423
CHAPTER 2: Building with Components . 437
CHAPTER 3: Designing Templates . 451

CHAPTER 4: Using Directives . 463
CHAPTER 5: Using the Component Lifecycle . 471
CHAPTER 6: Advanced Svelte Reactivity . 483

Book 6: Sharpening Your Tools . 493
CHAPTER 1: Building from Scratch . 495
CHAPTER 2: Optimizing and Bundling . 513
CHAPTER 3: Testing Your JavaScript . 535

Book 7: Node.js . 557
CHAPTER 1:	 Node.js	Fundamentals . 559
CHAPTER 2: Streaming . 587
CHAPTER 3:	 Working	with	Buffers . 603
CHAPTER 4:	 Accessing	the	File System . 613
CHAPTER 5: Networking with Node . 627
CHAPTER 6: Using Events . 639
CHAPTER 7: Error Handling and Debugging . 651
CHAPTER 8: Accessing Databases . 673
CHAPTER 9:	 Riding	on	the	Express Train . 697
CHAPTER 10: Registration and Authentication . 721

Index . 755

Table of Contents v

Table of Contents
INTRODUCTION . 1

Why This Book? .2
JavaScript is a huge topic .2
How	this	book	is	different .3

Conventions Used in This Book .4
Foolish Assumptions .5
Icons Used in This Book .5
Beyond the Book .6
Where to Go from Here .6

BOOK 1: JAVASCRIPT FUNDAMENTALS . 7

CHAPTER 1: Jumping into JavaScript . 9
JavaScript, the Basics .9

JavaScript is a programming language .10
A short and epic history of JavaScript .12

Reading and Copying JavaScript Code .15
How the web works .15
Front end and back end .16
The front end is open, the back end is closed 18
The value of a service .21
JavaScript on the server .22

Starting Your Development Environment .22
Installing Visual Studio Code .23
Learning to use Visual Studio Code .25

Writing Your First JavaScript Program .29
JavaScript is made of statements .30
JavaScript is case-sensitive .31
JavaScript ignores white space .31
JavaScript programmers use camelCase and underscores 32

Running Code in the Console .33
Rerunning Commands in the Console .34
Running Code in a Browser Window .35

Running JavaScript from HTML event attributes 35
Running HTML inside script elements .36
Including	JavaScript	files	in	your	HTML .37

CHAPTER 2: Filling Your JavaScript Toolbox . 41
Installing	Node.js .43
Configuring	Visual	Studio	Code .43

Getting prettier .44
Installing Live Server .47

vi JavaScript All-in-One For Dummies

Documenting Your Code .51
Line comments .51
Block comments .51
The	README	file . .52
The basics of Markdown .53

Coding Responsibly with Git .55
Introducing Git .55
Installing Git .56
Configuring	and	testing	Git .57
Learning the basics of Git .60
Moving forward with Git and GitHub .62

CHAPTER 3: Using Data . 63
Making Variables with let .63

Declaring variables .64
Initializing variables .64
Using variables .64
Naming variables .66

Making Constants with const .66
When to use constants .67
Naming constants .67

Taking a Look at the Data Types .68
JavaScript is loose and dynamic .68
Passing by value . .69
String data type .69
Number data type .73
bigInt data type .74
Boolean data type .75
NaN data type .77
Undefined	data	type .77
Symbol data type .77

Wrangling	the	Object:	The	Complex	Data	Type 78
Examining	the	Array —	a	Special	Kind	of	Object 79
Getting a Handle on Scope . .80

CHAPTER 4: Working with Operators and Expressions 81
Building Expressions .82
Operators:	The	Lineup .83

Operator precedence .83
Using parentheses .84
Assignment operators .85
Comparison operators .85
Arithmetic operators .86
Concatenation operator .86

Table of Contents vii

Logical operators .87
Combining operators .89

Other Operators .89

CHAPTER 5: Controlling Flow . 91
Choosing a Path .91

if . . . else	statements .91
Switch statements .93

Making Loops .97
for loops .97
for . . . in	loops .98
for . . . of	loops .100
while loops .100
do . . . while	loops .101
break and continue statements .102

CHAPTER 6: Using Arrays . 105
Introducing Arrays .106
Creating Arrays .108

Using the Array() constructor .108
Using array literal notation .109
Using the split function .109

Accessing Array Elements .110
Modifying Arrays .111
Deleting Array Elements .111
Programming with Array Methods .112

Pushing and popping .113
Shifting and unshifting .114
Slicing an array .116
Splicing an array .116

Looping with Array Methods .117
Passing callback functions to array methods 117
Reducing an array .118
Mapping an array .119
Filtering arrays .121

Destructuring Arrays .122
Spreading Arrays .122

CHAPTER 7: Making and Using Objects . 125
Objects:	The	Basics .125
Creating	Objects .127

Making	objects	using	literal	notation .127
Making	objects	using	a	constructor	function 128
Making	objects	with	class .128
Making	objects	with	Object.create() .130

viii JavaScript All-in-One For Dummies

Modifying	Objects .130
Using dot notation .130
Using square brackets notation .131

Comparing	and	Copying	Objects .132
Understanding Prototypes .134
Deleting	Object	Properties .138

CHAPTER 8: Writing and Running Functions . 139
Functions:	An	Introduction .140

Using Top-level functions .141
Using	methods	of	built-in	objects .142
Passing by value . .142
Passing by reference .143

Writing Functions .144
Naming functions .144
Passing arguments .145
Writing a function body .148
Returning data .149
Function declaration scope and hoisting .150
Declaring Anonymous functions .150
Defining	function	expressions .150
Writing anonymous functions as arrow functions 152
Simplifying arrow functions .152
Knowing	the	limits	of	arrow	functions .154

Writing Methods .154
Understanding Context and this .155

Passing	an	object	to	a	function .156
Setting the context of a function .157
Passing	a	function	from	one	object	to	another 158
Passing a function to a child to change the parent 159

Chaining Functions .165

CHAPTER 9: Getting Oriented with Classes . 167
Encapsulation .168
Abstraction .168
Inheritance .169
Polymorphism .169
Base Classes .169

Recognizing that classes aren’t hoisted .170
Using class expressions .170
Making instances of base classes .170

Derived Classes .170
Constructors .171

Table of Contents ix

Properties and Methods .173
Creating methods in a class .173
Overriding methods in a derived class .174
Defining	methods,	properties,	and	fields .174

Practicing and Becoming comfortable with Classes 177

CHAPTER 10: Making Things Happen with Events 181
Understanding the JavaScript Runtime Model 182

Stacking function calls . .182
Heaping	objects .183
Queuing messages .183

The Event Loop .183
JavaScript is single-threaded .183
Messages run until they’re done .184

Listening for Events .184
Listening with HTML event attributes .185
Listening with Event handler properties .185
Using addEventListener() .186
The	Event	object .190
Listening on multiple targets .190
Dispatching events programmatically .192
Removing event listeners .194
Preventing default actions .195

CHAPTER 11: Writing Asynchronous JavaScript . 197
Understanding Asynchronous JavaScript .198

Reading synchronous code .198
Events to the rescue .199
Calling you back .200

Making Promises .202
Writing promises .203
Introducing async functions .206

Using AJAX .210
Getting data with the Fetch API .211
Calling other Response methods .213
Handling fetch() errors .214
The	fetch	init	object .215
Introducing HTTP .216
Making requests with CORS .218
Working with JSON data .220
Getting JSON data .222
Sending JSON data . .222

x JavaScript All-in-One For Dummies

CHAPTER 12: Using JavaScript Modules . 223
Defining	Modules .224
Exporting Modules .224

Named exports .225
Default exports .225

Importing Modules .227
Importing named modules .227
Importing default modules .227

Renaming Exports and Imports .228
Importing	a	Module	Object .228
Loading Dynamic Modules .229
Importing Modules into HTML . .229

BOOK 2: MEET YOUR WEB BROWSER . 231

CHAPTER 1: What a Web Browser Does . 233
Interfacing with a Browser .234
Introducing the Browser Engine .235
The Rendering Engine .235

The JavaScript engine .237
Identifying and preventing render blocking 237
Unblocking your code with async and defer 238

Networking .239
Data storage .239

CHAPTER 2: Programming the Browser . 241
Understanding Web APIs and Interfaces .241

Hooking into interfaces .242
Built-in browser APIs .242
Custom APIs .243

Getting Around the Navigator .243
Inspecting the navigator’s quirks .244
Navigator properties .244

Stealing a Glimpse Through the Window .246
Window properties .247
Window methods .247

Introducing the HTML DOM .249
Document properties .249
Document methods .250
Selecting element nodes .251
Selecting with getElementById() .252
Selecting using selectors .252
Creating and adding elements to the DOM 254
Element nodes .255
Element methods .256

Knowing	Your	History .257

Table of Contents xi

BOOK 3: REACT . 261

CHAPTER 1: Getting Started with React . 263
Understanding ReactJS .263

Distilling “Thinking in React” .264
Building a React UI . .265
React is component-based .270
React is declarative .271
React	is	just	JavaScript .271

Initializing	a	Project	with	Vite .271
Introducing Vite .272
Launching the VS Code terminal .272
Touring the structure of a React app .274
Modifying	a	React	project .277

Introducing ReactDOM and the Virtual DOM .278

CHAPTER 2: Writing JSX . 281
Learning the Fundamentals of JSX .281

JSX is not HTML .282
JSX is XML .282
Transpiling with Babel .283
Writing HTML output with JSX .283
Using built-in components .284

Using JavaScript Expressions in JSX .285
Conditionally Rendering JSX .286

Conditional rendering with element variables 287
Conditional rendering with && .288
Conditional rendering with the conditional operator 289

Making a List .290
Styling React Apps and Components .292

Adding global styles .292
Using local styles .293
Using the style attribute .293
Using	style	objects .294
Making style modules .295
Other style strategies .296

CHAPTER 3: Building React Components . 297
Thinking in Components .298

Designing your own elements .298
Returning valid values .300

Recognizing the Two Types of Data .300
Props .300
Getting reactive with state .301
How state enables reactivity .304

xii JavaScript All-in-One For Dummies

Function Components .304
Functions are stateless .305
Introducing useState() .305

Class Components .307
The Component Lifecycle .309

The mounting methods .309
The updating methods .313
Unmounting a component .315

Using the Lifecycle in Function Components .316
Running	effects	less	often .317
Performing	an	effect	on	unmounting .319

Composing Components .321
How	inheritance	works	in	object-oriented	programming 321
Composition using explicit props .322
Composition using the children prop .323
Composition with custom hooks .324

CHAPTER 4: Using Data and Events in React . 327
Event Handling in React .328

Using event attributes .328
Dispatching Synthetic Events .328
Specifying a handler function .329
Passing arguments to an event handler .329
Passing functions as props .330

Making Forms with React .334
Using controlled inputs . .335
Using uncontrolled forms .337

BOOK 4: VUE . 341

CHAPTER 1: Getting an Overview of Vue . 343
Comparing Vue to React .343
Scaffolding	Your	First	Vue.js	Application .344

Bootstrapping with vue-create .344
Installing Volar .346
Exploring the structure of a Vue app .347
Going to the src .348

Mounting a Root Component .348
Configuring	an	app .349
Mounting multiple apps .349

Exploring Vue’s Two Styles .350
The Options API .350
The Composition API .352
Deciding which API to use .352

Installing Vue DevTools .353

Table of Contents xiii

CHAPTER 2: Introducing Vue Components . 357
Introducing the Single-File Component .357

The script element .358
The setup() function .358
The setup shortcut .360

Naming Components .362
Following the Component Lifecycle .362

onMounted() . .362
onUpdated() .365
onUnmounted() .365
onBeforeMount() .366
onBeforeUpdate() .366
onBeforeUnmount() .366
onErrorCaptured() .366

Handling Errors in Components .366

CHAPTER 3: Making Vue Templates . 369
Writing HTML Templates .369
Using JavaScript in Templates .371

Calling functions .372
JavaScript in templates is restricted .372
Using globals in templates .373

Introducing Directives .373
Built-in directives .373
Directive shorthand names .375
Passing arguments to directives .375
Dynamic arguments .375
Directive	modifiers .375
Custom directives .376

Conditional Rendering .378
Conditional rendering with JavaScript .378
Conditional rendering using directives .378

Rendering Lists .379
Using v-for with numbers and strings .380
Using	v-for	with	objects .380
Using v-for with arrays .382
Specifying a key .383

Composing with Slots .383
Specifying fallback content .385
Naming slots .386

Adding Style to Components .387
Global CSS .387
Scoped CSS .388

xiv JavaScript All-in-One For Dummies

Multiple style blocks .389
CSS modules .390
v-bind in CSS .391

CHAPTER 4: Using Data and Reactivity . 395
Passing and Using Props .396

Defining	props	with	<script	setup> .396
Defining	props	with	setup() .397

Binding Data to Templates .398
Initializing and Changing Reactive Data .400

reactive()	creates	a	Proxy	object .401
Limitations of reactive() .402

Introducing ref() .403
Experimenting with Reactivity Transform .404

Computing Properties . .405
Reacting to State Changes with Watch() .408

CHAPTER 5: Responding to Events . 411
Setting Listeners with v-on .411

Inline handlers .411
Method handlers .413
Choosing between method and inline handlers 414

Using	Event	Modifiers .416
Using	key	modifiers .417
Detecting exact combinations .419

Binding Forms to Events and Data .419
Making two-way bindings with v-model .420
Using v-model with various input types .420

BOOK 5: SVELTE . 421

CHAPTER 1: Getting Started with Svelte . 423
What	Makes	Svelte	Different? .423
Building	Your	Scaffolding .425
Getting the Svelte for VS Code Extension .426
Exploring a Svelte App .427
Playing with Svelte .431

Building the basic look-and-feel .431
Making reactive data .432
Handling the event .435

CHAPTER 2: Building with Components . 437
Writing Lean Components .437
Identifying What’s in a Component .439

Scripting in Svelte components .439
Exporting and using props .440

Table of Contents xv

Triggering reactivity with assignments .442
Recognizing that array methods don’t trigger updates 442
Creating reactive statements .445
Using	<script>	data	and	functions .446

Adding Style to a Component .447

CHAPTER 3: Designing Templates . 451
Elements Are the Building Blocks .451

Using the built-in elements .451
Using custom elements .452

Documenting Svelte with Comments .453
Choosing a Path .454
Creating Loops .456
Writing Text Expressions .458
Composing with Slots .459

CHAPTER 4: Using Directives . 463
Listening	for	Events	with	on: .463

Basic event handling .464
Attaching	modifiers	to	event	listeners .464
Forwarding events .465
Handling multiple events .466

Creating	Two-Way	Bindings	with	:bind .466
Recognizing that number inputs create numbers 467
Binding select inputs .467

Using Transition Animations .468
Creating	your	first	transition .468
Passing arguments to transitions .470
Creating unidirectional transitions .470

CHAPTER 5: Using the Component Lifecycle . 471
The Svelte Lifecycle .471

Mounting .472
Using beforeUpdate() and afterUpdate() .473
Using onDestroy() .473
Getting ticks .474

Fetching Data in Svelte .476
Refreshing data .477
Awaiting asynchronous requests .479

CHAPTER 6: Advanced Svelte Reactivity . 483
Constructing and Stocking the Store .483

Creating a writable store .484
Creating a readable store .484

xvi JavaScript All-in-One For Dummies

Subscribing to a store .485
Unsubscribing from a store .485
Setting and updating a store .486
Using the reactive shortcut .487
Store starting and stopping functions .488

Getting and Setting Context .490

BOOK 6: SHARPENING YOUR TOOLS . 493

CHAPTER 1: Building from Scratch . 495
Why You Need a Build Tool .496

“Back in my day . . .” .496
The road to dependency hell .497
Enter package management .497

Managing Dependencies with npm .497
Initializing	a	project .497
Learning	the	parts	of	package.json .500
Using the node_modules folder .502

Writing Your First Files .503
Writing a dev Script .505
Making Modules .506

Refactoring	index.js .506
The moveBall() function .507
The generateMap() function .508
Adding style .509
Testing for collisions .510
Testing it out .511

CHAPTER 2: Optimizing and Bundling . 513
Automating Your Build Script .513

Installing and using a module bundler .514
Configuring	your	dev	server .515
Building it up .518
Copying static assets .519
Cleaning up .520

Converting to React .522
Configuring	Webpack	for	React .522
Converting the UI to React .524
Detecting collisions .531

CHAPTER 3: Testing Your JavaScript . 535
Using a Linter .536
Debugging in Chrome .542

Getting started with the Sources panel .542
Building a source map .542

Table of Contents xvii

Editing your code in the Sources panel .544
Setting breakpoints .544
Using watch expressions .546

Unit Testing .547
Installing	and	configuring	Jest .547
Writing	your	first	test .548
Learning how Jest works .550
Writing better code through testing .552
Using testing-library .553

BOOK 7: NODE.JS . 557

CHAPTER 1: Node.js Fundamentals . 559
Learning	What	Makes	Node.js	Tick .560

Node.js	is	not	a	programming	language .560
Node.js	is	not	a	framework .560
Node.js	is	a	runtime	environment .560
Why	developers	need	Node.js .561

Learning	the	Parts	of	Node.js .562
The V8 engine .563
libuv .563
Node.js	bindings .564
The	Node.js	standard	library .564

Introducing	the	Node.js	Core	Modules .564
Recognizing	What	Node.js	Is	Good	For .566

Why	is	Node.js	so	fast? .566
What	is	Node.js	not	good	at? .567

Working	with	Node.js .567
Writing	a	Node.js	program .568
Monitoring your script .569
Running a code on the command line .570

Using REPL .570
Playing	with	the	Node.js	REPL .570
Working with REPL commands .573

Making	and	Using	Node.js	Modules .575
Using CommonJS .575
Using ES modules .577
Setting	the	module	type	in	package.json .579

Getting Data to Node Modules .580
Environment variables .581
Passing arguments .584

Node’s Callback Pattern .584

xviii JavaScript All-in-One For Dummies

CHAPTER 2: Streaming . 587
Jumping into Streams .587

Chunking is the key .588
Loading without streams .588
Converting to streams .589
Viewing chunks .590
Identifying types of streams .592

Creating Readable Streams .592
Reading readable streams from the fs module 593
Distinguishing between the two read modes 594

Creating Writable Streams .596
Producing Duplex Streams .598

Backpressure .598
PassThrough . .599

Transforming Streams .599
Chaining Streams .600

CHAPTER 3: Working with Buffers . 603
Knowing	Your	Buffer	Basics .603

Differentiating	between	encoding	and	decoding 604
Examining	buffer	content .605

Decoding	Buffers .606
Creating	Buffers .607
Using	Other	Buffer	Methods .609
Iterating	over	Buffers .611

CHAPTER 4: Accessing the File System . 613
Importing the fs module .613
Reading Files .614

Reading	from	a	file	with	fs.read() .614
Using readFile() .617
Using readFileSync() .618

Writing Files .619
Writing it to disk with fs .write() .619
Using fs .writeFile() .620

Using Paths .621
Getting File and Directory Information .623

Listing	the	files	in	a	directory .623
Finding directories .624
Getting	file	stats .624

Table of Contents xix

CHAPTER 5: Networking with Node . 627
A Note about Security .628
Making a Web Server .630

Understanding	the	Request	object .632
Understanding	the	response	object .633
Methods	of	the	response	object .636
Using implicit headers .637
Knowing	the	differences	between	setHeader()	and	
writeHead() .637

CHAPTER 6: Using Events . 639
Introducing EventEmitter .640

Creating custom events .640
Extending EventEmitter .641
Passing arguments to listeners .642

Understanding and Using maxListeners .644
Finding the value of defaultMaxListeners .644
Exceeding the maximum listeners for an emitter 645
Increasing the maximum number of listeners 646

Removing Listeners .647
Removing individual listeners .647
Removing all listeners .648

Emitting Once .649

CHAPTER 7: Error Handling and Debugging . 651
Knowing	the	Types	of	Errors .651

Operational errors .652
Programmer errors .652

Understanding	Node.js’s	Error	Object .653
Reading error .stack .654
Reading a stack frame . .654

Exceptions versus Errors .654
Handling Exceptions .655

Catching exceptions with promises .656
Catching exceptions with async functions .659

Debugging	Node.js	Programs .660
Using the command-line debugger .663
Debugging in Chrome DevTools .667

CHAPTER 8: Accessing Databases . 673
Getting Started with MongoDB .674

Discerning between relational and NoSQL databases 674
Installing MongoDB .677

xx JavaScript All-in-One For Dummies

Starting MongoDB .680
Starting MongoDB on Windows .681
Starting MongoDB on macOS .681

Using Mongosh .681
Connecting to MongoDB and creating a database 681
Creating a collection .682
Making an id and listing documents .682
Finding documents .684
Learning MongoDB Shell commands .686
Working with users and roles .687

Using	MongoDB	from	Node.js .688
Installing	the	Node.js	driver .689
Connecting to a MongoDB server .689
Inserting documents into a collection .691
Getting data .693
Updating data .695
Deleting data .696

CHAPTER 9: Riding on the Express Train . 697
Installing Express .697
Server-Side Routing with Express .699

Introducing routing methods .699
Using routing methods .699

Using Express Middleware .701
The next() function .702
Types of middleware .702
Serving	static	files .706

Analyzing a Complete Express Server .707
Installing the server and dependencies .709
Setting up a REST client .709
Testing the API server .711

Serving a View .713
Benefiting	from	a	template	engine .713
Introducing Pug .714

Using the Express Application Generator .715

CHAPTER 10: Registration and Authentication . 721
Making	and	Configuring	the	Directory .722
Adding the App and Server Modules .723
Making Some Basic Routes .725
Testing Your Routes .728

Table of Contents xxi

Making a Schema with Mongoose .730
Using mongoose .Schema and mongoose .model 730
Installing Mongoose and connecting to a database 731
Creating the User model .733
Create the post model .734

Implementing User Registration .734
Understanding the basics of authentication 735
Programming the user sign-up route .735
Understanding password security .736
Understanding hashes .736
Adding salt to hashing .738
Hashing and saving .738
Testing user registration . .740

Handling Authentication .741
Generating and Using Tokens .744

Recognizing that tokens must expire .744
Sending a refresh token .745

Finishing the Login Route .746
Testing the login route .749
Looking at an access token .750
Using an access token .751

INDEX . 755

Introduction 1

Introduction
“Do your work, and you shall reinforce yourself.”

—RALPH WALDO EMERSON

T
he following scenario plays out at some point in the career of every devel-
oper working on mobile or web apps today:

You show up at your new job (or new freelance gig). You were good enough at
using JavaScript that you got hired, and now you’re feeling confident that you can
start making contributions quickly.

The HR manager gives you a tour and brings you to your new desk — or maybe you
work at home or at your local coffee shop. You log in to your new email account
and see a message from your manager:

Welcome to the team! Normally, we’d give you a few weeks to get settled in, but
we’re slammed and I’m hoping you can get working on some code right away.

This morning, please log in to Slack and clone our repo, and we’ll get you started on
some low-level tasks. A couple of things you should know first are that we use a
feature branch workflow, we enforce Google style with ESLint, and we unit-test
with Mocha and Chai. Everything is Jamstack with MERN on the back end. The API
isn’t fully documented yet, but it’s REST, and you should be able to figure out the
endpoints by poking around with Postman. Here are a few small tasks where we
could use your help today:

• Figure out why the refresh token isn’t getting set in some cases.

• Our code splitting is suboptimal. Take a look at the webpack config and see
whether you can improve the situation.

• Speaking of suboptimal, we have some unnecessary Sass in the login
module that may be slowing down our build and load times and should be
converted to CSS Modules.

• Our ticker widget still relies on jQuery (ha-ha!), and we need to refactor that
out before we ship so that we don’t embarrass ourselves.

Okay, that should be enough for today. We have our weekly stand-up tomorrow
morning, and we can get you started on something more important then. Don’t
hesitate to reach out if you have questions!

2 JavaScript All-in-One For Dummies

Your palms start to sweat as you reread the message. You were told you’d be
working with JavaScript. What’s all this stuff? Sass? You know how to deal with
unnecessary sass from your dog. . . .

You grab on to the part about jQuery. You recall reading about it in one of your
books, and you’re pretty sure you understand it. But why does the manager think
it’s so funny?

You close your email and go to the cafe to order a chai mocha latte and a Jamstack
sandwich and have a rest in order to think about whether you really and truly need
this job.

Why This Book?
I wrote this book because I’ve been in the situation just described numerous times
in my career as a full-stack developer. Maybe you’ve already had an experience
like that one and you want to make sure you’re better prepared next time. Maybe
you’re going through this experience right now. Maybe you want to try to prevent
this from happening to you as you begin your career in JavaScript programming.
If you fit into any of these categories, this book is for you.

Software development is a dynamic craft. A good part of your responsibility
as a professional programmer is to learn new things constantly. The world of
JavaScript, however, is notoriously dynamic. Something you learn this year will
likely be out of style or at least vastly different next year. There’s no sense in
fighting the current by sticking to your tried-and-true methods and tools.
Many times, if not most of the time, new libraries and tools catch on quickly in
JavaScript because they’re genuinely useful and superior to the previous ones.

Learning new things can be difficult, and learning new things under pressure to
begin using them on real-life projects can be particularly stressful unless you’re
properly prepared with the right attitude and sufficient experience.

My goal with this book is to prepare you to understand and work with JavaScript
and JavaScript programmers. If you read this entire book, you’ll understand much
of what the manager in the scenario I described earlier said — and maybe even
what to do about it. You’ll also be well-equipped to continue your learning and to
ask the right questions when something you haven’t heard of comes up next time.

JavaScript is a huge topic
Programmers create new ways of working with JavaScript all the time and
package them as libraries and frameworks that can be downloaded and used by

Introduction 3

other programmers. Think of libraries as tools to solve a particular problem in a
different way. Think of a framework as a complete system for doing particular
things.

No single person can know and remember every JavaScript library and frame-
work that’s been created. And there’s really no need to. By definition, a JavaScript
library or framework is just JavaScript. In theory, if you know JavaScript, you can
learn every JavaScript library and framework. In fact, if you know enough about
JavaScript, you can write your own JavaScript library or framework!

How this book is different
Most books about JavaScript focus on either teaching the JavaScript language itself,
or on focusing on a single library or framework. Both approaches have their mer-
its, but both leave out a vital ingredient for becoming a JavaScript programmer.

Learning to program with JavaScript isn’t fundamentally about memorizing
syntax or knowing every function available in a library or framework. If you
know and understand the basics, you can look up everything else easily enough.
Furthermore, if you spend a lot of time learning every function and feature of a
particular library from a book, you’ll be frustrated when you go to use it and find
that much has changed in the time (whether it’s a month or several years) since
the book was published.

In my experience, it’s much better to learn just enough about as many different
ways of doing things as possible, so that when you encounter something new,
you’ll have something to compare it to.

Learn JavaScript as it’s used
Knowing how to write JavaScript isn’t enough to be able to develop apps.
JavaScript lives in an environment, whether it’s a web browser, a mobile phone,
a web server, or a hardware device. Once you get to a certain level of proficiency
with JavaScript, knowing how JavaScript interfaces with its environment is what’s
most important.

This book shows you how JavaScript is used in the real world, using a combination
of real-world and simplified examples.

Understand similarities between
the most popular libraries
Learning about a single library — whether it’s React or Vue.js or Svelte or
Angular — is great. But without knowledge of other ways of doing things, you

4 JavaScript All-in-One For Dummies

may fall into the trap of thinking that every problem can be best solved by the tool
you know.

If you learn a wide variety of tools, you’ll understand how libraries and frame-
works are constantly improving on what’s been done before, and you’ll gain an
appreciation for why change is so important in the JavaScript world.

Adapt to new technologies
Another benefit of learning multiple ways to do the same thing is that you’ll find
that the more you learn, the easier it becomes to learn additional tools. One trait
of outstanding JavaScript programmers is that they’re excited by opportunities to
learn new libraries and tools.

Conventions Used in This Book
This book is designed for readers who have some experience with programming
or web development and who want to learn not only JavaScript but also how to
apply it. Topics I describe in this book include how to

 » Write JavaScript code using the most modern and up-to-date syntax

 » Use the development tools used by professional JavaScript programmers

 » Build reactive user interfaces with ReactJS

 » Build reactive user interfaces with Vue.js

 » Build reactive user interfaces with Svelte

 » Write server-side JavaScript with Node.js

 » Connect to data sources with Node.js

 » Build a complete back-end application using Node.js

 » Connect a front-end user interface to a Node.js back end

As you read this book, keep the following information in mind:

 » The book can be read from beginning to end, but feel free to skip around,
if you like. If a topic interests you, start there. You can always return to earlier
chapters, if necessary.

 » At some point, you will get stuck and the code you write won’t work as
intended. Do not fear! You can find many resources to help you, including

Introduction 5

support forums, others on the Internet, and me! You can email me directly
at chris@minnick.com or message me on Twitter, Mastodon, or through my
website (www.chrisminnick.com). Additionally, you can submit a ticket and
find additional code at my GitHub repo for this book, at https://github.
com/chrisminnick/javascriptaio.

 » Code in the book appears in a monospaced font, like this: <h1>Hi
there!</h1>.

Foolish Assumptions
I do not make many assumptions about you, the reader, but I do make a few.

 » I assume that you have some experience or familiarity with HTML and
CSS. Many of the applications I show you how to develop make use of both
fundamental languages of the web to style and structure their output. Many
excellent books and tutorials have been written about both topics, and the
amount of HTML and CSS knowledge you need can be learned in a day or two.

 » I assume that you have a computer running the latest version of Google
Chrome. The examples in this book have been tested and optimized for
the Chrome browser, which is available for free from Google. Even so, the
examples also work in the latest version of Firefox, Safari, or Microsoft Edge.

 » I assume that you have access to an Internet connection. Many of the
examples in this book can be completed without an Internet connection,
but some require one.

 » I assume that you can download and install free software to your computer.
Oftentimes, the computer you use at work has restrictions on what can be
installed by the user. If you use your own computer to develop and run the
applications in this book, that will generally work without a problem.

Icons Used in This Book
Here are the icons used in the book to flag text that should be given extra attention
or that you can skip.

This icon flags useful information or explains a shortcut to help you understand
a concept.

mailto:chris@minnick.com
http://www.chrisminnick.com
https://github.com/chrisminnick/javascriptaio
https://github.com/chrisminnick/javascriptaio

6 JavaScript All-in-One For Dummies

This icon explains technical details about the concept being explained. The details
might be informative or interesting but are not essential to your understanding of
the concept at this stage.

Try not to forget the material marked with this icon. It signals an important con-
cept or process that you should keep in mind.

Watch out! This icon flags common mistakes and problems that can be avoided if
you heed the warning.

Beyond the Book
A lot of extra content that you won’t find in this book is available at www.dummies.
com. Go online to find the following:

 » The source code for the examples in this book: You can find it at https://
www.dummies.com/go/javascriptallinonefd.

The source code is organized by book and chapter. The best way to work with
a chapter is to download all the source code for it at one time.

 » Updates: Code and specifications are constantly changing, so the commands
and syntax that work today may not work tomorrow. You can find any updates
or corrections by visiting www.dummies.com/go/javascriptallinonefd or
https://github.com/chrisminnick/javascriptaio.

 » Cheat Sheet: The Cheat Sheet offers quick access to useful tips and shortcuts.
Just go to www.dummies.com and type JavaScript All-in-One For Dummies
Cheat Sheet in the Search box.

Where to Go from Here
All right, now that all the administrative stuff is out of the way, it’s time to
get started. You can totally do this. Congratulations on taking your first step
(or continuing your journey) in the exciting world of JavaScript! Feel free to jump
around the book if you’re interested in specific topics. If you’re a total noob, start
with Chapter 1 in Book 1.

https://www.dummies.com/
https://www.dummies.com/
https://www.dummies.com/go/javascriptallinonefd
https://www.dummies.com/go/javascriptallinonefd
https://www.dummies.com/go/javascriptallinonefd
https://github.com/chrisminnick/javascriptaio
https://www.dummies.com/

1JavaScript
Fundamentals

Contents at a Glance
CHAPTER 1: Jumping into JavaScript . 9

CHAPTER 2: Filling Your JavaScript Toolbox . 41

CHAPTER 3: Using Data . 63

CHAPTER 4: Working with Operators and Expressions 81

CHAPTER 5: Controlling Flow . 91

CHAPTER 6: Using Arrays . 105

CHAPTER 7:	 Making	and	Using Objects . 125

CHAPTER 8: Writing and Running Functions 139

CHAPTER 9:	 Getting	Oriented	with Classes . 167

CHAPTER 10: Making Things Happen with Events 181

CHAPTER 11: Writing Asynchronous JavaScript 197

CHAPTER 12: Using JavaScript Modules . 223

CHAPTER 1 Jumping into JavaScript 9

Jumping into JavaScript
“Trust thyself: every heart vibrates to that iron string.”

—RALPH WALDO EMERSON

Because it’s built into every web browser, JavaScript is the most widely used
programming language today. But what exactly is JavaScript, and how did
it get to where it is today?

JavaScript, the Basics
In technical terms, JavaScript is a high-level, just-in-time compiled program-
ming language. This is an important definition, but to understand it and to truly
understand what JavaScript is, we need to talk about what it’s not:

 » JavaScript is not Java.

 » JavaScript is not a scripting language.

To help you understand what this means, I need to provide some definitions and
give a brief history lesson.

Chapter 1

IN THIS CHAPTER

 » Knowing your JavaScript history

 » Learning the basics of JavaScript
syntax

 » Setting up your development
environment

 » Writing and running your first
program

 » Using the browser console

10 BOOK 1 JavaScript Fundamentals

JavaScript is a programming language
A programming language is a set of rules, in the same way that a human language
is a set of rules. In human languages, we call the rules that form a language its
grammar. In computer programming, we call the rules of a programming lan-
guage its syntax.

Many different programming languages have been created, and each one has its
own syntax. Just as many human languages are related to other languages (and
therefore have similar grammar), most programming languages are also related
to other languages and have similar syntax.

A look at programming language levels
The set of instructions that computer processors run is called machine language.
Machine language is called a low-level programming language because it’s the
actual instructions that are understood by a computer, with little or no abstraction.

Machine language is the fastest possible way to instruct a computer to do
something — however, it has a few problems.

The first problem with machine language is that it’s difficult, or impossible, for
humans to write. Machine language consists of a stream of binary data. For exam-
ple, here’s a small sample of a machine code program:

100011 00011 01000 00000 00001 000100

What does this program do? I have no idea. This brings us to the second problem
with machine code.

Machine code is processor-specific
The instructions to cause one computer to complete a calculation or another
function are different from the codes used by another computer. If you write a
program in machine language for one type of computer processor, you need to
write an entirely different program if you want the same functionality on another
type of computer. In the computer programming business, we say that programs
written in machine languages are not portable.

High-level languages are abstractions
High-level languages allow programmers to write code in a language that’s much
closer to a spoken language. This makes it possible for more complex programs to
be written more easily.

Jum
ping into JavaScript

CHAPTER 1 Jumping into JavaScript 11

Another benefit of high-level languages is that they hide from the programmer
some of the complexity of working with computers. For example, a programmer
using JavaScript who wants to loop over a list of numbers and find the even ones
can just write something like this:

let getEvens = (numbers) => {
 let evens = numbers.filter(number => number % 2 === 0);
 return evens;
}

At this point, this snippet of code might look completely foreign to you, but you’ll
soon understand it. A computer processor, on the other hand, can never make
heads or tails out of this code. For that, we need compilation.

Compilation makes programs portable
Compilation is the process of converting code from a high-level language that pro-
grammers can understand (like JavaScript, Python, C++, and others) into a low-
level language that the computer can run.

The compiler was invented by Admiral Grace Murray Hopper (see Figure 1-1), who
also came up with the name and wrote the first implemented compiler during
the 1950s. In 1957, the FORTRAN computer language had the first commercially
available compiler.

FIGURE 1-1:
Admiral Grace

Murray Hopper
invented
modern

computer
programming.

James S. Davis / Wikipedia Commons / Public Domain

12 BOOK 1 JavaScript Fundamentals

Compilation makes it possible for the same program, written in a high-level lan-
guage, to run on many different types of computers, simply by compiling it for the
various computers rather than having to rewrite it. The invention of the compiler
started the computer language revolution that made JavaScript possible.

In traditional compiled languages, a programmer writes code (called the source
code) and then must run a process to compile the source code into machine code.
Compilation can be a slow process, but the result is low-level code that the com-
puter can understand.

JavaScript uses what’s called a just-in-time compiler. Instead of JavaScript pro-
grammers needing to convert their code to machine language, the program that
runs JavaScript (known as a JavaScript engine) compiles the code before running it.

A short and epic history of JavaScript
In the early days of the web, in the time before Google, an epic battle raged
between two rival forces that each sought to control the vast new territories that
were opening. We call this period The First Browser War, and it lasted from circa
1995 until 2001.

The two superpowers
On the side of freedom and open-source software was Netscape and its Netscape
Navigator web browser, shown in Figure 1-2.

Netscape Navigator, built on the open-source software created by the early pio-
neers of the web, quickly became the most widely used way to access the web,
with an astounding 90 percent market share.

On the side of seeking to maintain traditional, and highly profitable, ways of sell-
ing and distributing software was Microsoft.

Although it was the newcomer to the web, Microsoft had vast armies of program-
mers and salespeople — and a powerful leader named Bill Gates. With its Win-
dows operating system, it also held a near monopoly on the underlying software
controlling people’s computers.

With its monopoly status in operating systems, Microsoft was able to make up for
lost time by quickly building and shipping its new Internet Explorer browser with
its operating systems, as shown in Figure 1-3.

Jum
ping into JavaScript

CHAPTER 1 Jumping into JavaScript 13

In these early versions, both Microsoft Internet Explorer and Netscape Navigator
were based on the open-source Mosaic web browser, and their functionality was
similar. This is when the battles for control of the web began.

FIGURE 1-2:
Netscape
Navigator

in 1995.

FIGURE 1-3:
The first

version of
Internet

Explorer.

14 BOOK 1 JavaScript Fundamentals

The early battles
Each side in the battle raced to create innovative new features that would compel
people to use their company’s browser instead of their rival’s. It seems strange
today, but website designers took sides in the battle and displayed logos of the
browser visitors to their sites should use.

Though Microsoft was happy to have the web be little more than a tool for down-
loading and viewing documents, Netscape seemed to have an inkling of the true
potential of the web as a dynamic computing environment. The only feature it was
lacking was any sort of way to make web pages be dynamic.

Eich is back with a brand-new invention
Brendan Eich, who worked at Netscape, took on the job of inventing a language
for adding interactivity to web pages. He mashed together ideas and syntax from
several other programming languages and created a language called Mocha, which
was quickly renamed LiveScript and integrated into Netscape Navigator.

Simultaneously, a revolution was happening in the wider world of computer pro-
gramming because of an exciting new programming language called Java. Seeing
the potential for Java to be used to make web pages dynamic, Netscape invented
Java applets, which were Java programs that could run inside a web browser.

Netscape saw the potential for Mocha (now named LiveScript) to be used to inter-
act with these Java applets and renamed its programming language JavaScript.

Imitation is the sincerest form of flattery
As web pages began to appear that made use of JavaScript code to produce nifty
effects and animation, Microsoft had to play catch-up so that users wouldn’t
switch to using Netscape Navigator.

Microsoft reverse-engineered JavaScript and created a perfect (well, almost
perfect) replica of it, called JScript, which it included in Internet Explorer. This
moment in the first browser war dramatically slowed the evolution of the web
because, although JavaScript and JScript were mostly compatible, their differ-
ences were significant enough to make doing much “real” programming in web
browsers extremely annoying, at least until the creation of jQuery in 2006 — but
that’s another story.

The long road to standardization
Netscape submitted JavaScript to the ECMA International standards organization
with the goal of creating a standard version of JavaScript that every browser could
agree on. The result was the ECMAScript specification, also known as ECMA-262,

Jum
ping into JavaScript

CHAPTER 1 Jumping into JavaScript 15

in 1997. Ever since then, JavaScript has been an implementation of ECMAScript,
and every browser that supports JavaScript adheres to that specification.

Meanwhile, Microsoft Internet Explorer, with its JScript language, overwhelm-
ingly won the first browser war (with a market share of 95 percent in 2000), and
the world was stuck with two different, but similar, languages for a while.

Not until 2008, the same year that Google Chrome was released (which would
overtake Internet Explorer to become the most-often-used browser by 2013), did
every browser maker decide to come together to work out their differences. The
result was ECMAScript 5 in 2009, and ECMAScript 6 (also known as ES2015) in
2015. As a result of ECMAScript 5 and 6, JavaScript was able to move forward
with browsers all running the same code the same way — and there was much
rejoicing.

How JavaScript changes
A new-and-improved edition of ECMAScript now comes out every year. Each new
edition is numbered according to the ES[year] format. The process of maintaining
and revising the language is done openly on the web.

If you want to read the latest edition of the entire ECMAScript specification, you
can do so at https://262.ecma-international.org.

Reading and Copying JavaScript Code
Many people start out learning JavaScript by looking at code written by other
people and making changes to it. This is how I got my start learning JavaScript, in
fact. From the standpoint of gaining a deep understanding of the language, this
isn’t a great approach. However, for getting started, it’s ideal.

Because JavaScript uses just-in-time (JIT) compilation, the code the browser
downloads when you visit a web page is source code. What this means is that
it’s possible for anyone who accesses any website to read and download the code
(including the HTML, CSS, and JavaScript) that makes the website’s user interface
work.

This isn’t a flaw; this is by design.

How the web works
The Internet is a network made up of millions of computers that can all talk
to each other using a set of protocols called TCP/IP. TCP/IP, which stands for

https://262.ecma-international.org

16 BOOK 1 JavaScript Fundamentals

Transmission Control Protocol / Internet Protocol specifies how data is routed
around the Internet and how any computer can locate any other computer con-
nected to the network.

Each of these computers connected to the Internet may have applications run-
ning on it that send data over the Internet. One such application is called an HTTP
server. An HTTP server’s job is to use the HTTP protocol (or more commonly
today, its encrypted version, HTTPS) to respond to requests for web pages and
other files required by web pages.

Other applications running on web servers include email, streaming media
services, file sharing services, and the domain name service, which translates
internet protocol addresses (the IP in TCP/IP) like 127.0.0.1 to domain names like
www.example.com and back.

Requests to web servers are often (but not exclusively) made by programs called
web browsers. Figure 1-4 illustrates the process of a web browser making a request
for a web page and a web server responding.

Describing the technical details of how this request and response are made
is beyond the scope of this chapter, but fear not — I cover it in more detail in
Chapter 11 of Book 1.

Front end and back end
A computer (such as your laptop, desktop, or mobile phone) that uses a program
like a web browser to make HTTP requests is called a client. A computer that
responds to requests from clients is called a server.

FIGURE 1-4:
HTTP request and

response.

Jum
ping into JavaScript

CHAPTER 1 Jumping into JavaScript 17

Before JavaScript came along, web clients were what’s known as thin clients (or
sometimes dumb clients, which was the punchline for a lot of jokes between those
of us working on the web back then). A thin client’s job is to receive data from a
server and display it in some form.

In a browser without JavaScript, the browser makes a request, using the HTTP
protocol, to a web server. Whenever you click a link or type an address into your
browser’s address bar, you’re telling your client application (your web browser)
to make a request from a server.

For example, if you request a web page at http://www.example.com/about.html,
you’re telling the browser to request the document named about.html from the
IP address that matches up with the www.example.com domain name. The HTTP
request looks like this:

GET /about.html HTTP/1.1
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7)

AppleWebKit/537.36 (KHTML, like Gecko) Chrome/102.0.0.0
Safari/537.36

Host: www.example.com
Accept-Language: en-us
Accept-Encoding: gzip, deflate
Connection: Keep-Alive

In short, this request says to use the HTTP GET method to access the file named
about.html from the domain name www.example.com. The request also contains
information about your browser, its language, and what kinds of encoding your
browser accepts. The Keep-Alive instruction allows the connection between your
browser and the server to stay active for multiple requests.

If the file your browser requested exists, the server’s response includes the con-
tents of about.html. It’s up to your web browser to determine how to display that
content and to make additional HTTP requests to download any images or other
resources (such as CSS files) that are specified in the HTML page.

When JavaScript came onto the scene, browsers gained more abilities to manipu-
late the data received from the server. Now, rather than simply display the HTML
file delivered by the server, browsers can download scripts and data from the
server that allow you to process the data, reorganize it, and much more. Think
about web-based applications such as Gmail, for example. If you leave a browser
window open with Gmail in it, new messages are automatically downloaded. You
can sort and filter your messages, compose new messages, and much more. This
is JavaScript at work. Because of the ability to run JavaScript code, web browsers
changed from merely being thin clients to being thick clients.

18 BOOK 1 JavaScript Fundamentals

The front end is open, the
back end is closed
Today, there are word processors, spreadsheets, sophisticated social media apps,
image editing programs, and more that all run inside of web browsers. And, to
return to my original point, the code that runs in the browser for each of these
applications is available for anyone to read if they want to, and no one at Facebook
or Google or Twitter cares if you view the code or even if you copy it.

The reason for this is that it’s not the browser-based code that makes a web
application valuable. Without its back-end data and algorithms that index and
search the data, Google would be just a simple web-based form that anyone who
has watched a video about HTML could do a decent job of writing.

The same goes for Facebook, Amazon, and every other website you can think of.
These companies vigorously protect their proprietary data and customer lists
and the secret sauce that makes people use them. This code all lives on web servers
where you absolutely can’t access it except through the HTTP protocol.

Follow these steps to view the source code that runs in your web browser when
you go to Google.com:

1. Open your Chrome web browser and go to www.google.com.

2. Press Ctrl+Shift+I (on Windows) or Command+Option+I (on macOS) to
open the Chrome Developer Tools.

You can also open the developer tools by going to the Chrome menu (the three
stacked dots in the upper right corner of the browser) and selecting More
Tools and then Developer Tools.

When you open the developer tools, a pane opens in your browser, which may
be docked to the right side or the bottom, as shown in Figure 1-5.

3. Examine the code on the Elements tab.

This tab shows the HTML and CSS that make up the current page in the
browser. If you scroll through this source code, you see script elements. Each
of these contains either a link to JavaScript code or the actual JavaScript itself,
as shown in Figure 1-6.

The Elements tab shows you the HTML and CSS behind a web page. Chrome has
another tab in its Developer Tools pane that’s designed for viewing the JavaScript
code. Click the Sources tab in the developer tools.

http://www.google.com

Jum
ping into JavaScript

CHAPTER 1 Jumping into JavaScript 19

You see a list of files on the left, some additional sections at the bottom, and a
large main window to the right, as shown in Figure 1-7.

When you start expanding directories on the left, you see a number of files with
strange names. When you click some of the JavaScript files, you see a lot of code
that all runs together without formatting, as shown in Figure 1-8.

FIGURE 1-5:
The Chrome

developer tools.

FIGURE 1-6:
Viewing the

code at
Google.com.

20 BOOK 1 JavaScript Fundamentals

If you look at the lower right corner of the main window on the Sources tab, how-
ever, you see an icon that’s made of an opening curly brace and a closing curly
brace ({}). Click on this icon. When you do, the code on the Sources tab is refor-
matted to look much easier to understand, as shown in Figure 1-9.

FIGURE 1-7:
The Sources

tab in the
developer

tools.

FIGURE 1-8:
Minified code on
the Sources tab.

Jum
ping into JavaScript

CHAPTER 1 Jumping into JavaScript 21

This code is still optimized for the browser, and it doesn’t contain the useful vari-
able names and comments that the original source code contained. If you study it
hard enough, though, even a nonprogrammer can pick out parts that make sense.

The value of a service
If all the client-side code of a web application is visible to anyone who cares to
look, doesn’t that create a security problem? Could someone with bad intentions
view the source code and figure out how to use the app for a purpose for which it
wasn’t intended?

Yes, in theory. But limitations and security precautions are built into web brows-
ers that prevent this. For example, a web page downloaded from a server can’t
access data from just any web server — it must either be from the same domain
as the original HTTP request or be specifically permitted by the server to access
data. Also, web browsers operate in what’s called a sandbox: The code running in
a web browser can’t access anything outside of the browser (such as files, other
programs on your computer, or your operating system) unless you specifically
allow it (as you might do when a web page asks to use your location).

FIGURE 1-9:
Google.com’s

JavaScript,
prettified.

22 BOOK 1 JavaScript Fundamentals

The fact that every web application developer knows that their code and the data
downloaded from the server can be viewed also helps to increase security. As a
web application programmer, one of your jobs is to ensure that no personal data
or data that would allow you to possibly access someone else’s data is ever stored
in the web browser and that all sensitive data is encrypted as it’s transferred from
the server to the client.

Banks and other businesses that regularly handle personal data always store and
process that data on the server, where the code isn’t visible to anyone except
authorized people and where firewalls and other security precautions can be
implemented. Programs that handle logins, credit card processing, data retrieval,
and much more on web servers are called server-side services.

JavaScript on the server
The ability to run client-side JavaScript is built into every web browser. But
JavaScript programs can also run on the server. Node.js, which you can learn about
in Book 7, makes it possible to use the same JavaScript language you use to write
front-end user interfaces to write services on the back end.

Like front-end JavaScript running in a browser, back-end JavaScript running in
Node.js uses just-in-time compilation, and the actual JavaScript files are stored as
plain text. The difference between front-end JavaScript and back-end JavaScript
running in Node.js is that web browsers never see the JavaScript that runs on the
server — they only receive the results of those programs running.

As a result, back-end JavaScript doesn’t have to operate in a sandbox. It can access
the server’s operating system, other programs running on the server, and data-
bases to do what it needs to do to process data and return results to web browsers.

Starting Your Development Environment
A development environment is the combination of tools used by a programmer to
write programs. The most essential tool for any programmer is a code editor. This
is where you write the source code that makes up your programs.

Visual Studio Code, or VS Code, is an all-purpose open-source code editor for the
web. Although you have plenty of other options when it comes to code editors, VS
Code is what most JavaScript developers now use, so it’s the one I have you install
for following along in this book.

Jum
ping into JavaScript

CHAPTER 1 Jumping into JavaScript 23

If you want to try out other code editors, I encourage you to do that. Search the
web for best JavaScript code editors to find a current list.

Installing Visual Studio Code
Follow these steps to install VS Code:

1. Go to code.visualstudio.com in your web browser.

You see a page with a large download link, which should have the name of
your operating system on it (Windows, Linux, or macOS).

2. Click the link to download it, and then install it, choosing all the default
options if you’re asked any questions.

Really, it’s that easy.

Exact instructions for installing software are likely to change frequently, so I
don’t include details and screen shots for simple installations. If you run into any
issues that prevent you from installing something, see the sidebar “Knowing how
to get unstuck” in Chapter 2 of Book 1.

When you first start up VS Code, you see the Get Started screen, shown in
Figure 1-10.

FIGURE 1-10:
The VS Code Get

Started screen.

http://code.visualstudio.com

24 BOOK 1 JavaScript Fundamentals

The most important thing to do on this screen the first time you load VS Code is to
choose the color theme. This is a matter of personal choice, and you can change it
later if you don’t end up liking the one you choose at first. The theme controls the
colors used for syntax highlighting and the colors of the application in general. My
preferred theme, Dark (Visual Studio), is shown in Figure 1-11.

I tend to do most of my work in the early morning and night. As such, most of
my time spent looking at my monitors is done while it’s dark outside. I generally
use a dark theme because it makes the adjustment from coding to walking to the
kitchen easier on my eyes and makes me less likely to stub my toe.

I’ll use a light theme in this book going forward to save ink and make my screen-
shots more easily readable.

Once you’ve chosen a theme, you can continue to step through the Get Started
with VS Code walk-through instructions, view the Learn the Fundamentals
instructions, or just close the Get Started window and follow my instructions here
to get set up.

FIGURE 1-11:
The Dark

(Visual Studio)
color theme.

Jum
ping into JavaScript

CHAPTER 1 Jumping into JavaScript 25

Learning to use Visual Studio Code
You spend a lot of time working in your code editor, so it’s a good idea to get to
know it. Even if you’ve used Visual Studio Code before, I encourage you to read
this section, because chances are good that you’ll learn something new.

Creating a new project
On the Get Started page when you start up VS Code, you see a section in the upper
left called Start. Generally, when you start a new project, you choose the Open
Folder option, as shown in Figure 1-12. This action opens a file browser, and you
can select or create a folder for your new project.

It can be quite frustrating when you’re working on multiple projects to not be able
to easily find the project you want to open when you start your coding day. So I
recommend having a system for how you organize code and keeping it separate
from everything else on your computer.

My system for organizing my code (which I borrowed from someone else a long
time ago and which you’re welcome to borrow, too) is to create a folder called
code in my user home folder (which is called chrisminnick).

Inside this folder, I have a folder called src (short for source code). Inside the src
folder, I have a folder for github.com (where most of my projects are stored) as
well as for other hosted code repositories (such as gitlab.com and bitbucket.
com). I talk about version control and the importance of using it in Chapter 2
of Book 1.

FIGURE 1-12:
Choosing the
Open Folder

option.

http://github.com
http://gitlab.com
http://bitbucket.com
http://bitbucket.com

26 BOOK 1 JavaScript Fundamentals

This may seem like a lot of layers of nested directories, but when I’m working on a
lot of different projects, I appreciate the fact that I know exactly where to look for
anything I need. Figure 1-13 shows my code folder in outline form.

For now, create a folder inside your code/src folder called javascriptaio (short
for JavaScript All-in-One For Dummies), or download the code from this book’s
website to that folder. I show you how to set up Git in Book 1, Chapter 2, and at
that point you’ll want to create a github.com folder.

The terms folder and directory mean the same thing and can be used inter-
changeably. The different terms come from the fact that they’re called folders in
Windows and macOS and directories in Linux. I’ll typically use the term folder
when I’m talking about something on your computer and directory when I’m talk-
ing about something that’s on a server or that will be deployed to a server.

Though not strictly necessary, your life is made slightly easier if the path to your
code folder, and all the folders inside it, have no spaces.

The first time you open a folder in VS Code, you may see a message, as shown in
Figure 1-14, asking whether you trust the authors of the files in the folder. Select
the check box to indicate that you do and then click the Yes button.

FIGURE 1-13:
My code folder.

FIGURE 1-14:
You can trust me.

http://github.com

Jum
ping into JavaScript

CHAPTER 1 Jumping into JavaScript 27

When you open an empty folder, the File Explorer pane opens and shows the name
of your folder at the top.

Learning the one essential command
If you could save hundreds of hours of time by just remembering a single keyboard
combination, would you do it? VS Code has a secret (actually, it’s not so secret)
command that will save you countless hours of work over your life as a JavaScript
developer. Are you ready?

The command is Ctrl+Shift+P on Windows and Linux, and Command+Shift+P on
macOS.

When you press this magic key combination, a search box opens at the top of the
VS Code interface. You can scroll through this list or start typing to find or do just
about anything in VS Code. Follow these steps to see what I mean:

1. Press Ctrl+Shift+P (on Windows) or Command+Shift+P (on macOS) to open
the command palette.

2. Start typing "new file".

As you type, the options below the search box change, and after a few
characters, the top option is Create: New File, as shown in Figure 1-15.

3. When Create New File is highlighted, press the Enter key.

A new set of options appears. These options depend on what extensions you
have installed.

FIGURE 1-15:
Selecting Create

New File from
the command

palette.

28 BOOK 1 JavaScript Fundamentals

4. Select Text File to create a new text file. A new untitled text file appears.

5. Press Ctrl+Shift+P (on Windows) or Command+Shift+P (on macOS) to open
the command palette again.

6. Start typing "save".

As before, the options under the command palette search box change as you
type.

7. When File: Save is the top option (you may need to press the down-arrow
key to scroll down to it the first time you choose an option), press Enter.

The Save As dialog opens.

8. Type index.html to name the file and specify that it’s an HTML file, and
then press Enter or click Save to save it.

Now you have your first saved file in the File Explorer pane.

9. In your file, type an exclamation point (!) followed by a tab.

This is another shortcut that creates a blank HTML template, as shown in
Figure 1-16.

10. Save your index.html file.

It’s possible that the !-followed-by-tab combination won’t work, depending on
future updates and settings. If it doesn’t, type ! followed by pressing Ctrl+space.
A menu opens, and the first option should be the ! Emett abbreviation. Select it
and press Enter.

FIGURE 1-16:
A new HTML file,

created using
the command

palette.

Jum
ping into JavaScript

CHAPTER 1 Jumping into JavaScript 29

Keyboard shortcuts are a helpful time-saver, and they also help developers keep
their focus by not having to poke around on the menus, looking for what they
want to do. Most actions in VS Code have their own keyboard shortcuts, and you
learn the important ones the more you use VS Code. But the command palette is
your gateway to all of them.

Now that you’ve memorized the command for opening the command palette, you
can skip over looking through any of the menus. When you want to do something,
just press Ctrl+Shift+P (or Command+Shift+P on macOS) and start typing what-
ever it is that you want to do.

The command palette is helpful for finding settings and preferences as well. For
example, if you’re as annoyed as I am by the minimap that shows up on the right
side of the coding window, you can toggle it off by opening the command palette
and typing minimap. When the Toggle Minimap setting is selected, press Enter.
I’m sure there’s a button or menu option for doing this same thing, and if I were
to poke around with my mouse pointer I’d eventually find it. But I don’t need to
because I can use the command palette!

Writing Your First JavaScript Program
Now that you have some background and a code editor, it’s time to start learning
to code. In this section, I start out by explaining the basics of JavaScript syntax.
You then can learn a couple different ways to run JavaScript code in a web browser.

Don’t worry if you don’t understand everything (or anything) at this point about
how the code works. After you run the code, I explain what’s happening, and then
the rest of this book explains each facet of JavaScript in detail. The idea right now
is just to get your feet wet and get you used to seeing JavaScript code in various
environments.

If you’ve done any programming before buying this book, JavaScript code may
look familiar. Most programming languages share common traits, and looking for
those commonalities can be a helpful way to start getting a grasp on a language.

If you have never done any programming, you might find JavaScript to be a little
strange at first, but once you know the basics, you can read and write it with ease.

Listing 1-1 shows a simple JavaScript program that takes any normal name
(whether it’s your name, your dog’s name, or your parakeet’s name) and turns it
into the name of a new programming language by adding Script to the end of it.

30 BOOK 1 JavaScript Fundamentals

LISTING 1-1: The very useful JavaScript Name Creator program

let normalName = 'Chris';
let javaScriptName = normalName + 'Script';
console.log('Your JavaScript Name is ' + javaScriptName);

Although this first program is simple, it demonstrates a lot of fundamental
JavaScript principles.

JavaScript is made of statements
Just as a sentence in a human language is a fundamental building block of any
piece of writing, JavaScript has a similar fundamental building block, which is
called a statement. Listing 1-1 has three separate statements. Each statement ends
with a semicolon, and running a statement causes JavaScript to do something.

In the case of the first two statements, which begin with let, these are telling
JavaScript to store a value. The third statement, which begins with console.log, is
telling JavaScript to log (or write) some text to the console in your browser.

Just as English is made up of parts of speech — such as nouns, verbs, and adverbs,
JavaScript statements are made up of several parts, as described in this list:

 » Values: In Listing 1-1, 'Chris' is a value.

 » Expressions: Expressions are units of code that are evaluated and become
values. For example, in Listing 1-1, the following is an expression:

normalName + 'Script'

When normalName has a value of 'Chris', this expression evaluates to
'ChrisScript'.

 » Operators: Operators do something with values. In Listing 1-1, the + operator
(known as the concatenation operator) joins together the value of normalName
and the literal value 'Script'.

 » Keywords: Keywords are parts of JavaScript that have special meaning and
cause JavaScript to do something. In Listing 1-1, the word let is a keyword that
tells JavaScript to store the value on the right side of the = (assignment)
operator using the name on the left side of the =.

The process of assigning a value to a name is called initializing a variable in pro-
gramming. You can learn much more about initializing variables in Chapter 2 of
Book 1.

Jum
ping into JavaScript

CHAPTER 1 Jumping into JavaScript 31

JavaScript is case-sensitive
Unlike HTML, where browsers consider the tags <HEAD> and <head> to be identi-
cal, JavaScript code is case-sensitive. If you change the capitalization of one char-
acter in a JavaScript keyword or a variable name, JavaScript doesn’t understand
what you’re saying.

Remember that if you type pizza in one place and Pizza in another place, JavaScript
thinks these are completely different values.

Incorrect or inconsistent capitalization is by far the biggest source of errors (also
known as bugs) for beginning coders. These kinds of bugs are also often difficult
to find and fix. Take your time as you’re coding and make it a habit to be precise.
It will save you a lot of time later.

JavaScript ignores white space
White space includes characters such as tabs, spaces, and line breaks, which pro-
duce no visible output when you type them. When you write JavaScript, you often
separate statements and the different parts of statements using white space.
However, it doesn’t matter whether you indent lines with spaces or tabs, if you
include multiple line breaks between statements, or if you include extra spaces
between the parts of a JavaScript statement.

The one place where white space does matter is inside of values. For example, it’s
perfectly fine to write the first statement in Listing 1-1 like this:

let normalName = "Chris";

Even though most other JavaScript programmers would look at you funny if they
saw this line in your code — and your code formatter will likely fix it for you —
JavaScript runs this code the same as if you formatted it in a more traditional way.

Where white space does make a difference is inside of quotes. For example, con-
sider the following statement:

let normalName = "Chris ";

If you run the program with this statement, the result includes all those spaces.

It’s important to use enough space in your code so that it’s readable and to be con-
sistent with how you use it. Some people prefer tabs for indenting code, and other
people prefer spaces. A code formatter, such as Prettier, which you can learn about
shortly, ensures that you’re using white space in a consistent and standard way.

32 BOOK 1 JavaScript Fundamentals

JavaScript programmers use camelCase
and underscores
Names that you give to variables, files, modules, and functions in JavaScript often
have multiple word names. However, because JavaScript uses spaces to distin-
guish between the parts of a statement (the same way you use spaces to know
when one word ends and another starts), you need another way to make multiple
word names readable.

As long as you don’t use spaces or other special characters (see the complete list
I give you in Chapter 3 of Book 1), you can name things in JavaScript any way you
see fit. However, I suggest that you use the common strategies I describe next.

camelCase
Camel case is used extensively in the JavaScript language itself, as well as in
JavaScript programs. You can use two types of camel case. The first one is upper
camel case, in which the first word starts with a capital letter and every word after
that is capitalized as well.

Upper camel case is used in JavaScript for naming classes and components (such
as ReactJS components).

The second type of camel case is lower camel case, in which the first word is lower
cased and every word after that is capitalized. Lower camel case is the most com-
mon way to name variables you create in your programs.

Underscore
It’s also common to see names in JavaScript that use the underscore character
between words in some circumstances. For example, if you’re getting data from
an external source, that data may contain underscore names already, and it makes
sense to continue using the same naming scheme in your program. However, in
most cases, you should stick with lower camel case.

Dashes
CSS and HTML frequently use dashes between words in multiword names. For
example, there’s a CSS property called border-radius and an HTML attribute
that’s used with the form element called accept-charset.

Naming things with dashing in JavaScript is problematic and should be avoided
because JavaScript interprets the dash character as a subtraction operator and
your program won’t run correctly or at all.

Jum
ping into JavaScript

CHAPTER 1 Jumping into JavaScript 33

Running Code in the Console
The Chrome browser contains a JavaScript console. The console is the best friend
of any JavaScript programmer. (Seriously, we’re not known for being the most
social bunch ever!) The console has many uses — one of them is that it’s a handy
place to test out JavaScript code. Follow these steps to run the JavaScript Name
Creator in your browser console:

1. Open a new tab in your Chrome browser.

2. Press Ctrl+Shift+J (Command+Option+J on macOS) to open the JavaScript
console.

The Chrome Developer Tools window opens and you see the JavaScript
console, as shown in Figure 1-17.

Every desktop web browser has a JavaScript console. So, even if you’re not
using Google Chrome, you can still follow along with these instructions by
opening your browser’s console.

As with everything in programming and the web, the location and steps for
opening the developer tools and the console in different web browsers is
subject to change at any time. If you want to try out another browser’s
JavaScript console, a quick web search can tell you how to open it.

3. Type the code from Listing 1-1 into the JavaScript console.

Press Enter after each of the three lines of code and see what happens! If you
type everything correctly, you should see a screen that looks like Figure 1-18.

FIGURE 1-17:
The JavaScript

console.

34 BOOK 1 JavaScript Fundamentals

If the font size in your console is too small to read easily, you can increase it
by pressing Ctrl+= on Windows or Command+= on macOS. If you want to make
the font size smaller again, you can do that by pressing Ctrl+– on Windows or
Command+– on macOS.

The JavaScript console is a direct text-based link into your web browser’s
JavaScript engine. When you type code into the console and press Enter, it causes
JavaScript to run that code and return a result. If the line of code produces no
immediate result (as many things in JavaScript don’t), the console just prints the
word undefined. This is sort of like JavaScript’s way of saying, “I acknowledge that
I received your input, but there’s nothing for me to do at this point.”

If you made a mistake while typing the JavaScript code, you can start over by
refreshing the browser window. Reloading clears out JavaScript’s memory and
anything in the console window.

Rerunning Commands in the Console
You can enter a single line of code in the console and immediately get a result.
However, if you want to change or rerun commands, you need to reenter them.

If you haven’t reloaded the browser window, you can easily return to previous
lines of code you entered by pressing the up- and down-arrow keys in the console.

FIGURE 1-18:
Running the

JavaScript Name
Creator code.

Jum
ping into JavaScript

CHAPTER 1 Jumping into JavaScript 35

If you want to clear out everything from the console, press the icon above the
input/output area that looks like a circle with a line through it. Note that this
action doesn’t clear out the browser window’s memory. If you press the Clear
button and then the up- and down-arrows, you still see your previously entered
code. To clear out the browser’s memory, click the browser’s Refresh button or
press Ctrl+R (on Windows) or Command+R (on macOS).

Running Code in a Browser Window
Although the JavaScript console is fully capable of running client-side JavaScript,
it’s limited to running what you type into it or copy-and-paste into it. To run the
hundreds or thousands of lines of code that make up a modern JavaScript pro-
gram, and to transmit that JavaScript across the Internet, JavaScript needs to be
connected to an HTML page.

You have three options for including JavaScript in a web page. You can put it

 » In an HTML event attribute

 » Between the start and end tags of a script element

 » In a separate file and import it into your HTML document

It’s not uncommon to see all three techniques used together in a single web page,
or to see multiple instances of each technique in a single file. Let’s take a closer
look at each of them, along with their pros and cons.

Running JavaScript from HTML
event attributes
HTML’s event attributes were introduced into the language early on in JavaScript’s
life. Their purpose is to detect events happening to HTML elements and to run
JavaScript code when those events happen.

Here’s what JavaScript attached to an HTML event attribute looks like:

<button onclick="alert('Welcome to JavaScript All-In-One')">

 Click here for an important message

</button>

36 BOOK 1 JavaScript Fundamentals

When this button is clicked, the browser pops up a message in an alert. If you want
to try it out, go to VS Code and enter the preceding snippet between the <body>
and </body> tags in an HTML document and then save the HTML page and open
it in your browser by double clicking it, dragging it to your browser, or using your
browser’s Open File menu item.

Outside of the first chapters of JavaScript books, rarely do you see browser alert
messages used in JavaScript. The reasons for this are that the window alert blocks
the execution of JavaScript, it’s limited in what it can do, and it’s not attractive.
You learn much better ways to display messages to the user in this book.

Avoid using HTML event attributes. That’s the old way of responding to events in
HTML, and the attributes are kept in HTML mostly for backward-compatibility
reasons at this point. The biggest problem with using them is that they combine
your HTML and your JavaScript, which makes maintaining your code more diffi-
cult. But HTML event attributes have other problems as well. The first of these is
that they run in the global scope, meaning essentially that they run outside of the
rest of your code. This can create problems and unexpected behavior if you try to
do anything complex with them. The other problem is that it’s not possible for an
element to listen for multiple events using these attributes.

The modern way of responding to events in the browser is by using the
addEventListener method, which you learn about in Book 1, Chapter 10.

Running HTML inside script elements
The second method of including JavaScript in HTML is called inline JavaScript.
To use inline JavaScript, put your JavaScript between an opening <script> tag and
a closing </script> tag in your HTML document, as shown in Listing 1-2.

LISTING 1-2: Using inline JavaScript

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="UTF-8"/>

 <meta http-equiv="X-UA-Compatible" content="IE=edge"/>

 <meta name="viewport" content="width=device-width, initial-scale=1.0"/>

 <title>Inline JavaScript</title>

 </head>

Jum
ping into JavaScript

CHAPTER 1 Jumping into JavaScript 37

 <body>

 <script>

 let personName = prompt('What is your name?');

 alert('Hello, ' + personName);

 </script>

 </body>

</html>

You can put inline JavaScript in either the head or the body of an HTML document,
and you can use as many inline scripts as you need. Inline JavaScript is useful for
small bits of JavaScript that need to be run in a single HTML page. The benefit of
using inline JavaScript is that it saves a trip back-and-forth from the web server,
which reduces the load time of your HTML page.

The downside to using inline JavaScript is that, like JavaScript in event attributes,
it mixes your HTML and your JavaScript and makes maintaining your application
more difficult.

Separation of concerns, which is an important principle in software development,
states that your programs should be separated into sections. For example, you
shouldn't mix your presentation code (HTML) with your logic (JavaScript). By
abiding by the rules of separation of concerns, you make your programs easier to
maintain and more modular. I revisit this idea of separation of concerns through-
out this book, especially when I tell you about various front-end JavaScript librar-
ies that seem, at first glance, to violate this principle.

Listing 1-2 makes use of a prompt to receive input from a user. Like an alert,
a prompt should never be used in a real-life program. It has the same flaws
as alert(), which is that it's ugly and limited and blocks the running of your
JavaScript.

Including JavaScript files in your HTML
The third method of running JavaScript in a web page is to import a file containing
JavaScript code into your HTML document. This is done using the src attribute of
the script element.

This is by far the most common way that JavaScript is used in web pages. To
use this method, create a file containing your JavaScript and save it with the .js
extension, as shown in Listing 1-3.

38 BOOK 1 JavaScript Fundamentals

LISTING 1-3: A JavaScript file

const ball = document.getElementById('ball');

document.addEventListener('keydown', handleKeyPress);

let position = 0;

function handleKeyPress(e) {

 if (e.code === 'ArrowLeft') {

 position = position - 10;

 }

 if (e.code === 'ArrowRight') {

 position = position + 10;
 }

 if (position < 0) {

 position = 0;

 }

 refresh();

}

function refresh() {

 ball.style.left = position + 'px';
}

The program in Listing 1-3 is significantly more complex than anything I've
described at this point in this book. If you read through the listing, can you guess
what it does?

This code is the beginning of a simple game. The game listens for keydown events
(it waits for you to press keys on your keyboard, in other words). When you press
a key, it checks to see whether that key was the left-arrow key or the right-arrow
key. If it was the left arrow, it subtracts 10 from a variable called position. If it
was the right arrow, it adds 10. This position variable is then used to reposition an
element called ball in the browser window.

Follow these steps to build your own version of this game and try it out:

1. Make a new file containing the code in Listing 1-3 and save it as
gamelet.js.

Although I encourage you to get as much practice as you can with typing
code, rather than copy it, you can download all the code listings in this book
from the book's website, as described in the book's Introduction.

Jum
ping into JavaScript

CHAPTER 1 Jumping into JavaScript 39

2. Make a new file containing the HTML in Listing 1-4 and save it as
gamelet.html.

3. Right-click the file name in the Explorer pane of VS Code and choose
Reveal in Finder (on macOS) or Reveal in File Explorer (on Windows).
Double-click the file, drag it to your browser window, or use your
browser's Open File command to open it in a browser window.

The browser window displays a red ball in the upper left corner.

4. Press the right-arrow key on your keyboard several times, and then press
the left-arrow key to make the ball move forward and backward.

LISTING 1-4: The HTML document for the game

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="UTF-8"/>

 <meta http-equiv="X-UA-Compatible" content="IE=edge"/>

 <meta name="viewport" content="width=device-width, initial-scale=1.0"/>

 <title>Document</title>

 <style>

 #ball {

 background-color: red;

 border-radius: 50%;

 width: 20px;

 height: 20px;

 position: relative;

 }

 </style>

 </head>

 <body>

 <div id="ball"></div>

 <script src="gamelet.js"></script>

 </body>

</html>

You may need to click the mouse inside the browser window to give the window
focus before pressing the arrow keys will work correctly.

40 BOOK 1 JavaScript Fundamentals

Although this game is far from being functional or fun, it's a good start. See if you
can play around with the code and make changes to it. Some changes you might
try making include these:

 » Make the ball move a longer distance with each key press.

 » Change the keys that make the ball move.

You can find a complete reference for all the key codes here:

https://developer.mozilla.org/en-US/docs/Web/API/
KeyboardEvent/code

 » Make pressing the up- and down-arrows move the ball up and down.

Hint: You need to change the value of style.top to adjust the vertical
position.

https://developer.mozilla.org/en-US/docs/Web/API/KeyboardEvent/code
https://developer.mozilla.org/en-US/docs/Web/API/KeyboardEvent/code

CHAPTER 2 Filling Your JavaScript Toolbox 41

Filling Your JavaScript
Toolbox

“As a cook, your station, and its condition, its state of readiness, is an
extension of your nervous system.”

—ANTHONY BOURDAIN

Though it’s technically possible to write JavaScript programs using nothing
but an ordinary text editor, I don’t recommend it. Computer programming
(also known as software development) is complex, and JavaScript program-

ming is no exception. Though it used to be popular for web developers to show
how elite (or “1337”) they were by writing code using the most basic text editor
available, someone who codes without making use of certain tools today is more
likely to be seen as an amateur who is doing it wrong.

Every cook and auto mechanic knows the importance of having the right tools
in the right place when you need them. Some tools are essential (like bowls and
wrenches), some are useful time-savers (like a mixer or a pneumatic tool), and
others are mostly just a waste of space (like a bread machine or a battery-powered
tape measure).

Chapter 2

IN THIS CHAPTER

 » Installing and configuring Node.js

 » Setting up Visual Studio Code

 » Getting unstuck

 » Documenting your code

 » Writing a README with Markdown

 » Practicing responsible coding with Git

42 BOOK 1 JavaScript Fundamentals

In JavaScript development, the number of tools that are freely available is stag-
gering. Unlike in the kitchen or the shop, cheap doesn’t mean poor quality. In
fact, most professional JavaScript programmers use free and open-source tools
exclusively, and in many cases a commercial product that does all the same things
isn’t available.

The tool chest of the average professional JavaScript developer should include
these items:

 » A code editor for writing code

 » Node.js for running the tools

 » A package manager for installing, upgrading, tracking, and removing Node.js
software packages

 » A build tool for bundling JavaScript files, compiling template code, and
automating the build process

 » A code beautifier for making sure the code is properly and consistently
formatted

 » A static code analyzer for checking the code syntax and style

 » A debugger for tracking down and eliminating errors

 » A testing framework for automating the testing of programs

 » A version control system for keeping track of changes and enabling team
development

Other categories of tools beyond the ones in this list are available and widely used.
I tell you about them later in this book. However, with the listed tools on your belt
(or, more realistically, on your desktop or laptop), you’ll be ready to code.

I don’t tell you how to install all these tools in this chapter. Instead, I start with
the most essential ones now and introduce others as you need them. So let’s start
installing!

Part 6 of this book focuses exclusively on development tools. Many of the tools
covered there won’t make a lot of sense at this point, but if you’re feeling adven-
turous, you can take a peek at the chapters in that part and then come back here
to nail down the essentials so that you can start coding with JavaScript.

Filling Your JavaScript
Toolbox

CHAPTER 2 Filling Your JavaScript Toolbox 43

Installing Node.js
Node.js is the one essential JavaScript tool that all the other tools depend on. You
may already have Node.js installed on your computer. However, updated versions
are released regularly and you’ll want to make sure you have a recent version so
that everything you’ll learn about in this book will work correctly.

To install Node.js or to upgrade the version of Node.js that you may already have
installed, go to https://nodejs.org and click on the link to download the latest
Current version (the green button on the right). Once it’s downloaded, run the
installer to install and configure Node.js. Selecting the default options will work
fine in most cases.

You can learn more about Node.js in Book 7.

Configuring Visual Studio Code
Visual Studio Code (or VS Code, for short) is a flexible and powerful editor. In
Chapter 1, I tell you how to install VS Code, and I describe the basic steps of using
it. To get the most out of it, you’ll want to install certain extensions and know how
to change settings.

To get started installing extensions, click the Extensions icon on the left toolbar
(which is called the Activity Bar). The Extensions icon looks like four boxes, with
one of them slightly separated from the others. This action brings up the Exten-
sions panel, as shown in Figure 2-1.

FIGURE 2-1:
The VS Code

Extensions panel.

https://nodejs.org/

44 BOOK 1 JavaScript Fundamentals

Getting prettier
Correctly formatting your code is important for readability and debugging. You
can spend a lot of time manually typing spaces or tabs and making everything
consistent, or you can let your code editor do it for you. Once you start using a
code formatter, you’ll never go back, so you might as well start using one today.

Prettier is an opinionated code formatter — it takes the whole matter of formatting
your code out of your hands and doesn’t even let you format your code the way you
might prefer, because it has its own ideas that it thinks are better than yours. And
it’s probably right, as you’ll soon see.

Follow these steps to install and configure Prettier:

1. Type Prettier into the search box in the Extensions panel.

A long list of extensions from the Extensions Marketplace appears.

2. Look for the Prettier extension that has the highest number of
downloads.

At the time I wrote this chapter, for example, the top result, shown in Figure 2-2,
had about 30 times as many downloads as the next most popular.

3. Click the Install button in the search results or on the Details page for the
Prettier extension.

After a moment, the Install button changes to the Uninstall button, to indicate
that it’s been installed. You also see a new button, named Disable. If you click
this button, the extension will be disabled without uninstalling it.

FIGURE 2-2:
The Prettier

extension.

Filling Your JavaScript
Toolbox

CHAPTER 2 Filling Your JavaScript Toolbox 45

Now you have Prettier installed, but you have a few things left to configure. To
open the settings for an extension, click the Gear icon next to the Uninstall button
and select Extensions Settings, as shown in Figure 2-3.

The default values on this screen are all correct for most people, in my opinion.
But it’s good to know that you can adjust settings here if you need to. You can even
specify your own configuration file for Prettier to use, to make sure that it always
formats things just how you want them.

Notice the User and Workspace tabs at the top of the Settings window. If you want
to adjust a setting only for a particular project (also called a workspace), you can
switch to the Workspace tab. Otherwise, I recommend adjusting settings using
the User tab so that you don’t have to change settings each time you make a new
project.

Follow these steps to make Prettier format your code whenever you save:

1. On the User Settings screen, search for Format on Save, as shown in
Figure 2-4. When you find it, select the check box next to the Editor:
Format on Save setting.

2. Search for default formatter in the user settings, and select Prettier from
the drop-down menu, as shown in Figure 2-5.

FIGURE 2-3:
The Prettier

extension
settings.

46 BOOK 1 JavaScript Fundamentals

3. Search for auto save in the user settings. When you find it, choose
onFocusChange.

This action causes your files to be automatically saved whenever you switch
windows. I guarantee that this setting will save you from headaches in the
future.

4. Close the user Settings window and any other windows you have open
in VS Code by clicking the Close X on the tab.

FIGURE 2-4:
The Format on

Save setting.

FIGURE 2-5:
Setting the

default code
formatter.

Filling Your JavaScript
Toolbox

CHAPTER 2 Filling Your JavaScript Toolbox 47

After Prettier is installed and you’ve set it as the default formatter, you’ll always
have perfectly formatted code that will dazzle everyone who views it. Test it out
by following these steps:

1. Click the File Explorer icon at the top of the Activity Pane to switch back
to viewing your workspace files.

2. Double-click the name of the HTML file you created earlier to open it.

3. Insert some extra line breaks in the file, change the indentation of
some of the lines, and maybe even insert some new HTML markup
into the document. Then save the file.

As soon as you save, you should see your code magically reformatted before
your very eyes!

If your code isn’t magically formatted when you save, close VS Code and restart
it, and then ensure that you’ve adjusted all the right settings in the step lists in
this section.

Installing Live Server
Another extension I show you how to install is the Live Server extension. Live
Server lets you easily preview web applications in a browser.

Follow these steps to install Live Server:

1. Open the Extensions panel by clicking the Extensions button (you can
also open it by pressing Ctrl+Shift+X (Windows) or Command+Shift+X
(macOS).

2. Type Live Server in the search box to find the extension by Ritwick Dey, as
shown in Figure 2-6.

3. Click the Install button to install the extension. Live Server has no
configuration options, so there’s no need to do anything else!

4. Return to the File Explorer and open index.html, if it isn’t already open.

5. Modify index.html to display some text.

For example, you could just create an H1 element that displays Hello,
World! as shown in Listing 2-1.

48 BOOK 1 JavaScript Fundamentals

6. Right-click the name of the file in the File Explorer pane and choose the
Open with Live Server option.

The first time you choose Open with Live Server, you may see a security
warning. Approve the extension’s access in order to bypass the security
warning. On Windows, approve access for Visual Studio Code to both private
and public networks.

You may also be asked which program you want to use to open the file.
Choose Google Chrome (or another browser, if you prefer). You should also
select the box that asks whether you want to always use this choice, so that
you don’t have to choose every time you use Live Server.

Your web browser opens and connects to Live Server to display your web page,
as shown in Figure 2-7.

7. Return to VS Code and make some changes to your web page.

After you save the changes, return to your Chrome browser and notice that the
page has automatically been updated, as shown in Figure 2-8. This ability for a
server to automatically update the content shown in a browser is known as hot
reloading. Awesome.

LISTING 2-1: A simple HTML page

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="UTF-8" />

 <meta http-equiv="X-UA-Compatible" content="IE=edge" />

FIGURE 2-6:
The Live Server

extension.

Filling Your JavaScript
Toolbox

CHAPTER 2 Filling Your JavaScript Toolbox 49

 <meta name="viewport" content="width=device-width, initial-scale=1.0" />

 <title>Hello, World!</title>

 </head>

 <body>

 <h1>Hello, World!</h1>

 </body>

</html>

FIGURE 2-7:
A web page,

served on Live
Server.

FIGURE 2-8:
Hot reloading

updates the
browser for you.

50 BOOK 1 JavaScript Fundamentals

KNOWING HOW TO GET UNSTUCK
A lot of effort goes into making software installation as easy as possible, and most of the
things you need to install to do JavaScript development should go smoothly. However,
it’s inevitable that you’ll run into some issues. Here are some of the more common
issues that can happen, and things you can do to figure out how to fix them — most of
these tips apply whether you’re using Windows, macOS, or Linux:

• Not enough disk space: If you don’t have a lot of extra storage, obviously every-
thing you need to install in this chapter won’t fit. Delete some extra files, use an
online storage service like Dropbox to free up space, or invest in a larger (internal
or external) hard drive. Software development can use a lot of storage space, and
it’s always better to have too much.

• Network issues: If you’re connected to the Internet but still get network errors
when installing software, the problem is likely to be a firewall or another security
tool or setting on your computer or network. If you’re working on a computer con-
nected to a work network or a public Wi-Fi hotspot, the problem is likely to be a fire-
wall outside of your computer. Try connecting to a different network. If you own the
computer and control the router, temporarily disable any firewall or security soft-
ware you have installed or that’s part of the operating system.

• Permissions issues: By default, operating systems are configured to not allow user
changes to certain files or directories. If you’re trying to download or install soft-
ware inside a system directory or one that’s restricted in some way, you’ll get a per-
missions error. Try installing the software in your own user directory (Users/
yourname on macOS or Windows or usr/yourname on Linux). As a last resort, you
can right-click any folder to change its permissions, but you should do this only if
you know what you’re doing.

• Software incompatibility: There are versions of everything you need to install for
this book that run on Windows, macOS, and Linux. However, a future version of an
operating system or a new processor could change this at any time (at least until
the software is updated). If you run into an incompatibility problem, first make sure
that you downloaded the right version for your computer’s processor and operat-
ing system. if that doesn’t solve the problem, check with the software’s creator to
see whether a compatible version is available. This may be an older version in some
circumstances, which won’t be a problem in most cases. If all else fails, consider
using a virtualization product like VirtualBox (virtualbox.org), VMWare (vmware.
com), or Parallels (parallels.com) to run Linux (I recommend Ubuntu Linux if
you’re new to Linux) in a virtual computer on your computer.

• Other errors: If you encounter other errors, copy the error message you get and
paste it into Google. Chances are good that someone else has gotten the same
error and that the solution (or something close to it) is just a quick search away.

http://www.virtualbox.org
http://www.vmware.com
http://www.vmware.com
http://www.parallels.com

Filling Your JavaScript
Toolbox

CHAPTER 2 Filling Your JavaScript Toolbox 51

Documenting Your Code
Documenting your code is the process of recording what the code does. It’s an
essential part of any programming task that will save you time and frustration
when your programs become complex and you’re trying to remember what each
part of your program does. It’s also helpful for other programmers who may work
on your program in the future.

Plus, I’ve found that programming students who get into the habit of document-
ing their code early on usually gain a deeper understanding of what the code does
and are better able to solve problems that occur in their programs.

Line comments
The most basic way to add a note to yourself or other programmers is to add a line
comment. You create a line comment by placing two (//) slashes together any-
where on a line of code — for example:

refresh(); // update the ball's position

The line comment tells JavaScript to ignore everything that comes after the two
slashes until the end of the line. This is a helpful way to put in short notes to your-
self about what the program does or why a statement is important.

Block comments
When a single line comment won’t do, you can use a block comment, which starts
with /* and ends with */. JavaScript ignores everything within a block comment.

Block comments are helpful for providing detailed documentation at the begin-
ning of a JavaScript file, or for documenting individual functions. For example,
Listing 2-2 shows the gamelet.js file from Chapter 1 with block comments
included.

LISTING 2-2: Gamelet.js with comments

/*

 Gamelet: a starting point for writing games

 Author: Chris Minnick

 Version: 1.0

(continued)

52 BOOK 1 JavaScript Fundamentals

 Instructions:

 Include gamelet.js in an HTML document containing

 an element with an id of 'ball'.

 The script will detect when the left or right arrow

 key is pressed and will move the ball element

 accordingly.

*/

const ball = document.getElementById('ball'); // get the ball

document.addEventListener('keydown', handleKeyPress); // listen for keys

let position = 0; // set initial position

/*

handleKeyPress

responds to certain key presses by updating position.

*/

function handleKeyPress(e) {

 if (e.code === 'ArrowLeft') {

 position = position - 10;

 }

 if (e.code === 'ArrowRight') {

 position = position + 10;
 }

 if (position < 0) {

 position = 0;

 }

 refresh(); // reposition the ball

}

/*

refresh

changes the position of the ball

*/

function refresh() {

 ball.style.left = position + 'px';
}

The README file
Some types of documentation, such as the instructions at the beginning of
Listing 2-2, may apply to your entire JavaScript program rather than to a par-
ticular file or function. For this kind of documentation, it’s helpful to create a

LISTING 2-2: (continued)

Filling Your JavaScript
Toolbox

CHAPTER 2 Filling Your JavaScript Toolbox 53

README file. A README file can be written in a simple text file, in an HTML file,
or, most commonly, in a markup language called Markdown (I know — it seems
like a funny name for a markup language).

The basics of Markdown
To get started with writing your README file, make a new file in VS Code and save
it with the extension .md.

Markdown files generally start with a Level 1 header. To mark text as a level 1
header, preface it with a single # character. Lower-level headers (up to Level 6)
are prefaced with additional # symbols.

Let’s start the README for gamelet.js with the following header:

Gamelet

After the Level 1 header, you should include a sentence about your project, writ-
ten as a normal paragraph. To write a paragraph of text in markdown, just sepa-
rate it from other text with a blank line. With a description paragraph added, the
README file now looks like this:

Gamelet

A starter program for writing JavaScript games.

After the description, it’s common to add a Level 2 header called Installation and
one called Usage. Because there’s no good way to install Gamelet yet, you just add
a usage header. The usage header typically includes a numbered list and code.

To create a numbered list, type a number with a period before the list item. To
write code, place three backtick characters (```) followed by the language the code
is in (JavaScript or HTML, for example) in front of the code and then place three
backticks at the end of the code block.

Just by knowing how to write headers, paragraphs, numbered lists, and code in
Markdown, you can create a useful and readable README file. Listing 2-3 shows
the finished README for Gamelet.

54 BOOK 1 JavaScript Fundamentals

LISTING 2-3: The README file for Gamelet

Gamelet

A starter program for writing JavaScript games.

Usage

1. Include gamelet.js in an HTML document containing an

 element with an id of 'ball'.


```html

<div id="ball">@</div>

 <script src="gamelet.js"/>

```


2. The script will detect when the left or right arrow

 keys are pressed and will move the ball element

 accordingly.

To see what your README.md file looks like when it’s rendered, click the Open
Preview to the Side icon in the upper-right corner of the VS Code editor window,
as shown in Figure 2-9.

FIGURE 2-9:
Previewing

README.md
in VS Code.

Filling Your JavaScript
Toolbox

CHAPTER 2 Filling Your JavaScript Toolbox 55

Coding Responsibly with Git
Every programmer has had the experience of creating a document (maybe a paper
or a book or an email) and something happens — the power goes out or the coffee
spills on your laptop or you simply forgot to save before you turned off your com-
puter. The resulting lost work is a frustrating waste of time, and you may never
get that data back or be able to re-create the magic.

For me, it was a computer’s power supply that experienced a power surge and
exploded in the middle of the night, frying the hard drive and causing me to nearly
lose 50 percent of a book I was writing. Fortunately, I had sent most of my work
to my editor already and I was able to recover quickly.

Problems that cause data loss in programming and in writing can also be the
result of good intentions. Maybe you spend weeks traveling down a path that you
think is right, but it turns out to be completely wrong and you wish you could go
back to where you were when you first came up that harebrained idea.

Maybe you work with another programmer or a team of programmers and you
discover that both of you are working on the same file at the same time. How do
you figure out how to merge your changes and end up with a single version of the
code?

To prevent all of these circumstances, programmers (and many writers) use ver-
sion control systems. Version control tracks the changes to files over time, giving
you a complete record of what each individual file in a project looked like at any
point and allowing you to return to any point in the life of your project.

Version control is what makes team software development possible, but it’s also
an indispensable tool for individual developers working on their own. The most
popular version control system in use today is Git.

Introducing Git
Git is a free and open-source version control system that can be used on every
kind of project, from very small to very large. Unlike other version control sys-
tems, Git doesn’t store complete copies of each file with each version. Instead, it
creates snapshots of a project containing only the files that have changed in each
version. If a file never changes after it’s created, Git needs to store only one copy
of that file.

This system of creating snapshots makes Git use much less storage space and
makes it faster than other version control systems.

56 BOOK 1 JavaScript Fundamentals

Installing Git
If you’re using macOS or Linux, Git is installed on your computer already. If you’re
using Windows, you can download Git from https://git-scm.com/downloads.

The order of steps you complete to install Git is likely to change in the near future,
so I don’t walk you through each step. As you’re installing, make sure to select the
boxes that are selected in Figure 2-10.

You can select the single unchecked box shown in Figure 2-10 if you like, but I
personally prefer to leave it unselected so I can choose when to update Git myself.

When you reach the step in the process where you choose the default editor used
by Git, select Visual Studio Code, as shown in Figure 2-11.

If you’re asked whether you want to adjust the name of the initial branch in new
repositories, select Override the Default Branch Name for New Repositories and
make sure it’s set to main, as shown in Figure 2-12.

You can safely choose the default settings in the other steps in the installation
process.

FIGURE 2-10:
Select all but

one box when
installing Git for

Windows.

https://git-scm.com/downloads

Filling Your JavaScript
Toolbox

CHAPTER 2 Filling Your JavaScript Toolbox 57

Configuring and testing Git
Follow these steps to configure Visual Studio Code to recognize and use Git:

1. If you have Visual Studio Code open, shut it down and restart it.

This step ensures that you’re using the latest version. Like Google Chrome,
Visual Studio Code checks for updates as you’re using it and installs new
versions when you restart.

FIGURE 2-11:
Select Visual

Studio Code as
the default editor.

FIGURE 2-12:
Setting the

default branch
name.

58 BOOK 1 JavaScript Fundamentals

2. Choose Terminal ➪ New Terminal from VS Code’s top menu.

A new terminal window opens. This is the same as opening the Terminal or
Windows Command programs on your computer.

3. In the terminal, type git --version and press Enter.

The current version number of Git on your computer is displayed. It should be
higher than Version 2. If it’s not, or if you don’t get a version number, you may
need to reinstall Git.

4. Type the following two commands, replacing the placeholder data in
quotes with your own info:

git config --global user.email "you@example.com"

git config --global user.name "Your Name"

5. Click the Source Control icon in the Activity Bar on the left side of VS
Code.

The Source Control panel opens, as shown in Figure 2-13.

6. Click the Publish to GitHub button.

If you see a pop-up asking for permission for Visual Studio Code to sign
in using GitHub, click Allow. Your browser will open and go to the
https://github.com login page.

FIGURE 2-13:
The Source

Control panel
in VS Code.

https://github.com

Filling Your JavaScript
Toolbox

CHAPTER 2 Filling Your JavaScript Toolbox 59

7. If you have a GitHub account already, sign in on this page. If you don’t
have one, click the Create an Account link and follow the instructions to
create a new GitHub account.

8. When the screen shown in Figure 2-14 opens, click the green Authorize
button to authorize Visual Studio Code to access your GitHub account.

9. Once you’ve finished authorizing VS Code with GitHub, return to VS Code
and click the Publish to GitHub button again.

A drop-down menu appears at the top of VS Code, giving you the option of
publishing to a private repository or a public one.

10. Select Publish to GitHub public repository.

Public repositories can be viewed by anyone. Private repositories can be
viewed only by you and the people you choose to share with.

11. You’ll be asked which files you want to include in the repository. By
default, all files in your current workspace are selected. You can change
this setting or leave it alone and then click OK.

FIGURE 2-14:
Authorize Visual

Studio Code
to access your

GitHub account.

60 BOOK 1 JavaScript Fundamentals

12. The Source Control panel will display a text area where you can enter a
Message. Enter ’Initial commit’ into this box, then click Commit.

When VS Code finishes publishing your repository, VS Code will display a
notification saying so, as shown in Figure 2-15.

After you have a Git repository, you can learn the basics of how Git works and how
to use it, as I explain next.

Learning the basics of Git
To track your files, Git keeps a database in a folder named .git in your project.
There’s no need to see or change this folder manually, so VS Code hides it from
you by default.

Git has three states that your files can be in:

 » Modified means that you’ve changed a file but haven’t yet committed it to the
Git database.

 » Staged means that you’ve marked a modified file to be a part your next
commit.

 » Committed means that a file is stored in your local Git database.

Follow these steps to take a file in your repository through all three of these states:

1. In the same workspace where you initialized your Git repository, create a
new file named README.md or open your existing README.md file.

Make sure the README.md file isn’t inside a subfolder of your repository. Files
and folders that aren’t inside any other folders in your project are said to be at
the root of your project.

FIGURE 2-15:
Congratulations!

You’ve created
your first repo.

Filling Your JavaScript
Toolbox

CHAPTER 2 Filling Your JavaScript Toolbox 61

2. Give your README.md file a Level 1 header and a description by entering
the following:

JavaScript All-in-One For Dummies

I'm learning JavaScript, React, Vue, Svelte, and Node

from JavaScript All-in-One For Dummies by Chris Minnick

3. Save the file.

Notice that the Source Control icon on the left side of VS Code now has a
number (or a larger number).

4. Click the Source Control icon to open the Source Control panel.

You see a list of files. Your new README file is under the Changes heading, as
shown in Figure 2-16.

5. Click the plus sign (+) to the right of your changed (modified) file to
stage it.

The file moves to the Staged Changes list.

6. Look for the text box at the top of the Source Control panel. If it’s not
there, click the Check Mark icon at the top of the Source Control panel.

Enter a commit message. A commit message should describe what you’ve
changed in your project. But, for your first commit, you can just type added a
README and then press Enter.

If everything worked correctly, your files are now safely stored in your local Git
database. But they’re still only on your computer. To publish your files to GitHub,
click the Sync Changes button, which appears in the Source Control panel when all
your files are checked in. If a confirmation dialog box appears, click OK.

FIGURE 2-16:
The Source

Control panel,
with README.
md under the

Changes heading.

62 BOOK 1 JavaScript Fundamentals

Once your files are published to GitHub, open your web browser and go to your
new repository at https://github.com. You should see your README file ren-
dered beneath a list of the files in your repository, as shown in Figure 2-17.

Moving forward with Git and GitHub
Now that you know the basics of staging, committing, and publishing your files,
it’s important to continue doing it regularly — at least once a day, but the more
the often, the better.

There’s a lot more to learn about Git than what you can find in the space available
in this book. When you’re ready to learn more about the ins and outs of Git, check
out the excellent and free book, Pro Git, written by Scott Chacon and Ben Straub
and published by Apress. It’s available at https://git-scm.com/book/en/v2.

Besides keeping your project’s files safe, you have another important reason to
check in your files regularly, especially if you plan to look for a job: Recruiters
and hiring managers will check your GitHub contribution activity (which displays
on your GitHub page). Frequent commit activity shows that you are serious about
coding.

FIGURE 2-17:
Viewing your

repository’s page
on GitHub.

https://github.com
https://git-scm.com/book/en/v2

CHAPTER 3 Using Data 63

Using Data
“A foolish consistency is the hobgoblin of little minds.”

—RALPH WALDO EMERSON

At its most basic level, programming is the process of changing values.
Sometimes, however, you specifically don’t want to change certain values.
In this chapter, you’ll see how to create and modify constants and vari-

ables, and you’ll learn the rules for working with values in JavaScript.

Making Variables with let
Variables are names that represent values in a program. JavaScript has the let
keyword for creating new variables.

Chapter 3

IN THIS CHAPTER

 » Using let and const to store data

 » Introducing JavaScript’s data types

 » Creating and using objects

 » Storing lists with arrays

 » Understanding JavaScript scope

64 BOOK 1 JavaScript Fundamentals

Declaring variables
Creating a new variable is known as declaring a variable. To declare a variable
using let, simply write the let keyword followed by what you want to name the
variable, like this:

let phoneNumber;

This line creates a new empty variable named phoneNumber.

Technically, a newly declared variable isn’t empty. JavaScript automatically
assigns it a value of undefined. I talk about this undefined value later in this
chapter.

Once you’ve declared a variable, you can assign it a value like this:

phoneNumber = '503-555-5555';

Initializing variables
Assigning a value to a variable for the first time is called initializing a variable. You
can also combine the declaration and initializing of a variable into one statement,
like this:

let favoriteColor = 'red';

Variables are what make it possible to have computer programs that do more than
one thing. For example, first consider the following tiny JavaScript program:

let seven = 7;

let eight = 8;

let sum = seven + eight;

This is a perfectly valid JavaScript program, and it demonstrates how to create a
variable and give it a value, though no one would ever write this program (except
me, of course). It simply results in the sum variable having a value of 15 each time
it’s run.

Using variables
You can think of a variable as a box that holds a single item. This box may have
a label that describes its contents, and the more descriptive the label is, the eas-
ier it is to know what should be kept in that box. Variables are typically named

U
sing D

ata

CHAPTER 3 Using Data 65

according to the purpose of the values they store. Constants (I talk about them in
the next section) are typically named in a way that identifies the exact value they
store.

To use the value of a variable in a statement, use the variable’s name. To see this
concept in action (and to try out the following examples), open the JavaScript
console in your browser and try declaring and initializing variables. Figure 3-1
shows some things you might want to try.

Did you expect that the value of fullName in Figure 3-1 would change when the
value of firstName was changed? Can you explain what’s happening here? Keep
reading, because I explain what’s going on in the section about data types!

You can make the preceding program that only added 7 and 8 into a general-
purpose program for adding two numbers by setting the values of the numbers
using the result of user input, like this:

let firstNumber = prompt("Pick a number");

let secondNumber = prompt("Pick another number");

let sum = firstNumber + secondNumber;
alert(sum);

FIGURE 3-1:
Declaring and

initializing
variables
with let.

66 BOOK 1 JavaScript Fundamentals

When you run this program, your browser pops up a prompt and waits for your
answer. It then pops up a second prompt. When you enter a number into that one,
your browser displays an alert with the sum of the numbers.

If you’ve written or worked with JavaScript previously, you’ve most likely seen
and used the var keyword. Creating variables with var works the same way as
with let. However, using var is no longer considered to be a good practice by
most JavaScript programmers, for reasons I explain later in this chapter, in the
section “Getting a Handle on Scope.”

Naming variables
Always make your variable names descriptive and write them in camelCase. Two-
word variable names are usually more descriptive than single-word names, and
using multiple words makes it less likely that you’ll have two variables with the
same name. For example, if you’re creating a variable to hold a street address, it’s
better to name it streetAddress than simply address.

Making it a habit to stick to the rule of naming variables in camelCase reduces
typos because you won’t accidentally type streetaddress in one place, StreetAd-
dress in another, and streetAddress in another.

Making Constants with const
Many times, you need easy access to a value in your JavaScript program, but, once
it’s created, you won’t need to change it. For this reason, JavaScript has the const
keyword.

Constants created using const work similarly to variables created with let,
with one important difference: Once declared, a constant can’t be re-assigned.
If you attempt to change a constant, JavaScript gives you an error, as shown in
Figure 3-2.

Because a constant can’t be assigned a new value after it’s created, you must
always declare and initialize a constant at the same time — for example:

const likesTacos = true;

U
sing D

ata

CHAPTER 3 Using Data 67

Technically speaking, const doesn’t create values that can’t be changed (you call
these immutable values) — it creates a read-only reference to a value. What this
means in practice is that if you assign a value to a const that includes other values
(as happens with arrays and objects, which you can start learning about later in
this chapter), you can still change the inner values of the const — just not the
value the const refers to.

When to use constants
Anytime you have a value that you know won’t change during the life of a program,
and that you need to use more than once, you should make it a constant. It’s
common, for example, to have configuration variables that are used throughout
a program. These may include elements like URL paths, theme colors set by the
developer, and error messages used throughout the program. By setting these as
constants at the beginning of your program (or in a separate module), you can
make sure that they don’t get changed and that you have a centralized place for
managing them as you code.

Naming constants
Nonchanging values should be named using all capital letters and be defined
either in a separate module or at the beginning of your JavaScript file or module.
If a constant’s name is more than one word, it’s a well-established practice to
name them using UPPER_SNAKE_CASE.

FIGURE 3-2:
Attempting
to change a

constant results
in an error.

68 BOOK 1 JavaScript Fundamentals

As you’ll see when you start working with JavaScript objects, arrays, and modules,
there are exceptions to every rule.

Taking a Look at the Data Types
Variables and constants all have two things in common: a value and a type. You’ve
already seen examples of values. These are the bits of data that you want to store
in the variable. In this section, I talk about type.

A variable’s data type is the kind of data a variable can hold. It’s what determines
whether 97103-4534 is a postal code or a mathematical operation that results in
92569.

JavaScript is loose and dynamic
JavaScript is a loosely typed language. What this means is that you can store any
type of data in a variable or constant without having to tell JavaScript in advance
the type of data you’ll store in the variable.

JavaScript is also a dynamically typed language. This means that you can change
the type of data stored in a variable. You might initialize a variable using a number
but later store text in it. Though changing the type of a variable is unusual and
generally should be avoided, JavaScript tries to be friendly and doesn’t complain.

To see a value’s or variable’s data type, you can use the typeof operator. To try
it out, open your JavaScript console and try entering the following expressions:

 » typeof "1"

 » typeof 0

 » typeof true

 » typeof "true"

 » typeof a

 » typeof "a"

The result of running these expressions is shown in Figure 3-3.

U
sing D

ata

CHAPTER 3 Using Data 69

Passing by value
JavaScript has seven basic data types, which are known as the primitive data
types. Primitive data types are passed by value. When you create a new variable
from an existing variable, what’s happening is that the value of the existing vari-
able is copied (as if you were taking a picture of it) to the new one. Let’s look at an
example to better understand the implications of this concept.

Start out by creating a variable called firstName to hold a person’s first name, and
create another variable, called lastName, to hold a last name:

let firstName = "Andrea";

let lastName = "Wallace";

Now you can create a new variable called fullName, which combines the values of
firstName and lastName (and adds a space between them):

let fullName = firstName + ' ' + lastName;

When you create fullName, the values of firstName and lastName are copied and
concatenated. If you change the values of firstName and lastName later than
when fullName was created, fullName doesn’t know about that, in the same way
that a picture you take of someone doesn’t change when they get a haircut.

String data type
A string is any literal text. It can be made up of any number of characters, includ-
ing letters, numbers, symbols, and white space. To create a string, enclose a value
in matching single or double quotes, like this:

let catName = "Mr. Furley";

FIGURE 3-3:
Using typeof to

get the data type.

70 BOOK 1 JavaScript Fundamentals

Whether you use single or double quotes doesn’t matter, as long as you end your
string with the same type of quote you began it with. If you use double quotes to
create your string, you can’t use double quotes within that string. If you define
your string using single quotes, you can’t use single quotes inside that string.
Consider the following code, which causes an error in JavaScript:

let famousQuote = ""Nothing great was ever achieved without enthusiasm."";

The intention in the previous example is for the quotation marks to show up
around the words. But the result is that JavaScript will think the string starts with
the quotation mark (“) and ends with the second quotation mark and therefore
contains nothing. The rest of the characters are seen by JavaScript as just a mess
of typos.

Escaping characters
When you need to use double quotes in a double-quoted string, you can escape
them by prefacing the offending symbol with a backslash (\). To correctly store
the previous quote, including the quotation marks, you can write it like this:

let famousQuote = "\"Nothing great was ever achieved without enthusiasm.\"";

Alternatively, you can define your string with single quotes and then use the dou-
ble quotes inside it as much as you like:

let famousQuote = '"Nothing great was ever achieved without enthusiasm."';

Once you decide on your own preference (or adopt a standard style of coding) for
whether to use single quotes or double quotes for strings, stick with it. Remember:
Consistency reduces the potential for bugs.

In addition to single quotes and double quotes needing to be “escaped,” several
other special characters can’t be used in a string unless you use an escape code.
Most of these are things you’ll never have a need to use, but others, like backslash
and new line, can often be useful. These characters are shown in Table 3-1.

Creating strings with template literal notation
Another way to create strings, which was introduced with ES2015, is to use
 template literal notation. Template literals start and end with the backtick (`)
character (which is in the upper-left corner of a desktop or laptop keyboard).

U
sing D

ata

CHAPTER 3 Using Data 71

The useful thing about template literals is that you can include JavaScript expres-
sions inside them by surrounding the expression with curly braces preceded by a
dollar sign ($).

Listing 3-1 shows how to use a template literal string to compile a message to be
displayed after someone places an order.

LISTING 3-1: Using a template literal string

let orderTotal = 39.99;

let itemPurchased = 'JavaScript All-in-One For Dummies';

let customer = 'Joe Q. Developer';

let thankYou = `${customer}, thank you for your order of ${itemPurchased}. Your

payment of ${orderTotal} was successful.`;

Before template literals came along, writing a string that included variable data
required the use of the concatenation operator (+), and the resulting statement
was confusing and error-prone.

Working with string functions
Once you’ve created a string, you can use any of JavaScript’s built-in string func-
tions with it. Some of the most common string functions are listed in this section.

TABLE 3-1 JavaScript Special Characters
Code Output

\’ Single quote

\" Double quote

\\ Backslash

\n New line

\r Carriage return

\t Tab

\b Backspace

\f Form feed

72 BOOK 1 JavaScript Fundamentals

You can try out these string functions for yourself and see the result of each one
by opening your JavaScript console and entering the statements:

 » charAt tells you the character at a specified position (starting with position 0):

let randomLetters = 'pdfsdj';

randomLetters.charAt(4);

 » concat combines two or more strings and returns the result:

let houseNumber = '555';

let streetName = 'Shady Lane';

houseNumber.concat(' ', streetName);

 » indexOf searches your string and returns the position of the first occurrence
of the character or string you specify:

let typeOfTree = 'Pine';

typeOfTree.indexOf('e');

 » split splits strings into an array of substrings:

let vowelsList = 'a,e,i,o,u';

vowelsList.split(',');

 » substring extracts the characters within a string between two specified
positions. If the first number is larger than the second, substring reverses
them:

let phoneNumber = '313-555-1234';

phoneNumber.substring(12, 4);

 » slice works the same as substring, but it returns an empty string ("") if the
first number is larger than the second:

let phoneNumber = '313-555-1234';

phoneNumber.slice(4, 12);

 » replace finds a string and replaces it with another string:

let message = 'Learn FORTRAN.';

message.replace('FORTRAN', 'JavaScript');

 » toLowerCase returns a string with all the characters converted to lowercase:

let username = 'ChrisMinnick';

username.toLowerCase();

U
sing D

ata

CHAPTER 3 Using Data 73

 » toUpperCase returns a string with all the characters converted to uppercase:

let stateName = 'texas';

stateName.toUpperCase();

Number data type
To make a variable with the number data type, assign any number (without quotes)
or an expression that evaluates to a number (for example 1+1) to a variable or
constant.

JavaScript stores numbers as 64-bit floating-point values. This means that, in
theory, the number data type can store any number between 2^–1074 and 2^1024.
In practice, however, you should use the number data type only to store numbers
between –2^53–1 and 2^53–1. These numbers are called the maximum and mini-
mum safe integers.

The reason this range is considered safe is that JavaScript uses exponential nota-
tion for numbers larger or smaller than this value and rounds off digits in these
very large numbers, which makes the number data type not useful for precise cal-
culations and comparisons of very large numbers.

For numbers that are larger or smaller than this range, you can use the bigInt
data type.

Working with number functions
Like the string data type, the number data type includes several helpful functions
(also known as methods) for working with numbers.

 » parseInt converts a number to an integer by discarding everything after the
decimal point:

parseInt(5.343235);

 » parseFloat specifically tells JavaScript to treat a number as a float, meaning
that it will include the portion after a decimal point:

parseFloat(10.00);

One of the most common uses for parseInt and parseFloat is to convert strings
to numbers. For example, if the user of your web app enters a number into a text
field, that value is received by your program as a string.

74 BOOK 1 JavaScript Fundamentals

Knowing when to convert between
strings and numbers
To understand the importance of converting string input into numbers, consider
the following example:

let orderTotal = tip + tax + total;

If the user provides the value for tip using an online form, it will be a string con-
taining a number. Let’s try this calculation using the following values:

let tip = "8.50";

let total = 40;

let tax = 0;

let orderTotal = tip + tax + total;

Try out this code in your JavaScript console, and then check the value of order-
Total. Can you explain what happens? The tax and total get added normally, but
then that result gets concatenated with the string contained in the tip variable
and the result is a string with a value of 8.50040, instead of what you expected to
get, which is the number 48.50.

Try changing the order of the variables on the right side of the statement that
declares and initializes the orderTotal to see what happens if the string "tip"
isn’t first. JavaScript sometimes does strange things, which is why it’s best to
explicitly convert to the data type you want something to be.

To fix the code in the previous example, use parseFloat, as shown here:

let tip = "8.50";

let total = 40;

let tax = 0;

let orderTotal = parseFloat(tip) + tax + total;

Now the program returns the expected result.

bigInt data type
If you need to use numbers that are larger or smaller than the maximum and
minimum numbers that can be held by the number data type, you can use the
bigInt data type.

U
sing D

ata

CHAPTER 3 Using Data 75

To create a bigInt, just add an n to the end of a number. For example, here’s a
number that’s larger than the maximum safe number for the number data type:

let kilometersToAndromedaGalaxy = 23651826000000000000n;

Boolean data type
Boolean variables store one of two possible values: either true or false.

The word Boolean is usually capitalized because the word comes from the name
of a person, George Boole (1815–1864), who created an algebraic system of logic.

When you compare items in JavaScript, the result is a Boolean. To see this concept
in action, try typing the following expressions into the JavaScript console:

 » 3<10

 » 90<10

 » true === false

 » 0!=="0"

 » "apples" === "oranges"

Converting to Boolean
Any value in JavaScript can be converted to a Boolean by using the !! operator.
You can try out this conversion by going back into the JavaScript console and typ-
ing some values with !! in front of them — for example:

 » !!"JavaScript is awesome"

 » !!"I am the best JavaScript programmer"

 » !!0

 » !!""

 » !!99

 » !!null

Notice that some of the values in this list convert to true and others convert to
false. How do you know which is which? The answer lies in the idea of Truthy and
Falsy values.

76 BOOK 1 JavaScript Fundamentals

The ! (usually pronounced “bang”) operator is the logical NOT operator. Using
one ! to the left of a value returns its Boolean opposite. So, two !s returns the
double opposite, which is how !! can be used to convert a value to its associated
Boolean value.

Getting Truthy and Falsy
You can always know whether a value, when converted to a Boolean, will be true
or false by remembering a short list of items that always convert to false. These
values are called “falsy” in JavaScript:

 » false

 » 0 (zero)

 » -0

 » 0n (BigInt zero)

 » "" (an empty string)

 » null

 » undefined

 » NaN

Everything else is true when converted to Boolean.

Why is this knowledge useful? The idea of truthy and falsy allows you to simplify
the code for many operations in JavaScript. For example, it’s quite common to
need to determine whether a variable has a value before trying to do something
with it. One way to do this is to write something like the following statement:

if (city === ''){

 alert('City is a required field.');

}

This code might be used to determine whether someone forgot to fill out a field
named city on a form. Another way to write this same thing is to just use the city
variable in the parentheses, which converts city to a Boolean. If it has a value, it
will be true. If it doesn’t have a value, it will be false. Because you want to know
whether city is false, you can invert the Boolean to say “If city is not truthy” like
this:

if (!city) {

 alert('City is a required field.');

}

U
sing D

ata

CHAPTER 3 Using Data 77

NaN data type
NaN stands for Not a Number. NaN is what you get when you try to perform
impossible mathematical operations or when you try to perform mathematical
operations with strings.

These are examples of operations that return NaN:

 » Math operations where the result is not a real number, such as trying to
calculate the square root of a negative number:

Math.sqrt(-1)

 » Attempting any mathematical operation involving a string, other than with the
addition operator:

"yarn" / "cats"

 » Attempting to convert a string to a number:

parseInt("sandwich")

Undefined data type
Undefined is the default data type and value of a variable that’s been declared but
not initialized in JavaScript. It’s also the value that will be returned by a statement
or function that doesn’t specifically return a value.

You can see this default return value in action by entering a variable declaration
into the JavaScript console in your browser. Whenever you run a JavaScript state-
ment or expression in the console, JavaScript must return a value. If the statement
you run doesn’t specifically have a return value, the returned value is undefined.

Symbol data type
The Symbol data type is used to create unique identifiers in JavaScript. Unlike the
other data types, even if two symbols appear to be identical and have the same
name, JavaScript guarantees that they’ll be unique.

To see this unique nature of Symbol in action, enter the following snippet into
your browser’s JavaScript console:

let symbol1 = Symbol("mysymbol");

let symbol2 = Symbol("mysymbol");

symbol1===symbol2

78 BOOK 1 JavaScript Fundamentals

Wrangling the Object: The
Complex Data Type

In addition to its seven primitive data types, JavaScript also has a complex data
type called object. Objects are containers for related data and functionality. For
example, an object called customerInfo might contain a name and an address and
various other values related to a particular customer of a business.

An object is called a complex data type because it’s made up of the other data
types. You can think of an object as your opportunity to create any data type you
need. Though a simple number data type is useful for storing the score in a game
or the number of times someone has played the game, many things in life are
more complex and need multiple values to fully describe them.

To make an object, place curly braces ({}) around a comma-separated list of
name:value pairs.

The customer object I described might be created and assigned to a constant,
like this:

const customer = {

 name: 'Laura Wigfall',

 address: '3427 Crummit Lane',

 city: 'Providence',

 state: 'RI',

 zipcode: '02905',

 customerId: 4,

 isInLoyaltyClub: true,

};

Here are two important aspects you may have noticed about this object:

 » The values inside an object (which are called properties) can be of
any combination of the other data types. In fact, these values can be
(and often are) objects themselves.

 » This object was declared using const. Objects are commonly declared
as constants. The result is that the object itself is unchangeable, though the
values inside it can still be changed. I help you explore this interesting facet of
JavaScript and its implications much more in Chapter 7 of Book 1.

U
sing D

ata

CHAPTER 3 Using Data 79

You can access the properties of an object by using what’s called dot notation.
To see dot notation in action, open your JavaScript console and enter the previ-
ous object (or any other object, really), and then enter the name of the object
(customer), followed by a period (.), followed by the name of one of the object’s
properties.

JavaScript returns the value of that property in response. You can use dot notation
to create and change properties as well.

Examining the Array — a Special
Kind of Object

Arrays aren’t primitive data types, but they aren’t exactly objects, either. Arrays
are used to store lists of items using a single name. The items inside an array are
its elements, and the number you can use to access or modify elements is the index.
Arrays are created using square brackets containing comma-separated values.

The following example creates an array called favoriteCities:

const favoriteCities = [

 'Rome',

 'Berlin',

 'New York',

 'Paris',

 'Astoria',

];

You can access the elements in an array by using the name of the array followed by
square brackets containing the index position of the element you want. For exam-
ple, to get the name of my second-favorite city, you would use the following line:

favoriteCities[1];

You: Oh, no — you’re only a few percent into this huge book and there’s
already a typo! Didn’t you mean to say you get your second-favorite city using
favoriteCities[2]?

Me: No, that would get my third-favorite city. Array indexes start counting at 0.
Programmers call this zero-based indexing.

You can learn much more about arrays in Chapter 6.

80 BOOK 1 JavaScript Fundamentals

Getting a Handle on Scope
The location where you declare a variable determines where your program can
make use of that variable. This concept is called variable scope. JavaScript has three
kinds of variable scope:

 » Global-scoped variables can be used anywhere inside a program.

 » Function-scoped variables can be used anywhere within the function where it
was declared. You can read about functions in Book 1, Chapter 8. Function-
scoped variables are created using the var keyword.

 » Block-scoped variables are variables created using the let or const keyword
and initialized inside of a block. A block in JavaScript is a unit of code that starts
with a left curly brace ({) and ends with a right curly brace (}). Block scoped
variables can be used anywhere within the block where they are declared.

CHAPTER 4 Working with Operators and Expressions 81

Working with Operators
and Expressions

“But do your work, and I shall know you.”

—RALPH WALDO EMERSON

JavaScript operators and expressions are the building blocks of JavaScript
programs. With operators and expressions, you can perform math, compare
 values, set and change variables, and much more.

In this chapter, you’ll learn about JavaScript’s operators and use them to build
expressions and statements. You’ll also learn how to combine operators and how
to choose which operators to use when multiple operators can produce the same
results.

Chapter 4

IN THIS CHAPTER

 » Building expressions

 » Setting values with the assignment
operator

 » Testing with the comparison
operators

 » Doing the math with arithmetic
operators

 » Using your words with the string
operators

 » Thinking through the logical
operators

 » Learning about additional operators

82 BOOK 1 JavaScript Fundamentals

Building Expressions
An expression is a piece of code that resolves to a value. There are two types of
expressions, both of which you may have already seen in this book: those that
affect something else (for example, the expression chapter = 4 assigns the value
4 to the chapter variable) and those that simply resolve to a value (for example,
the expression 99 - 1).

In most cases, when you write JavaScript code, you combine these two types of
expressions to form statements. For example:

x = x + 1;

This statement consists of two expressions. The first one adds 1 to the value of x,
and the second one assigns that new value to x. The result is that the value of x is
incremented by 1.

EXPRESS YOURSELF
You often have multiple ways to write expressions that do the same thing by using
differentoperators.Forexample,youcanachievethesameresultassayingx=x+ 1
with any of the following statements:

x += 1;
++x;
x=(-(~x));

Ifeachofthesestatementswillproducethesameresult,howdoyouknowwhichone
youshoulduse?Thisisoftenapersonalchoice,butyourpersonalchoicewillbeaffected
byseveralfactors,includingwhichoneiseasiestforyoutoreadandunderstand,which
onewillbeeasiertounderstandbyotherpeoplewhomayreadyourcode,whichoneis
shortest,andwhichonewillexecutethefastestwhenrunbyaJavaScriptengine.

Tobetotallyhonest,sometimesevenlookingcooltoyourJavaScriptfriendscomesinto
playwiththedecision,asinthecaseofthatlaststatement,whichnooneintheirright
mindwouldeveractuallyusebutthatmightgivesomeoneachuckleiftheysawit.

Myadviceistousewhateverseemseasiestforyoutoreadandunderstand,andnotto
worrytoomuchaboutwhatmightbeverysmalldifferencesinperformanceormaking
yourcodeasconciseaspossible.AsyoubecomemoreexperiencedwithJavaScript,
yourstylewillnaturallyevolve.

W
orking w

ith O
perators

and Expressions

CHAPTER 4 Working with Operators and Expressions 83

Operators: The Lineup
The symbols or keywords that make expressions do their work are called opera-
tors. They operate on values, also called operands, to produce the final value of an
expression. Examples of operators include =, +, +=, and many others. This section
discusses the use of some of the more common operators.

Operator precedence
It’s common for statements to contain multiple operators. For example, look at
the following statement:

x = 5 - 1 / 2;

Depending on the order in which JavaScript performs each of the three operations
(assignment, subtraction, and division) in this statement, the final value of x may
be 5, 2, or 4.5.

The key to understanding statements with multiple operators is operator prec-
edence. Operator precedence assigns a number from 1 to 19 to each operator. In a
statement containing multiple operators, the operator with the highest number
runs first.

The multiplication (*) and division (/) operators have a precedence value of 13,
addition (+) and subtraction (–) have precedence values of 12, and assignment (=)
has a precedence of 2. Because all three operators in this statement have different
precedence values, it’s a simple matter to work out the final value of x, as shown
here:

 » 1 will be divided by 2, resulting in .5.

 » .5 will be subtracted from 5, resulting in 4.5.

 » 4.5 will be assigned to x.

If you haven’t done so already, you can verify these values by using your browser’s
JavaScript console.

But what happens when a statement has multiple operators that have the same
precedence level, such as this one:

x = 4-5-2/2*2

84 BOOK 1 JavaScript Fundamentals

To handle this case, JavaScript assigns an associativity to each operator. Asso-
ciativity is the direction in which expressions that use the operator are evalu-
ated. Left-associativity means that the left side of the operator is evaluated first.
 Right-associativity means that the right side of the operator is evaluated first.

Arithmetic operators have left-associativity (except for the special case of the
exponentiation operator), and assignment operators have right-associativity. By
using associativity and operator precedence together, you can work out the final
value of x in the preceding statement, like this:

1. 2/2 = 1

2. 1*2 = 2

3. 4-5 = -1

4. -1-2

5. x =-3

You can see all the operators and their operator precedence by visiting https://
developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/
Operator_Precedence#table.

Using parentheses
Remembering and figuring out operator precedence is a job that’s best left to
JavaScript. It’s helpful to know the associativity and relative precedence for a
few operators (such as the arithmetic and assignment operators), but in reality,
there’s only one operator you need to know to make sure your statements always
do things in the order you want. This magical operator is the grouping operator,
which is made up of opening and closing parentheses.

The grouping operator is used to control the order of evaluation of statements, and
it has the highest precedence of all of JavaScript’s operators. By using the group-
ing operator, you can override the default operator precedence rules and evaluate
expressions in any order you want.

For example, in the following statement, the division and multiplication would
normally happen first:

x = 4-5-2 / 2*2

If you wanted the left and right sides of the division operator to run before the
division is done, you could use the grouping operator like this:

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Operator_Precedence#table
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Operator_Precedence#table
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Operator_Precedence#table

W
orking w

ith O
perators

and Expressions

CHAPTER 4 Working with Operators and Expressions 85

x = (4-5-2) / (2*2);

The result of this statement is -3 / 4, or -.75.

Assignment operators
The assignment operator assigns a value to the operand on the left based on the
operand on the right:

x = 10;

You can also chain together assignment operators. For example:

x = y = z = 0;

Remember that the associativity of the assignment operator is from right to left.
So, the way JavaScript executes this expression is by assigning 0 to z, and then the
value of z to y, and then the value of y to x. In the end, all three variables are 0.

Comparison operators
The comparison operators test for equality of the left and right operands, and
return a Boolean (true or false) value. Table 4-1 shows the complete list of com-
parison operators.

TABLE 4-1	 JavaScript Comparison Operators
Operator Description Example

== Equality 3 == “3” // true

!= Inequality 3 != 3 // false

=== Strictequality 3 === “3” // false

!== Strictinequality 3 !== “3” // true

> Greater than 7 > 1 // true

>= Greater than or equal to 7 >= 7 // true

< Less than 7 < 10 // true

<= Less than or equal to 2 <= 2 // true

86 BOOK 1 JavaScript Fundamentals

The equality and inequality operators (== and !=, respectively) only compare the
values of the left and right operands. When possible, they change the type of the
operand on the right to match the operand on the left. This behavior is, from
the standpoint of JavaScript, a friendly thing to do. However, it results in some
strange behaviors that can cause bugs in programs.

For example, using the equality operator, the following statement evaluates to
true:

0 == "0"

In reality, the number 0 is not the same as a string containing a 0. Relying on
JavaScript to automatically convert a string (for example, from a form input) to
a number might not break your program, but it’s considered bad coding practice
to use a string where you mean to use a number (or vice versa). For this reason,
most JavaScript developers never use the == and != operators. Instead, you should
explicitly convert strings to numbers (by using parseInt() or parseFloat()) or
convert numbers to strings (using toString()) and use the strict equality and
strict inequality operators, like this:

a = parseInt("3");

b = parseInt("5");

a === b

Arithmetic operators
The arithmetic operators perform mathematical operations and return the results.
Table 4-2 shows the complete list of arithmetic operators.

Concatenation operator
The concatenation operator uses the same symbol as the addition operator (+).
When used with two strings, this operator joins the strings together:

let yourName = "Marcellus L. Benfield";

let welcomeMessage = "Welcome, " + yourName;

Like the equality operator, the concatenation operator attempts to do type coer-
cion whenever possible. For example:

let numberOfHats = 10;

console.log('Harriet has ' + numberOfHats + " hats.";

W
orking w

ith O
perators

and Expressions

CHAPTER 4 Working with Operators and Expressions 87

As with the equality operator, however, there is danger in not specifically convert-
ing all values in an expression to the correct type. For example, if you try to add
together two numbers and one of the operators is a string, the results may not be
what you want:

let sum = 1+"1"; // result: "11"

To avoid this common problem, you can explicitly convert operands to the correct
type:

let sum = 1 + parseInt("1"); // result: 2

Logical operators
Logical operators evaluate an expression for truthiness or falsiness. There are
three logical operators, as shown in Table 4-3.

TABLE 4-2	 Arithmetic Operators
Operator Description Example

+ Addition a = 1 + 1

– Subtraction a = 10 - 1

* Multiplication a = 2 * 2

/ Division a = 8 / 2

% Remainder a = 5 % 2

++ Increment a = ++b

a = b++

a++

-- Decrement a = --b

a = b--

a--

** Exponentiation operator 2 ** 2

88 BOOK 1 JavaScript Fundamentals

The logical AND and OR operators also have clever other uses. The || operator can
be used to set a variable to a default value, like this:

let language = userPreference.language || 'English';

This statement sets the language to the user-specified language if the user has set
one; otherwise, it sets language to 'English'.

The && operator can be used to choose between two paths, like this:

let logInScreen = !loggedIn && showLogInScreen();

In this example, if the loggedIn variable is falsy, the showLogInScreen() function
will run. This way of using && to switch between two paths is commonly used in
JavaScript front-end libraries like React.js, Vue.js, and Svelte to do conditional
rendering. Conditional rendering means that some piece of the user interface (such
as a login form) should show only if a certain condition is true. In the preceding
example, the condition you’re testing for is whether the value of loggedIn is falsy.

The || and && operators are known as short-circuit operators because they stop
executing and return a value when they find a truthy value (in the case of ||) or a
falsy value (in the case of &&).

The logical NOT operator (!) is often used to test whether a variable hasn’t been
initialized or is false:

if (!isRegistered) { alert ("Register now!"); }

Two NOT operators can be used to convert any value to its Boolean equivalent:

!!"I like cheese" // returns true

TABLE 4-3	 Logical Operators
Operator What It Means What It Does

&& And Returnsthefirstfalsyoperand.Ifallvaluesaretruthy,itreturnsthevalue
ofthelastoperand.

|| Or Returnsthevalueofthefirsttruthyoperand.Ifalltheoperandsevaluate
to false,itreturnsthelastoperand.

! Not Takesonlyoneoperand.Returnsfalseifitsoperandcanbeconvertedto
true.Otherwise,itreturnstrue.

W
orking w

ith O
perators

and Expressions

CHAPTER 4 Working with Operators and Expressions 89

Combining operators
The assignment operator can be combined with other operators as a shorthand
method of assigning the result of an expression to a variable or constant. For
example, the following statements are equivalent:

score = score + 1;
score += 1;

To form the combination operators, the assignment operator is always on the
right and the other operator is on the left.

Other Operators
JavaScript contains many other operators in addition to those mentioned here.
However, many of these operators are specifically used for working with arrays
and objects, and discussing them here wouldn’t make much sense. See Book 1,
Chapter 6 to learn about arrays, and see Book 1, Chapter 7 to learn about objects.

Some operators that are part of JavaScript are rarely used by JavaScript developers.
For example, the bitwise operators can be used to work with data at the level of
its individual bits. Working with numbers as bits is faster than using JavaScript’s
built-in number and math functions. However, few JavaScript programmers ever
have a need to use bitwise operators, and using them is likely to confuse other
people who read your code. Just one reason that the bitwise operators are confus-
ing is that two of the symbols they use are | and &, which are easily confused with
the logical OR and AND operators.

To learn more about the bitwise operators, visit www.geeksforgeeks.org/
javascript-bitwise-operators.

http://www.geeksforgeeks.org/javascript-bitwise-operators
http://www.geeksforgeeks.org/javascript-bitwise-operators

CHAPTER 5 Controlling Flow 91

Controlling Flow
“When you have to make a choice and don’t make it, that is in itself a choice.”

—WILLIAM JAMES

In previous chapters, you may have read about JavaScript variables, expressions,
and statements. These are the essential building blocks of every JavaScript pro-
gram. However, without the ability to make decisions between various state-

ments, or to repeat statements, programming would be much less interesting. In
this chapter, you’ll learn about looping and branching statements.

Choosing a Path
Conditional statements, also known as branching statements, allow you to write
code that performs various actions based on various conditions.

if . . . else statements
The if and else statements evaluate an expression and then run one block of code
if the expression is truthy and another block of code if it’s falsy. For example, if

Chapter 5

IN THIS CHAPTER

 » Using if and else

 » Considering your options with switch

 » Creating loops

 » Breaking and continuing loops

92 BOOK 1 JavaScript Fundamentals

you want to customize the display of the current temperature, you could write the
following statement:

if (country === "United States" || country === "Liberia"){

 temperature = temperature + "F";
} else {

 temperature = (temperature - 32) * 5 / 9 + "C";
}

Sometimes, you only want to either do something or not do it, rather than make a
choice between two options. In that case, you can just use an if statement:

if (coffeeMakerIsOff) {

 turnOnCoffeeMaker();

}

Multiple paths with if else
At other times, you may want to choose between several options. For this, you can
string together if and else statements. For example:

if (pet === 'cat') {

 greeting = 'Good kitty';

} else if (pet === 'dog') {

 greeting = 'Who\'s a good boy or girl?';

} else if (pet === 'parrot') {

 greeting = 'Wanna cracker?';

} else {

 greeting = 'Hi.';

}

The ternary operator
Conditional statements can also be written using the conditional operator. The
conditional operator is also known as the ternary operator. The conditional opera-
tor shortens if ... else statements to a single expression, which is often useful
when doing conditional rendering with ReactJS, Vue.js, or Svelte.

To use the conditional operator, write a condition followed by a question mark.
After the question mark comes the expression that will run if the condition is
true. Follow that expression with a colon and then the expression to run if the
condition is false:

Controlling Flow

CHAPTER 5 Controlling Flow 93

const dt = Date();

const hours = dt.getHours();

let msg;

msg = hours < 12 ? ('Good morning!') : ('Welcome');

console.log(msg);

Assuming that the timeOfDay variable uses the 24-hour clock, the preceding
example returns 'Good morning!' before noon and a generic greeting otherwise.

You can try out this code by typing or pasting it into your JavaScript console. All
the code from this book is also available for download from the book’s website.

Note that the ternary operator can only be used to switch between two choices. If
your code needs to decide between more than two outcomes, use the if ... else
statements or the switch statement, which you can read about in the next section.

Switch statements
The switch statement decides which statement to run based on the result of a
single expression. Each possible outcome of a switch statement is called a case.
Here’s the syntax for the switch statement:

switch(expression){

 case x:

 // code to run when expression === x

 break;

 case y:

 // code to run when expression === y

 break;

 default:

 // code to run if nothing else matches expression

}

In Listing 5-1, I’ve created a new program that displays a different holiday based
on the current month of the year. In addition to showing how the switch state-
ment works, this example demonstrates how to use JavaScript to display text in a
web browser. To try it out, use VS Code to save it as a .html file and then open it
in a web browser.

You can right-click the filename in the VS Code Explorer pane and select Open in
Live Server to view it in a browser.

94 BOOK 1 JavaScript Fundamentals

LISTING 5-1: Using the switch statement

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="UTF-8"/>

 <meta http-equiv="X-UA-Compatible" content="IE=edge"/>

 <meta name="viewport" content="width=device-width, initial-scale=1.0"/>

 <title>Holiday Finder</title>

 </head>

 <body>

 <div id="message"></div>

 <script>

 const dt = new Date();

 const month = dt.getMonth();

 let msg;

 switch (month) {

 case 0:

 msg = 'January 4 is National Spaghetti Day!';

 break;

 case 1:

 msg = 'February 9 is National Pizza Day!';

 break;

 case 2:

 msg = 'March 26 is National Spinach Day!';

 break;

 case 3:

 msg = 'April 26 is National Pretzel Day!';

 break;

 default:

 msg = 'No holidays this month.';

 }

 const el = document.getElementById('message');

 el.innerHTML = msg;

 </script>

 </body>

</html>

Let's walk through this code in detail to understand how switch works and to
start learning how to write front-end web applications.

Read this section carefully — I introduce for the first time a lot of new topics that
are important to understanding how front-end JavaScript works. I cover all these
topics in much more detail throughout this book, but I'm introducing them here
so that you can start working with more complex examples in Chapter 6.

Controlling Flow

CHAPTER 5 Controlling Flow 95

1. Just above the <script> tag, notice the div element with an id of message.
Inside this element is where you display the program's output.

2. After the message div element is the script element that contains the
program. The fact that the script element comes after the HTML element
where its output will be rendered is important. Because the code in an HTML
file is interpreted from top (the beginning of the file) to bottom (the end of the
file), if you want to output something inside the HTML code, you have to wait
until that HTML code has been read and rendered by the browser first.

3. The first line of the JavaScript program uses the Date() function to find out the
current date on the user's computer:

const dt = new Date();

Date() is what's known as a constructor function in JavaScript: When you use it
with the new keyword, it returns a new date object. The date object contains
the current date as well as properties and functionality having to do with dates.

4. The getMonth() function runs with the date returned in Step 3:

const month = dt.getMonth();

The getMonth() function is part of every date object. To use it, attach it to any
date object with a period (.), and don't forget to add the parentheses after it.
It's the parentheses that tell JavaScript to make a function do its thing.

JavaScript counts from 0, so the first month of the year is number 0!

5. A variable named msg is declared, but it's not initialized.

Putting the script after the HTML that it affects is just one way to cause the
browser to wait until the HTML document is rendered before running the
JavaScript. It's often the simplest way, however, so it's very commonly used.

6. The switch statement begins, and the month variable's value is passed into it:

switch(month){

The curly braces set off a block of JavaScript. In this case, the block contains the
switch statement's cases.

7. The first case says what to do if the value of month is 0:

case 0:

If the value of month is 0, any statements after the colon at the end of the case
are run, until JavaScript encounters either a break statement (which stops
execution of the switch statement) or the ending curly brace containing the
switch cases.

96 BOOK 1 JavaScript Fundamentals

8. The value of msg is set:

msg = 'January 4 is National Spaghetti Day!';

9. The break statement ends the evaluation of the switch statement and jumps
directly to the next statement after the closing curly bracket.

One common cause of bugs in JavaScript is forgetting to include a break
statement before each case in a switch statement. If you don't include this,
the switch statement runs the code after each case after one of them
evaluates to true.

10. If none of the cases matches the value of month, the default case runs and
sets the value of msg to a default message:

default:

 msg = 'No holidays this month.';

Note that the break statement isn't required after the default case because
there are no more cases after it to skip over.

11. The next statement locates the HTML element where you want to render the
message and assigns it to a constant named el.

const el = document.getElementById('message');

12. The innerHTML property, which contains the HTML between the element's
starting and ending tags is changed to the value of the msg variable:

el.innerHTML = msg;

Because nothing now appears between the <div id="message"> and </div>
tags, the message is just inserted between them. What do you think would
happen if there was already text between the starting and ending div tags,
like this:

<div id="message">put some message here</div>

Once you have a guess, go ahead and try it. Modify your HTML file to put some
text between the starting and ending div tags. If you have the file open in your
browser using Live Server, you should see the result instantly. Or, rather, you
should see no difference. By changing the innerHTML property of the div
element, you completely overwrite what was there with the new value.

This simple example demonstrates the fundamental technique used by every
front-end JavaScript library to modify the content displayed in the browser
window.

Controlling Flow

CHAPTER 5 Controlling Flow 97

Making Loops
One thing that makes computers so useful is that they can do the same thing over
and over without getting bored. Looping statements make telling a computer to do
the same thing over and over much easier.

Imagine that you want to write a program to count to 100 and output each number
to the browser console. One way (one very tedious and inefficient way, I should
say) would be to write 101 statements, like this:

let x = 0;

console.log(++x);
console.log(++x);
console.log(++x);
console.log(++x);
// you get the idea

Note that the increment (++) operator in the preceding code example appears in
front of the variable it's incrementing. This is called prefix notation, in which the
operation (adding 1 to x) is done before logging the value of x to the console. If you
put the ++ after x (x++), that's called postfix notation. Try changing this example to
use postfix notation, and then run it in your browser console to see what happens.

To make repeating statements easier, JavaScript provides several different types
of looping statements, including these:

 » for

 » for ... in

 » for ... of

 » do ... while

 » while

The looping statements are also known as iterative statements.

for loops
The for statement uses three expressions in parentheses after the for keyword
to create a loop:

 » Initialization: The initial value of a variable. This variable is usually a counter.

98 BOOK 1 JavaScript Fundamentals

 » Condition: A Boolean expression that determines whether to run the loop's
statements.

 » Final expression: An expression to be evaluated following each iteration of
the loop. This expression is typically used to increment a counter.

The for loop is usually used to loop over code a predetermined number of times.
Here's how you can write a for loop to do the counting-to-100 example from the
earlier section “Making Loops:”

for(let i=1; i <= 100; i++) {
 console.log(i);

}

Here's how this loop works:

1. A new block-scoped variable called i is initialized with a value of 1.

2. The second expression tests the variable to see whether it's less than or equal
to 100.

If it is, the statements in the block are executed.

If it isn't, the loop exits.

Note that because the i variable is block-scoped, it's only available inside the
for loop. This is a good thing.

3. After the code in the for block executes, the final expression runs, increment-
ing the counter.

4. The test is repeated.

In practice, for loops are unpopular with experienced JavaScript developers. Like
using the var keyword, for loops are an old way to do things that shouldn't be
used. There's usually a more modern and simpler syntax for doing the same thing
that for loops do. You can learn about some of these in this chapter, and learn
about other methods that are better for looping through arrays in Chapter 6.

for . . . in loops
The for ... in loop iterates over the properties of an object and the properties it
inherits from its parent object. Because arrays are types of objects, it's possible to
use for ... in loops to loop over the elements in an array as well.

Controlling Flow

CHAPTER 5 Controlling Flow 99

Objects contain multiple values, called properties, which may hold any type of
JavaScript data, including strings, numbers, Booleans, arrays, and even other
objects.

To see how for ... in works, start with the following simple object:

const house = {sqft:800, bdRooms:2, bthRooms:1}

Listing 5-2 shows how you could write a web page that displays all the properties
of this object.

LISTING 5-2: Using for ... in to display the properties of an object

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="UTF-8"/>

 <meta http-equiv="X-UA-Compatible" content="IE=edge"/>

 <meta name="viewport" content="width=device-width, initial-scale=1.0"/>

 <title>House Details</title>

 </head>

 <body>

 <div id="root"></div>

 <script>

 const house = { sqft: 800, bdRooms: 2, bthRooms: 1 };

 let houseDetails = '<h2>Information about this house</h2>';

 for (let prop in house) {

 houseDetails = `${houseDetails}
${prop}:${house[prop]}
`;

 document.getElementById('root').innerHTML = houseDetails;

 }

 </script>

 </body>

</html>

Like for loops, for ... in loops aren't often used in JavaScript, because you
can find better and more modern ways to do anything that you might want to use
for ... in to do. Also, for ... in loops loop over the properties of their parent
object, which is usually not what you want to do. In practice, for ... in loops are
mostly useful for debugging your code.

100 BOOK 1 JavaScript Fundamentals

for . . . of loops
The for ... of loop creates a loop by iterating over any iterable object. What's
an iterable object, you ask? An iterable object is an object that can be iterated over.
Examples of iterable objects include arrays and strings.

Before for ... of was introduced into JavaScript in 2015, the way to iterate over
arrays was by using the for loop, for ... in, or the forEach method. Here's an
example of using a for ... of loop to loop over the elements of an array:

const pets = ['cat', 'dog', 'chicken'];

for (let pet of pets) {

 console.log(pet);

}

The result of running the preceding code in the JavaScript console is shown in
Figure 5-1.

Strings can be treated as arrays of characters, so the same syntax that's used to
loop over an array can also be used for strings:

let text = "spell me.";

for (let character of text) {

 console.log(character);

}

Figure 5-2 shows what this snippet does when run in the JavaScript console.

while loops
The while statement creates a loop that repeats a block of code if a specified
 condition evaluates to true. In Listing 5-3, a loop created using while generates
a random number between 1 and 100 on every pass through the loop. The loop
 continues until the random number is 71, and then the loop exits and outputs
however many loops it needed to make.

FIGURE 5-1:
Looping over an

array's elements.

Controlling Flow

CHAPTER 5 Controlling Flow 101

LISTING 5-3: A random number guessing game

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="UTF-8"/>

 <meta http-equiv="X-UA-Compatible" content="IE=edge"/>

 <meta name="viewport" content="width=device-width, initial-scale=1.0"/>

 <title>Random Number with a while Loop</title>

 </head>

 <body>

 <div id="root"></div>

 <script>

 let guessNumber = 0;

 let numberToGuess = 71;

 let guess;

 while (guess != numberToGuess) {

 guess = Math.floor(Math.random() * 100);

 guessNumber++;
 }

 document.getElementById('root').innerHTML = `

 <h2>I guessed it!</h2>

 <p>It only took me ${guessNumber} guesses!</p>`;

 </script>

 </body>

</html>

do . . . while loops
A do ... while loop works the same as a while loop, except that the condition
goes after the code block. The result is that the code between the do ... while's
curly braces is guaranteed to run at least once.

FIGURE 5-2:
Iterating

over a string.

102 BOOK 1 JavaScript Fundamentals

Listing 5-4 shows an improved version of the number guessing game. The dif-
ference here is that with the standard while loop, the answer is checked before
the first random number is created. In a do ... while loop, a random number is
created first and then tested.

LISTING 5-4: A random number guessing game with do ... while

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="UTF-8"/>

 <meta http-equiv="X-UA-Compatible" content="IE=edge"/>

 <meta name="viewport" content="width=device-width, initial-scale=1.0"/>

 <title>Random Number with a do ... while Loop</title>

 </head>

 <body>

 <div id="root"></div>

 <script>

 let guessNumber = 0;

 let numberToGuess = 71;

 let guess;

 do {

 guess = Math.floor(Math.random() * 100);

 guessNumber++;
 } while (guess != numberToGuess);

 document.getElementById('root').innerHTML = `

 <h2>I guessed it!</h2>

 <p>It only took me ${guessNumber} guesses!</p>`;

 </script>

 </body>

</html>

break and continue statements
The break and continue statements can be used to interrupt the execution of a
loop. The break statement causes the current loop or control statement to exit.
You may have read about break earlier in this chapter, where I tell you about the
switch statement.

Controlling Flow

CHAPTER 5 Controlling Flow 103

The continue statement halts execution of the current iteration of the loop and
goes directly to the next one. For example, in the following code, continue is used
to loop over the digits in a phone number and remove dashes from it:

let phoneNumber = "555-757-1212";

for (let digit of phoneNumber) {

 if (digit==='-') continue;

 console.log(digit);

}

CHAPTER 6 Using Arrays 105

Using Arrays
“I am large. I contain multitudes.”

—WALT WHITMAN

Most of the data I describe how to work with earlier in this book is in
the form of simple variables and constants that store a single value.
However, it’s common in programming, and in life, to need to store lists

of related items under a single name. Think about the following common lists that
many people use daily:

 » Mailing lists and contacts

 » Grocery lists

 » To-do lists

 » Lists of favorite songs

 » The list of items on an invoice or a receipt

 » The list of chapters in a book

In each case, without the ability to collect individual pieces of data into a list,
you’d just have sticky notes scattered all over the place and in no particular order
(a bit like my desk).

Chapter 6

IN THIS CHAPTER

 » Creating, accessing, and modifying
arrays

 » Removing array elements

 » Programming and looping with array
methods

 » Destructuring and spreading arrays

106 BOOK 1 JavaScript Fundamentals

Think for a moment about your favorite apps and websites. Whether it’s a blog, a
social media site such as Twitter or Instagram, or your daily run log app, a large
part of the app is dedicated to presenting data as lists.

The data that powers these apps behind the scenes is stored in databases, which
are nothing but sophisticated ways of storing lists.

The server-side code that retrieves the data that displays in apps and websites
retrieves data from these databases and sends them as lists to the front-end
JavaScript program, which transforms this raw list data and displays it to you.

The way to make lists of data in JavaScript is by using a special type of objects
called arrays.

Introducing Arrays
Arrays are made up of elements. If an array is like a list, an element is like a single
item in the list. Arrays keep track of their elements by assigning each element a
number, called the index.

For example, you can create an array of color names like this:

const colors = ['red','green','blue'];

If you enter this statement into your JavaScript console, an array with three
 elements is created, as you can verify by entering the name of the array into the
console, as shown in Figure 6-1.

FIGURE 6-1:
Creating and

viewing an array
in the console.

U
sing A

rrays

CHAPTER 6 Using Arrays 107

In Figure 6-1, you can see a couple important aspects of this array, and about
arrays in general:

 » This array has three elements, so it’s said to have a length of 3.

 » The array’s elements are numbered starting with 0. This is called zero-based
numbering.

 » The prototype for an array is the Array object, which means that every array
you create has access to certain properties and methods that are defined by
the Array object. You can see all these properties and methods by clicking the
arrow in the console to expand the Prototype object, as shown in Figure 6-2.

The properties and methods of the Array object are what make arrays useful. You
can read later in this chapter about the most important of these properties and
how they’re used in front-end JavaScript programming.

In the preceding example, the color array stores three strings. Arrays aren’t lim-
ited to storing just one type of data, however. In fact, elements in an array can
contain any combination of different data types.

The upper limit of the number of elements an array can hold is over 4 million.
So, unless you’re extremely popular and you have a giant address book or you’re
extremely busy and you have the world’s longest to-do list, you’re unlikely to
exceed the maximum.

If you do need to store more than the maximum number of elements a single array
can hold, it might be time to look at breaking that list into smaller categories.
You’ll likely run into performance problems trying to work with a huge array long
before you run up against the upper limit of array elements.

FIGURE 6-2:
Viewing the

properties of the
Array object.

108 BOOK 1 JavaScript Fundamentals

Creating Arrays
JavaScript contains three ways to create arrays. You can use

 » The Array() constructor

 » Array literal notation

 » Functions that return arrays, such as split()

Using the Array() constructor
A constructor function is one that creates and initializes an object. In the case of the
Array() constructor, it returns a new array object. To use a constructor function,
use the new operator with the name of the constructor function followed by open
and close parentheses:

new Array();

To make this new array usable, of course, you need to assign it to a variable or
constant:

const myArray = new Array();

You can create elements in the array by passing a list of values to the function,
like this:

const myArray = new Array('January','February','March');

Programmers commonly define array variables by using const. The constant
value is the array itself, not the elements inside the array, which you can change.

Programmers say that the array assigned to a constant is immutable and that the
elements in the array are mutable.

The constructor function is a perfectly fine way to make arrays. In fact, the con-
structor function can be used to make strings, numbers, and Booleans as well.
However, most JavaScript programmers don’t use constructor functions for these
basic data types, because they have simpler ways to do the same thing — namely,
by assigning the values using literal notation.

U
sing A

rrays

CHAPTER 6 Using Arrays 109

Using array literal notation
Array literal notation uses a comma-separated list of values inside square brack-
ets to create and initialize an array, like this:

const myArray = ["eggs","bacon","toast"];

Unlike with the constructor function method, array literal notation doesn’t require
you to use the new operator, so you have one less opportunity to make a typo.

Using the split function
The split() function makes an array out of a string. To use split(), give it the
character (or characters) that you want to use to split the string. For example, if
you have a text file containing comma-separated values, you can turn it into an
array by splitting it on the comma:

let customerData = 'Barb Seibert,3739 Sheila Lane,Goldfield,NV,89013';

const customerDataArray = customerData.split(',');

Comma-separated value files (also known as CSV files) can be created from
spreadsheets or database tables, and knowing how to use split() to turn CSV data
into arrays that you can work with in JavaScript is important for any programmer.

Be careful when splitting comma-separated data. If any values in the string con-
tain commas and you split it on commas, you’ll corrupt the data. For example, try
splitting the following string:

let customerData = "Barb Seibert, Esq.,3739 Sheila Lane,Goldfield,NV,89013";

Do you see the problem with this string? A human reading this file will know that
, Esq. is meant to be part of the name, but the split() function doesn’t distin-
guish between commas.

For this reason, comma-separated files should also enclose each value in quotes.
You might think you can then split the string based on a comma surrounded by
quotes, like this:

let customerData = "'Barb Seibert, Esq.','3739 Sheila Lane','Goldfield',

'NV','89013'";

let customerDataArray = customerData.split("','");

110 BOOK 1 JavaScript Fundamentals

However, this method will produce the following array:

["'Barb Seibert, Esq.", '3739 Sheila Lane', 'Goldfield', 'NV', "89013'"]

The quotes at the beginning of the first element and at the end of the last element
weren’t stripped out by the slice() function.

Writing a statement to successfully convert any type of comma-separated data
into a string can become complicated. For that reason, you’re better off finding a
tried-and-true method, such as convert-csv-to-array, which is available here:
https://www.npmjs.com/package/convert-csv-to-array.

Accessing Array Elements
Once you have an array, the next thing to know is how to find out the values of
specific elements. To get the value of a single element, use the array name fol-
lowed by square brackets containing the index number of the element you want
to find out.

For example, if you create this array:

const myArray = [43,299,34];

you can get the second number by using the following expression:

myArray[1];

It’s common to need to know how many elements are in an array before you access
its elements. To do this, you can use the length property of the array, like this:

myArray.length;

This statement returns the number of elements in the array. The index number of
the array is the length minus 1. So, if you want to use a for loop to loop over all
elements in an array and add them together, you can do it like this:

const myArray = [3434,56,2];

let sum = 0;

for (let i = 0; i<myArray.length-1; i++){
 sum += myArray[i];
}

console.log(`The sum is ${sum}`);

https://www.npmjs.com/package/convert-csv-to-array

U
sing A

rrays

CHAPTER 6 Using Arrays 111

This isn’t the best way or the easiest way to loop over an array, however. You can
see how to use the reduce() method to do this same thing later in this chapter.

Modifying Arrays
To modify the values of array elements or add new elements to arrays, you can use
the assignment operator. For example, to change the value of the element with an
index number of 1 to 'sandwich', you can use the following statement:

myArray[1] = 'sandwich';

You can use this same technique to add elements to an array:

myArray[3] = 'burrito';

When adding elements to an array, it’s not a requirement to always add it using
the next index number. If you have an array with three elements in it, for exam-
ple, you can use the following statement to add an element with an index number
of 1000:

myArray[1000] = 'sushi';

However, when you do this, JavaScript automatically creates all the elements
between the previously highest index number and the new one and gives them
values of undefined. You can test this statement by checking the length property
on the array:

myArray.length // returns 1001

An array with elements inside it that are undefined is called a sparse array.

Deleting Array Elements
Here are two ways to delete elements from an array:

 » Change the length of an array. For example, if you have an array with a
length of 1001, you can remove all elements after 500 by using the fol-
lowing line:

myArray.length = 501;

112 BOOK 1 JavaScript Fundamentals

 » Use the delete operator. The delete operator doesn’t remove an element —
it just sets its value to undefined. So, after using the delete operator, your
array becomes a sparse array with the same length as before:

delete myArray[3]

Programming with Array Methods
Arrays include numerous functions that make accomplishing tasks with them
easier. Although it’s possible to accomplish everything that the built-in array
functions can do by using various loops, operators, and conditional statements,
knowing how to use the most important array functions makes your life easier.

Table 6-1 lists the most commonly used array functions, along with descriptions
of what they do or the values they produce.

TABLE 6-1	 JavaScript Array Methods
Method Return Value

concat() A new array made up of the current array, joined with other arrays and/or values

every() True if every element in the given array satisfies the provided testing function

filter() A new array with all the elements of a current array that test true by the given function

forEach() Completes the function once for each element in the array

includes() Determines whether an array includes a specified value and returns true or false

indexOf() Finds the first occurrence of the specified value within the array; returns –1 if the value
is not found

join() Joins all elements of an array into a string

lastIndexOf() Finds the last occurrence of the specified value within the array; returns –1 if the value
is not found

map() Creates a new array with the result of a provided function on every element in the array

pop() Removes the last element in an array

push() Adds new items to the end of an array

reduce() Reduces the values in an array to a single value by applying a function to them (from
left to right)

U
sing A

rrays

CHAPTER 6 Using Arrays 113

In the following sections, I explain and demonstrate the array methods that you’re
most likely to encounter or need. If you want to follow along in your JavaScript
console, start by creating an array to work with. I’ll use the following array, con-
taining the ingredients for a frittata, for all examples in this section:

const ingredients = ['eggs','milk','cheese','garlic','onion','kale','salt',

'pepper'];

Pushing and popping
No, they’re not dance moves. Pushing and popping are what programmers call the
processes of adding and removing elements to or from the end of an array.

You can remember which is which by remembering that the push() function
pushes items into the list and that pop() pops them out.

The pop() method removes the last element and returns the removed element. If
all you want to do is remove the last element, you can do that like this:

ingredients.pop();

After calling pop(), the ingredients array is one item shorter, as shown in
Figure 6-3.

Method Return Value

reverse() Reverses the order of elements in an array

shift() Removes the first element from an array and returns that element, resulting in a change
in length of an array

slice() Selects a portion of an array and returns it as a new array

some() Returns true if one or more elements satisfy the provided testing function

sort() Creates a new array by sorting the elements in an array

splice() Returns a new array composed of elements that were added or removed from a
given array

toString() Converts an array to a string

unshift() Returns a new array with a new length by the addition of one or more elements

114 BOOK 1 JavaScript Fundamentals

If you want to remove the last element and then do something with the removed
element, you can assign the result of the pop method to a new variable:

let removedElement = ingredients.pop();

The push method adds a value as a new element and returns the new length of
the array:

ingredients.push('chili flakes');

Figure 6-4 shows the result of pushing chili flakes into the ingredients list.

Shifting and unshifting
Shifting works the same as popping and pushing, but it does its work to the begin-
ning of the array.

The shift() method removes the first element and returns the removed value.

You can use shift() the same way you use pop():

ingredients.shift();

Figure 6-5 shows the result of shifting an array.

FIGURE 6-3:
Popping removes
the last element.

FIGURE 6-4:
Pushing adds a

new element.

U
sing A

rrays

CHAPTER 6 Using Arrays 115

Just as push() adds a new element to the end of an array and returns the new
length, unshift() adds a new element to the beginning and returns the new
length. Let’s say you realize that it was a mistake to remove the eggs from the
frittata recipe:

ingredients.unshift('eggs');

Figure 6-6 shows the result.

WHAT’S THE DEAL WITH THESE
METHOD NAMES?
Push, pop, shift, and unshift are some of the method names that are the hardest
to keep straight in JavaScript. It would have been so much easier if, instead of push()
and unshift(), these functions would have been named append() and prepend(). The
names of these functions have a long history that may help you to keep them straight.
The names push and pop date back to the early days of computing, and the terms
referred to operations done to the stack. You can think of an array as a stack of plates,
and if you want to get to a plate in the middle of the stack, you need to move the ones
above it first. If you want the most recently added item, you can just "pop" it off the top.
The same goes for adding plates — when you push a new plate onto the stack, it goes
on top.

If you remove a plate from the bottom of the stack, all the plates above it shift down-
ward. Adding a plate to the bottom unshifts the plates above it. I don’t know whether
anyone has ever come up with a good explanation for that name, except that unshifting
is the opposite of shifting.

FIGURE 6-5:
Shifting removes
an element from

the beginning
of an array.

FIGURE 6-6:
Unshift adds

an element to
the beginning

of the array.

116 BOOK 1 JavaScript Fundamentals

Slicing an array
The slice() method selects a portion of the array and returns a new array with
just that portion. To use slice(), give it the starting element’s index number and
the ending element’s index number. The new array contains everything from the
starting element to the element before the ending element.

Think of it as like asking for the slices of pizza starting with one and going up to
another one. The difference, however, is that when using slice(), the original
array isn’t modified:

ingredients.slice(3,6);

Figure 6-7 shows how to make a new array from the middle of the ingredients
array.

Splicing an array
The splice() method takes a starting element and a number of elements to remove
and removes those elements from an array, returning the removed elements:

ingredients.splice(3,3);

Figure 6-8 shows how you can use splice() to separate an array into two arrays.

FIGURE 6-7:
Slicing returns

a portion of
an array as

a new array.

FIGURE 6-8:
Splicing removes

a number of
elements from

an array.

U
sing A

rrays

CHAPTER 6 Using Arrays 117

Looping with Array Methods
Several array methods make looping over the elements in an array easier. Some
of these methods were added to the language after 2015, and they’re so useful
that they’ve mostly replaced older methods of looping that you may have learned
about in Chapter 5.

In front-end libraries such as ReactJS, Vue.js, and Svelte, you’re sure to need a
couple of these daily, so it pays to learn them.

Passing callback functions
to array methods
Each of the methods in this section loops over an array and uses a callback
function to do its work. You can read much more about functions and callback
functions in Chapter 8.

A function is a program within your program. It receives data and does something
with it. As with any program, a function stops running when it’s done with its job,
and it may return some data to the rest of the program.

So far in this book, I have told you how to use functions that are built into
 JavaScript — such as array functions, string functions, number functions,
Boolean functions, and more.

You can also write your own, custom functions in JavaScript. In fact, writing cus-
tom functions is one of the most important and common things you’ll do as a
JavaScript programmer. Here’s an example of a simple function that receives a
number as an argument and returns the square of that number:

function squareIt(num){

 return num*num;

}

To use this function, you run it by using its name (squareIt) followed by paren-
theses. Using a function is also called invoking or calling a function. Between the
parentheses is how you pass data into the function.

For example, to use this custom squareIt() function to square the number 3,
you’d call the function like this:

squareIt(3);

118 BOOK 1 JavaScript Fundamentals

To get the value returned by the function out of the function, however, you also
need to assign it to a variable:

let threeSquared = squareIt(3);

A callback function is a function you pass to another function. Callback functions
make functions much more flexible because you can pass not only values into a
function but also new functionality into a function.

For example, the following is a function that takes a value and a callback function:

function doMath(value,mathToDo){

 let result = mathToDo(value);

 return result;

}

With this function, the doMath() function can have multiple purposes. For exam-
ple, if you wanted to use it to calculate the circumference of a circle from its
radius, you could invoke the function like this:

const circumference = doMath(4,function(radius){return 2*Math.PI*radius});

The result of running this function is shown in Figure 6-9.

Reducing an array
The reduce() function runs a reducer function on each element of an array.
A reducer function is one that reduces an array from multiple values to a single
value. For example, a reducer function can be used to calculate the total from a list
of prices in an array:

let prices = [4.99,3,98,54.99];

let total = 0;

FIGURE 6-9:
Using a callback

function.

U
sing A

rrays

CHAPTER 6 Using Arrays 119

total = prices.reduce(

 function(previousValue,currentValue){

 return previousValue + currentValue;
 }

);

Here’s how this function works:

1. Create an array of prices.

2. Initialize the total to 0.

3. Call the reduce() function on the prices array and pass it a function that
adds together the current value with the previous value.

4. The reduce() function calls the passed-in reducer function once for each
element in the array and then passes the result of each run into the next call of
the function.

You can simplify the code for the reduce() function in a couple of ways. The first
is that you can specify an initial value for previousValue by passing it as the
 second value to the reduce() function. This eliminates the need to initialize total
to 0 before running reduce():

let total = prices.reduce(

 function(previousValue,currentValue){

 return previousValue + currentValue;
 },0

);

The second way to simplify calling reduce() (and any function that takes a
 callback function, in fact) is to use arrow syntax for your callback function. Arrow
syntax (also sometimes called fat arrow syntax) uses a symbol created using the =
and > symbols that looks like an arrow. Here’s what calling reduce() and passing
it an arrow function looks like:

let total = prices.reduce(

 (previousValue,currentValue) => previousValue + currentValue,0);

Mapping an array
The map() array function takes a callback function and returns a new array with
the result of applying the callback function to each element of the array.

120 BOOK 1 JavaScript Fundamentals

Array.map() is used extensively for generating HTML from JavaScript arrays. For
example, using the ingredients array from earlier in this chapter, you can use
map() to generate HTML list item elements from the items, like this:

const ingredients = [

 'eggs',

 'milk',

 'cheese',

 'garlic',

 'onion',

 'kale',

 'salt',

 'pepper',

];

let listItems = ingredients.map(

 (singleIngredient) => `${singleIngredient}`

);

In this example, the new listItems array can be used to populate a template and
produce a list in the browser. Listing 6-1 shows one way to do that.

LISTING	6-1:	 Generating an HTML list from an array

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="UTF-8"/>

 <meta http-equiv="X-UA-Compatible" content="IE=edge"/>

 <meta name="viewport" content="width=device-width, initial-scale=1.0"/>

 <title>Ingredients List</title>

 </head>

 <body>

 <ul id="ingredients">

 <script>

 const ingredients = [

 'eggs',

 'milk',

 'cheese',

 'garlic',

 'onion',

 'kale',

U
sing A

rrays

CHAPTER 6 Using Arrays 121

 'salt',

 'pepper',

];

 let listItems = ingredients

 .map((singleIngredient) => `${singleIngredient}`)

 .join('');

 document.getElementById('ingredients').innerHTML = listItems;

 </script>

 </body>

</html>

Listing 6-1 uses the map() function to create an array of list item elements, and
then it uses the join() function to join the elements together. The join() func-
tion takes a character to use to separate the items and returns a string. In this
case, I used an empty string to join the elements, which creates a string with all
list items joined together.

Notice that in Listing 6-1, the join() function is just tacked to the end of the call
to map(). This is called chaining function calls. The result of the map() function, in
this case, gets passed to the join() function.

Filtering arrays
The filter() method applies a test to each element of an array and returns a
new array with just the elements that pass the test. In the following example,
 filter() is used to find only the words that start with the letter a:

const animalNames = [

 'aardvark',

 'alligator',

 'alpaca',

 'bear',

 'beaver',

 'cat',

 'dog',

 'elephant',

];

const animalsStartingWithA =

 animalNames.filter((animal) => animal.startsWith('a')

);

122 BOOK 1 JavaScript Fundamentals

Destructuring Arrays
Destructuring is the process of unpacking values from an array or an object into
separate variables. One way to destructure an array is to just create multiple new
variables and assign elements from an array to them, like this:

const person = ['Russell C. Guy','3447 Twin House Lane','Neosho','MO'];

let personName = person[0];

let address = person[1];

let city = person[2];

let state = person[3];

But there's an easier way to initialize these individual variables, all in one step:
destructuring syntax. To use array destructuring syntax, create a list of variable
names in square brackets on the left side of the assignment operator and specify
an array on the right:

let [personName,address,city,state] = person;

JavaScript extracts elements from the array and assigns their values to the vari-
ables in square brackets starting with the first element and going until the array
runs out of elements or the square brackets run out of variables.

Spreading Arrays
Spread syntax expands (or spreads) an iterable object (such as an array) into its
component parts. To use spread syntax, preface the name of an array with three
dots (. . .). Spread syntax is often used to pass all values of an array into a function
or to copy the values from one array into another:

const firstArray = ['a','b','c'];

const secondArray = [...firstArray,'d'];

A copy of an array created using spread syntax is called a shallow copy because it
contains just the values from the original array and has no reference to the origi-
nal array.

U
sing A

rrays

CHAPTER 6 Using Arrays 123

Try the following steps in your JavaScript console to understand the importance
of shallow copies:

1. Create a new array:

const fruits = ['apple','orange','banana'];

2. Make a copy of the array by using the assignment operator:

const fruitsCopy = fruits;

3. Add a new element to the copy:

fruitsCopy.push('watermelon');

4. Print the elements of the original array:

fruits

The result of these steps is shown in Figure 6-10.

The variable created in the previous step list is actually a reference to the original
array. Frequently, however, you don't want or need a copy of an array to reference
the original array. Here's how to make a shallow copy with spread syntax:

const fruitsShallowCopy = [...fruits];

Now the new array is its own array and changes you make to it won't affect the
original array.

FIGURE 6-10:
A copy of an

array (or another
object) is a

reference to the
original.

CHAPTER 7 Making and Using Objects 125

Making and
Using Objects

“You can find the entire cosmos lurking in its least remarkable objects.”

—WISLAWA SZYMBORSKA

Data is rarely as simple as it seems. To understand any concept or physical
object often requires multiple data points. A full description of a toaster,
for example, would include its size, color, and power requirements as well

as a description of what it does. None of the data types I describe earlier in this
book can be used to describe a toaster by themselves, but in combination, they can.

Objects: The Basics
Objects are reusable components that contain data and functionality. Objects in
real life have characteristics that define what they are. For example, a pencil has a
length, a diameter, a color, and other characteristics that describe it. A pencil also
has things you can do with it, such as write, erase, sharpen, and break.

Chapter 7

IN THIS CHAPTER

 » Creating, modifying, comparing, and
copying objects

 » Introducing prototypes

 » Deleting object properties

126 BOOK 1 JavaScript Fundamentals

In JavaScript, both the data and functionality encapsulated by an object are
called properties. If a property has a function value, it’s also known as a method.
 JavaScript objects can be used to describe physical objects, but they can also be
used to describe abstract ideas.

A JavaScript object to describe a pencil might look something like this:

const pencil = {

 length: "7.5 inches",

 shape: "hexagonal",

 diameter: "1/4 inch",

 write: function(){/*do writing*/},

 erase: function(){/*do erasing*/},

 sharpen: function(){/*do sharpening*/},

}

You might create this pencil object to describe a pencil in your exciting new sim-
ulation game, called Pencil Adventure.

Once a pencil object is created, you can find out about it and make use of its func-
tions by using dot notation. For example, to sharpen the pencil, you can invoke the
sharpen() method of the pencil:

pencil.sharpen();

Of course, sharpening a pencil makes the pencil shorter, so you need to update
its length. You can do so by changing the value of the length property of pencil:

pencil.length = "7 inches";

Sharpening the pencil also gives it another property you should keep track of,
which I call sharpness. To add this new property, just assign it:

pencil.sharpness = "sharp";

Another thing you can do with a pencil object is to make copies of it. For example,
you might have a box of pencils and want to track their properties and be able to
use them separately. As with arrays, one way to make a shallow copy of an object
is by using the spread syntax:

const newPencil = {...pencil};

M
aking and

U
sing O

bjects

CHAPTER 7 Making and Using Objects 127

I offer plenty of examples of objects earlier in this book. For example, the
 document object represents an HTML page in a web browser. It contains methods
like getElementById and properties such as innerHTML.

One key to gaining a deep understanding of JavaScript is to know that arrays and
functions are objects and that numbers, strings, and Booleans can also be used as
objects.

Creating Objects
JavaScript has four ways to create objects from scratch:

 » Use object literal notation.

 » Use the new keyword.

 » Use Object.create().

 » Define a class.

Each of these methods results in the same result in the end. However, some meth-
ods are more convenient or offer capabilities that others don’t. So it’s important
to be familiar with each of them.

Making objects using literal notation
To make an object using literal notation, use curly braces containing comma-
separated name:value pairs. The names become how you access the property, and
the value can be any valid JavaScript value, including other objects.

Here’s a simple object written using object literal notation:

const person = {eyes: 2, feet: 2, eyeColor: 'brown'};

You can also initialize an object as an empty object and use dot notation to add
properties to it afterward:

const person = {};

person.hair = 'black';

person.hands = 2;

person.fullName = {firstName:'Lamont',lastName:'Rudnick'};

128 BOOK 1 JavaScript Fundamentals

Making objects using a constructor
function
A constructor function is one that can be called with the new keyword to create (or
construct) an object. Listing 7-1 shows an example of using a constructor function.

LISTING 7-1: Using a constructor function

function Cat(name, type){

 this.name = name;

 this.type = type;

}

const ourCat = new Cat('Murray', 'domestic short hair');

Constructor functions can be used to create multiple objects, and each object cre-
ated using the Cat() constructor function will have the name and type properties.

The keyword this in Listing 7-1 (and elsewhere in this chapter) refers to the
 context in which a function, such as the constructor function, is running. When
you create a new object using the new operator and the Cat() constructor function
in Listing 7-1, this refers to the new object.

For example, in the following statement, the this keyword refers to the object
named ourCat:

const ourCat = new Cat('Murray','domestic short hair');

When the Cat() constructor function runs, it does basically the same thing (with
some technical differences) as though you had written the following:

const ourCat = {};

ourCat.name = 'Murray';

ourCat.type = 'domestic short hair';

You can read more about the this keyword in Chapter 8.

Making objects with class
A class is a template for objects. Many other languages have the idea of classes, but
the notion of a class is relatively new to JavaScript. Class syntax was introduced
into JavaScript in 2015 to provide programmers moving to JavaScript with a more
familiar way to create objects.

M
aking and

U
sing O

bjects

CHAPTER 7 Making and Using Objects 129

To write a class, start with the class keyword followed by any name you want. By
convention, class names start with an uppercase letter. The name of the class is
followed by a left curly brace:

class Cat {

After the class header, you can (but don’t have to) specify a constructor function.

Methods in classes can be written using method notation. In method notation, the
colon between the name and the value is removed, and the function name and the
body of the function are combined. When you write a constructor function, it’s
usually written using method notation:

constructor(name,type){

 this.name = name;

 this.type = type;

}

When a class (or a constructor function outside a class) is called, the values passed
to the function are assigned to properties of the object inside the constructor.
That’s what’s going on with the statements that start with this. Inside an object,
the this keyword refers to the object in the same way.

Understanding the this keyword is another one of those somewhat difficult, but
essential, keys to understanding JavaScript, and you can read much more about
this in Chapter 8.

Listing 7-2 shows a simple example of using a class.

LISTING 7-2: Using a class

class Pet {

 constructor(name,type){

 this.name = name;

 this.type = type;

 }

}

const ourDog = new Pet('Chauncey','AmStaff');

At this point, you might wonder why someone would use a class when just using
a constructor function appears to require fewer characters to do the same thing.
Chapter 9 covers classes in much more detail.

130 BOOK 1 JavaScript Fundamentals

Making objects with Object.create()
The Object.create() method makes a new object and uses an existing object
as the new object’s prototype. Notice that the O in Object.create() is capital-
ized. That’s because create() is a method of the Object class. To use Object.
create(), pass an object to it as an argument, as shown in Listing 7-3.

LISTING 7-3: Creating an object using Object.create()

const computer = {memory:'16GB',HD:'8TB'}

const laptop = Object.create(computer);

Modifying Objects
Once you’ve created an object, you can access, modify, and add new properties
using one of two methods: dot notation or square brackets notation.

Using dot notation
In dot notation, the name of a property is followed by a period, which is followed
by the name of a property or method. One useful thing about dot notation is that
it makes accessing properties and methods of nested objects simple.

Programmers commonly create objects that contain multiple levels of nested
objects. For example, Listing 7-4 shows an object that contains a property that’s
an object.

LISTING 7-4: A object with nested properties

const myLocation = {

 city: {

 id: 2643743,

 name: 'London',

 coord: {

 lon: -0.1258,

 lat: 51.5085,

 },

 country: 'GB',

M
aking and

U
sing O

bjects

CHAPTER 7 Making and Using Objects 131

 population: 9820000,

 timezone: 3600,

 },

};

To get the latitude from the object in Listing 7-4, you can use the following line:

myLocation.city.coord.lat;

To set the value of a property using dot notation, just assign a value to a property.
If the property you assign the value to doesn’t exist, it is created in the object.

Using square brackets notation
Square brackets notation uses square brackets after the object name to get and set
property values. The name of the property between the brackets is a string, which
means that it can be a literal string or the name of a string variable. Using the
object from Listing 7-4, you can get the city property using the following:

myLocation['city']

Square brackets notation is often used in combination with dot notation to access
nested properties, like this:

myLocation.city['name']

You can also put sets of square brackets together to access nested properties:

myLocation['city']['name']

Square brackets notation is useful when you want to access multiple properties in
an object by using the same statement, because it allows you to use a variable for
the property name. For example, in Listing 7-5, a loop is used to get the names
of the properties of the web browser’s document object. Using square brackets
notation, you can print all the properties without having to know what they are
in advance.

LISTING 7-5: Printing out the properties of an object

for (const property in document) {

 console.log(`${property}: ${document[property]}`);

}

132 BOOK 1 JavaScript Fundamentals

Comparing and Copying Objects
When you make a copy of an object by using the assignment operator or by pass-
ing the object into a function, the value that’s copied is the object, not the values
inside the object. This is one of the most useful concepts to understand about
objects (and arrays): Whereas primitive data types (like strings and numbers) are
copied by value, objects are copied by reference. To understand this, let’s compare
some objects.

Because an object is a value that contains other values, when you compare objects
using the triple equals operator (===), what’s compared is the object, not its
 values. For example, create the following two objects in your JavaScript console:

const firstObject = {prop1:'test', prop2:'test2'};

const secondObject = {prop1:'test', prop2:'test2'};

These two objects appear to be identical, but when you compare them, you see an
interesting result:

firstObject === secondObject

Whereas a comparison of two primitive variables returns true if the values of
the variables are the same, a comparison of two objects with identical proper-
ties returns false. This is because the two objects are not the same object, even
though they have the same properties, and those properties have the same values.

If you compare properties of these two objects, you’ll find that they’re compared
as the primitives they are:

firstObject.prop1 === secondObject.prop1

Now that you understand how objects are compared, try copying an object. Type
the following line into the same JavaScript console window where you created the
firstObject and secondObject objects:

const thirdObject = secondObject;

As you would expect, this line creates a new constant named thirdObject. Next,
try changing the value of thirdObject.prop1:

thirdObject.prop1 = 'orange';

M
aking and

U
sing O

bjects

CHAPTER 7 Making and Using Objects 133

With that done, you can now type thirdObject.prop1 into the console to get back
the value you set to it, and you’d expect that if you compare secondObject.prop1
to thirdObject.prop1, you’d get back false. But that’s not what happens:

secondObject.prop1 === thirdObject.prop1

This statement returns true because thirdObject is actually a reference to
 secondObject, not to its own object. What do you think happens if you add a new
property to thirdObject?

thirdObject.prop3 = 'claw hammer';

If you check the value of thirdObject.prop3 now, you find that, sure enough,
it has been set as you wanted. But what if you check the value of secondObject.
prop3? You’ll find that secondObject, as if by magic, now has an identical prop-
erty named prop3.

At this point, you might be suspicious of all objects and you decide to check the
value of firstObject.prop3, like this:

firstObject.prop3

But you’ll find that this line returns undefined.

If you compare secondObject and thirdObject, what’s happening here becomes
obvious:

secondObject === thirdObject

This expression returns true because thirdObject is actually secondObject —
it’s just referencing it using a different name.

The reference nature of objects is extremely useful in JavaScript. It means that
you can pass references to objects into a function and the function can modify the
values in the object. This is something you do a lot of later in this book.

However, if you’re trying to create a new object from an existing object and you
don’t want the new object to affect the original, you need to do the same thing
I show you how to do in the Spreading Arrays section of Chapter 6 for making
 copies of arrays — make a shallow copy. As with arrays, the easiest way to create
a shallow copy of an object is by using the spread operator.

The spread operator separates, or spreads, an iterable object into its component
parts.

134 BOOK 1 JavaScript Fundamentals

Here’s how you can make a new object, named fourthObject, that starts its life
with the same properties as secondObject:

const fourthObject = {...secondObject};

Now if you compare fourthObject and secondObject, you get a result of false:

fourthObject === secondObject

The object named fourthObject is its own object, free to modify its properties
and add and delete properties without affecting anything else.

Understanding Prototypes
Every object in JavaScript inherits properties and methods from a prototype. For
example, when you create an array, it inherits from Array.prototype. Array, in
turn inherits properties from Object.prototype.

When you create a new object using literal notation, it inherits properties from
Object.prototype. When you use a constructor function or a class to create an
object, the class or constructor become the prototype.

Follow these steps to see how prototypes work:

1. Open a new window in your browser, and type about:blank into the
address bar to open a blank screen.

2. Open the JavaScript console in this new, blank browser window, and
resize it so that it occupies most of the browser window.

You can also detach the developer tools from the rest of the browser, if you
prefer, by clicking the three dots icon in the developer tools window and
selecting the Undock into Separate Window option from the Dock Side setting
in the Developer Tools preferences, as shown in Figure 7-1.

3. Create a new file named prototypes.js in VS Code.

You’ll use this file to write code that you’ll copy and paste into the console.

To save yourself from having to type everything, you can download all the code
from this book from the book’s website. However, I encourage you to type the
code yourself, to gain more experience with writing code.

M
aking and

U
sing O

bjects

CHAPTER 7 Making and Using Objects 135

4. Enter the code from Listing 7-6 into prototypes.js.

LISTING 7-6: A constructor for vehicles

function Vehicle(speed) {

 this.speed = speed;

 this.moveForward = function () {

 return `Moving forward at ${this.speed}`;

 };

}

5. Copy the Vehicles() constructor from prototypes.js and paste it into
your JavaScript console.

You may need to press Enter to run the code after you paste it. After it runs,
you see the console return undefined.

6. Enter the following statement into your console window to create an
Automobile object type:

const Automobile = new Vehicle(55);

7. Add properties to your Automobile object by entering the following code
in the console:

Automobile.wheels = 4;

Automobile.engine = 'electric';

8. Type just Automobile into the console to inspect the Automobile object.

The result is shown in Figure 7-2. Just as in the real world, programmers say
that Automobile is a type of Vehicle. All Automobiles are Vehicles, but not
all Vehicles are Automobiles.

FIGURE 7-1:
Undocking the

Developer Tools.

136 BOOK 1 JavaScript Fundamentals

9. Type Vehicle into the console to inspect it. Notice that Vehicle wasn’t
modified by adding properties to Automobile.

10. Create a type of Automobile called Truck using the following statement:

const Truck = Object.create(Automobile);

11. Inspect the Truck object.

Notice that, like Automobile, it’s a Vehicle (and an Object, of course). Also
notice that it has all the properties of Automobile.

12. Type Truck followed by a period into the console.

This causes the JavaScript console to display a pop-up window listing all of
Truck’s properties. Scroll through this list and you’ll notice that it has some
properties that you defined, as well as some others such as valueOf and
hasOwnProperty. The properties that you didn’t specifically create are part of
the Object object, and these properties are available to any JavaScript object.

When someone refers to properties, they’re talking about all the properties,
including properties that have function values, which are also known as
methods.

13. Add a new property to Automobile, called doors:

Automobile.doors = 4;

14. Inspect Truck.

Notice that Truck now lists doors as one of its properties.

15. Type Truck.hasOwnProperty(’doors’) into the console.

You get a result of false.

FIGURE 7-2:
Automobile is a

Vehicle.

M
aking and

U
sing O

bjects

CHAPTER 7 Making and Using Objects 137

16. Change the value of Truck.doors:

Truck.doors = 2;

17. Determine whether doors is Truck’s own property now:

Truck.hasOwnProperty('doors');

It is! What you should take away from this step list is that child objects can
access the properties of their parents (programmers call it accessing a
property in the prototype chain), but they can also have their own properties,
which takes precedence over (or overrides) the value of the parent’s properties.

18. Add a new property to Truck called maxHaul:

Truck.maxHaul = '1 ton';

19. Use the hasOwnProperty() method to verify that maxHaul is Truck’s own
property:

Truck.hasOwnProperty('maxHaul');

And, in fact, it is!

To summarize the concepts I present in this exercise:

 » When an object is created from a constructor function, the new object’s
prototype is the constructor function.

 » When an object is created from another object, the object it’s created from
becomes the new object’s prototype.

 » Objects can have their own properties, but they also access the properties of
their parents.

 » If an object has its own property, it uses the value of that property rather than
the parent’s property with the same name.

When an object is created from another object, programmers say that it inherits
the properties of its parent, and they call this process of inheriting properties
inheritance.

If you’ve read this chapter from the start, you should have a good basic under-
standing of what objects are and how they function. We’ll talk more about the
inner workings of objects in Chapter 9.

138 BOOK 1 JavaScript Fundamentals

Deleting Object Properties
You can delete a property from an object by using the delete operator:

delete Truck.doors;

You can delete a property only if it’s an own property of an object. After you
delete an own property of an object, JavaScript looks up the prototype chain to see
whether any of the object’s ancestors has that property the next time you try to
access that property.

CHAPTER 8 Writing and Running Functions 139

Writing and Running
Functions

“What I do has to be a function of what I can do, not a function of what people
ask me to do.”

—TIM BERNERS-LEE

Functions are the objects that make your programs do things. They also serve
an important organization purpose: Just as objects organize data into reus-
able containers, functions organize statements into reusable functionality.

A function is a group of statements that perform a task. In other words, a function
is like a smaller program inside your program.

Functions usually receive data and then return data based on the input. For exam-
ple, the String() function in JavaScript receives a value of any data type and
returns a string. To use a function, you specify the name of a function followed
by parentheses. Between the parentheses, you can, optionally, supply one or more
values. The values you specify between the parentheses are called arguments.

Chapter 8

IN THIS CHAPTER

 » Writing and naming functions

 » Passing arguments to functions

 » Returning values from functions

 » Making anonymous functions

 » Using arrow functions

 » Writing functions in objects

 » Understanding this and context

 » Linking functions in a chain

140 BOOK 1 JavaScript Fundamentals

For example, in the case of String(), if you want to convert the number 10 to a
string, you can do so like this:

String(10);

JavaScript has many built-in functions, but you can also create your own
JavaScript functions. Here’s a simple function to add two numbers together:

function addNumbers(num1, num2){

 return num1 + num2;
}

You can use a custom function the same way you use a built-in function. To use
addNumbers(), just supply it with two numbers, like this:

addNumbers(2, 4);

Before I delve much deeper into talking about functions, I need to define a few
important terms:

 » Creating a function is called defining a function.

 » The code that defines a function is called the function definition.

 » The names listed between parentheses in a function definition are the
function’s parameters.

 » Telling a function to execute its statements is known as calling the function.

 » Supplying arguments to a function when you call it is called passing arguments
to the function. You might think of it as passing a ball in football, except that
you’re passing data.

 » The values you pass into a function when you call it are called arguments.

 » When you call a function with arguments (the values you pass to the function),
the parameters (the list of names in the function declaration) are initialized as
variables inside the function.

 » A function inside an object is called a method.

Functions: An Introduction
You may have seen and used many different functions already in this book. Many
of those functions are built into JavaScript. JavaScript contains these two types of
built-in functions:

W
riting and Running

Functions

CHAPTER 8 Writing and Running Functions 141

 » Top-level functions

 » Methods of built-in objects

Using Top-level functions
Top-level functions are functions that aren’t part of an object. You can define
your own top-level functions, and JavaScript has a handful of top-level functions
already defined for you. You can use these built-in, top-level functions anywhere
in your programs.

Table 8-1 describes the built-in top-level functions.

TABLE 8-1	 The Built-In Top-Level Functions in JavaScript
Function What It Does

Boolean() Converts a non-Boolean value to Boolean

Number() Converts a non-number value to a number

String() Converts a non-string value to a string

eval() Runs JavaScript code passed to it as a string

uneval() Creates a string from source code passed to it

isFinite() Determines whether the value passed to it is a finite number

isNaN() Determines whether a value passed to it is NaN

parseFloat() Converts a string to a floating-point number

parseInt() Converts a string to an integer

decodeURI() Decodes a string that has been encoded by encodeURI()

decodeURIComponent() Decodes a string that has been encoded using encodeURIComponent()

encodeURI() Replaces certain characters (for example, spaces, quotes, and slashes) in a
string with escape sequences to create a valid Uniform Resource Identifier,
which are the addresses used to locate web pages and other resources
on the web

encodeURIComponent() Does the same thing as encodeURI() (see the preceding entry) but encodes
the whole string, whereas encodeURI() ignores the protocol prefix (such as
http://) and the domain name

142 BOOK 1 JavaScript Fundamentals

Using methods of built-in objects
The objects that make JavaScript work all have methods built into them. For exam-
ple, when you create a new string, these methods become available for working
with the string. The same goes for the Boolean and number data types, and for
arrays and objects.

In Chapter 4, you can read about methods like split() and trim() for working
with strings. In reality, the full names of these methods are String.prototype.
split() and String.prototype.trim(). If you’ve already read the section on
prototypes in Chapter 7, you know why: As with objects you create from the base
Object prototype in JavaScript, strings that are created from the base String pro-
totype have access to properties and methods they inherit.

Methods that your objects inherit from their parents are called instance methods.
They’re always called by specifying the object name followed by the name of the
method followed by parentheses — optionally, containing arguments.

Other methods of built-in JavaScript objects can’t be called in this way, because
they don’t operate on instances of the base object. Instead, they operate as utilities
provided by the base object. These methods are called static methods.

An example of a static method is the Number.parseInt() method. You can’t call
Number.parseInt() on a variable or value, like this:

myString.parseInt() // parseInt() is not a function

Instead, you pass the number into the parseInt() method, and the return value
is an integer, like this:

Number.parseInt(myString);

Some of the most common static methods of JavaScript built-in objects are dupli-
cates of the global (also known as top-level) functions with the same name. For
example, parseInt() is also a global function that does the same thing as calling
Number.parseInt().

Passing by value
When you call a function using arguments that are primitive data types (such as
string, number, and Boolean), the values you pass into the function are copied.
This is called passing by value. Listing 8-1 shows how passing an argument creates
a local variable using the name of the parameter.

W
riting and Running

Functions

CHAPTER 8 Writing and Running Functions 143

LISTING	8-1:	 Passing by value

const favoriteFood = 'tacos';

makeDinner(favoriteFood);

function makeDinner(whatToMake) {

 console.log(`I see you want ${whatToMake}.`);

 whatToMake = 'salad';

 console.log(`I've decided to make ${whatToMake} instead.`);

}

In Listing 8-1, the value of favoriteFood is copied to a new variable named what-
ToMake when the function is invoked. Because this new variable is block scoped, it
doesn’t exist outside of the function. Because the value of favoriteFood is passed
by value, changing the value of whatToMake inside the function doesn’t affect
favoriteFood. In other words, your favorite food remains the same no matter
what the makeDinner() function decides to do.

Passing by reference
Technically, everything in JavaScript is passed by value. However, when you pass
an array or object to a function, remember that it’s not the values of the object or
array that are copied into the function — it’s the object itself.

Just as when you make a copy of an object using the = operator, the copy of an
object passed to a function maintains its link to the object outside the function.
The result is that if you change the properties of an object passed to a function,
those changes are visible outside the function, as shown in Listing 8-2.

LISTING	8-2:	 Passing an object to a function

const user = { username: 'funguy37', password: '123456' };

const loginStatus = login(user);

console.log(loginStatus);

console.warn(`The password is now ${user.password}`);

function login(userCredentials) {

 if (userCredentials.password === '123456') {

 let randomString = Math.random().toString(36).slice(-16);

 userCredentials.password = randomString;

 return `Terrible password. Your password has been reset to a random string.`;

 }

 return 'Logged In';

}

144 BOOK 1 JavaScript Fundamentals

Writing Functions
A function declaration is made up of the following parts, written in this order:

 » The function keyword

 » The name of the function

 » Parentheses, which may contain a list of parameters

 » Curly braces surrounding one or more statements

Functions can be short and simple, or they can be as large and complex as you
need them to be. A simple function might simply call another function or write
some value to the browser window, such as this one:

function updatePageTitle(title){

 document.title = title;

}

Try entering this function into your browser console and then call it, passing in a
string as the title, like this:

updatePageTitle("Welcome to my web page");

If you look at the title on your browser tab, you’ll notice that it has changed to
the string you passed to the function. You’ll also notice that when you created the
function and when you ran the function, undefined was written to the console.

Every statement in JavaScript has a return value. If you perform an operation such
as declaring a function or running a function that doesn’t return anything, Java-
Script returns the default return value, undefined.

Naming functions
The rules for function names are the same as the rules for variables: They can
contain letters, digits, underscores, and dollar signs. As with variable names, it’s
common to name functions using lower camel case (where the first word in the
variable name is lowercased and subsequent words are uppercased).

Because functions are designed to do something, one simple good naming practice
is to name them starting with a verb. For example, the following function names
make clear what the functions do:

W
riting and Running

Functions

CHAPTER 8 Writing and Running Functions 145

 » convertToMp3()

 » getCurrentDate()

 » calculateTotal()

 » signOut()

 » getFormData()

Passing arguments
The names between the parentheses in the function header are called parameters.
A function can have as many parameters as it needs to have, and each one must
be separated by a comma.

If you find that your function has an extraordinarily large number of parameters,
you might think about how to simplify the function or break it into multiple func-
tions just for the sake of making your code more easily readable.

When you call a function, you substitute values for the names in the parame-
ter list. These values are called arguments. Arguments you pass into a function
become variables inside the function with the names of the parameters.

A function called getLocalWeather() might start like this:

function getLocalWeather(city, state){

When you call a function with arguments, the arguments must be specified in the
same order in which the parameters appear in the function definition.

Using rest parameters
If you don’t know how many arguments will be passed to a function when you call
it, you can use a special parameter called a rest parameter. The syntax for a rest
parameter uses the same 3-dot operator as when you use spread syntax, which
you can read about in Chapter 6. A rest parameter causes all remaining arguments
passed to the function to be placed in an array.

For example, you might define a function like the following, which has a normal
parameter followed by a rest parameter:

function sortList(orderBy,...items){

 ...

}

146 BOOK 1 JavaScript Fundamentals

To call this function, you specify a value for orderBy followed by as many addi-
tional arguments as needed:

sortList('alphabetical','James','Robert','John','Michael','David','William');

Inside the function, an array named list with six elements is created.

Using the arguments object
Another way to access any number of arguments passed to a function is to use
the arguments object. The arguments object is automatically created as a vari-
able inside every function created using the function keyword. It contains all the
arguments passed to a function.

The arguments object resembles an array in how you access it; however, it is not
actually an array, in that you can’t access any of the Array properties and methods
except length.

You can get the values in an arguments object the same way you can get values
from an array. For example, the code in Listing 8-3 creates an HTML numbered
list from as many items as you pass into it.

LISTING	8-3:	 Creating a numbered list from any number of arguments

function makeNumberedList() {

 let numberedList = '';

 for (let i = 0; i < arguments.length; i++) {
 numberedList += `${arguments[i]}`;
 }

 numberedList += '';
 return numberedList;

}

Passing functions as arguments
Any value can be passed to a function as an argument, including other functions.
When a function is passed to another function to be invoked by the function it’s
passed to, the function that’s being passed is known as a callback function. The
function you pass a callback function to is known as the outer function.

Callback functions are used for adding functionality to functions or for telling the
outer function what to do when it completes its work, as shown in Listing 8-4.

W
riting and Running

Functions

CHAPTER 8 Writing and Running Functions 147

LISTING	8-4:	 Using a callback function

function greetInSpanish(name){

 return `Hola, ${name}`;

}

function getUserName(callback){

 let firstName = prompt('Enter your first name');

 return callback(firstName);

}

getUserName(greetInSpanish);

Setting default parameters
Functions that specify parameters don’t need to be called with those parameters.
However, if you don’t supply an argument for a parameter, that parameter will
have a value of undefined inside the function’s body unless you specify a default
value.

To specify default values for parameters, use the assignment operator inside the
parameter list, like this:

function greetUser(firstName='Valued', lastName='Customer'){

 alert(`Hello, ${firstName} ${lastName}`);

}

With default parameter values set, this function will alert "Hello, Valued Cus-
tomer" rather than "Hello," when it’s called without arguments.

Default parameters can also be used to eliminate errors that can happen when
an argument isn’t passed to a function. For example, the function in Listing 8-5
expects an array to be passed to it, which it loops over using the Array.map()
method:

LISTING	8-5:	 A function that takes an array

function makeUnorderedList(array) {

 let listItems = array.map(function (element) {

 return `${element}`;

 });

 return `${listItems.join('')}`;

}

148 BOOK 1 JavaScript Fundamentals

If you try to call the function in Listing 8-5 without specifying an array, it pro-
duces an error, as shown in Figure 8-1.

When running a function or a program produces an error, programmers say that
it throws an error.

You can eliminate this potential error by specifying a default value of an empty
array:

function makeUnorderedList(array=[]){

With this change, if you call the function without passing an argument, it just
returns an empty string rather than throwing an error. This isn’t a fail-safe
method to make this function never throw an error, however. If it’s called with a
number passed to it, for example, it will still fail. Can you figure out how to pre-
vent an error when a nonarray value is passed to it?

Writing a function body
After the first line of the function (sometimes called the function header), you can
use any combination of other function calls and statements, including additional
function definitions. Everything after the function header will be part of the func-
tion until you close the function with a closing curly brace.

The part of a function between the curly braces is called the body of the function.
The complete getLocalWeather() function might look like this:

function getLocalWeather(postalCode){

 const weather = `I don't know what the weather is like in ${postalCode}. Maybe

try looking out the window.`;

 return weather;

}

FIGURE 8-1:
The result of

calling a function
that requires an

array without
passing an array.

W
riting and Running

Functions

CHAPTER 8 Writing and Running Functions 149

Returning data
Many functions, such as the getLocalWeather() function, have a return value.
To return a value from executing a function, use a return statement. The return
statement inside a function halts execution of the function and returns a value.

You can assign the return value to a variable using the assignment operator, or
you can pass it into another function. For example, here’s how you can get the
string returned by getLocalWeather():

let weather = getLocalWeather('97103');

Using a return value as an argument
If you specify a function call as an argument to another function, the return value
of the inner function is passed to the outer function:

displayWeatherForecast(getLocalWeather('97103'));

Passing function calls as arguments can quickly become confusing, so it’s more
common to write the preceding statement using two statements:

let weather = getLocalWeather('97103');

displayWeatherForecast(weather);

The displayWeatherForecast() function might look like this:

function displayWeatherForecast(forecast){

 document.getElementById('forecast').innerHTML = `Here's the current weather

forecast: ${forecast}`;

}

Creating conditional code with return
Because return halts the execution of a function, it’s common to skip writing an
else clause in an if/else statement by simply providing an alternative return
statement after an if statement. For example, if you want to make the getLocal-
Weather() function output something different when an argument isn’t provided,
you check whether postalCode has a value of undefined and provide a generic
message, like this:

function getLocalWeather(postalCode) {

 if (postalCode === undefined) {

 return `I don't know what the weather is where you are.`;

 }

150 BOOK 1 JavaScript Fundamentals

 return `I don't know what the weather is like in ${postalCode}. Maybe try

looking out the window.`;

}

The second return statement runs only if postalCode is not undefined.

Function declaration scope and hoisting
A function declaration can be located anywhere in your program, and it can be
run from anywhere in its scope. A top-level function is one that’s not inside of any
other block of code. Top-level functions can be called from anywhere in your pro-
gram. A function that’s inside another function or block can be called only from
within that function or block.

You can also call functions that are defined using function declarations before the
spot where they’re defined in the code. This special power of function declarations
is called hoisting. Anytime a JavaScript compiler reads your code, it looks for func-
tion declarations and then lifts (or hoists) them to the beginning of their scope.

Declaring Anonymous functions
An anonymous function is a function declaration that doesn’t have a name. Anony-
mous functions are typically used as callbacks. For example, the following func-
tion takes a function as its parameter:

function doSomething(callback){

 ...

}

This function can be a named function, but it doesn’t need a name, because it is
being passed as a parameter and will be assigned a name (callback) inside the
outer function. Here’s how you can pass an anonymous function to the doSome-
thing() function:

doSomething(function(){console.log('done.');});

Defining function expressions
A function expression creates a function by assigning an anonymous function to a
variable or constant.

Listing 8-6 shows an example of using a function expression to define a function.

W
riting and Running

Functions

CHAPTER 8 Writing and Running Functions 151

LISTING	8-6:	 Defining a function using a function expression

const convertMilesToKM = function (distanceInMiles) {

 const distanceInKM = distanceInMiles * 1.609;

 return distanceInKM;

};

console.log(convertMilesToKM(5));

Unlike function declarations, function expressions are not hoisted. As with any
variable declaration, a function created using a function expression can’t be used
until the expression has been run.

Function expressions are useful for functions that should only be created based
on a condition or for functions that are passed as arguments to other functions.

For example, in Listing 8-7, the function that calculates the duration of a trip is
declared based on whether the value of a variable named water is true.

LISTING	8-7:	 Conditionally defining a function using an expression

function getThere(distance) {

 let estimatedTripDuration;

 if (water === true) {

 const getSwimTime = function () {

 return distance / 2;

 };

 estimatedTripDuration = getSwimTime();

 } else {

 const getWalkTime = function () {

 return distance / 4;

 };

 estimatedTripDuration = getWalkTime();

 }

 return estimatedTripDuration;

}

let water = true;

let distance = 30;

console.log(`It will take ${getThere(distance)} hours to get there.`);

Figure 8-2 shows what the code in Listing 8-7 does when you run it in the
JavaScript console.

152 BOOK 1 JavaScript Fundamentals

Writing anonymous functions
as arrow functions
Anonymous functions can also be written using arrow syntax. Arrow syntax does-
n’t use the function keyword. Instead, it uses a combination of symbols that look
like an arrow, =>, between the parameter list and the body of the function.

To see the difference between using the function keyword and using arrow syn-
tax, it’s helpful to see the same function written both ways. Here’s a function that
randomly selects a movie from an array of movie titles, written using the func-
tion keyword:

const pickAMovie = function (choices) {

 let myPick = choices[Math.floor(Math.random() * choices.length)];

 return myPick;

};

Here’s a function that does the same thing as the preceding function, but written
as an arrow function:

const pickAMovie = (choices) => {

 let myPick = choices[Math.floor(Math.random() * choices.length)];

 return myPick;

};

Simplifying arrow functions
Arrow functions can be simplified even further under certain circumstances:

FIGURE 8-2:
Creating

functions
conditionally.

W
riting and Running

Functions

CHAPTER 8 Writing and Running Functions 153

 » If an arrow function takes only one parameter, you don’t need to include the
parentheses around the parameter list.

 » If an arrow function contains only a return statement, you can eliminate the
return keyword and the curly braces around the function body.

When you apply these two rules, the pickAMovie() function can be simplified to
the following:

const pickAMovie = choices => choices[Math.floor(Math.random() * choices.

length)];

Listing 8-8 shows a simple web application that imports a file containing an array
of 100 movies and then randomly chooses one and displays its title.

LISTING	8-8:	 A random movie picker app

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="UTF-8"/>

 <meta http-equiv="X-UA-Compatible" content="IE=edge"/>

 <meta name="viewport" content="width=device-width, initial-scale=1.0"/>

 <title>Random Movie Picker</title>

 <script type="text/javascript" src="data/movies.js"></script>

 </head>

 <body>

 <button onclick="displayMovieChoice()">Choose a Movie</button>

 <h1>You should watch </h1>

 <script>

 const chooseMovie = (choices) => {

 return choices[Math.floor(Math.random() * choices.length)];

 };

 const displayMovieChoice = () => {

 const movieChoice = chooseMovie(movies);

 document.getElementById('movie-choice').innerHTML = movieChoice.title;

 };

 </script>

 </body>

</html>

154 BOOK 1 JavaScript Fundamentals

Knowing the limits of arrow functions
Arrow functions are a useful shorthand in many cases, such as when writing a
callback function. However, they have limitations that make them unsuitable for
certain purposes.

Arrow functions don't have this
Unlike functions created using the function keyword, arrow functions don't have
their own this. Instead, they take on the context of the object in which they're
created, and their this value doesn't change when they're called in a different
context.

Because of this behavior, arrow functions created as methods of an object are
said to be auto-bound. It's not possible to bind arrow functions to objects using
bind(), call(), or apply().

See the section “Understanding context and this,” later in this chapter, to learn
about the bind(), call(), and apply() functions.

Arrow functions don't have the arguments object
Just as with normal functions, you can pass arguments to arrow functions. How-
ever, arrow functions don't have their own arguments object.

If you need to write an arrow function that can take any number of arguments,
however, you can use a rest parameter, like this:

const myFunction = (...args) => {

 console.log(`The value of the first argument is ${args[0]}`);

}

Writing Methods
A function inside an object is called a method. A method can access and modify the
other properties of an object by using the this keyword.

Methods can be written the same way you write any other property, as in this
example:

const myCar = {

 speed: 0,

 drive: function (speedLimit) {

W
riting and Running

Functions

CHAPTER 8 Writing and Running Functions 155

 this.speed = speedLimit;

 console.log(`Driving at ${this.speed}mph.`);

 },

};

You can also write methods using method notation, which combines the left and
right sides of the colon, like this:

const myCar = {

 speed: 0,

 drive(speedLimit) {

 this.speed = speedLimit;

 console.log(`Driving at ${this.speed}mph.`);

 },

};

To call the drive() method, append it to the name of its object and pass a value
to the speedLimit parameter:

myCar.drive(35);

The method changes the value of myCar.speed and logs a message to the console.
Inside the myCar object, the value of the speed property is now 35, as shown in
Figure 8-3.

Understanding Context and this
In the preceding section, you can see that the value of this is the object that owns
the method. Another name for the object that determines the value of this in a
function is context.

FIGURE 8-3:
Methods can

change the values
of properties.

156 BOOK 1 JavaScript Fundamentals

Functions make it possible to use the same functionality with multiple objects. For
example, your program might have numerous objects that can be driven. Rather
than define the drive function as a method of each of these objects, you can define
a single function outside of the objects, as shown in Listing 8-9.

However, this creates a problem, as you'll discover if you try to drive your car now.

LISTING	8-9:	 A function without context

const myTruck = {

 speed: 0,

};

const myCar = {

 speed: 0,

};

function drive(speedLimit) {

 this.speed = speedLimit;

 console.log(`Driving at ${this.speed}mph.`);

}

In Listing 8-9, there's no way to tell drive() what to drive. When you call a func-
tion that uses the this keyword but don't specify an object to call the function
on (a context, in other words), the this keyword will refer to the global object by
default, which is the window object in a browser.

To solve this problem, you can take one of two approaches:

 » Pass the object as a parameter to the function.

 » Set the context of the function.

Passing an object to a function
In Chapter 7, you see that passing an object to a function creates a reference to the
object (rather than a new object) inside the function. Knowing this, you can add
a parameter to the drive() function that will be the object that should be driven
and then update the statements that use the this keyword to use that reference
instead, as shown in Listing 8-10.

LISTING	8-10:	 Passing an object to a function

const myTruck = {

 speed: 0,

};

W
riting and Running

Functions

CHAPTER 8 Writing and Running Functions 157

const myCar = {

 speed: 0,

};

function drive(vehicle, speedLimit) {

 vehicle.speed = speedLimit;

 console.log(`Driving at ${vehicle.speed}mph.`);

}

If you want to drive your truck, you can call drive() and pass in myTruck as the
first argument, and if you want to drive your car, you can call the same function
but pass myCar as the first argument:

drive(myCar,55);

drive(myTruck,55);

Setting the context of a function
Another way to use the same function with multiple objects is by setting the
context of the function (that is, the object it should be called on) using call(),
apply(), or bind().

Using call()
The call() method of function objects takes an object as its first parameter.
When call() is called on a function, that function runs in the context of the
object passed to call(). After the first parameter, call() accepts any number of
additional arguments. For example, to call the version of the drive() function in
Listing 8-10 with the context of the myCar object and a speedLimit value of 65,
you can use the following statement:

drive.call(myCar, 65);

This statement runs exactly as though you had defined drive() inside of myCar
and called it using myCar.drive(65).

Using apply()
The apply() method works the same as call() but takes an array as its second
parameter, which will be passed to the function that apply() is applied to.

158 BOOK 1 JavaScript Fundamentals

Using bind()
The bind() method works the same as call(), with a context object as the first
parameter followed by any number of individual arguments. However, rather
than return the result of calling the function, bind() returns a new function. You
can assign this new function to a variable to create a new callable function that
includes its context and data. For example, you might want to create a function
called driveMyCarOnTheFreeway(). To do so, you can use bind(), like this:

const driveMyCarOnTheFreeway = drive.bind(myCar,65);

With that done, you can now call the new function and drive on the freeway any-
time you like:

driveMyCarOnTheFreeway();

Passing a function from one
object to another
Like any other value in JavaScript, functions can be passed as arguments. This
ability makes it easy to share functionality between objects.

Yet another way to use a function with multiple objects is to pass the function as
an argument to a method of an object. For example, you might create methods in
myCar and myTruck called operate(), which can be used for any sort of operation
the vehicle might need to do. Then you can call this function and pass in another
function for a specific way to operate the vehicle, like this:

const myCar = {

 speed: 0,

 operate(speedLimit, callback) {

 callback(speedLimit);

 console.log(`myCar is driving at ${this.speed}`);

 },

};

function drive(speed) {

 this.speed = speed;

 console.log(`Start driving at ${this.speed}`);

}

myCar.operate(55, drive);

However, there's a catch. Figure 8-4 shows what happens when you run this code.

What's happening is that the this keyword inside the drive function references
the global scope (which is the window object in a browser) in which it exists.

W
riting and Running

Functions

CHAPTER 8 Writing and Running Functions 159

Functions are objects, so passing a function into a method and running it isn't the
same as creating the function inside the object and running it. You can verify this
by typing window.speed into the console window.

One way to fix this problem is to bind the callback function that's passed to the
operate() method to the this context of the object, as shown in Listing 8-11.

LISTING	8-11:	 Using the same function in multiple objects

const myCar = {

 speed: 0,

 operate(speedLimit, callback) {

 boundCallback = callback.bind(this);

 boundCallback(speedLimit);

 console.log(`myCar is driving at ${this.speed}`);

 },

};

function drive(speed) {

 this.speed = speed;

 console.log(`Driving at ${this.speed}`);

}

myCar.operate(55, drive);

Passing a function to a child to
change the parent
In component-based front-end frameworks (like React, Vue, and Svelte), it's
common to have a subcomponent that receives a callback function from the par-
ent that can be used to modify data in the parent component.

FIGURE 8-4:
Attempting to

pass a function to
a method.

160 BOOK 1 JavaScript Fundamentals

For example, Listing 8-12 shows a simple bookstore object that contains a list
of books, a method for displaying the list of books, and a method for removing a
book from the bookstore's inventory.

LISTING	8-12:	 A bookstore and a shoppingCart

const bookstore = {

 books: ['Ulysses', 'The Great Gatsby'],

 displayBookstore() {

 const renderTarget = document.getElementById('bookstore');

 const bookList = this.books.map((book) => `<p>${book}</p>`);

 renderTarget.innerHTML = bookList.join('');

 },

 removeBook(title) {

 let newList = this.books.filter((book) => book != title);

 this.books = newList;

 },

};

bookstore.removeBook('The Great Gatsby');

You can see the removeBook() method in action in Figure 8-5.

One reason to remove a book from the bookstore's inventory is that someone
purchased it. To give people the ability to buy books, I’ll show you how to cre-
ate a separate object, shoppingCart, with a checkout button. When this button is
clicked, you need to remove the book from the bookstore's inventory.

The shoppingCart object is shown in Listing 8-13.

LISTING	8-13:	 A shopping cart

const shoppingCart = {

 itemsInCart: ['The Great Gatsby'],

 displayCart(){

FIGURE 8-5:
Removing

an element
from an array.

W
riting and Running

Functions

CHAPTER 8 Writing and Running Functions 161

 const renderTarget = document.getElementById('cart');

 const itemsInCart = this.itemsInCart.map(item=>`<p>${item}</p>`)

 const checkoutButton = "<button id='checkout'>Check out</button>";

 renderTarget.innerHTML = itemsInCart.join('') + checkoutButton;
 }

}

At this point, the shoppingCart's displayCart() method just displays a list of
books in the cart and a button that doesn't do anything. To make the button do
something, you need to add an event listener to it that will call a function, as
shown in Listing 8-14.

LISTING	8-14:	 Listening for and handling a click event

const shoppingCart = {

 itemsInCart: ['The Great Gatsby'],

 handleClick() {

 //do something here

 },

 displayCart() {

 const renderTarget = document.getElementById('cart');

 const itemsInCart = this.itemsInCart.map((item) => `<p>${item}</p>`);

 const checkoutButton = "<button id='checkout'>Check out</button>";

 renderTarget.innerHTML = itemsInCart + checkoutButton;
 document

 .getElementById('checkout')

 .addEventListener('click', () => this.handleClick());

 },

};

You can read all about events and event listeners in Chapter 10.

Right now, when you click the button, the shoppingCart.handleClick() func-
tion runs, but it doesn't do anything. What you want it to do is remove the book
from the bookstore object's inventory property.

The first thing you need to do is call shoppingCart.displayCart() from the
bookstore and pass the removeBook() function as a parameter, as shown in
Listing 8-15. Here's the important part, though: Because you want removeBook()
to affect data inside the bookstore object, rather than inside the shoppingCart,

162 BOOK 1 JavaScript Fundamentals

you need to use bind() to bind the context of the function to bookstore. You can
do that at the same time as you're passing it to shoppingCart.displayCart().

LISTING	8-15:	 Calling shoppingCart.displayCart() from bookstore

const bookstore = {

 books: ['Ulysses', 'The Great Gatsby'],

 removeBook(title) {

 let newList = this.books.filter((book) => book != title);

 this.books = newList;

 this.displayBookstore();

 },

 displayBookstore() {

 const renderTarget = document.getElementById('bookstore');

 const bookList = this.books.map((book) => `<p>${book}</p>`);

 renderTarget.innerHTML = bookList.join('');

 shoppingCart.displayCart(this.removeBook.bind(this));

 },

};

Finally, you need to receive the removeBook() function inside shoppingCart.
displayCart() and use it as the event handler, as shown in Listing 8-16.

LISTING	8-16:	 Using removeBook as the event handler

const shoppingCart = {

 itemsInCart: ['The Great Gatsby'],

 handleClick(removeBook) {

 removeBook(this.itemsInCart);

 },

 displayCart(clickHandler) {

 const renderTarget = document.getElementById('cart');

 const itemsInCart = this.itemsInCart.map((item) => `<p>${item}</p>`);

 const checkoutButton = "<button id='checkout'>Check out</button>";

 renderTarget.innerHTML = itemsInCart.join('') + checkoutButton;
 document

 .getElementById('checkout')

 .addEventListener('click', () => this.handleClick(clickHandler));

 },

};

W
riting and Running

Functions

CHAPTER 8 Writing and Running Functions 163

To use this bookstore app, you put it in an HTML document and call bookstore.
displayBookstore(), as shown in Listing 8-17:

LISTING	8-17:	 Displaying the bookstore and cart

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="UTF-8"/>

 <meta http-equiv="X-UA-Compatible" content="IE=edge"/>

 <meta name="viewport" content="width=device-width, initial-scale=1.0"/>

 <title>Amazing JavaScript Bookstore</title>

 </head>

 <body>

 <h1>The Books</h1>

 <div id="bookstore"></div>

 <h1>Your Cart</h1>

 <div id="cart"></div>

 <script>

 const bookstore = {

 books: ['Ulysses', 'The Great Gatsby'],

 removeBook(title) {

 let newList = this.books.filter((book) => book != title);

 this.books = newList;

 this.displayBookstore();

 },

 displayBookstore() {

 const renderTarget = document.getElementById('bookstore');

 const bookList = this.books.map((book) => `<p>${book}</p>`);

 renderTarget.innerHTML = bookList.join('');

 shoppingCart.displayCart(this.removeBook.bind(this));

 },

 };

 const shoppingCart = {

 itemsInCart: ['The Great Gatsby'],

 handleClick(removeBook) {

 removeBook(this.itemsInCart);

 },

 displayCart(clickHandler) {

 const renderTarget = document.getElementById('cart');

 const itemsInCart = this.itemsInCart.map((item) => `<p>${item}</p>`);

 const checkoutButton = "<button id='checkout'>Check Out</button>";

 (continued)

164 BOOK 1 JavaScript Fundamentals

 renderTarget.innerHTML = itemsInCart.join('') + checkoutButton;
 document

 .getElementById('checkout')

 .addEventListener('click', () => this.handleClick(clickHandler));

 },

 };

 bookstore.displayBookstore();

 </script>

 </body>

</html>

When you run this app in a browser, it displays the bookstore and the cart, as
shown in Figure 8-6. When you click the Check Out button, "The Great Gatsby" is
removed from the bookstore.books and then bookstore.displayBookstore() is
called again to update the browser window with the new list of books, as shown
in Figure 8-7.

Can you figure out how to also remove the book from the cart when you check out?

LISTING	8-17:	 (continued)

FIGURE 8-6:
The finished

bookstore app.

W
riting and Running

Functions

CHAPTER 8 Writing and Running Functions 165

Chaining Functions
Many of JavaScript's built-in functions can be chained together so that they run
sequentially. For example, to convert a string to uppercase and then trim white
space from the beginning and end, you can use the following statement:

" my string. ".toUpperCase().trim();

The result of running this statement will be

'MY STRING'

Function chaining works by passing the same object to multiple functions sequen-
tially (in order, from left to right). Function chaining is a design pattern rather
than a feature of JavaScript. Using it makes your code more readable and more
concise.

To create a chainable function, return this from a method. The return value of
one method becomes the input for the next method. To understand method chain-
ing, it's helpful to see two ways of doing the same thing. First, here's a series of
operations performed using methods of an object named robot:

let result = robot.walk();

let result2 = robot.talk(result);

let result3 = robot.write(result2);

FIGURE 8-7:
The bookstore,
after checkout.

166 BOOK 1 JavaScript Fundamentals

In method chaining, each method returns its this value, which becomes the input
for the next method in the chain. Here's how you might write the robot object to
enable method chaining:

const robot = {

 currentActivity: undefined,

 walk() {

 this.currentActivity = 'walking';

 return this;

 },

 talk() {

 this.currentActivity = 'talking';

 return this;

 },

 write() {

 this.currentActivity = 'writing';

 return this;

 },

};

To make the robot walk and then talk and then write, you can chain these methods
together, like this:

robot.walk().talk().write();

CHAPTER 9 Getting Oriented with Classes 167

Getting Oriented
with Classes

“They can do without architecture who have no olives nor wines in the cellar.”

—HENRY DAVID THOREAU

Like constructor functions, classes are templates for objects. At their core,
they’re built on prototypes (which you can read about in Chapter 6). But their
syntax and capabilities go beyond what’s available elsewhere in JavaScript.

In this chapter, I show you how to harness the power of classes.

The goal with classes (introduced into JavaScript in 2015) is to provide a syntax for
working in JavaScript in an object-oriented way. Object-oriented programming
is a pattern used in many modern programming languages such as Java and C#.

Chapter 9

IN THIS CHAPTER

 » Harnessing the power of abstraction
and encapsulation

 » Getting classy with inheritance and
polymorphism

 » Deriving classes from base classes

 » Constructing constructors

 » Tuning in to static properties and
methods

 » Calling your parents is super()

 » Declaring public and private fields

 » Honing in on some fine points about
arrow functions

168 BOOK 1 JavaScript Fundamentals

In object-oriented programming (also known as OOP), the main focus of a program
is its objects and the relationships between them.

These main concepts in object-oriented programming are described next in this
chapter:

 » Encapsulation

 » Abstraction

 » Inheritance

 » Polymorphism

Encapsulation
Encapsulation means that each object in a program has its own, private data (called
state), which can only be modified or accessed by the object. An object can also
have private functions that only it can invoke.

For example, the private state of a class called Phone might include data such as
the battery level and whether the display is on. As the user of the phone, you have
no direct access to these properties. You can’t execute a statement like Phone.
batteryLevel = 100.

However, the phone can be plugged in. You can imagine that plugging in a phone
is like calling a Phone.charge() method. As the phone charges, the phone updates
its private batteryLevel property accordingly.

Abstraction
Abstraction means that each object exposes only high-level methods for other
objects to be able to work with it. Suppose that you have an object that represents
a catalog of products. Other objects don’t need to “care” what happens inside this
object — they just need to know that they can call a public method, which might
be named getProducts(), to get the data from the object. Abstraction is what
makes complex systems possible. If you had to understand how to program your
phone and how cellular networks work in order to place a phone call, you’d have a
good excuse for not calling your mom. Fortunately, making a phone call is easy to
do because the technical details have been abstracted into a simple user interface.

G
etting O

riented w
ith

Classes

CHAPTER 9 Getting Oriented with Classes 169

Inheritance
Inheritance means that new classes can be created that get properties from other
classes. For example, a class named Animal might have a few properties that
describe characteristics of an animal. An object created using the Animal class
might look like this:

{

 domain: 'Eukarya',

 kingdom: 'Animalia',

 structure: 'multicellular'

}

If you want to make a new class to describe a fish, you can create a class called
Fish that has the same properties as the Animal class — a better way, however, is
to create the Fish class by inheriting the properties of the Animal class and then
adding properties that are specific to fish.

By using inheritance to create the Fish class, it becomes possible for the Fish
class to access the methods and data that are common to all animals while also
having its own properties and methods that are particular to fish (and any classes
that inherit from the Fish class).

Polymorphism
Polymorphism means that objects of various types can be accessed via the same
interface, and that each type of object can provide its own, independent imple-
mentation of this interface.

For example, if the Animal class defines a move() method, the Bird class can have
its own implementation of move() that will be used when you call move() on an
object created using the Bird class.

Base Classes
The most basic syntax for creating a class uses the class keyword, followed by a
class name, followed by a pair of curly braces, like this:

class MyClass {}

170 BOOK 1 JavaScript Fundamentals

This class is called a base class because objects created by using it don’t inherit
properties from any other object, other than the base JavaScript object, named
Object.

Recognizing that classes aren’t hoisted
Although the basic syntax for creating a class resembles the syntax for creat-
ing functions (minus the parameter list, which has been moved to the construc-
tor), an important difference between classes and functions is that classes aren’t
hoisted. If you try to use a class before it’s declared, you get an error.

Using class expressions
Classes can also be defined by using expressions. To create a class using an
expression, assign the class to a variable or constant. When you use an expression
to create a class, the name to the right of the class keyword is optional. If you do
include it, however, it’s used as the value for a property of the object called name:

const MyClass = class MyClass{};

Making instances of base classes
To create an object from a class (also known as an instance of the class), use the
new keyword followed by the name of the class:

const myObject = new MyClass();

As with the constructor function method of creating an object, invoking the name
of a class with the new keyword causes the class’s constructor function to run. If
you don’t provide your own constructor function inside a base class, JavaScript
runs a default constructor, which looks like this:

constructor(){}

Derived Classes
A derived class is one that has a parent class it inherits from. To create a derived
class, use the extends keyword followed by the name of the class the derived class
should be based on, like this:

G
etting O

riented w
ith

Classes

CHAPTER 9 Getting Oriented with Classes 171

class Coffee extends Beverage {}

The derived class is how one basic concept of object-oriented programming —
inheritance — is implemented. A common way to describe a derived class is to say
“is a.” In this case, Coffee is a Beverage.

When you invoke a derived class that has no constructor but uses the new keyword,
JavaScript supplies the following default constructor:

constructor(...args) {

 super(...args);

}

What this constructor does is accept any arguments you specified when you
invoked the class. These arguments are spread into separate parameters (using
the spread operator) and passed to the super() function.

The super() function, used inside a constructor, calls the constructor of the par-
ent class.

Constructors
A constructor is a method (always named constructor()) in a class that runs
whenever a class is invoked with new and creates an object instance. It’s fully pos-
sible, and quite common, to write classes without explicitly writing a constructor.

If instances of the class need to be initialized with data before other methods can
be called, however, the way to do this is with a constructor.

Constructor functions are written using method notation. The name of the func-
tion is followed by a parameter list followed by curly braces containing state-
ments, like this:

class Beverage {

 constructor(){

 // your code here

 }

}

172 BOOK 1 JavaScript Fundamentals

If you pass arguments into a class function when you invoke it, those arguments
are passed to the constructor function and you can specify parameters in the con-
structor’s parameter list for expected arguments, like this:

class Beverage {

 constructor(size,temperature){

 ...

As with a constructor function outside of a class, to make the parameters available
as properties of the new object, you need to specifically assign them to properties
of the new object by using the this keyword, as shown in Listing 9-1.

LISTING 9-1: Using this in a class constructor

class Beverage {

 constructor(size,temperature) {

 this.size = size;

 this.temperature = temperature;

 }

}

A constructor function in a derived class must have a call to super() before any
other statements, passing to it the values with which you want to initialize the
properties of the parent.

Calling super() is exactly the same as calling the constructor function of the
parent class.

For example, Listing 9-2 shows a Coffee class that’s derived from the Beverage
class.

LISTING 9-2: Deriving a class from a base class

class Coffee extends Beverage {

 constructor(size, temperature, hasCaffeine, howYouTakeIt){

 super(size, temperature);

 this.hasCaffeine = hasCaffeine;

 this.howYouTakeIt = howYouTakeIt;

 }

}

To create a new object from the Coffee class, call Coffee() with the new keyword
and pass in arguments for each of the parameters defined by the constructor:

G
etting O

riented w
ith

Classes

CHAPTER 9 Getting Oriented with Classes 173

const morningCoffee = new Coffee('64oz', 'hot', true, 'black');

The new object looks like this:

{

 size: '64oz',

 temperature: 'hot',

 hasCaffeine: true,

 howYouTakeIt: 'black'

}

Beyond being the place to initialize properties of objects, the class constructor is
where you can bind methods to the new object.

Properties and Methods
After the constructor, you can define as many properties and methods as you like.

Creating methods in a class
Although the syntax of a class may resemble the syntax of an object literal, they
aren’t the same. Classes aren’t objects, they’re functions that can be used to cre-
ate objects. To create a method inside a class, you can use method notation, the
way you would use it inside object literal notation, though the methods have no
commas between them.

For example, in the Beverage class, you can create a method called drink(), as
shown in Listing 9-3.

LISTING 9-3: Creating a method in a class

class Beverage {

 constructor(size, temperature) {

 this.size = size;

 this.temperature = temperature;

 }

 drink(){

 if (this.temperature !== 'scalding'){

 console.log('now drinking');

 }

 }

}

174 BOOK 1 JavaScript Fundamentals

Any class derived from Beverage will also have access to the drink() method.

Overriding methods in a derived class
Because the parent of a derived class is the class’s prototype, an object created
from a derived class also has access to its parent’s methods.

If a derived class has its own version of a method defined in its parent, the derived
class’s own method is used.

For example, the Coffee class may have a drink() method, as shown in
Listing 9-4.

LISTING 9-4: Overriding a method in a class

class Coffee extends Beverage {

 constructor(size, temperature, hasCaffeine, howYouTakeIt){

 super(size, temperature);

 this.hasCaffeine = hasCaffeine;

 this.howYouTakeIt = howYouTakeIt;

 }

 drink(){

 if (this.temperature != 'scalding') {

 console.log('now drinking coffee');

 }

 }

}

Defining methods, properties, and fields
Properties created in a class are also known as fields. Fields and methods are both
called features of a class, or they can be referred to as members of the class instead.

The same way that methods in a class are defined without using the function
keyword, fields in a class are defined without using a var, let, or const keyword,
like this:

class MyClass {

 publicField = 'this is a public field';

}

G
etting O

riented w
ith

Classes

CHAPTER 9 Getting Oriented with Classes 175

If you define fields of a class using this syntax (called class fields syntax), it’s a good
practice to first define all class fields in the class, before the constructor — this
strategy helps document your class and keep it tidy, as shown here:

class Cat {

 paws = 4;

 sound = 'meow';

 constructor(name, favoriteToy) {

 this.name = name;

 this.favoriteToy = favoriteToy;

 }

}

When you define members (methods or fields) outside of the constructor, they’re
added to the instance before the constructor runs, which means that you can
access them from within the constructor.

Public members
By default, members of a class are public. Public fields are called public because
they can be accessed by code outside of the class. Private fields, on the other hand,
can be accessed only from within the class. You don’t need to do anything special
to declare a public method or field.

Public class members exist on every instance of a class you create. In a derived
class, public members that belong to the parent class are added when super() is
called — which is why super() must always be the first statement in a construc-
tor of a derived class.

Private members
To make a member of a class private, preface the name of the property or method
with the number sign, #, as shown in the following snippet. Private members of
a class can be used by other fields and methods within a class but are invisible to
the world outside of the class:

class Cat {

 #isSleeping;

 paws = 4;

 sound = 'meow';

 constructor(name, favoriteToy) {

 this.name = name;

 this.favoriteToy = favoriteToy;

 }

176 BOOK 1 JavaScript Fundamentals

 #takeNap(){

 this.#isSleeping = true;

 }

}

As with public members of a class, private members are added whenever a class is
constructed or super() is called.

Static members
The static keyword creates a method or property that can’t be called on instances
of the class — only on the class itself. Static methods are commonly used for utili-
ties, and static properties are useful for caches and other class-level data.

In Listing 9-5, species is a static property because it needs to be the same for
every instance of Cat. The static method named herd() is static because it’s a
utility method. I’ve bolded the static members in the following listing to make
them easier for you to find.

LISTING 9-5: Creating static members

class Cat {

 static species = 'Felis catus';

 #isSleeping;

 paws = 4;

 sound = 'meow';

 constructor(name, favoriteToy) {

 this.name = name;

 this.favoriteToy = favoriteToy;

 }

 static herd(){

 throw new Error(`You can't do that.`);

 }

 #takeNap(){

 this.#isSleeping = true;

 }

}

In the preceding example, both the species property and the herd() method are
public, which means they can be accessed by other JavaScript code by using the
name of the class followed by the property or method name.

Private fields can be static as well. Private static fields can be accessed only within
the class where they’re defined.

G
etting O

riented w
ith

Classes

CHAPTER 9 Getting Oriented with Classes 177

The ability to declare public as well as private fields is part of encapsulation —
one of the defining patterns of object-oriented programming, which you can read
about at the beginning of this chapter.

Practicing and Becoming comfortable
with Classes

Fully understanding how to use classes takes some time, and understanding all
the ins and outs of various class-related keywords also takes time. Follow these
steps to see in action all the various topics you can read about in this chapter:

1. Open the JavaScript console in your web browser.

2. Enter the code from Listing 9-6 to create a new class that contains public
and private fields as well as static fields.

3. Create two instances of the Cat class:

const cat1 = new Cat('Mr. Furly', 'tinfoil');

const cat2 = new Cat('Sparky', 'box');

4. Call the play() method on one of the cats:

cat1.play();

5. Type each object name into the console to see the values of its properties
and methods:

cat1

cat2

You can see that the instance of the Cat object you called play() on now has
its private isSleeping property set to true. Also notice that the cat1 and
cat2 objects lack the static property species and the static method herd(),
which are defined in the class.

6. Try to access the isSleeping property from the console:

cat1.#isSleeping

You get a syntax error.

7. Access a public property of one of the cat objects:

cat1.paws

This step works as you’d expect.

178 BOOK 1 JavaScript Fundamentals

8. Call the herd() method on the Cat class:

Cat.herd()

The static method called herd() will run, and you’ll see the error message (as
expected) that you can’t herd cats.

9. Make a derived class from Cat, named ShortHair:

class ShortHair extends Cat {

 fur = 'short';

 constructor(name, favoriteToy){

 super(name, favoriteToy);

 }

}

10. Create an instance of ShortHair:

const cat3 = new ShortHair('Murray', 'keyboard');

11. Check the properties of cat3:

cat3

You’ll see that cat3 contains all the same properties as cat1 and cat2 but also
contains a new public property, fur, as shown in Figure 9-1.

LISTING 9-6: Creating a class with public, private, and static fields

class Cat {

 static species = 'Felis catus';

 #isSleeping;

 paws = 4;

 sound = 'meow';

 constructor(name, favoriteToy) {

 this.name = name;

 this.favoriteToy = favoriteToy;

 }

 static herd() {

 throw new Error(`You can't do that.`);

 }

 play() {

 console.log(`Playing with ${this.favoriteToy}.`);

 this.#takeNap();

 }

G
etting O

riented w
ith

Classes

CHAPTER 9 Getting Oriented with Classes 179

 #takeNap() {

 this.#isSleeping = true;

 }

}

FIGURE 9-1:
Making a

derived class.

CHAPTER 10 Making Things Happen with Events 181

Making Things Happen
with Events

“You have power over your mind — not outside events. Realize this, and you
will find strength.”

— MARCUS AURELIUS

If you’re read the earlier chapters in this book, you’ve reached an important
milestone in your JavaScript education. Until this point in the book, I have
described the JavaScript language itself, largely without considering the envi

ronment in which it’s running. Now it’s time to shift to talking about taking
JavaScript to the people.

Events are things that happen outside of your program, such as a mouse button
click or an HTML element loading or a timer reaching a certain point. In this
chapter, I tell you how events work, how to listen for them from within a Java
Script program, and how to run functions in response to events.

Chapter 10

IN THIS CHAPTER

 » Stepping through the JavaScript
runtime model

 » Running through the event loop

 » Introducing the Event object

 » Adding event listeners

 » Dispatching events

 » Adding and removing event listeners

 » Stopping default actions from
happening

182 BOOK 1 JavaScript Fundamentals

Understanding the JavaScript
Runtime Model

A programming language’s runtime model describes how implementations
of the language should run code. In the case of JavaScript, the runtime model
is implemented in JavaScript engines, such as Chrome’s V8 engine, Mozilla’s
SpiderMonkey engine, and Apple’s JavaScriptCore engine.

At a high level, JavaScript’s runtime model is made of these three components:

 » The stack

 » The heap

 » The queue

Figure 10-1 shows a visual representation of the JavaScript runtime model.

Stacking function calls
The stack is made up of frames. You can think of them as film frames. JavaScript
processes frames one at a time and then moves on to the next one. Along with the
heap, the stack is part of the core JavaScript engine (refer to Figure 10-1).

FIGURE 10-1:
The JavaScript

runtime model.

© John Wiley & Sons, Inc.

M
aking Things H

appen
w

ith Events

CHAPTER 10 Making Things Happen with Events 183

Heaping objects
The heap is an area of memory where objects are stored. Unlike the stack, which is
ordered based on first-in-first-out (FIFO), the heap is unstructured.

The names of the heap and the stack are quite appropriate to how they work. For
example, when you remove your clothes from the dryer, they’re in an unordered
heap. When you stack them, you put them into an order.

Queuing messages
Events, such as the event that happens when you click a button in a web page,
create messages. Your browser is generating hundreds of these event messages all
the time in response to every mouse movement, page or image load, keystroke,
and many other events. These messages all go into the event queue.

Most of the messages in the queue just exit it without causing anything to happen.
But, in some cases, the JavaScript engine determines a message to be important
and takes some action based on it.

The Event Loop
The event loop is a constantly running process in a JavaScript engine that pro
cesses messages from the message queue. When it finds a message it’s interested
in, it adds function calls to the stack to handle the event. One reason that a mes
sage in the queue might be important is that the current program has created an
event listener for that event. You can find out how to create event listeners later in
this chapter, in the section “Listening for Events.”

JavaScript is single-threaded
JavaScript can do only one thing at a time. It might seem to you, however, that
it’s doing many things simultaneously, because it generally runs very quickly and
because it can handle input and output using events and callbacks.

Events and callbacks are the keys to asynchronous programming, which I tell you
about in Chapter 11 of Book 1. They’re also key concepts to understand for working
with Node.js, which I discuss in Book 7.

184 BOOK 1 JavaScript Fundamentals

Messages run until they’re done
Because JavaScript is singlethreaded, it must deal with messages one at a time
and process each one until it’s done. This can lead to situations in which a mes
sage that takes a long time to process can hold up everything else. This is called
blocking.

If you’ve ever visited a web page or run a JavaScript program where you’re una
ble to click on anything or even scroll in the web page and the browser eventually
asks you whether you want to continue waiting, JavaScript is trying to handle a
message that’s blocking execution.

To avoid blocking, most event handler functions are short. Another strategy to
avoid blocking is to use asynchronous functions, which hand off execution of code
to a process outside of the JavaScript engine (such as a networking or data access
API) along with a callback function that will be returned to the stack when the
outside process finishes its work (such as getting data, waiting for a timer, or
making an HTTP request).

Listening for Events
For JavaScript to be able to receive input from users and information about the
world outside of itself, it needs to run in an environment that can create events.
For clientside JavaScript, this environment is most commonly a web browser.

Web browsers contain APIs for interacting with the browser window, web pages,
the network, storage, and much more. It’s by using these APIs that we can write
JavaScript programs that do more than just output messages to the console. You
can find out much more about how web browsers work and about the APIs built
into web browsers in Book 2.

For a JavaScript program to know what’s happening in a web browser, the pro
gram needs to listen for events that are produced in the browser. This can be done
in three different ways:

 » HTML event attributes

 » Event handler properties

 » The addEventListener() method

You see each of these methods used in JavaScript programming, so it’s important
to know them all. However, only one, addEventListener(), is the recommended
and best way.

M
aking Things H

appen
w

ith Events

CHAPTER 10 Making Things Happen with Events 185

Listening with HTML event attributes
HTML’s event attributes are attributes that can be added to HTML elements to run
JavaScript in response to events on those elements. For example, the onclick
attribute can be added to a visible HTML element and will run JavaScript state
ments or a function when that element is clicked. The following code shows how
to use an event attribute:

<button onclick="alert('You clicked the button')">Click Here</button>

Event attributes were introduced into HTML when JavaScript was first created.
In addition to onclick, there are event attributes for many other browser events,
such as onload, onsubmit, onkeydown, and onmouseover.

Because they’re written in your HTML and apply to only one element, event attri
butes can quickly become difficult to maintain, and they violate the separation of
concerns rule that says JavaScript and HTML should be kept separate.

Because there are now superior ways to handle events in HTML, the event attri
butes are considered obsolete and shouldn’t be used.

Listening with Event handler properties
Event handler properties are properties that are available on builtin browser
objects that can be used to listen for events. For example, elements have an
onclick property that can be used like this:

const helpButton = document.getElementById('help-button');

function displayHelpWindow(){

 window.open('help.html');

}

helpButton.onclick = displayHelpWindow;

Notice that, unlike the HTML event attributes, event handler properties properly
separate JavaScript code from HTML. Also unlike event attributes, they take a
function, rather than a function call, as their value.

A function name without parentheses after it represents the code of the function,
a function name with parentheses after it causes the function to be run.

Although using event handler properties is better than using event attributes,
they do have their downsides. The biggest problem with event handler properties

186 BOOK 1 JavaScript Fundamentals

is that it’s impossible to use them to set more than one event of a certain type to
an element. Another downside is that each event handler property can be used for
only one type of event, and there aren’t builtin event handler attributes for every
possible event that can happen.

Using addEventListener()
The addEventListener() method is the newest and best way to create event lis
teners. It can be called on any instance of an object, and it takes two parameters:
the event to listen for and a callback function that should run when the event
happens on the object.

Here’s the basic syntax for addEventListener():

EventTarget.addEventListener('event', callback, options);

Selecting your event target
The event target is the object the event listener should be attached to. For example,
if you want to detect an event that happens in the browser window (such as the
load event), you can set the event target to window. Inside the window is the docu-
ment object, which represents the current HTML page. Inside the document object
are element nodes, representing the HTML elements that make up your web page.

An event listener usually is applied to a single element, such as a button or a text
input. The most common way to select a single element is by using the document.
getElementById() method, like this:

document.getElementById('submitButton')

The value passed to getElementById() is a string that should match the value of
the id attribute for an element in your document.

Setting addEventListener()’s parameters
The first parameter is the name of the event to listen for. Unlike when you use
event attributes or event handler properties, this is just the event name, without
the on prefix.

The types of events that can be applied to a node depend on the node. Hundreds
of different events can be detected by a browser, including mouse events, touch
events, keyboard events, speech recognition events, window scrolling events, and
many others. Table 10-1 shows some of the more common events that can be
applied to HTML element nodes.

M
aking Things H

appen
w

ith Events

CHAPTER 10 Making Things Happen with Events 187

The second parameter of addEventListener() is a callback function. Note that
this must be either an anonymous function or the name of a function defined
outside of the addEventListener() function call. If you add parentheses after the
name of the function, the function is invoked and JavaScript attempts to use the
result of invoking the function as the event handler when the event occurs. This is
usually a mistake, as shown in the following code example:

function handleClick(){

 alert(`I've been clicked!`);

}

document.addEventListener('click', handleClick());

TABLE 10-1	 Events Supported by All HTML Elements
Event Occurs When This Happens

abort The loading of a file is aborted.

change An element’s value has changed since losing and regaining focus.

click A mouse button has been clicked on an element.

dblclick A mouse button has been clicked twice on an element.

input The value of an <input> or <textarea> element has changed.

keydown A key is pressed.

keyup A key is released after being pressed.

mousedown A mouse button has been pressed.

mouseenter A mouse pointer is moved onto the element.

mouseleave A mouse pointer is moved off the element.

mousemove A mouse pointer has moved.

mouseout A mouse pointer is moved off the element.

mouseover A mouse pointer is moved onto the element.

mouseup A mouse button is released.

mousewheel A wheel button of a mouse is rotated.

reset A form is reset.

select Text has been selected.

submit A form is submitted.

188 BOOK 1 JavaScript Fundamentals

If you enter this code into your browser’s JavaScript console, you can see that the
alert happens right away rather than waiting for a click event.

If you remove the parentheses from after the name of the handleClick() func
tion, the browser waits until it detects a click event anywhere on the current web
page before opening the alert window.

The third parameter to addEventListener() is an optional options object. If you
include the options object, it can contain any of the following properties:

 » capture: This option is a Boolean value that, when set to true, causes the
event to be dispatched on the element the listener is registered to before
being dispatched to elements beneath it on the DOM tree. By default, capture
is set to false, and that’s almost always what you want to happen.

 » once: This option is a Boolean value that causes the event listener to be
removed from the element automatically after the first time it’s invoked. By
default, once is set to false.

 » passive: This option is a Boolean value indicating that the callback function
that handles the event won’t call preventDefault() to block the default
browser event that the event normally triggers. By default, this option is
false. However, setting it to true can be used to improve performance of a
user interface in some cases.

 » signal: The signal option takes an AbortSignal as its value. An AbortSignal
is an object containing an abort() method that, when called, removes the
event listener.

The addEventListener() method has several advantages over the other two
methods for handling events:

 » You can use it to apply more than one event listener to an element.

 » It works with any node in the DOM, not just on elements.

 » It gives you more control over when it’s activated.

Listing 10-1 shows an example of using addEventListener() to detect mouse
movements in the browser.

LISTING	10-1:	 Setting an event listener

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="UTF-8"/>

M
aking Things H

appen
w

ith Events

CHAPTER 10 Making Things Happen with Events 189

 <meta http-equiv="X-UA-Compatible" content="IE=edge"/>

 <meta name="viewport" content="width=device-width, initial-scale=1.0"/>

 <title>Mouse Tracking</title>

 <script>

 window.addEventListener('load', app);

 function app() {

 const trackingArea = document.getElementById('tracking-area');

 trackingArea.addEventListener('mousemove', onMouseMove);

 function onMouseMove(e) {

 setPosition({ x: e.offsetX, y: e.offsetY });

 }

 }

 function setPosition(position) {

 const { x, y } = position;

 const positionElement = document.getElementById('current-position');

 positionElement.innerHTML = `x: ${x}; y: ${y}`;

 }

 </script>

 <style>

 #tracking-area {

 width: 500px;

 height: 500px;

 border: 1px solid black;

 }

 </style>

 </head>

<body>

 <h1 id="current-position"></h1>

 <div id="tracking-area">

 Move your mouse in here. If it's not working, click inside this box and

 try again.

 </div>

 </body>

</html>

The program in Listing 10-1 uses two calls to addEventListener(). The first one
waits for the load event on the window object. The window object represents the
current browser window. The load event is emitted after an object loads and is
displayed in the browser. When this event happens, the app() function is called.

Listening for the load event is necessary to make sure that the HTML elements
that the rest of the program uses are available in the browser window before the
app() function tries to access them.

190 BOOK 1 JavaScript Fundamentals

Another way to accomplish the same result is to put your JavaScript block at the
bottom of the HTML document.

Inside the app() function, the second event listener listens for mouse movements
in the <div> element with the ID of tracking-area. When the mouse moves,
the onMouseMove() function is called, which gets the current mouse position and
updates the value of the <h1> element with an ID of current-position.

The key to how the onMouseMove() function works is the Event object.

The Event object
Notice that the onMouseMove() function in Listing 10-1 receives a parameter called
e — this is an event object. An event object is passed automatically to event han
dler callback functions. You can give the event object any name you like inside an
event handler function, but it's most commonly called e, evt, or event.

The event object contains a wealth of information about the event that happened.
To see all the information you can get from the event object, add the following
statement inside the onMouseMove() function from Listing 10-1:

console.log("event:", e);

After you add this line and move your mouse, you can see the event objects that
are generated logged to the console, as shown in Figure 10-2.

Listening on multiple targets
Although addEventListener() applies an event listener to only a single target,
it's possible to use a single addEventListener() method call to detect events on
multiple events by using event bubbling. Event bubbling is the default method that
browsers use to detect events on nested elements. Event bubbling refers to the fact
that when an event happens on a nested node, such as a button inside a form, the
button receives the event first and then bubbles up to the elements that contain
the node where the event happened.

To detect events on multiple nodes, you can apply an event listener to an element
that contains those nodes. For example, in Listing 10-2, the <div> element around
the buttons combines them into a group. Because a click on any one of the buttons
will bubble up to the <div> element, you can detect a click on any one of the but
tons by listening for a click event on the <div> element.

M
aking Things H

appen
w

ith Events

CHAPTER 10 Making Things Happen with Events 191

LISTING	10-2:	 Using event bubbling to detect events on multiple elements

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="UTF-8"/>

 <meta http-equiv="X-UA-Compatible" content="IE=edge"/>

 <meta name="viewport" content="width=device-width, initial-scale=1.0"/>

 <title>Using Bubbling</title>

 </head>

<body>

 <div id="button-group">

 <button>Click Me</button>

 <button>No, Click Me</button>

 </div>

 <script>

 document

 .getElementById('button-group')

 .addEventListener('click', () => alert('clicked'));

 </script>

 </body>

</html>

FIGURE 10-2:
Viewing the

event object.

192 BOOK 1 JavaScript Fundamentals

Dispatching events programmatically
Normally, events happen in response to an action outside of your program, such as
input from the browser or the user of the web page. Sometimes, however, it's use
ful to be able to create custom events or dispatch builtin events from within your
program itself. To accomplish this, you can use the dispatchEvent() method.

Unlike events fired by the browser, which invoke event handlers asynchronously
by using the event loop, events fired using the dispatchEvent() method invoke
event handlers synchronously.

To use dispatchEvent(), you first have to create an event object to dispatch. To
create an event object, use the new keyword with the Event interface that contains
the type of event you want to dispatch.

For example, the MouseEvent interface can be used to create click, mouseup, and
mousedown events, among others. Here's the code to create a simple click event:

const clickEvent = new MouseEvent('click');

Once you have the click event, call dispatchEvent() on an event target and pass
it the event object you want to dispatch:

document.getElementById('my-button').dispatchEvent(clickEvent);

If an event listener is registered for that event on the event target, it will be
handled.

Listing 10-3 shows how you can use dispatchEvent() to fire a focus event on an
<input> element.

LISTING	10-3:	 Firing a built-in event

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="UTF-8"/>

 <meta http-equiv="X-UA-Compatible" content="IE=edge"/>

 <meta name="viewport" content="width=device-width, initial-scale=1.0"/>

 <title>Document</title>

 </head>

<body>

 <input id="test-text" type="text" value="this is a test"/>

 <script>

 const focusEvent = new Event('focus');

M
aking Things H

appen
w

ith Events

CHAPTER 10 Making Things Happen with Events 193

 const testInput = document.getElementById('test-text');

 testInput.addEventListener('focus', (e) => {

 console.log(`${e.target.value}`);

 });

 testInput.dispatchEvent(focusEvent);

 </script>

 </body>

</html>

If you run Listing 10-3 in a browser, you see that the event listener runs and logs
the value of the input to the console. You might also notice that the input element
isn't highlighted. If you click your mouse into the <input> element, however,
the border of the element becomes bold to indicate that the element currently is
active. If you add the following code to the event listener callback, you get a clue
about what's going on:

console.log(`The active element is: ${document.activeElement.id}`);

When you refresh the page with this statement included, you see the following
output in the console:

this is a test

The active element is:

If you click on the input element, the event listener fires again and the following
text is added to the console:

this is a test

The active element is: test-text

Both the programmatically fired event and the event that resulted from clicking
on the element caused the event listener to run, but only clicking on the event
actually changed the state of the input element from unfocused to focused. This
is because events are just the messengers. They don't do anything by themselves.

Triggering built-in events
If you want an event fired with dispatchEvent() to do something, you have to
tell it what to do in the event handler function. Try adding the following line
before the console.log statements in the addEventListener() callback function
in Listing 10-3:

testInput.focus();

194 BOOK 1 JavaScript Fundamentals

Now, when you look at the console, you see the following output:

this is a test

The active element is: test-text

this is a test

The active element is: test-text

Can you figure out why the message was printed twice? The focus() method of an
element actually gives that element focus and dispatches the focus event. So, by
using dispatchEvent() and then calling focus(), you created two focus events.

Creating and triggering custom events
The dispatchEvent() method can be used to dispatch custom events containing
data as well. To pass data with an event, pass an object to the second parameter of
the event interface containing a property called detail.

For example, you might want to create an event that passes a date object to the
event listener when it's clicked, as in the following example:

const event = new CustomEvent('stampedClick', {detail: new Date()});

You can then access the detail property in the event handler callback:

testInput.addEventListener('stampedClick', (e) => {

 console.log(`Clicked at`, e.detail);

});

Removing event listeners
To remove an event listener, use the removeEventListener() method. To use
removeEventListener(), pass it the type of event and the listener you want to
remove.

If you're going to be using removeEventListener(), you need to create the event
handler function outside of the addEventListener() method so that you can pass
it to both addEventListener() and removeEventListener():

const handleClick = function(e){

 console.log('click handled');

}

myButton.addEventListener('click', handleClick);

myButton.removeEventListener('click', handleClick);

M
aking Things H

appen
w

ith Events

CHAPTER 10 Making Things Happen with Events 195

Preventing default actions
Some elements have default actions that happen when certain events are fired. For
example, the <form> element submits a form using HTTP when the submit event
fires. If you don't want the default events to happen (as is often the case with
the <form> element's default action), you can use the preventDefault() method
inside your event handler:

e.preventDefault();

CHAPTER 11 Writing Asynchronous JavaScript 197

Writing Asynchronous
JavaScript

“Your mind will answer most questions if you learn to relax and wait for the
answer.”

—WILLIAM S. BURROUGHS

There’s no getting around the fact that everything a computer program does
takes time. Some actions, like declaring a variable or performing a simple
calculation, take such a small amount of time that the action seems instan-

taneous. But when programs start to involve network requests, database access,
and accessing resources outside of the web browser, wait times can start to add up.

Chapter 11

IN THIS CHAPTER

 » Multitasking with Asynchronous
JavaScript

 » Making promises you can keep

 » Putting it all together with AJAX

 » Fetching data

 » Simplifying promises with async and
await

 » Understanding CORS

 » Working with JSON

198 BOOK 1 JavaScript Fundamentals

Understanding Asynchronous JavaScript
Asynchronous programming is a technique that allows JavaScript to start a process
and then continue to run the program while it waits for the result. It might seem
confusing that JavaScript is single-threaded but also has a way to do asynchro-
nous programming. To understand, it’s helpful to think about asynchronous code
in terms of an ordinary human activity such as washing your clothes.

When you wash your clothes by hand, you have to stop everything else you’re
doing until the clothes are clean. If you use a washing machine, you can turn it on
and then go do something else. When the washing cycle is complete, the machine
alerts you and you can move the laundry to the dryer and then get back to work
or finish your lunch.

Asynchronous JavaScript works the same way.

Reading synchronous code
Before Chapter 10 in Book 1, all the JavaScript examples I show you run synchro-
nously. In synchronous programming, one statement runs, followed by the next
statement, and so on until the program is finished running or is stopped.

Listing 11-1 shows an example of a synchronous program.

LISTING 11-1: A synchronous program

function count(maxNumber) {

 let i = 0;

 while (i < maxNumber) {

 console.log(i);

 i++;
 }

}

count(1000);

Notice that even though the program in Listing 11-1 contains a loop and a func-
tion, you can still follow the execution of the code step-by-step and know the
exact order in which statements will be executed.

Synchronous programming is easy to understand, and there’s nothing inherently
bad about it. In fact, synchronous code is a necessary part of every JavaScript
program.

W
riting A

synchronous
JavaScript

CHAPTER 11 Writing Asynchronous JavaScript 199

Problems with synchronous code occur when a process takes a long time to com-
plete. Because JavaScript is single-threaded, statements that take a long time to
execute block anything else from happening. The user of such a program perceives
that the program is unresponsive.

Events to the rescue
Event handlers provide JavaScript with a way to do asynchronous programming.
When you use addEventListener(), you tell JavaScript to do something whenever
it detects a certain type of event. Without being able to create event listeners, any
type of event would have to happen in a particular order, and modern JavaScript
user interfaces would be impossible.

Consider, for example, the synchronous user interface in Listing 11-2.

LISTING 11-2: A synchronous JavaScript user interface

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="UTF-8"/>

 <meta http-equiv="X-UA-Compatible" content="IE=edge"/>

 <meta name="viewport" content="width=device-width, initial-scale=1.0"/>

 <title>Login Form</title>

 <script>

 alert('Welcome to the login screen');

 const username = prompt('Enter your username:');

 const password = prompt('Enter your password:');

 alert('Click OK to continue logging in');

 doLogin();

 function doLogin() {

 alert(`logging in ${username}...`);

 }

 </script>

 </head>

 <body></body>

</html>

In the synchronous login form, the data entry and messages are done using
alert() and prompt(). Both of these methods are synchronous. Everything in
your program stops and you can't use the browser while they wait for input.

200 BOOK 1 JavaScript Fundamentals

Now consider the asynchronous version of this program, shown in Listing 11-3.

LISTING 11-3: An asynchronous JavaScript user interface

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="UTF-8"/>

 <meta http-equiv="X-UA-Compatible" content="IE=edge"/>

 <meta name="viewport" content="width=device-width, initial-scale=1.0"/>

 <title>Login Form</title>

 </head>

 <body>

 <h1 id="status"></h1>

 <label

 >Username

 <input id="username" type="text"/>

 </label>

 <label

 >Password

 <input id="password" type="password"/>

 </label>

 <button id="login">Log In</button>

 <script>

 const username = document.getElementById('username');

 const password = document.getElementById('password');

 const loginBtn = document.getElementById('login');

 const statusMsg = document.getElementById('status');

 loginBtn.addEventListener('click', doLogin);

 function doLogin() {

 statusMsg.innerHTML = `logging in ${username.value}...`;

 }

 </script>

 </body>

</html>

On the asynchronous login form, you don't need to enter your username or pass-
word in a certain order, and the rest of the program (if there were more JavaScript
in this example) can continue to run at the same time.

Calling you back
The doLogin() function in Listing 11-3 is passed to addEventListener() as a
callback function.

W
riting A

synchronous
JavaScript

CHAPTER 11 Writing Asynchronous JavaScript 201

A callback function is a function passed to another function that will be called at
a later time. In the case of addEventListener(), the callback function is called
when the event listener detects an event.

Callback functions are one way to write asynchronous code, but they do present
some problems when you need to complete a series of steps instead of just one
action.

For example, consider the following series of steps:

1. When the user clicks the button, start the login process.

2. When the login is finished, check to see whether it was successful.

3. If it was successful, load the members-only screen.

4. When the members screen finishes loading, display it.

5. If the login wasn't successful, show an error message.

Because each of the steps in this process can't be done until some condition is
met (such as the button being clicked or the login process finishing), you need
to pass the functions that perform each of these steps as callbacks by nesting the
callbacks, as shown in Listing 11-4.

LISTING 11-4: Nested callbacks

sendLoginData(

 args,

 function (result) {

 logIn(

 result,

 function (result) {

 loadPage(

 result,

 function () {

 console.log(`result: ${result}`);

 },

 failureCallback

);

 },

 failureCallback

);

 },

 failureCallback

);

loginBtn.addEventListener('click', sendLoginData);

202 BOOK 1 JavaScript Fundamentals

The code in Listing 11-4 is greatly simplified, but you can see that the doLogin()
function has multiple levels of nested function. This type of code is difficult to
read and debug. Complex programs written using callbacks can have many more
levels of nested functions. Because of the way the nested callbacks form a triangle
(if you look at it sideways), nested callbacks have been nicknamed the Pyramid of
Doom or the Christmas Tree.

Making Promises
A promise is an object (created from JavaScript's built-in Promise interface) that
represents the result of an asynchronous operation. A promise lets you work with
the result of an asynchronous operation as though it were synchronous and with-
out complex nesting of callbacks.

Promises in JavaScript work like promises in real life — for example, you run a
restaurant and a customer promises to pay you Tuesday for a hamburger you give
him today.

When the promise is made, the result of the promise is unknown. The only thing
you know is that the person will eventually keep the promise or not keep it. In
programming, we say that there are three possible states for the promise:

 » Pending: The promise has been made, but the outcome is uncertain.

 » Fulfilled: The promise was kept, and the customer paid you on Tuesday.

 » Rejected: The promise wasn't kept.

Promises still use callback functions, but rather than using nesting to pass a value
from one finished task to the next, they use a promise chain. For example, the
nested callbacks from Listing 11-4 can be rewritten with promises, as shown in
Listing 11-5.

LISTING 11-5: Creating a promise chain

doLogin()

 .then((result) => sendLoginData(result))

 .then((result1) => logIn(result1))

 .then((result2) => loadPage(result2))

 .then((result3) => {

 console.log(`final result: ${result3}`);

 })

 .catch(failureCallback);

W
riting A

synchronous
JavaScript

CHAPTER 11 Writing Asynchronous JavaScript 203

These are the important things to know about using Promises:

 » Each function in a callback chain must return a promise.

 » The then() function is actually a type of event handler that executes the
function passed to it when the previous function in the chain returns.

 » The catch() handler runs only when one of the steps in the chain fails.

Writing promises
To create a basic promise, use the new keyword with the Promise constructor. The
Promise constructor takes a callback function as its argument. This callback func-
tion takes two callback function arguments: resolve and reject:

let myPromise = new Promise((resolve,reject) => {

 someAsynchronousFunction(function(){

 resolve("Success!");

 });

});

Once you've created a promise, you can chain it with other promises using then():

myPromise().then((result) => {

 // do something with the result

});

Listing 11-6 shows a program that uses a promise and the XMLHttpRequest()
method to load text from a web server and then display it.

LISTING 11-6: Using a promise to load data with XMLHttpRequest()

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="UTF-8"/>

 <meta http-equiv="X-UA-Compatible" content="IE=edge"/>

 <meta name="viewport" content="width=device-width, initial-scale=1.0"/>

 <title>Document</title>

 </head>

 <body>

 <div id="text-display-area"></div>

 <script>

 function bookLoad(url) {

(continued)

204 BOOK 1 JavaScript Fundamentals

 return new Promise(function (resolve, reject) {

 let request = new XMLHttpRequest();

 request.open('GET', url);

 request.onload = function () {

 if (request.status === 200) {

 resolve(request.response);

 } else {

 reject(

 Error(`The text couldn't be loaded: ${request.statusText}`)

);

 }

 };

 request.onerror = function () {

 reject(Error('There was a network error.'));

 };

 request.send();

 });

 }

 const displayArea = document.getElementById('text-display-area');

 bookLoad('https://www.gutenberg.org/files/2701/2701-0.txt').then(

 function (response) {

 displayArea.innerText = response;

 },

 function (Error) {

 console.log(Error);

 }

);

 </script>

 </body>

</html>

If you try to run the program in Listing 11-6 in your browser, you get an error in
the console that looks something like Figure 11-1.

LISTING 11-6: (continued)

FIGURE 11-1:
The error that’s

generated
when running

Listing 11-6.

https://www.gutenberg.org/files/2701/2701-0.txt

W
riting A

synchronous
JavaScript

CHAPTER 11 Writing Asynchronous JavaScript 205

What's happening here is that your browser is keeping your program from access-
ing the data from the remote server. This is a security restriction known as cross-
origin resource policy, or CORS. I describe this policy later in this chapter, in the
section “Making requests with CORS.”

Follow these steps to modify the code in Listing 11-6 to load data in a way that
won't cause an error:

1. Visit https://www.gutenberg.org/files/2701/2701-0.txt and copy the
text or save the file into a new file named mobydick.txt.

Place it in the same directory as your html file containing Listing 11-6.

2. Locate the call to bookLoad() near the end of the code from Listing 11-6
and change the remote URL to just mobydick.txt.

This way, it will be loaded from your computer instead of trying to make a
request to an outside web server.

3. Right-click the HTML file in VS Code and choose Open in Live Server from
the menu.

A browser window opens and the script runs. Once mobydick.txt is loaded,
the promise returns successfully and the text is displayed, as shown in
Figure 11-2.

FIGURE 11-2:
Loading and
displaying a

local file.

https://www.gutenberg.org/files/2701/2701-0.txt

206 BOOK 1 JavaScript Fundamentals

Most of the time, you won't need to write functions that create promises. Instead,
you'll write functions that make use of methods defined by asynchronous APIs
built into web browsers or Node.js.

Introducing async functions
Promises and promise chains are a great improvement over nested callbacks in
terms of readability, but there's a better way to write asynchronous code: async
functions.

To write an async function, prefix the name of the function with the async key-
word. Once you do that, you can write expressions using the await keyword inside
the function. Here's what using async / await looks like:

async function getData (){

 const response = await fetch('http://www.example.com/data');

 return response;

}

If you want to run asynchronous operations in a sequence, the way you would with
nested callbacks or a promise chain, you just write additional await expressions.
Each await expression waits for the asynchronous operation to resolve before
allowing the next expression to proceed, as in this example:

async function getData (){

 const response = await fetch('http://www.example.com/data');

 const response2 = await processData(response);

 return response2;

}

Behind the scenes, async functions use promises. The await keyword is essen-
tially a .then callback, and the return statement in an async function is the final
link in a promise chain. Async functions always return a promise.

Async functions make writing asynchronous code as easy and straightforward as
writing synchronous code. Once you become comfortable with async functions,
you'll want to start rewriting anything that uses nested callbacks or promises. The
next two sections show you how to do that.

W
riting A

synchronous
JavaScript

CHAPTER 11 Writing Asynchronous JavaScript 207

Converting nested callbacks to async functions
Though newer APIs generally return promises, many common APIs still use call-
backs. For example, the setTimeout() function causes a browser to wait for a
certain number of milliseconds before it invokes a callback. Here's an example of
using setTimeout():

setTimeout(() => console.log('done!'), 1000);

This statement waits 1 second (1000 milliseconds) before invoking an arrow
function that will log the word done to the console. Granted, it's not an excit-
ing program, but because setTimeout() runs asynchronously, if you want to do
something else after the message is logged to the console, you need to nest call-
backs inside the callback, as shown in Listing 11-7.

LISTING 11-7: Nested setTimeout calls

function doProcessing() {

 var timeout;

 timeout = setTimeout(function () {

 console.log('doing first thing');

 timeout = setTimeout(function () {

 console.log('step 2');

 timeout = setTimeout(function () {

 console.log('step 3');

 setTimeout(function () {

 console.log('last thing!');

 }, 300);

 }, 1000);

 }, 2500);

 }, 3000);

}

doProcessing();

Functions that were written to accept callbacks present a problem when you're
trying to use them with async/await: They don't return promises. Because async/
await is an abstraction of promises, it seems that libraries built using call-
backs would necessarily crush your dreams of switching entirely to using async
functions.

However, all hope is not lost, because you can “promisify” callback functions!

208 BOOK 1 JavaScript Fundamentals

To convert the doProcessing() function from Listing 11-7 to promises, you can
create a promisified version of setTimeout(). To do this, wrap the Promise con-
structor in a function. The Promise constructor gets the arguments and passes
them to the callback, as shown here:

const promisifiedSetTimeout = function (ms) {

 return new Promise(function (res) {

 return setTimeout(res, ms);

 });

};

With this new promisifiedSetTimeout() function, you can rewrite the
getSquare() function using async/await, as shown in Listing 11-8.

LISTING 11-8: Rewriting doProcessing() using async/await

async function doProcessingAsync() {

 await promisifiedSetTimeout(3000);

 console.log('doing first thing');

 await promisifiedSetTimeout(2500);

 console.log('step 2');

 await promisifiedSetTimeout(1000);

 console.log('step 3');

 await promisifiedSetTimeout(300);

 console.log('last thing');

}

doProcessingAsync();

Listing 11-7 and Listing 11-8 produce the same result. Which one do you prefer, in
terms of readability and ease of use?

Converting promise chains to async functions
Converting a promise chain to an async function is simply a matter of converting
the .then functions to await expressions and replacing the .catch() function
with a try/catch block. I tell you more about try/catch in the “Handling errors
with async/await” section in this chapter and in Chapter 7 of Book 7. Listing 11-9
shows the loadBook() function from Listing 11-7 rewritten to use async/await.

W
riting A

synchronous
JavaScript

CHAPTER 11 Writing Asynchronous JavaScript 209

LISTING 11-9: Replacing a promise chain with an async function

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="UTF-8"/>

 <meta http-equiv="X-UA-Compatible" content="IE=edge"/>

 <meta name="viewport" content="width=device-width, initial-scale=1.0"/>

 <title>Read a book</title>

 </head>

 <body>

 <div id="text-display-area"></div>

 <script>

 const displayArea = document.getElementById('text-display-area');

 async function openBook() {

 const bookText = await bookLoad('mobydick.txt');

 displayArea.innerText = bookText;

 }

 function bookLoad(url) {

 return new Promise(function (resolve, reject) {

 let request = new XMLHttpRequest();

 request.open('GET', url);

 request.onload = function () {

 if (request.status === 200) {

 resolve(request.response);

 } else {

 reject(

 Error(`The text couldn't be loaded: ${request.statusText}`)

);

 }

 };

 request.onerror = function () {

 reject(Error('There was a network error.'));

 };

 request.send();

 });

 }

 openBook();

 </script>

 </body>

</html>

210 BOOK 1 JavaScript Fundamentals

Handling errors with async/await
Unlike with promise chains, there's no catch function for async functions. Instead,
you can use a try/catch statement — it’s made up of a try block and either a catch
block, a finally block, or both a catch block and a finally block. Here's the
syntax:

try {

// try to do something

} catch(e) {

// do something with e, which is an Error object

} finally {

// something to do whether successful or not

}

In an async function, put the await expressions in a try block, and put error
reporting or error handling code in the catch block, as shown here:

async function openBook() {

try {

 const bookText = await bookLoad('mobydick.txt');

 displayArea.innerText = bookText;

} catch(e) {

 displayArea.innerText = e;

}

In this example, when the file is loaded and successfully displayed, the catch
block is skipped. If the promise returned by bookLoad() is rejected, the error is
displayed.

Using AJAX
AJAX stands for asynchronous JavaScript and XML — the technique that makes
dynamic JavaScript user interfaces possible in web browsers. These days (and for
most of the time JavaScript programmers have been using this acronym), the pri-
mary way it has been used is with JSON data (which I describe shortly) rather than
XML. So a more appropriate name for AJAX would be AJAJ.

AJAX uses asynchronous APIs along with the Document Object Model (DOM) to
enable the modern web application experience. These are some of the features
that AJAX enables:

W
riting A

synchronous
JavaScript

CHAPTER 11 Writing Asynchronous JavaScript 211

 » Updating only part of a page

 » Receiving and sending live data

 » Infinitely scrolling user interfaces

 » Adding forms with autocomplete capabilities

 » Incorporating Like buttons

The two features that make AJAX possible are asynchronous data and DOM manip-
ulation (which is covered extensively in Book 2). For the rest of this chapter, I talk
about the techniques and APIs that are used for accessing data asynchronously
today.

Getting data with the Fetch API
The Fetch API, which is a more modern and easy way to access files and the HTTP
pipeline, was first introduced in 2015 as a replacement for XMLHttpRequest()
(which I describe earlier in this chapters). The Fetch API was never adopted
by Internet Explorer, however, so using it always required providing a backup
method (what we call a polyfill) for browsers that didn't support it.

Now that Microsoft has officially discontinued support for Internet Explorer (as of
June 15, 2022), the Fetch API is supported by every current web browser.

A polyfill is a piece of code that provides replicas of modern functionality (using
JavaScript) for features that are unsupported in a browser. Polyfills allow you, as
the developer, to write code as though the feature is supported by every browser.
The goal is for all browsers to support the same core standards and features, but
until that point is reached, some types of polyfills will be necessary.

Getting a response with fetch()
The most basic form of using the Fetch API is to provide the fetch() method with
a path to a resource (such as a file or a data stream), like this:

fetch('myfile.json');

The fetch() method returns a promise that resolves to a Response object.

212 BOOK 1 JavaScript Fundamentals

Parsing the Response
A Response object represents a response to a request made using the Fetch API. To
see an example of a Response object, type the following statement into your
browser's JavaScript console:

const response = await fetch('https://api.github.com/orgs/facebook');

This statement fetches information about Facebook's GitHub repositories.

If for some reason this URL doesn't exist in the future, you can use this same
scheme to find information about any public repositories on GitHub.

After you fetch the data from GitHub, you can type the name of the new con-
stant you created into the console to see its value. You see that the response has
a value that's a Promise object and that the promise has been fulfilled, as shown
in Figure 11-3.

If you expand the Promise and look at the Prototype, you can see that a Response
has a number of properties and methods. The property of the Response object that
contains the data returned by the fetch() method is the body property.

But, if you expand the body property, you can see that it doesn't seem to con-
tain data you can read. Instead, it tells you that the body is a ReadableStream.
A stream works similarly to how streaming video or audio works. It's not actually
a video or audio file itself, but the stream of data can be assembled into video or
audio with some parsing. In the same way, you need to do some parsing to convert
the response's body property to data you can work with in your programs.

Fortunately, the Response object provides methods for parsing the response body
easily. The method you use to parse this stream retrieved from GitHub is the

FIGURE 11-3:
Promise, fulfilled.

W
riting A

synchronous
JavaScript

CHAPTER 11 Writing Asynchronous JavaScript 213

json() method. The json() method returns a Promise that resolves to the result
of parsing the body stream as json() data.

I tell you what JSON data is shortly.

In the console window, use the json() method on the Response object returned
by fetch():

const data = await response.json();

Now, if you type data into the console, you see that the response body has been
converted into a JavaScript object, as shown in Figure 11-4.

Working with this object is now just like working with any other JavaScript object.

Calling other Response methods
The json() method of the Response object returned by fetch() is the most fre-
quently used method. However, several other useful methods are provided by the
Response object.

Response.blob()
If the content returned by the server is file data (such as a video, a PDF file, or
an image, for example) use the blob() method to convert the ReadableStream
returned by the server into a binary file. Like the other Response methods that
convert the response to a different type of data, blob() returns a promise, so it

FIGURE 11-4:
Converting a

Response body to
an object.

214 BOOK 1 JavaScript Fundamentals

must be called asynchronously, either as part of a promise chain or by using the
await keyword inside an async function.

Blob is the acronym for binary large object.

Response.text()
The text() method returns a promise that resolves to a text representation of
the body.

Handling fetch() errors
A fetch() promise is only rejected if a network error occurs. However, many
other types of errors can happen in an HTTP request that are important to detect
and handle. If the problem with the request doesn't have to do with a problem like
the client lacking Internet access, for example, the promise still resolves.

To detect and handle errors that happen with a fetch() request, you can check
the value or the response object's status property for a value of 200. A status of 200
indicates that the request was successful.

In fact, anything between 200 and 299 indicates a successful request, but, in prac-
tice, the only success status codes you're likely to ever see are 200 (which indicates
that the request succeeded) and 201 (which indicates that the request succeeded
and a new resource was created as a result).

Listing 11-10 shows how to capture both network errors and HTTP errors that
happen with fetch().

LISTING 11-10: Catching errors with fetch()

async function fetchTheData(url) {

 try {

 const response = await fetch(url);

 if (response.status >= 200 && response.status <= 299) {

 return response.json();

 } else {

 throw Error(response.statusText);

 }

 } catch (error) {

 console.log(error);

 }

}

W
riting A

synchronous
JavaScript

CHAPTER 11 Writing Asynchronous JavaScript 215

To use the function from Listing 11-10, pass it a URL as an argument. There are
four possible outcomes from any request that this function will handle:

 » The request is successful.

 » The request results in a network error.

 » The request results in an HTTP error.

 » The request isn't made, because the browser prevents it due to cross-origin
policy restrictions.

Figure 11-5 shows an example of each of these results in the browser console.

The fetch init object
The second parameter that the fetch() method accepts is an object, called the
init object, which controls settings for the request. If you're using fetch() to do
anything more than make a simple GET request to a publicly available API (such as
GitHub's), you need to set various options for the request to be successful.

These are the most important options you can set with the init object:

 » method: The method option is where you specify the HTTP method. See the
later section “Introducing HTTP” to find out more about HTTP methods.

 » headers: The headers option takes as its argument an object containing the
HTTP headers you want to send with your request.

FIGURE 11-5:
The possible

outcomes of an
HTTP request.

216 BOOK 1 JavaScript Fundamentals

 » body: The body option is where you can pass data to the server when you're
making any type of request other than one done by using the GET or HEAD
method.

 » mode: Mode is important for being able to make requests to different
domains than the web page's origin. The options for mode include cors,
no-cors, and same-origin.

 » credentials. The credentials option tells the browser whether to send
credentials to the server with the request. The possible values for credentials
are omit, same-origin, and include.

To fully understand which options you need to use with a fetch() request, you
need to understand a few more concepts, including how HTTP works and how
CORS works. Both topics are covered later in this chapter and in more detail in
Chapter 1 of Book 2.

Introducing HTTP
Hypertext Transfer Protocol (HTTP) is the protocol used to communicate on the
web. Every time a web browser fetches a web page, an image, a media file, or any
other type of resource from the web, it's using HTTP.

HTTP is a client-server protocol. The client is typically a web browser, and the
server is a web server. The client and server communicate with each other using
messages.

The client in an HTTP conversation is also known as the user agent.

Messages sent by the client are called requests, and messages sent by the server
are called responses.

If you still have your browser window open from doing the fetch() in the pre-
ceding section, you can see examples of HTTP requests and responses. Chrome
Developer Tools has a tab called Network. If you switch to that tab, you see the
request you performed, as shown in Figure 11-6.

If you click on the subtabs on the Network tab, you see details about the request
and the response. On the Headers tab, you can see the header data, which includes
metadata sent by the client and by the server.

The most important pieces of data in the headers are the Request Method and the
Status Code.

W
riting A

synchronous
JavaScript

CHAPTER 11 Writing Asynchronous JavaScript 217

The request method
The request method is usually one of the following:

 » GET: The GET method is used to get data from a server. It's the method that's
used by the fetch() method when you invoke it with just a single argument.

 » POST: The POST method submits data to the specified URL. This is the
method that's used, for example, when you submit a form on the web.

 » PUT: The PUT method replaces the target resource with the payload of the
HTTP request.

 » PATCH: The PATCH method makes a partial update to a resource. For
example, a request that will result in only some fields of a database record
being updated should use PATCH.

 » DELETE: The DELETE method deletes the specified resource.

HTTP status codes
The HTTP status codes indicate whether the HTTP request was successful and
tells you what went wrong if it wasn't successful. HTTP status codes range from
100 to 599. In web application development, however, you're likely to see only the
following status codes:

 » 200: The status code that everyone hopes to see. It indicates that the request
succeeded.

 » 301: The status code that indicates the requested resource has permanently
moved to a new URL, which is given in the response. Think of a 301 redirect as
a change-of-address form.

FIGURE 11-6:
The Network tab.

218 BOOK 1 JavaScript Fundamentals

 » 400: Indicates a bad request. In web application programming, it often
happens because your request is missing some piece of data required by the
server.

 » 401: Indicates that your request isn't authorized. You likely need to provide
authentication data.

 » 404: Uh-oh — indicates that the resource you're looking for can't be found.

 » 500: Internal server error. When you see this error, it often indicates that
something went wrong on the server.

Making requests with CORS
JavaScript's ability to reach out of the browser and fetch data is useful and is an
important tool for programming web apps. However, it also has the potential to be
misused by malicious scripts. For example, a script downloaded as part of an oth-
erwise innocent-seeming website might use fetch() to download code that can
install viruses or other malware on your computer. This type of attack is known
as cross-site scripting, or XSS.

To prevent cross-site scripting attacks, web browsers have implemented a same-
origin policy. The same-origin policy restricts scripts on one website, such as
www.example.com, from accessing resources from another website, such as www.
evilsite.com.

However, scripts have legitimate reasons to access resources from other origins.
For example, if your web app is located at www.mywebsite.com and you have a
database server at database.mywebsite.com, cross-origin policy prevents access
to the database server, unless you have some way for the server to tell the browser
it's okay. Services such as Google Maps and thousands of publicly available sources
of data also rely on the ability to share data across different origins.

The method used by browsers and servers for allowing cross-origin HTTP requests
is called the cross-origin resource sharing standard, or CORS. CORS uses HTTP
headers that let the server tell browsers what origins and types of requests it allows.

Making a simple request
When a browser makes a cross-origin request using the GET, HEAD, or POST meth-
ods with certain content types (including form data and plain text), it's known as
a simple request.

In a simple request, the browser makes the request and the server responds with a
status code of 200 if the origin of the script is allowed by the value of the server's
Access-Control-Allow-Origin header.

W
riting A

synchronous
JavaScript

CHAPTER 11 Writing Asynchronous JavaScript 219

To see an example of a simple request, type the following statement into your
browser console:

await fetch('https://api.github.com/repos/chrisminnick/javascriptaio');

After a second, the promise resolves and you see the response appear. You can
view the HTTP headers by switching to the Network tab, as shown in Figure 11-7.

If you look at the Response Headers section on the Network tab, you can see the
Access-Control-Allow-Origin header, with a value of *. This indicates that the
server allows simple requests from any origin.

Servers may restrict access to just certain domains as well. For example, if this
server wanted to allow access only from the example.com domain, it could send
the following header:

Access-Control-Allow-Origin: https://example.com

Making a non-simple request
Non-simple requests are ones that have the potential to change server data. In
these cases, the browser makes a preflight request. The preflight request uses
the OPTIONS HTTP method. It tells the server the details of the request it wants to
make, including the origin of the script, the HTTP method of the request, and the
headers it wants to send.

FIGURE 11-7:
Viewing the HTTP

headers.

220 BOOK 1 JavaScript Fundamentals

A typical preflight request looks like this:

OPTIONS /user HTTP/1.1

Host: example.com

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.15.7)

Accept: application/json

Accept-Language: en-us,en;q=0.9

Accept-Encoding: gzip,deflate

Connection: keep-alive

Origin: https://foo.com

Access-Control-Request-Method: POST

Access-Control-Request-Headers: X-PINGOTHER, Content-Type

The server then responds to the request with something like the following:

HTTP/1.1 204 No Content

Server: Apache/2

Access-Control-Allow-Origin: https://foo.com

Access-Control-Allow-Methods: POST, GET, OPTIONS

Access-Control-Allow-Headers: X-PINGOTHER, Content-Type

Access-Control-Max-Age: 86400

Vary: Accept-Encoding, Origin

Keep-Alive: timeout=2, max=100

Connection: Keep-Alive

If the allowed methods, origin, and headers returned by the server match the
requested method, origin, and headers, the browser then proceeds to make the
actual request.

If the server is configured correctly, all you need to do to make a request with
CORS is to pass the mode option with a value of 'cors':

fetch('https://www.example.com/user',{mode:'cors'});

In the “Making a Web Server” section of Chapter 5 of Book 7, I show you how to
implement CORS on the server side.

Working with JSON data
The most common format for sending and receiving data to and from Java-
Script applications is JavaScript Object Notation, or JSON. JSON data resembles
JavaScript object literal notation, and it's easy to convert between JSON data and
JavaScript objects.

Listing 11-11 shows an example of data in JSON format.

W
riting A

synchronous
JavaScript

CHAPTER 11 Writing Asynchronous JavaScript 221

LISTING 11-11: JSON data

{

 "coord": {

 "lon": -122.08,

 "lat": 37.39

 },

 "weather": [

 {

 "id": 800,

 "main": "Clear",

 "description": "clear sky",

 "icon": "01d"

 }

],

 "base": "stations",

 "main": {

 "temp": 282.55,

 "feels_like": 281.86,

 "temp_min": 280.37,

 "temp_max": 284.26,

 "pressure": 1023,

 "humidity": 100

 },

 "visibility": 10000,

 "wind": {

 "speed": 1.5,

 "deg": 350

 },

 "clouds": {

 "all": 1

 },

 "dt": 1560350645,

 "sys": {

 "type": 1,

 "id": 5122,

 "message": 0.0139,

 "country": "US",

 "sunrise": 1560343627,

 "sunset": 1560396563

 },

 "timezone": -25200,

 "id": 420006353,

 "name": "Mountain View",

 "cod": 200

}

The code in Listing 11-10 bears a striking resemblance to a JavaScript object. How-
ever, if you look closely, you can see that it's not. The first difference is that the

222 BOOK 1 JavaScript Fundamentals

lefthand sides of the colons are in quotes. The other difference is that JSON data
isn't assigned to a variable or constant. An object isn't any use if it's not assigned
a name. JSON data, on the other hand, is extremely useful for sending and receiv-
ing data.

JSON can also be used with programming languages besides JavaScript, and most
languages include tools for working with JSON data.

Although the data in Listing 11-11 starts and ends with curly braces, it's common
to see JSON data that starts and ends with square brackets and therefore turns into
an array when it's converted from JSON data.

Getting JSON data
The most common way to get JSON data into your application is by using fetch().
Once you have the JSON data, you can use the Response object's json() method to
convert it to data that can be used inside your JavaScript code.

If you don't use fetch() to get the JSON data into your program (for example,
if you load a JSON file directly into the program), you still need to convert it to
JavaScript before you can use it. You can use JavaScript's built-in JSON.parse()
method to do this.

To see JSON parse in action, you can create a JSON string like the following:

const person = '{"firstName": "Conway","age": 59}';

Notice that the value of person is a string. As such, there's no easy way to extract
the individual names or values from it. Here's how to convert a JSON string to an
object:

const personObject = JSON.parse(person);

Sending JSON data
If you have an object in your application that you want to send to a server as JSON
data, it needs to be converted to JSON before it can be sent. JavaScript has a built-
in method that does this for you, called JSON.stringify().

To use the stringify() method, pass an object or value into it. For example, if
you followed the steps to create a JSON string and convert it to an object in the
preceding section, you can convert it back to a JSON string:

const personJSON = JSON.stringify(personObject);

CHAPTER 12 Using JavaScript Modules 223

Using JavaScript Modules
“Divide each difficulty into as many parts as is feasible and necessary to
resolve it.”

—RENE DESCARTES

Until now, every JavaScript program you’ve written has been in a single file,
which is fine for small programs and examples. But, in real-life program-
ming, a program may have thousands of lines of code. Keeping everything

in a single file in a large program would make your code impossible to maintain.

To keep your code organized, to enable multiple people to work on a project, and
to help you think about your code more easily, JavaScript provides a way to sub-
divide programs into modules.

Chapter 12

IN THIS CHAPTER

 » Introducing modules

 » Creating modules with export

 » Using modules with import

 » Giving your module a name

 » Setting a default export

 » Loading modules dynamically

 » Using modules with HTML files

224 BOOK 1 JavaScript Fundamentals

Defining Modules
A JavaScript module is a function, variable, constant, or class that is stored in a
separate file that can be imported into your main program. In the same way that
using functions helps keep your JavaScript files organized, using modules helps
keep your JavaScript programs organized.

JavaScript modules are enabled by two keywords: export and import.

Exporting Modules
To create a module, you have to export it by using the export keyword. For exam-
ple, one common and simple use for modules is to store constants that are used
frequently in your program. To start this file, you might create a file named con-
stants.js.

Examples of constants might include the base URL for an API used by your pro-
gram, color themes, and labels and text used in your application. Listing 12-1
shows what this constants.js file might look like.

LISTING 12-1: A file containing modules

export const API = 'https://api.example.com';

export const colorThemeDrk = {

 backgroundColor: '#000',

 textColor: '#EEE',

 headerColor: '#FF0000',

 footerColor: '#FF0000'

}

export const colorThemeLght = {

 backgroundColor: '#fff',

 textColor: '#333',

 headerColor: '#FF0000',

 footerColor: '#FF0000'

}

export const labels = {

 english:{

 supportLink: 'Get Support',

 contactLink: 'Contact Us'

 }

};

CHAPTER 12 Using JavaScript Modules 225

U
sing JavaScript

M
odules

Never store any sensitive data in a static file. Examples of sensitive data are pass-
words and API keys and any other information you wouldn’t want to become
public.

Modules can be created in one of two ways: as named exports or as default exports,
as described next.

Named exports
The export statements in Listing 12-1 are examples of named exports. A named
export creates a module with the same name as the variable, constant, function,
or class that’s being exported. One way to create a named export is to preface
the declaration of the variable, constant, function, or class with the word export.
Listing 12-2 shows a named module created from a function.

LISTING 12-2: A named function module

export function addOne(input){

 return input + 1;
}

You can also create named exports by using an export statement that’s separate
from the feature you want to export. To create a separate export statement, spec-
ify one or more names of variables, constants, functions, or classes surrounded
by curly braces and separated by commas. For example, rather than specify an
export statement for each of the modules created in Listing 12-1, you can remove
the export statements that preface each constant and just write the following
export statement:

export {API, colorThemeDrk, colorThemeLght, labels};

Export statements containing all the modules you want to export from a file are
typically placed at the end of the file.

Default exports
Default exports specify a single function or class from a file. Unlike named exports,
default exports have no particular name associated with them. Instead, a default
export is associated with the file it’s a part of. (This topic will make more sense if
you read the following section, where I show you how to import modules.)

226 BOOK 1 JavaScript Fundamentals

You can create a default export by prefacing the name of a function or class with
export default. For example, to write the module from Listing 12-2 as a default
export, you just need to add default after export, like this:

export default function addOne(input){

 return input + 1;
}

A file can have only one default export. But a module with a default export can also
have multiple named exports. For example, Listing 12-3 shows a file containing
several named exports as well as a default export.

LISTING 12-3: A file containing named exports and a default export

// oregonInfo.js

export const stateName = 'Oregon';

export const capitalCity = 'Salem';

export const stateBird = 'Western meadowlark';

export default function getStateInfo(){

 return {stateName, capitalCity, stateBird};

}

Using the oregonInfo.js file from Listing 12-3, you can make use of individual
constants, or you can import and run the default function to get an object con-
taining data from multiple constants in the file.

The return value of the getStateInfo() function in Listing 12-3 demonstrates a
shorthand method of using properties of an object where the name and value of
the property are the same. In this case, the following return statement:

return {stateName, capitalCity, stateBird};

is equivalent to this one:

return {stateName: stateName, capitalCity: capitalCity,
stateBird: stateBird};

As when you create named exports, you can also write an export for a default
export as a separate statement. A default export just uses the export keyword
followed by default, followed by the name of the variable, constant, function, or
class that should be the default export.

export default getStateInfo;

CHAPTER 12 Using JavaScript Modules 227

U
sing JavaScript

M
odules

Importing Modules
After you’ve created modules by using the export statement, you can import them
into other files by using the import keyword. Unlike export statements, which can
be placed anywhere in a file, import statements typically appear at the beginning
of a file.

Imported modules can be used as though they were created in the same file. How-
ever, unlike functions and variables that you create in a JavaScript file, imported
modules are read-only.

Importing named modules
This is the basic syntax for importing named modules:

import {moduleName} from 'file path';

The module name can be a single exported module or a comma-separated list of
module names. The file path is the relative path from the file doing the importing
to the file containing the module.

For example, if you keep your modules in a folder called modules and the file you
want to import them from is outside of the modules folder, you can import mod-
ules from a file inside the modules folder by specifying the path as ./modules/
filename.js, where filename.js is the name of the file containing the module
or modules you want to import, of course. The complete import statement needed
to import stateName and capitalCity from a file named /modules/oregonInfo.
js would look like this:

import {stateName,capitalCity} from './modules/oregonInfo.js';

Note that the path to the file you’re importing from has the period-slash (./)
characters before the path. This is necessary for telling the import statement to
start from the current directory. If the folder you’re importing from is at a higher
level in the folder structure than the file you’re importing to, you can use ../ to
tell the import statement to start one level higher in the folder hierarchy. Like-
wise, if the folder is two levels higher in the hierarchy, you can use ../../.

Importing default modules
To import a module that was exported as a default export, use the import state-
ment without curly braces. Because you’re allowed to have only one default export
per file, you don’t need to specify the same name as the one the function or class

228 BOOK 1 JavaScript Fundamentals

has inside the file. For example, you could import the default getStateInfo()
function from oregonInfo.js like this:

import oregonStateInfo from './modules/oregonInfo.js';

Renaming Exports and Imports
You can rename any exported member of a module by using the as keyword inside
curly braces. Renaming using as can be done inside either an export or an import
statement. For example, if you want to export a function called sum using the
name addNumbers, you could use the following statement in the file where sum is
defined:

export {sum as addNumbers};

The exported function will be available for import into other files with the name
addNumbers.

Alternatively, you can rename modules when you import them. For example, if
you have a file named module.js with the following export:

export {sum};

you can change its name inside an import, like this:

import {sum as addNumbers} from './module.js';

Importing a Module Object
If you have a file that contains many different named exports, it’s often easier to
import them all at the same time rather than to specify the names of the modules
individually in the import statement.

To import all exported modules from a file, use the asterisk (*) symbol along with
the as keyword to create a module object. For example, the following statement
imports every module from a file named modules.js:

import * as myModules from './modules.js';

CHAPTER 12 Using JavaScript Modules 229

U
sing JavaScript

M
odules

After this import operation is done, the named exports from modules.js will be
available as properties and methods of the myModules object.

Loading Dynamic Modules
Normally, modules are imported in the order in which import statements appear
in the file. Because import statements appear at the beginning of a file, all the
imported files in a program are loaded before any other code runs. This can have
a negative impact on your program’s performance.

By using dynamic module loading, you can tell JavaScript to load modules only
when they’re needed.

To use dynamic module loading, use the import keyword as a function. This func-
tion returns a promise object containing a module object. The import() function
can be called in response to an event.

For example, Listing 12-4 shows how you can import the modules from Lis-
ting 12-3 when a button is clicked.

LISTING 12-4: Using dynamic loading

const stateButton = document.getElementById('oregonButton');

stateButton.addEventListener(

 'click',

 () =>

 import('./listing12-3.js').then((OregonInfo) => {

 alert(`${OregonInfo.stateName}'s state bird is ${OregonInfo.stateBird}.`);

 })

);

Importing Modules into HTML
Although modules are most commonly imported into other JavaScript files, you
can also import them into HTML files by setting the type attribute of a script tag
to module. Listing 12-5 shows how to import the module from Listing 12-4 into
an HTML file.

230 BOOK 1 JavaScript Fundamentals

LISTING 12-5: Importing a module into an HTML file

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="UTF-8"/>

 <meta http-equiv="X-UA-Compatible" content="IE=edge"/>

 <meta name="viewport" content="width=device-width, initial-scale=1.0"/>

 <title>Get Oregon Info</title>

 </head>

 <body>

 <button id="oregonButton">Click to find out about Oregon!</button>

 <script src="listing12-4.js" type="module"></script>

 </body>

</html>

When run in a browser, the preceding HTML file displays a button and loads the
event handler code from Listing 12-4. When you click the button, the modules
from Listing 12-3 are loaded and an alert displays, showing information from the
modules, as shown in Figure 12-1.

FIGURE 12-1:
Loading

modules
dynamically
in response
to an event.

2Meet Your
Web Browser

Contents at a Glance
CHAPTER 1: What a Web Browser Does . 233

CHAPTER 2: Programming the Browser . 241

CHAPTER 1 What a Web Browser Does 233

What a Web
Browser Does

“Internet Explorer is the best web browser.”

—NOBODY

Today’s web browsers are highly complex pieces of software that handle a
wide variety of tasks beyond simply displaying web pages. In fact, a modern
web browser more closely resembles an entire operating system or virtual

computer than it does the web browsers of the past.

In this chapter, you’ll learn about the various parts of a web browser and how web
browsers interact with your computer, with the world outside of your computer,
and with you.

When you think about a web browser, you probably consider only the part of it
that you interact with most directly and most often, which is the large space in
which web pages appear. But there’s much more going on with web browsers
behind the scenes.

Chapter 1

IN THIS CHAPTER

 » Defining the parts of a web browser

 » Seeing how rendering works

 » Taking a look at the JavaScript
engine’s role

 » Loading JavaScript asynchronously

 » Deferring JavaScript execution

234 BOOK 2 Meet Your Web Browser

The functionality of a web browser can be divided into the following components:

 » The user interface (UI)

 » The browser engine

 » The rendering engine

 » The JavaScript engine

 » Networking

 » Data storage

The relationship between these components is shown in Figure 1-1.

Interfacing with a Browser
The browser’s user interface is how users interact with a web browser. The user
interface of a web browser is also known as the browser chrome (which is not to be
confused with the Chrome browser). The user interface consists of the parts of a
web browser that make one browser different from another: It includes the menu
bars, the address bar, the bookmarking functionality, the scroll bars, and even the
developer tools.

The user interface components of a web browser also provide the hooks into the
rest of your computer’s operating system. For example, when you print a web
page or save a file, that’s the browser user interface at work.

FIGURE 1-1:
The components

of a web browser.

© John Wiley & Sons, Inc.

W
hat a W

eb
Brow

ser D
oes

CHAPTER 1 What a Web Browser Does 235

Similarly, when a web page finds your location, accesses your webcam, or installs
extensions, that’s the browser user interface at work. It’s called the user inter-
face because it provides an interface for users to use the core component of a web
browser, which is known as the browser engine.

Each tab in a browser’s user interface runs as a separate process. What this means
is that at any one time, you have as many browser engines running on your com-
puter as you have browser tabs open. This helps to increase performance (because
JavaScript is single-threaded) and also increases security and reduces the number
and severity of browser crashes (because each website you view is isolated from
the others).

Introducing the Browser Engine
Just as an engine is the essential component of any automobile, the browser engine
is what makes the browser go. In the same way that different models of cars might
use the same type of engine, different browsers also use the same browser engine.

These are the three browser engines that are now used by nearly all web browsers:

 » WebKit: WebKit was originally created by Apple by building upon the now
defunct KHTML engine. WebKit is used by all iOS browsers and by Apple’s
Safari browser.

 » Blink: Blink is Google’s browser engine, which is used by Google Chrome and
Android browsers, as well as by Microsoft’s Edge browser and the Opera
browser. It was originally based on Apple’s WebKit engine.

 » Gecko: Gecko is Mozilla’s engine, which is used in the Firefox browser.

No matter which browser engine a web browser uses, they all share the same basic
functionality. The browser engine provides a link between the user interface and
the rendering engine.

The Rendering Engine
Depending on the browser and on whom you ask, the rendering engine may be
considered a separate component of the browser or a part of the browser engine.
Its job is to interpret HTML and CSS and to lay out the web page.

236 BOOK 2 Meet Your Web Browser

In the same way that a JavaScript interpreter must process JavaScript in a cer-
tain way and in a certain order to ensure that JavaScript runs the same wherever
it’s used, rendering engines must also conform to strict rules to ensure that web
pages display the same on different browsers.

These are the steps involved in rendering a web page:

1. The HTML elements are parsed, and the Document Object Model (DOM) is
created. The DOM provides an interface for JavaScript to interact with a web
browser. You can learn more about the DOM in Book 2, Chapter 2.

2. The CSS is parsed to create the CSS Object Model (CSSOM).

3. The DOM and CSSOM are combined to form a render tree. The render tree
describes the visual elements of the document being rendered.

4. During the layout step, the rendering engine calculates the size and position of
each element, based on the HTML and CSS.

5. During the paint step, the rendering engine creates layers from the shapes
created from the layout step. Each pixel on each layer is drawn to form bitmap
images during a process called rasterization.

6. In the final step of rendering, known as compositing, the layers are combined
and sent to the user interface to be shown to the user.

Once a web page is displayed to the user, the rendering process doesn’t just stop.
Each time the browser window is scrolled, or something changes as a response to
an animated element or JavaScript, or the window is resized, some portion of the
rendering process must be repeated.

Rendering a web page is a precise and complex process, which I’ve simplified
enormously here. It’s not usually necessary for front-end developers to know
exactly what happens behind the scenes with rendering. What is important to
know is that each change to a web page causes a chain reaction of reflowing
and repainting the browser window. If a JavaScript application is making many
changes to the DOM, this can have a negative impact on the perceived responsive-
ness of a web application.

One of the most important goals of libraries and frameworks like ReactJS, Svelte,
and Vue.js is to minimize the number of changes made to the DOM.

To see the result of the rendering engine’s work, open the developer console and
select the Elements tab, as shown in Figure 1-2.

W
hat a W

eb
Brow

ser D
oes

CHAPTER 1 What a Web Browser Does 237

The JavaScript engine
The JavaScript engine compiles and runs the JavaScript that’s included in, or
linked to from, the HTML document. Although the JavaScript engine used to be a
JavaScript interpreter, all browsers now use just-in-time compilation to convert
the JavaScript source code to machine code before it’s run.

These are the JavaScript engines in use today:

 » V8: V8 is Google’s JavaScript engine. It’s used by Chrome and by Node.js.

 » SpiderMonkey: SpiderMonkey is the JavaScript engine for Mozilla Firefox.

 » JavaScriptCore: JavaScriptCore is Apple’s JavaScript engine, which is used by
Safari.

 » Chakra: Chakra is the JavaScript engine for Microsoft Edge.

The way JavaScript code executes is covered in Book 1, Chapter 1. To improve the
performance of web applications, you should understand when JavaScript code is
executed, what render blocking is, and how to reduce or eliminate blocking.

Identifying and preventing render blocking
JavaScript files included in web pages load and run as they’re encountered by
the rendering engine during the DOM construction. For example, if your HTML
page has a <script> element in the <head> element that includes JavaScript code
(what’s known as an embedded script because it’s embedded in the HTML docu-
ment), parsing of the HTML stops while that bit of JavaScript is executed.

Once the JavaScript is finished running, the parsing of the HTML continues. This
blocking of the DOM parsing is necessary because JavaScript code may perform
DOM manipulations while it’s running that will affect the rendering.

FIGURE 1-2:
The Elements tab
contains tools for

inspecting the
DOM, CSSOM,

and layout.

238 BOOK 2 Meet Your Web Browser

A script that’s linked to from an HTML document is also render blocking by default.
For example, consider the following <script> element, which may appear in the
<head> of your HTML:

<script src="app.js"></script>

When the rendering engine encounters this <script> element, it stops what it’s
doing while the browser downloads the script and the JavaScript engine compiles
and runs it.

If your JavaScript code affects what the user will see when the page first loads
(what’s known as above the fold content), this blocking behavior may be exactly
what you want. Without blocking, the page may appear in the browser and then
be reorganized by the JavaScript code, resulting in a disorienting user experience.

However, most of the time, JavaScript has no impact (or no significant impact) on
the initial layout of the page. In these cases, render blocking creates an unnec-
essary delay in the display of the page. You can eliminate this delay by using the
async and defer attributes of the <script> element.

Unblocking your code with async and defer
When you use the <script> element’s async attribute, the browser continues
parsing the document while it loads the JavaScript. Once the JavaScript is loaded,
parsing stops while the code is compiled and executed. Using async reduces the
amount of time before the browser can display a page to the user by perform-
ing the loading of JavaScript asynchronously. Considering the number and size of
JavaScript files that a modern web application requires, the loading of JavaScript
is often the slowest part of the rendering process.

The defer attribute of the <script> element works similarly to the async attrib-
ute in that it causes the browser to continue parsing while the script is loading.
With defer, however, the script doesn’t execute until the rendering engine has
parsed all the HTML and the DOM is fully constructed.

Once the DOM is constructed, deferred JavaScript files run in the order in which
they appear in the document.

W
hat a W

eb
Brow

ser D
oes

CHAPTER 1 What a Web Browser Does 239

Networking
The networking functions of a browser handle the making of HTTP requests, the
loading of resources, and the enforcement of security policies during the parsing
of the HTML and the execution of the JavaScript. You can inspect the functions of
the browser’s networking component by opening the developer console and view-
ing the Network tab, as shown in Figure 1-3.

Data storage
The data storage (also known as data persistence) component of a web browser
handles cache storage, browser cookies, bookmarks, and data related to
client-side data persistence APIs, such as IndexedDB and WebSQL. Because a web
browser may be used to access many different websites that each store data, it’s
important that each domain has its own separate data storage. Browsers restrict
access to the data stored by a website to the URL that set the data in the first place.

You can view the data stored by your browser’s data storage components by open-
ing the developer tools and viewing the Application tab, as shown in Figure 1-4.

The fact that browser storage is restricted by domain doesn’t mean that it’s
impossible for websites to share data, as everyone knows from seeing the highly
personalized advertising that shows up on websites they’ve never even visited.
Advertisers typically use third-party services (such as Google Ads) to track web
user activities and present customized ads. Two sites that both use Google Ads
can’t see what you searched for on the other site or read cookies set by the other,
but Google knows everything because it can store data in your browser from any
site that uses Google Ads.

FIGURE 1-3:
Viewing the

browser’s
networking

functions.

240 BOOK 2 Meet Your Web Browser

FIGURE 1-4:
Viewing local data

storage on the
Application tab.

CHAPTER 2 Programming the Browser 241

Programming the
Browser

“Put simply, if an interface is poorly designed, I will not see the data I looked
for, even if it’s right there on the page.”

—JEFFERY ZELDMAN

Web browsers provide many APIs for interacting programmatically with
their functionality. Using JavaScript, you can find out what the browser
is doing as well as tell the browser what to do. In this chapter, you’ll

learn about the Web APIs and see how to use the most essential ones.

Understanding Web APIs and Interfaces
Web APIs are application programming interfaces for web browsers or web servers.
The purpose of Web APIs is to extend the capabilities of HTTP clients or servers by
allowing developers to interact with them — most commonly, using JavaScript.

Chapter 2

IN THIS CHAPTER

 » Defining Web APIs

 » Learning the difference between an
API and an interface

 » Learning your way around the
Navigator interface

 » Peeking into the Window interface

 » Investigating and manipulating
the DOM

 » Knowing your History API

242 BOOK 2 Meet Your Web Browser

Hooking into interfaces
As implied by the name, a Web API is an interface that gives a programmer a way
to interact with the functionality and data of another application.

All Web APIs are interfaces, but not all interfaces are Web APIs.

In JavaScript, interfaces may be implemented using either constructor functions
or JavaScript classes, as you can see in Book 1, Chapter 7. Interfaces serve as tem-
plates for objects.

For example, the Window interface in a browser represents a window (or tab) in a
browser that contains a DOM document. When you open a web page, the Window
interface is used to create an instance of the Window interface, called a window
object. Instances of interfaces (objects) are created using constructors.

You can access properties and methods of instances of the Window interface, and
many Web APIs also make use of these properties and methods.

This list describes a few of the interfaces (also known as object types) that are
built into web browsers:

 » Navigator: The Navigator interface represents the browser. It provides
information about the type of browser and its capabilities. Navigator is also
used for accessing geolocation capabilities of browsers and the operat-
ing system.

 » EventTarget: Any object in the browser (including the Document, Window,
and Element objects) that can receive events implements the EventTarget
interface.

 » Document: The Document interface represents a web page loaded into a
browser.

 » AudioTrack: The AudioTrack interface represents a single audio track
specified using the <audio> or <video> element.

Built-in browser APIs
The Web APIs that are built into web browsers provide access to a wide range of
functionality in the browser as well as in the underlying operating system. For
example, the Fetch API, which you can read about in Book 1, Chapter 11, gives
JavaScript programmers a way to make HTTP requests. Here are just a few of the
other APIs that are built into web browsers:

Program
m

ing the
Brow

ser

CHAPTER 2 Programming the Browser 243

 » IndexedDB: Allows JavaScript to store structured data that’s indexed and can
be searched quickly.

 » File API: Gives JavaScript applications the ability to access files from the
operating system that the user has made available, such as by selecting them
or dragging-and-dropping them into the browser.

 » ImageCapture API: Allows applications to capture images and video.

 » Canvas API: Gives browsers a way to draw 2D graphics using JavaScript.

 » WebGL: An API for drawing 2D and 3D images.

 » Web Workers: An API that enables the running of scripts as background
threads that are separate from the execution of the main application in a
browser window.

Custom APIs
In addition to the built-in browser APIs, thousands of third-party APIs are avail-
able that you can use to add functionality to your applications. Many third-party
APIs give your program access to resources or data that would otherwise be diffi-
cult or impossible to re-create. Examples of third-party APIs are the GitHub API,
Facebook’s APIs, Google Maps, Stripe, PayPal, and Skyscanner.

By making use of third-party APIs, any app can have access to data such as
weather information, news headlines, maps, payment processing, and much more
by using HTTP requests. Custom Web APIs are also known as web services.

Getting Around the Navigator
Netscape Navigator, which was one of the first web browsers, was the browser
that first implemented an interface for accessing data about the browser itself.
It called this interface Navigator. As more web browsers were created, many of
them based on the same code as Netscape Navigator, the name of the Navigator
interface stuck.

When your browser starts up, it creates an instance of the Navigator interface
named navigator.

244 BOOK 2 Meet Your Web Browser

Inspecting the navigator’s quirks
You may still be able to see some relics of the early days of the Navigator interface
by typing navigator.appCodeName or navigator.appName into your JavaScript
console. Although neither property is officially now supported, both are still pres-
ent in every web browser (at the time of this writing). The appCodeName property
always returns Mozilla, and the appName property always returns Netscape, no
matter what browser you’re using.

Navigator properties
You can view all properties and methods of the navigator object by typing
navigator into the JavaScript console, as shown in Figure 2-1.

The properties created by the Navigator interface include several that are obso-
lete and mostly useless as well as a handful of extremely useful bits of informa-
tion. Here are a few of the properties of Navigator that you’re likely to have a
need for at some point:

 » language: Returns the preferred language of the user.

 » onLine: Returns true if the browser is working online; otherwise, returns
false.

 » pdfViewerEnabled: Returns true if the browser can display PDF files.

FIGURE 2-1:
Viewing the

properties and
methods of the

navigator object.

Program
m

ing the
Brow

ser

CHAPTER 2 Programming the Browser 245

 » permissions: Returns a Permissions object. You can use this object to
query the permissions status of many Web APIs. This is how an application
can determine whether the user has allowed an application to access the
device’s camera, for example.

 » geolocation: Returns a Geolocation object that allows the application to
access information about the device’s position.

INVESTIGATING THE USER AGENT STRING
The Navigator.userAgent property returns a string containing information about the
current browser — or at least that was the original idea. In the early days of the web, the
userAgent string was the most reliable way to detect mobile browsers or whether a
browser supported certain features.

For example, here’s how you might customize the display of a website for Chrome
browsers:

if (navigator.userAgent.includes("Chrome")){
 let welcomeMessage = "Welcome, Chrome user!";
}

As more websites implemented user agent checking, new web browsers tuned their
user agent string to make sure they passed user agent checks. The result was that the
user agent string became mostly useless. For example, here’s the user agent string for
the most recent version of Chrome for macOS at the time of this writing:

'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/108.0.0.0
Safari/537.36'

And here’s the user agent string for Microsoft Edge running in Windows 11:

'Mozilla/5.0 (Windows NT 10.0) AppleWebKit/537.36 (KHTML,
like Gecko) Chrome/108.0.0.0 Safari/537.36
Edg/108.0.1462.76'

The bulk of both strings is just legacy keywords remaining because some websites still
check user agent strings to see what the browser is capable of. Notice that both Edge
and Chrome list Chrome in their user agent strings.

(continued)

246 BOOK 2 Meet Your Web Browser

Stealing a Glimpse Through the Window
The Window interface represents a browser window containing a DOM document.
In a browser window, an instance of the Window interface can be accessed using
the window object. The window object holds many constructors, properties, and
methods. It’s also where global variables that you may create in your JavaScript
program are stored.

To see all properties of the Window interface, type window into the JavaScript
console, as shown in Figure 2-2.

To make matters worse, even though the userAgent property is read-only, you can
change your browser’s user agent string in the developer tools, as shown in the follow-
ing figure:

The userAgent string is still widely used by security APIs and web hosts to detect bots
and potentially malicious web traffic — as you’ll discover if you try using the web with a
custom user agent string.

The best way to do feature detection is to use a library such as Modernizr. Modernizr
provides tests for CSS and JavaScript that you can use to check whether a user’s browser
supports the features and APIs you want to use, as shown in the following snippet:

if (Modernizr.ambientlight){
 adjustSiteBrightness();
} else {
 showNormalBrightness();
}

(continued)

Program
m

ing the
Brow

ser

CHAPTER 2 Programming the Browser 247

Because window is the global state, you can access any properties of the
window object without using the name of the window object. For example, to use
the window.console.log() method, you can just write console.log() anywhere
in your code.

Window properties
The Window interface’s properties include the document object, the history
object, and the screen object. I cover these topics in their own sections later in
this chapter.

In total, the Window interface defines more than 50 properties, and quite a few of
them are no longer used but are kept around for compatibility with older browsers
and code. You can read a complete reference for the Window interface at https://
developer.mozilla.org/en-US/docs/Web/API/Window. Table 2-1 lists some of
the most commonly-used properties of the Window interface.

Window methods
Like all properties of the window object, the Window interface’s methods run in
the global scope. This is important to know because some of the methods of the
Window interface can produce seemingly unexpected results if you try to use them
as though they’re normal function-scoped functions.

Table 2-2 lists the most commonly used methods of the Window interface.

FIGURE 2-2:
Viewing the

properties of the
window object.

https://developer.mozilla.org/en-US/docs/Web/API/Window
https://developer.mozilla.org/en-US/docs/Web/API/Window

248 BOOK 2 Meet Your Web Browser

TABLE 2-1	 Examples of Window Interface Properties
Property Description

console A reference to the browser’s debugging console object

devicePixelRatio The ratio between the physical (device) pixels and the device-independent pixels of
the current display

event The event that’s currently being handled

fullScreen A Boolean value indicating whether the window is displayed in full-screen mode

innerHeight The height of the content area of the window

innerWidth The width of the content area of the window

location Gets or sets the current URL of the window

localStorage A reference to the local storage object

scrollX The number of pixels that the document has been scrolled horizontally

scrollY The number of pixels that the document has been scrolled vertically

TABLE 2-2	 Commonly-Used Methods of the Window Interface
Method What It Does

alert() Displays a dialog with a message.

blur() Takes focus away from the window

close() Closes the current window

focus() Sets the focus to the window

open() Opens a new window

prompt() Displays a dialog with a text input and returns the text that’s entered into it

scroll() Scrolls the document by the amount passed to it as an argument

scrollTo() Takes x- and y-coordinates as arguments and scrolls to that position

clearInterval() Stops the repeated execution set using setInterval()

clearTimeout() Stops the delayed execution set using setTimeout()

setInterval() Executes a function every specified number of milliseconds

setTimeout() Executes a function after a specified number of milliseconds

Program
m

ing the
Brow

ser

CHAPTER 2 Programming the Browser 249

Introducing the HTML DOM
The Document interface is used to create the document object inside the window
object in a browser. It describes the properties and methods of a document (usu-
ally, an HTML document) and provides access to the HTML DOM.

Visualizing the DOM
The DOM is the tree of nodes that’s created whenever a HTML or XML document
renders. Each element and piece of content in a document becomes a node in
the DOM tree. For example, if you have an HTML document that looks like the
following:

<html>

 <head>

 <title>My web page</title>

 </head>

 <body>

 <h1>Welcome</h1>

 </body>

</html>

You can visualize the resulting DOM tree, as shown in Figure 2-3.

Describing relationships in the DOM family tree
The relationships in a DOM tree are often described using the language of family
trees. For example: Every element in a DOM tree is a child of the Document node.
The <html> element is the parent of every other element in an HTML document.
Nodes at the same level, such as <head> and <body>, are called siblings.

Document properties
Many of the properties of the Document interface allow JavaScript to access and
change the document as a whole. Only a few of these are commonly used in JavaS-
cript programming, but they're helpful to know about. Table 2-3 lists some of the
most important document properties.

250 BOOK 2 Meet Your Web Browser

Document methods
The methods described by the Document interface are the key to how every
JavaScript DOM manipulation library works. Table 2-4 shows some of the most
commonly used methods of the Document interface.

TABLE 2-3	 Important Properties of the Document Interface
Property Description

activeElement The element that has focus

body The <body> node of the current document

children The child elements of the current document

forms A collection of the <form> elements in the current document

head The <head> element of the current document

images A collection of the images in the current document

scripts A collection of the scripts in the current document

stylesheets A collection of the stylesheets in the current document

FIGURE 2-3:
A DOM tree.

Program
m

ing the
Brow

ser

CHAPTER 2 Programming the Browser 251

Selecting element nodes
The Document interface provides several ways to select element nodes in the
DOM. Selecting element nodes allows you to add event listeners to them, change
their attributes and content, and modify their style.

Using the correct method for selecting elements is important because element
selection and manipulation is, computationally, a relatively expensive operation.
Changes to the DOM cause the browser engine to reflow the layout of the page, so
selecting more elements than necessary or doing more DOM manipulation opera-
tions than necessary can cause your user interface to seem slow.

One major benefit of using a DOM manipulation library such as React, Vue, or
Svelte rather than the Document methods directly is that they optimize DOM
manipulation operations.

TABLE 2-4	 The Most Common Document Methods
Method What It Does

append() Inserts nodes or strings after the last child of the document

createAttribute() Returns a new Attr object (which represents an attribute of an element)

createComment() Creates a new comment node

createElement() Creates a new element with the tag name passed to it

createEvent() Creates an event object

createTextNode() Creates a text node

getElementById() Returns a reference to the element with the id attribute value passed to it

getElementsByClassName() Returns a list of elements with the class name passed to it

getElementsByTagName() Returns a list of elements with the tag name passed to it

prepend() Inserts nodes before the first child in the document

querySelector() Returns the first element node in the document that matches the selector
passed to it

querySelectorAll() Returns a list of all element nodes in the document that match the selector
passed to it

252 BOOK 2 Meet Your Web Browser

Selecting with getElementById()
The most efficient way to select DOM elements is by using getElementById().
Because the value of an element's id attribute is unique within a document,
getElementById() always returns a single element and can stop parsing a docu-
ment when it finds the correct element.

To use getElementById(), pass it a string that matches the value of the id
attribute of the element you want to select. For example, in Listing 2-1, get
ElementById() selects the <h2> element and replaces the HTML between its start
and end tags with a message after a 1-second delay.

LISTING	2-1:	 Selecting with getElementById()

<html>

 <head>

 <title>Today's date</title>

 </head>

 <body>

 <h1>Here's the current date</h1>

 <h2 id="dateToday">calculating the date...</h2>

 <script>

 setTimeout(() => {

 document.getElementById('dateToday').innerHTML = new Date();

 }, 1000);

 </script>

 </body>

</html>

Selecting using selectors
Although getElementById() is the most efficient way to select elements, it's far
from flexible. If you need to select multiple elements, or if the element you want
to select has no id attribute, getElementById() won't be of any use to you.

For more flexible element-selection needs, you can use querySelector() and
querySelectorAll(). Both methods select elements using a CSS-style selector
string. The difference between them is that querySelector() returns just the
first element to match the selector string and querySelectorAll() returns all of
the elements that match the query selector.

Program
m

ing the
Brow

ser

CHAPTER 2 Programming the Browser 253

Although CSS selectors are beyond the scope of this book, you can read more
about them at https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_
Selectors or in HTML5 and CSS3 For Dummies (Wiley).

Listing 2-2 shows an example of using querySelectorAll() to select all elements
in a list and reverse their order in the document.

LISTING	2-2:	 Selecting elements with querySelectorAll()

<html>

 <head>

 <title>Make Guacamole</title>

 </head>

 <body>

 <h1>Ingredients</h1>

 <ul id="guacIngredients">

 <li class="ingredient">Avocados: $2 each

 <li class="ingredient">Onions: $1 each

 <li class="ingredient">Serrano peppers: $3/lb

 <li class="ingredient">Cilantro: $1.50/bunch

 <button id="reverse">Reverse List Order</button>

 <script>

 document

 .getElementById('reverse')

 .addEventListener('click', reverseOrder);

 function reverseOrder() {

 let ingredientsList = document.getElementById('guacIngredients');

 let ingredients = document.querySelectorAll('.ingredient');

 let ingredientsArray = Array.from(ingredients);

 ingredientsArray.reverse();

 ingredientsList.innerHTML = '';

 ingredientsList.append(...ingredientsArray);

 }

 </script>

 </body>

</html>

Notice that the reverseOrder() function in Listing 2-2 uses the Array.from()
function to convert the element collection returned by querySelectorAll() to an
array. This is necessary because, although a list of elements can be accessed like
an array, it's not an array and its prototype doesn't include the array methods,
such as reverse().

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Selectors
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Selectors

254 BOOK 2 Meet Your Web Browser

Creating and adding elements to the DOM
The createElement() method creates a new element node. Once you have an
element node, you can add attributes to it with the createAttribute() method
and insert it into the DOM using the append() or prepend() method of the
 element node.

Listing 2-3 shows how to create a to-do list that the user can add items to. Each
time the Add Item button is clicked, a new element is created and appended
inside the element.

LISTING	2-3:	 Creating and appending element nodes

<html>

 <head>

 <title>To Do List</title>

 </head>

 <body>

 <h1>Things I gotta do</h1>

 <ul id="toDoList">

 <input type="text" id="itemToAdd"/>

 <button id="add">Add Item</button>

 <script>

 document.getElementById('add').addEventListener('click', addItem);

 function addItem() {

 let itemInput = document.getElementById('itemToAdd');

 let toDoList = document.getElementById('toDoList');

 let newItem = document.createElement('li');

 newItem.innerHTML = itemInput.value;

 toDoList.append(newItem);

 itemInput.value = '';

 }

 </script>

 </body>

</html>

Figure 2-4 shows the result of opening the document from Listing 2-3 in a
browser and adding some items to the list.

Program
m

ing the
Brow

ser

CHAPTER 2 Programming the Browser 255

Element nodes
The Element interface is the base class that's used to create various types of ele-
ment nodes, such as HTMLElement or SVGElement nodes. Table 2-5 shows the
most-often-used properties of the Element interface.

Element nodes have other properties that can be used to select certain child ele-
ments or to select the elements around an element. For example, the first
ElementChild property returns the first child of an element, lastElementChild
returns the last child of an element, and nextElementSibling and previous
ElementSibling can be used to find the elements on either side of an element.

FIGURE 2-4:
A simple to-do

list, created using
DOM methods.

TABLE 2-5	 Properties of the Element Interface
Property Description

attributes An object containing the attributes of an element

children The child elements of an element

classList The value of the class attribute of an element

id The value of the id attribute of an element

innerHTML Used for getting or setting the content (everything between the starting tag and ending tag)
of an element

256 BOOK 2 Meet Your Web Browser

These element selection properties used to be a good way to locate elements
that had no id attributes, in the days before the querySelector() and query
SelectorAll() methods. Today, however, it's much less common to need to
select elements using their relationship to other elements.

Element methods
Table 2-6 lists some of the most useful methods of the Event interface.

Notice that many of the Element interface's methods match those of the Document
interface. The only difference between using them on the document and using
them on an element is that when you use them with an element, they run relative
to the element.

TABLE 2-6	 Useful Event Methods
Method What It Does

addEventListener() Registers an event handler on the element

after() Inserts node objects or strings into the children list of the element's
parent, after the element

append() Inserts node objects or strings after the last child of the element

before() Inserts node objects or strings into the children list of the element's
parent, before the element

dispatchEvent() Dispatches an event to this node

getAttribute() Gets the value of an attribute for the element

getElementsByClassName() Gets the descendants of the element that have classes matching the
passed value

getElementsByTagName() Gets the descendants of the element that match the passed tag name

hasAttribute() Returns true if the element has the specified attribute

matches() Takes a selector string and returns a Boolean value indicating whether the
element would be matched using the string

prepend() Inserts node objects or strings before the first child of the element

querySelector() Returns the first node that matches the passed selector string, relative to
the element

querySelectorAll() Returns all nodes that match the passed selector string, relative to the element

remove() Removes the element from the children list of the parent

Program
m

ing the
Brow

ser

CHAPTER 2 Programming the Browser 257

For example, the following statement uses the Document.querySelectorAll()
method to select all elements in the document that have the li tag name and are
children of ul elements:

document.querySelectorAll('ul>li')

The following statement uses the Document.getElementById() method to select
a ul element and then uses Element.querySelectorAll() method to select the
children of that ul element that are li elements:

document.getElementById('todoList').querySelectorAll('li');

As a rule, keep your selections of elements as narrow as possible. If your goal is
to select the list items in a particular list in the document, the second method
(just shown) is much better than the first because it eliminates the possibility of
matching items in more than one ul element.

Knowing Your History
The History interface gives you the ability to see and modify the list of URLs vis-
ited in the current browser window. Each tab in your browser has a global variable
named history that's created from the History class. The history object can be
used to get and change the current location, which is the URL of the current page
in the browser that shows up in the browser's location bar above the browser
window.

The History interface has the following methods for changing the current URL
and location (the page that is open in the window):

 » history.back(): Changes the location to the previously open URL, which is
the same as pressing your browser's Back button.

 » history.forward(): Changes to the next location in the session history,
which is the same as pressing your browser's Forward button.

 » history.go(): Accepts a positive or negative number and causes the
location to change by the relative location in the session history. For example,
history.go(-1) does the same thing as history.back().

These three methods are useful for traditional websites in which navigation
between screens is done by changing the open HTML page. For example, to go
to the About Us page on a website, you can change the location to https://www.
example.com/about/index.html. The useful aspect of having URLs associated

https://www.example.com/about/index.html
https://www.example.com/about/index.html

258 BOOK 2 Meet Your Web Browser

with various parts of an application is that it makes it possible for users to book-
mark pages and for search engines to direct people to subpages of sites.

In a JavaScript application, however, everything happens in a single HTML page.
Loading a different HTML page causes the JavaScript application to be reloaded,
and any data in memory from the page you were working on is cleared out. For
this reason, JavaScript applications used to switch between various "pages" by
appending the hash mark (#) to the URL, followed by the name of a resource. For
example, in a JavaScript application, you might use a URL like the following one
to cause the application to display the About Us page:

https://www.example.com/index.html#aboutUs

The hash mark in a URL doesn't cause the page to reload, and the JavaScript on
the page can still find out what the value is after the hash mark and use it to show
different content. This strategy made possible the use of direct linking to specific
screens in JavaScript applications. However, it produces strange-looking URLs
that aren't as easy to use as normal URL paths.

The solution to this problem was the introduction of two new methods for the
History interface: pushState() and replaceState(). Both methods change the
location that's on the address bar without reloading the page. The difference is
that pushState() adds a new location to the session history and changes the URL
on the location bar, whereas replaceState() only replaces the URL on the loca-
tion bar, without creating a new item in the session history state.

Using either pushState() or replaceState() allows JavaScript applications
to display different resources or screens based on the URL. If you use replace
State(), however, the user can't move backward or forward through the history.

In both client-side and server-side applications, showing different screens for
different URLs is known as routing. In Node.js, routing is done using the Express
framework. In React, routing can be done using React Router. Vue has a library
called Vue Router. Svelte has several different libraries and frameworks that han-
dle routing.

It’s possible, however, to write your own routing code without using a library, as
shown in Listing 2-4.

LISTING	2-4:	 Routing with JavaScript

<html>

 <head>

 <title>JavaScript Routing</title>

 </head>

Program
m

ing the
Brow

ser

CHAPTER 2 Programming the Browser 259

 <body>

 <h1>What do you want to see?</h1>

 <nav id="navigation">

 <button id="page1">Page 1</button>

 <button id="page2">Page 2</button>

 <button id="page3">Page 3</button>

 </nav>

 <div id="main"></div>

 <script>

 let pageText = 'Welcome. Click a button.';

 document

 .getElementById('navigation')

 .addEventListener('click', changeRoute);

 function changeRoute(e) {

 let requestedRoute = e.target.id;

 history.pushState({}, '', requestedRoute);

 route();

 }

 function route() {

 let currentRoute = location.pathname;

 function getLastURLSegment(path) {

 return path.substring(path.lastIndexOf('/') + 1);
 }

 currentRoute = getLastURLSegment(currentRoute);

 switch (currentRoute) {

 case 'page1':

 pageText = 'This is page 1';

 break;

 case 'page2':

 pageText = 'This is page 2';

 break;

 case 'page3':

 pageText = 'This is page 3';

 break;

 default:

 pageText = 'Route not found.';

 }

 document.getElementById('main').innerHTML = pageText;

 }

 </script>

 </body>

</html>

3React

Contents at a Glance
CHAPTER 1:	 Getting	Started	with React . 263

CHAPTER 2: Writing JSX . 281

CHAPTER 3: Building React Components . 297

CHAPTER 4:	 Using	Data	and	Events in React 327

CHAPTER 1 Getting Started with React 263

Getting Started
with React

“It’s not what happens to you, but how you react to it.”

—EPICTETUS

ReactJS was created in 2012 by Facebook for use on the Facebook.com news-
feed and on Instagram. It was released as open source in 2013 and quickly
became one of the most popular JavaScript user interface libraries.

Understanding ReactJS
When ReactJS (also known as just React) was brand-new, it represented a new
way of building and updating user interfaces. Behind the scenes, of course, React
is using the DOM, which you can read about in Book 2, Chapter 2, to dynamically
update HTML documents. But it was the way that the React library built a layer on
top of the DOM that was revolutionary.

Chapter 1

IN THIS CHAPTER

 » Getting started with ReactJS

 » Creating your first ReactJS project

 » Rendering in the browser with
ReactDOM

264 BOOK 3 React

To web developers who are used to the old way of thinking about manipulating
the DOM, making the switch to thinking about user interfaces in “the React way”
presents a bit of a challenge. To help programmers understand how React thinks
about user interfaces, React’s creators wrote a brief article, “Thinking in React,”
that still provides guiding principles for how the language evolves.

New React developers should check out the original “Thinking In React” article at
https://reactjs.org/docs/thinking-in-react.html.

Distilling “Thinking in React”
React treats user interfaces as a collection of independent and reusable compo-
nents, somewhat like the nodes in a DOM tree. Unlike the HTML DOM, however,
you’re not limited to using only certain kinds of nodes (such as HTML elements,
in the case of the HTML DOM).

Instead, React allows you to create custom components by combining HTML ele-
ments with JavaScript and style rules. These components can be used like custom
HTML elements.

You can think of a React user interface as a higher level of abstraction than the
user interface represented by the HTML DOM, as shown in Figure 1-1.

FIGURE 1-1:
A React UI is a
higher level of

abstraction.

https://reactjs.org/docs/thinking-in-react.html

G
etting Started w

ith
React

CHAPTER 1 Getting Started with React 265

Building a React UI
You can understand how React works by learning how to approach building a
React app. The process, whether for a small app or a large one, generally follows
these five steps:

1. Break up the UI into a component hierarchy.

2. Build a static version in React.

3. Identify the minimal representation of UI state.

4. Identify where the state should live.

5. Add inverse data flow by using events and event handlers.

Step 1: Design the component hierarchy
Figure 1-2 shows a simple and familiar user interface.

If it’s your job as a React developer to translate this user interface into React,
your first task is to figure out how to split it up into independent and reusable
components. By thinking about independence and reusability, you might decide

FIGURE 1-2:
A user interface

mockup.

266 BOOK 3 React

that the user interface shown in Figure 1-2 should be split into the following
components:

 » The logo

 » The search box

 » The Sign In button

 » The navigation bar

 » The search results

 » An individual search result

 » The sidebar

And just like that, you’re finished with the first step in the React development
process. Pat yourself on the back and move on!

Step 2: Build a static version in React
Once you’ve thought about the various components that make up the user inter-
face, your next job is to translate each component into static code. You can think
of this part as similar to writing a snippet of HTML for each component, except
that you’ll write a JavaScript function that returns the HTML.

For example, Listing 1-1 shows how you might create a simple static version of the
navigation bar shown earlier, in Figure 1-1.

LISTING 1-1: A Static Navigation Bar Mockup

function TopNavBar() {
 return (
 <nav>

 All
 News
 Videos
 Images
 Books
 More

 </nav>
);
}
export default TopNavBar;

G
etting Started w

ith
React

CHAPTER 1 Getting Started with React 267

Notice that the return statement of the preceding component seems to contain
just simple HTML code. As you can read about in Book 3, Chapter 2, this is not
actually HTML. Rather, it’s a templating language called JSX that looks like HTML
but compiles to JavaScript.

As you make each static component, you can save it in a file with the same name
as the function and export the function using a default export. You can read about
creating JavaScript modules in Book 1, Chapter 12.

Let’s try another static component. Listing 1-2 shows what your completed static
mockup for the search box might look like.

LISTING 1-2: A Static Search Box Mockup

function SearchBox() {
 return (
 <div>
 <input type="text" placeholder="Search Google or type a

URL"/>
 </div>
);
}
export default SearchBox;

Once you’ve created all the components for your user interface, you need to make
a single component that wraps around all of them, in the same as way a <body>
element wraps around all visible HTML elements in a document. This wrapper
component is usually named App.

Inside App (and the other components as well) you can import components and
create instances of them and put them together (which is called composition) to
build the structure for your user interface, as shown in Listing 1-3.

LISTING 1-3: Putting Together the Components in App

import GoogleLogo from './GoogleLogo';
import SearchBox from './SearchBox';
import SignInButton from './SignInButton';
import NavBar from './NavBar';
import SearchResults from './SearchResults';
import SideBar from './SideBar';
 (continued)

268 BOOK 3 React

function App() {
 return (
 <div>
 <div>
 <GoogleLogo/>
 <SearchBox/>
 <SignInButton/>
 </div>
 <NavBar/>
 <div>
 <SearchResults/>
 <SideBar/>
 </div>
 </div>
);
}
export default App;

If you haven’t read Book 1, I highly recommend that you do before proceeding
with learning React. Having a strong understanding of how JavaScript works will
make learning React a simple task.

Step 3: Identify the state
The next task in creating a React user interface is to figure out what data should
cause the user interface to change. In React, the data that causes the user interface
to change is called state.

For instance, in the example user interface shown in Figure 1-2, the most basic
pieces of data are the search term and the search results. Of these two, the one
that causes the user interface to change is the search term entered by the user. The
rest of the user interface simply reacts to this key piece of data to generate search
results, the sidebar, advertising, and other elements.

A user interface may have just one piece of state, as in this case, or it may have
many different stateful values. Once you think you know what values in your UI
represent the state, you’re done with Step 3.

It’s common for programmers to change their minds about what is the state of an
application once they start programming it. The point of Step 3 isn’t to set any-
thing in stone but rather to start to get an idea of how your application will change
(or, react) in response to events.

LISTING 1-3: (continued)

G
etting Started w

ith
React

CHAPTER 1 Getting Started with React 269

Step 4: Determine where the state should live
Once you know what the state is, the next step is to figure out which component
should hold the state. Think of state as a private property of an object (because
that’s what, in fact, it is). Only the component that owns the state property can
change it, but the owner of a state property can share it with its children as a
read-only value, as shown in Figure 1-3.

The state of an application must be at a higher level in the hierarchy than every
component that uses the state. In the search engine example, both the search
results and the sidebar make use of the search term. The only component that’s at
a higher level in the hierarchy of components is the App component.

Step 5: Implement inverse data flow
Data in a React application flows from parent components to subcomponents. If
you need an event in a subcomponent to modify data in its parent component,
you have to use a callback function passed to the subcomponent, as shown in
Figure 1-4.

React calls this 1-way data flow, but it’s not any different from how JavaScript
normally works. For example, it’s not possible to pass data from one module to a
module that makes use of it (its parent).

FIGURE 1-3:
How state

works.

© John Wiley & Sons, Inc.

270 BOOK 3 React

The final step is to listen for events that will cause the state to change and pass
callback functions to the children that need to cause the state to be modified. In
the search engine example, the event listener can listen for the submit event on
the <input> element in the search component. When this is detected, the event
handler uses a callback function to update the state data in the App component
with the new value.

React is component-based
When you use React to build user interfaces in the browser, you need to use two
separate libraries:

 » The React library’s job is to render a tree of components. It works similarly to
how a browser’s rendering engine renders a DOM tree from HTML elements.

 » The ReactDOM library’s job is to take the tree of components from the React
library and use it to update the browser DOM.

As a ReactJS programmer, you need to concern yourself only with building com-
ponents and rendering them using the React library. The work of changing what’s
shown in the browser window is handled automatically by the ReactDOM library.

FIGURE 1-4:
Pass a function to

a child to
do inverse
data flow.

© John Wiley & Sons, Inc.

G
etting Started w

ith
React

CHAPTER 1 Getting Started with React 271

This brings me to the biggest difference between how React works and how DOM
manipulation libraries that came before it work, which I explain in the next
section.

React is declarative
Perhaps the most important concept in React is that it’s declarative. A declara-
tive system is one in which you, as the programmer, provide a state you want the
system to create, rather than specifically write the steps that the system will take
to achieve those results.

How this works in React is that the components you write describe how the user
interface will look and update, without worrying about the DOM manipulations
needed to change what’s displayed in the browser.

This is quite different from using the DOM properties and methods you learn
about in Book 2, Chapter 2 to change the DOM. Using the native JavaScript DOM
APIs is an imperative way of working. It requires you, as the programmer, to write
the steps necessary to change what’s displayed in the browser.

React is just JavaScript
Until now, you haven’t seen any code that’s specifically React, but if you’ve come
this far in the book, you already understand most of the code that you’ll use to
write React applications. This is because React itself is a fairly small library for
rendering a tree of components. Unlike some other JavaScript libraries and frame-
works, React doesn’t have a lot of special functions and tools that you need to
learn to be able to use it.

React developers say that React is idiomatic JavaScript, meaning that it conforms to
the way JavaScript is written rather than creates its own way of working.

Initializing a Project with Vite
If you’ve read the first half of this chapter, you should have a pretty good under-
standing of the fundamental ideas behind ReactJS programming. In this section, I
show you how to build your first ReactJS applications in just a few minutes.

272 BOOK 3 React

Introducing Vite
Using any modern front-end library requires a certain amount of tool setup and
Node.js package installation. The tools and other packages you need to install
for ReactJS development include the React and ReactDOM libraries themselves, as
well as tools for compiling, testing, and running React applications in your devel-
opment environment.

It’s possible to install and configure all these tools individually, but fortunately
there are easier ways. Vite is one way to easily start a React project. Using Vite,
you can download, install, and run a basic functioning React application within a
few minutes (depending on the speed of your Internet connection and computer).

Although Vite is now a popular way to start a React project, it’s not the only way.
In fact, at the time of this writing, a tool called Create React App is the officially
supported way to get started with React. Although Create React App is great at
what it does, many React programmers consider it to be too slow and too difficult
to configure. Things move fast in the React world, however, and it’s possible that
by the time you’re reading this chapter, another product has replaced Vite as the
easiest and fastest way to start a React project.

Many programmers prefer to use more complete frameworks for building React,
such as Next.js or a more customized and customizable build tool. One certainty
is that anytime one tool, language, or library becomes popular in the JavaScript
world, it’s just a matter of time until something better comes along and everyone
turns against the old way — until they eventually return to the old way and the
cycle repeats.

One of my goals with this book is to teach you enough that you can decide for
yourself which tools and libraries to use, rather than follow the latest trends
among YouTubers and JavaScript “gurus.”

But enough of my rambling. Let’s learn React. To use Vite, you’ll use Node.js and
a package installer.

I show you how to install the latest version of Node.js in Book 1, Chapter 1.

Launching the VS Code terminal
You can access Node.js and your package installer from any terminal window
(such as Terminal on macOS or cmd.exe on Windows). For easy access to your
terminal, VS Code includes a built-in terminal window.

G
etting Started w

ith
React

CHAPTER 1 Getting Started with React 273

To access VS Code’s terminal window, either choose Terminal➪ New Terminal
from the top menu or press Ctrl+` (backtick). A new terminal window opens at the
bottom of your VS Code interface, as shown in Figure 1-5.

You can also open a terminal window at any location in your current project by
right-clicking on a folder name in the VS Code File Explorer pane and choosing
Open in Integrated Terminal.

Follow these steps to start a new ReactJS project with Vite from within the VS Code
Integrated Terminal:

1. Open an existing VS Code project or create a new one.

2. Open the Integrated Terminal in VS Code.

3. Type the following command into the Integrated Terminal:

npm create vite@latest my-react-app -- --template react

Your terminal comes alive with downloading. Wait until it finishes, and you’ll
see a message like the one shown in Figure 1-6.

4. Enter cd followed by the name of your project to make your new project the
current working directory.

In my example from Figure 1-6, I’d use cd my-react-app.

5. Enter npm install to install the project’s dependencies.

FIGURE 1-5:
The VS Code

terminal window.

274 BOOK 3 React

6. Enter npm run dev to start up the development server.

After a moment, you see a message telling you the local development server
address. If a browser doesn’t automatically start and open that address, you
can open your browser and enter the address Vite shows you into the address
bar, or you can Ctrl+click (on Windows) or Cmd+click (on macOS) the link in the
VS Code terminal.

Touring the structure of a React app
Figure 1-7 shows what the Vite starter project looks like at the time of this writing.
You may see something slightly different because this app has changed several
times in the past. The actual look of the starter project isn’t important, however,
because the whole idea of a starter project is to give you something to replace with
your own app.

FIGURE 1-6:
The message you

see when Vite
finishes creating

a React app.

FIGURE 1-7:
The default Vite

React starter
project.

G
etting Started w

ith
React

CHAPTER 1 Getting Started with React 275

Before we start building an app, let’s examine this basic starter app and see what
it’s made of. If you expand your project in the VS Code File Explorer pane, you can
see that it contains several folders and files at the top level:

 » node_modules

 » public

 » src

 » .gitignore

 » index.html

 » package-lock.json

 » package.json

 » vite.config.js

Let’s look at each of these folders and files. As you read about them, it may be
helpful to open or expand them in VS Code to see their contents.

node_modules
This folder contains all the Node.js modules that were downloaded and installed
when you used the npm install command. You most likely won’t ever need to
directly modify anything in this directory.

public
The public folder contains static assets, which are files that don’t need to be
compiled to run in the browser, including images and other media files.

Although you may need to occasionally do something with the public folder or
add files to it, for the most part you won’t need to touch the public folder.

src
The src folder contains your app’s source code, including JavaScript modules,
CSS, test files, and some configuration files. This is where you will build your app.

If you expand the src folder, you’ll see that it contains several .jsx files, a couple
of CSS files, and a subdirectory named assets.

276 BOOK 3 React

You can name React components using either a .jsx file extension or a .js exten-
sion. Many people prefer to use .jsx, and Vite requires it by default.

 » The main.jsx file is the main JavaScript file for the app. This is the one that’s
loaded into the browser directly and uses the ReactDOM library to update the
browser DOM.

 » App.jsx contains the module that creates the App component. This is the
component at the top of the component tree in your React app.

 » App.css contains CSS code used by the App component.

 » Any other files that are in the directory aren’t important right now.

.gitignore
The .gitignore file is a configuration file that lists file and folder names that
shouldn’t be tracked in the project’s Git repository. If you open .gitignore, you
can see that it includes the project’s node_modules folder, some log files, the dist
directory (which is generated when you run npm run build to create a compiled
version of your project for deployment), and some files that are created by your
code editor and are important only on your computer.

package-lock.json
The package-lock.json file is automatically generated when you install node
packages. It describes the tree of dependencies in your node_modules folder and
is used when you install the project.

package.json
The package.json file contains meta data about your project, including general
information, such as the name and version, as well as lists of dependencies and
scripts (such as npm run dev and npm run build) you can run. When you install,
update, or remove packages, package.json is automatically modified. You may
need to modify package.json yourself sometimes as well. You can learn more
about npm and package.json in Book 6, Chapter 1.

vite.config.js
The vite.config.js file configures the Vite tool. You may need to modify this file
at some point, but there’s nothing you need to do here now.

Now that you understand what all the different files installed by Vite do, let’s
make some changes.

G
etting Started w

ith
React

CHAPTER 1 Getting Started with React 277

Modifying a React project
Before starting to modify the project, make sure that it’s still running in the
development server. It isn’t necessary for the development server to be running
for you to make modifications, but if it is running, you can see the effect that
changes to the code have on the browser window as you work. This feature is
called hot reloading.

You can know whether the development server is running by refreshing the app in
the browser or looking at the terminal window in VS Code. If you can’t type in the
terminal window, your server is likely still running.

If you want to stop and then restart your development server, click in the terminal
window and press Ctrl+C to halt the development server, and then enter npm run
dev to start it again.

Follow these steps to make some modifications to the default React project:

1. Open App.jsx in VS Code.

Notice that this component is just a simple JavaScript function. The return
statement contains something that looks like HTML markup. This is JSX code,
which gets compiled to JavaScript. You can learn all about JSX in Book 3,
Chapter 2.

2. Edit the text in the function’s return statement.

3. Save the file and return to your web browser to see the changes.

4. Try making some other changes to App.js.

Here are some suggestions:

• Remove the div containing linked img elements.

Notice that when you remove the img element, the import statement for
the logo is dimmed out. If you hover the mouse cursor over the part of the
import statement with the yellow squiggly line, you see a tool tip telling
you what’s going on.

• Open the linked stylesheet, App.css, and change the background color for
the #root selector.

• Delete everything between the <div className="App"> and </div> tags.

• Insert an <h1> element inside the <div className="App"> element and
give your page a title — for example, Learning React.

278 BOOK 3 React

At this point, you can make changes to the root component, and when you save
the file, the component is re-rendered and updated in the browser. In the next
section, I show you how that happens.

Introducing ReactDOM and
the Virtual DOM

ReactDOM is the library that renders React components in the browser. The only
place in a React app where ReactDOM is used is in the src/main.jsx file. Inside
main.jsx, you see the following code:

ReactDOM.createRoot(document.getElementById('root'))
 .render(
 <React.StrictMode>
 <App/>
 </React.StrictMode>
)

This code passes a reference to an element in index.html to the ReactDOM.
createRoot() method. This creates the root element where your entire React
application is rendered. If you open index.html, you can find the element that’s
passed to createRoot().

The render() method of the root object returned by ReactDOM is then called and
<App /> is passed to it. The <App /> element represents an instance of the App
component. App is called the root component.

The render() method is called automatically whenever the user interface gener-
ated by React is updated. ReactDOM then calculates the difference between the
new state of the application and what’s displaying in the browser, and it updates
the browser DOM to match the tree rendered by React. This process is known as
the Virtual DOM.

The idea behind the Virtual DOM (VDOM) is that the React code you write
doesn’t directly change the HTML DOM. Instead, React creates (or renders) a “vir-
tual” DOM in memory that represents the ideal state of the user interface. The
virtual DOM rendered by React is passed to a renderer, such as ReactDOM, which
compares the new ideal state with the previous state to figure out how to update
the user interface.

Figure 1-8 shows how the virtual DOM works.

G
etting Started w

ith
React

CHAPTER 1 Getting Started with React 279

Separating the library that makes components (React) from the rendering library
makes it possible for React to be used for more than just rendering user interfaces
in the browser. By using a different renderer, React can be used to generate other
things, including native mobile apps, PDFs, and static HTML.

Congratulations on creating your first React App!

FIGURE 1-8:
The React

Virtual DOM.

© John Wiley & Sons, Inc.

CHAPTER 2 Writing JSX 281

Writing JSX
“I write to discover what I know.”

—FLANNERY O’CONNOR

J
SX is a template language for describing user interfaces. In this chapter,
I show you how to write JSX to compose views in the browser DOM.

Learning the Fundamentals of JSX
Many people’s first reaction to seeing React components is that they seem to
violate a fundamental best practice of writing web code: Logic should be separate
from presentation. In terms of web pages, there exists a long tradition of placing
HTML and JavaScript in different files.

However, React is fundamentally a library for creating user interfaces with reus-
able components. What’s important in a React user interface is the component,
not the various languages the component contains.

Chapter 2

IN THIS CHAPTER

 » Writing JSX elements

 » Using JavaScript in JSX

 » Rendering conditionally

 » Making lists

 » Styling React components

282 BOOK 3 React

Rather than enforce a separation of languages, React emphasizes separation of
concerns by using components that are self-contained and independent parts that
can be assembled and used without external dependencies.

JSX is not HTML
Listing 2-1 shows a simple React component.

LISTING 2-1: A Simple React Component

function SearchForm() {
 return (
 <form>
 <label htmlFor="searchterm">
 Search For:
 <input type="text" id="searchTerm"/>
 </label>
 <button>Search</button>
 </form>
);
}

export default SearchForm;

At first glance, it seems that the code in Listing 2-1 combines HTML and
JavaScript and that it should generate a syntax error. The key, however, is that the
code in the return statement isn’t HTML — it’s JSX.

JSX is XML
JSX is an XML language for writing JavaScript. When React code is compiled,
the JSX code gets transformed into calls to React methods for generating HTML.
Listing 2-2 shows what the JSX code in Listing 2-1 compiles to before it runs in
the browser.

LISTING 2-2: Compiled JSX

React.createElement(
 'form',
 null,
 React.createElement(
 'label',

W
riting JSX

CHAPTER 2 Writing JSX 283

 { htmlFor: 'searchterm' },
 'Search For:',
 React.createElement('input', {
 type: 'text',
 id: 'searchTerm',
 })
),
 React.createElement('button', null, 'Search')
);

You could write your React components by using nested React.createElement()
methods, but no one does that, because it would be much more difficult and there’s
no benefit to it. Keep in mind that before you test or deploy your React code, it gets
translated to pure JavaScript. So, what the browser sees is all JavaScript.

Transpiling with Babel
The name of the node package that converts JSX code to JavaScript is Babel. Babel
is one of the programs that runs when you enter npm run dev in a project created
with Vite.

Babel is also responsible for making sure your React app will run on every browser
someone is likely to use. Because some browsers may not support the latest Java-
Script syntax, Babel converts the code you write to the equivalent code in an earlier
version of JavaScript that is supported by every browser. This process of convert-
ing from one version of JavaScript to another is called transpilation. Transpilation
is what makes it possible for you to not worry about browser compatibility when
you’re writing JavaScript code.

You can see Babel in action and test it out by going to the web-based interface to
Babel at https://babeljs.io/repl, which is shown in Figure 2-1.

Writing HTML output with JSX
React has a built-in set of components that output HTML elements. To use these
elements in the return statements of React components, write them using the
same element names you use to write the HTML elements they output. For exam-
ple, to produce a HTML <div> element in the browser, use the React <div> ele-
ment, which creates an instance of React’s built-in div component.

These HTML-equivalent React components have the same attributes as the HTML
components they produce, with just a few exceptions, changes, and additions.

https://babeljs.io/repl

284 BOOK 3 React

Using built-in components
If you look closely at the React components you can see in Book 2, Chapter 1
and in this chapter, you see several of the differences between using JSX and
HTML. These are the most important differences:

 » Several attribute names are different in JSX.

 » JSX uses camelCase for attribute names.

 » JSX elements must be valid XML.

Attributes that are different in JSX
When you write JSX, the class attribute in HTML is written as className, and the
for attribute in HTML is written as htmlFor. The reason for these two differences
is that class and for are reserved words in JavaScript and using them in JSX could
have unwanted side effects.

JSX uses camelCase
JSX attributes are always in camel case, whereas all HTML attributes are in lower-
case or use dashes. For example, the event attributes in HTML are written in JSX
as onClick, onSubmit, or onChange.

FIGURE 2-1:
Using Babel’s

web-based
interface.

W
riting JSX

CHAPTER 2 Writing JSX 285

JSX must be valid XML
In JSX, every opening tag must have a closing tag or be self-closing. A self-
closing tag has a slash before the closing angle bracket. For example, the

HTML element is written in JSX as
.

HTML doesn’t need to conform to the rules of XML. It’s just fine to write cer-
tain HTML elements without a closing tag or a closing slash. These elements are
called empty elements because they have no content. The HTML
, ,
and <input> elements are examples of empty elements. Here’s how you write an
<input> element in HTML:

<input type="text" id="searchTerm">

In JSX, this line produces an error because the element isn’t closed. To close an
element that doesn’t require a closing tag in HTML, add a slash at the end of the
tag. For instance, to make the previous HTML input element into valid JSX, write
it like this:

<input type="text" id="searchTerm"/>

Using JavaScript Expressions in JSX
To specify that something in JSX should be compiled as JavaScript rather than JSX
code, surround it with curly braces. In the following JSX code, a variable, first-
Name, is inserted into the content of the <h1> element:

<h1>Welcome, {firstName}</h1>

You can use curly braces to insert any JavaScript expression into JSX.

An expression is any unit of code that resolves to a value. JavaScript expressions are
covered in Book 1, Chapter 4.

JavaScript expressions can also be passed to elements as values of attributes. For
example, in Listing 2-3 the value of the className attribute is determined using
the result of executing a function.

286 BOOK 3 React

LISTING 2-3: Specifying an Attribute Value Using an Expression

function Message({ messageType, message }) {
 function getMessageClass() {
 if (messageType === 'error') {
 return 'errorStyle';
 } else {
 return 'messageStyle';
 }
 }
 return <p className={getMessageClass()}>{message}</p>;
}

export default Message;

Although it’s possible to use any JavaScript expression inside your JSX code by
using curly braces, it’s a best practice to limit your use of JavaScript in JSX to pre-
sentational code. Presentational code is code that directly affects what renders in
the browser. Code such as event handlers and functions that perform the logic of
your app should be outside the return statement of your component.

One of the most common things to do with JavaScript in your JSX is conditional
rendering, as described next.

Conditionally Rendering JSX
Conditional rendering is the use of a conditional statement to determine whether
some piece of JSX should be rendered. You have three main ways to perform con-
ditional rendering in React, by using

 » Element variables

 » &&

 » The conditional operator

Unlike other libraries, React doesn’t provide its own method for doing conditional
rendering, so each of these techniques is just plain JavaScript.

W
riting JSX

CHAPTER 2 Writing JSX 287

Conditional rendering with
element variables
JSX tags themselves are JavaScript expressions. As with any JavaScript expres-
sions, you can assign JSX code to a variable. Note that because a variable assign-
ment isn’t an expression (because it doesn’t resolve to a value), creating element
variables must be done outside of the return statement.

In Listing 2-4, a JSX <h1> element is assigned to a constant named header. The
header variable can then be used in the return statement instead of the <h1>
element.

LISTING 2-4: Using Element Variables

import Message from './Listing0303';

function WelcomeScreen() {
 const header = (
 <h1>
 <Message message="Welcome!" messageType="header"/>
 </h1>
);
 return { header };
}

export default WelcomeScreen;

Note the parentheses around the <h1> element in Listing 2-4. Although parenthe-
ses aren’t required when using JSX, it’s a good practice to use them anytime you
have more than one line of JSX.

To do conditional rendering with element variables, set the value of a variable
or constant outside of your return statement using a conditional statement, as
shown in Listing 2-5.

LISTING 2-5: Conditional Rendering with an Element Variable

import Message from './Listing0303';

function WelcomeScreen({ loggedIn }) {
 let header;
 if (loggedIn) {
 header = (

(continued)

288 BOOK 3 React

 <h1>
 <Message message="Welcome" messageType="header"/>
 </h1>
);
 } else {
 header = (
 <header>
 <h1>
 <Message message="Please log in to continue!"

 messageType="header"/>
 </h1>
 </header>
);
 }
 return { header };
}

export default WelcomeScreen;

Conditional rendering with &&
The && operator evaluates expressions from left to right and returns the value of
the first falsy operand, or the last operand if all the values are truthy.

You can use this fact to render JSX conditionally. Because && creates an expression
that returns a value, you can use && expressions inside the return statement of
your component by surrounding the && expression with curly braces, as shown in
Listing 2-6.

LISTING 2-6: Conditional Rendering with &&

import WelcomeMessage from './WelcomeMessage';

function WelcomeScreen({loggedIn}){
 return (
 <div>
 {loggedIn&&<WelcomeMessage/>}
 Note: if you don't see the welcome message,
 you're not logged in.
 </div>

LISTING 2-5: (continued)

W
riting JSX

CHAPTER 2 Writing JSX 289

)
}

export default WelcomeScreen;

In this example, if the value of loggedIn is false, that value is returned. A value
of false doesn’t render anything. If the value of loggedIn evaluates to true, the
<WelcomeMessage /> element is included in the JSX.

You can string together multiple && expressions to require multiple values to be
true for some JSX code to be included. For example, Listing 2-7 requires both the
loggedIn and isHuman variables to be truthy.

LISTING 2-7: Using Multiple Conditions with &&

import WelcomeMessage from './WelcomeMessage';

function Welcome({ loggedIn, isHuman }) {
 return (
 <div>
 {loggedIn && isHuman && <WelcomeMessage/>}
 Note: If you don't see the welcome message, you're
 not logged in or you're a bot.
 </div>
);
}

export default Welcome;

Conditional rendering with
the conditional operator
The conditional, or ternary, operator can also be used in the return statement to
choose between different JSX expressions to display. Listing 2-8 shows how to use
the conditional operator to choose between two different elements.

290 BOOK 3 React

LISTING 2-8: Conditional Rendering with the Conditional Operator

import WelcomeMessage from './WelcomeMessage';
import Login from './Login';

function Welcome({ loggedIn }) {
 return (
 <div>
 {loggedIn ? <WelcomeMessage/> : <Login/>}
 </div>
);
}

export default Welcome;

Making a List
When you return an array from a React component, it’s automatically decon-
structed into its individual elements. You can use this fact to easily create lists in
the user interface.

For example, it’s common for a web API to return JSON data containing an array of
objects. Listing 2-9 shows a simple example of this type of JSON string.

LISTING 2-9: A Sample JSON Array of Objects

[
 {
 "customerId": "1",
 "address": "234 Pine Street",
 "city": "Pinewood",
 "state": "IL"
 },
 {
 "customerId": "2",
 "address": "456 Elm Street",
 "city": "Elmwood",
 "state": "MI"
 },
 {
 "customerId": "3",
 "address": "678 Maple Street",

W
riting JSX

CHAPTER 2 Writing JSX 291

 "city": "Maplewood",
 "state": "OH"
 },
 {
 "customerId": "4",
 "address": "901 Chestnut Street",
 "city": "Chestnut",
 "state": "SC"
 }
]

The first thing to do to be able to use JSON data is to convert it to JavaScript by
using the JSON.parse() method, which you can learn about in Book 1, Chapter 11.

Once you’ve converted the JSON data to JavaScript, you can convert the resulting
array to an HTML list in the browser using JavaScript’s Array.map() method, as
shown in Listing 2-10.

LISTING 2-10: Making a List from an Array

 function CustomerList({ customers }) {
 return (

 {customers.map(customer, () => (
 <li key={customer.id}>
 {customer.name}, {customer.address}, {customer.city},

 {customer.state}

))}

);
}
export default CustomerList;

In this example, the component receives an array of objects, called customers, from
its parent component and returns a JSX element containing one ele-
ment for each item in the supplied array.

Notice that each element generated from the Array.map() method has an
attribute named key. The key attribute is required by React anytime you create a
list, and each key must have a unique value. The key attribute is used internally in
React to make updates to lists more efficient.

292 BOOK 3 React

Styling React Apps and Components
The first thing to understand about modifying the style of React components is
that it can be done globally or locally.

The second thing to know is that, as with nearly everything in React, adding
style to components and applications is done using standard JavaScript and CSS
techniques.

I tell you first about adding global styles to your React application, and then I dis-
cuss how to style individual components.

Adding global styles
You have likely seen examples of using global styles already. In the default App
component created by Vite, a stylesheet named App.css is imported into the App.
jsx file. The syntax for importing CSS into a React application using this method
is straightforward and simple:

import './App.css';

If you try importing CSS into a JavaScript file, it normally causes an error because
CSS isn’t valid JavaScript. However, importing CSS into JavaScript is possible
because the compilation process that happens when you run npm run dev or npm
run build in a Vite application automatically extracts any imported CSS files and
inserts them into the HTML or creates CSS files that are linked to from the index.
html file.

No matter where in your application you import CSS using this method, it becomes
global CSS that affects every component in your application. For your App.css file,
this is usually the desired behavior because the App component contains every
other component, and its styles should be global.

It’s common to include a CSS framework like Bootstrap (https://getbootstrap.
com) in your App component, which makes the styles included in Bootstrap avail-
able to every other component.

However, importing global CSS into subcomponents can have unexpected results
if you’re not aware of the fact that all imported CSS becomes global.

It’s generally a good practice to think about global style sheets as being useful
for keeping styles that control the layout of components in the application and
for styles that manage the overall theme of the application. For anything that’s

https://getbootstrap.com
https://getbootstrap.com

W
riting JSX

CHAPTER 2 Writing JSX 293

local to a component, such as the layout of elements within a form or the way that
headers and figures are styled within a component that displays blog posts, you
should use local styles.

Using local styles
React components are meant to be reusable and self-contained parts. Ideally,
you should be able to take a React component from one application and use it
in another application just by knowing what input it requires. For example, a
 DatePicker component you build for a social media app should be able to be used
in an appointment scheduling app.

When components rely on global styles for controlling how they look internally,
however, the dependency on some other condition (global styles) breaks this
reusability.

To make components more reusable and independent, React encourages the use of
JavaScript within a component to style elements that are local to that component.
JavaScript styling of components is enabled with the style attribute.

Using the style attribute
In HTML, elements that can be styled (which includes any element that produces
visible output) have an attribute named style, into which you can pass CSS code
that is applied only to that element. Passing CSS to a style element is known as
inline styling.

In HTML, the use of inline styles is generally discouraged because it makes main-
tenance of your web pages more difficult and because inline styles can’t be reused.

In React, built-in components that produce visible HTML elements have a style
attribute. Unlike the HTML style attribute, however, the React style attribute
doesn’t take CSS as its value. Instead, it takes a JavaScript object. React converts
the properties of this style object into JavaScript code that manipulates the CSS
Object Model in the browser.

For example, Listing 2-11 shows how to style a paragraph of text in a component
by using the style attribute.

294 BOOK 3 React

LISTING 2-11: Using the Style Attribute

function BlogPostBody({ blogBodyText }) {
 return (
 <p style={{ fontSize: '100%', marginBottom: '2.2rem', color:

'#171717' }}>
 {blogBodyText}
</p>
);
}

export default BlogPostBody;

Although the markup in Listing 2-11 looks similar to inline styling in HTML, it’s
not at all the same thing. Keep in mind that when you create a React component
that displays a paragraph of text (for example), you’re not just styling a single
paragraph of text — you’re creating a reusable way to style any paragraph of text
by simply passing it as an argument to this component.

Using style objects
Notice that the value of the style attribute in Listing 2-11 is an object literal that’s
enclosed in curly braces to tell JSX to treat it as literal JavaScript. The result is that
there are double curly braces around the style properties.

Because the values passed to the style attribute are used to manipulate the
CSSOM, property names you use must match the names of the CSSOM properties.
The biggest difference between CSS properties and CSSOM properties is that mul-
tiword CSS properties use kebab-case and CSSOM properties use camelCase. For
example, in CSS the roundness of the corners of a border is controlled using the
border-radius property, but in JavaScript you use the borderRadius property.

The other differences between CSS rules and style objects just have to do with
the way JavaScript objects are. For example, CSS rule sets separate multiple rules
using semicolons. In JavaScript, properties are separated using commas. In CSS,
the values of properties aren’t put in quotes. For example, to specify a border
radius for an element in CSS, you use the following code line:

<div style="border-radius: 8px;">

Here’s how you can convert the preceding CSS rule to a JavaScript style object and
pass it to the style attribute of a React div component:

<div style={{borderRadius: "8px"}}>

W
riting JSX

CHAPTER 2 Writing JSX 295

Making style modules
Because style objects are JavaScript objects, they can be assigned to variables or
constants, and the names of the variables or constants can be passed to the style
attribute. Once you’ve assigned a style object to a constant or variable, you can
extract it to a separate file and export it as a module. In this way, you can define
styles that have local scope but that can also be used in multiple components.

One common strategy for using style modules is to make a file containing
local styles for each component in a user interface, such as the one shown in
Listing 2-12.

LISTING 2-12: Creating Style Modules

export const headline = {
 fontSize: '200%',
 color: '#333',
};
export const authorName = {
 fontWeight: 'bold',
};
export const bodyText = {
 color: '#000',
};

You can then import the styles from this module individually or all at once into a
React component, as shown in Listing 2-13.

LISTING 2-13: Importing Style Modules

import * as styles from './Listing0212.styles.js';

function Article({ headline, authorName, bodyText }) {
 return (
 <div>
 <h2 style={styles.headline}>{headline}</h2>
 <div style={styles.authorName}>by: {authorName}</div>
 <div style={styles.bodyText}>{bodyText}</div>
 </div>
);
}

export default Article;

296 BOOK 3 React

Other style strategies
Because React doesn’t enforce many rules about how components should be
assembled, many different libraries and techniques have emerged to accomplish
similar things. Nowhere is this more obvious, and sometimes confusing, than
with styling components.

Every strategy for styling React components is some variation of either using
CSS or using style objects. One particularly interesting method that combines the
familiarity of writing CSS with the flexibility of using JavaScript is CSS Modules.

CSS Modules allow you to write ordinary CSS code in a file with the extension
.module.css. You can then import the styles defined in the .module.css file into
a React component, where they’ll be scoped locally to that component by default.

Using CSS Modules allows you to use not only locally scoped CSS but also a prop-
erty named composes, which gives you the ability to create new styles by including
properties defined in another style.

Listing 2-14 shows an example of a CSS Modules file.

LISTING 2-14: A CSS Modules File
.paragraph {
 font-size: 16px;
 font-family: Georgia serif;
 color: #333;
 text-indent: 25px;
}
.redParagraph {
 composes: paragraph;
 color: red;
}

To use the styles from the preceding CSS Modules file, import it into a component
as an object, as shown in Listing 2-15.

LISTING 2-15: Importing and using CSS Modules
import styles from './Message.module.css';

function Message(props) {
 return <p className={styles.redParagraph}>This text is red.</p>;
}

export default Message;

CHAPTER 3 Building React Components 297

Building React
Components

“A good engineer thinks in reverse and asks himself about the stylistic
consequences of the components and systems he proposes.”

—HELMUT JAHN

React components define React elements. In this lesson, I describe how React
components work, how to pass data from parent components to child com-
ponents, and how to assemble components to build increasingly complex

components through a pattern called composition.

Chapter 3

IN THIS CHAPTER

 » Writing custom components

 » Returning valid data from
components

 » Passing props

 » Finding the state

 » Implementing reactivity with
functions and classes

 » Hooking into component lifecycle

 » Composing with components

298 BOOK 3 React

Thinking in Components
React components exist to describe an isolated piece of a user interface. So far in
Book 3, each component I describe has been a simple JavaScript function that takes
an object as an argument and returns a React element. As you can see shortly,
components can also be written as JavaScript classes.

Designing your own elements
When you write a React component, what you’re doing is creating a user-defined
element. When you’re creating a web application, you can think of user-defined
elements as a way to create more complex and customized elements than those
that exist in HTML.

Imagine that you’re creating a new search engine, and you want it to have the
same functionality as Bing.com (shown in Figure 3-1).

FIGURE 3-1:
Bing.com.

Building React
Com

ponents

CHAPTER 3 Building React Components 299

One important component of Bing.com that your new search engine will need is
the weather widget. Rather than write all the custom code that powers and styles
this widget, wouldn’t it be useful if you could include the current local weather
on your own search engine home page just by using a <GetLocalWeather> HTML
element? This is the idea behind React.

Of course, unless you can find a widget that someone else has written (and there’s
a good chance you can), you still need to write all the logic and presentational code
that powers this <GetLocalWeather> element. But, by creating a new element,
you greatly simplify how the user interface works, or at least you make it much
easier to think about how the application works.

Thinking about a user interface in terms of high-level components allows you to
visualize and work with a user interface as complex as Bing.com with just a few
elements, as shown in Listing 3-1.

LISTING 3-1: A High-Level View of Bing.com

export default function Bing() {
 return (
 <Homepage>
 <TopNav/>
 <SearchBox/>
 <NewsImageScroller/>
 <div>
 <div class="leftColumn">
 <TopStories/>
 </div>
 <div class="rightColumn">
 <Weather postalCode="97103"/>
 <Sports/>
 </div>
 </div>
 </Homepage>
);
}

Sure, each of the custom elements shown in Listing 3-1 may consist of hundreds
or thousands of lines of code, but when you’re putting together the Bing.com
home page, you don’t need to know about how the underlying code works. You
just use the elements.

300 BOOK 3 React

Returning valid values
These are the valid return values for a component:

 » One JSX element

Note that the single element returned by a component can be as deeply
nested as you need, as long as it has a single element that wraps around all
the others.

 » An array

When a component returns an array (including an array of elements), it’s
spread into the separate elements.

 » A string

 » A number

 » undefined

 » null

Returning an object (including an object that’s part of an array) produces an error
in React.

Recognizing the Two Types of Data
Two kinds of data make React components work: props and state. Understanding
the differences between props and state and when to use each one is the key to
making your React components update correctly and quickly.

Props
Props (short for properties) are data that components receive from their parent
components. To pass props to a component, specify attributes in React elements.
The attribute names become properties of the props object in the component
instance the element creates.

For example, Listing 3-2 defines two components: ParentComponent and Child-
Component. ParentComponent creates three instances of ChildComponent by using
JSX elements. Each ChildComponent instance receives a different value for an
attribute named firstName.

Building React
Com

ponents

CHAPTER 3 Building React Components 301

The firstName attribute from ParentComponent becomes a property of the object
passed to ChildComponent, and each of the three instances of ChildComponent
can access and use this property.

LISTING 3-2: Passing Props

function ParentComponent(){
 return (
 <div>
 <ChildComponent firstName = "Alex"/>
 <ChildComponent firstName = "Mallory"/>
 <ChildComponent firstName = "Jennifer"/>
 </div>);
}

function ChildComponent(props){
 return (
 <div>Hi, my name is {props.firstName}.</div>
)
}

When a parent component passes a value to a child component via an attribute,
the resulting property in the child component instance is read-only (or immutable,
to use a fancier term).

Props are how parent components change the output of child components.

Because props are read-only, a user interface that uses only props never changes.
If your goal is to create a static brochure-style web page using React, this is fine.
But React is called React for a reason — it’s designed to be reactive. To make React
applications reactive, they need data that can change over time or in response to
user actions.

The data that can change over time or in response to user actions in a React appli-
cation is called state.

Getting reactive with state
State describes the data in your application that makes things happen. For exam-
ple, think about a flashlight. A flashlight typically has two states it can be in:
on or off. These states are controlled using a switch, and they cause the light to

302 BOOK 3 React

shine or not. If you were programming a React component to operate a flashlight,
you’d probably put a property or variable called isOn in your component’s state,
as shown in Listing 3-3.

LISTING 3-3: A Flashlight Component

import { useState } from 'react';
function Flashlight() {
 const [isOn, setIsOn] = useState(false);
 return (
 <div>
 <Lightbulb glowing={isOn} />
 <button onClick={() => setIsOn(!isOn)}>Change State</button>
 <button onClick={() => setIsOn(false)}>Turn off</button>
 </div>
);
}

export default Flashlight;

function Lightbulb(props) {
 return (
 <div>
 <div
 className="bulb"
 style={{
 width: '100px',
 height: '100px',
 backgroundColor: props.glowing ? 'yellow' : 'black',
 }}
 />
 </div>
);
}

In the preceding example, clicking the button changes the Boolean isOn value to
its opposite, by using the negation operator (!). The value of isOn is passed to
the Lightbulb component using an attribute. Inside the Lightbulb component,
glowing is available as a prop.

Just as a real-life light bulb doesn’t determine whether it’s glowing and it can’t
turn itself on, the Lightbulb component has no control over what the value of
glowing will be and it can’t change it.

Building React
Com

ponents

CHAPTER 3 Building React Components 303

State isn’t always as simple as a Boolean value. Some React user interfaces contain
many changing parts and must use a great deal of state data. For example, con-
sider a weather-tracking user interface.

To display a live weather-radar map, a user interface must know about tempera-
ture, precipitation, windspeed, time, and other factors. All these factors change
regularly, and all of them can cause changes to the user interface.

Figure 3-2 shows a weather map widget.

To determine what should be state in this widget, you first must make a list of
the various data points needed to generate the user interface. Here’s what I came
up with:

 » Location

 » Local date and time

 » Sky conditions

 » Temperature

 » Precipitation type

 » Precipitation amount

 » Daily forecasted high and low temperatures

 » Weather icon

 » Unit preference (F or C)

More pieces of data are surely involved, but you get the idea.

FIGURE 3-2:
A weather map
widget (source:

weather
widget.io).

http://www.weatherwidget.com
http://www.weatherwidget.com

304 BOOK 3 React

The next thing to do is to ask yourself a few questions about each piece of data:

 » Does it change over time?

 » Can it be determined or calculated based on another piece of data?

 » Is it passed to the component in the props object?

If you answer the first question with "Yes" and the other two questions with
"No," that piece of data is likely state.

In my expert opinion (as someone who has experienced all kinds of weather),
many of the data points required by this widget should be stored as state. A couple
of them, however, are likely props. For example, the icon showing the type of
weather can be calculated based on a combination of the precipitation data, the
time of day, and the temperature. Other data, such as the highs and lows dis-
played on each day, can be stored in a single state array that might be called
weeklyHighsAndLows.

How state enables reactivity
Once an instance of a component has been created and is active in the browser, it
can be modified only by using a special setter function. In a class component, the
function is setState(). In a function component, it’s a function returned by the
useState() hook.

When you call one of these setter function, React makes the change to the state
that you request and then re-renders the component using the new state data. The
changed state may cause different props to be passed to a component’s children
and those components will re-render with different data as well.

The process of re-rendering a component and its children in response to updated
state is called updating.

Function Components
Function components are JavaScript functions that return a piece of the user
interface. In previous versions of React (before React 17), function components
were also known as presentational, or dumb, components because they (like all
JavaScript functions) lacked the ability to have data that could persist between
invocations.

Building React
Com

ponents

CHAPTER 3 Building React Components 305

For example, the function in Listing 3-4 shows a function component that receives
data and uses that data to output a list.

LISTING 3-4: A Function Component Example

function toDoList(props) {
 return props.todos.map((todo, index) => <li key={index}>

{todo});
}

export default toDoList;

Functions are stateless
If you call the function from Listing 3-4 and pass in different data, it renders a
different list. However, each time you call a function, it’s like the function has
never been called before. You can’t keep track of anything or maintain internal
data (what React calls state) in a function.

Introducing useState()
Though nothing has changed about the nature of functions, React has spe-
cial functions, called React hooks, that allow function components to store and
retrieve data stored outside of the function. By using hooks, instances of React
function components can keep track of their state from one rendering to the next.

The useState() hook is a method of the React object that can be called from a
function component. When you invoke useState(), it returns an array containing
two elements: the value of a stateful variable (which lives outside the function)
and a function for updating the value of that stateful variable.

By enabling function components to use data that sticks around between invoca-
tions, useState() gives function components many of the benefits of classes, but
without the complexity of classes.

Listing 3-5 shows the simplest possible demonstration of using state in a function
component.

Take your time with this example. When you understand how it works, you’ll
understand function components.

306 BOOK 3 React

LISTING 3-5: Using State in a Function Component

import { useState } from 'react';

function Counter() {
 const [currentCount, setCurrentCount] = useState(0);

 function incrementCount() {
 const newCount = currentCount + 1;
 setCurrentCount(newCount);
 }

 return <button onClick={incrementCount}>{currentCount}
 </button>;
}

export default Counter;

As you ponder the simplicity and beauty of Listing 3-5, let me point out a few
things to you:

 » The return value of useState() is deconstructed (using square brackets).
By deconstructing the array, you gain access to two separate values: a stateful
variable and a function that updates that variable.

 » The stateful variable and its related function are defined as constants.
This statement is counterintuitive at first because the whole point of a stateful
variable is to be mutable. However, keep in mind that this constant inside the
Counter function must be re-created each time the function runs. When you
use the setCurrentCount() function, you’re not actually changing the value
of the currentCount constant — you’re changing the value of the property
stored outside of the function that useState() uses to get the value of
currentCount.

You can learn about React state and how to manage state in Book 3, Chapter 4.

Now that function components are no longer second-class citizens (and certainly
no one calls them dumb any more!), most React developers use function compo-
nents almost exclusively.

However, if you studied classes in Book 1, Chapter 9, you are not considered most
React developers! By understanding how class components work, you gain a
deeper knowledge of how React works, and then you can decide whether to con-
tinue using function components everywhere it’s possible or whether you want to
use class components.

Building React
Com

ponents

CHAPTER 3 Building React Components 307

Class Components
Class components are created by extending the React.Component base class.
Listing 3-6 shows an example of a simple class component that receives props
and renders a to-do list.

LISTING 3-6: A Class Component

import React from 'react';

class ToDoList extends React.Component {
 render() {
 return this.props.todos.map((todo, index) => <li key={index}>

{todo});
 }
}

export default ToDoList;

If you compare the class component in Listing 3-6 with the function component
in Listing 3-4, you’ll notice that the function component is nearly identical to the
render() method of the class component. The only difference is that when a class
component receives the props object, it becomes a property of the class and there-
fore must be referenced using the this keyword.

You’ll also notice that the class in Listing 3-6 has no constructor. As you can see
in Book 1, Chapter 8, if you don’t provide a constructor for a JavaScript class, the
constructor is implied. If you don’t provide a constructor for a class that extends
another class, the constructor and the call to the parent component’s constructor
(which is done using super()) is also implied.

Unlike functions, classes can have their own persistent data. In a React class com-
ponent, state is an object that’s defined in the constructor. Each element created
from a class can maintain its own independent state property.

Listing 3-7 shows the how the Counter component from Listing 3-5 can be rewrit-
ten as a class component.

308 BOOK 3 React

LISTING 3-7: Using State in a Class Component

import { Component } from 'react';

class Counter extends Component {
 constructor(props) {
 super(props);
 this.state = {
 currentCount: 0,
 };
 this.incrementCount = this.incrementCount.bind(this);
 }

 incrementCount() {
 const newCount = this.state.currentCount + 1;
 this.setState({ currentCount: newCount });
 }
 render() {
 return (
 <button onClick={this.incrementCount}>
 {this.state.currentCount}
 </button>
);
 }
}

export default Counter;

Here are the important things to notice about Listing 3-7:

 » The constructor is necessary because we’re using it to define the state property
and to bind the incrementCount() method. As you can see in Book 1, Chapter 8,
the bind() method returns a new function that’s bound to the object you pass to
it. In this case, you’re binding incrementCount() to the current object. The effect
is that no matter where you call incrementCount(), it affects the properties of
the App component.

 » In the incrementCount() method, you call setState(). The setState()
method is a method inherited from the base class (Component). It takes an
object as its value and merges that object into the state object.

See if you can follow the logic of what happens, starting from the construction of
an object using the class in Listing 3-7 and following through to when the user
clicks the button.

Building React
Com

ponents

CHAPTER 3 Building React Components 309

The Component Lifecycle
The life of a component starts when an instance of the component is created (using
a JSX element or the React.createElement() method). Between creation of the
component instance and when it’s removed from the DOM, every React compo-
nent completes a series of phases during its lifetime. These phases are called the
component lifecycle. The milestones of a component’s life are marked by events,
called lifecycle events.

These are the most important events for a component:

 » mount: This is when an instance of a component is created, rendered, and
inserted into the browser window.

 » update: This happens when the component receives new data (as either state
or props) that requires it to be re-rendered.

 » unmount: When a component is no longer needed, it can be removed, or
unmounted, from the browser.

At each phase (and several subphases) of a component’s lifecycle, the component
invokes methods, called lifecycle methods, in response to the lifecycle events.

In a class component, the default behavior of lifecycle methods can be overridden
to perform useful tasks.

The mounting methods
These lifecycle methods run while a component is mounting and afterward:

 » constructor()

 » getDerivedStateFromProps()

 » render()

 » componentDidMount()

Kicking it off with the constructor
The constructor() method is run whenever an instance of a JavaScript class is
created. The constructor is where you can set initial values for an object’s proper-
ties and bind event handlers. In a React class component, the constructor is where
you initialize the state object, as shown in Listing 3-8.

310 BOOK 3 React

LISTING 3-8: Setting State in the Constructor

import React from 'react';

class App extends React.Component {
 constructor(props) {
 super(props);
 this.state = {
 location: {
 coords: { lat: 0, long: 0 },
 },
 temperature: 0,
 windSpeed: 0,
 precipitation: 0,
 };
 }
 render() {
 return <div>Widget Goes Here</div>;
 }
}

export default App;

The constructor is the only place in a React class component where you can mod-
ify the state object directly. This is for a very good reason: The constructor()
method runs before the render() method. As a result, changes you make to this.
state in the constructor() are reflected in the output of the component.

Getting the derived state
The getDerivedStateFromProps() method is a static method: It belongs to the
class rather than to instances of the class. This method receives the component’s
props and state and returns an object that will be merged with the state object.

Although it’s rarely used, this method exists (as its name implies) for situations
where the state depends on changes to props.

The official React documentation advises against using this method, so I wouldn’t
be surprised if it eventually disappears from the library.

Rendering the output
The render() method is the only method that’s required in every component. In a
class component, the render() method runs when a component mounts and then
again after every update to the state object.

Building React
Com

ponents

CHAPTER 3 Building React Components 311

A function component is basically just the render() method of a class component.

The return value of every component’s render() method is the piece of the user
interface created by the component. The return value is usually described using
JSX, although it may also be a string, a number, an array, null, or undefined.

Listing 3-9 shows an example of rendering output that makes use of the state set
in the constructor.

LISTING 3-9: Rendering with State Data

import React from 'react';

class App extends React.Component {
 constructor(props) {
 super(props);
 this.state = {
 location: 'Chicago',
 current_condition: {
 temp_C: 0,
 windspeedKmph: 0,
 precipMM: 0,
 },
 };
 }
 render() {
 return (
 <div>
 <h1>Today's weather for {this.state.location}</h1>

 < li>temperature: {this.state.current_condition.temp_C}

C
 < li>wind speed: {this.state.current_condition.

windspeedKmph} km/h

 precipitation amount: {this.state.current_condition.

precipMM} mm

 </div>
);
 }
}

export default App;

312 BOOK 3 React

Finishing the mount
Only after a component has been rendered is it safe to do operations that modify
the rendered component. The componentDidMount event fires when the compo-
nent has been rendered and inserted into the DOM tree, and it causes the compo-
nentDidMount() method to run.

The most common use for this lifecycle method is for kicking off network requests
to fetch data. For example, Listing 3-10 shows an example of using the fetch()
method within componentDidMount() to get data from a remote server and using
that data to update the state.

LISTING 3-10: Fetching Data Inside componentDidMount()

import React from 'react';

class App extends React.Component {
 constructor(props) {
 super(props);
 this.state = {
 location: 'Chicago',
 current_condition: {
 temp_C: 0,
 windspeedKmph: 0,
 precipMM: 0,
 },
 };
 }
 componentDidMount() {
 const getWeatherData = async (city) => {
 co nst response = await fetch(

`https://wttr.in/${city}?format=j1`
);
 const weatherData = await response.json();
 this .setState({ current_condition: weatherData.current_

condition[0] });
 };
 getWeatherData(this.state.location);
 }
 render() {
 return (
 <div>
 <h1>Today's weather for {this.state.location}</h1>

Building React
Com

ponents

CHAPTER 3 Building React Components 313

 < li>temp: {this.state.current_condition.temp_C} C
 < li>wind: {this.state.current_condition.windspeedKmph}

km/h
 < li>precip amt: {this.state.current_condition.

precipMM} mm

 </div>
);
 }
}

export default App;

The updating methods
The updating cycle starts after a component has been mounted.

Updating happens in response to changes to a component’s state.

These are the updating lifecycle methods:

 » getDerivedStateFromProps()

 » shouldComponentUpdate()

 » render()

 » getSnapshotBeforeUpdate()

 » componentDidUpdate()

You already know about two of these lifecycle methods: getDerivedStateFrom-
Props() and render(). They work the same way during updating as they do dur-
ing mounting. Take a look at the other ones now.

Optimizing with shouldComponentUpdate()
The shouldComponentUpdate() method is rarely needed nowadays. The idea of
shouldComponentUpdate() is that it returns a Boolean value that determines
whether the render() method is called.

314 BOOK 3 React

By returning false from shouldComponentUpdate(), you prevent the re-rendering
of a component. This can be useful in cases where you have a component in a tree
of components that always renders the same thing when it’s passed the same
props. Programmers call this a pure function. If a component is a pure function,
you can compare the previous props to the new props passed to it. If the previ-
ous and new props are the same, you can know for certain that re-rendering the
component produces the same output, and you can tell the component to skip
re-rendering.

The reason shouldComponentUpdate() is rarely used now is that there’s a better
way. If you know that your class component always returns the same output when
given the same props, you can create the component by extending the React.
PureComponent class, as shown in Listing 3-11.

LISTING 3-11: Extending React.PureComponent

class Message extends React.PureComponent {
 render() {
 return <h1>Hi, {this.props.firstName}</h1>;
 }
}

In function components, you can accomplish the same thing as React.PureCom-
ponent by using React.memo(). React.memo() caches the return value of a func-
tion component and returns the cached value if the inputs to the component are
the same as the last time it was rendered. Listing 3-12 shows a function compo-
nent that does the same thing as the class component in Listing 3-11.

LISTING 3-12: Using React.memo() to Optimize Rendering of Function Components

const Message = React.memo(function Message(props) {
 return <h1>Hi, {props.firstName}</h1>;
});

Getting a snapshot
The getSnapshotBeforeUpdate() lifecycle method is called right before a com-
ponent is inserted into the DOM. It can be used to capture data about the current
state of the browser before things change. For example, if a component is ren-
dering live data inside an element (for example, in a chat application), updating
the component resets the scroll position of the chat window. This behavior can be
truly frustrating to users.

Building React
Com

ponents

CHAPTER 3 Building React Components 315

If you capture the scroll position of the chat window before it’s updated and return
it from getSnapshotBeforeUpdate(), the return value is passed to the compo-
nentDidUpdate() method, where you can return the scroll position to what it was
before the update.

Finishing the update
The componentDidUpdate() method is the updating phase’s equivalent of the
componentDidMount() method. If you need to update data using a network request
or make changes to the DOM directly after a component updates, this is the place
to do it.

The componentDidUpdate() method has the potential to create infinite loops
if you’re not careful. For example, if you make an HTTP request in component-
DidMount() and update the state using the data from the request, that causes
the component to re-render, which causes componentDidMount() to run, which
updates the state and so on until your component crashes.

To prevent infinite loops, you must wrap any calls to setState() inside compo-
nentDidUpdate() in a conditional statement that checks whether updating the
state will result in the same state.

Unmounting a component
The componentWillUnmount() lifecycle method is called whenever a component is
about to be removed from the browser DOM. Removing a component may happen
when a conditional statement causes the component to no longer be rendered,
or when you specifically unmount a component by using the root.unmount()
method.

The purpose of componentWillUnmount() is that it gives you a chance to clean up
after your component. If your component uses a global method, such as setInt-
erval() or setTimeout(), componentWillUnmount() is where you should clear
these. If you don’t, you could create a memory leak where the setInterval()
method continues to run even though the component that created it is no longer
visible.

Listing 3-13 shows a component that creates a timer to update itself every second
and show the current time. Calling clearInterval() in the componentWillUn-
mount() method stops the timer from running if the component is unmounted.

316 BOOK 3 React

LISTING 3-13: Clearing an Interval in componentWillUnmount()

import React from "react";

class ShowClock extends React.Component {
 constructor(props) {
 super(props);
 this.state = { date: new Date() };
 }
 componentDidMount() {
 this.timer = setInterval(() => this.getNewTime(), 1000);
 }
 componentWillUnmount() {
 clearInterval(this.timer);
 }
 getNewTime() {
 this.setState({
 date: new Date()
 });
 }
 render() {
 return (
 <h1>
 The current time is {this.state.date.toLocaleTimeString()}
 </h1>
);
 }
}

export default ShowClock;

Using the Lifecycle in Function
Components

Just as you can use state in function components by using the useState() hook,
you can simulate certain lifecycle methods in function components by using the
useEffect() hook.

The useEffect() hook takes a function as its first argument. By default, this func-
tion runs after the component mounts and then after every update of the compo-
nent. In this way, it functions like a combination of the componentDidMount() and

Building React
Com

ponents

CHAPTER 3 Building React Components 317

the componentDidUpdate() lifecycle methods in class components. The useEf-
fect() hook allows function components to access data outside of themselves (as
in the case of asynchronous network requests) or to perform other actions after
rendering.

An operation done by a function that affects something outside the function is
called a side effect. Unlike everything that happens inside a function, performing a
side effect can produce an unpredictable result.

Listing 3-14 shows a function component that stores a value in the browser’s local
storage every time a button is clicked.

Technically, the component in Listing 3-14 stores the value to local storage when
the component mounts and every time it updates. Because the only time this com-
ponent updates is when the value of count changes, this isn’t currently a problem.
You learn how to run an effect less often in the next section.

LISTING 3-14: Using useEffect to Perform Side Effects

import { useEffect, useState } from 'react';

function RecordClicks(props) {
 const [count, setCount] = useState(0);
 useEffect(() => {
 localStorage.setItem('currentCount', count);
 });
 function incrementCount() {
 const incremented = count + 1;
 setCount(incremented);
 }
 return < button onClick={incrementCount}>Increment and Store:

{count}</button>;
}

export default RecordClicks;

Running effects less often
Most of the time, effects should run less often than on every render of a compo-
nent. For example, a function to load data using a network request may need to
run only the first time the component is rendered. Or, you may have a state vari-
able in your function whose value determines whether an effect should run. For

318 BOOK 3 React

these cases, useEffect() takes a second argument, which is an array of depen-
dencies. Here’s the syntax of useEffect() with the optional dependency array:

useEffect(function, []);

If the dependency array is empty, the effect runs on only the first render of the
component. This simulates the componentDidMount() lifecycle method.

If the dependency array contains one or more dependencies, the effect runs when
the component mounts and then every time the value of one of the dependencies
changes. In this way, useEffect() can be used like componentDidUpdate().

Listing 3-15 shows an improved version of the component from Listing 3-14.
In this version, the component attempts to load the value of count from the
browser’s local storage the first time it renders, and then updates the value when
the value of the count state variable changes.

By setting a value to local storage and using its value to set the initial value of a
stateful variable, you can maintain the state of the application from one browser
session to another.

LISTING 3-15: Creating Persistent State

import { useEffect, useState } from 'react';

function RecordClicks(props) {
 const [count, setCount] = useState(getSavedState());

 function getSavedState() {
 const savedString = localStorage.getItem('currentCount');
 const initialCount = JSON.parse(savedString);
 console.log(`currentCount: ${initialCount}`);
 return initialCount || 0;
 }

 useEffect(() => {
 localStorage.setItem('currentCount', JSON.stringify(count));
 }, [count]);

 function incrementCount() {
 const incremented = count + 1;
 setCount(incremented);
 }

Building React
Com

ponents

CHAPTER 3 Building React Components 319

 return < button onClick={incrementCount}>Increment and Store:
{count}</button>;

}

export default RecordClicks;

Performing an effect on unmounting
If the function passed to useEffect() returns a function, that function runs when
the component is no longer rendered (that is, before it unmounts). As with the
componentWillUnmount() lifecycle method in class components, this is where
you can clean up any timers that the effect has set or unregister event listeners.

Listing 3-16 shows the clock component from Listing 3-13 written as a function
component. I’ve also added a container around the clock component that shows
and hides the clock.

LISTING 3-16: A Function Component with a Timer

import { useState, useEffect } from 'react';

function ClockContainer(props) {
 const [visible, setVisible] = useState(true);

 return (
 <div>
 <button onClick={() => setVisible(!visible)}>
 Toggle Clock Visibility
 </button>
 {visible && <Clock/>}
 </div>
);
}
function Clock(props) {
 const [date, setDate] = useState(new Date());
 useEffect(() => {
 const timer = setInterval(() => getNewTime(), 1000);
 return () => {
 console.log('stopping the timer...');
 clearInterval(timer);
 };
 }, []);

(continued)

320 BOOK 3 React

 function getNewTime() {
 setDate(new Date());
 console.log('tick...');
 }

 return (
 <div>
 <h1> The current date and time are {date.

toLocaleString()}</h1>
 </div>
);
}

export default ClockContainer;

If you run this component in a browser and watch the browser console, the first
thing you notice is that useEffect() runs the returned function when the com-
ponent first mounts and when it unmounts. This doesn’t affect anything, because
unregistering the timer doesn’t matter when the timer hasn’t yet started.

The second thing you notice is that the messages in the console stop running
when the clock isn’t visible. Figure 3-3 shows the result of rendering the compo-
nent and clicking the button to hide the clock.

FIGURE 3-3:
Returning a

function to stop
the clock.

LISTING 3-16: (continued)

Building React
Com

ponents

CHAPTER 3 Building React Components 321

Composing Components
Composition is a pattern in React programming where larger components are built
by putting together smaller components. The idea behind composition is to reduce
duplication of code and increase reusability of components.

How inheritance works in object-oriented
programming
When you want to create a class that’s a more specific version of an existing
class in object-oriented programming, you extend it. For example, if you have a
class called Shape, you can extend it to create a class called Circle, as shown in
Listing 3-17.

LISTING 3-17: Extending a Class to Create a More Specific Class

class Shape {
 constructor(color){
 this.color = color;
 }
}

class Circle extends Shape {
 constructor(color,radius){
 super(color);
 this.radius = radius;
 }
}

const myCircle = new Circle("blue",3);

When you extend a class, the new class inherits the properties and methods of its
parent class as well as the properties of that component’s parent, and so on to the
base class, which is the Object class in JavaScript.

When creating user interfaces using React, every component is an instance of the
React.Component. Extending your own classes in React is discouraged. Instead,
you use composition.

322 BOOK 3 React

These three techniques are used to enable composition:

 » Passing props

 » Using the children prop

 » Using custom hooks

Composition using explicit props
Suppose you need to display various types of messages in your application, each
with different styles, colors, and text. Using inheritance, you might think that the
way to do it would be to create a generic Message component and then extend it to
create ErrorMessage, SuccessMessage, and WarningMessage classes.

However, this approach can be used only with class components, and the resulting
components would end up having significant amounts of duplicate code.

Using composition with explicit props, you can create a single Message component
that takes several props that can be used to configure instances of the Message
component for the type of message you want to display, as shown in Listing 3-18.

LISTING 3-18: Using Props to Create a More Reusable Component

function Message(props) {
 return (
 <div className={props.messageType}>
 <h1>{props.messageText}</h1>
 </div>
);
}
export default Message;

By wrapping this component inside another component, you can create an easily
reusable ErrorMessage component, as shown in Listing 3-19.

LISTING 3-19: Composing an ErrorMessage Component

import Message from './Message';

function ErrorMessage(props) {

Building React
Com

ponents

CHAPTER 3 Building React Components 323

 return < Message messageType="error" messageText={props.
errorMessage}/>;

}
export default ErrorMessage;

Composition using the children prop
Another way to compose components is by using the children prop. The chil-
dren prop is automatically passed to every instance of a component and contains
the children of the React element that creates the component instance.

Using props.children allows you to create components that can be "wrapped
around" other components. For example, Listing 3-20 defines two components
that use props.children to apply their functionality to children.

LISTING 3-20: Creating Components That use props.children

import { useState, useEffect } from 'react';

export function SolidBorderBox(props) {
 return (
 <div style={{ border: '1px solid black', padding: '8px' }}>
 {props.children}
 </div>
);
}

export function Blink(props) {
 const [visible, setVisible] = useState(true);
 useEffect(() => {
 const blinker = setInterval(() => setVisible(!visible), props.

delay);
 return () => clearInterval(blinker);
 });
 return <div>{visible && props.children}</div>;
}

The first component defined in Listing 3-20 applies a 1-pixel-wide black border
to any component. If you were doing web design in the 1990s, you’ll recognize
the second component as a replacement for the now out-of-favor HTML <blink>
element.

324 BOOK 3 React

To use the components created in Listing 3-20, import them into another compo-
nent and put their starting and ending tags around any other React elements, as
shown in Listing 3-21.

LISTING 3-21: Wrapping Components Around Other Components

import { Blink, SolidBorderBox } from './StyleElements';

function App() {
 return (
 <SolidBorderBox>
 <Blink delay={1000}>
 <p>Important Message</p>
 </Blink>
 </SolidBorderBox>
);
}

export default App;

Composition with custom hooks
The third method I talk about for using composition is to extract reusable func-
tionality from components to create custom hooks. Custom hooks aren’t techni-
cally a feature of React. Instead, they’re just JavaScript modules that use React’s
built-in hooks and can then be imported into function components to easily share
functionality.

Listing 3-22 shows a custom hook that returns a list of public GitHub repositories
for any GitHub username that’s passed to it.

LISTING 3-22: The useGitHubRepos Custom Hook.

import { useState, useEffect } from 'react';

export default function useGitHubRepos(username) {
 const [repos, setRepos] = useState([]);
 const [isLoading, setIsLoading] = useState('idle');

 useEffect(() => {
 const getRepos = async () => {
 try {

Building React
Com

ponents

CHAPTER 3 Building React Components 325

 setIsLoading(true);
 let response = await fetch(
 `https://api.github.com/users/${username}/repos`
);
 let data = await response.json();
 setRepos(data);
 } catch (error) {
 console.log(error);
 }
 };
 getRepos();
 setIsLoading(false);
 }, [username]);

 return [repos, isLoading];
}

To use a custom hook in a component, import it and get the return value by invok-
ing the function, as shown in Listing 3-23.

LISTING 3-23: Using a Custom Hook

import './App.css';

import use GitHubRepos from './components/Chapter03/

useGitHubRepos';

function App() {
 const [repos, isLoading] = useGitHubRepos('facebook');
 const reposList = repos.map((repo, index) => (
 <li key={index}>
 {repo.name}

));
 return <div>{isLoading ? 'Loading...' : reposList}</div>;
}

export default App;

CHAPTER 4 Using Data and Events in React 327

Using Data and
Events in React

“It is the quality of the moment, not the number of days, or events, or of
actors, that imports.”

—RALPH WALDO EMERSON

In Book 3, Chapter 1, I cover the React development process, which starts with
a static mockup and progresses through building a static version, figuring out
what is state, and implementing the state. The last step in the process is to

implement the ability for child components to send information to a parent com-
ponent, and that’s what this chapter is about.

Chapter 4

IN THIS CHAPTER

 » Handling events

 » Setting listeners with event
attributes

 » Investigating the synthetic event
object

 » Specifying and binding event
handlers

 » Passing event handlers as props

 » Using event handlers in function
components

 » Gathering data with forms

 » Using controlled and uncontrolled
inputs

328 BOOK 3 React

Event Handling in React
React’s event attributes resemble HTML event attributes. For example, to set
an event listener for the click event on a button DOM element, you can pass an
onClick attribute to a <button> element. You can use event attributes on any of
React’s built-in (HTML equivalent) JSX elements.

Although the JSX event attributes resemble HTML event attributes, HTML event
attributes and JSX event attributes have some important differences:

 » JSX event attributes are spelled using camelCase.

 » JSX event attributes take a function as their value, whereas HTML event
attributes take a string containing a function invocation.

Although it’s tempting to think of JSX event attributes as working the same
way as HTML event attributes, the reality is that they’re compiled to calls to
addEventListener().

Using event attributes
Using JSX event attributes, you can set event listeners for at least 64 different
events. These include mouse events, such as onClick, onDrag, and onMouse-
Down; the generic onLoad and onError events; and form events such as onChange,
onInput, and onSubmit.

For a complete list of the events React can handle, visit https://reactjs.org/
docs/events.html#form-events.

Dispatching Synthetic Events
React wraps the event object that’s always passed to an event handler function
with an object it calls the Synthetic Event. The object name of the Synthetic Event
is SyntheticBaseEvent. By wrapping native event objects, React can smooth out
differences in the way browsers handle events as well as make some additional
properties available when an event is fired.

Listing 4-1 shows how to capture and view the properties of the SyntheticBase
Event object.

https://reactjs.org/docs/events.html#form-events
https://reactjs.org/docs/events.html#form-events

U
sing D

ata and Events
in React

CHAPTER 4 Using Data and Events in React 329

LISTING 4-1: Viewing the Properties of the SyntheticBaseEvent Object

function EventProps() {
 const logClick = (e) => {
 console.dir(e);
 };
 return <button onClick={logClick}>Click Me</button>;
}
export default EventProps;

Specifying a handler function
The value you pass to an event attribute can be an arrow function, the name of a
function declared elsewhere, or a function received by the component via props.

A common mistake when setting event handlers is to pass a function call to an
event attribute by including parentheses after the function name. Doing so causes
the function to be invoked as soon as the component mounts, which can be con-
fusing and hard to debug.

Declaring a function outside of the return statement of your component and
using its name as the value of the event attribute is the most typical way to set
event handlers. Listing 4-2 shows an example of this technique.

LISTING 4-2: Defining a Named Event Handler Function

import { useState } from "react";
function Counter(props) {
 const [counter, setCounter] = useState(0);
 function increment(incrementBy = 1) {
 setCounter(counter + incrementBy);
 }
 return <button onClick={increment}>{counter}</button>;
}
export default Counter;

Passing arguments to an event handler
Because the event attribute takes the value of a function rather than an invocation,
you can’t simply pass arguments to an event handler function name, because that

330 BOOK 3 React

would require you to use parentheses. For example, the following code won’t work
as intended, because the function is simply invoked when the component mounts:

<button onClick={increment(2)}>Add 2</button>

To pass arguments (other than the event object) to an event handler, you can
define an arrow function that invokes an inner function, as shown in Listing 4-3.

LISTING 4-3: Passing Arguments Using an Inner Function

<button onClick={()=>increment(2)}>Add 2</button>

Passing functions as props
You don’t need to define event handlers in the same component where you use
them. As with any value, you can pass event handlers from a parent component to
a child component using props.

Passing functions to subcomponents is how components lower in the component
hierarchy can affect state in components higher in the hierarchy.

Defining event handlers in class components
When you define a method in a class component, it can access the component’s
this value. Before you pass a method from a class component to a subcomponent,
you have to specify the context in which the function runs.

When you pass an event handler function to an event attribute of a built-in ele-
ment, you’re passing the function to a subcomponent. For example, in Listing 4-4,
the handleClick function is defined as a method of the ToggleVisibility class
component. To set the context in which the function should run, you must bind it
to the ToggleVisibility class before passing it to the button element.

LISTING 4-4: Binding Class Methods Before Passing Them As Attributes

import React from 'react';

class ToggleVisibility extends React.Component {
 constructor(props) {
 super(props);
 this.state = { visible: true };
 }

U
sing D

ata and Events
in React

CHAPTER 4 Using Data and Events in React 331

 setVisibility() {
 this.setState({ visible: !this.state.visible });
 }
 render() {
 return (
 <div>
 {this.state.visible ? this.props.children : ''}
 <button onClick={this.setVisibility.bind(this)}>
 Show/Hide
 </button>
 </div>
);
 }
}

export default ToggleVisibility;

The ToggleVisibility class in Listing 4-4 can be wrapped around any compo-
nent and renders a button that toggles whether the component is rendered or not.
Before the function that toggles the visible state property can be passed to the
<button> element, we bind it.

Binding a function can be done directly in the element’s event attribute, as shown
in Listing 4-4, or it can be done in the constructor.

To bind a function in the constructor, set the value of the function variable to the
new function created using the bind() method, as shown in Listing 4-5.

LISTING 4-5: Binding a Method in the Constructor

import React from 'react';

class ToggleVisibility extends React.Component {
 constructor(props) {
 super(props);
 this.state = { visible: true };
 this.setVisibility = this.setVisibility.bind(this);
 }
 setVisibility() {
 this.setState({ visible: !this.state.visible });
 }

(continued)

332 BOOK 3 React

 render() {
 return (
 <div>
 {this.state.visible ? this.props.children : ''}
 <button onClick={this.setVisibility}>Show/Hide</button>
 </div>
);
 }
}

export default ToggleVisibility;

There are two benefits to binding event handler methods in the constructor:

 » If you pass the method to more than one element, it needs to be bound
only once.

 » Binding the event handler in the event attribute causes the bound function to
be re-created with every render, whereas the constructor runs only once, and
then the function is accessible as long as the class instance exists.

Not binding an event handler in a class component is one of the most common
mistakes that React developers make. There are ways to avoid needing to bind
methods, however.

Defining methods using arrow syntax
Arrow functions inherit their scope from the scope they’re defined inside of,
which is called lexical scoping. Because arrow functions have lexical scope, there’s
no need to bind them before passing them as arguments.

Functions defined using the function keyword, on the other hand, bind their own
this value, which is why we need to specifically bind them to use them in a dif-
ferent context.

Listing 4-6 shows a class component with its event handler defined as an arrow
function and passed to an <input> element using an event attribute.

LISTING 4-5: (continued)

U
sing D

ata and Events
in React

CHAPTER 4 Using Data and Events in React 333

LISTING 4-6: Defining Event Handler Functions Using Arrow Function Syntax

import React from 'react';

class VolumeSlider extends React.Component {
 constructor(props) {
 super(props);
 this.state = { volume: 0 };
 }
 changeVolume = (e) => {
 this.setState({ volume: e.target.value });
 };
 render() {
 return (
 <>
 <p> Turn the volume up! Current Volume: {this.state.

volume}</p>
 <input
 type="range"
 value={this.state.volume}
 min="0"
 max="11"
 onChange={this.changeVolume}
 />
 </>
);
 }
}

export default VolumeSlider;

Passing event handler functions
from function components
The other way to avoid having to think about binding event handlers is to use
function components. Because function components don’t have a this value, any
function you define inside a function is automatically scoped to that function.

Listing 4-7 shows a function component that does the same thing as the class
component in Listing 4-6.

334 BOOK 3 React

LISTING 4-7: VolumeSlider Written Using a Function Component

import { useState } from 'react';

function VolumeSlider(props) {
 const [volume, setVolume] = useState(0);

 function changeVolume(e) {
 setVolume(e.target.value);
 }

 return (
 <>
 <p>Turn the volume up! Current Volume: {volume}</p>
 <input
 type="range"
 value={volume}
 min="0"
 max="11"
 onChange={changeVolume}
 />
 </>
);
}

export default VolumeSlider;

Whether you define an event handler function in a function component using the
function keyword or arrow syntax, you don’t need to bind it.

Making Forms with React
HTML form fields, by default, maintain their own internal state. In other words,
when you type into an input field or select an option from a drop-down menu,
or make changes to any changeable form field, the value of an HTML element
changes.

U
sing D

ata and Events
in React

CHAPTER 4 Using Data and Events in React 335

In React applications, however, allowing a form input to maintain its own state
makes components less predictable. By default, changing the value of an input
doesn’t change the underlying data in a component. As a result, it’s possible for
the content that displays in a form input to be out of sync with the state data of
your component.

Other front-end libraries allow your form to automatically update the applica-
tion’s state and allow your application to control the value of the form input. This
is what is meant by two-way data binding.

React uses one-way data binding. What this means is that form inputs can be
controlled only by React state. If you want to change the value of an input, you
need to do it by updating the state (using an event). The updated state then causes
the form input to be updated with the new value. This is called a controlled input.

Using controlled inputs
To create a controlled input, specify a value attribute for any <input>, <select>,
or <textarea> element, like this:

<input name="firstName" type="text" value=""/>

By itself, this element is useless. It creates an HTML input element that you can’t
type into. Or, rather, you can type into it, but you can’t see what you’re typing,
and neither can React.

To make a controlled input useful, first create a stateful variable to hold the value
of the input and a function for updating it, like this:

const [firstName, setFirstName] = useState('');

Next, listen for the change event on the input and use it to update the stateful
variable, like this:

<input name ="firstName" type="text" value={firstName}
onChange={(e)=>setFirstName(e.target.value)}/>

Now whenever you type into the input element, it updates the stateful variable,
which causes the input element to update its value. Listing 4-8 shows a complete
example of using controlled inputs in a function component and demonstrates
how to control several different kinds of form elements.

336 BOOK 3 React

LISTING 4-8: Using Controlled Inputs

import { useState } from 'react';

function CustomerServiceSurvey(props) {
 const [yourName, setYourName] = useState('');
 const [yourEmail, setYourEmail] = useState('');
 const [rating, setRating] = useState('');
 const [comments, setComments] = useState('');

 return (
 <div>
 <div>
 You've entered the following:

 Rating:{rating}

 Comments:{comments}

 Name:{yourName}

 Email:{yourEmail}

 </div>
 <h1>How was your experience with our website today?</h1>
 <select
 name="rating"
 value={rating}
 onChange={(e) => setRating(e.target.value)}
 >
 <option>Excellent</option>
 <option>Pretty Good</option>
 <option>Fair</option>
 <option>Bad</option>
 <option>Horrible</option>
 </select>
 <h1>Would you like to leave any comments?</h1>
 <textarea
 name="comments"
 value={comments}
 onChange={(e) => setComments(e.target.value)}
 />
 <h1>
 Pl ease provide your contact information if you'd like to

be contacted.
 </h1>

U
sing D

ata and Events
in React

CHAPTER 4 Using Data and Events in React 337

 Your name:
 <input
 name="yourName"
 value={yourName}
 onChange={(e) => setYourName(e.target.value)}
 />

 Your email:
 <input
 name="yourEmail"
 value={yourEmail}
 onChange={(e) => setYourEmail(e.target.value)}
 />
 </div>
);
}
export default CustomerServiceSurvey;

Notice that setting the value of <select> inputs and <textarea> inputs in React’s
built-in components is different from how HTML elements work:

 » Whereas the value of an HTML <select> input is set by setting the selected
attribute on an <option> child, React matches the value of a value attribute
on the <select> input with the value of an <option>.

 » Whereas the HTML <textarea> element uses its content (the content
between the beginning and ending tags) as the value, React’s built-in
<textarea> element uses the value of the value attribute.

Using uncontrolled forms
Some uses for HTML inputs in a web application don’t require user input to be
stored in state. In these cases, you can choose to use an uncontrolled input element,
which is one that maintains, by default, its own internal state in the same way
that HTML works.

An example of a time when you might choose to use an uncontrolled input is in
a long form that simply sends an email rather than do anything with the input
values inside the user interface. To create an uncontrolled input, omit the value
attribute.

Listing 4-9 shows an example using a form made with uncontrolled inputs.

338 BOOK 3 React

LISTING 4-9: Creating Uncontrolled Inputs

function CustomerServiceSurvey(props) {
 return (
 <div>
 <h1>How was your experience with our website today?</h1>
 <select name="rating">
 <option>Excellent</option>
 <option>Pretty Good</option>
 <option>Fair</option>
 <option>Bad</option>
 <option>Horrible</option>
 </select>
 <h1>Would you like to leave any comments?</h1>
 <textarea name="comments"/>
 <h1>
 Pl ease provide your contact information if you'd like to

be contacted.
 </h1>
 Your name:
 <input name="yourName"/>

 Your email:
 <input name="yourEmail"/>
 </div>
);
}
export default CustomerServiceSurvey;

In uncontrolled inputs, the values of the inputs are handled by the DOM. One way
to get the values of uncontrolled inputs in JavaScript is by using the id of the
input. The value of the id attribute is accessible as a property of the window object,
as shown in Listing 4-10.

LISTING 4-10: Getting the Values of Uncontrolled Inputs from the Window Object

function CustomerServiceSurvey(props) {
 function onSubmit(e) {
 e.preventDefault();
 alert(
 `You rated us ${window.rating.value} and you had the

following comments: ${window.comments.value}`
);
 }

U
sing D

ata and Events
in React

CHAPTER 4 Using Data and Events in React 339

 return (
 <div>
 <h1>How was your experience with our website today?</h1>
 <form onSubmit={onSubmit}>
 <select name="rating" id="rating">
 <option>Excellent</option>
 <option>Pretty Good</option>
 <option>Fair</option>
 <option>Bad</option>
 <option>Horrible</option>
 </select>
 <h1>Would you like to leave any comments?</h1>
 <textarea name="comments" id="comments"/>

 <input type="submit" value="Submit"/>
 </form>
 </div>
);
}
export default CustomerServiceSurvey;

Though accessing the values of uncontrolled inputs through the DOM can be
useful in some circumstances, avoid using the technique shown in Listing 4-10
to change the values of HTML elements in your React components, because it
bypasses the way React manages updates and produces unexpected results.

4Vue

Contents at a Glance
CHAPTER 1: Getting an Overview of Vue . 343

CHAPTER 2: Introducing Vue Components . 357

CHAPTER 3: Making Vue Templates . 369

CHAPTER 4: Using Data and Reactivity . 395

CHAPTER 5: Responding to Events . 411

CHAPTER 1 Getting an Overview of Vue 343

Getting an Overview
of Vue

“I’ve always felt that a person’s intelligence is directly reflected by the number
of conflicting points of view he can entertain on the same topic.”

—ABIGAIL ADAMS

Vue is an incrementally adoptable and reactive front-end JavaScript frame-
work. In this chapter, I spell out what that means and let you know how to
quickly get started with your first Vue front-end.

Comparing Vue to React
Vue.js and ReactJS have many similarities. Because of that, if you haven’t read
Book 3 yet, I suggest you do so before you proceed with learning to use Vue.js.
However, knowing React isn’t a requirement, and learning Vue.js is simple enough
that you’ll be able to follow along and learn to write Vue.js applications, even if
you haven’t read Books 1–3.

Chapter 1

IN THIS CHAPTER

 » Learning how Vue is different from
React

 » Installing Vue.js

 » Using create-vue

 » Creating a Vue application instance

 » Mounting and configuring apps

 » Choosing between Vue’s two APIs

344 BOOK 4 Vue

These are a few of the similarities between ReactJS and Vue.js:

 » Vue.js updates the browser DOM based on changes to special values in your
application that are referred to as the state of the application.

 » Vue creates user interfaces from components that are written declaratively.

 » Vue uses a virtual DOM to calculate differences between what your applica-
tion renders and what’s in the browser DOM.

Before you assume that Vue.js is the same thing as ReactJS, you should know
about important differences between the two, including these:

 » Vue.js is incrementally adoptable — you can easily use a Vue.js component in
another non-Vue.js application. Although it’s possible to do the same with
ReactJS, almost no one does that.

 » Vue.js templates can be written using ordinary HTML, whereas ReactJS
requires the use of JSX.

 » Vue.js is a framework, whereas ReactJS is a library. As you can see later in this
chapter, Vue.js provides much more structure and built-in functionality than
React. In practice, this means that ReactJS gives developers more freedom,
though Vue.js offers more simplicity.

Scaffolding Your First Vue.js Application
Enough theory — let’s make something!

In this book, I use the latest available version of Vue.js: Vue 3. Many people and
companies are still using Vue 2, and a new version of Vue may even be out by the
time you read this chapter. Though Vue 3 and Vue 2 have some differences and
any new version of Vue is likely to have substantial changes from Vue 3, you’ll be
able to quickly adapt your knowledge from JavaScript All-in-One For Dummies to
any version of Vue you’re likely to encounter.

Bootstrapping with vue-create
The easiest way to get started with a new Vue project is to generate the scaffolding
and set up tooling using the create-vue NPM package. Under the hood, create-vue
uses the same tool you may have read about for bootstrapping React applications:
Vite. So some of the following steps may look quite familiar. Here’s how to get
started:

G
etting an O

verview

of Vue

CHAPTER 1 Getting an Overview of Vue 345

1. Create a new project by opening an empty folder in VS Code. Of course, you
can also install your Vue projects in a subdirectory of your existing code folder.

See Book 1, Chapter 2 if you need a refresher on how to set up projects
in VS Code.

2. Open the VS Code Integrated Terminal in the folder where you want to make
your Vue project.

3. Type the following command into the terminal window:

npm init vue@3

You’ll see a message asking whether you want to install create-vue. Press Enter
to agree.

4. When several more questions appear, choose the default options for each one,
unless you know that you want to choose a different one.

Figure 1-1 shows what the questions were and how I answered them at the
time I wrote this chapter.

5. Enter cd vue-project to change the working directory to your new project’s
directory.

6. Enter npm install to install your project’s dependencies.

7. Enter npm run dev to start your project in Development mode.

8. Go to your web browser and either enter the URL shown in the terminal after
you run npm run dev or ⌘ +click (on macOS) or Ctrl+click (on Windows) the
link in the terminal.

The default vue-create application displays in your browser, as shown in
Figure 1-2.

FIGURE 1-1:
Answering
questions

and installing
vue-create.

346 BOOK 4 Vue

Congratulations! You’ve created your first Vue application. Feel free to either click
through the links in the default vue-create application to learn more or continue
to the next section.

Installing Volar
Before I help you start exploring your shiny new Vue app, I show you how to
install a tool to make Vue development much easier: Volar. It’s an extension for
VS Code. Follow these steps to install Volar:

1. Open the Extensions panel in VS Code.

See Chapter 1 in Book 1 to refresh your memory on accessing the Extensions
panel.

2. Search for Volar in the Extensions panel.

The first result is Vue Language Features (Volar).

3. Click on Vue Language Features (Volar) in the Extensions panel and then click
Install in the window that opens.

FIGURE 1-2:
The default

vue-create app.

G
etting an O

verview

of Vue

CHAPTER 1 Getting an Overview of Vue 347

Exploring the structure of a Vue app
Click the Explorer icon (the top one) in VS Code to return to viewing your project.

Inside your new Vue project, you’ll see some files and folders. At the top level of
your project, these files and folders should look similar to the ones generated by
Vite’s ReactJS template, which you learn how to use in Book 3:

 » node_modules is where the packages your application depends on are
installed.

 » public is the directory that serves static files.

 » src is where you’ll do most of your work.

The index.html file in a Vue app is located at the root of your project. When you
open index.html, you see that it looks like the file shown in Listing 1-1.

LISTING 1-1: The Default vue-create index.html File

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="UTF-8"/>
 <link rel="icon" href="/favicon.ico"/>
 <meta name="viewport" content="width=device-width,

initial-scale=1.0"/>
 <title>Vite App</title>
 </head>
 <body>
 <div id="app"></div>
 <script type="module" src="/src/main.js"></script>
 </body>
</html>

As you probably can guess, the two important parts of this file are the <div> ele-
ment with the id attribute and the <script> element. The <div> element is where
your Vue app is rendered, and the <script> element includes the JavaScript file
that links to all your other JavaScript files.

348 BOOK 4 Vue

Going to the src
The place where you do the work of creating your apps is the src directory. When
you open the src directory, you see that it contains several subdirectories and
files:

 » assets: The assets directory holds global assets (as opposed to component-
specific assets) such as images and CSS files that you want to import into your
application using JavaScript imports.

 » components: This is where you create custom components. You may also
want to store in this directory any assets used by components.

 » App.vue: App.vue is the Vue equivalent of App.jsx in a React application.
This is the one component that holds every other component.

 » main.js. This is the file that's included in the index.html file. It handles the
link between the Vue components and the browser DOM.

Mounting a Root Component
Open main.js for editing in VS Code. You'll see that it's just a few lines of code,
as shown in Listing 1-2.

LISTING 1-2: The Default main.js

import { createApp } from 'vue'
import App from './App.vue'

import './assets/main.css'

createApp(App).mount('#app')

The main.js file does two important things. The first is that it uses the create-
App() function to create a new Vue application instance. Vue's createApp() func-
tion takes a root component as its parameter. In this case, the root component is
App, which is defined in App.vue, and returns an instance of the component..

Once the new application instance has been created, its mount() function is called,
which and renders the root component in the root node in the index.html docu-
ment. In the case of the code in Listing 1-2, the root component is rendered in the
HTML element with an ID of #app.

G
etting an O

verview

of Vue

CHAPTER 1 Getting an Overview of Vue 349

Configuring an app
Although the default main.js chains together the createApp() and mount()
functions, sometimes you need to separate them. For example, the application
instance (created by createApp()) has a config object that can be used to config-
ure certain options for the application.

Although you're unlikely to need to set configuration options when you're first
learning Vue, Listing 1-3 shows an example of how it's done. This example sets
a global error handler for any uncaught errors that may occur in the application.

LISTING 1-3: Setting an Application config Option to Specify a Global Error Handler

import { createApp } from 'vue'
import App from './App.vue'

import './assets/main.css'

const app = createApp(App);
app.config.errorHandler = (err) => {
 // handle the error here
}
app.mount('#app');

You can also use the config object to create global properties that you can access
from within any component in your application. Listing 1-4 shows how to create
a global property containing the name of the application.

LISTING 1-4: Setting Global Properties

app.config.globalProperties.appName = 'My Test App';

Mounting multiple apps
You can mount multiple apps in the same HTML document by using multiple cre-
ateApp() functions and mounting the resulting application instances in different
nodes in the DOM. This is helpful if you're using Vue to render static web pages or
multiple widgets into the browser where the components don't need to commu-
nicate with each other. The code in Listing 1-5 mounts two different component
trees: one for a stock ticker and one for a weather widget.

350 BOOK 4 Vue

LISTING 1-5: Mounting Multiple Apps

import { createApp } from 'vue';
import {StockTicker, WeatherWidget} from './Widgets.vue';

import './assets/main.css';

const app1 = createApp(StockTicker);
app1.mount('#stocks');

const app2 = createApp(WeatherWidget);
app2.mount('#weather');

Exploring Vue's Two Styles
As of Vue 3, you have two different ways to write Vue components: the Options API
and the Composition API.

The Options API
The Options API is the more common way to write Vue components (and it was
the only way to write them before Vue 3). The Options API is also the easier of the
two methods for beginners.

The Options API focuses on the idea of a component instance and is more of an
object-oriented API. It provides a strict structure that abstracts away much of the
complexity of implementing reactivity.

The logic in a Vue component created using the Options API is defined by a mod-
ule that returns an object of options. These options include properties such as the
data() method (which defines reactive data in the module), the lifecycle methods,
computed properties, and methods for updating the reactive data (also known as
state data).

Listing 1-6 shows an example of a component created using the Options API.

G
etting an O

verview

of Vue

CHAPTER 1 Getting an Overview of Vue 351

LISTING 1-6: A Component Created Using the Options API

<script>
export default {
 data() {
 return {
 sheepCount: 0,
 };
 },
 methods: {
 countASheep() {
 this.sheepCount++;
 },
 },
};
</script>

<template>
 <h1>Sheep Counting App</h1>
 <h2>Current Count: {{ sheepCount }}</h2>
 <button @click="countASheep">Count a Sheep</button>
</template>

Figure 1-3 shows the component created by Listing 1-6, rendered in a browser.

FIGURE 1-3:
A sheep-counting

app, created
by using the
Options API.

352 BOOK 4 Vue

The Composition API
In the other style of writing Vue components, Composition API, you write the
logic part of the component by using functions you specifically import from the
Vue API.

Of the two methods, Composition API more closely resembles React. Like React,
Composition API is closer to being just plain JavaScript, with no "magic" happen-
ing behind the scenes.

Listing 1-7 shows a version of the sheep-counting app from Listing 1-6 that's
been rewritten using the Composition API.

LISTING 1-7: A Component Created Using Composition API

<script setup>
import { reactive } from 'vue';

const state = reactive({ sheepCount: 0 });

function countASheep() {
 state.sheepCount++;
}
</script>

<template>
 <h1>Sheep Counting App</h1>
 <h2>Current Count: {{ state.sheepCount }}</h2>
 <button @click="countASheep">Count a Sheep</button>
</template>

The output and functionality of the component defined by Listing 1-7 are the
same as the one created by Listing 1-6. The way you write the template section of
the component is the same in both styles as well.

Deciding which API to use
At this point, you're probably wondering which API is better, or which one you
should use. Both APIs can create the same applications and can take full advantage
of Vue's features. The differences are in style and flexibility.

G
etting an O

verview

of Vue

CHAPTER 1 Getting an Overview of Vue 353

As I mentioned earlier in this chapter, the Options API can be easier to use for
beginners. This is because it creates a higher level of abstraction that hides from
the programmer some of the complexity of writing JavaScript code.

The Composition API requires a deeper knowledge of JavaScript and of how reac-
tivity works in Vue. In return, you gain more flexibility, especially with regard to
reusing code.

Because my main point in this book is that if you understand how JavaScript
works, you can quickly learn to use any JavaScript library or framework, I focus
on the Composition API. You're free to use the Options API if you prefer it, and you
can even mix and match components created using the two different APIs within
one application.

Although it's possible to mix components created using the two APIs in an appli-
cation, I recommend that you pick an API and stick with it. Doing so will make
your app easier for other people to read and save you some confusion as well.

I think you'll find that once you know how the Composition API works, learning
the Options API is simple.

Installing Vue DevTools
Debugging Vue applications is much easier if you have the right tools. In addition
to Volar, which I tell you how to install earlier in this chapter, the other essential
tool is the Vue DevTools browser extension. Follow these steps to install it:

1. In your Chrome browser, go to the Chrome web store at https://chrome.
google.com/webstore.

2. Search for Vue.js DevTools.

3. Click the Add to Chrome button on the Vue.js DevTools page.

Once the Vue DevTools extension is installed, you can access it by opening the
Chrome Developer Tools window and selecting the Vue tab. The Vue DevTools
extension provides information about the components and state of Vue applica-
tions during development. It also features a Timeline tool that shows events that
happen while you're using the application.

The Vue DevTools extension is shown in Figure 1-4.

https://chrome.google.com/webstore
https://chrome.google.com/webstore

354 BOOK 4 Vue

FIGURE 1-4:
The Vue DevTools

extension.

HOW VUE UPDATES THE DOM
Like React, Vue makes use of a virtual DOM to apply changes in rendered components
to the browser's DOM. The details of how the Vue virtual DOM does what it does are
largely hidden from you and you don't need to know all the steps that happen between
when your components are rendered and when the DOM is updated.

The process of creating nodes in the browser DOM from the Vue code you write is
called mounting. Vue's mounting process starts with the HTML template code you write
as part of your components. This template code is compiled into virtual DOM render()
functions.

It's possible to write Vue components without using a template, by using Vue's h()
function. The name of the h() function stands for hypertext, which is the first word in
Hypertext Markup Language (HTML), which is what the result of using the h() func-
tion is.

Here's an example of an invocation of h():

h('h1', {class: 'heading', id:'pageTitle'},'Hello, World!');

G
etting an O

verview

of Vue

CHAPTER 1 Getting an Overview of Vue 355

The h() function takes the following parameters:

• The type of HTML element it should create

• An object containing attributes and/or DOM properties

• The children of the created node

Only the first parameter, type, is required. The result of running the h() method is a
vnode (for virtual node) object.

CHAPTER 2 Introducing Vue Components 357

Introducing Vue
Components

“Creation always involves building upon something else.”

—LAWRENCE LESSIG

It’s possible to write Vue code without using components. However, splitting an
application into components helps make building complex applications eas-
ier. In this chapter, I show you how Vue components work and how to write

them, and then you get to practice putting components together and passing data
between them.

Introducing the Single-File Component
Vue’s components are called Single-File Components, or SFCs, because they’re
written by combining template code, logic, and style in a single file. The file
extension for a single-file component is .vue.

To start writing a single-file component, create a .vue file containing three ele-
ments: <script>, <template>, and <style>, as shown in Listing 2-1.

Chapter 2

IN THIS CHAPTER

 » Differentiating the parts of a single
file component

 » Defining components

 » Stepping through the component
lifecycle

 » Catching and handling errors in Vue
components

358 BOOK 4 Vue

LISTING 2-1: A Starter Template for a Single-File Component

<script>
</script>

<template>
</template>

<style>
</style>

The order of the three parts of an SFC doesn’t matter, although it’s a good idea to
be consistent. Listing 2-1 shows the most common order to use in the Composi-
tion API.

Before digging into the details, let’s take a quick look at each of the three sections.

The script element
The <script> element contains the logic of your component. This is where you
create functions, import and use Vue methods, and create the reactive state. Unlike
React components, Vue components aren’t functions or classes. Instead, they’re
objects. The object you define in a Vue component is merged with the template to
create an instance of a single file component.

The setup() function
The <script> element has a function named setup() that defines and exports
variables and functions that can be used in the component. The basic format of a
component’s <script> element is shown in Listing 2-2.

LISTING 2-2: A Single-File Component’s script Element

<script>
export default {
 setup() {
 return {};
 },
};
</script>

Introducing Vue
Com

ponents

CHAPTER 2 Introducing Vue Components 359

Any variables exported by the setup() function are available in the template of
the component. Listing 2-3 shows a single-file Todo app.

LISTING 2-3: A Single-File Todo App

<script>
import { reactive } from 'vue';
export default {
 setup() {
 const state = reactive({
 todos: [],
 newTodo: '',
 });
 function addTodo() {
 state.todos.push({
 title: state.newTodo,
 done: false,
 });
 state.newTodo = '';
 }
 return {
 state,
 addTodo,
 };
 },
};
</script>

<template>
 <div>
 <h1>Todo List</h1>

 <li v-for="todo in state.todos">
 <input type="checkbox" v-model="todo.done"/>

 <input type="text" v-model="state.newTodo"/>
 <button @click="addTodo">Add Todo</button>
 </div>
</template>

360 BOOK 4 Vue

If you’ve read Book 1 and Book 3, you should see much in this listing that looks
familiar. Here’s a brief line-by-line explanation of how the JavaScript in this
component works:

 » A function named reactive() is imported. The reactive() function does
something like React’s useState() hook (which is covered in Chapter 4 of
Book 3). It creates variables that cause the template to rerender when their
values are changed.

 » A default export creates a module containing an object.

 » The setup() function is defined.

 » An object named state is declared as a reactive variable and initialized with
two properties: todos and newTodo.

 » A function is created for updating the todos property of the state object and
resetting the newTodo variable.

 » The state object and the addTodo() function are returned from the setup()
function.

The setup() function only runs the first time an instance of a component is
mounted. Once the component has been mounted, anything returned by setup()
is available inside the component’s template.

The setup shortcut
If you’re using a build tool, such as Vite, you can use the shorthand syntax for
the setup() function. To use the shorthand method, pass the setup attribute to
<script>. When you use the setup attribute, any top-level variables and imports
inside the <script> element are automatically exported and available to the
template.

Listing 2-4 shows the component from Listing 2-3 rewritten to use the setup
attribute.

LISTING 2-4: A Single-File Component Using the setup Attribute

<script setup>
import { reactive } from 'vue';

Introducing Vue
Com

ponents

CHAPTER 2 Introducing Vue Components 361

const state = reactive({
 todos: [],
 newTodo: '',
});

function addTodo() {
 state.todos.push({
 title: state.newTodo,
 done: false,
 });
 state.newTodo = '';
}
</script>

<template>
 <div>
 <h1>Todo List</h1>

 <li v-for="todo in state.todos">
 <input type="checkbox" v-model="todo.done"/>

 <input type="text" v-model="state.newTodo"/>
 <button @click="addTodo">Add Todo</button>
 </div>
</template>

Using the setup shortcut is optional. The benefit to using it is that it makes your
components slightly less verbose, and it automatically exports features of the
<script> element to make them available to the template. However, understand-
ing the full setup() function makes it easier to see what’s really going on (espe-
cially for someone with a good understanding of how JavaScript works, like you).
In this book, I mostly use the setup shortcut, in the interest of saving paper.

362 BOOK 4 Vue

Naming Components
Components you create in Vue should be named using UpperCamelCase. It’s a best
practice to use multiple-word component names for all your components except
App.vue (and the built-in HTML elements, of course).

Using multiple-word component names prevents conflicts between your custom
components and HTML elements, which are always single-word. It also tends to
make the names of your components more descriptive.

Following the Component Lifecycle
An instance of a Vue single-file component completes a series of steps as it’s cre-
ated, updated, and eventually unmounted. These steps are known as the component
lifecycle. Figure 2-1 shows all the steps in the Vue component instance lifecycle.

Vue dispatches a lifecycle event at each step in its lifecycle. Using lifecycle hooks,
you can register event listeners that execute a callback function in response to any
of these events.

If you’ve read Book 3, you’ll see similarities between Vue’s lifecycle hooks and
React’s lifecycle methods and the useEffect() hook.

onMounted()
The onMounted() lifecycle method registers a callback function that is invoked
after the component instance is created and rendered in the DOM. Like React’s
componentDidMount() method, onMounted() is where you can perform side
effects that need to access the DOM.

Listing 2-5 shows how to use the onMounted() lifecycle hook to fetch data from
a server.

Introducing Vue
Com

ponents

CHAPTER 2 Introducing Vue Components 363

FIGURE 2-1:
The Vue

component
instance lifecycle.

© John Wiley & Sons, Inc.

364 BOOK 4 Vue

LISTING 2-5: Fetching a List Using the onMounted() Lifecycle Method

<script setup>
import { reactive, onMounted } from 'vue';

const state = reactive({
 todos: [],
});

onMounted(async () => {
 try {
 let response = await fetch('http://localhost:3000/todos', {
 mode: 'cors',
 });
 const todos = await response.json();

 state.todos = todos;
 } catch (error) {
 console.log(error);
 }
});
</script>

<template>
 <div>
 <h1>Todo List</h1>

 <li v-for="todo in state.todos">
 <input type="checkbox" v-model="todo.completed"/>

 </div>
</template>

This listing depends on having an API server that responds to an HTTP GET
request at the /todos endpoint. You can install and run the server that I built for
this purpose by downloading the code from this book’s website. The todo-server
app is in Book4/Chapter02/todo-server. Follow these steps to install and run
the server:

1. While running the Vue app containing the component shown in Listing 2-5,
open another terminal window with Book4/Chapter02/todo-server as the
working directory.

Introducing Vue
Com

ponents

CHAPTER 2 Introducing Vue Components 365

2. Install the server’s dependencies by entering npm install.

3. Run the server by entering node server.

After you start the server, you see the following message in the terminal:

Server started on port 3000

4. Return to your browser and reload the Vue application.

The Vue Todo app loads several to-do items and displays them, as shown in
Figure 2-2.

onUpdated()
The onUpdated() lifecycle hook registers a callback function that is invoked every
time the component updates because of a change to a reactive-state value.

Vue’s onUpdated() lifecycle hook serves the same purpose as React’s component-
DidUpdate() method, which is covered in Chapter 3 of Book 3.

Because the updated event is dispatched every time a component’s state changes,
you will create an infinite loop if you use onUpdated() to update reactive-state
values.

onUnmounted()
The onUnmounted() lifecycle hook registers a callback to be called after the com-
ponent has been unmounted. This callback serves the same purpose as React’s
componentWillUnmount() method (which is covered in Chapter 3 of Book 3). Use

FIGURE 2-2:
Loading data

from a server in
the onMounted()

lifecycle hook.

366 BOOK 4 Vue

this method to clear any manually set side effects you created in the component,
such as timers, event listeners, and server connections.

onBeforeMount()
A callback registered using onBeforeMount() is called after the reactive state of a
component has been created but before it’s inserted into the DOM. This hook gives
you a chance to modify the component’s state before it’s inserted into the DOM.

onBeforeUpdate()
The onBeforeUpdate() lifecycle hook is called when a component is about to
update the DOM tree due to a reactive-state change. Because this happens before
the DOM is updated, it’s safe to modify the component’s state at this point.

onBeforeUnmount()
The onBeforeUnmount() lifecycle hook can be used to register a callback that is
called while the component is still active, but immediately before it unmounts.
One use for this lifecycle hook is to write the state of a component to the browser’s
local storage so that it can be restored the next time the component is mounted.

onErrorCaptured()
The onErrorCaptured() lifecycle hook registers a callback that is called when
an error happens in one of a component’s descendent components. The callback
function you specify for this hook receives these three arguments:

 » The error object

 » The component instance that triggered the error

 » A string indicating the type of error that occurred

Handling Errors in Components
There are plenty of reasons that a child component might throw an error: An API
might be unavailable, a function or component might receive an unexpected type
of data, or the user might do something with your app that you never anticipated.

Introducing Vue
Com

ponents

CHAPTER 2 Introducing Vue Components 367

To demonstrate how to catch events by using onErrorCaptured(), I’ll show you
how to write a function that specifically creates an error — because errors never
happen when you want them to. Listing 2-6 shows a component that does noth-
ing except throw an error whenever you press a button. Listing 2-7 shows the App
component that makes use of the ErrorButton component and that catches the
error thrown by ErrorButton.

LISTING 2-6: The ErrorButton Component

<script setup>
function makeError() {
 throw new Error('oops');
}
</script>

<template>
 <div>
 <h1>Error on Demand</h1>

 <button @click="makeError">Make Error</button>
 </div>
</template>

LISTING 2-7: Handling an Error

<script setup>
import { onErrorCaptured, ref } from 'vue';
import ErrorButton from './components/ErrorButton.vue';

const error = ref('');

onErrorCaptured((e) => {
 error.value = e.message;
});
function resetError() {
 error.value = '';
}
</script>

<template>
 <div v-if="error">

(continued)

368 BOOK 4 Vue

 There's been an error: {{ error }} <button @click=
"resetError">OK</button>

 </div>
 <ErrorButton/>
</template>

If multiple components in a Vue app’s component hierarchy define error
handlers, it’s possible for an error to be handled multiple times. For example,
if the great-grandchild of a component containing an onErrorCaptured() hook
throws an error, that error "bubbles up" to the grandchild component and then
to the child component before it’s handled. Once an error is handled, you can tell
Vue to stop propagating the error further up the hierarchy by returning a value of
false from your errorCaptured() hook.

LISTING 2-7: (continued)

CHAPTER 3 Making Vue Templates 369

Making Vue Templates
“Simplicity is prerequisite for reliability.”

—EDSGER DIJKSTRA

JSX templates are written using HTML syntax. When Vue code is compiled, the
HTML templates are converted into optimized JavaScript code. It’s also pos-
sible to use JSX instead of HTML for your templates, or even to bypass writing

templates altogether by writing Vue render functions directly. However, simply
writing HTML is the recommended way to bind component logic with presenta-
tion, and it results in the most optimized JavaScript code.

In this chapter, I show you how to write Vue templates, and I describe the various
ways that template code can integrate with reactive data.

Writing HTML Templates
To write a Vue component’s template, you can just write valid HTML inside the
top-level <template> block, as shown in Listing 3-1.

Chapter 3

IN THIS CHAPTER

 » Creating HTML templates

 » Passing props

 » Including JavaScript in templates

 » Adding functionality with directives

 » Choosing what to render

 » Rendering with loops

 » Filling in the blanks with slots

 » Adding component style

370 BOOK 4 Vue

LISTING 3-1: A Simple Component with a Pure HTML Template

<template>
 <div>
 <h1>Congratulations!</h1>
 <h3>
 You've successfully created a project with
 Vite +
 Vue 3.
 </h3>
 </div>
</template>

When saved in a file with a .vue extension, the code in Listing 3-1 is a perfectly
valid Vue component. It contains no reactivity or local styles at this point, but when
it’s rendered, it produces in the browser the output shown in Figure 3-1 (with a
little help from the default global styles included when you run create-vue).

Instances of Vue components are created by using them as elements in other com-
ponents. Listing 3-2 shows how to import and use an instance of the component
defined by the code in Listing 3-1.

LISTING 3-2: Importing and Using a Component

<script setup>
import Listing0301 from './components/Listing0301.vue';
</script>

FIGURE 3-1:
A static Vue
component.

M
aking Vue Tem

plates

CHAPTER 3 Making Vue Templates 371

<template>
 <Listing0301/>
</template>

Because each element represents an instance of a Vue single-file component, you
can reuse elements as many times as you need to, and each instance maintains
its own stateful data. Creating multiple instances of a static component is only
slightly useful, however. Where things start to get interesting is when a compo-
nent instance’s output can be customized based on data passed to it and on its
internal state.

Using JavaScript in Templates
You can use any JavaScript expression inside a template by using double curly
braces.

Using double curly braces is also known as mustache syntax, after the mustache.js
template language. The name stems from the resemblance between a curly brace
and a fancy mustache turned on its side, as shown in Figure 3-2.

FIGURE 3-2:
How mustache

syntax got its
name.

Unknown author / Wikimedia Commons / Public domain

372 BOOK 4 Vue

A JavaScript expression is any unit of code that returns a value. Function calls and
variable names are examples of expressions. Function declarations and variable
assignments are not expressions.

JavaScript expressions are covered in Chapter 4 of Book 1.

Each set of double curly braces can include one expression. A JavaScript expres-
sion in double curly braces in a Vue template is called a binding expression.
Listing 3-3 demonstrates the use of several binding expressions in a template.

LISTING 3-3: Demonstrating JavaScript Expressions in a Template

<script setup>
import { reactive } from 'vue';

const state = reactive({
 sectionTitle: 'Using JavaScript in Templates',
 authorName: 'Chris Minnick',
});
</script>
<template>
 <h1>{{ state.sectionTitle }}</h1>
 <h3>By {{ state.authorName }}</h3>
</template>

Calling functions
Functions defined in the <script> block can be invoked using binding expressions.
However, you should remember that any function called in a binding expression
is called each time the template updates. For this reason, functions called from
binding expressions shouldn’t change data or have other side effects.

JavaScript in templates is restricted
Vue templates run in a sandbox, which means that, unlike code written in the
<script> block, binding expressions don’t have access to all the JavaScript glo-
bals. Certain commonly used globals, such as Math and Date, are available. If you
try to access other JavaScript globals, such as the alert() method, from within a
<template>, you get an error, as shown in Figure 3-3.

M
aking Vue Tem

plates

CHAPTER 3 Making Vue Templates 373

Using globals in templates
If you need to have a global variable in Vue that is available to all your appli-
cation’s components, you can set it in the globalProperties object of the Vue
instance’s config object, like this:

vue.config.globalProperties.timeFormat = '12hr';

Introducing Directives
Directives are special attributes that are prefixed with v- and that add functional-
ity to templates. For example, to set the HTML content of an element, you can add
the v-html directive to an element, like this:

<p v-html="this is a paragraph"></p>

Built-in directives
Vue includes some built-in directives for common tasks, including binding tem-
plate data to JavaScript variables and creating loops, conditional statements, and
event listeners. These are the built-in directives:

 » v-text

 » v-html

FIGURE 3-3:
Templates don’t

have access to all
JavaScript globals.

374 BOOK 4 Vue

 » v-show

 » v-if

 » v-else

 » v-else-if

 » v-for

 » v-on

 » v-bind

 » v-model

 » v-slot

 » v-pre

 » v-once

 » v-memo

 » v-cloak

I cover many of these directives in detail in the following sections. In most cases,
Vue’s directives are convenient ways to accomplish tasks that could also be done
using JavaScript in your <script> or using expressions in your <template>. For
example, the v-if, v-else, and v-else-if directives allow you to create condi-
tional code in your template to render elements conditionally, like this:

<div v-if="loggedIn">You are currently logged in.</div>
<div v-else>Please log in to continue</div>

The preceding example could also be written using a conditional operator, like
this:

{{ loggedIn?'You are currently logged in.'
:'Please log in to continue.' }}

Other directives accomplish tasks that would be difficult or impossible to code
using JavaScript in the <template>. For example, the v-memo directive caches
template code. It takes as its argument an array containing dependency values. If
all the dependencies have the same values as the last render, it skips rerendering
the element it’s applied to. For example:

<WeatherChart v-memo="[localWeatherData]">
...
</WeatherChart>

M
aking Vue Tem

plates

CHAPTER 3 Making Vue Templates 375

In the preceding example, the template skips rerendering the WeatherChart com-
ponent if the values in the localWeatherData variable haven’t changed since the
last rendering.

Directive shorthand names
The most often used directives have shorthand names that can be used in place of
the full v- name. For example, the v-on directive can also be written using the @
shorthand, like this:

<button @click = "submitForm">Send Data</button>

Passing arguments to directives
Some directives take an argument that modifies their functionality. To pass an
argument to a directive, use a colon (:) followed by the name of the argument. For
example, the v-on directive creates an event listener on an element. The argument
passed to the v-on directive specifies the type of event to listen for, like this:

<button v-on:click="handleClick">Submit Form</button>

Dynamic arguments
You can also pass dynamic arguments to directives. A dynamic argument is one
whose value comes from a property or an expression defined elsewhere in the
component. To create a dynamic argument, use a colon followed by square braces
([])containing the property or expression that should set the argument value.

For example, you might want a v-on directive to be able to listen for different
types of events. In this case, you can specify the event type as a dynamic argu-
ment, like this:

<button v-on:[eventType]="handleEvent">Do The Thing</button>

Directive modifiers
Some directives can also be customized using postfixes called modifiers. For exam-
ple, to specify that an event handler should call preventDefault(), you can use
the .prevent modifier with the v-on directive, like this:

<form v-on:submit.prevent="handleFormSubmit">

376 BOOK 4 Vue

The modifiers that can be used with event handler directives are covered in
Chapter 5 of Book 4. Modifiers for data binding directives are covered in Chapter 4
of Book 4.

Custom directives
In addition to Vue’s built-in directives, you can create custom directives. A cus-
tom directive is defined using an object containing one of more of the lifecycle
hooks. The lifecycle hooks in a custom directive receive the element the directive
is bound to.

By using custom directives, you can create reusable logic that requires DOM access
to an HTML element. For example, Listing 3-4 shows how to create a custom
v-play directive that causes an audio track to start playing automatically when
it’s mounted.

LISTING 3-4: Defining a v-play Directive

<script setup>
const vPlay = {
 mounted: (el) => {
 el.play();
 },
};
</script>
<template>
 <audio controls v-play>
 <source
 src="https://www.example.com/song.mp3"
 type="audio/mpeg"
 />
 Your browser does not support the audio element.
 </audio>
</template>

Although play() is a valid method to call on an HTML audio or video element,
automatically calling play() when a page loads is a bad practice. In fact, it’s such
a bad idea that audio that automatically plays without the user interacting with
the browser is blocked by web browsers by default.

To write a custom directive in a <script setup> block, create an object with a
name starting with v followed by a capitalized word. Vue converts that object into
a directive you can bind to an element using v- syntax.

M
aking Vue Tem

plates

CHAPTER 3 Making Vue Templates 377

If the <script setup> syntax for creating directives is a bit too automagic (mean-
ing, it’s so easy it seems like magic) for you (it is for me, personally), you can cre-
ate your custom directive in a component that uses a setup() function by defining
it as part of a directives object, as shown in Listing 3-5.

LISTING 3-5: Defining Custom Directives in the directives Object

<script>
import { ref } from 'vue';

export default {
 setup() {
 const text = ref('');
 return {
 text,
 };
 },

 directives: {
 focus: {
 mounted(el) {
 el.focus();
 },
 },
 chars: {
 updated(el) {
 console.log(el.value.length);
 },
 },
 },
};
</script>
<template>
 <div>
 <p>
 Start typing and open the console to see how many characters

you've typed!
</p>
 <textarea v-focus v-chars v-model="text"></textarea>
 </div>
</template>

378 BOOK 4 Vue

Conditional Rendering
Conditionally rendering elements or component instances in Vue templates can be
done by using JavaScript expressions in the template or by using directives.

Conditional rendering with JavaScript
Chapter 2 of Book 3 covers conditional rendering in React. The same techniques
that can be used with React can be used with Vue. For example, to evaluate a con-
dition and render various components based on the result of the condition, you
can use the conditional (ternary) operator or the logical AND operator (&&).

You can also write functions in the <script> block and invoke them in the tem-
plate to determine the output of the component.

Conditional rendering using directives
Vue features several directives that simplify conditional rendering:

 » v-show

 » v-if

 » v-else

 » v-else-if

Using v-show
The v-show directive shows or hides an element or a component based on whether
the expression passed to it is true or false. For example, in the following tem-
plate code, the paragraph containing an error message displays only if the error
variable is truthy:

<p v-show="error">There has been an error.</p>

Truthy and falsy refer to whether a value is true or false when converted to a
Boolean. Because a variable that’s undefined is falsy, the preceding line will only
display when error has a value. Truthy and falsy are covered in Book 1, Chapter 3.

The v-show directive works by setting the CSS display property on the element
to none. Setting display:'none' on an element doesn’t remove the element from
the DOM — it just makes it invisible. This is important to know because an ele-
ment with display set to none still takes up space in the layout of the web page.

M
aking Vue Tem

plates

CHAPTER 3 Making Vue Templates 379

Using v-if, v-else, and v-else-if
The v-if, v-else, and v-else-if directives work the same as JavaScript if, else,
and else if statements. Follow these rules for using these directives:

 » v-if and v-else-if take any expression as their value, and the element
they’re passed to renders only if the expression is truthy.

 » v-else doesn’t take a value. It must be used with the next element after an
element with a v-if or v-else-if directive.

 » You can use as many elements with v-else-if directives as you need after
an element with a v-if directive.

Listing 3-6 shows an example of using v-if, v-else-if, and v-else to do con-
ditional rendering.

LISTING 3-6: Using v-if, v-else-if, and v-else

<script setup>
function getTime() {
 let d = new Date();
 return new Date(d).getHours();
}
</script>
<template>
 {{ getTime() }}
 <div v-if="getTime() < 12">Good Morning</div>
 <div v-else-if="getTime() === 17">Happy Hour!</div>
 <div v-else-if="getTime() < 19">Good Afternoon</div>
 <div v-else-if="getTime() < 7">Good Evening</div>
 <div v-else>Good Night</div>
</template>

Rendering Lists
Vue’s v-for directive can be used to render an element or a template block mul-
tiple times. The v-for directive takes as its value any one of the following types
of values:

 » a number

 » an array

380 BOOK 4 Vue

 » an object

 » a custom iterable

The syntax of a v-for loop resembles that of a JavaScript for of loop. However, it
has some special capabilities that make it more than just a replacement for a loop.

The basic syntax of the v-for directive looks like this:

v-for="item in items"

The value to the right of in is the value or expression you want to loop over. The
variable on the left is the alias to use for each item.

Using v-for with numbers and strings
When you pass a number to a v-for directive, it causes the element or template to
be rendered that many times and causes the current number to be available using
the expression you specify on the left of in. Listing 3-7 shows a component that
counts to 100 using v-for.

LISTING 3-7: Counting with v-for

<template>
 <h1>Let's count to 100!</h1>
 <div v-for="i in 100">{{ i }}</div>
</template>

The beginning of the output from Listing 3-7 is shown in Figure 3-4.

Passing a string to a v-for directive causes the element or template to be repeated
once for every character in the string.

Using v-for with objects
When used with objects, v-for repeats the element or template once for each
property of the object. Keep in mind a couple of important considerations for
using v-for with objects:

 » v-for lists the values of each property, not the property names.

 » v-for considers only the object’s own properties, not those of any object it
inherits from.

M
aking Vue Tem

plates

CHAPTER 3 Making Vue Templates 381

Listing 3-8 demonstrates both of these points by creating an object as a child of
another object and passing the child object to a v-for loop.

LISTING 3-8: Using v-for with an Object

<script setup>
 const myParentObject = { fruit: 'apple', color: 'red' };
 const myChildObject = Object.create(myParentObject);
 myChildObject.vegetable = 'asparagus';
</script>
<template>
 <div v-for="prop in myChildObject">{{ prop }}</div>
</template>

The output of Listing 3-8 is shown in Figure 3-5.

When v-for is used with objects, you can also specify an alias for the property
names by passing a second alias on the left side of in:

<div v-for="(value, name) in object"></div>

To get the property names, values, and an index, you can pass three aliases, as
shown in Listing 3-9.

FIGURE 3-4:
Counting to 100

with Vue.

382 BOOK 4 Vue

LISTING 3-9: Passing Three Aliases and an Object to v-for

<script setup>
const myObject = { fruit: 'apple', color: 'red' };
</script>
<template>
 <div v-for="(value, name, index) in myObject">
 {{ name }}: {{ value }}: {{ index }}
 </div>
</template>

The value of the index alias is the number of the iteration of the v-for loop, start-
ing with 0.

Using v-for with arrays
Looping over arrays with v-for returns each value in the array, as shown in
Listing 3-10.

LISTING 3-10: Looping Over an Array

<script setup>
const items = [
 {
 name: 'apple',
 price: 1.0,
 },

FIGURE 3-5:
The result of
using a child

object in a
v-for loop.

M
aking Vue Tem

plates

CHAPTER 3 Making Vue Templates 383

 {
 name: 'asparagus',
 price: 1.99,
 },
];
</script>
<template>
 <div v-for="item in items">
 {{ item.name }}: {{ item.price }}
 </div>
</template>

Specifying a key
It’s recommended, though not required, that you specify a unique key for each
item in a list created with v-for. The key must be a primitive value, such as a
string or a number.

To provide a key, bind the key attribute to the element using the v-bind directive
or the v-bind directive shorthand syntax, :, as shown here:

<div v-for="listItem in list" :key="listItem.id">
 {{ listItem.description }}
</div>

Composing with Slots
Most HTML elements can have children. For example, the Internet would be a
much less interesting place if <p> were an empty element:

<p/>
<p/>
<p/>

Fortunately, when HTML was designed, Tim Berners-Lee anticipated that
what would turn out to be the important part of many elements would be their
content — rather than just the element. In fact, many HTML elements don’t do
much at all except render their children and provide a hint about what content
they should contain. For example, HTML has several different container elements,

384 BOOK 4 Vue

including <div>, <header>, <article>, <footer>, and so on. If you were to write
the <div> element as a React component, it might look something like this:

function div(props){
 return props.children;
}

In other words, it just renders whatever you place between <div> and </div>.

Vue elements can also have content, but for that content to be rendered, you need
to tell it where to render. This is the purpose of the <slot> element in Vue. To
write a component that outputs only its children, use the <slot> element in the
template, as shown here:

<template>
 <slot></slot>
</template>

Rendering children in Vue without doing anything to them is pointless, however —
we have HTML for that. Listing 3-11 shows a Vue component named <FancyBorder>
that creates a fancy border around any child elements you pass to it.

LISTING 3-11: A Component with a <slot>

<template>
 <div
 style="
 width: 300px;
 border-radius: 19% 81% 30% 70% / 29% 17% 83% 71%;
 back ground-image: linear-gradient(to bottom right,

red, yellow);
 color: white;
 "
 >
 <slot></slot>
 </div>
</template>

To use the <FancyBorder> component, import it into another component and
then wrap it around other elements or content, as shown in this example:

<script setup>
import FancyBorder from './FancyBorder.vue';

M
aking Vue Tem

plates

CHAPTER 3 Making Vue Templates 385

</script>
<template>
 <FancyBorder>
 In publishing and graphic design, Lorem ipsum is a
 placeholder text commonly used to demonstrate the
 visual form of a document or a typeface without
 relying on meaningful content. Lorem ipsum may be
 used as a placeholder before final copy is available.
 It is also used to temporarily replace text
 in a process called greeking, which allows designers
 to consider the form of a webpage or publication,
 without the meaning of the text influencing the
 design.
 </FancyBorder>
</template>

Figure 3-6 shows what the preceding component looks like when rendered in a
browser.

Specifying fallback content
Any content you write between the opening <slot> tag and the closing
</slot> tag is used as default content for the slot. For example, the component in
Listing 3-12 displays a message if the component is used without children.

FIGURE 3-6:
Using the

FancyBorder
component.

386 BOOK 4 Vue

LISTING 3-12: Specifying Fallback Content for a Slot

<template>
 <h1>
 <slot>No content was provided.</slot>
 </h1>
</template>

Naming slots
Components can have multiple slots. To allow parent components to target con-
tent to a particular slot, you can use a <template> for each slot and pass the name
of the slot using the v-slot attribute. Listing 3-13 shows how to create named
slots, and Listing 3-14 shows how to target content to named slots.

LISTING 3-13: Naming Slots

<template>
 <h1>
 <slot name="title">No title provided</slot>
 </h1>
 <div>
 <slot name="body">No body provided</slot>
 </div>
</template>

LISTING 3-14: Targeting Named Slots

<script setup>
import BlogPostTemplate from './BlogPostTemplate.vue';
</script>

<template>
 <BlogPostTemplate>
 <templa te v-slot:title>10 Tips for Keeping Your Pencils

Sharpened</template>
 <template v-slot:body>
 <p>
 Do you have pencils that get dull after you use them? This

problem is more common than you might think.
 </p>

M
aking Vue Tem

plates

CHAPTER 3 Making Vue Templates 387

 </template>
 </BlogPostTemplate>
</template>

Adding Style to Components
Vue components can be styled using a <style> block. Inside the <style> block,
you can write standard CSS code, CSS modules, CSS that’s scoped only to the cur-
rent component, and CSS with values that are linked to the component state.

Global CSS
By default, the CSS you write in the <style> block is global. It applies to the entire
application the same way as if you added the CSS to a style sheet included in the
HTML document.

Even if you add global styles in a deeply nested component, those styles still apply
to every other component. If a parent component and a subcomponent contain
conflicting styles, the parent component’s style overrides those of the child.

Listing 3-15 shows two components that define global styles for the <h1> element.
Figure 3-7 shows what the rendered components will look like.

FIGURE 3-7:
Parents

always win.

388 BOOK 4 Vue

LISTING 3-15: Creating Conflicting Styles

// App.vue
<script setup>
import ChildComponent from './components/ChildComponent.vue';
</script>

<template>
 <h1>First-level headers should have borders.</h1>
 <ChildComponent/>
 <h1>I win.</h1>
</template>

<style>
h1 {
 border: 1px solid black;
 margin: 10px;
 padding: 4px;
}
</style>
// ChildComponent.vue
<template>
 <h1>No they shouldn't!</h1>
</template>
<style>
h1 {
 border: none;
}
</style>

Scoped CSS
You can create CSS that’s scoped only to the component in which it’s defined by
adding the scoped attribute to a <style> block. Listing 3-16 shows the child com-
ponent from Listing 3-15 but with a scoped <style> block.

LISTING 3-16: Using Scoped CSS

<template>
 <h1>No they shouldn't!</h1>
</template>
<style scoped>

M
aking Vue Tem

plates

CHAPTER 3 Making Vue Templates 389

h1 {
 border: none;
}
</style>

Scoped style blocks override conflicting globals, as shown in Figure 3-8.

Multiple style blocks
If you want to define both global and scoped styles in the same component, you
can define multiple <style> blocks. For example, in Listing 3-17 the App.vue
component creates some styles that should apply to the entire application as well
as some styles for use only in the App component.

LISTING 3-17: Using Both Global and Scoped Styles

<script setup>
import ChildComponent from './components/ChildComponent.vue';
</script>

<template>
 <div id="#app">
 <h1>Welcome to my App</h1>
 <ChildComponent/>
 </div>
</template>

FIGURE 3-8:
Scoped styles

override globals.

(continued)

390 BOOK 4 Vue

<style>
h1 {
 border: 1px solid black;
 margin: 10px;
 padding: 4px;
}
a,
.green {
 text-decoration: none;
 color: hsla(160, 100%, 37%, 1);
 transition: 0.4s;
}
</style>

<style scoped>
#app {
 max-width: 1280px;
 margin: 0 auto;
 padding: 2rem;
 font-weight: normal;
}
</style>

CSS modules
Adding the module attribute to the <style> block creates a style module from the
block and exposes the CSS classes in the block as an object with the key $style.
You can then bind the $style object to class attributes of elements in the tem-
plate, as shown in Listing 3-18.

LISTING 3-18: Creating and Using a CSS Module

<script setup>
const items = [
 {
 name: 'apple',
 price: 1.0,
 },

LISTING 3-17: (continued)

M
aking Vue Tem

plates

CHAPTER 3 Making Vue Templates 391

 {
 name: 'asparagus',
 price: 1.99,
 },
];
</script>
<template>
 <div v-for="item in items">
 {{ item.name }}
 : {{ item.price }}
 </div>
</template>
<style module>
.item {
 font-weight: bold;
}
.price {
 font-style: italic;
}
</style>

v-bind in CSS
Though the style code in the <style> block can use the same syntax as CSS, it’s
actually compiled by Vue. Because of this, it’s possible to use some dynamic code
in the <style> block. For example, the v-bind() function can be used in <style>
blocks to bind CSS rules to data in the same way that the v-bind directive binds
attributes to data.

Listing 3-19 shows how v-bind() can be used to dynamically change styles in the
<style> block.

In this listing, I use the ref() function to create reactive variables. The ref()
function works the same way as reactive(), which I cover in Book 4, Chapter 1.
The difference between ref() and reactive() is that reactive() can only create
reactive objects, while ref() can create any type of reactive variable. I cover ref()
in detail in Book 4, Chapter 4.

392 BOOK 4 Vue

LISTING 3-19: Controlling Styles Programmatically

<script setup>
import { ref } from 'vue';
const rainbowColors = ref([
 'red',
 'orange',
 'yellow',
 'green',
 'blue',
 'indigo',
 'violet',
]);
const backgroundColor = ref('');
</script>
<template>
 <input
 type="radio"
 :id="color"
 v-for="color in rainbowColors"
 :value="color"
 v-model="backgroundColor"
 />
 <div class="swatch"></div>
 <h1>My favorite color is {{ backgroundColor }}</h1>
</template>
<style scoped>
.swatch {
 width: 100px;
 height: 100px;
 margin: 10px;
 border-radius: 50%;
 border: 1px solid black;
 background-color: v-bind(backgroundColor);
}
</style>

In the preceding example, a row of radio buttons is created and bound to the
backgroundColor reactive variable. Selecting various radio buttons changes
the value of backgroundColor to different colors from the rainbowColors array.
The .swatch style uses the value of backgroundColor to set the background color
of a div on the page.

M
aking Vue Tem

plates

CHAPTER 3 Making Vue Templates 393

The output of Listing 3-19 is shown in Figure 3-9.

FIGURE 3-9:
Changing

styles based on
reactive data.

CHAPTER 4 Using Data and Reactivity 395

Using Data and
Reactivity

“We’re entering a new world in which data may be more important than
software.”

—TIM O’REILLY

Passing data between components and using reactive state are the two ways
that the display of a component can change. As in React, every rerendering
of a Vue app’s components starts with a change to state data. Vue tracks

reactive state variables and triggers an update of the component containing the
reactive data, which may cause new props to be passed to child components and
thus modify how they render.

Chapter 4

IN THIS CHAPTER

 » Passing and using props

 » Binding attributes

 » Defining and working with
reactive data

 » Making primitive data types reactive
with ref()

 » Using computed properties

 » Watching for changes

396 BOOK 4 Vue

Passing and Using Props
When you write a custom Vue component and import it into another component,
the name you used to import the component becomes available in the parent com-
ponent as an element. You can pass data to a component instance by using attri-
butes, and these attributes become available in the component instance

If you’ve read Book 3, you should recognize this use of attributes to pass data to
subcomponents. From the perspective of the parent component, passing props
works the same in React and Vue.

All the props passed to a component instance are passed as an object. Although
you can pass as many props to a component instance as you like, and you can give
them any valid attribute name, Vue requires that each prop received by a compo-
nent must be specifically defined inside the child component.

The way to define a prop depends on whether you’re using the full setup() func-
tion or the shortcut setup attribute.

Defining props with <script setup>
If you use <script setup>, any props you want to use in a component must be
passed as an array to the defineProps() function. This function is only available
inside <script setup> and doesn’t need to be explicitly imported.

Listing 4-1 shows how to use defineProps() to receive props and how to use
those props in a template.

LISTING 4-1: Defining props Using defineProps()

<script setup>
const props = defineProps(['firstName', 'lastName']);
</script>
<template>
 <div>
 <h1>Con gratulations {{ props.firstName }} {{ props.lastName

}}!</h1>
 <h3>
 You've successfully created a project with
 Vite +
 Vue 3.

U
sing D

ata and
Reactivity

CHAPTER 4 Using Data and Reactivity 397

 </h3>
 </div>
</template>

Notice that the names of the props in the array passed to defineProps() are
strings. You don’t need to assign received props to a local object. If you simply
invoke defineProps() in <script setup>, the props passed to the instance are
available in the component using just their names, as shown in Listing 4-2.

LISTING 4-2: Defining props Without Assigning them to an Object

<script setup>
defineProps(['firstName', 'lastName']);
</script>
<template>
 <div>
 <h1>Congratulations {{ firstName }} {{ lastName }}!</h1>
 <h3>
 You've successfully created a project with
 Vite +
 Vue 3.
 </h3>
 </div>
</template>

Defining props with setup()
When you use the setup() function, you must use the props option to spec-
ify the props the component will receive. You can then pass the props object to
the setup() function. Listing 4-3 shows how to define props with the setup()
function.

LISTING 4-3: Defining and Using props with setup()

<script>
export default {
 props: ['firstName', 'lastName'],
 setup(props) {
 console.log(props.firstName);
 console.log(props.lastName);
 },

(continued)

398 BOOK 4 Vue

};
</script>
<template>
 <div>
 <h1>Congratulations {{ firstName }} {{ lastName }}!</h1>
 <h3>
 You've successfully created a project with
 Vite +
 Vue 3.
 </h3>
 </div>
</template>

When you define props using the props option, the props become available using
just their names in the template (rather than as properties of the props object).
Because the props object is passed to setup() using the name props, you have to
reference props using dot notation inside the setup() function, as shown in the
console.log() statements in Listing 4-3.

Binding Data to Templates
In the preceding section, I tell you that the way to pass data from a parent compo-
nent to a child component is by using attributes. For example, if you want to make
a prop called messageText available in a component called Message, you can use
the following element inside a <template>:

<Message messageText="Hello there."/>

This example works fine if the value of messageText will always be "Hello there."
If the value of an attribute will change, you can define your attribute value in the
<script> block and use the v-bind directive to bind your attribute to a value or an
expression, as shown in Listing 4-4.

LISTING 4-4: Binding an Attribute to Data

<script setup>
function superHeroDescriptionGenerator(name, superlative, type) {
 return `${name}, the ${superlative} ${type}`;
}

LISTING 4-1: (continued)

U
sing D

ata and
Reactivity

CHAPTER 4 Using Data and Reactivity 399

</script>
<template>
 <MythGenerator
 v-bind:mainCharacter="
 superHeroDescriptionGenerator('Superman', 'Greatest', 'Hero')
 "
 />
</template>

The shorthand version of v-bind is just a colon (:), as shown in Listing 4-5.

LISTING 4-5: Using the Shorthand Version of v-bind

<script setup>
const props = defineProps(['postalCode']);
</script>
<template>
 <StoreLocator :postalCode="postalCode"/>
</template>

The v-bind directive can be used to pass any type of data to child components.
Even though the value of a bound attribute is in quotes, the v-bind directive
causes the contents of the value to be interpreted as JavaScript.

For example, here’s how to pass a number to a child component:

<Product :numInStock="9"/>

Here’s how to pass an object:

<Product : details="{name:'sunflower',description:'giant
flower',price:'2.99'}"/>

and here’s how to pass an array:

<Product :relatedProductIds="[2,16,21]"/>

400 BOOK 4 Vue

Passing a Boolean is somewhat of a special case because it’s possible to pass a
Boolean true value just by including the attribute without a name, as in the fol-
lowing example:

<WeatherInOregon is-raining/>

If you want to pass a Boolean false value as a prop, however, you need to bind
the attribute, like this:

<WeatherInOregon :is-sunny="false"/>

Initializing and Changing Reactive Data
To create reactive variables in Vue, you can use the reactive() function or the
ref() function. Both functions serve the same purpose: They create variables that
are tracked by Vue and that trigger component updates. In some cases, you can
choose either function and it will work fine, and you can mix the two functions in
the same app. However, there are some differences between the two that deter-
mine how and where you use them.

The reactive() function creates a reactive object or array. When using reac-
tive(), it’s common to create an object named state that holds any reactive
properties for your component. To create a reactive object that can be used in a
template, import reactive() into your component and then call it from within
the setup() function, as shown in Listing 4-6.

LISTING 4-6: Creating a Reactive State Object

<script>
import { reactive } from 'vue';
export default {
 setup() {
 const state = reactive({ cupsOfCoffee: 0 });
 return {
 state,
 };
 },
};
</script>

U
sing D

ata and
Reactivity

CHAPTER 4 Using Data and Reactivity 401

If you use <script setup>, the export default and return statements are han-
dled by Vue and you can just call reactive() and assign the result to a constant
or variable, as shown in Listing 4-7.

LISTING 4-7: Creating the Reactive State with <script setup>

<script setup>
import { reactive } from 'vue';

const state = reactive({ cupsOfCoffee: 0 });
</script>

Whether you use the full setup() function or <script setup>, the resulting state
object can be referenced in <template> and in <script>, as shown in Listing 4-8.

LISTING 4-8: Using a Reactive State Object

<script setup>
import { reactive } from 'vue';

const state = reactive({ cupsOfCoffee: 0 });
function drinkCoffee() {
 state.cupsOfCoffee++;
}
</script>
<template>
 <h1>Coffee Tracker</h1>
 <button @click="drinkCoffee">Drink Coffee</button>
 <p>You've had {{ state.cupsOfCoffee }} cups of coffee.</p>
</template>

Rendering the component from Listing 4-8 as part of a Vue app creates the useful
reactive user interface shown in Figure 4-1.

reactive() creates a Proxy object
When you call reactive(), it creates an object in your Vue application that you
have no direct access to. The object that’s returned from reactive() is actually a
Proxy object.

402 BOOK 4 Vue

JavaScript’s Proxy object allows you to create an object that can be used in place of
the original object. Creating a proxy object is what allows Vue to track the proper-
ties of the object to trigger updates.

By default, Vue tracks each property of a reactive state object, including objects
that are nested inside other properties. When any operation changes one of these
properties, the component is updated. This tracking of the nested properties is
called deep reactivity.

Limitations of reactive()
The first limitation of the reactive state created using reactive() is that it can be
used only to create objects and arrays.

The second limitation is that copies of reactive() state objects lose their
reactivity.

Because the object returned by reactive() is a proxy, copying, destructuring, or
passing a reactive state object to a function causes the new variables to lose the
connection to the reactive state. For example, in the following <script> block,
a reactive state object is created and then destructured. The resulting variables
contain only the values from the state object, and they aren’t reactive themselves:

<script setup>
 import { reactive } from 'vue';
 const state = reactive({cupsOfCoffee: 0, glassesOfWater:0});
 let {cupsOfCoffee, glassesOfWater} = state;
 cupsOfCoffee++;
</script>

FIGURE 4-1:
I’m trying

to cut down.

U
sing D

ata and
Reactivity

CHAPTER 4 Using Data and Reactivity 403

In this code snippet, changes to the cupsOfCoffee variable extracted from the
state object don’t affect the reactive state.

Introducing ref()
The ref() function is designed to address the limitations of reactive(). The
ref() function serves the same basic purpose as reactive() — it creates reactive
variables. However, unlike reactive(), a ref can hold any value type.

The ref() function works by wrapping the value you pass to it with an object
(called a ref object) that has a value property. To use the value of a ref object in
a component’s <script> block, you need to use the value property, as shown in
Listing 4-9.

LISTING 4-9: Creating and Accessing ref Objects

<script setup>
import { ref } from 'vue';

const cupsOfCoffee = ref(0);
function drinkCoffee() {
 cupsOfCoffee.value++;
}
</script>

In the <template>, ref objects are "unwrapped" by Vue, which makes them avail-
able without having to specify the .value property. Listing 4-10 shows the Coffee
Tracker app from Listing 4-8 rewritten using ref().

LISTING 4-10: Using refs Inside a Template

<script setup>
import { ref } from 'vue';

const cupsOfCoffee = ref(0);
function drinkCoffee() {
 cupsOfCoffee.value++;
}

(continued)

404 BOOK 4 Vue

</script>
<template>
 <h1>Coffee Tracker</h1>
 <button @click="drinkCoffee">Drink Coffee</button>
 <p>You've had {{ cupsOfCoffee }} cups of coffee.</p>
</template>

Here are a few things to keep in mind about refs:

 » Objects in refs are deeply reactive: When used for holding an object, the
ref() function converts its value prop to a deeply reactive state variable
using reactive(). As with proxy objects created using just reactive(), the
properties of nested objects are tracked by Vue and they trigger compo-
nent updates.

 » ref() creates references: The ref object created by ref() can be passed to
functions and can be destructured and copied without losing its reactivity.

Experimenting with Reactivity Transform
Although it’s only a minor inconvenience to have to use .value to get the value of
a ref object, forgetting .value is the cause of many bugs in Vue component code.
To further simplify the use of reactive data, Vue 3 has a feature it calls Reactivity
Transform, which can automatically destructure ref objects so that you don’t need
to access them with .value.

As of this writing, Reactivity Transform is an experimental feature and is disabled
by default. Because it’s still experimental, the exact syntax for using Reactivity
Transform may change in the future.

To enable Reactivity Transform when using vue-create, modify the file named
vite.config.js at the root of your project to set reactivityTransform to true
inside the plugins config object, as shown in Listing 4-11.

LISTING 4-11: Enabling Reactivity Transform

export default defineConfig({
 plugins: [vue({ reactivityTransform: true })],
 resolve: {
 alias: {
 '@': fileURLToPath(new URL('./src', import.meta.url)),

LISTING 4-10: (continued)

U
sing D

ata and
Reactivity

CHAPTER 4 Using Data and Reactivity 405

 },
 },
});

Enabling Reactivity Transform enables several compile-time macros that you can
use in place of any built-in Vue function that returns a ref(). These macros have
the same names as built-in Vue functions, but they’re prefaced with $.

For example, to create a ref object using Reactivity Transform, use the $ref()
macro, like this:

const cupsOfCoffee = $ref(0);

With this task complete, you can make use of cupsOfCoffee without .value, as
shown in Listing 4-12.

LISTING 4-12: Using Reactivity Transform

<script setup>
const cupsOfCoffee = $ref(0);
function drinkCoffee() {
 cupsOfCoffee++;
}
</script>
<template>
 <h1>Coffee Tracker</h1>
 <button @click="drinkCoffee">Drink Coffee</button>
 <p>You've had {{ cupsOfCoffee }} cups of coffee.</p>
</template>

Computing Properties
Although it’s possible to write logic involving reactive variables inside the tem-
plate, this rapidly leads to problems. These are the two considerations for using
logic in your templates:

 » Code in your template runs every time the component is updated.

 » Code in your template isn’t reusable and can quickly become difficult to
maintain.

406 BOOK 4 Vue

To solve both of these problems, Vue has a function called computed() that returns
a computed property. A computed property functions like a normal method inside
the script block — and it tracks reactive variables used inside it and updates only
when one of its dependencies changes.

In contrast, if you invoke a method from within your template, it runs on every
update of the component.

A common use for computed properties is to perform complex calculations on
data that may not change every time a component is updated. For example, in
Listing 4-13, clicking a button causes a list of up to 100 repositories to be fetched
from GitHub. When the list finishes downloading, a computed property is used
to calculate the number of repositories and the total number of stars in those
repositories.

LISTING 4-13: Using a Computed Property

<script setup>
import { ref, computed } from 'vue';
const repos = ref([]);
const loading = ref(false);
const error = ref(null);
function fetchRepos() {
 loading.value = true;
 error.value = null;
 fetch('https://api.github.com/users/vuejs/repos?per_page=100')
 .then((response) => {
 return response.json();
 })
 .then((data) => {
 repos.value = data;
 loading.value = false;
 })
 .catch((e) => {
 error.value = e;
 loading.value = false;
 });
}

U
sing D

ata and
Reactivity

CHAPTER 4 Using Data and Reactivity 407

const repoStats = computed(() => {
 return {
 repoCount: repos.value.length,
 stargazers: repos.value.reduce((total, repo) => {
 return total + repo.stargazers_count;
 }, 0),
 };
});
</script>
<template>
 <div>
 <h1>Vue.js Repositories</h1>
 <button @click="fetchRepos">
 {{ loading ? 'Loading...' : 'Fetch Repos' }}
 </button>
 <p v-if="error">
 {{ error.message }}
 </p>
 <p>
 Showi ng {{ repoStats.repoCount }} repositories with a

total of
 {{ repoStats.stargazers }} stars.
 </p>

 <li v-for="repo in repos" :key="repo.name">
 <a :href="repo.html_url">{{ repo.name }}
 <p>{{ repo.description }}</p>

 </div>
</template>

Figure 4-2 shows the result of running this component in a Vue app.

To try out this script with your own GitHub repo (or anyone else’s), replace the
username in the URL argument to the fetch() function with a different GitHub
user’s username.

408 BOOK 4 Vue

Reacting to State Changes with Watch()
Computed properties are useful for computing values using pure functions.
However, it’s sometimes necessary to perform functions involving side effects in
response to reactive data changes. Vue provides the watch() function to invoke a
callback whenever a specified reactive value changes.

A pure function is one that doesn’t change anything outside of itself and that
always returns the same value when given the same input.

A side effect is any operation that isn’t directly related to the return value of a func-
tion; for example, invoking an asynchronous operation or modifying the DOM.

FIGURE 4-2:
Vue has a

lot of stars.

U
sing D

ata and
Reactivity

CHAPTER 4 Using Data and Reactivity 409

The watch() function takes a value to watch and a callback function as arguments.
Listing 4-14 shows a component that watches for changes to a ref called search-
Term that’s controlled by an input element. When the search term changes, the
watcher invokes a call to GitHub’s API to search for a repository containing the
search term.

LISTING 4-14: Watching a Value to Trigger a Side Effect

<script setup>
import { ref, watch } from 'vue';
const searchTerm = ref('');
const searchResults = ref([]);
watch(searchTerm, async (newTerm) => {
 if (newTerm.length > 2) {
 const response = await fetch(
 `https://api.github.com/search/repositories?q=${newTerm}`
);
 const data = await response.json();
 searchResults.value = data.items;
 }
});
</script>
<template>
 <div>
 <input type="text" v-model="searchTerm"/>

 <li v-for="result in searchResults" :key="result.id">
 <a :href="result.html_url" target="_blank">{{ result.full_

name }}

 </div>
</template>

Figure 4-3 shows the output from Listing 4-14.

410 BOOK 4 Vue

FIGURE 4-3:
A dynamic search

box, created
using a watcher

function.

CHAPTER 5 Responding to Events 411

Responding to Events
“There are many events in the womb of time, which will be delivered.”

—WILLIAM SHAKESPEARE

Events are what trigger changes to reactive data in Vue. Events can be fired
by user input, by things that happen inside the browser, and in response to
things happening inside a Vue instance. In this chapter, I show you how to

listen for and handle events in Vue and how to bind form inputs to reactive data,
and I describe how Vue’s 2-way data binding works.

Setting Listeners with v-on
Event listeners in Vue components are created using the v-on directive. You can
use v-on in two different ways: using inline handlers or using method handlers.

Inline handlers
Inline handlers resemble HTML’s built-in event attributes, except that rather
than start with on (as in onclick, onhover, or onload), they start with v-on or the
shorthand for the v-on directive, @.

Chapter 5

IN THIS CHAPTER

 » Setting event listeners

 » Emitting events

 » Handling events

 » Using 2-way binding

 » Bindings Forms

412 BOOK 4 Vue

The value of an inline handler can be a JavaScript statement or a function call. For
example, Listing 5-1 shows a <button> element that changes the value of a reac-
tive variable when you click it.

LISTING 5-1: Using an Inline Event Handler

<script setup>
import { ref } from 'vue';
const userInput = ref('');
</script>

<template>
 <div>
 <textarea v-model="userInput"/>
 <p>{{ userInput }}</p>
 <button @click="userInput = userInput.toUpperCase()">Shout

It</button>
 </div>
</template>

The result of running this component, typing something into the input, and click-
ing the button is shown in Figure 5-1.

A couple of interesting things are going on in Listing 5-1. The first is that I’m
using a directive I haven’t shown you yet, v-model, though I describe it later
in this chapter. The v-model directive creates a 2-way link between the reactive

FIGURE 5-1:
Handling events

inline.

Responding to Events

CHAPTER 5 Responding to Events 413

variable named userInput and the <input> element. The v-model directive makes
the text you type into the <input> element automatically update the reactive value.

The second interesting thing is that the v-on directive takes a statement as its
value and this statement contains a call to a function. Because the value of v-on
is a string (as you can tell by the fact that it’s enclosed in quotes), the statement
doesn’t get executed when the component mounts. Rather, in an inline event
handler (as in an HTML event attribute), the string value of the event handler
attribute gets executed as JavaScript when you click the <button> element.

If you’ve read Books 1, 2, and 3, you should recognize that this ability to pass a
statement or a function call (as opposed to a function definition) to an event lis-
tener doesn’t work in pure JavaScript or in React.

Method handlers
Method handlers more closely resemble the way that the native JavaScript
addEventListener() method or React’s event listener attributes work. The dif-
ference in Vue is that you still pass a string to the v-on directive, but the value
of the string is a function definition, as opposed to the function invocation that’s
used in Vue’s inline handlers.

To use a method handler, you can define an inline function using arrow syntax,
or you can define a method in the <script> block. Listing 5-2 shows how to use
a method handler.

LISTING 5-2: Using a Method Handler

<script setup>
import { ref } from 'vue';
const userInput = ref('');

function shoutText() {
 alert(userInput.value.toUpperCase());
}
</script>

<template>
 <div>
 <textarea v-model="userInput"/>
 <p>{{ userInput }}</p>
 <button @click="shoutText">Shout It</button>
 </div>
</template>

414 BOOK 4 Vue

The result of mounting an instance of the component in Listing 5-2 is shown in
Figure 5-2.

Because method handlers call methods defined outside the <template> block,
they have access to all the browser’s globals, rather than just to the subset that
Vue makes available inside the <template> block. For example, Listing 5-2 is able
to call the window.alert() function. Figure 5-3 shows what happens if you try to
call window.alert() from the inline event handler shown in Listing 5-1.

Choosing between method
and inline handlers
Which should you use — a method handler or an inline handler? In general, inline
event handlers should be used for only very simple statements. You might also
choose to use an inline event handler to call a function defined in the <script>
block and pass it arguments. For example, the following event handler works in
Vue (provided that the postData() function exists and that the arguments being
passed to it exist, of course):

<button @click="postData(itemId,price,quantity)">
 Checkout
</button>

FIGURE 5-2:
Handling events

with a method
handler.

Responding to Events

CHAPTER 5 Responding to Events 415

Inline event handlers also allow you to pass any arbitrary data directly to a handler
function. For example:

<button @click="postData('You clicked the button!')">
 Click
</button>

Method handlers work more like normal JavaScript. For that reason, I generally
prefer them, to avoid confusion. As with addEventListener() and React’s event
attributes, method event handlers automatically receive an event object, which
can be used to get information about the event and the element the event was
triggered on, as shown in Listing 5-3.

LISTING 5-3: Method Handlers Receive an Event Object

<script setup>
function submitData(event) {
 event.preventDefault();
 console.log(event.target.firstName.value);
}
</script>

FIGURE 5-3:
Access to globals

is restricted
in inline event

handlers.

(continued)

416 BOOK 4 Vue

<template>
 <div>
 <form @submit="submitData">
 <input id="firstName"/>
 <input id="lastName"/>
 <input type="submit" value="Submit form"/>
 </form>
 </div>
</template>

To pass arbitrary data to a method handler, you can wrap function calls or state-
ments in an arrow function, as shown in Listing 5-4.

LISTING 5-4: Wrapping Statements and Function Calls in an Arrow Function

<script setup>
function submitData(event, thankYouMessage) {
 event.preventDefault();
 console.log(`${thankYouMessage} ${event.target.firstName.value}`);
}
</script>

<template>
 <div>
 <form @submit="(event) => submitData(event, 'Thanks')">
 <input id="firstName"/>
 <input id="lastName"/>
 <input type="submit" value="Submit form"/>
 </form>
 </div>
</template>

Using Event Modifiers
Event modifiers are functions or properties of the event that can be accessed by
using a period after the event name in v-on. For example, though it’s perfectly
fine to call event.preventDefault() inside an event handler method (as shown

LISTING 5-3: (continued)

Responding to Events

CHAPTER 5 Responding to Events 417

in the preceding listing), you can achieve the same result by using the .prevent
modifier with v-on:

<form @submit.prevent:click = 'submitData'>

In addition to .prevent, several other event modifiers can be used to modify how
the event is handled, as listed here:

 » .stop prevents the event from propagating to surrounding elements.

 » .self triggers the event only if the event.target is the element that the
listener is set on (and not a child).

 » .capture causes events that happen on a child element to be handled by
parents first before being handled by the child. This is the opposite of the
default "bubbling" behavior of events.

 » .once causes the event to be triggered only once, at most.

 » .passive improves the performance of default behaviors by causing the
default behavior of the element to happen immediately rather than wait for
the event handler to complete. Setting the passive option can be used to
improve the performance of events involving touch screens.

Using key modifiers
Vue’s key modifiers modify keyboard events (keyup or keydown) to specify the key
or combination of keys that the event listener should listen for. Key modifiers can
be specified by attaching the modifier to an event using a period. Any valid key
name can be used as a key modifier by converting to kebab-case the name of the
event that the key produces. For example, to detect the Caps Lock key, you can use
the caps-lock modifier, like this:

<input @keyup.caps-lock="showCapsLockWarning"/>

You can find the complete list of key events on Mozilla Developer Network at
https://developer.mozilla.org/en-US/docs/Web/API/KeyboardEvent.

Vue also provides several aliases for frequently used keys:

 » .enter

 » .tab

 » .delete (captures the Delete and Backspace keys)

https://developer.mozilla.org/en-US/docs/Web/API/KeyboardEvent

418 BOOK 4 Vue

 » .esc

 » .space

 » .up

 » .down

 » .left

 » .right

To specify key combinations, you can chain together key modifiers. Listing 5-5
shows a <textarea> element with an event listener that detects whether the user
presses Ctrl+Q.

You can also detect key combinations that involve the ⌘ key (on macOS) or the
Windows key (on Windows) by using the .meta modifier.

LISTING 5-5: Detecting Keyboard Combinations

<script setup>
function quitEditing() {
 alert(`Are you sure you want to quit editing?`);
}
</script>

<template>
 <div>
 <textarea @keyup.ctrl.q="quitEditing"/>
 </div>
</template>

KEYUP OR KEYDOWN?
The keyup and keydown events both detect key presses, but their main difference
becomes obvious (as you may have guessed, by their names) when they detect
the event. Deciding which one to use depends on whether you want an event han-
dler to repeat whenever a user holds down a key. The keydown event fires multiple
times when a key is held down. Because keyup only detects a key pressed becoming
unpressed, it doesn’t respond to a key that’s held down until the key is released.

Responding to Events

CHAPTER 5 Responding to Events 419

Detecting exact combinations
If you run the component shown in Listing 5-5 and try pressing additional keys
along with Ctrl+Q (for example, Ctrl+Shift+Q), you find that it still triggers the
event handler. If you want to detect only the exact combination of keys, you can
use the .exact modifier, as shown here:

<textarea @keyup.ctrl.q.exact="quitEditing"/>

The .exact modifier can be used with other types of events as well. For example
if you want to listen for a click event but not a Ctrl+click event, you can use the @
click.exact directive.

Binding Forms to Events and Data
By binding the value attribute and adding an event listener to a form input ele-
ment, it’s possible to create a unidirectional bind between the form input and
the component’s reactive data. For example, the text input shown in Listing 5-6
receives an initial value from the ref named favoriteFood. An event listener set
on the <input> element listens for input events and calls an event handler that
updates the value of the favoriteFood ref.

LISTING 5-6: Updating Data with 1-Way Binding

<script setup>
import { ref } from 'vue';
const favoriteFood = ref('pizza');
function updateFavoriteFood(event) {
 favoriteFood.value = event.target.value;
}
</script>
<template>
 <div>
 <input type="text" :value="favoriteFood"

@input="updateFavoriteFood"/>
 <p>My favorite food is {{ favoriteFood }}</p>
 </div>
</template>

The code shown in Listing 5-6 works fine. However, for simply creating a bind
between a form input and reactive data, Vue provides a simpler method: the
v-model directive.

420 BOOK 4 Vue

Making two-way bindings with v-model
The v-model directive creates a 2-way bind between a form input and reactive
data. Behind the scenes, v-model uses an attribute binding from the reactive data
to the input and an event listener that detects input events and updates the reac-
tive data. However, instead of you having to manually write the event handler, the
v-model directive does it for you.

Listing 5-7 shows how to use a v-model directive to simplify the code from
Listing 5-6.

LISTING 5-7: Using v-model

<script setup>
import { ref } from 'vue';
const favoriteFood = ref('pizza');
</script>
<template>
 <div>
 <input type="text" v-model="favoriteFood"/>
 <p>My favorite food is {{ favoriteFood }}</p>
 </div>
</template>

The v-model directive is the same as using a v-bind directive and a v-on direc-
tive. Rewritten without v-model, the <input> element in Listing 5-7 would look
like this:

<input
 type="text"
 :value="favoriteFood"
 @input="(event) => (favoriteFood = event.target.value)"
/>

Using v-model with various input types
The v-model directive automatically manipulates the correct property of an input,
depending on its type. For example, when used with text inputs (created using
<input type="text"> or <textarea>), v-model listens for input events and
updates the value property. When used with check boxes or radio buttons (created
using <input type="checkbox"> or <input type="radio">), v-model listens for
change events and updates the checked property. When used with <select> ele-
ments, v-model listens for change events and updates the value property.

5Svelte

Contents at a Glance
CHAPTER 1:	 Getting	Started	with Svelte . 423

CHAPTER 2: Building with Components . 437

CHAPTER 3: Designing Templates . 451

CHAPTER 4: Using Directives . 463

CHAPTER 5: Using the Component Lifecycle 471

CHAPTER 6: Advanced Svelte Reactivity . 483

CHAPTER 1 Getting Started with Svelte 423

Getting Started
with Svelte

". . . all work and no play makes Jack a dull boy. Skinny, but dull.”

—LL COOL J

Svelte is a front-end JavaScript compiler. In this chapter, I tell you what that
statement means, how to create your first application with Svelte, how to
get a handle on what makes Svelte tick, and how to see where it’s similar to

and different from other front-end libraries and frameworks.

What Makes Svelte Different?
Like ReactJS and Vue, Svelte can be used to create component-based JavaScript
web applications. Svelte is newer than ReactJS or Vue.js and has a smaller devel-
oper base than either. Because it’s smaller and simpler to learn and use (and per-
haps even faster), it has gained a lot of fans.

Chapter 1

IN THIS CHAPTER

 » Getting the skinny on Svelte

 » Scaffolding an app

 » Exploring the structure of a
Svelte app

424 BOOK 5 Svelte

The first thing to know is that Svelte doesn’t use a virtual DOM. Instead, Svelte
compiles your code into optimized JavaScript that makes updates to the DOM
imperatively.

The difference between declarative code and imperative code is discussed in
Chapter 1 of Book 3.

Svelte is a compiler. In the end, of course, every JavaScript framework is just an
abstraction for pure JavaScript and calls to the native DOM methods. The dif-
ference between how Svelte runs in the browser and how React and Vue run is
that Svelte’s compiled code isn’t abstracted at runtime. Instead, it’s just pure
JavaScript.

One result of Svelte’s lack of a virtual DOM is that the initial loading time of a
Svelte app may be shorter than React or Vue.js because there’s no library inter-
preting the deployed code. Another result is that Svelte may be faster because it
has no intermediary step between your code and the DOM, whereas React and Vue.
js both feature a virtual DOM.

Figure 1-1 shows the difference between how Svelte manipulates the DOM and
how React’s Virtual DOM works.

FIGURE 1-1:
Svelte-versus-

React rendering.

© John Wiley & Sons, Inc.

G
etting Started w

ith
Svelte

CHAPTER 1 Getting Started with Svelte 425

Building Your Scaffolding
Enough talk — let’s build something! The easiest way to get started with Svelte is
to use a prebuilt toolchain and an application template. As with other front-end
frameworks, we call this combination scaffolding because it gives you a frame on
which to build your app.

Although you have several different ways to scaffold a Svelte app, the current
most popular toolchain for developing Svelte apps is Vite.

If you’ve read Book 3 and Book 4, you may recognize Vite as the same tool you
used for scaffolding React and Vue apps.

Follow these steps to scaffold your first Svelte app:

1. Create a new project in VS Code, or just an empty folder in your existing
project.

2. Open VS Code’s integrated terminal.

Opening and using VS Code’s integrated terminal is covered in Chapter 1 of
Book 1.

3. Type the following command into the terminal:

npm create vite@latest my-svelte-app -- --template svelte

4. Change the working directory to your new Svelte app:

cd my-svelte-app

5. Install the dependencies for your app:

npm install

6. Start the development server:

npm run dev

Once you start the development server, go back to your browser and open https://
localhost:5173. You see the default starter app, which looks something like
Figure 1-2. Click the button a couple of times to make sure it’s working, and
you’re ready to go!

426 BOOK 5 Svelte

Getting the Svelte for VS Code Extension
Back in VS Code, look at the files and folders contained in the default Svelte tem-
plate. If you’ve read Books 3 and 4, many of these will be familiar to you. As with
other frameworks that have their own special syntax and file extensions, the next
thing to do is to install a VS Code extension to tell VS Code how to display the code
and to enable tool tips.

Follow these steps to install the Svelte for VS Code extension:

1. Expand the src folder in your Svelte project.

You see Svelte’s root component, which is named App.svelte.

2. Open App.svelte for editing.

VS Code suggests that you install the recommended extension for
.svelte files.

3. Click the button to show the recommended plugin, and you’ll see
information about the Svelte for VS Code extension, as shown in
Figure 1-3.

4. Click Install to get the plugin.

After the plugin installs, you may see an additional dialog box, asking whether
you want to enable a plugin for TypeScript support. There’s no harm in
enabling this plugin, but it’s not required at this time.

FIGURE 1-2:
The Vite + Svelte

starter app.

G
etting Started w

ith
Svelte

CHAPTER 1 Getting Started with Svelte 427

With Svelte for VS Code installed, you can return to viewing App.svelte and see
that syntax highlighting has now been enabled.

Exploring a Svelte App
The first step in figuring out how Svelte works is to open the index.html file into
which your app will be rendered. The default index.html file for the Vite template
is shown in Listing 1-1.

LISTING 1-1: An index.html File for a Svelte App

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="UTF-8"/>
 <link rel="icon" type="image/svg+xml" href="/vite.svg"/>
 <meta n ame="viewport" content="width=device-width,

initial-scale=1.0"/>
 <title>Vite + Svelte</title>
 </head>
 <body>
 <div id="app"></div>
 <script type="module" src="/src/main.js"></script>
 </body>
</html>

FIGURE 1-3:
Svelte for VS

Code adds Svelte
support to VS

Code.

428 BOOK 5 Svelte

The HTML file in Listing 1-1 contains all the parts you would expect from a single-
page app's single page. It has a <div> element with an id of app where the Svelte
app is loaded, and it has a <script> tag that loads a JavaScript file.

Let's move on to main.js. This is the JavaScript file that triggers the loading of
everything else. The code for main.js is shown in Listing 1-2.

LISTING 1-2: The main.js File for a Svelte App

import './app.css'
import App from './App.svelte'

const app = new App({
 target: document.getElementById('app')
})

export default app

The main.js file loads the app's root component, App.svelte, and creates
an instance of it, passing in a configuration object. The configuration object in
Listing 1-2 contains only a single property: target. The target property config-
ures where the component will be loaded into the HTML document.

The next step in figuring out how Svelte works, as you may have guessed by now,
is to look at App.svelte. Listing 1-3 shows the default App.svelte file created by
the Vite template.

LISTING 1-3: The Root Component

<script>
 import svelteLogo from './assets/svelte.svg'
 import Counter from './lib/Counter.svelte'
</script>

<main>
 <div>

G
etting Started w

ith
Svelte

CHAPTER 1 Getting Started with Svelte 429

 </div>
 <h1>Vite + Svelte</h1>

 <div class="card">
 <Counter/>
 </div>

 <p>
 Check out <a href="https://github.com/sveltejs/kit#readme"

target="_blank">SvelteKit, the official Svelte app
framework powered by Vite!

 </p>

 <p class="read-the-docs">
 Click on the Vite and Svelte logos to learn more
 </p>
</main>

<style>
 .logo {
 height: 6em;
 padding: 1.5em;
 will-change: filter;
 }
 .logo:hover {
 filter: drop-shadow(0 0 2em #646cffaa);
 }
 .logo.svelte:hover {
 filter: drop-shadow(0 0 2em #ff3e00aa);
 }
 .read-the-docs {
 color: #888;
 }
</style>

The component shown in Listing 1-3 is a static component: It contains no reactive
data. However, it does tell you quite a bit about the structure of a Svelte component.

At first glance, the structure of a Svelte component looks like that of a Vue com-
ponent. It has a <script> block containing your component’s imports and logic,
an HTML template, and a <style> block.

430 BOOK 5 Svelte

If you look more closely, you see that the <script> block imports a component
named Counter and that an instance of the Counter component is created and
used in the HTML with a <Counter> element. As someone coming to Svelte for
the first time, but having had experience with other JavaScript single-file app
libraries and components, you've probably guessed by now that the Counter com-
ponent contains all the complex logic and calls to Svelte reactivity methods that
make it possible to increment a number when a button is clicked. So, take a look
now at Counter.

The Vite Svelte template keeps custom components in a folder named lib (short
for library) by default. This is only a convention. If you feel more comfortable with
creating a folder called components for your components, that's fine, too.

Listing 1-4 shows the Counter component.

LISTING 1-4: Counter.svelte

<script>
 let count = 0;
 const increment = () => {
 count += 1;
 };
</script>

<button on:click={increment}>
 count is {count}
</button>

The component in Listing 1-4 is simple enough, and it should give you some more
clues about how Svelte works:

 » Variables you declare at the top level in the <script> block are automati-
cally reactive.

 » You can use JavaScript code inside the template code by surrounding it with
curly braces.

 » Event listeners are created by using on: followed by the event.

 » Event handlers are passed as JavaScript code to the event listener attributes.

You're well on your way to learning Svelte. Next, go a little deeper and try making
some changes to the default Svelte template app.

G
etting Started w

ith
Svelte

CHAPTER 1 Getting Started with Svelte 431

Playing with Svelte
Rather than launch directly into telling you all the syntax and rules of using
Svelte, in this section I tell you how to start building something (sort of) useful
with Svelte and see what new things you learn about it as you go along.

The app I show you how to build is a simple microblogging app — something like
Twitter, except with fewer users. You won’t connect your app to the web (yet), so
your Twitter imitator will have exactly one user. After meeting with the marketing
team, you decide to call the app Soliloquy.

In case you're not well-versed in English Renaissance drama, a soliloquy takes
place when you speak out loud to yourself. Hamlet's "To be or not to be" speech
is perhaps the most well-known dramatical soliloquy, followed by hundreds of
Disney princess songs.

Building the basic look-and-feel
With what you already know about Svelte, combined with some JavaScript know-
how from Book 1, you can get an extremely basic version of this app up and
running.

You start with the root component, App. Open App.svelte in VS Code and follow
these steps:

1. Delete the imports of the Counter component and the logo from the
<script> block, but leave the starting and ending <script> tags.

2. Leave the <main> element, but delete everything inside it.

Svelte doesn't require a <main> element, but it's a handy container for the rest
of the template code.

3. Delete the styles in the <style> block, but leave the starting and ending
<style> tags.

4. Create an <h1> element and give your app a title, and then put an <h2>
element under it with a description of the app:

<h1>Soliloquy</h1>

<h2>Social media without the sharing</h2>

432 BOOK 5 Svelte

5. Create an input element below the headers and give it a label:

<label>Talk to yourself: <input type="text"></label>

6. Make a button next to the input that you'll use for submitting your posts:

<button>Post It!</button>

Make sure your development server is running, or start it by entering npm run
dev in the terminal. When you open your browser, you should see something like
Figure 1-4.

Making reactive data
A logical next step in creating the microblogging app would be to make a couple of
test posts and display them below the input. To do that, you declare a variable in
the script and display its values in a <div>, as described in these steps:

1. Inside the <script>, declare an array and initialize it with a couple of
elements:

<script>
 let posts = ['first post!','note to self','test'];

</script>

FIGURE 1-4:
The start of

your unsocial
media app.

G
etting Started w

ith
Svelte

CHAPTER 1 Getting Started with Svelte 433

2. Create a <div> element below the <button>.

At this point, I could tell you how to make loops in Svelte, but it might be
interesting to just see what happens if you try rendering the posts array
directly, like this:

<div>{posts}</div>

Figure 1-5 shows the result.

Clearly, rendering a comma-separated list isn't what you want. With a little bit
of JavaScript, you could take this list and turn it into three HTML elements, but
there's an easier way.

In Svelte, you can loop over the elements in an array or object by using an each
block. An each block starts with the <#each> tag and ends with the </each> tag.
In the starting tag, you can specify the object or array to loop over and the alias to
use inside the block. So, to loop over the posts array, you can write the following
block:

{#each posts as post}
 <div>{post}</div>
{/each}

FIGURE 1-5:
Rendering an

array in a Svelte
template.

434 BOOK 5 Svelte

With this block written, your App component should now match Listing 1-5, and
it should look like Figure 1-6 in the browser.

LISTING 1-5: Rendering a List of Posts

<script>
let posts = ['first post!','note to self','test'];
</script>

<main>
 <h1>Soliloquy</h1>
 <h2>Social media without the sharing</h2>
 <label>Talk to yourself: <input type="text"></label>
 <button>Post it!</button>
 <div>
 {#each posts as post}
 <div>{post}</div>
 {/each}
 </div>
</main>

<style>

</style>

FIGURE 1-6:
Rendering a
list of posts.

G
etting Started w

ith
Svelte

CHAPTER 1 Getting Started with Svelte 435

Handling the event
The last thing to do in this first iteration of your microblogging app is to make
clicking the button add an element to the array. To do that, you first need get the
new post from the text input when the button is clicked. Follow these steps to
make that happen:

1. Add a new variable to the beginning of the <script> block called
newPost:

let newPost = '';

2. Bind the value of the <input> element to the newPost variable by using
Svelte's bind attribute:

<input bind:value={newPost} type="text"/>

3. Finally, add the on:click attribute to the <button> element and tell it to
call a function we'll call addPost() when it's clicked (note that there's no
need to specifically pass newPost to the function):

<button on:click={addPost}>Post it!</button>

4. Clear out the dummy elements from the posts array so that you can start
with a blank slate:

let posts = [];

With that chunk written, the last step is to to write the addPost() function.

Svelte's reactivity isn't "deep," like Vue's — if you simply push a new element
onto an existing array, it doesn't update the DOM. So you need to update the posts
array by replacing it with a new array. The following function will do the trick:

function addPost(){
 posts = [...posts,newPost];
}

And, that's all there is to it. Open the app in your browser and start posting. You
should see that each post you add gets added to the bottom of the list, as shown in
Figure 1-7. You’ll want to deal with some styling and positioning issues, and you
certainly need to add functionality, but this is a pretty good start!

436 BOOK 5 Svelte

FIGURE 1-7:
The first iteration

of Soliloquy:
social media
without the

social aspect.

CHAPTER 2 Building with Components 437

Building with
Components

“‘Think simple,’ as my old master used to say — meaning reduce the whole of
its parts into the simplest terms, getting back to first principles.”

—FRANK LLOYD WRIGHT

One of the goals of Svelte is to require developers to write less code, and the
structure of Svelte components reflects this aim. In this chapter, you’ll
learn how to write Svelte components, how to add style to components,

and how to combine components.

Writing Lean Components
Programmers call the code you must write to make the code you want to write work
boilerplate or plumbing. Compared to React and Vue, Svelte components require
very little plumbing. For example, consider the following React class component:

import { Component } from 'react';

class ReactCounter extends Component {

Chapter 2

IN THIS CHAPTER

 » Making new components

 » Exploring the parts of a component

 » Adding style

438 BOOK 5 Svelte

 constructor(props) {
 super(props);
 this.state = { count: 0 };
 }
 render() {
 return (
 <div>
 <p>Count: {this.state.count}</p>
 <bu tton onClick={() => this.setState({ count: this.

state.count + 1 })}>
 Increment
 </button>
 </div>
);
 }
}

export default ReactCounter;

This example of the simplest possible React Counter app written using a class
component contains 438 characters. Using a function component can dramatically
reduce the character count, as in the following snippet:

import {useState} from 'react';

const ReactFunctionCounter = () => {
 const [count, setCount] = useState(0);
 return (
 <div>
 <p>Count: {count}</p>
 <but ton onClick={() => setCount(count + 1)}>Increment

</button>
 </div>
);
}

export default ReactFunctionCounter;

The function component cuts the character count to 272. But there’s still code in
there that you have to write that can be considered boilerplate. Let’s see how to
write this same component using Svelte, as shown in Listing 2-1.

Building w
ith

Com
ponents

CHAPTER 2 Building with Components 439

LISTING 2-1: A Simple Counter Component Written in Svelte

<script>
 let count = 0;
 function increment() {
 count += 1;
 }
</script>
<p>Count: {count}</p>
<button on:click={increment}>Increment</button>

The Svelte Counter weighs in at only 153 characters. If fewer lines of code means
fewer opportunities for bugs to creep into your code, Svelte is clearly the winner
in helping you write better code by having to write less of it.

Identifying What’s in a Component
A Svelte component can be as simple as just some HTML code. For example, the
following line, when saved with a .svelte extension and used in a Svelte app, is
a perfectly valid component:

<p>hola, bo njour, guten tag, salve, nı̌n hǎo, asalaam alaikum,
konnichiwa, hello world!</p>

The template portion of a Svelte component is written at the top level of a .svelte
file, and it can be any number of HTML elements, or even just plain text.

Of course, a static component isn’t all that interesting. To make components that
do something, you need to write some JavaScript.

Scripting in Svelte components
Most of the JavaScript in a Svelte component is written in a <script> element.
Generally, this <script> element is placed at the beginning of the file, before the
template code.

Code that you write in the <script> block is mostly just plain JavaScript. This
code gets compiled by Svelte before you build your app or run it in development
mode. Because Svelte is a compiler, it can add functionality and change the default

440 BOOK 5 Svelte

behavior of the code you write to make writing code simpler. Svelte’s <script>
block adds a few additional rules to JavaScript to enable reactivity:

 » The export keyword creates a prop.

 » Assignments trigger reactivity.

 » The $: command makes a statement reactive.

The following sections examine each of these rules in detail.

Exporting and using props
A prop of a component works like a parameter of a function. Props in Svelte are
the data that an instance of a component can receive when it’s used by another
component.

Defining props
To create a prop, export a variable, function, constant, or class from a component.
For example, Listing 2-2 shows a component that defines a prop and uses the
value passed to it.

LISTING 2-2: Defining a Prop

<script>
 export let musicStyle = undefined;
</script>

<p>Here is some {musicStyle}.</p>

The value you assign to a prop when you define it is the default value. If a con-
sumer of this class doesn’t pass a prop, the default value will be used. If you don’t
specify a default value, the prop will automatically have a value of undefined and
Svelte will output a warning message in the console. To get rid of this warning
message, you can just initialize the exported prop with a value of undefined.

Passing props
Props in Svelte are passed using attributes. Listing 2-3 shows a component that
imports the component from Listing 2-2 and creates three instances of it, passing
a different value for the prop each time.

Building w
ith

Com
ponents

CHAPTER 2 Building with Components 441

LISTING 2-3: Passing a Prop

<script>
 import MusicPlayer from './MusicPlayer.svelte';
</script>

<MusicPlayer musicStyle="rock"/>
<MusicPlayer musicStyle="jazz"/>
<MusicPlayer musicStyle="hip hop"/>

You can pass any type of data to a component using props. When you pass a string,
enclose it in quotes (single, double, or backticks). To pass another type of data or
the result of an expression, enclose it in curly braces.

Listing 2-4 shows a component that exports several props, and Listing 2-5 shows
a component that uses it.

LISTING 2-4: Defining Multiple Props

<script>
 export let blogTitle = "Your title goes here.";
 export let blogBody = "Your post goes here.";
 export let published = false;
</script>

<article>
 {#if published}
 <h1>{blogTitle}</h1>
 <p>{blogBody}</p>
 {:else }
 <h1>This post is not yet live</h1>
 {/if}
</article>

LISTING 2-5: Passing Multiple Props

<script>
 import BlogPost from './BlogPost.svelte';
</script>

<BlogPost
 blogTitle = "Sandwiches are Great"
 blogBody = "I just had the best sandwich."
 published = {true}/>

442 BOOK 5 Svelte

Figure 2-1 shows the preceding components rendered in a browser.

Triggering reactivity with assignments
A <script> block runs only once during the life of a component instance — when
it’s mounted. During its run, it creates reactive variables and statements, adds
event listeners, and binds events and data to the component instance.

After the initial mounting and rendering of the component instance, events may
cause functions to run that change values. Any assignment operation that modi-
fies a variable declared in the component triggers rerendering.

You can think of the assignment operators (discussed in Chapter 4 of Book 1) as
the magic key to reactivity in Svelte.

The assignment operators are = plus the combination assignment operators,
including +=, -=, *=, /=, and %=.

Recognizing that array methods
don’t trigger updates
One interesting effect of the fact that the assignment operators trigger reactivity
is that array methods that change an array without using the assignment opera-
tors (such as pop() and push()) don’t trigger rerendering.

FIGURE 2-1:
Rendering

a component
with props.

Building w
ith

Com
ponents

CHAPTER 2 Building with Components 443

Listing 2-6 demonstrates a version of the social media app you create in Chapter 1
of Book 5 that uses the push() method instead of the assignment operator to add
new posts to the posts array.

LISTING 2-6: Using Array Methods Doesn’t Trigger Rerendering

<script>
let posts = [];
let newPost = '';

function addPost(){
 //posts = [...posts,newPost];
 posts.push(newPost);
 console.log(posts);
}

</script>

<main>
 <h1>Soliloquy</h1>
 <h2>Social media without the sharing</h2>
 <label>T alk to yourself: <input bind:value={newPost}

type="text"></label>
 <button on:click={addPost}>Post it!</button>
 <div>
 {#each posts as post}
 <div>{post}</div>
 {/each}
 </div>
</main>

Figure 2-2 shows the result of running the component in Listing 2-6 and adding
a new post. Notice that the new post is added to the array (as you can see in the
console log message), but the web browser isn’t updated.

If you need to use an array method without using an assignment operator, you can
trick Svelte into updating by following the use of the method with an assignment
of the array to itself, as shown in Listing 2-7.

444 BOOK 5 Svelte

LISTING 2-7: Assign Arrays to Themselves to Trigger Reactivity

<script>
let posts = [];
let newPost = '';

function addPost(){
 //posts = [...posts,newPost];
 posts.push(newPost);
 console.log(posts);
 posts = posts;
}

</script>

<main>
 <h1>Soliloquy</h1>
 <h2>Social media without the sharing</h2>
 <label>T alk to yourself: <input bind:value={newPost}

type="text"></label>
 <button on:click={addPost}>Post it!</button>
 <div>

FIGURE 2-2:
Array methods

don’t trigger
reactivity.

Building w
ith

Com
ponents

CHAPTER 2 Building with Components 445

 {#each posts as post}
 <div>{post}</div>
 {/each}
 </div>
</main>

Creating reactive statements
Because the <script> block runs only once, any statements that aren’t part of an
event handler function will be run only once. Sometimes, however, it’s useful to
have a reactive statement that updates when the variables it uses change.

To create a reactive statement in Svelte, preface the statement with a dollar sign
followed by a colon ($:). For example, the following statement updates whenever
the value of newPost changes:

$:let charactersRemaining = 34 - newPost.length;

Listing 2-8 shows how to use this reactive statement to calculate and display the
number of additional characters the user can type into an input field.

LISTING 2-8: Using a Reactive Statement

<script>
let posts = [];
let newPost = '';
let charactersLeft;
let charactersLeftStyle;
let error = '';

$:charactersLeft = 34 - newPost.length;

$:if (charactersLeft < 0) {
 charactersLeftStyle = 'color: red';
} else {
 charactersLeftStyle = 'color: black';
}

function addPost(){
 if (charactersLeft < 0){
 error = 'You have exceeded the maximum number of characters.'
 } else {

(continued)

446 BOOK 5 Svelte

 posts = [...posts, newPost];
 newPost = '';
 }
}

</script>

<main>
 <h1>Soliloquy</h1>
 <h2>Social media without the sharing</h2>
 <label>Talk to yourself:
 <input bind:value={newPost} type="text">
 </label>

 {charactersLeft}

 <p>{error}</p>
 <button on:click={addPost}>Post it!</button>
 <div>
 {#each posts as post}
 <div>{post}</div>
 {/each}
 </div>
</main>

Figure 2-3 shows our app in action now. The color of the word count changes
to red when the maximum character count is exceeded, and a message displays
below the input whenever the user attempts to submit a message that exceeds the
maximum count.

Using <script> data and functions
Functions and variables created in the <script> tag are automatically available
to use outside of the <script> block. To use JavaScript defined in the <script>
block in the rest of your component, surround variable names or expressions with
single curly braces.

LISTING 2-8: (continued)

Building w
ith

Com
ponents

CHAPTER 2 Building with Components 447

Adding Style to a Component
The third section of a Svelte component is the style block. To add styles to your
component’s output, create a <style> element at the top level of the component
and write CSS rules in it. Just as the <script> block adds some additional func-
tionality to ordinary JavaScript, the <style> block in a component has some spe-
cial powers that are enabled when the component is compiled.

The styles you write in the <style> block are applied only to the template code in
that component. If you want to create a global style, you can do so by using the
:global modifier. For example, to specify that the error class should be red for
every component, you can use the following style:

<style>
 :global(.error) {
 color: red;
 }
</style>

The global modifier can also be applied to just part of a CSS selector. For exam-
ple, to specify that every element with the error class that’s used inside a <div>
defined by the current element should be red, you can use the following style:

<style>
 div :global(.error) {

FIGURE 2-3:
Using a reactive

statement to
display an error

message.

448 BOOK 5 Svelte

 color: red;
 }
</style>

With this rule defined, you can extract the error component from the microblog-
ging app into a separate component and control its style from the App component.
This same error class can also be used within the App component to style the char-
acter counter. The code for Soliloquy is shown in Listing 2-9.

LISTING 2-9: Creating a Global Style Within a Scoped Style

<script>
 import ErrorMessage from './lib/ErrorMessage.svelte';

 let posts = [];
 let newPost = '';
 let charactersLeft;
 let charactersLeftClass;
 let error = '';

 $: charactersLeft = 34 - newPost.length;

 $: if (charactersLeft < 0) {
 charactersLeftClass = 'error';
 } else {
 charactersLeftClass = '';
 error = '';
 }

 function addPost() {
 if (charactersLeft < 0) {
 error = 'You have exceeded the maximum number of

characters.';
 } else {
 posts = [...posts, newPost];
 newPost = '';
 }
 }
</script>

<main>
 <h1>Soliloquy</h1>
 <h2>Social media without the sharing</h2>
 <div>
 <label>Talk to yourself:

Building w
ith

Com
ponents

CHAPTER 2 Building with Components 449

 <input bind:value={newPost} type="text"/>
 </label>

 {charactersLeft}

 </div>
 <div><ErrorMessage message={error} /></div>
 <button on:click={addPost}>Post it!</button>
 <div>
 {#each posts as post}
 <div>{post}</div>
 {/each}
 </div>
</main>

<style>
 div :global(.error) {
 color: red;
 }
</style>

Our app is starting to look pretty good. Figure 2-4 shows the latest version of
Soliloquy.

FIGURE 2-4:
The Soliloquy

app, with
character

counting and an
error message.

CHAPTER 3 Designing Templates 451

Designing Templates
“Language exerts hidden power, like the moon on the tides.”

—RITA MAE BROWN

At first glance, Svelte template code is just HTML. When you investigate it
further, however, Svelte provides a wealth of additional features and func-
tions you can use. In this chapter, you’ll learn the syntax and commands

that help to create dynamic user interfaces in Svelte.

Elements Are the Building Blocks
As in React and Vue, Svelte templates are made up of built-in and custom ele-
ments that create instances of components.

Using the built-in elements
The built-in components match all of HTML’s elements, and the attributes that
are available for built-in components also match HTML’s. If you know how to
write valid HTML5 code, you can write a static Svelte template.

Chapter 3

IN THIS CHAPTER

 » Using elements

 » Commenting your template

 » Rendering conditionally

 » Looping

 » Using text expressions

 » Inserting into slots

452 BOOK 5 Svelte

No adjustments necessary
When Svelte compiles your components, it generates JavaScript code from your
HTML, but there’s nothing you need to do differently when you write your code
because of this. You can even use HTML syntax that contains words that are
reserved in JavaScript. For example, to specify an HTML class attribute, you can
just use a class attribute in your Svelte component’s template.

Some attributes don’t require quotes
As in HTML, you can leave the quotes off attribute values if they don’t contain
spaces or any of the following characters: " ' ` = < >. This may seem strange at
first, and if you’re uncomfortable not enclosing attribute values in quotes, there’s
no benefit to leaving them out except that you save yourself a little typing.

Using custom elements
A .svelte file defines one component. When compiled by Svelte, each compo-
nent is exported using a default export. You can import components into other
components and then create instances of them by using the name in the import
statement as the name of an element.

By convention, Svelte components are named using UpperCamelCase, and they
should be imported using the same name as the .svelte file they’re saved in.
Listing 3-1 shows how to import a component and create instances of it.

LISTING 3-1: Using a Custom Element

<script>
 import CatPicture from './lib/CatPicture.svelte';
</script>

<h1>Here are some cat pictures</h1>
<table class="cat-pictures-table">
 <tr>
 <td><CatPicture/></td>
 <td><CatPicture/></td>
 <td><CatPicture/></td>
 </tr>
 <tr>
 <td><CatPicture/></td>
 <td><CatPicture/></td>
 <td><CatPicture/></td>

D
esigning Tem

plates

CHAPTER 3 Designing Templates 453

 </tr>
</table>

Documenting Svelte with Comments
To write code comments in your template, you can use HTML comments, as
shown in Listing 3-2. Inside your <script> block, use JavaScript comments.
Inside the <style> block, use CSS comments (which are the same as JavaScript
block comments).

LISTING 3-2: Commenting Your Template

<script>
 import ErrorMessage from './lib/ErrorMessage.svelte';
 let posts = []; // array of posts
 let newPost = ''; // new post text
 let charactersLeft; // number of characters left
 let charactersLeftClass; // class for characters left
 let error = ''; // error message

 // reactive statement to calculate remaining characters
 $: charactersLeft = 34 - newPost.length;

 // reactive statement to set the class for the remaining

characters
 $: if (charactersLeft < 0) {
 charactersLeftClass = 'error';
 } else {
 charactersLeftClass = ''; // clear the class
 error = ''; // clear the error
 }

 /* event handler for the form */
 function addPost() {
 if (charactersLeft < 0) {
 error = 'You have exceeded the maximum number of

characters.';
 } else {
 posts = [...posts, newPost];
 newPost = '';
 }

(continued)

454 BOOK 5 Svelte

 }
</script>

<main>
 <h1>Soliloquy</h1>
 <h2>Anti-social media</h2>
 <!-- note: do we need a better tagline? -->
 <div>
 <label>Talk to yourself:
 <input bind:value={newPost} type="text"/>
 </label>
 <!-- display characters remaining -->

 {charactersLeft}

 </div>
 <!-- display error message -->
 <div><ErrorMessage message={error}/></div>
 <button on:click={addPost}>Post it!</button>
 <!-- display posts-->
 <div>
 {#each posts as post}
 <div>{post}</div>
 {/each}
 </div>
</main>

<style>
 /* Style error messages nested in this component's divs */
 div :global(.error) {
 color: red;
 }
</style>

Choosing a Path
Svelte’s {#if}, {:else}, and {:else if} blocks can be used to conditionally ren-
der template code. To use conditional blocks, start with #if inside curly braces,
followed by a condition and end the conditional block with {/if}. Inside a condi-
tional block, you can have as many {:else if} conditions as you need (or none,
of course) and zero or one {:else} blocks.

LISTING 3-2: (continued)

D
esigning Tem

plates

CHAPTER 3 Designing Templates 455

Listing 3-3 shows how to use the value of a variable to determine which elements
to render.

LISTING 3-3: Conditionally Rendering Elements

<script>
 let frameworks = ['React','Vue','Svelte'];
 let frameworkChoice = '';
</script>
<label for="framework">Choose a framework:</label>
<select id="framework" bind:value={frameworkChoice}>
 <option value="">--Please choose an option--</option>
 {#each frameworks as framework}
 <option>{framework}</option>
 {/each}
</select>
{#if frameworkChoice==='Svelte'}
 <p>That's a fine choice.</p>
 {:else if frameworkChoice==='React'}
 <p>That's a splendid choice.</p>
 {:else if frameworkChoice==='Vue'}
 <p>That's a great choice.</p>
 {:else}
 <p>Please choose a framework.</p>
{/if}

Inside expressions (including expressions that set attribute values), you can use
JavaScript’s ternary operator or the logical && operator to set values conditionally,
as shown in Listing 3-4.

LISTING 3-4: Conditional Rendering Inside in Expressions

<script>
 let themes = ['light', 'dark'];
 let themeChoice = '';
</script>

<div class={themeChoice === 'dark' ? 'dark-mode' : ''}>
 <label for="theme">Choose a theme:</label>
 <select id="theme" bind:value={themeChoice}>
 <option value="">--Please choose an option--</option>
 {#each themes as theme}

(continued)

456 BOOK 5 Svelte

 <option>{theme}</option>
 {/each}
 </select>
</div>

<style>
 div.dark-mode {
 background-color: black;
 color: white;
 }
</style>

Creating Loops
To create loops in Svelte templates, use {#each} blocks. The {#each} block starts
with #each followed by an expression, followed by the as keyword, followed by an
alias for each item in the loop.

You can loop over arrays or any iterable — including objects that have a length
property and strings. Listings 3-3 and Listing 3-4 both show examples of using
{#each} to loop over an array to create a list of options for a <select> element.
Listing 3-5 shows how to loop over an array of objects to create a list of links.

LISTING 3-5: Making a List from an Array of Objects

<script>
 let frameworks = [
 {
 name: 'React',
 description: 'A JavaScript library for building user

interfaces.',
 url: 'https://reactjs.org/',
 },
 {
 name: 'Vue',
 description: 'The Progressive JavaScript Framework.',
 url: 'https://vuejs.org/',
 },
 {
 name: 'Svelte',
 description: 'Cybernetically enhanced web apps.',

LISTING 3-4: (continued)

D
esigning Tem

plates

CHAPTER 3 Designing Templates 457

 url: 'https://svelte.dev/',
 },
];
</script>

<h1>My ever-growing resume</h1>
<h2>JavaScript frameworks I know</h2>
{#each frameworks as framework}
 <div>
 <h3>{framework.name}</h3>
 <p>{framework.description}</p>
 </div>
{/each}

If the array (or array-like structure) you’re using will change, you should include
a unique key attribute so that Svelte can use this key to apply changes to items
correctly. The key expression is written in parentheses after the item alias and
must be unique for each item in the list.

Listing 3-6 updates the component from Listing 3-5 to use a key.

LISTING 3-6: Passing a Key Attribute

<script>
 let frameworks = [
 {
 id: 1,
 name: 'React',
 description: 'A JavaScript library for building user

interfaces.',
 url: 'https://reactjs.org/',
 },
 {
 id: 2,
 name: 'Vue',
 description: 'The Progressive JavaScript Framework.',
 url: 'https://vuejs.org/',
 },
 {
 id: 3,
 name: 'Svelte',
 description: 'Cybernetically enhanced web apps.',

(continued)

458 BOOK 5 Svelte

 url: 'https://svelte.dev/',
 },
];
</script>

<h1>My ever-growing resume</h1>
<h2>JavaScript frameworks I know</h2>
{#each frameworks as framework (framework.id)}
 <div>
 <h3>{framework.name}</h3>
 <p>{framework.description}</p>
 </div>
{/each}

Writing Text Expressions
Curly braces in the template part of a component create a text expression. You can
use any valid JavaScript expression inside these curly braces and the result will be
rendered as text. This also means that any HTML that’s returned by a text expres-
sion will have its < and > characters escaped (along with other special characters),
which may not be the effect you intend. For example, Listing 3-7 shows a text
expression that evaluates to a string containing HTML.

LISTING 3-7: Text Expressions Escape HTML

<script>
 let error = true;
</script>

<div>
 {error?"An error has occurred":''}
</div>

Figure 3-1 shows the result of rendering the component in Listing 3-7.

To render HTML that appears inside text, you can use @html, as shown in
Listing 3-8.

LISTING 3-6: (continued)

D
esigning Tem

plates

CHAPTER 3 Designing Templates 459

LISTING 3-8: Using @html to Render HTML in Text Expressions

<script>
 let error = true;
</script>

{#if error}
 {@html "An error has occurred."}
{/if}

Of course, Listing 3-8 can more easily be written without the text expression.
Using @html is sometimes necessary when content coming from outside, such as
an input element, may contain HTML that should be rendered.

Be careful when using @html to inject HTML into a text expression. If you don’t
properly clean up the code before rendering it, you could expose your app to a
cross-site scripting hack (also known as XSS).

Composing with Slots
Until now, all the Svelte custom components I’ve described have been empty ele-
ments that are configured using attributes. To create custom components that
can have children, you need to tell the component where to render the children.
In React, you use props.children to render the children of a component. In Vue,
you use <slot>. Slots in Svelte are modeled after slots in Vue.js.

FIGURE 3-1:
HTML in text will

be escaped.

460 BOOK 5 Svelte

Listing 3-9 shows how to write a component that renders its children.

LISTING 3-9: Using a Slot to Render Children

<!-- PageTitle.svelte -->
<h1>
 <slot>
 If you see this text, no content was provided.
 </slot>
</h1>

To use a slot, write a custom element containing a slot using beginning and end-
ing tags, and use elements and content between them, as shown in Listing 3-10.

LISTING 3-10: Passing Content to a Slot

<script>
 import PageTitle from './lib/PageTitle.svelte';
</script>

<PageTitle>How to Use Slots in Svelte</PageTitle>

To write a component containing multiple slots, you can give slots names using
the name attribute of <slot>. To specify that content should be rendered in a
named slot, wrap the content in an element and give the wrapper element a slot
attribute, as shown in Listing 3-11.

LISTING 3-11: Targeting Content to a Named Slot

<script>
 import BlogPost from './lib/BlogPost.svelte';
</script>

<BlogPost>
 <div slot="header">This is the Header</div>

 Here's the body of the blog post

 <div slot="footer">Copyright, All rights reserved, etc.</div>
</BlogPost>

D
esigning Tem

plates

CHAPTER 3 Designing Templates 461

Listing 3-12 shows the BlogPost component that’s used by Listing 3-11.

LISTING 3-12: Defining Named Slots

<article>
 <slot name="header">This will be the header text.</slot>
 <slot/>
 <slot name="footer">Copyright info here.</slot>
</article>

CHAPTER 4 Using Directives 463

Using Directives
“Dreaming or awake, we perceive only events that have meaning to us.”

—JANE ROBERTS

Directives are special attributes that are used by Svelte to bind data, bind
events, animate elements, and more. In this chapter, you’ll learn about
directives and how to use them to make things happen in your component.

Listening for Events with on:
The on: directive can be used with elements to listen for DOM events and to assign
JavaScript functions to handle those events. The basic syntax of the on: direc-
tive is

on:eventname={handler}

The event name is the name of any DOM event, such as click, change, or submit.
The handler is the name of a function or an arrow function.

Chapter 4

IN THIS CHAPTER

 » Listening for and handling events

 » Forwarding events

 » Binding attributes

 » Creating transitions

464 BOOK 5 Svelte

Basic event handling
Any function defined at the top level of your <script> block can be accessed using
:on. Listing 4-1 shows an example of listening for the semicolon key and display-
ing a message when it’s pressed.

LISTING 4-1: Listening for a Key Event

<script>
 function alertMe() {
 alert(
 "Do not use semicolons. All they do is show you've been to

college. - Kurt Vonnegut"
);
 }
</script>

<textarea
 on:keypress={(e) => {
 if (e.key === ';') {
 alertMe();
 }
 }}
/>

Attaching modifiers to event listeners
Svelte has several modifiers that can be passed to the on: directive to modify how
the event is handled. To attach modifiers to event listeners, use a vertical bar (|)
after the name of the event. These are the available modifiers:

 » preventDefault: Calls event.preventDefault() before running the
event handler

 » stopPropagation: Calls event.stopPropagation() to prevent the event
from bubbling up to the parent element

 » passive: Improves scrolling on touch devices; usually unnecessary because
Svelte adds it for you when needed

 » nonpassive: Sets passive to false to prevent Svelte from setting it to true

 » capture: Fires the event handler during event capture (as it propagates down
from the parent element)

U
sing D

irectives

CHAPTER 4 Using Directives 465

 » once: Removes the event handler after the first time it runs

 » self: Triggers the event handler only if the event.target value is the
element the on: directive is set on

 » trusted: Handles the event only if it’s triggered by user action

You can use multiple modifiers by chaining them together with |. For example,
to listen for a submit event, prevent the default action, and run the event handler
only when the event is a result of a user action, you can use the following <form>
element and on: directive:

<form on:submit|preventDefault|trusted = {handleSubmit}>

 // your form goes here
</form>

Forwarding events
Sometimes it’s useful to be able to handle events that happen in a child element
inside the parent element. To do this, you must forward the event from the child.
To forward an event, use the :on directive with just an event and no handler
function.

Listing 4-2 shows a component containing a <button> element that forwards its
click events.

LISTING 4-2: Forwarding Events

// MyButton.svelte

<script>
 export let value = 0;
</script>

<button on:click {value}>Click Me</button>

In the parent of a component with a forwarded event, you pass an event handler to
be used to respond to the forwarded event, as shown in Listing 4-3.

466 BOOK 5 Svelte

LISTING 4-3: Handling a Forwarded Event

<script setup>
 import MyButton from './MyButton.svelte';
 let message = '';
 let buttonArray = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
 function handleClick(e) {
 message = `You clicked the ${e.target.value} button`;
 }
</script>

{#each buttonArray as button}
 <MyButton value={button} on:click={handleClick}/>
{/each}
<p>{message}</p>

Handling multiple events
To handle multiple events on the same element, or to have the same event be
handled by different event handlers, add additional on: directives. For example,
to validate and log the value of an <input> as it changes, you could use the fol-
lowing line:

<input on:change = {validateInput} on:change = {(e)=>console.
log(e.target.value)} >

Creating Two-Way Bindings with :bind
The :bind directive creates a two-way bind between an attribute and reactive data.
Two-way bindings are most often used with form elements (such as <input>,
<textarea>, and <select>).

When you use a :bind directive, it automatically creates the event listener and the
event handler function needed to update data. Listing 4-4 shows how to bind a
text input field to data.

LISTING 4-4: Binding an Input to Data

<script>
 let message = '';

U
sing D

irectives

CHAPTER 4 Using Directives 467

</script>

<input bind:value={message}/>
<p>{message}</p>

As you type into the input in the component from Listing 4-4, the message vari-
able is updated and the paragraph below the <input> displays what you’ve typed.

Recognizing that number inputs create
numbers
Normally in a web browser, every input element creates a string. Even the value
of a number input will still be a string when you use it, and you must specifically
convert it to the number data type to be able to do numeric operations with it.

Svelte is smarter than the DOM, though, and if you specify that an input is either
a number input or a numeric slider (created using type="range"), Svelte auto-
matically converts it to a number for you and updates the bound state data with
the number.

Binding select inputs
To bind a <select> element, bind its value attribute. If the <option> elements
between <select> and </select> have value attributes, the selected option’s
value will be used to update the reactive variable. If the <option> elements have
no value attributes, the content (the text between the start and end tags) of the
<option> will be used as the value. It’s common to use :bind with #each to create
a list of options from an array and bind it to reactive data, as shown in Listing 4-5.

LISTING 4-5: Binding a Select Input

<script>
 let funActivities = ['swimming', 'hiking', 'skiing', 'biking',

'camping'];
 let favoriteActivity = 'nothing';
</script>

<label for="funActivities">Choose your favorite activity:</label>
<select id="funActivities" bind:value={favoriteActivity}>
 {#each funActivities as activity}

(continued)

468 BOOK 5 Svelte

 <option value={activity}>{activity}</option>
 {/each}
</select>
<p>Your favorite activity is {favoriteActivity}.</p>

Using Transition Animations
When elements are added and removed from the DOM, there’s normally very little
fanfare. The element pops into existence, or it just disappears. Though quite utili-
tarian, this is rarely how things appear and disappear in real life, and so it creates
a less-than-satisfying user experience.

Creating your first transition
By using the transition directive, you can cause animations to happen that transi-
tion elements into the browser and out of it. Follow these steps to create and see
a transition:

1. Make a new file named TransitionTest.svelte in the lib directory
inside a Svelte project.

2. Enter the following code into your new component:

<script>
 import { fade } from 'svelte/transition';
 let visible = true;
</script>

<button on:click={() => (visible = !visible)}> Toggle
</button>

{#if visible}
 <div transition:fade>
 <h1>Transition Test</h1>
 <p>This is a test of the transition directive.</p>
 </div>

{/if}

3. Import the TransitionTest component into App.svelte.

LISTING 4-5: (continued)

U
sing D

irectives

CHAPTER 4 Using Directives 469

4. Use a <TransitionTest /> element in App.svelte.

5. Start up the development server (npm run dev) and go to your browser to
start the fun!

In your browser, you see a screen like the one shown in Figure 4-1, with a button
followed by the text that the transition is applied to.

Try clicking the button several times. You see that the content fades out the first
time you click and then fades back in when you click again. You could do this all
day, but you have other transitions to try out. In addition to the Fade transition,
Svelte contains the following transitions:

 » Blur

 » Fly

 » Draw

 » Slide

 » Scale

 » Crossfade

There’s no way for me to demonstrate any of these transitions in a printed book,
so I trust that if you’re curious about them, you can try them out yourself. All you
need to do to test out various transitions is to import the transition you want to
use and change the value after the transition directive.

FIGURE 4-1:
Testing the

transition
directive.

470 BOOK 5 Svelte

Passing arguments to transitions
Svelte’s built-in transitions can take several parameters. To pass values to these
transitions, specify a value for the transition and pass an object literal that sets
the values. For example, to specify how long the transition lasts (in milliseconds),
you can set the duration parameter, like this:

<div transition:fade={{duration:2000}}>

To set the duration and the length of time the transition waits before it starts, you
can use duration and delay, like this:

<div transition:fade={{duration:2000,delay:1000}}>

If you want to learn how to use each of the transitions, the best way is to go
directly to the source. Look in node_modules/svelte/transition and you’ll see a
file named index.ts. Open this file and you’ll see each of the transition functions,
what arguments they can take, and how they do their thing.

Creating unidirectional transitions
To create transitions that happen only when an element enters or leaves the
screen, you can use the :in and :out directives. With :in and :out, you can spec-
ify only one transition, or you can have different transitions for entering and leav-
ing. For example, Listing 4-6 uses a fade animation when the element leaves and
the scale transition when the element enters.

LISTING 4-6: Using Different Transitions for Entering and Leaving

<script>
 import { fade, scale } from 'svelte/transition';
 let visible = true;
</script>

<button on:click={() => (visible = !visible)}>Toggle</button>

{#if visible}
 <div out:fade in:scale>
 <h1>Transition Test</h1>
 <p>This is a test of the in and out directives.</p>
 </div>
{/if}

CHAPTER 5 Using the Component Lifecycle 471

Using the Component
Lifecycle

“Nature is a machine. The family is a machine. The life cycle is like a
machine.”

—RAY DALIO

In this chapter, I get into some of the more advanced features of Svelte, includ-
ing using component lifecycle methods and running asynchronous code from
within Svelte components.

The Svelte Lifecycle
Svelte’s lifecycle starts with mounting and ends with destroying.

Chapter 5

IN THIS CHAPTER

 » Listening for Svelte’s lifecycle events
(or just listening for lifecycle events)

 » Overriding Svelte’s lifecycle methods

 » Making HTTP Requests with fetch()

 » Running asynchronous code

472 BOOK 5 Svelte

Mounting
As with the other frameworks I’ve described, mounting starts with the creation
of an instance of the component and is complete when the component is active in
the DOM. Mounting happens only once in the lifecycle of a component instance.

Svelte provides a method called onMount() that you can use to call a function when
a component instance mounts. The onMount() function takes a callback function
as its argument, and this callback is run as soon as the component instance has
finished mounting.

If a function is returned from onMount(), it’s called when the component is
unmounted. This function can be used to clean up after any event listeners or
timers that were set when onMount() ran.

Listing 5-1 shows an example of using onMount() to start a clock and returning
a function from onMount() to stop the timer when the component instance is
destroyed.

LISTING 5-1: Starting a Timer on mount

<script>
 import { onMount } from 'svelte';
 onMount(() => {
 let timer = setInterval(() => {
 let now = new Date();
 let hours = now.getHours();
 let minutes = now.getMinutes();
 let seconds = now.getSeconds();
 let ampm = hours >= 12 ? 'PM' : 'AM';
 hours = hours % 12;
 hours = hours ? hours : 12;
 hours = hours < 10 ? '0' + hours : hours;
 minutes = minutes < 10 ? '0' + minutes : minutes;
 seconds = seconds < 10 ? '0' + seconds : seconds;
 let time = hours + ':' + minutes + ':' + seconds + ' ' +

ampm;
 document.getElementById('time').innerHTML = time;
 }, 1000);
 return () => {
 clearInterval(timer);
 };
 });

U
sing the Com

ponent
Lifecycle

CHAPTER 5 Using the Component Lifecycle 473

</script>

<div id="time"/>

The onMount() lifecycle method is a good place to handle asynchronous network
requests for the initial data for your component. Making asynchronous requests is
covered later in this chapter.

Using beforeUpdate() and afterUpdate()
The beforeUpdate() lifecycle method runs immediately before a component
updates due to a state change. The afterUpdate() method runs immediately after
a component updates. Listing 5-2 shows how to use beforeUpdate() and after-
Update() to log messages to the console before and after state updates.

LISTING 5-2: Logging Before and After Updates

<script>
 import { beforeUpdate, afterUpdate } from 'svelte';
 let count = 0;
 beforeUpdate(() => {
 console.log(`Preparing to update...`);
 });
 afterUpdate(() => {
 console.log(`the count is now ${count}`);
 });
</script>

<button on:click={() => count++}>Increment</button>

Using onDestroy()
The onDestroy() method runs whenever a component is about to be removed
from the DOM. It’s typically used like React’s componentWillUnmount() method
to clean up event listeners, timers, and subscriptions before the component goes
away.

474 BOOK 5 Svelte

Getting ticks
The Svelte tick() method is an asynchronous method that returns a Promise
object. You can call tick() to make sure that a state update finishes before the
next line of the function runs.

For example, in Listing 5-3 the button increments the count. The component also
defines a reactive statement that calculates the square of the current count and
then logs it.

LISTING 5-3: Logging and Displaying the Square of a Number

<script>
 let count = 0;
 let square = 0;
 $: square = count * count;
 function increment() {
 count += 1;
 console.log(square);
 }
</script>

<button on:click={increment}>Increment</button>
<p>The square of {count} is {square}</p>

Because reactive statements are asynchronous, however, the value logged to
the console is the previous value of square. The value that gets rendered in the
browser is the correct one.

Figure 5-1 shows the result, where the value of square is behind the value that’s
rendered in the DOM.

To solve this problem, we can use tick() to tell Svelte to wait for the reactive
statement to finish before moving on to the next line, as shown in Listing 5-4.

LISTING 5-4: Using tick() to Wait for the State Change to Be Applied

<script>
 import { tick } from 'svelte';
 let count = 0;
 $: square = count * count;

U
sing the Com

ponent
Lifecycle

CHAPTER 5 Using the Component Lifecycle 475

 function increment() {
 count += 1;
 tick().then(() => {
 console.log('square is now', square);
 });
 }
</script>

<button on:click={increment}>Increment</button>
<p>The square of {count} is {square}</p>

With the addition of tick() the value of square in the console and the value of
square in the browser match, as shown in Figure 5-2.

FIGURE 5-1:
The console.
log() method

receives the old
value.

476 BOOK 5 Svelte

Fetching Data in Svelte
One way to perform asynchronous network requests with Svelte is to write async
functions or promises in the onMount() method as you would in React or Vue. The
result can then be used to update a stateful variable and update the DOM.

Listing 5-5 shows a component that fetches the latest price of a stock when it
mounts and displays the price, change, and change percent.

LISTING 5-5: Getting Data on Mount

<script>
 import { onMount } from 'svelte';
 const API_KEY = 'YOUR_API_KEY'; //get your own at finnhub.io
 const stockTicker = 'AAPL';
 const endpoint = `https://finnhub.io/api/v1/quote?symbol=${stock

Ticker}&token=${API_KEY}`;
 let stockPrice = 0;
 let stockPriceChange = 0;
 let stockPriceChangePercent = 0;
 let stockPriceChangeDirection = 'up';

FIGURE 5-2:
The values in

the console
and in the DOM

match now.

U
sing the Com

ponent
Lifecycle

CHAPTER 5 Using the Component Lifecycle 477

 let stockPriceChangeDirectionClass = 'stock-price-up';

 onMount(async function () {
 const response = await fetch(endpoint);
 const data = await response.json();
 stockPrice = data.c;
 stockPriceChange = data.d;
 stockPriceChangePercent = data.dp;
 if (stockPriceChange < 0) {
 stockPriceChangeDirection = 'down';
 stockPriceChangeDirectionClass = 'stock-price-down';
 }
 });
</script>

<h1>Current {stockTicker} Price</h1>
<p class={stockPriceChangeDirectionClass}>
 {stockPrice} ({stockPriceChange}
 {stockPriceChangePercent}%)
</p>

<style>
 .stock-price-up {
 color: green;
 }
 .stock-price-down {
 color: red;
 }
</style>

Figure 5-3 shows the result of running this component.

If you want to try out the StockTicker component, you need to get a free API key
from finhub.io and replace the value of the API_KEY constant with your own key.

Refreshing data
One problem with the StockTicker component from Listing 5-5 is that, once it
mounts, it never updates. One way to fix this problem would be to place a message
on the page telling the user to refresh the browser to see the latest price — but
that’s a lame solution.

478 BOOK 5 Svelte

A better way would be to have a button on the page that the user can press to
refresh the price. This strategy would be easy enough to code, but it still requires
the user to actually do something, and it might result in users wildly clicking the
button and overwhelming your API with requests.

A third option is to have a timer that automatically refreshes the data every so
often. To do this, we extract the stock price fetching logic from the onMount()
method into a separate function and then have onMount() start a timer that will
call the new function every minute. Listing 5-6 shows the new onMount() func-
tion and the getLatestStockPrice() function after this change is implemented.

LISTING 5-6: Automatically Refreshing the Stock Price

 onMount(() => {
 const timer = setInterval(() => getLatestStockPrice(), 60000);
 return () => {
 clearInterval(timer);
 };
 });

 async function getLatestStockPrice() {
 const response = await fetch(endpoint);
 const data = await response.json();
 stockPrice = data.c;
 stockPriceChange = data.d;

FIGURE 5-3:
Mounting the
StockTicker

component.

U
sing the Com

ponent
Lifecycle

CHAPTER 5 Using the Component Lifecycle 479

 stockPriceChangePercent = data.dp;
 if (stockPriceChange < 0) {
 stockPriceChangeDirection = 'down';
 stockPriceChangeDirectionClass = 'stock-price-down';
 } else {
 stockPriceChangeDirection = 'up';
 stockPriceChangeDirectionClass = 'stock-price-up';
 }
 }

Notice that the onMount() method returns a function that calls clearInterval().
Remember that if onMount() returns a function, it’s called when the component
unmounts. This is necessary because the setInterval() method is a global func-
tion that will continue running after the component unmounts. Without clearing
the timer, you could end up with the StockTicker continuing to fetch data even
after the component has unmounted. As you know, this is called a memory leak.

Awaiting asynchronous requests
Anytime you perform an asynchronous request, there’s a chance it won’t work as
expected. Because of this, and because asynchronous requests may take some time
before they resolve, it’s important to keep the user informed.

In Svelte, you can use an #await block in your template to wait for a Promise to
resolve and display an error message if the Promise is rejected. Here’s the syntax
of an await block:

{#await promise}
 <p>loading...</p>
{:then result}
 <p>The result is {result}</p>
{:catch error}
 <p>There has been an error: {error.message}</p>
{/await}

Listing 5-7 shows a simplified and improved version of the StockTicker compo-
nent that uses #await to display the status, result, and errors that are returned
by a Promise.

480 BOOK 5 Svelte

LISTING 5-7: Using #await

<script>
 import { onMount } from 'svelte';
 const API_KEY = 'YOUR-KEY'; //get your own at finnhub.io
 const stockTicker = 'AAPL';
 const endpoint = `https://finnhub.io/api/v1/quote?symbol=${stock

Ticker}&token=${API_KEY}`;
 onMount(() => {
 const timer = setInterval(() => {
 console.log('updating stock price');
 getLatestStockPrice();
 }, 10000);
 return () => {
 clearInterval(timer);
 };
 });

 async function getLatestStockPrice() {
 const response = await fetch(endpoint);
 if (response.ok) {
 const data = await response.json();
 return {
 stockPrice: data.c,
 stockPriceChange: data.d,
 stockPriceChangePercent: data.dp,
 };
 } else {
 throw new Error('Something went wrong');
 }
 }
</script>

<h1>Current {stockTicker} Price</h1>

{#await getLatestStockPrice()}
 <p>loading...</p>
{:then data}
 <p class={data.stockPriceChange >0 ? 'stock-price-up' :

'stock-price-down'}>
 {data.stockPrice} ({data.stockPriceChange}
 {data.stockPriceChangePercent}%)
</p>
{:catch error}
 <p>{error.message}</p>

U
sing the Com

ponent
Lifecycle

CHAPTER 5 Using the Component Lifecycle 481

{/await}

<style>
 .stock-price-up {
 color: green;
 }
 .stock-price-down {
 color: red;
 }
</style>

To see the error message, set the API_KEY to an invalid value. The Promise is
rejected, and the component displays the text of the error, as shown in Figure 5-4.

FIGURE 5-4:
Displaying an

error message
when a Promise

is rejected.

CHAPTER 6 Advanced Svelte Reactivity 483

Advanced Svelte
Reactivity

“Context is worth 80 IQ points.”

—ALAN KAY

Passing data down through props or firing events in child components
to change data in parent components is a fundamental pattern in any
component-based framework. However, not all data needs to be — or should

be — in the component hierarchy. In this chapter, you’ll learn how to provide data
to multiple components by using Svelte stores and Svelte context.

Constructing and Stocking the Store
A store in Svelte is an object with a subscribe() method that allows components
to be notified when the store’s value changes. A store can be writable, meaning
that its value can be both read and changed from outside the store, or readable,
meaning that its value can be changed only from within.

Chapter 6

IN THIS CHAPTER

 » Using stores

 » Creating context

 » Creating reactive context

484 BOOK 5 Svelte

Creating a writable store
Since they don’t produce any output to the DOM, stores can be created in normal
JavaScript modules. To create a writable store, import the writable() method
from svelte/store and then assign the result of calling writable() to a variable
or constant and export it.

The writable() method takes one required argument, which will be used as the
initial value of the store:

store = writable(value);

Listing 6-1 shows an example of creating a basic writable store.

LISTING 6-1: Creating a Writable Store

import { writable } from 'svelte/store';

export const count = writable(0);

Once you have a store, you can import it into any component to make use of, and
update, its data. A writable store has three methods:

 » subscribe() creates a link between the store and the component’s data.

 » set() sets the value of the store.

 » update() sets the value of the store based on the current value.

Creating a readable store
A readable store is created in the same way that you create a writeable store. The
difference is that a readable store has only a subscribe() method. Listing 6-2
shows how to create a readable store.

LISTING 6-2: Creating a Readable Store

import { readable } from 'svelte/store';

export const store = readable(0);

A
dvanced Svelte

Reactivity

CHAPTER 6 Advanced Svelte Reactivity 485

Subscribing to a store
Whether a store is readable or writable, you can use its subscribe() method to
provide the latest value of the store to a component. The subscribe() method
takes a callback as its parameter, and the latest value of the store is passed to that
callback.

Listing 6-3 shows how to subscribe to a store and use its value to update a local
variable in a component.

LISTING 6-3: Subscribing to a Store

<script>
 import { myStore } from './store.js';

 let store;

 myStore.subscribe((value) => {
 store = value;
 });
</script>

<h1>The current store value is {store}</h1>

Unsubscribing from a store
Subscribing to a store creates a link between your component and the store. This
link isn’t automatically broken when the component is unmounted, so it’s impor-
tant to unsubscribe from stores when the component is no longer active in the
DOM, to avoid memory leaks.

The subscribe() function returns an unsubscribe() method. To properly unsub-
scribe() from a store, assign the result of calling subscribe() to a local variable
and pass that returned function to the onDestroy() lifecycle method, as shown
in Listing 6-4.

486 BOOK 5 Svelte

LISTING 6-4: Getting and Using the unsubscribe() Function

<script>
 import { onDestroy } from 'svelte';
 import { myStore } from './store.js';

 let storeValue;

 const unsubscribe = myStore.subscribe((value) => {
 storeValue = value;
 });

 onDestroy(unsubscribe);
</script>

<h1>The current store value is {storeValue}</h1>

Setting and updating a store
You can change the value of writable stores using the set() and update() meth-
ods. The set() method takes a new value that will overwrite the current value of
the store:

myStore.set('new value');

The update() function takes a callback function that receives the latest value of
the store and returns the next value for the store.

myStore.update((value)=> 'new value' + value);

Listing 6-5 shows a component that uses a store to keep track of a user’s language
and theme preferences.

LISTING 6-5: Using a Store to Provide and Update Preferences

<script>
 import { onDestroy } from 'svelte';
 import { userprefs } from './stores/userprefs.js';

 let languagePref;
 let themePref;
 let unsubscribe = userprefs.subscribe((value) => {
 languagePref = value.language;

A
dvanced Svelte

Reactivity

CHAPTER 6 Advanced Svelte Reactivity 487

 themePref = value.theme;
 });

 onDestroy(() => {
 unsubscribe();
 });

 function updatePrefs() {
 userprefs.set({ language: languagePref, theme: themePref });
 }
</script>

<form on:submit|preventDefault={updatePrefs}>
 <label for="language">Language</label>
 <select id="language" bind:value={languagePref}>
 <option value="en">English</option>
 <option value="fr">French</option>
 <option value="de">German</option>
 </select>
 <label for="theme">Theme</label>
 <select id="theme" bind:value={themePref}>
 <option value="light">Light</option>
 <option value="dark">Dark</option>
 </select>
 <button type="submit">Update</button>
</form>

Current Preferences: {$userprefs.language}
{$userprefs.theme}

Using the reactive shortcut
Svelte is always looking for ways to reduce the amount of work you need to do,
and the reactive store subscription shortcut certainly makes using stores easier.
Rather than specifically call the subscribe() and unsubscribe() methods and
call the set() and update() methods, you can simply import a store and use its
latest value by prefacing the name of the exported store with $.

The $ syntax for using store values handles the subscriptions and unsubscriptions
for you, and it also makes it possible to set the value of a store just by assign-
ing values to it. Listing 6-6 shows how the component from Listing 6-5 can be
rewritten using the $ syntax.

488 BOOK 5 Svelte

LISTING 6-6: Using $ Syntax

<script>
 import { userprefs } from './stores/userprefs.js';
 let languagePref = $userprefs.language;
 let themePref = $userprefs.theme;

 function updatePrefs() {
 $userprefs = { language: languagePref, theme: themePref };
 }
</script>

<form on:submit|preventDefault={updatePrefs}>
 <label for="language">Language</label>
 <select id="language" bind:value={languagePref}>
 <option value="en">English</option>
 <option value="fr">French</option>
 <option value="de">German</option>
 </select>
 <label for="theme">Theme</label>
 <select id="theme" bind:value={themePref}>
 <option value="light">Light</option>
 <option value="dark">Dark</option>
 </select>
 <button type="submit">Update</button>
</form>
Current Preferences: {$userprefs.language}
{$userprefs.theme}

Figure 6-1 shows the component from Listing 6-6 running in a browser.

Store starting and stopping functions
Readable and writable stores can take a second argument, which is a start()
function. This function takes the set() function as an argument and returns a
stop() function. The start() function is called when a store gets its first sub-
scriber. The stop() function gets called when the last subscriber unsubscribes.

Listing 6-7 shows a store that starts a timer when the store gets its first sub-
scriber and clears the timer when all subscribers have unsubscribed. Note that
because this store only provides a timer to its subscribers, it can be written as a
readable store.

A
dvanced Svelte

Reactivity

CHAPTER 6 Advanced Svelte Reactivity 489

LISTING 6-7: Using start() and stop() with Stores

import { readable } from 'svelte/store';
export const timer = readable(null, function start(set) {
 const interval = setInterval(() => {
 set(new Date().toLocaleTimeString());
 }, 1000);
 return function stop() {
 clearInterval(interval);
 };
});

When a component subscribes to the store in Listing 6-7, it updates itself with the
current time every second. Listing 6-8 shows a component that uses this store to
display a clock.

LISTING 6-8: Displaying a Readable Store’s Value

<script>
 import { timer } from './stores/timer.js';
</script>

<h1>The current time is: {$timer}</h1>

The result of running Listing 6-8 in a browser is shown in Figure 6-2.

FIGURE 6-1:
The user

preferences
component.

490 BOOK 5 Svelte

Getting and Setting Context
Context in Svelte is an object containing key:value pairs that you can set in a
component. The function for creating and setting context is setContext(). Once
you’ve created a context object, you can get its value from within any of the chil-
dren of the component by using getContext().

Listing 6-9 shows a component that creates a context, and Listing 6-10 is a com-
ponent that makes use of the context.

LISTING 6-9: Creating Context

<script>
 import { setContext } from 'svelte';
 import ViewPrefs from './ViewPrefs.svelte';
 setContext('userprefs', { language: 'en', theme: 'light' });
</script>

<ViewPrefs/>

LISTING 6-10: Using getContext()

// ViewPrefs.svelte

<script>

FIGURE 6-2:
Displaying a timer

using a store.

A
dvanced Svelte

Reactivity

CHAPTER 6 Advanced Svelte Reactivity 491

 import { getContext } from 'svelte';
</script>

<p>Your current preferences:</p>
<p>Language: {getContext('userprefs').language}</p>
<p>Theme: {getContext('userprefs').theme}</p>

Context is not reactive by default. What this means is that the values returned by
getContext() can’t be used to update the actual context. If you need to have a
reactive context, you can get that by passing a store to setContext(), as shown
in Listing 6-11.

LISTING 6-11: Using Reactive Context

// userprefs.js

import { writable } from 'svelte/store';

export const userprefs = writable({ language: 'en', theme:

'light' });

// App.svelte

<script>
 import { setContext } from 'svelte';
 import { userprefs } from './stores/userprefs.js';
 import EditPrefs from './EditPrefs.svelte';
 setContext('userprefs', userprefs);
</script>

<EditPrefs/>

// EditPrefs.svelte

<script>
 import { getContext } from 'svelte';
 import { userprefs } from './stores/userprefs.js';
 let { language, theme } = getContext('userprefs');
 (continued)

492 BOOK 5 Svelte

 function updatePrefs() {
 $userprefs = { language, theme };
 }
</script>

<form on:submit|preventDefault={updatePrefs}>
 <label for="language">Language</label>
 <select id="language" bind:value={language}>
 <option value="en">English</option>
 <option value="es">Spanish</option>
 <option value="fr">French</option>
 <option value="de">German</option>
 </select>
 <label for="theme">Theme</label>
 <select id="theme" bind:value={theme}>
 <option value="light">Light</option>
 <option value="dark">Dark</option>
 </select>
 <button type="submit">Update</button>
</form>
Current Preferences: {$userprefs.language}
{$userprefs.theme}

LISTING 6-11: (continued)

6Sharpening Your
Tools

Contents at a Glance
CHAPTER 1: Building from Scratch . 495

CHAPTER 2: Optimizing and Bundling . 513

CHAPTER 3: Testing Your JavaScript . 535

CHAPTER 1 Building from Scratch 495

Building from Scratch
“If you wish to make an apple pie from scratch, you must first invent the
universe.”

—CARL SAGAN

If you’ve worked through Book 3, Book 4, and Book 5, you know how to write
JavaScript code using popular JavaScript frameworks. Until now, you’ve been
mostly protected from the tools that check, compile, and open your applications

in a browser. Rather than spend a lot of time configuring these tools, you’ve been
using a single tool, Vite, that wraps around and configures everything for you.

But, just as anyone who drives a car can benefit from knowing what goes on under
the hood, a whole world of programs and tools wait for you "under the hood" of
modern JavaScript development. Knowing how to tinker with these tools makes
you a better developer.

In this chapter, I start from scratch and help you dig into how an automated
JavaScript build tool works. By the end of this chapter, you’ll have built a complete
JavaScript application and you’ll have started building a tool that does many of the
same things as Vite.

Chapter 1

IN THIS CHAPTER

 » Recognizing why you need a
build tool

 » Introducing npm

 » Recognizing the parts of package.json

 » Installing a dev server

 » Building a script with modules

496 BOOK 6 Sharpening Your Tools

Why You Need a Build Tool
JavaScript development can be done using nothing but a simple text editor and
a web browser. Until around 2010, this is how nearly all JavaScript development
was done.

"Back in my day . . ."
Since JavaScript code is compiled by the browser, and since HTML pages can link
to any number of JavaScript files, you can simply write an HTML page, such as the
one in Listing 1-1, that loads all the JavaScript files you need for your application.

LISTING 1-1: A Sample HTML Page from the Bad Old Days

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

 "http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

<meta charset="utf-8">

<title>Listing 1.1</title>

<link rel="stylesheet" type="text/css" href="/assets/css/redmond.css"/>

<link rel="stylesheet" type="text/css" href="/assets/css/style.css"/>

<link rel="stylesheet" type="text/css" href="/assets/css/jqueryFileTree.css"/>

<!--[if gte IE 7]>

 <link rel="stylesheet" type="text/css" href="/scripts/style.ie.css"/>

<![endif]-->

<script type="text/javascript" src="/assets/js/jquery.js"></script>

<script type="text/javascript" src="/assets/js/jquery-ui.js"></script>

<script type="text/javascript" src="/assets/js/jqueryFileTree.js"></script>

<script type="text/javascript" src="/assets/js/jqminmax.js"></script>

<script type="text/javascript" src="/assets/js/jquery.corner.js"></script>

<script type="text/javascript" src="/assets/js/jquery.jeditable.js"></script>

<script type="text/javascript" src="/assets/js/jquery.qtip.js"></script>

<script type="text/javascript" src="/assets/plugins/tinymce/tiny_mce.js">

</script>

<script type="text/javascript" src="/assets/js/latitude.js"></script>

</head>

<body>

 <!-- insert html (and more JavaScript) here -->

</body>

</html>

Building from
 Scratch

CHAPTER 1 Building from Scratch 497

Although Listing 1-1 is a fairly accurate representation of what the beginning of
an HTML page looked like circa 2008, I've saved you from the horror of seeing
HTML tags written in ALL CAPS, which was still considered a normal thing to do
at the time. You're welcome.

The road to dependency hell
As websites grew more complex and JavaScript grew more complex, the problem
with having an abundance of <script> tags was that it became difficult to keep
track of them all. Some of these dependencies depend on specific versions of other
dependencies, and upgrading any one of them might break others. Each of these
JavaScript files needs to be updated periodically to apply security patches or bug
fixes, and every web page needs to include all the scripts it needs to do its job.

Enter package management
A package manager is a program that helps you install, update, and keep track
of software packages. The Linux operating system employed package managers
long before they were popular for web application development. After Node.js was
created in 2009, and npm in 2010, the combination of Node.js and npm became a
natural choice for managing front-end web development dependencies. Node.js is
covered in depth in Book 7.

Managing Dependencies with npm
Although npm was originally designed for managing dependencies of server-side
JavaScript applications, it can be, and frequently is, used for client-side Java-
Script development as well. With npm, you can install, uninstall, upgrade, and
keep track of all the dependencies in your application. Npm can also be used for
creating and running scripts that automate the running of packages.

Initializing a project
Follow these steps to set up a new client-side Node.js project:

1. Make a new folder on your computer named automated-build and open
it in VS Code.

It doesn't matter where on your computer you create this folder, but make
sure that it's not in the same directory or subdirectory of any existing projects.
At this point, your new project should be just an empty directory.

498 BOOK 6 Sharpening Your Tools

If you followed my recommendation in Chapter 1 of Book 1 about setting up a
code folder, that would be a great place to put this new project.

2. Open the Integrated Terminal in VS Code.

3. Enter git init into the terminal.

This step initializes a new Git repository in the project, and this is how every
new project you create from now on should start.

You see a message that a new Git repository was created, and you see a new
folder named .git in your project directory.

If you don't see the .git directory, you can choose Code➪ Preferences➪ Settings
(on macOS) or File➪ Preferences➪ Settings (on Windows) and then choose Text
Editor➪ Files. On the Files screen, you see the Exclude setting, where you can
remove .git from the list, if it's there.

If you still don't see the .git folder, you need to update the settings on your com-
puter. Here's how to enable the showing of hidden files on Windows 10:

1. Click the Start button and then choose Control Panel➪ Appearance and
Personalization.

2. Choose Folder Options and then select the View tab.

3. Under Advanced Settings, select Show Hidden Files, Folders, and Drives,
and then click OK.

Here's how to turn on the showing of hidden files on macOS:

1. In Finder, click on your hard drive under Locations and then open your
Macintosh HD folder.

2. Press Command+Shift+. (period) to show hidden files, or to hide them if
they're already showing.

The next step in setting up the project directory is to initialize the project as a
Node package. Follow these steps:

1. Enter npm init in your terminal to initialize a new Node project.

You're asked a series of questions. You can just select all the default values at
this point. After you answer all the questions, a package.json file is created in
your project.

2. Open package.json for editing. You see a file like the one shown in
Listing 1-2.

Building from
 Scratch

CHAPTER 1 Building from Scratch 499

3. Make a new file named README.md. Inside this file, use Markdown syntax
to give your project a title (such as JavaScript Build Tool from JavaScript
All-in-One For Dummies by Chris Minnick).

Markdown is covered in Book 1, Chapter 2.

LISTING 1-2: A Starting package.json File

{
 "name": "automated-build-template",
 "version": "1.0.0",
 "description": "",
 "main": "index.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "author": "",
 "license": "ISC"
}

Finally, you make your initial commit to the Git repository:

1. Create a new file named .gitignore at the root of your project and add
the following lines to it:

node_modules/

.vscode

The .gitignore file tells Git not to add the files and directories you specify to
the repository.

2. Enter git add . into the terminal to stage your project, and then enter git
commit -m 'initial commit' to commit your changes.

Now would also be a good time to create a new project on GitHub and use git push
to upload your local repository.

Using Git and GitHub is covered in Book 1, Chapter 2.

500 BOOK 6 Sharpening Your Tools

Learning the parts of package.json
Look again at the package.json file that was generated by running npm init. A
package.json file is made up of these three main parts:

 » Project metadata

 » NPM scripts

 » Project dependencies

A Node.js project is called a package.

Metadata in package.json
The metadata includes information about your package, such as its name, a
description, the author (you), the main file, and a license. The name, descrip-
tion, and author are all up to you. However, the name should stick to the rules of
naming a Node.js package: lowercase letters and dashes (instead of spaces). Addi-
tionally, the package name should be descriptive and unique so as not to confuse
anyone about what the package is. For example, it’s a bad idea to name a Node.js
package react.

The main file is the main entry point into your program. In a Node.js project, when
a package is imported using just the package's name passed to the require()
function (as in require('http')), this file is the one that’s imported. If the main
parameter isn't set, it defaults to index.js. In most client-side JavaScript proj-
ects, this parameter doesn't do anything and you can set it to anything you like
or just remove it.

Npm scripts
The scripts part of package.json is a JSON object. The names of the properties of
the scripts object become names you can use with the npm run command (as in
npm run dev, which is used in Vite to start the development server). The values of
the properties of the scripts object are shell scripts. By default, package.json has
a single script, test, and its value returns an error.

Try entering npm run test in your terminal now to see what the default test script
does.

Some common script names can be run without typing run. For example, you can
just type npm test to run the test script, and if you have a script named start, you
can just type npm start to run it.

Building from
 Scratch

CHAPTER 1 Building from Scratch 501

Dependencies
After you first run npm init, your project has no dependencies. To install your
first dependency, enter the following command into the terminal:

npm install --save-dev http-server

This line installs a simple HTTP server that you use to preview the static HTML
and JavaScript application I show you how to build shortly. After you install http-
server, you see that a new area has been added to package.json for devDepen-
dencies. It looks something like this (the version number is probably different in
your file):

"devDependencies": {
 "http-server": "^14.1.1"
}

When you added --save-dev to npm install, you instructed npm to put http-
server in the devDependencies object in package.json. If you leave off the
--save-dev or use just --save, npm creates an object called dependencies.

What's the difference?

The idea behind devDependencies and dependencies is that devDependencies
are packages that are used only during development. This includes Packages like
testing frameworks, module bundlers, code minifiers, and a development server
(like http-server). The dependencies block is used for packages that will be part
of the compiled code that you deploy to a server and that need to be downloaded
by your end users. This includes front-end JavaScript libraries (like React, Vue,
and Svelte) and CSS libraries (like Bootstrap or Foundation).

In practice, it doesn't matter whether you install packages in devDependencies or
dependencies for front-end JavaScript. It's just a convention for the sake of orga-
nization. The module bundler packages up everything for deployment the same
way. Many people just put everything in dependencies, whereas others prefer to
stick to the convention.

Reading semver
Take a look again at the devDependencies object in package.json (or depen-
dencies, depending on how you installed http-server). The value of the http-
server property is a string containing three numbers separated by periods. This
is the version number of the package.

502 BOOK 6 Sharpening Your Tools

This 3-digit numbering scheme, called semver versioning, provides three sets of
numbers. The first set (reading from left to right) is the Major version. This num-
ber changes whenever major changes have been made to the API of a package.

Be careful when upgrading a package from one major version to another, because
the difference between the previous version and the new one is highly likely to
require you to rewrite at least some of your code.

The second set of numbers represents Minor versions. This number changes
whenever functionality has been added, but in a backward-compatible way.

The third set of numbers represents Patch changes, which are bug fixes that are
made in a way that's backward compatible. Upgrading from one patch version to
another is usually not a problem.

The symbol that precedes the semver version number indicates the range of ver-
sion numbers that will be installed when you run npm install to install packages
or when you run npm update to update node packages.

A caret (^) indicates that the latest minor and patch versions should be applied. If
a package is updated from 3.2.1 to 3.3.0, for example, packages with a caret pre-
ceding their version numbers would get the new version automatically.

A tilde (~) indicates that the package receives only new patch versions. For exam-
ple, a package that changes from 2.0.0 to 2.0.1 would receive the latest version
when you run npm install or npm update, but it wouldn't receive the 2.1.0 version
(unless you manually change the version number in package.json before running
npm install or npm update).

Using the node_modules folder
After you install your first package with npm install, you have a node_modules
folder in your project. If you open that folder, you see that it has several subdirec-
tories. These are the dependencies of http-server, and the http-server package
itself.

The idea of the node_modules folder is that it can be re-created at any time by
reading the instructions in the package.json file. So try it out: Right-click on
node_modules in VS Code and choose Delete. After the deletion is complete, enter
npm install into the terminal. After a moment, node_modules is re-created exactly
as it was.

Building from
 Scratch

CHAPTER 1 Building from Scratch 503

Local-versus-global installs
When you're working with Node for client-side projects, you nearly always install
packages locally. When you install a package locally, it's saved into node_modules
and is available to only one project. With all your packages installed locally, you
can check it into a repository without the node_modules folder, and then anyone
else who needs to work on the package can download it and run npm install and
be up and running with the same project and tools as you.

Updating npm
The lone exception to the rule that everything should be installed locally is npm
itself. Npm is installed globally: It's available to any project on your computer (or
in your user account on your computer).

When you upgrade npm, you do it globally. To upgrade npm with npm, enter the
following line into your terminal:

npm update -g npm

The -g flag indicates that the package should be updated globally. The result of
running this command is that your computer (or user account, depending on how
npm is installed) is upgraded for every project on your computer.

Writing Your First Files
After you have a Node package and a Git repo, the next step is to start writing
some code. Follow these steps to start a plain JavaScript application (also known
as a vanilla JavaScript application):

1. Make a folder named src at the root of your project.

In most client-side projects, all the code you write goes into the src folder.

2. Create a new index.html file inside src and enter a basic HTML template
into it.

In VS Code, you can use a shortcut method to write an HTML template. On the
first line of any file with a .html extension, type an exclamation point (!) and
then press the Tab key. The code in Listing 1-3 is generated for you.

3. Create the following elements in the <body> of index.html:

<div id="map">
 <div id="ball">(*)</div>

</div>

504 BOOK 6 Sharpening Your Tools

4. Create a directory inside src named js and make a new file inside it
named index.js.

5. Enter the code from Listing 1-4 into index.js.

You might recognize the script in Listing 1-4 as the same script that appears in
Chapter 1 of Book 1. If you have read Book 1, you should better understand
how this code works by now.

6. Use the following script tag inside the <head> of your index.html file to
include index.js:

<script defer src="js/index.js"></script>

7. Make a folder named css inside the src folder.

8. Make a file named index.css inside the css folder.

9. Enter the following CSS rule into index.css:

#ball {
 background-color: red;
 border-radius: 50%;
 width: 20px;
 height: 20px;
 position: relative;

}

10. Link to the CSS file from index.html:

<link rel="stylesheet" href="css/index.css">

LISTING 1-3: The Generated HTML Template

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <meta name="viewport" content="width=device-width,

initial-scale=1.0">
 <title>Document</title>
</head>
<body>

</body>
</html>

Building from
 Scratch

CHAPTER 1 Building from Scratch 505

LISTING 1-4: A JavaScript File

const ball = document.getElementById('ball');
document.addEventListener('keydown', handleKeyPress);
let position = 0;

function handleKeyPress(e) {
 if (e.code === 'ArrowLeft') {
 position = position - 10;
 }
 if (e.code === 'ArrowRight') {
 position = position + 10;
 }
 if (position < 0) {
 position = 0;
 }
 refresh();
}
function refresh() {
 ball.style.left = position + 'px';
}

Now that you have a simple application, you can view it by using a local web server
and browser. In the next section, you'll learn how to write an npm script to start
your local development server.

Writing a dev Script
Follow these steps to create an npm script to start the http-server and open your
application in a browser:

1. Open package.json and insert a comma after the final quotation mark of
the test property's value.

2. On the new line, create a property called dev and give it a value (in
quotes) of "http-server src".

3. Save your file and then enter npm run dev into the terminal.

The server starts up, just as before.

4. Add -o after http-server src in your dev script.

The -o command causes your default web browser to open and go to the
server URL when the server starts.

506 BOOK 6 Sharpening Your Tools

5. Stop your server (by pressing Ctrl+C) and start it again (using
npm run dev).

At this point, your homegrown JavaScript tooling doesn't do anything that you
couldn't do just by opening index.html directly in a web browser. Let's change
that now.

Making Modules
Although your JavaScript application is simple at this point, it has the potential to
become much larger, and now is a good time to think about how to break it into
modules. My vision for the functionality you have so far is that it will eventually
become the code that controls the movement and refreshing of the screen in a
simple game. The first step in starting to realize this vision is to lay out the com-
ponents that you think this game will need.

Refactoring index.js
After a morning of fiddling with this application, I have come up with an idea
that’s a little more interesting. Modify your index.js file to the code shown in List-
ing 1-5 to see the reworked and modularized start of the app.

LISTING 1-5: Breaking index.js into Modules

import { moveBall } from './modules/moveBall.js';
import { generateMap } from './modules/generateMap.js';

const ball = document.getElementById('ball');
const map = document.getElementById('map');
let position = { x: 0, y: 0 };

document.addEventListener('keydown',
 (e) => moveBall(e, ball, position));

generateMap(map, 100);

In Listing 1-5, the name of the function that moves the ball is now called move-
Ball(). If this game is to be any fun, something more has to happen than just
pressing keys to move a ball around — there will need to be some point to moving

Building from
 Scratch

CHAPTER 1 Building from Scratch 507

the ball around the screen. One thought you might have is to make it be a maze
game. The generateMap() function is a placeholder for a function that will gener-
ate a random map of obstacles. The function simply takes a number of obstacles
and a DOM element and places that many objects into that DOM element.

The moveBall() function
The first module I show you how to write is the moveBall() module. For now,
you'll be creating all your modules in a subfolder of src named modules.

As the app grows larger, you may create more subdirectories, and you'll probably
change the name of moveBall.js because it will eventually contain more func-
tions than just moveBall().

One important concept in programming is the idea of avoiding premature
optimization — that is, it's more important to get things working than to build the
perfect app structure and write the code 100% perfectly from the start. You always
can go back, and you will go back, to fix things later.

Listing 1-6 shows the content of the modules/moveBall.js file.

LISTING 1-6: The moveBall() Function

import { testEdgeCollision } from './testEdgeCollision.js';
import { testObstacleCollision } from './testObstacleCollision.js';

export function moveBall(e, ball, position) {
 if (e.code === 'ArrowLeft') {
 position.x -= 10;
 } else if (e.code === 'ArrowRight') {
 position.x += 10;
 } else if (e.code === 'ArrowUp') {
 position.y -= 10;
 } else if (e.code === 'ArrowDown') {
 position.y += 10;
 }
 ball.style.left = position.x + 'px';
 ball.style.top = position.y + 'px';

 testEdgeCollision();
 testObstacleCollision();
}

508 BOOK 6 Sharpening Your Tools

When you started writing this function, you wrote the functionality only for mov-
ing the ball around the screen. It would be a good idea to check to see whether the
ball is touching any obstacles or the edges of the screen after any move — so the
current version has two function calls, named testEdgeCollision() and testO-
bstacleCollison(). You'll learn how to write those functions in a few minutes,
but first you need to write the function that generates the obstacles.

The generateMap() function
The generateMap() function is called once by index.js. It should take a DOM
element and a number as its arguments and then create the specified number of
elements at random locations inside the DOM element.

Listing 1-7 shows the generateMap() module, which you should save in a file
named generateMap.js in the modules folder.

LISTING 1-7: The generateMap() Function

export function generateMap(map, numberOfObstacles) {
 for (let i = 0; i < numberOfObstacles; i++) {
 const obstacle = document.createElement('div');
 obstacle.classList.add('obstacle');
 obstacle.style.left = Math.floor(Math.random() * 100) + 'vw';
 obstacle.style.top = Math.floor(Math.random() * 100) + 'vh';
 map.appendChild(obstacle);
 console.log(
 `Adding obstacle at ${obstacle.style.left}, ${obstacle.

style.top}`
);
 }
}

This function uses a for loop to complete the following actions the specified
number of times:

 » Create an element.

The createElement() method creates an element of a specified type in the
browser's memory. Created elements aren't displayed in the browser until
you specifically add them to an element in the DOM.

Building from
 Scratch

CHAPTER 1 Building from Scratch 509

 » Add a class with a value of obstacle to the element.

This class is used to style the obstacles with CSS.

 » Position the elements randomly.

A random number between 0 and 100 is generated to set the position of the
element in the browser viewport. The vh unit used here is a number repre-
senting the percentage of the viewport. So the code obstacle.style.left
= "50vh", for example, positions the obstacle element in the horizontal
middle of the viewport.

 » Add the element to the DOM element referenced by map.

The appendChild() function adds a new child to the end of the element it's
called on.

 » Log the position of the new element.

Add this line for testing, just to see what happens.

Adding style
After you finish coding the generateMap() function, you can now add some styl-
ing for the map and the obstacles. The key to being able to position elements at
specific locations in the viewport is setting the position property of the elements
to absolute. You can also use position:absolute to make the map take up the
entire viewport and to prevent scrolling. Listing 1-8 shows what the index.css
file looks like now.

LISTING 1-8: Adding Styles

#ball {
 background-color: red;
 border-radius: 50%;
 width: 20px;
 height: 20px;
 position: relative;
}

#map {
 position: absolute;
 top: 0;
 left: 0;
 right: 0;
 bottom: 0;

(continued)

510 BOOK 6 Sharpening Your Tools

 border: 1px solid black;
 overflow: hidden;
 overscroll-behavior: none;
}

.obstacle {
 background-color: black;
 width: 20px;
 height: 20px;
 position: absolute;
}

Testing for collisions
The last two modules you'll write to finish the maze game (for now) are the tests
for whether the ball is touching the walls of the map or any of the obstacles. Create
two new files in the modules folder for the modules that will handle these jobs:
testEdgeCollision.js and testObstacleCollision.js.

Listing 1-9 shows the testEdgeCollision.js module.

LISTING 1-9: Testing for Edge Collisions

export function testEdgeCollision() {
 const ballRect = ball.getBoundingClientRect();
 const mapRect = map.getBoundingClientRect();
 if (
 ballRect.left < mapRect.left ||
 ballRect.right > mapRect.right ||
 ballRect.top < mapRect.top ||
 ballRect.bottom > mapRect.bottom
) {
 console.log('Collision!');
 }
}

The testEdgeCollision() method uses a DOM method named getBoundingCli-
entRect() to create objects containing information about the size of an element
and its position relative to the viewport. By finding out the position of the ball
and the position of the map, you can do a series of comparisons, separated by the

LISTING 1-8: (continued)

Building from
 Scratch

CHAPTER 1 Building from Scratch 511

logical OR operator, to determine whether the ball is outside the map element. If
it is, the function just logs a message to the console.

The testObstacleCollision() function works similarly to the testEdgeColli-
sion() function, but with an added twist: It needs to do it once for every obstacle.

Listing 1-10 shows the testObstacleCollision() module.

LISTING 1-10: Testing for Collisions with Obstacles

export function testObstacleCollision() {
 const ballRect = ball.getBoundingClientRect();
 const obstacles = document.getElementsByClassName('obstacle');
 for (let i = 0; i < obstacles.length; i++) {
 const obstacleRect = obstacles[i].getBoundingClientRect();
 if (
 ballRect.left < obstacleRect.right &&
 ballRect.right > obstacleRect.left &&
 ballRect.top < obstacleRect.bottom &&
 ballRect.bottom > obstacleRect.top
) {
 console.log('Collision!');
 }
 }
}

The getElementsByClassName() DOM method is the key to creating a collection
of all the obstacles. The function then loops over this collection and checks to see
whether the ball's position is overlapping the obstacle's position. Again, you sim-
ply log a message if it is.

Testing it out
After you have implemented the edge and obstacle testing functions, you're almost
ready to test the ball game out. If you enter npm run dev into the console, you
see a blank screen in your browser. If you open the console, you see this message:

index.js:1 Uncaught SyntaxError: Cannot use import statement
outside a module (at index.js:1:1)

The problem here is that a JavaScript file that includes JavaScript modules (index.
js, in this case) isn't currently a module. But, only a JavaScript module can load

512 BOOK 6 Sharpening Your Tools

other JavaScript modules. To make index.js a module, you need to load it as a
module. The way to do this with a file loaded by an HTML document is to add an
attribute to the <script> element. Add type="module" to the <script> element
in index.html. It should now look like this:

<script defer type="module" src="js/index.js"></script>

Stop and restart your development server. You may also need to clear your
browser's cache. You should see a screen like the one shown in Figure 1-1.

Open your browser console, click inside the browser window to make sure it has
focus, and then move the ball around by pressing the arrow keys. If you run the
ball into one of the edges of the viewport or into an obstacle, you should see a
Collision! message in the console.

If you haven't committed your code to your Git repository in a while, now is a good
time to do that.

FIGURE 1-1:
Version 0.0.1 of

the tentatively
named Ball

Moving Game.

CHAPTER 2 Optimizing and Bundling 513

Optimizing and Bundling
“If you optimize everything, you will always be unhappy.”

—DONALD KNUTH

Whether you work by yourself or as part of a team of developers, one
of the most important parts of your development environment is your
automated build tool. Building an application is the process of optimiz-

ing and bundling your code to prepare the application for deployment and use
by actual people, which, of course, is the end goal of learning about JavaScript
programming.

In this chapter, you find out how to put together the tools and scripts necessary to
go from a development environment to a production environment.

Automating Your Build Script
The systems development life cycle (SDLC) is a series of phases used by software
developers since the 1960s to build applications. These are the phases of the SDLC:

 » Analysis

 » Design

Chapter 2

IN THIS CHAPTER

 » Creating an automated build script

 » Using a module bundler

 » Adding functionality to your
build tool

 » Migrating a vanilla JavaScript app to
ReactJS

514 BOOK 6 Sharpening Your Tools

 » Development

 » Testing

 » Deployment

 » Maintenance

Because this is a book about programming, nearly everything you learn is about
the development phase. For development to lead to testing and then to deploy-
ment and maintenance, you need to perform certain steps. The number of steps
required varies depending on the complexity of your code, but at the very least,
you need a way to simulate, as closely as possible, how the app will work when
it’s deployed. Furthermore, this process should be as automated and foolproof
as possible so that anyone who works on the app can preview, test, and deploy it
easily. A tool that lets you preview, test, and build your app is called an automated
build tool.

Here are a few examples of automated build tools:

 » Create React App

 » Vite

 » Rome toolchain

 » Jenkins

An automated build toolchain is a collection of several tools that perform various
operations on your code during the various phases of the SDLC. These are some of
the types of tools that may be included in an automated build toolchain:

 » Static code analysis

 » Module bundler

 » Testing framework

 » Development server

I describe static code analysis and testing in Chapter 3.

Installing and using a module bundler
The component of a JavaScript build toolchain that automates the process of opti-
mizing and combining the modules in your app for deploying in the development
server or for production is called a module bundler.

O
ptim

izing and
Bundling

CHAPTER 2 Optimizing and Bundling 515

These are some of the more popular module bundlers now available:

 » Webpack

 » ESbuild

 » Parcel

 » rollup.js

 » Snowpack

The job of a module bundler is to load your code and convert it to standard
JavaScript (in the case of files containing JSX, for example), combine your mod-
ules, and do post-processing to optimize the resulting bundle of code. A module
bundler is used during the development, testing, and deployment phases.

Configuring your dev server
In Chapter 1 of Book 6, I show you how to create a dev script that simply starts a
web server (http-server) and opens your index.html page. This strategy works
okay for testing your app during development, but it requires you to stop and
restart the server and clear your browser cache when you make changes to your
application.

A better way to preview your app during development is to use a tool that can do
hot reloading, where the environment in which your code is running (the browser,
in your case) automatically receives changes and refreshes itself in response to
changes you make to your code.

The module bundler you’ll use in this chapter is Webpack. You’ll also install
webpack-dev-server, which allows you to get rid of http-server for your dev
script, and webpack-cli, which gives you the ability to run Webpack from the
command line.

At the time of this writing, Webpack is the most commonly used module bundler.
However, many people are switching to ESbuild because it’s faster (as a result of
being written in the Go language). However, ESbuild doesn’t yet have many of
the same features or plugins as Webpack, and it’s likely to change more by the
time you read this chapter. If you want to try out ESbuild, head over to its website
at https://esbuild.github.io. ESbuild and Webpack work similarly for basic
module bundling, and you should fairly easily be able to switch out Webpack for
ESbuild in the following instructions.

https://esbuild.github.io

516 BOOK 6 Sharpening Your Tools

To use Webpack without having to do a lot of configuration, you need to do a little
rearranging of your project. Follow these steps:

1. Move index.js and the modules folder out of the js folder in src (so that
index.js is at the root of src).

2. Delete the (now empty) js folder.

3. Create a folder named public at the root of the project and drag your css
folder and your index.html file into it.

Check your folder and file structure carefully at this point. It should match the
structure shown in Figure 2-1.

4. Change the script tag in index.html so that it imports main.js, which will
be the name of the compiled JavaScript file.

Also, because you’re bundling the JavaScript, it’s no longer necessary to use
type="module":

<script defer src="main.js"></script>

With the rearranging of the project’s files complete, follow these steps to install
Webpack and rewrite your npm run dev script. In the process, you also create a
build script:

FIGURE 2-1:
The reorganized

project structure.

O
ptim

izing and
Bundling

CHAPTER 2 Optimizing and Bundling 517

1. Enter the following command to install Webpack, the webpack
command-line interface, and webpack-dev-server in your project
from Chapter 1:

npm install webpack webpack-cli webpack-dev-server
--save-dev

Is typing npm install too much work? If so, you can replace the install
command with just i, as in npm i webpack webpack-cli webpack-dev-
server --save-dev.

2. Because you’re replacing http-server with Webpack, uninstall
http-server:

npm uninstall http-server

3. Rewrite your dev script in package.json:

"dev": "webpack serve --mode development --open"

This script bundles your JavaScript modules and serves the resulting applica-
tion (using the index.html file in public).

4. Try it out!

npm run dev

If Webpack is successful, it starts up your app at localhost:8080 and automati-
cally opens your default browser. Plus, you now have hot reloading. Follow these
steps to see hot reloading in action:

1. Make sure your dev server is running.

2. Make a change to any of the files in your src or public directory.

For example, edit index.css to make the obstacles larger and change their
color:

.obstacle {
 background-color: forestgreen;
 width: 30px;
 height: 30px;
 position: absolute;

}

3. Return to your browser.

The app is reloaded and the change is shown, as shown in Figure 2-2.

518 BOOK 6 Sharpening Your Tools

Building it up
Deployment is the phase of the software development in which the source code is
compiled and prepared for use. During this phase, your JavaScript files are bun-
dled and optimized and written to a build directory as static files that can be pub-
lished to a web server.

Building a complex JavaScript application used to be a much more manual pro-
cess, or one that involved the writing of custom scripts in a task runner applica-
tion. Examples of tasks runners are Gulp and Grunt.

Today, build scripts are generally written as simple npm scripts that pass com-
mand-line arguments to module bundlers like Webpack or ESbuild. Configura-
tion files are still sometimes required, but creating builds has become, thankfully,
much simpler.

Follow these steps to set up a build script:

1. Open the .gitignore file I show you how to create in Chapter 1, and add
to it the dist directory that Webpack will create:

dist/

Because dist will contain compiled code (which can be re-created at any time
by running npm run build), there’s no need to check it into your repository.

2. Add the most basic build script possible to the scripts object in package.
json:

"build":"webpack --mode production"

FIGURE 2-2:
That’s some hot

reloading you
have there!

O
ptim

izing and
Bundling

CHAPTER 2 Optimizing and Bundling 519

3. Save package.json and try out your build script by entering the following
line into the terminal:

npm run build

After you run the build script, you see a new directory in your project: dist. If
you look in this directory, you see a single file: main.js. If you open this file, you
see that it contains a bundled and minified version of all the JavaScript from the
application, as shown in Figure 2-3.

Look closely at main.js and you’ll recognize parts of your source code in there.
Notice that any comments from the source code have been removed, the variable
names have all been replaced with single characters, and every unnecessary space
or line break has been removed. The result is a much smaller file than the original
files, which means that the download time for your app will be shorter.

Looking at a bundled JavaScript file is a helpful reminder of how important line
breaks, indentation, variable names, and comments are for software developers.

Never think of minification as a security measure. Bundled and minified files may be
difficult to read, but they still contain ordinary code that anyone can read. The rule
about never putting any sensitive data in your JavaScript code always applies for
code that will run in a browser.

Copying static assets
Bundled JavaScript isn’t a complete web application — you still need to copy over
the HTML file and CSS files to make it work. You could do this task manually, by
just copying these files from the public directory to the dist directory, but that
would be a manual step. What you want is a completely automated build.

FIGURE 2-3:
Bundled

and minified
JavaScript code.

520 BOOK 6 Sharpening Your Tools

Follow these steps to include the HTML and CSS in your build:

1. Add a new npm script to your package.json, named "postbuild".

Npm runs any script named with pre followed by the name of another script
before the named script, and it runs any script starting with post after the
named script.

2. Modify the postbuild script to copy the css directory and index.html to
dist after Webpack does its thing.

Because npm scripts are just command-line scripts, you can use a standard
Unix or Windows shell program to do this. Here’s an example of what the Unix
version of the script should be:

"postbuild":"cp public/index.html dist/index.html && cp -R
public/css dist/css"

And here’s a command for doing the same thing in Windows:

"postbuild":"copy public\\index.html dist\\index.html &
xcopy /si public\\css dist\\css"

If you need to change index.html or compile your CSS in some way during
the build, this simple method of copying assets won’t work. For that, you need
to install and use a Webpack plugin. For this application, however, simpler is
better.

3. Enter npm run build.

After a moment, you see that your dist directory now has an index.html file,
a css directory, and the bundled JavaScript file.

4. Open dist/index.html in a web browser to see your application,
compiled and running!

Cleaning up
After you have an automated build script that compiles your code and moves it
into the dist folder, you need to do one more important thing before you move on.
Right now, your automated build script overwrites the files in the dist directory
every time it runs. But can you be sure that the files in the dist folder are from
the latest running of the build script? It’s possible for things to go wrong during
a build operation. If you’re not paying close attention, you might assume that the
build was successful just because the files from your last successful build are still
in /dist.

O
ptim

izing and
Bundling

CHAPTER 2 Optimizing and Bundling 521

To prevent this kind of confusion, each build you do must start with erasing the
previous build. Follow these steps to create an npm script to clean up before each
build:

1. Make a new npm script named prebuild.

2. In the prebuild script, use the rm command line tool with -rf to delete
the dist directory and all the files in it.

The Unix script (for Linux, macOS, or the Linux Bash shell on Windows) to
delete the dist directory should look like this:

"prebuild":"rm -rf dist"

The -r that appears after rm tells the rm command to remove files recursively:
The directory and all files in it will be deleted. The f that follows r is short for
force. It performs the removal even if there’s an error, such as when the
directory doesn’t exist.

The Windows shell version of the script to delete the dist directory should
look like this:

"prebuild":"if exist dist (rmdir /sF dist)"

3. Test out the prebuild script by running it by itself:

npm run prebuild

4. Verify that the dist directory has been deleted.

If it hasn’t, check your scripts for typos. Your scripts object in package.json
should now match Listing 2-1 if you’re using a Linux shell or Listing 2-2 if you’re
using a Windows shell.

LISTING 2-1: The scripts Object with a Complete Build Script (Linux or macOS)

 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1",
 "dev": "webpack serve --mode development --open",
 "prebuild": "rm -rf dist",
 "build": "webpack --mode production",
 "postbuild": "cp public/index.html dist/index.html &&

cp -R public/css dist/css"
 },

522 BOOK 6 Sharpening Your Tools

LISTING 2-2: The scripts Object with a Complete Build Script (Windows)

 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1",
 "dev": "webpack serve --mode development --open",
 "prebuild": "if exist dist (rmdir /s /Q dist)",
 "build": "webpack --mode production",
 "postbu ild": "copy public\\index.html dist\\index.html & xcopy

/si public\\css dist\\css"
 },

Try running your build script now. If index.html, the css directory, and main.js
are in the dist folder, move on. If not, check your npm scripts and index.html
closely for typos.

Converting to React
At the end of your bundling-and-building process of a vanilla JavaScript appli-
cation, you wind up with a bundled and minified version of the same JavaScript
code you had when you started. Now that every browser a person is likely to use
supports JavaScript modules, the program works the same before and after you
bundle it. The benefits, of course, are that the bundled version downloads faster
and perhaps runs faster.

When you make use of front-end libraries like React, Vue, and Svelte, however,
bundling is more than just an optimization — it’s a necessity. When your JavaS-
cript code contains JSX or other template code, it’s the bundling process that con-
verts this template code into JavaScript that can run in a browser.

To understand how bundling works with front-end libraries containing template
code, let’s convert the game you wrote in Chapter 1 to React and modify your
automated build.

Configuring Webpack for React
1. Make a copy of the vanilla JavaScript project you’ve been working on since

the beginning of Chapter 1, or create a new Git branch to use in this step list.

If you haven’t read and followed along with the steps in this chapter and in
Book 6, Chapter 1, you can download the complete source code for the vanilla
JavaScript version of the Ball Moving Game from this book’s website.

O
ptim

izing and
Bundling

CHAPTER 2 Optimizing and Bundling 523

2. Install Babel, the Babel loader for Webpack, and the Babel presets for
React and JavaScript:

npm i @babel/core @babel/preset-env @babel/preset-react
babel-loader --save-dev

Babel is the package that compiles JSX code to JavaScript.

3. Create a file named webpack.config.js in the root of your project.

This is the Webpack config file, which tells Webpack to use Babel to process
files ending with .js or .jsx.

4. Add the code from Listing 2-3 to webpack.config.js.

5. Make a file named .babelrc at the root of your project.

This is the configuration file for Babel.

6. Add the code from Listing 2-4 to .babelrc.

7. Install React and ReactDOM:

npm i react react-dom

8. Run your development server to make sure it still works with your vanilla
JavaScript application:

npm run dev

LISTING 2-3: Configuring Webpack to Use babel-loader

const config = {
 module: {
 rules: [
 {
 test: /\.(js|jsx)$/i,
 loader: 'babel-loader',
 },
],
 },
};

module.exports = () => {
 return config;
};

524 BOOK 6 Sharpening Your Tools

LISTING 2-4: Configuring the Babel Presets

{
 "presets": [
 ["@babel/preset-env"],
 ["@babel/preset-react"]
]
}

That’s all there is to it for a basic configuration of your toolchain to run and build
React code. If everything still works, move on to the next section, where I show
you how to start converting the game to React.

Converting the UI to React
1. Update index.js to render a root React component, as shown in

Listing 2-5. Notice that you’re rendering the root component into the map
element that already exists in index.html.

2. Create a new file for the App component, named App.js. Inside it, define
the App, Map, and Ball components, as shown in Listing 2-6.

You could define Ball and Map in separate files, but because they’re used only
by App at this point, you should keep things simple and define them in the
same file. Notice that Map and Ball aren’t exported, because they won’t be
used outside of App.

3. Start your dev server, if it’s not already running.

You should now have the border around the edge of the browser window and
a ball in the upper-left corner, as shown in Figure 2-4.

LISTING 2-5: Rendering the root component

import React from 'react';
import ReactDOM from 'react-dom/client';
import App from './App';

const root = ReactDOM.createRoot(
 document.getElementById('map')
);
root.render(<App/>);

O
ptim

izing and
Bundling

CHAPTER 2 Optimizing and Bundling 525

LISTING 2-6: Creating App.js

import React from 'react';

function App() {
 return (
 <Map>
 <Ball/>
 </Map>
);
}

function Map({ children }) {
 return children;
}

function Ball() {
 return <div id="ball"/>;
}

export default App;

From here, things get a bit more complex because you need to implement the
obstacles. To make that happen, make a new component inside App.js named
Obstacle, as shown in Listing 2-7.

FIGURE 2-4:
The first pieces

are in place!

526 BOOK 6 Sharpening Your Tools

LISTING 2-7: The Obstacle Component

function Obstacle({ obstaclePosition }) {
 return <div className="obstacle" style={obstaclePosition}></div>;
}

This is it for the Obstacle component. It just takes a position object as a prop and
uses the values from that to position an individual obstacle. The App component
will generate one instance of this component for each obstacle in the window.

Creating the map requires a number of obstacles and a randomly generated array
of positions. Follow these steps to generate the map:

1. Although you may decide to make the number of obstacles changeable in
the future, let’s keep it simple for now and just define it as a constant in
the App component:

function App() {
 const numberOfObstacles = 100;
 // rest of the App component here

}

2. Pass numberOfObstacles to the Map component:

<Map numberOfObstacles={numberOfObstacles}>
 <Ball/>

</Map>

3. Deconstruct numberOfObstacles from the props object in the Maps
component:

function Map({children,numberOfObstacles}){

4. Import useState and useEffect at the beginning of App.js (in the same
import you used for importing React):

import React, {useState,useEffect} from 'react';

Technically, this step isn’t necessary. Since you imported the entire React
library, you could just call useState and useEffect with React.useState()
and React.useEffect(), but no one does this.

5. Define a state variable in the Map component for the array of Obstacle
elements:

const [obstacles, setObstacles] = useState([]);

O
ptim

izing and
Bundling

CHAPTER 2 Optimizing and Bundling 527

6. To make the map only be generated one time, when the component
mounts, use useEffect in Map to populate the obstacles array. Do this
using a function named generateMap() that’s defined outside of
useEffect():

useEffect(() => {
 const map = generateMap(numberOfObstacles);
 setObstacles(map);

}, []);

7. Create the array of obstacle positions in the Map component by making a
new array with the correct number of elements and populate it with
random positions:

 const obstaclePositions = Array(numberOfObstacles)
 .fill()
 .map(() => {
 const x = Math.floor(Math.random() * 100) + 'vw';
 const y = Math.floor(Math.random() * 100) + 'vh';
 return { left: x, top: y };
 }

);

8. After you define the obstaclePositions constant, write the gener-
ateMap() function that will be used in the useEffect function:

const generateMap = (numberOfObstacles) => {
 const obstacles = [];
 for (let i = 0; i < numberOfObstacles; i++) {
 obstacles[i] = (
 <Obstacle obstaclePosition={obstaclePositions[i]}

key={i}/>
);
 }
 return obstacles;

};

9. In the Map component’s return statement, render the obstacles array
and wrap both obstacles and children with a React.Fragment shorthand
element (< >):

return (
 < >
 {obstacles}
 {children}
 </>

);

528 BOOK 6 Sharpening Your Tools

If you did everything correctly, you should see the map generated when you run
the app now, as shown in Figure 2-5.

Listing 2-8 shows what the App.js file should look like now.

LISTING 2-8: App.js with the Map Rendering

import React, { useState, useEffect } from 'react';

function App() {
 const numberOfObstacles = 100;
 return (
 <Map numberOfObstacles={numberOfObstacles}>
 <Ball/>
 </Map>
);
}

function Map({ children, numberOfObstacles }) {
 const [obstacles, setObstacles] = useState([]);

 useEffect(() => {
 const map = generateMap(numberOfObstacles);

FIGURE 2-5:
The map.

O
ptim

izing and
Bundling

CHAPTER 2 Optimizing and Bundling 529

 setObstacles(map);
 }, []);

 const obstaclePositions = Array(numberOfObstacles)
 .fill()
 .map(() => {
 const x = Math.floor(Math.random() * 100) + 'vw';
 const y = Math.floor(Math.random() * 100) + 'vh';
 return { left: x, top: y };
 });

 const generateMap = (numberOfObstacles) => {
 const obstacles = [];
 for (let i = 0; i < numberOfObstacles; i++) {
 obstacles[i] = (
 <Obstacle obstaclePosition={obstaclePositions[i]}

key={i}/>
);
 }
 return obstacles;
 };

 return (
 <>
 {obstacles}
 {children}
 </>
);
}

function Ball() {
 return <div id="ball"></div>;
}

function Obstacle({ obstaclePosition }) {
 return <div className="obstacle" style={obstaclePosition}></div>;
}

export default App;

530 BOOK 6 Sharpening Your Tools

The next piece to implement is the functionality for moving the ball. Follow these
steps to set it up:

1. Create a stateful variable in the App component to hold the current
position of the ball and set the initial state to the upper-left corner of the
screen:

const [position, setPosition] = useState({x:0,y:0});

2. Pass position to the Ball component as a prop:

<Ball position={position}/>

3. In the Ball component, deconstruct position from the props and add a
style attribute to the <div> that should use position to set the left and
top style properties:

function Ball({ position }) {
 return (
 <div
 id="ball"
 style={{
 left: position.x + 'vh',
 top: position.y + 'vh',
 }}
 ></div>
);

}

4. Write the moveBall() function in the App component:

const moveBall = (e) => {
 switch (e.key) {
 case 'ArrowUp':
 setPosition((prev) => {
 return { x: prev.x, y: prev.y - 1 };
 });
 break;
 case 'ArrowDown':
 setPosition((prev) => {
 return { x: prev.x, y: prev.y + 1 };
 });
 break;
 case 'ArrowLeft':
 setPosition((prev) => {

O
ptim

izing and
Bundling

CHAPTER 2 Optimizing and Bundling 531

 return { x: prev.x - 1, y: prev.y };
 });
 break;
 case 'ArrowRight':
 setPosition((prev) => {
 return { x: prev.x + 1, y: prev.y };
 });
 break;
 }

};

5. Set an event listener inside App to listen for keydown events on the
document object and call the moveBall() function when they happen.

This should be called inside useEffect, because you want it to happen only
once, and you return a function from useEffect’s callback to remove the
event listener when the App component is unmounted.

useEffect(() => {
 document.addEventListener('keydown', moveBall);
 return () => {
 document.removeEventListener('keydown', moveBall);
 };

 }, []);

Test it out! You should now be able to press the arrow keys to move the ball around
the screen. The last thing to do to convert this app to React is to enable the colli-
sion detection.

Detecting collisions
In this section, I show you how to implement edge detection and collision detection
for the game and make a few improvements over the vanilla JavaScript version.

You can make a function that checks for collisions each time the position of the
ball changes by using the useEffect hook and specifying the position variable as
its dependency. Follow these steps:

1. In the App component, pass the setPosition() function to the Ball
component.

<Ball position={position} setPosition={setPosition}/>

532 BOOK 6 Sharpening Your Tools

2. In the Ball component, add setPosition to the parameters list.

function Ball({ position, setPosition }) {

3. Copy the code from Listing 2-9 into the Ball component.

LISTING 2-9: Detecting Collisions

useEffect(() => {
 const ball = document.getElementById('ball');
 const ballPosition = ball.getBoundingClientRect();
 const obstacles = document.getElementsByClassName('obstacle');
 for (let i = 0; i < obstacles.length; i++) {
 const obstaclePosition = obstacles[i].

getBoundingClientRect();
 if (
 ballPosition.x < obstaclePosition.x + obstaclePosition.

width &&
 ballPosition.x + ballPosition.width >

obstaclePosition.x &&
 ballPosition.y < obstaclePosition.y + obstaclePosition.

height &&
 ballPosition.y + ballPosition.height > obstaclePosition.y
) {
 alert('Game Over');
 setPosition({ x: 0, y: 0 });
 }
 }
 }, [position]);

The code in Listing 2-9 works pretty much the same as the code from the vanilla
JavaScript version. However, this version of the obstacle detection code makes
colliding with an obstacle more consequential. Now, instead of the program just
logging a message to the console, it displays a Game Over alert and returns the
ball to the home position.

Next, you implement the edge detection and make some improvements there, too:

1. Create a new function inside the Ball component called detectEdgeCol-
lision() with the code from Listing 2-10.

This function checks the ball’s position and compares it with the width and
height of the window. If the ball is outside the window’s bounds, it is returned

O
ptim

izing and
Bundling

CHAPTER 2 Optimizing and Bundling 533

to its previous position. The effect is that the ball looks like it’s bouncing off the
edges when you try to move offscreen.

2. Call the detectEdgeCollision() function from within the same useEf-
fect hook that checks for obstacle collisions. You can just put this call at
the beginning of the callback function passed to useEffect():

detectEdgeCollision();

LISTING 2-10: The detectEdgeCollision Function

function detectEdgeCollision() {
 const ball = document.getElementById('ball');
 const ballPosition = ball.getBoundingClientRect();
 if (ballPosition.x < 0) {
 setPosition((prev) => {
 return { x: prev.x + 1, y: prev.y };
 });
 }
 if (ballPosition.x + ballPosition.width > window.innerWidth) {
 setPosition((prev) => {
 return { x: prev.x - 1, y: prev.y };
 });
 }
 if (ballPosition.y < 0) {
 setPosition((prev) => {
 return { x: prev.x, y: prev.y + 1 };
 });
 }
 if (ballPosition.y + ballPosition.height > window.

innerHeight) {
 setPosition((prev) => {
 return { x: prev.x, y: prev.y - 1 };
 });
 }
 }

With all that done, the conversion of the program is complete. You can, of course,
make many more improvements to this program. These are some of my ideas for
future improvements:

 » Make the obstacles move around randomly.

 » Put another object on the screen that will be the "goal."

534 BOOK 6 Sharpening Your Tools

 » Use CSS animation to move the ball smoothly.

 » Make the game keep score.

If you want to play around with the code some more, it’s completely free for
you to do with it as you like. You can find both the vanilla JavaScript version and
the React version of this program in the code download for this book, or in my
GitHub repo at https://github.com/chrisminnick/javascriptaio. If you end
up building something with this code or improving it, send me a message on
Twitter (@chrisminnick) or Mastodon (@chrisminnick@hachyderm.io) and let
me know. I look forward to seeing what you make.

https://github.com/chrisminnick/javascriptaio

CHAPTER 3 Testing Your JavaScript 535

Testing Your JavaScript
“Testing — we will never do enough of it.”

—GREG LEMOND

Testing is considered the fourth phase of the systems development life
cycle (SDLC), but it starts much earlier in the process. In fact, testing is an
important tool throughout the software development process. You might

start your journey as a programmer by doing only informal and ad hoc manual
testing — for example, opening the application and clicking around to see whether
it works. Or you might put a console.log statement in your code to check the
value of a variable.

As your programming skills mature, you’ll use tools that will make your testing
easier or even allow you to make fewer mistakes in the first place.

A professional developer must always be considering testing and should make use
of an automated testing framework to make tests repeatable. Automated testing
has many benefits, from ensuring that the new code works to testing that it does-
n’t break something else and even to planning how to write a piece of functional-
ity in the first place (in the case of test-driven development).

If you want to learn more about how writing your tests before you write your code
can help you write better code, check out Kent Beck’s book on the topic, Test-
Driven Development: By Example, or his videos on YouTube.

Chapter 3

IN THIS CHAPTER

 » Using ESLint

 » Debugging JavaScript in Chrome

 » Testing with Jest

 » Testing React components

536 BOOK 6 Sharpening Your Tools

Using a Linter
One tool for testing your code as you write it is a static code analyzer, also known
as a linter. Linters check the syntax and, optionally, the coding style of your code
as you write and during the build process. Although a linter can’t tell you whether
your code works the way you want it to, it can tell you whether you’re writing
valid JavaScript syntax. If configured to do so, the linter can also enforce good
coding practices, like consistent indentation, consistent use of single and double
quotes, and much more.

The most popular linter for use with JavaScript is a node package called ESLint.
ESLint is highly configurable using configuration files as well as plugins.

Installing ESLint
ESLint is available as an extension for VS Code, and you may already be using it
without even knowing. In this section, I tell you how to install ESLint into your
project’s automated toolchain so that it checks the code before compiling it.

Because syntax and proper style are vital, a single error found by ESLint will (and
should) cause your build to crash until you fix the problem. ESLint also has warn-
ings, which aren’t as critical as errors, but that will display messages in your
terminal.

Follow these steps to install and configure ESLint:

1. Open a terminal window in VS Code at the root of your React project
from Chapter 2.

2. Install ESLint and start the configuration process by entering this
command:

npm init @eslint/config

Npm asks whether you want to install @eslint/create-config. Say yes.

The ESLint configuration script asks some questions about your preferences.
How you answer these questions is up to you, and it’s easy to change later.

3. However, I recommend that you use the following settings for this
project:

• How would you like to use ESLint? To check syntax and find problems

I recommend using a code formatter, like Prettier (which I cover in
Chapter 2 of Book 1), rather than have ESLint enforce style issues. The
reason is that Prettier automatically does many of the things that ESLint
would flag as style problems, and it may even conflict with ESLint in some

Testing Your JavaScript

CHAPTER 3 Testing Your JavaScript 537

cases, which would cause you to have to do additional configuration
unnecessarily.

• What type of modules does your project use? JavaScript modules

• Which framework does your project use? React

• Does your project use TypeScript? No

• Where does your code run? Browser

• What format do you want your config file to be in? JSON

When all the questions are answered, ESLint asks whether you want to install
ESLint and the ESLint plugin for React. Say yes. It also asks which package man-
ager you want to use. Choose npm.

If everything goes well, you see ESLint and the ESLint plugin for React in your
package.json file, and a new file named .eslintrc.json will be in the root of
your project.

Take a quick glance at .eslintrc.json. Like package.json, this is just a file con-
taining a JSON object. The object has several properties, and the settings you need
for using ESLint with React should already be configured for you. If you want to
learn more about configuring ESLint, you can read the docs at https://eslint.
org/docs/latest.

Running ESLint for the first time
To make running ESLint easy, follow these steps to create an npm script:

1. Create a new npm script in package.json named lint that will run ESLint
on all the code in your project:

"lint": "eslint .",

2. Test out your new lint script:

npm run lint

Figure 3-1 shows the errors I got when I ran ESLint in my project.

Fixing linting errors
Let’s deal with the simple issues first. Firstly, ESLint complains that the React
version isn’t specified in your settings. To fix this problem, you need to add a
react.version setting to your ESLint configuration file.

https://eslint.org/docs/latest
https://eslint.org/docs/latest

538 BOOK 6 Sharpening Your Tools

Open .eslintrc.json and add the following new property to the beginning of the
returned object:

"settings": {
 "react": {
 "version": "detect"
 },
},

Setting the version to detect causes ESLint to do the work of finding out which
version of React you’re using rather than your having to remember to update the
ESLint configuration file every time you upgrade to the latest version of React.
Check to ensure that your commas and curly braces are all in the right place, and
then run your linting script again to confirm that this warning is gone.

If you look at the errors shown in Figure 3-1, you see that the last one refers to
the use of the module object in the Webpack configuration file. Because package
configuration files run in Node, they typically use the CommonJS module syntax
rather than JavaScript modules. To tell ESLint that it’s fine, you can add Node to
the env object in .eslintrc, like this:

"env": {
 "browser": true,
 "es2022": true,
 "node": true
},

Run ESLint again, to confirm that this error is cleared.

The remaining errors have to do with props validation. Props validation is the pro-
cess of checking to ensure that your components that receive props receive the

FIGURE 3-1:
The result of

running ESLint.

Testing Your JavaScript

CHAPTER 3 Testing Your JavaScript 539

correct props and that they have the correct data type. Props validation using
prop-types happens only during development. It has no effect on how your app
runs, but it can help you to write better code, so it’s an important tool in React
development.

The library used to validate props is called prop-types. Follow these steps to
implement props validation into the React game I show you how to create in
Chapter 2 of Book 6:

1. Install prop-types:

npm i prop-types --save-dev

2. Import prop-types into App.js:

import PropTypes from 'prop-types';

3. Just below the import statements, add a static property named propTypes
to each component that receives props:

Map.propTypes = {};
Ball.propTypes = {};

Obstacle.propTypes = {};

A static property is one that belongs to the class (the component in the case of
React) rather than instances of the class. You can add static properties to React
components just by defining them outside of the class (or function, in this
case).

4. Create a property of each propTypes object for each prop that each
component receives.

For example, the Map component receives children and numberOfObstacles,
so you can start its propTypes object like this:

Map.propTypes = {
 children: /** children here */,
 numberOfObstacles: /** Obstacle count */,

};

The prop-types library defines several validators. The basic validators mostly
have the same names as JavaScript data types, such as number, string, array,
and object. For function properties, you can use the func validator. For
Boolean props, use bool.

There are also validators for checking to see whether something is a React
element or node, and for specifying that a certain prop is required. You can

540 BOOK 6 Sharpening Your Tools

find the complete list of validators, as well as information about creating
custom validators, in the prop-types documentation at https://reactjs.
org/docs/typechecking-with-proptypes.html.

5. Add a validator for each of the props. Here’s what I came up with:

Map.propTypes = {
 children: PropTypes.node.isRequired,
 numberOfObstacles: PropTypes.number.isRequired,
};

Ball.propTypes = {
 position: PropTypes.object.isRequired,
 setPosition: PropTypes.func.isRequired
};

Obstacle.propTypes = {
 obstaclePosition: PropTypes.object.isRequired,

};

With props validation implemented, you should now be able to run your lint npm
script and see a message that there were no errors. If you’re still getting linting
errors, check your code carefully and get them fixed before moving on.

If you still have the src/modules folder or the dist folder in your project, these may
also cause ESLint to return errors. Because you no longer need the files in either of
these folders, you can delete them.

Integrating ESLint into your build script
Linting your code should be as easy as possible, and preferably automatic. Even
more importantly, you should be prevented from creating a build of your project
if it contains linting errors. To integrate ESLint into your automated build, do this
in package.json: Modify your build and dev scripts to run the lint script before
the build and dev scripts:

"dev": "npm run lint && webpack serve --mode development
--open",

"build": "npm run lint && webpack --mode production"

Now when you run npm run dev or npm run build, npm runs the lint script first.
If your code contains no lint errors, the script proceeds with the rest of its tasks
as it normally would. Try introducing a typo into your code to see what happens
when you try to start or build your script containing an error.

https://reactjs.org/docs/typechecking-with-proptypes.html
https://reactjs.org/docs/typechecking-with-proptypes.html

Testing Your JavaScript

CHAPTER 3 Testing Your JavaScript 541

For example, open App.js and comment out one of the import statements:

// import React, { useState, useEffect } from 'react';

Now when you try to start the project with npm run build, you get a mess of
errors, and the build halts after ESLint does its job, as shown in Figure 3-2.

Fix the error and try running the script again.

Excluding files from linting
After you run npm run build, you’ll have a dist directory. If you try to run npm
run lint now, you’ll get errors because ESLint is trying to apply the same rules
as it applies to your source code to the bundled code. Minified code won’t pass the
style and syntax checks, however, so you need to exclude the files in dist from
checking by ESLint.

To exclude files from linting, create a new file at the root of your project called
.eslintignore. Add the following line to .eslintignore:

dist/*

Save .eslintignore and try running your npm run lint script again. The result
should be that you no longer get errors for files in the dist folder.

FIGURE 3-2:
Linting errors halt
the build process.

542 BOOK 6 Sharpening Your Tools

Debugging in Chrome
Once you have some code written that’s syntactically correct, it’s quite possible
that it still won’t be doing what you want it to do. This is where the process of
debugging starts.

Many programmers spend a lot of time looking hard at their code to figure out
why it isn’t working. This can be an effective technique, but it can be improved
with tools.

In this section, you learn how to debug your JavaScript application with Chrome
Developer Tools.

Getting started with the Sources panel
The Sources panel in the Chrome Developer Tools contains tools for debugging
JavaScript code. To see the Sources panel, open the Chrome Developer Tools by
pressing Option+Command+J (on macOS) or Shift+Ctrl+J (on Windows) and then
click the Sources tab. The Sources panel opens, as shown in Figure 3-3.

If you have your developer console docked to the right side of the browser, the
Sources panel is arranged differently but the parts are all the same. My descrip-
tions refer to the layout of the parts of the Sources panel as they’re arranged when
you have the console docked to the bottom of the browser.

Make sure that your dev server is running, and then follow these steps to learn the
basics of debugging with the Sources panel:

1. Look at the pane on the left end of the Sources panel.

This is where the files containing code that’s currently running in the browser
window are displayed.

2. Expand the branch called localhost:8080 and then click on main.js.

The compiled code for main.js appears in the middle window.

Building a source map
The compiled code is only of limited use to you for debugging. If there’s an error in
your code, you don’t need to know where that error lives in the compiled code —
to fix it, you need to know where it is in the source code.

Testing Your JavaScript

CHAPTER 3 Testing Your JavaScript 543

To make in-browser debugging easier, you can tell Webpack to create a source
map. A source map is a file that links the compiled code to the source code so that
you can view the source code in the debugger, even though the browser is running
compiled code. Handy, right?

1. Open webpack.config.js and add a new property called devtool to the
top level of the config object. Give it a value of source-map:

devtool: 'source-map',

2. Stop and restart your dev server, and then go back to the Sources panel
in Chrome.

3. Select Group Files by Authored/Deployed from the three dots menu on
the left of the Sources panel.

The files in Sources are organized into the two categories.

4. Expand the Authored file list and locate your App.js file and click on it.

You see in the center of the panel the exact code you wrote, as shown in
Figure 3-4.

FIGURE 3-3:
The Sources

panel.

544 BOOK 6 Sharpening Your Tools

Editing your code in the Sources panel
The middle pane of the Sources panel can be used to edit the code that’s now run-
ning in the browser. Making changes here doesn’t affect your original source files,
of course — it affects only what’s in the current browser window.

Making quick changes to the code in the Sources panel is a great way to test out
small changes or fixes to your code before you make them in your code editor.

Setting breakpoints
You can also use the middle pane to set breakpoints. A breakpoint is a place in the
execution of the code where you want the code’s execution to pause. Follow these
steps to set a breakpoint and investigate what’s going on inside your program:

1. Find the line of code in App.js that calls the setPosition() function
when the up-arrow key is pressed, and click the line number to the
left of it.

The line number is highlighted in blue, and the line is added to the Breakpoints
list in the pane on the right, as shown in Figure 3-5.

FIGURE 3-4:
Viewing your
source code

in the Sources
panel.

Testing Your JavaScript

CHAPTER 3 Testing Your JavaScript 545

2. Click inside the browser window to give it focus again, and then press the
up-arrow key.

Execution of the program freezes, you see a message that says Paused in
debugger, and the breakpoint is highlighted.

3. Look under the Scope header on the right.

This step shows you what the values of the variables in your program are at
this point in its execution.

4. Expand the Local header under Scope and view the value of the local
variables inside the callback function provided to the setPosition()
function.

5. Look at the bar containing icons at the top of the pane on the right in the
Sources panel.

These tools allow you to control the running of the program when it’s paused
at a breakpoint.

6. Click the first icon, the Resume Script Execution button.

The program starts running normally again.

7. Click in the window and then press the up-arrow key again.

The program pauses again because the breakpoint is still set.

8. Set more breakpoints by clicking on additional lines of code, and then
click the Resume Script Execution button to run the code again.

9. Try clicking on the line number where you have an existing breakpoint.

This step removes the breakpoint.

10. Play around with the other buttons in the debugger to learn what
they do.

FIGURE 3-5:
Setting a

breakpoint.

546 BOOK 6 Sharpening Your Tools

11. When you’re done, click the button that’s second from the right at the
top of the debugger to disable all your breakpoints at once while leaving
them there in case you want to reactivate them again.

Using watch expressions
The Watch area in the debugger allows you to track the values of expressions while
your program is executing. Follow these steps to learn how to get started with it:

1. Expand the Watch header.

You see a message saying that you have no watch expressions.

2. Click the Plus Sign (+) icon at the top of the Watch area.

A blank text input box appears. You can type expressions or the names of
variables into this input box. However, there’s an easier way to set Watch
expressions.

3. Enable your breakpoints if they’re disabled, and then take action in your
browser to trigger one of the breakpoints.

4. Look in the Scope area of the debugger and right-click one of the func-
tions or variables there.

5. Right-click and choose Add Property Path to Watch from the menu.

A new watch expression is created, as shown in Figure 3-6.

6. Try out different tasks in the browser and observe your watch expression
to see how its value or the values of its properties change.

FIGURE 3-6:
Setting a watch

expression.

Testing Your JavaScript

CHAPTER 3 Testing Your JavaScript 547

Unit Testing
Unit testing is a type of testing where you test individual components of your code,
such as functions. Unit testing is the most common type of automated testing that
a programmer does.

Other kinds of testing happen mostly later in the software development process.
For example:

 » Integration testing is the testing of groups of modules.

 » System testing, which includes end-to-end testing, tests an entire system. For
example, a JavaScript application typically works with a database, a server, and
other components, which may include load balancing and (of course) users.

 » End-to-end testing tests the entire system in as close to a real-life scenario as
possible.

 » Acceptance testing is a type of testing where the client or customers test the
application with real-life business cases.

In this book, I focus on describing unit testing and integration testing using a test
automation framework. The job of a test automation framework is to provide tools
and a language that you can use to write tests. Each test checks a certain aspect of
your program or system and reports the result as Pass or Fail.

As you develop your application, you create numerous tests, which you can run at
any time and integrate into your automated build tool. Having these tests is not
just good for checking that your code works as expected — it’s also a great way to
create documentation for your code.

One test automation framework is called Jest. Originally created by Facebook for
testing React components, Jest has become a popular framework for testing any
JavaScript code.

Installing and configuring Jest
Follow these steps to install Jest:

1. Install Jest into your project:

npm install jest --save-dev

2. Modify the test script in package.json to run Jest:

"test": "jest",

548 BOOK 6 Sharpening Your Tools

3. Run npm test to see what Jest does by default:

You see a message like the one shown in Figure 3-7.

As you can see from the response to running Jest without configuration, it auto-
matically looks for files in your project that match a pattern and ignores every-
thing in node_modules.

At this point, of course, you haven’t written any tests, so there’s nothing for Jest
to do except count the JavaScript files in the project and tell you that it didn’t find
any tests.

To create a file that will be parsed by Jest, you can do any of the following:

 » Put your test files in a folder named __tests__.

 » Make a file that ends with .test.js.

 » Make a file that ends with .spec.js.

For small projects, most React developers use the .test.js naming and keep the
files in the same folder as the components they test.

Writing your first test
Follow these steps to learn how to write Jest tests for vanilla JavaScript.

1. Make a new file in your src folder named dogAgeCalc.js.

2. Inside this new file, write a simple function for calculating how old a dog
is in human years, as shown in Listing 3-1.

3. Make a new file in src named dogAgeCalc.test.js.

FIGURE 3-7:
Look, ma — no
configuration!

Testing Your JavaScript

CHAPTER 3 Testing Your JavaScript 549

4. Enter the code in Listing 3-2 into dogAgeCalc.test.js.

LISTING 3-1: Calculating a Dog’s Age in Human Years

export function dogToHumanAge(dogAge) {
 const dogHumanAge = dogAge * 7;
 return dogHumanAge;
}

LISTING 3-2: Testing the Dog-Age Calculator

import { dogToHumanAge } from './dogAgeCalc';

describe('Dog age calculator', function () {
 it('should return 7 when given 1', () => {
 const result = dogToHumanAge(1);
 expect(result).toBe(7);
 });
});

At this point, you’ll likely see that the names of the describe(), test(), and
expect() functions are underlined in red. If you hover the cursor over them, you
see a tooltip that tells you that describe, test and expect are undefined.

This message comes from ESLint. The problem is that you haven’t yet told ESLint
about Jest. To correct this, open eslintrc.json and add "jest" as another prop-
erty in the env object. At this point, your env object in .eslintrc should look like
this:

 "env": {
 "browser": true,
 "es2022": true,
 "node": true,
 "jest": true
 },

With jest added to the env object, return to your .test.js file and the red under-
lines will be gone. Now that the test has been written, try running npm test again.
If you don’t have any mistakes in your code, you should see something like the
result shown in Figure 3-8.

550 BOOK 6 Sharpening Your Tools

Now that you’ve written your first successful test, let’s look briefly at how Jest
works and the language of testing.

Learning how Jest works
Writing tests with Jest involves these three parts:

 » Test suites

 » Specs

 » Expectations

Test suites
A test suite is a collection of tests that test a unit of functionality. In Jest, test suites
are created using the describe() function. The describe() function takes two
parameters: a suite name and a suite implementation.

The suite name can be any string you like, and its purpose is to describe what the
suite is designed to test.

The suite implementation is a function that contains the logic you use to test the
code.

Test specs
Test specs are individual tests that are written inside a suite. You can use as many
specs inside a suite as you like. Test specs are defined using either the test()
function or the it() function. Though the two are identical, most people choose
one and stick with it for all their tests.

FIGURE 3-8:
A successful

test.

Testing Your JavaScript

CHAPTER 3 Testing Your JavaScript 551

Whether you pick it() or test() depends on how you choose to write your spec
descriptions. Using it() can lead to making tests more easily readable to people.

The test() and it() functions take two parameters: the spec name (or descrip-
tion) and the spec implementation. The spec name should be a string that describes
what the single test is testing. The implementation is a function that contains the
logic that’s used to test one individual aspect.

Expectations
An expectation (which is also known as an assertion) is a statement that returns a
Boolean value by comparing a value produced by the code that’s being tested to a
value that you expect the result to be.

Expectations are created using the expect() function and a matcher function. Jest
contains a number of matcher functions that compare the actual return value with
the expected value in different ways.

These are some of the most commonly used built-in matchers:

 » toEqual()

 » toBeGreaterThan()

 » toBeLessThan()

 » toBeNull()

 » toBeUndefined()

 » toBeTruthy()

 » toBeFalsy()

 » toMatch()

 » toBe()

You can find a complete list of Jest’s built-in matchers at https://jestjs.io/
docs/expect.

https://jestjs.io/docs/expect
https://jestjs.io/docs/expect

552 BOOK 6 Sharpening Your Tools

Writing better code through testing
Writing tests is a useful way to expose problems in your code and make your pro-
grams better. Follow these steps to implement a test that fails and then fix your
code:

1. Write a new test that checks to see whether the dogToHumanAge()
function correctly handles non-numeric data types that are passed to it.
Add the following spec to your test suite:

 it('handles invalid input', () => {
 const result = dogToHumanAge('a');
 expect(result).toBe('Invalid input');

 });

2. Run your tests.

The new test fails, as shown in Figure 3-9.

3. Open dogAgeCalc.js and write the code to make the test pass.
Something like this snippet should do the trick:

export function dogToHumanAge(dogAge) {
 if (typeof dogAge !== 'number') {
 return 'Invalid input';
 }
 const dogHumanAge = dogAge * 7;
 return dogHumanAge;

}

4. Run your tests again to verify that the problem is solved.

FIGURE 3-9:
Running a test

that fails.

Testing Your JavaScript

CHAPTER 3 Testing Your JavaScript 553

Using testing-library
Testing front-end frameworks (such as React, Vue, and Svelte) can be done using
just the built-in methods provided by Jest. However, you can use certain tools to
make testing components easier.

In this section, I describe how to install and use a testing library to test React
components. The library I use is called React Testing Library, but the methods I
show you can also be used with Svelte and Vue as well as with many other front-
end frameworks by installing the version of Testing Library for the framework
you’re using.

The first thing to do is to install React Testing Library:

npm i @testing-library/react --save-dev

To find out how to use React Testing Library with other frameworks, visit https://
testing-library.com/docs.

The idea behind React Testing Library is that it focuses on making it possible for
you to test the rendered output of components rather than the details of how that
output is created. When you test a component with React Testing Library, you
make assertions about values in a screen object, which contains the returned
HTML from the component.

Follow these steps to write a test using React Testing Library:

1. Make a new file named Map.test.js.

I want to create a test that checks to see whether the Map component
generates and renders the correct number of obstacles.

2. Import React:

import React from 'react';

3. Import render() and screen() from React Testing Library:

import {render, screen} from '@testing-library/react';

The render() method renders the component using an in-memory web
browser called js-dom. Because js-dom has no user interface, it’s also known as
a headless browser.

4. Install js-dom:

npm install jest-environment-jsdom --save-dev

https://testing-library.com/docs
https://testing-library.com/docs

554 BOOK 6 Sharpening Your Tools

5. Tell jest to use js-dom by inserting the following block at the beginning of
Map.test.js:

/**
 * @jest-environment jsdom

 */

6. Import the Map component:

import {Map} from './App';

7. In App.js, add the export keyword before the Map function so that the
import from Step 6 will work.

8. Use the it() method to define a test suite that tests whether Map creates
the correct number of obstacles, as shown in Listing 3-3:

When you run this test, it fails because getAllByTestId() finds no matches.

9. Add a data-testid attribute to the Obstacle component:

function Obstacle({ obstaclePosition }) {
 return (
 <div
 className="obstacle"
 data-testid="obstacle"
 style={obstaclePosition}
 ></div>
);

}

The getAllByTestId() matcher function looks for the value you pass to it in a
data-testid attribute of an element.

10. Run your tests again. They should all pass, as shown in Figure 3-10.

You may get see a prop type validation warning because this test doesn’t pass
a Ball component to Map. However, that’s nothing to worry about.

LISTING 3-3: Testing the Map component.

it('renders the correct number of obstacles', () => {
 render(<Map numberOfObstacles={10}/>);
 const obstacles = screen.getAllByTestId('obstacle');
 expect(obstacles.length).toBe(10);
});

Testing Your JavaScript

CHAPTER 3 Testing Your JavaScript 555

FIGURE 3-10:
Your first React

test passes!

7Node.js

Contents at a Glance
CHAPTER 1: Node.js Fundamentals . 559

CHAPTER 2: Streaming . 587

CHAPTER 3:	 Working	with	Buffers . 603

CHAPTER 4:	 Accessing	the	File System . 613

CHAPTER 5: Networking with Node . 627

CHAPTER 6: Using Events . 639

CHAPTER 7: Error Handling and Debugging 651

CHAPTER 8: Accessing Databases . 673

CHAPTER 9:	 Riding	on	the	Express Train . 697

CHAPTER 10: Registration and Authentication 721

CHAPTER 1 Node.js Fundamentals 559

Node.js Fundamentals
“Complexity that works is built up out of modules that work perfectly, layered
one over the other.”

—KEVIN KELLY

Browsers aren’t the only places where JavaScript code can run. In Book 7,
you learn about Node.js, which makes it possible for you to run JavaScript
on web servers, in your local development environment, on single-board

computers like the Raspberry Pi, and more.

In this chapter, I describe what Node.js is, explain how it works, and tell you what
makes it so useful. I also spell out the basics of interacting with Node.js and run-
ning Node.js programs.

Chapter 1

IN THIS CHAPTER

 » Understanding Node.js

 » Using Node.js from the Command
Line with REPL

 » Making modules

 » Reading environment variables

 » Accepting arguments

 » Running Node.js programs

 » Invoking the callback pattern

560 BOOK 7 Node.js

Learning What Makes Node.js Tick
Node.js is open-source software for running JavaScript outside of web browsers.
Created by Ryan Dahl in 2009, it quickly became tremendously popular. Today,
Node.js is used on many of the world’s largest websites and by nearly every Java-
Script programmer. It attracts a giant community of developers: The npm registry
(where developers can make their work available to be downloaded and used by
other developers) now lists over 1 million Node.js packages.

As a front-end developer (which you are now, if you’ve read Books 1–6), learn-
ing Node.js places you into the rarified — and potentially lucrative — position of
being a full-stack developer, which is a programmer who works on front-end apps
as well as back-end apps. Even if you’re interested only in developing user inter-
faces, knowing how Node.js works can make you a better front-end developer.

Node.js is not a programming language
Every bit of code you write for Node.js is JavaScript code. Node.js contains no spe-
cial syntax of its own. It does, however, have some conventions and best practices
that all Node.js developers follow. You need to learn the standard Node.js conven-
tions and a bit more about servers to be able to program for Node.js. Other than
that, if you know JavaScript, you can know Node.js.

Node.js is not a framework
You might often hear programmers who aren’t familiar with Node.js talk about
the differences between Node.js and tools like ASP.net or Spring. Although ASP.
net, Spring, and Node.js are all tools that can be used in the creation of server-side
web applications, the similarities between them stop there. ASP.net and Spring
are frameworks — collections of prebuilt code libraries for creating web applica-
tions. Node.js is a platform for server-side JavaScript applications, in the same
way that a browser is a platform for client-side JavaScript applications. Compar-
ing a platform with a framework is like comparing a road to a car.

Node.js is a runtime environment
Like any programming language, or any language at all, really, JavaScript is noth-
ing but a syntax. Just as human languages must be in a readable format or spo-
ken to be useful, programming languages must be compiled and run in a runtime
environment.

N
ode.js Fundam

entals

CHAPTER 1 Node.js Fundamentals 561

Web browsers are runtime environments, too
In Book 2, I tell you about one runtime environment for JavaScript: the web
browser. What makes JavaScript so useful in web browsers is that the web browser
contains APIs for interacting with networking, storage, your computer’s hard-
ware, and more.

However, for safety and security reasons, there are things that JavaScript running
in a web browser can’t do. For example, a web browser can’t read and write to
databases on your computer; it can’t create, change, or delete files on your com-
puter; and it can’t respond to HTTP requests from other web browsers. Instead,
JavaScript in a browser runs in a protected environment that’s sometimes referred
to as a sandbox.

The browser’s sandbox is a safe place where the browser can create its own little
world involving cached files, cookies, and local storage. Though the browser can
also access the device hardware outside the sandbox, it must specifically ask for
permission from the user (which is why you see alerts from websites asking for
permission to access your location or camera or to send you notifications). When
you’re using a web application running in a browser, you’re acting as its parent.

Because web browsers are client applications that access remote computers that
they know nothing about (strangers!), it’s beneficial that browsers run JavaScript
in a sandbox or else we’d all be getting our hard drives erased or filled up with
spam all the time.

Node.js lets JavaScript out of the sandbox
Node.js runs JavaScript directly in a computer’s operating system, not in a sand-
box. As a result, Node.js has full access to the operating system and to anything
that any other installed program can access. Node.js programs can access the hard
drive, make network requests, accept requests from the outside world, run other
programs on your computer, and access hardware devices connected to the com-
puter where they run. If a browser is like a sandbox, Node.js is like a house, and
the programs you write to run in Node.js are fully grown adults.

Why developers need Node.js
Clients aren’t useful much without servers. The way the web works is that clients
(web browsers) request data from servers and send data to servers. The software
on the server that listens for HTTP requests is called an HTTP server. HTTP serv-
ers may be able to access databases, read and write files, make requests to other
servers, and even control your home thermostat, security camera, or toaster, as
shown in Figure 1-1.

562 BOOK 7 Node.js

Just as JavaScript interacts with your web browser, web servers interact with
databases and toasters using APIs.

Before 2009, nearly all server-side software was written using languages other
than JavaScript. What that meant is that if you were a JavaScript programmer who
wanted to work on client-side applications as well as on server-side applications,
you had to know and program in JavaScript on the client and in a separate lan-
guage (such as Perl, PHP, Python, Ruby, or Java) for the server.

Learning the Parts of Node.js
Node.js is made up of several parts and several areas of functionality. In terms
of the software components that make up Node.js, these are the most important
parts:

 » V8: This is the same JavaScript engine that’s used by Google’s
Chrome browser.

FIGURE 1-1:
Unfortunately,

Toasteroid never
advanced past

being a
Kickstarter

project.

N
ode.js Fundam

entals

CHAPTER 1 Node.js Fundamentals 563

 » libuv: The libuv library provides support for asynchronous input and output
(such as file and network operations) using the underlying operating system
Node.js is running on.

 » Node.js bindings: The bindings are methods that translate between
JavaScript that can run in the V8 engine and the functions of libuv, which are
written in C.

 » APIs: Also known as the NodeJS standard library, the APIs are JavaScript
interfaces that allow your programs to interact with the outside world.

Figure 1-2 shows a diagram of how these parts, and a few others, fit together.

The V8 engine
The JavaScript engine at the core of Node.js is the same one that parses and runs
JavaScript code in Chrome. As a result of using the V8 engine, Node.js benefits
from the constant innovations and improvements that are being made to V8 to
make browsers faster. Using V8 also means that Node.js can use all the same fea-
tures of JavaScript that the latest version of Google Chrome can use.

The V8 JavaScript engine is covered in Chapter 1 of Book 2.

libuv
JavaScript uses events and callback functions to trigger asynchronous operations
such as file operations, network requests, and database operations. The job of

FIGURE 1-2:
Illustrating the

parts of Node.js.

© John Wiley & Sons, Inc.

564 BOOK 7 Node.js

libuv is to handle these asynchronous operations in a cross-platform way, which
makes it possible for Node.js to run the same way on macOS, Windows, Linux, and
other operating systems.

The main function of libuv, the event loop, is covered in Chapter 10 of Book 1.

Node.js bindings
The Node.js bindings translate between code written in JavaScript (namely, the
NodeJS APIs) and programs written in C or C++. For example, V8 by itself doesn’t
know how to access databases. However, libraries do exist for working with data-
bases, though they’re typically written in the native language of the operating
system. As a result, a binding is necessary to bridge the communication gap.

The Node.js standard library
The Node.js standard library is a set of modules built into Node.js, which are
known as the core modules. Figure 1-3 shows the names of the Node.js core mod-
ules. In the following section, I introduce a few of the Node.js core modules, and
then I follow up in the rest of this book with detailed information about some of
the most important ones.

Introducing the Node.js Core Modules
The core modules are compiled files that live in the lib folder inside your global
Node.js installation. Most Node.js programs make use of at least one of the core
modules, which are installed as part of every Node.js installation.

FIGURE 1-3:
The Node.js core

modules.

© John Wiley & Sons, Inc.

N
ode.js Fundam

entals

CHAPTER 1 Node.js Fundamentals 565

Core modules can be imported using CommonJS or ECMAScript module syntax.
These are the most important built-in modules to be aware of as you’re starting
to learn Node.js:

 » http creates an HTTP server.

 » stream provides tools for creating event-based classes for managing data.

 » assert contains functions for making assertions for testing.

 » fs handles file system operations.

 » path deals with file paths.

 » process provides information about the current Node.js process.

 » os provides information about the operating system running Node.js.

 » querystring contains utilities for working with URL query strings.

 » url includes utilities for working with URLs.

Listing 1-1 shows how to import and use the os module using CommonJS.

LISTING 1-1: Importing and Using a Core Module

const os = require('os');

console.log('Host: ' + os.hostname());
console.log('OS: ' + os.type());
console.log('OS Version: ' + os.release());
console.log('Total Memory: ' + os.totalmem() + ' bytes');
console.log('Free Memory: ' + os.freemem() + ' bytes');

In this example, the os module is imported and made available as an object named
os. The various methods made available by the os module can then be used to
print information about the current operating system to the console.

You can run the program in Listing 1-1 by saving it in a file named Listing0101.
js (for example) and then entering node Listing0101 into the terminal.

Listing 1-2 shows how to import and use both the fs and http modules using
ECMAScript module syntax and how to serve a file in response to a request.

566 BOOK 7 Node.js

LISTING 1-2: Importing a Core Module Using ECMAScript Modules

import * as fs from 'node:fs';
import * as http from 'node:http';

http.createServer((req, res) => {
 fs.readFile('importantInfo.html', function (err, data) {
 res.writeHead(200, {'Content-Type': 'text/html'});
 res.write(data);
 res.end();
 });
}).listen(8080);

To run the program in Listing 1-2, save it in a file, make sure there’s a file named
importantInfo.html in the same directory as the program file, and enter node
Listing0102.mjs into your terminal.

Recognizing What Node.js Is Good For
Node.js’s ability to handle many operations quickly is legendary. A server running
in Node.js can handle thousands of concurrent requests per second. In fact, Node.
js powers the back end of many of the largest websites, including, Netflix, PayPal,
LinkedIn, Walmart, and GoDaddy. If it’s good enough for them, you can be certain
that it’s good enough for you.

Why is Node.js so fast?
In Chapter 10 of Book 1, I tell you that JavaScript is single-threaded and that it
uses an event loop to spawn asynchronous processes and to respond to messages.
Other languages, such as Java, are multithreaded. They gain more power by run-
ning tasks in parallel.

Although it would seem that having only one thread would put JavaScript at a dis-
advantage, being single-threaded turns out to be ideal for servers. This is because
most of what a server does is asynchronous — including network operations, file
operations, and database operations.

In Node.js, asynchronous operations are always non-blocking. What this means
is that, as far as Node.js is concerned, making a complex database request is no
more difficult than running any other statement. The event loop hands off the

N
ode.js Fundam

entals

CHAPTER 1 Node.js Fundamentals 567

asynchronous task to the operating system’s native API and sends the results back
to your JavaScript program when it’s complete. What makes Node.js so fast is that
it doesn’t wait. This is called non-blocking.

You can think of non-blocking code in the following way: Whenever you order a
meal at a restaurant, the server takes your order and relays it to the kitchen. Once
the order is delivered to the kitchen, the server doesn’t wait for your order to be
filled so that they can bring it to you — they run off and take other orders and
deliver those to the kitchen. When your order is ready, the server picks it up and
delivers it to you.

A blocking restaurant, in which the server must wait for each order to be com-
pleted before taking another one, would be extremely inefficient. The only way to
make it more efficient would be to have multiple servers, which would be much
more expensive.

What is Node.js not good at?
Node.js is not a good fit for certain types of tasks. In particular, Node.js is not a
good choice for tasks that are computationally intensive. This is because tasks
that aren’t asynchronous, such as performing math operations, block Node.js.

To use the restaurant analogy from the preceding section: If a server in the non-
blocking restaurant is also required to wash the dishes by hand (a task that can’t
be done asynchronously), the efficiency of the system goes out the window. The
server would spend all their time between orders washing dishes and then they’d
be less available to take orders.

Working with Node.js
Although Node.js was originally designed to run on web servers, it has also found
a home in running tools used by software developers. If you do any modern JavaS-
cript development, you’re most likely making use of Node.js all the time.

In this book, however, I focus on showing you how to write server-side applica-
tions with Node.js.

568 BOOK 7 Node.js

Writing a Node.js program
Just like JavaScript programs you create to run in web browsers, you can write a
program to run in Node.js using nothing but a text editor. However, code editors
such as VS Code will make your job much easier.

Follow these steps to write your own web server with Node.js:

1. Create a new file in VS Code, named server.js.

2. Enter the code from Listing 1-3 into the file and save it.

3. Open a terminal window and start the server by running the following
command:

node server

4. Go to http://localhost:3000 in your web browser.

You see the text Hello World! in your browser, as shown in Figure 1-4.

5. When you’re done checking out your server, press Ctrl+C in the terminal
to stop the server.

LISTING 1-3: Your First Node.js Web Server

const http = require('http');
const server = http.createServer(function (req, res) {
 res.writeHead(200, { 'Content-Type': 'text/plain' });
 res.end('Hello World!');
});

FIGURE 1-4:
Running a simple

Node.js web
server.

N
ode.js Fundam

entals

CHAPTER 1 Node.js Fundamentals 569

server.listen(3000);
console.log('Server running at http://localhost:3000/');

Monitoring your script
Node.js doesn’t watch your files for changes. What this means is that if you make
changes to your server while it’s running, those changes won’t show up in the
currently running process. To see your changes, you need to stop the server and
restart it.

Having to continually stop and restart your program to see your changes would
be irritating, however. To solve this problem, you can use the Node.js package
called nodemon, which wraps around your program in Node.js and automatically
restarts it when you change files in your Node application.

Follow these steps to get started with using nodemon:

1. Install nodemon globally by entering the following command into the
terminal:

npm install -g nodemon

If the permissions on your computer aren’t configured correctly, or if you don’t
have administrative access to your computer, you may get an error when you
try to install a package globally. This is most common on macOS and Linux.
Should this happen to you, preface the npm install command with sudo. The
sudo command asks you for a password (the same password you log in to
your computer with) and allows the global installation to proceed.

2. Once you’ve installed nodemon globally, you can run any Node.js
program by using nodemon instead of node. For example, enter the
following command to start up the simple Node.js server from Listing 1-3:

nodemon server

If nodemon doesn’t work after you install it globally, you may have to close and
reopen the terminal window or open a new terminal window.

3. With your program running in nodemon, try changing the text that it
returns from Hello World! to Hello Node!.

On Windows, you may get an error in the terminal saying that nodemon can’t
be run because running scripts is disabled. If you search for the exact error
message that you get on Google, you’ll find an article that will tell you how to
solve the problem.

When you refresh your browser window, you should now see the new text.

570 BOOK 7 Node.js

Running a code on the command line
The one essential tool for interacting with Node.js is a command-line interface.
On macOS, this is known as Terminal. On Windows, it’s CMD.exe or another ter-
minal application. On Linux, it’s the terminal.

VSCode has an integrated terminal window that gives you access to an underly-
ing command-line interface on your computer. I used this integrated terminal in
earlier parts of this book, and I’ll continue to use it in this one.

In a web browser, you run a JavaScript program by opening it in a web browser.
In Node.js, you run JavaScript from the command line. As you saw in the previous
section, to run the program in Node.js, you type node or nodemon followed by the
name of the program you want to run.

Since Node.js runs only JavaScript programs, it automatically infers that the file
extension of your program is .js. Because of this, typing the .js extension when
running a Node.js program is optional.

Using REPL
The command-line interface can be used to manage Node.js packages and run
Node.js applications. It can also be used to gain direct access to Node.js for writing
and running simple JavaScript code within Node.js. The interface where you can
run code directly within Node.js without making files and modules is called REPL.

REPL stands for read-evaluate-print loop. REPL is the Node.js equivalent to the
JavaScript console in a browser. Just as the browser console gives you access to
the objects created by the browser (such as the window object and the navigator
object), REPL gives you access to the global objects created by Node.

To access REPL, enter node into a terminal window. You see a welcome message
and a REPL prompt like the one shown in Figure 1-5.

Playing with the Node.js REPL
After you’re in REPL, try running some JavaScript and calling some Node.js func-
tions. Follow these steps:

1. Start by entering a simple JavaScript expression, like this:

45+34

N
ode.js Fundam

entals

CHAPTER 1 Node.js Fundamentals 571

Node.js returns the result of the expression. There’s nothing too interesting
about that, of course.

2. You can also call functions from within REPL — for example, try entering
the following statement:

console.log('Hello REPL');

Just as the browser’s window object has a console object containing a log()
method, Node.js has a global console object containing a number of methods
that can be useful for debugging your programs, including these:

• console.log() outputs a standard debug message to the console.

• console.error() outputs an error to the console.

• console.warn() is an alias for console.error().

• console.dir() logs the properties of an object to the console.

3. Now that you know about Node.js’s console.dir() method, use it to
inspect the console object itself:

console.dir(console);

Figure 1-6 shows the result of passing the console object to console.dir().

Using console.dir() to inspect an object is a useful debugging tool to use
within a Node.js program. When you’re in REPL, you can just type the name of
the object to print out its properties.

FIGURE 1-5:
Starting REPL.

572 BOOK 7 Node.js

4. You can create variables in the REPL, which will persist as long as the
current REPL session is active:

const myObject = {prop1:'test',prop2:'sandwich'};

When you create a new variable (or do any operation that has no return value)
REPL returns undefined.

5. Type the name of your new variable to make sure that it has been
created:

myObject

6. Another useful built-in object in Node.js is the global object. Inspect the
properties of global:

global

You can use the global methods and properties without prefacing them with
global.

As of Version 18 of Node.js, the global object contains a fetch() method that
works like the browser’s window.fetch() method. The fetch() method
returns a Promise.

FIGURE 1-6:
Inspecting the

console object.

N
ode.js Fundam

entals

CHAPTER 1 Node.js Fundamentals 573

7. Try out the fetch method by running the following command in REPL:

fetch('https://www.example.com').then(
 (response)=>console.dir(response.body)

);

When you run the preceding snippet, Node.js does an HTTP GET request for
the URL you specify and write the body of the response to the console. But,
there’s something strange about the response, as shown in Figure 1-7.

The body of the response is a ReadableStream object. I tell you about streams in
Chapter 2 of Book 7, including how to convert a ReadableStream object into some-
thing you can read and use in your programs.

After you execute the fetch() method mentioned in the preceding step list, you
can press Enter to return to the REPL prompt.

Working with REPL commands
REPL doesn’t provide you with a lot of built-in help, and it can be confusing to
work in the REPL as a result. Knowing a few of the built-in commands and key-
board combinations you can use can make things much easier.

FIGURE 1-7:
The body of an

HTTP request
from Node.js.

https://www.example.com

574 BOOK 7 Node.js

REPL has several commands that are available using a period followed by a key-
word. The first to learn is .help. Entering .help at the REPL prompt brings up a
list of the other commands you can use, as shown in Figure 1-8.

Follow these steps to see how to save a REPL session and load JavaScript into the
REPL:

1. In a REPL session, run a couple of expressions to ensure that your current
session has some data.

2. Enter .save ./myREPL.js.

The string after the .save command is the path and filename to use. You
should see a message that the session was saved to your file.

3. Quit the REPL by pressing Ctrl+D.

You return to the normal terminal.

4. Enter ls to see the files in the current directory.

One of those files should have the same name as the one you just saved
from REPL.

FIGURE 1-8:
Finding out

REPL’s commands
with the .help

command.

N
ode.js Fundam

entals

CHAPTER 1 Node.js Fundamentals 575

5. Type cat followed by the name of your file.

Your saved REPL session will be output to the terminal.

6. Start the REPL again:

node

7. Load your previous REPL session using the .load command:

.load ./myREPL.js

Making and Using Node.js Modules
Each file you create in Node.js is treated as a separate module. Node.js programs
are highly modular, and building Node.js programs involves importing modules
from libraries to create your own modules, which you can then import and use in
other modules.

Node.js supports JavaScript modules (also known as ECMAScript modules or just
ES modules), using the same syntax I talk about in Chapter 12 of Book 1. However,
many Node.js developers still use the original module syntax of Node.js, called
CommonJS.

You’ve seen CommonJS modules elsewhere in this book. In particular, the tools
such as ESLint and Webpack that I describe in Book 6 make use of CommonJS
modules.

Using CommonJS
To create a CommonJS module, use the module.exports property. Listing 1-4
shows the contents of a file, which I’ve named metricConversions.js; it exports
several functions for converting imperial measurements to metric.

576 BOOK 7 Node.js

LISTING 1-4: A File That Exports Several Modules

//function for converting inches to centimeters
exports.inchesToCentimeters = (inches) => {
 return inches * 2.54;
};
//function for converting gallons to liters
exports.gallonsToLiters = (gallons) => {
 return gallons * 3.78541;
};
//function for converting pounds to kilograms
exports.poundsToKilograms = (pounds) => {
 return pounds * 0.453592;
};
//function for converting miles to kilometers
exports.milesToKilometers = (miles) => {
 return miles * 1.60934;
};

To import a module into another file, use the require() function. Listing 1-5
shows a module that imports and uses the exported modules from Listing 1-4.

LISTING 1-5: Importing Modules

const metricConversions = require('./metricConversions');

const convertToMetric = (value, unit) => {
 switch (unit) {
 case 'in':
 return metricConversions.inchesToCentimeters(value);
 case 'gl':
 return metricConversions.gallonsToLiters(value);
 case 'lb':
 return metricConversions.poundsToKilograms(value);
 case 'mi':
 return metricConversions.milesToKilometers(value);
 default:
 return value;
 }
};
console.log(`One inch is ${convertToMetric(1, 'in')}

centimeters.`);

N
ode.js Fundam

entals

CHAPTER 1 Node.js Fundamentals 577

Using ES modules
Node.js modules can also be created and imported using the standard JavaScript
module syntax. Because CommonJS is the default module format in Node.js (as of
this writing), if you want to use JavaScript modules instead, you need to enable
them.

To enable JavaScript modules, you can either

 » Give the module a .mjs extension.

 » Add "type":"module" as a top-level variable in package.json in the
module’s nearest parent folder.

Listing 1-6 shows an example of creating JavaScript modules.

LISTING 1-6: Creating JavaScript Modules

export function triangleArea(base, height) {
 return (base * height) / 2;
}

export function trianglePerimeter(side1, side2, side3) {
 return side1 + side2 + side3;
}

export function triangleHypotenuse(side1, side2) {
 return Math.sqrt(side1 * side1 + side2 * side2);
}

export function triangleLeg(hypotenuse, side) {
 return Math.sqrt(hypotenuse * hypotenuse - side * side);
}

export default {
 triangleArea,
 trianglePerimeter,
 triangleHypotenuse,
 triangleLeg
};

578 BOOK 7 Node.js

In the preceding listing, you export each function using a named export, and you
provide a default export. This gives anyone who wants to make use of these mod-
ules maximum flexibility for how they’ll import them.

Listing 1-7 shows how you can import and use JavaScript modules.

LISTING 1-7: Using JavaScript Modules

import { triangleArea, trianglePerimeter } from './Listing070106.mjs';

function triangleMaker(size) {
 const area = triangleArea(size, size);
 const perimeter = trianglePerimeter(size, size, size);

 const triangle = [];
 for (let i = 0; i < size; i++) {
 const row = [];
 for (let j = 0; j < size; j++) {
 if (j < size - i - 1) {
 row.push(' ');
 } else {
 row.push(' * ');
 }
 }
 triangle.push(row.join(''));
 }
 return {
 area,
 perimeter,
 triangle,
 };
}

const { area, perimeter, triangle } = triangleMaker(18);
console.log(`Area: ${area}`);
console.log(`Perimeter: ${perimeter}`);
console.log(triangle.join('\n'));

To run the program in Listing 1-7, the code from both Listing 1-6 and Listing 1-7
must be saved in files named with .mjs extensions. Also note that in order to import
modules from the file created from Listing 1-6, you must include the .mjs extension
in the filename inside the import statement. If you don’t use the .mjs extension,

N
ode.js Fundam

entals

CHAPTER 1 Node.js Fundamentals 579

Node.js assumes that the module should be loaded using CommonJS and you’ll get
an error. The same thing goes for running the code from Listing 1-7 in the console:
Type the full name of the file to run it, like this:

node Listing070107.mjs

Figure 1-9 shows the output from running Listing 1-7 in the console.

Setting the module type in package.json
Setting the module type in package.json requires the Node.js modules you cre-
ate to be part of a package, but the additional steps involved in creating a package
will save you from having to remember to name your files with .mjs. Follow these
steps to create a package and set the module type:

1. Open a terminal in a directory containing Node.js modules, or create a
new directory.

2. Enter npm init into the terminal window.

3. Answer the questions presented to you by the npm init script, or just
press Enter for each question to accept the default values.

4. Add a new property to the top level of the JSON object in package.json
named type and set its value to "module".

FIGURE 1-9:
Drawing a

triangle in the
console.

580 BOOK 7 Node.js

Listing 1-8 shows an example of a package.json file with ECMAScript modules
support enabled.

LISTING 1-8: Package.json with ECMAScript Modules Enabled

{
 "name": "chapter01",
 "version": "1.0.0",
 "type": "module",
 "description": "",
 "main": "main.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "author": "",
 "license": "ISC"
}

With ECMAScript modules enabled in package.json, you can simply name your
Node.js files with a .js extension and import and run ECMAScript modules with-
out having to type the file extension.

Getting Data to Node Modules
Many Node.js programs require or allow configuration arguments to be passed
to them when they start up. You see this in many of the Node.js packages that
I show you how to install and use for front-end development. For example, the
npm program accepts many parameters, including the names of subcommands to

PACKAGES VERSUS MODULES
In Node, a module is a single JavaScript file or a directory that has some reusable func-
tionality. Modules can be imported into other programs, which can use their function-
ality. A package is a file or directory that’s described by a package.json file. Packages
can be published to the npm registry.

Remember: Packages are generally made up of one or more modules, but not all mod-
ules are packages.

N
ode.js Fundam

entals

CHAPTER 1 Node.js Fundamentals 581

run (such as npm run and npm install) and options preceded by two hyphens, --,
which are called flags, such as --save-dev.

You can provide input to Node.js programs in two ways upon execution: environ-
ment variables and passing arguments.

Environment variables
Node.js programs often need access to information about themselves and about
where they’re running. For example, a program that’s running on a development
machine will need to be configured differently from a version of the same pro-
gram running in production. The global process object contains a wealth of infor-
mation about the current Node.js process.

To view the process object, start up the REPL:

node

Once inside the REPL, enter process, and the process object will be returned, as
shown in Figure 1-10. The output of the process object is much too long to fit into
one figure, but you’ll get the idea of it from the snippet shown in the figure.

FIGURE 1-10:
Viewing the

process object.

582 BOOK 7 Node.js

In addition to information about the node program and the computer, the process
object also contains an object called env.

The env object contains environment variables. Environment variables are variables
that reside in the operating system or the container of the running application.
By default, the env object contains variables such as the username that’s running
the process, the path to the running program, and the PATH variable, which lists
directories on the computer where executable programs are kept.

Setting environment variables from the
 command line
You can pass environment variables to a program when you start it by putting
them before the command to run your program, like this:

USER_NAME=cminnick PASSWORD=supersecret node app.js

Setting environment variables with .env
You can also set environment variables by creating a file named .env at the root
of your project directory. When working in a development environment, the .env
file is commonly used to store configuration options, such as API keys and other
details about your development environment.

Do not store your .env file into your code repository. Instead, add .env to the
.gitignore file and create a file, named something like example.env, that you
commit to your repository (with no secret values set, of course). The example.env
file can be used by any other developers who will be working on the code to create
their own .env file.

Listing 1-9 shows an example of a .env file.

LISTING 1-9: A Sample .env File

API_HOST=api.openweathermap.org
API_KEY=YOUR_API_KEY
API_PATH=/data/2.5/weather

Before you can use the .env file, you need to import it. The library you can use
to do that is called dotenv. Follow these steps to create a node package, install
dotenv, and use it in a program:

N
ode.js Fundam

entals

CHAPTER 1 Node.js Fundamentals 583

1. Initialize a node package and choose all the default settings:

npm init -yes

2. Install dotenv:

npm i dotenv

3. Make a new file named app.mjs and import dotenv:

import dotenv from 'dotenv';

4. Call the dotenv’s config() method at the beginning of app.mjs:

dotenv.config()

Listing 1-10 shows an example of a complete program that uses .env.

LISTING 1-10: Using Environment Variables

import dotenv from 'dotenv';
dotenv.config();

export function getCurrentWeather(city) {
 const apiKey = process.env.API_KEY;
 const apiHost = process.env.API_HOST;
 const apiPath = process.env.API_PATH;
 const apiUrl = `https://${apiHost}${apiPath}?q=${city}&appid=${a

piKey}`;
 return fetch(apiUrl)
 .then((response) => response.json())
 .then((data) => {
 return {
 data: data,
 };
 });
}
getCurrentWeather('London').then((weather) => {
 console.log(weather);
});

584 BOOK 7 Node.js

Passing arguments
You can pass any number of arguments to a node program after the name of the
program. These arguments must be separated by spaces — for example:

node myProgram.mjs oneThing 'something else' thirdThing

Arguments you pass to a node program become elements in the process.argv
array. The process.argv array always has at least two elements:

 » process.argv[0] contains the location of node.

 » process.argv[1] contains the location of the JavaScript file.

The arguments that you pass to the program will be in order starting with pro-
cess.argv[2]. Because the arguments you need start with the third element, it’s
common to declare a new constant in a file that receives arguments by removing
the first two elements from the argv array, like this:

const args = process.argv.slice(2);

Node’s Callback Pattern
One common pattern for invoking asynchronous APIs in Node.js’s core modules
and in most modules created by the community of Node.js developers is the call-
back pattern.

In the callback pattern, an asynchronous method always takes a callback function
as its last argument. This function is called when the asynchronous operation is
completed. The callback function takes the place of the return statement in the
function, as in the following simple (synchronous) example:

function addNumbersSync(number1,number2,callback) {
 callback(number1 + number2);
}

To invoke this function, you pass two numbers followed by a function that indi-
cates what to do with the result, like this:

addNumbersSync(2,2, function(result) {
 console.log(`The result is ${result}`);
});

N
ode.js Fundam

entals

CHAPTER 1 Node.js Fundamentals 585

In a Node.js module that performs asynchronous tasks, the callback function is
used to pass along the results of the asynchronous tasks to the next step when it
finishes running, as in the following example:

const fs = require('fs');

fs.readFile('someTextFile.txt', function (err, data) {
 if (err) {
 console.log(err);
 } else {
 console.log(data.toString());
 }
});

In the preceding example, the fs module’s readFile() method reads the con-
tents of a text file. When the reading of the file is completed, it passes the data
from the file as the second argument to the callback function supplied to it. If the
readFile() method returns an error, that is passed as the first argument to the
callback function.

The callback convention is the original way that Node.js modules supported event-
based asynchronous code. When Promises became a popular way to abstract call-
backs to create less-confusing code, support for them was built into Node.js.
Today, many Node.js functions return both a promise and a callback, which gives
developers a choice of whether to use the old callback convention or the more
up-to-date Promises techniques.

For example, the following is a function that supports the callback pattern:

function asyncTask(param1, param2, callback) {
 // do something asynchronous
 if (error) {
 return callback(new Error("oops. There's been an error"));
 }
 // do something else if there's no error
 callback(null, result);
}

To invoke this function, pass it the arguments specified by its parameters, fol-
lowed by a callback function, like this:

asyncTask (argument1, argument2, function (err,
returnValue) {

586 BOOK 7 Node.js

 // insert the code to run after the async task is done.
});

Here’s how the preceding example can be modified to support promises:

function asyncTask(param1, param2) {
 // do something asynchronous
 if (error) {
 return Promise.reject(new Error("oops. There's been an

error"));
 }
 // do something else if there's no error
 return Promise.resolve(result);
}

Finally, Listing 1-11 shows how to write the function so that it can be used with a
callback or with Promises.

LISTING 1-11: Supporting Both Callbacks and Promises

function asyncTask(param1, param2, callback) {
 // do something asynchronous
 if (error) {
 // if a callback is passed, call it with the error
 if (callback) {
 callback(new Error("oops. There's been an error"));
 }
 // otherwise, return a rejected promise
 return Promise.reject(new Error("oops. There's been an

error"));
 }

 // do something else if there's no error

 // if a callback is passed, call it with the result
 if (callback) {
 callback(null, result);
 }
 // otherwise, return a resolved promise
 return Promise.resolve(result);
}

CHAPTER 2 Streaming 587

Streaming
“Time is but the stream I go a-fishing in.”

—HENRY DAVID THOREAU

Streams are one of the most important concepts in Node.js. They’re also one
of the more misunderstood and difficult concepts. The basic idea, however,
is simple. Chances are good that you’ve used a stream today — whether

you’re streaming a movie or listening to music or creating a podcast, you’re
undoubtedly familiar with the idea and with important terms such as buffering,
readable, and writable.

Other terms, such as duplex stream and transform stream, might not be as familiar,
but if you read the entirety of this chapter, you’ll become comfortable with them.

Jumping into Streams
Streams are data-handling methods that are implemented by Node’s built-in
stream module. The purpose of streams is to read or write input data into output
sequentially. You can output streams to files, to a database, to the console, or to a
network connection, for example.

Chapter 2

IN THIS CHAPTER

 » Understanding how streaming works

 » Creating readable, writable, and
duplex streams

 » Transforming streams

 » Linking streams into chains

588 BOOK 7 Node.js

Streams allow Node programs to work with large amounts of data. For example,
in traditional file loading (such as you do in a client-side application when you
include an image file), the entire file is downloaded or loaded into memory all at
once, before anything can be done with it. With streaming, events are emitted as
pieces of data (called chunks) are received or sent. This strategy makes it possible
for a Node.js program to not have to wait for an operation to be completed, and
it’s a big part of writing high-performance Node.js code.

Chunking is the key
In streaming, files are broken into smaller chunks and you can work with them
individually as they’re loaded. This is how streaming video or streaming music
can start playing almost instantly after you press Play — the entire video doesn’t
need to be downloaded before it can start playback.

Figure 2-1 depicts how streaming works.

Loading without streams
To see what problem streaming fixes, let’s look first at a Node server that doesn’t
use streaming, as in Listing 2-1.

LISTING 2-1: A Server Without Streaming

import server from 'http';
import { promises as fs } from 'fs';

const app = server.createServer();

app.on('request', async (req, res) => {

FIGURE 2-1:
How streaming

works.

© John Wiley & Sons, Inc.

Stream
ing

CHAPTER 2 Streaming 589

 const book = await fs.readFile('./war-and-peace.txt');
 res.end(book);
});

app.listen(3000);
console.log('Server running at http://localhost:3000/');

Here’s how this program works:

1. The first line imports the http module as server.

2. The second line loads the fs (file system) module, which contains methods for
working with the file system.

3. The third line uses the createServer() method to create an HTTP server
instance, which is assigned to the constant app.

4. The next statement uses the on() method of the http module, which works
like the browser’s addEventListener() method. It listens for request events
and runs a callback function when they happen.

5. The on() method passes a request object and a response object to the async
callback function.

6. The callback function waits for the fs.readFile() method to load the text
file.

7. The res.end() method causes the callback function to exit and returns the
value passed to it to the client that made the request.

8. The app.listen() method starts the server and tells it to listen on port 3000.

9. The program outputs a message to the console to let the person who started
the server know that it’s running.

In this example, whether the file being served is 1KB or 10000MB, the whole thing
is loaded by fs.readFile() before any data is sent to the client. With a very large
file, it’s quite possible that the server will run out of memory and crash before the
entire file is loaded and the result will be that the client receives an error message.

Converting to streams
Listing 2-2 shows the server from Listing 2-1, rewritten to stream the file to the
client.

590 BOOK 7 Node.js

LISTING 2-2: A Simple Streaming Server

import server from 'http';
import fs from 'fs';

const app = server.createServer();

app.on('request', (req, res) => {
 const book = fs.createReadStream('./war-and-peace.txt');
 book.pipe(res);
});

app.listen(3000);
console.log('Server running at http://localhost:3000/');

The difference between Listing 2-1 and Listing 2-2 is that in Listing 2-1, a syn-
chronous function (readFile()) is wrapped with a promise to make sure it fin-
ishes before returning the data. Listing 2-2 starts executing an asynchronous
method (readFileAsync()) and then calls its pipe() method to connect it to the
response object.

The result is that the server in Listing 2-2 will output chunks of data as they’re
loaded — using far less memory in the process and getting data to the client much
faster.

Loading a file synchronously requires Node to hold the entire file in memory. With
asynchronous file and network operations, the most a Node.js program must pro-
cess at any one time is 64KB (the size of a chunk).

Viewing chunks
When a chunk is returned by an asynchronous function, it emits a data event. By
listening for this event, you can see the progress of the streaming. When the file
is finished being read, the stream emits an end event. You can listen for this event
and end the response stream.

Stream
ing

CHAPTER 2 Streaming 591

In Listing 2-3, the server listens for data events and logs a message to the console
with each chunk.

LISTING 2-3: Listening for Chunks

import server from 'http';
import fs from 'fs';

const app = server.createServer();

app.on('request', (req, res) => {
 const book = fs.createReadStream('./war-and-peace.txt');
 res.writeHead(200, { 'Content-Type': 'text/plain' });
 book.on('data', (chunk) => {
 console.log('chunk received');
 console.log(chunk);
 res.write(chunk.toString());
 });
 book.on('end', () => res.end());
});

app.listen(3000);
console.log('Server running at http://localhost:3000/');

Figure 2-2 shows the output in the console from running the server in Listing 2-3.

FIGURE 2-2:
Logging chunks.

592 BOOK 7 Node.js

Identifying types of streams
Node.js has these four types of streams:

 » Readable

 » Writable

 » Duplex

 » Transform

Each of these types of streams can be created by using methods that are exported
from the stream module. However, creating streams directly using the stream
module is unusual in a Node.js program because the modules that handle net-
working, file system functions, and database connections create the streams for
you. All you need to know is how to work with the streams that are given to you.
The upcoming sections of this chapter show how to create and use each type of
stream.

Creating Readable Streams
Readable streams are used in operations where data is read, such as from a network
connection, from a file, or from a database. To create a readable stream, use the
Readable() method. For example, Listing 2-4 shows how to create a stream and
push a simple string into it.

LISTING 2-4: Pushing Data into a Stream

import {Stream} from 'stream';
const readableStream = new Stream.Readable()
readableStream.push('Hello, World!');
readableStream.push(null);
readableStream.pipe(process.stdout);

In the preceding example, after the readableStream object is created, its push()
method is called and Hello, World is passed to it. The push() method causes the
string to be stored an internal buffer and wait for something to consume it. To end
the streaming, null is passed into the stream object. The final line of this program
uses the pipe() method, which works much like a pipe for water. It causes the
streams data to flow into an output. In this case, the output is the process.stdout

Stream
ing

CHAPTER 2 Streaming 593

object, which operates like the console.log() method. The difference between
console.log() and process.stdout is that console.log() adds line breaks to
the output, whereas process.stdout writes data continuously.

Listing 2-5 shows a program that takes a number as an argument and counts to
that number, pushing each number to a stream. As the stream emits data events,
they’re handled by an event listener that writes the latest chunk to the console.

LISTING 2-5: Creating a Streaming Counter

import { Stream } from 'stream';
const readableStream = new Stream.Readable({
 read(size) {
 const numberToCount = process.argv[2] || 10;
 for (let i = 0; i < numberToCount; i++) {
 readableStream.push(i.toString());
 }
 readableStream.push(null);
 },
});

readableStream.on('data', (chunk) => {
 console.log(chunk.toString());
});

readableStream.on('end', () => {
 console.log('Done');
});

Figure 2-3 shows the output of Listing 2-5.

Reading readable streams from
the fs module
The createReadStream() method of the fs module reads a file from the com-
puter’s storage. It takes a file path and an optional options object and returns a
stream. For example, to create a readable stream from a file named inputFile.txt
that’s in the same directory as the program, you can use the following statements:

const fileToRead = __dirname + '/inputFile.txt';
const readStream = fs.createReadStream(fileToRead);

594 BOOK 7 Node.js

The __dirname property is a global property that contains the file path to the
directory where the program is running.

The __dirname property isn’t available in modules that use ECMAScript Modules
syntax. To get the local directory from an ES module (a program that uses import
or export), use the process.cwd() method.

The fs module is covered in Chapter 4 of Book 7.

Distinguishing between
the two read modes
Readable streams operate in one of two modes: flowing or paused.

Flowing mode
In flowing mode, data is read from the source (such as a file or network connec-
tion) and provided to the program as fast as possible. In flowing mode, the pro-
gram listens for the data, error, and end events to be emitted by the stream and
handles each one by using a callback function.

Listing 2-6 shows an example of working with a stream from the fs module in
flowing mode.

LISTING 2-6: Streaming in Flowing Mode

const fs = require('fs');
const fileToRead = process.cwd() + '/inputFile.txt';
const readStream = fs.createReadStream(fileToRead);

FIGURE 2-3:
A streaming

Node.js counter.

Stream
ing

CHAPTER 2 Streaming 595

readStream.on('data', (chunk) => {
 console.log(chunk.toString());
});

readStream.on('end', () => {
 console.log('End of file reached');
});

readStream.on('error', (err) => {
 console.log(err);
});

Paused mode
In paused mode, the read() method of the stream is called repeatedly and returns
a chunk each time. When there’s nothing left to read from the stream, the read()
method returns null. Listing 2-7 shows an example of using paused mode to out-
put a stream to the console.

LISTING 2-7: Streaming in Paused Mode

import fs from 'fs';
const fileToRead = process.cwd() + '/inputFile.txt';
const readStream = fs.createReadStream(fileToRead);

let data = '';
let chunk;

readStream.on('readable', () => {
 while ((chunk = readStream.read()) !== null) {
 data += chunk;
 }
});
readStream.on('end', () => {
 console.log(data);
});
readStream.on('error', (err) => {
 console.log(err);
});

596 BOOK 7 Node.js

Creating Writable Streams
A writable stream is one that data can be written to. Just as readable streams can
be created by using the Readable() constructor, writable streams can be created
by using the Writable() constructor. However, as with readable streams, it’s far
more common to work with streams provided by other modules.

To write data to a writable stream, you can use the write() method of the stream.
For example, in Listing 2-8, a readable stream is used to read a file. As data events
are emitted from the readable stream, the program writes chunks to a writable
stream, which writes to a new file.

LISTING 2-8: Copying a File Using a Writable Stream

import fs from 'fs';
const readableStream = fs.createReadStream('mobydick.txt');
const writableStream = fs.createWriteStream('mobydick-copy.txt');

readableStream.setEncoding('utf8');

readableStream.on('data', (chunk) => {
 writableStream.write(chunk);
});

Follow these steps to try out the program from Listing 2-8:

1. Create a new JavaScript file with the .mjs extension or in a package with
a package.json file with type set to module.

2. Create a separate file named mobydick.txt in the same directory as the
program.

You can find the text of Moby Dick on the Internet Archive (archive.org) or at
Project Gutenberg (gutenberg.org) or in the repository for this book (at
github.com/chrisminnick/javascriptaio).

3. Run the program using the node command. For example, if your script is
named writable.mjs, you can run it by entering the following line into
your terminal:

node writeable.mjs

http://www.archive.org
http://www.github.com/chrisminnick/javascriptaio

Stream
ing

CHAPTER 2 Streaming 597

After a surprisingly short time (considering that Moby Dick is over 200,000 words
long), a new file named mobydick.copy.txt appears in the same directory as
your program and the original text file. If you open this copy, you can see that its
contents are identical to the original.

Writing data to a file is an asynchronous operation that may take some time. To
do something after the write() method finishes, you can use an async function
to return a promise. Listing 2-9 shows how you can write log messages from an
HTTP server to a local file before returning the response.

LISTING 2-9: Writing Log Messages to a File

import http from 'http';
import fs from 'fs';
import path from 'path';

const logFile = path.join(process.cwd(), 'logFile.txt');
const logFileStream = fs.createWriteStream(logFile);

const log = async (message) => {
 await logFileStream.write(`${message}`);
};

const server = http.createServer((req, res) => {
 log(
 `${new Date().toString()} ${req.method} ${req.url} ${
 req.headers['user-agent']
 }`
)
 .then(() => {
 res.writeHead(200, { 'Content-Type': 'text/plain' });
 res.end('Hello World');
 })
 .catch((err) => {
 console.log(err);
 });
});

const port = 3000;
server.listen(port, () => {
 console.log(`Server listening on port ${port}`);
});

598 BOOK 7 Node.js

Producing Duplex Streams
A duplex stream is a combination of a writable stream and a readable stream.
Earlier in this chapter, in Listing 2-8, I give you an example of a simple duplex
stream. Before I show you more examples of duplex streams, I have to mention
one potential pitfall of moving data between streams: backpressure.

Backpressure
One potential problem with duplex streams to be aware of is that it’s possible,
and quite common, for reading a file to be faster than writing a file. This situa-
tion can result in the writable stream’s queue growing longer and longer. If the
write stream’s queue isn’t regulated, it will occupy an ever-increasing amount of
memory and slow down other processes until it finishes.

The situation where data is coming in faster than it can be processed by the write-
able stream is called backpressure. Fortunately, Node.js has a backpressure mecha-
nism built into it that automatically manages backpressure.

One way to enable Node.js’s automatic backpressure mechanism is by using the
pipe() method to direct the output of a stream. The pipe() method has a source
and a consumer. The syntax of pipe() is simple — it’s called on one stream and
takes another stream as its argument, as in the following example:

 readableStream.pipe(writableStream)

Listing 2-10 shows the functionality of Listing 2-8 rewritten using pipe().

LISTING 2-10: Creating a Duplex Stream with pipe()

import fs from 'fs';
const readableStream = fs.createReadStream('mobydick.txt');
const writableStream = fs.createWriteStream('mobydick-copy.txt');

readableStream.setEncoding('utf8');

readableStream.pipe(writableStream);

The secret to the triggering of the backpressure mechanism is in the write()
method that’s called internally by the pipe. When the write() method finishes,
it returns true. If the write queue is busy when write() is called, or if the data
buffer has exceeded a limit specified by the highWaterMark option that’s set when
the stream is created, write() returns false.

Stream
ing

CHAPTER 2 Streaming 599

When a false value is returned by write(), pipe() pauses the incoming read-
able stream until the consumer of the data (the writable stream, in the case of
 Listing 2-10) is ready again.

PassThrough
If you need more information or control over how a duplex stream does its job, you
can pass a PassThrough stream to pipe. A PassThrough stream simply passes data
from its input to its output. In between the input and output you can monitor and
control the progress of the stream. Listing 2-11 shows how to use a PassThrough
stream to create a duplex stream that logs the size of each chunk to the console
before sending it to its output.

LISTING 2-11: Using a PassThrough Stream

import fs from 'fs';
import stream from 'stream';
const readableStream = fs.createReadStream('mobydick.txt');
const writableStream = fs.createWriteStream('mobydick-copy.txt');
const passThroughStream = new stream.PassThrough();
readableStream.setEncoding('utf8');

passThroughStream.on('data', (chunk) => {
 console.log(chunk.length);
});
readableStream
 .pipe(passThroughStream)
 .pipe(writableStream);

Transforming Streams
A transform stream is a duplex stream in which the output is computed from the
input. In other words, in a transform stream, the output isn’t the same as the
input.

Examples of uses for transform streams are encryption, decryption, compression,
or a closed caption generator for video that converts the audio from video data
to text.

To create a transform stream, first import the Transform class from the stream
module. When you construct a transform stream, you can pass a function to

600 BOOK 7 Node.js

the Transform() constructor function containing the logic to use to transform
the data.

For example, Listing 2-12 creates a transform stream that converts the text of its
input to uppercase.

LISTING 2-12: Making a Transform Stream

import { Transform } from 'stream';

export const makeBig = new Transform({
 transform(chunk, encoding, callback) {
 chunk = chunk.toString().toUpperCase();
 this.push(chunk);
 callback();
 },
});

Once you’ve created a transform stream (inside a module or as its own module, as
shown in Listing 2-12) you can pass it to pipe() to use it, as shown in Listing 2-13.

LISTING 2-13: Using a Transform Stream

import fs from 'fs';
import { makeBig } from './Listing070212.mjs';

const readableStream = fs.createReadStream('mobydick.txt');
const writableStream = fs.createWriteStream('mobydick-copy.txt');

readableStream.setEncoding('utf8');

readableStream.pipe(makeBig).pipe(writableStream);

Chaining Streams
By chaining multiple pipes, you can apply multiple transforms to data and each
pipe will then manage backpressure so that even if a particular step in the process
takes longer than the others, no step in the chain becomes overwhelmed.

Stream
ing

CHAPTER 2 Streaming 601

Listing 2-14 adds in input from the arguments passed when the program starts,
and requires input from the user, which potentially creates more delay in the
process than any other type of processing. Earlier in this chapter, I tell you how
to write data to the console using process.stout. To get data from the user of a
command-line interface, you can use process.stdin.

LISTING 2-14: Using a Transform Involving User Input

import fs from 'fs';
import { Transform } from 'stream';

const replaceName = new Transform({
 transform(chunk, encoding, callback) {
 chunk = chunk.toString().replace(/Ishmael/g, process.argv[2]);
 this.push(chunk);
 callback();
 },
});

const getUserApproval = new Transform({
 transform(chunk, encoding, callback) {
 // display each chunk of data as it comes in and ask the user

to confirm
 console.log(chunk.toString());
 console.log('Is this correct? (y/n)');
 // wait for the user to respond
 process.stdin.once('data', (answer) => {
 // if the user says yes, then push the chunk to the output
 if (answer.toString().trim().toLowerCase() === 'y') {
 this.push(chunk);
 console.log('Thank you for approving!');
 callback();
 }

 // otherwise, ask for more input
 else {
 console.log('Please enter the correct data:');
 process.stdin.once('data', (correctData) => {
 this.push(correctData);
 console.log('Thank you for the new text!');
 callback();
 });
 }

(continued)

602 BOOK 7 Node.js

 });
 },
});

const readableStream = fs.createReadStream('mobydick.txt');
const writableStream = fs.createWriteStream('mobydick-copy.txt');

readableStream.setEncoding('utf8');

writableStream.on('finish', () => {
 console.log('Done!');
 process.exit();
});
readableStream.pipe(replaceName)
 .pipe(getUserApproval)
 .pipe(writableStream);

To run the program shown in Listing 2-14, start the program by using the node
command and pass a name to it. The replaceName() transformer replaces the
name of Ishmael in the novel with the name that was passed when the program
was started. The output from the replaceName() transformer is then passed to the
getUserApproval() transformer, which gives the user a chance to either approve
a single chunk or write their own version of it. When that transform is complete,
the chunk is passed to the writeableStream and written to a file.

Figure 2-4 shows a piece of the resulting novel when I ran the program.

FIGURE 2-4:
Transforming

Moby Dick.

LISTING 2-14: (continued)

CHAPTER 3 Working with Buffers 603

Working with Buffers
“At its most fundamental, information is a binary choice. In other words, a
single bit of information is one yes-or-no choice.”

—JAMES GLEICK

The Buffer object in Node.js is a global that provides a way to work with
streams of raw data stored outside of the V8 engine. Buffers are necessary
in Node.js because server-side programs regularly read data from the file

system, from databases, and from network connections.

Knowing Your Buffer Basics
To understand the purpose of Buffer, try changing the file extension of a .png
image to .txt and opening it in VS Code (or any other text editor). What you see
is a garbled mess of seemingly random characters along with some textual meta-
data, as shown in Figure 3-1.

If you save that text file with the .png extension, you’ll most likely no longer have
an image file that can be displayed in a photo editor. The process of converting
the image (binary data) to text messes up the precise sequence of data that makes
an image file an image.

Chapter 3

IN THIS CHAPTER

 » Taking in some buffer basics

 » Creating and decoding buffers

604 BOOK 7 Node.js

Buffer objects hold a representation of raw binary data so that it can be safely
brought into your program. The most common way Buffer objects are created in
Node.js programs is by creating streams of data using either the fs module or http
module. For example, the fs.createReadStream() method takes the path of a file
and starts streaming it as Buffer objects.

Chapter 4 of Book 7 covers the fs module, including its createReadStream() and
createWriteStream() methods.

Differentiating between encoding
and decoding
At their most basic level, computers understand only binary data. Every piece of
data that a computer works with must be converted (by the computer’s processor)
to a series of 0s and 1s before it can be processed and output. However, it’s tedious
and pointless for programmers (or anyone using a computer) to write binary code
directly. Instead, we use a wide variety of data types, such as Boolean, number,
and string. These data types indicate to the computer’s processor the rules for
what we intend to do with the data. The number 5, for example, is handled by a
processor differently from the string "5" — and they must be converted to binary
data differently as a result.

Encoding is the process of converting various data types to binary data so that the
processor can use them. Decoding is the process of converting binary data to data
that can be used in a computer program.

Just as the way you encode data to binary determines how it can be used by the
processor, the way you decode data from binary determines how it can be used by
a program.

FIGURE 3-1:
Reading binary

data as text.

W
orking w

ith Buff
ers

CHAPTER 3 Working with Buffers 605

Examining buffer content
The content of a Buffer object is made up of integers that each represent a single
byte of data. To see data through the eyes of a computer, you can output a Buffer
object without decoding it. For example, the following code creates a Buffer from
the words Hello, World and stores it in a variable named buffer:

let buffer = Buffer.from("Hello, World");

If you run the preceding statement in the Node.js REPL, the value of buffer is

<Buffer 48 65 6c 6c 6f 20 57 6f 72 6c 64>

A byte consists of 8 bits. A bit is the most basic unit of information in computing.
It represents a binary digit (either 0 or 1).

To start REPL, just open a terminal window (or the Integrated Terminal in VS
Code) and enter node at the command line.

To convert this Buffer back to a string, you can use the toString() method, like
this:

buffer.toString('utf-8')

The result of running the preceding statement is the output of the string "Hello,
World." The value passed to the toString() method, utf-8, is the encoding
scheme. An encoding scheme is a set of rules that tell how to encode data to binary.

The UTF-8 encoding scheme is the most popular encoding scheme in modern
computing. It uses 8-bit binary numbers to represent a character and contains
rules for encoding every one of the 1,112,064 valid characters in the Unicode Stan-
dard, including characters used by most of the writing systems in use today as
well as emojis.

Before the creation of UTF-8, the most popular encoding scheme was ASCII,
which was invented in the 1960s and can represent only 128 different characters.

The size of a byte was originally chosen because it was the minimal amount of
data needed to encode a single character (using the ASCII standard). UTF-8 uses
between 1 and 4 bytes per character.

606 BOOK 7 Node.js

If you decode binary data using an encoding scheme that doesn’t support a cer-
tain character in the originally encoded data, you get back nonsense. For example,
the following statement creates a Buffer object containing the clown-face emoji:

let clownFace = Buffer.from(" ");

If you decode this buffer using UTF-8, you get back a clown face, but if you decode
it using another encoding scheme, such as ASCII, you get back a character indicat-
ing that the encoding scheme can’t represent the data, as shown in Figure 3-2.

Decoding Buffers
You can convert Buffer objects to usable data in your program by calling one of the
Buffer object’s methods, such as json() or toString(), as shown in Listing 3-1.

LISTING 3-1: Serving a Buffer as an Image

import http from 'http';
import fs from 'fs';
import path from 'path';

function getBase64Image(img) {
 // Read the image as a binary data
 const bitmap = fs.readFileSync(img);
 // Convert binary data to base64 encoded string
 return bitmap.toString('base64');
}

FIGURE 3-2:
Decoding using

the wrong
scheme can

produce garbled
output.

W
orking w

ith Buff
ers

CHAPTER 3 Working with Buffers 607

http
 .createServer(function (req, res) {
 // Set the response HTTP header
 res.writeHead(200, { 'Content-Type': 'text/html' });

 // Send the response body
 res.write('<img src="data:image/png;base64,');
 res.wri te(getBase64Image(path.join(process.cwd(), 'images',

'nodejs.png')));
 res.end('"/>');
 })
 .listen(3000);

console.log('Server running at http://localhost:3000/');

In this listing, the Buffer returned by fs.readFileSync() is converted to Base64
encoding. Base64 is a binary-to-text encoding scheme that uses sequences of
24 bits to represent binary data as strings. By doing so, the data can be easily
transmitted as part of an HTTP server’s response object and then decoded by a
web browser (or another client application).

Creating Buffers
Most of the time, the Buffer objects you encounter while programming in Node.
js are returned by another module you’re using. For example, the chunks that
streams are made up of are encoded as Buffer objects.

I talk about streams in Chapter 2 of Book 7.

However, you can also create Buffer objects directly. Two ways to create buffers
are by using the Buffer.alloc() method or the Buffer.from() method.

Using Buffer.alloc()
To create an empty instance of the Buffer class with a fixed length, pass the num-
ber of bytes the Buffer should contain to the Buffer.alloc() method. For exam-
ple, to create an empty 8-byte Buffer object and assign it to a variable, use the
following statement:

let buffer = Buffer.alloc(8);

608 BOOK 7 Node.js

This statement creates a new buffer and gives each byte in the buffer a value of 0.
Printed out, the resulting buffer looks like this:

<Buffer 00 00 00 00 00 00 00 00>

If you pass a second argument to Buffer.alloc(), the value you pass is used to
populate the new buffer, as shown in this example:

let testBuffer = Buffer.alloc(16,"test");

This results in a Buffer object that looks like this:

<Buffer 74 65 73 74 74 65 73 74 74 65 73 74 74 65 73 74>

In this line, each byte represents one letter in the word test, and the pattern repeats
as many times as there’s space available in the resulting 16-byte buffer.

If you pass a number smaller than 255 (the highest number that can be repre-
sented using a 2-digit hexadecimal number) to the second parameter of Buffer.
alloc(), that number is converted to a hexadecimal number and used to fill the
buffer, as shown in the following example:

let myBuffer = Buffer.alloc(8, 42);

The result of this statement is the following Buffer object:

<Buffer 2a 2a 2a 2a 2a 2a 2a 2a>

Can you figure out what the result of passing the number 255 to Buffer.alloc()
would be?

Hexadecimal numbers range from 0 to 15 and use the characters A through F to
represent the numbers 10 through 15. A 2-digit hexadecimal character can be
used to represent the numbers 0 through 255. For example, the number 10 in
hexadecimal represents 16 in decimal. The number 2A in hexadecimal represents
42 in decimal.

The third argument to Buffer.alloc() is the encoding you want to use for the
data passed to the new buffer. The default value of the third argument is 'utf8'.
Other possible values for the encoding parameter are described in this list:

 » utf16le: Encodes each character using either 2 or 4 bytes. It is seldom used.

 » base64: Encodes a string using Base64 encoding. White space characters
within the base64 string are ignored.

W
orking w

ith Buff
ers

CHAPTER 3 Working with Buffers 609

 » base64url: Encodes a string using base64 and uses a URL and filename safe
alphabet.

 » hex: Encodes each byte as 2 hexadecimal characters.

In most cases, using the default encoding (utf8) is the best option.

Using Buffer.from()
Another way to create a Buffer object is by using Buffer.from(). The difference
between Buffer.alloc() and Buffer.from() is that Buffer.from() creates a
Buffer object that’s just large enough to hold the binary representation of the
string you pass it, whereas Buffer.alloc() always creates a fixed-size Buffer
equal to the size you pass it.

For example, enter the following line into the Node REPL:

let theFriendlyBuffer = Buffer.from("I'm a buffer!");

The result is a Buffer object that looks like this:

<Buffer 49 27 6d 20 61 20 62 75 66 66 65 72 21>

You can confirm that this buffer represents the same string you created it from by
using the toString() method:

theFriendlyBuffer.toString('utf8');

The result is the original string.

Using Other Buffer Methods
As mentioned earlier in this chapter, most of the time you don’t create Buffer
objects manually. However, you do need to know how to work with existing buf-
fers to read their contents, to confirm that they’re buffers, to compare their val-
ues, and to find out information about them such as their length. Fortunately, the
Buffer class makes many different methods and static methods available.

Static methods are methods of the class itself, rather than of instances of the class.
For example, Buffer.alloc() is a static method because it can be called only on
the class name (Buffer) rather than on objects created using the Buffer class.

Table 3-1 shows some of the more commonly used Buffer methods.

610 BOOK 7 Node.js

TABLE 3-1 Common Buffer Methods
Method Name What It Does Example Return Value

Buffer.alloc() Creates a
buffer of the
specified size

Buffer.alloc(8,"test") A Buffer object

Buffer.compare() Compares two
Buffer objects for
the purpose of
sorting them

Buffer.
compare(buffer1,buffer2)

–1 (indicating that the first
buffer should come before
the 2nd), 0 (indicating that
the two are the same), or
1 (indicating that the
second buffer should
come before the first)

Buffer.concat() Concatenates the
buffers in a list

Buffer.
concat([buf1,buf2,buf3)

A Buffer object

Buffer.from() Creates a new
buffer from the
passed value

Buffer.from("my string") A Buffer object

Buffer.
isBuffer()

Indicates whether
the passed-in
value is a buffer

Buffer.
isBuffer(myObject)

true or false

compare() Compares two
Buffer objects

buf.compare(buf2) –1, 0, or 1

equals() Determines
whether
two buffers
are identical

buf.equals(otherBuf) true or false

includes() Determines
whether a
buffer includes a
specified value

buf.includes('text') true or false

length Contains the
length of the
buffer (in bytes)

buf.length The number of bytes in
the buffer

toJSON() Converts a buffer
to JSON data

buf.toJSON() A JSON representation of
the buffer

toString() Converts a buffer
to a string

buf.toString() A string representation of
the buffer

write() Writes a string
to a buffer

buf.write("the string") The number of
bytes written

W
orking w

ith Buff
ers

CHAPTER 3 Working with Buffers 611

Look for a complete list and a detailed example of each one of Buffer’s properties
and methods at https://nodejs.org/api/buffer.html.

Iterating over Buffers
Like arrays, buffers can be iterated over. For example, Listing 3-2 shows how you
can return each letter encoded in a Buffer object and return its value in hexadeci-
mal notation.

LISTING 3-2: Iterating Over a Buffer

const myBuffer = Buffer.from('hello');

for (const b of myBuffer) {
 console.log(b.toString(16));
}

Figure 3-3 shows the result of running the code in Listing 3-2.

FIGURE 3-3:
Using for-of to
iterate over a

buffer.

https://nodejs.org/api/buffer.html

CHAPTER 4 Accessing the File System 613

Accessing the
File System

“An ounce of performance is worth pounds of promises.”

—MAE WEST

Node.js’s built-in fs module is what enables Node.js programs to manipu-
late files. As you may have guessed, the name fs is short for file system. If a
program running in Node.js has the proper permission, it can do anything

with files that you can do with any other program on your computer, includ-
ing reading from files, creating files, writing to files, deleting files, moving files,
renaming files, setting file permissions, and changing a file’s metadata.

Importing the fs module
The fs module comes in two flavors: the older, callback-based flavor and the
up-to-date version that supports Promises. In addition to the two different ways
you can use fs, you can (as with the other core modules) import fs in two ways: by
using CommonJS syntax or by using ECMAScript module syntax.

Chapter 4

IN THIS CHAPTER

 » Reading from files

 » Writing to files

 » Using the synchronous API

 » Using the asynchronous API

 » Understanding paths

 » Retrieving file and directory
information

614 BOOK 7 Node.js

In this book, I mostly use the ES Module syntax, but I also show you the
CommonJS method because it’s still widely used and it’s important to understand
how to use both.

To import the callback-based flavor of fs, you can use the CommonJS syntax, like
this:

const fs = require('fs');

Or you can import fs by using ES Module syntax, like this:

import fs from 'fs';

Here’s the most common way to import the Promises fs module:

import {promises as fs} from 'fs';

With this statement at the beginning of a Node.js module named by using the .mjs
extension or with type="module" set in the package.json file, you gain access to
all of the Promise-based fs module’s properties and methods.

Reading Files
The two simplest ways to read files in Node.js are to use either the readFile()
method or the readFileSync() method. Both methods take a path to a file as an
argument and return the contents of the file.

Reading from a file with fs.read()
To read from a file, you can use the fs.read() method. Before using fs.read(),
you need to open the file by using fs.open(). Once you have the file open, you can
use fs.read() to read the entire file or just a portion of it.

Opening a file with fs.open() and callbacks
To open a file using the callback flavor of fs.open(), pass the path to the file, the
mode of the file, and a callback function. The mode argument indicates what can
be done with the file after it’s opened. Mode is a string containing one of the fol-
lowing values:

A
ccessing the File

System

CHAPTER 4 Accessing the File System 615

 » r: Open the file in read-only mode and throw an exception if the file
doesn’t exist.

 » r+: Open the file to read and write and throw an exception if the file doesn’t
exist.

 » rs+: Open the file to read and write in synchronous mode.

 » w: Open the file for writing and create the file if it doesn’t exist.

 » wx: Create the file for writing and throw an exception if the file already exists.

 » a: Open the file to append and create the file if it doesn’t exist.

 » ax: Create a file to append and throw an exception if the file already exists.

 » a+: Open a file for reading and appending and create the file if it doesn’t exist.

 » ax+: Open a file for reading and appending and throw an exception if it
already exists.

If you don’t pass a mode to fs.open(), the mode is set to r+ (read and write) by
default.

The callback function passed to fs.open() returns either an error (in the case that
the file can’t be opened) or a file descriptor.

A file descriptor is a number that’s used to identify an open file in the computer’s
operating system.

Inside the callback, the file descriptor can be used to identify the file to read or
write to. Once everything you need to do with the open file is complete, you can
close the open file by using the fs.close() method.

Listing 4-1 shows a secure password generator that opens a file (or creates one if
it doesn’t exist) and then writes 100 random characters to the file before closing it.

The code that randomly selects characters in Listing 4-1 restricts the possible
choices to numbers 33–126, which are the printable characters in the ASCII encod-
ing scheme. These are the characters that it’s possible to make with a standard
English-language keyboard.

616 BOOK 7 Node.js

LISTING 4-1: Using fs.open() and fs.close()

import fs from 'fs';

const fd = fs.open('data.txt', 'w+', (err, fd) => {
 if (err) {
 console.log(err);
 return;
 } else {
 const buffer = Buffer.alloc(100);
 for (let i = 0; i < 100; i++) {
 buffer[i] = Math.floor(Math.random() * 93) + 33;
 }
 fs.write(fd, buffer, 0, 100, 0, (err, written, buffer) => {
 if (err) {
 console.log(err);
 return;
 } else {
 con sole.log(`Your new secure password is ${buffer.

toString('ascii')}`);
 }
 });
 fs.close(fd, (err) => {
 if (err) {
 console.log(err);
 return;
 }
 });
 }
});

Opening, writing to, and closing a
file using Promises
If you’re using the Promises flavor of fs, fs.open() returns a Promise that resolves
to a file handle. The methods of the file handle can then be used to work with the
file. Listing 4-2 shows the code from Listing 4-1 rewritten using Promises.

LISTING 4-2: Using fs.open() and fs.close() with Promises

import { promises as fs } from 'fs';

async function main() {
 const fd = await fs.open('data.txt', 'w+');

A
ccessing the File

System

CHAPTER 4 Accessing the File System 617

 const buffer = Buffer.alloc(100);
 for (let i = 0; i < 100; i++) {
 buffer[i] = Math.floor(Math.random() * 93) + 33;
 }
 await fd.write(buffer, 0, 100, 0);
 await fd.close();
 console. log(`Your new secure password is ${buffer.

toString('ascii')}`);
}

main();

Using readFile()
If you want to read an entire file, you can use the fs.readFile() method. This
method, which is based on fs.open(), combines the opening of a file with the
reading of the file into one method. To use it, you can simply pass the path to a
file as the first argument, and, optionally, you can pass the encoding to use to read
the file as the second argument.

Listing 4-3 shows an example of using the readFile() method from the fs module
to load a file asynchronously (using an async function) and log it to the console.

LISTING 4-3: Reading a File Asynchronously and Logging It

import { promises as fs } from 'fs';

async function main() {
 const data = await fs.readFile('data.txt', 'utf8');
 console.log(data);
}

main();

Notice that utf8 is passed as the second argument to fs.readFile() in the preceding
example. If you specify a value (utf8 is normally the only one you need) for this
argument, text data is returned to you as text that you can immediately work with
when it’s returned.

If you don’t specify a value for the encoding, you get back a buffer. To work with
this buffer, you need to convert it to the format you want before you can make
use of it.

618 BOOK 7 Node.js

Working with buffers is covered in Chapter 3 of Book 7.

Figure 4-1 shows what the output of the console.log() method from Listing 4-3
looks like when you don’t specify an encoding.

To convert a buffer object to a string, you can use the toString() method, as
shown in Listing 4-4.

LISTING 4-4: Converting a Buffer to a String

import { promises as fs } from 'fs';

async function main() {
 const data = await fs.readFile('data.txt');
 console.log(data.toString());
}

main();

Using readFileSync()
On rare occasions you might need to pause everything a Node.js program is doing
while you read a file. In these cases, you can use the readFileSync() method.

The syntax for using readFileSync() is the same as the syntax for using read-
File(). In Listing 4-5, readFileSync() is used when the program starts, before
any event listeners are created, to read in a server’s SSL certificate and private key.

FIGURE 4-1:
Returning a

buffer from fs.
readFile().

A
ccessing the File

System

CHAPTER 4 Accessing the File System 619

LISTING 4-5: Reading Files Synchronously

import { promises as fs } from 'fs';
import https from 'https';

const privateKey = fs.readFileSync('private.key');
const certificate = fs.readFileSync('certificate.crt');

const options = {
 key: privateKey,
 cert: certificate,
};

https
 .createServer(options, (req, res) => {
 res.writeHead(200);
 res.end('hello world');
 })
 .listen(8000);

The example shown in Listing 4-5 is one of the only times when it’s a good idea
to write blocking code in Node.js. Because you don’t want to start the server with-
out the values of the privateKey and certificate variables set, and because the
loading of these two files happens only once, when the program is started, using
readFileAsync() makes sense in this case — although you can easily achieve the
same result using asynchronous method calls and Promises or an async function.

Writing Files
Just as there are two basic methods for reading data from the file system into
Node.js, there are two methods for writing data: fs.write() and fs.writeSync().

Writing it to disk with fs.write()
The fs.write() method writes data to the computer’s file system asynchro-
nously. Using fs.write() is nearly always the preferred way to write files to disk
(versus the synchronous version, fs.writeSync()).

620 BOOK 7 Node.js

When talking about writing to physical storage, we typically talk about writing to
disk, even though fewer computers use disks these days. Whether you’re writing
to a floppy disk, a hard disk, a flash drive, or a solid state drive (SSD), it’s all the
same to Node.js — and so whether we say we’re writing to disk or writing to SSD
doesn’t matter, either. Maybe someday it will be more common to store data in
strands of DNA, but we’ll probably still call it disk.

Before you can write to a file, you first need to open the file for writing. The
method for doing this is fs.open().

The way you use fs.write() depends on whether you’re writing text or binary
data. To write a string to a file, pass the string (or the name of a variable contain-
ing a string) to write, followed by two optional arguments:

 » position: The position argument specifies (as a number of characters) the
offset from the beginning of the file where the data from the string should
be written.

 » encoding: The encoding argument indicates the expected encoding for the
string. The default value is utf8.

Using fs.writeFile()
If you need to write data to a file asynchronously, or overwrite the contents of
an existing file, use the writeFile() method. As with the readFile() method,
writeFile() combines the opening of the file, the writing of the file, and the
closing of the file into one.

Listing 4-6 uses the Promises flavor of readFile() and writeFile() to copy the
contents of a text file into another text file.

LISTING 4-6: Copying a File with readFile() and writeFile()

import { promises as fs } from 'fs';

async function main() {
 const data = await fs.readFile('data.txt');
 await fs.writeFile('data2.txt', data);
}

main();

A
ccessing the File

System

CHAPTER 4 Accessing the File System 621

Using Paths
Until now, I have described only how to read and write files that are in the same
directory as the program that’s working with them. This, of course, is not how the
world works. In any project involving more than a couple of files, you’ll want to
organize the files into subdirectories. In some cases, you may want to access and
work with files that are not just outside of the same directory as the program file,
but also outside of the Node.js package directory.

Node.js’s path module contains tools for working with file paths. Although it’s not
as glamourous as certain other built-in modules, the path module is probably one
of the most useful and widely used tools in Node.js’s toolbox when you’re work-
ing with files.

Using the path module starts with importing it. You can do so by using the old
CommonJS syntax:

const path = require("path");

or by using the ES Modules syntax:

import path from 'path';

When you’re working with files from a stand-alone Node.js program, as I show
you how to do in the examples earlier in this chapter, using the path module isn’t
usually necessary, because the location of the program file won’t change and you
can reference any files you need to read from or write to by using relative paths.

For example, Listing 4-7 reads from a file in a directory named data.txt that’s
one level higher in the file hierarchy than the Node.js program file.

LISTING 4-7: Reading from a File at a Higher Level in the File Structure

import { promises as fs } from 'fs';

async function main() {
 const data = await fs.readFile('../data/data.txt');
 console.log(data.toString());
}

main();

622 BOOK 7 Node.js

The path to data.txt in Listing 4-7 is what’s known as a relative path because it
tells the program how to access the file relative to the file containing the program.
The ../ group of symbols at the beginning of the path means, "Go up a directory."
A relative path starting with ./ means, “Start with the current directory.”

The other way to reference files is to use an absolute path. An absolute path is the
path to a directory or file that starts with the root. In file paths, the root directory
is the topmost directory in the file system, which is represented by /. In URLs,
the root directory is the root of the directory from which the web server is serving
files.

To find out the absolute directory where a Node.js program is running, you can
use the path module’s resolve() method, which returns the absolute path to a
file (if a path is passed to it) or the absolute path to the current directory (if no
file is passed to it). It’s a common practice to use path.resolve() to find out the
current directory path and assign it to a constant named (notice the two under-
scores!) __dirname.

Another useful method in the path module is the join() method. It takes parts of
a path and joins them into a single path. Listing 4-8 shows how you can use path.
resolve() and path.join() to create a function that can be passed the name of
a file to read; it then reads that file using its absolute path and displays the file’s
length and the absolute path to the file.

LISTING 4-8: Getting the Absolute Path to a File

import path from 'path';
import { promises as fs } from 'fs';

const __dirname = path.resolve();

async function main(filename) {
 const fileToRead = path.join(__dirname, filename);
 const data = await fs.readFile(fileToRead);
 console.log(`Read ${data.length} bytes from ${fileToRead}`);
 console.log(data.toString('utf-8'));
}

main('lorum-ipsum.txt');

Figure 4-2 shows the output from running the program in Listing 4-8.

A
ccessing the File

System

CHAPTER 4 Accessing the File System 623

Getting File and Directory Information
Beyond accessing and writing new files, the fs module also has ways to find out
information about files and directories on the host computer. The remainder of
this chapter presents some common tasks you might need to complete with the
local file system, plus a description of how to accomplish them using Node.js.

Listing the files in a directory
To list the files in a directory, you can use the fs.readdir() method. Listing 4-9
shows how to read the names of the files in the same directory as the program and
create an array that’s logged to the console.

LISTING 4-9: Reading the Directory’s Files and Logging Filenames

import { promises as fs } from 'fs';
import path from 'path';

const __dirname = path.resolve();

async function main() {
 const files = await fs.readdir(__dirname);
 for (const file of files) {
 console.log(file);
 }
}

main();

FIGURE 4-2:
Using path.

resolve() and
path.join().

624 BOOK 7 Node.js

Finding directories
By default, the fs.readdir() method doesn’t distinguish between files and direc-
tories when adding a list of files to its resulting array. You can find out which
items in a directory are also directories by setting the withFileTypes option to
true and calling the isDirectory() method of each object returned after running
fs.readdir(), as shown in Listing 4-10.

LISTING 4-10: Finding Out Whether an Item Is a Directory

import { promises as fs } from 'fs';
import path from 'path';

const __dirname = path.resolve();

async function main() {
 const files = await fs.readdir(__dirname, { withFileTypes:

true });
 for (const file of files) {
 console.log(file.name, file.isDirectory());
 }
}

main();

Getting file stats
If you need more information about files, you can pass a path to the fs.stat()
method to extract additional properties, including when the file was created
(stats.birthtime), the size of the file (stats.size), when the file was last
modified (stats.mtime), and when the file was last accessed (stats.atime).
Listing 4-11 shows how to use several of the properties returned by fs.stat().

LISTING 4-11: Getting File Information

import { promises as fs } from 'fs';
import path from 'path';

const __dirname = path.resolve();

A
ccessing the File

System

CHAPTER 4 Accessing the File System 625

async function main() {
 const fil es = await fs.readdir(__dirname, { withFileTypes:

true });
 for (const file of files) {
 const stats = await fs.stat(file.name);
 console.log(
 `${file.name} is ${stats.size} bytes and is ${
 file.isDirectory() ? 'a' : 'not a'
 } directory. It was created on ${stats.birthtime} and last

modified on ${
 stats.mtime
 }`
);
 }
}

main();

Figure 4-3 shows the console output from running the program in Listing 4-11.

FIGURE 4-3:
Getting file

and directory
information.

CHAPTER 5 Networking with Node 627

Networking with Node
“Use a personal firewall. Configure it to prevent other computers, networks,
and sites from connecting to you, and specify which programs are allowed to
connect to the net automatically.”

—KEVIN MITNICK

The ability to make and receive requests and responses using HTTP protocol
is Node.js’s killer app. Without networking capabilities, and HTTP network-
ing capabilities in particular, Node.js programs would be confined to talking

only to you and using only resources that are on your computer.

What makes Node.js so useful is that you can use it to create web servers and
application servers. Here are three useful definitions:

 » A server is a program that can be accessed over a network.

 » A web server is a program that can be accessed over a network by using the
HTTP protocol.

 » A web application server is a server that delivers a business application using HTTP
and that can be accessed using an application programming interface (API).

In this chapter, I show you how to start writing Node.js web servers and applica-
tion servers.

Chapter 5

IN THIS CHAPTER

 » Staying secure while running Node.js

 » Making servers with the http module

 » Creating and using HTTP requests

 » Responding to requests

 » Parsing and populating HTTP headers

628 BOOK 7 Node.js

A Note about Security
The quote that opens this chapter is one of the few times in this book that you see
one that isn’t inspirational or funny. This one is wise and important, however, and
I recommend taking a moment to read it again now.

Kevin Mitnick, who is a computer security consultant and an author, was one of
my childhood heroes, both because his last name is similar to mine and because
we both had, in the 1980s, an intense interest in exploring and learning about
the incredible new worldwide network of networks that was made possible by
the adoption of the TCP/IP standard from the Advanced Research Projects Agency
Network (ARPANET). This change to TCP/IP, in 1983, is what changed ARPANET
from a relatively exclusive network made up of government and university com-
puters to the parent of what we now know as the Internet. Unlike Kevin Mitnick,
I never did time in prison for my curiosity.

One person’s exploring is another person’s trespassing. I don’t condone any type
of illegal activity involving a computer.

I chose Mitnick’s quote for this chapter because knowing how to program with
Node.js gives you the power to build your own part of the Internet. If you don’t
use a firewall, anyone else who has an Internet connection and knows your com-
puter’s IP address can access any Node.js server you run.

A firewall is a program you can run on your computer that blocks other comput-
ers from accessing services on your computer over a network. Fortunately, mod-
ern operating systems come with firewalls built-in, and your computer and your
Internet service provider probably already restrict computers from outside your
local network from accessing any servers you create and run.

In addition to the built-in firewalls, many good firewalls are available for free or
little cost and provide additional functionality, such as virus protection, including
these:

 » Aura

 » Avast Premium Security

 » AVS Firewall

 » Bitdefender Total Security

 » Comodo Firewall

N
etw

orking w
ith N

ode

CHAPTER 5 Networking with Node 629

 » GlassWire

 » McAfee Antivirus

 » Norton Antivirus

 » Panda Dome Essential

 » PCProtect

 » TinyWall

 » Total AV

 » ZoneAlarm

If you don’t want to install a separate paid or free firewall (and I don’t blame you,
because they often come with a lot of notifications and alerts reminding you to
upgrade), here’s how you can make sure you’re using the one you already have:

On Windows:

1. Click the Start button and then search for and open Control Panel.

2. In Control Panel, select the System and Security option.

3. In the System and Security Control Panel, select Windows Defender Firewall.

4. Choose Turn Windows Firewall On and turn on the firewall for the domain
network, private network, and public network.

On macOS:

1. Choose System Settings from the Apple menu.

2. Click the Network section on the left side of the window.

3. Select Firewall.

4. Click the button to enable the Firewall.

The exact names of the controls for the Windows and macOS firewalls may change
in the future, but you can easily locate the correct control panels by searching for
them on your computer or by using Google.

With your firewall enabled, you’ll likely see, the next time you run a Node.js
server, a message asking whether you want to allow incoming connections to
Node.js. Since you’ll be accessing your Node.js programs only from the local com-
puter (using the localhost address), you should select No.

630 BOOK 7 Node.js

With your firewall enabled, certain programs you depend on, such as file storage
apps such as Dropbox or Google Drive, may stop working correctly until you allow
them to receive incoming connections in your firewall settings.

Making a Web Server
As with the other Node.js core modules, the first step in using the http module is
to import it. Here’s the most modern way to do that:

import http from 'http';

That was painless enough. Once you’ve imported http, you can make a server. The
method for creating a server is named, appropriately enough, createServer().
The createServer() method returns a server object. You can pass a callback
function to createServer() and that function will be invoked whenever a client
(such as a web browser) sends an request to the server’s address. Perhaps the
world’s most useless web server is shown in Listing 5-1.

LISTING 5-1: It’s Alive!

import http from 'http';

const app = http
 .createServer((req, res) => {
 res.writeHead(200, { 'Content-Type': 'text/html' });
 res.end('<h1>Hello World</h1>');
 })
 .listen(3000, () => {
 console.log('Server running at http://localhost:3000/');
 });

I have provided several examples of simple web servers in this book already, and
the preceding one is nothing special. When you run it, it creates a server and lis-
tens for requests at http://localhost:3000. Any request causes it to respond
with a bit of HTML.

Let’s take a deeper look now at the callback function that’s passed to create-
Server(), the parameters that are passed to the callback function, and the meth-
ods you can use inside the callback function.

N
etw

orking w
ith N

ode

CHAPTER 5 Networking with Node 631

Listing 5-2 shows an example of using createServer() to make a web server that
returns information about each request made to it back to the requester. In other
words, it tells the requester what their request was.

LISTING 5-2: Responding to a Request with a Request

import http from 'http';

const server = http.createServer((req, res) => {
 res.writeHead(200, { 'Content-Type': 'text/html' });
 res.write(`<p>request method: ${req.method}</p>`);
 res.write(`<p>request url: ${req.url}</p>`);
 res.write(`<p>request http version: ${req.httpVersion}</p>`);
 res.write(`<p>request raw headers: ${req.rawHeaders}</p>`);
 res.end();
});
server.listen(3000, () => {
 console.log('Server running at http://localhost:3000/');
});

Visit http://localhost:3000 in your browser after starting the server in
Listing 5-2. The exact response will depend on the browser and computer you’re
using, but it should look something like Figure 5-1.

FIGURE 5-1:
Viewing your

request headers.

632 BOOK 7 Node.js

Understanding the Request object
The first argument passed to the callback parameter of the createServer()
method is the request object. The request object, as you can see if you run
Listing 5-2, contains data about the HTTP request. An HTTP request is the data
passed by your browser to the server when it requests a resource (such as an
HTML page, a JavaScript file, a CSS stylesheet, or an image) from a particular
server.

The most important parts of the request object are the method and the URL. The
request URL is the path on the web server, relative to the root directory. For exam-
ple, if the URL is just a slash (/), this indicates that the request is for the default
document at the root of the web server.

In most cases, web servers are configured to serve files named index.html or
some variation (such as index.htm, index.php, or default.html) when a URL is
requested without a specific filename.

The request method indicates the desired action that the web browser (or another
HTTP client) wants the server to take in response to the request. This list describes
the most common request methods:

 » GET is used for retrieving data.

 » POST submits data to the server that the server should use to create some-
thing new, such as an entry in a database.

 » PUT, replaces the data in an existing server-side resource with the data
contained in the request.

 » PATCH updates an existing server-side resource using the data contained in
the request.

 » DELETE deletes a resource on the server, such as a record in a database.

The URL and request method are both passed as part of an HTTP request called the
request header. Requests may also contain data, such as input from a user’s entries
into form fields, or anything you specify in a client-side JavaScript program that
makes HTTP requests. The portion of an HTTP request that contains data passed
from the client is called the request body.

When you write a Node.js server, you have control over what the server does with
requests from the client and the header and body data it contains.

N
etw

orking w
ith N

ode

CHAPTER 5 Networking with Node 633

I tell you more about sending data from a client application to a server in
Chapter 9 of Book 7 and Chapter 10 of Book 7.

Understanding the response object
The second argument passed to the createServer()’s callback function is the
response object. The response object contains methods, properties, and events for
working with the response that the server will send back to a client in response
to HTTP requests.

The response header
To start a response to a request, you start the same way you’d start responding to
any letter: with the header. Like the <head> element in a web page, the response
header contains information about the document. In programming, we call infor-
mation about the information metadata. The values in the response header can be
used by the client to indicate whether the request was successful, how the data
should be processed, whether the connection between the server and the client
will remain open after the response is sent (in case the client has more requests
to make), and more.

HTTP headers are case-insensitive strings, followed by a colon, followed by a value.
Not every HTTP response needs to set every possible HTTP header. However, every
response starts the same way, with the status line. The status line has these three
components:

 » The HTTP method: This is usually HTTP/1.1.

 » The status code: The 3-digit status code indicates whether

• The request was successful, in which case a 200 status code should be sent

• An error occurred on the server (a 500 status code)

• The resource has moved to a different location (a 300 status code)

• A client error occurred, such as when the client lacks proper authorization or
tried to access a non-existent resource (a 400 status code)

 » The status text: This is a brief textual description of the status code, such as
Not Found (for a 404 status code) or Success (for a 200 status code).

After the status line, the header may include any in a long list of HTTP headers.

634 BOOK 7 Node.js

This list describes some of the more commonly used headers:

 » Content-Type: Specifies how the client should parse the data. These are
some common values for Content-Type:

• text/html: Used for HTML documents.

• multipart/form-data: Used for data from an HTML form. This method
should be used for form submissions that include binary data (such as
images or audio files).

• application/x-www-form-urlencoded: Another way to send form data.
This content type encodes the body of the HTTP message as a URL string,
such as firstName=Wilma&lastName=Flintstone&city=Bedrock.

• text/plain: Used for sending plain text to the client.

• application/json: Used for sending JSON data to the client.

 » Access-Control-Allow-Origin: Indicates the origins that the response can be
shared with. An origin is made up of the scheme (http or https), the domain
name (example.com), and the server port number (which is 80 by default for
HTTP servers).

 » Access-Control-Allow-Methods: Specifies which HTTP methods (for example,
POST, GET, PUT, or DELETE) can be used to make requests to the server.

 » Date: Includes the date and time the response was sent.

 » Content-Length: Specifies the size of the response body, in bytes.

 » Transfer-Encoding: Indicates the encoding of the message body. For
streaming chunks of data from the server, the Transfer-Encoding header is set
to chunked. The other common values are deflate or gzip, which can be
used in combination with chunked (separated by commas) or alone to
indicate how the message body is compressed.

 » Connection: Specifies whether the network connection between the client
and the server should stay open (in which case it should be set to keep-
alive) or be closed after the current transaction (in which case it should be
set to close).

You can see a complete list of the HTTP headers at https://developer.mozilla.
org/en-US/docs/Web/HTTP/Headers.

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers
http://example.com

N
etw

orking w
ith N

ode

CHAPTER 5 Networking with Node 635

The response body
Following the HTTP header, an HTTP response may have a blank line followed by
the response body. Not all responses have a body. For example, the response to an
OPTIONS request has only the header. Requests that result in a 201 Created or a
204 No Content also lack a body.

MAKING AN OPTIONS REQUEST
Requests from a client to a server that have the potential to change data on the server
are called complex requests. Servers and browsers use cross-origin resource sharing
(CORS) to restrict these requests when they come from origins that are different from
the server origin. For example, if a React web application that originates from https://
www.example.com tries to make a DELETE request to https://www.microsoft.com/
users, the server requires authorization, of course, but it may also simply not allow the
request to be made in the first place.

Before making a complex request, HTTP clients make a preflight request, whose purpose
is to determine whether the server will allow the client to make a request. A preflight
request uses the OPTIONS HTTP method. An OPTIONS request sends information
about the request that the browser wants to make, including the method and the origin
of the request. Here’s what a typical OPTIONS request looks like:

OPTIONS /resource/foo
Access-Control-Request-Method: DELETE
Access-Control-Request-Headers: origin, x-requested-with
Origin: https://foo.bar.org

The server responds with its Access-Control-Allow-Origin and Access-Control-
Allow-Methods headers to indicate whether the intended request will be allowed, as
shown in this snippet:

HTTP/1.1 204 No Content
Connection: keep-alive
Access-Control-Allow-Origin: https://foo.bar.org
Access-Control-Allow-Methods: POST, GET, OPTIONS, DELETE
Access-Control-Max-Age: 86400

Preflight requests happen automatically when your program tries to make complex
requests. If the requested method and origin match (or if the server sends back a wild-
card (*) value that matches the request method or options), the browser makes the
HTTP request.

636 BOOK 7 Node.js

When present, the body takes one of these three forms:

 » A single file of known length, such as an HTML document, an image,
or JSON data

 » A single file of unknown length encoded in chunks

 » A multiple-resource body

Methods of the response object
A simple HTTP server created using createServer() requires the use of only two
methods of the response object: writeHead() and end().

The writeHead() method
The writeHead() method sends a response header with these three parameters:

 » Status code

 » Description of the status code (optional)

 » An object or array containing the headers you want to send

The return value of writeHead() is a reference to the ServerResponse object.

The writeHead() method can be called only once per response.

The end() method
The end() method of the response object tells the server that the headers and
body of the response are complete. If you pass a string or a buffer object to end(),
the server sends that value in the body of the response before ending the response.
Calling end() is required for every response.

Because writeHead() returns a reference to the ServerResponse object, you can
chain writeHead() to end() to send a complete response to the client in a single
statement, like this:

response.writeHead(200, {
 'Content-Type': 'text/plain'})
 .end('This is the complete response.');

N
etw

orking w
ith N

ode

CHAPTER 5 Networking with Node 637

The write() method
If all you want to do is serve static files (such as HTML or JSON), you can do that
just fine by using only writeHead() and end(). However, most Node.js servers do
more interesting things between writing the header and ending the response. For
these cases, you can use the write() method. The write() method sends a chunk
of data to the request.

You can call the write() method as many times as you need to.

Using implicit headers
When you don’t call writeHead(), the server sends a header for you. This is called
an implicit header. If you’re using implicit headers, you still need to specify what
those headers should be. You can do that by using various properties and methods:

 » setHeader() sets a single header value. You can call it multiple times to set
multiple headers.

 » response.statusCode is the property to set with the status code you want
an implicit header to include.

 » response.statusMessage is the property to set with the status message you
want an implicit header to include.

Knowing the differences between
setHeader() and writeHead()
Although both setHeader() and writeHead() can be used to add headers to the
response object, you should be aware of certain differences between them. The
first difference, of course, is that setHeader() only sets a header, whereas write-
Head() sets the header and immediately sends it.

The second difference is in syntax. The writeHead() method takes an object or
array of headers as its argument and can be used to set as many headers all at
once as you want.

The setHeader() method sets only one header, and you have to call it multiple
times to set multiple headers. The first argument to setHeader() is the name of
the header, and the second argument is the value to assign to that header. For
example, to set the content-type header to text/html using setHeader(), you
use the following method call:

res.setHeader("content-type","text/html");

638 BOOK 7 Node.js

The third difference between setHeader() and writeHead() is that writeHead()
doesn’t do any sort of cleaning or parsing of the header object you pass to it.
Since HTTP headers are case-insensitive, It’s possible with writeHead() to set
the same header multiple times with different capitalization. For example, in the
following writeHead() call, the content-type header is specified twice:

res.writeHead(200,{
 'Content-Type':'text/html',
 'content-type':'text/plain'
});

The result of sending two different values to the same header with writeHead() is
that both values are sent to the client, and the client uses the last one.

The setHeader() method, on the other hand, normalizes the header names you
pass to it and treats 'Content-Type' and 'content-type' as the same thing.

CHAPTER 6 Using Events 639

Using Events
“Events are not a matter of chance.”

—GAMAL ABDEL NASSER

E
vents are central to how asynchronous code works in Node.js, as described
in these examples:

 » Streams (which I tell you about in Chapter 2 of Book 7) are objects that emit
events when data is available.

 » Server objects (see Chapter 5 of Book 7) emit an event when a new request is
received.

 » When an error occurs in Node.js, an error event is emitted. I tell you all about
errors and how to respond to error events in Chapter 7 of Book 7.

In this chapter, I show you how to emit events and register event listeners in your
own Node.js modules.

Chapter 6

IN THIS CHAPTER

 » Getting to know EventEmitter

 » Listening for events

 » Removing event listeners

 » Emitting events

640 BOOK 7 Node.js

Introducing EventEmitter
Every object that emits events is an instance of the EventEmitter class. Instances
of EventEmitter have an emit() method that emits an event when called. These
objects also inherit an on() method that you can use to attach functions to named
events.

When an event is emitted, any functions registered to that event are called syn-
chronously. Node’s events work the same as the browser events I tell you about in
Chapter 10 of Book 1. In a browser, for example, a <button> element emits a click
event whenever a user clicks it. The browser’s addEventListener() method
works like Node.js’s on() method to register event handlers.

Node.js’s on() method is an alias for another method: addListener(). You can
choose which one you want to use, but they work the same.

Creating custom events
In addition to the events built into Node.js’s core modules (such as open, close, or
data), you can emit any event you like and register listeners on that event.

Listing 6-1 shows an example of creating an interface for reading data from a
Readable stream one line at a time using the readline module.

The program checks each line for the word taco, and when it finds one, an event
named taco is emitted. An event listener is set to handle each taco event and log
to a file the position of the taco reference and the line on which it appears.

LISTING 6-1: Logging References to Tacos with Events

import fs from 'fs';
import path from 'path';
import readline from 'readline';

const __dirname = path.resolve();

const rl = readline.createInterface({
 input: fs.createReadStream(path.join(__dirname, 'recipes.txt')),
 crlfDelay: Infinity,
});

U
sing Events

CHAPTER 6 Using Events 641

let lineNumber = 0;
rl.on('line', (line) => {
 lineNumber++;
 if (line.includes('taco')) {
 rl.emit('taco', lineNumber, line);
 }
});

rl.on('taco', (lineNumber, line) => {
 console.log(`Taco found on line ${lineNumber}: ${line}`);
 fs.appendFileSync(
 path.join(__dirname, 'taco-log.txt'),
 `Taco found on line ${lineNumber}: ${line}`
);
});

In Listing 6-1, createInterface() is a constructor function that creates an
instance of the InterfaceConstructor class. InterfaceConstructor is an
instance of EventEmitter. Every instance of InterfaceConstructor is associated
with a single input, which is the stream created from the path to recipes.txt in
this example.

Extending EventEmitter
You can create your own instances of EventEmitter by extending it to create a
new class. For example, in Listing 6-2, a new class is created that does nothing
other than inherit the properties and methods of EventEmitter.

By creating an instance of the new class, events can be listened for and emitted.

LISTING 6-2: Extending EventEmitter

import EventEmitter from 'events';

class MyEmitter extends EventEmitter {}

const myEmitter = new MyEmitter();
myEmitter.on('event', () => {
 console.log('an event occurred!');
});
myEmitter.emit('event');

642 BOOK 7 Node.js

Passing arguments to listeners
When you emit an event from an instance of EventEmitter, you can pass argu-
ments to event emitters listening for the event by listing them after the name of
the event to emit. To make use of these arguments, specify parameters in a call-
back function passed as the second argument to the on() method, as shown in
Listing 6-3.

LISTING 6-3: Passing Arguments to Listeners with emit()

import EventEmitter from 'events';

class MyEmitter extends EventEmitter {}

const myEmitter = new MyEmitter();
myEmitter.on('event', (param1,param2) => {
 console.log('an event occurred!',param1,param2);
});
myEmitter.emit('event','something','something else');

Using this in an event handler function
The value of this in an event listener refers to the object that emitted the event
if you define the function using the function keyword, as shown in Listing 6-4.

LISTING 6-4: Using this in an Event Handler

import EventEmitter from 'events';

class javaScriptLibraryCreator extends EventEmitter {
 constructor() {
 super();
 this.frameworkName = '';
 }
 addJS = (word) => {
 this.frameworkName = `${word}.js`;
 };
}

const myLibraryCreator = new javaScriptLibraryCreator();

myLibraryCreator.on('makeFramework', function (word) {
 this.addJS(word);

U
sing Events

CHAPTER 6 Using Events 643

 console.log(`Your framework name is ${this.frameworkName}`);
});

myLibraryCreator.emit('makeFramework', process.argv[2]);

In this example, the class defines a property, frameworkName, and a method,
addJS(). The addJS() method takes a string argument and adds .js to it to form
the name of a real-life or potential name of a JavaScript library.

In the event listener (set using .on()), the event handler function calls addJS()
and passes a string emitted by the event emitter to addJS(). The event handler
then logs a string containing the new value of the frameworkName property. To
create your new framework name, pass any word to the program from the com-
mand line, as shown in Figure 6-1.

Using arrow functions as event handlers
If you use an arrow function to define your event handler function, this refers to
the event handler function itself. For example, Listing 6-5 shows the event han-
dler from Listing 6-4 as an arrow function. The result of running the program
with this change completed is an error because the references to this.addJS()
and this.frameworkName() no longer refer to the containing object, as shown in
Figure 6-2.

LISTING 6-5: Using an Arrow Function as an Event Handler

myLibraryCreator.on('makeFramework', (word) => {
 this.addJS(word);
 console.log(`Your framework name is ${this.frameworkName}`);
});

FIGURE 6-1:
Meet your

new JavaScript
framework name.

644 BOOK 7 Node.js

Understanding and Using maxListeners
When you register an event listener for an event, the new listener is added to the
listeners array. You can add multiple listeners for the same event, and Node.js
doesn’t do any checking to see whether the listener has already been added. When
the event happens, the event listener functions in the listeners array are invoked
synchronously in the order in which they were added. If you add the same listener
for the same event multiple times, that listener is executed multiple times.

Each event listener you register consumes processing power and memory in your
Node.js process. If these event listeners aren’t properly removed when they’re no
longer needed, they can create a memory leak.

A memory leak, which is a condition in which a program doesn’t release memory
that it has allocated, can lead to a program becoming slower over time — or even
crashing.

Finding the value of defaultMaxListeners
To help you detect and resolve memory leaks, Node.js tracks the number of listen-
ers attached to an event emitter. The default maximum number of listeners for
any emitter is stored in the EventEmitter.defaultMaxListeners property.

FIGURE 6-2:
Node.js cannot
read properties

of undefined.

U
sing Events

CHAPTER 6 Using Events 645

Follow these steps to check the value of defaultMaxListeners:

1. Open a terminal and start the Node.js REPL.

2. Import the events modules into the REPL:

const events = require('events');

3. Check the value of the defaultMaxListeners property of the
EventEmitter class by entering the following line into the REPL:

events.EventEmitter.defaultMaxListeners

You’ll see that the value of defaultMaxListeners is 10.

Exceeding the maximum
listeners for an emitter
To find out the maximum number of listeners for an emitter, you can call the get-
MaxListeners() method. If you register more than ten listeners for a particular
event on an emitter, Node.js displays a message in the console, warning you that
there’s a potential memory leak.

Listing 6-6 shows a program that creates an emitter, outputs the maximum num-
ber of listeners, and then registers 11 event emitters for the boing event.

LISTING 6-6: Registering 11 Event Listeners

import EventEmitter from 'events';

class Boing extends EventEmitter {}

const boing = new Boing();
console.log(`maxListeners: ${boing.getMaxListeners()} (default)`);

for (let i = 0; i < 11; i++) {
 boing.on('boing', () => {
 console.log('boing');
 });
}
boing.emit('boing');

The output of the program in Listing 6-6 is shown in Figure 6-3.

646 BOOK 7 Node.js

A warning is different from an error, in that your program continues to run after
a warning is displayed, whereas an error has the potential to cause the program to
halt (unless it’s handled in your program).

Error and error handling are covered in Chapter 7 of Book 7.

Increasing the maximum
number of listeners
If you need to register more than 10 listeners to an emitter, you can use the
setMaxListeners() method. The setMaxListeners() method takes a number as
its argument. For example, you can modify the program from Listing 6-6 to allow
20 event listeners without displaying a warning, as shown in Listing 6-7.

LISTING 6-7: Changing the Maximum Number of Listeners

import EventEmitter from 'events';

class Boing extends EventEmitter {}

const boing = new Boing();
console.log(`maxListeners: ${boing.getMaxListeners()} (default)`);
boing.setMaxListeners(20);

FIGURE 6-3:
Setting too many

event listeners
causes Node.js to
display a warning.

U
sing Events

CHAPTER 6 Using Events 647

console.log(`maxListeners: ${boing.getMaxListeners()} (set to 11)`);
for (let i = 0; i < 11; i++) {
 boing.on('boing', () => {
 console.log('boing');
 });
}
boing.emit('boing');

Removing Listeners
Removing event listeners when you’re done with them isn’t technically required,
but not removing listeners can make your program run slower over time. Listen-
ers can be removed from an emitter either individually or all at one time.

Removing individual listeners
To remove an individual listener, use the removeListener() method of the emit-
ter. The removeListener() method takes two arguments: the event name and the
listener to remove.

You can remove a listener by passing a reference to the function that was origi-
nally set as the listener to the second parameter of removeListener(), as shown
in Listing 6-8.

LISTING 6-8: Removing an Event Listener

import EventEmitter from 'events';

class MyEmitter extends EventEmitter {}
const handleEvent = () => {
 console.log('an event occurred!');
};

const myEmitter = new MyEmitter();
myEmitter.on('event', handleEvent);
myEmitter.emit('event');
myEmitter.removeListener('event', handleEvent);
myEmitter.emit('event');

648 BOOK 7 Node.js

When you run the preceding chunk of code, the first emitted event is handled by
the handleEvent() function. The event that’s emitted after the removeEvent()
method is called isn’t handled, because there are no more listeners in the listen-
ers array.

Removing all listeners
If you want to remove all listeners from an emitter, or remove all listeners for
a particular event, use removeAllListeners(). The removeAllListeners()
method can, optionally, take the name of an event as an argument.

Listing 6-9 shows a program that adds three different listeners for three different
events and then removes them all.

LISTING 6-9: Removing Event Listeners

import EventEmitter from 'events';

class MyEmitter extends EventEmitter {}

const myEmitter = new MyEmitter();
myEmitter.on('event1', () => {
 console.log('event1 occurred!');
});
myEmitter.on('event2', () => {
 console.log('event2 occurred!');
});
myEmitter.on('event3', () => {
 console.log('event3 occurred!');
});
myEmitter.emit('event1');
myEmitter.emit('event2');
myEmitter.emit('event3');
myEmitter.removeAllListeners();
myEmitter.emit('event1');
myEmitter.emit('event2');
myEmitter.emit('event3');

U
sing Events

CHAPTER 6 Using Events 649

Emitting Once
When you register an event handler using on() or addListener(), the event han-
dler runs every time the event that is listened for is emitted. In some cases, you
may want an event handler function to run only once. In those cases, you can use
the once() method.

An event listener that is set using once() is detached after firing once. In
Listing 6-10, once() is used to log the date and time of the first request to a web
server after it starts.

LISTING 6-10: Logging the First Request

import http from 'http';
const server = http.createServer();

server.once('request', (req, res) => {
 console.log('First request received at ' + new Date());
 res.end('First request received');
});

server.listen(3000, () => {
 console.log('Server running at http://localhost:3000/');
});

CHAPTER 7 Error Handling and Debugging 651

Error Handling and
Debugging

“The most formidable weapon against errors of every kind is reason.”

—THOMAS PAINE

Error handling is how you respond to and recover from error conditions in a pro-
gram. In this chapter, I show you how to handle errors in Node.js and how to find
the sources of errors by using debugging tools so that you can prevent them from
happening in the future.

Knowing the Types of Errors
Not all errors are the same. Some errors are expected and there’s not much that
you, as the programmer, can do to prevent them. Other errors are the result of
programmer errors. The two types of errors can be referred to as operational errors
and programmer errors.

Chapter 7

IN THIS CHAPTER

 » Recognizing the types of errors

 » Using error objects

 » Handling and catching exceptions

 » Debugging Node.js programs using
the command line and Chrome

652 BOOK 7 Node.js

Operational errors
Operational errors happen. How you deal with them determines whether they
crash your program, make it unusable, or cause a temporary hiccup. Operational
errors include

 » Failure of a remote resource (such as an API server)

 » Network errors (such as a slow connection or DNS failure)

 » Invalid user input

 » Hardware failures

Operational errors need to be anticipated, measures can be taken to prevent them,
and then error handling must be in place to prevent them from causing the pro-
gram to fail.

Programmer errors
Programmer errors are the bugs in your program. Any useful program that’s more
than a couple of lines long will have bugs at some point. Programmer errors range
from the types of problems that prevent a program from running (such as a typo)
to more subtle problems that cause sporadic problems, such as not catching a
rejected promise. Though typos are by far the most common programmer errors
(and often the most frustrating to track down and fix), there are plenty of ways
that a programmer can make mistakes.

These are some common JavaScript and Node.js programmer errors:

 » Passing the wrong type of data to a function

 » Failing to resolve a promise

 » Using the wrong address for a resource

 » Passing the wrong headers or body data to a web API

 » Failing to use undefined or null keywords correctly

 » Expecting asynchronous code to run synchronously

 » Blocking the event loop

Unlike operational errors, bugs in your programs can be not only handled but also
found and fixed.

Error H
andling and

D
ebugging

CHAPTER 7 Error Handling and Debugging 653

Understanding Node.js’s Error Object
The built-in Error object gives you information about an error. Beyond the error.
message property that is populated with a (sometimes) helpful message when an
error happens, the Error object also has a property named stack that shows you
where an error came from and a list of the function calls that preceded the error.

The program shown in Listing 7-1 purposefully creates an error and then logs the
values of error.name, error.message, and error.stack to the console.

LISTING 7-1: Seeing Error Properties

function makeError(message) {
 const error = new Error(message);
 error.name = 'MyError';
 return error;
}
const error = makeError('oops');
console.log(error.name);
console.log(error.message);
console.log(error.stack);

Figure 7-1 shows the result of running the program in Listing 7-1.

FIGURE 7-1:
Viewing the

error object’s
properties.

654 BOOK 7 Node.js

Reading error.stack
Each line in the stack represents a stack frame. Each of these frames describes a
function call within the code that led to the error. The top frame in the stack is
where the error happened. For each frame, the V8 engine attempts to display a
name (such as a variable name, a function name, or an object method name). If
it’s not possible for V8 to display a name, it displays only the location informa-
tion. The location information is the value in parentheses at the end of each frame.

Reading a stack frame
The location of the frame starts with the path to the file containing the function,
followed by the line number, a colon, and the position on the line. For example,
in the output shown in Figure 7-1, the error happened in Listing070701.js, on the
second line, at the 15th position on that line. If you count lines and positions in
Listing 7-1 (including the tab character and spaces), you can see that 2:15 is where
new Error(message); starts.

Exceptions versus Errors
The term exception is frequently used interchangeably with the term error. How-
ever, the two have technically significant differences:

 » An error is something that you can’t control and that generally can’t be
handled in any other way than fixing whatever is wrong that caused the error.

 » An exception is an anomaly that can be anticipated and handled.

An example of an error is the program crashing because of a syntax error. An
error is an instance of the Error object. Errors can be user-defined or one of the
built-in error classes, which include ReferenceError, RangeError, TypeError,
URIError, EvalError, and SyntaxError.

An example of an exception is what happens when a network request fails. If the
exception that’s created (or thrown, as we say) isn’t handled, it’s known as an
uncaught exception, which is another name for an error, and it causes your program
to exit prematurely (or crash).

However, if the exception is properly handled (or caught, as we say), you can
use the exception as an opportunity to prevent the application from crashing or
misbehaving — by displaying cached data or displaying a message to the user to
try again, for example.

Error H
andling and

D
ebugging

CHAPTER 7 Error Handling and Debugging 655

Handling Exceptions
An error becomes an exception by being thrown. Thrown errors need to be caught.
For example, when a program makes an HTTP request using fetch(), it throws
an error for a number of different reasons.

Listing 7-2 shows a function that throws an exception because the URL passed to
fetch() doesn’t exist.

LISTING 7-2: A Function That Throws an Error

async function getData(){
 return await fetch('https://nothinghere');
}

getData();

The result of running Listing 7-2 is shown in Figure 7-2.

To catch the error that is thrown by the preceding getData() function, wrap calls
to it in a try / catch block, as shown in Listing 7-3.

FIGURE 7-2:
An error because

of an uncaught
exception.

656 BOOK 7 Node.js

LISTING 7-3: Catching a Thrown Exception

async function getData(url) {
 return await fetch(url);
}

async function main() {
 try {
 const response = await getData('https://nothinghere');
 } catch (error) {
 console.log('An Error has occurred');
 }
}

main();

Catching exceptions with promises
Before Node.js Version 15, rejected promises only caused warnings. Because it’s
easier to find and debug problems that cause errors, the default behavior of Node.js
is now to throw an exception when there’s an uncaught promise rejection.

Creating an uncaught Promise rejection
Listing 7-4 shows an example of a program that results in an uncaught promise
rejection.

LISTING 7-4: An Unhandled Promise Rejection

function getUserDetailsWithPromise(userId) {
 return new Promise(function (resolve, reject) {
 const user = getUserById(userId);
 if (user) {
 resolve(user);
 } else {
 reject('User not found');
 }
 });
}

Error H
andling and

D
ebugging

CHAPTER 7 Error Handling and Debugging 657

function getUserById(userId) {
 return null;
}

getUserDetailsWithPromise(1).then(function (user) {
 console.log('User details with promise: ' + user.name);
});

The getUserById() function in the preceding listing always returns null. How-
ever, if this were real code, it could just as easily do a database lookup or an HTTP
request that returned without finding a user matching the argument passed to it.

When you run the code in Listing 7-4, it results in the error shown in Figure 7-3.

Catching a promise rejection
To catch a promise rejection, you need to add a catch() block, as shown in
Listing 7-5.

FIGURE 7-3:
An error thrown

because
of an unhandled

promise
rejection.

658 BOOK 7 Node.js

LISTING 7-5: Catching Promise Rejections

function getUserDetailsWithPromise(userId) {
 return new Promise(function (resolve, reject) {
 const user = getUserById(userId);
 if (user) {
 resolve(user);
 } else {
 reject('User not found');
 }
 });
}

function getUserById(userId) {
 return null;
}

getUserDetailsWithPromise(1)
 .then(function (user) {
 console.log('User details with promise: ' + user.name);
 })
 .catch(function (error) {
 console.log('Error: ' + error);
 });

Using finally()
After a promise resolves or rejects, you can use the finally() block to perform
any necessary clean-up. For example, the following function, shown in Listing 7-6,
attempts to fetch user data. Before the function runs, the value of isLoading is
set to true. Whether the promise is rejected or resolved, the finally() block sets
isLoading to false.

LISTING 7-6: Using a finally() Block

const getUserDetailsWithPromise = (userId) => {
 return new Promise((resolve, reject) => {
 const user = getUserById(userId);
 if (user) {
 resolve(user);
 } else {
 reject('User not found');
 }
 });
};

Error H
andling and

D
ebugging

CHAPTER 7 Error Handling and Debugging 659

const getUserById = (userId) => {
 return null;
};

let isLoading = true;
getUserDetailsWithPromise(1)
 .then(function (user) {
 console.log('User details with promise: ' + user.name);
 })
 .catch(function (error) {
 console.log('Error: ' + error);
 })
 .finally(() => {
 isLoading = false;
 console.log('isLoading: ' + isLoading);
 });

Catching exceptions with async functions
Async functions always return a Promise. Catching exceptions thrown in an async
function works the same as with Promises, but with a more synchronous-looking
syntax, as shown in Listing 7-7.

LISTING 7-7: Catching Exceptions with async / await

async function getData(url) {
 try {
 const response = await fetch(url);
 const data = await response.json();
 return data;
 } catch (error) {
 console.log(`An error has occurred.`);
 }
}

async function main() {
 const data = await getData('https://nothinghere/todos/1');
 console.log(data);
}

main();

660 BOOK 7 Node.js

Debugging Node.js Programs
I tell you in Chapter 3 of Book 6 about debugging code that runs in the browser.
Debugging programs that run in Node.js works similarly and can even be done
with the help of Chrome’s debugging tools. In this section, I tell you about debug-
ging your Node.js code using two different tools:

 » The built-in Node.js command-line debugger

 » Chrome’s DevTools

Many other tools are available for debugging Node.js programs, including the
debugger built into VS Code. Once you’re familiar with one debugging tool, you’ll
find that other ones generally work in a similar way.

Before you can debug anything, you need a program to debug. Listing 7-8 is a
web application that sends an HTML form in response to GET requests at http://
localhost:3000/form and returns a confirmation message in response to POST
requests to http://localhost:3000/form.

I’ve also added several debugger statements to this program (shown in bold type).
This statement sets a breakpoint in the debugger.

A breakpoint is a place where execution of the code pauses during debugging.

LISTING 7-8: A Simple Web Application for Learning about Debugging

import http from 'http';
import url from 'url';
import fs from 'fs';
import path from 'path';

const server = http.createServer((request, response) => {
 const urlObj = url.parse(request.url);
 const pathName = urlObj.pathname;
 const method = request.method;

 if (pathName === '/form') {
 if (method === 'GET') {
 fs.re adFile(path.join(process.cwd(), 'form.html'), (error,

data) => {
 if (error) {
 response.statusCode = 500;
 response.statusMessage = 'Internal Server Error';
 response.end();

Error H
andling and

D
ebugging

CHAPTER 7 Error Handling and Debugging 661

 } else {
 response.statusCode = 200;
 response.statusMessage = 'OK';
 response.setHeader('Content-Type', 'text/html');
 debugger;
 response.end(data);
 }
 });
 } else if (method === 'POST') {
 let data = '';
 request.on('data', (chunk) => {
 data += chunk;
 debugger;
 });

 request.on('end', () => {
 const params = new URLSearchParams(data);
 const name = params.get('name');
 const email = params.get('email');
 const comments = params.get('comments');
 response.statusCode = 200;
 response.statusMessage = 'OK';
 response.setHeader('Content-Type', 'text/html');
 debugger;
 response.write(
 ̀<html><body><h1>Thank you, ${name}.</h1><p>Your post

has been received.</p>
 <p>Name: ${name}</p>
 <p>Email: ${email}</p>
 <p>Comments: ${comments}</p></body></html>`
);
 debugger;
 response.end();
 });
 }
 } else {
 response.statusCode = 404;
 response.statusMessage = 'Not Found';
 response.end();
 }
});

server.listen(3000, () => {
 console.log('Server listening on port 3000');
});

662 BOOK 7 Node.js

To use this application, create an HTML form like the one shown in Listing 7-9
and save it as form.html in the same directory as the application.

LISTING 7-9: An HTML Contact Form for Testing the Application Server

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="UTF-8"/>
 <meta n ame="viewport" content="width=device-width,

initial-scale=1.0"/>
 <title>Please enter the info</title>
 <style>
 body {
 font-family: Arial, Helvetica, sans-serif;
 }
 form {
 width: 400px;
 margin: 0 auto;
 }
 label,
 input {
 display: block;
 margin-bottom: 5px;
 }
 input[type='submit'] {
 margin-top: 10px;
 }
 </style>
 </head>
 <body>
 <div id="container">
 <form action="/form" method="post">
 <label for="name">Name:</label>
 <input type="text" name="name" id="name"/>
 <label for="email">Email:</label>
 <input type="text" name="email" id="email"/>
 <label for="comments">Comments:</label>
 <t extarea name="comments" id="comments" cols="30"

rows="10"></textarea>
 <input type="submit" name="submit" value="Send"/>
 </form>
 </div>
 </body>
</html>

Error H
andling and

D
ebugging

CHAPTER 7 Error Handling and Debugging 663

When you run the application server and visit http://localhost:3000 with a web
browser, you see the form shown in Figure 7-4.

Filling out the form and submitting it causes the server to return a confirmation
page containing the data that was sent in the HTTP POST from the browser, as
shown in Figure 7-5.

Using the command-line debugger
Node.js includes a simple command-line debugging utility that you can use to
step through and inspect a program. The command-line debugger isn’t as full-
featured as other debugging tools, as you can see later in this chapter.

FIGURE 7-4:
The HTML form in

a browser.

FIGURE 7-5:
The returned
confirmation

page from the
server.

664 BOOK 7 Node.js

Follow these steps to get started with the command-line debugger:

1. Start Node.js with the inspect argument.

For example, if you save the program from Listing 7-8 as appServer.js, you
can start the debugger with the following command:

node inspect appServer

The debugger starts and pauses on the first statement, as shown in Figure 7-6.

2. At the debug prompt that appears when the program pauses, enter help
to see all possible commands, as shown in Figure 7-7.

3. Enter next or just n to move to the next executable statement.

The debugger pauses at the creation of the server constant.

4. Press Enter to move to the next statement.

Pressing Enter without a command repeats the previous command.

5. Press Enter again several more times.

The debugger pauses at the server.listen() function call and then shows
you each statement that runs as part of server.listen().

6. Continue pressing Enter until the server writes 'Server listening on port
3000' to the console.

7. Press Enter one more time and you see a message that the operation
(next) can be performed only while the debugger is paused.

At this point, the server is ready.

FIGURE 7-6:
The debugger

starts and breaks
at the first
statement.

Error H
andling and

D
ebugging

CHAPTER 7 Error Handling and Debugging 665

8. Go to http://localhost:3000 in your browser and then return to the termi-
nal window, where the debugger is running.

The debugger should be paused again, just before the response.end()
statement that returns the HTML form to the browser.

9. Press Enter twice more.

If you return to your browser now, you see that the HTML form has appeared
in response to your request.

Pausing at every executable statement can become tedious, and you could
continue stepping through all the code that makes an HTTP server work in
Node.js. You can streamline the command-line debugger by setting an
environment variable.

10. Press Ctrl+C twice to exit the debugger.

11. Create a file named .env in the same directory as your program.

12. Add the following code to your .env file:

NODE_INSPECT_RESUME_ON_START = 1

FIGURE 7-7:
Viewing the

debugger's Help
information.

666 BOOK 7 Node.js

13. Install the dotenv module.

npm install dotenv --save

14. Import dotenv into your program file, and load the .env file by adding the
following two lines:

import * as dotenv from 'dotenv';

dotenv.config();

15. Start the program with the debugger.

node inspect Listing070708

The debugger starts again, and the server is created and starts listening.

16. Go to http://localhost:3000/form in your browser.

The debugger pauses after response.setHeader() is called.

17. Enter watch('response') to tell the debugger to watch the value of the
response object.

18. Enter watchers to see the current watchers that have been set.

There should be just one, for the response object. The debugger outputs the
beginning of the response object.

19. Enter repl to go to a command line, where you can execute statements.

The prompt in the terminal changes from debug> to >.

20. Enter console.dir(response) to print the entire response object.

Look over the properties of response.

21. When you're done looking at the response object, press Ctrl+C to return
to the debugger.

22. If you look at your browser now, you see that it still hasn't loaded (or
reloaded) the form. Enter n to advance to the next breakpoint.

Notice that the value of your watcher is displayed above the code listing
showing where the debugger paused. If you want to check the value of the
response header at this point, you can return to the REPL and log the response
object, or you can set a more specific watcher, which is what I show you how to
do in Step 19.

23. Enter watch('response._header').

24. Enter n to pause at the next statement, and you can see that the header
has been set, as shown in Figure 7-8.

Error H
andling and

D
ebugging

CHAPTER 7 Error Handling and Debugging 667

Debugging in Chrome DevTools
The command-line debugger is useful for debugging code that's on a different
network than your development machine. It's good to know that it's always avail-
able, but it's not the greatest user experience. To step up to the next level, you
can use a graphical debug client, such as the one built into the Chrome browser.

Follow these steps to start debugging a Node.js app using Chrome:

1. Start your program using the --inspect flag:

node --inspect Listing070707

The debugger starts and displays a message that it's listening on Port 9229, as
shown in Figure 7-9.

Notice the ws:// before the URL in Figure 7-9 — this is the protocol name for a
WebSocket connection. WebSocket, like HTTP, is a client-server communication
protocol. WebSocket creates a bidirectional connection between the client and
server: Clients can send data to the server, and the server can send data to the
client. HTTP, on the other hand, is unidirectional: Communication between a
server and client must start with the client requesting a resource from the
server. WebSocket is useful for situations in which you need to transmit
real-time data or a continuous stream of data over a network.

FIGURE 7-8:
Watching the

watchers.

668 BOOK 7 Node.js

2. Open your Chrome browser and type the following into the address bar:

chrome://inspect/

You see the Inspect interface, as shown in Figure 7-10.

3. Look for the name of the file you started in the debugger under the
Remote Target header in the Inspect window and click on it.

The Chrome DevTools debugging window opens, as shown in Figure 7-11.

FIGURE 7-9:
Starting the

debugger.

FIGURE 7-10:
The Chrome

DevTools Inspect
interface.

Error H
andling and

D
ebugging

CHAPTER 7 Error Handling and Debugging 669

Adding a workspace
The left pane of the DevTools Inspect interface is where you can open the folder
containing the files you're debugging. Adding files to the workspace allows you
to set breakpoints and edit the files and see changes reflected immediately. After
you complete the steps in the preceding step list, follow these steps to add your
files to the workspace:

1. Click the Add Folder to Workspace link and select the folder containing
the program you're debugging.

A message appears at the top of the DevTools interface, asking for permission
to access the directory.

2. Click Allow to allow DevTools to access your files.

The folder you added to the workspace shows up, as shown in Figure 7-12.

Notice that the program that's running has a green dot next to its filename.

Setting breakpoints
The DevTool inspector pauses on the breakpoints you set using debugger state-
ments. You can also click on line numbers next to statements in your code to set
additional breakpoints.

FIGURE 7-11:
The Chrome

DevTools Inspect
interface.

670 BOOK 7 Node.js

Follow these steps to open your program and see and set breakpoints:

1. Click the running file to open it in the code pane.

2. Go to http://localhost:3000/form in your browser.

The debugger pauses at the first debugger statement in the program, as
shown in Figure 7-13.

FIGURE 7-13:
The paused

debugger.

FIGURE 7-12:
Your files have
been added to

the workspace.

Error H
andling and

D
ebugging

CHAPTER 7 Error Handling and Debugging 671

3. Set another breakpoint on the next line of code by clicking on the line
number.

4. Press F8 or click the forward-arrow (Resume Script Operation) button at
the top of the right column of the DevTools interface to go to the next
breakpoint.

5. Inspect the local variables and the closures in the pane on the right.

You see the data variable under Local, which is the variable created by the
readFile() function that was passed to the callback function.

Under the Closure heading, you see the response object, which was passed by
the http.createServer() method to its callback function.

A closure is an inner function that has access to the state of its containing function.

Setting a watch expression
A watch expression is a JavaScript expression you can set in the debugger that is
reevaluated every time the debugger pauses. Here's how to set a watch expression
to see the current value of the data variable when the debugger pauses:

1. Look for the data property in the Local variables on the right side of the
Debugger, and notice that it's a Buffer object.

2. Click the word Watch on the right side of the debugger to expand it if it's
not already expanded.

3. Click the plus sign (+) next to Watch, and add data.toString() as a watch
expression.

The converted value of data appears.

When you press F8 or click the forward arrow to unpause the debugger, execution
of the program exits the function containing the data variable. The watch expres-
sion you set reflects this by displaying that data.toString() is not available.

Setting log points
While debugging, you can create log points, which log the result of an expression
to the console. Here's how to set a log point to output the value of data to the con-
sole after the file is read by fs.readFile():

1. Right-click on Line 14 of the program, which should be the if() state-
ment inside the fs.readFile() callback function.

672 BOOK 7 Node.js

2. Choose the Add Logpoint command from the menu that appears.

A box appears on that line, where you can add a log message. For example, to
print the value of data, enter something like this:

'data: ',data.toString()

3. Press Enter to save the log point.

The line number is highlighted, and a new breakpoint appears in the list of
breakpoints on the right.

4. Refresh your browser window to reload http://localhost:3000/form.

5. Look at the terminal window where you started the debugger, and you
can see the contents of the HTML form that the server sends as its
response.

Learning more about Chrome's
DevTools Inspect interface
Now that you know the basics of how to debug a Node.js program using Chrome,
spend some time playing around with it. Try introducing a bug into your program,
or do something that causes an exception, such as renaming the HTML file that
fs.readFile() will attempt to load.

When you're ready to read more about Chrome's built-in debugger, visit https://
developer.chrome.com/docs/devtools.

http://localhost:3000/form
https://developer.chrome.com/docs/devtools
https://developer.chrome.com/docs/devtools

CHAPTER 8 Accessing Databases 673

Accessing Databases
“If there can be three certain things in life, instead of two, it might be death,
taxes, and data.”

—CLARA SHIH

Connecting to databases from Node.js gives your programs the ability to
access and store large amounts of persistent data. Most server-side pro-
grams make use of some kind of database. These are some uses for server-

side databases:

 » Storing user login information and user profiles

 » Storing content for dynamically generating web pages

 » Keeping track of user session information

 » Storing ecommerce product and order information

In this chapter, I show you how to work with one of the most commonly used
databases for server-side applications: MongoDB.

Chapter 8

IN THIS CHAPTER

 » Starting out with MongoDB

 » Using the MongoDB shell

 » Using MongoDB from Node.js

674 BOOK 7 Node.js

Getting Started with MongoDB
The job of any database is to store data in some organized way and make it possi-
ble to retrieve that data. One way to classify different types of databases is by how
they store data (and how you get that data out of the database). Most databases
fall into one of these two broad categories:

 » Relational databases: Relational databases (such as MySQL and Microsoft
SQL Server) store data in tables (which resemble Excel spreadsheets). To
communicate with a relational database, you use Structured Query
Language (SQL).

 » NoSQL databases: NoSQL databases, as the name implies, store data without
using SQL. There are several different types of NoSQL databases, which are
named according to how they store data. Types of NoSQL databases include
document, key-value, wide-column, and graph.

MongoDB is a document database. When data is saved in MongoDB, it’s saved
as documents that are similar to JSON objects. One of the great benefits of using
MongoDB with Node.js is that the format in which you store data can easily be
converted to JavaScript objects, and JavaScript objects can easily be converted to
JSON for storage in MongoDB.

Discerning between relational
and NoSQL databases
The use of relational databases dates back to the 1970s, and the ideas behind them
go back much further than that. Most of the large commercial databases that have
been created in the past 50 years — such as Oracle, Db2, and Informix — are rela-
tional databases.

Table 8-1 shows a table of sample data stored in a relational database.

TABLE 8-1	 A Relational Database Table
id firstName lastName Address city state zip

1 Carmen Jones 715 Werniger Street Houston TX 77032

2 Albert Jones 4078 Oak Lane Moberly MO 65270

3 Gregory Gregg 3875 Heavner Avenue Adairsville GA 30103

A
ccessing D

atabases

CHAPTER 8 Accessing Databases 675

In a relational database, each piece of data (such as firstName or lastName) has its
own column, and each row represents a set of related data (which is also known
as a record).

When you create a relational database, you must specify each piece of data (col-
umn) that you want to store for each record. When a new record is created (such
as when a new person is added to the table shown in Table 8-1), that record stores
something — even if it’s just a null value — for each column.

It’s common in relational databases to have fields in a table that aren’t used by
every record. For example, a table that stores contact information needs to have
a way to store apartment numbers, even though not everyone’s address has an
apartment number. The data you can store in a table is limited by the fields that
the table has. We call this structured data.

NoSQL databases store unstructured data. Listing 8-1 shows the same data as
Table 8-1, but in JSON format, as it would be stored in MongoDB.

LISTING	8-1:	 A JSON Document

[
 {
 "id": 1,
 "firstName": "Carmen",
 "lastName": "Jones",
 "address": "715 Werniger Street",
 "city": "Houston",
 "state": "TX",
 "zip": "77002"
 },
 {
 "id": 2,
 "firstName": "Albert",
 "lastName": "Jones",
 "address": "4078 Oak Lane",
 "city": "Moberly",
 "state": "MO",
 "zip": "65270"
 },
 {
 "id": 3,
 "firstName": "Gregory",
 "lastName": "Gregg",
 "address": "1234 Main Street",

(continued)

676 BOOK 7 Node.js

 "city": "Adairsville",
 "state": "GA",
 "zip": "30103"
 }
]

Unlike with relational databases, document databases don’t need to conform to a
strict structure. Storing data as JSON documents is flexible.

Instead of columns, documents have fields. Whereas the columns in a relational
database table are fixed and must be changed for every row in the table, the fields
in a document are flexible and can be added or omitted as necessary. For exam-
ple, if one of the contacts in the JSON data shown in Listing 8-1, has an apart-
ment number, that element in the JSON array can have an additional property for
that information without all the other records needing to have a blank apartment
number.

Data types in relational databases
SQL databases were invented in a time when data storage was expensive. As a
result, databases are focused on reducing data duplication. When you create a
table in a relational database, you specify the type and (usually) the maximum
size of the data that each column will hold. For example, the firstName column
will hold strings, the birthDate column will hold dates, and the phone number
might hold a number of as many as 10 digits. But several countries (including
French Guiana and Guadeloupe) use 12-digit phone numbers. Trying to store a
12-digit phone number in a column that’s set to a maximum length of 10 digits
causes an error, or else the data is truncated (as anyone named Christopher
knows, because those folks often have to deal with being called “Christophe” by
customer service representatives — don’t ask me how I know).

Data types in NoSQL databases
In a document database, such as MongoDB, field types and lengths are flexible. If
it’s possible for a user to have more than one phone number, you don’t add a new
field in a document database (or in a related table) — you store phone numbers
as an array.

Storing data as JSON objects is more verbose than storing it in tables, but document
databases (which first gained widespread use in the early 21st century) aren’t as
concerned with eliminating duplication and minimizing storage space — because
storage is far less expensive today, and it keeps getting less expensive.

LISTING	8-1:	 (continued)

A
ccessing D

atabases

CHAPTER 8 Accessing Databases 677

A 10MB hard drive cost $2,500 in 1982. Forty years later, in 2022, a 4TB hard
drive costs $70. So, for about 1/100th of the price, you could store 40,000 times as
much data in 2022 as in 1982. These numbers are nothing compared to the cost-
versus-capacity comparison that you have when you’re reading this paragraph.
Clearly, optimizing for storage space should no longer be the primary concern
when designing a database.

Installing MongoDB
MongoDB is available in two editions: the open source Community edition and
the Enterprise edition. In this book, you install the Community edition. It can be
installed on Windows, Linux, or macOS.

Installing a database server isn’t generally a simple process, so I’ve tried to be as
detailed with my instructions as possible in the following sections. If you get lost
or something doesn’t work as expected, try it again or carefully follow the latest
instructions at https://mongodb.com/docs/manual/installation.

Installing MongoDB on Windows
Follow these steps to install MongoDB on Windows:

1. Go to the MongoDB download page:

https://www.mongodb.com/try/download/community

2. Select the most recent version from the Version dropdown menu,
select Windows under Platform, and select the msi under the Package
dropdown menu, as shown in Figure 8-1.

FIGURE 8-1:
The MongoDB

download page.

https://mongodb.com/docs/manual/installation
https://www.mongodb.com/try/download/community

678 BOOK 7 Node.js

3. Click Download to start the download.

4. Open the .msi file to run the installer.

5. At the Choose Setup Type step of the installation (which is shown in
Figure 8-2), click the link to download the mongo shell.

A browser window opens and the mongo shell download page loads.

6. Select the Windows MSI from the Platform dropdown menu, and down-
load the mongo shell.

Make sure that you selected the MSI version. Some of the following steps won’t
work correctly if you use the .exe version of MongoDB Shell.

7. Return to the MongoDB installer and click Complete on the Choose Setup
Type screen.

8. On the next screen, shown in Figure 8-3, select the check box next to
Install MongoD as a Service, and then select Run Service as Network
Service User. (These should be the default settings.) You can leave the
data and log directory settings set to their defaults and then click Next.

9. On the next screen, leave the check box to install MongoDB Compass
selected and then click Next.

10. Click Install.

11. When Windows asks you whether you want to allow the installer to make
changes to your device, click Yes, as shown in Figure 8-4.

When the installation finishes, Compass starts up automatically.

FIGURE 8-2:
Choosing the

setup type.

A
ccessing D

atabases

CHAPTER 8 Accessing Databases 679

Compass is a graphical user interface for working with MongoDB. I don’t tell
you how to use Compass in this chapter, but if you want to try it out, you can
find instructions for using it at https://mongodb.com/docs/compass/
current.

12. Find the zip file for installing MongoDB shell in your Downloads folder.

If you didn’t download the MongoDB shell in Step 6, you can go to https://
mongodb.com/try/download/shell and download it now.

13. Run the Mongo Shell msi file to install Mongo Shell.

FIGURE 8-3:
Configuring

MongoDB
as a service.

FIGURE 8-4:
Allow the installer
program to make

changes.

https://mongodb.com/docs/compass/current/
https://mongodb.com/docs/compass/current/
https://mongodb.com/try/download/shell
https://mongodb.com/try/download/shell

680 BOOK 7 Node.js

Installing MongoDB on macOS
Follow these steps to install MongoDB on macOS:

1. Install the Homebrew package manager, if you don’t have it already:

You can find instructions for installing Homebrew at https://brew.sh.
Installing Homebrew is simple: You’ll need to copy the installation script from
the Homebrew homepage and paste it into Terminal.

2. Install the xcode command-line tools, if you don’t already have them, by
entering the following command into your terminal:

xcode-select --install

Installing xcode or the xcode command-line tools is simple, but may take a
long time. This might be a good time to take yourself and/or your dog for a
walk. You’ll thank me later, or maybe your dog will.

3. Add the MongoDB Homebrew Tap by running the following command in
your terminal:

brew tap mongodb/brew

4. Update Homebrew to make sure you have the latest versions of its
"formulae:"

brew update

5. Download and install MongoDB:

brew install mongodb-community

Installing MongoDB on Linux
The process for installing MongoDB on Linux varies based on the distribution
of Linux you run. You can find detailed instructions for installing on Linux at
https://www.mongodb.com/docs/manual/administration/install-on-linux.

Starting MongoDB
Before you can use MongoDB from Node.js, it has to be running. Here’s how to
start MongoDB. The program that makes MongoDB available to other programs
on your computer (or on the network) is called MongoD.

https://brew.sh
https://www.mongodb.com/docs/manual/administration/install-on-linux

A
ccessing D

atabases

CHAPTER 8 Accessing Databases 681

Starting MongoDB on Windows
If you installed MongoD as a service, it should already be started. You can confirm
that everything is properly installed by opening a terminal window and entering
the following command:

mongosh

This starts up the MongoDB shell. If it starts successfully, you see some informa-
tion appear on your terminal, followed by the test> prompt. In the upcoming
“Using Mongosh” section, I show you how to use the mongo shell.

Starting MongoDB on macOS
If you installed MongoDB using Homebrew, you can use Homebrew to start and
stop it. To start MongoD with Homebrew in macOS, enter the following command:

brew services start mongodb-community

If everything is installed correctly, you should see a message telling you that it
was successfully started. To confirm that everything is properly installed and
running, enter the following command into a terminal:

mongosh

This command starts the MongoDB shell, which I tell you about in the next section.

Using Mongosh
The MongoDB shell allows you to execute commands on a MongoDB server from
the command line. To start Mongosh and connect to the MongoDB server on your
computer, just enter mongosh into a terminal.

Connecting to MongoDB and
creating a database
To connect to a remote MongoDB server that you have access to, you can use
the -host and -port flags while starting Mongosh, like this:

mongosh -host mongouser@mongo.example.com -port 27017

682 BOOK 7 Node.js

Port 27017 is the default port number for MongoDB.

Follow these steps to try out Mongosh and learn more about MongoDB:

1. Make sure that MongoDB is running by following the instructions in the
earlier section “Starting MongoDB.”

2. Enter mongosh into a terminal window.

The Mongosh prompt appears.

3. Enter help to see the commands that are available in the shell.

4. Enter show dbs to see the current list of available databases.

With a new installation of MongoDB, you see three databases: admin, config,
and local.

5. Enter use mydb to create a new database named mydb and switch it to
the active database in the shell.

6. Enter show collections.

Collections are where MongoDB stores documents. Since this is a new
database, you won’t have any collections yet.

A database holds one or more collections. A collection holds one or more docu-
ments. Documents have one or more fields.

Creating a collection
Creating a new collection and storing something in it can be done in one step:

1. To create a new collection, just store some data. If the collection doesn’t
already exist, it is created.

For example, enter the following command:

db.users.insertOne({ name : 'Chris Minnick' })

A document containing the field you specified (name) is inserted into the
collection. If everything works correctly, you see a confirmation message, as
shown in Figure 8-5.

Making an id and listing documents
When you add documents to a collection, MongoDB automatically creates a field
named _id and assigns it a unique value. The _id field is set to a 12-byte ObjectId

A
ccessing D

atabases

CHAPTER 8 Accessing Databases 683

that can be used to uniquely identify the document. Use the following command to
show all documents in your collection:

db.users.find()

MongoDB responds with all documents in the specified collection, as shown in
Figure 8-6.

FIGURE 8-5:
Creating your first

collection.

FIGURE 8-6:
Viewing the

documents in a
collection.

684 BOOK 7 Node.js

Finding documents
You can use the db.collection.find() method to find individual documents
or documents that match a query. To query a collection using db.collection.
find(), pass a filter object to it as an argument.

A filter object is a JavaScript or JSON object that specifies the data to match in docu-
ments. For example, if you want to find all the people in a users collection who
live in New York, you might use the following command:

db.users.find({ "state" : "NY" })

The difference between a JSON object and a JavaScript object is that property
names in JSON are always in quotes.

Returning fewer fields
To return only certain fields from documents, you can pass an object containing
the names of the fields to return as properties with a value of 1 for each field to
return. For example, to display only the name and city fields, pass an object con-
taining the name and city field names with values of 1 as the second argument to
find():

db.users.find({ "state" : "NY" }, { name:1, city: 1})

When you run the preceding statement, the _id, name, and city for all users in
New York are returned. If you don’t want to return the _id field, pass it in the
second argument with a value of 0:

db.users.find({"state" : "NY"}, {_id: 0, name:1, city: 1})

Note that the _id field is the only one that’s automatically returned by find(),
so it’s the only one where it’s possible or necessary to pass a value of 0. To omit
fields other than _id from the returned data, just don’t include them in the fields
object.

Sorting lists
You can sort the results returned by find() by chaining find() to a sort()
method. The sort() method takes an object containing the field you want to sort
by and a value of either 1 (to sort in ascending order) or –1 (to sort in descending
order).

A
ccessing D

atabases

CHAPTER 8 Accessing Databases 685

For example, to return a list of users in alphabetical order by their names, you can
use the following statement:

db.users.find().sort({"name":1})

Limiting lists
To limit the number of results that are returned, chain the find() method to the
limit() method. For example, to return a maximum of ten documents from the
users table, use the following statement:

db.users.find().limit(10)

Making complex queries using operators
You’re not limited to querying based only on exact matches, of course. To create
more complex queries, you can pass an object as the value of the field you’re que-
rying, and this object can use operators.

Operators in MongoDB start with the dollar sign ($) character. For example, the
long form of querying the users collection for users where the state is "NY" looks
like this:

db.users.find({"state":{ $eq: "NY"}})

These are some of the operators you can use while querying:

 » $eq: Matches documents where the value of the field equals the specified
value

 » $ne: Matches documents where the value of the field doesn’t match the
specified value

 » $gt: Matches documents where the value of the field is greater than the
specified value

 » $lt: Matches documents where the value of the field is less than the
specified value

 » $gte: Matches documents where the value of the field is greater than or
equal to the specified value

 » $lte: Matches documents where the value of the field is less than or equal to
the specified value

 » $in: Specifies an array of values to match

686 BOOK 7 Node.js

 » $nin: Specifies an array of values to exclude

 » $exists: Returns documents that have the specified field

You can also specify multiple operators in the query value object and they will be
executed like they’re connected by an AND operator. For example, to return users
who are between the ages of 35 and 55, you can use the following statement:

db.users.find({"age": { $gte: 35, $lte: 55 }})

Another way to do an AND query is to use the $and operator. The $and operator
takes an array of queries. Here’s how you can rewrite the preceding query using
$and:

db.users.find({ $and: [{ age: {$gte: 35}},
 { age: {$lte: 55}}]})

There is also a $or operator, which can be used to specify multiple queries where
only one of them needs to be true and a $not operator that will negate the query
you use as its value.

Learning MongoDB Shell commands
Once I show you how to use the MongoDB Shell, you’ll find that it’s often the
quickest way to complete simple operations, such as creating a collection or
deleting a collection. Table 8-2 lists the most commonly used MongoDB Shell
commands.

TABLE 8-2	 Common MongoDB Shell Commands
Command What It Does Example

show dbs Lists the databases on the server show dbs

use db Switches to the specified database use mydata

show users Lists the users for the current database show users

show roles Lists the user roles for the current database show roles

db References the current database db

db.collection.
insertOne()

Inserts a document into a collection, creating
the collection if it doesn’t exist

db.products.insertOne({
’productName’ : ’duct tape’ ,
’price’ : 5.99 })

A
ccessing D

atabases

CHAPTER 8 Accessing Databases 687

Working with users and roles
Your MongoDB database has no users currently. You can verify this by entering
show users into the mongo shell. It should return an empty array.

Having at least one user who has access to your database is necessary to be able to
connect to it securely from another program (such as Node.js). Users have roles,
which determine what they’re able to do with the database.

Several roles are built into MongoDB, including the "read" role, the "readWrite"
role, and the "dbAdmin" role. To view a list of the roles that can be assigned to
users, enter show roles. The roles that are important for being able to access a
MongoDB from Node.js are read and readWrite.

To create a new user and assign them roles, you can pass a username, a password,
and a list of roles to db.createUser(). MongoDB supports several different types
of authentication, but for simplicity, use username/password.

Command What It Does Example

db.collection.find() Returns all documents from a collection (if no
argument is passed) or queries the collection
and finds matching documents

db.products.find({ ’price’ : 5.99 })

db.collection.
insertMany()

Inserts multiple documents into the collection db.products.insertMany(
[{"productName" : "bolt" } , {
"productName" : "hammer" }])

db.collection.
deleteOne()

Deletes a document from the database db.products.deleteOne({"_id"
: ObjectId("343234a64a3d3423
c2395fa") })

db.collection.
deleteMany()

Deletes multiple documents from a database db.products.deleteMany({
"outOfStock" : true})

db.collection.
updateOne()

Updates a document in the collection db.products.updateOne(
{"name" : "hammer" } , { $set : {
"price" : 10 } })

db.collection.
updateMany()

Updates multiple documents in the collection db.products.updateMany({"price" :
5 } , { $set : { "price" : 4.99 } })

db.collection.drop() Deletes a collection db.products.drop()

db.dropDatabase() Deletes a database db.dropDatabase()

cls Clears the shell window cls

exit Exits the mongo shell exit

688 BOOK 7 Node.js

Create a user for the mydb database using the following command:

db.createUser({ user: "mydbUser", pwd: passwordPrompt(),
 roles: [{ role: "readWrite", db: "mydb"}]})

The passwordPrompt() method causes Mongosh to ask you for a password for the
user. After you enter a password, your new user is created. If you run show users
now, you see your new user listed, as shown in Figure 8-7.

Using MongoDB from Node.js
To connect to and use a MongoDB database in Node.js, you need these three items:

 » MongoDB server

 » MongoDB Node.js driver

 » Connection string

FIGURE 8-7:
Seeing your

new user.

LEARNING MORE ABOUT MongoDB
I don’t have enough space in this book to explain everything that can be done with
MongoDB, but what I cover here is enough to get you started with most of the
operations you need in order to use MongoDB databases in Node.js. To read more
about MongoDB, visit https://www.mongodb.com/docs/manual/tutorial/
getting-started.

https://www.mongodb.com/docs/manual/tutorial/getting-started
https://www.mongodb.com/docs/manual/tutorial/getting-started

A
ccessing D

atabases

CHAPTER 8 Accessing Databases 689

Installing the Node.js driver
Since you already have the MongoDB server, follow these steps to create a new
Node.js package and install the Node.js driver:

1. Make a new project or a new folder in VS Code named db-app.

2. Initialize a new Node.js package in db-app by entering the following line:

npm init -y

Using the -y flag causes npm init to accept all the default settings rather than
prompting you for values for each setting.

3. Open package.json and add "type":"module" to it so that you can use
ES Modules in this project.

4. Enter npm install mongodb --save into the terminal to install the mongodb
driver.

Connecting to a MongoDB server
The Node.js driver includes a MongoClient class that contains methods for work-
ing with MongoDB. Here’s how to create an instance of MongoClient and use it to
connect to your server:

1. Create a new file named dbtest.js.

2. Import MongoClient from the mongodb library:

import {MongoClient} from 'mongodb';

3. Make a new file named db-config.js, containing the code from Listing 8-2.

On Windows, using localhost as the host name may produce an error. If it
does for you, change localhost:27017 to 0.0.0.0:27017 in Listing 8-2.

4. Import dbConfig into dbtest.js and deconstruct it:

import { dbConfig } from './db-config.js';

const { url } = dbConfig;

5. Create an instance of MongoClient and pass it the URL for your server:

const client = new MongoClient(url);

690 BOOK 7 Node.js

6. Use an async function to call the connect() method of the client, log a
message, and then close the connection:

async function app() {
 try {
 await client.connect();
 console.log('Connected to the server.');
 } catch (err) {
 console.log(err.stack);
 }
 client.close()

}

7. Call the app() function:

app();

LISTING	8-2:	 Creating the Database Configuration Object

const dbConfig = {
 url: 'mongodb://localhost:27017',
 dbName: 'mydb',
};
export { dbConfig };

Listing 8-3 shows what your dbtest.js file should look like at this point.

LISTING	8-3:	 Connecting to a MongoDB Server

import { MongoClient } from 'mongodb';
import { dbConfig } from './db-config.js';
const { url } = dbConfig;
const client = new MongoClient(url);
async function app() {
 try {
 await client.connect();
 console.log('Connected to the server.');
 } catch (err) {
 console.log(err.stack);
 }
 client.close()
}
app();

A
ccessing D

atabases

CHAPTER 8 Accessing Databases 691

If everything is correct and your MongoDB server is running, you should see Con-
nected to the server in the terminal when you enter node dbtest.

Inserting documents into a collection
Once you’re connected to a server, you can use a database and interact with it
using methods that are like the ones you use to interact with a database using
mongo shell.

Follow the next set of steps to connect to a database and document into a collection.

If you specify a database or collection that doesn’t already exist on your server,
MongoDB automatically creates it for you.

1. After the console.log() statement in dbtest.js, specify the database to
use by passing the dbName variable (defined in db-config.js) to client.
db():

const db = client.db(dbName);

2. Specify the collection to use by passing the collection name (as a string)
to db.collection():

const col = db.collection('people');

3. Write an object to add to the people collection.

It can be any valid JavaScript object, such as in this example:

let personDocument = {
 name: { first: 'Alan', last: 'Turing' },
 birth: new Date(1912, 5, 23),
 death: new Date(1954, 5, 7),
 contribs: ['Turing machine', 'Turing test', 'Turingery']

};

4. Use collection.insertOne() to the document into the database:

await col.insertOne(personDocument);

Listing 8-4 shows what your dbtest.js should look like now.

5. Run dbtest.

If everything is correct, it outputs the Connected to the server message
and then inserts a document into the people collection.

692 BOOK 7 Node.js

6. Enter mongosh into the terminal to start the mongo shell.

7. Switch to using the mydb database (or whichever database you specified
in db-config.js) by entering use mydb.

8. Enter show collections to see the collections in the database.

9. List the documents in the people collection by entering the following
command:

db.people.find()

If the document you specified in dbtest.js is listed, congratulations! If not,
make sure that your MongoDB server is running and return to dbtest.js to
check your code carefully.

LISTING	8-4:	 Inserting a Document into a Collection

import { MongoClient } from 'mongodb';

import { dbConfig } from './db-config.js';
const { url, dbName } = dbConfig;
const client = new MongoClient(url);
async function app() {
 try {
 await client.connect();
 console.log('Connected to the server.');
 const db = client.db(dbName);
 const col = db.collection('people');
 let personDocument = {
 name: { first: 'Alan', last: 'Turing' },
 birth: new Date(1912, 5, 23),
 death: new Date(1954, 5, 7),
 contribs: ['Turing machine', 'Turing test', 'Turingery'],
 };
 await col.insertOne(personDocument);
 } catch (err) {
 console.log(err.stack);
 }
 client.close();
}
app();

A
ccessing D

atabases

CHAPTER 8 Accessing Databases 693

Getting data
Just as in a mongo shell, you can use MongoDB’s collection.find() method with
the Node.js driver to get back data from a collection. These are the two important
things to remember about using the MongoDB driver’s find() method to get data
from a collection:

 » It’s asynchronous.

 » It returns a Cursor object.

Database operations are asynchronous
Getting data (as well as adding, updating, and deleting it, for that matter) is an
asynchronous operation. When using the MongoDB methods, you have the choice
of invoking them with callbacks, Promises, or async functions. Async functions
are (in my opinion) the easiest way to write and to understand async code, so
that’s what I’m using in these examples.

Using a Cursor object
Cursor objects manage the results of a query. They’re iterable objects on which
you can use the following methods:

 » next(): Gets the next result in the Cursor

 » toArray(): Converts the Cursor to an array

 » forEach(): Loops over each result

Follow these steps to retrieve all the records from the people collection you cre-
ated in the previous section and output them to the console:

1. After the insertOne() statement in dbtest.js, use the find() method
to query the collection and return a cursor:

const cursor = await col.find();

2. Use a forEach() loop to loop over the cursor and log each of its docu-
ments to the console:

await cursor.forEach(console.dir);

Yes, that’s all there is to it. When you run this program now, another document is
added to the collection and then all the documents in the collection are output to
the console, as shown in Figure 8-8.

694 BOOK 7 Node.js

Using results in your program
If you need to hold the documents returned by a find() query in memory and
work with the records (such as to create an HTTP response), convert the cursor
to an array:

const allResults = await collection.find({}).toArray();

Using findOne()
The collection.findOne() method uses a query object to find all matching
documents in a collection and returns the first matching document. Unlike the
collection.find() method, findOne() doesn’t return a cursor.

Examining your Find options
You can optionally pass an options object as the second argument to find() or
findOne(). These are a few of the more common find options:

 » limit: limits the result to the specified number of documents.

 » projection: specifies the fields to return using the field name with a value of
0 or 1.

 » skip: specifies a number of documents to skip ahead in the query. This is
useful for pagination.

 » sort: specifies a sort order for the returned documents.

FIGURE 8-8:
Logging

documents
to the console.

A
ccessing D

atabases

CHAPTER 8 Accessing Databases 695

Updating data
To update documents in a collection, you can use the updateOne() or update-
Many() methods. As with the Mongo Shell methods, updateOne() and update-
Many() accept a filter document, which specifies which document or documents
to update, and an update document, which specifies how to update the document
or documents.

Update options
You can pass an options object to updateOne() or updateMany(). The most
commonly used update option is called upsert. If upsert is set to true, a new
document is created if no documents match the filter object.

Combining update and insert
If you’ve run the listings in this chapter that person record into the database, you
should now have a collection named people with several records for Alan Turing.
Listing 8-5 shows how to use updateOne() and the upsert option to prevent docu-
ments with duplicate information from being created.

Before you run this code, you should drop the existing collection by going into the
mongo shell (by entering mongosh into a terminal) and entering use mydb fol-
lowed by db.people.drop().

LISTING	8-5:	 Using updateOne() with the Upsert Option

import { MongoClient } from 'mongodb';

import { dbConfig } from './db-config.js';
const { url, dbName } = dbConfig;
const client = new MongoClient(url);
async function app() {
 try {
 await client.connect();
 console.log('Connected to the server.');
 const db = client.db(dbName);
 const col = db.collection('people');
 let personDocument = {
 name: { first: 'Alan', last: 'Turing' },
 birth: new Date(1912, 5, 23), // June 23, 1912
 death: new Date(1954, 5, 7), // June 7, 1954
 contribs: ['Turing machine', 'Turing test', 'Turingery'],
 };

(continued)

696 BOOK 7 Node.js

 await col.updateOne(
 { first: 'Alan', last: 'Turing' },
 { $set: personDocument },
 { upsert: true }
);
 const allResults = await col.find({}).toArray();
 console.log(allResults);
 } catch (err) {
 console.log(err.stack);
 }
 client.close();
}
app();

Deleting data
To delete documents, use either collection.deleteOne() or collection.
deleteMany(). The deleteOne() method takes a query document and deletes the
first document that matches the query. The deleteMany() method takes a query
document and deletes all documents that match the query. Both methods return
a result object that contains a deletedCount property that indicates how many
documents were deleted.

For example, the following code attempts to delete a single document. You can test
whether the document to be deleted was found by checking the value of result.
deletedCount:

const result = await people.deleteOne({last:'Turing'});
if (result.deletedCount === 1) {
 console.log('Success');
} else {
 console.log('No match was found');
}

LISTING	8-5:	 (continued)

CHAPTER 9 Riding on the Express Train 697

Riding on the
Express Train

“The speed of light sucks.”

—JOHN CARMACK

Express is the most popular Node.js web application framework. Whether
you’re building an API server or a web application server with Node.js,
Express greatly simplifies working with HTTP, templates, and routes.

In this chapter, I show you how to start working with Express and how to use
Express to create server-side web applications.

Installing Express
To install Express, you can use an existing Node.js package or create a new one
(using npm init) and then enter npm install express.

Chapter 9

IN THIS CHAPTER

 » Getting started with Express

 » Making server-side routes

 » Using and creating middleware

 » Creating an Express API server

 » Using a template engine to serve
views

 » Benefiting from the express
application generator

698 BOOK 7 Node.js

The examples in this chapter use ES Module syntax, so you need to add
"type":"module" to your package.json file.

Once you have Express installed in your package, you’re ready to create your first
Express application. As usual, let’s start with a simple application, which is shown
in Listing 9-1.

LISTING 9-1: Hello Express

import express from 'express';
const app = express();
const port = 3000;

app.get('/', (req,res) => {
 res.send('Hello World!');
});

app.listen(port, () => {
 console.log(`Listening on port ${port}.`);
});

If you save this program and run it, you see it log a message to the console, and
when you send an HTTP GET request to it (by opening http://localhost:3000
in your browser), it returns a message. There’s nothing too exciting about this
example, but it does demonstrate the basics of how Express works.

The first thing to notice is that, in order to use Express, you must create an instance
of express by running the express() method. It’s a convention to use app as the
name of the object that’s returned from express(). The app object has methods
and properties that you can use to simplify creating an app. In Listing 9-1, the two
methods you use are get() and listen().

The get() method listens for HTTP GET requests to the URL passed as its first
argument. When it receives a request, it calls the handler function passed to its
second argument and passes a request object and a response object to it.

The request and response objects (commonly named req and res) passed to the
handler function in get() (as well as the other routing methods I tell you about
in the following section) are the same request and response objects that I tell you
about in Chapter 5 of Book 7.

Riding on the Express
Train

CHAPTER 9 Riding on the Express Train 699

Server-Side Routing with Express
On a web server, routing refers to how the server responds to HTTP requests from
a client. Server-side routing uses the path and the method passed in the request
object to determine how to respond.

Introducing routing methods
Express has built-in methods for supporting 23 different HTTP methods, includ-
ing the most commonly used ones, which are GET, POST, PUT, and DELETE, as
well as less commonly used methods such as PATCH, HEAD, OPTIONS, SEARCH,
SUBSCRIBE, and CHECKOUT.

If you’re building a web application that serves HTML pages, you’ll likely only
use get() and post() for routing. If you’re building an API server, you use get(),
post(), put() (or patch()), and delete().

The PUT and PATCH methods are often used interchangeably, but there is a dif-
ference in how they’re intended to be used. PUT should be used for operations
that will replace an entire resource (such as a document in a MongoDB collection).
PATCH should be used for operations that will replace only specified fields.

Using routing methods
Whichever routing method you use, they all work the same way: Each method
takes a path as its first argument and a handler function as its second argument.

The path argument can be a string representing the path, a path pattern, a regular
expression, or an array containing combinations of the other possible values.

String paths
To simply match a single path, pass the path as a string that starts with the root
path (’/’). For example, if you want to handle HTTP GET requests to the /users
path, pass '/users'.

In addition to directory names, string paths can also contain hyphens (–) and
dots (.).

700 BOOK 7 Node.js

Path patterns
You can use certain characters in path strings to match patterns. For example, to
match a path that starts with the literal string "test" followed by any number of
additional characters, you can use the asterisk (*) character, like this:

app.get('/test*', (req, res) => {
 res.send('test');
});

These are the pattern-matching characters that can be used in path strings:

 » ?: specifies that the character it follows is optional. For example, the following
snippet matches requests to /test and /tests:

app.get('/tests?', (req, res) => {
 res.send('test');

});

 » +: specifies that there must be at least one instance of the character it follows.
For example, the following snippet matches requests to /tests, /testss, /
testsss, and so on:

app.get('/tests+', (req, res) => {
 res.send('test');

});

 » (): can be used to group characters. For example, the following snippet
matches requests to /test as well as to /t:

app.get('/t(est)?', (req, res) => {
 res.send('test');

});

Path regular expressions
If you need to match a more complex pattern than is possible with path strings,
you can use regular expressions for the path argument. For example, the follow-
ing snippet matches any request that ends with test:

app.get(/.*test$/, (req, res) => {
 res.send('test');

});

Riding on the Express
Train

CHAPTER 9 Riding on the Express Train 701

Path parameters
Path parameters can be used to match paths that have dynamic values and to cap-
ture the dynamic part of the path. For example, an API may have a /users/:userid
route. With the get() function’s path argument set to '/users/:userid', a URL
ending in /users/99 will be matched by that route function.

When you use a path parameter, the dynamic part of the URL is available inside
req.params object. Listing 9-2 uses a path parameter and uses the value passed
in the URL in the response.

LISTING 9-2: Logging req.params

import express from 'express';
const app = express();
const port = 3000;

app.get('/log/:myArg', (req, res) => {
 console.log(req.params.myArg);
 res.send('Hello World! You requested ' + req.params.myArg);
});

app.listen(port, () => {
 console.log(`Listening on port ${port}.`);
});

Using Express Middleware
Functions that have access to the request and response objects are called express
middleware functions. When attached to an express app or a route, they do their
work after a request comes in and before the response is sent. Middleware func-
tions can be used for these tasks:

 » Executing any code

 » Making changes to the request and response objects

 » Ending the request-response cycle

 » Calling the next middleware function

702 BOOK 7 Node.js

The next() function
The next() middleware function passes control from the currently running mid-
dleware function to the next middleware function. Every middleware function
has access to the next() middleware function and must either end the request-
response cycle (such as by calling the end() function) or call next().

If a middleware function doesn’t call next() or end the request-response cycle,
the request is left hanging. A hanging request won’t respond. The browser con-
tinues to wait for a response until the request times out.

Listing 9-3 shows the use of a middleware function that listens for requests using
any HTTP method and logs the requested path to the console.

LISTING 9-3: Logging Requests with Middleware

import express from 'express';
const app = express();
const port = 3000;

app.use((req, res, next) => {
 console.log(`Request URL: ${req.url}`);
 next();
});

app.listen(port, () => {
 console.log(`Listening on port ${port}.`);
});

Types of middleware
Several categories of middleware are available, including these:

 » Application-level middleware

 » Router-level middleware

 » Error-handling middleware

 » Built-in middleware

 » Third-party middleware

Riding on the Express
Train

CHAPTER 9 Riding on the Express Train 703

Application-level middleware
Application-level middleware is bound to the app object using app.use() or
the app.get(), app.post(), app.put(), or another of Express’s HTTP method
functions.

Application-level middleware functions can optionally take a mount path as their
first argument. If a mount path is passed, the middleware function runs only
when the request path matches the specified mount path.

If a middleware function has no mount path, it runs on every request (if it was
created using app.use()) or on the type of HTTP request that matches the method
the middleware was bound to (such as get() or post()).

Listing 9-4 shows a middleware function that runs when GET requests come in
at /time. It adds a currentTime property to the response object before passing
control to the next middleware function, which responds to the request with the
current date and time.

LISTING 9-4: Using Middleware to Modify the res Object

import express from 'express';
const app = express();
const port = 3000;

app.get('/time', (req, res, next) => {
 res.currentTime = new Date();
 next();
});

app.get('/time', (req, res) => {
 res.send(`Hello World! The time is ${res.currentTime}.`);
});

app.listen(port, () => {
 console.log(`Listening on port ${port}.`);
});

Router-level middleware
Router-level middleware works the same as application-level middleware,
except that it’s attached to an instance of Router() rather than to an instance of
express().

704 BOOK 7 Node.js

By creating Router objects, you can better organize the routes in your application.
For example, you might have a customer route that handles requests starting with
the /customer path and a product router that handles requests starting with the
/product path.

Listing 9-5 demonstrates the use of router-level middleware to log different
messages to the console depending on which router handles the request.

LISTING 9-5: Using Router-Level Middleware

import express from 'express';
import { Router } from 'express';
const customerRouter = Router();
const productRouter = Router();

const app = express();
const port = 3000;

customerRouter.get('/', (req, res, next) => {
 res.send('Customer list');
 next();
});

productRouter.get('/', (req, res, next) => {
 res.send('Product list');
 next();
});

app.use('/customers', customerRouter);
app.use('/products', productRouter);

app.listen(port, () => {
 console.log(`Listening on port ${port}.`);
});

Error-handling middleware
Error-handling middleware takes an error object (usually called err) as its first
argument, followed by req, res, and next. In Listing 9-6, an error-handling mid-
dleware function is defined to catch errors and send back a custom error when
they happen.

Riding on the Express
Train

CHAPTER 9 Riding on the Express Train 705

LISTING 9-6: Using Error-Handling Middleware

import express from 'express';
import { Router } from 'express';
const userRouter = Router();

const app = express();
const port = 3000;

userRouter.get('/admin', (req, res, next) => {
 throw new Error('Nice try!');
});

app.use('/users', userRouter);

app.use((err, req, res, next) => {
 console.error(err.stack);
 res.status(500).send('Something broke!');
});

app.listen(port, () => {
 console.log(`Listening on port ${port}.`);
});

Built-in middleware
The built-in middleware functions can be attached to the express instance to per-
form their tasks on incoming requests. The built-in middleware functions include
these:

 » express.static(): Serves static assets (such as images, html files, and
stylesheets) from a specified directory.

 » express.json(): Parses requests containing JSON payloads to convert them
to JavaScript, passing the request to the next middleware function with a new
body object containing the parsed data. By default, it works the same as the
JSON.parse() function, but can optionally be run in strict mode, which
parses only JSON arrays and objects.

 » express.urlencoded(): Parses incoming requests containing URL-encoded
payloads, passing the request to the next middleware function with a new
body object containing the parsed data.

 » express.raw(): Parses the incoming request body into a Buffer object.

 » express.text(): Parses the incoming request payloads into a string.

706 BOOK 7 Node.js

Each of the built-in middleware functions can take an optional options object,
which you can use to limit the requests that are parsed by that function. For
example, the json(), urlencoded(), raw(), and text() functions can all take a
type option that causes the middleware to handle only requests with the specified
mime type.

The mime type is passed by the client in the content-type header. Examples of
mime types are text/plain, application/x-www-form-urlencoded, application/
json, and application/octet-stream.

Third-party middleware
Third-party middleware functions are middleware functions that aren’t part of
Express and must be installed separately (using npm install) and loaded into
your app. Third-party middleware functions can be used at the app level or the
router level.

Here are some examples of available third-party middleware packages:

 » body-parser: Contains middleware functions for parsing the request body

The body-parser package, which is one of the most widely used Node.js
packages, is practically required any time an app accepts data from HTTP
requests.

 » compression: Compresses HTTP responses

 » cookie-parser: Parses the cookie header and populates the req.cookie
property

 » cors: Enables cross-origin resource sharing (CORS)

 » morgan: Logs HTTP requests

 » helmet: Sets various HTTP headers to help secure your app

Serving static files
The express.static() middleware function specifies a directory to serve static
files from (such as images and css files). To use express.static(), attach it to
the Express application using app.use().

In Listing 9-7, express.static() specifies that the public directory is where
static files are served from. To see how it works, create a subdirectory of your
package named public and put an image file into it (or into a subdirectory of it).
If you request a file in the public directory (for example, using the URL http://

http://localhost:3000/myImg.png

Riding on the Express
Train

CHAPTER 9 Riding on the Express Train 707

localhost:3000/myImg.png) in your browser, the request is handled by express.
static() and the server responds with the static file.

LISTING 9-7: Using express.static()

import express from 'express';
const app = express();
const port = 3000;

app.use(express.static('public'));

app.get('/', (req, res) => {
 res.send('Hello World! Try accessing /myImg.png');
});

app.listen(port, () => {
 console.log(`Listening on port ${port}.`);
});

Analyzing a Complete Express Server
To see how middleware and routes work together in an Express app, let’s look at
a more realistic example of an Express server. The app in Listing 9-8 listens for
HTTP requests to /users.

LISTING 9-8: An Express API Server

import express from 'express';
import { Router } from 'express';
import { promises as fs } from 'fs';
import { v4 as uuidv4 } from 'uuid';
import helmet from 'helmet';
import cors from 'cors';
import morgan from 'morgan';
const userRouter = Router();
const app = express();
const port = 3000;
const __dirname = process.cwd();
app.use(morgan('combined'));
 (continued)

http://localhost:3000/myImg.png

708 BOOK 7 Node.js

app.use(express.json());
app.use(helmet());
app.use(cors());
userRouter.post('/', async (req, res, next) => {
 try {
 const user = req.body;
 user.id = uuidv4();
 await fs.writeFile(
 `${__dirname}/users/${user.id}.json`,
 JSON.stringify(user)
);
 res.status(201).send(user);
 } catch (err) {
 next(err);
 }
});
userRouter.get('/', async (req, res, next) => {
 try {
 const users = await fs.readdir(`${__dirname}/users`);
 res.send(users);
 } catch (err) {
 next(err);
 }
});
userRouter.get('/:id', async (req, res, next) => {
 try {
 const user = await fs.readFile(`${__dirname}/users/${req.

params.id}.json`);
 res.send(JSON.parse(user));
 } catch (err) {
 next(err);
 }
});
app.use('/users', userRouter);
app.use((err, req, res, next) => {
 console.error(err.stack);
 res.status(500).send('Something broke!');
});

app.listen(port, () => {
 console.log(`Listening on port ${port}.`);
});

LISTING 9-8: (continued)

Riding on the Express
Train

CHAPTER 9 Riding on the Express Train 709

If the server receives a POST request, the body of the request is given a unique ID
and then written to a file.

If the server receives a GET request to /users, it returns an array of the names of
all the JSON documents that were previously created (using POST requests).

If the server receives a GET request to /users/[id], it returns the specific JSON
document that matches the ID that was passed to it in the URL.

All other requests result in an error, and the morgan middleware logs each request
to the console.

Installing the server and dependencies
Follow these steps to install the app shown in Listing 9-8:

1. Enter the code from Listing 9-8 into a file (or find Listing070908.js in the
code download for this book).

2. Install the app’s dependencies all at one time with the following
command:

npm install express uuid helmet cors morgan

3. Create a directory named users in the same folder as the app file.

Setting up a REST client
Now that you have the API server from Listing 9-8 installed, you can test it out by
using a REST client. Several good stand-alone applications exist that can help you
test and debug API servers. These include Postman (available at www.postman.
com) and Swagger (https://swagger.io).

In this section, you install and use a VS Code extension to test an API server.

1. If you don’t already have it, install and enable the REST Client extension
into VS Code.

The installation page for the REST Client extension is shown in Figure 9-1.

Installing VS Code extensions is covered in Chapter 2 of Book 1.

2. Make a file named rest.http in your VS Code project.

This holds the HTTP requests that you’ll run using the REST Client extension.

https://www.postman.com/
https://www.postman.com/
https://swagger.io/

710 BOOK 7 Node.js

3. In rest.http, create a POST request that sends a JSON document to the
server at http://localhost:3000/users.

For example, the following snippet does the trick:

POST http://localhost:3000/users
Content-Type: application/json

{
 "name": "John Doe",
 "email": "jdoe@example.com"

}

The blank line between the Content-Type header and the JSON object is
required so that the server can know where the header stops and the body
begins.

4. After the JSON object in rest.http, add three # symbols on a line by
themselves to indicate that the request is finished.

5. Create a GET request to http://localhost:3000/users, followed by ###:

GET http://localhost:3000/users

###

FIGURE 9-1:
Install the REST

Client extension.

http://localhost:3000/users

Riding on the Express
Train

CHAPTER 9 Riding on the Express Train 711

6. Create a placeholder for a GET request for a specific user’s JSON
document:

GET http://localhost:3000/users/#id

###

Because the user.id property is generated dynamically by the server, you
won’t know a valid user ID to look up until after you complete the first POST.

Testing the API server
After you have the server and its dependencies installed and you’ve created some
sample requests, follow these steps to test out the API server:

1. Start the server (by entering node followed by the name of your
program).

2. Click the Send Request link (shown in Figure 9-2) for the POST request in
rest.http.

A new window opens in VS Code and shows the response from the server. If
everything worked, you see a response with a 201 status code, as shown in
Figure 9-3.

FIGURE 9-2:
The rest.http file,
containing Send

Request links.

712 BOOK 7 Node.js

3. Open the users subdirectory of your project and verify that a new JSON
document has been created.

4. Scroll to the bottom of the server’s response and copy the value of the id
property from the JSON data (without the quotes).

5. Paste the user’s ID in place of the #id string in the third request in
rest.http.

6. Click the Send Request link above the GET request that you just modified.

The server responds with a 200 status code, followed by other header
properties, followed by a JSON object containing the user’s data.

7. Click the Send Request link above the POST request again.

Since each POST triggers the creation of a unique user.id, you can use the
same object to create additional records without overwriting the previous
records.

8. Click the Send Request link above the GET request to /users.

The response will have a 200 status and a body containing an array of the
filenames of every user file that’s been created.

FIGURE 9-3:
A response with

a 201 status code.

Riding on the Express
Train

CHAPTER 9 Riding on the Express Train 713

Serving a View
Rather than build a client-side JavaScript application that connects to a Node.js
API server, you can use Node.js instead to serve HTML documents in response to
HTTP requests. In its simplest form, this is just a matter of creating routes that
return static HTML, as shown in Listing 9-9.

LISTING 9-9: Serving static HTML Files from Node.js

import express from 'express';
const app = express();
const port = 3000;

app.use(express.static('public'));

app.listen(port, () => {
 console.log(`Listening on port ${port}.`);
});

When the server in the preceding listing is running, it responds to HTTP GET
requests with matching static files from the public directory. To see it in action,
create a directory named public in the same directory as the server and place a file
(such as index.html) into it. Start the server and go to http://localhost:3000,
and index.html will be returned to you.

A static file server is easy enough to write, but the point of using Node.js is to be
able to create dynamic server-side applications. If you want to serve static HTML
to a browser and combine it with dynamic data, you need to use some sort of
HTML template.

Benefiting from a template engine
A template engine is a program that helps you create HTML templates that can
have dynamic data injected into them. Just as there are many different client-side
view libraries available (including React.js, Vue.js, and Svelte), there are many
different Node.js template engines that you can use with Node.js and Express,
including these (and many others):

 » pug

 » Embedded JavaScript templates (ejs)

714 BOOK 7 Node.js

 » Handlebars.js

 » Mustache

 » Twig

 » Squirrelly

 » Eta

 » combyne.js

 » Nunjucks

You can see an even longer list of available template engines, along with links to
them, at https://expressjs.com/en/resources/template-engines.html.

Introducing Pug
Pug (formerly known as Jade) is one of the most popular view engines. Pug is
a white-space-sensitive syntax for writing templates that compile to HTML.
Listing 9-10 shows an example of a Pug template.

LISTING 9-10: A Pug Template

doctype html
html(lang="en")
 head
 title= "My App"
 body
 h1 Welcome to the app
 #container.col
 if loggedIn
 p Congratulations!
 else
 p Please log in to continue

To use pug templates, install pug in any JavaScript project and include it. To com-
pile a pug template, use the pug.compile() method and pass it a string contain-
ing pug code.

Alternatively, you can install the pug-cli package and compile templates from the
command line. Listing 9-11 shows an HTML page that could be generated from
Listing 9-10.

https://expressjs.com/en/resources/template-engines.html

Riding on the Express
Train

CHAPTER 9 Riding on the Express Train 715

LISTING 9-11: The Generated HTML from Listing 9-10

<!DOCTYPE html>
<html lang="en">
 <head>
 <title>My App</title>
 </head>
 <body>
 <h1>Welcome to the app</h1>
 <div class="col" id="container"><p>Please log in to continue

</p></div>
 </body>
</html>

Just as you can use Vite to make setting up the dependencies and toolchain for a
client-side application easy, the easiest way to use a template engine with Node.
js is to bootstrap a project using the Express application generator, which I talk
about in the next section.

Using the Express Application Generator
The Express application generator tool can be used to quickly generate the boiler-
plate code for an Express application. Follow these steps to install, run, and build
an application with the Express application generator:

1. Install and run the application generator to make an app named myapp
that uses the Pug template engine — use the following npx command:

npx express-generator --view=pug myapp

Npx asks you whether it's okay to proceed. After you enter yes, express-
generator installs and then creates some files and directories, as shown in
Figure 9-4.

2. Change the working directory to the new app directory and install the
app's dependencies:

cd myapp

npm install

3. Start the app to see what it does:

npm start

716 BOOK 7 Node.js

4. Go to http://localhost:3000 in your browser.

The default app's home page opens, as shown in Figure 9-5.

If you look in the directory created by the express application generator in VS
Code, you see the directories and files shown in Figure 9-6.

You can probably guess the purpose of most of these directories and files just by
looking at their names — for example:

FIGURE 9-4:
Generating
an Express

application.

FIGURE 9-5:
The default

generated app's
home page.

Riding on the Express
Train

CHAPTER 9 Riding on the Express Train 717

 » The routes used by the app are in separate files in the routes directory.

 » The templates for the views that are served from these routes are in the
views directory.

 » The public directory contains static assets.

There's nothing special or required about this organization of files, although it is
quite common for an Express app to have each of these directories — my advice
is to use this structure as a starting point and then change it or add to it as it
becomes necessary.

To find out what this application does, open app.js. The first thing you may
notice (depending on whether there's a new version of Express application gen-
erator) is that the generated application uses CommonJS modules.

There's no built-in way to generate an application that uses ES Module syn-
tax with Express application generator; however, an unofficial package named
express-generator-esmodules uses ES Modules.

After the imports, you can see where the app instance is created, followed by a list
of app.use() function calls to configure and start up various middleware func-
tions, as shown in Figure 9-7.

FIGURE 9-6:
The default

generated app’s
structure.

718 BOOK 7 Node.js

These app.use() function calls tell you everything you need to know about what
this app can do. Lines 22 and 23 in the code shown in Figure 9-7 tell you that the app
currently responds to requests at the root (/) directory and at the /users directory.

If you open http://localhost:3000/users in your browser while the server is
running, you see the app shown in Figure 9-8.

To see how this lovely page is generated, start by opening the /routes/users.js
file. It will look something like the code in Listing 9-12.

LISTING 9-12: The Users Route File

var express = require('express');
var router = express.Router();

FIGURE 9-7:
Calls to app.

use() in app.js.

FIGURE 9-8:
Viewing the

/users route.

Riding on the Express
Train

CHAPTER 9 Riding on the Express Train 719

/* GET users listing. */
router.get('/', function(req, res, next) {
 res.send('respond with a resource');
});

module.exports = router;

Nothing very exciting there. If you open the other file in routes, index.js, you see
the code shown in Listing 9-13.

LISTING 9-13: The index.js Route File

var express = require('express');
var router = express.Router();

/* GET home page. */
router.get('/', function(req, res, next) {
 res.render('index', { title: 'Express' });
});

module.exports = router;

This file is a bit more interesting. In the callback function passed to the router.
get() function, it calls res.render(). The res.render() function renders the
specified template (index) using the properties in the object passed as its second
argument.

To see how this works, open views/index.pug. You see the Pug template shown
in Listing 9-14.

LISTING 9-14: The index.pug Template

extends layout

block content
 h1= title
 p Welcome to #{title}

The first line of index.pug specifies that this template extends the layout, which
refers to the layout.pug file. Open layout.pug, and you can see the code shown in
Listing 9-15.

720 BOOK 7 Node.js

LISTING 9-15: The layout.pug Template

doctype html
html
 head
 title= title
 link(rel='stylesheet', href='/stylesheets/style.css')
 body
 block content

The layout.pug template creates the shell of a basic HTML document and imports
a stylesheet. In the body element, it uses the block directive. The block directive
in Pug indicates a part of a template that a child template (index.pug, in this case)
can replace.

The word after block, content, is the name of the block. If a child template (one
that extends layout.pug) contains a block with the name of content, the content
from the child replaces the content block from the parent template.

In the case of index.pug and layout.pug, that's exactly what happens. Follow-
ing the first line of index.pug (extends layout), the template defines a block
named content and creates an <h1> element. The <h1> element's content (the
text between <h1> and </h1> will be set to the value of the title property passed
to the template by res.render(). After the h1 element, a <p> element is created
with its content set to a dynamic welcome message.

NEXT STEPS
After you understand how a dynamic web application created using Express and pug
works, try experimenting with the default Express application generator boilerplate.
Here are some ideas to get you started:

• Create another route, called products, and make a new template that lists some
fake products.

• Modify the layout.pub template to generate a navigation menu so that you can
easily switch between all the other routes in the application.

• Connect to a MongoDB database from the application and use data from MongoDB
collections to populate a list of users and a list of products to display on their
respective pages.

CHAPTER 10 Registration and Authentication 721

Registration and
Authentication

“If you’re going to make connections which are innovative . . . you have to not
have the same bag of experiences as everyone else does.”

— STEVE JOBS

Most apps with an API server running in Node.js and a client running in a
browser need certain functionality to be complete. On the server side, the
client should have a way to authenticate itself, and the client should be

able to work with the server’s data.

On the client side, users must have a way to interact with the API through a user
interface. This typically includes the ability for new users to create accounts, for
users to log in and log out, and for the application to have the ability to restrict the
use of the server-side data to logged-in users.

Chapter 10

IN THIS CHAPTER

 » Starting the project by making and
configuring the directory

 » Creating the basic structure for
the app

 » Laying out and testing the routes

 » Using Mongoose

 » Implementing user registration and
authentication

 » Using access tokens

 » Implementing user login and
accessing secure routes

722 BOOK 7 Node.js

In this chapter, I tell you how to put all these pieces together into a fully func-
tional client-server web app.

If you read this chapter, you can connect many of the topics I present to you in
JavaScript All-in-One For Dummies to program user registration and login func-
tionality for an app based on the Soliloquy app I show you how to start building
in Chapter 1 of Book 5.

In this chapter, I guide you step-by-step through the code. Visit this book’s web-
site at www.dummies.com/go/javascriptallinonefd or my GitHub repository at
https://github.com/chrisminnick/javascriptaio to download all the listings
from this chapter.

The finished app — which can be implemented with vanilla JavaScript, React.js,
Vue.js, Svelte, or any other front-end library — allows new users to sign up, log
in, create new posts, edit posts, delete posts, and log out.

Making and Configuring the Directory
To get started with the API server part, you need a new project directory, a new
Node.js package, a new Git repository, a README file, and a .env file. Follow these
steps to start the project:

1. Create a new directory, making sure it isn’t a subdirectory of another
Node.js project, called soliloquy.

2. Run npm init -y in the project directory to create a new Node.js package.

3. Open package.json and add "type":"module" to it to enable ES Modules.

4. Set the value of "name" in package.json to "soliloquy-backend".

5. Set the value of "main" in package.json to "server.js".

6. Create a start script in package.json and set its value to node server.js.

If you have nodemon installed, you can set the value of your start script to
nodemon server.js so you won’t need to restart the server manually when
you make changes to the app.

7. Save and close package.json.

8. Make a file named .env in the root of your project.

The .env file is where you store some variables that are specific to the server
instance and that shouldn’t be checked into your code repository.

https://www.dummies.com/go/javascriptallinonefd
https://github.com/chrisminnick/javascriptaio

Registration and
A

uthentication

CHAPTER 10 Registration and Authentication 723

9. Make a file named .gitignore and then add .env as its first line and
node_modules as its second line, like this:

.env

node_modules

10. Create a file named README.md and enter something like the following
two lines into it:

Soliloquy Server

from JavaScript All-In-One For Dummies

11. Enter git init into the terminal to initialize a Git repository.

Going forward, stage your files and commit them to the repository often, even
though I won’t specifically say at what point you should do so.

Adding the App and Server Modules
In this section, you create the basic structure for your app, including the Express
app and the main file that will run when the server starts. Follow these steps:

1. Run the following command to install the dependencies you need for this
section:

npm install dotenv express

2. Create a new file named app.js and open it for editing in VS Code.

3. Import the express framework into app.js:

import express from 'express';

4. Create an express app instance:

const app = express();

5. Export the app:

export default app;

At this point, your app.js file should look like Listing 10-1.

6. Make a new file named server.js and open it for editing.

7. Import dotenv into server.js and run its config() method to import
and set the environment variables from .env:

import dotenv from 'dotenv';

dotenv.config();

724 BOOK 7 Node.js

8. Open .env and add a new variable named SERVER_PORT and set its value
to 3000:

SERVER_PORT = 3000

9. Import app into server.js:

import app from './app.js';

10. Set a constant in server.js for the port, along with a default port
number:

const port = process.env.SERVER_PORT || 3000;

11. Call the listen() method of app to start the server:

app.listen(port, () => {
 console.log(`Server is running on port ${port}.`);

});

Your server.js file should now match Listing 10-2.

LISTING 10-1: Setting Up Express

import express from 'express';
const app = express();

export default app;

LISTING 10-2: The Finished server.js File

import dotenv from 'dotenv';
dotenv.config();

import app from './app.js';

const port = process.env.SERVER_PORT || 3000;

app.listen(port, () => {
 console.log(`Server is running on port ${port}.`);
});

If you enter npm start into the terminal, the server should start and you’ll see the
console.log() message. If so, move on to the next section!

Registration and
A

uthentication

CHAPTER 10 Registration and Authentication 725

Making Some Basic Routes
The next step in building your app is to lay out the routes it will need. The app will
have two main areas of functionality: user (for handling registration, login, and
authentication) and posts (for handling fetching, posting, updating, and deleting
posts). You will define each of these using express.Router(). Follow these steps:

1. Create a directory in your project named routes.

2. Create a file named posts.js and one named user.js inside the routes
directory.

3. Import Express into both posts.js and user.js:

import express from 'express';

4. Create a router object in both posts.js and user.js:

const router = express.Router();

5. In posts.js, define Express middleware functions to handle the following
HTTP methods and routes:

• POST to / for creating a new post

• GET to / for getting all posts

• GET to /:id for getting a single post

• PUT to /:id for updating a single post

• DELETE to /:id for deleting a single post

For now, just create placeholders for each of these. Here’s what the first one
can look like:

router.post('/', (req, res) => {
 res.send(`You requested ${req.url} using the ${req.

method} method`);

});

6. After the five routes are created, export the router from router/posts.
js as a default export:

export default router;

Your router/posts.js file should now match Listing 10-3.

726 BOOK 7 Node.js

LISTING 10-3: The Skeleton for routes/posts.js

import express from 'express';

const router = express.Router();

// create a new post
router.post('/', (req, res) => {
 res.send(`You requested ${req.url} using the ${req.method}

method`);
});

// get all posts
router.get('/', (req, res) => {
 res.send(`You requested ${req.url} using the ${req.method}

method`);
});

// get a single post
router.get('/:id', (req, res) => {
 res.send(`You requested ${req.url} using the ${req.method}

method`);
});

// update a post
router.put('/:id', (req, res) => {
 res.send(`You requested ${req.url} using the ${req.method}

method`);
});

// delete a post
router.delete('/:id', (req, res) => {
 res.send(`You requested ${req.url} using the ${req.method}

method`);
});

export default router;

Next, you make placeholders for the user routes. For the user routes, you need the
following items:

 » POST to /signup for creating a new account

 » POST to /login for logging in a user

Registration and
A

uthentication

CHAPTER 10 Registration and Authentication 727

And then follow these steps:

1. Create the two user routes in routes/user.js and have them send back
the same response you used for the posts routes.

2. Export routes from user.js as a default export.

Your router/user.js file should now match Listing 10-4.

LISTING 10-4: The Skeleton for routes/user.js

import express from 'express';

const router = express.Router();

// create a new user
router.post('/signup', (req, res) => {
 res.send(`You requested ${req.url} using the ${req.method}

method`);
});

// login a user
router.post('/login', (req, res) => {
 res.send(`You requested ${req.url} using the ${req.method}

method`);
});

export default router;

Before you can test out these routes, you need to import them into app.js and set
them up using app.use(). Follow these steps:

1. Import postsRoutes from /routes/posts.js:

import postsRoutes from './routes/posts.js';

2. Import userRoutes from /routes/users.js:

import userRoutes from './routes/user.js';

3. Use the express.json() middleware to parse JSON sent in the body of
requests:

app.use(express.json());

728 BOOK 7 Node.js

4. Register the user and posts routes to listen at /api/user and /api/posts:

app.use('/api/posts', postsRoutes);

app.use('/api/user', userRoutes);

At this point, your app.js should match Listing 10-5.

LISTING 10-5: Using the Routes in app.js

import express from 'express';

import postsRoutes from './routes/posts.js';
import userRoutes from './routes/user.js';

const app = express();

app.use(express.json());

app.use('/api/posts', postsRoutes);
app.use('/api/user', userRoutes);

export default app;

Testing Your Routes
After the routes are hooked up, you can try them out. You use the Rest Client
extension in VS Code (which I tell you how to install in Chapter 9 of Book 7).

Make a new directory in your project named api and create two files in it: posts.
http and user.http. Listing 10-6 shows the requests you should put into user.
http, and Listing 10-7 shows requests you can put into posts.http.

LISTING 10-6: User API Requests

POST http://localhost:3000/api/user/signup HTTP/1.1

###

POST http://localhost:3000/api/user/login HTTP/1.1

Registration and
A

uthentication

CHAPTER 10 Registration and Authentication 729

LISTING 10-7: Posts API Requests

POST http://localhost:3000/api/posts HTTP/1.1

###

GET http://localhost:3000/api/posts HTTP/1.1

###

GET http://localhost:3000/api/posts/1 HTTP/1.1

###

PUT http://localhost:3000/api/posts/1 HTTP/1.1

###

DELETE http://localhost:3000/api/posts/1 HTTP/1.1

###

When you click the Send Request link above any one of these requests while the
server is running on Port 3000, the server should return a message telling you the
requested URL and the HTTP method, as shown in Figure 10-1.

FIGURE 10-1:
Testing the

routes.

730 BOOK 7 Node.js

In a real-life app, you shouldn’t be able to access any of the endpoints (other than
the sign-up and login endpoints) without authenticating yourself. In the next few
sections, I tell you how to implement user registration, login, authentication, and
logout functionality.

Making a Schema with Mongoose
In Chapter 8 of Book 7, I tell you all about MongoDB, and I describe how MongoDB
collections, unlike SQL databases, don’t need to have a strict set of rules, called a
schema, that regulate what can be stored in them.

However, having a schema is often desirable, because it helps to document your
application and makes writing code that uses a database’s collections more pre-
dictable and safer.

To implement a schema with Node.js and MongoDB, you can use a library called
Mongoose. Mongoose is an object data modeling (ODM) library for MongoDB. The
job of an ODM is to manage relationships between various data and to provide
schema validation for NoSQL databases.

If you’ve worked with SQL databases, you may have heard of object relationship
modeling (ORM) libraries. An ODM serves the same function as an ORM, but for
NoSQL databases.

The two methods of Mongoose that you use to create the schema and to use the
schema are mongoose.Schema() and mongoose.model(), respectively.

Using mongoose.Schema
and mongoose.model
The mongoose.Schema() method is a constructor that takes an object as its argu-
ment and returns a definition of the fields in a collection. The object you pass to
mongoose.Schema() contains all the fields that can be in the documents stored in
the collection, along with the rules for using those fields.

The definition of a document (or an object) is also known as its shape.

These are the rules you can specify for a document field:

 » type: The data type of the value of the field — for example, String, Number,
Date, Buffer, Boolean, or Array

Registration and
A

uthentication

CHAPTER 10 Registration and Authentication 731

 » default: The default value for the field

 » min: The minimum value of a numeric field

 » max: The maximum value of a numeric field

 » required: Sets whether a field must be present in every document

For example, here’s how you might start creating a schema for a collection called
paperclips:

const paperclipSchema = mongoose.Schema({
 aquiredDate: {type: Date, required: true},
 size: {type: Number},
 color: {type: String}
});

To use a schema, you pass the object returned by mongoose.Schema() to mon-
goose.model(). Mongoose.model() returns a model that you can use to interact
with the collection and that will enforce the rules of the schema.

Installing Mongoose and
connecting to a database
Since Mongoose is a third-party library, the first thing to do is to install it. Enter
npm install mongoose into the terminal to download and install the library.

Once the library is installed, follow these steps to connect to a database using
Mongoose:

1. Import mongoose into app.js:

import mongoose from 'mongoose';

2. To connect to your local MongoDB server (and create a database), use
mongoose.connect() in app.js, as shown in Listing 10-8.

3. Start (or restart) the app (using npm start).

If your MongoDB server is running, you see the Connected to database!
message appear after the Server is running on port 3000. message, as
shown in Figure 10-2.

732 BOOK 7 Node.js

LISTING 10-8: Connecting to MongoDB in app.js

import express from 'express';
import mongoose from 'mongoose';

import postsRoutes from './routes/posts.js';
import userRoutes from './routes/user.js';

const app = express();

// Connecting to the database
mongoose
 .connect('mongodb://localhost:27017/social-network', {
 useNewUrlParser: true,
 })
 .then(() => {
 console.log('Connected to database!');
 })
 .catch(() => {
 console.log('Connection failed!');
 });

app.use(express.json());

app.use('/api/posts', postsRoutes);
app.use('/api/user', userRoutes);

export default app;

FIGURE 10-2:
Successfully

connected to the
database.

Registration and
A

uthentication

CHAPTER 10 Registration and Authentication 733

If you’re running the server on Windows, you may need to change the MongoDB
connection string to use 0.0.0.0 instead of localhost.

Creating the User model
A schema describes the fields that are in a document. The data model provides an
interface to the database and uses the schemas to make sure data coming in or
going out of the database conforms to the schemas.

Follow these steps to create the User schema and model.

1. Make a new directory named models at the root of your project.

2. Make a file in the models directory named user.js.

3. Import mongoose into /models/user.js:

import mongoose from 'mongoose';

4. Use mongoose.Schema() to define the user schema:

const userSchema = mongoose.Schema({
 email: { type: String, required: true },
 password: { type: String, required: true},

});

5. Pass the name of the collection and the schema returned by mongoose.
Schema() to mongoose.model() to create the user model:

const userModel = mongoose.model('User', userSchema);

6. Export userModel:

export default userModel;

Now you have a user model that can be used to perform database operations
on the User collection. The finished /models/user.js file is shown in
Listing 10-9.

734 BOOK 7 Node.js

LISTING 10-9: The Finished userModel Module

import mongoose from 'mongoose';

// Creating the user schema
const userSchema = mongoose.Schema({
 email: { type: String, required: true },
 password: { type: String, required: true },
});
const userModel = mongoose.model('User', userSchema);

export default userModel;

Create the post model
The post model controls what can be stored in the Post collection. Listing 10-10
shows the Posts model, which should be in models/post.js.

LISTING 10-10: The Post Model

import mongoose from 'mongoose';

// Creating the post schema
const postSchema = mongoose.Schema({
 text: { type: String, required: true },
});

export default mongoose.model('Post', postSchema);

Implementing User Registration
Whether you’re building a social media app, a reminders app, a weather app, a
news app, or any other kind of app that involves server-side data, you need to
implement user registration and a login system.

Having users who can log in to an app makes it possible for the service to have
multiple users and remember user information and recall it the next time the user
visits the app or the website.

Registration and
A

uthentication

CHAPTER 10 Registration and Authentication 735

Understanding the basics of authentication
A basic user authentication system must have the following components:

 » A way for new user accounts to be created

 » A way for the server to store and uniquely identify each user

 » A secret (such as a password) that the user knows and can use to authenticate
themselves (known as logging in) with the service

 » A way for the service to verify that the user is authorized to access specific
routes

In the following sections, you implement each of these components using Node.
js and MongoDB.

Programming the user sign-up route
In this section, I show you how to write the internal functions of the /api/user/
signup route. The sign-up route needs to

 » Receive an email address and password passed to it in the request object

 » Determine whether a user with the same email address already exists in the
database

 » Encrypt the password

 » Save the new user document into the User collection

 » Return a 201 Created status code and a message to the client

Open /routes/user.js in VS Code and follow these steps:

1. Import the User model:

import User from '../models/user.js';

2. In the callback passed to the sign-up route, query the User collection,
using the email address passed in the body of the request, to see
whether any existing users have that email address. If you find an
existing user, return a 409 Conflict status code by using the status()
method, and then send a message and end the response by using json():

User.findOne({ email: req.body.email }, async (err,
user) => {

 if (err) throw err;

736 BOOK 7 Node.js

 if (user) {
 res.status(409).json({
 message: 'User already exists!',
 });
 }

 if (!user) {
 // save the user
 }

});

Before moving on to telling you how to save the new user’s information, I need to
tell you a bit about how to store passwords.

Understanding password security
A user’s password (or another unique key) is the main form of security for this
application. Security of the password depends on several factors, including

 » How difficult the password is to guess

 » How the password is transmitted to the server

 » How the password is stored on the server

The first factor in password security — how difficult it is to guess — can be
addressed by requiring a minimum password length and by enforcing rules about
the characters that must be in the password. You can start this process by add-
ing minlength: 8 as a rule in the User schema. Other validation rules need to be
programmed in the client application.

To transmit any information between a server and a client, you should always use
https rather than http. The https protocol encrypts data traveling between the server
and client so that if it’s intercepted along the way, it’s unreadable.

For the third factor — how the data is saved — the most important factor is that
you should never save plain-text passwords in the database. Instead, you create
an encrypted version of the password called a hash.

Understanding hashes
A hash is a string that’s derived from encoding an input string in a way that it’s
impossible to determine the input string from the hash string. When a hash, as

Registration and
A

uthentication

CHAPTER 10 Registration and Authentication 737

it’s called, is stored in the database, the program can apply the same hash func-
tion to the data that the user submits in the Password field and then compare the
resulting hash to what’s in the database.

Figure 10-3 illustrates how generating hashes and comparing hashes works.

However, even hashing a password isn’t good enough. The problem is that people
often choose insecure passwords. For example, a popular-but-insecure password
is test123. Every time you apply the same one-way hash function to test123,
you’ll get the same result, which might look something like this:

da39a3ee5e6b4b0d3255bfef95601890afd80709

Databases of hashes that result from various common passwords have been cre-
ated, and anyone who intercepts the preceding hash can easily look up the input
string that created it.

FIGURE 10-3:
Using a

one-way hash.

© John Wiley & Sons, Inc.

738 BOOK 7 Node.js

Adding salt to hashing
To solve this problem, you can add a salt to the hash. A salt is a string (that should
be random) that’s concatenated to the input string before the generation of the
hash. By adding a random string (or salt) to the password, you create a much more
secure hash. Unless a potential attacker knows what the salt is, there’s no way
they can figure out what the password is.

The details of how one-way encryption works are beyond the scope of this book —
the important takeaway, however, is that you should never use a hash function
without a salt.

Hashing and saving
To create the hash, you use the bcrypt library.

Follow these steps to install bcrypt and use it to hash the password string:

1. Install bcrypt into the project:

npm install bcrypt

2. Import bcrypt into /routes/user.js:

import bcrypt from 'bcrypt';

3. In the callback for the /signup route, if no existing user is returned from
the findOne() query, generate a salt:

const result = await bcrypt.getSalt(10);

4. Generate the hash from the salt and the password:

const hashedPassword = await bcrypt.hash(req.body.password,
salt);

5. Use the User model to create the new User object that will be saved to
the database:

const newUser = new User({
 email: req.body.email,
 password: hashedPassword,

});

Registration and
A

uthentication

CHAPTER 10 Registration and Authentication 739

6. Save the new user to the database:

await newUser.save();

7. Respond with a 201 Created status code:

res.status(201).json({
 message: 'User created!',

});

Listing 10-11 shows the completed sign-up route.

LISTING 10-11: The Sign-Up Route

router.post('/signup', (req, res) => {
 User.findOne({ email: req.body.email }, async (err, user) => {
 if (err) throw err;
 if (user) {
 res.status(409).json({
 message: 'User already exists!',
 });
 }
 if (!user) {
 const salt = await bcrypt.genSalt(10);
 const hashedPassword = await bcrypt.hash(req.body.password,

salt);
 const newUser = new User({
 email: req.body.email,
 password: hashedPassword,
 });
 await newUser.save();
 res.status(201).json({
 message: 'User created!',
 });
 }
 });
});

Technically, you don’t need to have the if (!user) { ... } condition, since the
if (user) { ... } condition will guard against duplicate users being inserted.
However, I sometimes choose to be more verbose than necessary, to make my
code more understandable.

740 BOOK 7 Node.js

Testing user registration
To test user registration, open /api/user.http in VS Code and replace the POST
request to /api/user/signup with the request in Listing 10-12.

The blank line between the header and the body is required and you’ll get an error
back from the server if you don’t have it.

LISTING 10-12: A Request for Testing User Registration

POST http://localhost:3000/api/user/signup HTTP/1.1
content-type: application/json

{
 "email": "testuser@test.com",
 "password": "testing123"
}

###

Start the server (with npm start) and click the Send Request link above the
request. If everything is correct, the server responds with a 201 Created status
code, as shown in Figure 10-4. If you send the request again with the same email
address, you get back a 409 Conflict status code, as shown in Figure 10-5.

FIGURE 10-4:
User created
successfully.

Registration and
A

uthentication

CHAPTER 10 Registration and Authentication 741

Handling Authentication
In this section, I tell you how to log a user in and how client applications authenti-
cate themselves to perform requests after the initial user login. The first thing you
need to do is to build the login route. The login route’s handler takes a JSON object
containing an email address and password, compares these items with what’s in
the database, and then either logs in the user or returns an authentication failure
message. Follow these steps to make the login route:

1. Change the callback passed to the login router to an async function:

router.post('/login', async (req, res) => {

2. In the callback function passed to the login route, start a try/catch block:

router.post('/login', async (req, res) => {
 try {

// login code here

 } catch (err) {
 res.status(500).json({
 message: err.message,
 });
 }

});

FIGURE 10-5:
User already

exists.

742 BOOK 7 Node.js

3. In the try block, query the User collection for a user with a matching
email address:

const user = await User.findOne({ email: req.body.email });

4. If there is no matching user, return a 401 Unauthorized status code and a
message:

if (!user) {
 res.status(401).json({
 message: 'Login failed!',
 });

}

5. If a matching user is in the collection, use the bcrypt.compare() method
to compare the hashed password of that user with a hash of the pass-
word that was passed in the request object:

const isMatch = await bcrypt.compare(req.body.password,
user.password);

6. If there isn’t a match, return a 401 Unauthorized status code:

if (!isMatch) {
 res.status(401).json({
 message: 'Login failed!',
 });

}

Notice that the response from the server doesn’t distinguish between a bad
email address and a bad password. This is a standard best practice that
increases the security of the system. If you return separate messages, you’re
giving potential attackers information about whether a username exists — and
making their jobs easier.

7. If the password is correct, generate and send a 200 OK success status
code:

res.status(200).json({
 userId: user._id

});

Listing 10-13 shows what your login route should look like at this point.

Registration and
A

uthentication

CHAPTER 10 Registration and Authentication 743

LISTING 10-13: Logging In Users

router.post('/login', async (req, res) => {
 try {
 const user = await User.findOne({ email: req.body.email });
 if (!user) {
 res.status(401).json({
 message: 'Login failed!',
 });
 }
 if (user) {
 const isMatch = await bcrypt.compare(req.body.password,

user.password);
 if (!isMatch) {
 res.status(401).json({
 message: 'Incorrect password',
 });
 }
 res.status(200).json({
 userId: user._id,
 });
 }
 } catch (err) {
 res.status(500).json({
 message: 'Internal server error',
 });
 }
});

With the route shown in Listing 10-13, users can log in. However, a critical piece
is still missing — namely, how does the client application authenticate itself for
future HTTP requests without requiring the user to enter their password every
time the browser sends an HTTP request?

One possibility is to store the user’s password in the client application so that the
user doesn’t have to reenter it to retrieve data from the server. This is a bad idea
because a potential attacker could access that password and have access to the
system forever (or until the user changes their password).

744 BOOK 7 Node.js

Generating and Using Tokens
One common way for a client application to be able to make HTTP requests on
behalf of an authenticated user is by using a JSON Web Token (JWT).

The JSON Web Token (JWT) is a standard for transmitting digitally signed infor-
mation as a JSON object. JWT is commonly used for authenticating subsequent
requests after the user logs in and for implementing single sign-on.

Without going into too much detail, here’s how JWT tokens work:

 » The user logs in to a service using a username and password.

 » The server generates a JWT token using data provided by the client, digitally
signs it, and returns it to the client as part of the successful login response.

 » The client uses the JWT token to authenticate itself and give the user access to
routes, services, and resources that require authentication.

The token sent by a server serves as a key to whatever resources the logged-in
user has permission to view. If someone were to intercept or otherwise find out
the token returned by your bank’s website when you log in, they could access any
information you can access.

For this reason, several important security measures need to be taken, including
these:

 » JWT tokens must expire, and shorter expiration times are better.

 » Client applications must handle and store (or not store) tokens securely.

Recognizing that tokens must expire
The expiration time of the token is specified when the server generates it. If tokens
never expired, anyone who has a token would be able to use it anytime they like,
just like a password. If a token is good for only 5 minutes, it limits the opportunity
that anyone who steals a token has for causing damage.

However, because a short expiration time means that the user needs to log in
again, user convenience needs to be balanced with the need for security. If your
app doesn’t store any personally identifiable information (PII), it may be possible
to use a long expiration time.

Registration and
A

uthentication

CHAPTER 10 Registration and Authentication 745

In the case of a bank website, on the other hand, a short token expiration time is
critical, but only a part of the security measures that must be in place.

Sending a refresh token
A technique that can be used to change the balance between the user’s conve-
nience and the security of a token is a refresh token. A refresh token is a separate
token that’s sent along with the access token, and, unlike the access token, the
refresh token has a long expiration time. The only thing a refresh token is good
for, however, is to generate a new access token.

By using a refresh token, you can limit the expiration time for the access token.
When the access token expires, the client can use the refresh token to generate a
new access token. This is how apps that allow you to stay logged in typically work.

Handling tokens securely
How and whether client applications should store access tokens and refresh
tokens is a hotly debated topic in web security. The gist of the problem is that if
it’s possible for a malicious website in your browser to obtain the access token set
by another website, that’s a serious security problem.

Browsers have built-in security mechanisms to ensure that data stored by one
website can be accessed only by that website. For example, data in local storage
can be read only by applications from the domain that set that data. However,
there is a type of vulnerability websites can have, called a cross-site scripting
vulnerability.

Understanding XSS attacks
In a cross-site scripting (or XSS) attack, the attacker injects JavaScript code into
the client application using a vulnerability, such as a form that doesn’t prop-
erly sanitize user input. Browsers have no way of knowing that JavaScript code
injected into a page is any different from the JavaScript code that’s supposed to
be there. The malicious JavaScript code injected into the page has full access to
everything the code you wrote can access — including making authorized HTTP
requests and accessing local storage.

These are the two main schools of thought regarding the secure handling of access
tokens in web browsers:

 » Store tokens in local storage. If someone can inject code into your applica-
tion, you have a bigger problem that needs to be fixed.

746 BOOK 7 Node.js

 » Never store tokens in a browser, and use HttpOnly cookies instead. In
this standard, the server and client send the token in such a way that it can’t
be read by client-side JavaScript.

Feelings on both sides of the argument about how to handle tokens run strong.
However, if you want to research this topic more, search Google or YouTube for
how to store tokens in the browser or visit https://jwt.io.

Finishing the Login Route
The library you use to generate the access token is called jsonwebtoken. Follow
these steps to install jsonwebtoken and generate a token on a successful login:

1. Install jsonwebtoken:

npm install jsonwebtoken

2. Open .env and create the following variable:

ACCESS_TOKEN_SECRET = "secret"

The value of the secret should be at least 32 characters long. You can use a tool
such as the one at https://onlinestringtools.com/generate-random-
string to generate the secret.

3. Back in routes/user.js, import the jwt object from the jsonwebtoken
library:

import jwt from 'jsonwebtoken';

4. At the beginning of /routes/user.js, import dotenv and run its config()
function to import .env:

import dotenv from 'dotenv';

dotenv.config();

https://jwt.io
https://onlinestringtools.com/generate-random-string
https://onlinestringtools.com/generate-random-string

Registration and
A

uthentication

CHAPTER 10 Registration and Authentication 747

5. Create a new function in routes/user.js to generate access tokens:

function generateAccessToken(username) {
 return jwt.sign(
 username, process.env.ACCESS_TOKEN_SECRET, {
 expiresIn: '1800s',
 });

}

This function takes a username passed to it and signs it using the secret you
specified in .env. The third argument passed to jwt.sign() sets the length
of time the token remains valid. In this case, I’ve chosen 1800 seconds
(30 minutes). It’s unlikely that anyone will want to use a social media
app where they’re the only user for longer than 30 minutes.

6. Call the generateAccessToken() function from inside the login route’s
handler, passing an object containing the user’s email address, before the
200 OK status code is returned:

const accessToken = generateAccessToken({user: req.body.
email});

7. Add the access token to the response object’s body:

res.status(200).json({
 accessToken: accessToken,
 userId: user._id,

});

Listing 10-14 shows the completed routes/user.js file. Make sure your file
matches mine before moving on to the next section.

LISTING 10-14: The routes/user.js File with the Login Route

import dotenv from 'dotenv';
dotenv.config();

import express from 'express';
import jwt from 'jsonwebtoken';
import bcrypt from 'bcrypt';
import User from '../models/user.js';

const router = express.Router();
 (continued)

748 BOOK 7 Node.js

function generateAccessToken(username) {
 return jwt.sign(username, process.env.ACCESS_TOKEN_SECRET, {
 expiresIn: '1800s',
 });
}

router.post('/signup', (req, res) => {
 User.findOne({ email: req.body.email }, async (err, user) => {
 if (err) throw err;
 if (user) {
 res.status(409).json({
 message: 'User already exists!',
 });
 }
 if (!user) {
 const salt = await bcrypt.genSalt(10);
 const hashedPassword = await bcrypt.hash(req.body.password,

salt);
 const newUser = new User({
 email: req.body.email,
 password: hashedPassword,
 });
 await newUser.save();
 res.status(201).json({
 message: 'User created!',
 });
 }
 });
});

// Logging in a user
router.post('/login', async (req, res) => {
 try {
 const user = await User.findOne({ email: req.body.email });
 if (!user) {
 res.status(401).json({
 message: 'Login failed!',
 });
 }
 if (user) {
 const isMatch = await bcrypt.compare(req.body.password,

user.password);
 if (!isMatch) {
 res.status(401).json({

LISTING 10-14: (continued)

Registration and
A

uthentication

CHAPTER 10 Registration and Authentication 749

 message: 'Incorrect password',
 });
 }
 const accessToken = generateAccessToken({ user: req.body.

email });

 res.status(200).json({
 accessToken: accessToken,
 userId: user._id,
 });
 }
 } catch (err) {
 res.status(500).json({
 message: 'Internal server error',
 });
 }
});

export default router;

Testing the login route
Open api/user.http and modify the login request to pass a body containing an
email address and a password:

POST http://localhost:3000/api/user/login HTTP/1.1
content-type: application/json

{
 "email": "testuser@test.com",
 "password": "testing123"
}

###

With the server running, enter a unique email address (it doesn’t have to be real,
of course) into the body of the sign-up request and click the Send Request link to
create a new user.

If the new user is successfully created, put the same username and password into
the body of the test login route and click the Send Request link. You should get
back a 200 OK status code, an object containing the _id from the User collection,
and an access token, as shown in Figure 10-6.

750 BOOK 7 Node.js

Looking at an access token
Take a close look at the following access token (which matches the one shown in
Figure 10-6):

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1c2VyIjoidGVzdHVzZ
XI0QHRlc3QuY29tIiwiaWF0IjoxNjcxMjgwMjQ4LCJleHAiOjE2NzEyODI
wNDh9.Z8UYR3Eg8utIuNQEUS5SqJdZ9azQey-vm6jbDocgqFI

Although an access token looks like it’s encrypted, it’s not. JSON web tokens are
JSON objects. The reason it looks like a garbled mess of characters is that the JSON
object has been encoded using Base64 format.

Decoding Base64 is simple. The easiest method is just to drop it into an online
tool like the one at https://base64decode.org. When I decode this token, I get
the following result:

{"alg":"HS256","typ":"JWT"}
{"user":"testuser4@test.com",
"iat":1671280248,"exp":1671282048}
[series of unprintable characters]

When its decoded, you can see that the access token includes these three parts:

 » An object containing information about the token itself: It includes the
algorithm that was used to sign the token and the type of token (which is JWT).

FIGURE 10-6:
Getting an access

token.

https://base64decode.org

Registration and
A

uthentication

CHAPTER 10 Registration and Authentication 751

 » The actual token: The first property of the token is the data the server
passed to the jwt() function (testuser4@test.com). The second property is
iat, which stands for Issued At Time — it gives the time (in UNIX time) that the
token was issued. The third property is exp, which gives the time the token
expires. If you do the math, you’ll find that the value for the exp property is
1800 higher than the iat property’s value.

 » The digital signature: This is a hash that the server can use to confirm that
the token is authentic.

Using an access token
Once you have an access token, you can use it to access secured routes. In this sec-
tion, I show you how to create a secured route and then test it out using an access
token. Follow these steps:

1. Open routes/posts.js, import dotenv, and run dotenv.config():

import dotenv from 'dotenv';

dotenv.config();

2. Import jwt from jsonwebtoken:

import jwt from 'jsonwebtoken';

3. Import the Post model:

import Post from '../models/post.js';

4. Create a new middleware function named validateToken() in routes/
posts.js containing the code from Listing 10-15.

5. Pass the validateToken() middleware function to the router for creating
a new document in the Posts collection, as shown in Listing 10-16.

6. Add a new request to api/posts.http that passes an access token using
the Authorization header and an object containing a text property, as
shown in Listing 10-17.

7. Use the login route to generate a token, and then paste that token after
Bearer in the POST request to /api/posts.

When you click the Send Request link, the token is validated and a new
document is inserted into the database, as shown in Figure 10-7.

752 BOOK 7 Node.js

LISTING 10-15: The Function for Validating Tokens

function validateToken(req, res, next) {
 const authHeader = req.headers['authorization'];
 const token = authHeader.split(' ')[1];

 if (token == null) res.sendStatus(400).send('Token not

present');
 jwt.verify(token, process.env.ACCESS_TOKEN_SECRET, (err,

user) => {
 if (err) {
 res.status(403).send('Token invalid');
 } else {
 req.user = user;
 next();
 }
 });
}

LISTING 10-16: The Create New Post Route

// Creating a new post
router.post('', validateToken, (req, res, next) => {
 const post = new Post({
 text: req.body.text,
 });
 post.save().then((createdPost) => {
 res.status(201).json({
 message: 'Post added successfully',
 post: {
 ...createdPost,
 id: createdPost._id,
 },
 });
 });
});

Registration and
A

uthentication

CHAPTER 10 Registration and Authentication 753

LISTING 10-17: Creating a New Post

POST http://localhost:3000/api/posts HTTP/1.1
content-type: application/json
Authorizat ion: Bearer eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.

eyJ1c2VyIjoiY2hyaXNAbWlubmljay5jb20iLCJpYXQiOjE2N
jc3NzIxMzgsImV4cCI6MTY2Nzc3MjQzOH0.qA74AMbkYP9O3c
A0s9fyAdKEbqmPphQpbXq2Z9XDrQY

{
 "text": "test post 1"
}

###

FIGURE 10-7:
New post

created!

NEXT STEPS
I’m out of space in this book, but if you want to see the other necessary routes for this
server-side application as well as how to access your new API from a client application,
you can download the latest code from my GitHub repository at https://github.
com/chrisminnick/javascriptaio.

If you have any questions, comments, or feedback on this app or on this book in gen-
eral, you can email me at chris@minnick.com. Best wishes!

https://github.com/chrisminnick/javascriptaio
https://github.com/chrisminnick/javascriptaio
mailto:chris@minnick.com

Index 755

Index
Symbol and Numerics
&& operator, conditional rendering with, 288–289
+ (addition) operator, 83, 86–87
&& (And) operator, 87–88
* (asterisk), 228, 700
 (backslash), 70, 71
` (backtick character), 53, 70–71
: (colon), 375
+ (concatenation operator), 71
{} (curly braces), 78
$ (dollar sign), 685–686
-- (decrement) operator, 86–87
/ (division) operator, 83, 86–87
{{}} (double curly braces), 372
“ (double quote), 71
== (equality) operator, 85–86
** (exponentiation) operator, 86–87
> (greater than) operator, 85–86
>= (greater than or equal to) operator, 85–86
++ (increment) operator, 86–87, 97
!= (inequality) operator, 85–86
< (less than) operator, 85–86
<= (less than or equal to) operator, 85–86
* (multiplication) operator, 83, 86–87
! (negation operator), 302
! (Not) operator, 87–88
|| (Or) operator, 87–88
. (period), 79
% (remainder) operator, 86–87
? (question mark), 700
“ (quotation mark), 70
’ (single quote), 71
[] (square braces), 375
!== (strict inequality) operator, 85–86
=== (strict equality) operator, 85–86
- (subtraction) operators, 83, 86–87
. . . (three dots), 122–123

=== (triple equals operator), 132
200 status code, 217
301 status code, 217
400 status code, 218
401 status code, 218
404 status code, 218
500 status code, 218

A
abort event, 187
above the fold content, 238
absolute path, 622
abstraction, 168
acceptance testing, 547
access tokens

about, 750–751
using, 751–753

Access-Control-Allow-Methods HTTP headers, 634
Access-Control-Allow-Origin HTTP headers, 634
activeElement property, 250
addEventListener() method, 184, 186–190,

193–194, 199, 200–202, 256, 328, 413, 415
adding

app server, 723–724
elements to the DOM, 254–255
global styles, 292–293
local styles, 293
salt to hashing, 738
server modules, 723–724
style, 509–510
style to components, 387–393, 447–449
workspaces, 669

addition (+) operator, 83, 86–87
addJS() method, 643
addListener() method, 649
addNumbers() function, 140
Advanced Research Projects Agency Network

(ARPANET), 628

756 JavaScript All-in-One For Dummies

after() method, 256
afterUpdate() method, 473
alert() method, 37, 199, 248, 372–373
analyzing complete Express server, 707–712
And (&&) operator, 87–88
anonymous functions

declaring, 150
writing as arrow functions, 152

API server
Express, 709
testing, 711–712

APIs
about, 563
built-in browser, 242–243
custom, 243
selecting, 352–353

app() function, 189–190
append() method, 251, 254–255, 256
app.get() method, 703
application generator tool (Express), 715–720
application-level middleware, 703
apply() method, 157
app.post() method, 703
app.put() method, 703
apps

adding app server, 723–724
configuring, 349
mounting multiple, 349–350
Svelte, 427–430

app.use() method, 703, 717–718
Apress, 62
arguments

about, 140
dynamic, 375
passing

about, 145–148, 584
to directives, 375
to event handlers, 329–330
functions as, 146–147
to listeners, 642–644
to transitions, 470

using return value as, 149

arguments object, 146
arithmetic operators, 86
ARPANET (Advanced Research Projects Agency

Network), 628
Array() constructor, 108
array literal notation, 109
array methods

looping with, 117–121
updates and, 442–445

Array.map() method, 147, 291
arrays

about, 79, 105–107
accessing elements, 110–111
creating, 108–110
deleting elements, 111–112
destructuring, 122
filtering, 121
looping with array methods, 117–121
mapping, 119–121
modifying, 111
programming with array methods, 112–116
reducing, 118–119
slicing, 116
splicing, 116
spreading, 122–123
using v-for directive with, 382–383

arrow functions
defining methods using, 332–333
knowing limits of, 154
simplifying, 152–153
using as event handlers, 643–644
writing anonymous functions as, 152

ASCII, 605–606
assignment operators, 85
assignments, triggering reactivity with, 442
associativity, 84
asterisk (*), 228, 700
async functions

about, 206–210
catching exceptions with, 659
converting promise chains to, 208–209
unblocking code with, 238

Index 757

asynchronicity, of database operations, 693
asynchronous JavaScript

about, 197–198
callback function, 200–202
events, 199–200
promises, 202–210
reading, 198–199
using AJAX, 210–222
writing, 197–222

asynchronous JavaScript and XML (AJAX)
about, 210–211
calling other Response methods, 213–214
fetch init object, 215–216
getting data with Fetch API, 211–213
getting JSON data, 222
handling fetch() errors, 214–215
Hypertext Transfer Protocol (HTTP), 216–218
making requests with CORS, 218–220
sending JSON data, 222
working with JSON data, 220–222

asynchronous requests, waiting for, 479–481
attaching modifiers, to event listeners, 464–465
attributes

different in JSX, 284–285
event, 328
style, 293–294

attributes property, 255
AudioTrack interface, 242
authentication. See registration and authentication
automated build toolchain, 514
automating build script, 513–522
#await block, 479–481

B
b (backspace), 71
Babel, transpilation with, 283
backpressure, 598–599
backslash (), 70, 71
backspace (b), 71
backtick character (`), 53, 70–71
bang (converting) operator, 76

base classes, 169–170
Base64, 607, 750
bcrypt library, 738–739
before() method, 256
beforeUpdate() method, 473
Berners-Lee, Tim, 383
bidirectional connection, 667
bigInt data type, 74–75
:bind directive, creating two-way bindings with,

466–468
bind() method, 158, 161–162, 308, 331
binding

data to templates, 398–400
expressions, 372
forms to events and data, 419–420
Node.js, 563, 564
select inputs, 467–468

Blink, 235
blob() method, 213–214
block comments, 51–52
block-scoped variables, 80
blur() method, 248
body property, 250
body-parser, 706
bookLoad(), 210
Boole, George, 75
Boolean data type, 75–76
Boolean() function, 141
Bootstrap, 292
bootstrapping, with vue-create, 344–346
break statement, 102–103
breakpoints

defined, 660
setting, 544–546, 669–671

browser chrome, 234
browser engine, 235
browser windows, running code in, 35–40
Buffer.alloc() method, 607–609, 610
Buffer.compare() method, 610
Buffer.concat() method, 610
Buffer.from() method, 609, 610
Buffer.isBuffer() method, 610

758 JavaScript All-in-One For Dummies

buffers
about, 603–604
content, 605–606
creating, 607–609
decoding, 606–607
encoding compared with decoding, 604
iterating over, 611
methods, 609–611

build script, automating, 513–522
built-in browser APIs, 242–243
built-in components, in JSX, 284–285
built-in directives, 373–375
built-in elements, 451–452
built-in events, triggering, 193–194
built-in matchers (Jest), 551
built-in middleware, 704–705
built-in objects, methods of, 142
byte, 605

C
call() method, 157
callback functions, 117–118, 146, 200–202
callback pattern, Node.js, 584–586
callbacks, opening files with, 614–616
calling

functions, 117, 140, 372
Response methods, 213–214

camelCase
in JavaScript, 32
in JSX, 284

Canvas API, 243
capture option, 188
carriage return (r), 71
case-sensitivity, of JavaScript, 31
Cat() function, 128
catch() function, 203, 657–658
catching

exceptions
with async functions, 659
with promises, 656–659

Promise rejection, 657–658
Chacon, Scott, 62

chaining functions, 121, 165–166
chaining streams, 600–602
Chakra, 237
change event, 187
changing

array lengths, 111
reactive data, 400–403

charAt function, 72
Cheat Sheet (website), 6
child, passing functions to, 159–165
children property, 250, 255
children props, composition using, 323–324
Chrome, debugging in, 542–546
Chrome DevTools, debugging in, 667–672
chunking, 588
class fields syntax, 175
class keyword, 169–170
classes

about, 167–168
abstraction, 168
base, 169–170
components of, 307–308
constructors, 171–173
creating

methods in, 173–174
objects with, 128–129

defining event handlers in, 330–332
derived, 170–171
encapsulation, 168
inheritance, 169
methods, 173–177
polymorphism, 169
practicing with, 177–179
properties, 173–177

classList property, 255
clearInterval() method, 248
clearTimeout() method, 248
click event, 187
client, 16–17
close() method, 248
closing files, using Promises, 616–617
cls command, 687

Index 759

code
documenting, 51–54
editing in Sources panel, 544
running

in browser windows, 35–40
on command line, 570
in console, 33–34

unblocking with async and defer, 238
writing through testing, 552

code listing
adding styles, 509–510
App.js with map rendering, 528–529
assigning arrays to trigger reactivity, 444–445
asynchronous JavaScript user interface, 200
automatically refreshing stock price, 478–479
binding

attributes to data, 398–399
class methods before passing them as

attributes, 330–331
inputs to data, 466–467
methods in constructor, 331–332
select inputs, 467–468

bookstore and shoppingCart, 160–161
breaking index.js into modules, 506
calculating dog’s age in human years, 549
calling shoppingCart.displayCart() from

bookstore, 162
catching

errors with fetch(), 214
exceptions with async/await, 659
Promise rejections, 658
thrown exceptions, 656

changing maximum number of listeners,
646–647

class component, 307
clearing intervals in

componentWillUnmount(), 316
commenting templates, 453–454
compiled JSX, 282–283
components

created using Composition API, 352
created using Options API, 351
with a <slot>, 384

composing ErrorMessage components,
322–323

conditional rendering
with &&, 288–289
with conditional operator, 290
with element variables, 287–288
of elements, 455
inside in expressions, 455–456

conditionally defining functions using
expressions, 151

configuring
Babel presets, 524
Webpack to use babel-loader, 523

connecting
to MongoDB in app.js, 732
to MongoDB server, 690

constructor for vehicles, 135
controlling styles programmatically, 392
converting buffers to strings, 618
copying

files using writable streams, 596
files with readFile() and writeFile(), 620

counter/svelte, 430
counting with v-for, 380
creating

and accessing ref objects, 403
and appending element nodes, 254
App.js, 525
classes with public, private, and static fields,

178–179
components that use props.children, 323
conflicting styles, 388
context, 490
database configuration object, 690
duplex streams with pipe(), 598
global styles within scoped styles, 448–449
JavaScript modules, 577
lists from arrays, 291
lists from arrays of objects, 456–457
methods in classes, 173
new post route, 752
new posts, 753
numbered lists from arguments, 146

760 JavaScript All-in-One For Dummies

code listing (continued)
objects using Object.create(), 130
persistent state, 318–319
promise chain, 202
reactive state objects, 400
reactive state with <script setup>, 401
readable stores, 484
static members, 176
streaming counters, 593
style modules, 295
transform streams, 600
uncontrolled inputs, 338
and using CSS modules, 390–391
writable stores, 484

CSS Modules file, 296
default main.js, 348
default vue-create index.html file, 347
defining

custom directives in directives object, 377
event handler functions using arrow function

syntax, 333
functions using function expressions, 151
multiple props, 441
named event handler functions, 329
named slots, 461
props, 440
props using defineProps(), 396–397
props without assigning them to objects, 397
and using props with setup(), 397–398
v-play directive, 376

demonstrating JavaScript expressions in
templates, 372

deriving class from base class, 172
detectEdgeCollision function, 533
detecting

collisions, 532
keyboard combinations, 418

displaying
bookstore and cart, 163–164
readable store’s value, 489

enabling Reactivity Transform, 404–405
ErrorButton component, 367

Express API server, 707–708
extending

classes to create specific classes, 321
EventEmitter, 641
React.PureComponent, 314

fetching
data inside componentDidMount(), 312–313
lists using onMounted() lifecycle method, 364

files
containing modules, 224
containing named exports and default

export, 226
that export several modules, 576

finding out whether items are directories, 624
finished server.js file, 724
finished userModel module, 734
firing built-in events, 192–193
flashlight component, 302
forwarding events, 465
function component example, 305
function components with timer, 319–320
functions

that takes arrays, 147
that throws errors, 655
for validating tokens, 752
without context, 156

Gamelet.js with comments, 51–52
generated HTML, 715
generated HTML templates, 504
generateMap() function, 508
generating HTML lists from arrays, 120–121
getting

absolute path to files, 622
data onMount(), 476–477
file information, 624–625
and using unsubscribed() function, 486
values of uncontrolled inputs from Window

object, 338–339
handling

errors, 367–368
forwarded events, 466

Hello Express, 698

Index 761

high-level view of Bing.com, 299
HTML contact form for testing application

server, 662
HTML document, 39
HTML page, 48–49
importing

core modules using ECMAScript modules, 566
modules, 576
modules into HTML files, 230
style modules, 295
and using components, 370–371
and using core modules, 565
and using CSS Modules, 296

index.html file for Svelte app, 427
index.js Route file, 719
index.pug template, 719
inserting documents into collections, 692
iterating over buffers, 611
It’s Alive!, 630
JavaScript files, 38, 505
JavaScript Name Creator program, 30
JSON data, 221
JSON document, 675–676
layout.pug template, 720
listening for

chunks, 591
and handling click events, 161
key events, 464

logging
before and after updates, 473
and displaying squares of numbers, 474
references to tacos with events, 640–641
req.params, 701
requests, 649
requests with middleware, 702
in users, 743

looping over arrays, 382–383
main.js file for Svelte app, 428
method handlers receiving event objects,

415–416
mounting multiple apps, 350
moveBall() function, 507
named function module, 225

naming slots, 386
nested callbacks, 201
nested setTimeout calls, 207
Node.js web server, 568–569
objects with nested properties, 130–131
obstacle’s component, 526
overriding methods in classes, 174
package.json with ECMAScript modules

enabled, 580
passing

arguments to listeners with emit(), 642
arguments using inner functions, 330
content to slots, 460
key attributes, 457–458
multiple props, 441
objects into function, 143
objects to functions, 156–157
props, 301, 441
three aliases and objects to v-for, 382
by value, 143

posts API requests, 729
Posts model, 734
printing properties of objects, 131
Pug template, 714
pushing data into streams, 592
putting together app components, 267–268
random movie picker app, 153
random number guessing game, 101
random number guessing game with

do...while, 102
reading

directory files and logging filenames, 623
files asynchronously and logging it, 617
from files at higher level in file structure, 621
files synchronously, 619

README file for Gamelet, 54
registering 11 event listeners, 645
removing event listeners, 647, 648
rendering

lists of posts, 434
the root component, 524
with state data, 311

762 JavaScript All-in-One For Dummies

code listing (continued)
replacing promise chains with async

functions, 209
request for testing user registration, 740
responding to requests with requests, 631
rewriting getSquare using async/await, 208
root component, 428–429
routes/user.js file with login route, 747–749
routing with JavaScript, 258–259
sample .env file, 582
sample HTML page, 496
sample JSON arrays of objects, 290–291
scripts object with complete build script,

521, 522
seeing Error properties, 653
selecting

elements with querySelectorAll()
method, 253

with getElementById() method, 252
server without streaming, 588–589
serving

buffers as images, 606–607
static HTML files from Node.js, 713

setting
application config options to specify global

error handler, 349
event listeners, 188–189
global properties, 349
state in constructor, 310
up Express, 724

sign-up route, 739
simple components with pure HTML

templates, 370
simple counter component written in Svelte, 439
simple React component, 282
simple streaming server, 590
simple web application for learning about

debugging, 660–661
single-file component using setup attribute,

360–361
single-file component’s script element, 358
single-file Todo app, 359
skeleton

for routes/posts.js, 726
for routes/user.js, 727

specifying
attribute values using expressions, 286
fallback content for slots, 386

starter template for single-file component, 358
starting
package.json file, 499
timers on mounts, 472–473

static navigation bar mockup, 266
static search box mockup, 267
streaming

in flowing mode, 594–595
in paused mode, 595

subscribing to stores, 485
supporting both callbacks and promises, 586
synchronous JavaScript user interface, 199
synchronous program, 198
targeting

content to named slots, 460
named slots, 386–387

testing
for collisions with obstacles, 511
dog-age calculator, 549
for edge collisions, 510
map component, 554

text expressions escape HTML, 458
unhandled promise rejection, 656–657
updating data with 1-way binding, 419
useGitHubRepos custom hook, 324–325
user API requests, 728
Users Route file, 718–719
using

$ syntax, 488
array methods, 443
arrow functions as event handlers, 643
#await block, 480–481
callback functions, 147
class, 129
computed properties, 406–407
constructor function, 128
controlled inputs, 336–337

Index 763

custom elements, 452–453
custom hooks, 325
different transitions for entering and

leaving, 470
dynamic loading, 229
element variables, 287
environment variables, 583
error-handling middleware, 704
event bubbling to detect events on multiple

elements, 191
express.static(), 707
finally() block, 658–659
for...in to display properties of objects, 99
fs.open() and fs.close(), 616
fs.open() and fs.close() with Promises,

616–617
getContext(), 490–491
global and scoped styles, 389–390
@html to render HTML in text expressions, 459
inline event handlers, 412
inline JavaScript, 36–37
JavaScript modules, 578
method handlers, 413
middleware to modify res objects, 703
multiple conditions with &&, 289
PassThrough stream, 599
promises to load data with
XMLHttpRequest(), 203–204

props to create more reusable
components, 322

reactive context, 491–492
reactive state objects, 401
reactive statements, 445–446
Reactivity Transform, 405
React.memo() top optimize rendering of

function components, 314
refs inside templates, 403–404
removeBook as event handler, 162
router-level middleware, 703
routes in app.js, 728
same function in multiple objects, 159
scoped CSS, 388–389
shorthand version of v-bind, 399

slots to render children, 460
start() and stop() with stores, 489
state in class components, 308
state in function components, 306
stores to provide and update preferences,

486–487
style attribute, 294
switch statement, 94
template literal string, 71
this in class constructor, 172
this in event handlers, 642–643
tick() to wait for state change to be applied,

474–475
transform involving user input, 601–602
transform streams, 600
updateOne() with upsert option, 695–696
useEffect to perform side effects, 317
v-for with objects, 381
v-if, v-else-if, and v-else, 379
v-model directive, 420

viewing properties of SyntheticBaseEvent
object, 329

VolumeSlider written using function
components, 334

watching values to trigger side effects, 409
wrapping

components around other components, 324
statements and function calls in arrow

functions, 416
writing log messages to files, 597

coding, with Git, 55–62
collections

creating, 682
inserting documents into, 691–692

collisions
detecting, 531–534
testing for, 510–511

colon (:), 375
combining operators, 89
command line

running code on, 570
setting environment variables from, 582

command-line debugger, 663–667

764 JavaScript All-in-One For Dummies

commands
read-evaluate-print loop (REPL), 573–575
rerunning in console, 34–35

comma-separated value (CSV) files, 109–110
comments, documenting Svelte with, 453–454
CommonJS module, 575–576
compare() method, 610
comparing objects, 132–134
comparison operators, 85–86
compilation, 11–12
complex data type, 78–79
complex queries, using operators, 685–686
component hierarchy, designing, 265–266
component lifecycle

about, 309–316
fetching data in Svelte, 476–481
following, 362–366
Svelte lifecycle, 471–476

componentDidMount() method, 309, 312–313,
316–317, 318

componentDidUpdate() method, 313, 315
components

adding style to, 387–393, 447–449
building with, 437–449
error handling in, 366–368
identifying contents of, 439–447
naming, 362
Vue, 357–368
writing, 437–439

componentWillUnmount() method, 315–316,
319–320, 365–366

composing, with slots, 383–387, 459–461
composition

of components, 321–325
with custom hooks, 324–325
using children props, 323–324
using explicit props, 322–323

Composition API, 352
compression, 706
computed() function, 406
computing properties, 405–408
concat() method, 72, 112

concatenation operator (+), 71
concatenation operators, 86–87
conditional code, creating with return, 149–150
conditional operators, conditional rendering with,

289–290
conditional rendering

about, 88
with JavaScript, 378
JSX, 286–290
using directives, 378–379

configuring
apps, 349
dev server, 515–518
directories, 722–723
Git, 57–60
Jest, 547–548
Visual Studio Code (VS Code), 43–50
Webpack for React, 522–524

connecting
to databases, 731–733
with interfaces, 242
to MongoDB server, 689–691

Connection HTTP headers, 634
console

rerunning commands in, 34–35
running code in, 33–34

console property, 248
console.log() method, 593
const, creating constants with, 66–68
constants, creating with const, 66–68
constructing store, 483–490
constructor function, 108, 128
constructor() method, 309–310
constructors, 171–173
content, buffer, 605–606
Content-Length HTTP headers, 634
content-type HTTP headers, 634
context

functions and, 155–165
setting of functions, 157–158

continue statement, 102–103
controlled inputs

Index 765

defined, 335
using, 335–337

converting
to Boolean, 75–76
nested callbacks to async functions, 207–208
promise chains to async functions, 208–209
to React, 522–534
to streams, 589–590
between strings and numbers, 74
UI to React, 524–529

cookie-parser, 706
copying

JavaScript code, 15–22
objects, 132–134
static assets, 519–520

core modules, 564–566
cors, 706
CORS, making requests with, 218–220
createApp() function, 348, 349
createAttribute() method, 251
createComment() method, 251
createElement() method, 251, 254–255
createEvent() method, 251
createInterface() method, 641
createReadStream() method, 593–594
createRoot() method, 278–279
createServer() method, 630–631
createTextNode() method, 251
createUser() method, 687–688
creating

about, 495
arrays, 108–110
basic routes, 725–728
buffers, 607–609
collections, 682
with components, 437–449
conditional code with return, 149–150
constants with const, 66–68
creating modules, 506–512
custom events, 194, 640–641
databases, 681–682
directories, 722–723

duplex streams, 598–599
elements to the DOM, 254–255
expressions, 82
forms with React, 324–339
IDs, 682–683
instances, 170
lists, 290–291
loops, 97–103, 456–458
managing dependencies with npm, 497–503
methods in classes, 173–174
modules, 506–512
Node.js modules, 575–580
objects

about, 127–130
with class, 128–129
with Object.create() method, 130
using constructor functions, 128
using literal notation, 127

options request, 635
projects in Visual Studio Code (VSC), 25–27
React components, 297–325
React UI, 265
reactive data, 432–434
reactive statements, 445–446
readable stores, 484
readable streams, 592–595
reasons for tools, 496–497
requests with CORS, 218–220
scaffolding in Svelte, 425–426
schema with Mongoose, 730–734
source maps, 542–544
static version in React, 266–268
strings with template literal notation, 70–71
style modules, 295
transition animations, 468–469
two-way bindings

with :bind directive, 466–468
with v-model, 420

uncaught Promise rejection, 656–657
unidirectional transitions, 470
user model, 733–734
variables with let, 63–66

766 JavaScript All-in-One For Dummies

creating (continued)
web servers, 630–638
writable stores, 484
writable streams, 596–597
writing

dev script, 505–506
files, 503–505

cross-site scripting (XSS), 218, 745–746
CSS

global, 387–388
modules, 390–391
scoped, 388–389
v-bind directive in, 391–393

CSS Modules file, 296
CSV (comma-separated value) files, 109–110
curly braces ({}), 78
cursor objects, 693–694
custom APIs, 243
custom directives, 376–377
custom elements, 452–453
custom events, creating, 640–641
custom hooks, composition with, 324–325

D
dashes, in JavaScript, 32
data

about, 63
arrays, 79
binding

forms to events and, 419–420
to templates, 398–400

complex data type, 78–79
creating

constants with const, 66–68
variables with let, 63–66

deleting, 696
fetching in Svelte, 476–481
getting

about, 222, 693–694
with Fetch API, 211–213
to node modules, 580–584

objects, 78–79
reactivity and, 395–410
refreshing, 477–479
returning, 149–150
sending, 222
types of, 68–77
updating, 695–696
using in React, 327–339
variable scope, 80

data flow, implementing inverse, 269–270
data() method, 350
data storage, networking and, 239–240
data types

in NoSQL databases, 676–677
props, 300–301
recognizing, 300–304
in relational databases, 676

databases
about, 673
connecting to, 731–733
creating, 681–682
MongoDB, 674–681, 688–696
Mongosh, 681–688

Date HTTP headers, 634
db command, 686
db.collectiondeleteMany() command, 687
db.collection.deleteOne() command, 687
db.collection.drop() command, 687
db.collection.find() command, 687
db.collection.find() method, 684
db.collection.insertMany() command, 687
db.collection.insertOne() command, 686
db.collection.updateMany() command, 687
db.collection.updateOne() command, 687
db.dropDatabase() command, 687
dblclick event, 187
debugging. See error handling and debugging
declaring

anonymous function, 150
variables, 64

decodeURI() function, 141
decodeURIComponent() function, 141

Index 767

decoding
buffers, 606–607
encoding compared with, 604

decrement (--) operator, 86–87
deep copy, 123
default exports, 225–226
default parameters, setting, 147–148
defaultMaxListeners, finding value of, 644–645
defer, unblocking code with, 238
defineProps() function, 396–397
defining

event handlers in class components, 330–332
function expressions, 150–152
functions, 140
methods using arrow syntax, 332–333
modules, 224
props

about, 440
with <script setup>, 396–397
with setup() function, 397–398

DELETE method, 217
delete operator, 112
deleteMany() method, 696
deleteOne() method, 696
deleting

array elements, 111–112
data, 696
object properties, 138

dependencies
about, 497
installing, 709
managing with npm, 497–503
npm, 501

deployment, 518–519
derived classes

about, 170–171
overriding methods in, 174

describe() function, 549, 550
designing

component hierarchy, 265–266
elements, 298–299
templates, 451–461

destructuring arrays, 122
detecting collisions, 531–534
determining location, of states, 269
dev scripts, writing, 505–506
dev server, configuring, 515–518
developers, Node.js for, 561–562
development environment, starting, 22–29
devicePixelRatio property, 248
directives

built-in, 373–375
conditional rendering using, 378–379
creating two-way binding with :bind directive,

466–468
custom, 376–377
dynamic arguments, 375
listening for events with on: directive, 463–466
modifiers, 375–376
passing arguments to, 375
shorthand names, 375
using transition animations, 468–470

directories
configuring, 722–723
creating, 722–723
finding, 624
getting information, 623–625
listing files in, 623

_dirname property, 594
disk space, troubleshooting, 50
dispatchEvent() method, 192, 194, 256
dispatching

events programmatically, 192–194
synthetic events, 328–329

displayBookstore() method, 163–164
displayCart() method, 161
displayWeatherForecast() function, 149
dist folder, 520–522
division (/) operator, 83, 86–87
Document interface

about, 242, 249
adding elements to the DOM, 254–255
creating elements to the DOM, 254–255
element methods, 256–257

768 JavaScript All-in-One For Dummies

Document interface (continued)
element nodes, 255–256
family tree, 249
methods, 250–251
properties, 249–250
selecting

element nodes, 251
with getElementById() method, 252
using selectors, 252–253

visualizing, 249
documenting

code, 51–54
Svelte with comments, 453–454

documents
finding, 684–686
inserting into collections, 691–692
listing, 682–683

dollar sign ($), 685–686
doLogin() function, 200–202
DOM

adding elements to the, 254–255
creating elements in the, 254–255
updating, 354–355

doMath() function, 118
doProcessing() function, 208
dot notation, 79, 130–131
double curly braces ({{}}), 372
double quote (“), 71
do...while loops, 101–102
drink() method, 173–174
drive() method, 155, 156, 157
duplex streams, creating, 598–599
dynamic arguments, 375
dynamic modules, loading, 229
dynamically typed language, 68

E
ECMA International, 14–15
ECMAScript, 14–15, 575
editing code, in Sources panel, 544

effects
performing on unmounting, 319–320
running, 317–319

Eich, Brendan, 14
element methods, Document interface, 256–257
element nodes
Document interface, 255–256
selecting, 251

element variables, conditional rendering with,
287–288

elements, designing, 298–299
embedded script, 237
emit() method, 640
emitting once, 649
enabling reactivity, 304
encapsulation, 168
encodeURI() function, 141
encodeURIComponent() function, 141
encoding, decoding compared with, 604
encoding argument, 620
end() method, 636, 702
end-to-end testing, 547
engines

browser, 235
JavaScript, 237
rendering, 235–238
template, 713–714

.env, setting environment variables with, 582–583
environment variables, 581–583
equality (==) operator, 85–86
equals() method, 610
error handling and debugging

in Chrome, 542–546
in components, 366–368
debugging Node.js programs, 660–672
error types, 651–652
exceptions versus errors, 654
handling exceptions, 655–659
Node.js’s Error object, 653–654

Error object (Node.js), 653–654
error-handling middleware, 703–704

Index 769

ErrorMessage component, 322–323
errors

exceptions compared with, 654
handling with async/await, 210
linting, 537–540
troubleshooting, 50
types of, 651–652

error.stack, reading, 654
ES modules, 577–579
ESbuild, 515
escaping characters, 70
ESLint

installing, 536–537
integrating into build script, 540–541
running, 537

eval() function, 141
event attributes, 185, 328
event handlers

about, 435–436
basic, 464
defining in class components, 330–332
passing

arguments to, 329–330
functions from function components, 333–334

properties of, 185–186
in React, 328–334
using arrow functions as, 643–644

event listeners
attaching modifiers to, 464–465
removing, 194

event modifiers
about, 416–417
detecting combinations, 419
key modifiers, 417–418

event object, 190
event property, 248
event targets, selecting, 186
EventEmitter

about, 640
creating custom events, 640–641
extending, 641
passing arguments to listeners, 642–644

event.preventDefault(),
416–417

events
about, 181, 639
asynchronous JavaScript and, 199–200
binding forms to data and, 419–420
dispatching programmatically, 192–194
emitting once, 649
event loop, 183–184
EventEmitter class, 640–644
forwarding, 465–466
handling multiple, 466
JavaScript runtime model, 182–183
listening for, 184–195
listening for with on: directive, 463–466
maxListeners, 644–647
removing listeners, 647–648
responding to, 411–420
setting listeners with v-on, 411–416
Synthetic, 328–329
using event modifiers, 416–419
using in React, 327–339

EventTarget interface, 242
every() method, 112
exceeding maximum listeners for emitters,

645–646
exceptions

catching
with async functions, 659
with promises, 656–659

errors compared with, 654
handling, 655–659

excluding files, from linting, 541
exit command, 687
expect() function, 549, 551
expectations, 551
expiration, of tokens, 744–745
exponentiation (**) operator, 86–87
exporting

modules, 224–226
props, 440–442
renaming exports, 228

770 JavaScript All-in-One For Dummies

Express
analyzing complete server, 707–712
installing, 697–698
installing dependencies, 709
installing Express API server, 709
middleware, 701–707
server-side routing with, 699–701
serving views, 712–715
using application generator tool, 715–720

express() method, 698, 703, 704–705
expressions

about, 30, 81
building, 82
class, 170
in JSX, 285–286
text, 458–459
watch, 546

express.Router() method, 725–728
express.static() method, 706–707
extending EventEmitter, 641

F
fallback content, specifying, 385–386
fat arrow syntax, 119
Fetch API

about, 242
getting data with, 211–213

fetch() errors
about, 218
handling, 214–215

fetch init object, 215–216
fetch() method, 211, 215–216, 222, 407, 655
fetching data, in Svelte, 476–481
fields

defining, 174–177
returning, 684

File API, 243
file descriptor, 615
file system

getting file and directory information, 623–625
importing fs module, 613–614

reading files, 614–619
using paths, 621–623
writing files, 619–620

files
closing using Promises, 616–617
excluding from linting, 541
getting information, 623–625
listing in directories, 623
opening using Promises, 616–617
reading, 614–619
writing, 503–505, 619–620
writing to using Promises, 616–617

filter() method, 112, 121
filter object, 684
filtering arrays, 121
finally() block

about, 210
using, 658–659

find() method, 684, 685, 694
finding

directories, 624
documents, 684–686
value of defaultMaxListeners, 644–645

findOne() method, 694
finishing login route, 746–753
fixing linting errors, 537–540
flow

about, 91
choosing a path, 91–96
creating loops, 97–103

flowing mode, 594–595
focus() method, 194, 248
following component lifecycle, 362–366
for loops, 97–98
forEach() method, 112, 693–694
for...in loops, 98–99
form feed (f), 71
forms

binding to events and data, 419–420
creating with React, 324–339

forms property, 250
for...of loops, 100

Index 771

forwarding events, 465–466
fs module

importing, 613–614
reading readable streams from, 593–594

fs.open() method, opening files with, 614–616
fs.read() method, reading from files with,

614–617
fs.readdir() method, 623
fs.readFile() method, 671–672
fs.stat() method, 624–625
fs.write() method, writing to disks with,

619–620
fs.writeFile() method, 620
fullScreen property, 248
function bodies, writing, 148
function calls, stacking, 182
function components

about, 304–306
passing event handler functions from, 333–334
using lifecycle in, 316–320

function definition, 140
function expressions, defining, 150–152
function keyword, 332–333
functions

about, 139–141
addNumbers(), 140
anonymous, 150, 152
app(), 189–190
async, 206–210
Boolean(), 141
callback, 117–118, 146, 200–202
calling, 117, 140, 372
Cat(), 128
catch(), 203, 657–658
chaining, 165–166
charAt, 72
computed(), 406
context and, 155–165
createApp(), 348, 349
declaration scope and hoisting, 150
declaring anonymous, 150
decodeURI(), 141
decodeURIComponent(), 141

defineProps(), 396–397
defining function expressions, 150–152
describe(), 549, 550
displayWeatherForecast(), 149
doLogin(), 200–202
doMath(), 118
doProcessing(), 208
encodeURI(), 141
encodeURIComponent(), 141
eval(), 141
expect(), 549, 551
generateMap(), 508–509
getContext(), 490–491
getData(), 655–656
getLocalWeather(), 145, 148, 149
getStateInfo(), 226, 227–228
getUserById(), 657
h(), 354–355
handleClick(), 188
handleEvent(), 648
import(), 229
isFinite(), 141
isNaN(), 141
it(), 550–551
knowing limits of arrow functions, 154
loadBook(), 208
mount(), 348, 349
moveBall(), 507–508
naming, 144–145
number, 73
Number(), 141
onMount(), 472–473, 476–477, 478
onMouseMove(), 190
parseFloat(), 73, 86, 141
parseInt(), 73, 86, 141, 142
passing

arguments, 145–148
to child, 159–165
between objects, 158–159
objects to, 156–157
from one objects to another, 158–159
as props, 330–334

772 JavaScript All-in-One For Dummies

functions (continued)
by reference, 143
by value, 142–143

passive, 188
pickAMovie(), 153
postData(), 414
reactive(), 360, 391–393, 400–403
ref(), 391–393, 400–404
removeBook(), 161–162
replace, 72
res.render(), 719
returning data, 149–150
reverseOrder(), 253
router.get(), 719
setting context of, 157–158
setup(), 358–361, 377, 396, 397–398, 401
showLogInScreen(), 88
signal, 188
simplifying arrow functions, 152–153
split(), 72, 109–110, 142
squareIt(), 117–118
start(), 488–490
as stateless, 305
stop(), 488–490
string, 71–72
String(), 139–140, 141
substring, 72
super(), 171, 172, 175, 176, 307
test(), 549, 550–551
then(), 203
toLowerCase, 72
toUpperCase, 73
trim(), 142
uneval(), 141
using

methods of built-in objects, 142
top-level, 141

watch(), 408–410
window.alert(), 414
writing

about, 144–154
anonymous functions as arrow functions, 152

function bodies, 148
methods, 154–155

function-scoped variables, 80

G
Gecko, 235
generateMap() function, 508–509
generating tokens, 744–746
geolocation property, 245
get() method, 698, 699, 701
GET method, 17, 217
getAttribute() method, 256
getContext() function, 490–491
getData() function, 655–656
getDerivedStateFromProps() method, 309,

310, 313
getElementById() method, 186, 251, 252
getElementsByClassName() method, 251,

256, 511
getElementsByTagName() method, 251, 256
getLocalWeather() function, 145, 148, 149
getMacListeners() method, 645
getProducts() method, 168
getSnapshotBeforeUpdate() method, 313,

314–315
getStateInfo() function, 226, 227–228
getUserApproval() function, 602
getUserById() function, 657
Git, coding with, 55–62
GitHub, 62
.gitignore file, 276
global CSS, 387–388
global styles, adding, 292–293
globals, using in templates, 373
global-scoped variables, 80
Google Chrome, 15
graphing operator, 84
greater than (>) operator, 85–86
greater than or equal to (>=) operator,

85–86
Grunt, 518–519
Gulp, 518–519

Index 773

H
h() function, 354–355
handleClick() function, 188
handleEvent() function, 648
handler functions, specifying, 329
handling

authentication, 741–743
dependencies with npm, 497–503
errors in components, 366–368
errors with async/await, 210
exceptions, 655–659
fetch() errors, 214–215
multiple events, 466

hanging request, 702
hasAttribute() method, 256
hashes, 736–737
hashing

adding salt to, 738
saving and, 738–739

head property, 250
heaping objects, 183
helmet, 706
herd() method, 176
high-level languages, 10–11
History interface, 257–259
hoisting function declaration, 150
hot reloading, 277–278, 515
HTML

importing modules into, 229–230
including JavaScript files in, 37–40
JSX as not, 282
running inside script elements, 36–37
writing output with JSX, 283–284
writing templates, 369–371

HTML event attributes
about, 185
running JavaScript from, 35–36

HTTP headers, 633–634
HTTP request, 632–633
HTTP server, 561
Hypertext Transfer Protocol (HTTP)

about, 216–217
request method, 217
status codes, 217–218

I
icons, explained, 5–6
id property, 255
identifying

component contents, 439–447
render blocking, 237–238
state, 268
types of streams, 592

IDs, creating, 682–683
if...else statements, 91–93
ImageCapture API, 243
images property, 250
immutable values, 67
implementing

inverse data flow, 269–270
user registration, 734–741

implicit headers, 637
import() function, 229
import statement, 227–228
importing
fs module, 613–614
module objects, 228–229
modules, 227–228
modules into HTML, 229–230

imports, renaming, 228
includes() method, 112, 610
increasing maximum number of listeners,

646–647
increment (++) operator, 86–87, 97
incrementCount() method, 308
IndexedDB API, 243
index.js, refactoring, 506–507
indexOf() method, 72, 112
inequality (!=) operator, 85–86
inheritance

about, 169
in object-oriented programming, 321–322

774 JavaScript All-in-One For Dummies

initializing
projects

about, 497–499
with Vite, 271–278

reactive data, 400–403
variables, 64

inline handlers
about, 411–413
choosing between method handlers and,

414–416
inline styling, 293
innerHeight property, 248
innerHTML property, 255
innerWidth property, 248
input event, 187
input types, using v-model directive with

various, 420
inserting documents into collections, 691–692
Inspect interface (Chrome DevTools), 672
installing

dependencies, 709
ESLint, 536–537
Express, 697–698
Express API server, 709
Git, 56–57
Jest, 547–548
Live Server, 47–50
module bundler, 514–515
MongoDB, 677–680
Mongoose, 731–733
Node.js, 43
Node.js driver, 689
Visual Studio Code (VSC), 23–24
Volar, 346
Vue DevTools, 353–355

instances, creating, 170
integrating ESLint into build script, 540–541
integration testing, 547
interfaces

connecting with, 242
Web, 241–243

interfacing, with web browsers, 234–235

Internet, 15–16
invoking functions, 117
isFinite() function, 141
isNaN() function, 141
it() function, 550–551
iterating, over buffers, 611

J
JavaScript. See also asynchronous JavaScript

about, 9–12
conditional rendering with, 378
copying, 15–22
expressions in JSX, 285–286
history of, 12–15
including files in HTML, 37–40
reading, 15–22
rerunning commands in console, 34–35
running

code in browser window, 35–40
code in console, 33–34
from HTML event attributes, 35–36

single-threadedness of, 183–184
starting development environment, 22–29
testing, 535–555
using in templates, 371–373
writing programs in, 29–32

JavaScript engine, 237
JavaScript Object Notation (JSON)

getting data, 222
sending data, 222
working with, 220–222

JavaScript runtime model, 182–183
JavaScriptCore, 237
Jest

how it works, 550–551
installing and configuring, 547–548

join() method, 112, 121, 622
json() method, 213, 606–607
JSX

conditionally rendering, 286–290
creating lists, 290–291

Index 775

fundamentals of, 281–282
JavaScript expressions in, 285–286
as not HTML, 282
styling React apps and components, 292–296
transpiling with Babel, 283
using built-in components, 284–285
writing, 281–296
writing HTML output with, 283–284
as XML, 282–283

K
key modifiers, 417–418
keydown event, 187, 418
keys, specifying, 383
keyup event, 187, 418
keywords, 30

L
language property, 244
lastIndexOf() method, 112
launching VS Code terminal, 272–274
left-associativity, 84
length() method, 610
length property, 110
less than (<) operator, 85–86
less than or equal to (<=) operator, 85–86
let, creating variables with, 63–66
levels, of programming language, 10
lexical scoping, 332
libuv library, 563–564
lifecycle

component, 309–316
Svelte, 471–476

limit() method, 685
limitations, of reactive(), 402–403
limiting lists, 685
line comments, 51
linters, using, 536–541
listen() method, 698
listeners

passing arguments to, 642–644

removing, 647–648
setting with v-on, 411–416

listening
for events, 184–195
for events with on: directive, 463–466
on multiple targets, 190–191

listing
documents, 682–683
files in directories, 623

lists
creating, 290–291
limiting, 685
rendering engine, 379–383
sorting, 684–685

literal notation, creating objects using, 127
Live Server, installing, 47–50
loadBook() function, 208
loading

dynamic modules, 229
without streams, 588–589

local styles, 293
localStorage property, 248
local-versus-global installs, 503
location property, 248
log points, setting, 671–672
logical operators, 87–88
login route

finishing, 746–753
testing, 749–750

loops
with array methods, 117–121
creating, 97–103, 456–458
event, 183–184

loosely typed language, 68

M
machine code, processor-specificity of, 10
macOS

installing MongoDB on, 680
starting MongoDB on, 681

main.js file, 348

776 JavaScript All-in-One For Dummies

map() method, 112, 119–121
mapping arrays, 119–121
Markdown files, 53–54
matches() method, 256
maxListeners, 644–647
messages, queuing, 183
metadata, in package.json file, 500
method handlers

about, 413–414
choosing between inline handlers and, 414–416

methods
addEventListener(), 184, 186–190, 193–194,

199, 200–202, 256, 328, 413, 415
addJS(), 643
addListener(), 649
after(), 256
afterUpdate(), 473
alert(), 37, 199, 248, 372–373
append(), 251, 254–255, 256
app.get(), 703
apply(), 157
app.post(), 703
app.put(), 703
app.use(), 703, 717–718
array, 112–116, 117–121
Array.map(), 147, 291
before(), 256
beforeUpdate(), 473
bind(), 158, 161–162, 308, 331
blob(), 213–214
blur(), 248
Buffer, 609–611
Buffer.alloc(), 607–609, 610
Buffer.compare(), 610
Buffer.concat(), 610
Buffer.from(), 609, 610
Buffer.isBuffer(), 610
of built-in objects, 142
call(), 157
clearInterval(), 248
clearTimeout(), 248
close(), 248

compare(), 610
componentDidMount(), 309, 312–313, 316–

317, 318
componentDidUpdate(), 313, 315
componentWillUnmount(), 315–316, 319–320,

365–366
concat(), 72, 112
console.log(), 593
constructor(), 309–310
createAttribute(), 251
createComment(), 251
createElement(), 251, 254–255
createEvent(), 251
createInterface(), 641
createReadStream(), 593–594
createRoot(), 278–279
createServer(), 630–631
createTextNode(), 251
createUser(), 687–688
creating in classes, 173–174
defined, 140
defining, 174–177
defining using arrow syntax, 332–333
DELETE, 217
deleteMany(), 696
deleteOne(), 696
dispatchEvent(), 192, 194, 256
displayBookstore(), 163–164
displayCart(), 161
Document interface, 250–251
drink(), 173–174
drive(), 155, 156, 157
element, 256–257
emit(), 640
end(), 636, 702
equals(), 610
every(), 112
express(), 698, 703, 704–705
express.Router(), 725–728
express.static(), 706–707
fetch(), 211, 215–216, 222, 407, 655
filter(), 112, 121

Index 777

find(), 684, 685, 694
findOne(), 694
focus(), 194, 248
forEach(), 112, 693–694
fs.open(), 614–616
fs.read(), 614–617
fs.readdir(), 623
fs.readFile(), 671–672
fs.stat(), 624–625
fs.write(), 619–620
fs.writeFile(), 620
GET, 17, 217
get(), 698, 699, 701
getAttribute(), 256
getDerivedStateFromProps(), 309, 310, 313
getElementById(), 186, 251, 252
getElementsByClassName(), 251, 256, 511
getElementsByTagName(), 251, 256
getMacListeners(), 645
getProducts(), 168
getSnapshotBeforeUpdate(), 313, 314–315
getUserApproval(), 602
hasAttribute(), 256
herd(), 176
includes(), 112, 610
incrementCount(), 308
indexOf(), 72, 112
join(), 112, 121, 622
json(), 213, 606–607
lastIndexOf(), 112
length(), 610
limit(), 685
listen(), 698
map(), 112, 119–121
matches(), 256
mongoose.model(), 730–731
mongoose.Schema(), 730–731
mounting, 309–313
move(), 169
naming, 115
next(), 693–694, 702
Object.create(), 130

on(), 640, 642–643, 649
onBeforeMount(), 366
onBeforeUnmount(), 366
onBeforeUpdate(), 366
once(), 649
onDestroy(), 473, 485–486
onErrorCaptured(), 366
onMounted(), 362–366
onUnmounted(), 365–366
onUpdated(), 365
open(), 248
operate(), 158–159
overriding in derived classes, 174
.parse(), 291
PATCH, 217
patch(), 699
pipe(), 590, 592, 598–599, 600
play(), 376
pop(), 112, 113–116, 442–445
POST, 217
post(), 699
prepend(), 251, 254–255, 256
preventDefault(), 195, 375–376
prompt(), 199, 248
properties and, 173–177
push(), 112, 113–116, 442–445, 592
pushState(), 258
PUT, 217
put(), 699
querySelector(), 251, 256
querySelectorAll(), 251, 256
read(), 595
Readable(), 592
readdir(), 624
readFile(), 585, 617–618
readFileSync(), 618–619
reduce(), 111, 112, 118–119
remove(), 256
removeAllListeners(), 648
removeEventListener(), 194
removeListener(), 647–648

778 JavaScript All-in-One For Dummies

methods (continued)
render(), 278–279, 307, 309, 310–311,

313–314, 354–355
replaceName(), 602
replaceState(), 258
resolve(), 622
of response object, 636–637
reverse(), 113
Router(), 703
routing, 699–701
scroll(), 248
scrollTo(), 248
set(), 484, 486, 487, 488–490
setHeader(), 637–638
setInterval(), 248, 479
setState(), 308
setTimeout(), 207–208, 248
sharpen(), 126
shift(), 113, 114–115
shouldComponentUpdate(), 313–314
slice(), 72, 110, 113, 116
some(), 113
sort(), 113, 684–685
splice(), 113, 116
stringify(), 222
subscribe(), 483, 484, 485, 487
testEdgeCollision(), 510–511
text(), 214
tick(), 474–476
toArray(), 693–694
toJSON(), 610
toString(), 86, 113, 605, 606–607,

609, 610
unmounting, 315–316
unshift(), 113
unsubscribe(), 485–486, 487
update(), 484, 486, 487
updateMany(), 695–696
updateOne(), 695–696
updating, 313–315

useEffect(), 316–317, 318–319, 320, 362
useState(), 305–306, 316
Window interface, 247–248
writable(), 484
write(), 596–597, 598–599, 610, 637
writeHead(), 636, 637–638
writing, 154–155
XMLHttpRequest(), 203–204

Microsoft, 14
middleware, 701–707
minification, 519
modes, read, 594–595
modifiers

attaching to event listeners, 464–465
directive, 375–376

modifying
arrays, 111
objects, 130–131
React projects, 277–278

module bundler, installing, 514–515
module objects, importing, 228–229
modules. See also Node.js

about, 223
creating, 506–512
CSS, 390–391
defining, 224
exporting, 224–226
importing

about, 227–228
into HTML, 229–230

loading dynamic, 229
packages compared with, 580
style, 295

MongoDB
about, 674
connecting to, 681–682
connecting to server, 689–691
installing, 677–680
relational compared with NoSQL databases,

674–677

Index 779

shell commands, 686–687
starting, 680–681
using from Node.js, 688–696

Mongoose
creating schema with, 730–734
installing, 731–733

mongoose.model() method,
730–731

mongoose.Schema() method,
730–731

Mongosh
connecting to MongoDB, 681–682
creating

collections, 682
databases, 681–682
IDs, 682–683

finding documents, 684–686
listing documents, 682–683
MongoDB shell commands,

686–687
users and roles, 687–688

monitoring scripts, 569
morgan, 706
mount() function, 348, 349
mounting

about, 472–473
methods, 309–313
multiple apps, 349–350
root components, 348–350

mousedown event, 187
mouseenter event, 187
mouseleave event, 187
mousemove event, 187
mouseout event, 187
mouseover event, 187
mouseup event, 187
mousewheel event, 187
move() method, 169
moveBall() function, 507–508
Mozilla Developer Network, 417
multiple style blocks, 389–390
multiplication (*) operator, 83, 86–87

N
named exports, 225
naming

components, 362
constants, 67–68
functions, 144–145
methods, 115
slots, 386–387
variables, 66

NaN data type, 77
Navigator interface

about, 242, 243
properties of-245, 244
quirks of, 244

negation operator (!), 302
Netscape, 14
networking

about, 239, 627
creating web servers, 630–638
data storage, 239–240
with Node.js, 627–638
security for, 628–630
troubleshooting, 50

new line (n), 71
next() method, 693–694, 702
Node.js

about, 559
callback pattern, 584–586
components of, 562–564
core modules, 564–566
creating modules, 575–580
debugging programs, 660–672
Error object, 653–654
getting data to modules, 580–584
how it works, 560–562
installing, 43
networking with, 627–638
uses for, 566–567
using MongoDB from, 688–696
using read-evaluate-print loop (REPL), 570–575
working with, 567–570

780 JavaScript All-in-One For Dummies

Node.js driver, installing, 689
node_modules folder

about, 275, 347
using, 502–503

non-simple request, 219–220
NoSQL databases, 674–677
Not (!) operator, 87–88
notation, for square brackets, 131
npm

managing dependencies with, 497–503
updating, 503

number data type, 73–74
Number() function, 141
number functions, 73
number inputs, 467
numbers

converting between strings and, 74
number inputs and, 467
using v-for directive for, 380

O
Object.create() method, creating objects

with, 130
object-oriented programming, inheritance in,

321–322
objects

about, 78–79, 125–127
comparing, 132–134
copying, 132–134
creating

about, 127–130
with class, 128–129
with Object.create() method, 130
using constructor functions, 128
using literal notation, 127

deleting properties of, 138
event, 190
heaping, 183
modifying, 130–131
passing functions between, 158–159
passing to functions, 156–157

prototypes, 134–137
request, 632–633
response, 633–636
using v-for directive with, 380–382

on: directive, listening for events with,
463–466

on() method, 640, 642–643, 649
onBeforeMount() method, 366
onBeforeUnmount() method, 366
onBeforeUpdate() method, 366
once() method, 649
once option, 188
onClick attribute, 328
onclick property, 185
onDestroy() method, 473, 485–486
onErrorCaptured() method, 366
onLine property, 244
onMount() function, 472–473, 476–477, 478
onMounted() method, 362–366
onMouseMove() function, 190
onUnmounted() method, 365–366
onUpdated() method, 365
open() method, 248
opening

array elements, 110–111
files using Promises, 616–617
files with fs.open() and callbacks, 614–616

operate() method, 158–159
operational errors, 651, 652
operators

about, 30, 81
arithmetic, 86
assignment, 85
combining, 89
comparison, 85–86
complex queries using, 685–686
concatenation, 86–87
delete, 112
logical, 87–88
precedence of, 83–84
short-circuit, 88

Index 781

ternary, 92–93
types of, 83–89

opinionated code formatter, 44
optimizing

automating build script, 513–522
converting to React, 522–534

Options API, 350–351
options request, creating, 635
Or (||) operator, 87–88
outer function, 146
overriding methods in derived classes, 174

P
package management, 497
package.json file

about, 276
components of, 500–502
setting module type in, 579–580

package-lock.json file, 276
packages, modules compared with, 580
parameters

for addEventListener() method, 186–190
of functions, 140
path, 701
rest, 145–146
setting default, 147–148

parentheses, operators and, 84–85
.parse() method, 291
parseFloat() function, 73, 86, 141
parseInt() function, 73, 86, 141, 142
parsing Response, 212–213
passing

arguments
about, 145–148, 584
to directives, 375
to event handlers, 329–330
to listeners, 642–644
to transitions, 470

callback functions to array methods, 117–118
event handler functions from function

components, 333–334

functions
as arguments, 146–147
to child, 159–165
between objects, 158–159
as props, 330–334

objects to functions, 156–157
props, 396–398, 440–442
by reference, 143
by value, 142–143

passing arguments, 140
passive function, 188
PassThrough stream, 599
password security, 736
patch() method, 699
PATCH method, 217
paths

choosing, 91–96, 454–456
parameters, 701
patterns, 700
regular expressions, 700
string, 699
using, 621–623

patterns, path, 700
paused mode, 595
pdfViewerEnabled property, 244
performing effects on unmounting, 319–320
period (.), 79
permission issues, troubleshooting, 50
permissions property, 245
personally identifiable information (PII), 744
pickAMovie() function, 153
PII (personally identifiable information), 744
pipe() method, 590, 592, 598–599, 600
play() method, 376
polyfill, 211
polymorphism, 169
pop() method, 112, 113–116, 442–445
popping, 113–114
position argument, 620
post() method, 699
POST method, 217

782 JavaScript All-in-One For Dummies

postData() function, 414
Postman, 709
Posts model, 734
practicing, with classes, 177–179
precedence, of operators, 83–84
prefix notation, 97
prepend() method, 251, 254–255, 256
Prettier, 44–47
preventDefault() method, 195, 375–376
preventing

default actions, 195
render blocking, 237–238

primitive data types, 69
private members, 175–176
Pro Git, 62
programmer errors, 651, 652
programming

with array methods, 112–116
sign-up route, 735–736
web browsers, 241–259

programming language, JavaScript as a, 10–12
projects

creating in Visual Studio Code (VSC), 25–27
initializing, 497–499
initializing with Vite, 271–278

promises
about, 202–203
catching exceptions with, 656–659
converting chains to async functions,

208–209
writing, 203–206

prompt() method, 199, 248
properties
scripts, 250
scrollX, 248
scrollY, 248
stylesheets, 250

properties (props)
activeElement, 250
attributes, 255
body, 250

children, 250, 255
classList, 255
composition using explicit, 322–323
computing, 405–408
console, 248
as a data type, 300–301
defining

about, 174–177, 440
with <script setup>, 396–397
with setup() function, 397–398

devicePixelRatio, 248
_dirname, 594
Document interface, 249–250
event, 248
of event handlers, 185–186
exporting, 440–442
forms, 250
fullScreen, 248
geolocation, 245
head, 250
id, 255
images, 250
innerHeight, 248
innerHTML, 255
innerWidth, 248
language, 244
length, 110
localStorage, 248
location, 248
methods and, 173–177
Navigator interface, 244–245
of objects, 138
onclick, 185
onLine, 244
passing

about, 396–398, 440–442
functions as, 330–334

pdfViewerEnabled, 244
permissions, 245
using, 440–442
Window interface, 247, 248

Index 783

props.children, 323
prototypes, 134–137
proxy objects, reactive() function and, 401–402
public folder, 275, 347
public members, 175
Pug, 714–715
push() method, 112, 113–116, 442–445, 592
pushing, 113–114
pushState() method, 258
put() method, 699
PUT method, 217

Q
querySelector() method, 251, 256
querySelectorAll() method, 251, 256
question mark (?), 700
queuing messages, 183
quotation mark (“), 70

R
React

apps
structure of, 274–276
styling, 292–296

components
about, 297–298
class components, 307–308
composing, 321–325
data types, 300–304
designing elements, 298–299
function components, 304–306
lifecycle of, 309–316
returning valid values, 300
using lifecycle in function components,

316–320
configuring Webpack for, 522–524
converting to, 522–534
converting UI to, 524–529
creating forms with, 334–339

event handling in, 328–334
using data and events in, 327–339
Vue compared with, 343–344

React library, 270
React Testing Library, 553–555
ReactDOM library, 270, 278–279
reacting, to state changes with watch(), 408–410
reactive data

changing, 400–403
creating, 432–434
initializing, 400–403

reactive() function, 360, 391–393, 400–403
reactive shortcuts, 487–488
reactive statements, creating, 445–446
reactivity

data and, 395–410
with state, 301–304
Svelte, 483–492
triggering with assignments, 442

Reactivity Transform, 404–405
ReactJS

about, 263–264
building React UI, 265–270
component-based nature of,

270–271
declarative nature of, 271
distilling thinking in, 264
initializing projects with Vite, 271–278
as JavaScript, 271
ReactDOM, 278–279
Virtual DOM (VDOM), 278–279

read() method, 595
readable stores, creating, 484
readable streams, creating, 592–595
readdir() method, 624
read-evaluate-print loop (REPL)

about, 570
commands, 573–575
playing with Node.js, 570–573

readFile() method, 585, 617–618

784 JavaScript All-in-One For Dummies

readFileSync() method, 618–619
reading
error.stack, 654
files, 614–619
JavaScript code, 15–22
readable streams from fs module, 593–594
semver, 501–502
stack frames, 654
synchronous code, 198–199

README file, 52–53
recognizing data types, 300–304
reduce() method, 111, 112, 118–119
reducer function, 118–119
reducing arrays, 118–119
ref() function, 391–393, 400–404
ref object, 403–404
refactoring index.js, 506–507
reference, passing by, 143
refresh tokens, sending, 745–746
refreshing data, 477–479
registration and authentication

about, 721–722
adding app and server modules, 723–724
creating

basic routes, 725–728
and configuring directory, 722–723
schema with Mongoose, 730–734

finishing login route, 746–753
generating and using tokens, 744–746
handling authentication, 741–743
implementing user registration, 734–741
testing routes, 728–730

regular expressions, path, 700
relational databases, 674–677
remainder (%) operator, 86–87
Remember icon, 6
remove() method, 256
removeAllListeners() method, 648
removeBook() function, 161–162

removeEventListener() method, 194
removeListener() method, 647–648
removing

event listeners, 194
listeners, 647–648

renaming exports/imports, 228
render blocking, identifying and preventing,

237–238
render() method, 278–279, 307, 309, 310–311,

313–314, 354–355
rendering engine, 235–238
rendering lists, 379–383
REPL (read-evaluate-print loop)

about, 570
commands, 573–575
playing with Node.js, 570–573

replace function, 72
replaceName() method, 602
replaceState() method, 258
request method, 217
request object, 632–633
requests, making with CORS, 218–220
rerunning commands, in console, 34–35
reset event, 187
resolve() method, 622
responding, to events, 411–420
response body, 635–636
Response methods

calling, 213–214
parsing, 212–213

response object
about, 633–636
methods of, 636–637

Response.blob(), 213–214
response.statusCode, 637
response.statusMessage, 637
Response.text(), 214
res.render() function, 719
REST client, setting up, 709–711
rest parameters, 145–146

Index 785

restricted JavaScript, in templates, 372–373
return statement, 267, 329, 584
return value, using as an argument, 149
returning

data, 149–150
fields, 684
valid values, 300

reverse() method, 113
reverseOrder() function, 253
right-associativity, 84
roles, working with, 687–688
root components, mounting, 348–350
Router() method, 703
router.get() function, 719
router-level middleware, 703–704
routes

creating basic, 725–728
testing, 728–730

routing methods, 699–701
running

code
in browser windows, 35–40
on command line, 570
in console, 33–34

effects, 317–319
ESLint, 537
HTML inside script elements, 36–37
JavaScript from HTML event attributes, 35–36

runtime environments, web browsers as, 561

S
salt, adding to hashing, 738
sandbox, 21, 561
saving, hashing and, 738–739
scaffolding Vue.js applications, 344–348
schema, creating with Mongoose, 730–734
scope, 80, 150
scoped CSS, 388–389

script elements, running HTML inside, 36–37
<script setup>, defining props with, 396–397
<script> element, 358, 446–447
scripts

build, 513–522
dev, 505–506
monitoring, 569
npm, 500
in Svelte components, 439–440

scripts property, 250
scroll() method, 248
scrollTo() method, 248
scrollX property, 248
scrollY property, 248
SDLC (systems development life cycle), 513–

514, 535
security

networking and, 628–630
password, 736

select event, 187
select inputs, binding, 467–468
selecting

element nodes, 251
event targets, 186
with getElementById() method, 252
between method and inline handlers, 414–416
paths, 454–456
using selectors, 252–253

selectors, selecting using, 252–253
semver, reading, 501–502
semver versioning, 502
sending refresh tokens, 745–746
server

defined, 627
JavaScript on the, 22

server modules, adding, 723–724
server-side routing, with Express, 699–701
server-side services, 22
services, value of, 21–22

786 JavaScript All-in-One For Dummies

serving
static files, 706–707
views, 712–715

set() method, 484, 486, 487, 488–490
setHeader() method, 637–638
setInterval() method, 248, 479
setState() method, 308
setTimeout() method, 207–208, 248
setting
addEventListener() parameters, 186–190
breakpoints, 544–546, 669–671
context, 490–492
context of functions, 157–158
default parameters, 147–148
environment variables from command line, 582
environment variables with .env, 582–583
listeners with v-on, 411–416
log points, 671–672
module type in package.json, 579–580
watch expressions, 671

setup, of REST client, 709–711
setup() function, 358–361, 377, 396,

397–398, 401
shallow copy, 122–123
sharpen() method, 126
shell commands, MongoDB, 686–687
shift() method, 113, 114–115
shifting, 114–115
short-circuit operators, 88
shorthand names, directive, 375
shouldComponentUpdate() method, 313–314
show dbs command, 686
show roles command, 686
show users command, 686
showLogInScreen() function, 88
side effect, 317, 408
signal function, 188
sign-up route, programming, 735–736
simple request, 218–219
simplifying arrow functions, 152–153
single quote (’), 71
single-file components, 357–361

single-threadedness, of JavaScript, 183–184
slice() method, 72, 110, 113, 116
slicing arrays, 116
slots

composing with, 383–387, 459–461
naming, 386–387

software incompatibility, troubleshooting, 50
some() method, 113
sort() method, 113, 684–685
sorting lists, 684–685
source code, 6
source maps, building, 542–544
Sources panel

about, 542
editing code in, 544

special characters, 71
specifying

fallback content, 385–386
handler functions, 329
keys, 383

speed, of Node.js, 566–567
SpiderMonkey, 237
splice() method, 113, 116
splicing arrays, 116
split() function, 72, 109–110, 142
spreading arrays, 122–123
square braces ([]), 375
square brackets, notation for, 131
squareIt() function, 117–118
src folder, 275–276, 347–348
stack frames, reading, 654
stacking function calls, 182
standard library, 564
start() function, 488–490
starting

development environment, 22–29
functions, 488–490
MongoDB, 680–681

state
defined, 301
determining location of, 269

Index 787

identifying, 268
reactivity with, 301–304

stateless, functions as, 305
statements
break, 102–103
continue, 102–103
if...else, 91–93
import, 227–228
in JavaScript, 30
return, 267, 329, 584
switch, 93–96

static assets, copying, 519–520
static component, 429
static files, serving, 706–707
static members, 176–177
static version, building in React,

266–268
status codes, HTTP, 217–218
stocking store, 483–490
stop() function, 488–490
stopping functions, 488–490
storage, data, 239–240
strategies, style, 296
Straub, Ben, 62
streaming

about, 587–588
chaining streams, 600–602
chunking, 588
converting to streams, 589–590
creating

duplex streams, 598–599
readable streams, 592–595
writable streams, 596–597

identifying types of streams, 592
loading without streams, 588–589
transforming streams, 599–600
viewing chunks, 590–591

strict equality (===) operator, 85–86
strict inequality (!==) operator, 85–86
string data type, 69–70
String() function, 139–140, 141

string functions, 71–72
string paths, 699
stringify() method, 222
strings

converting between numbers and, 74
creating with template literal notation, 70–71
userAgent, 245–246
using v-for directive for, 380

structure
of Express apps, 716–720
of React apps, 274–276
of Vue app, 347

style
adding, 509–510
adding to components, 387–393, 447–449
attributes, 293–294
React apps and components, 292–296
Vue, 350–353

style modules, creating, 295
style objects, 294
stylesheets property, 250
submit event, 187
subscribe() method, 483, 484, 485, 487
subscribing, to stores, 485
substring function, 72
subtraction (-) operators, 83, 86–87
super() function, 171, 172, 175, 176, 307
Svelte

about, 423–424
building scaffolding, 425–426
constructing store, 483–490
documenting with comments, 453–454
fetching data in, 476–481
getting context, 490–492
getting for VS Code extension, 426–427
lifecycle of, 471–476
playing with, 431–436
reactivity, 483–492
setting context, 490–492
stocking store, 483–490
Svelte apps, 427–430

788 JavaScript All-in-One For Dummies

Swagger, 709
switch statements, 93–96
Symbol data type, 77
Synthetic Events, dispatching,

328–329
SyntheticBaseEvent object, 328–329
system testing, 547
systems development life cycle (SDLC),

513–514, 535

T
tab (t), 71
targets, listening on multiple, 190–191
TCP/IP standard, 628
Technical Stuff icon, 6
template engines, 713–714
template literal notation, creating strings with,

70–71
templates

binding data to, 398–400
choosing a path, 454–456
composing with slots, 459–461
creating loops, 456–458
designing, 451–461
documenting Svelte with comments,

453–454
elements as building blocks, 451–453
Vue, 369–393
writing text expressions, 458–459

ternary operator, 92–93
test() function, 549, 550–551
test specs, 550–551
test suites, 550
testEdgeCollision() method, 510–511
testing

API server, 711–712
for collisions, 510–511
Git, 57–60
JavaScript, 535–555
login route, 749–750

routes, 728–730
user registration, 740–741
writing code through, 552
writing tests, 548–550

text expressions, writing, 458–459
text() method, 214
then() function, 203
thin clients, 17
third-party APIs, 243
third-party middleware, 705
this keyword, 154
three dots (. . .), 122–123
tick() method, 474–476
Tip icon, 5
toArray() method, 693–694
ToggleVisibility class, 330–331
toJSON() method, 610
tokens, generating and using, 744–746
toLowerCase function, 72
toolbox

about, 41–42
coding with Git, 55–62
configuring Visual Studio Code, 43–50
documenting code, 51–54
installing Node.js, 43

top-level functions, 141
toString() method, 86, 113, 605, 606–607,

609, 610
toUpperCase function, 73
Transfer-Encoding HTTP headers, 634
transform streams, 599–600
transition animations

creating, 468–469
creating unidirectional transitions, 470
passing arguments to transitions, 470

transpilation, with Babel, 283
triggering

built-in events, 193–194
custom events, 194
reactivity with assignments, 442

Index 789

trim() function, 142
triple equals operator (===), 132
troubleshooting, 50
two-way bindings

creating with :bind directive, 466–468
creating with v-model, 420

typeof operator, 68

U
unblocking code, with async and defer, 238
uncaught exception, 654
uncontrolled forms, 337–339
undefined data type, 77
underscores, in JavaScript, 32
uneval() function, 141
unidirectional connection, 667
unidirectional transitions, 470
unit testing

about, 547
configuring Jest, 547–548
installing Jest, 547–548
writing tests, 548–550

unmounting methods
about, 315–316
performing effects on, 319–320

unshift() method, 113
unshifting, 114–115
unsubscribe() method, 485–486, 487
unsubscribing, from stores, 485–486
update() method, 484, 486, 487
updateMany() method, 695–696
updateOne() method, 695–696
updating

about, 6
array methods and, 442–445
data, 695–696
DOM, 354–355
npm, 503

updating methods, 313–315
use db command, 686
useEffect() method, 316–317, 318–319, 320, 362
user interface

converting to React, 524–529
defined, 234

user registration
implementing, 734–741
testing, 740–741

userAgent string, 245–246
userModel, creating, 733–734
users, working with, 687–688
useState() method, 305–306, 316
UTF-8, 605–606

V
V8 engine, 237, 563
values

about, 30
passing by, 142–143
returning valid, 300

variable scope, 80
variables

creating with let, 63–66
declaring, 64
environment, 581–583
initializing, 64
naming, 66
using, 64–66, 67

v-bind directive, 391–393, 399–400
v-else directive, 379
v-else-if directive, 379
v-for directive

about, 380
using with arrays, 382–383
using with objects, 380–382

viewing chunks, 590–591
views, serving, 712–715

790 JavaScript All-in-One For Dummies

v-if directive, 379
Virtual DOM (VDOM), 278–279
Visual Studio Code (VSC)

about, 22–23
configuring, 43–50
getting Svelte for extension, 426–427
installing, 23–24
launching terminal, 272–274
learning to use, 25–29

visualizing Document interface, 249
Vite, initializing projects with, 271–278
vite.config.js file, 276
v-model directive, 420
Volar, installing, 346
v-on, setting listeners with, 411–416
v-show directive, 378
Vue

components, 357–368
following component lifecycle, 362–366
handling errors in components, 366–368
installing Vue DevTools, 353–355
mounting root components, 348–350
naming components, 362
React compared with, 343–344
scaffolding Vue.js applications, 344–348
single-file components, 357–361
structure of app, 347
styles, 350–353
templates

adding style to components, 387–393
composing with slots, 383–387
conditional rendering, 378–379
directives, 373–377
rendering lists, 379–383
using JavaScript templates, 371–373
writing HTML templates, 369–371

Vue DevTools, installing, 353–355
vue-create, bootstrapping with, 344–346
Vue.js applications, scaffolding, 344–348

W
Warning icon, 6
watch expressions, 546, 671
watch() function, reacting to state changes with,

408–410
Web APIs, 241–243
web application server, 627
web browsers

about, 233–234, 241
browser engine, 235
History interface, 257–259
HTML Document interface, 249–257
interfaces, 241–243
interfacing with, 234–235
Netscape Navigator,

243–245
networking, 239–240
programming, 241–259
rendering engine, 235–238
as runtime environments, 561
user agent string, 245–246
Web APIs, 241–243
Window interface, 246–248

web servers
creating, 630–638
defined, 627

Web Worker API, 243
WebGL API, 243
WebKit, 235
Webpack

about, 515–516
configuring for React, 522–524

websites
Bootstrap, 292
Cheat Sheet, 6
ECMAScript, 15
Git, 56
GitHub, 62
Mozilla Developer Network, 417

Index 791

Node.js, 43
Postman, 709
Pro Git, 62
source code, 6
Swagger, 709
updates, 6

WebSocket, 667
while loops, 100–101
white space, JavaScript and, 31
Window interface

about, 246–247
methods, 247–248
properties, 247, 248

window.alert() function, 414
Windows

installing MongoDB on, 677–679
starting MongoDB on, 681

workspaces, adding, 669
writable() method, 484
writable streams, creating, 596–597
write() method, 596–597, 598–599,

610, 637
writeHead() method, 636, 637–638
writing

anonymous functions as arrow functions, 152
asynchronous JavaScript, 197–222
code through testing, 552

components, 437–439
dev scripts, 505–506
to disks with fs.write(), 619–620
files, 503–505, 619–620
to files using Promises, 616–617
function bodies, 148
functions, 144–154
HTML output with JSX, 283–284
HTML templates, 369–371
JavaScript programs, 29–32
JSX, 281–296
methods, 154–155
Node.js programs, 568–569
promises, 203–206
tests, 548–550
text expressions, 458–459

X
XML, JSX as, 282–283, 285
XMLHttpRequest() method, 203–204
XSS (cross-site scripting), 218,

745–746
XSS attacks, 745–746

Z
zero-based indexing, 79

About the Author
Chris Minnick (www.chrisminnick.com) is a full-stack developer, trainer, and
writer. He is the author of Beginning React.js Foundations, Coding with JavaScript For
Dummies, JavaScript For Kids For Dummies (all from Wiley), and more than a dozen
other books about coding. He has taught web and mobile development, ReactJS,
and JavaScript to thousands of programmers worldwide.

When Chris isn’t coding, writing, or teaching, he is an enthusiastic amateur at
something new every day.

Dedication
This book is dedicated to undefined. You’ll never be a function, but you show
potential.

Author’s Acknowledgments
Thank you to everyone who writes and keeps improving the JavaScript language,
runtimes, libraries, documentation, and tools. I learned everything in this book
from friends, colleagues, mentors, students, bloggers, books, videos, Stack Over-
flow, and far too many people to list here. Learning to code is an ongoing process,
and I’m grateful that there are so many people in the JavaScript community who
share their experience and wisdom.

Thank you to my family and to my best friend, Jill, for understanding and encour-
aging me; to my agent, Carole Jelen, for knowing what I should be doing and
how to get me there; to my editor, Tim Gallan, and copy editor Becky Whitney,
for keeping everything organized and making me look good; to my incredible
technical editor, Rick Carlino, for reading every dot, semicolon, and curly brace;
and to the whole team at Wiley (some of whom are listed below) for your talent,
skill, attention to detail, and support throughout this project and my other book
projects.

Most of all, thanks to you, the reader, for trusting me with helping you learn
about this stuff. Your feedback and support are always appreciated. Please con-
sider leaving a review online or email me (chris@minnick.com) and let me know
how I did.

http://www.chrisminnick.com
mailto:chris@minnick.com

Publisher’s Acknowledgments

Executive Editor: Steve Hayes

Development Editor: Tim Gallan

Copy Editor: Becky Whitney

Technical Reviewer: Rick Carlino

Production Editor: Saikarthick Kumarasamy

Cover Image: Courtesy of Chris Minnick

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Title Page
	Copyright Page
	Table of Contents
	Introduction
	Why This Book?
	JavaScript is a huge topic
	How this book is different
	Learn JavaScript as it’s used
	Understand similarities between the most popular libraries
	Adapt to new technologies

	Conventions Used in This Book
	Foolish Assumptions
	Icons Used in This Book
	Beyond the Book
	Where to Go from Here

	Book 1 JavaScript Fundamentals
	Chapter 1 Jumping into JavaScript
	JavaScript, the Basics
	JavaScript is a programming language
	A look at programming language levels
	Machine code is processor-specific
	High-level languages are abstractions
	Compilation makes programs portable

	A short and epic history of JavaScript
	The two superpowers
	The early battles
	Eich is back with a brand-new invention
	Imitation is the sincerest form of flattery
	The long road to standardization
	How JavaScript changes

	Reading and Copying JavaScript Code
	How the web works
	Front end and back end
	The front end is open, the back end is closed
	The value of a service
	JavaScript on the server

	Starting Your Development Environment
	Installing Visual Studio Code
	Learning to use Visual Studio Code
	Creating a new project
	Learning the one essential command

	Writing Your First JavaScript Program
	JavaScript is made of statements
	JavaScript is case-sensitive
	JavaScript ignores white space
	JavaScript programmers use camelCase and underscores
	camelCase
	Underscore
	Dashes

	Running Code in the Console
	Rerunning Commands in the Console
	Running Code in a Browser Window
	Running JavaScript from HTML event attributes
	Running HTML inside script elements
	Including JavaScript files in your HTML

	Chapter 2 Filling Your JavaScript Toolbox
	Installing Node.js
	Configuring Visual Studio Code
	Getting prettier
	Installing Live Server

	Documenting Your Code
	Line comments
	Block comments
	The README file
	The basics of Markdown

	Coding Responsibly with Git
	Introducing Git
	Installing Git
	Configuring and testing Git
	Learning the basics of Git
	Moving forward with Git and GitHub

	Chapter 3 Using Data
	Making Variables with let
	Declaring variables
	Initializing variables
	Using variables
	Naming variables

	Making Constants with const
	When to use constants
	Naming constants

	Taking a Look at the Data Types
	JavaScript is loose and dynamic
	Passing by value
	String data type
	Escaping characters
	Creating strings with template literal notation
	Working with string functions

	Number data type
	Working with number functions
	Knowing when to convert between strings and numbers

	bigInt data type
	Boolean data type
	Converting to Boolean
	Getting Truthy and Falsy

	NaN data type
	Undefined data type
	Symbol data type

	Wrangling the Object: The Complex Data Type
	Examining the Array — a Special Kind of Object
	Getting a Handle on Scope

	Chapter 4 Working with Operators and Expressions
	Building Expressions
	Operators: The Lineup
	Operator precedence
	Using parentheses
	Assignment operators
	Comparison operators
	Arithmetic operators
	Concatenation operator
	Logical operators
	Combining operators

	Other Operators

	Chapter 5 Controlling Flow
	Choosing a Path
	if . . . else statements
	Multiple paths with if else
	The ternary operator

	Switch statements

	Making Loops
	for loops
	for . . . in loops
	for . . . of loops
	while loops
	do . . . while loops
	break and continue statements

	Chapter 6 Using Arrays
	Introducing Arrays
	Creating Arrays
	Using the Array() constructor
	Using array literal notation
	Using the split function

	Accessing Array Elements
	Modifying Arrays
	Deleting Array Elements
	Programming with Array Methods
	Pushing and popping
	Shifting and unshifting
	Slicing an array
	Splicing an array

	Looping with Array Methods
	Passing callback functions to array methods
	Reducing an array
	Mapping an array
	Filtering arrays

	Destructuring Arrays
	Spreading Arrays

	Chapter 7 Making and Using Objects
	Objects: The Basics
	Creating Objects
	Making objects using literal notation
	Making objects using a constructor function
	Making objects with class
	Making objects with Object.create()

	Modifying Objects
	Using dot notation
	Using square brackets notation

	Comparing and Copying Objects
	Understanding Prototypes
	Deleting Object Properties

	Chapter 8 Writing and Running Functions
	Functions: An Introduction
	Using Top-level functions
	Using methods of built-in objects
	Passing by value
	Passing by reference

	Writing Functions
	Naming functions
	Passing arguments
	Using rest parameters
	Using the arguments object
	Passing functions as arguments
	Setting default parameters

	Writing a function body
	Returning data
	Using a return value as an argument
	Creating conditional code with return

	Function declaration scope and hoisting
	Declaring Anonymous functions
	Defining function expressions
	Writing anonymous functions as arrow functions
	Simplifying arrow functions
	Knowing the limits of arrow functions
	Arrow functions don't have this
	Arrow functions don't have the arguments object

	Writing Methods
	Understanding Context and this
	Passing an object to a function
	Setting the context of a function
	Using call()
	Using apply()
	Using bind()

	Passing a function from one object to another
	Passing a function to a child to change the parent

	Chaining Functions

	Chapter 9 Getting Oriented with Classes
	Encapsulation
	Abstraction
	Inheritance
	Polymorphism
	Base Classes
	Recognizing that classes aren’t hoisted
	Using class expressions
	Making instances of base classes

	Derived Classes
	Constructors
	Properties and Methods
	Creating methods in a class
	Overriding methods in a derived class
	Defining methods, properties, and fields
	Public members
	Private members
	Static members

	Practicing and Becoming comfortable with Classes

	Chapter 10 Making Things Happen with Events
	Understanding the JavaScript Runtime Model
	Stacking function calls
	Heaping objects
	Queuing messages

	The Event Loop
	JavaScript is single-threaded
	Messages run until they’re done

	Listening for Events
	Listening with HTML event attributes
	Listening with Event handler properties
	Using addEventListener()
	Selecting your event target
	Setting addEventListener()’s parameters

	The Event object
	Listening on multiple targets
	Dispatching events programmatically
	Triggering built-in events
	Creating and triggering custom events

	Removing event listeners
	Preventing default actions

	Chapter 11 Writing Asynchronous JavaScript
	Understanding Asynchronous JavaScript
	Reading synchronous code
	Events to the rescue
	Calling you back

	Making Promises
	Writing promises
	Introducing async functions
	Converting nested callbacks to async functions
	Converting promise chains to async functions
	Handling errors with async/await

	Using AJAX
	Getting data with the Fetch API
	Getting a response with fetch()
	Parsing the Response

	Calling other Response methods
	Response.blob()
	Response.text()

	Handling fetch() errors
	The fetch init object
	Introducing HTTP
	The request method
	HTTP status codes

	Making requests with CORS
	Making a simple request
	Making a non-simple request

	Working with JSON data
	Getting JSON data
	Sending JSON data

	Chapter 12 Using JavaScript Modules
	Defining Modules
	Exporting Modules
	Named exports
	Default exports

	Importing Modules
	Importing named modules
	Importing default modules

	Renaming Exports and Imports
	Importing a Module Object
	Loading Dynamic Modules
	Importing Modules into HTML

	Book 2 Meet Your Web Browser
	Chapter 1 What a Web Browser Does
	Interfacing with a Browser
	Introducing the Browser Engine
	The Rendering Engine
	The JavaScript engine
	Identifying and preventing render blocking
	Unblocking your code with async and defer

	Networking
	Data storage

	Chapter 2 Programming the Browser
	Understanding Web APIs and Interfaces
	Hooking into interfaces
	Built-in browser APIs
	Custom APIs

	Getting Around the Navigator
	Inspecting the navigator’s quirks
	Navigator properties

	Stealing a Glimpse Through the Window
	Window properties
	Window methods

	Introducing the HTML DOM
	Document properties
	Document methods
	Selecting element nodes
	Selecting with getElementById()
	Selecting using selectors
	Creating and adding elements to the DOM
	Element nodes
	Element methods

	Knowing Your History

	Book 3 React
	Chapter 1 Getting Started with React
	Understanding ReactJS
	Distilling “Thinking in React”
	Building a React UI
	Step 1: Design the component hierarchy
	Step 2: Build a static version in React
	Step 3: Identify the state
	Step 4: Determine where the state should live
	Step 5: Implement inverse data flow

	React is component-based
	React is declarative
	React is just JavaScript

	Initializing a Project with Vite
	Introducing Vite
	Launching the VS Code terminal
	Touring the structure of a React app
	node_modules
	public
	src
	.gitignore
	package-lock.json
	package.json
	vite.config.js

	Modifying a React project

	Introducing ReactDOM and the Virtual DOM

	Chapter 2 Writing JSX
	Learning the Fundamentals of JSX
	JSX is not HTML
	JSX is XML
	Transpiling with Babel
	Writing HTML output with JSX
	Using built-in components
	Attributes that are different in JSX
	JSX uses camelCase
	JSX must be valid XML

	Using JavaScript Expressions in JSX
	Conditionally Rendering JSX
	Conditional rendering with element variables
	Conditional rendering with &&
	Conditional rendering with the conditional operator

	Making a List
	Styling React Apps and Components
	Adding global styles
	Using local styles
	Using the style attribute
	Using style objects
	Making style modules
	Other style strategies

	Chapter 3 Building React Components
	Thinking in Components
	Designing your own elements
	Returning valid values

	Recognizing the Two Types of Data
	Props
	Getting reactive with state
	How state enables reactivity

	Function Components
	Functions are stateless
	Introducing useState()

	Class Components
	The Component Lifecycle
	The mounting methods
	Kicking it off with the constructor
	Getting the derived state
	Rendering the output
	Finishing the mount

	The updating methods
	Optimizing with shouldComponentUpdate()
	Getting a snapshot
	Finishing the update

	Unmounting a component

	Using the Lifecycle in Function Components
	Running effects less often
	Performing an effect on unmounting

	Composing Components
	How inheritance works in object-oriented programming
	Composition using explicit props
	Composition using the children prop
	Composition with custom hooks

	Chapter 4 Using Data and Events in React
	Event Handling in React
	Using event attributes
	Dispatching Synthetic Events
	Specifying a handler function
	Passing arguments to an event handler
	Passing functions as props
	Defining event handlers in class components
	Defining methods using arrow syntax
	Passing event handler functions from function components

	Making Forms with React
	Using controlled inputs
	Using uncontrolled forms

	Book 4 Vue
	Chapter 1 Getting an Overview of Vue
	Comparing Vue to React
	Scaffolding Your First Vue.js Application
	Bootstrapping with vue-create
	Installing Volar
	Exploring the structure of a Vue app
	Going to the src

	Mounting a Root Component
	Configuring an app
	Mounting multiple apps

	Exploring Vue's Two Styles
	The Options API
	The Composition API
	Deciding which API to use

	Installing Vue DevTools

	Chapter 2 Introducing Vue Components
	Introducing the Single-File Component
	The script element
	The setup() function
	The setup shortcut

	Naming Components
	Following the Component Lifecycle
	onMounted()
	onUpdated()
	onUnmounted()
	onBeforeMount()
	onBeforeUpdate()
	onBeforeUnmount()
	onErrorCaptured()

	Handling Errors in Components

	Chapter 3 Making Vue Templates
	Writing HTML Templates
	Using JavaScript in Templates
	Calling functions
	JavaScript in templates is restricted
	Using globals in templates

	Introducing Directives
	Built-in directives
	Directive shorthand names
	Passing arguments to directives
	Dynamic arguments
	Directive modifiers
	Custom directives

	Conditional Rendering
	Conditional rendering with JavaScript
	Conditional rendering using directives
	Using v-show
	Using v-if, v-else, and v-else-if

	Rendering Lists
	Using v-for with numbers and strings
	Using v-for with objects
	Using v-for with arrays
	Specifying a key

	Composing with Slots
	Specifying fallback content
	Naming slots

	Adding Style to Components
	Global CSS
	Scoped CSS
	Multiple style blocks
	CSS modules
	v-bind in CSS

	Chapter 4 Using Data and Reactivity
	Passing and Using Props
	Defining props with <script setup>
	Defining props with setup()

	Binding Data to Templates
	Initializing and Changing Reactive Data
	reactive() creates a Proxy object
	Limitations of reactive()

	Introducing ref()
	Experimenting with Reactivity Transform

	Computing Properties
	Reacting to State Changes with Watch()

	Chapter 5 Responding to Events
	Setting Listeners with v-on
	Inline handlers
	Method handlers
	Choosing between method and inline handlers

	Using Event Modifiers
	Using key modifiers
	Detecting exact combinations

	Binding Forms to Events and Data
	Making two-way bindings with v-model
	Using v-model with various input types

	Book 5 Svelte
	Chapter 1 Getting Started with Svelte
	What Makes Svelte Different?
	Building Your Scaffolding
	Getting the Svelte for VS Code Extension
	Exploring a Svelte App
	Playing with Svelte
	Building the basic look-and-feel
	Making reactive data
	Handling the event

	Chapter 2 Building with Components
	Writing Lean Components
	Identifying What’s in a Component
	Scripting in Svelte components
	Exporting and using props
	Defining props
	Passing props

	Triggering reactivity with assignments
	Recognizing that array methods don’t trigger updates
	Creating reactive statements
	Using <script> data and functions

	Adding Style to a Component

	Chapter 3 Designing Templates
	Elements Are the Building Blocks
	Using the built-in elements
	No adjustments necessary
	Some attributes don’t require quotes

	Using custom elements

	Documenting Svelte with Comments
	Choosing a Path
	Creating Loops
	Writing Text Expressions
	Composing with Slots

	Chapter 4 Using Directives
	Listening for Events with on:
	Basic event handling
	Attaching modifiers to event listeners
	Forwarding events
	Handling multiple events

	Creating Two-Way Bindings with :bind
	Recognizing that number inputs create numbers
	Binding select inputs

	Using Transition Animations
	Creating your first transition
	Passing arguments to transitions
	Creating unidirectional transitions

	Chapter 5 Using the Component Lifecycle
	The Svelte Lifecycle
	Mounting
	Using beforeUpdate() and afterUpdate()
	Using onDestroy()
	Getting ticks

	Fetching Data in Svelte
	Refreshing data
	Awaiting asynchronous requests

	Chapter 6 Advanced Svelte Reactivity
	Constructing and Stocking the Store
	Creating a writable store
	Creating a readable store
	Subscribing to a store
	Unsubscribing from a store
	Setting and updating a store
	Using the reactive shortcut
	Store starting and stopping functions

	Getting and Setting Context

	Book 6 Sharpening Your Tools
	Chapter 1 Building from Scratch
	Why You Need a Build Tool
	"Back in my day . . ."
	The road to dependency hell
	Enter package management

	Managing Dependencies with npm
	Initializing a project
	Learning the parts of package.json
	Metadata in package.json
	Npm scripts
	Dependencies
	Reading semver

	Using the node_modules folder
	Local-versus-global installs
	Updating npm

	Writing Your First Files
	Writing a dev Script
	Making Modules
	Refactoring index.js
	The moveBall() function
	The generateMap() function
	Adding style
	Testing for collisions
	Testing it out

	Chapter 2 Optimizing and Bundling
	Automating Your Build Script
	Installing and using a module bundler
	Configuring your dev server
	Building it up
	Copying static assets
	Cleaning up

	Converting to React
	Configuring Webpack for React
	Converting the UI to React
	Detecting collisions

	Chapter 3 Testing Your JavaScript
	Using a Linter
	Debugging in Chrome
	Getting started with the Sources panel
	Building a source map
	Editing your code in the Sources panel
	Setting breakpoints
	Using watch expressions

	Unit Testing
	Installing and configuring Jest
	Writing your first test
	Learning how Jest works
	Test suites
	Test specs
	Expectations

	Writing better code through testing
	Using testing-library

	Book 7 Node.js
	Chapter 1 Node.js Fundamentals
	Learning What Makes Node.js Tick
	Node.js is not a programming language
	Node.js is not a framework
	Node.js is a runtime environment
	Web browsers are runtime environments, too
	Node.js lets JavaScript out of the sandbox

	Why developers need Node.js

	Learning the Parts of Node.js
	The V8 engine
	libuv
	Node.js bindings
	The Node.js standard library

	Introducing the Node.js Core Modules
	Recognizing What Node.js Is Good For
	Why is Node.js so fast?
	What is Node.js not good at?

	Working with Node.js
	Writing a Node.js program
	Monitoring your script
	Running a code on the command line

	Using REPL
	Playing with the Node.js REPL
	Working with REPL commands

	Making and Using Node.js Modules
	Using CommonJS
	Using ES modules
	Setting the module type in package.json

	Getting Data to Node Modules
	Environment variables
	Setting environment variables from the command line
	Setting environment variables with .env

	Passing arguments

	Node’s Callback Pattern

	Chapter 2 Streaming
	Jumping into Streams
	Chunking is the key
	Loading without streams
	Converting to streams
	Viewing chunks
	Identifying types of streams

	Creating Readable Streams
	Reading readable streams from the fs module
	Distinguishing between the two read modes
	Flowing mode
	Paused mode

	Creating Writable Streams
	Producing Duplex Streams
	Backpressure
	PassThrough

	Transforming Streams
	Chaining Streams

	Chapter 3 Working with Buffers
	Knowing Your Buffer Basics
	Differentiating between encoding and decoding
	Examining buffer content

	Decoding Buffers
	Creating Buffers
	Using Other Buffer Methods
	Iterating over Buffers

	Chapter 4 Accessing the File System
	Importing the fs module
	Reading Files
	Reading from a file with fs.read()
	Opening a file with fs.open() and callbacks
	Opening, writing to, and closing a file using Promises

	Using readFile()
	Using readFileSync()

	Writing Files
	Writing it to disk with fs.write()
	Using fs.writeFile()

	Using Paths
	Getting File and Directory Information
	Listing the files in a directory
	Finding directories
	Getting file stats

	Chapter 5 Networking with Node
	A Note about Security
	Making a Web Server
	Understanding the Request object
	Understanding the response object
	The response header
	The response body

	Methods of the response object
	The writeHead() method
	The end() method
	The write() method

	Using implicit headers
	Knowing the differences between setHeader() and writeHead()

	Chapter 6 Using Events
	Introducing EventEmitter
	Creating custom events
	Extending EventEmitter
	Passing arguments to listeners
	Using this in an event handler function
	Using arrow functions as event handlers

	Understanding and Using maxListeners
	Finding the value of defaultMaxListeners
	Exceeding the maximum listeners for an emitter
	Increasing the maximum number of listeners

	Removing Listeners
	Removing individual listeners
	Removing all listeners

	Emitting Once

	Chapter 7 Error Handling and Debugging
	Knowing the Types of Errors
	Operational errors
	Programmer errors

	Understanding Node.js’s Error Object
	Reading error.stack
	Reading a stack frame

	Exceptions versus Errors
	Handling Exceptions
	Catching exceptions with promises
	Creating an uncaught Promise rejection
	Catching a promise rejection
	Using finally()

	Catching exceptions with async functions

	Debugging Node.js Programs
	Using the command-line debugger
	Debugging in Chrome DevTools
	Adding a workspace
	Setting breakpoints
	Setting a watch expression
	Setting log points
	Learning more about Chrome's DevTools Inspect interface

	Chapter 8 Accessing Databases
	Getting Started with MongoDB
	Discerning between relational and NoSQL databases
	Data types in relational databases
	Data types in NoSQL databases

	Installing MongoDB
	Installing MongoDB on Windows
	Installing MongoDB on macOS
	Installing MongoDB on Linux

	Starting MongoDB
	Starting MongoDB on Windows
	Starting MongoDB on macOS

	Using Mongosh
	Connecting to MongoDB and creating a database
	Creating a collection
	Making an id and listing documents
	Finding documents
	Returning fewer fields
	Sorting lists
	Limiting lists
	Making complex queries using operators

	Learning MongoDB Shell commands
	Working with users and roles

	Using MongoDB from Node.js
	Installing the Node.js driver
	Connecting to a MongoDB server
	Inserting documents into a collection
	Getting data
	Database operations are asynchronous
	Using a Cursor object
	Using results in your program
	Using findOne()
	Examining your Find options

	Updating data
	Update options
	Combining update and insert

	Deleting data

	Chapter 9 Riding on the Express Train
	Installing Express
	Server-Side Routing with Express
	Introducing routing methods
	Using routing methods
	String paths
	Path patterns
	Path regular expressions
	Path parameters

	Using Express Middleware
	The next() function
	Types of middleware
	Application-level middleware
	Router-level middleware
	Error-handling middleware
	Built-in middleware
	Third-party middleware

	Serving static files

	Analyzing a Complete Express Server
	Installing the server and dependencies
	Setting up a REST client
	Testing the API server

	Serving a View
	Benefiting from a template engine
	Introducing Pug

	Using the Express Application Generator

	Chapter 10 Registration and Authentication
	Making and Configuring the Directory
	Adding the App and Server Modules
	Making Some Basic Routes
	Testing Your Routes
	Making a Schema with Mongoose
	Using mongoose.Schema and mongoose.model
	Installing Mongoose and connecting to a database
	Creating the User model
	Create the post model

	Implementing User Registration
	Understanding the basics of authentication
	Programming the user sign-up route
	Understanding password security
	Understanding hashes
	Adding salt to hashing
	Hashing and saving
	Testing user registration

	Handling Authentication
	Generating and Using Tokens
	Recognizing that tokens must expire
	Sending a refresh token
	Handling tokens securely
	Understanding XSS attacks

	Finishing the Login Route
	Testing the login route
	Looking at an access token
	Using an access token

	Index
	EULA

