

For optimal reading experience,
please rotate your device to

landscape orientation.

Table of Contents

Table of Contents

Preface

About the Author
Acknowledgments
How This Book is Organized
Who Should Buy This Book?
Conventions Used in This Book
How to Report Errata
Where to Download Material About this Book
If you Like this Book

Part I Introductory Knowledge

Chapter 1 How a Computer Works

1.1 Introduction
1.2 What is Hardware?
1.3 What is Software?
1.4 How a Computer Executes (Runs) a Program
1.5 Compilers and Interpreters
1.6 What is Source Code?
1.7 Review Questions: True/False
1.8 Review Questions: Multiple Choice

Chapter 2 Java and Integrated Development Environments

2.1 What is Java?
2.2 What is the Difference Between a Script and a Program?
2.3 Why You Should Learn Java
2.4 How Java Works
2.5 Java Development Kit (JDK)
2.6 Integrated Development Environments

2.7 Microsoft Visual Studio

Chapter 3 Software Packages to Install

3.1 What to Install

Review in “Introductory Knowledge”

Review Crossword Puzzles
Review Questions

Part II Getting Started with Java

Chapter 4 Introduction to Basic Algorithmic Concepts

4.1 What is an Algorithm?
4.2 The Algorithm for Making a Cup of Tea
4.3 Properties of an Algorithm
4.4 Okay About Algorithms. But What is a Computer
Program Anyway?
4.5 The Three Parties!
4.6 The Three Main Stages Involved in Creating an
Algorithm
4.7 Flowcharts

Exercise 4.7-1 Finding the Average Value of Three
Numbers

4.8 What are ”Reserved Words”?
4.9 What is the Difference Between a Statement and a
Command?
4.10 What is Structured Programming?
4.11 The Three Fundamental Control Structures

Exercise 4.11-1 Understanding Control Structures
Using Flowcharts

4.12 Your First Java Program

4.13 What is the Difference Between a Syntax Error, a Logic
Error, and a Runtime Error?
4.14 What “Debugging” Means
4.15 Commenting Your Code
4.16 User-Friendly Programs
4.17 Review Questions: True/False
4.18 Review Questions: Multiple Choice

Chapter 5 Variables and Constants

5.1 What is a Variable?
5.2 What is a Constant?
5.3 How Many Types of Variables and Constants Exist?
5.4 Rules and Conventions for Naming Variables and
Constants in Java
5.5 What Does the Phrase “Declare a Variable” Mean?
5.6 How to Declare Variables in Java
5.7 How to Declare Constants in Java
5.8 Review Questions: True/False
5.9 Review Questions: Multiple Choice
5.10 Review Exercises

Chapter 6 Handling Input and Output

6.1 How to Output Messages and Results to a User's Screen?
6.2 How to Output Special Characters?
6.3 How to Prompt the User to Enter Data?
6.4 Review Questions: True/False
6.5 Review Questions: Multiple Choice

Chapter 7 Operators

7.1 The Value Assignment Operator
7.2 Arithmetic Operators
7.3 What is the Precedence of Arithmetic Operators?
7.4 Compound Assignment Operators

Exercise 7.4-1 Which Java Statements are Syntactically
Correct?
Exercise 7.4-2 Finding Variable Types

7.5 Incrementing/Decrementing Operators
7.6 String Operators

Exercise 7.6-1 Concatenating Names

7.7 Review Questions: True/False
7.8 Review Questions: Multiple Choice
7.9 Review Exercises

Chapter 8 Trace Tables

8.1 What is a Trace Table?

Exercise 8.1-1 Creating a Trace Table
Exercise 8.1-2 Creating a Trace Table
Exercise 8.1-3 Swapping Values of Variables
Exercise 8.1-4 Swapping Values of Variables – An
Alternative Approach

8.2 Review Questions: True/False
8.3 Review Exercises

Chapter 9 Using Visual Studio Code

9.1 Write, Execute and Debug Java Programs

Review in “Getting Started with Java”

Review Crossword Puzzles
Review Questions

Part III Sequence Control Structures

Chapter 10 Introduction to Sequence Control Structures

10.1 What is the Sequence Control Structure?

Exercise 10.1-1 Calculating the Area of a Rectangle
Exercise 10.1-2 Calculating the Area of a Circle
Exercise 10.1-3 Where is the Car? Calculating Distance
Traveled
Exercise 10.1-4 Kelvin to Fahrenheit
Exercise 10.1-5 Calculating Sales Tax
Exercise 10.1-6 Calculating a Sales Discount
Exercise 10.1-7 Calculating a Sales Discount and Tax

10.2 Review Exercises

Chapter 11 Manipulating Numbers

11.1 Introduction
11.2 Useful Mathematical Methods (Subprograms), and
More

Exercise 11.2-1 Calculating the Distance Between Two
Points
Exercise 11.2-2 How Far Did the Car Travel?

11.3 Review Questions: True/False
11.4 Review Questions: Multiple Choice
11.5 Review Exercises

Chapter 12 Complex Mathematical Expressions

12.1 Writing Complex Mathematical Expressions

Exercise 12.1-1 Representing Mathematical
Expressions in Java
Exercise 12.1-2 Writing a Mathematical Expression in
Java
Exercise 12.1-3 Writing a Complex Mathematical
Expression in Java

12.2 Review Exercises

Chapter 13 Exercises With a Quotient and a Remainder

13.1 Introduction

Exercise 13.1-1 Calculating the Quotient and
Remainder of Integer Division
Exercise 13.1-2 Finding the Sum of Digits
Exercise 13.1-3 Displaying an Elapsed Time
Exercise 13.1-4 Reversing a Number

13.2 Review Exercises

Chapter 14 Manipulating Strings

14.1 Introduction
14.2 The Position of a Character in a String
14.3 Useful String Methods (Subprograms), and More

Exercise 14.3-1 Displaying a String Backwards
Exercise 14.3-2 Switching the Order of Names
Exercise 14.3-3 Creating a Login ID
Exercise 14.3-4 Creating a Random Word
Exercise 14.3-5 Finding the Sum of Digits

14.4 Review Questions: True/False
14.5 Review Questions: Multiple Choice
14.6 Review Exercises

Review in “Sequence Control Structures”

Review Crossword Puzzle
Review Questions

Part IV Decision Control Structures

Chapter 15 Making Questions

15.1 Introduction
15.2 What is a Boolean Expression?
15.3 How to Write Simple Boolean Expressions

Exercise 15.3-1 Filling in the Table

15.4 Logical Operators and Complex Boolean Expressions

Exercise 15.4-1 Calculating the Results of Complex
Boolean Expressions

15.5 Assigning the Result of a Boolean Expression to a
Variable
15.6 What is the Order of Precedence of Logical Operators?

Exercise 15.6-1 Filling in the Truth Table
Exercise 15.6-2 Converting English Sentences to
Boolean Expressions

15.7 What is the Order of Precedence of Arithmetic,
Comparison, and Logical Operators?
15.8 How to Negate Boolean Expressions

Exercise 15.8-1 Negating Boolean Expressions

15.9 Review Questions: True/False
15.10 Review Questions: Multiple Choice
15.11 Review Exercises

Chapter 16 The Single-Alternative Decision Structure

16.1 The Single-Alternative Decision Structure

Exercise 16.1-1 Trace Tables and Single-Alternative
Decision Structures
Exercise 16.1-2 The Absolute Value of a Number

16.2 Review Questions: True/False
16.3 Review Questions: Multiple Choice

16.4 Review Exercises

Chapter 17 The Dual-Alternative Decision Structure

17.1 The Dual-Alternative Decision Structure

Exercise 17.1-1 Finding the Output Message
Exercise 17.1-2 Trace Tables and Dual-Alternative
Decision Structures
Exercise 17.1-3 Who is the Greatest?
Exercise 17.1-4 Finding Odd and Even Numbers
Exercise 17.1-5 Weekly Wages

17.2 Review Questions: True/False
17.3 Review Questions: Multiple Choice
17.4 Review Exercises

Chapter 18 The Multiple-Alternative Decision Structure

18.1 The Multiple-Alternative Decision Structure

Exercise 18.1-1 Trace Tables and Multiple-Alternative
Decision Structures
Exercise 18.1-2 Counting the Digits

18.2 Review Questions: True/False
18.3 Review Exercises

Chapter 19 The Case Decision Structure

19.1 The Case Decision Structure

Exercise 19.1-1 The Days of the Week

19.2 Review Questions: True/False
19.3 Review Exercises

Chapter 20 Nested Decision Control Structures

20.1 What are Nested Decision Control Structures?

Exercise 20.1-1 Trace Tables and Nested Decision
Control Structures
Exercise 20.1-2 Positive, Negative or Zero?

20.2 Review Questions: True/False
20.3 Review Exercises

Chapter 21 More about Flowcharts with Decision Control
Structures

21.1 Introduction
21.2 Converting Java Programs to Flowcharts

Exercise 21.2-1 Designing the Flowchart
Exercise 21.2-2 Designing the Flowchart
Exercise 21.2-3 Designing the Flowchart

21.3 A Mistake That You Will Probably Make!
21.4 Converting Flowcharts to Java Programs

Exercise 21.4-1 Writing the Java Program
Exercise 21.4-2 Writing the Java Program
Exercise 21.4-3 Writing the Java Program

21.5 Review Exercises

Chapter 22 Tips and Tricks with Decision Control Structures

22.1 Introduction
22.2 Choosing a Decision Control Structure
22.3 Streamlining the Decision Control Structure

Exercise 22.3-1 “Shrinking” the Algorithm
Exercise 22.3-2 “Shrinking” the Java Program
Exercise 22.3-3 “Shrinking” the Algorithm

22.4 Logical Operators – to Use, or not to Use: That is the
Question!

Exercise 22.4-1 Rewriting the Code
Exercise 22.4-2 Rewriting the Code

22.5 Merging Two or More Single-Alternative Decision
Structures

Exercise 22.5-1 Merging the Decision Control
Structures
Exercise 22.5-2 Merging the Decision Control
Structures

22.6 Replacing Two Single-Alternative Decision Structures
with a Dual-Alternative One

Exercise 22.6-1 “Merging” the Decision Control
Structures

22.7 Put the Boolean Expressions Most Likely to be True
First

Exercise 22.7-1 Rearranging the Boolean Expressions

22.8 Why is Code Indentation so Important?
22.9 Review Questions: True/False
22.10 Review Questions: Multiple Choice
22.11 Review Exercises

Chapter 23 More with Decision Control Structures

23.1 Simple Exercises with Decision Control Structures

Exercise 23.1-1 Is it an Integer?
Exercise 23.1-2 Validating Data Input and Finding Odd
and Even Numbers
Exercise 23.1-3 Where is the Tollkeeper?
Exercise 23.1-4 The Most Scientific Calculator Ever!

Exercise 23.1-5 Converting Gallons to Liters, and Vice
Versa
Exercise 23.1-6 Converting Gallons to Liters, and Vice
Versa (with Data Validation)

23.2 Finding Minimum and Maximum Values with Decision
Control Structures

Exercise 23.2-1 Finding the Name of the Heaviest
Person

23.3 Decision Control Structures in Solving Mathematical
Problems

Exercise 23.3-1 Finding the Value of y
Exercise 23.3-2 Finding the Values of y
Exercise 23.3-3 Solving the Linear Equation ax + b = 0
Exercise 23.3-4 Solving the Quadratic Equation ax2 +
bx + c = 0

23.4 Exercises with Series of Consecutive Ranges of Values

Exercise 23.4-1 Calculating the Discount
Exercise 23.4-2 Validating Data Input and Calculating
the Discount
Exercise 23.4-3 Sending a Parcel
Exercise 23.4-4 Finding the Values of y
Exercise 23.4-5 Progressive Rates and Electricity
Consumption
Exercise 23.4-6 Progressive Rates and Text Messaging
Services

23.5 Exercises of a General Nature with Decision Control
Structures

Exercise 23.5-1 Finding a Leap Year
Exercise 23.5-2 Displaying the Days of the Month

Exercise 23.5-3 Checking for Proper Capitalization and
Punctuation
Exercise 23.5-4 Is the Number a Palindrome?

23.6 Boolean Expressions Reference and Handy Tips
23.7 Review Exercises

Review in “Decision Control Structures”

Review Crossword Puzzle
Review Questions

Part V Loop Control Structures

Chapter 24 Introduction to Loop Control Structures

24.1 What is a Loop Control Structure?
24.2 From Sequence Control to Loop Control Structures
24.3 Review Questions: True/False

Chapter 25 Pre-Test, Mid-Test and Post-Test Loop Structures

25.1 The Pre-Test Loop Structure

Exercise 25.1-1 Designing the Flowchart and Counting
the Total Number of Iterations
Exercise 25.1-2 Counting the Total Number of
Iterations
Exercise 25.1-3 Counting the Total Number of
Iterations
Exercise 25.1-4 Counting the Total Number of
Iterations
Exercise 25.1-5 Finding the Sum of Four Numbers
Exercise 25.1-6 Finding the Sum of Odd Numbers
Exercise 25.1-7 Finding the Sum of N Numbers
Exercise 25.1-8 Finding the Sum of an Unknown
Quantity of Numbers
Exercise 25.1-9 Finding the Product of 20 Numbers

25.2 The Post-Test Loop Structure

Exercise 25.2-1 Designing the Flowchart and Counting
the Total Number of Iterations
Exercise 25.2-2 Counting the Total Number of
Iterations
Exercise 25.2-3 Designing the Flowchart and Counting
the Total Number of Iterations
Exercise 25.2-4 Counting the Total Number of
Iterations
Exercise 25.2-5 Finding the Product of N Numbers

25.3 The Mid-Test Loop Structure

Exercise 25.3-1 Designing the Flowchart and Counting
the Total Number of Iterations

25.4 Review Questions: True/False
25.5 Review Questions: Multiple Choice
25.6 Review Exercises

Chapter 26 Definite Loops

26.1 The for statement

Exercise 26.1-1 Creating the Trace Table
Exercise 26.1-2 Creating the Trace Table
Exercise 26.1-3 Counting the Total Number of
Iterations
Exercise 26.1-4 Finding the Sum of Four Numbers
Exercise 26.1-5 Finding the Square Roots from 0 to N
Exercise 26.1-6 Finding the Sum of 1 + 2 + 3 + … +
100
Exercise 26.1-7 Finding the Product of 2 × 4 × 6 × 8 ×
10
Exercise 26.1-8 Finding the Sum of 22 + 42 + 62 + …
(2N)2

Exercise 26.1-9 Finding the Sum of 33 + 66 + 99 + …
(3N)3N
Exercise 26.1-10 Finding the Average Value of Positive
Numbers
Exercise 26.1-11 Counting the Vowels

26.2 Rules that Apply to For-Loops

Exercise 26.2-1 Counting the Total Number of
Iterations
Exercise 26.2-2 Counting the Total Number of
Iterations
Exercise 26.2-3 Counting the Total Number of
Iterations
Exercise 26.2-4 Counting the Total Number of
Iterations
Exercise 26.2-5 Finding the Sum of N Numbers

26.3 Review Questions: True/False
26.4 Review Questions: Multiple Choice
26.5 Review Exercises

Chapter 27 Nested Loop Control Structures

27.1 What is a Nested Loop?

Exercise 27.1-1 Say “Hello Zeus”. Counting the Total
Number of Iterations.
Exercise 27.1-2 Creating the Trace Table

27.2 Rules that Apply to Nested Loops

Exercise 27.2-1 Violating the First Rule
Exercise 27.2-2 Violating the Second Rule

27.3 Review Questions: True/False
27.4 Review Questions: Multiple Choice
27.5 Review Exercises

Chapter 28 More about Flowcharts with Loop Control Structures

28.1 Introduction
28.2 Converting Java Programs to Flowcharts

Exercise 28.2-1 Designing the Flowchart Fragment
Exercise 28.2-2 Designing the Flowchart Fragment
Exercise 28.2-3 Designing the Flowchart
Exercise 28.2-4 Designing the Flowchart Fragment
Exercise 28.2-5 Designing the Flowchart

28.3 Converting Flowcharts to Java Programs

Exercise 28.3-1 Writing the Java Program
Exercise 28.3-2 Writing the Java Program
Exercise 28.3-3 Writing the Java Program
Exercise 28.3-4 Writing the Java Program

28.4 Review Exercises

Chapter 29 Tips and Tricks with Loop Control Structures

29.1 Introduction
29.2 Choosing a Loop Control Structure
29.3 The “Ultimate” Rule
29.4 Breaking Out of a Loop
29.5 Cleaning Out Your Loops

Exercise 29.5-1 Cleaning Out the Loop
Exercise 29.5-2 Cleaning Out the Loop

29.6 Endless Loops and How to Stop Them
29.7 The “From Inner to Outer” Method
29.8 Review Questions: True/False
29.9 Review Questions: Multiple Choice
29.10 Review Exercises

Chapter 30 More with Loop Control Structures

30.1 Simple Exercises with Loop Control Structures

Exercise 30.1-1 Counting the Numbers According to
Which is Greater
Exercise 30.1-2 Counting the Numbers According to
Their Digits
Exercise 30.1-3 How Many Numbers Fit in a Sum
Exercise 30.1-4 Finding the Total Number of Positive
Integers
Exercise 30.1-5 Iterating as Many Times as the User
Wishes
Exercise 30.1-6 Finding the Sum of the Digits

30.2 Exercises with Nested Loop Control Structures

Exercise 30.2-1 Displaying all Three-Digit Integers that
Contain a Given Digit
Exercise 30.2-2 Displaying all Instances of a Specified
Condition

30.3 Data Validation with Loop Control Structures

Exercise 30.3-1 Finding Odd and Even Numbers
Exercise 30.3-2 Finding the Sum of Four Numbers

30.4 Finding Minimum and Maximum Values with Loop
Control Structures

Exercise 30.4-1 Validating and Finding the Minimum
and the Maximum Value
Exercise 30.4-2 Validating and Finding the Hottest
Planet
Exercise 30.4-3 ”Making the Grade”

30.5 Using Loop Control Structures to Solve Mathematical
Problems

Exercise 30.5-1 Calculating the Area of as Many
Triangles as the User Wishes
Exercise 30.5-2 Finding x and y
Exercise 30.5-3 The Russian Multiplication Algorithm
Exercise 30.5-4 Finding the Number of Divisors
Exercise 30.5-5 Is the Number a Prime?
Exercise 30.5-6 Finding all Prime Numbers from 1 to N
Exercise 30.5-7 Heron's Square Root

Exercise 30.5-8 Calculating π
Exercise 30.5-9 Approximating a Real with a Fraction

30.6 Exercises of a General Nature with Loop Control
Structures

Exercise 30.6-1 Fahrenheit to Kelvin, from 0 to 100
Exercise 30.6-2 Rice on a Chessboard
Exercise 30.6-3 Just a Poll
Exercise 30.6-4 Is the Message a Palindrome?

30.7 Review Questions: True/False
30.8 Review Exercises

Review in “Loop Control Structures”

Review Crossword Puzzle
Review Questions

Part VI Data Structures in Java

Chapter 31 One-Dimensional Arrays and HashMaps

31.1 Introduction
31.2 What is an Array?

Exercise 31.2-1 Designing an Array
Exercise 31.2-2 Designing Arrays

Exercise 31.2-3 Designing Arrays

31.3 Creating One-Dimensional Arrays in Java
31.4 How to Get Values from a One-Dimensional Array

Exercise 31.4-1 Creating the Trace Table
Exercise 31.4-2 Using a Non-Existing Index

31.5 How to Alter the Value of an Array Element
31.6 How to Iterate Through a One-Dimensional Array

Exercise 31.6-1 Finding the Sum

31.7 How to Add User-Entered Values to a One-Dimensional
Array

Exercise 31.7-1 Displaying Words in Reverse Order
Exercise 31.7-2 Displaying Positive Numbers in
Reverse Order
Exercise 31.7-3 Finding the Average Value
Exercise 31.7-4 Displaying Reals Only
Exercise 31.7-5 Displaying Elements with Odd-
Numbered Indexes
Exercise 31.7-6 Displaying Even Numbers in Odd–
Numbered Index Positions

31.8 What is a HashMap?
31.9 Creating HashMaps in Java
31.10 How to Get a Value from a HashMap

Exercise 31.10-1 Roman Numerals to Numbers
Exercise 31.10-2 Using a Non-Existing Key in
HashMaps

31.11 How to Alter the Value of a HashMap Element

Exercise 31.11-1 Assigning a Value to a Non-Existing
Key

31.12 How to Iterate Through a HashMap
31.13 Review Questions: True/False
31.14 Review Questions: Multiple Choice
31.15 Review Exercises

Chapter 32 Two-Dimensional Arrays

32.1 Creating Two-Dimensional Arrays in Java
32.2 How to Get Values from Two-Dimensional Arrays

Exercise 32.2-1 Creating the Trace Table

32.3 How to Iterate Through a Two-Dimensional Array
32.4 How to Add User-Entered Values to a Two-
Dimensional Array

Exercise 32.4-1 Displaying Reals Only
Exercise 32.4-2 Displaying Odd Columns Only

32.5 What's the Story on Variables i and j?
32.6 Square Matrices

Exercise 32.6-1 Finding the Sum of the Elements on the
Main Diagonal
Exercise 32.6-2 Finding the Sum of the Elements on the
Antidiagonal
Exercise 32.6-3 Filling in the Array

32.7 Review Questions: True/False
32.8 Review Questions: Multiple Choice
32.9 Review Exercises

Chapter 33 Tips and Tricks with Data Structures

33.1 Introduction
33.2 Processing Each Row Individually

Exercise 33.2-1 Finding the Average Value

33.3 Processing Each Column Individually

Exercise 33.3-1 Finding the Average Value

33.4 How to Use More Than One Data Structures in a
Program

Exercise 33.4-1 Using Three One-Dimensional Arrays
Exercise 33.4-2 Using a One-Dimensional Array Along
with a Two-Dimensional Array
Exercise 33.4-3 Using an Array Along with a HashMap

33.5 Creating a One-Dimensional Array from a Two-
Dimensional Array
33.6 Creating a Two-Dimensional Array from a One-
Dimensional Array
33.7 Useful Data Structures Methods (Subprograms), and
More
33.8 Review Questions: True/False
33.9 Review Questions: Multiple Choice
33.10 Review Exercises

Chapter 34 More with Data Structures

34.1 Simple Exercises with Arrays

Exercise 34.1-1 Creating an Array that Contains the
Average Values of its Neighboring Elements
Exercise 34.1-2 Creating an Array with the Greatest
Values
Exercise 34.1-3 Merging One-Dimensional Arrays
Exercise 34.1-4 Creating Two Arrays – Separating
Positive from Negative Values
Exercise 34.1-5 Creating an Array with Those who
Contain Digit 5

34.2 Data Validation with Arrays

Exercise 34.2-1 Displaying Odds in Reverse Order

34.3 Finding Minimum and Maximum Values in Arrays

Exercise 34.3-1 Which Depth is the Greatest?
Exercise 34.3-2 Which Lake is the Deepest?
Exercise 34.3-3 Which Lake, in Which Country,
Having Which Average Area, is the Deepest?
Exercise 34.3-4 Which Students Have got the Greatest
Grade?
Exercise 34.3-5 Finding the Minimum Value of a Two-
Dimensional Array
Exercise 34.3-6 Finding the City with the Coldest Day
Exercise 34.3-7 Finding the Minimum and the
Maximum Value of Each Row

34.4 Sorting Arrays

Exercise 34.4-1 The Bubble Sort Algorithm – Sorting
One-Dimensional Arrays with Numeric Values
Exercise 34.4-2 Sorting One-Dimensional Arrays with
Alphanumeric Values
Exercise 34.4-3 Sorting One-Dimensional Arrays While
Preserving the Relationship with a Second Array
Exercise 34.4-4 Sorting Last and First Names
Exercise 34.4-5 Sorting a Two-Dimensional Array
Exercise 34.4-6 The Modified Bubble Sort Algorithm –
Sorting One-Dimensional Arrays
Exercise 34.4-7 The Selection Sort Algorithm – Sorting
One-Dimensional Arrays
Exercise 34.4-8 Sorting One-Dimensional Arrays While
Preserving the Relationship with a Second Array
Exercise 34.4-9 The Insertion Sort Algorithm – Sorting
One-Dimensional Arrays
Exercise 34.4-10 The Three Worst Elapsed Times

34.5 Searching Elements in Data Structures

Exercise 34.5-1 The Linear Search Algorithm –
Searching in a One-Dimensional Array that may
Contain the Same Value Multiple Times
Exercise 34.5-2 Display the Last Names of All Those
People Who Have the Same First Name
Exercise 34.5-3 The Linear Search Algorithm –
Searching in a Two-Dimensional Array that May
Contain the Same Value Multiple Times
Exercise 34.5-4 The Linear Search Algorithm –
Searching in a One-Dimensional Array that Contains
Unique Values
Exercise 34.5-5 Searching for a Social Security Number
Exercise 34.5-6 The Linear Search Algorithm –
Searching in a Two-Dimensional Array that Contains
Unique Values
Exercise 34.5-7 Checking if a Value Exists in all
Columns
Exercise 34.5-8 The Binary Search Algorithm –
Searching in a Sorted One-Dimensional Array
Exercise 34.5-9 Display all the Historical Events for a
Country
Exercise 34.5-10 Searching in Each Column of a Two-
Dimensional Array

34.6 Exercises of a General Nature with Data Structures

Exercise 34.6-1 On Which Days was There a Possibility
of Snow?
Exercise 34.6-2 Was There Any Possibility of Snow?
Exercise 34.6-3 In Which Cities was There a Possibility
of Snow?
Exercise 34.6-4 Display from Highest to Lowest Grades
by Student, and in Alphabetical Order
Exercise 34.6-5 Archery at the Summer Olympics
Exercise 34.6-6 The Five Best Scorers
Exercise 34.6-7 Counting the Frequency of Vowels

34.7 Review Questions: True/False
34.8 Review Exercises

Review in “Data Structures in Java”

Review Crossword Puzzle
Review Questions

Part VII Subprograms

Chapter 35 Introduction to Subprograms

35.1 What Exactly is a Subprogram?
35.2 What is Procedural Programming?
35.3 What is Modular Programming?
35.4 Review Questions: True/False

Chapter 36 User-Defined Subprograms

36.1 Subprograms that Return a Value
36.2 How to Make a Call to a Method
36.3 Subprograms that Return no Values
36.4 How to Make a Call to a void Method
36.5 Formal and Actual Arguments
36.6 How Does a Method Execute?

Exercise 36.6-1 Back to Basics – Calculating the Sum
of Two Numbers
Exercise 36.6-2 Calculating the Sum of Two Numbers
Using Fewer Lines of Code!

36.7 How Does a void Method Execute?

Exercise 36.7-1 Back to Basics – Displaying the
Absolute Value of a Number

36.8 Review Questions: True/False
36.9 Review Exercises

Chapter 37 Tips and Tricks with Subprograms

37.1 Can Two Subprograms use Variables of the Same
Name?
37.2 Can a Subprogram Call Another Subprogram?
37.3 Passing Arguments by Value and by Reference
37.4 Returning an Array
37.5 Overloading Methods
37.6 The Scope of a Variable
37.7 Converting Parts of Code into Subprograms
37.8 Recursion
37.9 Review Questions: True/False
37.10 Review Exercises

Chapter 38 More with Subprograms

38.1 Simple Exercises with Subprograms

Exercise 38.1-1 A Simple Currency Converter
Exercise 38.1-2 Finding the Average Values of Positive
Integers
Exercise 38.1-3 Finding the Sum of Odd Positive
Integers
Exercise 38.1-4 Finding the Values of y

38.2 Exercises of a General Nature with Subprograms

Exercise 38.2-1 Validating Data Input Using a
Subprogram
Exercise 38.2-2 Sorting an Array Using a Subprogram
Exercise 38.2-3 Progressive Rates and Electricity
Consumption
Exercise 38.2-4 Roll, Roll, Roll the… Dice!
Exercise 38.2-5 How Many Times Does Each Number
of the Dice Appear?

38.3 Review Exercises

Review in “Subprograms”

Review Crossword Puzzle
Review Questions

Part VIII Object-Oriented Programming

Chapter 39 Introduction to Object-Oriented Programming

39.1 What is Object-Oriented Programming?
39.2 Classes and Objects in Java
39.3 The Constructor and the Keyword this
39.4 Passing Initial Values to the Constructor

Exercise 39.4-1 Historical Events

39.5 Getter and Setter Methods

Exercise 39.5-1 The Roman Numerals

39.6 Can a Method Call Another Method of the Same Class?

Exercise 39.6-1 Doing Math

39.7 Class Inheritance
39.8 Review Questions: True/False
39.9 Review Exercises

Review in “Object-Oriented Programming”

Review Crossword Puzzle
Review Questions

Part IX Files

Chapter 40 Introduction to Files

40.1 Introduction
40.2 Opening a File

40.3 Closing a File
40.4 Writing in (or Appending to) a File
40.5 The File Pointer
40.6 Reading from a File
40.7 Iterating Through the Contents of a File
40.8 Review Questions: True/False
40.9 Review Exercises

Chapter 41 More with Files

41.1 Exercises of a General Nature with Files

Exercise 41.1-1 Calculating the Sum of 10 Numbers
Exercise 41.1-2 Calculating the Average Value of an
Unknown Quantity of Numbers
Exercise 41.1-3 Finding Minimum and Maximum
Values
Exercise 41.1-4 Concatenating Files
Exercise 41.1-5 Searching in a File
Exercise 41.1-6 Combining Files with Subprograms

41.2 Review Exercises

Review in “Files”

Review Crossword Puzzle
Review Questions

Some Final Words from the Author

Java and Algorithmic Thinking for the Complete Beginner
Learn to Think Like a Programmer

3rd Revised Edition

By
Aristides S. Bouras

Java and Algorithmic Thinking for the Complete Beginner 3rd Revised
Edition

Copyright © by Aristides S. Bouras https://www.bouraspage.com

Cover illustration: Philippos Papanikolaou Cover design: Muhammad
Arslan

Oracle and Java are registered trademarks of Oracle and/or its affiliates.
All crossword puzzles were created with EclipseCrossword software
powered by Green Eclipse Python and PyCon are trademarks or registered
trademarks of the Python Software Foundation.
PHP is a copyright of the PHP Group.
The following are either registered trademarks or trademarks of Microsoft
Corporation in the United States and/or other countries: Microsoft,
Windows, Visual Studio, Visual Studio Code, IntelliSense, SQL Server,
VBA, Visual Basic, and Visual C#, .NET Framework.
Mazda and Mazda 6 are trademarks of the Mazda Motor Corporation or its
affiliated companies.
Ford and Ford Focus are trademarks of the Ford Motor Company.
Other names may be trademarks of their respective owners.

Rcode: 240601

All rights reserved. No part of this book may be reproduced or transmitted
in any form or by any means, mechanical or electronic, including
photocopying, recording, or by any information storage and retrieval
system, without written permission from the author.

Warning and Disclaimer
This book is designed to provide information about learning “Algorithmic
Thinking”, mainly through the use of Java programming language. Every
effort has been taken to make this book compatible with the latest release
of Java, and it is almost certain to be compatible with any future releases
of it.
The information is provided on an “as is” basis. The authors shall have
neither liability nor responsibility to any person or entity with respect to
any loss or damages arising from the information contained in this book or
from the use of the files that may accompany it.

Preface

About the Author
I was born in 1973, and from my early childhood, I discovered a passion
for computer programming. At the age of 12, I got my first computer—a
Commodore 64, which incorporated a ROM-based version of the BASIC
programming language and 64 kilobytes of RAM. It introduced me to the
world of programming!
I hold a degree in Computer Engineering from the Technological
Educational Institute of Piraeus. Additionally, I earned Dipl. Eng. and
Integrated Master's degrees in Electrical and Computer Engineering from
the Democritus University of Thrace.
In my previous role as a software developer at a company specializing in
industrial data flow and product labeling, my responsibilities included
developing software applications for data terminals and PC software for
data collection and storage on a Microsoft SQL Server®.
Over the years, I've designed various applications, including warehouse
management systems and websites for diverse companies and
organizations. Presently, I serve as a computer science teacher in a
vocational high school, instructing courses on computer programming,
computer networks, programming tools for the Internet/intranets, and
databases.
I've authored several books, primarily focusing on algorithmic and
computational thinking, utilizing languages such as Python, C#, Java,
C++, PHP, and Visual Basic.
Outside of my professional pursuits, I am happily married and have the joy
of raising two wonderful children.

Acknowledgments

Acknowledgments
I would like to thank, with particular gratefulness, my friend and senior
editor Victoria (Vicki) Austin for her assistance in copy editing the first
edition. Without her, this book might not have reached its full potential.
With her patient guidance and valuable and constructive suggestions, she
helped me bring this book up to a higher level!

How This Book is Organized
The book you hold in your hands follows the spiral curriculum teaching
approach, a method proposed in 1960 by Jerome Bruner, an American
psychologist. According to this method, as a subject is being taught, basic
ideas are revisited at intervals—at a more sophisticated level each time—
until the reader achieves a complete understanding of the subject. First, the
reader learns the basic elements without worrying about the details. Later,
more details are taught and basic elements are mentioned again and again,
eventually being stored in the brain's long-term memory.
According to Jerome Bruner, learning requires the student's active
participation, experimentation, exploration, and discovery. This book
contains many examples, most of which can be practically performed.
This gives the readers the opportunity to get their hands on Java® and
become capable of creating their own programs.

Who Should Buy This Book?
Completely updated for the latest version of Java, this book offers a
comprehensive introduction to programming, assuming no prior
knowledge of the subject. It is designed for individuals, eager to learn Java
from scratch, providing a strong foundation in Algorithmic Thinking—the
fundamental skill every aspiring programmer must acquire. Algorithmic
Thinking encompasses more than just writing code; it entails mastering the
art of problem-solving through coding.
This edition retains all the popular features of its predecessor while
introducing a wealth of new exercises, along with extensive revisions and

updates. Furthermore, brand-new chapters offer a practical introduction to
working with text files.
Structured for both classroom use and independent study, each chapter is
concluded with a set of questions and exercises designed to reinforce your
understanding and apply what you've learned. With approximately 250
solved and 480 unsolved exercises, 500 true/false questions, 150 multiple-
choice questions, and 200 review questions and crosswords (with solutions
and answers available online), this book is ideal for:
► Novices or intermediate-level programmers pursuing self-study
► High school students
► First-years college or university students
► Educators
► Professors
► Anyone who wants to start learning or teaching computer

programming using the best practices and techniques

Conventions Used in This Book
Following are some explanations on the conventions used in this book.
“Conventions” refer to the standard ways in which certain parts of the text
are displayed.

Java Statements This book uses plenty of examples written in Java
language. Java statements are shown in a typeface that looks like this.
This is a Java statement

Keywords, Variables, Methods, and Arguments Within the Text of a
Paragraph Keywords, variables, methods (subprograms), and
arguments are sometimes shown within the text of a paragraph. When
they are, the special text is shown in a typeface different from that of
the rest of the paragraph. For instance, firstName = 5 is an example of
a Java statement within the paragraph text.
Words in Italics You may notice that some of the special text is also
displayed in italics. In this book, italicized words are general types that
must be replaced with the specific name appropriate for your data. For
example, the general form of a Java statement may be presented as
static void name(type1 arg1, type2 arg2)
In order to complete the statement, the keywords name, type1, arg1, type2, and
arg2 must be replaced with something meaningful. When you use this
statement in your program, you might use it in the following form

static void displayRectangle(int width, int height)
Three dots (…): an Ellipsis In the general form of a statement you may
also notice three dots (…), also known as an “ellipsis”, following a list
in an example. They are not part of the statement. An ellipsis indicates
that you can have as many items in the list as you want. For example,
the ellipsis in the general form of the statement
displayMessages(arg1, arg2, …);
indicates that the list may contain more than two arguments. When you
use this statement in your program, your statement might be something
like this.
displayMessages(message1, "Hello", message2, "Hi!");

Square Brackets in Italics The general form of some statements or
methods (subprograms) may contain “square brackets” [] in italics,

which indicate that the enclosed section is optional. For example, the
general form of the statement
subject.substring(beginIndex [, endIndex])
indicates that the section [, endIndex] can be omitted.
For example, the following two statements may produce different results
but they are both syntactically correct.
a = s.substring(3); b = s.substring(3, 9);

The Dark Header Most of this book's examples are shown in a typeface
that looks like this.

 Project_29.2-3
public static void main(String[] args) throws Exception {

int a, b; a = 1; b = 2; System.out.println(a + b); }

The header Project_29.2-3 on top indicates the filename that you
must open to test the program. All the examples that contain this header
can be downloaded free of charge from my website.

Notices Very often this book uses notices to help you better understand
the meaning of a concept. Notices look like this.

This typeface designates a note.

Something Already Known or Something to Remember Very often this
book can help you recall something you have already learned (probably
in a previous section or chapter). Other times, it will draw your
attention to something you should memorize. Reminders look like this.

This typeface designates something to recall or something that you
should memorize.

How to Report Errata
Although I have taken great care to ensure the accuracy of the content in
this book, mistakes can still occur. If you come across any errors, either in
the text or the code, I highly encourage you to send me a report. By doing
so, you'll not only assist in saving other readers from potential confusion
and frustration but also contribute to enhancing the quality of the next

release. If you discover any errors, please report them by visiting one of
the following addresses: https://tinyurl.com/28nwh2nf
https://www.bouraspage.com/report-errata

Once I verify your reported error(s), your submission will be accepted.
The errata will then be uploaded to my website and added to any existing
list of corrections.

Where to Download Material About this Book
Material about this book, such as: ► a list of verified errata (if any);
► the Solutions Companion, providing answers to all review questions
and solutions to exercises; and ► all of this book's examples that have a
header like this Project_29.2-3 on top can be downloaded free of
charge from the following address: https://tinyurl.com/3z44xhpp
https://www.bouraspage.com/books/java-and-algorithmic-thinking-for-the-
complete-beginner-third-edition

If you Like this Book
If you find this book valuable, please consider visiting the web store where
you purchased it, as well as goodreads.com, to show your appreciation by
writing a positive review and awarding as many stars as you think
appropriate. By doing so, you will motivate me to keep writing and, of
course, you'll be assisting other readers in discovering my work.

https://tinyurl.com/28nwh2nf
https://www.bouraspage.com/report-errata
https://tinyurl.com/3z44xhpp
https://www.bouraspage.com/books/java-and-algorithmic-thinking-for-the-complete-beginner-third-edition
https://www.goodreads.com/

Part I
Introductory Knowledge

Chapter 1
How a Computer Works

1.1 Introduction
In today's society, almost every task requires the use of a computer. In
schools, students use computers to search the Internet and to send emails.
At work, people use them to make presentations, to analyze data, and to
communicate with customers. At home, people use computers to play
games, to connect to social networks and to chat with other people all over
the world. Of course, don't forget smartphones such as iPhones. They are
computers as well!
Computers can perform so many different tasks because of their ability to
be programmed. In other words, a computer can perform any job that a
program tells it to. A program is a set of statements (often called
instructions or commands) that a computer follows in order to perform a
specific task.
Programs are essential to a computer, because without them a computer is
a dummy machine that can do nothing at all. It is the program that actually
tells the computer what to do and when to do it. On the other hand, the
programmer or the software developer is the person who designs, creates,
and often tests computer programs.
This book introduces you to the basic concepts of computer programming
using the Java language.

1.2 What is Hardware?
The term hardware refers to all devices or components that make up a
computer. If you have ever opened the case of a computer or a laptop you
have probably seen many of its components, such as the microprocessor
(CPU), the memory, and the hard disk. A computer is not a device but a
system of devices that all work together. The basic components of a
typical computer system are discussed here.
► The Central Processing Unit (CPU)

This is the part of a computer that actually performs all the tasks
defined in a program (basic arithmetic, logical, and input/output
operations).

► Main Memory (RAM – Random Access Memory)
This is the area where the computer holds the program (while it is
being executed/run) as well as the data that the program is working
with. All programs and data stored in this type of memory are lost
when you shut down your computer or you unplug it from the wall
outlet.

► Main Memory (ROM – Read Only Memory)
ROM or Read Only Memory is a special type of memory which can
only be read by the computer (but cannot be changed). All programs
and data stored in this type of memory are not lost when the
computer is switched off. ROM usually contains manufacturer's
instructions as well as a program called the bootstrap loader whose
function is to start the operation of computer system once the power
is turned on.

► Secondary Storage Devices
This is usually the hard disk or the SSD (Solid State Drive), and
sometimes (but more rarely) the CD/DVD drive. In contrast to main
memory (RAM), this type of memory can hold data for a longer
period of time, even if there is no power to the computer. However,
programs stored in this memory cannot be directly executed. They
must be transferred to a much faster memory; that is, the main
memory.

► Input Devices
Input devices are all those devices that collect data from the outside
world and enter them into the computer for further processing.
Keyboards, mice, and microphones are all input devices.

► Output Devices
Output devices are all those devices that output data to the outside
world. Monitors (screens) and printers are output devices.

1.3 What is Software?
Everything that a computer does is controlled by software. There are two
categories of software: system software and application software.

► System software is the program that controls and manages the basic
operations of a computer. For example, system software controls the
computer's internal operations. It manages all devices that are
connected to it, and it saves data, loads data, and allows other
programs to be executed. The three main types of system software
are:
► the operating system. Windows, Linux, macOS, Android, and

iOS are all examples of operating systems.
► the utility software. This type of software is usually installed with

the operating system. It is used to make the computer run as
efficiently as possible. Antivirus utilities and backup utilities are
considered utility software.

► the device driver software. A device driver controls a device that
is attached to your computer, such as a mouse or a graphic card.
A device driver is a program that acts like a translator. It
translates the instructions of the operating system to instructions
that a device can actually understand.

► Application software refers to all the other programs that you use for
your everyday tasks, such as browsers, word processors, notepads,
games, and many more.

1.4 How a Computer Executes (Runs) a Program
When you turn on your computer, the main memory (RAM) is completely
empty. The first thing the computer needs to do is to transfer the operating
system from the hard disk to the main memory.
After the operating system is loaded to main memory, you can execute
(run) any program (application software) you like. This is usually done by
clicking, double clicking, or tapping the program's corresponding icon. For
example, let's say you click on the icon of your favorite word processor.
This action orders your computer to copy (or load) the word processing
program from your hard disk to the main memory (RAM) so the CPU can
execute it.

Programs are stored on secondary storage devices such as hard disks.
When you install a program on your computer, the program is copied to
your hard disk. Then, when you execute a program, the program is copied
(loaded) from your hard disk to the main memory (RAM), and that copy of
the program is executed.

The terms “run” and “execute” are synonymous and can be used
interchangeably.

1.5 Compilers and Interpreters
Computers can execute programs that are written in a strictly defined
computer language. You cannot write a program using a natural language
such as English or Greek, because your computer won't understand you!
But what does a computer actually understand? A computer can
understand a specific low-level language called the machine language. In
a machine language all statements (or commands) are made up of zeros
and ones. The following is an example of a program written in a machine
language, that calculates the sum of two numbers.
0010 0001 0000 0100
0001 0001 0000 0101
0011 0001 0000 0110
0111 0000 0000 0001

Shocked? Don't worry, you are not going to write programs this way.
Hopefully, no one writes computer programs this way anymore.
Nowadays, all programmers write their programs in a high-level language
and then they use a special program to translate them into a machine
language.

A high-level language is one that is not limited to a particular type of
computer.

There are two types of programs that programmers use to perform
translation: compilers and interpreters.
A compiler is a program that translates statements written in a high-level
language into a separate machine language program. You can then execute
the machine language program any time you wish. After the translation,

there is no need to run the compiler again unless you make changes in the
high-level language program.
An interpreter is a program that simultaneously translates and executes the
statements written in a high-level language. As the interpreter reads each
individual statement in the high-level language program, it translates it
into a machine language code and then directly executes it. This process is
repeated for every statement in the program.

1.6 What is Source Code?
The statements (often called instructions or commands) that the
programmer writes in a high-level language are called source code or
simply code. The programmer first types the source code into a program
known as a code editor, and then uses either a compiler to translate it into
a machine language program, or an interpreter to translate and execute it at
the same time.

While it may seem uncommon nowadays, it's entirely possible to write
programs using a simple text editor!

1.7 Review Questions: True/False
Choose true or false for each of the following statements.
1) Modern computers can perform so many different tasks because of

their ability to be programmed.
2) A computer can operate without a program.
3) A hard disk is an example of hardware.
4) Data can be stored in main memory (RAM) for a long period of time,

even if there is no power to the computer.
5) Data is stored in main memory (RAM), but programs are not.
6) Speakers are an example of an output device.
7) Windows and Linux are examples of software.
8) A device driver is an example of hardware.
9) A media player is an example of system software.

10) When you turn on your computer, the main memory (RAM) already
contains the operating system.

11) When you open your word processing application, it is actually
copied from a secondary storage device to the main memory (RAM).

12) In a machine language, all statements (commands) are a sequence of
zeros and ones.

13) Nowadays, a computer cannot understand zeros and ones.
14) Nowadays, software is written in a language composed of ones and

zeros.
15) Software refers to the physical components of a computer.
16) The compiler and the interpreter are software.
17) The compiler translates source code to an executable file.
18) The interpreter creates a machine language program.
19) Considering that a program might be executed multiple times, after it

has been translated through interpretation and executed once, the
need for the interpreter becomes obsolete.

20) Source code can be written using a simple text editor.
21) Source code can be executed by a computer without compilation or

interpretation.
22) A program written in machine language requires compilation

(translation).
23) A compiler translates a program written in a high-level language.

1.8 Review Questions: Multiple Choice
Select the correct answer for each of the following statements.
1) Which of the following is not computer hardware?

a) a hard disk
b) a DVD disc
c) a sound card
d) the main memory (RAM)

2) Which of the following is not a secondary storage device?
a) a DVD reader/writer device
b) a Solid State Drive (SSD)
c) a USB flash drive

d) RAM
3) Which one of the following operations cannot be performed by the

CPU?
a) Transfer data to the main memory (RAM).
b) Transfer data from the main memory (RAM).
c) Perform arithmetic operations.
d) Surgical operations.

4) A touch screen is
a) an input device.
b) an output device.
c) both of the above

5) Which of the following is not software?
a) Windows
b) Linux
c) iOS
d) a video game
e) a web browser
f) All of the above are software.

6) Which of the following statements is correct?
a) Programs are stored on the hard disk.
b) Programs are stored on USB flash drives (USB sticks).
c) Programs are stored in main memory (RAM).
d) All of the above are correct.

7) Which of the following statements is correct?
a) Programs are executed directly from the hard disk.
b) Programs are executed directly from a DVD disc.
c) Programs are executed directly from the main memory (RAM).
d) All of the above are correct.
e) None of the above is correct.

8) Programmers cannot write computer programs in

a) machine language.
b) natural language such as English, Greek, and so on.
c) Java.

9) A compiler translates
a) a program written in machine language into a high-level language

program.
b) a program written in a natural language (English, Greek etc.) into

a machine language program.
c) a program written in high-level computer language into a

machine language program.
d) none of the above
e) all of the above

10) Machine language is
a) a language that machines use to communicate with each other.
b) a language made up of numerical instructions that is used directly

by a computer.
c) a language that uses English words for operations.

11) In a program written in high-level computer language, if two identical
statements are one after the other, the interpreter
a) translates the first one and executes it, then it translates the

second one and executes it.
b) translates the first one, then translates the second one, and then

executes them both.
c) translates only the first one (since they are identical) and then

executes it twice.

Chapter 2
Java and Integrated Development Environments

2.1 What is Java?
Java is a widely used general-purpose, high-level computer programming
language that allows programmers to create desktop or mobile applications,
web pages, and many other types of software. It is intended to let
programmers “write once, run anywhere (WORA)”, meaning that code is
written once but can run on any combination of hardware and operating
system without being re-compiled.

2.2 What is the Difference Between a Script and a Program?
Technically speaking, a script is interpreted whereas a program is compiled,
but this is actually not their major difference. There is another more
important difference between them!
The main purpose of a script written in a scripting language such as
JavaScript, or VBA (Visual Basic for Applications) is to control another
application. So you can say that, in some ways JavaScript controls the web
browser, and VBA controls a Microsoft® Office application such as MS
Word or MS Excel.
On the other hand, a program written in a programming language such as
Java, C++, or C# (to name a few) executes independently of any other
application. A program is executed as stand-alone any time the user wishes
without the need of a hosting application.

Macros of Microsoft Office are scripts written in VBA. Their purpose is
to automate certain functions within Microsoft Office.

A lot of people think that JavaScript is a simplified version of Java but in
fact the similarity of the names is just a coincidence.

A script cannot be executed as stand-alone. It requires a hosting
application in order to execute.

2.3 Why You Should Learn Java
Java is what is known as a “high-level” computer language. Java's coding
style is similar to C language. It is quite easy to understand and highly
efficient on multiple platforms such as Windows, Android, Linux, and Unix.

Java is a flexible and powerful language, making it well-suited for
developing games, web applications, desktop or mobile applications.
Java is everywhere! It is on desktop computers, laptops, datacenters, mobile
devices, and game consoles. More than 9 billion mobile phones, most
computers, and more than 125 million TV devices run Java. With more than
9 million programmers worldwide, Java enables efficient development of
many exciting applications and services. This huge availability of Java
programmers is a major reason why organizations choose Java for new
development over any other programming language. This is also a very good
reason why you should actually learn Java!

Android Apps are mostly written in Java!

2.4 How Java Works
Computers do not understand natural languages such as English or Greek, so
you need a computer language such as Java to communicate with them. Java
is a very powerful high-level computer language. The Java interpreter (or,
actually, a combination of a compiler and an interpreter) converts Java
language to a language that computers can actually understand, and that is
known as the “machine language”.
In the past, computer languages made use of either an interpreter or a
compiler. Nowadays however, many computer languages including Java use
both a compiler and an interpreter. The Java compiler translates Java
statements into bytecode statements and saves them in a .class file. Later,
when a user wants to execute the file, the Java Virtual Machine (JVM)—
which is actually a combination of a compiler and an interpreter—reads the
.class file and executes it, initially using interpretation. During interpretation,
however, the JVM monitors which sequences of bytecode are frequently
executed and translates them (compiles them) into low-level machine
language code for direct execution on the hardware.

Java bytecode is a machine language executed by the Java Virtual
Machine (JVM).

Instead of a compiler and an interpreter, some languages use two
compilers. In C#, for example, the first compiler translates C# statements
into an intermediate language called Common Intermediate Language
(CIL). The CIL code is stored on disk in an executable file called an
assembly, typically with an extension of .exe. Later, when a user wants to
execute the file, the .NET Framework performs a Just In Time (JIT)
compilation to convert the CIL code into low-level machine language code
for direct execution on the hardware.

In Figure 2–1 you can see how statements written in Java are compiled into
bytecode and how bytecode is then executed using the Java Virtual Machine
(JVM).

Figure 2–1 Executing Java statements using the Java Virtual Machine

Now come some reasonable questions: Why all this trouble? Why does Java
and other languages (such as C#) translate twice? Why are Java statements

not directly translated into low-level machine language code? The answer
lies in the fact that Java is designed to be a platform-independent
programming language. This means that a program is written once but it can
be executed on any device, regardless of its operating system or its
architecture, as long as the appropriate version of Java is installed on it. In
the past, programs had to be recompiled, or even rewritten, for each
computer platform. One of the biggest advantages of Java is that you only
have to write and compile a program once! In Figure 2–2 you can see how
statements written in Java are compiled into bytecode and how bytecode can
then be executed on any platform that has the corresponding Java Virtual
Machine (JVM) installed on it.

Figure 2–2 Executing Java statements on different platforms

Some platforms offer direct hardware support for Java; there are
microcontrollers that can run Java directly on the hardware rather than
using the software Java Virtual Machine. Many mobile phones use ARM-
based processors (CPUs) which have hardware support for directly
executing Java bytecode.

To write and execute Java programs, you need to install two software
applications: the Java Development Kit (JDK) and an Integrated
Development Environment (IDE). The IDE is necessary for writing Java
programs, while JDK is required for executing and debugging them.

2.5 Java Development Kit (JDK)
The Java Development Kit (JDK) is a free-of-charge development kit used
for developing games, desktop, mobile or web applications using the Java
programming language. The JDK provides everything needed to create,
compile, and run Java applications, including the Java Runtime Environment
(JRE), an interpreter/loader (Java), a compiler (javac), an archiver (jar), and
other tools needed for Java development.
JDK is an essential tool for Java developers and can be installed on different
platforms such as Windows, Linux, and macOS.

2.6 Integrated Development Environments
An Integrated Development Environment, or IDE, is a type of software that
includes all the basic tools programmers need to write and test programs. An
IDE typically contains a source code editor and integrates tools such as a
compiler or an interpreter, along with a debugger. Visual Studio Code is an
example of IDE that lets programmers write, execute and debug their source
code.

A “debugger” is a tool that helps programmers to find and correct many
of their mistakes.

2.7 Microsoft Visual Studio
Microsoft Visual Studio is an Integrated Development Environment (IDE)
that provides a great set of tools for many programming languages (via
extensions installed separately) and lets you easily create applications for
Android, iOS, macOS, Windows, and the cloud, as well as websites, web
applications, and web services.
Visual Studio is much more than a text editor. It can indent lines, match
words and brackets, and highlight source code that is written incorrectly. It
also provides automatic code (IntelliSense®), which means that as you type,
it displays a list of possible completions. The IDE also provides hints to help
you analyze your code and find any potential problems. It even suggests
some simple solutions to fix those problems. You can use the Visual Studio
not only to write but also to execute and debug your programs directly from
the IDE.
Visual Studio has a large community of users all around the world and this is
why it comes in so many different flavors. Specifically, in Microsoft's

download page you can download:
► Visual Studio (Community, Professional, or Enterprise), which runs on

Windows
► Visual Studio for Mac, which runs on macOS
► Visual Studio Code, which runs on Windows, macOS, and Linux

In the next chapter (Chapter 3), you will find links guiding you to
instructions on how to install and configure whatever is necessary on your
computer, such as the JDK and Visual Studio Code, on either Windows or
Linux. Then, in Chapter 9, you will discover guidance on using Visual
Studio Code to write, execute and debug Java programs. These instructions
are available on my website. Additionally, you will find numerous tips and
tricks there that will be valuable in your first steps as a budding
programmer!

Chapter 3
Software Packages to Install

3.1 What to Install
For the purposes of this book, you need to install Java Development Kit
(JDK) and an Integrated Development Environment (IDE) such as Visual
Studio Code on your computer.
All the instructions you need regarding how to set up JDK and Visual
Studio Code, on either Windows or Linux are maintained on my website at
the following addresses. This gives me the flexibility to review them
frequently and keep them up-to-date.
https://tinyurl.com/mvsa5mzn
https://www.bouraspage.com/java-setup-write-execute-debug

If you find any inconsistencies, please let me know, and I will update the
instructions as soon as possible. To report issues, visit one of the following
addresses: https://tinyurl.com/28nwh2nf
https://www.bouraspage.com/report-errata

Currently, all you need is to install JDK and an IDE. Instructions on
my website regarding how to write, execute, and debug a Java program
are unnecessary at this stage. You will require these instructions when you
reach Chapter 9.

https://tinyurl.com/mvsa5mzn
https://www.bouraspage.com/java-setup-write-execute-debug
https://tinyurl.com/28nwh2nf
https://www.bouraspage.com/report-errata

Review in “Introductory Knowledge”

Review Crossword Puzzles
1) Solve the following crossword puzzle.

Across 1) Statements or commands.
3) Windows is such a system.
4) A computer component.
6) A category of software.

8) An input device.
11) It's the person who designs computer programs.
14) An output device.
15) Antivirus is such a software.
16) In today's society, almost every task requires the use of this
device.
17) A computer component.
18) All these devices make up a computer.

Down 2) These devices are also computers.
5) Computers can perform so many different tasks because of
their ability to be _____________.
7) Special memory that can only be read.
9) A secondary storage device.
10) A browser is this type of software.
12) An input device.
13) An operating system.

2) Solve the following crossword puzzle.

Across 1) The CPU performs one of these basic operations.
4) A low-level language.
6) Widely used general-purpose, high-level computer
programming language.
8) Java __________ Machine converts the bytecode into low-level
machine language code.
9) This software controls a device that is attached to your
computer.

11) A program that translates statements written in a high-level
language into a separate machine language program.
12) Run a program.
14) A category of programming language.
16) The statements that a programmer writes to solve a problem.

Down 2) All data stored in this type of memory are lost when you shut
down your computer.

3) A scripting language.
5) A program that simultaneously translates and executes the
statements written in a high-level language.
7) A set of statements.
10) Java __________ is a machine language executed by the Java
Virtual Machine.
13) In a machine language all statements are made up of zeros and
_____.
15) Visual Studio Code is such a software.

3) Solve the following crossword puzzle.

Across 6) An input device.
8) An intermediate language that Java uses.

Down 1) A script requires a __________ application in order to
execute.

2) Scripts written in VBA.
3) Java is suitable for developing ________.
4) It performs logical operations.
5) It displays data to the user.
7) A scripting language that can control Microsoft Word.

Review Questions
Answer the following questions.
1) What is hardware?
2) List the five basic components of a typical computer system.
3) What does the “bootstrap loader” program do?
4) Which part of the computer actually executes the programs?
5) Which part of the computer holds the program and its data while the

program is running?
6) Which part of the computer holds data for a long period of time, even

when there is no power to the computer?
7) How do you call the device that collects data from the outside world

and enters them into the computer?
8) List some examples of input devices.
9) How do you call the device that outputs data from the computer to the

outside world?
10) List some examples of output devices.
11) What is software?
12) How many software categories are there, and what are their names?
13) A word processing program belongs to what category of software?
14) What is a compiler?
15) What is an interpreter?

16) What is meant by the term “machine language”?
17) What is source code?
18) What is Java?
19) What is bytecode?
20) What does the acronym JVM stand for?
21) What is the difference between a script and a program?
22) What are some of the possible uses of Java?
23) What is JDK?
24) What does the acronym JDK stand for?
25) What is Visual Studio Code?

Part II
Getting Started with Java

Chapter 4
Introduction to Basic Algorithmic Concepts

4.1 What is an Algorithm?
In technical terms, an algorithm[1] is a strictly defined finite sequence of
well-defined statements (often called instructions or commands) that
provides the solution to a problem or to a specific class of problems for any
acceptable set of input values (if there are any inputs). In other words, an
algorithm is a step-by-step procedure to solve a given problem. The term
finite means that the algorithm must reach an end point and cannot run
forever.
You can find algorithms everywhere in your real life, not just in computer
science. For instance, the process of preparing toast or a cup of tea can be
expressed as an algorithm. Certain steps, in a particular order, must be
followed to achieve your goal.

4.2 The Algorithm for Making a Cup of Tea
The following is an algorithm for making a cup of tea.

1) Put a teabag in a cup.
2) Fill a kettle with water.
3) Boil the water in the kettle.
4) Pour some of the boiled water into the cup.
5) Add milk to the cup.
6) Add sugar to the cup.
7) Stir the tea.
8) Drink the tea.

As you can see, certain steps must be followed. These steps are in a specific
order, even though some of the steps could be rearranged. For example, steps
5 and 6 can be reversed. You could add the sugar first, and the milk
afterwards.

Keep in mind that the order of some steps can probably be changed but
you can't move them far away from where they should be. For example, you
can't move step 3 (“Boil the water in the kettle.”) to the end of the
algorithm, because you will end up drinking a cup of iced tea (and not a
warm one) which is totally different from your initial goal!

4.3 Properties of an Algorithm
In his book The Art of Computer Programming, Volume 1: Fundamental
Algorithms, Donald E. Knuth[3] asserts that an algorithm must satisfy the
following five properties:

► Input: The algorithm must have input values from a specified set.
► Output: The algorithm must produce the output values from a specified

set of input values. The output values are the solution to a problem.
► Finiteness: For any input, the algorithm must terminate after a finite

number of steps.
► Definiteness: All steps of the algorithm must be precisely defined.

Every instruction within the algorithm should be clear and
unambiguous. An algorithm must explicitly describe how the
computation is to be carried out. The property of definiteness ensures
that the agent executing the instructions will always know which
command to perform next. Some examples of algorithms that do not
satisfy the property of definiteness are:
► an algorithm that involves dividing a number by zero without any

checks or safeguards. Dividing by zero is mathematically undefined,
and an algorithm that doesn't handle this scenario can lead to
unexpected results or errors in the computation.

► an algorithm that attempts to calculate the square root of a negative
number without accounting for complex numbers. The square root
of a negative number is not a real number but a complex one. If the
algorithm doesn't handle this properly, it might produce invalid or
nonsensical results.

► Effectiveness: It refers to the ability of an algorithm to consistently and
accurately produce a meaningful and correct result for all possible valid
inputs (including edge cases) within a finite amount of time. The steps

of the algorithm must be basic enough so that, for example, someone
using a pencil and paper could carry them out exactly.

4.4 Okay About Algorithms. But What is a Computer Program
Anyway?

A computer program is nothing more than an algorithm that is written in a
language that computers can understand, like Java, Python, C++, or C#.
A computer program cannot actually make you a cup of tea or cook your
dinner, although an algorithm can guide you through the steps to do it
yourself. However, programs can (for example) be used to calculate the
average value of a set of numbers, or to find the maximum value among
them. Artificial intelligence programs can even play chess or solve logic
puzzles.

4.5 The Three Parties!
There are always three parties involved in an algorithm—the one that writes
the algorithm, the one that executes it, and the one that uses or enjoys it.
Let's take an algorithm for preparing a meal, for example. Someone writes
the algorithm (the author of the recipe book), someone executes it (probably
your mother, who prepares the meal following the steps from the recipe
book), and someone uses it (probably you, who enjoys the meal).
Now consider a real computer program. Let's take a video game, for
example. Someone writes the algorithm in a computer language (the
programmer), something executes it (usually a laptop or a computer), and
someone uses it or plays with it (the user).
Be cautious, as sometimes the terms “programmer” and “user” can be a
source of ambiguity. When you write a computer program, you temporarily
assume the role of “the programmer” but when you use your own program,
you take on the role of “the user”.

4.6 The Three Main Stages Involved in Creating an Algorithm
An algorithm should consist of three stages: data input, data processing, and
results output. This order is specific and cannot be changed.
Consider a computer program that finds the average value of three numbers.
First, the program must prompt (ask) the user to enter the numbers (the data
input stage). Next, the program must calculate the average value of the

numbers (the data processing stage). Finally, the program must display the
result on the computer's screen (the results output stage).
Let's take a look at these stages in more detail.
First stage – Data input

1) Prompt the user to enter a number.
2) Prompt the user to enter a second number.
3) Prompt the user to enter a third number.

Second stage – Data processing
4) Calculate the sum of the three numbers.
5) Divide the sum by 3.

Third stage – Results output
6) Display the result on the screen.

In some rare situations, the input stage may be absent and the computer
program may consist of only two stages. For example, consider a computer
program that is written to calculate the following sum.

1 + 2 + 3 + 4 + 5
In this example, the user must enter no values at all because the computer
program knows exactly what to do. It must calculate the sum of the numbers
1 to 5 and then display the value of 15 on the user's screen. The two required
stages (data processing and results output) are shown here.
First stage – Data input

Nothing to do
Second stage – Data processing

1) Calculate the sum of 1 + 2 + 3 + 4 + 5.
Third stage – Results output

2) Display the result on the screen.
However, what if you want to let the user decide the upper limit of that sum?
What if you want to let the user decide whether to sum the numbers 1 to 5 or
the numbers 1 to 20? In that case, the program must include an input stage at
the beginning of the program to let the user enter that upper limit. Once the
user enters that upper limit, the computer can calculate the result. The three
required stages are shown here.
First stage – Data input

1) Prompt the user to enter a number.
Second stage – Data processing

2) Calculate the sum 1 + 2 + … (up to and including the upper limit the
user entered).

Third stage – Results output
3) Display the results on the screen.

For example, if the user enters the number 6 as the upper limit, the computer
would find the result of 1 + 2 + 3 + 4 + 5 + 6.

4.7 Flowcharts
A flowchart is a graphical method of presenting an algorithm, usually on
paper. It is the visual representation of the algorithm's flow of execution. In
other words, it visually represents how the flow of execution proceeds from
one statement to the next until the end of the algorithm is reached. The basic
symbols that flowcharts use are shown in Table 4-1.

Flowchart Symbols Description

Start/End: Represents the
beginning or the end of an
algorithm. The Start symbol
has one exit and the End
symbol has one entrance.

Arrow: Shows the flow of
execution. An arrow coming
from one symbol and ending at
another symbol shows that
control passes to the symbol
that the arrow is pointing to.
Arrows are always drawn as
straight lines going up and
down or sideways (never at an
angle).

Process: Represents a process
or mathematical (formula)
calculation. The Process

symbol has one entrance and
one exit.

Data Input/Output:
Represents the data input or the
results output. In most cases,
data comes from a keyboard
and results are displayed on a
screen. The Data input/output
symbol has one entrance and
one exit.

Decision: Indicates the point at
which a decision is made.
Based on a given condition
(which can be true or false), the
algorithm will follow either the
right or the left path. The
Decision symbol has one
entrance and two (and always
only two) exits.

Off‐page connectors: Show
continuation of a flowchart
onto another page. They are
used to connect segments on
multiple pages when a
flowchart gets too big to fit
onto one sheet of paper. The
outgoing off‐page connector
symbol has one entrance and
the incoming off‐page
connector symbol has one exit.

Table 4-1 Flowchart symbols and their functions

An example of a flowchart is shown in Figure 4–1. The algorithm prompts
the user to enter three numbers and then calculates their average value and

displays it on the computer screen.

Figure 4–1 Flowchart for an algorithm that calculates and displays the average of three numbers

A flowchart always begins and ends with a Start/End symbol!

Exercise 4.7-1 Finding the Average Value of Three Numbers
Design an algorithm that calculates the average value of three numbers.
Whenever the average value is below 10, a message “Fail!” must be
displayed. Otherwise, if the average value is 10 or above, a message
“Pass!” must be displayed.

Solution

In this problem, two different messages must be displayed, but only one can
appear each time the algorithm is executed; the wording of the message
depends on the average value. The flowchart for the algorithm is presented
here.

To save paper, you can prompt the user to enter all three numbers using
one single oblique parallelogram.

A Decision symbol always has one entrance and two exit paths!

Of course it is very soon for you to start creating your own algorithms. This
particular exercise is quite simple and is presented in this chapter as an
exception, just for demonstration purposes. You need to learn more before
you start creating your own algorithms or even Java programs. Just be
patient! In a few chapters the big moment will come!

4.8 What are ”Reserved Words”?
In a computer language, a reserved word (or keyword) is a word that has a
strictly predefined meaning—it is reserved for special use and cannot be

used for any other purpose. For example, the words Start, End, Read, and
Write in flowcharts have a predefined meaning. They are used to represent
the beginning, the end, the data input, and the results output, respectively.
Reserved words exist in all high-level computer languages. In Java, there are
many reserved words such as if, while, else, and for. However, each
language has its own set of reserved words. For example, the reserved words
else if in Java are written as elif in Python.

4.9 What is the Difference Between a Statement and a
Command?

There is a big discussion on the Internet about whether there is, or is not, any
difference between a statement and a command. Some people prefer to use
the term “statement”, and some others the term “command”. For a novice
programmer, there is no difference; both are instructions to the computer!

4.10 What is Structured Programming?
Structured programming is a software development method that uses
modularization and structured design. Large programs are broken down into
smaller modules and each individual module uses structured code, which
means that the statements are organized in a specific manner that minimizes
errors and misinterpretation. As its name suggests, structured programming
is done in a structured programming language and Java is one such
language.
The structured programming concept was formalized in 1966 by Corrado
Böhm[4] and Giuseppe Jacopini[5]. They demonstrated theoretical computer
program design using sequences, decisions, and iterations.

4.11 The Three Fundamental Control Structures
There are three fundamental control structures in structured programming.

► Sequence Control Structure: This refers to the line-by-line execution,
in which statements are executed sequentially, in the same order in
which they appear in the program, without skipping any of them. It is
also known as a sequential control structure.

► Decision Control Structure: Depending on whether a condition is true
or false, the decision control structure may skip the execution of an
entire block of statements or even execute one block of statements
instead of another. It is also known as a selection control structure.

► Loop Control Structure: This is a control structure that allows the
execution of a block of statements multiple times until a specified
condition is met. It is also known as an iteration control structure or a
repetition control structure.

Every computer program around the world is written in terms of only
these three control structures!

Exercise 4.11-1 Understanding Control Structures Using Flowcharts
Using flowcharts, give an example for each type of control structure.

Solution

Example of a Sequence Control Structure

Example of a Decision Control Structure

Example of a Loop Control Structure

If you didn't quite understand the deeper meaning of these three control
structures, don't worry, because upcoming chapters will analyze them very
thoroughly. Patience is a virtue. All you have to do for now is wait!

4.12 Your First Java Program
Converting a flowchart to a computer language such as Java results in a Java
program. A Java program is nothing more than a text file including Java
statements. Java programs can even be written in your text editor
application! Keep in mind, though, that using Visual Studio Code to write
Java programs is a much better solution due to all of its included features
that can make your life easier.

A Java source code is saved on your hard disk with the default .java file
extension.

A Java program must always contain a main method, as shown here.
public static void main(String[] args) throws Exception {

// Java code goes here
}

Here is a very simple algorithm that displays three messages on the screen.

And here is the same algorithm written as a Java program.
public static void main(String[] args) throws Exception {

System.out.println("Hello World!");
System.out.println("Hallo Welt!");
System.out.println("The End");

}

Note that Java requires that all statements be terminated with a
semicolon.

4.13 What is the Difference Between a Syntax Error, a Logic
Error, and a Runtime Error?

When high-level language code is written or executed, three types of errors
may occur: syntax errors, logic errors, and runtime errors.
A syntax error is a mistake such as a misspelled keyword, a missing
punctuation character, or a missing closing bracket. The syntax errors are
detected by the compiler or the interpreter. If you try to execute a Java
program that contains a syntax error, you will get an error message on your
screen and the program won't execute. You must correct any errors and then
try to execute the program again.

Some IDEs, such as Visual Studio Code, detect these errors as you type
and underline the erroneous statements with a wavy red line.

A logic error is an error that prevents your program from doing what you
expected it to do. With logic errors you get no warning at all. Your code
compiles and runs but the result is not the expected one. Logic errors are
hard to detect. You must review your program thoroughly to find out where
your error is. For example, consider a Java program that prompts the user to
enter three numbers, and then calculates and displays their average value. In
this program, however, the programmer made a typographical error (a
“typo”); one of their statements divides the sum of the three numbers by 5,
and not by 3 as it should. Of course the Java program executes as normal,
without any error messages, prompting the user to enter three numbers and
displaying a result, but obviously not the correct one! It is the programmer's
responsibility to find and correct the erroneously written Java statement, not
the computer, the interpreter or the compiler! Computers are not that smart
after all!
A runtime error is an error that occurs during the execution of a program. A
runtime error can cause a program to end abruptly or even cause system
shut-down. Such errors are the most difficult errors to detect. There is no
way to be sure, before executing the program, whether this error is going to
happen, or not. You can suspect that it may happen though! For example,
running out of memory or a division by zero causes a runtime error.

A logic error can be the cause of a runtime error!
Logic errors and runtime errors are commonly referred to as "bugs", and

are often found during the debugging process, before the software is
released. When errors are found after a software has been released to the
public, programmers often release patches, or small updates, to fix the
errors.

4.14 What “Debugging” Means
Debugging is the process of finding and reducing the number of defects
(bugs) in a computer program, in order to make it perform as expected.
There is a myth about the origin of the term “debugging”. In 1940, while
Grace Hopper[6] was working on a Mark II Computer at Harvard University,
her associates discovered a bug (a moth) stuck in a relay (an electrically

operated switch). This bug was blocking the proper operation of the Mark II
computer. So, while her associates where trying to remove the bug, Grace
Hopper remarked that they were “debugging” the system!

4.15 Commenting Your Code
When you write a small and easy program, anyone can understand how it
works just by reading it line-by-line. However, long programs are difficult to
understand, sometimes even by the same person who wrote them.
Comments are extra information that can be included in a program to make it
easier to read and understand. Using comments, you can add explanations
and other pieces of information, including:

► who wrote the program
► when the program was created or last modified
► what the program does
► how the program works

Comments are for human readers. Compilers and interpreters ignore any
comments you may add to your programs.

However, you should not over-comment. There is no need to explain every
line of your program. Add comments only when a particular portion of your
program is hard to follow.
In Java, you can add comments using one of the following methods:

► double slashes //……
► slash–asterisk, asterisk–slash delimiters /* …… */

The following program demonstrates how to use both types of commenting.
Usually double slashes (//) are used for commenting one single line,
whereas the slash-asterisk, asterisk-slash delimiters /* …… */ are used for
commenting multiple lines at once.
/*

Created By Bouras Aristides
Date created: 12/25/2003
Date modified: 04/03/2008

Description: This program displays some messages on the screen
*/
public static void main(String[] args) throws Exception {

System.out.println("Hello Zeus!"); //It displays a message on the screen

//Display a second message on the screen
System.out.println("Hello Hera!");
/* Display a third message on screen */ System.out.println("Γεια σας");

//This is a comment System.out.println("The End");
}

As you can see in the preceding program, you can add comments above a
statement or at the end of it, but not in front of it. Look at the last statement,
which is supposed to display the message “The End”. This statement is
never executed because it is considered part of the comment.

If you add comments using the delimiters /* …… */ in front of a
statement, the statement is still executed. In the preceding example, the
Greek message “Γεια σας”, even though it is written next to some comments,
is still executed. It is advisable, however, not to follow this writing style
because it can make your code difficult to read.

Comments are not visible to the user of a program while the program
runs.

4.16 User-Friendly Programs
What is a user-friendly program? It's one the user considers a friend instead
of an enemy, one that is easy for a novice user.
If you want to write user-friendly programs you have to put yourself in the
shoes of the user. Users want the computer to do their job their way, with a
minimum of effort. Hidden menus, unclear labels and directions, and
misleading error messages can all make a program user-unfriendly!
The law that best defines user-friendly designs is the Law of Least
Astonishment: “The program should act in a way that least astonishes the
user”. This law is also commonly referred to as the Principle of Least
Astonishment (POLA).

4.17 Review Questions: True/False
Choose true or false for each of the following statements.

1) A recipe for a meal is actually an algorithm.
2) Algorithms are used only in computer science.
3) An algorithm can run forever.
4) In an algorithm, you can relocate a step in any position you wish.

5) An algorithm must produce the correct output values for at least one set
of input values.

6) Computers can play chess.
7) An algorithm can always become a computer program.
8) Programming is the process of creating a computer program.
9) There are always three parties involved in a computer program: the

programmer, the computer, and the user.
10) The programmer and the user can sometimes be the same person.
11) It is possible for a computer program to output no results.
12) A flowchart is a computer program.
13) A flowchart is composed of a set of geometric shapes.
14) A flowchart is a method used to represent an algorithm.
15) To represent an algorithm, you can design a flowchart without using

any Start/End symbols.
16) You can design a flowchart without using any Process symbols.
17) You can design a flowchart without using any Data input/output

symbols.
18) A flowchart must always include at least one Decision symbol.
19) In a flowchart, a Decision symbol can have one, two, or three exit

paths, depending on the given problem.
20) Reserved words are all those words that have a strictly predefined

meaning.
21) Structured programming includes structured design.
22) Java is a structured computer language.
23) The basic principle of structured programming is that it includes only

four fundamental control structures.
24) One statement, written ten times, is considered a loop control structure.
25) Decision control structure refers to the line-by-line execution.
26) A misspelled keyword is considered a logic error.
27) A Java program can be executed even though it contains logic errors.
28) If you leave an exclamation mark at the end of a Java statement, it is

considered a syntax error.

29) If you leave an exclamation mark at the end of a Java statement, it
cannot prevent the whole Java program from being executed.

30) One of the advantages of structured programming is that no errors are
made while writing a computer program.

31) Logic errors are caught during compilation.
32) Runtime errors are caught during compilation
33) Syntax errors are the most difficult errors to detect.
34) A program that calculates the area of a triangle but outputs the wrong

results contains logic errors.
35) When a program includes no output statements, it contains syntax

errors.
36) A program must always contain comments.
37) If you add comments to a program, the computer can more easily

understand it.
38) You cannot add comments above a statement.
39) Comments are not visible to the users of a program.
40) A program is called user-friendly if it can be used easily by a novice

user.
41) The acronym POLA stands for “Principle of Least Amusement”.

4.18 Review Questions: Multiple Choice
Select the correct answer for each of the following statements.

1) An algorithm is a strictly defined finite sequence of well-defined
statements that provides the solution to
a) a problem.
b) a specific class of problems.
c) both of the above are correct.

2) Which of the following is not a property that an algorithm must satisfy?
a) effectiveness
b) fittingness
c) definiteness
d) input

3) A computer program is
a) an algorithm.
b) a sequence of instructions.
c) both of the above

4) When someone writes a recipe, they are the
a) “programmer”
b) “user”
c) none of the above

5) Which of the following does not belong in the three main stages
involved in creating an algorithm?
a) data protection
b) data input
c) results output
d) data processing

6) A flowchart can be
a) presented on a piece of paper.
b) entered directly into a computer as is.
c) both of the above

7) A rectangle in a flowchart represents
a) an input/output operation.
b) a processing operation.
c) a decision.
d) none of the above

8) Which of the following is/are control structures?
a) a decision
b) a sequence
c) a loop
d) All of the above are control structures.

9) Which of the following Java statements contains a syntax error?
a) System.out.println("Hello Poseidon")

b) System.out.println("It's me! I contain a syntax
error!!!");

c) System.out.println("Hello Athena");

d) none of the above
10) Which of the following System.out.println statements is actually

executed?
a) System.out.println("Hello Apollo);

b) /* System.out.println("Hello Artemis"); */

c) //This will be executed// System.out.println("Hello
Ares");

d) /* This will be executed */ System.out.println("Hello
Aphrodite");

e) none of the above

Chapter 5
Variables and Constants

5.1 What is a Variable?
In computer science, a variable is a location in the computer's main memory
(RAM) where a program can store a value and change it as the program
executes.
Picture a variable as a transparent box in which you can insert and hold one
thing at a time. Because the box is transparent, you can also see what it
contains. Also, if you have two or more boxes you can give each box a
unique name. For example, you could have three boxes, each containing a
different number, and you could name the boxes numberA, numberB, and
numberC.

The boxes named numberA, numberB and numberC in the example contain the
numbers 13, 8, and 4, respectively. Of course, you can examine or even alter
the contained value of each one of these boxes at any time.
Now, let's say that someone asks you to find the sum of the values of the first
two boxes and then store the result in the last box. The steps you must follow
are: 1) Look at the first two boxes and examine the values they contain.

2) Use your CPU (this is your brain) to calculate the sum (the result).
3) Insert the result (which is the value of 21) in the last box. However,

since each box can contain only one single value at a time, the value 4
is actually replaced by the number 21.

The boxes now look like this.

In a flowchart, the action of storing a value in a variable is represented by a

left arrow

This action is usually expressed as “Assign a value, or the result of an
expression, to a variable”. The left arrow is called the value assignment
operator.

Note that this arrow always points to the left. You are not allowed to use
right arrows. Also, on the left side of the arrow only one single variable must
exist.

In real computer science, the three boxes are actually three individual
regions in main memory (RAM), named numberA, numberB and numberC.

When a program instructs the CPU to execute the following statement
numberC ← numberA + numberB
it follows the same three-step process as in the previous example.

1) The numbers 13 and 8 are transferred from the RAM's regions named
numberA and numberB to the CPU.
(This is the first step, in which you examined the values contained in
the first two boxes).

2) The CPU calculates the sum of 13 + 8.
(This is the second step, in which you used your brain to calculate the
sum, or result).

3) The result, 21, is transferred from the CPU to the RAM's region named
numberC, replacing the existing number 4.
(This is the third step, in which you inserted the result in the last box).

After execution, the RAM looks like this.

While a Java program is running, a variable can hold various values, but
only one value at a time. When you assign a value to a variable, this value
remains stored until you assign a new value replacing the old one.

The content of a variable can change to different values, but its name will
always be the same because the name is just an identifier of a location in
memory.

A variable is one of the most important elements in computer science
because it helps you interact with data stored in the main memory (RAM).
Soon, you will learn all about how to use variables in Java.

5.2 What is a Constant?
Sometimes, you may need to use a value that cannot change while the
program is running. Such a value is called a constant. In simple terms, a
constant can be thought of as a locked variable. This implies that when a
program begins to run, a value is assigned to the constant, and thereafter,
nothing can alter that value while the program is in progress. For example, in
a financial program an interest rate can be declared as a constant.
A descriptive name for a constant can also improve the readability of your
program and help you avoid some errors. For example, let's say that you are
using the value 3.14159265 (but not as a constant) at many points
throughout your program. If you make a typographic error when typing the
number, this will produce the wrong results. But, if this value is given a
name, any typographical error in the name is detected by the compiler, and
you are notified with an error message.

In a flowchart, you can represent the action of setting a constant equal to a
value with the equals (=) sign.

This book uses uppercase characters to distinguish a constant from a
variable.

Consider an algorithm that lets the user enter the prices of three different
products and then calculates and displays the 20% Value Added Tax (known
as VAT) for each product. The flowchart in Figure 5–1 shows this process
when no constant is used.

Figure 5–1 Calculating the 20% VAT for three products without the use of a constant Even though this
algorithm is absolutely correct, the problem is that the author used the 20% VAT rate (20/100) three

times. If this were an actual computer program, the CPU would be forced to calculate the result of the
division (20/100) three individual times.

Generally speaking, division and multiplication are CPU-time
consuming operations that must be avoided when possible.

A much better solution would be to use a variable, as shown in Figure 5–2.
This reduces the number of division operations and also decreases the
potential for typographical errors.

Figure 5–2 Calculating the 20% VAT for three products using a variable, vat This time the division
(20/100) is calculated only once, and then its result is used to calculate the VAT of each product. But

even now, the algorithm (which might later become a computer program) isn't perfect; vat is a variable
and any programmer could accidentally change its value below in the program.

The ideal solution would be to change the variable vat to a constant VAT, as

shown in

Figure 5–3 Calculating the 20% VAT for three products using a constant, VAT

Note that when a constant is declared in a flowchart, the equals (=)
sign is used instead of the left arrow.

This last solution is the best choice for many reasons.
► No one, including the programmer, can change the value of constant

VAT just by accidentally writing a statement such as VAT ← 0.60 in any
position of the program.

► The potential for typographical errors is minimized.
► The number of arithmetic operations is kept as low as possible.
► If one day the finance minister decides to increase the Value Added Tax

rate from 20% to 22%, the programmer will need to change just one
line of code!

5.3 How Many Types of Variables and Constants Exist?

Many different types of variables and constants exist in most computer
languages. The reason for this diversity is the different types of data each
variable or constant can hold. Most of the time, variables and constants hold
the following types of data.

► Integers: An integer value is a positive or negative number without any
fractional part, such as 5, 100, 135, −25, and −5123.

► Reals: A real value is a positive or negative number that includes a
fractional part, such as 5.1, 7.23, 5.0, 3.14, and −23.78976. Real values
are also known as floats.

► Booleans[7]: A Boolean variable (or constant) can hold only one of two
values: true or false.

► Characters: A character is an alphanumeric value (a letter, a symbol,
or a digit), and it is usually enclosed in single or double quotes, such as
“a”, 'c', or “@”. In computer science, a sequence of characters is known
as a string!!! Probably the word “string” makes you visualize
something wearable, but unfortunately it's not. Please keep your dirty
precious mind focused on computer science! Examples of strings are
“Hello Zeus”, “I am 25 years old”, or “Peter Loves Jane For Ever”.

In Java, strings must be enclosed in double quotes.

5.4 Rules and Conventions for Naming Variables and Constants
in Java

Certain rules must be followed when you choose a name for your variable or
constant.

► The name of a variable or constant should only consist of Latin
characters (English uppercase or lowercase characters), numbers, the
dollar sign ($), and the underscore character (_). Especially for
constants, even though lowercase letters are permitted, it is advisable to
use only uppercase letters. This convention aids in visually
distinguishing constants from variables. Examples of variable names
are firstName, lastName1, and age while examples of constant names
are VAT, and COMPUTER_NAME.

► Variable and constant names are case-sensitive, meaning there is a
distinct difference between uppercase and lowercase characters. For

example, myVAR, myvar, MYVAR, and MyVar are actually four different
names.

► No space characters are allowed. If a variable or constant name consists
of more than one word, you can use the underscore character (_)
between the words or start each word (except the first one) capitalized
(Camel Case convention). For example, the variable name student
first name is incorrect. Instead, you might use student_first_name,
or even better, studentFirstName.

► A valid variable or constant name can start with a letter, or an
underscore. Numbers are allowed, but they cannot be used at the
beginning of the name. For example, the variable name 1studentName is
not properly written. Instead, you might use something like
studentName1 or student1Name.

► A variable or constant name is usually chosen in a way that describes
the meaning and the role of the data it contains. For example, a variable
that holds a temperature value might be named temperature, temp, or
even t.

► Do not use any of the reserved words of Java as a variable or constant
name. For example, the name while cannot be a valid variable or
constant name since it is a reserved word in Java.

When naming variables (or constants) in Java, the dollar sign ($)
character should be avoided.

The “Camel Case convention” is a style for naming identifiers
(variables, subprograms, classes etc.) in computer programming. It is called
"Camel Case" because the capital letters in the middle of the name resemble
the humps of a camel. There are two main variations of Camel Case: a)
Lower Camel Case (or Camel Case), where the first letter of the identifier
starts with a lowercase letter, and the first letter of each subsequent word
starts with an uppercase letter; and b) Upper Camel Case (or Pascal Case),
which is similar to Lower Camel Case, but also, the first letter of the
identifier starts with an uppercase letter.

The Lower Camel Case convention is often used for naming variables
and subprograms, while the Upper Camel Case is for naming classes. You
will learn more about subprograms and classes in Part VII and Part VIII
correspondingly.

5.5 What Does the Phrase “Declare a Variable” Mean?
Declaration is the process of reserving a portion in main memory (RAM) for
storing the content of a variable. In many high-level computer languages
(including Java), the programmer must write a specific statement to reserve
that portion in the RAM before the variable can be used. In most cases, they
even need to specify the variable type so that the compiler or the interpreter
knows exactly how much space to reserve.
Here are some examples showing how to declare a variable in different high-
level computer languages.

Declaration Statement High‐level Computer Language

Dim sum As Integer Visual Basic

int sum; C#, C, C++, Java, and many more

sum: Integer; Pascal, Delphi

var sum; Javascript

5.6 How to Declare Variables in Java
Java is a strongly typed programming language. This means that each
variable must have a specific data type associated with it. In Java there are
eight primitive data types: byte, short, int, long, float, double, boolean, or
char. Which one to use depends on the given problem! To be more specific:
► type byte can hold an integer between −127 and +128

► type short can hold an integer between −32768 and +32767
► type int can hold an integer between −231 and +231 − 1
► type long can hold an integer between −263 and +263 − 1
► type float can hold a real of single precision ► type double can hold a

real of double precision ► type boolean can hold only two possible
values: that is, true or false ► type char can hold a single character or a
integer between 0 and +65535.

In many computer languages, there is one more variable type called
“string”, which can hold a sequence of characters. These sequences of
characters, or strings are usually enclosed in double or single quotes, such
as “Hello Zeus”, “I am 25 years old”, and so on. Java also supports strings,
but keep in mind that a string in Java is not a primitive data type. Without
going into detail, a string in Java is declared the same way as you declare a
primitive data type but internally Java stores and handles them in a quite
different way.

To declare a variable, the general form of the Java statement is
type name [= value];

where
► type can be byte, short, int, long, float, double, boolean, char, or

even String.
► name is a valid variable name. It should follow the Lower Camel Case

convention as well as all the rules for naming variables presented in
Section 5.4.

► value is optional. If supplied, it can be any valid initial value.
Next are examples presenting the declaration of some variables in Java.
int number1; boolean found; String firstName; String studentName;

Note that, type String is written with a capital “S”.

Below are examples demonstrating the declaration and direct assignment of
an initial value to some variables

int num = 5; String name = "Hera"; char favoriteCharacter = 'w';
which are equivalent to the following:

int num; String name; char favoriteCharacter; num = 5;
name = "Hera"; favoriteCharacter = 'w';

In Java, assigning a value to a variable is accomplished using the equals
(=) sign. This operation is equivalent to the left arrow in flowcharts.

Note that in Java you assign a value to a variable of type String using
double quotes (" "), but you assign a value to a variable of type char using
single quotes (' ').

Last but not least, you can declare many variables of the same type on one
line by separating them with commas.
int a, b; double x, y, z; long w = 3, u = 2;

5.7 How to Declare Constants in Java
You can declare constants in Java using the sequence of keywords static
and final. The general form of the statement is as follows.
static final type NAME = value;

where
► type can be byte, short, int, long, float, double, boolean, char, or

even String.
► NAME is a valid constant name. It should follow all the rules and

conventions for naming constants presented in Section 5.4.
► value is any valid value.

The following examples declare some constants in Java.
static final double VAT = 0.22; static final int NUMBER_OF_PLAYERS = 25; static final
String COMPUTER_NAME = "pc01"; static final String FAVORITE_SONG = "We are the world";

static final char FAVORITE_CHARACTER = 'w';

Note that in Java you declare a constant of type String using double
quotes (" "), but you declare a constant of type char using single quotes (' ').

Once a constant is defined, its value cannot be altered while the program
is running.

Java requires that all statements be terminated with a semicolon (;).
Even though the name of a constant can contain lowercase letters, it is

advisable to use only uppercase letters. This helps you to visually distinguish
constants from variables.

5.8 Review Questions: True/False
Choose true or false for each of the following statements.

1) A variable is a location in the computer's secondary storage device.
2) For a value assignment operator in a flowchart, you can use either a left

or a right arrow.
3) The content of a variable can change while the program executes.
4) The content of a constant can change while the program executes.

5) The value 10.0 is an integer.
6) A Boolean variable can hold only one of two values.
7) The value “10.0” enclosed in double quotes is a real value.
8) In computer science, a string is something that you can wear!
9) The name of a variable can contain numbers.

10) A variable can change its name while the program executes.
11) The name of a variable cannot be a number.
12) The name of a constant must always be a descriptive one.
13) The name student name is not a valid variable name.
14) The name STUDENT_NAME is a valid constant name.
15) In Java, the name of a constant can contain uppercase and lowercase

letters.
16) In Java, you need to declare a variable before it can be used.
17) In a Java program, you must always use at least one constant.

5.9 Review Questions: Multiple Choice
Select the correct answer for each of the following statements.

1) A variable is a place in a) a hard disk.
b) a DVD disc.
c) a USB flash drive.
d) all of the above e) none of the above 2) A variable can hold a) one value at a

time.
b) many values at a time.
c) all of the above d) none of the above 3) In general, using constants in a

program a) helps programmers to completely avoid typographical
errors.

b) helps programmers to avoid using division and multiplication.
c) all of the above d) none of the above 4) Which one of the following is an

integer?
a) 5.0
b) −5
c) “5”

d) none of the above is an integer.
5) A Boolean variable can hold the value a) one.

b) “true”.
c) true.
d) none of the above 6) In Java, a character can be a) enclosed in single

quotes.
b) enclosed in double quotes.
c) both of the above 7) Which of the following is not a valid Java

variable?
a) city_name b) cityName c) cityname d) city-name 8) You can define a constant

by using the keywords static final. Once a constant is defined, a) it
can never be changed.

b) it can be changed using the keywords static final again.
c) none of the above is correct.

5.10 Review Exercises
Complete the following exercises.

1) Match each element from the first column with one element from the
second column.

Value Data Type

1. “true” a. Boolean

2. 123 b. Real

3. false c. String

4. 10.0 d. Integer

2) Match each element from the first column with one element from the
second column.

Value Data Type

1. The name of a person a. Boolean

2. The age of a person b. Real

3. The result of the division 5.0/2.0 c. Integer

4. Is it black or is it white? d. String

3) Complete the following table

Value Data
Type Declaration and Initialization

The name of my
friend String string name = "Mark";

My address string address = "254 Lookout Rd.
Wilson, NY 27893";

The average daily
temperature

A telephone number string phoneNumber =
"1‐891‐764‐2410";

My Social Security
Number (SSN)

The speed of a car

The number of
children in a family

Chapter 6
Handling Input and Output

6.1 How to Output Messages and Results to a User's Screen?
A flowchart uses the oblique parallelogram and the reserved word “Write”
to display a message or the final results to the user's screen.

where arg1, arg2, and arg3 can be variables, expressions, constant values,
or alphanumeric values enclosed in double quotes.
The oblique parallelogram that you have just seen is equivalent to the
following flowchart fragment.

In Java, you can achieve the same result by using the System.out.print
statement. Its general form is

System.out.print(arg1 + arg2 + arg3 + …);
or the equivalent sequence of statements

System.out.print(arg1); System.out.print(arg2); System.out.print(arg3);
…
The following code fragment:

a = 5;
b = 6;
c = a + b;
System.out.print("The sum of 5 and 6 is " + c);
display the message shown in Figure 6–1.

Figure 6–1 A string and an integer displayed on the screen
In Java, if you want to display a string on the screen, the string must be

enclosed in double quotes.
In the last Java code fragment, note the space character at the end of the

first string, just after the word “is”. If you remove it, the number 11 will get
too close to the last word and the output on the screen will be The sum of 5 and
6 is11

The result of a mathematical expression can also be calculated directly in a
System.out.print statement. The following code fragment displays
exactly the same message as in Figure 6–1.
a = 5;

b = 6;
System.out.print("The sum of 5 and 6 is " + (a + b));

Note that Java requires that all statements be terminated with a
semicolon.

6.2 How to Output Special Characters?
Look carefully at the following example:

public static void main(String[] args) throws Exception {
System.out.print("Hello"); System.out.print("Hallo");
System.out.print("Salut"); }

Although you may believe that these three messages are displayed one
under the other, the actual output result is shown in Figure 6–2.

Figure 6–2 The output result displays on one line In order to output a “line break” you must put the
special sequence of characters \n after every word.

public static void main(String[] args) throws Exception {
System.out.print("Hello\n"); System.out.print("Hallo\n");
System.out.print("Salut\n"); }

or use the Java statement System.out.println as follows
public static void main(String[] args) throws Exception {

System.out.println("Hello"); System.out.println("Hallo");
System.out.println("Salut"); }

Note that it is println, not print. The System.out.println() statement adds a
“line break” at the end of the output.

The output result now appears in Figure 6–3.

Figure 6–3 The output result now displays line breaks Keep in mind that the same result can also be
accomplished with one single statement.

System.out.println("Hello\nHallo\nSalut");

Another useful sequence of characters is the \t which can be used to
create a “tab stop”. The tab character (\t) is useful for aligning output.
public static void main(String[] args) throws Exception {

System.out.println("John\tGeorge"); System.out.println("Sofia\tMary"); }

The output result appears in Figure 6–4.

Figure 6–4 The output result displays tab characters Of course, the same result can be accomplished
with one single statement.

System.out.println("John\tGeorge\nSofia\tMary");

6.3 How to Prompt the User to Enter Data?
Do you recall the three main stages involved in creating an algorithm or a
computer program? The first stage was the “data input” stage, in which the
computer lets the user enter data such as numbers, their name, their
address, or their year of birth.

A flowchart uses the oblique parallelogram and the reserved word “Read”
to let a user enter their data.

where var_name1, var_name2, and var_name3 must be variables only.
The oblique parallelogram that you have just seen is equivalent to the
following flowchart fragment.

When a Read statement is executed, the flow of execution is interrupted
until the user has entered all the data. When data entry is complete, the
flow of execution continues to the next statement. Usually data are entered
from a keyboard.

In Java, data input is accomplished using the class Scanner as shown in the
code that follows.
import java.util.Scanner;

public class App {
static Scanner cin = new Scanner(System.in);
public static void main(String[] args) throws Exception {

String var_name_str;
byte var_name_byte;
short var_name_short;
int var_name_int;
long var_name_long;

double var_name_dbl;
//Read a string from the keyboard
var_name_str = cin.nextLine();
//Read a very short integer from the keyboard
var_name_byte = Byte.parseByte(cin.nextLine());
//Read a short integer from the keyboard

var_name_short = Short.parseShort(cin.nextLine());
//Read an integer from the keyboard
var_name_int = Integer.parseInt(cin.nextLine());
//Read a long integer from the keyboard
var_name_long = Long.parseLong(cin.nextLine());

//Read a real from the keyboard
var_name_dbl = Double.parseDouble(cin.nextLine());

}
}

where
► var_name_str can be any variable of type String.
► var_name_byte can be any variable of type byte.
► var_name_short can be any variable of type short.
► var_name_int can be any variable of type int.
► var_name_long can be any variable of type long.
► var_name_dbl can be any variable of type double.

In order to use the class Scanner you need to import the library Scanner
into your project using the statement import java.util.Scanner.

The statement static Scanner cin = new Scanner(System.in) creates the object
cin of the class Scanner. You will learn more about classes and objects in
Part VIII. Just be patient!

The following example lets the user enter their name and then displays it
with the word “Hello” in front of it.

String name;
name = cin.nextLine(); System.out.print("Hello " + name);

When the cin.nextLine() statement of this example executes, the flow of
execution stops, waiting for the user to enter their name. The
System.out.print("Hello " + name) statement is not yet executed! As
long as the user doesn't enter anything, the computer just waits, as shown
in Figure 6–5.

Figure 6–5 When a cin.nextLine() statement executes, the computer waits for data input.

When the user finally enters their name and hits the “Enter ” key, the
flow of execution then continues to the next System.out.print()
statement as shown in Figure 6–6.

Figure 6–6 The flow of execution continues when the user hits the “Enter ” key.

However, the previous example could be improved if, before each data
input, a “prompt” message is displayed. This makes the program more

user-friendly. For example, look at the following code fragment.
String name;
System.out.print("What is your name? "); name = cin.nextLine();
System.out.print("Hello " + name);

In the preceding code fragment, before the cin.nextLine() statement
executes, the message “What is your name?” (without the double quotes)
is displayed, as shown in Figure 6–7.

Figure 6–7 When a “prompt” message is displayed before the cin.nextLine() statement.

The following code fragment prompts the user to enter their name and age.
String name; byte age;

System.out.print("What is your name? "); name = cin.nextLine();
System.out.print("What is your age? "); age = Byte.parseByte(cin.nextLine());
System.out.print("Wow, you are already " + age + " years old, " + name + "!");

The corresponding flowchart fragment looks like this.

To read a float (a double), that is, a number that contains a fractional part,
you need to use a slightly different statement. The following code
fragment prompts the user to enter the name and the price of a product.
String productName; double productPrice;
System.out.print("Enter product name: "); productName = cin.nextLine();
System.out.print("Enter product price: "); productPrice =
Double.parseDouble(cin.nextLine());

In this book there is a slight difference between the words “prompts” and
“lets”. When an exercise says “Write a Java program that prompts the
user to enter…” this means that you must include a prompt message.
However, when the exercise says “Write a Java program that lets the user
enter…” this means that you are not actually required to include a prompt
message; that is, it is not wrong to include one but you don't have to! The

following example lets the user enter their name and age (but does not
prompt them to).
name = cin.nextLine(); age = Byte.parseByte(cin.nextLine());

What happens here (when the program is executed) is that the computer
displays a text cursor without any prompt message and waits for the user
to enter two values—one for name and one for age. The user, though, must
be a prophet and guess what to enter! Do they have to enter their name
first and then their age, or is it the opposite? So, obviously a prompt
message is pretty much required, because it makes your program more
user-friendly.

6.4 Review Questions: True/False
Choose true or false for each of the following statements.
1) In Java, the word System is a reserved word.
2) The System.out.print() statement can be used to display a message

or the content of a variable.
3) When the cin.nextLine() statement is executed, the flow of

execution is interrupted until the user has entered a value.
4) One single cin.nextLine() statement can be used to enter multiple

data values.
5) Before data input, a prompt message must always be displayed.

6.5 Review Questions: Multiple Choice
Select the correct answer for each of the following statements.
1) The statement System.out.print(hello) displays a) the word “hello”

(without the double quotes).
b) the word “hello” (including the double quotes).
c) the content of the variable hello.
d) none of the above 2) The statement System.out.print("HELLO")

displays a) the word “HELLO” (without the double quotes).
b) the word “HELLO” (including the double quotes).
c) the content of the constant HELLO.

d) none of the above 3) The statement
System.out.print("Hello\nHermes") displays a) the message
“Hello Hermes” (without the double quotes).

b) the word “Hello” in one line and the word “Hermes” in the next
one (without the double quotes).

c) the message “HelloHermes” (without the double quotes).
d) the message “Hello\nHermes” (without the double quotes).
e) none of the above 4) The statement data1data2 = cin.nextLine()
a) lets the user enter a value and assigns it to variable data1.

Variable data2 remains empty.
b) lets the user enter a value and assigns it to variable data1data2.
c) lets the user enter two values and assigns them to variables data1

and data2.
d) none of the above

Chapter 7
Operators

7.1 The Value Assignment Operator
The most commonly used operator in Java is the value assignment operator (
=). For example, the following Java statement assigns a value of 5 to
variable x.
x = 5;

As you read in Chapter 5, this is equivalent to the left arrow used in
flowcharts.

Probably the left arrow used in a flowchart is more convenient and clearer
than the (=) sign because it visually illustrates that the value or the result of
an expression on the right is assigned to a variable on the left.
It's important to note that the (=) sign is not equivalent to the one used in
mathematics. In mathematics, the expression x = 5 is read as “x is equal to
5”. However, in Java the expression x = 5 is read as “assign the value 5 to
x” or “set x equal to 5”. They look the same but they act differently!
For instance, in mathematics, the following two lines are equivalent. The
first one can be read as “x is equal to the sum of y and z” and the second one
as “the sum of y and z is equal to x”.
x = y + z
y + z = x

On the other hand, in Java, these two statements are definitely not
equivalent.
x = y + z;

y + z = x;

The first statement is a valid Java statement, conveying “Assign the sum of y
and z to x”. The second statement, however, is invalid, as it attempts to
assign the value of x to y + z , which is not permissible in Java!

In Java, the variable on the left side of the (=) sign represents a region
in main memory (RAM) where a value can be stored.

On the left side of the (=) sign only one single variable must exist,
whereas on the right side there can be a number, a variable, a string, or even
a complex mathematical expression.

In Table 7-1 you can find some examples of value assignments.

Examples Description

a = 9; Assign a value of 9 to variable a.

b = c; Assign the content of variable c to variable b.

d =
"Hello
Zeus";

Assign the string Hello Zeus to variable d.

d = a +
b;

Calculate the sum of the contents of variables a and b and assign
the result to variable d.

b = x +
1;

Calculate the sum of the content of variable x and 1 and assign
the result to variable b. Please note that the content of variable x
is not altered.

x = x +
1;

Calculate the sum of the content of variable x and 1 and assign
the result back to variable x. In other words, increase variable x
by one.

Table 7-1 Examples of value assignments Confused about the last one? Are you thinking about your
math teachers right now? What would their reaction be if you had written x = x + 1 on the blackboard?
Can you personally imagine a number that equals itself plus one? This statement suggests that 5 is equal

to 6 and 10 is equal to 11, which is, of course, incorrect!

Obviously, things are different in computer science. The statement x = x +
1 is absolutely valid! It instructs the CPU to retrieve the value of variable x
from main memory (RAM), to add 1 to that value, and to assign the result
back to variable x. The old value of variable x is replaced by the new one.
Still don't get it? Let's take a look at how the CPU and main memory (RAM)
cooperate with each other in order to execute the statement x = x + 1.
Let's say that there is a region in memory, named x and it contains the
number 13.

When a program instructs the CPU to execute the statement:
x = x + 1;

the following procedure is carried out: ► the number 13 is transferred from
the RAM's region named x to the CPU; ► the CPU calculates the sum of 13
and 1; and ► the result, 14, is transferred from the CPU to the RAM's
region x replacing the existing number, 13.
After execution, the RAM looks like this.

Now that you have understood everything, let's delve into one last detail. In
Java, you can assign a single value to multiple variables with one single
statement. The following statement assigns the value of 4 to all three
variables a, b, and c.
a = b = c = 4;

7.2 Arithmetic Operators

Just like every high-level programming language, Java supports almost all
types of arithmetic operators.

Arithmetic Operator Description

+ Addition

− Subtraction

* Multiplication

/ Division

% Remainder after integer division (Modulus)

The first two operators are straightforward and need no further explanation.
If you need to multiply two numbers or the content of two variables you
have to use the asterisk (*) symbol. For example, if you want to multiply 2
times y, you must write 2 * y.

In mathematics it is legal to skip the multiplication operator and write 3x,
meaning “3 times x”. In Java, however, you must always use an asterisk
anywhere a multiplication operation exists. This is one of the most common
mistakes novice programmers make when they write mathematical
expressions in Java.

To perform a division, you must use the slash (/) symbol. For example, if
you want to divide 10 by 2, you must write 10 / 2.
However, it's important to note that in Java, the result of the division of two
integers is always an integer. Thus, in the expression 7 / 2, since both
numbers 7 and 2 are integers, the results is 3 (rather than 3.5, as one might
mistakenly expect). In contrast, in the expression 7.0 / 2, where at least one
of the numbers is a real (float), the result is indeed 3.5.
The following three statements are equivalent. They all output the value of
3.5.
System.out.println(7.0 / 2); System.out.println(7 / 2.0); System.out.println(7.0 / 2.0);

The modulus operator (%) returns the remainder of an integer division,
which means that the statement

c = 13 % 3;
assigns a value of 1 to variable c.

The modulus operator (%) can be used with floating-point numbers as well,
but the result is a real (float). For example, the operation

d = 14.4 % 3;
assigns a value of 2.4 (and not 2, as you may mistakenly expect) to variable
d.

Keep in mind that flowcharts are a loose method used to represent an
algorithm. Although the use of the modulus (%) operator is allowed in
flowcharts, this book uses the commonly accepted MOD operator instead!
For example, the Java statement y = 13 % 3 is represented in a flowchart as

In mathematics, as you may already know, you are allowed to use
parentheses (round brackets) as well as braces (curly brackets) and square
brackets, as presented in the following expression.

However, in Java there is no such thing as braces and brackets. Parentheses
are all you have; therefore, the same expression must be written using
parentheses instead of braces or brackets.
y = 5.0 / 2.0 * (3 + 2 * (4 + 7 * (6 – 4.0 / 3.0)));

7.3 What is the Precedence of Arithmetic Operators?
Arithmetic operators follow the same precedence rules as in mathematics,
and these are: multiplication and division are performed first, addition and
subtraction are performed afterwards.

Higher Precedence

Lower precedence

Arithmetic Operators

*, /, %

+, −

When multiplication and division exist in the same expression, and since
both are of the same precedence, they are performed left to right (the same
way as you read), which means that the expression

y = 6 / 3 * 2;

is equivalent to , and assigns a value of 4 to variable y, (division

is performed before multiplication).
If you want, however, the multiplication to be performed before the division,
you can use parentheses to change the precedence. This means that

y = 6 / (3 * 2);

is equivalent to , and assigns a value of 1 to variable y

(multiplication is performed before division).

Keep in mind that it is not possible in Java to write fractions in the form
of or . Forget it! There is no equation editor in Visual Studio Code,

or in any IDE. All fractions must be written on one single line. For example,
 must be written as 6 / 3, and must be written as (4 * x + 5) / 6.

The order of operations can be summarized as follows: 1) Any operations
enclosed in parentheses are performed first.

2) Next, any multiplication and division operations are performed from left
to right.

3) In the end, any addition and subtraction operations are performed from
left to right.

So, in the next example
y = 12 + (20 + 3) - 8 / 4 * 3;

the operations are performed as follows:

7.4 Compound Assignment Operators
Java offers a special set of operators known as compound assignment
operators, which can help you write code faster. These operators are
comprehensively detailed in the table below. An example for each operator
is provided, while the “Equivalent to” column shows the corresponding
statement without using a compound assignment operator.

Operator Description Example Equivalent to

+= Addition assignment a += b; a = a + b;

−= Subtraction assignment a −= b; a = a − b;

*= Multiplication assignment a *= b; a = a * b;

/= Division assignment a /= b; a = a / b;

%= Modulus assignment a %= b; a = a % b;

Bear in mind that in flowcharts, this book only uses the commonly
accepted operators shown in the “Equivalent to” column. For example, the

Java statement a += b is represented in a flowchart as

Exercise 7.4-1 Which Java Statements are Syntactically Correct?
Which of the following Java assignment statements are syntactically
correct?

i) a = −10;

ii) 10 = b;

iii) aB = aB + 1;

iv) a = "COWS";

v) a = COWS;

vi) a + b = 40;

vii) a = 3 b;

viii) a = "true";

ix) a = true;

x) a /= 2;

xi) a += 1;

xii) a =* 2;

Solution i) Correct. It assigns the integer value −10 to variable a.

ii) Wrong. On the left side of the value assignment operator, only
variables can exist.

iii) Correct. It increases variable aB by one.
iv) Correct. It assigns the string “COWS” (without the double quotes) to

variable a.
v) Correct. It assigns the content of constant (or even variable) COWS to

variable a.
vi) Wrong. On the left side of the value assignment operator, only

variables (not expressions) can exist.
vii) Wrong. It should have been written as a = 3 * b.

viii) Correct. It assigns the string “true” (without the double quotes) to
variable a.

ix) Correct. It assigns the value true to variable a.
x) Correct. This is equivalent to a = a / 2.

xi) Correct. This is equivalent to a = a + 1.
xii) Wrong. It should have been be written as a *= 2 (which is equivalent

to a = a * 2).

Exercise 7.4-2 Finding Variable Types
What is the type of each of the following variables?

i) a = 15;

ii) width = "10 meters";

iii) b = "15";

iv) temp = 13.5;

v) b = true;

vi) b = "true";

Solution i) The value 15 belongs to the set of integers, thus the variable a is
an integer.

ii) The value “10 meters” is a text, thus the width variable is a string.
iii) The value “15” is a text, thus the b variable is a string.
iv) The value 13.5 belongs to the set of real numbers, thus the variable

temp is real (float).
v) The value true is Boolean, thus the variable b is a Boolean.

vi) The value “true” is a text, thus the variable b is a string.

7.5 Incrementing/Decrementing Operators
Both, adding 1 to a number, or subtracting 1 from a number, are so
frequently used operations in computer programming that Java incorporates
a special set of operators to do this. Java supports two types of incrementing
and decrementing operators: ► pre-incrementing/decrementing operators
► post-incrementing/decrementing operators Pre-
incrementing/decrementing operators are placed before the variable name,
while post-incrementing /decrementing operators are placed after the
variable name. These four types of operators are shown here.

Operator Description Example Equivalent to

Pre‐incrementing Increment a variable by one ++a; a = a + 1;

Pre‐decrementing Decrement a variable by one −−a; a = a − 1;

Post‐incrementing Increment a variable by one a++; a = a + 1;

Post‐decrementing Decrement a variable by one a−−; a = a − 1;

As you can see in the “Equivalent to” column, it is obvious that you can
achieve the same result by simply using the classic assignment operator (=
). Nevertheless, opting for these new operators is not only more productive
but also enhances efficiency.
Let's see an example with incrementing operators,

a = b = 5;
++a; //This is equivalent to a = a + 1
b++; //This is equivalent to b = b + 1
System.out.println(a); //It displays: 6
System.out.println(b); //It displays: 6

The double slashes (//) indicate that the text that follows is a comment;
thus, it is never executed.

In the previous example, the pre- and post-incrementing operators increment
the variables a and b by one! So, where is the catch? Are these two operators
equivalent? The answer is “yes”, but only in this specific example. In other
cases the answer will likely be “no”. There is a small difference between the
two operators.
Let's spot that difference! The rule is that a pre-incrementing/decrementing
operator performs the increment/decrement operation first and then delivers
the new value. A post-incrementing/decrementing operator delivers the old
value first and then performs the increment/decrement operation. Look
carefully at the next two examples.
a = 5;
b = ++a;
System.out.println(a); //It displays: 6

System.out.println(b); //It displays: 6

and
a = 5;

b = a++;
System.out.println(a); //It displays: 6
System.out.println(b); //It displays: 5

In the first example, variable a is incremented by one and then its new value
is assigned to variable b. In the end, both variables contain a value of 6.
In the second example, the value 5 of variable a is assigned to variable b,
and then variable a is incremented by one. In the end, variable a contains a
value of 6 but variable b contains a value of 5!
To enhance efficiency in a program, incrementing/decrementing operators
can be used directly in an expression, as demonstrated in the following
example.
a1 = a2 = 5;
b = --a1 * 2 - 1;
System.out.println(b); //It displays: 7
System.out.println(a2++ * 2); //It displays: 10
System.out.println(a2); //It displays: 6

7.6 String Operators
Joining two separate strings into a single one is called concatenation. There
are two operators that you can use to concatenate (join) strings as shown in
the table that follows.

Operator Description Example Equivalent to

+ Concatenation a = "Hi" + "
there";

+= Concatenation
assignment a += "Hello";

a = a +
"Hello";

The following code fragment displays “What's up, dude?”
String a, b, c;
a = "What's "; b = "up, "; c = a + b;

c += "dude?";
System.out.println(c);

Exercise 7.6-1 Concatenating Names
Write a Java program that prompts the user to enter their first and last name
(assigned to two different variables). It then joins them in a single string
(concatenation) and displays them on the user's screen.

Solution The Java program is shown here.
public static void main(String[] args) throws Exception {

String firstName, lastName, fullName;
System.out.print("Enter first name: "); firstName = cin.nextLine();

System.out.print("Enter last name: "); lastName = cin.nextLine();
fullName = firstName + " " + lastName; System.out.println(fullName); }

Note the extra space character added between the first and last name.

7.7 Review Questions: True/False
Choose true or false for each of the following statements.

1) The statement x = 5 can be read as “Variable x is equal to 5”.
2) The value assignment operator assigns the result of an expression to a

variable.
3) A string can be assigned to a variable only by using the cin.nextLine()

statement.
4) The statement 5 = y assigns value 5 to variable y.
5) On the right side of a value assignment operator an arithmetic operator

must always exist.
6) On the right side of a value assignment operator only variables can

exist.
7) You cannot use the same variable on both sides of a value

assignment operator.

8) The statement a = a + 1 decrements variable a by one.
9) The statement a = a + (−1) decrements variable a by one.

10) In Java, the word MOD is a reserved word.
11) The statement x = 0 % 5 assigns a value of 5 to variable x.
12) The operation 5 % 0 is not possible.
13) Addition and subtraction have the higher precedence among the

arithmetic operators.
14) When division and multiplication operators co-exist in an expression,

multiplication operations are performed before division.
15) The expression 8 / 4 * 2 is equal to 1.
16) The expression 4 + 6 / 6 + 4 is equal to 9.

17) The expression a + b + c / 3.0 calculates the average value of three
numbers.

18) The statement a += 1 is equivalent to a = a + 1
19) The statement a = "true" assigns a Boolean value to variable a.
20) The statement a = 2·a doubles the content of variable a.
21) The statements a += 2 and a = a − (−2) are not equivalent.
22) The statement a −= a + 1 always assigns a value of −1 to variable a.
23) The statement a = "George" + " Malkovich" assigns the value

“GeorgeMalkovich” (without the double quotes) to the variable a.
24) The following code fragment satisfies the property of definiteness.

double a, b, x;
a = Double.parseDouble(cin.nextLine()); b = Double.parseDouble(cin.nextLine()); x
= a / (b - 7);

System.out.println(x);

7.8 Review Questions: Multiple Choice
Select the correct answer for each of the following statements.

1) Which of the following Java statements assigns a value of 10.0 to
variable a?
a) 10.0 = a; b) a ← 10.0; c) a = 100.0 / 10.0; d) none of the above 2) The

statement a = b can be read as a) assign the content of variable a to
variable b.

b) variable b is equal to variable a.
c) assign the content of variable b to variable a.
d) none of the above 3) The expression 0 % 10 + 2 is equal to a) 7.
b) 2.
c) 12.
d) none of the above 4) Which of the following Java statements is

syntactically correct?
a) a = 4 * 2y − 8 / (4 * q); b) a = 4 * 2 * y − 8 / 4 * q); c) a = 4

* 2 * y − 8 / (4 */ q); d) none of the above 5) Which of the
following Java statements is syntactically correct?

a) a * 5 = a; b) a = a * 5; c) a =* 5; d) none of the above 6) Which of the
following Java statements assigns the value “George Malkovich”

(without the double quotes) to the variable a?
a) a = "George" + " " + "Malkovich"; b) a = "George" + "

Malkovich"; c) a = "George " + "Malkovich"; d) all of the above 7) The
following code fragment
x = 2;
x++;

does not satisfy the property of a) finiteness.
b) definiteness.
c) effectiveness.
d) none of the above 8) The following code fragment

double a, x; a = Double.parseDouble(cin.nextLine()); x = 1 / a;
does not satisfy the property of a) finiteness.
b) input.
c) definiteness.
d) none of the above

7.9 Review Exercises
Complete the following exercises.

1) Which of the following Java assignment statements are syntactically
correct?

i) a ← a + 1; ii) a += b; iii) a b = a b + 1; iv) a = a + 1; v) a = hello; vi) a =
40"; vii) a = b · 5; viii) a =+ "true"; ix) fdadstwsdgfgw = 1; x) a = a * 5;

2) What is the type of each of the following variables?
i) a = "false"; ii) w = false; iii) b = "15 meters"; iv) weight = "40"; v) b =

13.0; vi) b = 13; 3) Match each element from the first column with one
element from the second column.

Operation Result

i) 1 / 2.0 a) 100

ii) 1.0 / 2 * 2 b) 0.25

iii) 0 % 10 * 10 c) 0

iv) 10 % 2 + 7 d) 0.5

e) 7

f) 1.0

4) What displays on the screen after executing each of the following code
fragments?

i)
a = 5;
b = a * a + 1;
System.out.println(b++);

ii)
a = 9;
b = a / 3 * a;
System.out.println(b + 1);

5) What displays on the screen after executing each of the following code
fragments?

i)
a = 5;
a += a − 5;
System.out.println(a);

ii)
a = 5;
a = a + 1;
System.out.println(a);

6) What is the result of each of the following operations?
i) 21 % 5

ii) 10 % 2

iii) 11 % 2

iv) 10 % 6 % 3

v) 0 % 3

vi) 100 / 10 % 3

7) What displays on screen after executing each of the following code
fragments?

i)
a = 5;
b = 2;
c = a % (b + 1);

d = (b + 1) % (a + b);
System.out.println(c + " * " + d);

ii)
a = 4;
b = 8;
a += 1;
double c = a * b / 10 % b; System.out.println(c);

8) Calculate the result of the expression a % b for the following cases.
i) a = 20, b = 3

ii) a = 15, b = 3
iii) a = 22, b = 3
iv) a = 0, b = 3
v) a = 3, b = 1

vi) a = 2, b = 2
9) Calculate the result of the expression b * (a % b) + a / b for each of

the following cases.
i) a = 10, b = 5

ii) a = 10, b = 2
10) What displays on the screen after executing the following code

fragment?
a = "My name is"; a += " ";
a = a + "George Malkovich"; System.out.println(a);

11) Fill in the gaps in each of the following code fragments so that
they both display a value of 5.

i)
a = 2;
a = a - …… ;
System.out.println(a);

ii)
a = 4;
b = a * 0.5;
b += a;
a = b - …… ;
System.out.println(a);

12) What displays on the screen after executing the following code
fragment?
city = "California"; California = city;
System.out.println(city + " " + California + " California");

Chapter 8
Trace Tables

8.1 What is a Trace Table?
A trace table is a technique used to test algorithms or computer programs for
logic errors that occur while the algorithm or program executes.
The trace table simulates the flow of execution. Statements are executed step
by step, and the values of variables change as an assignment statement is
executed.
Trace tables are useful for educational purposes. They are typically employed
by novice programmers to help them visualize how a particular algorithm or
program works and to assist them in detecting logic errors.
A typical trace table is shown here.

Step Statement Notes variable1 variable2 variable3

1

2

…

Let's see a trace table in action! For the following Java program, a trace table
is created to determine the values of the variables in each step.
public static void main(String[] args) throws Exception {

int x, y, z;
x = 10; y = 15; z = x * y; z++;
System.out.println(z); }

The trace table for this program is shown below. Notes are optional, but they
help the reader to better understand what is really happening.

Step Statement Notes x y z

1 x = 10 The value 10 is assigned to variable x. 10 ? ?

2 y = 15 The value 15 is assigned to variable y. 10 15 ?

3 z = x * y
The result of the product x * y is assigned
to z. 10 15 150

4 z++ Variable z is incremented by one. 10 15 151

5 .println(z) It displays: 151

Exercise 8.1-1 Creating a Trace Table
Create a trace table to determine the values of the variables in each step of the
Java program for two different executions.
The input values for the two executions are: (i) 0.3, and (ii) 4.5.
public static void main(String[] args) throws Exception {

double a, b, c;
b = Double.parseDouble(cin.nextLine()); c = 3; c = c * b; a = 10 * c; a = a % 10;
System.out.println(a); }

Solution i) For the input value of 0.3, the trace table looks like this.

Step Statement Notes a b c

1 b = Double.parseD… User enters value 0.3 ? 0.3 ?

2 c = 3 ? 0.3 3.0

3 c = c * b ? 0.3 0.9

4 a = 10 * c 9.0 0.3 0.9

5 a = a % 10 9.0 0.3 0.9

6 .println(a) It displays: 9.0

ii) For the input value of 4.5, the trace table looks like this.

Step Statement Notes a b c

1 b = Double.parseD… User enters value 4.5 ? 4.5 ?

2 c = 3 ? 4.5 3.0

3 c = c * b ? 4.5 13.5

4 a = 10 * c 135.0 4.5 13.5

5 a = a % 10 5.0 4.5 13.5

6 .println(a) It displays: 5.0

Exercise 8.1-2 Creating a Trace Table
What result is displayed when the following program is executed?
public static void main(String[] args) throws Exception {

String Ugly, Beautiful, Handsome;

Ugly = "Beautiful"; Beautiful = "Ugly"; Handsome = Ugly;
System.out.println("Beautiful"); System.out.println(Ugly);
System.out.println(Handsome); }

Solution Let's create a trace table to find the output result.

Step Statement Notes Ugly Beautiful Handsome

1 Ugly = "Beautiful"

The string
“Beautiful”
is assigned
to the
variable
Ugly.

Beautiful ? ?

2 Beautiful = "Ugly"

The string
“Ugly” is
assigned to
the
variable
Beautiful.

Beautiful Ugly ?

3 Handsome = Ugly

The value
of variable
Ugly is
assigned to
the
variable
Handsome.

Beautiful Ugly Beautiful

4 .println("Beautiful") It displays: Beautiful

5 .println(Ugly) It displays: Beautiful

6 .println(Handsome) It displays: Beautiful

Exercise 8.1-3 Swapping Values of Variables
Write a Java program that lets the user enter two values, in variables a and b.
At the end of the program, the two variables must swap their values. For
example, if variables a and b contain the values 5 and 7 respectively, after
swapping their values, variable a must contain the value 7 and variable b must
contain the value 5!

Solution The following code fragment, even though it may seem correct, is
erroneous and doesn't really swap the values of variables a and b!
int a, b;
a = Integer.parseInt(cin.nextLine()); b = Integer.parseInt(cin.nextLine());
a = b;

b = a;
System.out.println(a); System.out.println(b);

Let's see why! Suppose the user enters two values, 5 and 7. The trace table is
shown here.

Step Statement Notes a b

1 a =
Integer.parseI…

User enters the value 5 5 ?

2 b =
Integer.parseI…

User enters the value 7 5 7

3 a = b
The value of variable b is assigned to variable
a. Value 5 is lost! 7 7

4 b = a
The value of variable a is assigned to variable
b

7 7

5 .println(a) It displays: 7

6 .println(b) It displays: 7

Oops! Where is the value 5?
The solution wasn't so obvious after all! So, how do you really swap values
anyway?
Consider two glasses: a glass of orange juice (called glass A), and a glass of
lemon juice (called glass B). If you want to swap their content, all you must do
is find and use one extra empty glass (called glass C).

The steps that must be followed are: 1) Empty the contents of glass A (orange
juice) into glass C.

2) Empty the contents of glass B (lemon juice) into glass A.

3) Empty the contents of glass C (orange juice) into glass B.

Swapping completed successfully!
You can follow the same steps to swap the contents of two variables in Java.
public static void main(String[] args) throws Exception {

int a, b, c;
a = Integer.parseInt(cin.nextLine()); b = Integer.parseInt(cin.nextLine());

c = a; //Empty the contents of glass A (orange juice) into glass C
a = b; //Empty the contents of glass B (lemon juice) into glass A b = c; //Empty the
contents of glass C (orange juice) into glass B
System.out.println(a); System.out.println(b); }

The text after double slashes (//) is considered a comment and is never
executed.

Exercise 8.1-4 Swapping Values of Variables – An Alternative Approach
Write a Java program that lets the user enter two integer values, in variables a
and b. In the end, the two variables must swap their values. Then, use a trace
table with input values 5 and 7 to confirm the correctness of your code.

Solution Since the variables contain numeric values, you can use the
following Java program (as an alternative approach).
public static void main(String[] args) throws Exception {

int a, b;
a = Integer.parseInt(cin.nextLine()); b = Integer.parseInt(cin.nextLine());
a = a + b; b = a - b; a = a - b;
System.out.println(a + " " + b); }

Let's now use a trace table with input values 5 and 7 to confirm that the
variables a and b correctly swap their content.

Step Statement Notes a b

1 a = Integer.parseI… User enters value 5 5 ?

2 b = Integer.parseI… User enters value 7 5 7

3 a = a + b 12 7

4 b = a ‐ b 12 5

5 a = a ‐ b 7 5

6 .println(a + " " + b) It displays: 7 5

The disadvantage of this method is that it cannot swap the contents of
alphanumeric variables (strings).

8.2 Review Questions: True/False
Choose true or false for each of the following statements.

1) A trace table is a technique for testing a computer.
2) Trace tables help a programmer find errors in a computer program.
3) You cannot execute a computer program without first creating its

corresponding trace table.
4) In order to swap the values of two integer variables, you always need an

extra variable.

8.3 Review Exercises
Complete the following exercises.

1) Create a trace table to determine the values of the variables in each step of
the Java program when a value of 3 is entered.
public static void main(String[] args) throws Exception {

double a, b, c, d;
a = Double.parseDouble(cin.nextLine());
b = a + 10; a = b * (a - 3); c = 3 * b / 6; d = c * c; d--;

System.out.println(d); }

2) Create a trace table to determine the values of the variables in each step of
the Java program for three different executions.
The input values for the three executions are: (i) 3, (ii) 4, and (iii) 1.
public static void main(String[] args) throws Exception {

int a, b, c, d;
a = Integer.parseInt(cin.nextLine());
a = (a + 1) * (a + 1) + 6 / 3 * 2 + 20; b = a % 13; c = b % 7; d = a * b * c;
System.out.println(a + ", " + b + ", " + c + ", " + d); }

3) Create a trace table to determine the values of the variables in each step of
the Java program for two different executions.
The input values for the two executions are: (i) 8, 4; and (ii) 4, 4
public static void main(String[] args) throws Exception {

int a, b, c, d, e;
a = Integer.parseInt(cin.nextLine()); b = Integer.parseInt(cin.nextLine());
c = a + b; d = 1 + a / b * c + 2; e = c + d; c += d + e; e--;
d -= c + d % c; System.out.println(c + ", " + d + ", " + e); }

Chapter 9
Using Visual Studio Code

9.1 Write, Execute and Debug Java Programs
So far, you have learned some solid basics about Java programming. Now
it's time to explore the process of entering programs into the computer,
executing them, observing their performance, examining how they display
results, and learning techniques for debugging them.

Debugging is the process of finding and reducing the number of defects
(bugs) in a computer program to make it perform as expected.

As stated in Section 2.6, an Integrated Development Environment (IDE) is
a type of software that enables programmers to write, execute and debug
their source code. Visual Studio Code is such an example.
All the instructions you need regarding how to write, execute and debug
Java programs on either Windows or Linux are maintained on my website
at the following addresses. This gives me the flexibility to review them
frequently and keep them up-to-date.
https://tinyurl.com/mvsa5mzn
https://www.bouraspage.com/java-setup-write-execute-debug

If you find any inconsistencies, please let me know, and I will update the
instructions as soon as possible. To report issues, visit one of the following
addresses:
https://tinyurl.com/28nwh2nf
https://www.bouraspage.com/report-errata

https://tinyurl.com/mvsa5mzn
https://www.bouraspage.com/java-setup-write-execute-debug
https://tinyurl.com/28nwh2nf
https://www.bouraspage.com/report-errata

Review in “Getting Started with Java”

Review Crossword Puzzles
1) Solve the following crossword puzzle.

Across
2) These errors are hard to detect.
3) A control structure.
6) It shows the flow of execution in a flowchart.
8) A graphical method of presenting an algorithm.
10) ____________ programming is a software development
method that uses modularization and structured design.
14) Strictly defined finite sequence of well-defined statements that
provides the solution to a problem.
15) The term ________ means that the algorithm must reach an
end point and cannot run forever.

17) This flowchart symbol has one entrance and two exits.
18) Logic errors and runtime errors are commonly referred to as
______.
19) It must be possible to perform each step of the algorithm
correctly and in a finite amount of time. This is one of the
properties an algorithm must satisfy, and it is known as ________.

Down
1) The principle that best defines user-friendly designs.
4) This represents a mathematical (formula) calculation in a
flowchart.
5) Data _______________ is one of the three main stages
involved in creating an algorithm.
7) A word that has a strictly predefined meaning in a computer
language.
9) A programming language.
11) Statement.
12) The person who uses a program.
13) A control structure.
15) Real.
16) One of the properties an algorithm must satisfy.

2) Solve the following crossword puzzle.

Across
1) An alphanumeric value.
7) A misspelled keyword is a _________ error.
9) A positive or negative number without any fractional part.
12) Extra information that can be included in a program to make it
easier to read and understand.
13) This type of variable can hold only one of two values.
16) An error that occurs during the execution of a program.
17) This control structure is also known as a selection control
structure.
18) This is a CPU-time consuming arithmetic operation.

19) A value that cannot change while the program is running.
20) A user-________ program is one that is easy for a novice user.

Down
2) A _________ table is a technique used to test algorithms or
computer programs for logic errors that occur while the algorithm
or program executes.
3) Any arithmetic operations enclosed in ___________ are
performed first.
4) The left arrow in flowcharts is called the value _____________
operator.
5) A symbol character permitted in a variable name.
6) It represents a location in the computer's main memory (RAM)
where a program can store a value.
8) The process of reserving a portion in main memory (RAM) for
storing the contents of a variable.
10) Joining two separate strings into a single one.
11) The process of finding and reducing the number of logic
errors in a computer program.
14) The modulus operator returns the __________ of an integer
division.
15) The operator (/) returns the __________ of a division.

Review Questions
Answer the following questions.
1) What is an algorithm?
2) Give the algorithm for making a cup of coffee.
3) What are the five properties an algorithm must satisfy?
4) Can an algorithm execute forever?
5) What is a computer program?
6) What are the three parties involved in an algorithm?
7) What are the three stages that make up a computer program?
8) Can a computer program be made up of two stages?

9) What is a flowchart?
10) What are the basic symbols that flowcharts use?
11) What is meant by the term “reserved words”?
12) What is structured programming?
13) What are the three fundamental control structures of structured

programming?
14) Give an example of each control structure using flowcharts.
15) Can a programmer write Java programs in a text editor?
16) What is a syntax error? Give one example.
17) What is a logic error? Give one example.
18) What is a runtime error? Give one example.
19) What type of error is caused by a misspelled keyword?
20) What does the term “debugging” mean?
21) Why should programmers add comments in their code?
22) Why should programmers write user-friendly programs?
23) What does the acronym POLA stand for?
24) What is a variable?
25) How many variables can exist on the left side of the left arrow in

flowcharts?
26) In which part of a computer are the values of the variables stored?
27) What is a constant?
28) How can constants be used to help programmers?
29) Why should a programmer avoid division and multiplication

operations whenever possible?
30) Name at least three primitive data types of variables in Java.
31) What does the phrase “declare a variable” mean?
32) How do you declare a variable in Java? Give an example.
33) How do you declare a constant in Java? Give an example.
34) What symbol is used in flowcharts to display a message?
35) What are the special character sequences for a “line break” and “tab

stop” in Java?

36) Which symbol is used in flowcharts to let the user enter data?
37) Which character is used in Java as a value assignment operator, and

how is it represented in a flowchart?
38) Which arithmetic operators does Java support?
39) What is a modulus operator?
40) Summarize the rules for the precedence of arithmetic operators.
41) What compound assignment operators does Java support?
42) What incrementing/decrementing operators does Java support?
43) What string operators does Java support?
44) What is a trace table?
45) What are the benefits of using a trace table?
46) Describe the steps involved in swapping the contents (either numeric

or alphanumeric) of two variables.
47) Two methods for swapping the values of two variables have been

proposed in this book. Which one is better, and why?
48) Describe the way in which Visual Studio Code helps you find syntax

errors.
49) Describe the ways in which Visual Studio Code helps you find logic

errors.

Part III
Sequence Control Structures

Chapter 10
Introduction to Sequence Control Structures

10.1 What is the Sequence Control Structure?
Sequence control structure refers to the line-by-line execution by which
statements are executed sequentially, in the same order in which they
appear in the program, without skipping any of them. They might, for
example, carry out a series of read or write operations, arithmetic
operations, or assignments to variables.
The following program shows an example of Java statements that are
executed sequentially.

 Project_10.1
public static void main(String[] args) throws Exception {

double num, result;
//Prompt the user to enter value for num System.out.print("Enter a number: "); num

= Double.parseDouble(cin.nextLine());
//Calculate the square of num result = num * num;
//Display the result on user's screen System.out.println("The square of " + num +
" is " + result); }

The sequence control structure is the simplest of the three fundamental
control structures that you learned about in Section 4.11. The other two
structures are “decision structure” and “loop structure”. All problems in
computer programming can be solved using only these three structures!

In Java, you can add comments using double slashes (//). Comments
are for human readers. Compilers and interpreters ignore them.

Exercise 10.1-1 Calculating the Area of a Rectangle
Write a Java program that prompts the user to enter the length of the base
and the height of a rectangle, and then calculates and displays its area.

Solution You probably know from school that you can calculate the area
of a rectangle using the following formula: Area = Base × Height In
Section 4.6, you learned about the three main stages involved in creating
an algorithm: data input, data processing, and results output.

In this exercise, these three main stages are as follows: ► Data input –
the user must enter values for Base and Height ► Data processing – the
program must calculate the area of the rectangle ► Results output – the
program must display the area of the rectangle calculated in the previous
stage.
The solution to this problem is shown here.

 Project_10.1-1
public static void main(String[] args) throws Exception {

double area, b, h;
//Data input - Prompt the user to enter values for base and height
System.out.print("Enter the length of base: "); b =
Double.parseDouble(cin.nextLine()); System.out.print("Enter the length of height:
"); h = Double.parseDouble(cin.nextLine());

//Data processing - Calculate the area of the rectangle area = b * h;
//Results output - Display the result on user's screen System.out.println("The
area of the rectangle is " + area); }

Exercise 10.1-2 Calculating the Area of a Circle
Write a Java program that calculates and displays the area of a circle.

Solution You can calculate the area of a circle using the following
formula: Area = π · Radius2

The value of π is a known quantity, which is approximately 3.14159.
Therefore, the only value the user must enter is the value for Radius.
In this exercise, the three main stages that you learned in Section 4.6 are as
follows: ► Data input – the user must enter a value for Radius ► Data
processing – the program must calculate the area of the circle ► Results
output – the program must display the area of the circle calculated in the
previous stage.
The solution to this problem is shown here.

 Project_10.1-2a
public static void main(String[] args) throws Exception

{
double area, radius;

//Data input - Prompt the user to enter a value for
radius System.out.print("Enter the length of radius:
"); radius = Double.parseDouble(cin.nextLine());

//Data processing - Calculate the area of the circle
area = 3.14159 * radius * radius;

//Results output - Display the result on user's
screen System.out.println("The area of the circle is

" + area); }

A much better approach would be with to use a constant, PI.
 Project_10.1-2b

static final double PI = 3.14159;
public static void main(String[] args) throws Exception

{
double area, radius;

//Data input - Prompt the user to enter a value for
radius System.out.print("Enter the length of radius:
"); radius = Double.parseDouble(cin.nextLine());

//Data processing - Calculate the area of the circle
area = PI * radius * radius;

//Results output - Display the result on user's
screen System.out.println("The area of the circle is

" + area); }

Note that the constant PI is declared outside of the method main.

Exercise 10.1-3 Where is the Car? Calculating Distance Traveled
A car starts from rest and moves with a constant acceleration along a
straight horizontal road for a specified time. Write a Java program that
prompts the user to enter the acceleration and the time the car traveled,
and then calculates and displays the distance traveled. The required
formula is

where ► S is the distance the car traveled, in meters (m) ► uo is the
initial velocity (speed) of the car, in meters per second (m/sec) ► t is the
time the car traveled, in seconds (sec) ► a is the acceleration, in meters
per second2 (m/sec2) Solution Since the car starts from rest, the initial
velocity (speed) u0 is zero. Thus, the formula becomes

and the Java program is Project_10.1-3
public static void main(String[] args) throws Exception {

double S, a, t;
System.out.print("Enter acceleration: "); a = Double.parseDouble(cin.nextLine());

System.out.print("Enter time traveled: "); t = Double.parseDouble(cin.nextLine());
S = 0.5 * a * t * t; System.out.println("Your car traveled " + S + " meters"); }

Exercise 10.1-4 Kelvin to Fahrenheit
Write a Java program that converts a temperature value from degrees
Fahrenheit[8] to its degrees Kelvin[9] equivalent. The required formula is
1.8 × Kelvin = Fahrenheit + 459.67

Solution The formula given cannot be used in your program as is. In a
computer language such as Java, it is not permitted to write

1.8 * kelvin = fahrenheit + 459.67;

In the position on the left side of the (=) sign, only a variable must
exist. This variable is actually a region in RAM where a value can be
stored.

According to the wording of this exercise, the program must convert
degrees Fahrenheit to degrees Kelvin. The value for degrees Fahrenheit is
a known value and it is provided by the user, whereas the value for degrees
Kelvin is what the Java program must calculate. So, you need to solve for
Kelvin. After a bit of work, the formula becomes

and the Java program is shown here.
 Project_10.1-4

public static void main(String[] args) throws Exception {

double fahrenheit, kelvin;
System.out.print("Enter a temperature in Fahrenheit: "); fahrenheit =
Double.parseDouble(cin.nextLine());
kelvin = (fahrenheit + 459.67) / 1.8;
System.out.println("The temperature in Kelvin is " + kelvin); }

Exercise 10.1-5 Calculating Sales Tax
An employee needs a program to enter the before-tax price of a product
and calculate its final price. Assume a value added tax (VAT) rate of 19%.

Solution The sales tax can be easily calculated. You must multiply the
before-tax price of the product by the VAT rate. Be careful—the sales tax
is not the final price, but only the tax amount.

The after-tax price can be calculated by adding the initial before-tax price
and the sales tax that you calculated beforehand.
In this program you can use a constant named VAT for the sales tax rate
(VAT rate).

 Project_10.1-5
static final double VAT = 0.19;

public static void main(String[] args) throws Exception {
double priceAfterTax, priceBeforeTax, salesTax;
System.out.print("Enter the before-tax price: "); priceBeforeTax =
Double.parseDouble(cin.nextLine());
salesTax = priceBeforeTax * VAT; priceAfterTax = priceBeforeTax + salesTax;

System.out.println("The after-tax price is: " + priceAfterTax); }

Note that the constant VAT is declared outside of the method main.

Exercise 10.1-6 Calculating a Sales Discount
Write a Java program that prompts the user to enter the price of an item
and the discount rate offered (on a scale of 0 to 100). The program must
then calculate and display the new price.

Solution The discount amount can be easily calculated. You must multiply
the before-discount price of the product by the discount value and then
divide it by 100. The division is necessary since the user enters a value for
the discount on a scale of 0 to 100. Be careful—the result is not the final
price but only the discount amount.

The final after-discount price can be calculated by subtracting the discount
amount that you calculated beforehand from the initial before-discount
price.

 Project_10.1-6
public static void main(String[] args) throws Exception {

int discount; double discountAmount, priceAfterDiscount, priceBeforeDiscount;
System.out.print("Enter the price of a product: "); priceBeforeDiscount =

Double.parseDouble(cin.nextLine());

System.out.print("Enter the discount offered (0 - 100): "); discount =
Integer.parseInt(cin.nextLine());
discountAmount = priceBeforeDiscount * discount / 100; priceAfterDiscount =

priceBeforeDiscount - discountAmount;
System.out.println("The price after discount is: " + priceAfterDiscount); }

Exercise 10.1-7 Calculating a Sales Discount and Tax
Write a Java program that prompts the user to enter the before-tax price of
an item and the discount rate offered (on a scale of 0 to 100). The program
must then calculate and display the new price. Assume a sales tax rate of
19%.

Solution This exercise is just a combination of the previous two exercises!

 Project_10.1-7
static final double VAT = 0.19;

public static void main(String[] args) throws Exception {
int discount; double discountAmount, priceAfterDiscount, priceAfterTax; double
priceBeforeDiscount, salesTax;
System.out.print("Enter the price of a product: "); priceBeforeDiscount =
Double.parseDouble(cin.nextLine());
System.out.print("Enter the discount offered (0 - 100): "); discount =

Integer.parseInt(cin.nextLine());
discountAmount = priceBeforeDiscount * discount / 100; priceAfterDiscount =
priceBeforeDiscount - discountAmount;
salesTax = priceAfterDiscount * VAT; priceAfterTax = priceAfterDiscount +
salesTax;

System.out.println("The discounted after-tax price is: " + priceAfterTax); }

10.2 Review Exercises
Complete the following exercises.
1) In the United States, a car's fuel economy is measured in miles per

gallon, or MPG. A car's MPG can be calculated using the following

formula:

Write a Java program that prompts the user to enter the total
number of miles they have driven and the gallons of gas used.
Then the program must calculate and display the car's MPG.

2) Write a Java program that prompts the user to enter values for
base and height, and then calculates and displays the area of a

triangle. The required formula is

3) Write a Java program that prompts the user to enter two
angles of a triangle, and then calculates and displays the
third angle.
Hint: The sum of the measures of the interior angles of
any triangle is 180 degrees 4) Write a Java program that lets
a student enter their grades from four tests, and then
calculates and displays the average grade.

5) Write a Java program that prompts the user to enter a value for
radius, and then calculates and displays the perimeter of a
circle. The required formula is Perimeter = 2πR

6) Write a Java program that prompts the user to enter a
value for diameter in meters, and then calculates and
displays the volume of a sphere. The required formula is

where R is the radius of the sphere.
7) Regarding the previous exercise, which of the

following results output statements are correct?
Which one would you choose to display the
volume of the sphere on the user's screen, and
why?
a) System.out.println(V);
b) System.out.println(V cubic meters);
c) System.out.println(V + cubic meters);
d) System.out.println("The volume of the

sphere is: " V); e) System.out.println("The
volume of the sphere is: " + V);

f) System.out.println("The volume of the
sphere is: " + V + cubic meters);

g) System.out.println("The volume of the
sphere is: " + V + " cubic meters");

8) Write a Java program that prompts the user to

enter their first name, middle name, last name,
and their preferred title (Mr., Mrs., Ms., Dr.,
and so on) and displays them formatted in all
the following ways.

Title FirstName MiddleName LastName
FirstName MiddleName LastName LastName,
FirstName LastName, FirstName MiddleName
LastName, FirstName MiddleName, Title
FirstName LastName For example, assume that
the user enters the following: First name:
Aphrodite Middle name: Maria Last name:
Boura Title: Ms.

The program must display the user's name
formatted in all the following ways: Ms. Aphrodite
Maria Boura Aphrodite Maria Boura Boura,
Aphrodite Boura, Aphrodite Maria Boura,
Aphrodite Maria, Ms.

Aphrodite Boura 9) Write a Java program that
prompts the user to enter a value for diameter,
and then calculates and displays the radius, the
perimeter, and the area of a circle. For the same
diameter, it must also display the volume of a
sphere.

10) Write a Java program that prompts the user to enter the
charge for a meal in a restaurant, and then calculates and
displays the amount of a 10% tip, 7% sales tax, and the
total of all three amounts.

11) A car starts from rest and moves with a constant
acceleration along a straight horizontal road for a
specified time. Write a Java program that prompts the
user to enter the distance traveled as well as the minutes
and the seconds traveled, and then calculates the
acceleration. The required formula is

where

► S is the distance the car traveled, in meters (m)
► uo is the initial velocity (speed) of the car, in

meters per second (m/sec) ► t is the time the car
traveled, in seconds (sec) ► a is the acceleration,
in meters per second2 (m/sec2) 12) Write a Java
program that prompts the user to enter a
temperature in degrees Fahrenheit, and then
converts it into its degrees Celsius[10]

equivalent. The required formula is

13) The Body Mass Index (BMI) is often
used to determine whether a person is
overweight or underweight for their
height. The formula used to calculate

the BMI is

Write a Java program that
prompts the user to enter their
weight (in pounds) and height (in
inches), and then calculates and
displays the user's BMI.

14) Write a Java program that prompts
the user to enter the subtotal and
gratuity rate (on a scale of 0 to
100) and then calculates the tip
and total. For example if the user
enters 30 and 10, the Java
program must display “Tip is
$3.00 and total is $33.00”.

15) An employee needs a program to
enter the before-tax price of three
products and then calculate the
final after-tax price of each
product, as well as their average

value. Assume a value added tax
(VAT) rate of 20%.

16) An employee needs a program to
enter the after-tax price of a
product, and then calculate its
before-tax price. Assume a value
added tax (VAT) rate of 20%.

17) Write a Java program that prompts
the user to enter the initial price of
an item and the discount rate
offered (on a scale of 0 to 100),
and then calculates and displays
the final price and the amount of
money saved.

18) Write a Java program that prompts
the user to enter the electric meter
reading in kilowatt-hours (kWh)
at the beginning and end of a
month. The program must
calculate and display the amount
of kWh consumed and the amount
of money that must be paid given
a cost of each kWh of $0.06 and a
value added tax (VAT) rate of
20%.

19) A yacht factory manager needs a
program to calculate the profit or
loss the factory makes during the
period of one year. Here's some
information: ► It costs the factory
$1,000,000 to build a yacht.
► Yachts are sold for

$1,500,000 each.
► The factory pays $250,000 for

insurance each month.

Write a Java program that
prompts the user to enter the
number of yachts sold and then, it
calculates and displays the total
profit or loss as a positive or
negative value correspondingly.

20) Write a Java program that prompts
the user to enter two numbers,
which correspond to current
month and current day of the
month, and then calculates and
displays the number of days that
have elapsed since the beginning
of the year. Assume that each
month has 30 days.

21) Write a Java program that prompts
the user to enter two numbers,
which correspond to current
month and current day of the
month, and then calculates and
displays the number of days until
the end of the year. Assume that
each month has 30 days.

Chapter 11
Manipulating Numbers

11.1 Introduction
Just like every high-level programming language, Java provides many
ready-to-use subprograms (called methods) that you can use whenever and
wherever you wish.

A “subprogram” is simply a group of statements packaged as a single
unit. Each subprogram has a descriptive name and performs a specific
task.

To better understand Java's methods, let's take Heron's[11] iterative formula
that calculates the square root of a positive number.

where
► y is the number for which you want to find the square root ► xn is the n-

th iteration value of the square root of y You might feel a bit
frustrated right now. You could think that you should write a program
to calculate Heron's formula to find the square root of a number, but
this is not true! At present, no one calculates the square root of a
number this way. Fortunately, Java includes a method for that
purpose! This method, actually a small subprogram, has been given
the name Math.sqrt, and all you have to do is call it by its name, and
it will do the job for you. The Math.sqrt method probably uses
Heron's iterative formula or perhaps a formula from another ancient
or modern mathematician. The truth is that you don't really care!
What really matters is that Math.sqrt gives you the right result! An
example is shown here.
x = Double.parseDouble(cin.nextLine()); y = Math.sqrt(x);
System.out.println(y);

Even though Java supports many mathematical subprograms
(methods), this chapter covers only those absolutely necessary for
this book's purpose. However, if you need even more information

you can visit one of the following addresses:
https://tinyurl.com/y5x2v6w7
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lan
g/Math.html

Mathematical subprograms are used whenever you need to
perform math calculations, such as finding the square root, sine,
cosine, absolute value, and so on.

11.2 Useful Mathematical Methods (Subprograms), and
More
Absolute value
Math.abs(number)

This method returns the absolute value of number.
Example Project_11.2a

public static void main(String[] args) throws Exception {
int a, b;
a = -5;
b = Math.abs(a); System.out.println(Math.abs(a)); //It displays: 5
System.out.println(b); //It displays: 5
System.out.println(Math.abs(-5.2)); //It displays: 5.2
System.out.println(Math.abs(5.2)); //It displays: 5.2

}
Pi
Math.PI

This contains the value of π.

Note that Math.PI is a constant, not a method. This is why no parentheses
are used.

https://tinyurl.com/y5x2v6w7
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/Math.html

Example Project_11.2b
public static void main(String[] args) throws Exception {

System.out.println(Math.PI); //It displays: 3.141592653589793
}
Sine
Math.sin(number)

This method returns the sine of number. The value of number must be
expressed in radians. You can multiply by Math.PI / 180 to convert
degrees to radians.
Example Project_11.2c

public static void main(String[] args) throws Exception {
double a, b;
a = Math.sin(3 * Math.PI / 2); //Sine of 3π/2 radians b = Math.sin(270
* Math.PI / 180); //Sine of 270 degrees System.out.println(a + " " + b);
//It displays: -1.0 -1.0

}
Cosine
Math.cos(number)

This method returns the cosine of number. The value of number must be
expressed in radians. You can multiply by Math.PI / 180 to convert
degrees to radians.
Example Project_11.2d

public static void main(String[] args) throws Exception {
double a, b;
a = Math.cos(2 * Math.PI); //Cosine of 2π radians b = Math.cos(360 *
Math.PI / 180); //Cosine of 360 degrees System.out.println(a + " " +
b); //It displays: 1.0 1.0

}
Tangent
Math.tan(number)

This method returns the tangent of number. The value of number must be
expressed in radians. You can multiply by Math.PI / 180 to convert
degrees to radians.
Example Project_11.2e

public static void main(String[] args) throws Exception {
double a;
a = Math.tan(10 * Math.PI / 180); //Tangent of 10 degrees
System.out.println(a); //It displays: 0.17632698070846498

}
String to integer
Integer.parseInt(value)
This method converts a string representation of an integer to its numeric
equivalent.
Example Project_11.2f

public static void main(String[] args) throws Exception {
String s1 = "5"; String s2 = "3"; int k;
k = Integer.parseInt(s1); System.out.println(k); //It displays: 5
System.out.println(Integer.parseInt(s2)); //It displays: 3
System.out.println(s1 + s2); //It displays: 53
System.out.println(Integer.parseInt(s1) + Integer.parseInt(s2)); //It
displays: 8

}
String to real
Double.parseDouble(value)
This method converts a string representation of a real to its numeric
equivalent.
Example Project_11.2g

public static void main(String[] args) throws Exception {
String s1 = "6.5"; String s2 = "3.4"; double x;
x = Double.parseDouble(s1); System.out.println(x); //It displays: 6.5
System.out.println(Double.parseDouble(s2)); //It displays: 3.4
System.out.println(s1 + s2); //It displays: 6.53.4
System.out.println(Double.parseDouble(s1) +
Double.parseDouble(s2)); //It displays: 9.9

}
Integer value (Type casting)
(int)number

This returns the integer portion of number. If number contains a fractional part,
that part is lost during conversion.
Example Project_11.2h

public static void main(String[] args) throws Exception {
double a = 5.4;
System.out.println((int)a); //It displays: 5
System.out.println((int)34); //It displays: 34
System.out.println((int)34.9); //It displays: 34
System.out.println((int)-34.999); //It displays: -34

}

In computer science, type casting is a way of converting a variable of
one data type into another. Note that (int) is not a method. It is just a way
in Java to turn a real into an integer. Also note that if a real contains a
fractional part, that part is lost during conversion.

Real value (Type casting)
(double)number
This returns the number as real.
Example Project_11.2i

public static void main(String[] args) throws Exception {
int a = 5;
System.out.println((double)a); //It displays: 5.0
System.out.println((double)34); //It displays: 34.0
System.out.println((double)-34); //It displays: -34.0
System.out.println(a / 2); //It displays: 2
System.out.println((double)a / 2); //It displays: 2.5
System.out.println((double)a / 2); //It displays: 2.5
System.out.println(a / (double)2); //It displays: 2.5
System.out.println((double)a / (double)2); //It displays: 2.5
System.out.println(a / 2.0); //It displays: 2.5

}

In computer science, type casting is a way of converting a variable of
one data type into another. Note that (double) is not a method. It is just a
way in Java to turn an integer into a real (float).

In Java, the result of the division of two integers is always an integer.
Thus, in the expression a / 2 of the previous example, since both variable a
and number 2 are integers, the results is an integer. If you wish a result of
type double, at least one of the operands of the division must be of type
double.

Power
Math.pow(number, exp)

This method returns the result of number raised to the power of exp.
Example Project_11.2j

public static void main(String[] args) throws Exception {
double a, b, c;
a = 2;
b = 3;
System.out.println(Math.pow(a, b)); //It displays: 8.0
c = Math.pow(3, 2); System.out.println(c); //It displays: 9.0

}

The method Math.pow() serves a dual role. Apart from being used to
calculate the power of a value raised to another value, it is also used to
compute any root of a number using the known mathematical formula

. For example, you can write y = Math.pow(x, 1 / 2.0) to calculate
the square root of x or y = Math.pow(x, 1 / 3.0) to calculate the cubic root of
x!

Random
Math.random()

This method returns a pseudo-random number (real) in the range [0, 1).

Note that this range does not include the 1.

If you want a pseudo-random integer between minimum and maximum you can
use the following formula minimum + (int)(Math.random() * (maximum -
minimum + 1)) Example Project_11.2k

public static void main(String[] args) throws Exception {
//Display a random double in the range [0, 1)
System.out.println(Math.random());

//Display a random integer between 2 and 10
System.out.println(2 + (int)(Math.random() * (10 - 2 + 1)));
//Display a random integer between 20 and 25
System.out.println(20 + (int)(Math.random() * 6)); }

Random numbers are widely used in computer games. For example, an
“enemy” may show up at a random time or move in random directions.
Also, random numbers are used in simulation programs, in statistical
programs, in computer security to encrypt data, and so on.

Round
Math.round(number)

This method returns the closest integer of number.
Example Project_11.2l

public static void main(String[] args) throws Exception {
double a = 5.9;
System.out.println(Math.round(a)); //It displays: 6
System.out.println(Math.round(5.4)); //It displays: 5

}
If you need the rounded value of number to a specified precision, you can use
the following formula: Math.round(number * Math.pow(10, precision)) /
Math.pow(10, precision) Example Project_11.2m

public static void main(String[] args) throws Exception {
double a, y;
a = 5.312;
y = Math.round(a * Math.pow(10, 2)) / Math.pow(10, 2);
System.out.println(y); //It displays: 5.31
a = 5.315;
y = Math.round(a * Math.pow(10, 2)) / Math.pow(10, 2);
System.out.println(y); //It displays: 5.32
//Display 2.345
System.out.println(Math.round(2.3447 * Math.pow(10, 3)) /
Math.pow(10, 3));
//Display 2.345
System.out.println(Math.round(2.3447 * 1000) / 1000); }

Square root

Math.sqrt(number)

This method returns the square root of number, where number can be a positive
value or zero.
Example Project_11.2n

public static void main(String[] args) throws Exception {
double x, y;
System.out.println(Math.sqrt(9)); //It displays: 3.0
System.out.println(Math.sqrt(2)); //It displays: 1.4142135623730951
x = Math.sqrt(8); System.out.println(x); //It displays:
2.8284271247461903
y = Math.round(Math.sqrt(8)); System.out.println(y); //It displays: 3

}

Note how the method Math.sqrt() is nested within the method Math.round().
The result of the inner (nested) method (or methods) is used as an
argument for the outer method. This is a writing style that most
programmers prefer to follow because it helps to save a lot of code lines.
Of course, if you nest too many methods, no one will be able to understand
your code. A nesting of up to four levels is quite acceptable.

Exercise 11.2-1 Calculating the Distance Between Two Points
Write a Java program that prompts the user to enter the coordinates (x, y)
of two points and then calculates the straight line distance between them.
The required formula is

Solution In this exercise, you need to use the method Math.sqrt(), which
returns the square root of a number.

To simplify things, the terms (x1 - x2)2 and (y1 - y2)2 are calculated
individually and the results are assigned to two temporary variables. The
Java program is shown here.

 Project_11.2-1a
public static void main(String[] args) throws Exception

{
double d, x1, x2, xTemp, y1, y2, yTemp;

System.out.println("Enter coordinates for point
A:"); x1 = Double.parseDouble(cin.nextLine()); y1 =

Double.parseDouble(cin.nextLine());
System.out.println("Enter coordinates for point

B:"); x2 = Double.parseDouble(cin.nextLine()); y2 =
Double.parseDouble(cin.nextLine());

xTemp = Math.pow(x1 - x2, 2); yTemp = Math.pow(y1 -
y2, 2);

d = Math.sqrt(xTemp + yTemp);
System.out.println("Distance between points: " + d);

}

Now, let's see another approach. It is actually possible to perform all
operations within the method call. Doing that, the result of the operations
will be used as an argument for the method. This is a writing style that
most programmers prefer to follow because it can save a lot of variables
and code lines. The Java program is shown here.

 Project_11.2-1b
public static void main(String[] args) throws Exception

{
double d, x1, x2, y1, y2;

System.out.println("Enter coordinates for point
A:"); x1 = Double.parseDouble(cin.nextLine()); y1 =

Double.parseDouble(cin.nextLine());
System.out.println("Enter coordinates for point

B:"); x2 = Double.parseDouble(cin.nextLine()); y2 =
Double.parseDouble(cin.nextLine());

d = Math.sqrt(Math.pow(x1 - x2, 2) + Math.pow(y1 -
y2, 2)); System.out.println("Distance between

points: " + d); }

You can nest one subprogram within another. Note how the methods
Math.pow() are nested within the method Math.sqrt(). The result of the inner
(nested) methods is used as an argument for the outer method.

Exercise 11.2-2 How Far Did the Car Travel?
A car starts from rest and moves with a constant acceleration along a
straight horizontal road for a specified distance. Write a Java program
that prompts the user to enter the acceleration and the distance the car

traveled and then calculates the time traveled. The required formula is

where ► S is the distance the car traveled, in meters (m) ► uo is the
initial velocity (speed) of the car, in meters per second (m/sec) ► t is the
time the car traveled, in seconds (sec) ► a is the acceleration, in meters
per second2 (m/sec2) Solution Since the car starts from rest, the initial

velocity (speed) u0 is zero. Thus, the formula becomes

Now, if you solve for time, the final formula becomes

In Java, you can use the Math.sqrt() method, which returns the square
root of a number.

 Project_11.2-2
public static void main(String[] args) throws Exception {

double S, a, t;

System.out.print("Enter acceleration: "); a = Double.parseDouble(cin.nextLine());
System.out.print("Enter distance traveled: "); S =
Double.parseDouble(cin.nextLine());
t = Math.sqrt(2 * S / a);
System.out.println("Your car traveled for " + t + " seconds"); }

11.3 Review Questions: True/False
Choose true or false for each of the following statements.
1) Java methods are small subprograms that solve small problems.
2) Every programmer must use Heron's iterative formula to calculate the

square root of a positive number.
3) The Math.abs() method returns the absolute position of an item.
4) The statement (int)3.59 returns a result of 3.6.
5) The statement y = (int)"two" is a valid Java statement.
6) The statement y = Integer.parseInt("2") is a valid Java statement.
7) The statement (int)3 returns a result of 3.0.
8) The statement (double)3 returns a result of 3.0.

9) The statement y = Double.parseDouble("3.14") is not a valid Java
statement.

10) The Math.PI constant is equal to 3.14.
11) The statement Math.pow(2, 3) returns a result of 6.
12) The statement Math.pow(2, 3) returns a result of 9.
13) The Math.random() method returns a random real (float).
14) There is a 50% possibility that the statement y = (int)

(Math.random() * 2) will assign a value of 1 to variable y.
15) The statement Math.round(3.59) returns a result of 4.
16) To calculate the sine of 90 degrees, you have to write y =

Math.sin(Math.PI / 2) 17) The statement y = Math.sqrt(−2) is valid.
18) The following code fragment satisfies the property of definiteness.

double a, b, x; a = Double.parseDouble(cin.nextLine()); b =
Double.parseDouble(cin.nextLine()); x = a * Math.sqrt(b);
System.out.println(x);

11.4 Review Questions: Multiple Choice
Select the correct answer for each of the following statements.
1) Which of the following calculates the result of the variable a raised to

the power of 2?
a) y = a * a; b) y = Math.pow(a, 2); c) y = a * a / a * a; d) all of the

above 2) What is the value of the variable y when the statement y =
Math.abs(+5.2) is executed?

a) −5.2
b) −5
c) 0.2
d) 5.2
e) none of the above 3) Which of the following calculates the sine of

180 degrees?
a) Math.sin(180) b) Math.sin(Math.PI) c) all of the above d) none of the

above 4) What is the value of the variable y when the statement y =
(int)(5.0 / 2.0) is executed?

a) 2.5

b) 3
c) 2
d) 0.5

5) What is the value of the variable y when the statement y =
Math.pow(Math.sqrt(4), 2) is executed?
a) 4
b) 2
c) 8
d) 16

6) What is the value of the variable y when the statement y =
Math.round(5.2) / 2.0 is executed?
a) 2
b) 2.5
c) 2.6
d) none of the above

11.5 Review Exercises
Complete the following exercises.
1) Create a trace table to determine the values of the variables in each

step of the Java program for two different executions.
The input values for the two executions are: (i) 9, and (ii) 4.
public static void main(String[] args) throws Exception {

double a, b, c;
a = Double.parseDouble(cin.nextLine()); a += 6 / Math.sqrt(a) * 2 + 20.4; b
= Math.round(a) % 4; c = b % 3;

System.out.println(a + ", " + b + ", " + c); }

2) Create a trace table to determine the values of the variables in each
step of the Java program for two different executions.
The input values for the two executions are: (i) −2, and (ii) −3
public static void main(String[] args) throws Exception {

int a, b, c;
a = Integer.parseInt(cin.nextLine());
b = Math.abs(a) % 4 + (int)Math.pow(a, 4); c = b % 5;
System.out.println(b + ", " + c); }

3) Write a Java program that prompts the user to enter an angle θ in
radians and then calculates and displays the angle in degrees. It is
given that 2π = 360ο.

4) Write a Java program that prompts the user to enter the two right
angle sides A and B of a right-angled triangle and then calculates its
hypotenuse. It is known from the Pythagorean[12] theorem that

5) Write a Java program that prompts the user to enter the angle θ
(in degrees) of a right-angled triangle and the length of its
adjacent side, and then calculates the length of the opposite

side. It is known that

Chapter 12
Complex Mathematical Expressions

12.1 Writing Complex Mathematical Expressions
In Section 7.2 you learned all about arithmetic operators but little about how
to use them and how to write your own complex mathematical expressions.
In this chapter, you are going to learn how easy is to convert mathematical
expressions to Java statements.

Arithmetic operators follow the same precedence rules as in
mathematics, which means that multiplication and division are performed
first, and addition and subtraction are performed next. Moreover, when
multiplication and division co-exist in the same expression, and since both
are of the same precedence, these operations are performed left to right.

The method Math.pow() serves a dual role. Apart from being used to
calculate the power of a value raised to another value, it is also used to
compute any root of a number using the known mathematical formula

. For example, you can write y = Math.pow(x, 1 / 3.0) to calculate the
cubic root of x or y = Math.pow(x, 1 / 5.0) to calculate the fifth root of x!

Exercise 12.1-1 Representing Mathematical Expressions in Java
Which of the following Java statements correctly represent the following
mathematical expression?

i) x = 1 * 27 / 10 + z;

ii) x = 1 · 27 / (10 + z);

iii) x = 27 / 10 + z;

iv) x = 27 / (10 + z);

v) x = (1 / 10 + z) * 27;

vi) x = 1 / ((10 + z) * 27);

vii) x = 1 / (10 + z) * 27;

viii) x = 1 / (10 + z) / 27;

Solution i) Wrong. Since the multiplication and the division are performed
before the addition, this is equivalent to .

ii) Wrong. An asterisk must have been used for multiplication.
iii) Wrong. Since the division is performed before the addition, this is

equivalent to .

iv) Correct. This is equivalent to .

v) Wrong. Inside parentheses, the division is performed before the
addition. This is equivalent to .

vi) Wrong. Parentheses are executed first and this is equivalent to
.

vii) Correct. Division is performed before multiplication (left to right).
The term is calculated first and then, the result is multiplied by

27.

viii) Wrong. This is equivalent to .

Exercise 12.1-2 Writing a Mathematical Expression in Java
Write a Java program that calculates the mathematical expression

Solution First, you must distinguish between the data input and the output
result. Obviously, the output result is assigned to y and the user must enter
values for x and z. The solution for this exercise is shown here.

 Project_12.1-2
public static void main(String[] args) throws Exception {

double x, y, z;
x = Double.parseDouble(cin.nextLine()); z = Double.parseDouble(cin.nextLine());
y = 10 * x - (10 - z) / 4; System.out.println("The result is: " + y); }

Exercise 12.1-3 Writing a Complex Mathematical Expression in Java

Write a Java program that calculates the mathematical expression

Assume that the user enters only positive values for x, w, and z.

Solution Oops! Now the expression is more complex! In fact, it is much
more complex! So, let's take a look at a quite different approach. The main
idea is to break the complex expression into smaller, simpler expressions
and assign each sub-result to temporary variables. In the end, you can build
the original expression out of all these temporary variables! This approach
is presented next.

 Project_12.1-3a
public static void main(String[] args) throws Exception {

double denominator, nominator, temp1, temp2, temp3, w,
x, y, z;

x = Double.parseDouble(cin.nextLine()); w =
Double.parseDouble(cin.nextLine()); z =

Double.parseDouble(cin.nextLine());
temp1 = 3 * x * x + 5 * x + 2; temp2 = 7 * w + 1 / z;
temp3 = (3 + x) / 7; nominator = 5 * temp1 / temp2 +

z; denominator = 4 * temp3;
y = nominator / denominator; System.out.println("The

result is: " + y); }

You may say, “Okay, but I wasted so many variables and as everybody
knows, each variable is a portion of main memory. How can I write the
original expression in one single line and waste less memory?”
This job may be a piece of cake for an advanced programmer, but what
about you? What about a novice programmer?
The next method will help you write even the most complex mathematical
expressions without any syntax or logic errors! The rule is very simple.
“After breaking the complex expression into smaller, simpler expressions and
assigning each sub-result to temporary variables, start backwards and
replace each variable with its assigned expression. Be careful though! When

you replace a variable with its assigned expression, you must always enclose
the expression in parentheses!”
Confused? Don't be! It's easier in action. Let's try to rewrite the previous
Java program. Starting backwards, replace variables nominator and
denominator with their assigned expressions. The result is

Note the extra parentheses added.

Now you must replace variables temp1, temp2, and temp3 with their assigned
expressions, and the one-line expression is complete!

It may look scary at the end but it wasn't that difficult, was it?
The Java program can now be rewritten Project_12.1-3b

public static void main(String[] args) throws Exception {
double w, x, y, z;
x = Double.parseDouble(cin.nextLine()); w =
Double.parseDouble(cin.nextLine()); z =
Double.parseDouble(cin.nextLine());
y = (5 * (3 * x * x + 5 * x + 2) / (7 * w + 1 / z) + z) / (4 * ((3 + x) / 7));
System.out.println("The result is: " + y); }

12.2 Review Exercises
Complete the following exercises.

1) Match each element from the first table with one or more elements
from the second table.

Expression

i) 5 / Math.pow(x, 2) * y + Math.pow(x, 3)

ii) 5 / (Math.pow(x, 3) * y) + Math.pow(x, 2)

Expression

a) 5 * y / Math.pow(x, 2) + Math.pow(x, 3)

b) 5 * y / x * x + Math.pow(x, 3)

c) 5 / (x * x * x * y) + x * x

d) 5 / (x * x * x) * y + x * x

e) 5 * y / (x * x) + x * x * x

f) 1 / (x * x * x * y) * 5 + x * x

g) y / (x * x) * 5 + Math.pow(x, 3)

h) 1 / (x * x) * 5 * y + x / 1 * x * x

2) Write the following mathematical expressions in Java using one line of
code for each.

i)

ii)

iii)

iv)

v)

vi)

3) Write a Java program that prompts the user to enter a value for x and
then calculates and displays the result of the following mathematical

expression.

4) Write a Java program that prompts the user to enter a value for x and
then calculates and displays the result of the following mathematical
expression.

Suggestion: Try to write the expression in one line of code.
5) Write a Java program that prompts the user to enter a positive value for

x and w and then calculates and displays the result of the following
mathematical expression.

Suggestion: Try to write the expression in one line of code 6) Write a
Java program that prompts the user to enter a positive value for x and w
and then calculates and displays the result of the following
mathematical expression.

Suggestion: Try to write the expression in one line of code.
7) Write a Java program that prompts the user to enter a positive value for

x and w and then calculates and displays the result of the following
mathematical expression.

Suggestion: Try to write the expression in one line of code 8) Write a
Java program that prompts the user to enter the lengths of all three sides
A, B, and C, of a triangle and then calculates and displays the area of
the triangle. You can use Heron's formula, which has been known for
nearly 2,000 years!

where S is the semi-perimeter

Chapter 13
Exercises With a Quotient and a Remainder

13.1 Introduction
What types of problems might require the use of the quotient and the remainder of an
integer division? While there may not be a simple answer to this question, quotients
and remainders can be used to: ► split a number into individual digits ► examine if
an integer is odd or even ► examine if a number is a multiple of another number
► convert an elapsed time (in seconds) to hours, minutes, and seconds ► convert an
amount of money (in USD) to a number of $100 notes, $50 notes, $20 notes, and such
► calculate the greatest common divisor ► determine if a number is a palindrome
► count the number of digits within a number ► determine how many times a
specific digit occurs within a number Of course, these are some of the uses and
certainly you can find so many others. Next you will see some exercises that make use
of the quotient and the remainder of integer division.

Exercise 13.1-1 Calculating the Quotient and Remainder of Integer Division
Write a Java program that prompts the user to enter two integers and then calculates
the quotient and the remainder of the integer division.

Solution The modulus (%) operator performs an integer division and returns the
integer remainder. Since Java doesn't actually incorporate an arithmetic operator
that calculates the integer quotient, you can use the (int) casting operator to achieve
the same result. The solution is presented here.

 Project_13.1-1
public static void main(String[] args) throws Exception {

int number1, number2, q, r;
System.out.print("Enter first number: "); number1 = Integer.parseInt(cin.nextLine());

System.out.print("Enter second number: "); number2 = Integer.parseInt(cin.nextLine());
q = (int)(number1 / number2); r = number1 % number2; System.out.println("Integer Quotient: " +
q + "\nInteger Remainder: " + r); }

In flowcharts, in order to calculate the quotient and the remainder of an integer
division, you can use the popular DIV and MOD operators. An example is shown here.

In Java, the result of the division of two integers is always an integer. Thus, in the
statement q = (int)(number1 / number2), since variables number1 and number2 are integers, the

(int) casting operator is redundant. However, it is a good practice to keep it there just
for improved readability.

Exercise 13.1-2 Finding the Sum of Digits
Write a Java program that prompts the user to enter a four-digit integer and then
calculates the sum of its digits.

Solution What you should keep in mind here is that statements like this one

number = Integer.parseInt(cin.nextLine());
assign the user-provided four-digit integer to one single variable, number, and not to
four individual variables. So, after the user enters the four-digit integer, the program
must split the integer into its four digits and assign each digit to a separate variable.
Then it can calculate the sum of these four variables and get the required result. There
are two approaches available.

First approach Let's try to understand the first approach using an arithmetic
example. Take the number 6753, for example.

First digit
= 6

The first digit can be isolated if you divide the user‐provided number
by 1000 using the (/) operator and the (int) type casting operator to
get the integer quotient
digit1 = (int)(6753 / 1000)

Remaining
digits =
753

The remaining digits can be isolated if you divide the user‐provided
number by 1000 again, this time using the (%) operator to get the
integer remainder
r = 6753 % 1000

Second
digit = 7

The second digit can be isolated if you divide the remaining digits by
100 using the (/) operator and the (int) type casting operator to get the
integer quotient
digit2 = (int)(753 / 100)

Remaining
digits = 53

The remaining digits are now
r = 753 % 100

Third digit
= 5

The third digit can be isolated if you divide the remaining digits by 10
using the (/) operator and the (int) type casting operator to get the
integer quotient
digit3 = (int)(53 / 10)

Fourth
digit = 3

The last remaining digit, which happens to be the fourth digit, is
digit4 = 53 % 10

The Java program that solves this algorithm is shown here.
 Project_13.1-2a

public static void main(String[] args) throws Exception {
int digit1, digit2, digit3, digit4, number, r, total;

System.out.print("Enter a four-digit integer: "); number =
Integer.parseInt(cin.nextLine());

digit1 = (int)(number / 1000); r = number % 1000;
digit2 = (int)(r / 100); r = r % 100;

digit3 = (int)(r / 10); digit4 = r % 10;
total = digit1 + digit2 + digit3 + digit4;

System.out.println(total); }

The trace table for the program that you have just seen is shown here.

Step Statement Notes number digit1 digit2 digit3 digit4 r total

1 .print("Enter… It displays: Enter a four‐digit integer:

2 number =
Integer.parseInt(…

User
enters
6753

6753 ? ? ? ? ? ?

3 digit1 = (int)
(number / 1000)

6753 6 ? ? ? ? ?

4 r = number % 1000 6753 6 ? ? ? 753 ?

5 digit2 = (int)(r /
100)

6753 6 7 ? ? 753 ?

6 r = r % 100 6753 6 7 ? ? 53 ?

7 digit3 = (int)(r /
10)

6753 6 7 5 ? 53 ?

8 digit4 = r % 10 6753 6 7 5 3 53 ?

9
total = digit1 +
digit2 + digit3 +
digit4

6753 6 7 5 3 53 21

10 .println(total) It displays: 21

To further help you, find below a general purpose Java program that can be used to
split any given integer. Since the length of your program depends on the number of
digits, N, all you have to do is write N−1 pairs of statements.
System.out.print("Enter an N-digit integer: "); number = Integer.parseInt(cin.nextLine());
digit1 = (int)(number / 10N-1); r = number % 10N-1;
digit2 = (int)(r / 10N-2); r = r % 10N-2; .

.

.

digit(N-2) = (int)(r / 100); r = r % 100;
digit(N-1) = (int)(r / 10); digit(N) = r % 10;

For example, if you want to split a six-digit integer, you need to write five pairs of
statements as shown in the program that follows.

 Project_13.1-2b
public static void main(String[] args) throws Exception {
int digit1, digit2, digit3, digit4, digit5, digit6, number,

r;
System.out.print("Enter an six-digit integer: "); number =

Integer.parseInt(cin.nextLine());
digit1 = (int)(number / 100000); r = number % 100000;

digit2 = (int)(r / 10000); r = r % 10000;
digit3 = (int)(r / 1000); r = r % 1000;
digit4 = (int)(r / 100); r = r % 100;

digit5 = (int)(r / 10); digit6 = r % 10;
System.out.print(digit1 + " " + digit2 + " " + digit3 + " ");
System.out.println(digit4 + " " + digit5 + " " + digit6); }

Second approach For a four-digit given integer, the first approach performs three
pairs of divisions—first by 1000, then by 100, and finally by 10—isolating the
digits from left to right. In contrast, the three pairs of divisions in this second
approach are all by 10, isolating the digits from right to left. Once again, to delve
deeper into this approach, let's use an arithmetic example. Consider the same
user-provided number: 6753.

Fourth
digit = 3

The fourth digit can be isolated if you divide the user‐provided number
by 10 using the (%) operator to get the integer remainder
digit4 = 6753 % 10

Remaining
digits =
675

The remaining digits can be isolated if you divide the user‐provided
number by 10 again using the (/) operator and the (int) type casting
operator to get the integer quotient
r = (int)(6753 / 10)

Third digit
= 5

The third digit can be isolated if you divide the remaining digits by 10
using the (%) operator to get the integer remainder
digit3 = 675 % 10

Remaining
digits = 67

The remaining digits are now
r = (int)(675 / 10)

Second
digit = 7

The second digit can be isolated if you divide the remaining digits by
10 using the (%) operator to get the integer remainder
digit2 = 67 % 10

First digit The last remaining digit, which happens to be the first digit, is

= 6 digit1 = (int)(67 / 10)

The Java program for this algorithm is shown here.

 Project_13.1-2c
public static void main(String[] args) throws Exception {

int digit1, digit2, digit3, digit4, number, r, total;
System.out.print("Enter a four-digit integer: "); number =

Integer.parseInt(cin.nextLine());
digit4 = number % 10; r = (int)(number / 10);

digit3 = r % 10; r = (int)(r / 10);
digit2 = r % 10; digit1 = (int)(r / 10);

total = digit1 + digit2 + digit3 + digit4;
System.out.println(total); }

To further help you, find below a general purpose Java program that can be used to
split any given integer. This program uses the second approach. Once again, since the
length of your program depends on the number of the digits, N, all you have to do is
write N−1 pairs of statements.
System.out.print("Enter a N-digit integer: "); number = Integer.parseInt(cin.nextLine());

digit(N) = number % 10; r = (int)(number / 10);
digit(N-1) = r % 10; r = (int)(r / 10); .
.
.
digit3 = r % 10;
r = (int)(r / 10);

digit2 = r % 10;
digit1 = (int)(r / 10);

For example, if you want to split a five-digit integer, you must use four pairs of
statements as shown in the program that follows.

 Project_13.1-2d
public static void main(String[] args) throws Exception {

int digit1, digit2, digit3, digit4, digit5, number, r;
System.out.print("Enter a five-digit integer: "); number =

Integer.parseInt(cin.nextLine());
digit5 = number % 10; r = (int)(number / 10);

digit4 = r % 10; r = (int)(r / 10);
digit3 = r % 10; r = (int)(r / 10);

digit2 = r % 10; digit1 = (int)(r / 10);
System.out.println(digit1 + " " + digit2 + " " + digit3 + " "

+ digit4 + " " + digit5); }

Exercise 13.1-3 Displaying an Elapsed Time

Write a Java program that prompts the user to enter an integer that represents an
elapsed time in seconds and then displays it in the format “DD day(s) HH hour(s)
MM minute(s) and SS second(s)”. For example, if the user enters the number 700005,
the message “8 day(s) 2 hour(s) 26 minute(s) and 45 second(s)” must be displayed.

Solution As you may already know, there are 60 seconds in a minute, 3600 seconds
in an hour (60 × 60), and 86400 seconds in a day (3600 × 24). Let's try to analyze the
number 700005 using the first approach that you learned in the previous exercise.

Days = 8

The number of days can be isolated if you divide the user‐provided
integer by 86400 using the (/) operator and the (int) type casting
operator to get the integer quotient
days = (int)(700005 / 86400)

Remaining
seconds =
8805

The remaining seconds can be isolated if you divide the user‐provided
integer by 86400 again, this time using the (%) operator to get the
integer remainder
r = 700005 % 86400

Hours = 2

The number of hours can be isolated if you divide the remaining
seconds by 3600 using the (/) operator and the (int) type casting
operator to get the integer quotient
hours = (int)(8805 / 3600)

Remaining
seconds =
1605

The remaining seconds are now
r = 8805 % 3600

Minutes =
26

The number of minutes can be isolated if you divide the remaining
seconds by 60 using the (/) operator and the (int) type casting
operator to get the integer quotient
minutes = (int)(1605 / 60)

Seconds =
45

The last remainder, which happens to be the number of seconds left, is
seconds = 1605 % 60

The Java program for this algorithm is as follows.
 Project_13.1-3a

public static void main(String[] args) throws Exception {
int days, hours, minutes, number, r, seconds;

System.out.print("Enter a period of time in seconds: ");
number = Integer.parseInt(cin.nextLine());

days = (int)(number / 86400); // 60 * 60 * 24 = 86400
r = number % 86400;

hours = (int)(r / 3600); // 60 * 60 = 3600
r = r % 3600;

minutes = (int)(r / 60); seconds = r % 60;
System.out.println(days + " day(s) " + hours + " hour(s) ");
System.out.println(minutes + " minute(s) and " + seconds + "

second(s)"); }

You can also solve this exercise using the second approach from the previous
exercise. All you have to do is first divide by 60, then divide by 60 again, and finally
divide by 24, as shown here.

 Project_13.1-3b
public static void main(String[] args) throws Exception {

int days, hours, minutes, number, r, seconds;
System.out.print("Enter a period of time in seconds: ");

number = Integer.parseInt(cin.nextLine());
seconds = number % 60; r = (int)(number / 60);

minutes = r % 60; r = (int)(r / 60);
hours = r % 24; days = (int)(r / 24);

System.out.println(days + " day(s) " + hours + " hour(s) ");
System.out.println(minutes + " minute(s) and " + seconds + "

second(s)"); }

Exercise 13.1-4 Reversing a Number
Write a Java program that prompts the user to enter a three-digit integer and then
builds and displays its reverse. For example, if the user enters the number 875, the
program must display 578.

Solution To isolate the three digits of the user-provided integer, you can use either
first or second approach. Afterward, the only difficulty in this exercise is to build the
reversed number.

Take the number 875, for example. The three digits, after isolation, will be:
digit1 = 8
digit2 = 7
digit3 = 5

You can then build the reversed number by simply calculating the sum of the
products: digit3 × 100 + digit2 × 10 + digit1 × 1 = 5 × 100 + 7 × 10 + 8 × 1 = 578
For a change, let's split the user-provided number using the second approach. The
Java program will look like this.

 Project_13.1-4
public static void main(String[] args) throws Exception {

int digit1, digit2, digit3, number, r, reversedNumber;
System.out.print("Enter a three-digit integer: "); number = Integer.parseInt(cin.nextLine());
digit3 = number % 10; //This is the rightmost digit r = (int)(number / 10);

digit2 = r % 10; //This is the digit in the middle digit1 = (int)(r / 10); //This is the
leftmost digit
reversedNumber = digit3 * 100 + digit2 * 10 + digit1; System.out.println(reversedNumber); }

13.2 Review Exercises
Complete the following exercises.

1) Write a Java program that prompts the user to enter any integer and then
multiplies its last digit by 8 and displays the result.
Hint: It is not necessary to know the exact number of digits. You can isolate the
last digit of any integer using a modulus 10 operation.

2) Write a Java program that prompts the user to enter a five-digit integer. The
program must then find and display the sum of the original number and its
reverse. For example, if the user enters the number 32675, the program must
display the message “32675 + 57623 = 90298”.

3) Write a Java program that prompts the user to enter an integer and then it displays
1 when the number is odd; otherwise, it displays 0. Try not to use any decision
control structures since you haven't learned anything about them yet!

4) Write a Java program that prompts the user to enter an integer and then it displays
1 when the number is even; otherwise, it displays 0. Try not to use any decision
control structures since you haven't learned anything about them yet!

5) Write a Java program that prompts the user to enter an integer representing an
elapsed time in seconds and then displays it in the format “WW week(s) DD
day(s) HH hour(s) MM minute(s) and SS second(s)”. For example, if the user
enters the number 2000000, the message “3 week(s) 2 day(s) 3 hour(s) 33
minute(s) and 20 second(s)” must be displayed.

6) Inside an ATM bank machine there are notes of $20, $10, $5, and $1. Write a
Java program that prompts the user to enter the amount of money they want to
withdraw (using an integer value) and then displays the least number of notes the
ATM must give. For example, if the user enters an amount of $76, the program
must display the message “3 note(s) of $20, 1 note(s) of $10, 1 note(s) of $5, and
1 note(s) of $1”.

7) A robot arrives on the moon in order to perform some experiments. Each of the
robot's steps is 25 inches long. Write a Java program that prompts the user to
enter the number of steps the robot made and then calculates and displays the
distance traveled in miles, feet, yards, and inches. For example, if the distance
traveled is 100000 inches, the program must display the message “1 mile(s),
1017 yard(s), 2 foot/feet, and 4 inch(es)”.
It is given that ► 1 mile = 63360 inches ► 1 yard = 36 inches ► 1 foot = 12
inches

Chapter 14
Manipulating Strings

14.1 Introduction
Generally speaking, a string is anything that you can type using the
keyboard, including letters, symbols (such as &, *, and @), and digits. In
Java, a string is always enclosed in double quotes.
Below is a Java program that uses strings.
a = "Everything enclosed in double quotes is a string, even the numbers: "; b = "3,
54, 731"; System.out.println(a + b); System.out.println("You can even mix letters,
symbols and digits like this: "); System.out.println("3 + 4 equals 7");

Many times programs deal with data that comes in the form of strings
(text). Strings are everywhere—from word processors, to web browsers, to
text messaging programs. Many exercises in this book actually make
extensive use of strings. Even though Java supports many useful methods
for manipulating strings, this chapter covers only those methods that are
necessary for this book's purpose. However, if you need even more
information you can visit one of the following addresses:
https://tinyurl.com/3575wcb8
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/Strin
g.html#method.summary

Java string methods (subprograms) can be used when there is a need to
manipulate a string, for example, to isolate a number of characters from
the string, remove spaces that might exist at the beginning of it, or convert
all of its characters to uppercase.

Methods are nothing more than small subprograms that solve small
problems.

https://tinyurl.com/3575wcb8
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/String.html#method.summary

14.2 The Position of a Character in a String
Let's use the text “Hello World” in the following example. The string
consists of 11 characters (including the space character between the two
words). Java numerates characters assuming that the first one is at position
0, the second one is at position 1, and so on. The position of each character
is shown here.

A space is a character just like any other character. Just because
nobody can see it, it doesn't mean it doesn't exist!

14.3 Useful String Methods (Subprograms), and More
Trimming
Trimming is the process of removing whitespace characters from the
beginning or the end of a string.
Some of the whitespace characters that are removed with the trimming
process are: ► an ordinary space ► a tab ► a new line (line feed) ► a
carriage return For example, you can trim any spaces that the user
mistakenly entered at the end or at the beginning of a string.
The method that you can use to trim a string is

subject.trim()
This method returns a copy of subject in which any whitespace characters
are removed from both the beginning and the end of the subject string.
Example

 Project_14.3a
public static void main(String[] args) throws Exception

{
String a, b;

a = " Hello "; b = a.trim();
System.out.println(b + " Poseidon!"); //It displays:

Hello Poseidon!

System.out.println(a + " Poseidon!"); //It displays:
Hello Poseidon!

}

Note that the content of variable a is not altered. If you do need to alter
its content, you can use the statement a = a.trim();

String replacement
subject.replace(search, replace)

This method searches in subject and returns a copy of it in which all
occurrences of the search string are replaced with the replace string.
Example

 Project_14.3b
public static void main(String[] args) throws Exception

{
String a, b;

a = "I am newbie in C++. C++ rocks!"; b =
a.replace("C++", "Java");

System.out.println(b); //It displays: I am newbie in
Java. Java rocks System.out.println(a); //It
displays: I am newbie in C++. C++ rocks }

Note that the content of variable a is not altered. If you do need to alter
its content, you can use the statement a = a.replace("C++", "Java");

Counting the number of characters
subject.length()
This method returns the length of subject or, in other words, the number of
characters subject consists of.
Example

 Project_14.3c
public static void main(String[] args) throws Exception

{
String a; int k;

a = "Hello Olympians!";
System.out.println(a.length()); //It displays: 16

k = a.length(); System.out.println(k); //It displays:
16

System.out.println("I am newbie in Java".length());
//It displays: 19

}

A character includes anything you can type using the keyboard, such as
letters, symbols, digits, and space characters.

Finding string position
subject.indexOf(search)
This method returns the numerical position of the first occurrence of search
in subject, or −1 if search is not found.
Example

 Project_14.3d
public static void main(String[] args) throws Exception

{
int i; String a;

a = "I am newbie in Java. Java rocks!"; i =
a.indexOf("newbie");

System.out.println(i); //It displays: 5
System.out.println(a.indexOf("Java")); //It displays:

15
System.out.println(a.indexOf("C++")); //It displays:

-1
}

The first character is at position 0.

Converting to lowercase
subject.toLowerCase()
This method returns a copy of subject in which all the letters of the string
subject are converted to lowercase.
Example

 Project_14.3e

public static void main(String[] args) throws Exception
{

String a, b;
a = "My NaMe is JohN"; b = a.toLowerCase();

System.out.println(b); //It displays: my name is john
System.out.println(a); //It displays: My NaMe is JohN

}

Note that the content of variable a is not altered. If you do need to alter
its content, you can use the statement a = a.toLowerCase();

Converting to uppercase
subject.toUpperCase()
This method returns a copy of subject in which all the letters of the string
subject are converted to uppercase.
Example

 Project_14.3f
public static void main(String[] args) throws Exception

{
String a, b;

a = "My NaMe is JohN"; b = a.toUpperCase();
System.out.println(b); //It displays: MY NAME IS JOHN
System.out.println(a); //It displays: My NaMe is JohN

}

Note that the content of variable a is not altered. If you do need to alter
its content, you can use the statement a = a.toUpperCase();

Retrieving an individual character from a string
subject.charAt(index)
This method returns the character located at subject's specified index. As
already mentioned, the string indexes start from zero. You can use index 0
to access the first character, index 1 to access the second character, and so
on. The index of the last character is 1 less than the length of the string.
Example

 Project_14.3g

public static void main(String[] args) throws Exception
{

String a;
a = "Hello World";

System.out.println(a.charAt(0)); //It displays the
first letter: H

System.out.println(a.charAt(6)); //It displays: W
System.out.println(a.charAt(10)); //It displays: d }

Note that the space between the words “Hello” and “World” is
considered a character as well. So, the letter W exists in position 6 and not
in position 5.

If you attempt to use an invalid index such as a negative one or an index
greater than the length of the string, Java throws an error message as shown
in Figure 14–1.

Figure 14–1 An error message indicating an invalid index
String indexes must be in a range from 0 to one less than the length of

the string.
Getting part of a string
subject.substring(beginIndex [, endIndex])
This method returns a portion of subject. Specifically, it returns the substring
starting from position beginIndex and running up to, but not including,

position endIndex. The argument endIndex is optional. If it is omitted, the
substring starting from position beginIndex until the end of subject is returned.
Example

 Project_14.3h
public static void main(String[] args) throws Exception

{
String a;

a = "Hello Athena";
System.out.println(a.substring(6, 9)); //It displays:

Ath System.out.println(a.substring(7)); //It
displays: thena }

Comparing strings
subject.compareTo(string)

This method returns the value 0 when subject is lexicographically equal to
string; a value less than 0 if subject is lexicographically less than string; and a
value greater than 0 if subject is lexicographically greater than string.
The term “lexicographically” means that the letter “A” is considered “less
than” the letter “B”, the letter “B” is considered “less than” the letter “C”,
and so on. Of course, if two strings contain words in which the first letter is
identical, Java moves on and compares their second letters and perhaps
their third letters (if necessary). For example, the word “backspace” is
considered “less than” the word “backwards” because the fifth letter, “s”, is
“less than” the fifth letter, “w”.
Another more convenient method to check if two strings are equal is the
following:

subject.equals(string)
This method checks if subject is lexicographically equal to string and returns
true or false accordingly.
Example

 Project_14.3i
public static void main(String[] args) throws Exception

{
String a = "backspace"; String b = "backwards";

String c = "Backspace"; String d = "winter"; String e

= "winter";
System.out.println(a.compareTo(b)); //It displays: -4
System.out.println(a.compareTo(c)); //It displays: 32
System.out.println(a.compareTo(d)); //It displays:

-21
System.out.println(d.compareTo(e)); //It displays: 0
System.out.println(a.equals(d)); //It displays: false
System.out.println(a.equals(c)); //It displays: false
System.out.println(d.equals(e)); //It displays: true

}

Note that the letters “b” and “B” are considered two different letters.
Consider the term 'lexicographically' in the context of how words are

organized in an English dictionary.

Converting a number or a character to a string
String.valueOf(subject)
This method returns a string version of subject or, in other words, it converts
a number (real or integer) or character into a string.
Example

 Project_14.3j
public static void main(String[] args) throws Exception

{
String a; char b; int c, d;

b = 'W';
a = String.valueOf(b); //Assign letter W to string
variable a System.out.println(a); //It displays: W

c = 12;
d = 34;

System.out.println(c + d); //It displays: 46
System.out.println(String.valueOf(c) +
String.valueOf(d)); //It displays: 1234

}

In Java, however, the same result can be achieved if you just start the
sequence with a string, even an empty one, as shown in the example that
follows.

 Project_14.3k
public static void main(String[] args) throws Exception

{
String a; char b; int c, d;

b = 'W';
a = "" + b; //Assign letter W to string variable a

System.out.println(a); //It displays: W
c = 12;
d = 34;

System.out.println(c + d); //It displays: 46
System.out.println("" + c + d); //It displays: 1234

System.out.println("Result - " + c + d); //It
displays: Result - 1234

}

Exercise 14.3-1 Displaying a String Backwards
Write a Java program that prompts the user to enter any string with four
letters and then displays its contents backwards. For example, if the string
entered is “Zeus”, the program must display “sueZ”.

Solution

Let's say that user's input is assigned to variable s. You can access the
fourth character using s.charAt(3), the third character using s.charAt(2),
and so on.
The Java program is shown here. The concatenation operator (+) is used
to reassemble the final reversed string.

 Project_14.3-1
public static void main(String[] args) throws Exception {

String s, sReversed;
System.out.print("Enter a word with four letters: "); s = cin.nextLine();
sReversed = "" + s.charAt(3) + s.charAt(2) + s.charAt(1) + s.charAt(0);

System.out.println(sReversed); }

In Java, it is sometimes necessary to force the compiler to do
concatenation, and not normal addition, by starting the sequence with a
string, even an empty one.

Exercise 14.3-2 Switching the Order of Names
Write a Java program that prompts the user to enter in one single string
both first and last name. In the end, the program must change the order of
the two names.

Solution

This exercise is not the same as the one that you learned in Exercises 8.1-3
and 8.1-4, which swapped the numeric values of two variables. In this
exercise both the first and last names are entered in one single string, so the
first thing that the program must do is split the string and assign each name
to a different variable. If you manage to do so, then you can just rejoin
them in a different order.
Let's try to understand this exercise using an example. The string that you
must split and the position of its individual character are shown here.

The character that visually separates the first name from the last name is
the space character between them. The problem here is that this character is
not always at position 3. Someone can have a short first name like “Tom”
and someone else can have a longer one like “Robert”. Thus, you need
something that actually finds the position of the space character regardless
of the content of the string.
Method indexOf() is what you are looking for! If you use it to find the
position of the space character in the string “Tom Smith”, it returns the
value 3. But if you use it to find the space character in another string, such
as “Angelina Brown”, it returns the value 8 instead.

The value 3 is not just the position where the space character exists. It
also represents the number of characters that the word “Tom” contains!
The same applies to the value 8 that is returned for the string “Angelina
Brown”. It represents both the position where the space character exists
and the number of characters that the word “Angelina” contains!

The Java program for this algorithm is shown here.

 Project_14.3-2
public static void main(String[] args) throws Exception {

String fullName, name1, name2; int spacePos;
System.out.print("Enter your full name: "); fullName = cin.nextLine();
//Find the position of space character. This is also the number //of characters
first name contains spacePos = fullName.indexOf(" ");
//Get spacePos number of characters starting from position 0

name1 = fullName.substring(0, spacePos);
//Get the rest of the characters starting from position spacePos + 1
name2 = fullName.substring(spacePos + 1);
fullName = name2 + " " + name1;
System.out.println(fullName); }

The method subject.substring(beginIndex, endIndex) returns a portion
of subject. Specifically, it returns the substring starting from beginIndex
position and running up to but not including endIndex position.

Note that this program cannot be applied to a Spanish name such as
“Maria Teresa García Ramírez de Arroyo”. The reason is obvious!

Exercise 14.3-3 Creating a Login ID
Write a Java program that prompts the user to enter their last name and
then creates a login ID from the first four letters of the name (in lowercase)
and a three-digit random integer.

Solution

To create a random integer you can use the Math.random()method. Since
you need a random integer of three digits, the range must be between 100
and 999.
The Java program for this algorithm is shown here.

 Project_14.3-3
public static void main(String[] args) throws Exception {

int randomInt; String lastName, loginID;
System.out.print("Enter last name: "); lastName = cin.nextLine();
//Get random integer between 100 and 999

randomInt = 100 + (int)(Math.random() * 900);
loginID = lastName.substring(0, 4).toLowerCase() + randomInt;
System.out.println(loginID); }

Note that the method substring(0, 4) returns the substring starting from
position 0 and running up to but not including position 4.

Note how the method substring() is chained to the method toLowerCase().
The result of the first method is used as a subject for the second method.
This is a writing style that most programmers prefer to follow because it
helps to save a lot of code lines. Of course you can chain as many methods
as you wish, but if you chain too many of them, no one will be able to
understand your code.

Exercise 14.3-4 Creating a Random Word
Write a Java program that displays a random word consisting of three
letters.

Solution

To create a random word you need a string that contains all 26 letters of the
English alphabet. Then you can use the Math.random() method to choose a
random letter between position 0 and 25.
The Java program for this algorithm is shown here.

 Project_14.3-4a
public static void main(String[] args) throws Exception

{
String alphabet, randomWord;

alphabet = "abcdefghijklmnopqrstuvwxyz";
randomWord = "" + alphabet.charAt((int)(Math.random()

* 26)) +
alphabet.charAt((int)(Math.random() *

26)) +
alphabet.charAt((int)(Math.random() *

26));
System.out.println(randomWord); }

You can nest one subprogram within another. Note how the method
random() is nested within the method charAt(). The result of the inner (nested)
method is used as an argument for the outer method.

Note that the method Math.random() is called three times and each time it
may return a different random number.

In Java, it is sometimes necessary to force the compiler to do
concatenation, and not normal addition, by starting the sequence with a
string, even an empty one.

You can also use the length() method to get the length of string alphabet
as shown here.

 Project_14.3-4b
public static void main(String[] args) throws Exception

{
String alphabet, randomWord;

alphabet = "abcdefghijklmnopqrstuvwxyz";
randomWord = "" + alphabet.charAt((int)(Math.random()

* alphabet.length())) +
alphabet.charAt((int)(Math.random() *

alphabet.length())) +
alphabet.charAt((int)(Math.random() *

alphabet.length()));
System.out.println(randomWord); }

Exercise 14.3-5 Finding the Sum of Digits
Write a Java program that prompts the user to enter a three-digit integer
and then calculates the sum of its digits. Solve this exercise without using
the integer remainder (%) operator.

Solution

Now you may wonder why this exercise is placed in this chapter, which
primarily focuses on string manipulation. You might argue that you already
know how to split a three-digit integer into its three digits and assign each
digit to a separate variable as you did learn a method in Chapter 13 using
the division (/) and the integer remainder (%) operators. So, why is this
exercise discussed here again?
The reason is that Java is a very powerful language and you can use its
magic forces to solve this exercise in a totally different way. The main idea
is to convert the user-provided integer to type String and assign each digit
(each character) into individual variables Project_14.3-5
public static void main(String[] args) throws Exception {

int number, total; String sNumber, digit1, digit2, digit3;

System.out.print("Enter an three-digit integer: "); number =
Integer.parseInt(cin.nextLine());
sNumber = "" + number; //Convert number to string

digit1 = "" + sNumber.charAt(0); //Convert character at position 0 to string digit2
= "" + sNumber.charAt(1); //Convert character at position 1 to string digit3 = "" +
sNumber.charAt(2); //Convert character at position 2 to string
total = Integer.parseInt(digit1) + Integer.parseInt(digit2) +
Integer.parseInt(digit3);

System.out.println(total); }

As variables digit1, digit2, and digit3 are of type String, you need to use
the parseInt() method to convert them to integers before finding their sum in
the variable total.

14.4 Review Questions: True/False
Choose true or false for each of the following statements.
1) A string is anything that you can type using the keyboard.
2) Strings must be enclosed in parentheses.
3) The phrase “Hi there!” contains 8 characters.
4) In the phrase “Hi there!” the letter “t” is at position 3.
5) The statement y = a.charAt(1) assigns the second character of the

string contained in variable a to variable y.
6) The following code fragment satisfies the property of definiteness.

a = "Hello"; y = a.charAt(5);

7) Trimming is the process of removing whitespace characters from the
beginning or the end of a string.

8) The statement y = ("Hello Aphrodite").trim() assigns the value
“HelloAphrodite” to variable y.

9) The statement System.out.println(("Hi there!").replace("Hi",
"Hello")) displays the message “Hello there!”.

10) The statement index = ("Hi there").indexOf("the") assigns the
value 4 to variable index.

11) The statement System.out.println(("hi there!").toUpperCase())
displays the message “Hi There!”.

12) The statement System.out.println(("Hi there!").substring(0))
displays the message “Hi there!”

13) The statement System.out.println(a.substring(0, a.length()))
displays some letters of the variable a.

14) The following statement is equivalent to the statement
System.out.println(a.charAt(a.length() - 1));
System.out.println(a.substring(a.length() - 1, a.length()));

15) The following statement displays the word “HELLO”.
System.out.println(("hello there!").toUpperCase().substring(0, 5));

16) If variable a contains a string of 100 characters then the following
statement is equivalent to the statement
System.out.println(a.chartAt(99);
System.out.println(a.chartAt(a.length() − 1));

17) The following code fragment displays the value of 23.
a = 2023;
System.out.println(String.valueOf(a).substring(2, 4));

14.5 Review Questions: Multiple Choice
Select the correct answer for each of the following statements.
1) Which of the following is not a string?

a) “Hello there!”
b) “13”
c) “13.5”
d) All of the above are strings.

2) In which position does the space character in the string “Hello Zeus!”,
exist?
a) 6
b) 5
c) Space is not a character.
d) none of the above 3) The statement

System.out.println(a.substring(a.length() - 2, a.length() - 1));
displays
a) the last character of variable a.
b) the second to last character of variable a.
c) The statement is not valid.

4) The statement
y = a.trim().replace("a", "b").replace("w", "y");
is equivalent to the statement a) y = a.replace("a",
"b").replace("w", "y").trim(); b) y = a.replace("a",
"b").trim().replace("w", "y"); c) y = a.trim().replace("w",
"y").replace("a", "b"); d) all of the above 5) The statement
a.replace(" ", "") a) adds a space between each letter in the
variable a.
b) removes all space characters from the variable a.
c) empties the variable a.

6) The statement (" Hello ").replace(" ", "") is equivalent to the
statement a) (" Hello ").replace("", " ") b) (" Hello ").trim() c) all of
the above d) none of the above 7) The following code fragment
a = "";
System.out.println(a.length());
displays
a) nothing.
b) 1.
c) 0.
d) The statement is invalid.
e) none of the above 8) Which value assigns the following code

fragment to the variable Shakespeare?
toBeOrNotToBe = "2b or not 2b"; Shakespeare = toBeOrNotToBe.indexOf("b");

a) 1
b) 2
c) 11
d) none of the above 9) What does the following code fragment do?
a = "Hi there"; b = a.substring(a.indexOf(" ") + 1);

a) It assigns the word “Hi” to the variable b.
b) It assigns a space character to the variable b.
c) It assigns the word “there” to the variable b.
d) none of the above 10) The following code fragment

a = 15;

b = 5;
System.out.println(String.valueOf(a) + String.valueOf(b));

displays
a) 155.
b) 10.
c) 15 + 5
d) none of the above

14.6 Review Exercises
Complete the following exercises.
1) Write a Java program that creates and displays a random word

consisting of five letters. The first letter must be a capital letter.
2) Write a Java program that prompts the user to enter their name and

then creates a secret password consisting of three letters (in lowercase)
randomly picked up from their name, and a random four-digit number.
For example, if the user enters “Vassilis Bouras” a secret password can
probably be one of “sar1359” or “vbs7281” or “bor1459”. Space
characters are not allowed in the secret password.

3) Write a Java program that prompts the user to enter a three-digit
integer and then reverses it. For example, if the user enters the number
375, the number 573 must be displayed. Solve this exercise without
using the integer remainder (%) operator.

4) Write a Java program that prompts the user to enter their first name,
middle name, and last name and displays them formatted in all the
following ways.

FirstName MiddleName LastName FirstName M. LastName
(where M is the first letter of the middle name) LastName F. (where
F is the first letter of the first name) Furthermore, the program
must ensure that regardless of how the user enters their name, it
will always be displayed with the first letter capitalized and the rest
in lowercase.

For example, assume that the user enters the following: First name:
Aphrodite Middle name: MARIA Last name: boura The program must
display the user's name formatted in all the following ways: Aphrodite
Maria Boura Aphrodite M. Boura Boura A.

5) Some words such as “revolutionary” and “internationalization” are so
lengthy that writing them out repeatedly can become quite tiresome. In
such cases, these words can be replaced with a special abbreviation
which is made like this: you keep the first and the last letter of a word
and insert the number of letters between them. For instance,
“revolutionary” becomes “r11y” and “internationalization” becomes
“i18n”.
Write a Java program that lets the user enter a long word and displays
its abbreviation.

Review in “Sequence Control Structures”

Review Crossword Puzzle
1) Solve the following crossword puzzle.

Across
2) The length() method returns the number of ______ in a
string.
6) Anything that you can type using the keyboard.
7) Java provides many ready-to-use ___________.
8) This control structure refers to the line-by-line execution by
which statements are executed sequentially.

Down
1) A whitespace character.

3) The process of removing whitespace characters from the
beginning or the end of a string.
4) The Math.sin() method returns the _____ of a number.
5) The Math.abs() method returns the __________ value of a
number.

Review Questions
Answer the following questions.
1) What is a sequence control structure?
2) What operations can a sequence control structure perform?
3) What does the term "type casting" mean in computer science?
4) Give some examples of how you can use the quotient and the

remainder of an integer division.
5) What is a method?
6) What does the term “chain a method” mean?
7) What does the term “nest a method” mean?

Part IV
Decision Control Structures

Chapter 15 Making Questions

15.1 Introduction
All you have learned so far is the sequence control structure, where statements are
executed sequentially, in the same order in which they appear in the program.
However, in serious Java programming, rarely do you want the statements to be
executed sequentially. Many times you want a block of statements to be executed
in one situation and an entirely different block of statements to be executed in
another situation.

15.2 What is a Boolean Expression?
Let's say that variable x contains a value of 5. This means that if you ask the
question “is x greater than 2?” the answer is obviously “Yes”. For a computer,
these questions are called Boolean expressions. For example, if you write x > 2,
this is a Boolean expression, and the computer must check whether or not the
expression x > 2 is true or false.

A Boolean expression is an expression that results in a Boolean value, that is,
either true or false.

Boolean expressions are questions and they should be read as “Is something
equal to/greater than/less than something else?” and the answer is just a “Yes”
or a “No” (true or false) .

A decision control structure can evaluate a Boolean expression or a set of
Boolean expressions and then decide which block of statements to execute.

15.3 How to Write Simple Boolean Expressions
A simple Boolean expression is written as Operand1 Comparison_Operator Operand2
where

► Operand1 and Operand2 can be values, variables, constants, or mathematical
expressions ► Comparison_Operator can be one of those shown in Table 15-1.

Comparison Operator Description

== Equal (not assignment)

!= Not equal

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to
Table 15-1 Comparison operators in Java Here are some examples of Boolean expressions: ► x > y. This

Boolean expression is a question to the computer and can be read as “is x greater than y?”

► x <= y. This Boolean expression is also a question to the computer and can
be read as “is x less than or equal to y?”

► x != 3 * y + 4. This can be read as “is x not equal to the result of the
expression 3 * y + 4?”

► s.equals("Hello") == true. This can be read as “is s equal to the word
'Hello'?” In other words, this question can be read as “does s contain the
word 'Hello'?”

In Java, in order to test if two strings are lexicographically equal, you
need to use the equals() method.

► x == 5 . This can be read as “is x equal to 5?”

A very common mistake that novice programmers make when writing
Java programs is to confuse the value assignment operator with the equal
operator. They frequently make the mistake of writing x = 5 when they
actually want to say x == 5.

Exercise 15.3-1 Filling in the Table
Fill in the following table with the words “true” or “false” according to the
values of the variables a, b, and c.

a b c a == 10 b <= a c > 3 * a − b

3 −5 7

10 10 21

−4 −2 −9

Solution

The first two Boolean expressions are straightforward and need no further
explanation.
Regarding the Boolean expression c > 3 * a − b, be careful with the cases
where b is negative. For example, in the first line, a is equal to 3 and b is equal to
−5. The result of the expression 3 * a - b is 3 * 3 − (−5) = 3 * 3 + 5 = 14.

Since the content of variable c (in the first line) is not greater than 14, the result
of the Boolean expression c > 3 * a − b is false.
After a little work , the table becomes

a b c a == 10 b <= a c > 3 * a − b

3 −5 7 false true false

10 10 21 true true true

−4 −2 −9 false false true

15.4 Logical Operators and Complex Boolean Expressions
A complex Boolean expression can be built of simpler Boolean expressions and
can be written as BE1 Logical_Operator BE2
where

► BE1 and BE2 can be any Boolean expression.
► Logical_Operator can be one of those shown in Table 15-2.

Logical Operator Description

&& AND (also known as logical conjunction)

|| OR (also known as logical disjunction)

! NOT (also known as negation or logical complement)
Table 15-2 Logical operators in Java

When you combine simple Boolean expressions with logical operators, the
whole Boolean expression is called a “complex Boolean expression”. For example,
the expression x == 3 && y > 5 is a complex Boolean expression.

In flowcharts, this book uses the commonly accepted AND, OR, and NOT
operators!
The AND (&&) operator When you use the AND (&&) operator between two
Boolean expressions (BE1 && BE2), it means that the result of the whole complex
Boolean expression is true only when both (BE1 and BE2) Boolean expressions
are true.

You can organize this information in something known as a truth table. A truth
table shows the result of a logical operation between two or more Boolean
expressions for all their possible combinations of values. The truth table for the
AND (&&) operator is shown here.

BE1
(Boolean Expression 1)

BE2
(Boolean Expression 2) BE1 && BE2

false false false

false true false

true false false

true true true

Are you still confused? You shouldn't be! It is quite simple! Let's see an example.
The complex Boolean expression name.equals("John") == true && age > 5
is true only when the variable name contains the word “John” (without the double
quotes) and variable age contains a value greater than 5. Both Boolean
expressions must be true. If at least one of them is false, for example, the
variable age contains a value of 3, then the whole complex Boolean expression is
false.

The OR (||) operator When you use the OR (||) operator between two
Boolean expressions (BE1 || BE2), it means that the result of the whole complex
Boolean expression is true when either the first (BE1) or the second (BE2)
Boolean expression is true (at least one).

The truth table for the OR (||) operator is shown here.

BE1
(Boolean Expression 1)

BE2
(Boolean Expression 2) BE1 || BE2

false false false

false true true

true false true

true true true

Let's see an example. The complex Boolean expression name.equals("John") ==
true || name.equals("George") == true is true when the variable name
contains the word “John” or the word “George” (without the double quotes). At
least one Boolean expression must be true. If both Boolean expressions are
false, for example, the variable name contains the word “Maria”, then the whole
complex Boolean expression is false.

The NOT (!) operator When you use the NOT (!) operator in front of a
Boolean expression (!(BE)), it means that the result of the whole complex
Boolean expression is true when the Boolean expression BE is false and vice
versa.

The truth table for the NOT (!) operator is shown here.

BE
(Boolean Expression)

!(BE)

false true

true false

For example, the complex Boolean expression !(age > 5) is true when the
variable age contains a value less than or equal to 5. For instance, if the variable
age contains a value of 6, then the whole complex Boolean expression is false.

The logical operator NOT (!) reverses the result of a Boolean expression. In
Java, the Boolean expression must be enclosed in parentheses.

Exercise 15.4-1 Calculating the Results of Complex Boolean Expressions
Calculate the results of the following complex Boolean expressions when
variables a, b, c, and d contain the values 5, 2, 7, and −3 respectively.

i) (3 * a + b / 47 - c * b / a > 23) && (b != 2)

ii) (a * b - c / 2 + 21 * c / 3) || (a >= 5)

Solution

Don't be scared! The results can be found very easily. All you need is to recall
what applies to AND (&&) and OR (||) operators.

i) The result of an AND (&&) operator is true when both Boolean
expressions are true. If you take a closer look, the result of the Boolean
expression on the right (b != 2) is false. So, you don't have to waste your
time calculating the result of the Boolean expression on the left. The final
result is definitely false.

ii) The result of an OR (||) operator is true when at least one Boolean
expression is true. If you take a closer look, the result of the Boolean
expression on the right (a >= 5) is actually true. So, don't bother calculating
the result of the Boolean expression on the left. The final result is definitely
true.

15.5 Assigning the Result of a Boolean Expression to a Variable
Given that a Boolean expression actually returns a value (true or false), this
value can be directly assigned to a variable. For example, the statement

a = x > y;
assigns a value of true or false to Boolean variable a. It can be read as “If the
content of variable x is greater than the content of variable y, assign the value

true to variable a; otherwise, assign the value false”. This next example
displays the value true on the screen.

 Project_15.5
public static void main(String[] args) throws Exception {

int x, y; boolean a;
x = 8;
y = 5;
a = x > y;
System.out.println(a); }

15.6 What is the Order of Precedence of Logical Operators?
A more complex Boolean expression may use several logical operators like the
expression shown here x > y || x == 5 && x <= z || !(z == 1) So, a
reasonable question is “which logical operation is performed first?”
Logical operators in Java follow the same precedence rules that apply to the
majority of programming languages. The order of precedence is: logical
complements (!) are performed first, logical conjunctions (&&) are performed
next, and logical disjunctions (||) are performed at the end.

Higher Precedence

Lower Precedence

Logical Operator

!

&&

||
Table 15-3 The order of precedence of logical operators

You can always use parentheses to change the default precedence.

Exercise 15.6-1 Filling in the Truth Table
Fill in the following table with the words “true” or “false” according to the
values of the variables a, b and c.

a b c a > 2 || c > b && c > 2 !(a > 2 || c > b && c > 2)

1 −5 7

10 10 3

−4 −2 −9

Solution

To calculate the result of complex Boolean expressions you can use the following
graphical method.

For a = 1, b = −5, c = 7, the final result is true as shown here.

The AND (&&) operation has a higher precedence and is performed before
the OR (||) operation.

For a = 10, b = 10, c = 3, the final result is true as shown here.

For a = −4, b = −2, c = −9, the final result is false as shown here.

The values in the table's fifth column can be calculated very easily because the
Boolean expression in its column heading is almost identical to the one in the
fourth column. The only difference is the NOT (!) operator in front of the
expression. So, the values in the fifth column can be calculated by simply
negating the results in the fourth column!
The final truth table is shown here.

a b c a > 2 || c > b && c > 2 !(a > 2 || c > b && c > 2)

1 −5 7 true false

10 10 3 true false

−4 −2 −9 false true

Exercise 15.6-2 Converting English Sentences to Boolean Expressions
A head teacher asks the students to raise their hands according to their age. He
wants to find the students who are i) between the ages of 9 and 12.

ii) under the age of 8 and over the age of 11.
iii) 8, 10, and 12 years old.
iv) between the ages of 6 and 8, and between the ages of 10 and 12.
v) neither 10 nor 12 years old.

Solution

To compose the required Boolean expressions, a variable age is used.
i) The sentence “between the ages of 9 and 12” can be graphically represented

as shown here.

Be careful though! It is valid to write 9 ≤ age ≤ 12 in mathematics, but in
Java the following is not possible 9 <= age <= 12
What you can do is to split the expression into two parts, as shown here age
>= 9 && age <= 12

For your confirmation, you can test this Boolean expression for several
values inside and outside of the “region of interest” (the range of data that
you have specified). For example, the result of the expression is false for the
age values 7, 8, 13, and 17. On the contrary, for the age values 9, 10, 11,
and 12, the result is true.

ii) The sentence “under the age of 8 and over the age of 11” can be graphically
represented as shown here.

Note the absence of the two circles that you saw in solution (i). This
means the values 8 and 11 are not included within the two regions of
interest.

Be careful with the sentence “Under the age of 8 and over the age of 11”. It's
a trap! Don't make the mistake of writing age < 8 && age > 11
There is no person on the planet Earth that can be under the age of 8 and
over the age of 11 concurrently!
The trap is in the word “and”. Try to rephrase the sentence and make it
“Children! Please raise your hand if you are under the age of 8 or over the
age of 11”. Now it's better and the correct Boolean expression becomes age
< 8 || age > 11

For your confirmation, you can test this expression for several values
inside and outside of the regions of interest. For example, the result of the
expression is false for the age values 8, 9, 10 and 11. On the contrary, for the
age values 6, 7, 12, and 15, the result is true.

iii) Oops! Another trap in the sentence “8, 10, and 12 years old” with the “and”
word again! Obviously, the next Boolean expression is wrong.

age == 8 && age == 10 && age == 12

As before, there isn't any student who is 8 and 10 and 12 years old
concurrently! Once again, the correct Boolean expression must use the OR (
||) operator.

age == 8 || age == 10 || age == 12

For your confirmation, you can test this expression for several values.
For example, the result of the expression is false for the age values 7, 9, 11,
and 13. For the age values 8, 10, and 12, the result is true.

iv) The sentence “between the ages of 6 and 8, and between the ages of 10 and
12” can be graphically represented as shown here.

and the Boolean expression is age >= 6 && age <= 8 || age >= 10 && age
<= 12

For your confirmation, the result of the expression is false for the age
values 5, 9, 13, and 16. For the age values 6, 7, 8, 10, 11, and 12, the result
is true.

v) The Boolean expression for the sentence “neither 10 nor 12 years old” can
be written as age != 10 && age != 12

or as
!(age == 10 || age == 12)

When the arrows of the region of interest point towards each other, use
the logical operator AND (&&). Otherwise, use OR (||) when the arrows
point in opposite directions.

15.7 What is the Order of Precedence of Arithmetic, Comparison,
and Logical Operators?

In many cases, an expression may contain different type of operators, such as the
one shown here.

a * b + 2 > 21 || !(c == b / 2) && c > 13

In such cases, arithmetic operations are performed first, comparison operations
are performed next, and logical operations are performed at the end, as shown in
the following table.

Higher Precedence

Lower Precedence

Arithmetic Operators
*, /, %

+, −

Comparison Operators <, <=, >, >=, ==, !=

Logical Operators

!

&&

||
Table 15-4 The order of precedence of arithmetic, comparison, and logical operators

15.8 How to Negate Boolean Expressions
Negation is the process of reversing the meaning of a Boolean expression. There
are two approaches used to negate a Boolean expression.

First approach
The first approach is the easiest one. Just use a NOT (!) operator in front of the
original Boolean expression and your negated Boolean expression is ready! For
example, if the original Boolean expression is x > 5 && y == 3
the negated Boolean expression becomes !(x > 5 && y == 3)

Note that the entire expression must be enclosed in parentheses. It would be
completely incorrect if you had written the expression as !(x > 5) && y == 3. In this
case the NOT (!) operator would negate only the first Boolean expression, x > 5.

Second approach
The second approach is a little bit more complex but not difficult to learn. All you
must do is negate every operator according to the following table.

Original Operator Negated Operator

== !=

!= ==

> <=

< >=

<= >

>= <

&& ||

|| &&

! !

Note that the NOT (!) operator remains intact.

For example, if the original Boolean expression is x > 5 && y == 3
the negated Boolean expression becomes x <= 5 || y != 3
However, there is a small detail that you should be careful with. If both AND (&&
) and OR (||) operators co-exist in a complex Boolean expression, then the
expressions that use the OR (||) operators in the negated Boolean expression
must be enclosed in parentheses, in order to preserve the initial order of
precedence. For example, if the original Boolean expression is x >= 5 && x <=
10 || y == 3

the negated Boolean expression must be (x < 5 || x > 10) && y != 3

If you forget to enclose the expression x < 5 || x > 10 in parentheses, since the
AND (&&) operator has a higher precedence than the OR (||) operator, the
expression x > 10 && y != 3 is evaluated first, which is wrong of course!

Exercise 15.8-1 Negating Boolean Expressions
Negate the following Boolean expressions using both approaches.

i) b != 4

ii) a * 3 + 2 > 0

iii) !(a == 5 && b >= 7)

iv) a == true

v) b > 7 && !(x > 4)

vi) a == 4 || b != 2

Solution

First approach
i) !(b != 4) ii) !(a * 3 + 2 > 0) iii) !(!(a == 5 && b >= 7)), or the equivalent a

== 5 && b >= 7

Two negations result in an affirmative. That is, two NOT (!) operators
in a row negate each other.

iv) !(a == true) v) !(b > 7 && !(x > 4)) vi) !(a == 4 || b != 2) Second
approach

i) b == 4

ii) a * 3 + 2 <= 0

 Note that arithmetic operators are not “negated”. Never
substitute, for example, the plus (+) with a minus (−) operator!

iii) !(a != 5 || b < 7)
Note that the NOT (!) operator remains intact.

iv) a != true v) b <= 7 || !(x <= 4) vi) a != 4 && b == 2

15.9 Review Questions: True/False
Choose true or false for each of the following statements.

1) A Boolean expression is an expression that always results in one of
two values.

2) A Boolean expression includes at least one logical operator.
3) In Java, the expression x = 5 tests if the variable x is equal to 5.
4) The following statement is not a valid Java statement.

a = b == c;

5) The Boolean expression b < 5 tests if the variable b is 5 or less.
6) The AND (&&) operator is also known as a logical disjunction

operator.
7) The OR (||) operator is also known as a logical complement

operator.

8) The result of a logical conjunction of two Boolean expressions equals
the result of the logical disjunction of them, given that both Boolean
expressions are true.

9) The result of a logical disjunction of two Boolean expressions is
definitely true, given that the Boolean expressions have different
values.

10) The expression c == 3 && d > 7 is considered a complex Boolean
expression.

11) The result of the logical operator OR (||) is true when both
operands (Boolean expressions) are true.

12) The result of the Boolean expression !(x == 5) is true when the
variable x contains any value except 5.

13) The NOT (!) operator has the highest precedence among logical
operators.

14) The OR (||) operator has the lowest precedence among logical
operators.

15) In the Boolean expression (x > y || x == 5) && x <= z, the AND (
&&) operation is performed before the OR (||) operation.

16) In the Boolean expression a * b + c > 21 || c == b / 2, the
program first tests if c is greater than 21.

17) When a teacher wants to find the students who are under the age of 8
and over the age of 11, the corresponding Boolean expression is age <
8 && age > 11.

18) The Boolean expression x < 0 && x > 100 is, for any value of x,
always false.

19) The Boolean expression x > 0 || x < 100 is, for any value of x,
always true.

20) The Boolean expression x > 5 is equivalent to !(x < 5).
21) The Boolean expression !(x > 5 && y == 5) is not equivalent to !(x

> 5) && y == 5.
22) In William Shakespeare[13]'s Hamlet (Act 3, Scene 1), the main

character says “To be, or not to be: that is the question:…. ” If you
write this down as a Boolean expression toBe || !toBe, the result of
this “Shakesboolean” expression is true for the following code
fragment.
toBe = 1 > 0;
thatIsTheQuestion = toBe || !toBe;

23) The Boolean expression !(!(x > 5)) is equivalent to x > 5.

15.10 Review Questions: Multiple Choice
Select the correct answer for each of the following statements.

1) Which of the following is not a comparison operator?
a) >=
b) =< c) < d) All of the above are comparison operators.

2) Which of the following is not a Java logical operator?
a) /\ b) ||
c) All of the above are logical operators.
d) None of the above is a logical operator.

3) If variable x contains a value of 5, what value does the statement y =
x % 2 == 1 assign to variable y?
a) true b) false c) 1
d) none of the above 4) If variable x contains a value of 5, what value

does the statement y = x % 2 == 0 || (int)(x / 2.0) == 2
assign to variable y?

a) true b) false c) none of the above 5) The temperature in a laboratory
room must be between 50 and 80 degrees Fahrenheit. Which of
the following Boolean expressions tests for this condition?

a) t >= 50 || t <= 80

b) 50 >= t && t >= 80

c) t >= 50 && t <= 80

d) t > 50 || t < 80

e) none of the above 6) Which of the following is equivalent to the
Boolean expression t == 3 || t > 30?

a) t == 3 && !(t <= 30) b) t == 3 && !(t < 30) c) !(t != 3) || !(t <
30) d) !(t != 3 && t <= 30) e) none of the above

15.11 Review Exercises
Complete the following exercises.

1) Match each element from the first column with one or more elements
from the second column.

Description Operator

i) Logical operator a) %

ii) Arithmetic operator b) +=

iii) Comparison operator c) &&

iv) Assignment operator (in general) d) ==

e) ||

f) >=

g) !

h) =

i) *=

j) /

2) Fill in the following table with the words “true” or “false” according
to the values of variables a, b, and c.

a b c a != 1 b > a c / 2 > 2 * a

3 −5 8

1 10 20

−4 −2 −9

3) Fill in the following table with the words “true” or “false” according
to the values of the Boolean expressions BE1 and BE2.

BE1
(Boolean

Expression 1)

BE2
(Boolean

Expression 2)

BE1 ||
BE2

BE1 &&
BE2

!
(BE2)

false false

false true

true false

true true

4) Fill in the following table with the words “true” or “false” according
to the values of variables a, b, and c.

a b c a > 3 || c > b && c > 1 a > 3 && c > b || c > 1

4 −6 2

−3 2 −4

2 5 5

5) For x = 4, y = −2 and flag = true, fill in the following table with
the corresponding values.

Expression Value

Math.pow(x + y, 3)

(x + y) / (Math.pow(x, 2) − 14)

x − 1 == y + 5

x > 2 && y == 1

x == 1 || y == −2 && !(flag == false)

!(x >= 3) && (x % 2 > 1)

6) Calculate the result of each the following complex Boolean
expressions when variables a, b, c, and d contain the values 6, −3, 4,
and 7 respectively.

i) (3 * a + b / 5 - c * b / a > 4) && (b != -3) ii) (a * b - c /
2 + 21 * c / 3 != 8) || (a >= 5) Hint: Start by evaluating the
simpler parts of the expressions.

7) A head teacher asks the students to raise their hands
according to their age. He wants to find the students who
are: i) under the age of 12, but not those who are 8 years old.
ii) between the ages of 6 and 9, and also those who are 11

years old.
iii) over the age of 7, but not those who are 10 or 12 years

old.
iv) 6, 9, and 11 years old.
v) between the ages of 6 and 12, but not those who are 8

years old.
vi) neither 7 nor 10 years old.
To compose the required Boolean expressions, use a
variable named age.

8) Negate the following Boolean expressions without adding
the NOT (!) operator in front of the expressions.

i) x == 4 && y != 3

ii) x + 4 <= 0

iii) !(x > 5) || y == 4

iv) x != false v) !(x >= 4 || z > 4) vi) x != 2 && x >= −5

9) As you already know, two negations result in an
affirmative. Write the equivalent of the following Boolean
expressions by negating them twice (applying both
methods).

i) x >= 4 && y != 10

ii) x - 2 >= 9

iii) !(x >= 2) || y != 4

iv) x != false || y == 3

v) !(x >= 2 && y >= 2) vi) x != −2 && x <= 2

Chapter 16
The Single-Alternative Decision Structure

16.1 The Single-Alternative Decision Structure
This is the simplest decision control structure. It includes a statement or
block of statements on the “true” path only, as presented in the following
flowchart fragment, given in general form.

If Boolean_Expression evaluates to true, the statement, or block of
statements, of the structure is executed; otherwise, the statements are
skipped.
The general form of the Java statement is

if (Boolean_Expression) {

A statement or block of statements

}

Note that the statement or block of statements is indented by 2 extra
spaces.

In the next example, the message “You are underage!” displays only when
the user enters a value less than 18. Nothing is displayed when the user
enters a value that is greater than or equal to 18.

 Project_16.1a
public static void main(String[] args) throws Exception

{
int age;

System.out.print("Enter your age: "); age =
Integer.parseInt(cin.nextLine());

if (age < 18) {
System.out.println("You are underage!");

}
}

Note that the System.out.println() statement is indented by 2 + 2 = 4
spaces.

In the next example, the message “You are underage!” and the message
“You have to wait for a few more years” are displayed only when the user
enters a value less than 18. Same as previously, no messages are displayed
when the user enters a value that is greater than or equal to 18.

 Project_16.1b
public static void main(String[] args) throws Exception

{
int age;

System.out.print("Enter your age: "); age =
Integer.parseInt(cin.nextLine());

if (age < 18) {
System.out.println("You are underage!");

System.out.println("You have to wait for a few
more years.");

}
}

All statements that appear inside an if statement should be indented to
the right by the same number of spaces. In the previous example, both
System.out.println() statements are indented by 2 spaces.

To save paper, this book uses 2 spaces per indentation level. Java's
official website, however, recommends the use of 4 spaces per indentation
level.

In order to indent the text cursor, instead of typing space characters,
you can hit the “Tab ” key once!

In order to indent an existing statement or a block of statements, select
it and hit the “Tab ” key!

In order to unindent a statement or a block of statements, select it and
hit the “Shift ↑ + Tab ” key combination!

In the next example, the message “You are the King of the Gods!” is
displayed only when the user enters the name “Zeus”. However, the
message “You live on Mount Olympus” is always displayed, no matter
what name the user enters.

 Project_16.1c
public static void main(String[] args) throws Exception

{
String name;

System.out.print("Enter the name of an Olympian: ");
name = cin.nextLine();

if (name.equals("Zeus") == true) {
System.out.println("You are the King of the

Gods!");
}

System.out.println("You live on Mount Olympus."); }

Note that the last System.out.println() statement does not belong to the
block of statements of the single-alternative decision structure.

A very common mistake that novice programmers make when writing
Java programs is to confuse the value assignment operator with the
“equal” operator. They frequently make the mistake of writing if
(name.equals("Zeus") = true) when they actually want to say if
(name.equals("Zeus") == true).

When only one single statement is enclosed in the if statement, you can
omit the braces { }. Thus, the if statement can be written as follows

if (Boolean_Expression) One_Single_Statement;
or you can even write the whole decision structure on one single line, like
this:

if (Boolean_Expression) One_Single_Statement;
The braces are required only when more than one statement is enclosed
within an if statement. Without the braces, Java assumes that only the
next statement in order is part of the decision control structure.
However, to prevent potential logic errors, many programmers prefer to
always use braces, even if the if statement includes only one single
statement. In both of the following examples the System.out.print(x)
statement is not part of the if statement.
if (x == y) x++;

System.out.print(x);
if (x == y) {

x++;
}
System.out.print(x);

Exercise 16.1-1 Trace Tables and Single-Alternative Decision Structures
Design the corresponding flowchart and create a trace table to determine
the values of the variables in each step of the next Java program for two
different executions.
The input values for the two executions are: (i) 10, and (ii) 51.

 Project_16.1-1
public static void main(String[] args) throws Exception {

int a, y;
a = Integer.parseInt(cin.nextLine());
y = 5;
if (a * 2 > 100) {

a = a * 3;

y = a * 4;
}
System.out.println(a + " " + y); }

Solution The flowchart is shown here.

The trace tables for each input are shown here.
i) For the input value of 10, the trace table looks like this.

Step Statement Notes a y

1 a = Integer.parseI… User enters the value 10 10 ?

2 y = 5 10 5

3 if (a * 2 > 100) This evaluates to false

4 .println(a + " " + y) It displays: 10 5

ii) For the input value of 51, the trace table looks like this.

Step Statement Notes a y

1 a = Integer.parseI… User enters the value 51 51 ?

2 y = 5 51 5

3 if (a * 2 > 100) This evaluates to true

4 a = a * 3 153 5

5 y = a * 4 153 612

6 .println(a + " " + y) It displays: 153 612

Exercise 16.1-2 The Absolute Value of a Number
Design a flowchart and write the corresponding Java program that lets the
user enter a number and then displays its absolute value.

Solution Actually, there are two approaches. The first approach uses a
single-alternative decision structure, whereas the second one uses the
built-in Math.abs() method.

First approach – Using a single-alternative decision structure The
approach is simple. If the user enters a negative value, for example −5,
this value is changed and displayed as +5. A positive number or zero,
however, remains as is. The solution is shown in the flowchart that
follows.

The corresponding Java program is as follows.
 Project_16.1-2a

public static void main(String[] args) throws Exception
{

double x;
x = Double.parseDouble(cin.nextLine());

if (x < 0) {
x = (-1) * x;

}
System.out.println(x); }

Second approach – Using the Math.abs() method In this case, you need
just a few lines of code without any decision control structure!

 Project_16.1-2b
public static void main(String[] args) throws Exception

{
double x;

x = Double.parseDouble(cin.nextLine());
System.out.println(Math.abs(x)); }

16.2 Review Questions: True/False
Choose true or false for each of the following statements.
1) The single-alternative decision structure is used when a sequence of

statements must be executed.
2) You use a single-alternative decision structure to allow other

programmers to more easily understand your program.
3) It is a possible that none of the statements enclosed in a single-

alternative decision structure will be executed.
4) In a flowchart, the Decision symbol represents the beginning and the

end of an algorithm.
5) The following code is syntactically correct.

static final int if = 5; public static void main(String[] args) throws
Exception {

int x; x = if + 5; System.out.println(x); }

6) The single-alternative decision structure uses the reserved keyword
else.

7) The following code fragment satisfies the property of definiteness.
if (b != 3) {

x = a / (b - 3); }

8) The following Java program satisfies the property of definiteness.
public static void main(String[] args) throws Exception {

double a, b, x;
a = Double.parseDouble(cin.nextLine()); b =

Double.parseDouble(cin.nextLine());
if (b != 3) {

x = a / (b - 3);
}
System.out.println(x); }

16.3 Review Questions: Multiple Choice
Select the correct answer for each of the following statements.
1) The single-alternative decision structure is used when a) statements are

executed one after another.
b) a decision must be made before executing some statements.
c) none of the above d) all of the above 2) The single-alternative decision

structure includes a statement or block of statements on a) the false
path only.

b) both paths.
c) the true path only.

3) In the following code fragment,
if (x == 3) x = 5;

y++;
the statement y++ is executed a) only when variable x contains a
value of 3.
b) only when variable x contains a value of 5.
c) only when variable x contains a value other than 3.
d) always.

4) In the following code fragment,
if (x % 2 == 0) y++;
the statement y++ is executed when a) variable x is exactly divisible
by 2.
b) variable x contains an even number.
c) variable x does not contain an odd number.
d) all of the above e) none of the above 5) In the following code fragment,

x = 3 * y;
if (x > y) y++;

the statement y++ is a) always executed.
b) never executed.
c) executed only when variable y contains positive values.
d) none of the above

16.4 Review Exercises
Complete the following exercises.
1) Identify the syntax errors in the following Java program:

public static void main(String[] args) throws Exception {
double x, y
x = Double.parseDouble(cin.nextLine();
y ← -5; if (x * y / 2 > 20)
y =* 2

x += 4 * x2;
}
System.out.println(x y); }

2) Create a trace table to determine the values of the variables in each
step of the following Java program for two different executions.
Then, design the corresponding flowchart.
The input values for the two executions are: (i) 10, and (ii) −10.
public static void main(String[] args) throws Exception {

double x, y;
x = Double.parseDouble(cin.nextLine());

y = -5; if (x * y / 2 > 20) {
y--;
x -= 4;

}
if (x > 0) {

y += 30;
x = Math.pow(x, 2);

}
System.out.println(x + ", " + y); }

3) Create a trace table to determine the values of the variables in each
step of the following Java program for two different executions.
Then, design the corresponding flowchart.
The input values for the two executions are: (i) −11, and (ii) 11.
public static void main(String[] args) throws Exception {

int x, y;

x = Integer.parseInt(cin.nextLine());
y = 8;
if (Math.abs(x) > 10) {

y += x;
x--;

}
if (Math.abs(x) > 10) {

y *= 3;

}
System.out.println(x + ", " + y); }

4) Create a trace table to determine the values of the variables in each
step of the following Java program for two different executions.
Then, design the corresponding flowchart.
The input values for the two executions are: (i) 1, 2, 3; and (ii) 4, 2, 1.
public static void main(String[] args) throws Exception {

int x, y, z;
x = Integer.parseInt(cin.nextLine()); y = Integer.parseInt(cin.nextLine());

z = Integer.parseInt(cin.nextLine());
if (x + y > z)
x = y + z;
if (x > y + z)
y = x + z;
if (x > y - z)

z = x - z % 2;
System.out.println(x + ", " + y + ", " + z); }

5) Write a Java program that prompts the user to enter a number, and
then displays the message “Positive” when the user-provided number
is positive.

6) Write a Java program that prompts the user to enter two numbers, and
then displays the message “Both Positives” when both user-provided
numbers are positives.

7) Write a Java program that prompts the user to enter their age and then
displays the message “You can drive a car in Kansas (USA)” when
the user-provided age is greater than 14.

8) Write a Java program that prompts the user to enter a string, and then
displays the message “Uppercase” when the user-provided string
contains only uppercase characters.
Hint: Use the equals() and toUpperCase() methods.

9) Write a Java program that prompts the user to enter a string, and then
displays the message “Many characters” when the user-provided
string contains more than 20 characters.
Hint: Use the length() method.

10) Write a Java program that prompts the user to enter four numbers and,
if at least one of them is negative, it displays the message “Among
the provided numbers, there is a negative one!”

11) Write a Java program that prompts the user to enter two numbers. If
the first user-provided number is greater than the second one, the
program must swap their values. In the end, the program must display
the numbers, always in ascending order.

12) Write a Java program that prompts the user to enter three temperature
values measured at three different points in New York, and then
displays the message “Heat Wave” if the average value is greater than
60 degrees Fahrenheit.

Chapter 17
The Dual-Alternative Decision Structure

17.1 The Dual-Alternative Decision Structure
In contrast to the single-alternative decision structure, this type of decision
control structure includes a statement or block of statements on both paths.

If Boolean_Expression evaluates to true, the statement or block of
statements 1 is executed; otherwise, the statement or block of statements 2 is
executed.
The general form of the Java statement is

if (Boolean_Expression) {

A statement or block of statements 1

}
else {

A statement or block of statements 2

}
In the next example, the message “You are an adult” is displayed when the
user enters a value greater than or equal to 18. The message “You are
underage!” is displayed otherwise.

 Project_17.1
public static void main(String[] args) throws Exception {

int age;

System.out.print("Enter your age: "); age = Integer.parseInt(cin.nextLine());
if (age >= 18) {

System.out.println("You are an adult!");

}
else {

System.out.println("You are underage!");
}

}

Similar to the single-alternative decision structure, single statements can be
written without being enclosed inside braces { }. The if-else statement can
be written as shown below.
if (Boolean_Expression) One_Single_Statement_1; else One_Single_Statement_2;

Exercise 17.1-1 Finding the Output Message
For the following flowchart, determine the output message for three different
executions.
The input values for the three executions are: (i) 3, (ii) −3, and (iii) 0.

Solution i) When the user enters the value 3, the Boolean expression
evaluates to true. The flow of execution follows the right path and the
message “Positive” is displayed.

ii) When the user enters the value −3, the Boolean expression evaluates to
false. The flow of execution follows the left path and the message
“Negative” is displayed.

iii) Can you predict what happens when the user enters the value 0? If you
believe that none of the messages will be displayed, you are wrong!
The dual-alternative decision structure must always follow a path,
either the right or the left! It cannot skip the execution of both of its
blocks of statements. At least one statement or block of statements must
be executed. So, in this case, when the user enters the value 0, the
Boolean expression evaluates to false, the flow of execution follows
the left path, and the message “Negative” is displayed!

This algorithm, as it stands, does not satisfy the property of effectiveness
for all possible inputs. While it correctly identifies positive and negative
values, it overlooks the case of zero. Zero is a valid input and should be
accounted for in the algorithm's logic to ensure it produces a meaningful
result for all potential inputs. Later in this book (in Exercise 20.1-2), you
will learn how to display three messages, depending on whether the user-
provided value is greater than, less than, or equal to zero.

A Decision symbol has one entrance and two exit paths! You cannot have
a third exit!

Exercise 17.1-2 Trace Tables and Dual-Alternative Decision Structures
Create a trace table to determine the values of the variables in each step of
the next Java program for two different executions.
The input values for the two executions are: (i) 5, and (ii) 10.

 Project_17.1-2
public static void main(String[] args) throws Exception {

double a, z, w, y;
a = Double.parseDouble(cin.nextLine());
z = a * 10; w = (z - 4) * (a - 3) / 7 + 36;
if (z >= w && a < z) {

y = 2 * a;

}
else {

y = 4 * a;
}
System.out.println(y); }

Solution i) For the input value of 5, the trace table looks like this.

Step Statement Notes a z w y

1 a =
Double.parseDouble(…

User enters the
value 5 5.0 ? ? ?

2 z = a * 10 5.0 50.0 ? ?

3 w = (z ‐ 4) * (a ‐ 3) /
7 + 36

5.0 50.0 49.142 ?

4 if (z >= w && a < z) This evaluates to true

5 y = 2 * a 5.0 50.0 49.142 10.0

6 .println(y) It displays: 10.0

ii) For the input value of 10, the trace table looks like this.

Step Statement Notes a z w y

1 a =
Double.parseDouble(…

User enters the
value 10 10.0 ? ? ?

2 z = a * 10 10.0 100.0 ? ?

3 w = (z ‐ 4) * (a ‐ 3) /
7 + 36

10.0 100.0 132.0 ?

4 if (z >= w && a < z) This evaluates to false

5 y = 4 * a 10.0 100.0 132.0 40.0

6 .println(y) It displays: 40.0

Exercise 17.1-3 Who is the Greatest?
Design a flowchart and write the corresponding Java program that lets the
user enter two numbers A and B and then determines and displays the
greater of the two numbers.

Solution This exercise can be solved using either the dual- or single-
alternative decision structure. So, let's use them both!

First approach – Using a dual-alternative decision structure This
approach tests if the value of number B is greater than that of number A.

If so, number B is the greatest; otherwise, number A is the greatest. The
corresponding flowchart for solving this exercise using this approach is
presented below.

and the Java program is as follows.
 Project_17.1-3a

public static void main(String[] args) throws Exception {
double a, b, maximum;

a = Double.parseDouble(cin.nextLine()); b =
Double.parseDouble(cin.nextLine());

if (b > a) {
maximum = b;

}
else {

maximum = a;
}

System.out.println("Greatest value: " + maximum); }

Note that this exercise is trying to determine the greatest value and not
which variable this value is actually assigned to (to variable A or to variable
B).

Second approach – Using a single-alternative decision structure As
presented in the following flowchart, this approach initially assumes that
number A is likely the greatest value (this is why it assigns the value of
variable a to variable maximum). However, if it turns out that number B is
greater than number A, then the greatest value is updated; variable
maximum is assigned a new value—the value of variable b. Thus,
irrespective of the values of numbers A and B, in the end, variable
maximum will always contain the greatest value!

The Java program is shown here.

 Project_17.1-3b
public static void main(String[] args) throws Exception {

double a, b, maximum;
a = Double.parseDouble(cin.nextLine()); b =

Double.parseDouble(cin.nextLine());
maximum = a; if (b > a) {

maximum = b;
}

System.out.println("Greatest value: " + maximum); }

Exercise 17.1-4 Finding Odd and Even Numbers

Design a flowchart and write the corresponding Java program that prompts
the user to enter a positive integer, and then displays a message indicating
whether this number is even; it must display “Odd” otherwise.

Solution Next you can find various odd and even numbers: ► Odd
numbers: 1, 3, 5, 7, 9, 11, …

► Even numbers: 0, 2, 4, 6, 8, 10, 12, ….

Note that zero is considered an even number.

In this exercise, you need to find a way to determine whether a number is
odd or even. You need to find a common attribute between all even numbers,
or between all odd numbers. And actually there is one! All even numbers are
exactly divisible by 2. So, when the result of the operation x MOD 2 equals 0,
x is even; otherwise, x is odd.
The flowchart is shown here.

and the Java program is as follows.
 Project_17.1-4

public static void main(String[] args) throws Exception {
int x;

System.out.print("Enter a positive integer: "); x = Integer.parseInt(cin.nextLine());
if (x % 2 == 0) {

System.out.println("Even");
}
else {

System.out.println("Odd");

}
}

Exercise 17.1-5 Weekly Wages

Gross pay depends on the pay rate and the total number of hours worked per
week. However, if someone works more than 40 hours, they get paid time-
and-a-half for all hours worked over 40. Design a flowchart and write the
corresponding Java program that lets the user enter a pay rate and the
hours worked and then calculates and displays the gross pay.

Solution This exercise can be solved using the dual-alternative decision
structure. When the hours worked are over 40, the gross pay is calculated as
follows: gross pay = (pay rate) × 40 + 1.5 × (pay rate) × (all hours worked
over 40) The flowchart that solves this problem is shown here.

and the Java program is shown here.

 Project_17.1-5
public static void main(String[] args) throws Exception {

int hoursWorked; double payRate, grossPay;
payRate = Double.parseDouble(cin.nextLine()); hoursWorked =
Integer.parseInt(cin.nextLine());
if (hoursWorked <= 40) {

grossPay = payRate * hoursWorked;

}
else {

grossPay = payRate * 40 + 1.5 * payRate * (hoursWorked - 40);
}
System.out.println("Gross Pay: " + grossPay); }

17.2 Review Questions: True/False

Choose true or false for each of the following statements.
1) It is a possible that none of the statements enclosed in a dual-alternative

decision structure will be executed.
2) The dual-alternative decision structure must include at least two

statements.
3) The dual-alternative decision structure uses the reserved keyword else.
4) The following statement is syntactically correct.

int else = 5;

5) In a dual-alternative decision structure, the evaluated Boolean
expression can return more than two values.

6) The following code fragment satisfies the property of effectiveness.
int x, y, z;
x = Integer.parseInt(cin.nextLine()); y = Integer.parseInt(cin.nextLine()); z =

Integer.parseInt(cin.nextLine());
if (x > y && x > z) {

System.out.println("Value " + x + " is the greatest one"); }
else {

System.out.println("Value " + y + " is the greatest one"); }

17.3 Review Questions: Multiple Choice
Select the correct answer for each of the following statements.

1) The dual-alternative decision structure includes a statement or block of
statements on a) the false path only.
b) both paths.
c) the true path only.

2) In the following code fragment,
if (x % 2 == 0) {

x = 0; }
else {

y++;
}
the statement y++ is executed when a) variable x is exactly divisible by
2.
b) variable x contains an even number.
c) variable x contains an odd number.

d) none of the above 3) In the following code fragment,
if (x == 3) x = 5; else x = 7; y++;

the statement y++ is executed a) when variable x contains a value of 3.
b) when variable x contains a value other than 3.
c) both of the above

17.4 Review Exercises
Complete the following exercises.

1) Create a trace table to determine the values of the variables in each step
of the next Java program for two different executions. Then, design the
corresponding flowchart.
The input values for the two executions are: (i) 3, and (ii) 0.5.
public static void main(String[] args) throws Exception {

double a, z, y;
a = Double.parseDouble(cin.nextLine()); z = a * 3 - 2; if (z >= 1) {

y = 6 * a;

}
else {

z++;
y = 6 * a + z;

}
System.out.println(z + ", " + y); }

2) Create a trace table to determine the values of the variables in each step
of the next Java program. Then, design the corresponding flowchart.
public static void main(String[] args) throws Exception {

double x, y, z;
x = 3; y = Math.pow(x, 3) + 9; z = 2 * x + y - 4; if (x > y) {

y = z % x;
z = Math.sqrt(x);

}
else {

x = z % y;
z = Math.sqrt(y);

}

System.out.println(x + ", " + y + ", " + z); }

3) Write the Java program that corresponds to the following flowchart and
then create a trace table to determine the values of the variables in each
step for two different executions.
The input values for the two executions are: (i) 10, and (ii) 2.

4) Using a dual-alternative decision structure, write a Java program that
prompts the user to enter a number, and then displays a message
indicating whether the user-provided number is greater than 100. It
must display “Provided number is less than or equal to 100” otherwise.

5) Using a dual-alternative decision structure, write a Java program that
prompts the user to enter a number, and then displays a message
indicating whether the user-provided number is between 0 and 100. It
must display “Provided number is not between 0 and 100” otherwise.

6) Two football teams play against each other in the UEFA Champions
League. Using a dual-alternative decision structure, write a Java
program that prompts the user to enter the names of the two teams and
the goals that each team scored, and then displays the name of the
winner. Assume that the user enters valid values and there is no tie
(draw).

7) Using a dual-alternative decision structure, write a Java program that
lets the user enter an integer, and then displays a message indicating
whether the user-provided number is a multiple of 6; it must display
“NN is not a multiple of 6” otherwise (where NN is the user-provided
number). Assume that the user enters a non-negative[14] value.

8) Using a dual-alternative decision structure, write a Java program that
lets the user enter an integer, and then displays one of two possible
messages. One message indicates if the user-provided number is a
multiple of 6 or a multiple of 7; the other message indicates if the user-
provided number is neither a multiple of 6 nor a multiple of 7. Assume
that the user enters a non-negative value.

9) Using a dual-alternative decision structure, write a Java program that
lets the user enter an integer. The program must then display a message
indicating whether the user-provided number is a multiple of 4; it must
display “NN is not a multiple of 4” otherwise (where NN is the user-
provided number). Additionally, the program must present the structure
of the user-provided integer as “NN = QQ x 4 + RR”, where QQ is the
integer quotient, and RR is the integer remainder when NN is divided
by 4. For example, if the user-provided integer is 14, the message “14 =
3 x 4 + 2” must be displayed. Assume that the user enters a non-
negative value.

10) Using a dual-alternative decision structure, design a flowchart and write
the corresponding Java program that lets the user enter two values, and
then determines and displays the smaller of the two values. Assume that
the user enters two different values.

11) Using a dual-alternative decision structure, write a Java program that
lets the user enter three numbers, and then displays a message
indicating whether the user-provided numbers can be lengths of the
three sides of a triangle; it must display “Provided numbers cannot be
lengths of the three sides of a triangle” otherwise. Assume that the user
enters valid values.

Hint: In any triangle, the length of each side is less than the sum of the
lengths of the other two sides.

12) Using a dual-alternative decision structure, write a Java program that
lets the user enter three numbers, and then displays a message
indicating whether the user-provided numbers can be lengths of the
three sides of a right triangle (or right-angled triangle); it must display
“Provided numbers cannot be lengths of the three sides of a right
triangle” otherwise. Assume that the user enters valid values.
Hint 1: Use the Pythagorean theorem.
Hint 2: You can use lengths of 3, 4 and 5 (which can be lengths of the
three sides of a right triangle) to test your program.

13) Athletes in the long jump at the Olympic Games in Athens in 2004
participated in three different qualifying jumps. An athlete, in order to
qualify, has to achieve an average jump distance of at least 8 meters.
Using a dual-alternative decision structure, write a Java program that
prompts the user to enter the three performances, and then displays the
message “Qualified” when the average value is greater than or equal to
8 meters; it displays “Disqualified” otherwise. Assume that the user
enters valid values.

14) Gross pay depends on the pay rate and the total number of hours
worked per week. However, if someone works more than 40 hours, they
get paid double for all hours worked over 40. Using a dual-alternative
decision structure, design a flowchart and write the corresponding Java
program that lets the user enter the pay rate and hours worked and then
calculates and displays net pay. Net pay is the amount of pay that is
actually paid to the employee after any deductions. Deductions include
taxes, health insurance, retirement plans, on so on. Assume a total
deduction of 30%. Also, assume that the user enters valid values.

15) Regular servicing will keep your vehicle more reliable, reducing the
chance of breakdowns, inconvenience and unnecessary expenses. In
general, there are two types of service you need to perform: a) a minor
service every 6000 miles b) a major service every 12000 miles Using a
dual-alternative decision structure, write a Java program that prompts
the user to enter the miles traveled, and then calculates and displays
how many miles are left until the next service, as well as the type of the
next service. Assume that the user enters a valid value.

16) Two cars start from rest and move with a constant acceleration
along a straight horizontal road for a specified time. Using a dual-
alternative decision structure, write a Java program that prompts
the user to enter the time the two cars traveled (same for both
cars) and the acceleration for each one of them, and then
calculates and displays the distance between them as well as a
message “Car A is first” or “Car B is first” depending on which
car is leading the race. The required formula is

where ► S is the distance the car traveled, in meters (m)
► uo is the initial velocity (speed) of the car, in meters per
second (m/sec) ► t is the time the car traveled, in seconds
(sec) ► a is the acceleration, in meters per second2

(m/sec2) Assume that the user-provided acceleration values
are different from each other. Also assume that the user
enters valid values.

Chapter 18
The Multiple-Alternative Decision Structure

18.1 The Multiple-Alternative Decision Structure
The multiple-alternative decision structure is used to expand the number of
alternatives, as shown in the following flowchart fragment.

When a multiple-alternative decision structure is executed,
Boolean_Expression_1 is evaluated. If it evaluates to true, the
corresponding statement or block of statements that immediately follows it is
executed; then the rest of the structure is skipped, continuing to any
remaining statements that may exist after the multiple-alternative decision
structure. However, if Boolean_Expression_1 evaluates to false, the flow of
execution evaluates Boolean_Expression_2. If it evaluates to true, the
corresponding statement or block of statements that immediately follows it is
executed and the rest of the structure is skipped. This process continues until
one Boolean expression evaluates to true or until no more Boolean
expressions are left.
The last statement or block of statements N + 1 is executed when none of the
previous Boolean expressions has evaluated to true. Moreover, this last

statement or block of statements N + 1 is optional and can be omitted. It
depends on the algorithm you are trying to solve.
The general form of the Java statement is

if (Boolean_Expression_1) {

A statement or block of statements 1

}
else if (Boolean_Expression_2) {

A statement or block of statements 2

}
else if (Boolean_Expression_3) {

A statement or block of statements 3

}
.
.
.
else if (Boolean_Expression_N) {

A statement or block of statements N

}
else {

A statement or block of statements N + 1

}

The last statement or last block of statements N + 1 is optional and can
be omitted (you need to omit the keyword else as well).

A simple example is shown here.
 Project_18.1

public static void main(String[] args) throws Exception {

String name;
System.out.print("What is your name? "); name = cin.nextLine();
if (name.equals("John") == true) {

System.out.println("You are my cousin!");
}
else if (name.equals("Aphrodite") == true) {

System.out.println("You are my sister!");
}
else if (name.equals("Loukia") == true) {

System.out.println("You are my mom!");
}
else {

System.out.println("Sorry, I don't know you.");
}

}

Exercise 18.1-1 Trace Tables and Multiple-Alternative Decision Structures
Create a trace table to determine the values of the variables in each step for
three different executions of the next Java program.
The input values for the three executions are: (i) 5, 8; (ii) −13, 0; and (iii) 1,
−1.

 Project_18.1-1
public static void main(String[] args) throws Exception {

int a, b;
a = Integer.parseInt(cin.nextLine()); b = Integer.parseInt(cin.nextLine());

if (a > 3)
System.out.println("Message #1");
else if (a > 4 && b <= 10) {

System.out.println("Message #2");
System.out.println("Message #3");

}
else if (a * 2 == -26) {

System.out.println("Message #4");
System.out.println("Message #5");
b++;

}
else if (b == 1)
System.out.println("Message #6");
else {

System.out.println("Message #7");
System.out.println("Message #8");

}
System.out.println("The end!"); }

Note that you can use braces { } only when necessary.

Solution i) For the input values of 5 and 8, the trace table looks like this.

Step Statement Notes a b

1 a = Integer.parseI… User enters the value 5 5 ?

2 b = Integer.parseI… User enters the value 8 5 8

3 if (a > 3) This evaluates to true

4 .println("Message #1") It displays: Message #1

5 .println("The end!") It displays: The end!

Note that even though the second Boolean expression (a > 4 && b <= 10)
could also have evaluated to true, it was never checked.

ii) For the input values of −13 and 0, the trace table looks like this.

Step Statement Notes a b

1 a = Integer.parseI… User enters the value −13 −13 ?

2 b = Integer.parseI… User enters the value 0 −13 0

3 if (a > 3) This evaluates to false

4 else if (a > 4 && b <= 10) This evaluates to false

5 else if (a * 2 == −26) This evaluates to true

6 .println("Message #4") It displays: Message #4

7 .println("Message #5") It displays: Message #5

8 b++ −13 1

9 .println("The end!") It displays: The end!

Note that after step 8 the fourth Boolean expression (b == 1) could also
have evaluated to true, but it was never checked.

iii) For the input values of 1 and −1, the trace table looks like this.

Step Statement Notes a b

1 a = Integer.parseI… User enters the value 1 1 ?

2 b = Integer.parseI… User enters the value −1 1 −1

3 if (a > 3) This evaluates to false

4 else if (a > 4 && b <= 10) This evaluates to false

5 else if (a * 2 == ‐26) This evaluates to false

6 else if (b == 1) This evaluates to false

7 .println("Message #7") It displays: Message #7

8 .println("Message #8") It displays: Message #8

9 .println("The end!") It displays: The end!

Exercise 18.1-2 Counting the Digits
Write a Java program that prompts the user to enter an integer between 0
and 999 and then counts its total number of digits. In the end, a message
“You entered a N-digit number” must be displayed, where N is the total
number of digits. Assume that the user enters a valid integer between 0 and
999.

Solution You may be trying to figure out how to solve this exercise using
DIV operations. You are probably thinking of dividing the user-provided
integer by 10 and checking whether the integer quotient is 0. If it is, this
means that the user-provided integer is a one-digit integer. Then, you can
divide it by 100 or by 1000 to check for two-digit and three-digit integers,
respectively. Your thinking is partly true, and your thoughts are depicted in
the following code fragment.
if ((int)(x / 10) == 0) digits = 1; else if ((int)(x / 100) == 0) digits = 2; else if
((int)(x / 1000) == 0) digits = 3;

If the user-provided integer (in variable x) has one digit, the first Boolean
expression evaluates to true and the rest of the Boolean expressions are
never checked! If the user-provided integer has two digits, the first Boolean
expression evaluates to false, the second one evaluates to true, and the last
one is never checked! Finally, if the user-provided integer has three digits,
both the first and the second Boolean expressions evaluate to false and the
last one evaluates to true!
It seems accurate, doesn't it? So, where does the issue lie?
Consider if the wording of the exercise were “Write a Java program that
prompts the user to enter an integer and displays a message when the user-
provided integer consists of two digits”. In all likelihood, you would proceed
as follows:

System.out.print("Enter an integer: "); x = Integer.parseInt(cin.nextLine());
if ((int)(x / 100) == 0) System.out.println("A 2-digit integer entered");

However, this code is flawed! While the Boolean expression (int)(x /
100) == 0 works correctly for all user-provided integers with two digits or
more, unfortunately, it fails for one-digit integers (as it does not evaluate to
false for a them). Therefore, using integer division is not the right approach.
The correct solution is much simpler than you might believe!
What is the smallest two-digit integer that you can think of? It is 10, right?
And what is the greatest one that you can think of? It is 99, right? So, the
proper solution is as follows.
System.out.print("Enter an integer: "); x = Integer.parseInt(cin.nextLine()); if (x >=
10 && x <= 99) System.out.println("A 2-digit integer entered");

According to all these, the complete solution to the exercise is as follows!

 Project_18.1-2a
public static void main(String[] args) throws Exception {

int x, digits;
System.out.print("Enter an integer (0 - 999): "); x =

Integer.parseInt(cin.nextLine());
if (x >= 0 && x <= 9) {

digits = 1;
}

else if (x >= 10 && x <= 99) {
digits = 2;

}
else {
digits = 3;

}
System.out.println("You entered a " + digits + "-digit

number"); }

And, if you wish to make your program even better and display an error
message to the user when they enter a value that is not between 0 and 999,
you can do something like this: Project_18.1-2b

public static void main(String[] args) throws Exception {
int x;
System.out.print("Enter an integer (0 - 999): "); x =
Integer.parseInt(cin.nextLine());

if (x >= 0 && x <= 9) {
System.out.println("A 1-digit integer entered");

}
else if (x >= 10 && x <= 99) {

System.out.println("A 2-digit integer entered ");
}
else if (x >= 100 && x <= 999) {

System.out.println("A 3-digit integer entered ");
}
else {

System.out.println("Wrong integer");
}

}

18.2 Review Questions: True/False
Choose true or false for each of the following statements.

1) The multiple-alternative decision structure is used to expand the number
of alternatives.

2) The multiple-alternative decision structure can have at most three
alternatives.

3) In a multiple-alternative decision structure, once a Boolean expression
evaluates to true, the next Boolean expression is also evaluated.

4) In a multiple-alternative decision structure, the last statement or block
of statements N+1 (appearing below the else keyword) is always
executed.

5) In a multiple-alternative decision structure, the last statement or block
of statements N+1 (appearing below the else keyword) is executed
when at least one of the previous Boolean expressions has evaluated to
true.

6) In a multiple-alternative decision structure, the last statement or block
of statements N+1, and by extension the else keyword, can be omitted.

7) In the following code fragment, the statement y++ is executed only when
variable a contains a value other than 1, 2, or 3.
if (a == 1) x += 5; else if (a == 2) x -= 2; else if (a == 3) x -= 9; else x += 3;
y++;

8) In the code fragment of the previous exercise, the statement x += 3 is
executed only when variable a contains a value other than 1, 2, or 3.

18.3 Review Exercises
Complete the following exercises.

1) Create a trace table to determine the values of the variables in each step
for four different executions of the next Java program.
The input values for the four executions are: (i) 5, (ii) 150, (iii) 250, and
(iv) −1.
public static void main(String[] args) throws Exception {

int q, b;
q = Integer.parseInt(cin.nextLine());
if (q > 0 && q <= 50) {

b = 1;
}
else if (q > 50 && q <= 100) {

b = 2;
}
else if (q > 100 && q <= 200) {

b = 3;
}
else {

b = 4;
}

System.out.println(b); }

2) Create a trace table to determine the values of the variables in each step
for three different executions of the next Java program.
The input values for the three executions are: (i) 5, (ii) 150, and (iii) −1.
public static void main(String[] args) throws Exception {

double amount, discount, payment;
amount = Double.parseDouble(cin.nextLine()); discount = 0;
if (amount < 20) {

discount = 0;
}
else if (amount >= 20 && amount < 60) {

discount = 5;
}
else if (amount >= 60 && amount < 100) {

discount = 10;
}
else if (amount >= 100) {

discount = 15;
}
payment = amount - amount * discount / 100;

System.out.println(discount + ", " + payment); }

3) Write the following Java program using correct indentation.
public static void main(String[] args) throws Exception {
double a, y;
a = Double.parseDouble(cin.nextLine());
if (a < 1) {

y = 5 + a;
System.out.println(y); }
else if (a < 5) {
y = 23 / a;
System.out.println(y); }
else if (a < 10) {

y = 5 * a;
System.out.println(y); }
else {
System.out.println("Error!"); }
}

4) Write a Java program that prompts the user to enter two integers and
then displays a message indicating whether both numbers are odd or
both are even; otherwise the message “Nothing special” must be
displayed.

5) Two football teams play against each other in the UEFA Champions
League. Write a Java program that prompts the user to enter the names
of the two teams and the goals each team scored and then displays the
name of the winner or the message “It's a tie!” when both teams score
equal number of goals. Assume that the user enters valid values.

6) Design a flowchart and write the corresponding Java program that lets
the user enter an integer between −9999 and 9999, and then counts its
total number of digits. In the end, a message “You entered a N-digit
number” is displayed, where N is the total number of digits. Assume
that the user enters a valid integer between −9999 and 9999.

7) Rewrite the Java program of the previous exercise to validate the data
input. An error message must be displayed when the user enters an
invalid value.

8) Write a Java program that displays the following menu: 1) Convert USD to
Euro (EUR) 2) Convert USD to British Pound Sterling (GBP) 3) Convert

USD to Japanese Yen (JPY) 4) Convert USD to Canadian Dollar (CAD) It
then prompts the user to enter a choice (of 1, 2, 3, or 4) and an amount
in US dollars and calculates and displays the required value. Assume
that the user enters valid values. It is given that ► $1 = 0.94 EUR (€)
► $1 = 0.81 GBP (£) ► $1 = ¥ 149.11 JPY
► $1 = 1.36 CAD ($) 9) Write a Java program that prompts the user

to enter the number of a month between 1 and 12, and then displays
the corresponding season. Assume that the user enters a valid
value. It is given that ► Winter includes months 12, 1, and 2

► Spring includes months 3, 4, and 5
► Summer includes months 6, 7, and 8
► Fall (Autumn) includes months 9, 10, and 11

10) Rewrite the Java program of the previous exercise to validate the data
input. An error message must be displayed when the user enters an
invalid value.

11) The most popular and commonly used grading system in the United
States uses discrete evaluation in the form of letter grades. Design a
flowchart and write the corresponding Java program that prompts the
user to enter a letter between A and F, and then displays the
corresponding percentage according to the following table.

Grade Percentage

A 90 ‐ 100

B 80 ‐ 89

C 70 ‐ 79

D 60 ‐ 69

E / F 0 ‐ 59

Assume that the user enters a valid value.
12) Write a Java program that prompts the user to enter a number with one

decimal digit between 0.0 and 9.9, and then displays the number as
English text. For example, if the user enters 2.3, the program must
display “Two point three”. Assume that the user enters a valid value.

Hint: Avoid checking each real number individually, as this would
require a multiple-alternative decision structure with 100 cases! Try to
find a more efficient and clever approach instead!

Chapter 19
The Case Decision Structure

19.1 The Case Decision Structure
The case decision structure is a simplified version of the multiple-alternative
decision structure. It helps you write code faster and increases readability,
especially for algorithms that require complex combinations of decision
structures. The case decision structure is used to expand the number of
alternatives in the same way as the multiple-alternative decision structure
does.
The general form of the Java statement is
switch (a variable or an expression to evaluate) {

case value-1:

A statement or block of statements 1

break;
case value-2:

A statement or block of statements 2

break;
case value-3:

A statement or block of statements 3

break;
.

.

.
case value-N:

A statement or block of statements N

break;
default:

A statement or block of statements N + 1

}

The last statement or last block of statements N + 1 is optional and can
be omitted (you need to omit the keyword default as well).

In order to avoid undesirable results, please remember to always include
the keyword break at the end of each case. If you omit one, two statements or

blocks of statements are actually executed: the current one in which the
keyword break is omitted, and the next one.

Note that in Java the switch statement works only with certain data types
such as byte, short, int, char, or String.

You cannot always use a case decision structure instead of a multiple-
alternative decision structure. In a case decision structure the evaluated
variable or expression is written once, which means that this same variable
or expression is evaluated in all cases. In a multiple-alternative decision
structure, however, the evaluated variable or expression can be different in
each case.

An example that uses the case decision structure is shown here.
 Project_19.1

public static void main(String[] args) throws Exception {

String name;
System.out.print("What is your name? ");
name = cin.nextLine();
switch (name) {

case "John":

System.out.println("You are my cousin!");
break;

case "Aphrodite":
System.out.println("You are my sister!");
break;

case "Loukia":

System.out.println("You are my mom!");
break;

default:
System.out.println("Sorry, I don't know you.");

}

}

Exercise 19.1-1 The Days of the Week
Write a Java program that prompts the user to enter an integer between 1
and 5, and then displays the corresponding work day (Monday, Tuesday,
Wednesday, Thursday, or Friday). If the value entered is invalid, an error
message must be displayed.

Solution

The flowchart that solves this exercise is presented below.

The corresponding Java program can be written using either a multiple-
alternative decision structure or a case decision structure. Let's try them
both!

First approach – Using a multiple-alternative decision structure
 Project_19.1-1a

public static void main(String[] args) throws Exception {
int day;
System.out.print("Enter an integer between 1 and 5: ");
day = Integer.parseInt(cin.nextLine());

if (day == 1) {
System.out.println("Monday");

}
else if (day == 2) {

System.out.println("Tuesday");

}
else if (day == 3) {

System.out.println("Wednesday");
}
else if (day == 4) {

System.out.println("Thursday");

}
else if (day == 5) {

System.out.println("Friday");
}
else {

System.out.println("Invalid Number");
}

}

Second approach – Using a case decision structure
 Project_19.1-1b

public static void main(String[] args) throws Exception {
int day;
System.out.print("Enter an integer between 1 and 5: ");
day = Integer.parseInt(cin.nextLine());
switch (day) {

case 1:

System.out.println("Monday");
break;

case 2:
System.out.println("Tuesday");
break;

case 3:
System.out.println("Wednesday");
break;

case 4:
System.out.println("Thursday");

break;
case 5:

System.out.println("Friday");
break;

default:
System.out.println("Invalid Number");

}
}

The case decision structure and the multiple-alternative decision
structure share the same flowchart.

19.2 Review Questions: True/False
Choose true or false for each of the following statements.

1) The case decision structure is used to expand the number of alternatives.
2) The case decision structure can always be used instead of a multiple-

alternative decision structure.

3) The case decision structure can have as many alternatives as the
programmer wishes.

4) In a case decision structure, the last statement or block of statements N
+ 1 (appearing below the default keyword) is always executed.

5) In a case decision structure, the last statement or block of statements N
+ 1 (appearing below the default keyword) is executed when none of
the previous cases has evaluated to true.

6) The last statement or block of statements N + 1, as well as the default
keyword, cannot be omitted.

7) In the following Java program, the statement y++ is executed only when
variable a contains a value other than 1, 2, or 3.
switch (a) {

case 1: x = x + 5; break;
case 2: x = x - 2; break;

case 3: x = x - 9; break;
default: x = x + 3; y++;

}

19.3 Review Exercises
Complete the following exercises.

1) Create a trace table to determine the values of the variables in each step
of the next Java program for three different executions.
The input values for the three executions are: (i) 1, (ii) 3, and (iii) 250.
public static void main(String[] args) throws Exception {

int a, x, y;
a = Integer.parseInt(cin.nextLine());
x = 0;

y = 0;
switch (a) {

case 1: x = x + 5; y = y + 5; break;
case 2: x = x - 2; y--; break;
case 3: x = x - 9; y = y + 3; break;

default: x = x + 3; y++;
}
System.out.println(x + ", " + y);

}

2) Create a trace table to determine the values of the variables in each step
of the next Java program for three different executions.

The input values for the three executions are: (i) 10, 2, 5; (ii) 5, 2, 3;
and (iii) 4, 6, 2.
public static void main(String[] args) throws Exception {

int a, x;
double y;

a = Integer.parseInt(cin.nextLine());
x = Integer.parseInt(cin.nextLine());
y = Double.parseDouble(cin.nextLine());
switch (a) {

case 10:

x = x % 2;
y = Math.pow(y, 2);
break;

case 3:
x = x * 2;
y--;

break;
case 5:

x = x + 4;
y += 7;
break;

default:
x -= 3;
y++;

}
System.out.println(x + ", " + y);

}

3) Using a case decision structure, write a Java program that prompts the
user to enter the name of a month, and then displays the corresponding
number (1 for January, 2 for February, and so on). If the value entered
is invalid, an error message must be displayed.

4) Using a case decision structure, write a Java program that displays the
following menu:
1) Convert Miles to Yards
2) Convert Miles to Feet
3) Convert Miles to Inches
It then prompts the user to enter a choice (of 1, 2, or 3) and a distance in
miles. Then, it calculates and displays the required value. Assume that
the user enters a valid value for the distance. However, if the choice
entered is invalid, an error message must be displayed. It is given that

► 1 mile = 1760 yards
► 1 mile = 5280 feet
► 1 mile = 63360 inches

5) Roman numerals are shown in the following table.

Number Roman Numeral

1 I

2 II

3 III

4 IV

5 V

6 VI

7 VII

8 VIII

9 IX

10 X

Using a case decision structure, write a Java program that prompts the
user to enter a Roman numeral between I and X, and then displays the
corresponding number. However, if the choice entered is invalid, an
error message must be displayed.

6) An online supermarket awards points to its customers based on the total
number of wine bottles purchased each month. The points are awarded
as follows:
► If the customer purchases 1 bottle of wine, they are awarded 3

points.
► If the customer purchases 2 bottles of wine, they are awarded 10

points.
► If the customer purchases 3 bottles of wine, they are awarded 20

points.
► If the customer purchases 4 bottles of wine or more, they are

awarded 45 points.

Using a case decision structure, write a Java program that prompts the
user to enter the total number of wine bottles they have purchased in a
month and then displays the number of points awarded. Assume that the
user enters a valid value.

7) Using a case decision structure, write a Java program that prompts the
user to enter their name, and then displays “Hello NN!” or “Hi NN!” or
“What's up NN!”, where NN is the name of the user. The message to be
displayed must be chosen randomly.

8) Using a case decision structure, write a Java program that lets the user
enter a word such as "zero", “one” or "two", and then converts it into
the corresponding digit, such as 0, 1, or 2. This must be done for the
numbers 0 to 9. Display "I don't know this number!" when the user
enters an unknown.

9) The Beaufort[15] scale is an empirical measure that relates wind speed to
observed conditions on land or at sea. Using a case decision structure,
write a Java program that prompts the user to enter the Beaufort
number, and then displays the corresponding description from the
following table. However, if the number entered is invalid, an error
message must be displayed.

Beaufort Number Description

0 Calm

1 Light air

2 Light breeze

3 Gentle breeze

4 Moderate breeze

5 Fresh breeze

6 Strong breeze

7 Moderate gale

8 Gale

9 Strong gale

10 Storm

11 Violent storm

12 Hurricane force

Chapter 20
Nested Decision Control Structures

20.1 What are Nested Decision Control Structures?
Nested decision control structures are decision control structures that are
“nested” (enclosed) within another decision control structure. This means
that one decision control structure can nest (enclose) another decision
control structure (which then becomes the “nested” decision control
structure). In turn, that nested decision control structure can enclose another
decision structure, and so on.
An example of a nested decision control structure is shown here.

This can be rearranged to become

and the Java code is shown here.
if (x < 30) {

if (x < 15) { [More…]
y = y + 2;

}
else {

y--;
}

}
else {

y++;

}

There are no practical limitations to how deep this nesting can go. As long as
the syntax rules are not violated, you can nest as many decision control
structures as you wish. For practical reasons however, as you move to three
or four levels of nesting, the entire structure becomes very complex and
difficult to understand.

Complex code may lead to invalid results! Try to keep your code as
simple as possible by breaking large nested decision control structures into
multiple smaller ones, or by using other types of decision control structures.

Obviously, you can nest any decision control structure inside any other
decision control structure as long as you keep them syntactically and

logically correct. In the next example, a case decision structure is nested
within a dual-alternative decision structure.

 Project_20.1
public static void main(String[] args) throws Exception {

int x;
System.out.print("Enter a choice: ");
x = Integer.parseInt(cin.nextLine());
if (x < 1 || x > 4) {

System.out.println("Invalid choice");

}
else {

System.out.println("Valid choice");

switch (x) { [More…]
case 1:

System.out.println("1st choice selected");

break;
case 2:

System.out.println("2nd choice selected");
break;

case 3:

System.out.println("3rd choice selected");
break;

case 4:
System.out.println("4th choice selected");
break;

}

}
}

Note that keyword default is missing from the switch statement. If you
wish to include it, considering that the only choices checked are 1, 2, 3, or 4,
you can replace case 4 with default.

Exercise 20.1-1 Trace Tables and Nested Decision Control Structures
Create a trace table to determine the values of the variables in each step of
the next Java program for three different executions.
The input values for the three executions are: (i) 13, (ii) 18, and (iii) 30.

 Project_20.1-1
public static void main(String[] args) throws Exception {

int x, y;
x = Integer.parseInt(cin.nextLine());

y = 10;
if (x < 30) {

if (x < 15) {

y = y + 2;
}
else {

y--;
}

}
else {

y++;
}
System.out.println(y);

}

Solution

i) For the input value of 13, the trace table looks like this.

Step Statement Notes x y

1 x = Integer.parseI… User enters the value 13 13 ?

2 y = 10 13 10

3 if (x < 30) This evaluates to true

4 if (x < 15) This evaluates to true

5 y = y + 2 13 12

6 .println(y) It displays: 12

ii) For the input value of 18, the trace table looks like this.

Step Statement Notes x y

1 x = Integer.parseI… User enters the value 18 18 ?

2 y = 10 18 10

3 if (x < 30) This evaluates to true

4 if (x < 15) This evaluates to false

5 y‐‐ 18 9

6 .println(y) It displays: 9

iii) For the input value of 30, the trace table looks like this.

Step Statement Notes x y

1 x = Integer.parseI… User enters the value 30 30 ?

2 y = 10 30 10

3 if (x < 30) This evaluates to false

4 y++ 30 11

5 .println(y) It displays: 11

Exercise 20.1-2 Positive, Negative or Zero?
Design a flowchart and write the corresponding Java program that lets the
user enter a number and then displays the messages “Positive”, “Negative”,
or “Zero” depending on whether the user-provided value is greater than,
less than, or equal to zero.

Solution

The flowchart is shown here.

This flowchart can be written as a Java program using either a nested
decision control structure or a multiple-alternative decision structure. Let's
try them both!

First approach – Using a nested decision control structure
 Project_20.1-2a

public static void main(String[] args) throws Exception {

double a;
a = Double.parseDouble(cin.nextLine());
if (a > 0) {

System.out.println("Positive");
}

else {
if (a < 0) {

System.out.println("Negative");
}
else {

System.out.println("Zero");

}
}

}

Second approach – Using a multiple-alternative decision structure
 Project_20.1-2b

public static void main(String[] args) throws Exception {
double a;
a = Double.parseDouble(cin.nextLine());
if (a > 0) {

System.out.println("Positive");

}
else if (a < 0) {

System.out.println("Negative");
}
else {

System.out.println("Zero");

}
}

20.2 Review Questions: True/False
Choose true or false for each of the following statements.

1) Nesting of decision control structures describes a situation in which one
or more than one path of a decision control structure enclose other
decision control structures.

2) Nesting level can go as deep as the programmer wishes.
3) When a problem can be solved using either a case decision structure or

nested decision control structures, the second option is better because
the program becomes more readable.

4) It is possible to nest a multiple-alternative decision structure within a
case decision structure, but not the opposite.

20.3 Review Exercises
Complete the following exercises.

1) Create a trace table to determine the values of the variables in each step
of the next Java program for four different executions.
The input values for the four executions are: (i) 20, 1; (ii) 20, 3; (iii) 12,
8; and (iv) 50, 0.
public static void main(String[] args) throws Exception {

int x, y;
x = Integer.parseInt(cin.nextLine());
y = Integer.parseInt(cin.nextLine());

if (x < 30) {
switch (y) {

case 1:
x = x % 3;
y = 5;
break;

case 2:
x = x * 2;
y = 2;
break;

case 3:

x = x + 5;
y += 3;
break;

default:
x -= 2;

y++;
}

}
else {

y++;
}

System.out.println(x + ", " + y);
}

2) Create a trace table to determine the values of the variables in each step
of the next Java program for four different executions.
The input values for the four executions are: (i) 60, 25; (ii) 50, 8; (iii)
20, 15; and (iv) 10, 30.
public static void main(String[] args) throws Exception {

int x, y;
x = Integer.parseInt(cin.nextLine());

y = Integer.parseInt(cin.nextLine());
if ((x + y) / 2 <= 20) {

if (y < 10) {
x = x % 3;
y += 2;

}
else if (y < 20) {

x = x * 5;
y += 2;

}
else {

x = x - 2;
y += 3;

}
}
else {

if (y < 15) {
x = x % 4;
y = 2;

}
else if (y < 23) {

x = x % 2;
y -= 2;

}
else {

x = 2 * x + 5;
y += 1;

}
}
System.out.println(x + ", " + y);

}

3) Write the following Java program using correct indentation.
public static void main(String[] args) throws Exception {

int a;
a = Integer.parseInt(cin.nextLine());
if (a > 1000)
System.out.println("Big Positive");

else {
if (a > 0)
System.out.println("Positive");

else {
if (a < -1000)
System.out.println("Big Negative");
else {
if (a < 0)

System.out.println("Negative");
else
System.out.println("Zero");
}
}
}

}

4) In Greece, you can drive a small scooter when you are at least 16 years
old, whereas you can drive a car when you are at least 18 years old.
Write a Java program that prompts the user to enter their age and then
displays (depending on the user's age) one of the following messages:
► “You cannot drive either a small scooter or a car”, when the user is

younger than 16 years old
► “You can drive a small scooter”, when the user is between 16 and

18 years old
► “You can drive a car and a small scooter”, when the user is 18 years

old or older
An error message must be displayed when the user enters an invalid
value.

5) A hoverboard factory manager needs a program to calculate the profit or
loss the factory makes during the period of one month. Here's some
information:
► It costs the factory $150 to build each hoverboard.
► Hoverboards are sold for $250 each.
► The factory pays $1000 for insurance each month for each

employee.
Write a Java program that prompts the user to input the number of
hoverboards sold and the number of employees in the company.
Depending on the financial performance of the company, the program
must then display one of the following messages:

► Profit
► Loss
► Broke even
An error message must be displayed when the user enters a negative
number of hoverboards sold or a non-positive[16] number of employees.

6) Write a Java program that prompts the user to enter their name. The
program must then select a random integer between 1 and 24 to
represent an hour, and then, it must display the message “The hour is
HH:00” and, depending on that number, display either “Good morning
NN!”, “Good Evening NN!”, “Good Afternoon NN!”, or “Good Night
NN!”, where HH is the randomly chosen hour and NN is the name of
the user. Solve this exercise twice, once using nested-decision
structures and once using a multiple-alternative decision structure.

7) Write a Java program that prompts the user to enter the lengths of three
sides of a triangle, and then determines whether or not the user-
provided numbers can be lengths of the three sides of a triangle. If the
lengths are not valid, a corresponding message must be displayed;
otherwise the program must further determine whether the triangle is
a) equilateral

Hint: In an equilateral triangle, all sides are equal.
b) right (or right-angled)

Hint: Use the Pythagorean Theorem.
c) not special

Hint: In any triangle, the length of each side is less than the sum of the
lengths of the other two sides.

8) Inside an automated teller machine (ATM) there are notes of $10, $5,
and $1. Write a Java program to emulate the way this ATM works. At
the beginning, the machine prompts the user to enter the four-digit PIN
and then checks for PIN validity (assume “1234” as the valid PIN). If
user-provided PIN is correct, the program must prompt the user to enter
the amount of money (an integer value) that they want to withdraw and
finally it displays the least number of notes the ATM must dispense. For
example, if the user enters an amount of $36, the program must display
“3 note(s) of $10, 1 note(s) of $5, and 1 note(s) of $1”. Moreover, if the
user enters a wrong PIN, the machine will allow them two retries. If the

user enters an incorrect PIN all three times, the message “PIN locked”
must be displayed and the program must end. Assume that the user
enters a valid value for the amount.

9) Write a Java program that prompts the user to enter two values, one for
temperature and one for wind speed. If the temperature is above 75
degrees Fahrenheit, the day is considered hot, otherwise it is cold. If the
wind speed is above 12 miles per hour, the day is considered windy,
otherwise it is not windy. The program must display one single
message, depending on the user-provided values. For example, if the
user enters 60 for temperature and 10 for wind speed, the program must
display “The day is cold and not windy”. Assume that the user enters
valid values.

Chapter 21 More about Flowcharts with Decision
Control Structures

21.1 Introduction
By working through the previous chapters, you've become familiar with all
the decision control structures. Since flowcharts are an ideal way to learn
“Algorithmic Thinking” and to help you better understand specific control
structures, this chapter is dedicated to teaching you how to convert a Java
program to a flowchart, or a flowchart to a Java program.

21.2 Converting Java Programs to Flowcharts
To convert a Java program to its corresponding flowchart, you need to recall
all the decision control structures and their corresponding flowchart
fragments. They are all summarized here.
The single-alternative decision structure

The dual-alternative decision structure

The multiple-alternative decision structure

You can use this same flowchart to represent Java code that uses a case
decision structure as well!

Exercise 21.2-1 Designing the Flowchart
Design the flowchart that corresponds to the following Java program.
public static void main(String[] args) throws Exception {

double x, z, w, y, a;
x = Double.parseDouble(cin.nextLine());

z = Math.pow(x, 3); w = (z - 4) * (x - 3) / 7 + 36; if (z >= w && x < z) {
y = 2 * x;
if (y > 0) { //This is a nested single-alternative decision structure

y += 1;
}

}
else {

y = 4 * x;

a++;
}
System.out.println(y); }

Solution In this Java program there is a single-alternative decision
structure nested within a dual-alternative decision structure. Its
corresponding flowchart is as follows.

A flowchart is a very loose method of representing an algorithm. Thus, it
is quite permissible to write x3 or even to use the Java method Math.pow(). Do
whatever you wish; everything is permitted, on condition that anyone
familiar with flowcharts can clearly understand what you are trying to say!

In flowcharts, this book uses the commonly accepted AND, OR, and NOT
operators!

Exercise 21.2-2 Designing the Flowchart
Design the flowchart that corresponds to the following code fragment given
in general form.
if (Boolean_Expression_A) {

A statement or block of statements A1

if (Boolean_Expression_B) {

A statement or block of statements B1

}

A statement or block of statements A2

}
else {

A statement or block of statements A3

if (Boolean_Expression_C) {

A statement or block of statements C1

}
else {

A statement or block of statements C2

}
}

Solution For better observation, the initial code fragment is presented again
with all the nested decision control structures enclosed in rectangles.
if (Boolean_Expression_A) {

A statement or block of statements A1

if (Boolean_Expression_B) { [More…]

A statement or block of statements B1

}

A statement or block of statements A2

}
else {

A statement or block of statements A3

if (Boolean_Expression_C) { [More…]

A statement or block of statements C1

}
else {

A statement or block of statements C2

}

}

and the flowchart fragment in general form is as follows.

Exercise 21.2-3 Designing the Flowchart
Design the flowchart that corresponds to the following Java program.
public static void main(String[] args) throws Exception {

double a, y, b;
a = Double.parseDouble(cin.nextLine());
if (a < 0)

y = a * 2;
else if (a < 10)
y = a / 2;
else if (a < 100)
y = a + 2;

else {
b = Integer.parseInt(cin.nextLine());
y = a * b;

if (y > 0) //This is a nested dual-alternative decision structure
y--; //

else //

y++; //
}
System.out.println(y); }

Solution In this Java program, a dual-alternative decision structure is
nested within a multiple-alternative decision structure.

The flowchart is shown here.

21.3 A Mistake That You Will Probably Make!
In flowcharts, a very common mistake that novice programmers make is to
leave some paths unconnected, as shown in the flowchart that follows.

Please keep in mind that every path tries to reach the end of the algorithm,
thus you cannot leave any of them unconnected.
On the other hand, try to avoid flowcharts that use many End symbols, as
shown below, since these algorithms are difficult to read and understand.

Let's say that you are in the middle of designing a flowchart (see the
flowchart that follows), and you want to start closing all of its decision
control structures.

Just remember that the decision control structure that opens last must be the
first one to close! In this example, the last decision control structure is the
one that evaluates the expression a < 30. This is the first one that you need
to close, as shown here.

Next, you need to close the second to last decision control structure as
shown here.

And finally, you need to close the third to last decision control structure as
shown here.

The last flowchart can be rearranged to become like the one shown here.

21.4 Converting Flowcharts to Java Programs
This conversion is not always an easy one. There are cases in which the
flowchart designers follow no particular rules, so the initial flowchart may
need some modifications before it can be converted into a Java program. An
example of one such case is as follows.

As you can see, the decision control structures included in this flowchart
fragment do not match any of the decision control structures that you have
already learned. Thus, you have only one choice and this is to modify the
flowchart by adding extra statements or removing existing ones until known
decision control structures start to appear. Following are some exercises in
which the initial flowchart does need modification.

Exercise 21.4-1 Writing the Java Program
Write the Java program that corresponds to the following flowchart.

Solution This is quite easy. The only obstacle you must overcome is that the
true and false paths are not quite in the right positions. You need to use the
true path, and not the false path, to actually include the statements in the
single-alternative decision structure.

It is possible to switch the two paths, but you also need to negate the
corresponding Boolean expression. The following two flowchart fragments
are equivalent.

Thus, the flowchart can be modified and look like this.

and the corresponding Java program is shown here.
public static void main(String[] args) throws Exception {

double x, y;
x = Double.parseDouble(cin.nextLine());
y = 50; if (x / 2 <= 10) {

x = x / 3;

y = x + 4;
}
System.out.println(y); }

Exercise 21.4-2 Writing the Java Program
Write the Java program that corresponds to the following flowchart.

Solution In this exercise there is a dual-alternative decision structure nested
within a single-alternative one. You just need to negate the Boolean
expression x == 100 and switch the true/false paths. The Java program is
shown here.

public static void main(String[] args) throws Exception {
double x, y;
x = Double.parseDouble(cin.nextLine());

y = 1;
if (x != 100) { //This is a single-alternative decision structure
y = Double.parseDouble(cin.nextLine());

if (x < y) { //This is a nested dual-alternative decision structure
x = x - 3;

y = x + 4;
}
else {

x = x / 3 + 5;
y = x + 20;

}

}
System.out.println(x + " " + y); }

Exercise 21.4-3 Writing the Java Program
Write the Java program that corresponds to the following flowchart.

Solution In this flowchart, the decision control structures do not match any
of the decision control structures that you learned. Thus, you must modify
the flowchart by adding extra statements or removing existing ones until
known decision control structures start to appear!

The obstacle you must overcome in this exercise is the decision control
structure that evaluates the y MOD x ≠ 1 Boolean expression. Note that when
flow of execution follows the false path, it executes the statement a ← 20
and then the statement Write a before it reaches the end of the algorithm.
Thus, if you simply add a new statement, Write a, inside its false path you
can keep the flow of execution intact. The following flowchart is equivalent
to the initial one.

Now, the flowchart includes known decision control structures; that is, a
dual-alternative decision structure nested within another dual-alternative
one. The corresponding Java program is as follows.
public static void main(String[] args) throws Exception {

int x, y, a;
x = Integer.parseInt(cin.nextLine()); y = Integer.parseInt(cin.nextLine());
if (x % y != 1) {

if (y % x != 1) {

System.out.println("Invalid");
}
else {

a = 20;
System.out.println(a);

}
}
else {

a = 10;
System.out.println(a);

}

}

However, there is something better that you can do! If you negate all
Boolean expressions and also switch their true/false paths, you can have a
multiple-alternative decision structure, which is more convenient in Java
than nested decision control structures. The modified flowchart is shown
here.

and the corresponding Java program is as follows.
public static void main(String[] args) throws Exception {

int x, y, a;
x = Integer.parseInt(cin.nextLine()); y = Integer.parseInt(cin.nextLine());
if (x % y == 1) {

a = 10;

System.out.println(a);
}
else if (y % x == 1) {

a = 20;
System.out.println(a);

}
else {

System.out.println("Invalid");

}
}

21.5 Review Exercises
Complete the following exercises.

1) Design the flowchart that corresponds to the following Java program.
public static void main(String[] args) throws Exception {

int a;
a = Integer.parseInt(cin.nextLine());
if (a % 10 == 0) {

a++;

System.out.println("Message #1");
}
if (a % 3 == 1) {

a += 5;
System.out.println("Message #2");

}
if (a % 3 == 2) {

a += 10;
System.out.println("Message #3");

}
System.out.println(a); }

2) Design the flowchart that corresponds to the following Java program.
public static void main(String[] args) throws Exception {

int a;
a = Integer.parseInt(cin.nextLine());
if (a % 10 == 0) {

a++;

System.out.println("Message #1");
}
if (a % 3 == 1) {

a += 5;
System.out.println("Message #2");

}
else {

a += 7;
}
System.out.println(a); }

3) Design the flowchart that corresponds to the following Java program.
public static void main(String[] args) throws Exception {

double a, y, b;
a = Double.parseDouble(cin.nextLine());
if (a < 0) {

y = a * 2;

if (y > 0)
y +=2;

else if (y == 0)
y *= 6;

else
y /= 7;

}
else if (a < 22)
y = a / 3;
else if (a < 32)
y = a - 7;

else {
b = Double.parseDouble(cin.nextLine());
y = a - b;

}
System.out.println(y); }

4) Design the flowchart that corresponds to the following code fragment
given in general form.
if (Boolean_Expression_A) {

if (Boolean_Expression_B) {

A statement or block of statements B1

}
else {

A statement or block of statements B2

}

A statement or block of statements A1

}
else {

A statement or block of statements A2

if (Boolean_Expression_C) {

A statement or block of statements C1

}
else if (Boolean_Expression_D) {

A statement or block of statements D1

}

else {

A statement or block of statements E1

}

A statement or block of statements A3

}

5) Design the flowchart that corresponds to the following Java program.
public static void main(String[] args) throws Exception {

int a; double y, b;
a = Integer.parseInt(cin.nextLine()); y = 0;
switch (a) {

case 1:

y = a * 2;
break;

case 2:
y = a - 3;
break;

case 3:
y = a + 3;
if (y % 2 == 1)

y += 2;
else if (y == 0)

y *= 6;

else
y /= 7;

break;
case 4:

b = Double.parseDouble(cin.nextLine());

y = a + b + 2;
break;

}
System.out.println(y); }

6) Write the Java program that corresponds to the following flowchart.

7) Write the Java program that corresponds to the following flowchart.

8) Write the Java program that corresponds to the following flowchart.

9) Write the Java program that corresponds to the following flowchart.

10) Write the Java program that corresponds to the following flowchart.

11) Write the Java program that corresponds to the following flowchart.

Chapter 22
Tips and Tricks with Decision Control Structures

22.1 Introduction
This chapter is dedicated to teaching you some useful tips and tricks that can
help you write “better” code. You should always keep them in mind when
you design your own algorithms, or even your own Java programs.
These tips and tricks can help you increase your code's readability and help
make the code shorter or even faster. Of course there is no single perfect
methodology because on one occasion the use of a specific tip or trick may
help, but on another occasion the same tip or trick may have exactly the
opposite result. Most of the time, code optimization is a matter of
programming experience.

Smaller algorithms are not always the best solution to a given problem.
In order to solve a specific problem, you might write a very short algorithm
that unfortunately proves to consume a lot of CPU time. On the other hand,
you may solve the same problem with another algorithm which, even though
it seems longer, calculates the result much faster.

22.2 Choosing a Decision Control Structure
The following diagram can help you decide which decision control structure
is a better choice for a given problem depending on the number of variables
checked.

This diagram recommends the best option, not the only option. For
example, when there are more than two cases for one variable, it is not
wrong to use a nested decision control structure instead. The proposed
multiple-alternative decision structure and the proposed case decision
structure, though, are more convenient.

22.3 Streamlining the Decision Control Structure
Look carefully at the following flowchart fragment given in general form.

As you can see, two identical statements or blocks of statements exist at the
beginning and two other identical statements or blocks of statements exist at
the end of both paths of the dual-alternative decision structure. This means
that, regardless of the result of Boolean_Expression, these statements are
executed either way. Thus, you can simply move them outside and
(respectively) right before and right after the dual-alternative decision
structure, as shown in this equivalent structure.

The same tip can be applied to any decision control structure, as long as
an identical statement or block of statements exists in all paths.

There are cases where this tip cannot be applied. For instance, you
cannot move a statement (or block of statements) right before the decision
control structure if this statement affects the Boolean expression of the
structure.

Are you still confused? Next, you will find some exercises that can help you
to understand better.

Exercise 22.3-1 “Shrinking” the Algorithm
Redesign the following flowchart using fewer statements.

Solution As you can see, the statement y ← a * 2 exists in both paths of
the dual-alternative decision structure. This means that, regardless of the
result of the Boolean expression, this statement is executed either way.
Therefore, you can simply move the statement outside and right before the
dual-alternative decision structure, as follows.

Exercise 22.3-2 “Shrinking” the Java Program
Rewrite the following Java program using fewer statements.
public static void main(String[] args) throws Exception {

int a, y;
a = Integer.parseInt(cin.nextLine());
if (a > 0) {

y = a * 4;
System.out.println(y);

}
else {

y = a * 3;

System.out.println(y);
}

}

Solution As you can see, the statement System.out.println(y) exists in
both paths of the dual-alternative decision structure. This means that,
regardless of the result of the Boolean expression, this statement is executed

either way. Therefore, you can simply move the statement outside and right
after the dual-alternative decision structure, as shown here.
public static void main(String[] args) throws Exception {

int a, y;
a = Integer.parseInt(cin.nextLine());

if (a > 0) {
y = a * 4;

}
else {

y = a * 3;

}
System.out.println(y); }

Exercise 22.3-3 “Shrinking” the Algorithm
Redesign the following flowchart using fewer statements and then write the
corresponding Java program.

Solution If you try to move the Write y statement outside of the multiple-
alternative decision structure, the resulting flowchart that follows is
definitely not equivalent to the initial one.

This is because of the last path on the right side which, in the initial
flowchart, didn't include the Write y statement.
Examine both flowcharts to see whether they produce the same result. For
example, suppose a user enters a wrong number. In both flowcharts, the flow
of execution goes to the Write "Wrong Number" statement. After that, the
initial flowchart executes no other statements whereas, the second flowchart
executes an extra Write y statement.

You cannot move a statement or block of statements outside of a decision
control structure if it does not exist in all paths.

You may now wonder whether there is any other way to move the Write y
statement outside of the multiple-alternative decision structure. The answer
is “yes”, but you need to slightly rearrange the flowchart. You need to

completely remove the last path on the right and use a brand new decision
control structure in the beginning to check whether or not the user-provided
number is wrong. One possible solution is shown here.

and the Java program is
public static void main(String[] args) throws Exception {

double a, y;
a = Double.parseDouble(cin.nextLine());
if (a >= 30) {

System.out.println("Wrong Number");
}
else {

if (a < 10) {
y = a * 2;

}
else if (a < 20) {

y = a / 2;
}
else {

y = a + 2;
}
System.out.println(y);

}
}

22.4 Logical Operators – to Use, or not to Use: That is the
Question!

There are some cases in which you can use a logical operator instead of
nested decision control structures, and this can lead to increased readability.
Take a look at the following flowchart fragment given in general form.

As you can see, the statement or block of statements 1 is executed only when
both Boolean expressions evaluate to true. The statement or block of
statements 2 is executed in all other cases. Therefore, this flowchart
fragment can be redesigned using the AND logical operator.

Now, let's take a look at another flowchart fragment given in general form.

In this flowchart fragment, the statement or block of statements 2 is executed
when either Boolean_Expression_1 evaluates to true or
Boolean_Expression_2 evaluates to true. Therefore, you can redesign this
flowchart fragment using the OR logical operator as shown here.

Obviously, these methodologies can be adapted to be used on nested
decision control structures as well.

Exercise 22.4-1 Rewriting the Code
Rewrite the following Java program using logical operators.
public static void main(String[] args) throws Exception {

String today, name;
today = cin.nextLine(); name = cin.nextLine();

if (today.equals("February 16") == true) {
if (name.equals("Loukia") == true) {

System.out.println("Happy Birthday!!!");
}
else {

System.out.println("No match!");
}

}
else {

System.out.println("No match!");
}

}

Solution The System.out.println("Happy Birthday!!!") statement is
executed only when both Boolean expressions evaluate to true. The
statement System.out.println("No match!") is executed in all other cases.
Therefore, you can rewrite the Java program using the AND (&&) logical
operator.
public static void main(String[] args) throws Exception {

String today, name;
today = cin.nextLine(); name = cin.nextLine();
if (today.equals("February 16") == true && name.equals("Loukia") == true) {

System.out.println("Happy Birthday!!!");
}
else {

System.out.println("No match!");
}

}

Exercise 22.4-2 Rewriting the Code
Rewrite the following Java program using logical operators.
public static void main(String[] args) throws Exception {

int a, b, y;
a = Integer.parseInt(cin.nextLine()); b = Integer.parseInt(cin.nextLine());

y = 0;
if (a > 10) {

y++;

}
else if (b > 20) {

y++;
}
else {

y--;
}
System.out.println(y); }

Solution The y++ statement is executed when either variable a is greater
than 10 or variable b is greater than 20. Therefore, you can rewrite the Java
program using the OR (||) logical operator.
public static void main(String[] args) throws Exception {

int a, b, y;
a = Integer.parseInt(cin.nextLine()); b = Integer.parseInt(cin.nextLine());

y = 0;
if (a > 10 || b > 20) {

y++;
}
else {

y--;
}
System.out.println(y); }

22.5 Merging Two or More Single-Alternative Decision
Structures

Sometimes, you may design an algorithm that contains two or more single-
alternative decision structures in a row, each of which evaluates the same
Boolean expression. An example is shown here.

When a situation like this occurs, you can just merge all single-alternative
decision structures to a single one, as follows.

The single-alternative decision structures need to be adjacent to each
other. If any statement exists between them, you can't merge them unless you
are able to move this statement to somewhere else in your code.

Exercise 22.5-1 Merging the Decision Control Structures
In the following Java program, merge the single-alternative decision
structures.
public static void main(String[] args) throws Exception {

int a;

a = Integer.parseInt(cin.nextLine());
if (a > 0) {

System.out.println("Hello");
}
if (a > 0) {

System.out.println("Hermes");
}

}

Solution The first and second decision control structures are evaluating
exactly the same Boolean expressions, so they can simply be merged into a
single one.

The Java program becomes

public static void main(String[] args) throws Exception {
int a;
a = Integer.parseInt(cin.nextLine());
if (a > 0) {

System.out.println("Hello");
System.out.println("Hermes");

}
}

Exercise 22.5-2 Merging the Decision Control Structures
In the following Java program, merge as many single-alternative decision
structures as possible.
public static void main(String[] args) throws Exception {

int a, y, b;
a = Integer.parseInt(cin.nextLine());

y = 0;
if (a > 0) {

y += a + 1;
}

b = Integer.parseInt(cin.nextLine()); [More…]

if (!(a <= 0)) {
System.out.println("Hello Hera");

}

a++; [More…]

if (a > 0) {
System.out.println("Hallo Welt");

}
System.out.println(y); }

Solution Upon closer examination, it's evident that the first and second
decision control structures are evaluating exactly the same Boolean
expression. Specifically, negating a > 0 gives a <= 0, and a second
negation of a <= 0 (using the NOT (!) operator this time) yields !(a <=
0). Thus, a > 0 is in fact equivalent to !(a <= 0).

Two negations result in an affirmative.

However, between the first and second decision control structures there is
the statement b = Integer.parseInt(cin.nextLine()), which prevents you
from merging them into a single one. Fortunately, this statement can be

moved to the beginning of the program since it doesn't really affect the rest
of the flow of execution.
On the other hand, between the second and third decision control structures
there is the statement a++, which also prevents you from merging;
unfortunately, this statement cannot be moved anywhere else because it does
affect the rest of the flow of execution (the second and third decision control
structures are dependent upon this statement). Thus, the third decision
control structure cannot be merged with the first and second ones!
The final Java program looks like this.
public static void main(String[] args) throws Exception {

int a, b, y;
a = Integer.parseInt(cin.nextLine()); b = Integer.parseInt(cin.nextLine());

y = 0;
if (a > 0) {

y += a + 1;
System.out.println("Hello Hera");

}

a++;
if (a > 0) {

System.out.println("Hallo Welt");
}
System.out.println(y); }

22.6 Replacing Two Single-Alternative Decision Structures with a
Dual-Alternative One

Take a look at the next example.
if (x > 40) {

//Do something }

if (x <= 40) {
//Do something else }

The first decision control structure evaluates variable x to test if it is bigger
than 40, and right after that, a second decision control structure evaluates the
same variable again to test if it is less than or equal to 40!
This is a very common “mistake” that novice programmers make. They use
two single-alternative decision structures even though one dual-alternative
decision structure can accomplish the same thing.
The previous example can be rewritten using only one dual-alternative
decision structure, as shown here.
if (x > 40) {

//Do something }
else {

//Do something else }

Even though both examples are absolutely correct and work perfectly well,
the second alternative is better. The CPU needs to evaluate only one Boolean
expression, which results in faster execution time.

The two single-alternative decision structures must be adjacent to each
other. If any statement exists between them, you can't “merge” them (that is,
replace them with a dual-alternative decision structure) unless you can move
this statement to somewhere else in your code.

Exercise 22.6-1 “Merging” the Decision Control Structures
In the following Java program, “merge” as many single-alternative decision
structures as possible.
public static void main(String[] args) throws Exception {

int a, y, b;
a = Integer.parseInt(cin.nextLine());
y = 0;
if (a > 0) {

y += a;
}
b = Integer.parseInt(cin.nextLine());
if (!(a > 0)) {

System.out.println("Hello Zeus");
}

if (y > 0) {
System.out.println(y + 5);

}
y += a;
if (y <= 0) {

System.out.println(y + 12);
}

}

Solution The first decision control structure evaluates variable a to test if it
is greater than zero, and just right after that the second decision control
structure evaluates variable a again to test if it is not greater than zero.
Even though there is the statement b = Integer.parseInt(cin.nextLine())
between them, this statement can be moved somewhere else because it
doesn't really affect the rest of the flow of execution. Therefore, the first
and second decision control structures can be merged!

On the other hand, between the third and fourth decision control structures
there is the statement y += a which prevents you from merging. This
statement cannot be moved anywhere else because it does affect the rest of
the flow of execution (the third and fourth decision control structures are
dependent upon this statement). Therefore, the third and fourth decision
control structures cannot be merged!
The final Java program becomes

public static void main(String[] args) throws Exception {
int a, b, y;
a = Integer.parseInt(cin.nextLine()); b =
Integer.parseInt(cin.nextLine());
y = 0;
if (a > 0) {

y += a;
}
else {

System.out.println("Hello Zeus");
}
if (y > 0) {

System.out.println(y + 5);
}
y += a;
if (y <= 0) {

System.out.println(y + 12);
}

}

22.7 Put the Boolean Expressions Most Likely to be True First
Both the multiple-alternative and the case decision structure often need to
check several Boolean expressions before deciding which statement or block
of statements to execute. In the next decision control structure,

if (Boolean_Expression_1) {

A statement or block of statements 1

}
else if (Boolean_Expression_2) {

A statement or block of statements 2

}
else if (Boolean_Expression_3) {

A statement or block of statements 3

}
the program first tests if Boolean_Expression_1 is true. If not, it tests if
Boolean_Expression_2 is true, and if not, it tests Boolean_Expression_3. However,
what if Boolean_Expression_1 is false most of the time and Boolean_Expression_3 is
true most of the time? This means that time is wasted testing
Boolean_Expression_1, which is usually false, before testing Boolean_Expression_3,
which is usually true.
To make your programs more efficient, you can put the Boolean expressions
that are most likely to be true at the beginning, and the Boolean expressions
that are most likely to be false at the end, as follows.
if (Boolean_Expression_3) {

A statement or block of statements 3

}
else if (Boolean_Expression_2) {

A statement or block of statements 2

}
else if (Boolean_Expression_1) {

A statement or block of statements 1

}

Although this change may seem nonessential, every little bit of time that
you save can add up to make your programs run faster and more efficiently.

Exercise 22.7-1 Rearranging the Boolean Expressions
According to research, America's favorite pets are dogs, with cats at second
place, guinea pigs next, and parrots coming in last. In the following Java
program, rearrange the Boolean expressions to make the program run faster
and more efficiently for most of the cases.
public static void main(String[] args) throws Exception {

String kind;
System.out.print("What is your favorite pet? "); kind = cin.nextLine();
switch (kind) {

case "Parrots":

System.out.println("It screeches!");
break;

case "Guinea pig":

System.out.println("It squeaks");
break;

case "Dog":
System.out.println("It barks");
break;

case "Cat":
System.out.println("It meows");
break;

}
}

Solution For this research, you can rearrange the Java program to make it
run a little bit faster for most of the cases.
public static void main(String[] args) throws Exception {

String kind;
System.out.print("What is your favorite pet? "); kind = cin.nextLine();
switch (kind) {

case "Dog":
System.out.println("It barks");

break;
case "Cat":

System.out.println("It meows");
break;

case "Guinea pig":

System.out.println("It squeaks");
break;

case "Parrots":
System.out.println("It screeches!");
break;

}

}

22.8 Why is Code Indentation so Important?
As you've been reading through this book, you may wonder why space
characters appear in front of the Java statements and why these statements
are not written at the leftmost edge of the paragraph, as in the following
example.
public static void main(String[] args) throws Exception {
int x, y;
System.out.print("Enter a number: "); x = Integer.parseInt(cin.nextLine());
System.out.print("Enter a second number: "); y = Integer.parseInt(cin.nextLine()); if (x

> 5) {
System.out.println("Variable x is greater than 5"); }
else {

x = x + y;
System.out.println("Hello Zeus!"); if (x == 3) {
System.out.println("Variable x contains a value of 3"); }
else {
x = x - y;

System.out.println("Hello Olympians!"); if (x + y == 24) {
System.out.println("The sum of x + y is equal to 24"); }
else {
System.out.println("Nothing of the above"); }
}
}

}

The answer is obvious! A code without indentation is difficult to read and
understand. Anyone who reads a code written this way gets confused about
the if – else pairing (that is, to which if an else belongs). Moreover, if a
long Java program is written this way, it is almost impossible to find, for
example, the location of a forgotten closing brace }.
Code indentation can be defined as a way to organize your source code.
Indentation formats the code using spaces or tabs in order to improve
readability. Well indented code is very helpful, even if it takes some extra
effort, because in the long run it saves you a lot of time when you revisit
your code. Unfortunately, it is sometimes overlooked and the trouble occurs
at a later time. Following a particular programming style helps you to avoid
syntax and logic errors. It also helps programmers to more easily study and
understand code written by others.

Code indentation is similar to the way authors visually arrange the text
of a book. Instead of writing long series of sentences, they break the text into
chapters and paragraphs. This action doesn't change the meaning of the text
but it makes it easier to read.

All statements that appear inside a set of braces { } should always be
indented. For example, by indenting the statements inside a dual-alternative
decision structure, you visually set them apart. As a result, anyone can tell at
a glance which statements are executed when the Boolean expression
evaluates to true, and which are executed when the Boolean expression
evaluates to false.

Only humans have difficulty reading and understanding a program
without indentation. A computer can execute any Java code, written with or
without indentation, as long as it contains no syntax errors.

22.9 Review Questions: True/False
Choose true or false for each of the following statements.

1) Smaller algorithms are always the best solution to a given problem.
2) You can always move a statement outside, and right before, a dual-

alternative decision structure as long as it exists at the beginning of both
paths of the decision structure.

3) You can always use a logical operator instead of nested decision control
structures to increase readability.

4) Two single-alternative decision structures can be merged into one
single-alternative decision only when they are in a row and when they
evaluate equivalent Boolean expressions.

5) Conversion from a dual-alternative decision structure to two single-
alternative decision structures is always possible.

6) Two single-alternative decision structures can be replaced by one dual-
alternative decision only when they are in a row and only when they
evaluate the same Boolean expression.

7) Java programs that include decision control structures and written
without code indentation cannot be executed by a computer.

22.10 Review Questions: Multiple Choice
Select the correct answer for each of the following statements.

1) The following two programs
public static void main(String[] args) throws Exception {

int a;
a = Integer.parseInt(cin.nextLine()); if (a > 40) {

System.out.println(a * 2);
a++;

}
else {

System.out.println(a * 2);
a += 5;

}
}

public static void main(String[] args) throws Exception {

int a;
a = Integer.parseInt(cin.nextLine()); System.out.println(a * 2); if (a > 40) {

a++;
}
else {

a += 5;
}

}

a) produce the same result.
b) do not produce the same result.
c) none of the above 2) The following two programs

public static void main(String[] args) throws Exception {
int a;
a = Integer.parseInt(cin.nextLine()); if (a > 40) {

System.out.println(a * 2);
}
if (a > 40) {

System.out.println(a * 3);
}

}

public static void main(String[] args) throws Exception {

int a;
a = Integer.parseInt(cin.nextLine()); if (a > 40) {

System.out.println(a * 2);
System.out.println(a * 3);

}
}

a) produce the same results, but the first program is faster.
b) produce the same results, but the second program is faster.
c) do not produce the same results.
d) none of the above 3) The following two programs

public static void main(String[] args) throws Exception {
int a;

a = Integer.parseInt(cin.nextLine()); if (a > 40) {
System.out.println(a * 2);

}
else {

System.out.println(a * 3);
}

}

public static void main(String[] args) throws Exception {

int a;
a = Integer.parseInt(cin.nextLine()); if (a > 40) {

System.out.println(a * 2);
}
if (a <= 40) {

System.out.println(a * 3);
}

}

a) produce the same result(s), but the first program is faster.
b) produce the same result(s), but the second program is faster.
c) do not produce the same result(s).
d) none of the above 4) The following program

public static void main(String[] args) throws Exception {
int x; x = Integer.parseInt(cin.nextLine()); if (x < 0) x = (-1) * x;
System.out.println(x); }

cannot be executed by a computer because a) it does not use code
indentation.
b) it includes logic errors.
c) none of the above

22.11 Review Exercises
Complete the following exercises.

1) Rewrite the following Java program using fewer statements.
public static void main(String[] args) throws Exception {

int a, x, y;
y = Integer.parseInt(cin.nextLine());
if (y > 0) {

x = Integer.parseInt(cin.nextLine());
a = x * 4 * y;

System.out.println(y);
a++;

}

else {
x = Integer.parseInt(cin.nextLine());
a = x * 2 * y + 7;
System.out.println(y);
a--;

}
System.out.println(a); }

2) Redesign the following flowchart using fewer statements.

3) Rewrite the following Java program using fewer statements.
public static void main(String[] args) throws Exception {

double a, y;
a = Double.parseDouble(cin.nextLine());

if (a < 1) {
y = 5 + a;
System.out.println(y);

}
else if (a < 5) {

y = 23 / a;
System.out.println(y);

}

else if (a < 10) {
y = 5 * a;
System.out.println(y);

}
else {

System.out.println("Error!");

}
}

4) Rewrite the following Java program using logical operators.
public static void main(String[] args) throws Exception {

int day, month; String name;
day = Integer.parseInt(cin.nextLine()); month =

Integer.parseInt(cin.nextLine()); name = cin.nextLine();
if (day == 16) {

if (month == 2) {
if (name.equals("Loukia") == true) {

System.out.println("Happy Birthday!!!");

}
else {

System.out.println("No match!");
}

}
else {

System.out.println("No match!");
}

}
else {

System.out.println("No match!");

}
}

5) A teacher asks her students to rewrite the following Java program
without using logical operators.
public static void main(String[] args) throws Exception {

double a, b, c, d;
a = Double.parseDouble(cin.nextLine()); b = Double.parseDouble(cin.nextLine());

c = Double.parseDouble(cin.nextLine());

if (a > 10 && c < 2000) {
d = (a + b + c) / 12;
System.out.println("The result is: " + d);

}
else {

System.out.println("Error!");
}

}

One student wrote the following Java program:
public static void main(String[] args) throws Exception {

double a, b, c, d;
a = Double.parseDouble(cin.nextLine()); b =
Double.parseDouble(cin.nextLine()); c =
Double.parseDouble(cin.nextLine());
if (a > 10) {

if (c < 2000) {
d = (a + b + c) / 12;
System.out.println("The result is: " + d);

}
else {

System.out.println("Error!");
}

}
}

Determine if the program operates the same way for all possible paths
as the one provided by the teacher. If not, try to modify it and make it
work the same way.

6) Rewrite the following Java program using only single-alternative
decision structures.
public static void main(String[] args) throws Exception {

double a, b, c, d;
a = Double.parseDouble(cin.nextLine()); b = Double.parseDouble(cin.nextLine());
c = Double.parseDouble(cin.nextLine());
if (a > 10) {

if (b < 2000) {

if (c != 10) {
d = (a + b + c) / 12;
System.out.println("The result is: " + d);

}
}

}
else {

System.out.println("Error!");

}
}

7) In the following Java program, replace the two single-alternative
decision structures by one dual-alternative decision structure.
public static void main(String[] args) throws Exception {

int a, b, y;
a = Integer.parseInt(cin.nextLine());

y = 3;
if (a > 0) {

y = y * a;
}
b = Integer.parseInt(cin.nextLine()); if (!(a <= 0)) {

System.out.println("Hello Zeus");

}
System.out.println(y + " " + b); }

8) Rewrite the following Java program, using only one dual-alternative
decision structure.
public static void main(String[] args) throws Exception {

double a, b, y;
a = Double.parseDouble(cin.nextLine());

y = 0;
if (a > 0) {

y = y + 7;
}
b = Double.parseDouble(cin.nextLine()); if (!(a > 0)) {

System.out.println("Hello Zeus");
}
if (a <= 0) {

System.out.println(Math.abs(a));
}
System.out.println(y); }

9) According to research from 2013, the most popular operating system on
tablet computers was iOS, with Android being in second place and
Microsoft Windows in last place. In the following Java program,
rearrange the Boolean expressions to make the program run more
efficiently for most of the cases.
public static void main(String[] args) throws Exception {

String os;
System.out.print("What is your tablet's OS? "); os = cin.nextLine();

if (os.equals("Windows") == true) {
System.out.println("Microsoft");

}

else if (os.equals("iOS") == true) {
System.out.println("Apple");

}
else if (os.equals("Android") == true) {

System.out.println("Google");

}
}

Chapter 23
More with Decision Control Structures

23.1 Simple Exercises with Decision Control Structures
Exercise 23.1-1 Is it an Integer?

Write a Java program that prompts the user to enter a number and then
displays a message indicating whether the data type of this number is integer
or real.

Solution

It is well known that a number is considered an integer when it contains no
fractional part. In Java, you can use the (int) casting operator to get the
integer portion of any real number. If the user-provided number is equal to
its integer portion, then the number is considered an integer.
For example, if the user enters the number 7, this number and its integer
portion, (int)(7), are equal.
On the other hand, if the user enters the number 7.3, this number and its
integer portion, (int)(7.3), are not equal.
The Java program is as follows.

 Project_23.1-1
public static void main(String[] args) throws Exception {

double x;
System.out.print("Enter a number: "); x = Double.parseDouble(cin.nextLine());

if (x == (int)x) {
System.out.println(x + " is integer");

}
else {

System.out.println(x + " is real");

}
}

Variable x is declared as double and the method Double.parseDouble() is used
in the data input stage. This is necessary in order to allow the user to enter
either an integer or a float.

Exercise 23.1-2 Validating Data Input and Finding Odd and Even Numbers

Design a flowchart and write the corresponding Java program that prompts
the user to enter a non-negative integer, and then displays a message
indicating whether this number is even; it must display “Odd” otherwise.
Moreover, if the user enters a negative value or a float, an error message
must be displayed.
(This exercise gives you some practice in working with data validation).

Solution

Data validation is the process of restricting data input, forcing the user to
enter only valid values.
In this exercise, you need to prompt the user to enter a non-negative integer
and display an error message when they enter either a negative value or a
float. The flowchart that solves this exercise given in general form is as
follows.

The following decision control structure is taken from Exercise 17.1-4. It
tests whether variable x is even or odd.

After combining both flowcharts, the final flowchart looks like this.

The Java program is shown here.

 Project_23.1-2a
public static void main(String[] args) throws Exception {

double x;
System.out.print("Enter an integer: "); x =

Double.parseDouble(cin.nextLine());
if (x < 0 || x != (int)x) {

System.out.println("Invalid Number");
}

else {
if (x % 2 == 0) {

System.out.println("Even");
}

else {
System.out.println("Odd");

}
}

}

Instead of using nested decision structures, you can alternatively use a
multiple-alternative decision structure, as shown here.

 Project_23.1-2b
public static void main(String[] args) throws Exception {

double x;
System.out.print("Enter an integer: "); x =

Double.parseDouble(cin.nextLine());
if (x < 0 || x != (int)x) {

System.out.println("Invalid Number");
}

else if (x % 2 == 0) {
System.out.println("Even");

}
else {

System.out.println("Odd");
}

}

Exercise 23.1-3 Where is the Tollkeeper?
In a toll gate, there is an automatic system that recognizes whether the
passing vehicle is a motorcycle, a car, or a truck. Write a Java program that
lets the user enter the type of the vehicle (M for motorcycle, C for car, and T
for truck) and then displays the corresponding amount of money the driver
must pay according to the following table.

Vehicle Type Amount to Pay

Motorcycle $1

Car $2

Track $4

The program must function properly even when characters are entered in
lowercase. For example, the program must function properly either for “M”
or “m”. However, if the user enters a character other than M, C, or T
(uppercase or lowercase), an error message must be displayed.
(Some more practice with data validation!) Solution
The solution to this problem is quite simple. The only thing that needs
attention is that the user may enter the uppercase letters M, C, or T, or the
lowercase letters m, c, or t. The program needs to accept both. To handle
this, you can convert the user's input to uppercase using the toUpperCase()
method. Then you need to check only for the M, C, or T characters in
uppercase.
The Java program is shown here.

 Project_23.1-3a
public static void main(String[] args) throws Exception {

String v;
v = cin.nextLine().toUpperCase();

//You need to check only for capital M, C, and T
if (!v.equals("M") && !v.equals("C") &&

!v.equals("T")) {
System.out.println("Invalid vehicle");

}
else if (v.equals("M")) {

System.out.println("You need to pay $1");
}

else if (v.equals("C")) {
System.out.println("You need to pay $2");

}
else if (v.equals("T")) {

System.out.println("You need to pay $4");
}

}

Note how Java converts the user's input to uppercase.

The expression !v.equals("M") is equivalent to the expression v.equals("M") ==
false and the expression v.equals("M") is equivalent to the expression
v.equals("M") == true.

However, this exercise can be solved slightly more efficiently, if you move
the first case of the multiple-alternative decision structure to the end, as
shown here.

 Project_23.1-3b
public static void main(String[] args) throws Exception {

String v;
v = cin.nextLine().toUpperCase();

if (v.equals("M")) {
System.out.println("You need to pay $1");

}
else if (v.equals("C")) {

System.out.println("You need to pay $2");
}

else if (v.equals("T")) {
System.out.println("You need to pay $4");

}
else {

System.out.println("Invalid vehicle");
}

}

Exercise 23.1-4 The Most Scientific Calculator Ever!
Write a Java program that emulates the way an electronic calculator
functions. The program must first prompt the user to enter a number, then
the type of operation (+, −, *, /), and finally a second number. Subsequently,
the program must perform the chosen operation and display the result.
However, if the user enters an operand other than +, −, *, or /, an error
message must be displayed.

Solution

The only thing that you need to take care of in this exercise is the possibility
the user could enter zero for the divisor (the second number). As you know
from mathematics, division by zero is not possible.

The following Java program uses the case decision structure to check the
type of operation.

 Project_23.1-4
public static void main(String[] args) throws Exception {

double a, b; String op;
System.out.print("Enter 1st number: "); a = Double.parseDouble(cin.nextLine());
System.out.print("Enter type of operation: "); op = cin.nextLine(); //Variable op is
of type String System.out.print("Enter 2nd number: "); b =
Double.parseDouble(cin.nextLine());

switch (op) {
case "+":

System.out.println(a + b);
break;

case "-":
System.out.println(a - b);

break;
case "*":

System.out.println(a * b);
break;

case "/":

if (b == 0) {
System.out.println("Error: Division by zero");

}
else {

System.out.println(a / b);

}
break;

default:
System.out.println("Error: Invalid operand");

}
}

Exercise 23.1-5 Converting Gallons to Liters, and Vice Versa
Write a Java program that displays the following menu: 1) Convert gallons
to liters 2) Convert liters to gallons The program must then prompt the user
to enter a choice (of 1 or 2) and a quantity, and subsequently calculate and
display the required value. It is given that 1 gallon = 3.785 liters Solution
The Java program is shown here.

 Project_23.1-5
static final double COEFFICIENT = 3.785;
public static void main(String[] args) throws Exception {

int choice; double quantity, result;

System.out.println("1: Gallons to liters"); System.out.println("2: Liters to
gallons"); System.out.print("Enter choice: "); choice =
Integer.parseInt(cin.nextLine());

System.out.print("Enter quantity: "); quantity = Double.parseDouble(cin.nextLine());
if (choice == 1) {

result = quantity * COEFFICIENT;
System.out.println(quantity + " gallons = " + result + " liters");

}

else {
result = quantity / COEFFICIENT;
System.out.println(quantity + " liters = " + result + " gallons");

}
}

Exercise 23.1-6 Converting Gallons to Liters, and Vice Versa (with Data
Validation)

Rewrite the Java program of the previous exercise to validate the data input.
A different error message for each type of input error must be displayed
when the user enters a choice other than 1 or 2, or a negative gas quantity.

Solution

The following Java program, given in general form, solves this exercise. It
prompts the user to enter a choice. If the choice is invalid, it displays an
error message; otherwise, it prompts the user to enter a quantity. However, if
the quantity entered is invalid too, it displays another error message;
otherwise it proceeds to data conversion, depending on the user's choice.

 Main Code
static final double COEFFICIENT = 3.785;

public static void main(String[] args) throws Exception {
int choice; double quantity, result;

System.out.println("1: Gallons to liters");
System.out.println("2: Liters to gallons");
System.out.print("Enter choice: "); choice =

Integer.parseInt(cin.nextLine());
if (choice != 1 && choice != 2) {
System.out.println("Wrong choice!");

}
else {

System.out.print("Enter quantity: ");
quantity = Double.parseDouble(cin.nextLine());

if (quantity < 0) {
System.out.println("Invalid quantity!");

}
else {

Code Fragment 1: Convert gallons to liters or
liters to gallons depending on user’s choice.

}
}

}

Code Fragment 1 shown below is taken from the previous exercise
(Exercise 23.1-5). It converts gallons to liters, or liters to gallons, depending
on the user's choice.

 Code Fragment 1
if (choice == 1) {

result = quantity * COEFFICIENT; System.out.println(quantity + " gallons = " + result
+ " liters"); }

else {
result = quantity / COEFFICIENT; System.out.println(quantity + " liters = " + result
+ " gallons"); }

After embedding Code Fragment 1 in Main Code, the final Java program
becomes Project_23.1-6
static final double COEFFICIENT = 3.785;
public static void main(String[] args) throws Exception {

int choice; double quantity, result;
System.out.println("1: Gallons to liters"); System.out.println("2: Liters to
gallons"); System.out.print("Enter choice: "); choice =
Integer.parseInt(cin.nextLine());

if (choice != 1 && choice != 2) {
System.out.println("Wrong choice!");

}
else {

System.out.print("Enter quantity: ");

quantity = Double.parseDouble(cin.nextLine());
if (quantity < 0) {

System.out.println("Invalid quantity!");
}
else {

if (choice == 1) { [More…]
result = quantity * COEFFICIENT;
System.out.println(quantity + " gallons = " + result + " liters");

}
else {

result = quantity / COEFFICIENT;
System.out.println(quantity + " liters = " + result + " gallons");

}

}
}

}

23.2 Finding Minimum and Maximum Values with Decision
Control Structures

Suppose there are some men and you want to find the lightest one. Let's say
that each one of them comes by and tells you his weight. What you must do
is, memorize the weight of the first man that has come by and for each new
man, you have to compare his weight with the one that you keep memorized.
If he is heavier, you ignore his weight. However, if he is lighter, you need to
forget the previous weight and memorize the new one. The same procedure
continues until all the men have come by.
Let's ask four men to come by in a random order. Assume that their weights,
in order of appearance, are 165, 170, 160, and 180 pounds.

Procedure

Value of
Variable
minimum in

Your
Mind!

The first man comes by. He weighs 165 pounds. Keep his
weight in your mind (imagine a variable in your mind named
minimum).

minimum =
165

The second man comes by. He weighs 170 pounds. He does
not weigh less than the weight you are keeping in variable
minimum, so you must ignore his weight. Variable minimum in
your mind still contains the value 165.

minimum =
165

The third man comes by. He weighs 160 pounds, which is less
than the weight you are keeping in variable minimum, so you

minimum =
160

must forget the previous value and keep the value 160 in
variable minimum.

The fourth man comes by. He weighs 180 pounds. He does not
weigh less than the weight you are keeping in variable
minimum, so you must ignore his weight. Variable minimum still
contains the value 160.

minimum =
160

When the procedure finishes, the variable minimum in your mind contains the
weight of the lightest man!
Following are the flowchart and the corresponding Java program that
prompts the user to enter the weight of four men and then finds and displays
the lightest weight.

 Project_23.2
public static void main(String[] args) throws Exception {

int w1, w2, w3, w4, minimum; System.out.print("Enter the weight ");
System.out.println("of four men:");
w1 = Integer.parseInt(cin.nextLine()); w2 = Integer.parseInt(cin.nextLine()); w3 =
Integer.parseInt(cin.nextLine()); w4 = Integer.parseInt(cin.nextLine());
//Memorize the weight of the first man minimum = w1;

//If second man is lighter, forget previous //value and memorize his weight if (w2 <
minimum) {

minimum = w2;
}
//If third man is lighter, forget previous //value and memorize his weight if (w3 <
minimum) {

minimum = w3;
}
//If fourth man is lighter, forget previous //value and memorize his weight if (w4 <
minimum) {

minimum = w4;

}
System.out.println(minimum); }

Note that this program is trying to find out the lowest value and not
which variable this value was actually assigned to.

You can find the maximum instead of the minimum value by simply
replacing the “less than” with a “greater than” operator in all Boolean
expressions.

Exercise 23.2-1 Finding the Name of the Heaviest Person
Write a Java program that prompts the user to enter the weights and the
names of three people and then displays the name and the weight of the
heaviest person.

Solution

In this exercise, along with the maximum weight, you need to store in
another variable the name of the person who actually has that weight. The
Java program is shown here.

 Project_23.2-1
public static void main(String[] args) throws Exception {

int w1, w2, w3, maximum; String n1, n2, n3, mName;
System.out.print("Enter the weight of the 1st person: "); w1 =
Integer.parseInt(cin.nextLine());

System.out.print("Enter the name of the 1st person: "); n1 = cin.nextLine();
System.out.print("Enter the weight of the 2nd person: "); w2 =
Integer.parseInt(cin.nextLine());

System.out.print("Enter the name of the 2nd person: "); n2 = cin.nextLine();
System.out.print("Enter the weight of the 3rd person: "); w3 =
Integer.parseInt(cin.nextLine());
System.out.print("Enter the name of the 3rd person: "); n3 = cin.nextLine();
maximum = w1; //Memorize the weight mName = n1; //and the name of the first person.

if (w2 > maximum) { //If second person is heavier, forget previous values, and
maximum = w2; //memorize the weight

mName = n2; //and the name of the second person.
}
if (w3 > maximum) { //If third person is heavier, forget previous values, and
maximum = w3; //memorize the weight

mName = n3; //and the name of the third person.
}
System.out.println("The heaviest person is " + mName); System.out.println("Their
weight is " + maximum); }

In case the two heaviest people happen to have the same weight, the
name of the first one in order is found and displayed.

23.3 Decision Control Structures in Solving Mathematical
Problems
Exercise 23.3-1 Finding the Value of y

Design a flowchart and write the corresponding Java program that finds and
displays the value of y (if possible) in the following formula.

Solution

In this exercise, it's crucial to prevent the user from entering values of 0 or 4,
as they result in a zero denominator. Therefore, the program needs to take
these restrictions into consideration. The flowchart is shown here.

and the Java program is shown here.
 Project_23.3-1

public static void main(String[] args) throws Exception {

double x, y;
x = Double.parseDouble(cin.nextLine());
if (x == 0 || x == 4) {

System.out.println("Error: Division by zero!");
}

else {
y = (5 + x) / x + (x + 9) / (x - 4);
System.out.println(y);

}
}

Exercise 23.3-2 Finding the Values of y
Design a flowchart and write the corresponding Java program that finds and
displays the values of y (if possible) in the following formula.

Solution

The formula has two different results.

► When x is greater than or equal to zero, the value of y in

can be found following the method shown in the previous exercise.
► However, for an x less than zero, a small detail can save you some lines

of code. Upon closer examination, it's evident that there are no
restrictions on the fraction because x can never be +5; thus, the

denominator will never be zero. This is because in the given formula x
is less than zero!

The flowchart is shown here.

The Java program is shown here.

 Project_23.3-2
public static void main(String[] args) throws Exception {

double x, y;
x = Double.parseDouble(cin.nextLine()); if (x >= 0) {

if (x == 0 || x == 3) {
System.out.println("Error: Division by zero!");

}

else {
y = (7 + x) / (x - 3) + (3 - x) / x;
System.out.println(y);

}
}
else {

y = 40 * x / (x - 5) + 3;
System.out.println(y);

}
}

Exercise 23.3-3 Solving the Linear Equation ax + b = 0
Design a flowchart and write the corresponding Java program that finds and
displays the root of the linear equation ax + b = 0

Solution

In the equation ax + b = 0, the coefficients a and b are known real numbers,
and x represents an unknown quantity to be found. Because x is raised to the
first power, this equation is classified as a first-degree equation, also known
as a linear equation.
The root of the equation is the value of x, for which this equation is satisfied;
that is, the left side of the equality ax + b equals zero.
In this exercise, the user must enter values for coefficients a and b, and the
program must find the value of x for which ax + b equals zero.
The equation ax + b = 0, when solved for x, becomes x = −b / a. Depending on
the user's entered data, three possible situations can arise: i) The user might
enter the value 0 for coefficient a and a non-zero value for coefficient b. In
this situation, the result of x = −b / a is undefined. The division by zero, as
you already know from mathematics, cannot be performed.

ii) The user might enter the value 0 for both coefficients a and b. In this
situation, the result of x = −b / a has no defined value, and it is called an
indeterminate form.

iii) The user might enter any other pair of values.
These three situations and the resulting paths are represented below with the
use of a multiple-alternative decision structure.

The Java program is shown here.
 Project_23.3-3

public static void main(String[] args) throws Exception {
double a, b, x;

System.out.println("Enter values for coefficients a and b: "); a =
Double.parseDouble(cin.nextLine()); b = Double.parseDouble(cin.nextLine());
if (a != 0) {

x = -b / a;
System.out.println(x);

}

else if (b != 0) {
System.out.println("Undefined");

}
else {

System.out.println("Indeterminate form");

}
}

Exercise 23.3-4 Solving the Quadratic Equation ax2 + bx + c = 0
Design a flowchart and write the corresponding Java program that finds and
displays the roots of the quadratic equation ax2 + bx + c = 0

Solution

In the equation ax2 + bx + c = 0, the coefficients a, b, and c are known real
numbers, and x represents an unknown quantity to be found. Because x is
raised to the second power, this equation is classified as a second-degree
equation, also known as a quadratic equation.
The roots of the equation are the values of x, for which this equation is
satisfied; that is, the left side of the equality ax2 + bx + c equals zero.
In this exercise, the user must enter values for coefficients a, b, and c, and the
program must find the value(s) of x for which ax2 + bx + c equals zero.
This problem can be divided into two individual subproblems depending on
the value of coefficient a.

i) If coefficient a is not equal to zero, the roots of the equation can be
found using the discriminant D. Please note that the solution to this
exercise presented below finds no complex roots when D < 0; this is
beyond the scope of this book.

ii) If coefficient a is equal to zero, the equation becomes a linear equation,
bx + c = 0, for which the solution was provided in the previous exercise
(Exercise 23.3-3).

All necessary paths are shown here.

The path on the right (a = 0) is the solution to the linear equation bx + c
= 0.

Using this diagram you can design the following flowchart.

The Java program is shown here.

 Project_23.3-4
public static void main(String[] args) throws Exception {

double a, b, c, D, x1, x2, x;
System.out.println("Enter values for coefficients a, b and c: "); a =
Double.parseDouble(cin.nextLine()); b = Double.parseDouble(cin.nextLine()); c =
Double.parseDouble(cin.nextLine());
if (a != 0) {

D = b * b - 4 * a * c;
if (D >= 0) {

if (D > 0) {
x1 = (-b + Math.sqrt(D)) / (2 * a);
x2 = (-b - Math.sqrt(D)) / (2 * a);
System.out.println("Roots: " + x1 + ", " + x2);

}
else {

x = -b / (2 * a);
System.out.println("One double root: " + x);

}

}
else {

System.out.println("Complex Roots");
}

}

else {
if (b != 0) {

x = -c / b;
System.out.println("Root: " + x);

}
else if (c != 0) {

System.out.println("Undefined");
}
else {

System.out.println("Indeterminate form");
}

}
}

23.4 Exercises with Series of Consecutive Ranges of Values
As you have already seen, in many problems the value of a variable or the
result of an expression can define which statement or block of statements
must be executed. In the exercises that follow, you will learn how to test if a
value or the result of an expression belongs within a specific range of values
(from a series of consecutive ranges of values).

Suppose that you want to display a message indicating the types of clothes a
woman might wear at different temperatures.

Outdoor
Temperature
(in degrees
Fahrenheit)

Types of Clothes a Woman Might Wear

Temperature < 45 Sweater, coat, jeans, shirt, shoes

45 ≤ Temperature < 65 Sweater, jeans, jacket, shoes

65 ≤ Temperature < 75 Capris, shorts, t‐shirt, tank top, flip flops, athletic
shoes

75 ≤ Temperature Shorts, t‐shirt, tank top, skort, skirt, flip flops

At first glance, single-alternative decision structures might seem like the
logical choice. While not incorrect, a more in-depth analysis reveals that
each condition is interdependent, meaning that when one of these evaluates
to true, none of the others should be evaluated. You need to select just one
alternative from a set of possibilities.
To solve this type of exercise, you can use a multiple-alternative decision
structure or nested decision control structures. However, the former is the
best choice, as it is more convenient and increases readability, as you can see
in the code fragment that follows.
if (temperature < 45) System.out.println("Sweater, coat, jeans, shirt, shoes"); else if
(temperature >= 45 && temperature < 65) System.out.println("Sweater, jeans, jacket,
shoes"); else if (temperature >= 65 && temperature < 75) System.out.println("Capris,

shorts, t-shirt, tank top, flip flops, athletic shoes"); else if (temperature >= 75)
System.out.println("Shorts, t-shirt, tank top, skort, skirt, flip flops");

However, upon closer examination, it becomes apparent that all the
underlined Boolean expressions are not actually required. For example, if the
first Boolean expression (temperature < 45) evaluates to false, the flow of
execution continues to evaluate the second Boolean expression. In this step,
however, variable temperature is definitely greater than or equal to 45
because of the first Boolean expression, which has already evaluated to
false. Therefore, the Boolean expression temperature >= 45, when
evaluated, is certainly true and thus can be omitted. The same logic applies
to all cases; you can omit all the underlined Boolean expressions. The final
code fragment is shown here, with all unnecessary evaluations removed.

if (temperature < 45) System.out.println("Sweater, coat, jeans, shirt, shoes"); else if
(temperature < 65) System.out.println("Sweater, jeans, jacket, shoes"); else if
(temperature < 75) System.out.println("Capris, shorts, t-shirt, tank top, flip flops,

athletic shoes"); else
System.out.println("Shorts, t-shirt, tank top, skort, skirt, flip flops");

Exercise 23.4-1 Calculating the Discount
A customer receives a discount based on the total amount of their order. If
the total amount ordered is less than $30, no discount is given. If the total
amount is equal to or greater than $30 and less than $70, a discount of 5%
is applied. If the total amount is equal to or greater than $70 and less than
$150, a discount of 10% is applied. If the total amount is $150 or more, the
customer receives a discount of 20%. Write a Java program that prompts the
user to enter the total amount of their order and then calculates and displays
the applied discount rate, the discount amount in dollars, and the final after-
discount amount. Assume that the user enters a non-negative value for the
amount.

Solution

The following table summarizes the various discounts that are offered.

Range Discount

amount < $30 0%

$30 ≤ amount < $70 5%

$70 ≤ amount < $150 10%

$150 ≤ amount 20%

The Java program is as follows.
 Project_23.4-1a

public static void main(String[] args) throws Exception {
double amount, discountAmount, finalAmount, discount =

0;
System.out.print("Enter total amount: "); amount =

Double.parseDouble(cin.nextLine());
if (amount < 30) {

discount = 0;
}

else if (amount >= 30 && amount < 70) {
discount = 5;

}
else if (amount >= 70 && amount < 150) {

discount = 10;
}

else if (amount >= 150) {
discount = 20;

}
discountAmount = amount * discount / 100; finalAmount

= amount - discountAmount;
System.out.println("You got a discount of " + discount

+ "%"); System.out.println("You saved $" +
discountAmount); System.out.println("You must pay $" +

finalAmount); }

However, since it is given that the user enters valid values and not negative
ones, all the underlined Boolean expressions are not actually required. The
final Java program is shown here, with all unnecessary evaluations removed.

 Project_23.4-1b
public static void main(String[] args) throws Exception {

double amount, discountAmount, finalAmount, discount;
System.out.print("Enter total amount: "); amount =

Double.parseDouble(cin.nextLine());
if (amount < 30) {

discount = 0;
}

else if (amount < 70) {
discount = 5;

}
else if (amount < 150) {

discount = 10;
}

else {
discount = 20;

}
discountAmount = amount * discount / 100; finalAmount

= amount - discountAmount;

System.out.println("You got a discount of " + discount
+ "%"); System.out.println("You saved $" +

discountAmount); System.out.println("You must pay $" +
finalAmount); }

Exercise 23.4-2 Validating Data Input and Calculating the Discount
Rewrite the Java program of the previous exercise to validate the data input.
An error message must be displayed when the user enters a negative value.

Solution

The Java program that solves this exercise, given in general form, is as
follows.

 Main Code
System.out.print("Enter total amount: "); amount =

Double.parseDouble(cin.nextLine());
if (amount < 0) {

System.out.println("Entered value is negative"); }
else {

Code Fragment 1: Calculate and display the
applied discount rate, the discount amount and

the final after-discount amount.

}

Code Fragment 1 that follows is taken from the previous exercise (Exercise
23.4-1). It calculates and displays the applied discount rate, the discount
amount in dollars, and the final after-discount amount.

 Code Fragment 1
if (amount < 30) {

discount = 0;
}
else if (amount < 70) {

discount = 5;
}
else if (amount < 150) {

discount = 10;
}
else {

discount = 20;

}
discountAmount = amount * discount / 100; finalAmount = amount - discountAmount;
System.out.println("You got a discount of " + discount + "%"); System.out.println("You

saved $" + discountAmount); System.out.println("You must pay $" + finalAmount);

After embedding Code Fragment 1 in Main Code, the final Java program
becomes Project_23.4-2
public static void main(String[] args) throws Exception {

double amount, discountAmount, finalAmount, discount;
System.out.print("Enter total amount: "); amount =
Double.parseDouble(cin.nextLine());

if (amount < 0) {
System.out.println("Entered value is negative");

}
else {

if (amount < 30) { [More…]
discount = 0;

}
else if (amount < 70) {

discount = 5;
}
else if (amount < 150) {

discount = 10;
}
else {

discount = 20;
}

discountAmount = amount * discount / 100;
finalAmount = amount - discountAmount;
System.out.println("You got a discount of " + discount + "%");
System.out.println("You saved $" + discountAmount);
System.out.println("You must pay $" + finalAmount);

}
}

Exercise 23.4-3 Sending a Parcel
In a post office, the shipping cost for sending a medium parcel depends on
its weight and whether its destination is inside or outside the country.
Shipping costs are calculated according to the following table.

Parcel's
Weight
(in lb)

Destination Inside the
Country

(in USD per lb)

Destination Outside the
Country
(in USD)

weight ≤ 1 $0.010 $10

1 < weight ≤
2 $0.013 $20

2 < weight ≤
4 $0.015 $50

4 < weight $0.020 $60

Design a flowchart and write the corresponding Java program that prompts
the user to enter the weight of a parcel and its destination (I: inside the
country, O: outside the country) and then calculates and displays the
shipping cost.

Solution

The following flowchart, given in general form, solves this exercise.

Now you need two multiple-alternative decision structures to calculate the
shipping cost for parcels sent inside and outside the country. These are
shown in the respective left and right flowchart fragments below.

After combining these two flowcharts with the previous one, the final
flowchart becomes

The corresponding Java program is shown here.
 Project_23.4-3

public static void main(String[] args) throws Exception {
double weight, cost; String dest;
System.out.print("Enter weight & destination: "); weight =

Double.parseDouble(cin.nextLine()); dest = cin.nextLine();
if (dest.toUpperCase().equals("I")) {

if (weight <= 1) { [More…]
cost = weight * 0.010;

}

else if (weight <= 2) {
cost = weight * 0.013;

}
else if (weight <= 4) {

cost = weight * 0.015;

}
else {

cost = weight * 0.020;
}

}

else {

if (weight <= 1) { [More…]
cost = 10;

}
else if (weight <= 2) {

cost = 20;
}
else if (weight <= 4) {

cost = 50;
}

else {
cost = 60;

}

}
System.out.println("Shipping cost: " + cost); }

A user may enter the letter I (for destination) in lowercase or uppercase.
The method toUpperCase() ensures that the program executes properly for both
cases.

The statement if (dest.toUpperCase().equals("I")) is equivalent to the
statement if (dest. toUpperCase().equals("I") == true).

Exercise 23.4-4 Finding the Values of y

Design a flowchart and write the corresponding Java program that finds and
displays the values of y (if possible) in the following formula

Solution

In this exercise, there are two restrictions on the fractions: ► In fraction
, the value of x cannot be −1.

► In fraction , the value of x cannot be +9.

For all other fractions, it's impossible for the denominators to be set to zero
because of the range in which x belongs.
The Java program is shown here.

 Project_23.4-4a
public static void main(String[] args) throws Exception {

double x, y;
System.out.print("Enter a value for x: "); x =

Double.parseDouble(cin.nextLine());
if (x > -5 && x <= 0) {
if (x != -1) { [More…]

y = x / (x - 3) + (8 + x) / (x + 1);
System.out.println(y);

}
else {

System.out.println("Invalid value");
}

}
else if (x > 0 && x <= 6) {

y = 40 * x / (x - 8); [More…]
System.out.println(y);

}
else if (x > 6 && x <= 20) {

if (x != 9) { [More…]
y = 3 * x / (x - 9);
System.out.println(y);

}
else {

System.out.println("Invalid value");
}

}
else {

y = Math.abs(x); [More…]
System.out.println(y);

}
}

If you are wondering whether you can remove all System.out.println(y)
statements and instead have a single System.out.println(y) statement at
the end of the program, the answer is “no”. Since there are paths that do not
include that statement, you must include it in every required path. However,
by making a slight modification to the code and checking for invalid values
at the beginning, you can have the opportunity to move the
System.out.println(y) statement to the end of all paths. The modified Java
program is shown here.

 Project_23.4-4b
public static void main(String[] args) throws Exception {

double x, y;
System.out.print("Enter a value for x: "); x =

Double.parseDouble(cin.nextLine());
if (x == -1 || x == 9) {

System.out.println("Invalid value");
}

else {
if (x > -5 && x <= 0) {

y = x / (x - 3) + (8 + x) / (x + 1);

}
else if (x > 0 && x <= 6) {

y = 40 * x / (x - 8);
}

else if (x > 6 && x <= 20) {
y = 3 * x / (x - 9);

}
else {

y = Math.abs(x);
}

System.out.println(y);
}

}

Now, you might be wondering if the underlined Boolean expressions are
redundant, right? Suppose you do remove them, and the user enters a value
of −20 for x. The flow of execution would then reach the Boolean expression
x <= 0, which would evaluate to true. This means that the fraction

 would be calculated instead of the absolute value of x.

To be able to remove the underlined Boolean expressions, you need to make
a slight modification to the code. The key here is to first examine the case of
the absolute value of x. Following that, you can find a proposed solution
below.

 Project_23.4-4c
public static void main(String[] args) throws Exception {

double x, y;
System.out.print("Enter a value for x: "); x =

Double.parseDouble(cin.nextLine());
if (x == -1 || x == 9) {

System.out.println("Invalid value");
}

else {
if (x <= -5 || x > 20) {

y = Math.abs(x);
}

else if (x <= 0) {
y = x / (x - 3) + (8 + x) / (x + 1);

}
else if (x <= 6) {
y = 40 * x / (x - 8);

}
else {

y = 3 * x / (x - 9);
}

System.out.println(y);
}

}

It is obvious that one problem can have many solutions. It is up to you to
find the optimal one!

Exercise 23.4-5 Progressive Rates and Electricity Consumption
The LAV Electricity Company charges subscribers for their electricity
consumption according to the following table (monthly rates for domestic
accounts). Assume that all extra charges such as transmission service
charges and distribution charges are all included.

Kilowatt‐hours (kWh) USD per kWh

kWh ≤ 500 $0.10

501 ≤ kWh ≤ 2000 $0.25

2001 ≤ kWh ≤ 4500 $0.40

4501 ≤ kWh $0.60

Write a Java program that prompts the user to enter the total number of kWh
consumed and then calculates and displays the total amount to pay.
Please note that the rates are progressive.

Solution

The term progressive rates means that when a customer consumes, for
example, 2200 kWh, not all of the kilowatt-hours are charged at $0.40. The
first 500 kWh are charged at $0.10, the next 1500 kWh are charged at $0.25
and only the last 200 kWh are charged at $0.40. Thus, the customer must
pay 500 × $0.10 + 1500 × $0.25 + 200 × $0.40 = $505

Applying the same logic, the total amount to be paid when the customer
consumes, say, 4800 kWh can be calculated as follows. The first 500 kWh
are charged at $0.10, the next 1500 kWh are charged at $0.25, the next 2500
kWh are charged at 0.40, and only the last 300 kWh are charged at $0.60.
Thus, the customer must pay 500 × $0.10 + 1500 × $0.25 + 2500 × $0.40 +
300 × $0.60 = $1605
The following diagram can help you fully understand how to calculate the
total amount to pay when the rates are progressive.

The Java program is shown here.
 Project_23.4-5

public static void main(String[] args) throws Exception {
int kwh; double t;

System.out.print("Enter number of Kilowatt-hours consumed: "); kwh =
Integer.parseInt(cin.nextLine());
if (kwh <= 500) {

t = kwh * 0.10;
}

else if (kwh <= 2000) {
t = 500 * 0.10 + (kwh - 500) * 0.25;

}
else if (kwh <= 4500) {

t = 500 * 0.10 + 1500 * 0.25 + (kwh - 2000) * 0.40;

}
else {

t = 500 * 0.10 + 1500 * 0.25 + 2500 * 0.4 + (kwh - 4500) * 0.60;
}
System.out.println("Total amount to pay: " + t); }

Exercise 23.4-6 Progressive Rates and Text Messaging Services
The LAV Cell Phone Company charges customers a basic rate of $8 per
month to send text messages. Additional rates are charged based on the total
number of text messages sent, as shown in the following table.

Number of Text Messages Sent USD per text message

Up to 50 Free of charge

51 ‐ 150 $0.05

151 and above $0.10

Federal, state, and local taxes add a total of 10% to each bill.
Write a Java program that prompts the user to enter the number of text
messages sent and then calculates and displays the total amount to pay.
Please note that the rates are progressive.

Solution

The Java program is presented here.
 Project_23.4-6

public static void main(String[] args) throws Exception {

int count; double extra, totalWithoutTaxes, taxes, total;
System.out.print("Enter number of text messages sent: "); count =
Integer.parseInt(cin.nextLine());
if (count <= 50) {

extra = 0;

}
else if (count <= 150) {

extra = (count - 50) * 0.05;
}
else {

extra = 100 * 0.05 + (count - 150) * 0.10;

}
totalWithoutTaxes = 8 + extra; //Add basic rate of $8
taxes = totalWithoutTaxes * 10 / 100; //Calculate the total taxes total =
totalWithoutTaxes + taxes; //Calculate the total amount to pay
System.out.println("Total amount to pay: " + total); }

23.5 Exercises of a General Nature with Decision Control
Structures

Exercise 23.5-1 Finding a Leap Year
Write a Java program that prompts the user to enter a year and then displays
a message indicating whether it is a leap year; otherwise the message “Not
a leap year” must be displayed. Moreover, if the user enters a year less than
1582, an error message must be displayed.

Solution

According to the Gregorian calendar, which was first introduced in 1582, a
year is a leap year when at least one of the following conditions is met: 1st

Condition: The year is exactly divisible by 4, and not by 100.
2nd Condition: The year is exactly divisible by 400.

In the following table, some years are not leap years because neither of the
two conditions evaluates to true.

Year Leap
Year Conditions

1600 Yes 2nd Condition is true. It is exactly divisible by 400

1900 No Both conditions are false.

1904 Yes 1st Condition is true. It is exactly divisible by 4, and not
by 100

1905 No Both conditions are false.

2000 Yes 2nd Condition is true. It is exactly divisible by 400

2002 No Both conditions are false.

2004 Yes 1st Condition is true. It is exactly divisible by 4, and not
by 100

2024 Yes 1st Condition is true. It is exactly divisible by 4, and not
by 100

The Java program is shown here.
 Project_23.5-1

public static void main(String[] args) throws Exception {

int y;
System.out.print("Enter a year: "); y = Integer.parseInt(cin.nextLine());
if (y < 1582) {

System.out.println("Error! The year cannot be less than 1582");
}
else {

if (y % 4 == 0 && y % 100 != 0 || y % 400 == 0) {
System.out.println("Leap year!");

}
else {

System.out.println("Not a leap year");

}
}

}

The AND (&&) operator has a higher precedence than the OR (||)
operator.

Exercise 23.5-2 Displaying the Days of the Month
Write a Java program that prompts the user to enter a year and a month and
then displays how many days are in that month. The program needs to take
into consideration the leap years. In case of a leap year, February has 29
instead of 28 days. Moreover, if the user enters a year less than 1582, an
error message must be displayed.

Solution

The following Java program, given in general form, solves this exercise.
 Main Code

public static void main(String[] args) throws Exception {
int m, y;

System.out.print("Enter a year: "); y =
Integer.parseInt(cin.nextLine());

if (y < 1582) {
System.out.println("Error! The year cannot be less

than 1582");
}

else {
System.out.print("Enter a month (1 – 12): ");

m = Integer.parseInt(cin.nextLine());
if (m == 2) {

Code Fragment 1: Check whether the year (in
variable y) is a leap year and display how

many days are in February.

}
else if (m == 4 || m == 6 || m == 9 || m == 11) {

System.out.println("This month has 30 days");
}

else {
System.out.println("This month has 31 days");

}
}

}

Code Fragment 1, shown here, checks whether the year (in variable y) is a
leap year and displays how many days are in February.

 Code Fragment 1
if (y % 4 == 0 && y % 100 != 0 || y % 400 == 0) {

System.out.println("This month has 29 days"); }

else {
System.out.println("This month has 28 days"); }

After embedding Code Fragment 1 in Main Code, the final Java program
becomes Project_23.5-2a

public static void main(String[] args) throws Exception {
int m, y;
System.out.print("Enter a year: "); y = Integer.parseInt(cin.nextLine());
if (y < 1582) {

System.out.println("Error! The year cannot be less than 1582");
}
else {

System.out.print("Enter a month (1 – 12): ");
m = Integer.parseInt(cin.nextLine());
if (m == 2) {

if (y % 4 == 0 && y % 100 != 0 || y % 400 == 0) { [More…]
System.out.println("This month has 29 days");

}
else {

System.out.println("This month has 28 days");
}

}
else if (m == 4 || m == 6 || m == 9 || m == 11) {

System.out.println("This month has 30 days");
}
else {

System.out.println("This month has 31 days");
}

}
}

Below, the same problem is solved again, using, however, the case decision
structure.

 Project_23.5-2b
public static void main(String[] args) throws Exception {

int m, y;
System.out.print("Enter year: "); y =
Integer.parseInt(cin.nextLine());

if (y < 1582) {
System.out.println("Error! The year cannot be less

than 1582");
}

else {
System.out.print("Enter a month (1 – 12): ");

m = Integer.parseInt(cin.nextLine());
switch (m) {

case 2:
if (y % 4 == 0 && y % 100 != 0 || y % 400 ==

0) {
System.out.println("This month has 29

days");
}

else {

System.out.println("This month has 28
days");
}

break;
case 4:
case 6:
case 9:
case 11:

System.out.println("This month has 30 days");
break;

default:
System.out.println("This month has 31 days");

}
}

}

Note the way cases 4, 6, and 9 are written. Since there isn't any break
statement in any of those cases, they all reach case 11.

Exercise 23.5-3 Checking for Proper Capitalization and Punctuation
Write a Java program that prompts the user to enter a sentence and then
checks it for proper capitalization and punctuation. The program must
determine if the string begins with an uppercase letter and ends with a
punctuation mark (check only for periods, question marks, and exclamation
marks).

Solution

In this exercise you need to isolate the first and the last character of the
string. As you already know, you can access any individual character of a
string using substring notation. You can use index 0 to access the first
character, index 1 to access the second character, and so on.
Thus, you can isolate the first character of a string using the following Java
statement.
firstChar = sentence.charAt(0);

On the other hand, the index of the last character is 1 less than the length of
the string. You can find the length of any string using the length() method.

Using the following statements, you can isolate the last character of string
sentence

length = sentence.length(); lastChar = sentence.charAt(length − 1);
or, using the more concise statement

lastChar = sentence.charAt(sentence.length() − 1);
The Java program is shown here.

 Project_23.5-3
public static void main(String[] args) throws Exception {

String sentence, firstChar, lastChar; boolean sentenceIsOkay;
System.out.print("Enter a sentence: "); sentence = cin.nextLine();
//Get first character and convert it from char to String firstChar = "" +
sentence.charAt(0); //Get last character and convert it from char to String lastChar
= "" + sentence.charAt(sentence.length() - 1);

sentenceIsOkay = true;
if (!firstChar.equals(firstChar.toUpperCase())) {

sentenceIsOkay = false;
}
else if (!lastChar.equals(".") && !lastChar.equals("?") && !lastChar.equals("!")) {

sentenceIsOkay = false;

}
if (sentenceIsOkay) {

System.out.println("Sentence is okay!");
}

}

In the beginning, the program assumes that the sentence is okay
(sentenceIsOkay = true). Then, it checks for proper capitalization and
proper punctuation and if it finds something wrong, it assigns the value
false to the variable sentenceIsOkay.

Exercise 23.5-4 Is the Number a Palindrome?
A palindrome is a number that remains the same after reversing its digits.
For example, the number 13631 is a palindrome. Write a Java program that
lets the user enter a five-digit integer and tests whether or not this number is
a palindrome. Moreover, a different error message for each type of input
error must be displayed when the user enters a float, or any integer with
either less than or more than five digits.
(Note that this involves data validation!) Solution
There are actually two different approaches! The first one splits the number's
digits into five different variables while the second one handles the number

as if it were a string. Let's analyze them both!
First approach

To test if the user enters a palindrome number, you need to split its digits
into five different variables as you learned in Chapter 13. Then, you can
check whether the 1st digit is equal to the 5th digit and the 2nd digit is equal to
the 4th digit. If this evaluates to true, the number is a palindrome.
To validate data input, you need to check whether the user has entered a
five-digit number. Keep in mind that all five-digit numbers are in the range
of 10000 to 99999. Therefore, you can just restrict the data input to within
this range.
In order to display many different error messages, the best practice is to use
a multiple-alternative decision structure which first checks data input
validity for all cases, and then tries to solve the required problem. For
example, if you need to check for various errors, you can do something like
the following.

The final Java program is shown here.

 Project_23.5-4a
public static void main(String[] args) throws Exception {

int digit1, r, digit2, digit3, digit4, digit5; double
x;

x = Double.parseDouble(cin.nextLine());
if (x != (int)x) {

System.out.println("You entered a float");
}

else if (x < 10000) {
System.out.println("You entered less than five

digits");
}

else if (x > 99999) {
System.out.println("You entered more than five

digits");
}

else {
//Split the digits of x into 5 different variables

digit1 = (int)(x / 10000);
r = (int)x % 10000;

digit2 = (int)(r / 1000);
r = r % 1000;

digit3 = (int)(r / 100);
r = r % 100;

digit4 = (int)(r / 10);
digit5 = r % 10;

if (digit1 == digit5 && digit2 == digit4) {
System.out.println("Palindrome");

}
else {

System.out.println("Not Palindrome");
}

}
}

Second approach
This approach handles the number as if it were a string. It compares the first
character to the last one and the second character to the last but one. If they

are equal, it means that the number is a palindrome. The Java program is
shown here.

 Project_23.5-4b
public static void main(String[] args) throws Exception {

String xStr; double x;
x = Double.parseDouble(cin.nextLine());

if (x != (int)x) {
System.out.println("You entered a float");

}
else if (x < 10000) {

System.out.println("You entered less than five
digits");

}
else if (x > 99999) {

System.out.println("You entered more than five
digits");

}
else {

xStr = "" + (int)x;
if (xStr.charAt(0) == xStr.charAt(4) &&
xStr.charAt(1) == xStr.charAt(3)) {

System.out.println("Palindrome");
}

else {
System.out.println("Not palindrome");

}
}

}

23.6 Boolean Expressions Reference and Handy Tips
This section summarizes all the Boolean expressions that you've encountered
on your journey with Java so far, along with additional expressions and
useful tips. Whether you're a beginner or a seasoned programmer, these
expressions and tips will serve as valuable tools in your coding arsenal.
Keep them close, because you never know when they'll come in handy. For
some of them, two or more approaches to achieve the desired result are
provided.

1) How to check if number in x is between A and B
► x >= A && x <= B

2) How to check if number in x is not between A and B
► !(x >= A && x <= B) ► x < A || x > B

3) How to check if x is either equal to A, B, or C
► x == A || x == B || x == C

4) How to check if x is neither equal to A, nor B, nor C
► x != A && x != B && x != C

► !(x == A || x == B || x == C) 5) How to check if x contains an
integer. Please note that variable x must be of type double.

► x == (int)x 6) How to check if x contains a float.
► x != (int)x 7) How to check if x contains an even number.
► x % 2 == 0

► x % 2 != 1

► !(x % 2 == 1) ► !(x % 2 != 0) 8) How to check if x contains an
odd number.

► x % 2 == 1

► x % 2 != 0

► !(x % 2 == 0) ► !(x % 2 != 1) 9) How to check if x is an integer
multiple of y ► x % y == 0

10) How to isolate the decimal part of a real number ► x – (int)x 11) How to
isolate the first decimal digit of a real number ► (int)(x * 10) % 10

12) How to isolate the second decimal digit of a real number ► (int)(x *
100) % 10

13) How to isolate the Nth decimal digit of a real number ► (int)(x *
Math.pow(10, N)) % 10

14) How to isolate the last digit of an integer ► x % 10

15) How to isolate the second to last digit of an integer ► (int)(x / 10)
% 10

16) How to isolate the Nth to last digit of an integer ► (int)(x /
Math.pow(10, N)) % 10

17) How to check if a word/sentence starts with the letter “B”

► x.charAt(0) == 'B'

18) How to check if a word/sentence ends with a period “.”
► x.charAt(x.length() – 1) == '.'

19) How to find the middle number among three numbers x, y, and z ► x
+ y + z - minimum – maximum 20) How to find the sum of the two smallest
numbers among three numbers x, y, and z ► x + y + z - maximum

21) How to find the sum of the two greatest numbers among three numbers
x, y, and z ► x + y + z - minimum 22) How to find the sum of the three
middle numbers among five numbers x, y, z, w, and u ► x + y + z +
w + u – minimum - maximum 23) How to check if the distance between two
numbers is greater than NUMBER
► Math.abs(x - y) > NUMBER

24) How to check if a positive integer has three digits ► x >= 100 && x
<= 999

► String.valueOf(x).length() == 3

► ("" + x).length() == 3

25) How to check if an integer has three digits ► Math.abs(x) >= 100 &&
Math.abs(x) <= 999

► String.valueOf(Math.abs(x)).length() == 3

► ("" + Math.abs(x)).length() == 3

26) How to check if a positive integer has four digits and starts with 5
► x >= 5000 && x <= 5999

27) How to check if two numbers have the same sign ► x > 0 && y > 0
|| x < 0 && y < 0

► x * y > 0

28) How to check if both numbers are either even or odd ► x % 2 == 0 &&
y % 2 == 0 || x % 2 == 1 && y % 2 == 1

► x % 2 == y % 2

29) How to check if exactly one of the two conditions BE1 or BE2 is true,
but not both (Exclusive OR operation) ► BE1 && !(BE2) || BE2 && !
(BE1) 30) How to check if the year in y is a leap year ► y % 4 == 0 && y
% 100 != 0 || y % 400 == 0

23.7 Review Exercises

Complete the following exercises.
1) Write a Java program that prompts the user to enter a numeric value and

then calculates and displays its square root. Moreover, an error message
must be displayed when the user enters a negative value.

2) Design a flowchart that lets the user enter an integer and, if its last digit
is equal to 5, a message “Last digit equal to 5” is displayed; otherwise,
a message “Nothing special” is displayed. Moreover, if the user enters a
negative value, an error message must be displayed.
Hint: You can isolate the last digit of any integer using a modulus 10
operation.

3) Design a flowchart and write the corresponding Java program that lets
the user enter two integers and then displays a message indicating
whether at least one integer is odd; otherwise, a message “Nothing
special” is displayed. Moreover, if the user enters negative values, an
error message must be displayed.

4) Design a flowchart and write the corresponding Java program that
prompts the user to enter an integer, and then displays a message
indicating whether this number is even; it must display “Odd”
otherwise. Moreover, a different error message for each type of input
error must be displayed when the user enters a negative value or a float.

5) Design a flowchart and write the corresponding Java program that
prompts the user to enter an integer and then displays a message
indicating whether this number is exactly divisible by 3 and by 4;
otherwise the message “NN is not what you are looking for!” must be
displayed (where NN is the user-provided number). For example, 12 is
exactly divisible by 3 and by 4. Moreover, an error message must be
displayed when the user enters a negative value or a float.

6) Design a flowchart and write the corresponding Java program that lets
the user enter two integers and then displays a message indicating
whether both numbers are exactly divisible by 3 and by 4; otherwise the
message “X and Y are not what you are looking for!” must be displayed
(where X and Y are the user-provided numbers). Moreover, a different
error message for each type of input error for each integer must be
displayed when the user enters negative values or floats.

7) Write a Java program that displays the following menu: 1) Convert Kelvin
to Fahrenheit 2) Convert Fahrenheit to Kelvin 3) Convert Fahrenheit to

Celsius 4) Convert Celsius to Fahrenheit The program must then prompts
the user to enter a choice (of 1, 2, 3, or 4) and a temperature value, and
subsequently calculate and display the required value. Moreover, a
different error message for each type of input error must be displayed
when the user enters a choice other than 1, 2, 3, or 4, or a temperature
value lower than absolute zero[17].

It is given that 1.8 × Kelvin = Fahrenheit + 459.67
and

8) Write a Java program that emulates the way an electronic
calculator functions. The program must first prompt the user to
enter an integer, then the type of operation (+, −, *, /, DIV, MOD,
POWER), and finally a second integer. Subsequently, the
program must perform the chosen operation and display the
result. For instance, if the user enters the values 13, +, and 2, the
program must display the following message: The result of 13
+ 2 equals 15

Make your program accept the type of operation in all
possible forms such as “Div”, “DIV”, “div”, or even
“DiV”. In case of a division by zero, the message “Infinite”
must be displayed.

9) Rewrite the Java program of the previous exercise to
validate the data input. If the user enters an input other than
+, −, *, /, DIV, MOD, POWER, an error message must be
displayed.

10) Write a Java program that prompts the user to enter the
names and the ages of three people and then displays the
names of the youngest person and the oldest person.

11) In a song contest, each artist is scored for their performance
by five judges. However, according to the rules of this
contest, the total score is calculated after excluding the
highest and lowest scores. Write a Java program that
prompts the user to enter the name of the artist and the
score they receive from each judge. The program must then
display the name of the artist along with their total score.

12) Write a Java program that prompts the user to enter the
ages of three people and then finds and displays the age in
the middle.

13) Write a Java program that prompts the user to enter the
names and the ages of three people and then displays the
name of the youngest person or the oldest person,
depending on which one is closer to the third age in the
middle.

14) An online bookstore applies the following sales policy:
Buy 3 books and pay for the 2 most expensive ones. Write
a Java program that lets the user enter the prices and titles
of three books. It must then display the amount the
customer needs to pay, as well as the title and price of the
book that was provided for free.

15) Design a flowchart and write the corresponding Java
program that finds and displays the value of y (if possible)
in the following formula.

16) Design a flowchart and write the corresponding Java
program that finds and displays the values of y (if possible)
in the following formula.

17) Rewrite the Java program of Exercise 23.3-2, using a
multiple-alternative decision structure.
Hint: Negate the Boolean expression x >= 0 in the outer
dual-alternative decision structure and switch its two paths.

18) Write a Java program that finds and displays the values of y
(if possible) in the following formula.

19) A positive integer is called an Armstrong number when the
sum of the cubes of its digits is equal to the number itself.
The number 371 is such a number, since 33 + 73 + 13 = 371.
Write a Java program that lets the user enter a three-digit
integer and then displays a message indicating whether or
not the user-provided number is an Armstrong one.
Moreover, a different error message for each type of input
error must be displayed when the user enters a float or any
number other than a three-digit one.

20) Write a Java program that prompts the user to enter a day
(1 ‐ 31), a month (1 ‐ 12), and a year and then finds and
displays how many days are left until the end of that
month. The program must take into consideration the leap
years. In the case of a leap year, February has 29 instead of
28 days.

21) Write a Java program that lets the user enter a word of six
letters and then displays a message indicating whether or
not every second letter is capitalized. The word “AtHeNa”
is such a word, but it can be also provided as “aThEnA”.

22) An online book store sells e-books for $10 each. Quantity
discounts are given according to the following table.

Quantity Discount

3 ‐ 5 10%

6 ‐ 9 15%

10 ‐ 13 20%

14 ‐ 19 27%

20 or more 30%

Write a Java program that prompts the user to enter the
total number of e-books purchased and then displays the
amount of discount, and the total amount of the purchase
after the discount. Assume that the user enters valid values.

23) In a supermarket, the discount that a customer receives
based on the before-tax amount of their order is presented
in the following table.

Range Discount

amount < $50 0%

$50 ≤ amount < $100 1%

$100 ≤ amount < $250 2%

$250 ≤ amount 3%

Write a Java program that prompts the user to enter the
before-tax amount of their order and then calculates and
displays the discount amount that customers receive (if
any). A VAT (Value Added Tax) of 19% must be added in
the end. Moreover, an error message must be displayed
when the user enters a negative value.

24) The Body Mass Index (BMI) is often used to determine
whether an adult person is overweight or underweight for
their height. The formula used to calculate the BMI of an

adult person is

Write a Java program that prompts the user to enter
their age, weight (in pounds) and height (in inches)
and then displays a description according to the
following table.

Body Mass Index Description

BMI < 15 Very severely underweight

15.0 ≤ BMI < 16.0 Severely underweight

16.0 ≤ BMI < 18.5 Underweight

18.5 ≤ BMI < 25 Normal

25.0 ≤ BMI < 30.0 Overweight

30.0 ≤ BMI < 35.0 Severely overweight

35.0 ≤ BMI Very severely overweight

The message “Invalid age” must be displayed when
the user enters an age less than 18.

25) The LAV Water Company charges for subscribers'
water consumption according to the following table
(monthly rates for domestic accounts).

Water Consumption (cubic feet) USD per cubic foot

consumption ≤ 10 $3

11 ≤ consumption ≤ 20 $5

21 ≤ consumption ≤ 35 $7

36 ≤ consumption $9

Write a Java program that prompts the user to enter
the total amount of water consumed (in cubic feet)
and then calculates and displays the total amount to
pay. Please note that the rates are progressive.
Federal, state, and local taxes add a total of 10% to
each bill. Moreover, an error message must be
displayed when the user enters a negative value.

26) Write a Java program that prompts the user to enter
their taxable income and the number of their children
and then calculates the total tax to pay according to
the following table. However, total tax is reduced by
2% when the user has at least one child. Please note
that the rates are progressive.

Taxable Income (USD) Tax Rate

income ≤ 8000 10%

8000 < income ≤ 30000 15%

30000 < income ≤ 70000 25%

70000 < income 30%

27) The Beaufort scale is an empirical measure that
relates wind speed to observed conditions on land or
at sea. Write a Java program that prompts the user to
enter the wind speed and then displays the
corresponding Beaufort number and description
according to the following table. An additional
message “It's Fishing Day!!!” must be displayed
when wind speed is 3 Beaufort or less. Moreover, an
error message must be displayed when the user
enters a negative value.

Wind Speed
(miles per hour)

Beaufort
Number Description

wind speed < 1 0 Calm

1 ≤ wind speed < 4 1 Light air

4 ≤ wind speed < 8 2 Light breeze

8 ≤ wind speed < 13 3 Gentle breeze

13 ≤ wind speed <
18 4 Moderate

breeze

18 ≤ wind speed <
25 5 Fresh breeze

25 ≤ wind speed <
31 6 Strong breeze

31 ≤ wind speed <
39 7 Moderate gale

39 ≤ wind speed <
47 8 Gale

47 ≤ wind speed <
55

9 Strong gale

55 ≤ wind speed <
64 10 Storm

64 ≤ wind speed <
74 11 Violent storm

74 ≤ wind speed 12 Hurricane force

Review in “Decision Control Structures”

Review Crossword Puzzle
1) Solve the following crossword puzzle.

Across
2) The AND (&&) operator is also known as a logical _________.
6) This number remains the same after reversing its digits.
7) The _______-alternative decision structure includes a statement
or block of statements on both paths.
8) This is an expression that results in a value that is either true or
false.
10) This Boolean expression can be built of simpler Boolean
expressions.
11) This control structure is a structure that is enclosed within
another structure.
12) A positive integer where the sum of the cubes of its digits is
equal to the number itself.

Down
1) The OR (||) operator is also known as a logical _________.
2) The NOT (!) operator is also known as a logical _________.
3) The (>) is a _____________ operator.
4) This table shows the result of a logical operation between two
or more Boolean expressions for all their possible combinations of
values.
5) This number is considered an even number.
9) This year is exactly divisible by 4 and not by 100, or it is
exactly divisible by 400.

Review Questions
Answer the following questions.
1) What is a Boolean expression?
2) Which comparison operators does Java support?
3) Which logical operator performs a logical conjunction?
4) Which logical operator performs a logical disjunction?
5) When does the logical operator AND (&&) return a result of true?
6) When does the logical operator OR (||) return a result of true?
7) State the order of precedence of logical operators.
8) State the order of precedence of arithmetic, comparison, membership,

and logical operators.
9) What is code indentation?

10) Design the flowchart and write the corresponding Java statement (in
general form) of a single-alternative decision structure. Describe how
this decision structure operates.

11) Design the flowchart and write the corresponding Java statement (in
general form) of a dual-alternative decision structure. Describe how
this decision structure operates.

12) Design the flowchart and write the corresponding Java statement (in
general form) of a multiple-alternative decision structure. Describe
how this decision structure operates.

13) Write the Java statement (in general form) of a case decision structure.
Describe how this decision structure operates.

14) What does the term “nesting a decision structure” mean?
15) How deep can the nesting of decision control structures go? Is there

any practical limit?
16) Create a diagram that shows all possible paths for solving a linear

equation.
17) Create a diagram that shows all possible paths for solving a quadratic

equation.
18) When is a year considered a leap year?
19) What is a palindrome number?

Part V
Loop Control Structures

Chapter 24
Introduction to Loop Control Structures

24.1 What is a Loop Control Structure?
A loop control structure is a control structure that allows the execution of a
statement or block of statements multiple times until a specified condition
is met.

24.2 From Sequence Control to Loop Control Structures
The next example lets the user enter four numbers and it then calculates
and displays their sum. As you can see, there is no loop control structure
employed yet, only the familiar sequence control structure.
double x, y, z, w, total;

x = Double.parseDouble(cin.nextLine()); y = Double.parseDouble(cin.nextLine()); z =
Double.parseDouble(cin.nextLine()); w = Double.parseDouble(cin.nextLine());
total = x + y + z + w;
System.out.println(total);

While this code is quite short, consider a similar one that allows the user to
enter 1000 numbers instead of just four. Can you imagine having to write
the input statement Double.parseDouble(cin.nextLine()) a thousand
times? It would certainly be more convenient if you could write this
statement just once and instruct the computer to execute it a thousand
times, wouldn't it? This is where a loop control structure comes into play!
But before you delve into loop control structures, try to solve a riddle first!
Without using a loop control structure yet, try to rewrite the previous
example, using only two variables, x and total. Yes, you heard that right!
This code must calculate and display the sum of four user-provided
numbers, but it must do so with only two variables! Can you find a way?
Hmmm… it's obvious what you are thinking right now: “The only thing
that I can do with two variables is to read one single value in variable x
and then assign that value to variable total”. Your thinking is quite
correct, and it is presented here.
x = Double.parseDouble(cin.nextLine()); //Read the first number total = x;

which can equivalently be written as
total = 0;

x = Double.parseDouble(cin.nextLine()); //Read the first number total =
total + x;
And now what? Now, there are three things that you can actually do, and
these are: think, think, and of course, think!
The first user-provided number has been stored in variable total, so
variable x is now free for further use! Thus, you can reuse variable x to
read a second value which will also accumulate in variable total, as
follows.
total = 0;
x = Double.parseDouble(cin.nextLine()); //Read the first number total = total + x;
x = Double.parseDouble(cin.nextLine()); //Read the second number total = total + x;

Statement total = total + x accumulates the value of x in total, which
means that it adds the value of x to total along with any previous value in
total. For example, if variable total contains the value 5 and variable x
contains the value 3, the statement total = total + x assigns the value 8 to
variable total.

Since the second user-provided number has been accumulated in the
variable total, variable x can be reused! This process can repeat until all
four numbers are read and accumulated in variable total. The final code
is as follows. Please note that it does not use any loop control structure
yet!
total = 0;
x = Double.parseDouble(cin.nextLine()); total = total + x;
x = Double.parseDouble(cin.nextLine()); total = total + x;
x = Double.parseDouble(cin.nextLine()); total = total + x;
x = Double.parseDouble(cin.nextLine()); total = total + x;

System.out.println(total);

Both this code and the initial one at the beginning of this section are
considered equivalent. The main distinction between them, however, lies in
the fact that this one contains four identical pairs of statements.

Apparently, you can use this example to read and find the sum of more
than four numbers. However, writing those pairs of statements multiple
times can be quite cumbersome and may lead to errors if any pair is
accidentally omitted.

What you truly need here is to retain just one pair of statements, but use a
loop control structure to execute it four times (or even 1000 times, if you
wish). You can use something like the following code fragment.
total = 0;
execute_these_statements_4_times {

x = Double.parseDouble(cin.nextLine()); total = total + x; }

System.out.println(total);

Obviously there isn't any execute_these_statements_4_times statement in Java.
This is for demonstration purposes only, but soon enough you will learn
everything about all the loop control structures that Java supports!

24.3 Review Questions: True/False
Choose true or false for each of the following statements.
1) A loop control structure is a structure that allows the execution of a

statement or block of statements multiple times until a specified
condition is met.

2) It is possible to use a sequence control structure that prompts the user
to enter 1000 numbers and then calculates their sum.

3) The following code fragment accumulates the value 10 in variable
total.
total = 10;
a = 0;
total = total + a;

4) The following Java program satisfies the property of effectiveness.
public static void main(String[] args) throws Exception {

int a, total; a = 5; total = total + a; System.out.println(total); }

5) Both of the following two code fragments assign the value of 5 to the
variable total.
a = 5;

total = a;
total = 0;
a = 5;
total = total + a;

Chapter 25
Pre-Test, Mid-Test and Post-Test Loop Structures

25.1 The Pre-Test Loop Structure
The pre-test loop structure is shown in the following flowchart.

Let's see what happens when the flow of execution reaches a pre-test loop
structure. If Boolean_Expression evaluates to true, the statement or block
of statements of the structure is executed and the flow of execution goes
back to check Boolean_Expression once more. If Boolean_Expression
evaluates to true again, the process repeats. The iterations stop when
Boolean_Expression, at some point, evaluates to false and the flow of
execution exits the loop.

The Decision symbol (the diamond, or rhombus) is used both in
decision control structures and in loop control structures. However, in
loop control structures, one of the diamond's exits always has an upward
direction.

A “pre-test loop structure” is named this way because first the Boolean
expression is evaluated, and afterwards the statement or block of
statements of the structure is executed.

Because the Boolean expression is evaluated before entering the loop,
a pre-test loop may perform from zero to many iterations.

Each time the statement or block of statements of a loop control
structure is executed, the term used in computer science is “the loop is
iterating” or “the loop performs an iteration”.

The general form of the Java statement is
while (Boolean_Expression) {

A statement or block of statements

}

The following example displays the numbers 1 to 10.

 Project_25.1
public static void main(String[] args) throws Exception {

int i;
i = 1;
while (i <= 10) {

System.out.println(i);
i++;

}
}

Just as in decision control structures, the statements inside a loop
control structure should be indented.

Similar to decision control structures, when only one single statement
needs to be part of the while statement, you are allowed to omit the braces
{ }. Thus, the while statement can be written as shown below.
while (Boolean_Expression)

One_Single_Statement;

To prevent potential logic errors, many programmers prefer to always
use braces, even when the while statement encloses just one statement.

Exercise 25.1-1 Designing the Flowchart and Counting the Total Number
of Iterations
Design the corresponding flowchart for the following code fragment. How
many iterations does this Java code perform?
int i;

i = 4;
while (i > 0) {

i--;
}
System.out.println("The end");

Solution

The corresponding flowchart fragment is as follows.

Next, a trace table can help you observe the flow of execution.

Step Statement Notes i

1 i = 4 4

2 while (i > 0) This evaluates to true
1st iteration

3 i‐‐ 3

4 while (i > 0) This evaluates to true
2nd iteration

5 i‐‐ 2

6 while (i > 0) This evaluates to true
3rd iteration

7 i‐‐ 1

8 while (i > 0) This evaluates to true
4th iteration

9 i‐‐ 0

10 while (i > 0) This evaluates to false

11 .println("The end") It displays: The end

As you can see from the trace table, the total number of iterations is four.

When the statement or block of statements of a pre-test loop structure
is executed N times, the Boolean expression is evaluated N+1 times.
Therefore, to determine the total number of iterations, count the number of
times the statement or block of statements is executed, not the number of
times the Boolean expression is evaluated.

Exercise 25.1-2 Counting the Total Number of Iterations
How many iterations does this code fragment perform?
int i;
i = 4;
while (i >= 0) {

System.out.println(i);
i--;

}
System.out.println("The end");

Solution

This exercise is almost identical to the previous one. The main difference
is that the Boolean expression here remains true, even for i = 0.
Therefore, it performs an additional iteration, that is, five iterations.

Exercise 25.1-3 Counting the Total Number of Iterations
How many iterations does this code fragment perform?
int i;

i = 1;
while (i != 6) {

i += 2;
}
System.out.println("The end");

Solution

Let's create a trace table to observe the flow of execution.

Step Statement Notes i

1 i = 1 1

2 while (i != 6) This evaluates to true
1st iteration

3 i += 2 3

4 while (i != 6) This evaluates to true 2nd iteration

5 i += 2 5

6 while (i != 6) This evaluates to true
3rd iteration

7 i += 2 7

8 while (i != 6) This evaluates to true
... ...

9 … …

As you can see from the trace table, since the value 6 is never assigned to
variable i, this code fragment will iterate for an infinite number of times!
Obviously, this code does not satisfy the property of finiteness.

Exercise 25.1-4 Counting the Total Number of Iterations
How many iterations does this code fragment perform?
int i;

i = -10;
while (i > 0) {

System.out.println(i);
i--;

}

System.out.println("The end");

Solution

Initially, the value −10 is assigned to variable i. The Boolean expression
directly evaluates to false and the flow of execution goes right to the
System.out.println("The end") statement. Thus, this code fragment
performs zero iterations.

Exercise 25.1-5 Finding the Sum of Four Numbers
Using a pre-test loop structure, write a Java program that lets the user
enter four numbers and then calculates and displays their sum.

Solution

Do you remember the example in Section 24.2 for calculating the sum of
four numbers? At the end, after a little work, the proposed code fragment
became
total = 0;

execute_these_statements_4_times {
x = Double.parseDouble(cin.nextLine());
total = total + x;

}
System.out.println(total);

Now, you need a way to “present” the statement
execute_these_statements_4_times with real Java statements. The while statement
can achieve this, but you need an additional variable to count the total
number of iterations. This way, when the desired number of iterations has
been performed, the flow of execution will exit the loop.
Following is a general purpose code fragment that iterates for the number
of times specified by total_number_of_iterations,
i = 1;
while (i <= total_number_of_iterations) {

A statement or block of statements

i++;
}

where total_number_of_iterations can be a constant value or even a variable or
an expression.
After combining this code fragment with the previous one, the final
program becomes

 Project_25.1-5
public static void main(String[] args) throws Exception {

double total, x;
int i;
total = 0;

i = 1;
while (i <= 4) {

x = Double.parseDouble(cin.nextLine()); [More…]
total = total + x;

i++;
}
System.out.println(total);

}

The name of the variable i is not binding. You can use any variable
name you wish such as counter, count, k, and more.

Exercise 25.1-6 Finding the Sum of Odd Numbers
Design a flowchart and write the corresponding Java program that lets the
user enter 20 integers, and then calculates and displays the sum of the odd
numbers.

Solution

This is quite easy. What the program must do inside the loop is check
whether or not a user-provided number is odd and, if it is, that number
must accumulate in variable total; even numbers must be ignored. The
flowchart is as follows. It includes a single-alternative decision structure
nested within a pre-test loop structure.

The corresponding Java program is as follows.
 Project_25.1-6

public static void main(String[] args) throws Exception {

int total, i, x;
total = 0;
i = 1;
while (i <= 20) {

x = Integer.parseInt(cin.nextLine());

if (x % 2 != 0) {
total += x; //This is equivalent to total = total + x

}
i++;

}
System.out.println(total);

}

You can nest any decision control structure inside any loop control
structure as long as you keep them syntactically and logically correct.

Exercise 25.1-7 Finding the Sum of N Numbers
Write a Java program that lets the user enter N numbers and then
calculates and displays their sum. The value of N must be provided by the
user at the beginning of the program.

Solution

In this exercise, the total number of iterations depends on a value that the
user must enter. Following is a general purpose code fragment that iterates
for N times, where N is provided by the user.
n = Integer.parseInt(cin.nextLine());
i = 1;
while (i <= n) {

A statement or block of statements

i++;
}

According to what you have learned so far, the final program becomes
 Project_25.1-7

public static void main(String[] args) throws Exception {
int n, i;

double x, total;
total = 0;
n = Integer.parseInt(cin.nextLine());

i = 1;
while (i <= n) {

x = Double.parseDouble(cin.nextLine());
total += x;
i++;

}
System.out.println(total);

}

Exercise 25.1-8 Finding the Sum of an Unknown Quantity of Numbers
Write a Java program that lets the user enter integer values repeatedly
until the value −1 is entered. When data input is completed, the sum of the
numbers entered must be displayed. (The value of −1 must not be included
in the final sum). Next, create a trace table to check if your program
operates properly using 10, 20, 5, and −1 as input values.

Solution

In this exercise, the total number of iterations is unknown. If you were to
use decision control structures, your program would look something like
the code fragment that follows.
total = 0;
x = Integer.parseInt(cin.nextLine());

if (x != -1) { //Check variable x [More…]
total += x; //and execute this statement
x = Integer.parseInt(cin.nextLine()); //and this one

if (x != -1) { //Check variable x
total += x; //and execute this statement

x = Integer.parseInt(cin.nextLine()); //and this one
if (x != -1) { //Check variable x

total += x; //and execute this statement
x = Integer.parseInt(cin.nextLine()); //and this one
…

…
}

}
}
System.out.println(total);

Now let's rewrite this program using a loop control structure instead. The
final program is presented next. If you try to follow the flow of execution,
you will find that it operates equivalently to the previous one.

 Project_25.1-8
public static void main(String[] args) throws Exception {

double total, x;
total = 0;
x = Integer.parseInt(cin.nextLine());
while (x != -1) { //Check variable x

total += x; //and execute this statement

x = Integer.parseInt(cin.nextLine()); //and this one
}
System.out.println(total);

}

Now let's create a trace table to determine if this program operates
properly using 10, 20, 5, and −1 as input values.

Step Statement Notes x total

1 total = 0 ? 0

2 x = Integer.parseI… 10 0

3 while (x != ‐1) This evaluates to true

4 total += x 10 10

5 x = Integer.parseI… 20 10

6 while (x != ‐1) This evaluates to true

7 total += x 20 30

8 x = Integer.parseI… 5 30

9 while (x != ‐1) This evaluates to true

10 total += x 5 35

11 x = Integer.parseI… −1 35

12 while (x != ‐1) This evaluates to false

13 .println(total) It displays: 35

As you can see, in the end, variable total contains the value 35, which is,
indeed, the sum of the values 10 + 20 + 5. Moreover, the final user-
provided value of −1 does not participate in the final sum.

When the number of iterations is known before the loop starts iterating
the loop is often called “definite loop”. In this exercise, however, the
number of iterations is not known before the loop starts iterating, and it
depends on a certain condition. This type of loop is often called “indefinite
loop”.

Exercise 25.1-9 Finding the Product of 20 Numbers
Write a Java program that lets the user enter 20 numbers and then
calculates and displays their product.

Solution

If you were to use a sequence control structure, it would be something like
the next code fragment.
p = 1;

x = Double.parseDouble(cin.nextLine()); [More…]
p = p * x;

x = Double.parseDouble(cin.nextLine());
p = p * x;
x = Double.parseDouble(cin.nextLine());
p = p * x;

…
…
x = Double.parseDouble(cin.nextLine());
p = p * x;

Note that variable p is initialized to 1 instead of 0. This is necessary for
the statement p = p * x to operate properly; the final product would be zero
otherwise.

Using knowledge from the previous exercises, the final program becomes

 Project_25.1-9
public static void main(String[] args) throws Exception {

double p, x;
int i;
p = 1;

i = 1;
while (i <= 20) {

x = Double.parseDouble(cin.nextLine());

p = p * x;
i++;

}
System.out.println(p);

}

25.2 The Post-Test Loop Structure
The post-test loop structure is shown in the following flowchart.

In loop control structures, one of the diamond's exits always has an
upward direction.

Let's see what happens when the flow of execution reaches a post-test loop
structure. The statement or block of statements of the structure is directly
executed and if Boolean_Expression evaluates to true, the flow of
execution goes back to the point just above the statement or block of
statements of the structure. The statement or block of statements is
executed once more and if Boolean_Expression evaluates to true again,
the process repeats. The iterations stop when Boolean_Expression, at some
point, evaluates to false and the flow of execution exits the loop.

The post-test loop differs from the pre-test loop in that first the
statement or block of statements of the structure is executed and
afterwards the Boolean expression is evaluated. Consequently, the post-
test loop performs at least one iteration!

Each time the statement or block of statements of a loop control
structure is executed, the term used in computer science is “the loop is
iterating” or “the loop performs an iteration”.

The general form of the Java statement is
do {

A statement or block of statements

} while (Boolean_Expression);

The following example displays the numbers 1 to 10.

 Project_25.2
public static void main(String[] args) throws Exception {

int i;
i = 1;
do {

System.out.println(i);
i++;

} while (i <= 10);
}

Note the presence of a semicolon (;) character at the end of the do-
while statement.

When only one single statement needs to be part of the do-while
statement, you are allowed to omit the braces { }. Thus the do-while
statement can be written as shown below.
do

One_Single_Statement;
while (Boolean_Expression);

To prevent potential logic errors, many programmers prefer to always
use braces even when the do-while statement encloses just one statement.

Exercise 25.2-1 Designing the Flowchart and Counting the Total Number
of Iterations

Design the corresponding flowchart for the following code fragment. How
many iterations does this Java code perform?
int i;
i = 3;
do {

i--;
} while (i > 0);
System.out.println("The end");

Solution

The corresponding flowchart fragment is as follows.

Now, let's create a trace table to observe the flow of execution.

Step Statement Notes i

1 i = 3 3

2 i‐‐ 2
1st iteration

3 while (i > 0) This evaluates to true

4 i‐‐ 1
2nd iteration

5 while (i > 0) This evaluates to true

6 i‐‐ 0 3rd iteration

7 while (i > 0) This evaluates to false

8 .println("The end") It displays: The end

As you can see from the trace table, the total number of iterations is three.

Both the statement or block of statements of a post-test loop structure
is executed N times, and the Boolean expression is evaluated N times.
Therefore, to determine the total number of iterations, you can count
either the number of times the statement or block of statements is executed,
or the number of times the Boolean expression is evaluated. Both counts
are equal!

Exercise 25.2-2 Counting the Total Number of Iterations
How many iterations does this code fragment perform?
int i;
i = 3;

do {
System.out.println(i);
i--;

} while (i >= 0);
System.out.println("The end");

Solution

This exercise is almost identical to the previous one. The main difference
is that the Boolean expression here remains true, even for i = 0.
Therefore, it performs an additional iteration, that is, four iterations.

Exercise 25.2-3 Designing the Flowchart and Counting the Total Number
of Iterations
Design the corresponding flowchart for the following code fragment. How
many iterations does this code perform?
int i;

i = -1;
do {

System.out.println("Hello there!");
i--;

} while (i > 0);

System.out.println("The end");

Solution

The corresponding flowchart fragment is as follows.

Initially the value −1 is assigned to the variable i. Inside the loop, the
message “Hello there!” is displayed and variable i is decremented by one
(resulting in the value −2). The Boolean expression i > 0 evaluates to
false, and the flow of execution proceeds directly to the Write ("The
end") statement. Thus, this algorithm performs one iteration!

Exercise 25.2-4 Counting the Total Number of Iterations
How many iterations does this code fragment perform?
int i;
i = 1;
do {

i = i + 2;

} while (i != 4);
System.out.println("The end");

Solution

Let's create a trace table to observe the flow of execution.

Step Statement Notes i

1 i = 1 1

2 i = i + 2 3
1st iteration

3 while (i != 4) This evaluates to true

4 i = i + 2 5
2nd iteration

5 while (i != 4) This evaluates to true

6 i = i + 2 7
3rd iteration

7 while (i != 4) This evaluates to true

8 … …
... ...

9 … …

As you can see from the trace table, since the value 4 is never assigned to
variable i, this code fragment will iterate for an infinite number of times!
Obviously, this code does not satisfy the property of finiteness.

Exercise 25.2-5 Finding the Product of N Numbers
Write a Java program that lets the user enter N numbers and then
calculates and displays their product. The value of N must be provided by
the user at the beginning of the program. What happens if you switch the
post-test loop structure with a pre-test loop structure? Do both programs
operate exactly the same way for all possible input values of N?

Solution

Both programs below let the user enter N numbers, calculate, and display
their product. The left one uses a pre-test, while the right one uses a post-
test loop structure. If you try to execute them and enter any value greater
than zero for N, both programs operate exactly the same way!

 Project_25.2-5a
public static void main(String[] args)

throws Exception {
int n, i;
double p, x;
n = Integer.parseInt(cin.nextLine());

p = 1;
i = 1;
while (i <= n) {

x = Double.parseDouble(cin.nextLine());
p = p * x;
i++;

}
System.out.println(p);

}

 Project_25.2-5b
public static void main(String[] args)

throws Exception {
int n, i;

double p, x;
n = Integer.parseInt(cin.nextLine());
p = 1;
i = 1;
do {

x = Double.parseDouble(cin.nextLine());
p = p * x;
i++;

} while (i <= n);
System.out.println(p);

}

The two Java programs, however, operate in different ways when the user
enters a non-positive[18] value for N. For example, if the value 0 is entered,
the left program performs zero iterations whereas the right program
performs one iteration. Obviously, the left program is the right choice to
solve this exercise!

A pre-test loop structure may perform zero iterations in contrast to the
post-test loop structure, which performs at least one iteration!

25.3 The Mid-Test Loop Structure
The mid-test loop structure is shown in the following flowchart.

Let's see what happens when the flow of execution reaches a mid-test loop
structure. The statement or block of statements 1 of the structure is directly
executed and if Boolean_Expression evaluates to false, the statement or
block of statements 2 is executed and the flow of execution goes back to
the point just above the statement or block of statements 1 of the structure.
The statement or block of statements 1 is executed once more and if
Boolean_Expression evaluates to false again, the process repeats. The
iterations stop when Boolean_Expression, at some point, evaluates to true
and the flow of execution exits the loop.
Although this loop control structure is directly supported in some
computer languages such as Ada, unfortunately this is not true for Java.
However, you can still write mid-test loops using the while statement
along with an if and a break statement. The main idea is to create an
endless loop and break out of it when the Boolean expression that exists
between the two statements (or block of statements) of the structure
evaluates to true. The idea is shown in the code fragment given in general
form that follows.
while (true) {

A statement or block of statements 1

if (Boolean_Expression) break;

A statement or block of statements 2

}

You can break out of a loop before it actually completes all of its
iterations by using the break statement.

The following example displays the numbers 1 to 10.

 Project_25.3
public static void main(String[] args) throws Exception {

int i;
i = 1;
while (true) {

System.out.println(i);
if (i >= 10) break;
i++;

}
}

Exercise 25.3-1 Designing the Flowchart and Counting the Total Number
of Iterations
Design the corresponding flowchart for the following code fragment and
create a trace table to determine the values of variable i in each step.
int i;

i = 10;
while (true) {

System.out.println(i);
i += 5;
if (i > 45) break;

System.out.println(i * i);
i += 10;

}
System.out.println("The end");

Solution

The corresponding flowchart fragment is as follows.

Now, let's create a trace table to observe the flow of execution.

Step Statement Notes i

1 i = 10 10

2 .println(i) It displays: 10

3 i += 5 15

4 if (i > 45) This evaluates to false

5 .println(i * i) It displays: 225

6 i += 10 25

7 .println(i) It displays: 25

8 i += 5 30

9 if (i > 45) This evaluates to false

10 .println(i * i) It displays: 900

11 i += 10 40

12 .println(i) It displays: 40

13 i += 5 45

14 if (i > 45) This evaluates to false

15 .println(i * i) It displays: 2025

16 i += 10 55

17 .println(i) It displays: 55

18 i += 5 60

19 if (i > 45) This evaluates to true

20 .println("The end") It displays: The end

25.4 Review Questions: True/False
Choose true or false for each of the following statements.
1) A pre-test loop may perform zero iterations.
2) In flowcharts, both exits of the diamond symbol in a pre-test loop

structure, have an upwards direction.
3) The statement or block of statements of a pre-test loop structure is

executed at least one time.
4) A while statement stops iterating when its Boolean expression

evaluates to true
5) In a pre-test loop structure, when the statement or block of statements

of the structure is executed N times, the Boolean expression is
evaluated N − 1 times.

6) A post-test loop may perform zero iterations.
7) In a post-test loop structure, when the statement or block of

statements of the structure is executed N times, its Boolean
expression is evaluated N times as well.

8) You cannot nest a decision control structure inside a post-test loop
structure.

9) In the mid-test loop structure, the statement or block of statements 1 is
executed the same number of times as the statement or block of
statements 2.

10) In the following code fragment, the word “Hello” is displayed 10
times.
int i = 1;
while (i <= 10)

System.out.println("Hello");

i++;

11) The following Java program does not satisfy the property of
finiteness.
public static void main(String[] args) throws Exception {

int i;
i = 1;
while (i != 10) {

System.out.println("Hello");
i += 2;

}
}

12) In the following code fragment, the word “Hello” is displayed an
infinite number of times.
int i = 1;
do {

System.out.println("Hello");
} while (i >= 10);

13) The following Java program satisfies the property of effectiveness.
public static void main(String[] args) throws Exception {

int i;
do {

System.out.println("Hello");
i -= 2;

} while (i > 10);
}

14) The following code fragment does not satisfy the property of
definiteness.
int b;

double a;

b = Integer.parseInt(cin.nextLine());
if (b != 1) {

do {

a = 1 / (b − 1);
b++;

} while (b <= 10);
}

15) In the following code fragment, the word “Zeus” is displayed 10
times.
int i = 1;

while (true) {
System.out.println("Zeus");
if (i > 10) break;
i++;

}

25.5 Review Questions: Multiple Choice
Select the correct answer for each of the following statements.
1) In flowcharts, the diamond symbol is being used

a) in decision control structures.
b) in loop control structures.
c) all of the above

2) A post-test loop structure
a) performs one iteration more than the pre-test loop structure does.
b) performs the same number of iterations as the pre-test loop

structure does.
c) it depends

3) In a post-test loop structure, the statement or block of statements of
the structure
a) are executed before the loop's Boolean expression is evaluated.
b) are executed after the loop's Boolean expression is evaluated.
c) none of the above

4) In the following code fragment
int i = 1;
while (i < 10) {

System.out.println("Hello Hermes");

i++;
}

the message “Hello Hermes” is displayed
a) 10 times.
b) 9 times.
c) 1 time.
d) 0 times.
e) none of the above

5) In the following code fragment
int i = 1;

while (i < 10)
System.out.println("Hi!");
System.out.println("Hello Ares");
i++;

the message “Hello Ares” is displayed
a) 10 times.
b) 11 time.
c) 1 times.
d) 0 times.
e) none of the above

6) In the following code fragment
int i = 1;

while (i < 10)
i++;
System.out.println("Hi!");
System.out.println("Hello Aphrodite");

the message “Hello Aphrodite” is displayed
a) 10 times.
b) 1 time.
c) 0 times.
d) none of the above

7) In the following code fragment
int i = 1;
while (i >= 10) {

System.out.println("Hi!");
System.out.println("Hello Apollo");
i++;

}

the message “Hello Apollo” is displayed
a) 10 times.
b) 1 time.
c) 0 times.
d) none of the above

8) The following code fragment
int i, n;
double s;
n = Integer.parseInt(cin.nextLine());
s = 0;

i = 1;
while (i < n) {

a = Double.parseDouble(cin.nextLine());
s = s + a;
i++;

}

System.out.println(s);

calculates and displays the sum of
a) as many numbers as the value of variable n denotes.
b) as many numbers as the result of the expression n − 1 denotes.
c) as many numbers as the value of variable i denotes.
d) none of the above

9) In the following code fragment
int i = 1;
do {

System.out.println("Hello Poseidon");
i++;

} while (i > 5);

the message “Hello Poseidon” is displayed
a) 5 times.
b) 1 time.
c) 0 times.

d) none of the above
10) In the following code fragment

int i = 1;
do {

System.out.println("Hello Athena");

i += 5;
} while (i != 50);

the message “Hello Athena” is displayed
a) at least one time.
b) at least 10 times.
c) an infinite number of times.
d) all of the above

11) In the following code fragment
int i = 0;
do {

System.out.println("Hello Apollo");

} while (i > 10);

the message “Hello Apollo” is displayed
a) at least one time.
b) an infinite number of times.
c) none of the above

12) In the following code fragment
int i = 10;
while (true) {

i--;
if (i > 0) break;
System.out.println("Hello Aphrodite");

}

the message “Hello Aphrodite” is displayed
a) at least one time.
b) an infinite number of times.
c) ten times
d) none of the above

25.6 Review Exercises

Complete the following exercises.
1) Identify the error(s) in the following Java program. It must display the

numbers 3, 2, 1 and the message “The end”.
public static void main(String[] args) throws Exception {

int i;
i = 3;

do
System.out.println(i);
i--;

} while (i >= 0)
System.out.println(The end);

}

2) Create a trace table to determine the values of the variables in each
step of the next code fragment. How many iterations does this Java
program perform?
int i, x;
i = 3;
x = 0;
while (i >= 0) {

i--;

x += i;
}
System.out.println(x);

3) Design the corresponding flowchart and create a trace table to
determine the values of the variables in each step of the next Java
program. How many iterations does this Java program perform?
public static void main(String[] args) throws Exception {

int i;

i = -5;
while (i < 10) {

i--;
}
System.out.println(i);

}

4) Create a trace table to determine the values of the variables in each
step of the next code fragment. How many iterations does this Java
program perform?
int a, b, c, d;
a = 2;
while (a <= 10) {

b = a + 1;
c = b * 2;
d = c - b + 1;

switch (d) {
case 4:

System.out.println(b + ", " + c);
break;

case 5:

System.out.println(c);
break;

case 8:
System.out.println(a + ", " + b);
break;

default:

System.out.println(a + ", " + b + ", " + d);
}
a += 4;

}

5) Create a trace table to determine the values of the variables in each
step of the next code fragment. How many iterations does this Java
code perform?
int a, b, c, d, x;

a = 1;
b = 1;
c = 0;
d = 0;
while (b < 2) {

x = a + b;
if (x % 2 != 0)

c = c + 1;
else

d = d + 1;
a = b;

b = c;
c = d;

}

6) Fill in the gaps in the following code fragments so that all loops
perform exactly four iterations.
i)

int a = 3;
while (a > ……) {

System.out.println(a);

a--;
}

ii)
int a = 5;

while (a < ……) {
System.out.println(a);
a++;

}

iii)
double a = 9;

while (a != 10) {
System.out.println(a);
a = a + …… ;

}

iv)
int a = 1;
while (a != ……) {

System.out.println(a);
a -= 2;

}

v)
int a = 2;
while (a < ……) {

System.out.println(a);
a = 2 * a;

}

vi)
double a = 1;
while (a < ……) {

System.out.println(a);
a = a + 0.1;

}

7) Create a trace table to determine the values of the variables in each
step of the next code fragment. How many iterations does this code
perform?
int y, x;
y = 5;
x = 38;

do {
y *= 2;

x++;
System.out.println(y);

} while (y < x);

8) Create a trace table to determine the values of the variables in each
step of the next code fragment. How many iterations does this code
perform?
int x;
x = 1;
do {

if (x % 2 == 0) {
x++;

}
else {

x += 3;
}
System.out.println(x);

} while (x < 12);

9) Create a trace table to determine the values of the variables in each
step of the next code fragment. How many iterations does this code
perform?
double x, y;
y = 2;
x = 0;
do {

y = Math.pow(y, 2);

if (x < 256) {
x = x + y;

}
System.out.println(x + ", " + y);

} while (y < 65535);

10) Create a trace table to determine the values of the variables in each
step of the next code fragment. How many iterations does this code
perform?
int a, b, c, d, x;
a = 2;
b = 4;
c = 0;
d = 0;
do {

x = a + b;
if (x % 2 != 0) {

c = c + 5;
}
else if (d % 2 == 0) {

d = d + 5;
}
else {

c = c + 3;
}

a = b;
b = d;

} while (c < 11);

11) Fill in the gaps in the following code fragments so that all loops
perform exactly six iterations.
i)

int a = 5;
do {

System.out.println(a);

a--;
} while (a > ……);

ii)
int a = 12;
do {

System.out.println(a);

a++;
} while (a < ……);

iii)
double a = 20;
do {

System.out.println(a);

a = a + …… ;
} while (a != 23);

iv)
int a = 100;
do {

System.out.println(a);
a -= 20;

} while (a != ……);

v)
int a = 2;
do {

System.out.println(a);
a = 2 * a;

} while (a != ……);

vi)
double a = 10;
do {

System.out.println(a);
a = a + 0.25;

} while (a <= ……);

12) Fill in the gaps in the following code fragments so that all display the
value 10 (or 10.0) at the end.
i)

int x = 0;
int y = 0;
do {

x++;
y += 2;

} while (x <= ……);

System.out.println(y);

ii)
int x = 1;
double y = 20;
do {

x--;

y -= 2.5;
} while (x >= ……);
System.out.println(y);

iii)
int x = 3;
double y = 2.5;

do {
x--;
y *= 2;

} while (x >= ……);
System.out.println(y);

iv)
int x = 30;

int y = 101532;
do {

x -= ……;

y = (int)(y / 10);
} while (x >= 0);
System.out.println(y);

13) Using a pre-test loop structure, write a Java program that lets the user
enter N numbers and then calculates and displays their sum and their
average. The value of N must be provided by the user at the
beginning of the program.

14) Using a pre-test loop structure, write a Java program that lets the user
enter N integers and then calculates and displays the product of those
that are even. The value of N must be provided by the user at the
beginning of the program. Moreover, if all user-provided integers are
odd, the message “You entered no even integers” must be displayed.

15) Using a pre-test loop structure, write a Java program that lets the user
enter 100 integers and then calculates and displays the sum of those
with a last digit of 0. For example, the values 10, 2130, and 500 are
such numbers.
Hint: You can isolate the last digit of any integer using a modulus 10
operation.

16) Using a pre-test loop structure, write a Java program that lets the user
enter 20 integers and then calculates and displays the sum of those
that consist of three digits.
Hint: All three-digit integers are between 100 and 999.

17) Using a pre-test loop structure, write a Java program that lets the user
enter numeric values repeatedly until the value 0 is entered. When
data input is completed, the product of the numbers entered must be
displayed. (The last 0 entered must not be included in the final
product). Next, create a trace table to check if your program operates
properly using 3, 2, 9, and 0 as input values.

18) The population of a town is now at 30000 and is expanding at a rate
of 3% per year. Using a pre-test loop structure, write a Java program
to determine how many years it will take for the population to exceed
100000.

19) Using a post-test loop structure, design a flowchart and write the
corresponding Java program that lets the user enter 50 integers and

then calculates and displays the sum of those that are odd and the sum
of those that are even.

20) Using a post-test loop structure, write a Java program that lets the
user enter N integers and then calculates and displays the product of
those that are negative. The value of N must be provided by the user
at the beginning of the program, and the final product must always be
displayed as a positive value. Assume that the user enters a value
greater than 0 for N.

21) Using a post-test loop structure, write a Java program that prompts
the user to enter five integers and then calculates and displays the
product of all three-digit integers with a first digit of 5. For example,
the values 512, 555, and 593 are all such numbers
Hint: All three-digit integers with a first digit of 5 are between 500
and 599.

22) The current population of a beehive is 50,000. Each year, the beehive
experiences a 5% increase due to new births, but also faces a 15%
mortality rate due to environmental reasons. Using a post-test loop
structure, write a Java program to determine how many years it will
take for the population to fall below 20,000.

Chapter 26
Definite Loops

26.1 The for statement
In Chapter 25, as you certainly noticed, the while statement was used to
iterate for both a known number and an unknown number of times (in
situations where the number of iterations was not known at the time the loop
started iterating). In other words, the while statement was used to create both
definite and indefinite loops.
Since definite loops are so frequently used in computer programming,
almost every computer language, including Java, incorporates a special
statement that is notably more readable and convenient than the while
statement—and this is the for statement.
The general form of the for statement, is

for (initialize_counter; evaluate_counter; update_counter) {

A statement or block of statements

}
where

► counter is a variable.
► initialize_counter must be a statement that assigns an initial value to the

variable counter.
► evaluate_counter must be a Boolean expression that evaluates the variable

counter.
► update_counter must be a statement that alters (usually increments or

decrements) the value of variable counter.
Even though the for statement can be written in many different ways in
Java, this book deals only with its basic form. So, when a for statement is
used to create define loops, its general form in a more convenient format can
be as follows.
for (counter = initial_value; counter OP1 final_value; counter = counter OP2 offset) {

A statement or block of statements

}

And the corresponding flowchart is shown here.

where
► initial_value, final_value and offset can be constant values, variables or

expressions. Negative values are also permitted.
► operator OP1 should be <= when counter increments and >= when counter

decrements.
► operator OP2 should be + when counter increments and – when counter

decrements.

A for-loop is actually a pre-test loop structure.

The following example displays the numbers 1, 2, 3, 4, and 5. Variable
counter (here i) increments from 1 to 6, allowing the loop to perform 5
iterations.

 Project_26.1a
public static void main(String[] args) throws Exception {

int i;
for (i = 1; i <= 5; i = i + 1) {

System.out.println(i);
}

}

When the for-loop performs its last iteration, it displays the content of
variable i, which is 5, then variable i increments by one (it becomes 6), and
the flow of execution exits the loop.

The flowchart for the program that you have just seen is presented below.
When the flow of execution reaches the for-loop, the initial value 1 is
assigned to variable i, the Boolean expression i ≤ 5 evaluates to true, the
statement Write i is executed and the value 1 is displayed on the screen.
The variable i increments by one and the flow of execution goes back to the
point just above the diamond symbol. The Boolean expression evaluates to
true again the value 2 is displayed and the process repeats. In the 5th

iteration, the value 5 is displayed, the value of variable i becomes 6, the
Boolean expression evaluates to false and the flow of execution exits the
loop.

When variable counter increments (or decrements) by 1, it is more convenient
to use compound assignment operators or even incrementing (or
decrementing) operators. The next example displays the numbers from 1 to
10 using the incrementing operator ++.

 Project_26.1b
public static void main(String[] args) throws Exception {

int i;
for (i = 1; i <= 10; i++) {

System.out.println(i);
}

}

The following example displays even numbers from 10 to 2 using the
compound assignment operator -=.

 Project_26.1c
public static void main(String[] args) throws Exception {

int i;
for (i = 10; i >= 2; i -= 2) {

System.out.println(i);
}

}

Note that the comparison operator should be >= when counter (here i)
decrements and <= when counter increments.

Although it is not recommended, since a for-loop is actually a pre-test loop
structure, you can replace the for statement with a while statement. The
previous example can be written using a while statement as follows.

 Project_26.1d
public static void main(String[] args) throws Exception {

int i;
i = 10;

while (i >= 2) {
System.out.println(i);

i -= 2;
}

}

The following example displays even numbers from −2 to −10 using
variables instead of constant values for initial_value, final_value, and offset.

 Project_26.1e
public static void main(String[] args) throws Exception {

int i; int x1 = -2; int x2 = -10; int t = -2;
for (i = x1; i >= x2; i += t) {

System.out.println(i);
}

}

Don't ever dare alter the value of counter (here i) inside the loop! The
same applies to initial_value (here x1), final_value (here x2), and offset
(here t). This makes your code unreadable and could lead to incorrect
results. If you insist, though, please use a while statement instead.

The following example displays the letters “H”, “e”, “l”, “l”, and “o” (all
without the double quotes).

 Project_26.1f
public static void main(String[] args) throws Exception {

int i; String message = "Hello";
for (i = 0; i <= message.length() - 1; i++) {

System.out.println(message.charAt(i));
}

}

The length() method returns the number of characters variable message
consists of, whereas the message.charAt(i) method returns the character located
at the specified position (indicated by the variable i) in the string variable
message (see Section 14.3).

Exercise 26.1-1 Creating the Trace Table
Design the corresponding flowchart and create a trace table to determine
the values of the variables in each step of the next code fragment when the
input value 1 is entered.
int a, i;
a = Integer.parseInt(cin.nextLine());
for (i = -3; i <= 3; i += 2) {

a = a * 3;
}

System.out.println(i + " " + a);

Solution The corresponding flowchart fragment is as follows.

You should always keep in mind that a for-loop is actually a pre-test loop
structure!

If you rewrite the code fragment using the while statement the result is as
follows.
int a, i;
a = Integer.parseInt(cin.nextLine());
i = -3;
while (i <= 3) {

a = a * 3;

i += 2;
}
System.out.println(i + " " + a);

Now, in order to create a trace table for a for statement you have two
choices: you can use either the corresponding flowchart or the equivalent
program written with the while statement.

Step Statement Notes a i

1 a = Integer.parseI… 1 ?

2 i = −3 1 −3

3 i <= 3 This evaluates to true 1st iteration

4 a = a * 3 3 −3

5 i += 2 3 −1

6 i <= 3 This evaluates to true

2nd iteration7 a = a * 3 9 −1

8 i += 2 9 1

9 i <= 3 This evaluates to true

3rd iteration10 a = a * 3 27 1

11 i += 2 27 3

12 i <= 3 This evaluates to true

4th iteration13 a = a * 3 81 3

14 i += 2 81 5

15 i <= 3 This evaluates to false

16 .println(i + " " + a) It displays: 5 81

Note that the flow of execution exits the loop when the value of counter i
exceeds final_value. In this example, when the flow of execution does
finally exit the loop, counter i does not contain the final value 3 but the next
one in order, which is the value 5.

Exercise 26.1-2 Creating the Trace Table
Create a trace table to determine the values of the variables in each step of
the next code fragment when the input value 4 is entered.
int a, i; a = Integer.parseInt(cin.nextLine());
for (i = 6; i >= a; i--) {

System.out.println(i); }

Solution As in the previous exercise, to create the trace table, the code
should be rewritten using the while statement.
int a, i; a = Integer.parseInt(cin.nextLine());
i = 6;
while (i >= a) {

System.out.println(i); i--;
}

Following is the trace table used to determine the values of the variables in
each step.

Step Statement Notes a i

1 a = Integer.parseI… 4 ?

2 i = 6 4 6

3 i >= a This evaluates to true

4 .println(i) It displays: 6

5 i‐‐ 4 5

6 i >= a This evaluates to true

7 .println(i) It displays: 5

8 i‐‐ 4 4

9 i >= a This evaluates to true

10 .println(i) It displays: 4

11 i‐‐ 4 3

12 i >= a This evaluates to false

Exercise 26.1-3 Counting the Total Number of Iterations
Count the total number of iterations performed by the following code
fragment for two different executions.
The input values for the two executions are: (i) 6, and (ii) 5.
n = Integer.parseInt(cin.nextLine()); for (i = 5; i <= n; i++) {

System.out.println(i); }

Solution In order to better understand what really goes on, instead of
creating a trace table, you can just design its corresponding flowchart
fragment.

From this flowchart fragment you can see that i) for the input value 5, the
Boolean expression evaluates to true and the flow of execution enters the
loop. Variable i increases to 6, the Boolean expression evaluates to false,
and the flow of execution exits the loop. Thus, the loop performs one
iteration.

ii) for the input value 6 the loop obviously performs two iterations.

Exercise 26.1-4 Finding the Sum of Four Numbers
Write a Java program that prompts the user to enter four numbers and then
calculates and displays their sum.

Solution In Exercise 25.1-5, the solution proposed with a while statement
was the following:

public static void main(String[] args) throws Exception {
double total, x; int i;
total = 0;
i = 1;
while (i <= 4) {

x = Double.parseDouble(cin.nextLine());
total = total + x;

i++;
}
System.out.println(total); }

It's now very easy to rewrite this using a for statement and have it display a
prompt message before every data input.

 Project_26.1-4
public static void main(String[] args) throws Exception {

int i; double total, x;
total = 0;
for (i = 1; i <= 4; i++) {

System.out.print("Enter a number: ");
x = Double.parseDouble(cin.nextLine());

total += x;
}
System.out.println(total); }

Note the absence of the i++ statement inside the loop control structure. In
a for statement, the counter (here variable i) automatically updates (here
increases) at the end of each loop iteration.

Exercise 26.1-5 Finding the Square Roots from 0 to N
Write a Java program that prompts the user to enter an integer and then
calculates and displays the square root of all integers from 0 to that user-
provided integer.

Solution This exercise is straightforward. The user enters an integer, and
the program iterates as many times as indicated by that integer. The Java
program is as follows.

 Project_26.1-5
public static void main(String[] args) throws Exception {

int num, i;
System.out.print("Enter an integer: "); num = Integer.parseInt(cin.nextLine());
for (i = 0; i <= num; i++) {

System.out.println(Math.sqrt(i));
}

}

Exercise 26.1-6 Finding the Sum of 1 + 2 + 3 + … + 100
Write a Java program that calculates and displays the following sum: S = 1
+ 2 + 3 + … + 100

Solution If you were to use a sequence control structure to solve this
exercise, it would be something like the next code fragment.
s = 0;
i = 1;
s = s + i;

i = i + 1;
s = s + i;
i = i + 1;
…
…

s = s + i;
i = i + 1;

Let's use a trace table to better understand it.

Step Statement Notes i s

1 s = 0 0 ? 0

2 i = 1 1 0

3 s = s + i 0 + 1 = 1 1 1

4 i = i + 1 2 1

5 s = s + i 0 + 1 + 2 = 3 2 3

6 i = i + 1 3 3

7 s = s + i 0 +1 + 2 + 3 = 6 3 6

8 i = i + 1 4 6

... … … …

... … … …

199 s = s + i 99 4950

200 i = i + 1 100 4950

201 s = s + i 0 + 1 + 2 + 3 + …+ 99 + 100 = 5050 100 5050

202 i = i + 1 101 5050

Now that everything has been cleared up, you can do the same thing, this
time using a for-loop that increments variable i by 1.

 Project_26.1-6
public static void main(String[] args) throws Exception {

int s, i;
s = 0;
for (i = 1; i <= 100; i++) {

s = s + i;
}

System.out.println(s); }

Exercise 26.1-7 Finding the Product of 2 × 4 × 6 × 8 × 10
Write a Java program that calculates and displays the following product: P
= 2 × 4 × 6 × 8 × 10

Solution Let's solve this exercise using the following sequence control
structure. Variable p must be initialized to 1 instead of 0. This is necessary
for the statement p = p * i to operate properly; the final product would be
zero otherwise.
p = 1;
i = 2;
p = p * i;
i += 2;
p = p * i;

i += 2;
p = p * i;
i += 2;
p = p * i;
i += 2;

p = p * i;
i += 2;

As in the previous exercise (Exercise 26.1-6), this sequence control structure
can be replaced by a for-loop, as follows.

 Project_26.1-7
public static void main(String[] args) throws Exception {

int p, i;
p = 1;
for (i = 2; i <= 10; i += 2) {

p = p * i;
}
System.out.println(p); }

Exercise 26.1-8 Finding the Sum of 22 + 42 + 62 + … (2N)2

Write a Java program that lets the user enter an integer N and then
calculates and displays the following sum: S = 22 + 42 + 62 + … (2N)2

Solution In this exercise, variable i must increment by 2. In each iteration
though, its value must be raised to the second power before it is
accumulated in variable s. The final Java program is as follows.

 Project_26.1-8
public static void main(String[] args) throws Exception {

int N, i; double s;
N = Integer.parseInt(cin.nextLine()); s = 0;
for (i = 2; i <= 2 * N; i += 2) {

s = s + Math.pow(i, 2);
}

System.out.println(s); }

Exercise 26.1-9 Finding the Sum of 33 + 66 + 99 + … (3N)3N

Write a Java program that lets the user enter an integer N and then
calculates and displays the following sum: S = 33 + 66 + 99 + …+ (3N)3N

Solution This is pretty much the same as the previous exercise. The only
difference is that variable i must be raised to the ith power before it is
accumulated in variable s. Using the for-loop, the final Java program is as
follows.

 Project_26.1-9
public static void main(String[] args) throws Exception {

int N, i; double s;
N = Integer.parseInt(cin.nextLine()); s = 0;
for (i = 3; i <= 3 * N; i += 3) {

s = s + Math.pow(i, i);

}
System.out.println(s); }

Exercise 26.1-10 Finding the Average Value of Positive Numbers
Write a Java program that lets the user enter 100 numbers and then
calculates and displays the average value of the positive numbers. Add all
necessary checks to make the program satisfy the property of definiteness.

Solution Since you know the total number of iterations, you can use a for-
loop. Inside the loop, however, a decision control structure must check
whether or not the user-provided number is positive; if so, it must

accumulate the user-provided number in variable s. The variable count
counts the number of positive numbers entered. When the flow of execution
exits the loop, the average value can then be calculated. The Java program
is as follows.

 Project_26.1-10
public static void main(String[] args) throws Exception {

int count, i; double s, x;
s = 0;
count = 0;
for (i = 1; i <= 100; i++) {

x = Double.parseDouble(cin.nextLine());

if (x > 0) {
s = s + x;
count++;

}
}
if (count != 0) {

System.out.println(s / count);
}
else {

System.out.println("No positive numbers entered!");
}

}

The if (count != 0) statement is necessary, because there is a possibility
that the user may enter negative values (or zeros) only. By including this
check, the program prevents any division-by-zero errors and thereby satisfies
the property of definiteness.

Exercise 26.1-11 Counting the Vowels
Write a Java program that prompts the user to enter a message and then
counts and displays the number of vowels the message contains.

Solution The Java program that follows counts the vowels in an English
message. The for-loop iterates for all the characters that the message
contains. The single-alternative decision structure checks one character at
each iteration and if it is a vowel, variable count is increased by one.

 Project_26.1-11
public static void main(String[] args) throws Exception {

String message; char character; String vowels = "AEIOU"; int i, count;

System.out.print("Enter an English message: "); message =
cin.nextLine().toUpperCase();
count = 0;

for (i = 0; i <= message.length() - 1; i++) {
character = message.charAt(i);
if (vowels.indexOf(character) != -1) { //If character is found in vowels

count++;
}

}
System.out.println("Vowels: " + count); }

The length() method returns the number of characters variable message
consists of, whereas the message.charAt(i) method returns the character located
at the specified position (indicated by the variable i) in the string variable
message (see Section 14.3).

The indexOf() method returns the value of −1 if character is not found in
variable vowels (see Section 14.3).

26.2 Rules that Apply to For-Loops
There are certain rules you must always follow when writing programs with
for-loops, since they can save you from undesirable side effects.

► Rule 1: The counter variable can appear in a statement inside the loop
but its value must never be altered (see Exercise 26.2-1 that follows).
The same applies to final_value and offset in case they are variables and
not constant values.

► Rule 2: The offset must never be zero. If it is set to zero, the loop
performs an infinite number of iterations (see Exercise 26.2-2 that
follows).

► Rule 3: If initial_value is smaller than final_value then, the offset must be
positive. If it is negative, the loop performs zero iterations (see Exercise
26.2-3 that follows). Violating this rule on purpose, however, can be
useful in certain situations.

► Rule 4: If initial_value is greater than final_value then, the offset must be
negative. If it is positive, the loop performs zero iterations (see Exercise
26.2-4 that follows). Violating this rule on purpose, however, can be
useful in certain situations.

Exercise 26.2-1 Counting the Total Number of Iterations

How many iterations does the following code fragment perform?
for (i = 5; i <= 10; i++) {

System.out.println(i); i--;
}

Solution This code fragment violates the first rule of for-loops, which states,
the counter variable can appear in a statement inside the loop but its value
must never be altered. The corresponding flowchart fragment, shown below,
can help you better understand what really goes on.

As you can see, since the initial value 5 of variable i is less than 10, the flow
of execution enters the loop. Inside the loop, however, the statement i ← i
- 1 eliminates the statement i ← i + 1 and this results in a non-
incrementing variable i, which can never reach final_value 10. Thus, the loop
performs an infinite number of iterations.

Similar to counter variable, if final_value and offset are variables
and not constant values, their value must never alter inside the loop.

Exercise 26.2-2 Counting the Total Number of Iterations
How many iterations does the following code fragment perform?
for (i = 5; i <= 10; i += 0) {

System.out.println(i); }

Solution This code fragment violates the second rule of for-loops, which
states, the offset must never be zero. The corresponding flowchart
fragment that follows can help you better understand what really goes on.

As you can see, since the initial value of variable i is less than 10, the flow
of execution enters the loop. However, the statement i ← i + 0 never
increments variable i, which means that it can never reach final_value 10.
Thus, the loop performs an infinite number of iterations.

The offset must never be zero.

Exercise 26.2-3 Counting the Total Number of Iterations
How many iterations does the following code fragment perform?
for (i = 5; i >= 10; i--) {

System.out.println(i); }

Solution This code fragment violates the third rule of for-loops, which
states, if initial_value is smaller than final_value then, the offset must
be positive. If it is negative, the loop performs zero iterations. The
corresponding flowchart fragment that follows can help you better
understand what really goes on.

Τhe comparison operator should be ≥ when counter decrements and ≤
when counter increments.

When the flow of execution reaches the loop control structure, the value 5 is
assigned to variable i. However, the Boolean expression evaluates to false
and the flow of execution never enters the loop! Thus, the loop performs
zero iterations.

A for-loop is actually a pre-test loop structure. Because of this, it may
perform from zero to many iterations.

Purposely violating the third rule of for-loops can be useful in certain
situations.

Exercise 26.2-4 Counting the Total Number of Iterations
How many iterations does the following code fragment perform?
for (i = 10; i <= 5; i++) {

System.out.println(i); }

Solution This code fragment violates the fourth rule of for-loops, which
states, if initial_value is greater than final_value then, the offset must
me negative. If it is positive, the loop performs zero iterations. The
corresponding flowchart fragment that follows can help you better
understand what really goes on.

Τhe comparison operator should be ≤ when counter increments and ≥
when counter decrements.

When the flow of execution reaches the loop control structure, the value 10
is assigned to variable i. However, the Boolean expression evaluates to
false and the flow of execution never enters the loop! Thus, the loop
performs zero iterations.

Purposely violating the fourth rule of for-loops can be useful in certain
situations.

Exercise 26.2-5 Finding the Sum of N Numbers
Write a Java program that prompts the user to enter N numbers and then
calculates and displays their sum. The value of N must be provided by the
user at the beginning of the program.

Solution The solution is presented here.

 Project_26.2-5
public static void main(String[] args) throws Exception {

int n, i; double a, total;
System.out.print("Enter quantity of numbers to enter: "); n =
Integer.parseInt(cin.nextLine());

total = 0;
for (i = 1; i <= n; i++) {

System.out.print("Enter number No " + i + ": ");

a = Double.parseDouble(cin.nextLine());
total += a; //This is equivalent to total = total + a

}

System.out.println("Sum: " + total); }

Even though it violates the fourth rule of for-loops, in this particular
exercise this situation is very useful. If the user enters a non-positive value
for variable n, the for statement performs zero iterations.

26.3 Review Questions: True/False
Choose true or false for each of the following statements.

1) In a for statement, the value of counter increments or decrements
automatically at the end of each loop.

2) A definite loop can be used when the number of iterations is known.
3) In a definite loop, the statement or block of statements of the loop is

executed at least one time.
4) In a for-loop, the initial_value cannot be greater than the final_value.
5) When flow of execution exits a for-loop, the value of counter is equal to

final_value.
6) In a for-loop, the value of initial_value, final_value and offset can be either

an integer or a float.
7) In a for-loop, when offset is set to zero the loop performs zero iterations.
8) In a for-loop, the counter variable can appear in a statement inside the

loop but its value must never be altered.
9) In a for-loop, the offset can be zero for certain situations.

10) In the following code fragment, the word “Hello” is displayed 10 times.
for (i = 0; i <= 10; i++) {

System.out.println("Hello"); }

11) The following code fragment satisfies the property of finiteness.
b = Integer.parseInt(cin.nextLine()); for (i = 0; i <= 8; i += b) {

System.out.println("Hello"); }

12) The following code fragment satisfies the property of definiteness.
int i;
for (i = -10; i <= 10; i++) {

System.out.println(Math.sqrt(i)); }

26.4 Review Questions: Multiple Choice
Select the correct answer for each of the following statements.

1) A definite loop that uses the for statement a) executes one iteration more
than the equivalent pre-test loop structure (that uses the while
statement).
b) executes one iteration less than the equivalent pre-test loop

structure (that uses the while statement).
c) none of the above 2) A definite loop that uses the for statement can be

used in a problem in which a) the user enters numbers repeatedly until
the value −1 is entered.

b) the user enters numbers repeatedly until the value entered is greater
than final_value.

c) all of the above d) none of the above 3) In a for-loop initial_value,
final_value, and offset can be a) a constant value.

b) a variable.
c) an expression.
d) all of the above 4) In a for-loop, when final_value and offset are

variables, their values a) cannot change inside the loop.
b) must not change inside the loop.
c) none of the above 5) In a for-loop, when counter increments, the offset is
a) greater than zero.
b) equal to zero.
c) less than zero.
d) none of the above 6) In a for-loop, the initial value of counter
a) must be 0.
b) can be 0.
c) cannot be a negative one.
d) none of the above 7) In a for-loop, variable counter updates

automatically a) at the end of each iteration.
b) at the beginning of each iteration.
c) It does not update automatically.
d) none of the above 8) In the following code fragment

i = 1;
for (i = 5; i <= 5; i++) {

System.out.println("Hello Hera"); }
the message “Hello Hera” is displayed a) 5 times.
b) 1 time.
c) 0 times.
d) none of the above 9) In the following code fragment

for (i = 5; i <= 4; i++) {
i = 1;
System.out.println("Hello Artemis"); }

the message “Hello Artemis” is displayed a) 1 time.
b) an infinite number of times.
c) 0 times.
d) none of the above 10) In the following code fragment

for (i = 5; i <= 5; i++) {
i = 1;
System.out.println("Hello Ares"); }

the message “Hello Ares” is displayed a) 1 time.
b) an infinite number of times.
c) 0 times.
d) none of the above 11) In the following code fragment

for (i = 2; i <= 8; i++) {
if (i % 2 == 0) {

System.out.println("Hello Demeter");
}

}
the message “Hello Demeter” is displayed a) 8 times.
b) 7 times.
c) 5 times.
d) none of the above 12) In the following code fragment

double i; for (i = 4; i <= 5; i += 0.1) {
System.out.println("Hello Dionysus"); }

the message “Hello Dionysus” is displayed a) 1 time.

b) 2 times.
c) 10 times.
d) 11 times.

13) In the following code fragment
k = 0;
for (i = 1; i <= 5; i += 2) {

k = k + i;
}
System.out.println(k);
the value displayed is a) 3.
b) 6.
c) 9.
d) none of the above 14) In the following code fragment

k = 0;
for (i = 10; i >= -10; i -= 5) {

k = k + i;
}
System.out.println(i);

the value displayed is a) 0.
b) −10.
c) −15.
d) none of the above

26.5 Review Exercises
Complete the following exercises.

1) Create a trace table to determine the values of the variables in each step
of the next code fragment. How many iterations does this code
perform?
int a, b, j;
a = 0;
b = 0;
for (j = 0; j <= 8; j += 2) {

if (j < 5) {
b++;

}
else {

a += j - 1;
}

}

System.out.println(a + ", " + b);

2) Create a trace table to determine the values of the variables in each step
of the next code fragment for two different executions.
The input values for the two executions are: (i) 10, and (ii) 21.
int a, b, j;
a = Integer.parseInt(cin.nextLine()); b = a;
for (j = a - 5; j <= a; j += 2) {

if (j % 2 != 0) {

b = a + j + 5;
}
else {

b = a - j;
}

}

System.out.println(b);

3) Create a trace table to determine the values of the variables in each step
of the next code fragment for the input value 12.
int a, j, x, y;
a = Integer.parseInt(cin.nextLine()); for (j = 2; j <= a - 1; j += 3) {

x = j * 3 + 3; y = j * 2 + 10; if (y - x > 0 || x > 30) {
y *= 2;

}
x += 4;
System.out.println(x + ", " + y); }

4) Fill in the gaps in the following code fragments so that all loops perform
exactly five iterations.

i)
int a; for (a = 5; a <= …… ; a++) {

System.out.println(b); b += a;
}

ii)
double a; for (a = 0; a <= …… ; a += 0.5) {

System.out.println(b); b += a;
}

iii)
int a; for (a = …… ; a >= -15; a -= 2) {

System.out.println(b); b += a;
}

iv)
int a; for (a = -11 ; a >= -15; a = a ……) {

System.out.println(b); b += a;
}

5) Without using a trace table, can you find out what the next code
fragment displays?
String word = "Zeus"; String s = ""; int i;
for (i = word.length() - 1; i >= 0; i--) {

s = s + word.charAt(i); }

System.out.println(s);

6) Design a flowchart and write the corresponding Java program that
prompts the user to enter 20 numbers and then calculates and displays
their product and their average value.

7) Write a Java program that calculates and displays the sine of all
numbers from 0 to 360 ο, using a step of 0.5. It is given that 2π = 360ο.

8) Write a Java program that prompts the user to enter a number in degrees
and then calculates and displays the cosine of all numbers from 0 to that
user-provided number, using a step of 1. It is given that 2π = 360ο.

9) Write a Java program that calculates and displays the sum of the
following: S = 1 + 3 + 5 + … + 99

10) Write a Java program that lets the user enter an integer N and
then calculates and displays the product of the following: P = 21 ×
43 × 65 × … × 2N(2N−1)

11) Write a Java program that calculates and displays the sum
of the following: S = 1 + 2 + 4 + 7 + 11 + 16 + 22 + 29 +
37 + … + 191

12) Design a flowchart and write the corresponding Java
program that lets a teacher enter the total number of
students as well as their grades and then calculates
and displays the average value of those who got an
“A”, that is 90 to 100. Add all necessary checks to
make the program satisfy the property of
definiteness.

13) Design a flowchart and write the corresponding Java
program that prompts the user to enter 30 four-digit
integers and then calculates and displays the sum of
those with a first digit of 5 and a last digit of 3. For
example, values 5003, 5923, and 5553 are all such
integers.

14) Design a flowchart and write the corresponding Java
program that prompts the user to enter N integers
and then displays the total number of those that are
even. The value of N must be provided by the user at
the beginning of the program. Moreover, if all user-
provided integers are odd, the message “You entered
no even integers” must be displayed.

15) Design a flowchart and write the corresponding Java
program that prompts the user to enter 50 integers
and then calculates and displays the average value of
those that are odd and the average value of those that
are even.

16) Design a flowchart and write the corresponding Java
program that prompts the user to enter two integers
into variables start and finish and then displays all
integers from start to finish. However, at the
beginning the program must check if variable start
is bigger than variable finish. If this happens, the
program must swap their values so that they are
always in the proper order.

17) Design a flowchart and write the corresponding Java
program that prompts the user to enter two integers
into variables start and finish and then displays all
integers from start to finish that are multiples of
five. However, at the beginning the program must
check if variable start is bigger than variable
finish. If this happens, the program must swap their
values so that they are always in the proper order.

18) Write a Java program that prompts the user to enter a
real and an integer and then displays the result of the

first number raised to the power of the second
number, without using the Math.pow() method.

19) Write a Java program that prompts the user to enter a
message and then displays the number of words it
contains. For example, if the string entered is “My
name is Bill Bouras”, the program must display “The
message entered contains 5 words”. Assume that the
words are separated by a single space character.
Hint: Use the length() method to get the number of
characters that the user-provided message contains.

20) Write a Java program that prompts the user to enter a
message and then displays the average number of
letters in each word. For example, if the message
entered is “My name is Aphrodite Boura”, the
program must display “The average number of
letters in each word is 4.4”. Space characters must
not be counted.

21) Write a Java program that prompts the user to enter a
message and then counts and displays the number of
consonants the message contains.

22) Write a Java program that prompts the user to enter a
message and then counts and displays the number of
vowels, the number of consonants, and the number
of arithmetic characters the message contains.

Chapter 27
Nested Loop Control Structures

27.1 What is a Nested Loop?
A nested loop is a loop within another loop or, in other words, an inner loop
within an outer one.
The outer loop controls the number of complete iterations of the inner loop.
This means that the first iteration of the outer loop triggers the inner loop to
start iterating until completion. Then, the second iteration of the outer loop
triggers the inner loop to start iterating until completion again. This process
repeats until the outer loop has performed all of its iterations.
Take the following Java program, for example.

 Project_27.1
public static void main(String[] args) throws Exception {

int i, j;
for (i = 1; i <= 2; i++) {

for (j = 1; j <= 3; j++) { [More…]
System.out.println(i + " " + j);

}

}

}

In this program, the outer loop, controlled by the variable i, determines the
number of complete iterations that the inner loop performs. Specifically,
when variable i is 1, the inner loop performs three iterations (for j = 1, j =
2, and j = 3). After completing the inner loop, the outer loop needs to
perform one more iteration (for i = 2). Consequently, the inner loop restarts,
performing three new iterations again (for j = 1, j = 2, and j = 3).
The previous example is similar to the following one.
i = 1; //Outer loop assigns value 1 to variable i for (j = 1; j <= 3; j++) { //and inner
loop performs three iterations System.out.println(i + " " + j); }
i = 2; //Outer loop assigns value 2 to variable i for (j = 1; j <= 3; j++) { //and inner
loop starts over and performs three new iterations System.out.println(i + " " + j); }

The output result is as follows.

As long as the syntax rules are not violated, you can nest as many loop
control structures as you wish. For practical reasons however, as you move
to four or five levels of nesting, the entire structure becomes very complex
and difficult to understand. However, experience shows that the maximum
number of levels of nesting that you will do in your entire life as a
programmer is probably three or four.

The inner and outer loops do not need to be the same type. For example,
a for statement may nest (enclose) a while statement, or vice versa.

Exercise 27.1-1 Say “Hello Zeus”. Counting the Total Number of Iterations.
Find the number of times message “Hello Zeus” is displayed.

 Project_27.1-1
public static void main(String[] args) throws Exception {

int i, j;
for (i = 0; i <= 2; i++) {

for (j = 0; j <= 3; j++) {
System.out.println("Hello Zeus");

}

}
}

Solution The values of variables i and j (in order of appearance) are as
follows: ► For i = 0, the inner loop performs 4 iterations (for j = 0, j =
1, j = 2, and j = 3) and the message “Hello Zeus” is displayed 4 times.

► For i = 1, the inner loop performs 4 iterations (for j = 0, j = 1, j = 2,
and j = 3) and the message “Hello Zeus” is displayed 4 times.

► For i = 2, the inner loop performs 4 iterations (for j = 0, j = 1, j = 2,
and j = 3) and the message “Hello Zeus” is displayed 4 times.

Therefore, the message “Hello Zeus” is displayed a total of 3 × 4 = 12 times.

The outer loop controls the number of complete iterations of the inner
one!

Exercise 27.1-2 Creating the Trace Table
For the next code fragment, determine the value that variable a contains at
the end.
int a, i, j; a = 1;
i = 5;
while (i < 7) {

for (j = 1; j <= 3; j += 2) {
a = a * j + i;

}
i++;

}

System.out.println(a);

Solution The trace table is shown here.

Step Statement Notes a i j

1 a = 1 1 ? ?

2 i = 5 1 5 ?

3 i < 7 This evaluates to true

4 j = 1 1 5 1

5 j <= 3 This evaluates to true

6 a = a * j + i 6 5 1

7 j += 2 6 5 3

8 j <= 3 This evaluates to true

9 a = a * j + i 23 5 3

10 j += 2 23 5 5

11 j <= 3 This evaluates to false

12 i++ 23 6 5

13 i < 7 This evaluates to true

14 j = 1 23 6 1

15 j <= 3 This evaluates to true

16 a = a * j + i 29 6 1

17 j += 2 29 6 3

18 j <= 3 This evaluates to true

19 a = a * j + i 93 6 3

20 j += 2 93 6 5

21 j <= 3 This evaluates to false

22 i++ 93 7 5

23 i < 7 This evaluates to false

24 .println(a) It displays: 93

At the end of the program, variable a contains the value 93.

27.2 Rules that Apply to Nested Loops
Beyond the four rules that apply to for-loops (presented in Section 26.2),
there are two extra rules that you must always follow when writing programs
with nested loops, since they can save you from undesirable side effects.

► Rule 1: The inner loop must begin and end entirely within the outer
loop, which means that the loops must not overlap.

► Rule 2: An outer loop and the inner (nested) loop must not use the same
counter variable.

Exercise 27.2-1 Violating the First Rule
Design a flowchart fragment that violates the first rule of nested loops,
which states, “The inner loop must begin and end entirely within the outer
loop”.

Solution The following flowchart fragment violates the first rule of nested
loops.

If you try to follow the flow of execution, you will notice that it smoothly
performs 5 × 10 = 50 iterations. No one can tell that this flowchart is wrong.
In fact, it is technically correct. However, the issue lies in its readability. It's
extremely difficult to discern what this flowchart is intended to accomplish.
Moreover, this structure matches none of the already familiar loop control
structures that you have been taught, so it cannot be directly converted into a
Java program as is. Try to avoid this kind of nested loop!

Exercise 27.2-2 Violating the Second Rule
Find the number of times message “Hello” is displayed.

for (i = 1; i <= 3; i++) {
for (i = 5; i >= 1; i--) {

System.out.println("Hello");

}
}

Solution At first glance, one would think that the word “Hello” is displayed
3 × 5 = 15 times. However, a closer second look reveals that things are not
always as they seem. This program violates the second rule of nested loops,
which states, “An outer loop and the inner (nested) loop must not use the
same counter variable”. Let's design the corresponding flowchart.

If you try to follow the flow of execution in this flowchart fragment, you can
see that when the inner loop completes all of its five iterations, variable i
contains the value 0. Then, variable i increments by 1 and the outer loop
repeats again. This process can continue forever since variable i can never

exceed the value 3 that the Boolean expression of the outer loop requires.
Therefore, the message “Hello” is displayed an infinite number of times.

27.3 Review Questions: True/False
Choose true or false for each of the following statements.

1) A nested loop is an inner loop within an outer one.
2) It is possible to nest a mid-test loop structure within a pre-test loop

structure.
3) The maximum number of levels of nesting in a loop control structure is

four.
4) When two loop control structures are nested one within the other, the

loop that starts last must complete first.
5) When two loop control structures are nested one within the other, they

must not use the same counter variable.
6) In the following code fragment, the word “Hello” is displayed six times.

for (i = 1; i <= 3; i++) {
for (j = 1; j <= 3; j++) {

System.out.println("Hello");
}

}

7) In the following code fragment, the word “Hello” is displayed 12 times.
for (i = 0; i <= 1; i++) {

for (j = 1; j <= 3; j++) {
for (k = 1; k <= 4; k += 2) {

System.out.println("Hello");
}

}
}

8) In the following code fragment, the word “Hello” is displayed an
infinite number of times.
for (i = 1; i <= 3; i++) {

for (i = 3; i >= 1; i--) {
System.out.println("Hello");

}
}

9) In the following code fragment, the word “Hello” is displayed nine
times.
for (i = 0; i <= 2; i++) {

j = 1; do {
System.out.println("Hello");
j++;

} while (j < 4); }

10) In the following code fragment, there is at least one mid-test loop
structure.
int s, a;
s = 0;
while (!false) {

while (!false) {

a = Integer.parseInt(cin.nextLine());
if (a >= -1) break;

}
if (a == -1) break; s += a; }

System.out.println(s);

27.4 Review Questions: Multiple Choice
Select the correct answer for each of the following statements.

1) In the following code fragment
for (i = 1; i <= 2; i++) {

for (j = 1; j <= 2; j++) {
System.out.println("Hello");

}
}
the values of variables i and j (in order of appearance) are a) j = 1, i
= 1, j = 1, i = 2, j = 2, i = 1, j = 2, i = 2
b) i = 1, j = 1, i = 1, j = 2, i = 2, j = 1, i = 2, j = 2
c) i = 1, j = 1, i = 2, j = 2
d) j = 1, i = 1, j = 2, i = 2

2) In the following code fragment
x = 2;
while (x > -2) {

do {
x--;
System.out.println("Hello Hestia");

} while (x < -2); }
the message “Hello Hestia” is displayed a) 4 times.
b) an infinite number of times.

c) 0 times.
d) none of the above 3) In the following code fragment

x = 1;
while (x != 500) {

for (i = x; i <= 3; i++) {
System.out.println("Hello Artemis");

}
x++;

}
the message “Hello Artemis” is displayed a) an infinite number of
times.
b) 1500 times.
c) 6 times.
d) none of the above 4) The following code fragment

for (i = 1; i <= 3; i++) {
for (j = 1; j <= i; j++) {

System.out.print(i * j + ", ");
}

}
System.out.print("The End!");

displays a) 1, 2, 4, 3, 6, 9, The End!
b) 1, 2, 3, 4, 6, 9, The End!
c) 1, 2, The End!, 4, 3, The End!, 6, 9, The End!
d) none of the above 5) The following code fragment

for (i = 1; i <= 10 ; i++) {
for (i = 10; i >= 1 ; i--) {

System.out.println("Hello Dionysus");
}

}
does not satisfy the property of a) definiteness.
b) finiteness.
c) effectiveness.
d) none of the above

27.5 Review Exercises

Complete the following exercises.
1) Fill in the gaps in the following code fragments so that all code

fragments display the message “Hello Hephaestus” exactly 100 times.
i)

int a, b; for (a = 6; a < …… ; a++) {
for (b = 1; b <= 25 ; b++) {

System.out.println("Hello Hephaestus");
}

}
ii)

double a, b; for (a = 0; a <= …… ; a += 0.5) {
for (b = 10; b <= 19 ; b++) {

System.out.println("Hello Hephaestus");
}

}
iii)

int a; float b; for (a = …… ; a > -17; a -= 2) {
for (b = 10; b > 0 ; b -= 0.5) {

System.out.println("Hello Hephaestus");
}

}
iv)

int a, b; for (a = -11; a >= -15; a -= 1) {
for (b = 100; b <= …… ; b += 2) {

System.out.println("Hello Hephaestus");
}

}
2) Design the corresponding flowchart and create a trace table to determine

the values of the variables in each step of the next code fragment.
a = 1;
for (j = 1; j <= 2; j += 0.5) {

i = 10; while (i < 30) {

a = a + j + i;
i += 10;

}
}
System.out.println(a);

3) Create a trace table to determine the values of the variables in each step
of the next code fragment. How many times is the statement s = s + i
* j executed?
s = 0;
for (i = 1; i <= 4; i++) {

for (j = 3; j >= i; j--) {

s = s + i * j;
}

}
System.out.println(s);

4) Create a trace table to determine the values of the variables in each step
of the next code fragment for three different executions. How many
iterations does this code perform?
The input values for the three executions are: (i) NO, (ii) YES, NO; and
(iii) YES, YES, NO.
int s, y, i; String ans;

s = 1;
y = 25;
do {

for (i = 1; i <= 3; i++) {
s = s + y;
y -= 5;

}
ans = cin.nextLine(); } while (ans.equals("YES")); System.out.println(s);

5) Write a Java program that displays an hours and minutes table in the
following form.
0 0
0 1
0 2
0 3
...
0 59
1 0
1 1
1 2
...
23 59

Please note that the output is aligned with tabs.
6) Using nested loop control structures, write a Java program that displays

the following output.
5 5 5 5 5
4 4 4 4
3 3 3
2 2
1

7) Using nested loop control structures, write a Java program that displays
the following output.
0
0 1
0 1 2
0 1 2 3
0 1 2 3 4
0 1 2 3 4 5

8) Using nested loop control structures, write a Java program that displays
the following rectangle.
* * * * * * * * * *

* * * * * * * * * *

* * * * * * * * * *

* * * * * * * * * *

9) Write a Java program that prompts the user to enter an integer N
between 3 and 20 and then displays a square of size N on each side. For
example, if the user enters 4 for N, the program must display the
following square.
* * * *

* * * *

* * * *

* * * *

10) Write a Java program that prompts the user to enter an integer N
between 3 and 20 and then displays a hollow square of size N on each

side. For example, if the user enters 4 for N, the program must display
the following hollow square.
* * * *

* *

* *

* * * *

11) Using nested loop control structures, write a Java program that displays
the following triangle.
*

* *

* * *

* * * *

* * * * *

* * * *

* * *

* *

*

Chapter 28
More about Flowcharts with Loop Control Structures

28.1 Introduction
By working through the previous chapters, you have become familiar with all the
loop control structures. Since flowcharts are an ideal way to learn “Algorithmic
Thinking” and to help you better understand specific control structures, this
chapter will teach you how to convert a Java program to a flowchart as well as
how to convert a flowchart to a Java program.

28.2 Converting Java Programs to Flowcharts
To convert a Java program to a flowchart, you need to recall all loop control
structures and their corresponding flowcharts. Following you will find them all
summarized.

The Pre-Test Loop Structure
while (Boolean_Expression) {

A statement or block of statements

}

The Post-Test Loop Structure
do {

A statement or block of statements

while (Boolean_Expression);

The Mid-Test Loop Structure
while (true) {

A statement or block of statements 1

if (Boolean_Expression) break;

A statement or block of statements 2

}

The For-Loop

for (counter = initial_value; counter OP1 final_value; counter = counter OP2
offset) {

A statement or block of statements

}

Next, you will find many exercises that can clarify things that you might still
need help understanding.

Exercise 28.2-1 Designing the Flowchart Fragment
Design the flowchart that corresponds to the following code fragment.
int i = 50; while (i > 10) {

if (i % 2 == 1) {
System.out.println(i);

}
i -= 5; }

Solution This code fragment contains a pre-test loop structure which nests a
single-alternative decision structure. The corresponding flowchart fragment that
follows includes what you have been taught so far.

Exercise 28.2-2 Designing the Flowchart Fragment
Design the flowchart that corresponds to the following code fragment.
int i = 30; do {

if (i % 8 == 0) {

System.out.println(i + " is a multiple of 8");
}
if (i % 4 == 0) {

System.out.println(i + " is a multiple of 4");
}
if (i % 2 == 0) {

System.out.println(i + " is a multiple of 2");
}
i -= 2; } while (i > 0);

Solution This code fragment contains a post-test loop structure that nests three
single-alternative decision structures. The corresponding flowchart fragment is
as follows.

Exercise 28.2-3 Designing the Flowchart
Design the flowchart that corresponds to the following Java program.
public static void main(String[] args) throws Exception {

int hour;
for (hour = 1; hour <= 24; hour++) {

System.out.println("Hour is " + hour + ":00. ");

if (hour >= 4 && hour < 12) {
System.out.println("Good Morning");

}

else if (hour >= 12 && hour < 20) {
System.out.println("Good Afternoon");

}
else if (hour >= 20 && hour < 24) {

System.out.println("Good Evening");

}
else {

System.out.println("Good Night");
}

}
}

Solution This Java program contains a for-loop that nests a multiple-alternative
decision structure. The corresponding flowchart is as follows.

Exercise 28.2-4 Designing the Flowchart Fragment
Design the flowchart that corresponds to the following code fragment.

int a, i; a = Integer.parseInt(cin.nextLine());
switch (a) {

case 1:

for (i = 1; i <= 9; i += 2) {
System.out.println(i);

}
break;

case 2:

for (i = 9; i >= 1; i -= 2) {
System.out.println(i);

}
break;

default:
System.out.println("Nothing to do!");

}
System.out.println("The End!");

Solution This code fragment contains a case decision structure that nests two
for-loops. The corresponding flowchart fragment is as follows.

The multiple-alternative decision structure and the case decision structure
can share the same flowchart.

Exercise 28.2-5 Designing the Flowchart
Design the flowchart that corresponds to the following Java program.
public static void main(String[] args) throws Exception {

int n, m, total, i, j;
n = Integer.parseInt(cin.nextLine()); m = Integer.parseInt(cin.nextLine());
total = 0; for (i = 0; i <= n - 1; i++) {

for (j = 0; j <= m - 1; j++) {
total += i * j + j;

}
}
System.out.println(total); }

Solution This Java program contains nested loop control structures; a for-loop
nested within another for-loop. The corresponding flowchart is as follows.

28.3 Converting Flowcharts to Java Programs
This conversion is not always an easy one. There are cases in which the flowchart
designers follow no particular rules, so the initial flowchart may need some
modifications before it can be converted into a Java program. The following is an
example of one such case.

As you can see, the loop control structures included in this flowchart fragment
match none of the structures that you have already learned, such the pre-test, the
post-test, the mid-test, or even the for-loop control structure. Thus, you have only
one choice and this is to modify the flowchart by adding extra statements or
removing existing ones until known loop control structures start to appear. Below
are some exercises, and in some of them, the initial flowchart does need
modification.

Exercise 28.3-1 Writing the Java Program
Write the Java code that corresponds to the following flowchart fragment.

Solution This is an easy one. The only obstacle you have to overcome is that the
true and false paths are not quite in the right position. You need the true and not
the false path to actually iterate. As you already know, it is possible to switch the
two paths but you need to negate the Boolean expression as well. Thus, the
corresponding code fragment becomes

i = 0;
while (i <= 90) {

System.out.println(i); i = i + 2; }
System.out.println("The End");

Using a for-loop, this code fragment can equivalently be written as
for (i = 0; i <= 90; i += 2) {

System.out.println(i); }
System.out.println("The End");

Exercise 28.3-2 Writing the Java Program
Write the Java program that corresponds to the following flowchart.

Solution This flowchart contains a post-test loop structure that nests a dual-
alternative decision structure. The Java program is as follows.
public static void main(String[] args) throws Exception {

int i;
i = 1; do {

if (i < 45) { [More…]
System.out.println(i);

}
else {

System.out.println(-i);
}

i++;
} while (i < 90);
System.out.println("The End"); }

Exercise 28.3-3 Writing the Java Program
Write the Java program that corresponds to the following flowchart.

Solution Oops! What a mess! There are so many diamonds here! Be careful,
though, as not all of them are decision control structures. In fact, two of them
are loop control structures, and only one represents a decision control structure!
Can you spot the latter?

You should be quite familiar with loop control structures so far. As you already
know, in loop control structures, one of the diamond's (rhombus's) exits always
has an upward direction. Thus, the following flowchart fragment, extracted from
the initial one, is obviously the decision control structure that you are looking for.

And of course, it's a dual-alternative decision structure!
Now, let's identify the rest of the structures. Right before the dual-alternative
decision structure, there is a post-test loop structure. Its flowchart fragment is as
follows.

And finally, both the dual-alternative decision structure and the post-test loop
structure, mentioned before, are nested within the next flowchart fragment,

which happens to be a pre-test loop structure and can be written in Java using
either a while or a for statement. The corresponding Java program is as follows.

public static void main(String[] args) throws Exception {
int i; double s, n;
s = 0; for (i = 0; i <= 99; i++) {

do { [More…]
n = Double.parseDouble(cin.nextLine());

} while (n < 0);

if (n < 100) [More…]
s = s + Math.pow(n, 2);

else
s = s + Math.pow(n, 3);

}
System.out.println(s); }

Wasn't so difficult after all, was it?

Exercise 28.3-4 Writing the Java Program
Write the Java program that corresponds to the following flowchart.

Solution This is a mid-test loop structure. Since there is no direct Java statement
for this structure, you can use the break statement—or you can even convert the
flowchart to something more familiar as shown in the next two approaches First
approach – Using the break statement The main idea is to create an endless loop
while (true) { ... } and break out of it when the Boolean expression that exists
between the two statements or blocks of statements evaluates to true (see Section
25.3).

According to this approach, the initial flowchart can be written in Java as follows.
public static void main(String[] args) throws Exception {

int i; double S, a;
i = 1; S = 0;

while (true) {

a = Double.parseDouble(cin.nextLine()); [More…]
i++;

if (i >= 90) break;

S = S + a * i; [More…]

}
System.out.println(S); }

Keep in mind that even though the break statement can sometimes be useful, it
may also lead you to write code that is difficult to read and understand, especially
when you make extensive use of it. So, please use it cautiously and sparingly!

Second approach – Converting the flowchart The mid-test loop structure and
its equivalent, using a pre-test loop structure, are as follows.

Accordingly, the initial flowchart becomes

Now, it's easy to write the corresponding Java program.
public static void main(String[] args) throws Exception {

int i; double S, a;
i = 1; S = 0;

a = Double.parseDouble(cin.nextLine()); [More…]
i++;

while (i < 90) {

S = S + a * i; [More…]

a = Double.parseDouble(cin.nextLine()); [More…]
i++;

}
System.out.println(S); }

28.4 Review Exercises
Complete the following exercises.

1) Design the flowchart that corresponds to the following Java program.
public static void main(String[] args) throws Exception {

int i, x;
i = 35; while (i > -35) {

if (i % 2 == 0)

System.out.println(2 * i);

else
System.out.println(3 * i);

i--;

}
}

2) Design the flowchart that corresponds to the following Java program.
public static void main(String[] args) throws Exception {

int i, x;
i = -20; do {

x = Integer.parseInt(cin.nextLine());
if (x == 0)

System.out.println("Zero");
else if (x % 2 == 0)

System.out.println(2 * i);
else

System.out.println(3 * i);
i++;

} while (i <= 20); }

3) Design the flowchart that corresponds to the following Java program.
public static void main(String[] args) throws Exception {

int a, i;

a = Integer.parseInt(cin.nextLine()); if (a > 0) {
i = 0;
while (i <= a) {

System.out.println(i);
i += 5;

}
}
else {

System.out.println("Non-Positive Entered!");
}

}

4) Design the flowchart that corresponds to the following Java program.
public static void main(String[] args) throws Exception {

int a, i;
a = Integer.parseInt(cin.nextLine()); if (a > 0) {

i = 0;
while (i <= a) {

System.out.println(3 * i + i / 2.0);
i++;

}
}
else {

i = 10;
do {

System.out.println(2 * i - i / 3.0);

i -= 3;
} while (i >= a);

}

}

5) Design the flowchart that corresponds to the following Java program.
public static void main(String[] args) throws Exception {

int a, b, i;
a = Integer.parseInt(cin.nextLine()); if (a > 0) {

for (i = 0; i <= a; i++) {

System.out.println(3 * i + i / 2.0);
}

}
else if (a == 0) {

b = Integer.parseInt(cin.nextLine());
while (b > 0) {

b = Integer.parseInt(cin.nextLine());
}
System.out.println(2 * a + b);

}
else {

b = Integer.parseInt(cin.nextLine());
while (b < 0) {

b = Integer.parseInt(cin.nextLine());
}
for (i = a; i <= b; i++) {

System.out.println(i);
}

}
}

6) Design the flowchart that corresponds to the following Java program.
public static void main(String[] args) throws Exception {

int a, b, c, d, total, i, j;

a = Integer.parseInt(cin.nextLine()); b = Integer.parseInt(cin.nextLine()); c =
Integer.parseInt(cin.nextLine()); d = Integer.parseInt(cin.nextLine());
total = 0; for (i = a; i <= b - 1; i++) {

for (j = c; j <= d - 1; j += 2) {
total += i + j;

}
}
System.out.println(total); }

7) Design the flowchart that corresponds to the following code fragment.
int i; double n, s = 0; for (i = 0; i <= 99; i++) {

n = Double.parseDouble(cin.nextLine()); while (n < 0) {

System.out.println("Error");
n = Double.parseDouble(cin.nextLine());

}

s += Math.sqrt(n); }
System.out.println(s);

8) Design the flowchart that corresponds to the following Java program.
public static void main(String[] args) throws Exception {

int i; double s, n;
s = 0; for (i = 1; i <= 50; i++) {

do {
n = Integer.parseInt(cin.nextLine());

} while (n < 0);

s += Math.sqrt(n);
}
System.out.println(s); }

9) Design the flowchart that corresponds to the following Java program.
public static void main(String[] args) throws Exception {

int a, b;
do {

do {
a = Integer.parseInt(cin.nextLine());

} while (a < 0);
do {

b = Integer.parseInt(cin.nextLine());

} while (b < 0);
System.out.println(Math.abs(a - b));

} while (Math.abs(a - b) > 100); }

10) Design the flowchart that corresponds to the following Java program.
public static void main(String[] args) throws Exception {

int a, b;

do {
do {

a = Integer.parseInt(cin.nextLine());
b = Integer.parseInt(cin.nextLine());

} while (a < 0 || b < 0);
if (a > b) {

System.out.println(a - b);
}
else {

System.out.println(a * b);
}

} while (Math.abs(a - b) > 100); }

11) Write the Java program that corresponds to the following flowchart.

12) Write the Java program that corresponds to the following flowchart.

13) Write the Java program that corresponds to the following flowchart.

Chapter 29
Tips and Tricks with Loop Control Structures

29.1 Introduction
This chapter is dedicated to teaching you some useful tips and tricks that can help
you write “better” code. You should always keep them in mind when you design
your own algorithms, or even your own Java programs.
These tips and tricks can help you increase your code's readability, help you
choose which loop control structure is better to use in each given problem, and
help make the code shorter or even faster. Of course there is no single perfect
method because on one occasion the use of a specific tip or trick may help, but on
another occasion the same tip or trick may have exactly the opposite result. Most
of the time, code optimization is a matter of programming experience.

Smaller algorithms are not always the best solution to a given problem. In
order to solve a specific problem, you might write a concise algorithm that
unfortunately proves to consume a significant amount of CPU time and/or a large
portion of main memory (RAM). On the other hand, you might solve the same
problem with another algorithm that appears longer but calculates the result
much faster and/or utilizes less RAM.

29.2 Choosing a Loop Control Structure
The following diagram can help you choose the most appropriate loop control
structure to use in each given problem, depending on the number of iterations.

This diagram recommends the best option, not the only option. For example,
when the number of iterations is known, it is not wrong to use a pre-test or a post-
test loop structure instead. The proposed for-loop, though, is more convenient.

29.3 The “Ultimate” Rule

One question that often preys on programmers' minds when using pre-test or
post-test loop structures, is how to determine which statements should be written
inside, and which outside, the loop control structure and in which order.
There is one simple yet powerful rule—the “Ultimate” rule! Once you follow it,
the potential for making a logic error is reduced to zero!
The “Ultimate” rule states: ► The variable or variables that participate in a
loop's Boolean expression must be initialized before entering the loop.

► The value of the variable or variables that participate in a loop's Boolean
expression must be updated (altered) within the loop. And more specifically,
the statement that does this update/alteration must be one of the last
statements of the loop.

For example, if variable x is the variable that participates in a loop's Boolean
expression, a pre-test loop structure should be in the following form,

Initialize x while (
Boolean_Expression(x))
{

A statement or block of statements

Update/alter x

}
and a post-test loop structure should be in the following form,

Initialize x do {

A statement or block of statements

Update/alter x

} while (Boolean_Expression(x));
where

► Initialize x is any statement that assigns an initial value to variable x. It can
be either an input statement such as cin.nextLine(), or an assignment
statement using the value assignment operator (=). In a post-test loop
structure though, this statement may sometimes be redundant and can be
omitted since initialization of x can occur directly inside the loop.

► Boolean_Expression(x) can be any Boolean expression from a simple to a
complex one, dependent on variable x.

► Update/alter x is any statement that alters the value of x, such as another input
statement, an assignment statement using the value assignment operator (=
), or even compound assignment operators. It is important that this statement
must be positioned just before the point where the loop's Boolean expression
is evaluated. This means it should be one of the last statements within the
loop.

Following are some examples that use the “Ultimate” rule.
Example 1
a = Integer.parseInt(cin.nextLine()); //Initialization of a while (a > 0) { //Boolean
expression dependent on a System.out.println(a); a = a - 1; //Update/alteration of a }

Example 2
a = Integer.parseInt(cin.nextLine()); //Initialization of a b =

Integer.parseInt(cin.nextLine()); //Initialization of b while (a > b) { //Boolean expression
dependent on a and b System.out.println(a + " " + b); a = Integer.parseInt(cin.nextLine());
//Update/alteration of a b = Integer.parseInt(cin.nextLine()); //Update/alteration of b }

Example 3
s = 0; //Initialization of s do {

y = Integer.parseInt(cin.nextLine()); s = s + y; //Update/alteration of s } while (s <

1000); //Boolean expression dependent on s

Example 4
y = 0; //Initialization of y do {

y = Integer.parseInt(cin.nextLine()); //Update/alteration of y } while (y < 0); //Boolean
expression dependent on y

In this example, though, initialization of variable y outside the loop is redundant
and can be omitted, as shown here.
do {

y = Integer.parseInt(cin.nextLine()); //Initialization and update/alteration of y } while

(y < 0); //Boolean expression dependent on y

Example 5
odd = 0; //Initialization of odd even = 0; //Initialization of even while (odd + even < 5) {
//Boolean expression dependent on odd and even x = Integer.parseInt(cin.nextLine()); if (x % 2
== 0) {

even++; //Update/alteration of even

}
else {

odd++; //Update/alteration of odd
}

}

System.out.println("Odds: " + odd + " Evens: " + even);

Now, you will realize why you should always follow the “Ultimate” rule”! Let's
take a look at the following exercise: Write a code fragment that lets the user
enter numbers repeatedly until three positive numbers are entered in total.

This exercise was given to a class, and a student gave the following code
fragment as an answer.
int positivesCount; double x;
positivesCount = 0;
x = Double.parseDouble(cin.nextLine()); while (positivesCount != 3) {

if (x > 0) {
positivesCount += 1;

}
x = Double.parseDouble(cin.nextLine()); }

System.out.println("Three Positives provided!");

At first glance it appears to be correct. It lets the user enter a number, enters the
loop, checks whether the user-provided number is positive or not, then lets the
user enter a second number, and so on. However, this code contains a logic error
—and unfortunately, it's a tricky one. Can you spot it?
Follow the flow of execution by trying various input values—positives, negatives,
or even zeros. When the user enters a positive number, the variable
positivesCount increments by one; and when they enter a negative number or
zero, it remains unchanged. Everything appears to runs smoothly, doesn't it? —so
smoothly that it might make you question if this book is reliable or if you should
throw it away!
The problem becomes evident only when the user attempts to enter all three of the
expected positive values. The trace table that follows can help you determine
where the problem lies. Let's assume that the user wants to enter the values 5,
−10, −2, 4, and 20.

Step Statement Notes positivesCount x

1 positivesCount = 0 0 ?

2 x = Double.parseD… 0 5.0

3 while (positivesCount != 3) This evaluates to true

4 if (x > 0) This evaluates to true

5 positivesCount += 1 1 5.0

6 x = Double.parseD… 1 −10.0

7 while (positivesCount != 3) This evaluates to true

8 if (x > 0) This evaluates to false

9 x = Double.parseD… 1 −2.0

10 while (positivesCount != 3) This evaluates to true

11 if (x > 0) This evaluates to false

12 x = Double.parseD… 1 4.0

13 while (positivesCount != 3) This evaluates to true

14 if (x > 0) This evaluates to true

15 positivesCount += 1 2 4.0

16 x = Double.parseD… 2 20.0

17 while (positivesCount != 3) This evaluates to true

18 if (x > 0) This evaluates to true

19 positivesCount += 1 3 20.0

20 x = Double.parseD… 3 ???

And here is the logic error! At step 20, even though the total number of user-
provided positives is three, and you expect the execution to end, unfortunately the
user is being asked to enter an additional number! But, you needed a code
fragment that lets the user enter three positive numbers, not four, right?
This is why you should always go by the book! Let's see how this code fragment
should be written.
Since the Boolean expression of the while-loop is dependent on the variable
positivesCount, this is the variable that must be initialized outside of the loop.
This variable must also be updated/altered within the loop. The statement that
does this update/alteration must be the last statement within the loop, as shown in
the code fragment (in general form) that follows.
positivesCount = 0; //Initialization of positivesCount while (positivesCount != 3) { //This is
dependent on positivesCount

A statement or block of statements

if (x > 0) {
positivesCount += 1; //Update/alteration of positivesCount

}
}

Now you can add any necessary statements to complete the code. The only
statements that you need to add here are the statement that lets the user enter a
number (this must be done within the loop), and the statement that displays the
last message (this must be done when the loop finishes all of its iterations). So,
the final code fragment becomes

int positivesCount; double x;

positivesCount = 0;
while (positivesCount != 3) {

x = Double.parseDouble(cin.nextLine()); if (x > 0) {
positivesCount += 1;

}
}
System.out.println("Three Positives provided!");

29.4 Breaking Out of a Loop
Loops can consume too much CPU time so you have to be very careful when you
use them. There are times when you need to break out of, or end, a loop before it
completes all of its iterations, usually when a specified condition is met.
Suppose there is a hidden password and you somehow know that it is three
characters long, containing only digits. The following for-loop performs 900
iterations in an attempt to find that hidden password using a brute-force attack.
found = false;
for (i = 100; i <= 999; i++) {

if (i == hiddenPassword) {
password = i;

found = true;
}

}
if (found == true) {

System.out.println("Hidden password is: " + password); }

A brute-force attack is the simplest method to gain access to anything that is
password protected. An attacker tries combinations of letters, numbers, and
symbols with the hope of eventually guessing correctly.

Now, suppose that the hidden password is 123. As you already know, the for-loop
iterates a specified number of times, and in this case, it doesn't care whether the
hidden password is actually found or not. Even though the password is found in
the 24th iteration, the loop unfortunately continues to iterate until variable i
reaches the value of 999, thus wasting CPU time.
Someone may argue that 800 – 900 iterations are not a big deal, and they would
probably be right. However, in large-scale data processing, every iteration counts.
Therefore, you should be very careful when using loop control structures,
especially those that iterate too many times. What if the hidden password was ten
digits long? This would mean that the for-loop would have to perform
9,000,000,000 iterations!

There are two approaches that can help you make programs like the previous one
run faster. The main idea, in both of them, is to break out of the loop when a
specified condition is met; in this case when the hidden password is found.

First approach – Using the break statement You can break out of a loop before
it actually completes all of its iterations by using the break statement.

Look at the following Java program. When the hidden password is found, the
flow of execution immediately exits (breaks out of) the for-loop.
found = false;
for (i = 100; i <= 999; i++) {

if (i == hiddenPassword) {

password = i;
found = true;
break;

}
}

if (found) {
System.out.println("Hidden password is: " + password); }

The statement if (found) is equivalent to the statement if (found == true).

Second approach – Using a flag The break statement doesn't actually exist in
all computer languages; and since this book's intent is to teach you
“Algorithmic Thinking” (and not just special statements that only Java
supports), let's look at an alternate approach.

In the following Java program, when the hidden password is found, the Boolean
expression found == false forces the flow of execution to exit the loop.
found = false;
i = 100;
while (found == false && i <= 999) {

if (i == hiddenPassword) {

password = i;
found = true;

}
i++;

}

if (found) {
System.out.println("Hidden password is: " + password); }

Consider variable found as a flag. Initially, the flag is not “raised” (found =
false) . The flow of execution enters the loop, and it keeps iterating as long as the
flag remains down (while found == false …). When something occurs within the
loop that raises the flag (assigning true to the variable found), the flow of execution
exits the loop.

The while (found == false && i <= 999) can alternatively be written as while (!found
&& i <= 999).

The i <= 999 Boolean expression is still necessary in case the hidden password
is not found.

29.5 Cleaning Out Your Loops
As already stated, loops can consume too much CPU time, so you must be very
careful and use them sparingly. Although a large number of iterations is
sometimes inevitable, there are always things that you can do to make your loops
perform better.
The next code fragment calculates the sum of the numbers 1, 2, 3, 4, 5, … 10000.
s = 0;
i = 1;
do {

countOfNumbers = 10000; s = s + i;

i++;
} while (i <= countOfNumbers);
System.out.println(s);

What you should always keep in mind when using loops, especially those that
perform many iterations, is to avoid putting any statement inside a loop that
serves no purposes in that loop. In the previous example, the statement
countOfNumbers = 10000 is such a statement. Unfortunately, as long as it exists
inside the loop, the computer executes it 10000 times for no reason, which of
course affects the computer's performance.
To resolve this problem, you can simply move this statement outside the loop, as
follows.
countOfNumbers = 10000;
s = 0;
i = 1;

do {
s = s + i;
i++;

} while (i <= countOfNumbers);
System.out.println(s);

Exercise 29.5-1 Cleaning Out the Loop
The following code fragment calculates the average value of numbers 1, 2, 3, 4,
… 10000. Try to move as many statements as possible outside the loop to make
the program more efficient.
s = 0;
for (i = 1; i <= 10000; i++) {

s = s + i;
average = s / 10000; }

System.out.println(average);

Solution One very common mistake that novice programmers make when
calculating average values is to put the statement that divides the total sum by
how many numbers there are in the sum (here average = s / 10000) inside the
loop. Think about it! Imagine that you want to calculate your average grade in
school. Your first step would be to calculate the sum of the grades for all 10
courses that you're taking. Then, when all your grades have been summed up,
you would divide that sum by 10. This means that you would perform 10
additions and only one division.

Calculating an average is a two-step process.

Therefore, it is pointless to calculate the average value inside the loop. You can
move this statement outside and right after the loop, and leave the loop just to
sum up the numbers as follows.
s = 0;
for (i = 1; i <= 10000; i++) {

s = s + i;
}
average = s / 10000;

System.out.println(average);

Exercise 29.5-2 Cleaning Out the Loop
The next formula

is solved using the following code fragment, where N is provided by the user.
int n, i, j, denom; double s;
System.out.print("Enter N: "); n = Integer.parseInt(cin.nextLine()); s = 0;
for (i = 1; i <= n; i++) {

denom = 0;
for (j = 1; j <= n; j++) {

denom += Math.pow(j, j);
}
s += i / (double)denom; }

System.out.println(s);

Try to move as many statements as possible outside the loop to make the code
more efficient.

Solution As you can see from the formula, the denominator is common for all
fractions. Thus, it is pointless to calculate it again and again for every fraction.

You can calculate the denominator just once and use the result many times, as
follows.
int n, i, j, denom; double s;
System.out.print("Enter N: "); n = Integer.parseInt(cin.nextLine());

denom = 0; [More…]
for (j = 1; j <= n; j++) {

denom += Math.pow(j, j); }

s = 0;
for (i = 1; i <= n; i++) {

s += i / (double)denom; }
System.out.println(s);

29.6 Endless Loops and How to Stop Them
All while-loops must include something inside the loop that eventually leads the
flow of execution to exit the loop. But mistakes do happen! For instance, the
following code fragment contains an endless loop. Unfortunately, the programmer
forgot to increase variable i inside the loop; therefore, variable i can never reach
the value 10.
i = 1;
while (i != 10) {

System.out.println("Hello there!"); }

If a loop cannot stop iterating, it is called an endless loop or an infinite loop.

Another mistake that a programmer can make is something like the following:
i = 1;
while (i != 10) {

System.out.println("Hello there!"); i += 2;
}

Even though this code fragment does contain a statement that increases variable i
inside the loop (i += 2), unfortunately the flow of execution never exits the loop
because the value 10 is never assigned to the variable i.
An endless loop continues to iterate forever, and the only way to stop it from
iterating is to use magic forces! For example, when an application in a Windows
operating system “hangs” (probably because the flow of execution entered an
endless loop), the user must use the key combination ALT+CTRL+DEL to force
the application to end.
In Visual Studio Code, when you accidentally write and execute an endless loop,
you can simply click on the “Stop” toolbar icon, and the execution will stop.

In Visual Studio Code, an alternative way to force the application to end is to
use the key combination CTRL+C within the Terminal window.

29.7 The “From Inner to Outer” Method
From inner to outer is a method proposed by this book to help you learn
“Algorithmic Thinking” from the inside out. This method first manipulates and
designs the inner (nested) control structures and then, as the algorithm (or the
program) is developed, more and more control structures are added, nesting the
previous ones. This method can be used in large and complicated control
structures as it helps you design error-free flowcharts or even Java programs. This
book uses this method wherever and whenever it seems necessary.
Let's try the following example.
Write a Java program that displays the following multiplication table as it is
shown below.

According to the “from inner to outer” method, you start by writing the inner
control structure, and then, when everything is tested and operates fine, you can
add the outer control structure(s).
So, let's try to display only the first line of the multiplication table. If you
examine this line, it reveals that, in each multiplication, the multiplicand is
always 1. Let's consider the multiplicand as variable i with a value of 1. The loop
control structure that displays only the first line of the multiplication table is as
follows.

 Code Fragment 1
for (j = 1; j <= 10; j++) {

System.out.print(i + "x" + j + "=" + i * j + "\t"); }

If you execute this code fragment, the result is

The special sequence of characters \t “displays” a tab character after each
iteration. This ensures that everything is aligned properly.

The inner (nested) loop control structure is ready. What you need now is a way to
execute this control structure nine times, but each time variable i must contain a
different value, from 1 to 9. This can be achieved as follows.

 Main Code
for (i = 1; i <= 9; i++) {

Code Fragment 1: Display one single line of
the multiplication table

System.out.println(); }

The System.out.println() statement is used to “display” a line break between
lines.

After embedding Code Fragment 1 in Main Code, the final Java program
becomes Project_29.7
public static void main(String[] args) throws Exception {

int i, j;
for (i = 1; i <= 9; i++) {

for (j = 1; j <= 10; j++) { [More…]
System.out.print(i + "x" + j + "=" + i * j + "\t");

}

System.out.println();
}

}

29.8 Review Questions: True/False
Choose true or false for each of the following statements.

1) When the number of iterations is unknown, you can use a definite loop.
2) When the number of iterations is known, you cannot use a post-test loop

structure.
3) According to the “Ultimate” rule, in a pre-test loop structure, the

initialization of the variable that participates in the loop's Boolean
expression must be done inside the loop.

4) According to the “Ultimate” rule, in a pre-test loop structure, the statement
that updates/alters the value of the variable that participates in the loop's
Boolean expression must be the last statement within the loop.

5) According to the “Ultimate” rule, in a post-test loop structure, the
initialization of the variable that participates in the loop's Boolean

expression can sometimes be done inside the loop.
6) According to the “Ultimate” rule, in a post-test loop structure, the

update/alteration of the variable that participates in the loop's Boolean
expression must be the first statement within the loop.

7) In Java, you can break out of a loop before it completes all iterations using
the exit statement.

8) A statement that assigns a constant value to a variable is better placed inside
a loop control structure.

9) In the following code fragment, there is at least one statement that can be
moved outside the for-loop.
for (i = 1; i <= 30; i++) {

a = "Hello"; System.out.println(a); }

10) In the following code fragment, there is at least one statement that can be
moved outside the while-loop.
s = 0;

count = 1;
while (count < 100) {

a = Integer.parseInt(cin.nextLine()); s += a;
average = s / (double)count; count++;

}

System.out.println(average);

11) In the following code fragment, there is at least one statement that can be
moved outside the while-loop.
s = 0;
y = Integer.parseInt(cin.nextLine()); while (y != -99) {

s = s + y;
y = Integer.parseInt(cin.nextLine()); }

12) The following code fragment satisfies the property of finiteness.
i = 1;

while (i != 100) {
System.out.println("Hello there!"); i += 5;

}

13) When the not equal (!=) comparison operator is used in the Boolean
expression of a pre-test loop structure, the loop always iterates endlessly.

14) The following code fragment satisfies the property of finiteness.
i = 0;
do {

System.out.println("Hello there!"); i += 5;
} while (i < 100);

29.9 Review Questions: Multiple Choice

Select the correct answer for each of the following statements.
1) When the number of iterations is unknown, you can use a) the pre-test loop

structure.
b) the post-test loop structure.
c) all of the above 2) When the number of iterations is known, you can use a) the

pre-test loop structure.
b) the post-test loop structure.
c) a for-loop.
d) all of the above 3) According to the “Ultimate” rule, in a pre-test loop

structure, the initialization of the variable that participates in the loop's
Boolean expression must be done a) inside the loop.

b) outside the loop.
c) all of the above 4) According to the “Ultimate” rule, in a pre-test loop

structure, the update/alteration of the variable that participates in the
loop's Boolean expression must be done a) inside the loop.

b) outside the loop.
c) all of the above 5) According to the “Ultimate” rule, in a post-test loop

structure, the initialization of the variable that participates in the loop's
Boolean expression can be done a) inside the loop.

b) outside the loop.
c) all of the above 6) In the following code fragment

s = 0;
for (i = 1; i <= 100; i++) {

s = s + i;
x = 100.0;
average = s / x; }

the number of statements that can be moved outside of the for-loop is a) 0.
b) 1.
c) 2.
d) 3.

7) When this comparison operator is used in the Boolean expression of a post-
test loop structure, the loop iterates forever.
a) ==
b) !=
c) it depends

29.10 Review Exercises
Complete the following exercises.

1) The following program is supposed to prompt the user to enter names
repeatedly until the word “STOP” (used as a name) is entered. At the end,
the program must display the total number of names entered as well as how
many of these names were not “John”.
countNames = 0;
countNotJohns = 0;
name = "";

while (!name.equals("STOP")) {
System.out.print("Enter a name: "); name = cin.nextLine(); countNames++; if
(!name.equals("John")) {

countNotJohns++;
}

}
System.out.println("Total names entered: " + countNames); System.out.println("Names
other than John entered: " + countNotJohns);

However, the program displays wrong results! Using the “Ultimate” Rule,
try to modify the program so that it displays the correct results.

2) Write a Java program that prompts the user to enter some text. The text can
be either a single word or a whole sentence. Then, the program must display
a message stating whether the user-provided text is one single word or a
complete sentence.
Hint: Search for a space character! If a space character is found, it means
that the user entered a sentence. The program must stop searching further
when it finds at least one space character.

3) Write a Java program that prompts the user to enter a sentence. The program
must then display the message “The sentence contains a number” if the
sentence contains at least one number. The program must stop searching
further when it finds at least one digit.

4) Correct the following code fragment so that it does not iterate endlessly.
System.out.println("Printing all integers from 1 to 100"); i = 1;
while (i < 101) {

System.out.println(i); }

5) Correct the Boolean expression of the following loop control structure so that
it does not iterate endlessly.
System.out.println("Printing odd integers from 1 to 99"); i = 1;
while (i != 100)) {

System.out.println(i); i += 2;
}

6) The following code fragment calculates the average value of 100 numbers
entered by the user. Try to move as many statements as possible outside the
loop to make it more efficient.
s = 0;
i = 1;
do {

count = 100; number = Double.parseDouble(cin.nextLine()); s = s + number; average = s
/ count; i++;

} while (i <= count); System.out.println(average);

7) The following formula

is solved using the following code fragment
int i, j, denom; double s;
s = 0;
for (i = 1; i <= 100; i++) {

denom = 1;
for (j = 1; j <= 100; j++) {

denom *= j;
}
s += i / (double)denom; }

System.out.println(s);
Try to move as many statements as possible outside the loop to make it more
efficient.

8) Write a Java program that displays every combination of two integers as well
as their resulting product, for pairs of integers between 1 and 4. The output
must display as follows.
1 x 1 = 1

1 x 2 = 2

1 x 3 = 3

1 x 4 = 4

2 x 1 = 2

2 x 2 = 4

2 x 3 = 6

2 x 4 = 8

…

…

4 x 1 = 4

4 x 2 = 8

4 x 3 = 12

4 x 4 = 16

9) Write a Java program that displays the multiplication table for pairs of
integers between 1 and 12, as shown next. Please note that the output is
aligned with tabs.

10) Write a Java program that prompts the user to enter an integer and then
displays the multiplication table for pairs of integers between 1 and that
integer. For example, if the user enters the value 5, the output must be as
shown next. Please note that the output is aligned with tabs.

Chapter 30
More with Loop Control Structures

30.1 Simple Exercises with Loop Control Structures
Exercise 30.1-1 Counting the Numbers According to Which is Greater
Write a Java program that prompts the user to enter 10 pairs of numbers and then counts and displays the
number of times that the first user-provided number was greater than the second one and the number of times that
the second one was greater than the first one.

Solution

The Java program is as follows. It uses variable countA to count the number of times that the first user-provided
number was greater than the second one and variable countB to count the number of times that the second one
was greater than the first one.

 Project_30.1-1
public static void main(String[] args) throws Exception {

int countA, countB, i, a, b;
countA = 0;

countB = 0;
for (i = 1; i <= 10; i++) {

System.out.print("Enter number A: ");
a = Integer.parseInt(cin.nextLine());
System.out.print("Enter number B: ");

b = Integer.parseInt(cin.nextLine());
if (a > b) {

countA++;
}
else if (b > a) {

countB++;
}

}
System.out.println(countA + " " + countB); }

A reasonable question that someone may ask is “Why is a multiple-decision control structure being used? Why
not use a dual-alternative decision structure instead?”
Suppose, indeed, that a dual-alternative decision structure, such as the following, is used.
if (a > b) {

countA++;

}
else {

countB++;
}

In this decision control structure, the variable countB would increment when variable b is greater than variable a
(this is desirable) but also when variable b is equal to variable a (this is undesirable). Using a multiple-decision
control structure instead would ensure that variable countB increments only when variable b is greater than (and
not when it is equal to) variable a.

Exercise 30.1-2 Counting the Numbers According to Their Digits
Write a Java program that prompts the user to enter 20 integers and then counts and displays the total number of
one-digit, two-digit, and three-digit integers. Assume that the user enters values between 1 and 999.

Solution

Using knowledge from Exercise 18.1-2, the Java program is as follows.

 Project_30.1-2
public static void main(String[] args) throws Exception {

int count1, count2, count3, i, a;
count1 = count2 = count3 = 0;
for (i = 1; i <= 20; i++) {

System.out.print("Enter a number: ");

a = Integer.parseInt(cin.nextLine());
if (a <= 9) {

count1++;

}
else if (a <= 99) {

count2++;
}
else {

count3++;
}

}
System.out.println(count1 + " " + count2 + " " + count3); }

Exercise 30.1-3 How Many Numbers Fit in a Sum
Write a Java program that lets the user enter numeric values repeatedly until the sum of them exceeds 1000. At
the end, the program must display the total quantity of numbers entered.

Solution

In this case, since the exact number of iterations is unknown, a definite loop cannot be used; an indefinite loop is
required. Let's employ a pre-test loop to create that loop. However, to ensure the program is free of logic errors, it
is crucial to adhere to the “Ultimate” rule discussed in Section 29.3. According to this rule, the pre-test loop
structure should be as follows, given in general form.

Initialize total

while (total <= 1000) {

A statement or block of statements

Update/alter total

}

Since loop's Boolean expression depends on variable total, this is the variable that must be initialized before the
loop starts and also updated (altered) within the loop. And more specifically, the statement that updates/alters
variable total must be the last statement of the loop. Following this, the Java program becomes Project_30.1-
3
public static void main(String[] args) throws Exception {

int count; double total, x;
count = 0;

total = 0; //Initialization of total while (total <= 1000) { //Boolean expression dependent on total
x = Double.parseDouble(cin.nextLine());

count++;
total += x; //Update/alteration of total

}
System.out.println(count); }

Exercise 30.1-4 Finding the Total Number of Positive Integers
Write a Java program that prompts the user to enter integer values repeatedly until a real one is entered. At the
end, the program must display the total number of positive integers entered.

Solution

Once again, you don't know the exact number of iterations, so you cannot use a for-loop.
According to the “Ultimate” rule, the pre-test loop structure should be as follows, given in general form.
System.out.print("Enter a number: "); x = Double.parseDouble(cin.nextLine()); //Initialization of x while ((int)(x) == x) {
//Boolean expression dependent on x

A statement or block of statements

System.out.print("Enter a number: "); x = Double.parseDouble(cin.nextLine()); //Update/alteration of x }

The final Java program is as follows.
 Project_30.1-4

public static void main(String[] args) throws Exception {

double x; int count;

count = 0;
System.out.print("Enter a number: "); x = Double.parseDouble(cin.nextLine()); while ((int)(x) == x) {

if (x > 0) {

count++;
}
System.out.print("Enter a number: ");
x = Double.parseDouble(cin.nextLine());

}

System.out.println(count); }

Note that the program operates properly even when the first user-provided number is a real (a float); the pre-
test loop structure ensures that the flow of execution will never enter the loop for any real numbers!

Exercise 30.1-5 Iterating as Many Times as the User Wishes
Write a Java program that prompts the user to enter two numbers and then calculates and displays the first
number raised to the power of the second one. The program must iterate as many times as the user wishes. At the
end of each calculation, the program must prompt the user if they wish to calculate again. If the answer is “yes”
the program must repeat; it must end otherwise. Make your program accept the answer in all possible forms such
as “yes”, “YES”, “Yes”, or even “YeS”.

Solution

According to the “Ultimate” rule, the pre-test loop structure should be as follows, given in general form.
answer = "YES"; //Ιnitialization of answer while (answer.toUpperCase().equals("YES")) {

Prompt the user to enter two numbers and then

calculate and display the first number raised
to the power of the second one.

System.out.print("Would you like to repeat? "); answer = cin.nextLine(); //Update/alteration of answer }

The toUpperCase() method ensures that the program operates properly for any user-provided answer: “yes”,
“YES”, “Yes”, or even “YeS” or “yEs”!

However, instead of using the pre-test loop structure, let's employ the post-test loop structure this time. This is a
better approach, as the initialization of the answer variable outside of the loop can be omitted. Unlike the pre-test
loop structure, the flow of execution enters the loop in either way, and the initialization of the answer will be done
inside the post-test loop, as shown in the code fragment (given in general form) that follows.
do {

Prompt the user to enter two numbers and then
calculate and display the first number raised
to the power of the second one.

System.out.print("Would you like to repeat? "); answer = cin.nextLine(); //Initialization and update/alteration of answer }
while (answer.toUpperCase().equals("YES"));

The solution to this exercise becomes Project_30.1-5
public static void main(String[] args) throws Exception {

int a, b; double result; String answer;
do {

System.out.println("Enter two numbers: ");
a = Integer.parseInt(cin.nextLine());
b = Integer.parseInt(cin.nextLine());
result = Math.pow(a, b);
System.out.println("The result is: " + result);
System.out.print("Would you like to repeat? ");

answer = cin.nextLine();
} while (answer.toUpperCase().equals("YES")); }

Exercise 30.1-6 Finding the Sum of the Digits
Write a Java program that lets the user enter an integer and then calculates the sum of its digits.

Solution

In Exercise 13.1-2, you learned how to split the digits of an integer when its total number of digits was known. In
this exercise however, the user is allowed to enter any value, no matter how small or large. Thus, the total number
of the digits is an unknown quantity.
To solve this exercise, a loop control structure could be used. However, there are two approaches that you can
use.

First approach
In this approach, the main idea is to isolate one digit at each iteration. However, the challenge lies in determining
the total number of iterations required, as it hinges on the size of the user-provided integer. So, does this pose a
roadblock? Certainly not!
Within the loop, the user-provided integer should undergo a continuous reduction with each iteration until it
eventually reaches zero. That value of zero can act as a condition to stop the loop control structure from iterating.
For instance, if the user-provided number is 4753, it should become 475 in the first iteration, 47 in the second
iteration, then 4, and ultimately 0. Once it reaches 0, the iterations must stop.
Let's try to comprehend the proposed solution using the following flowchart. Some statements are written in
general form.

The statement
digit ← Isolate last digit of variable x.

can be written using the well-known MOD 10 operation as shown here.
digit ← x MOD 10

The whole concept, however, relies on the statement x ← Keep all except last digit of variable x.
This is the statement that eventually zeros the value of variable x, and the flow of execution then exits the loop.
To write this statement you can use a DIV 10 operation as shown here.

x ← x DIV 10

Accordingly, the Java program becomes Project_30.1-6a
public static void main(String[] args) throws Exception {

int x, s, digit;
x = Integer.parseInt(cin.nextLine());
s = 0;
while (x != 0) {

digit = x % 10; //This is the x MOD 10 operation
s = s + digit;
x = (int)(x / 10); //This is the x DIV 10 operation

}

System.out.println(s); }
Let's create a trace table for the input value 4753 to better understand what is really happening.

Step Statement Notes x digit s

1 x = Integer.parseI… User enters the value 4753 4753 ? ?

2 s = 0 4753 ? 0

3 while (x != 0) This evaluates to true

4 digit = x % 10 4753 3 0

5 s = s + digit 4753 3 3

6 x = (int)(x / 10) 475 3 3

7 while (x != 0) This evaluates to true

8 digit = x % 10 475 5 3

9 s = s + digit 475 5 8

10 x = (int)(x / 10) 47 5 8

11 while (x != 0) This evaluates to true

12 digit = x % 10 47 7 8

13 s = s + digit 47 7 15

14 x = (int)(x / 10) 4 7 15

15 while (x != 0) This evaluates to true

16 digit = x % 10 4 4 15

17 s = s + digit 4 4 19

18 x = (int)(x / 10) 0 4 19

19 while (x != 0) This evaluates to false

20 .println(s) It displays: 19

In Java, the result of the division of two integers is always an integer. Thus, in the statement x = (int)(x / 10),
since both variable x and constant value 10 are integers, the (int) casting operator is redundant. However, it is a
good practice to keep it there just for improved readability.

Second approach
In this approach, the main idea is to convert the user-provided integer to a string and then use a for-loop to iterate
for all its characters (digits). In the for-loop, however, you need to convert each digit from type char back to type
int before it is accumulated in variable s. The Java program is as follows.

 Project_30.1-6b
public static void main(String[] args) throws Exception {

int i, x, s; String xStr, digit;
x = Integer.parseInt(cin.nextLine()); xStr = "" + x; //Convert user's input to

string
s = 0;

for (i = 0; i <= xStr.length() - 1; i++) {
digit = "" + xStr.charAt(i); //Get the "digit" as string

s = s + Integer.parseInt(digit);
}

System.out.println(s); }

30.2 Exercises with Nested Loop Control Structures
Exercise 30.2-1 Displaying all Three-Digit Integers that Contain a Given Digit
Write a Java program that prompts the user to enter a digit (0 to 9) and then displays all three-digit integers that
contain that user-provided digit at least once. For example, for the user-provided value 7, the values 357, 771,
and 700 are such integers.

Solution

There are three different approaches! The first one uses just one for-loop, the second one uses three for-loops,
nested one within the other, and the last one converts all three-digit integers to strings. Let's analyze them all!

First approach – Using a for-loop and a decision control structure The main idea is to use a for-loop where
the value of variable counter goes from 100 to 999. Inside the loop, the counter variable is split into its individual
digits (digit3, digit2, digit1) and a decision control structure is used to check if at least one of its digits is equal
to the provided one. The Java program is as follows.

 Project_30.2-1a
public static void main(String[] args) throws Exception {

int x, i, digit3, r, digit2, digit1;
System.out.print("Enter a digit 0 - 9: "); x = Integer.parseInt(cin.nextLine());

for (i = 100; i <= 999; i++) {
digit3 = (int)(i / 100);

r = i % 100;
digit2 = (int)(r / 10);

digit1 = r % 10;
if (digit3 == x || digit2 == x || digit1 == x) {

System.out.println(i);
}

}
}

Second approach – Using nested loop control structures and a decision control structure The main idea here
is to use three for-loops, nested one within the other. In this case, there are three counter variables (digit3,
digit2, and digit1) and each one of them corresponds to one digit of the three-digit integer. The Java
program is as follows.

 Project_30.2-1b
public static void main(String[] args) throws Exception {

int x, digit3, digit2, digit1;
System.out.print("Enter a digit 0 - 9: "); x = Integer.parseInt(cin.nextLine());

for (digit3 = 1; digit3 <= 9; digit3++) {
for (digit2 = 0; digit2 <= 9; digit2++) {
for (digit1 = 0; digit1 <= 9; digit1++) {

if (digit3 == x || digit2 == x || digit1 == x) {
System.out.println(digit3 * 100 + digit2 * 10 + digit1);

}
}

}
}

}

If you follow the flow of execution, the value 100 is the first “integer” evaluated (digit3 = 1, digit2 = 0,
digit1 = 0). Then, the most-nested loop control structure increments variable digit1 by one and the next value
evaluated is “integer” 101. This continues until digit1 reaches the value 9; that is, until the “integer” reaches the
value 109. The flow of execution then exits the most-nested loop control structure, variable digit2 increments by
one, and the most-nested loop control structure starts over again, thus the values evaluated are the “integers” 110,
111, 112, … 119. The process goes on until all integers up to the value 999 are evaluated.

Note that variable digit3 starts from 1, whereas variables digit2 and digit1 start from 0. This is necessary since
the scale for three-digit numbers begins from 100 and not from 000.

Note how the System.out.println() statement composes the three-digit integer.

Third approach – Convert all three-digit integers to strings Using a for-loop, the value of variable counter
goes from 100 to 999. Inside the loop, the counter variable is converted to string and the indexOf() method
checks if the user-provided “digit” exists in the string. The Java program is as follows.

 Project_30.2-1c
public static void main(String[] args) throws Exception {

int i; String x;
System.out.print("Enter a digit 0 - 9: "); x = cin.nextLine();

for (i = 100; i <= 999; i++) {
if (String.valueOf(i).indexOf(x) != -1) { //Or you can do the following:

//if (("" + i).indexOf(x) != -1)
System.out.println(i);

}
}

}

Note that variable x is of type String.

Exercise 30.2-2 Displaying all Instances of a Specified Condition
Write a Java program that displays all three-digit integers in which the first digit is smaller than the second digit
and the second digit is smaller than the third digit. For example, the values 357, 456, and 159 are such integers.

Solution

Using knowledge from the previous exercise (Exercise 30.2-1), there are three different approaches! Let's analyze
them all!

First approach – Using a for-loop and a decision control structure Using a for-loop and a decision control
structure, the Java program is as follows.

 Project_30.2-2a
public static void main(String[] args) throws Exception {

int i, r, digit1, digit2, digit3;
for (i = 100; i <= 999; i++) {

digit3 = (int)(i / 100);
r = i % 100;

digit2 = (int)(r / 10);
digit1 = r % 10;

if (digit3 < digit2 && digit2 < digit1) {
System.out.println(i);

}
}

}

Second approach – Using nested loop control structures and a decision control structure Using nested loop
control structures and a decision control structure, the Java program is as follows.

 Project_30.2-2b
public static void main(String[] args) throws Exception {

int digit1, digit2, digit3;
for (digit3 = 1; digit3 <= 9; digit3++) {
for (digit2 = 0; digit2 <= 9; digit2++) {
for (digit1 = 0; digit1 <= 9; digit1++) {
if (digit3 < digit2 && digit2 < digit1) {

System.out.println(digit3 * 100 + digit2 * 10 + digit1);

}
}

}
}

}

Third approach – Using nested loop control structures only This approach is based on the second approach.
The main difference between them is that in this case, variable digit1 always begins from a value greater
than digit2, and variable digit2 always begins from a value greater than digit3. In that way, the first
integer that will be displayed is 123.

There are no integers below the value 123 and above the value 789 that can validate the Boolean expression
digit3 < digit2 && digit2 < digit1 to true.

The Java program is as follows.
 Project_30.2-2c

public static void main(String[] args) throws Exception {
int digit3, digit2, digit1;

for (digit3 = 1; digit3 <= 7; digit3++) {
for (digit2 = digit3 + 1; digit2 <= 8; digit2++) {
for (digit1 = digit2 + 1; digit1 <= 9; digit1++) {

System.out.println(digit3 * 100 + digit2 * 10 + digit1);
}

}
}

}

This solution is the most efficient since it doesn't use any decision control structure and, moreover, the number
of iterations is kept to a minimum!

As you can see, one problem can have many solutions. It is up to you to find the optimal one!

30.3 Data Validation with Loop Control Structures
As you already know, data validation is the process of restricting data input, which forces the user to enter only
valid values. You have already encountered one method of data validation using decision control structures. Let's
recall an example.
System.out.print("Enter a non-negative number: "); x = Double.parseDouble(cin.nextLine());
if (x < 0) {

System.out.print("Error: Negative number entered!"); }
else {

System.out.println(Math.sqrt(x)); }

This approach, however, may not be the most convenient for the user. If they enter an invalid number, the
program displays the error message, and the flow of execution inevitably reaches the end. The user must then
restart the program to re-enter a valid number.
Next, you will find three approaches given in general form for validating data input using loop control structures.
In cases where a user enters an invalid value, the primary objective is to prompt them repeatedly until they
eventually provide a valid one. Of course, if the user initially enters a valid value, the flow of execution simply
proceeds to the next section of the program.
Which approach you use depends on whether or not you wish to display an error message and whether you wish
to display different error messages, one for each type of input error, or just a generic error message for any kind
of error.

First approach – Validating data input without error messages To validate data input without displaying
any error messages, you can use the following code fragment given in general form.
do {

System.out.print("Prompt message"); input_data = cin.nextLine(); } while (input_data test 1 fails || input_data test 2 fails ||
…);

Second approach – Validating data input with a generic error message To validate data input and display a
generic error message (that is, the same error message for any type of input error), you can use the
following code fragment given in general form.
System.out.print("Prompt message"); input_data = cin.nextLine(); while (input_data test 1 fails || input_data test 2 fails || …)
{

System.out.println("Error message"); System.out.print("Prompt message"); input_data = cin.nextLine(); }

Third approach – Validating data input with different error messages To validate data input and display a
different error message for each type of input error, you can use the following code fragment given in
general form.
do {

System.out.print("Prompt message"); input_data = cin.nextLine(); failure = false;
if (input_data test 1 fails) {

System.out.println("Error message 1");
failure = true;

}
else if (input_data test 2 fails) {

System.out.println("Error message 2");
failure = true;

}
else if (…

…
}

} while (failure);

The statement while (failure) is equivalent to the statement while (failure == true).

Exercise 30.3-1 Finding Odd and Even Numbers
Write a Java program that prompts the user to enter a non-negative integer, and then displays a message
indicating whether this number is even; it must display “Odd” otherwise. Using a loop control structure, the
program must also validate data input, allowing the user to enter only a non-negative integer.

Solution

All three approaches for validating data input that you learned in Section 30.3 will be presented here. But first,
let's solve this exercise without data validation.
System.out.print("Enter a non-negative integer: "); [More…]
x = Integer.parseInt(cin.nextLine());

if (x % 2 == 0) {
System.out.println("Even"); }

else {
System.out.println("Odd"); }

Validation Without Error Messages To validate data input without displaying any error messages, use the
first approach from Section 30.3. Simply replace the statements marked with a dashed rectangle with the
following code fragment.
do {

System.out.print("Enter a non-negative integer: "); x = Double.parseDouble(cin.nextLine()); } while (x < 0 || (int)x != x);

The final Java program becomes Project_30.3-1a
public static void main(String[] args) throws Exception {

double x;
do { [More…]

System.out.print("Enter a non-negative integer: ");
x = Double.parseDouble(cin.nextLine());

} while (x < 0 || (int)x != x);
if (x % 2 == 0) {

System.out.println("Even");
}
else {

System.out.println("Odd");

}
}

Variable x is declared as double. This is necessary in order to allow the user to enter either an integer or a
float.

Validation with a Generic Error Message To validate data input and display a generic error message,
replace the statements marked with the dashed rectangle with a code fragment based on the second
approach from Section 30.3. The Java program is as follows.

 Project_30.3-1b
public static void main(String[] args) throws Exception {

double x;
System.out.print("Enter a non-negative integer: "); [More…]

x = Double.parseDouble(cin.nextLine()); while (x < 0 || (int)x != x) {
System.out.println("Error! A negative value or a float entered.");

System.out.print("Enter a non-negative integer: ");
x = Double.parseDouble(cin.nextLine());

}
if (x % 2 == 0) {

System.out.println("Even");
}

else {
System.out.println("Odd");

}
}

Validation with Different Error Messages Here, the replacing code fragment is based on the third approach
from Section 30.3. To validate data input and display a different error message for each type of input error,
the Java program is as follows.

 Project_30.3-1c
public static void main(String[] args) throws Exception {

double x; boolean failure;
do { [More…]

System.out.print("Enter a non-negative integer: ");
x = Double.parseDouble(cin.nextLine());

failure = false;
if (x < 0) {

System.out.println("Error! You entered a negative value");
failure = true;

}
else if ((int)x != x) {

System.out.println("Error! You entered a float");
failure = true;

}
} while (failure);
if (x % 2 == 0) {

System.out.println("Even");
}

else {
System.out.println("Odd");

}
}

Exercise 30.3-2 Finding the Sum of Four Numbers

Write a Java program that prompts the user to enter four positive numbers and then calculates and displays their
sum. Using a loop control structure, the program must also validate data input and display an error message
when the user enters any non-positive value.

Solution

This exercise was already discussed in Exercise 26.1-4. The only difference here is that this program must
validate data input and display an error message when the user enters invalid values. For your convenience, the
solution proposed in that exercise is reproduced here.
total = 0;
for (i = 1; i <= 4; i++) {

System.out.print("Enter a number: "); [More…]
x = Double.parseDouble(cin.nextLine());

total += x;
}
System.out.println(total);

The primary purpose of this exercise is to demonstrate how to nest the loop control structure that validates data
input into other pre-existing loop control structures. In this exercise, you should replace the statements marked
with a dashed rectangle with the following code fragment

System.out.print("Enter a number: "); x = Double.parseDouble(cin.nextLine()); while (x <= 0) {
System.out.println("Please enter a positive value!"); System.out.print("Enter a number: "); x =
Double.parseDouble(cin.nextLine()); }

and the final Java program becomes Project_30.3-2
public static void main(String[] args) throws Exception {

int i; double total, x;
total = 0;
for (i = 1; i <= 4; i++) {

System.out.print("Enter a number: "); [More…]
x = Double.parseDouble(cin.nextLine());

while (x <= 0) {
System.out.println("Please enter a positive value!");
System.out.print("Enter a number: ");
x = Double.parseDouble(cin.nextLine());

}

total += x;
}
System.out.println(total); }

Note that the replacing code fragment is entirely nested within this outer for-loop.

30.4 Finding Minimum and Maximum Values with Loop Control Structures
In Section 23.2 you learned how to find the minimum and maximum values among four values using single-
alternative decision structures. Now, the following code fragment achieves the same result but uses only one
variable w, for the user-provided values.
w = Integer.parseInt(cin.nextLine()); //User enters 1st value maximum = w;
w = Integer.parseInt(cin.nextLine()); //User enters 2nd value if (w > maximum) {

maximum = w;

}
w = Integer.parseInt(cin.nextLine()); //User enters 3rd value if (w > maximum) {

maximum = w;
}
w = Integer.parseInt(cin.nextLine()); //User enters 4th value if (w > maximum) {

maximum = w;
}

Except for the first pair of statements, all other blocks of statements are identical. Therefore, you can retain only
one of these pairs and enclose it within a loop control structure that performs three iterations, as presented below.
w = Integer.parseInt(cin.nextLine()); //User enters 1st value maximum = w;
for (i = 1; i <= 3; i++) {

w = Integer.parseInt(cin.nextLine()); //User enters 2nd, 3rd and 4th value if (w > maximum) {

maximum = w;
}

}

Of course, if you want to allow the user to enter more values, you can simply increase the final_value of the for-
loop.
Accordingly, a program that finds and displays the heaviest person among 10 individuals is presented next.

 Project_30.4a
public static void main(String[] args) throws Exception {

int w, maximum, i;
System.out.print("Enter a weight (in pounds): "); w =

Integer.parseInt(cin.nextLine()); maximum = w;
for (i = 1; i <= 9; i++) {

System.out.print("Enter a weight (in pounds): ");
w = Integer.parseInt(cin.nextLine());

if (w > maximum) {
maximum = w;

}
}

System.out.println(maximum); }

Note that the for-loop iterates one time less than the total number of user-provided values.

Even though this Java program operates fine, let's do something slightly different. Instead of prompting the user
to enter the first value before the loop and the remaining nine values within the loop, let's prompt them to enter all
values within the loop.
However, the issue that arises here is that, no matter what, an initial value must always be assigned to the variable
maximum before the loop starts iterating. But, this value cannot be arbitrarily chosen; it depends on the given
problem. Therefore, choosing an “almost arbitrary” initial value requires careful consideration, as an incorrect
choice may yield inaccurate results.
In this exercise, all user-provided values have to do with people's weight. Since there is no chance of finding any
person with a negative weight (at least not on planet Earth), you can safely assign the initial value −1 to variable
maximum, as follows.

 Project_30.4b
public static void main(String[] args) throws Exception {

int maximum, i, w;
maximum = -1;

for (i = 1; i <= 10; i++) {
System.out.print("Enter a weight (in pounds): ");

w = Integer.parseInt(cin.nextLine());
if (w > maximum) {

maximum = w;
}

}
System.out.println(maximum); }

Once the flow of execution enters the loop, the user enters the first value and the decision control structure
evaluates to true. The initial value −1 in variable maximum is then overwritten by this first user-provided value
and afterward, the flow of execution proceeds normally.

Note that this method may not be applicable in all cases. If an exercise requires prompting the user to enter
any number (not limited to positive ones), this method cannot be applied, as the user could potentially enter only
negative values. If this were to occur, the initial value of −1 would never be replaced by any of the user-provided
values. This method can be used to find the maximum value only when the lower limit of user-provided values is
known, or to find the minimum value only when the upper limit of user-provided values is known. For instance, if
the exercise requires finding the lightest person, you can assign the initial value +1500 to variable minimum, as

there is no human on Earth who can weigh that much! For reference, Jon Brower Minnoch was an American
who, at his peak weight, was recorded as the heaviest human being ever, weighing approximately 1,400 lb!!!!!

Exercise 30.4-1 Validating and Finding the Minimum and the Maximum Value
Write a Java program that prompts the user to enter the weight of 10 people and then finds the lightest and the
heaviest weights. Using a loop control structure, the program must also validate data input and display an error
message when the user enters any non-positive value, or any value greater than 1500.

Solution

Using the previous exercise as a guide, you should now be able to do this with your eyes closed!
To validate data input, all you have to do is replace the following two lines of code of the previous exercise,

System.out.print("Enter a weight (in pounds): "); w = Integer.parseInt(cin.nextLine());
with the following code fragment:

System.out.print("Enter a weight (in pounds): "); w = Integer.parseInt(cin.nextLine()); while (w < 1 || w > 1500)
{

System.out.println("Invalid value! Enter a weight between 1 and 1500 (in pounds):"); w =
Integer.parseInt(cin.nextLine()); }

Following is the final program that finds the lightest and the heaviest weights.
 Project_30.4-1

public static void main(String[] args) throws Exception {

int minimum, maximum, i, w;
minimum = 1500;
maximum = 0;
for (i = 1; i <= 10; i++) {

System.out.print("Enter a weight (in pounds): "); [More…]
w = Integer.parseInt(cin.nextLine());
while (w < 1 || w > 1500) {

System.out.print("Invalid value! Enter a weight between 1 and 1500 (in pounds): ");
w = Integer.parseInt(cin.nextLine());

}

if (w < minimum) {
minimum = w;

}
if (w > maximum) {

maximum = w;

}
}
System.out.println(minimum + " " + maximum); }

Exercise 30.4-2 Validating and Finding the Hottest Planet
Write a Java program that prompts the user to repeatedly enter the names and the average temperatures of
planets from space, until the word “STOP” (used as a name) is entered. In the end, the program must display the
name of the hottest planet. Moreover, since −459.67o (on the Fahrenheit scale) is the lowest temperature possible
(it is called absolute zero), the program must also validate data input (using a loop control structure) and display
an error message when the user enters temperature values lower than absolute zero.

Solution

First, let's write the Java program without using data validation. According to the “Ultimate” rule, the pre-test
loop structure should be as follows, given in general form:

System.out.print("Enter the name of a planet: "); name = cin.nextLine(); //Initialization of name while
(!name.toUpperCase().equals("STOP")) {

A statement or block of statements

System.out.print("Enter the name of a planet: "); name = cin.nextLine(); //Update/alteration of name }
Now, let's add the rest of the statements, still without data input validation. Keep in mind that, since value
−459.67o is the lower limit of the temperature scale, you can use a value lower than this as the initial value of

variable maximum.
maximum = -460;
mName = "";
System.out.print("Enter the name of a planet: "); name = cin.nextLine(); //Initialization of name while

(!name.toUpperCase().equals("STOP")) {
System.out.print("Enter its average temperature: "); t = Double.parseDouble(cin.nextLine());
if (t > maximum) {

maximum = t;
mName = name;

}
System.out.print("Enter the name of a planet: "); name = cin.nextLine(); //Update/alteration of name }

if (maximum != -460) {
System.out.println("The hottest planet is: " + mName); }

else {
System.out.println("Nothing Entered!"); }

The if (maximum != -460) statement is required because there is a possibility that the user could enter the word
“STOP” right from the beginning.

To validate the data input, all you have to do is replace the following two lines of code:
System.out.print("Enter its average temperature: "); t = Double.parseDouble(cin.nextLine());
with the following code fragment:

System.out.print("Enter its average temperature: "); t = Double.parseDouble(cin.nextLine()); while (t < -459.67)
{

System.out.print("Invalid value! Enter its average temperature: "); t = Double.parseDouble(cin.nextLine());
}

The final program is as follows.
 Project_30.4-2

public static void main(String[] args) throws Exception {
double maximum, t; String mName, name;
maximum = -460;

mName = "";
System.out.print("Enter the name of a planet: "); name = cin.nextLine(); while (!name.toUpperCase().equals("STOP")) {

System.out.print("Enter its average temperature: ");
t = Double.parseDouble(cin.nextLine());
while (t < -459.67) {

System.out.print("Invalid value! Enter its average temperature: ");
t = Double.parseDouble(cin.nextLine());

}
if (t > maximum) {

maximum = t;
mName = name;

}
System.out.print("Enter the name of a planet: ");
name = cin.nextLine();

}
if (maximum != -460) {

System.out.println("The hottest planet is: " + mName);
}
else {

System.out.println("Nothing Entered!");
}

}

Exercise 30.4-3 ”Making the Grade”
In a classroom, there are 20 students. Write a Java program that prompts the teacher to enter the grades (0 ‐ 100)
that students received in a math test and then displays the highest grade as well as the number of students that
got an “A” (that is, 90 to 100). Moreover, the program must validate data input. User-provided values must be
within the range 0 to 100.

Solution

Let's first write the program without data validation. Since the number of students is known, you can use a for-
loop. For an initial value of variable maximum, you can use value −1 as there is no grade lower than 0.
maximum = -1;
count = 0;
for (i = 1; i <= 20; i++) {

System.out.print("Grade for student No " + i + ": "); grade = Integer.parseInt(cin.nextLine());
if (grade > maximum) {

maximum = grade;
}
if (grade >= 90) {

count++;
}

}
System.out.println(maximum + " " + count);

Now, you can deal with data validation. As the wording of the exercise implies, there is no need to display any
error messages. So, all you need to do is replace the following two lines of code:

System.out.print("Enter a grade for student No " + i + ": "); grade = Integer.parseInt(cin.nextLine());
with the following code fragment:

do {
System.out.print("Grade for student No " + i + ": "); grade = Integer.parseInt(cin.nextLine()); } while (grade
< 0 || grade > 100);

and the final program becomes Project_30.4-3
public static void main(String[] args) throws Exception {

int maximum, count, i, grade;

maximum = -1;
count = 0;
for (i = 1; i <= 20; i++) {

do {
System.out.print("Grade for student No " + i + ": ");

grade = Integer.parseInt(cin.nextLine());
} while (grade < 0 || grade > 100);
if (grade > maximum) {

maximum = grade;
}

if (grade >= 90) {
count++;

}
}
System.out.println(maximum + " " + count); }

30.5 Using Loop Control Structures to Solve Mathematical Problems
Exercise 30.5-1 Calculating the Area of as Many Triangles as the User Wishes
Write a Java program that prompts the user to enter the lengths of all three sides A, B, and C of a triangle and
then calculates and displays its area. You can use Heron's formula,

where S is the semi-perimeter

The program must iterate as many times as the user wishes. At the end of each area calculation, the program
must ask the user if they wish to calculate the area of another triangle. If the answer is “yes” the program must
repeat; it must end otherwise. Make your program accept the answer in all possible forms such as “yes”, “YES”,
“Yes”, or even “YeS”.
Moreover, using a loop control structure, the program must validate data input and display an error message
when the user enters any non-positive value.

Solution

According to the “Ultimate” rule, the post-test loop structure should be as follows, given in general form.
answer = "yes"; //Initialization of answer (redundant).
do {

Prompt the user to enter the lengths of all
three sides A, B, C of a triangle and then
calculate and display its area.

System.out.print("Would you like to repeat? "); answer = cin.nextLine(); //Update/alteration of answer
} while (answer.toUpperCase().equals("YES"));

The ToUpperCase() method ensures that the program operates properly for any user-provided answer “Yes”,
“yes”, “YES” or even “YeS” or “yEs”!

The solution to this exercise is as follows.
 Project_30.5-1

public static void main(String[] args) throws Exception {

double a, b, c, s, area; String answer;
do {

//Prompt the user to enter the length of side A
System.out.print("Enter side A: ");
a = Double.parseDouble(cin.nextLine());
while (a <= 0) {

System.out.print("Invalid side. Enter side A: ");
a = Double.parseDouble(cin.nextLine());

}
//Prompt the user to enter the length of side B
System.out.print("Enter side B: ");

b = Double.parseDouble(cin.nextLine());
while (b <= 0) {

System.out.print("Invalid side. Enter side B: ");
b = Double.parseDouble(cin.nextLine());

}

//Prompt the user to enter the length of side C
System.out.print("Enter side C: ");
c = Double.parseDouble(cin.nextLine());
while (c <= 0) {

System.out.print("Invalid side. Enter side C: ");
c = Double.parseDouble(cin.nextLine());

}
//Calculate and display the area of the triangle
s = (a + b + c) / 2;
area = Math.sqrt(s * (s - a) * (s - b) * (s - c));
System.out.println("The area is: " + area);

System.out.print("Would you like to repeat? ");
answer = cin.nextLine();

} while (answer.toUpperCase().equals("YES")); }

Exercise 30.5-2 Finding x and y
Write a Java program that displays all possible integer values of x and y within the range −20 to +20 that
validate the following formula: 3x2 − 6y2 = 6

Solution

If you just want to display all possible combinations of variables x and y, you can use the following code
fragment.
int x, y;
for (x = -20; x <= 20; x++) {

for (y = -20; y <= 20; y++) {
System.out.println(x + " " + y);

}
}

However, from all those combinations, you need only those that validate the expression 3x2 − 6y2 = 6. A decision
control structure is perfect for that purpose! The final Java program is as follows.

 Project_30.5-2
public static void main(String[] args) throws Exception {

int x, y;
for (x = -20; x <= 20; x++) {

for (y = -20; y <= 20; y++) {
if (3 * Math.pow(x, 2) - 6 * Math.pow(y, 2) == 6) {

System.out.println(x + " " + y);

}
}

}
}

Exercise 30.5-3 The Russian Multiplication Algorithm
You can multiply two positive integers using the “Russian multiplication algorithm”, which is presented in the
following flowchart.

Write the corresponding Java program and create a trace table to determine the values of the variables in each
step for the input values 5 and 13.

Solution

In the given flowchart, a single-alternative decision structure is nested within a pre-test loop structure. The
corresponding Java program is as follows.

 Project_30.5-3
public static void main(String[] args) throws Exception {

int m1, m2, s;
m1 = Integer.parseInt(cin.nextLine()); m2 = Integer.parseInt(cin.nextLine());
s = 0;
while (m2 != 0) {

if (m2 % 2 != 0) {
s += m1;

}
m1 *= 2;
m2 = (int)(m2 / 2);

}

System.out.println(s); }

For the input values of 5 and 13, the trace table looks like this.

Step Statement Notes m1 m2 s

1 m1 =
Integer.parseI…

User enters the value 5 5 ? ?

2 m2 = User enters the value 13 5 13 ?

Integer.parseI…

3 s = 0 5 13 0

4 while (m2 != 0) This evaluates to true

5 if (m2 % 2 != 0) This evaluates to true

6 s += m1 5 13 5

7 m1 *= 2 10 13 5

8 m2 = (int)(m2 / 2) 10 6 5

9 while (m2 != 0) This evaluates to true

10 if (m2 % 2 != 0) This evaluates to false

11 m1 *= 2 20 6 5

12 m2 = (int)(m2 / 2) 20 3 5

13 while (m2 != 0) This evaluates to true

14 if (m2 % 2 != 0) This evaluates to true

15 s += m1 20 3 25

16 m1 *= 2 40 3 25

17 m2 = (int)(m2 / 2) 40 1 25

18 while (m2 != 0) This evaluates to true

19 if (m2 % 2 != 0) This evaluates to true

20 s += m1 40 1 65

21 m1 *= 2 80 1 65

22 m2 = (int)(m2 / 2) 80 0 65

23 while (m2 != 0) This evaluates to false

24 .println(s)
The value 65 is displayed which is, of course, the result of the multiplication 5 ×
13

Exercise 30.5-4 Finding the Number of Divisors
Write a Java program that lets the user enter a positive integer and then displays the total number of its divisors.

Solution

Let's see some examples.
► The divisors of value 12 are numbers 1, 2, 3, 4, 6, 12.
► The divisors of value 15 are numbers 1, 3, 5, 15.
► The divisors of value 20 are numbers 1, 2, 4, 5, 10, 20.
► The divisors of value 50 are numbers 1, 2, 5, 10, 25, 50.

If variable x contains the user-provided integer, all possible divisors of x are between 1 and x. Thus, all you need
here is a for-loop where the value of variable counter goes from 1 to x and, in each iteration, a simple-alternative
decision structure checks whether the value of counter is a divisor of x, The Java program is as follows.

 Project_30.5-4a
public static void main(String[] args) throws Exception {

int x, numberOfDivisors, i;
x = Integer.parseInt(cin.nextLine());

numberOfDivisors = 0; for (i = 1; i <= x; i++) {

if (x % i == 0) {
numberOfDivisors++;

}
}

System.out.println(numberOfDivisors); }

This program, for input value 20, performs 20 iterations. However, wouldn't it be even better if it could perform
less than the half of the iterations and achieve the same result? Of course it would! So, let's make it more
efficient!
As you probably know, for any user-provided integer (in variable x) ► the value 1 is always a divisor.
► the user-provided integer is always a divisor of itself.
► except for the user-provided integer, there are no other divisors after the middle of the range 1 to x.

Accordingly, for any integer there are certainly 2 divisors, the value 1 and the user-provided integer itself.
Therefore, the program must check for other possible divisors starting from the value 2 until the middle of the
range 1 to x. The improved Java program is as follows.

 Project_30.5-4b
public static void main(String[] args) throws Exception {

int x, numberOfDivisors, i;
x = Integer.parseInt(cin.nextLine());

numberOfDivisors = 2; for (i = 2; i <= (int)(x / 2); i++) {
if (x % i == 0) {
numberOfDivisors++;

}
}

System.out.println(numberOfDivisors); }

This Java program performs less than half of the iterations that the previous program did! For example, for the
input value 20, this Java program performs only (20 − 2) DIV 2 = 9 iterations!

Exercise 30.5-5 Is the Number a Prime?
Write a Java program that prompts the user to enter an integer greater than 1 and then displays a message
indicating if this number is a prime. A prime number is any integer greater than 1 that has no divisors other than
1 and itself. The numbers 7, 11, and 13 are all such numbers.

Solution

This exercise is based on the previous one. It is very simple! If the user-provided integer has only two divisors (1
and itself), the number is a prime. The Java program is as follows.

 Project_30.5-5a
public static void main(String[] args) throws Exception {

int x, numberOfDivisors, i;
System.out.print("Enter an integer greater than 1: "); x =

Integer.parseInt(cin.nextLine());
numberOfDivisors = 2; for (i = 2; i <= (int)(x / 2); i++) {

if (x % i == 0) {
numberOfDivisors++;

}
}

if (numberOfDivisors == 2) {
System.out.println("Number " + x + " is prime");

}
}

Now let's make the program more efficient. The flow of execution can break out of the loop when a third divisor
is found, because this means that the user-provided integer is definitely not a prime. The Java program is as
follows.

 Project_30.5-5b
public static void main(String[] args) throws Exception {

int x, numberOfDivisors, i;
System.out.print("Enter an integer greater than 1: "); x =

Integer.parseInt(cin.nextLine());
numberOfDivisors = 2; for (i = 2; i <= (int)(x / 2); i++) {

if (x % i == 0) {
numberOfDivisors++;

break;
}

}
if (numberOfDivisors == 2) {

System.out.println("Number " + x + " is prime");
}

}

Exercise 30.5-6 Finding all Prime Numbers from 1 to N
Write a Java program that prompts the user to enter an integer greater than 1 and then displays all prime
numbers from 1 to that user-provided integer. Using a loop control structure, the program must also validate data
input and display an error message when the user enters any values less than 1.

Solution

The following Java program, given in general form, solves this exercise.
 Main Code

System.out.print("Enter an integer greater than 1 "); N =
Integer.parseInt(cin.nextLine()); while (N <= 1) {

System.out.print("Wrong number. Enter an integer greater than 1: "); N =
Integer.parseInt(cin.nextLine()); }

for (x = 1; x <= N; x++) {

Code Fragment 1: Check whether variable x
contains a prime number

}

Code Fragment 1, shown below, is taken from the previous exercise (Exercise 30.5-5). It checks whether
variable x contains a prime number.

 Code Fragment 1
numberOfDivisors = 2;
for (i = 2; i <= (int)(x / 2); i++) {

if (x % i == 0) {
numberOfDivisors++;
break;

}
}
if (numberOfDivisors == 2) {

System.out.println("Number " + x + " is prime"); }

After embedding Code Fragment 1 in Main Code, the final Java program becomes Project_30.5-6
public static void main(String[] args) throws Exception {

int N, x, numberOfDivisors, i;

System.out.print("Enter an integer greater than 1: "); N = Integer.parseInt(cin.nextLine()); while (N <= 1) {
System.out.print("Wrong number. Enter an integer greater than 1: ");
N = Integer.parseInt(cin.nextLine());

}
for (x = 1; x <= N; x++) {

numberOfDivisors = 2; [More…]
for (i = 2; i <= (int)(x / 2); i++) {

if (x % i == 0) {

numberOfDivisors++;
break;

}
}
if (numberOfDivisors == 2) {

System.out.println("Number " + x + " is prime");
}

}
}

Exercise 30.5-7 Heron's Square Root
Write a Java program that prompts the user to enter a non-negative value and then calculates its square root
using Heron's formula, as follows.

where
► y is the number for which you want to find the square root ► xn is the n-th iteration value of the square root of

y Moreover, using a loop control structure, the program must validate data input and display an error
message when the user enters any negative values.

Solution

It is almost certain that you are a little bit confused and you are scratching your head right now. Don't get
scared by all this math stuff! You can try to understand Heron's formula through the following flowchart
instead!

Still confused? Let's go through an example. Let's try to find the square root of 25: ► Formulate a guess.
Assume 8 as your first guess.

► The square of 8 is 64.
► Since 64 isn't “close enough” to 25, formulate a new guess by calculating the expression

► The square of 5.56 is about 30.91
► Since 30.91 isn't “close enough” to 25, formulate a new guess by calculating the expression

► The square of 5.02 is 25.2

► If you think that 25.2 is “close enough” to 25, then you can stop the whole process and conclude
that the approximate square root of 25 is 5.02.

Obviously, if greater precision is required, you have the option to continue the process until you
find a value that is considered closer to the square root of 25.

Now, let's see the corresponding Java program.
 Project_30.5-7

static final double ACCURACY = 0.0000000000001;

public static void main(String[] args) throws Exception {
double y, guess;
System.out.print("Enter a non-negative number: "); y = Double.parseDouble(cin.nextLine()); while (y < 0) {

System.out.print("Invalid value. Enter a non-negative number: ");
y = Double.parseDouble(cin.nextLine());

}
//Make a random first guess between 1 and user-provided value guess = 1 + (Math.random() * y);
while (Math.abs(guess * guess - y) > ACCURACY) { //Is it "close enough"?

guess = (guess + y / guess) / 2; //No, create a new "guess"!
}
System.out.println(guess); }

Note the way that “Is it close enough” is checked. When the absolute value of the difference
|guess2 - y| becomes less than 0.0000000000001 (where y is the user-provided value), the flow of
execution exits the loop.

Exercise 30.5-8 Calculating π
Write a Java program that calculates π using the Madhava–Leibniz[19],[20] series, which follows, with
an accuracy of 0.00001.

Solution

The Madhava–Leibniz series can be solved for π, and becomes

The more fractions you have, the better the accuracy! Thus, to calculate this formula the program
needs to perform many iterations so as to use as many fractions as possible. But, of course, it can't
iterate forever! The loop must actually stop iterating when the current calculated value of π and the
one calculated in the previous iteration are ”close enough”, which means that the absolute value of
their difference has become very small. The constant ACCURACY defines how small this difference
must be. The Java program is shown here.

 Project_30.5-8
static final double ACCURACY = 0.00001;
public static void main(String[] args) throws Exception {

double pi, piPrevious; int sign, denom;

pi = 0;
sign = 1; //This is the sign of the first fraction denom = 1; //This is the denominator of the first fraction do
{

piPrevious = pi; //Keep previous pi
pi += sign * 4 / (double)denom; //Calculate new pi by adding a fraction (a term)

sign = -sign; //Prepare sign for the next fraction
denom += 2; //Prepare denominator for the next fraction

} while (Math.abs(pi - piPrevious) > ACCURACY); //Is it "close enough"?
System.out.println("Pi ~= " + pi); }

Note the way in which variable sign toggles between the values −1 and +1 in each iteration.

If you reduce the value of the constant ACCURACY, π will be calculated more and more accurately.
Depending on how fast your computer is, you can calculate the first five digits of π fairly quickly.

However, the time it takes to calculate each succeeding digit of π goes up exponentially. To calculate
40 digits of π on a modern computer using this method could take years!

Exercise 30.5-9 Approximating a Real with a Fraction
Write a Java program that prompts the user to enter a real between 0 and 100 and then tries to find
the fraction that better approximates it, where N is an integer between 0 and 100 and M is an

integer between 1 and 100. Using a loop control structure, the program must also validate data
input, allowing the user to enter only values between 0 and 100. There is no need to display any
error messages.

Solution

The solution is simple. All you need to do is iterate through all possible combinations of variables n
and m and check which one better approximates the user-provided real.
To iterate through all possible combinations of variables n and m, you can use a nested loop control
structure, that is, two for-loops, one nested within the other, as follows.
for (n = 0; n <= 100; n++) {

for (m = 1; m <= 100; m++) {
…

}
}

The total number of iterations is 101 × 100 = 10100. Quite a big number but, for a modern
computer, this is peanuts!

Variable m represents the denominator of the fraction, and a denominator cannot be zero. This is
why it starts from 1, and not from 0.

The following criteria

can evaluate how “good” an approximation is.
Confused? Let's try to approximate the value 0.333 with a fraction, iterating through all possible
combinations of N and M.

► For N = 1, M = 1 the criteria equals to = 0.6670

► For N = 1, M = 2 the criteria equals to = 0.1670

► For N = 1, M = 3 the criteria equals to = 0.0003

► For N = 1, M = 4 the criteria equals to = 0.0830

► …

► For N = 100, M = 99 the criteria equals to = 0.6771

► For N = 100, M = 100 the criteria equals to = 0.6670

It is obvious that the value 0.0003 is the minimum value among all possible results. Thus, the
combination N = 1 and M = 3 (which corresponds to the fraction 1/3) is considered the best
approximation for the value 0.333.
And now the Java program: Project_30.5-9

public static void main(String[] args) throws Exception {
double x, y, minimum; int bestN, bestM, n, m;
do {

System.out.print("Enter a real between 0 and 100: ");
x = Double.parseDouble(cin.nextLine());

} while (x < 0 || x > 100);

bestN = 1;
bestM = 1;
minimum = 100;

for (n = 0; n <= 100; n++) {
for (m = 1; m <= 100; m++) {

y = Math.abs(n /(double)m - x);
if (y < minimum) {

minimum = y;

bestN = n;
bestM = m;

}
}

}
System.out.println("The fraction is: " + bestN + " / " + bestM); }

Converting variable m to type double tricks Java and a normal division is performed (a division that
returns a real). If you omit the (double) casting operator, since both dividend and divisor are of type int, Java
performs an integer division and produces incorrect results.

30.6 Exercises of a General Nature with Loop Control Structures
Exercise 30.6-1 Fahrenheit to Kelvin, from 0 to 100
Write a Java program that displays all degrees Fahrenheit from 0 to 100 and their equivalent degrees
Kelvin. Use an increment value of 0.5. It is given that 1.8 · Kelvin = Fahrenheit + 459.67

Solution

The formula, solved for Kelvin becomes

All you need here is a for-loop that increments the value of variable fahrenheit from 0 to 100 using an
offset of 0.5. The solution is presented next.

 Project_30.6-1
public static void main(String[] args) throws Exception {

double fahrenheit, kelvin;
for (fahrenheit = 0; fahrenheit <= 100; fahrenheit += 0.5) {

kelvin = (fahrenheit + 459.67) / 1.8;

System.out.println("Fahrenheit: " + fahrenheit + " Kelvin: " + kelvin);
}

}

Exercise 30.6-2 Rice on a Chessboard
There is a myth about a poor man who invented chess. The King of India was so pleased with that new
game that he offered to give the poor man anything he wished for. The poor but wise man told his King that
he would like one grain of rice for the first square of the board, two grains for the second, four grains for
the third and so on, doubled for each of the 64 squares of the game board. This seemed to the King to be a
modest request, so he ordered his servants to bring the rice.
Write a Java program that calculates and displays how many grains of rice, and how many pounds of rice,
will be on the chessboard in the end. Suppose that one pound of rice contains about 30,000 grains of rice.

Solution

Assume a chessboard of only 2 × 2 = 4 squares and a variable grains assigned the initial value 1 (this is the
number of grains of the 1st square). A for-loop that iterates three times can double the value of variable
grains in each iteration, as shown in the next code fragment.
grains = 1;
for (i = 2; i <= 4; i++) {

grains = 2 * grains; }

The value of variable grains at the end of each iteration is shown in the next table.

Iteration Value of grains

1st 2 × 1 = 2

2nd 2 × 2 = 4

3rd 2 × 4 = 8

At the end of the 3rd iteration, variable grains contains the value 8. This value is not the total number of
grains on the chessboard but only the number of grains on the 4th square. If you need to find the total
number of grains on the chessboard you can sum up the grains on all squares, that is, 1 + 2 + 4 + 8 = 15.
In the real world a real chessboard contains 8 × 8 = 64 squares, thus you need to iterate for 63 times. The
Java program is as follows.

 Project_30.6-2
public static void main(String[] args) throws Exception {

int i; double grains, total, weight;
grains = 1;

total = 1;
for (i = 2; i <= 64; i++) {

grains = 2 * grains;
total = total + grains;

}

weight = total / 30000;
System.out.println(total + " " + weight); }

In case you are wondering how big these numbers are, here is your answer: On the chessboard there will be
18,446,744,073,709,551,615 grains of rice; that is, 614,891,469,123,651.8 pounds!

Exercise 30.6-3 Just a Poll
A public opinion polling company asks 1000 citizens if they eat breakfast in the morning. Write a Java
program that prompts the citizens to enter their gender (M for Male, F for Female, O for Other) and their
answer to the question (Y for Yes, N for No, S for Sometimes), and then calculates and displays the number
of citizens that gave “Yes” as an answer, as well as the percentage of women among the citizens that gave
“No” as an answer. Using a loop control structure, the program must also validate data input and accept
only values M, F or O for gender and Y, N, or S for answer.

Solution

The Java program is as follows.
 Project_30.6-3

static final int CITIZENS = 1000;
public static void main(String[] args) throws Exception {

int totalYes, femaleNo, i; String gender, answer;
totalYes = 0;
femaleNo = 0;
for (i = 1; i <= CITIZENS; i++) {

do {

System.out.print("Enter gender: ");
gender = cin.nextLine().toLowerCase();

} while (!gender.equals("m") && !gender.equals("f") && !gender.equals("o"));
do {

System.out.print("Do you eat breakfast in the morning? ");

answer = cin.nextLine().toLowerCase();
} while (!answer.equals("y") && !answer.equals("n") && !answer.equals("s"));
if (answer.equals("y")) {

totalYes++;
}
if (gender.equals("f") && answer.equals("n")) {

femaleNo++;
}

}
System.out.println(totalYes + " " + femaleNo * 100 /(double)CITIZENS + "%"); }

Note how Java converts the user's input to lowercase.

Exercise 30.6-4 Is the Message a Palindrome?
A palindrome is a word or sentence that reads the same both backwards and forward. (You may recall from
Exercise 23.5-4 that a number can also be a palindrome). Write a Java program that prompts the user to
enter a word or sentence and then displays a message stating whether or not the user-provided word or
sentence is a palindrome. Following are some palindrome words and messages.
► Anna ► Radar ► Madam ► A nut for a jar of tuna.
► Dennis and Edna sinned.
► Murder for a jar of red rum.
► Borrow or rob?
► Are we not drawn onward, we few, drawn onward to new era?

Solution

There are some things you should keep in mind before starting to compare the letters one by one and
checking whether the first letter is the same as the last one, the second letter is the same as the last but one,
and so forth.
► In a given sentence or word, some letters may be in uppercase and some in lowercase. For example, in

the sentence “A nut for a jar of tuna”, even though the first and last letters are the same, they are not
considered equal. Thus, the program must first convert all the letters—for example, to lowercase—
before it can start comparing them.

► Removing characters like spaces, periods, question marks, and commas is crucial for the program to
accurately compare the letters. For example, without this step, in the sentence “Borrow or rob?” the
program will mistakenly assume it's not a palindrome, as it would attempt to compare the initial “B”
with the final question mark “?”.

► Assume that the examined sentence is “Borrow or rob?”. After changing all letters to lowercase and
after removing all unwanted spaces and the question mark, the sentence becomes “borroworrob”.
These letters and their corresponding position in the string are as follows:

What you should realize here is that the for-loop should iterate for only half of the letters. Can
you figure out why?
The program should start the iterations and compare the letter at position 0 with the letter at
position 10. Then it should compare the letter at position 1 with the letter at position 9, and so
forth. The last iteration should be the one that compares the letters at positions 4 and 6. It would
be pointless to continue checking thereafter, since all letters have already been compared.

There are many solutions to this problem. Some of them are presented below. Comments written
within the programs can help you fully understand the way they operate. However, if you still have
doubts about how they operate you can use Visual Studio Code to execute them step by step and
observe the values of the variables in each step.

First approach
The solution is presented here.

 Project_30.6-4a
public static void main(String[] args) throws Exception {

int i, middlePos, j; String message, messageClean, letter; char
leftLetter, rightLetter; boolean palindrome;

System.out.print("Enter a message: "); message =
cin.nextLine().toLowerCase();

//Create a new string which contains all except spaces, commas, periods
and question marks messageClean = "";

for (i = 0; i <= message.length() - 1; i++) {
letter = "" + message.charAt(i);

if (!letter.equals(" ") && !letter.equals(",") &&
!letter.equals(".") && !letter.equals("?")) {

messageClean += letter;
}

}
j = messageClean.length() - 1; //This is the last position of

messageClean middlePos = (int)(j / 2); //This is the middle position of
messageClean

palindrome = true; //In the beginning, assume that sentence is
palindrome

//This for-loop compares letters one by one.
for (i = 0; i <= middlePos; i++) {
leftLetter = messageClean.charAt(i);
rightLetter = messageClean.charAt(j);

//If at least one pair of letters fails to validate set variable
palindrome to false

if (leftLetter != rightLetter) {
palindrome = false;

}
j--;
}

//If variable palindrome is still true if (palindrome) {
System.out.println("The message is palindrome");

}
}

Second approach
The previous approach works fine, but let's assume that the user enters a very large sentence that is
not a palindrome; for example, its second letter is not the same as the last but one. Unfortunately, in
the previous approach, the last for-loop continues to iterate until the middle of the sentence despite
the fact that the variable palindrome has been set to false, even from the second iteration. So, let's
try to make this program even better. As you already know, you can break out of a loop before it
completes all of its iterations using the break statement.
Furthermore, since there are just four different characters that must be removed (spaces, commas,
periods, and question marks) you can avoid the first loop if you just chain four replace() methods,
as shown in the Java program that follows.

 Project_30.6-4b
public static void main(String[] args) throws Exception {

int i, middlePos, j; String message, messageClean; boolean palindrome;
System.out.print("Enter a message: "); message =

cin.nextLine().toLowerCase();
//Create a new string which contains all except spaces, commas, periods
and question marks messageClean = message.replace(" ", "").replace(",",

"").replace(".", "").replace("?", "");
j = messageClean.length() - 1; middlePos = (int)(j / 2);

palindrome = true;
for (i = 0; i <= middlePos; i++) {

if (messageClean.charAt(i) != messageClean.charAt(j)) {
palindrome = false;

break;
}

j--;
}

if (palindrome) {
System.out.println("The message is palindrome");

}
}

It is obvious that one problem can have many solutions. It is up to you to find the optimal one!
If you wish to remove all the unwanted characters (spaces, commas, periods, question marks,

ampersands, etc.), you can use the following code fragment instead. It keeps only the letters in the
variable messageClean!
//Create a new string which contains only letters messageClean = "";

String validChars = "abcdefghijklmnopqrstuvwxyz"; for (i = 0; i < message.length(); i++) {
if (validChars.indexOf(message.charAt(i)) != -1) {

messageClean += message.charAt(i); //Concatenation
}

}

30.7 Review Questions: True/False
Choose true or false for each of the following statements.
1) Data validation is the process of restricting data input, forcing the user to enter only valid values.
2) You can use a definite loop to validate data input.
3) To force a user to enter only positive numbers, without displaying any error messages, you can

use the following code fragment.
do {

System.out.print("Enter a positive number: "); x = Double.parseDouble(cin.nextLine()); } while (x <= 0);

4) To force a user to enter numbers between 1 and 10, you can use the following code fragment.
System.out.print("Enter a number between 1 and 10: "); x = Double.parseDouble(cin.nextLine()); while (x >= 1
&& x <= 10) {

System.out.println("Wrong number"); System.out.print("Enter a number between 1 and 10: "); x =
Double.parseDouble(cin.nextLine()); }

5) In order to find the lowest number among 10 user-provided numbers, you can use the following
code fragment.
minimum = 0;

for (i = 1; i <= 10; i++) {
w = Double.parseDouble(cin.nextLine()); if (w < minimum)
minimum = w;

}

6) In order to find the highest number among 10 user-provided numbers, you can use the following
code fragment.
maximum = 0;

for (i = 1; i <= 10; i++) {
w = Double.parseDouble(cin.nextLine()); if (w > maximum) {

maximum = w;
}

}

7) In order to find the highest number among 10 positive user-provided numbers, you can use the
following code fragment.
maximum = 0;

for (i = 1; i <= 10; i++) {
w = Double.parseDouble(cin.nextLine()); if (w > maximum) {

maximum = w;
}

}

30.8 Review Exercises
Complete the following exercises.
1) Design a flowchart and write the corresponding Java program that prompts the user to

repeatedly enter non-negative values until their average value exceeds 3000. At the end, the
program must display the total number of zeros entered.

2) Write a Java program that prompts the user to enter an integer between 1 and 20 and then
displays all four-digit integers for which the sum of their digits is less than the user-provided
integer. For example, if the user enters 15, the value 9301 is such a number, since 9 + 3 + 0 + 1
< 15

3) Write a Java program that displays all four-digit integers that satisfy all of the following
conditions: ► the number's first digit is greater than its second digit ► the number's second
digit is equal to its third digit ► the number's third digit is smaller than its fourth digit For
example, the values 7559, 3112, and 9889 are such numbers.

4) Write a Java program that prompts the user to enter an integer and then displays the
number of its digits.

5) A student wrote the following code fragment which is supposed to validate data
input, forcing the user to enter only values 0 and 1. Identify any error(s) in the code
fragment.
while (x != 1 || x != 0) {

System.out.println("Error"); x = Integer.parseInt(cin.nextLine()); }

6) Using a loop control structure, write the code fragment that validates data input,
forcing the user to enter a valid gender (M for Male, F for Female, O for Other).
Moreover, it must validate correctly both for lowercase and uppercase letters.

7) Write a Java program that prompts the user to enter a non-negative number and then
calculates its square root. Using a loop control structure, the program must also
validate data input and display an error message when the user enters any negative
values. Additionally, the user has a maximum number of two retries. If the user
enters more than three negative values, a message “Dude, you are dumb!” must be
displayed and the program execution must end.

8) The area of a circle can be calculated using the following formula: Area = π∙Radius2

Write a Java program that prompts the user to enter the length of the radius of
a circle and then calculates and displays its area. The program must iterate as
many times as the user wishes. At the end of each area calculation, the
program must ask the user if they wish to calculate the area of another circle.
If the answer is “yes” the program must repeat; it must end otherwise. Make
your program accept the answer in all possible forms such as “yes”, “YES”,
“Yes”, or even “YeS”.
Moreover, using a loop control structure, the program must validate data
input and display an error message when the user enters any non-positive
value for Radius.
Hint: Use the Math.PI constant to get the value of π.

9) Write a Java program that prompts the user to enter the daily temperatures (in
degrees Fahrenheit) recorded at the same hour each day in August and then
calculates and displays the average as well as the highest temperature.
Since −459.67o (on the Fahrenheit scale) is the lowest temperature possible
(it is called absolute zero), using a loop control structure, the program must
also validate data input and display an error message when the user enters a
value lower than absolute zero.

10) A scientist needs a software application to record the level of the sea based
on values logged at specific times (HH:MM), in order to extract some useful
information. Write a Java program that lets the scientist enter the sea level,
along with the hour and minutes, repeatedly until the value 9999 is entered
for the sea level. Then, the program must display both the highest and the
lowest recorded sea levels, along with the corresponding hour and minutes at
which these levels were recorded.

11) In some countries, when someone sneezes, a number (an integer) is said
aloud by another person. The sneezing person then adds up the digits of this
number until they obtain a number between 1 and 26. The letter

corresponding to this number (1 for “A”, 2 for “B”, and so on) represents the
first letter of the name of someone who might be thinking of them.
Write a Java program that prompts the user to enter the number said after the
sneeze. It must then sum up the digits of the number until a number between
1 and 26 is obtained, and display the corresponding letter in the English
alphabet.

12) Write a Java program that displays all possible integer values of x and y
within the range −100 to +100 that validate the following formula: 5x + 3y2

= 0
13) Write a Java program that displays all possible integer values of x, y,

and z within the range −10 to +10 that validate the following formula:

14) Write a Java program that lets the user enter three positive
integers and then finds their product using the Russian
multiplication algorithm.

15) Rewrite the Java program of Exercise 30.5-4 to validate the data
input using a loop control structure. If the user enters a non-
positive integer, an error message must be displayed.

16) Rewrite the Java program of Exercise 30.5-5 to validate the data
input using a loop control structure. If the user enters an integer
less than or equal to 1, an error message must be displayed.

17) Write a Java program that prompts the user to enter two positive
integers into variables start and finish. The program must then
find and display all Pythagorean triples (x, y, z) where x, y, and z
are integers between start and finish such that x2 + y2 = z2.
Hint: To make your program operate correctly, independent of
which user-provided integer is the lowest, you can swap their
values (if necessary) so that they are always in the proper order.

18) Write a Java program that prompts the user to enter two positive
integers and then displays all prime integers between them.
Using a loop control structure, the program must also validate
data input and display an error message when the user enters a
value less than +2.
Hint: To make your program operate correctly, independent of
which user-provided integer is the lowest, you can swap their
values (if necessary) so that they are always in the proper order.

19) A perfect number is a positive integer that is equal to the sum of
its positive divisors, excluding the number itself. For example,
the divisors of 6 are 1, 2, and 3 (excluding 6 itself), and 1 + 2 + 3
= 6, making 6 a perfect number. Write a Java program that
prompts the user to enter a positive integer and displays a
message indicating whether or not the number is perfect. Using a
loop control structure, the program must also validate data input
and display an error message when the user enters a non-positive
integer.

20) Write a Java program that prompts the user to enter two positive
integers and then displays all perfect numbers between them.
Using a loop control structure, the program must also validate
data input and display an error message when the user enters a
non-positive integer.

Hint: To make your program operate correctly, independent of
which user-provided integer is the lowest, you can swap their
values (if necessary) so that they are always in the proper order.

21) Write a Java program that prompts the user to enter two positive
four-digit integers and then displays all integers between them
that are palindromes. Using a loop control structure, the program
must also validate data input and display an error message when
the user enters any numbers other than four-digit ones.
Hint: To make your Java program operate correctly, independent
of which user-provided integer is the lowest, you can swap their
values (if necessary) so that they are always in the proper order.

22) Write a Java program that displays all possible RAM sizes
between 1 byte and 1GByte, such as 1, 2, 4, 8, 16, 32, 64, 128,
and so on.
Hint: 1GByte equals 230 bytes, or 1073741824 bytes 23) Write a Java
program that displays the following sequence of numbers: 1, 11,
23, 37, 53, 71, 91, 113, 137, … 401

24) Write a Java program that displays the following sequence of
numbers: −1, 1, −2, 2, −3, 3, −4, 4, … −100, 100

25) Write a Java program that displays the following sequence
of numbers: 1, 11, 111, 1111, 11111, … 11111111

26) The Fibonacci[21] sequence is a series of numbers in
the following sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34,
55, …

By definition, the first two terms are 0 and 1
and each subsequent term is the sum of the
previous two.
Write a Java program that lets the user enter a
positive integer and then displays as many
Fibonacci terms as that user-provided integer.

27) Write a Java program that lets the user enter a
positive integer and then displays all
Fibonacci terms that are less than that user-
provided integer.

28) Write a Java program that prompts the user to
enter a positive integer N and then finds and
displays the value of y in the following

formula:

Moreover, using a loop control
structure, the program must validate
data input and display an error message
when the user enters a value less than 1.

29) Write a Java program that prompts the
user to enter a positive integer N and
then finds and displays the value of y in
the following formula

Moreover, using a loop control
structure, the program must
validate data input and display an

error message when the user
enters a non-positive value.

30) Write a Java program that
prompts the user to enter an
integer N greater than 2 and then
finds and displays the value of y
in the following formula:

Moreover, using a loop
control structure, the
program must validate data
input and display an error
message when the user
enters a value that is less
than or equal to 2.
Hint: Note that beyond the
term 1 / 3 the subsequent
denominators increment by
2.

31) Write a Java program that
prompts the user to enter a
positive integer N and then
finds and displays the value
of y in the following
formula:

Moreover, using a
loop control
structure, the
program must
validate data input
and display an error
message when the
user enters a non-
positive value.

32) In mathematics, the
factorial of a non-
negative integer N is
the product of all
positive integers less
than or equal to N,
and it is denoted by
N! The factorial of 0
is, by definition,
equal to 1. In
mathematics, you
can write

For example,
the factorial of

5 is written as
5! and is equal
to 1 × 2 × 3 ×
4 × 5 = 120.
Write a Java
program that
prompts the
user to enter a
non-negative
integer N and
then calculates
its factorial.

33) Write a Java
program that
lets the user
enter a value
for x and then
calculates and
displays the
exponential
function ex

using the
Taylor[22]

series, shown
next, with an
accuracy of
0.00001.

Hint: Keep in
mind that

.

34) Write a Java
program that
lets the user
enter a value
for x and then
calculates and
displays the
sine of x using
the Taylor
series, shown
next, with an
accuracy of
0.00001.

Hint: Keep in
mind that x is

in radians and
.

35) Write a Java
program that
lets the user
enter a value
for x and then
calculates and
displays the
cosine of x
using the
Taylor series,
shown next,
with an
accuracy of
0.00001.

Hint: Keep in
mind that x is
in radians and

.

36) Suppose that
the letter A
corresponds to
the number 1,
the letter B
corresponds to
the number 2,
and so on.
Write a Java
program that
prompts the
user to enter
two integers
and then
displays all
alphabet letters
that exist
between them.
For example,
if the user
enters 3 and 6,
the program
must display
C, D, E, F.
Using a loop
control
structure, the
program must
also validate
data input and

display a
different error
message for
each type of
input error
when the user
enters any
negative, or
any value
greater than
26.
Hint: To make
your Java
program
operate
correctly,
independent of
which user-
provided
integer is the
lowest, you
can swap their
values (if
necessary) so
that they are
always in the
proper order.

37) Write a Java
program that
randomly
selects an
integer
between 1 and
100 and
assigns it to a
variable. The
program must
then prompt
the user to
guess the
number. If the
user's guess is
smaller than
the secret
number, the
message “Your
guess is
smaller than
my secret
number. Try
again!” must
be displayed.
If the user's
guess is
greater than

the secret
number, the
message “Your
guess is bigger
than my secret
number. Try
again!” must
be displayed.
This process
must repeat
until the user
correctly
guesses the
secret number.
Once the user
guesses
correctly, the
message “You
found it!” must
be displayed,
along with the
total number
of attempts
made by the
user.

38) Expand the
previous
exercise/game
by making it
operate for two
players. The
player that
wins is the one
that finds the
random secret
number in
fewer
attempts.

39) The size of a
TV screen
always refers
to its diagonal
measurement.
For example, a
40-inch TV
screen is 40
inches
diagonally,
from one
corner on top
to the other
corner on
bottom. The
old TV screens
had a width-to-

height aspect
ratio of 4:3,
which means
that for every
3 inches in TV
screen height,
there were 4
inches in TV
screen width.
Today, most
TV screens
have a width-
to-height
aspect ratio of
16:9, which
means that for
every 9 inches
in TV screen
height there
are 16 inches
in TV screen
width. Using
these aspect
ratios and the
Pythagorean
Theorem, you
can easily
determine that:

► for all 4:3 TV
screens Width
= Diagonal ×
0.8

Height =
Diagonal
× 0.6

► for all
16:9 TV
screens
Width =
Diagonal
× 0.87
Height =
Diagonal
× 0.49

Write a Java
program that
displays the
following
menu: 1) 4/3 TV
Screen 2) 16/9
TV Screen 3) Exit
and prompts
the user to
enter a choice
(of 1, 2, or 3)

as well as the
diagonal
screen size in
inches. Then,
the Java
program must
display the
width and the
height of the
TV screen.
This process
must continue
repeatedly,
until the user
selects choice
3 (Exit) from
the menu.

40) Write a Java
program that
prompts a
teacher to
enter the total
number of
students, their
grades, and
their gender
(M for Male, F
for Female, O
for Other), and
then calculates
and displays
all of the
following: a) the
average value
of those who
got an “A” (90
- 100) b) the
average value
of those who
got a “B” (80 -
89) c) the average
value of boys
who got an
“A” (90 - 100)

d) the total
number of
girls that got
less than “B”
e) the highest

and lowest
grade f) the
average
grade of
the whole
class Add

all
necessary
checks to
make the
program
satisfy the
property
of
definitenes
s.
Moreover,
using a
loop
control
structure,
the
program
must
validate
data input
and
display an
error
message
when the
teacher
enters any
of the
following:

► non-
positive
values for
total
number of
students

► negatives,
or values
greater
than 100
for student
grades

► values
other than
M, F, or O
for gender

41) Write a
Java
program
that
calculates
and
displays
the
discount
that a
customer

receives
based on
the
amount of
their order,
according
to the
following
table.

Amount Discount

$0 <
amount
< $20

0%

$20 ≤
amount
< $50

3%

$50 ≤
amount
< $100

5%

$100 ≤
amount 10%

At the end of
each discount
calculation, the
program must
ask the user if
they wish to
calculate the
discount of
another
amount. If the
answer is
“yes”, the
program must
repeat; it must
end otherwise.
Make your
program
accept the
answer in all
possible forms
such as “yes”,
“YES”, “Yes”,
or even “YeS”.
Moreover,
using a loop
control
structure the
program must
validate data
input and
display an

error message
when the user
enters any
non-positive
value for
amount.

42) The LAV
Electricity
Company
charges
subscribers for
their electricity
consumption
according to
the following
table (monthly
rates for
domestic
accounts).

Kilowatt‐hours
(kWh)

USD
per

kW

0 ≤ kWh ≤ 400 $0.1

401 ≤ kWh ≤
1500 $0.2

1501 ≤ kWh ≤
3500 $0.2

3501 ≤ kWh $0.5

Write a Java
program that
prompts the
user to enter
the total
number of
kWh
consumed by a
subscriber and
then calculates
and displays
the total
amount to pay.
This process
must repeat
until the value
−1 for kWh is
entered.
Moreover,
using a loop
control
structure, the
program must
validate data

input and
display an
error message
when the user
enters any
negative value
for kWh. An
exception for
the value −1
must be made.
Transmission
services and
distribution
charges, as
well as federal,
state, and local
taxes, add a
total of 25% to
each bill.
Please note
that the rates
are
progressive.

Review in “Loop Control Structures”

Review Crossword Puzzle
1) Solve the following crossword puzzle.

Across
4) This control structure allows the execution of a block of
statements multiple times.
6) A loop that cannot stop iterating.
8) The "Ultimate" rule states that the variable that participates in
a loop's Boolean expression must be ___________ before
entering the loop.
9) A loop within another loop.
10) In this loop structure, the number of iterations is not known
before the loop starts iterating.

Down
1) In a _____–test loop structure, first the Boolean expression is
evaluated, and afterward the statement or block of statements of
the structure is executed.
2) The ______–test loop performs at least one iteration.
3) In this loop structure, the number of iterations is known before
the loop starts iterating.
5) A word or sentence that reads the same both backward and
forward.
7) Any integer greater than 1 that has no divisors other than 1 and
itself.

Review Questions
Answer the following questions.
1) What is a loop control structure?
2) In a flowchart, how can you distinguish a decision control structure

from a loop control structure?
3) Design the flowchart and write the Java statement (in general form) of

a pre-test loop structure. Explain how this loop control structure
operates.

4) Why is a pre-test loop structure named this way, and what is the
fewest number of iterations it may perform?

5) If the statement or block of statements of a pre-test loop structure is
executed N times, how many times is the Boolean expression of the
structure evaluated?

6) Design the flowchart and write the corresponding Java statement (in
general form) of a post-test loop structure. Explain how this loop
control structure operates.

7) Why is a post-test loop structure named this way, and what is the
fewest number of iterations it may perform?

8) If the statement or block of statements of a post-test loop structure is
executed N times, how many times is the Boolean expression of the
structure evaluated?

9) Design the flowchart and write the corresponding Java statement (in
general form) of a mid-test loop structure. Explain how this loop
control structure operates.

10) Design the flowchart and write the corresponding Java statement (in
general form) of a for-loop. Explain how this loop control structure
operates.

11) State the rules that apply to for-loops.
12) What are nested loops?
13) Write an example program that uses nested loop control structures

and explain the way they are executed.
14) State the rules that apply to nested loops.
15) Design a diagram that could help someone decide which loop control

structure is most appropriate to choose, depending on a given
problem.

16) Describe the “Ultimate” rule and give two examples, in general form,
using a pre-test and a post-test loop structure.

17) Suppose a Java program uses a loop control structure to search for a
given word in an electronic English dictionary. Why is it critical to
break out of the loop when the given word is found?

18) Why is it critical to clean out your loops?
19) What is an infinite loop?

Part VI
Data Structures in Java

Chapter 31
One-Dimensional Arrays and HashMaps

31.1 Introduction
Variables are a good way to store values in memory but they have one
limitation—they can hold only one value at a time. There are many cases,
however, where a program needs to keep a large amount of data in memory,
and variables are not the best choice.
For example, consider the following exercise:
Write a Java program that lets the user enter three numbers. It then displays
them sorted in ascending order.
Consider the following code fragment. It lets the user enter the three
numbers.
for (i = 0; i <= 2; i++) {

number = Double.parseDouble(cin.nextLine());
}

When the loop finally finishes iterating, the variable number contains only
that last number that was provided. Unfortunately, all the previous two
numbers have been lost! Using this code fragment, it is not quite possible to
display them sorted in ascending order.
One possible solution would be to use three individual variables, as follows.
num1 = Double.parseDouble(cin.nextLine());
num2 = Double.parseDouble(cin.nextLine());

num3 = Double.parseDouble(cin.nextLine());
if (num1 <= num2 && num2 <= num3)

System.out.println(num1 + " " + num2 + " " + num3);
else if (num1 <= num3 && num3 <= num2)

System.out.println(num1 + " " + num3 + " " + num2);

else if (num2 <= num1 && num1 <= num3)
System.out.println(num2 + " " + num1 + " " + num3);

else if (num2 <= num3 && num3 <= num1)
System.out.println(num2 + " " + num3 + " " + num1);

else if (num3 <= num1 && num1 <= num2)

System.out.println(num3 + " " + num1 + " " + num2);
else

System.out.println(num3 + " " + num2 + " " + num1);

Not a perfect solution, but it works! However, what if the wording of this
exercise asked the user to enter 1,000 numbers instead of three? Think about

it! Can you write a similar Java program for all those numbers? Of course
not! Fortunately, there are data structures!

In computer science, a data structure is a collection of data organized so
that you can perform operations on it in the most effective way.

There are several data structures available in Java, such as arrays, linked
lists, stacks, queues, binary trees, heaps, hashtables, hashmaps, and strings.
Yes, you heard that right! Since a string is a collection of alphanumeric
characters, it is considered a data structure.
Beyond strings (for which you have already learned enough), arrays and
hashmaps are the most commonly used data structures in Java. The
following chapters will analyze both of them.

31.2 What is an Array?
An array is a type of data structure that can hold multiple values under one
common name. It can be thought of as a collection of elements where each
element is assigned a unique number known as an index position, or simply
an index. Arrays are mutable (changeable), which means that once an array
is created, the values of its elements can be changed.

Arrays in computer science resemble the matrices used in mathematics. A
mathematical matrix is a collection of numbers or other mathematical
objects, arranged in rows and columns.

There are one-dimensional and multidimensional arrays. A multidimensional
array can be two-dimensional, three-dimensional, four-dimensional, and so
on.

One-Dimensional Arrays
The following example presents a one-dimensional array that holds the
grades of six students. The name of the array is grades. For your
convenience, the corresponding index is written above each element. By
default, in Java, index numbering always starts at zero.

Since index numbering starts at zero, the index of the last element of an
array is 1 less than the total number of elements in the array. In the array
grades, the index of the last element is 5 while the total number of elements is
6.

You can think of an array as if it were six individual variables—grades0,
grades1, grades2, ... grades5—with each variable holding the grade of one
student. The advantage of the array, however, is that it can hold multiple
values under one common name.

Two-Dimensional Arrays
In general, multidimensional arrays are useful for working with multiple sets
of data. For example, suppose you want to hold the daily high temperatures
for California for the four weeks of April. One approach would be to use
four one-dimensional arrays, one for each week. Furthermore, each array
would have seven elements, one for each day of the week, as follows.

However, this approach is a bit awkward because you would have to process
each array separately. A better approach would be to use a two-dimensional
array with four rows (one for each week) and seven columns (one for each
day of the week), as follows.

Three-Dimensional Arrays
The next example shows a three-dimensional array that holds the daily high
temperatures for California for the four weeks of April for the years 2013
and 2014.

Note that four-dimensional, five-dimensional, or even one-hundred–
dimensional arrays can exist. However, experience shows that the maximum
array dimension that you will need in your life as a programmer is probably
two or three.

Exercise 31.2-1 Designing an Array
Design an array that can hold the ages of 8 people, and then add some
typical values to the array.

Solution

This is an easy one. All you have to do is design an array with 8 elements
(indexes 0 to 7). It can be an array with either one row or one column, as
follows.

Keep in mind, however, that there are no arrays with one row or one column
in Java. These concepts may exist in mathematical matrices (or in your
imagination!) but not in Java. The arrays in Java are one-dimensional—end
of story! If you want to visualize them having one row or one column, that is
up to you.

Exercise 31.2-2 Designing Arrays
Design the necessary arrays to hold the names and the ages of seven people,
and then add some typical values to the arrays.

Solution

This exercise can be implemented with two arrays. Let's design them with
one column each.

As you can see, there is a one-to-one correspondence between the elements
in the array names and those in the array ages. The first of the seven people
is John Thompson, and he is 17 year old. The name “John Thompson” is
stored at index 0 of the array names, and at exactly the same index in the
array ages, his age is stored. The next person's name (Ava Miller) and her
age (25) are stored at index 1 of the arrays names, and ages, respectively, and
so on.

Exercise 31.2-3 Designing Arrays
Design the necessary arrays to hold the names of ten people as well as the
average weight (in pounds) of each person for January, February, and
March. Then add some typical values to the arrays.

Solution

In this exercise, you need a one-dimensional array for names, and a two-
dimensional array for people's weights, having a one-to-one correspondence
between their elements.

31.3 Creating One-Dimensional Arrays in Java
Java has many ways to create an array and add elements (and values) to it.
Depending on the given problem, it's up to you which one to use.
Let's try to create the following array using the most common approaches.

First approach
To create an array and directly assign values to its elements, you can use the
next Java statement, given in general form.
type[] array_name = { value0, value1, value2, … , valueM };

where
► type can be int, double, String and so on.

► array_name is the name of the array.
► value0, value1, value2, … , valueM are the values of the array elements.

For this approach, you can create the array ages using the following
statement:
int[] ages = {12, 25, 9, 11};

Indexes are set automatically. The value 12 is assigned to the element at
index position 0, value 25 is assigned to the element at index position 1, and
so on. Index numbering always starts at zero by default.

In Section 5.4 you learned about the rules that must be followed when
assigning names to variables. Assigning names to arrays follows exactly the
same rules!

Second approach
You can create an array of size empty elements in Java using the following
statement given in general form:
type[] array_name = new type[size];

where size can be any positive integer value, or it can even be a variable that
contains any positive integer value.
The next statement creates the array ages with 4 empty elements.
int[] ages = new int[4];

The statement int[] ages = new int[4] reserves four locations in main
memory (RAM).

To assign a value to an array element, you can use the following statement,
given in general form:
array_name[index] = value;

where index is the index position of the element in the array.
The next code fragment creates the array ages (reserving four locations in
main memory) and then assigns values to its elements.
int[] ages = new int[4];
ages[0] = 12;
ages[1] = 25;
ages[2] = 9;

ages[3] = 11;

The size of the array ages is 4.

Of course, instead of using constant values for index, you can also use
variables or expressions, as follows.
int k;
int[] ages = new int[4];
k = 0;

ages[k] = 12;
ages[k + 1] = 25;
ages[k + 2] = 9;
ages[k + 3] = 11;

31.4 How to Get Values from a One-Dimensional Array
Getting values from an array is just a matter of pointing to a specific
element. Each element of a one-dimensional array can be uniquely identified
using an index. The following code fragment creates an array and displays
“A+” (without the double quotes) on the screen.
String[] grades = {"B+", "A+", "A", "C-"};
System.out.println(grades[1]);

Of course, instead of using constant values for index, you can also use
variables or expressions. The following example creates an array and
displays “Aphrodite and Hera” (without the double quotes) on the screen.
String[] gods = {"Zeus", "Ares", "Hera", "Aphrodite", "Hermes"};

k = 2;
System.out.println(gods[k + 1] + " and " + gods[k]);

Exercise 31.4-1 Creating the Trace Table
Create the trace table for the next code fragment.
int x;
int[] a = new int[4];
a[3] = 9;

x = 0;
a[x] = a[3] + 4;
a[x + 1] = a[x] * 3;
x++;
a[x + 2] = a[x - 1];

a[2] = a[1] + 5;
a[3] = a[3] + 1;

Solution

Don't forget that you can manipulate each element of an array as if it were a
variable. Thus, when you create a trace table for a Java program that uses
arrays, you can have one column for each element as follows.

Step Statement Notes x a[0] a[1] a[2] a[3]

1 int[] a = new
int[4]

This creates array a with
no values in it ? ? ? ? ?

2 a[3] = 9 ? ? ? ? 9

3 x = 0 0 ? ? ? 9

4 a[x] = a[3] +
4

0 13 ? ? 9

5 a[x + 1] =
a[x] * 3

0 13 39 ? 9

6 x++ 1 13 39 ? 9

7 a[x + 2] = a[x
‐ 1]

1 13 39 ? 13

8 a[2] = a[1] +
5

1 13 39 44 13

9 a[3] = a[3] +
1

1 13 39 44 14

Exercise 31.4-2 Using a Non-Existing Index
Which properties of an algorithm are not satisfied by the following Java
program?
public static void main(String[] args) throws Exception {

String[] grades = {"B+", "A+", "A", "C-"};
System.out.println(grades[100]);

}

Solution

Two properties are not satisfied by this Java program. The first one is
obvious: there is no data input. The second one is the property of
definiteness. You must never reference a non-existing element of an array. In

this exercise, since there is no element at index position 100, the last
statement throws a runtime error.

31.5 How to Alter the Value of an Array Element
To alter the value of an existing array element is a piece of cake. All you
need to do is use the appropriate index and assign a new value to that
element. The example that follows shows exactly this.
//Create an array
String[] tribes = {"Navajo", "Cherokee", "Sioux"};
//Alter the value of an existing element
tribes[1] = "Apache";

System.out.println(tribes[0]); //It displays: Navajo
System.out.println(tribes[1]); //It displays: Apache
System.out.println(tribes[2]); //It displays: Sioux

A string is almost identical to an array; it contains a collection of
characters. However, the main difference is that strings are immutable
(unchangeable). You cannot change an individual character with a statement
like xStr[2] = "r" (although you can change the value of the whole string).

An “immutable” data structure is a structure in which the value of its
elements cannot be changed once the data structure is created.

31.6 How to Iterate Through a One-Dimensional Array
Now comes the interesting part. A program can iterate through the elements
of an array using a loop control structure (usually a for-loop). There are two
approaches you can use to iterate through a one-dimensional array.

First approach
This approach refers to each array element using its index. Following is a
code fragment, written in general form
for (index = 0; index <= size_of_the_array − 1; index ++) {

process structure_name[index];

}

in which, process is any Java statement or block of statements that processes
one element of the array structure_name at each iteration.
The following code fragment displays all elements of the array gods, one at
each iteration.
int i;

String[] gods = {"Zeus", "Ares", "Hera", "Aphrodite", "Hermes"};
for (i = 0; i <= 4; i++) {

System.out.print(gods[i] + "\t");

}

The name of the variable i is not binding. You can use any variable name
you want, such as index, ind, j, and many more.

Note that since the array gods contains five elements, the for-loop must
iterate from 0 to 4 and not from 1 to 5. This is because the indexes of the
four elements are 0, 1, 2, 3, and 4, correspondingly.

Since arrays are mutable, you can use a loop control structure to alter all or
some of its values. The following code fragment doubles the values of some
elements of the array b.
int[] b = {80, 65, 60, 72, 30, 40};
for (i = 0; i <= 3; i++) {

b[i] = b[i] * 2;
}

Second approach
To iterate through the elements of a sequence, apart from the for-loop, there
is also another loop, the foreach-loop. Sometimes, it is preferable (or even
necessary) to use a foreach-loop.
The general form of the foreach-loop is shown in the following flowchart.

In Java, the general form of the foreach-loop is
for (type element : sequence) {

A statement or block of statements

}

where
► element must be a variable of type type. It must match the type of the

elements of sequence
► sequence must be an iterable data structure such as an array.

The following code fragment, displays all elements of the array grades, one
at each iteration.
String[] grades = {"B+", "A+", "A", "C-"};

for (String grade : grades) {
System.out.println(grade);

}

In the first iteration, the value of the first element is assigned to variable
grade. In the second iteration, the value of the second element is assigned to
variable grade and so on!

Keep in mind, though, that this approach cannot be used to alter the values
of the elements in an array. For example, if you want to double the values of
all elements in the array numbers, you cannot do the following:
int[] numbers = {5, 10, 3, 2};
for (int number : numbers) {

number = number * 2;
}

number is a simple variable where, at each iteration, each successive
value of the array numbers is assigned to. However, the opposite never
happens! The value of number is never assigned back to any element!

If you want to alter the values of the elements in an array, you should use
the first approach.

Exercise 31.6-1 Finding the Sum
Write a Java program that creates an array with the following values

56, 12, 33, 8, 3, 2, 98
and then calculates and displays their sum.

Solution

You learned two approaches to iterate through the array elements. Let's use
both approaches and see the differences.

First approach
The solution is as follows.

 Project_31.6-1a
public static void main(String[] args) throws Exception {

int i, total;
int[] values = {56, 12, 33, 8, 3, 2, 98};
total = 0;
for (i = 0; i <= 6; i++) {

total += values[i]; //This is equivalent to total = total + values[i]

}
System.out.println(total);

}

Second approach
The solution is as follows.

 Project_31.6-1b
public static void main(String[] args) throws Exception {

int total;
int[] values = {56, 12, 33, 8, 3, 2, 98};
total = 0;
for (int value : values) {

total += value;

}
System.out.println(total);

}

31.7 How to Add User-Entered Values to a One-Dimensional
Array

There is nothing new here. Instead of reading a value from the keyboard and
assigning that value to a variable, you can directly assign that value to a
specific array element. The next code fragment prompts the user to enter the
names of four people, and assigns them to the elements at index positions 0,
1, 2, and 3, of the array names.
public static void main(String[] args) throws Exception {

String[] names = new String[4]; //Pre-reserve 4 locations in main memory (RAM)
System.out.print("Enter name No 1: ");
names[0] = cin.nextLine();

System.out.print("Enter name No 2: ");

names[1] = cin.nextLine();
System.out.print("Enter name No 3: ");
names[2] = cin.nextLine();

System.out.print("Enter name No 4: ");
names[3] = cin.nextLine();

…

Using a for-loop, this code fragment can equivalently be written as
static final int ELEMENTS = 4;
public static void main(String[] args) throws Exception {

int i;
String[] names = new String[ELEMENTS]; //Pre-reserve 4 locations in main memory (RAM)
for (i = 0; i <= ELEMENTS - 1; i++) {

System.out.print("Enter name No " + (i + 1) + ": ");
names[i] = cin.nextLine();

}

…

A very good tactic for dealing with array sizes is to use constants.

Exercise 31.7-1 Displaying Words in Reverse Order
Write a Java program that lets the user enter 20 words. The program must
then display them in the exact reverse of the order in which they were
provided.

Solution

Arrays are perfect for problems like this one. The following is an appropriate
solution.

 Project_31.7-1
public static void main(String[] args) throws Exception {

int i;

String[] words = new String[20];
for (i = 0; i <= 19; i++) {

words[i] = cin.nextLine();
}
for (i = 19; i >= 0; i--) {

System.out.println(words[i]);
}

}

Since index numbering starts at zero, the index of the last array element
is 1 less than the total number of elements in the array.

Sometimes the wording of an exercise may say nothing about using a
data structure. However, this doesn't mean that you can't use one. Use data
structures (arrays, hashmaps etc.) whenever you find them necessary.

Exercise 31.7-2 Displaying Positive Numbers in Reverse Order
Write a Java program that lets the user enter 100 numbers into an array. It
then displays only the positive ones in the exact reverse of the order in which
they were provided.

Solution

In this exercise, the program must accept all values from the user and store
them into an array. However, within the for-loop that is responsible for
displaying the array elements, a nested decision control structure must check
for and display only the positive values. The solution is as follows.

 Project_31.7-2
static final int ELEMENTS = 100;

public static void main(String[] args) throws Exception {
int i;
double[] values = new double[ELEMENTS];
for (i = 0; i <= ELEMENTS - 1; i++) {

values[i] = Double.parseDouble(cin.nextLine());

}
for (i = ELEMENTS - 1; i >= 0; i--) {

if (values[i] > 0) {
System.out.println(values[i]);

}
}

}

Exercise 31.7-3 Finding the Average Value
Write a Java program that prompts the user to enter 20 numbers into an
array. It then displays a message only when their average value is less than
10.

Solution

To find the average value of the user-provided numbers the program must
first find their sum and then divide that sum by 20. Once the average value is
found, the program must check whether to display the corresponding
message.

 Project_31.7-3a
static final int ELEMENTS = 20;

public static void main(String[] args) throws Exception {
int i;
double total, average;
double[] values = new double[ELEMENTS];
for (i = 0; i <= ELEMENTS - 1; i++) {

System.out.print("Enter a value: ");
values[i] = Double.parseDouble(cin.nextLine());

}
//Accumulate values in total
total = 0;
for (i = 0; i <= ELEMENTS - 1; i++) {

total += values[i];
}
average = total / ELEMENTS;
if (average < 10) {

System.out.println("Average value is less than 10");

}
}

If you are wondering whether or not this exercise could have been solved
using just one for-loop, the answer is “yes”. An alternative solution is
presented next.

 Project_31.7-3b
static final int ELEMENTS = 20;

public static void main(String[] args) throws Exception {
int i;
double total, average;
total = 0;
double[] values = new double[ELEMENTS];
for (i = 0; i <= ELEMENTS - 1; i++) {

System.out.print("Enter a value: ");
values[i] = Double.parseDouble(cin.nextLine());
total += values[i];

}
average = total / ELEMENTS;

if (average < 10) {
System.out.println("Average value is less than 10");

}
}

But let's clarify something! Even though many processes can be performed
inside just one for-loop, it is simpler to carry out each individual process in a

separate for-loop. This is probably not so efficient but, since you are still a
novice programmer, try to adopt this programming style just for now. Later,
when you have the experience and become a Java guru, you will be able to
“merge” many processes in just one for-loop!

Exercise 31.7-4 Displaying Reals Only
Write a Java program that prompts the user to enter 10 numeric values into
an array. The program must then display the indexes of the elements that
contain reals.

Solution

In Exercise 23.1-1 you learned how to check whether or not, a number is an
integer. Accordingly, to check whether or not, a number is a real (float), you
can use the Boolean expression

number != (int)number

The solution is as follows.
 Project_31.7-4

static final int ELEMENTS = 10;

public static void main(String[] args) throws Exception {
int i;
double[] a = new double[ELEMENTS];
for (i = 0; i <= ELEMENTS - 1; i++) {

System.out.print("Enter a value for element " + i + ": ");

a[i] = Double.parseDouble(cin.nextLine());
}
for (i = 0; i <= ELEMENTS - 1; i++) {

if (a[i] != (int)a[i]) {
System.out.println("A real found at position: " + i);

}

}
}

Exercise 31.7-5 Displaying Elements with Odd-Numbered Indexes
Write a Java program that prompts the user to enter 8 numeric values into
an array. The program must then display the elements with odd-numbered
indexes (that is, indexes 1, 3, 5, and 7).

Solution

Following is one possible solution.

 Project_31.7-5a
static final int ELEMENTS = 8;

public static void main(String[] args) throws Exception {
int i;
double[] a = new double[ELEMENTS];
for (i = 0; i <= ELEMENTS - 1; i++) {

System.out.print("Enter a value for element " + i + ": ");

a[i] = Double.parseDouble(cin.nextLine());
}
//Display the elements with odd-numbered indexes
for (i = 0; i <= ELEMENTS - 1; i++) {

if (i % 2 != 0) {
System.out.print(a[i] + " ");

}
}

}

However, you know that only the values in odd-numbered index positions
must be displayed. Therefore, the for-loop that is responsible for displaying
the elements of the array, instead of starting counting from 0 and using an
offset of +1, it can start counting from 1 and use an offset of +2. This
modification decreases the number of iterations by half. The modified Java
program follows.

 Project_31.7-5b
static final int ELEMENTS = 8;
public static void main(String[] args) throws Exception {

int i;
double[] a = new double[ELEMENTS];
for (i = 0; i <= ELEMENTS - 1; i++) {

System.out.print("Enter a value for element " + i + ": ");
a[i] = Double.parseDouble(cin.nextLine());

}
//Display the elements with odd-numbered indexes
for (i = 1; i <= ELEMENTS - 1; i += 2) { //Start from 1 and increment by 2

System.out.print(a[i] + " ");

}
}

Exercise 31.7-6 Displaying Even Numbers in Odd–Numbered Index
Positions

Write a Java program that lets the user enter 100 integers into an array and
then displays any even values that are stored in odd–numbered index
positions.

Solution

Following is one possible solution.
 Project_31.7-6

static final int ELEMENTS = 100;

public static void main(String[] args) throws Exception {
int i;
int[] values = new int[ELEMENTS];
for (i = 0; i <= ELEMENTS - 1; i++) {

values[i] = Integer.parseInt(cin.nextLine());

}
for (i = 1; i <= ELEMENTS - 1; i += 2) { //Start from 1 and increment by 2

if (values[i] % 2 == 0) {
System.out.println(values[i]);

}
}

}

31.8 What is a HashMap?
In computer science, the main difference between a hashmap and an array is
that the hashmap elements can be uniquely identified using a key and not
necessarily an integer value. Each key of a hashmap is associated (or
mapped, if you prefer) to an element. The keys of a hashmap can be of type
String, int, double etc.
The following example presents a hashmap that holds the names of a family.
The name of the hashmap is family and the corresponding keys are written
above each element.

The keys of hashmap elements must be unique within the hashmap. This
means that in the hashmap family, for example, you cannot have two keys
named father.

The values of hashmap elements can be of any type.

31.9 Creating HashMaps in Java

Let's try to create the following hashmap using the most common
approaches.

First approach
To create a hashmap and directly assign values to its elements, you can use
the next Java statement, given in general form.
HashMap<key_type, value_type> hashmap_name = new HashMap<>(

Map.of(key0, value0, key1, value1, key2, value2, … keyM, valueM)
);

where
► key_type is the type of the keys. It can be String, Integer, Double etc.
► value_type is the type of the elements. It can be String, Integer, Double

etc.
► hashmap_name is the name of the hashmap.
► key0, key1, key2, … , keyM are the keys of the hashmap elements.
► value0, value1, value2, … , valueM are the values of the hashmap elements.

Using this approach, the hashmap pupil can be created using the following
statement:
HashMap<String, String> pupil = new HashMap<>(

Map.of("firstName", "Ann", "lastName", "Fox", "age", "8", "class", "2nd")

);

The Map.of() method was first introduced in Java 9.0. It supports up to 10
key-value pairs.

In Section 5.4 you learned about the rules that must be followed when
assigning names to variables. Assigning names to hashmaps follows exactly
the same rules!

In order to use the HashMap and Map classes in your project, you need to
import the corresponding libraries using the import java.util.HashMap and import
java.util.Map statements at the beginning of the project. You will learn more
about classes and objects in Part VIII.

Second approach

In this approach, you can create a totally empty hashmap using the following
statement, given in general form
HashMap<key_type, value_type> hashmap_name = new HashMap<>();

and then add an element (key-value pair), as shown in the following Java
statement, given in general form.
hashmap_name.put(key, value);

Using this approach, the hashmap pupil can be created using the following
code fragment:
HashMap<String, String> pupil = new HashMap<>();

pupil.put("firstName", "Ann");
pupil.put("lastName", "Fox");
pupil.put("age", "8");
pupil.put("class", "2nd");

31.10 How to Get a Value from a HashMap
To get the value of a specific hashmap element, you must point to that
element using its corresponding key. The following code fragment creates a
hashmap, and then displays “Ares is the God of War”, without the double
quotes, on the screen.
HashMap<String, String> olympians = new HashMap<>();
olympians.put("Zeus", "King of the Gods");
olympians.put("Hera", "Goddess of Marriage");

olympians.put("Ares", "God of War");
olympians.put("Poseidon", "God of the Sea");
olympians.put("Demeter", "Goddess of the Harvest");
olympians.put("Artemis", "Goddess of the Hunt");
olympians.put("Apollo", "God of Music and Medicine");

olympians.put("Aphrodite", "Goddess of Love and Beauty");
olympians.put("Hermes", "Messenger of the Gods");
olympians.put("Athena", "Goddess of Wisdom");
olympians.put("Hephaistos", "God of Fire and the Forge");
olympians.put("Dionysus", "God of the Wine");

System.out.println("Ares is the " + olympians.get("Ares"));

Only keys can be used to access an element. This means that
olympians.get("Ares") correctly returns “God of War” but olympians.get("God of
War") cannot return “Ares”.

Exercise 31.10-1 Roman Numerals to Numbers
Roman numerals are shown in the following table.

Number Roman Numeral

1 I

2 II

3 III

4 IV

5 V

Write a Java program that prompts the user to enter a Roman numeral
between I and V, and then displays the corresponding number. Assume that
the user enters a valid value.

Solution

The obvious solution would be the use of a multiple-alternative decision
structure, similar to the one shown in the code fragment that follows.
if (romanNumeral == "I")

number = 1;
else if (romanNumeral == "II")

number = 2;
else if (romanNumeral == "III")

number = 3;
else if (romanNumeral == "IV")

number = 4;
else if (romanNumeral == "V")

number = 5;

However, this approach is quite lengthy, and it could become even more
extensive if you want to expand your program to work with additional
Roman numerals. Therefore, armed with knowledge about hashmaps, you
can employ a more efficient approach, as demonstrated in the code fragment
that follows.
HashMap<String, Integer> roman2number = new HashMap<>(

Map.of("I", 1, "II", 2, "III", 3, "IV", 4, "V", 5)
);
number = roman2number[romanNumeral];

The solution to this exercise is as follows.

 Project_31.10-1
import java.util.Scanner;
import java.util.Map;

import java.util.HashMap;
public class App {

static Scanner cin = new Scanner(System.in);

public static void main(String[] args) throws Exception {
String romanNumeral;
int number;
HashMap<String, Integer> roman2number = new HashMap<>(

Map.of("I", 1, "II", 2, "III", 3, "IV", 4, "V", 5)

);
System.out.print("Enter a Roman numeral: ");
romanNumeral = cin.nextLine();
number = roman2number.get(romanNumeral);
System.out.println(romanNumeral + ": " + number);

}

}

In order to use the HashMap and Map classes in your project, you need to
import the corresponding libraries using the import java.util.HashMap and import
java.util.Map statements at the beginning of the project

Exercise 31.10-2 Using a Non-Existing Key in HashMaps
What is wrong in the following Java program?
HashMap<String, String> family = new HashMap<>(

Map.of("father", "John", "mother", "Maria", "son", "George")
);
System.out.println(family.get("daughter"));

Solution

Similar to arrays, this code does not satisfy the property of definiteness. You
must never reference a non-existing hashmap element. Since there is no key
“daughter”, the last statement displays “null”.

In computer science, “null” means “nothing”. When a variable or a data
structure element has no value, it is considered to be null. A value of 0 is
different than the null value, since 0 is an actual value. Regarding strings,
the empty string ("") is also different than the null value. An empty string is
a string with no characters in it whereas a null string has no value at all!

31.11 How to Alter the Value of a HashMap Element
To alter the value of an existing hashmap element you need to use the
appropriate key and assign a new value to that element. The example that

follows shows exactly this.
HashMap<String, String> tribes = new HashMap<>(

Map.of("Indian", "Navajo", "African", "Zulu")
);

System.out.println(tribes); //It displays: {Indian=Navajo, African=Zulu}
//Alter the value of an existing element
tribes.put("Indian", "Apache");
System.out.println(tribes); //It displays: {Indian=Apache, African=Zulu}

Exercise 31.11-1 Assigning a Value to a Non-Existing Key
Is there anything wrong in the following code fragment?
HashMap<Integer, String> tribes = new HashMap<>(

Map.of(0, "Navajo", 1, "Cherokee", 2, "Sioux")
);
tribes.put(3, "Apache");

Solution

No, this time there is absolutely nothing wrong in this code fragment. At
first glance, you might have thought that the last statement tries to alter the
value of a non-existing key and it will throw an error. This is not true for
Java's hashmaps, though. Since tribes is a hashmap and key “3” does not
exist, the last statement adds a brand new fourth element to the hashmap!

The keys of a hashmap can be of type String, int, double etc.

Keep in mind though, if tribes were actually an array, the last statement
would certainly throw an error. Take a look at the following code fragment
String[] tribes = {"Navajo", "Cherokee", "Sioux"};
tribes[3] = "Apache";

In this example, since tribes is an array and index 3 does not exist, the last
statement tries to alter the value of a non-existing element and obviously
throws an error!

31.12 How to Iterate Through a HashMap
To iterate through the elements of a hashmap you can use a for-loop.
Following is a code fragment, written in general form
for (key_type key : structure_name.keySet()) {

process structure_name.get(key);

}

in which process is any Java statement or block of statements that processes
one element of the hashmap structure_name at each iteration.
The following Java program displays the letters A, B, C, and D, and their
corresponding Morse[23] code.
HashMap<String, String> morseCode = new HashMap<>(

Map.of("A", ".-", "B", "-...", "C", "-.-.", "D", "-..")
);

for (String letter : morseCode.keySet()) {
System.out.println(letter + " " + morseCode.get(letter));

}

The next example gives a bonus of $2000 to each employee of a computer
software company!
HashMap<String, Double> salaries = new HashMap<>(

Map.of("Project Manager", 83000.0,

"Software Engineer", 81000.0,
"Network Engineer", 64000.0,
"Systems Administrator", 61000.0,
"Software Developer", 70000.0

)
);

for (String title : salaries.keySet()) {
salaries.put(title, salaries.get(title) + 2000);

}

31.13 Review Questions: True/False
Choose true or false for each of the following statements.

1) Arrays are structures that can hold multiple values.
2) Array elements are located in main memory (RAM).
3) There can be only one-dimensional and two-dimensional arrays.
4) There cannot be four-dimensional arrays.
5) An array is called “multidimensional” because it can hold values of

different types.
6) Each array element has a unique non-negative index.
7) There can be two identical keys within a hashmap.
8) In arrays, index numbering always starts at zero by default.
9) The index of the last array element is equal to the total number of its

elements.

10) A two-hundred–dimensional array can exist.
11) The next statement contains a syntax error.

String[] studentNames = String[10];

12) In a Java program, two arrays cannot have the same name.
13) The next statement is syntactically correct.

HashMap<String, String> student = new HashMap<>(
Map.of("firstName": "Ann", "lastName": "Fox", "age": "8")

);

14) In a Java program, two arrays cannot have the same number of
elements.

15) You cannot use a variable as an index in an array.
16) You can use a mathematical expression as an index in an array.
17) You cannot use a variable as a key in a hashmap.
18) The following code fragment throws no errors.

String a = "a";
HashMap<String, String> fruits = new HashMap<>(

Map.of("o", "Orange", "a", "Apple", "w", "Watermelon")
);

System.out.println(fruits.get(a));

19) If you use a variable as an index in an array, this variable must contain
an integer value.

20) In order to calculate the sum of 20 numeric user-provided values, you
must use an array.

21) You can let the user enter a value into array b using the statement b[k]
= cin.nextLine()

22) The following statement creates a one-dimensional array of two empty
elements.
String[] names = new String[3];

23) The following code fragment assigns the value 10 to the element at
index 7.
values[5] = 7;
values[values[5]] = 10;

24) The following code fragment assigns the value “Sally” without the
double quotes to the element at index 2.
String[] names = new String[3];

names[2] = "John";
names[1] = "George";
names[0] = "Sally";

25) The following statement assigns the value “Sally” without the double
quotes to the element at index 2.
String[] names = {"John", "George", "Sally"};

26) The following code fragment displays “Sally”, without the double
quotes, on the screen.
String[] names = new String[3];
k = 0;
names[k] = "John";
k++;

names[k] = "George";
k++;
names[k] = "Sally";
k--;
System.out.println(names[k]);

27) The following code fragment is syntactically correct.
String[] names = {"John", "George", "Sally"};

System.out.println(names[]);

28) The following code fragment displays “Maria”, without the double
quotes, on the screen.
String[] names = {"John", "George", "Sally", "Maria"};
System.out.println(names[(int)Math.PI]);

29) The following code fragment satisfies the property of definiteness.
String[] grades = {"B+", "A+", "A"};
System.out.println(grades[3]);

30) The following code fragment satisfies the property of definiteness.
int[] v = {1, 3, 2, 9};
System.out.println(v[v[v[0]]]);

31) The following code fragment displays the value of 1 on the screen.
int[] v = {1, 3, 2, 0};
System.out.println(v[v[v[v[0]]]]);

32) The following code fragment displays all the elements of the array
names.
String[] names = {"John", "George", "Sally", "Maria"};

i = 1;
while (i < 4) {

System.out.println(names[i++]);

}

33) The following code fragment satisfies the property of definiteness.
String[] names = {"John", "George", "Sally", "Maria"};
for (i = 2; i <= 4; i++) {

System.out.println(names[i]);
}

34) The following code fragment lets the user enter 100 values into array b.
for (i = 0; i <= 99; i++) {

b[i] = Integer.parseInt(cin.nextLine());
}

35) If array b contains 30 elements (arithmetic values), the following code
fragment doubles the values of all of its elements.
for (i = 29; i >= 0; i--) {

b[i] = b[i] * 2;
}

36) It is possible to use a for-loop to double the values of some of the
elements of an array.

37) If array b contains 30 elements, the following code fragment displays
all of them.
for (i = 0; i < 29; i++) {

System.out.println(b[i]);
}

38) If b is a hashmap, the following code fragment displays all of its
elements.
for (int id : b.keySet()) {

System.out.println(b.get());
}

39) The following code fragment throws an error.
HashMap<String, String> fruits = new HashMap<>(

Map.of("O", "Orange", "A", "Apple", "W", "Watermelon")

);
System.out.println(fruits.get("Orange"));

31.14 Review Questions: Multiple Choice
Select the correct answer for each of the following statements.

1) The following statement
String() lastNames = new String[4];

a) contains a logic error.

b) contains a syntax error.
c) is a correct statement.
d) none of the above

2) The following code fragment
double x = 5;
values[x / 2] = 10;

a) does not satisfy the property of definiteness.
b) does not satisfy the property of finiteness.
c) does not satisfy the property of effectiveness.
d) none of the above

3) If variable x contains the value 4, the following statement
values[x + 1] = 5;

a) assigns the value 4 to the element at index 5.
b) assigns the value 5 to the element at index 4.
c) assigns the value 5 to the element at index 5.
d) none of the above

4) The following statement
int[] values = {5, 6, 9, 1, 1, 1};

a) assigns the value 5 to the element at index 1.
b) assigns the value 5 to the element at index 0.
c) does not satisfy the property of definiteness.
d) none of the above

5) The following code fragment
values[0] = 1;
values[values[0]] = 2;
values[values[1]] = 3;
values[values[2]] = 4;

a) assigns the value 4 to the element at index 3.
b) assigns the value 3 to the element at index 2.
c) assigns the value 2 to the element at index 1.
d) all of the above
e) none of the above

6) If array values contains numeric values, the following statement
System.out.println(values[values[1] - values[1 % 2]] - values[(int)(1 / 2)]);

a) does not satisfy the property of definiteness.
b) always displays 0.
c) always displays 1.
d) none of the above

7) You can iterate through a one-dimensional array with a for-loop that
uses
a) variable i as a counter.
b) variable j as a counter.
c) variable k as a counter.
d) any variable as a counter.

8) The following code fragment
String[] names = {"George", "John", "Maria", "Sally"};
for (i = 3; i >= 1; i--) {

System.out.println(names[i]);
}

a) displays all names in ascending order.
b) displays some names in ascending order.
c) displays all names in descending order.
d) displays some names in descending order.
e) none of the above

9) The following code fragment
String[] fruits = {"apple", "orange", "onion", "watermelon"};
System.out.println(fruits[1]);

a) displays: "orange"
b) displays: apple
c) displays: orange
d) throws an error because onion is not a fruit!
e) none of the above

10) If array b contains 30 elements (arithmetic values), the following code
fragment
for (i = 29; i >= 1; i--) {

b[i] = b[i] * 2;
}

a) doubles the values of some of its elements.
b) doubles the values of all of its elements.
c) none of the above

11) The following code fragment
HashMap<String, String> struct = new HashMap<>(

Map.of("firstName", "George", "lastName", "Miles", "age", "28")
);
for (String a : struct.keySet()) {

System.out.println(struct.get(a));
}

a) displays all the keys of the hashmap elements.
b) displays all the values of the hashmap elements.
c) displays all the key-value pairs of the hashmap elements.
d) none of the above

12) The following code fragment
HashMap<String, String> struct = new HashMap<>(

Map.of("firstName", "George", "lastName", "Miles", "age", "28")
);
for (String x : struct.keySet()) {

System.out.println(x);
}

a) displays all the keys of the hashmap elements.
b) displays all the values of the hashmap elements.
c) displays all the key-value pairs of the hashmap elements.
d) none of the above

13) The following code fragment
HashMap<Integer, String> tribes = new HashMap<>(

Map.of(0, "Navajo", 1, "Cherokee", 2, "Sioux", 3, "Apache")
);
for (i = 0; i <= 3; i++) {

System.out.println(tribes.get(i));

}

a) displays all the keys of the hashmap elements.
b) displays all the values of the hashmap elements.

c) displays all the key-value pairs of the hashmap elements.
d) none of the above

14) The following code fragment
HashMap<String, String> tribes = new HashMap<>(

Map.of("tribeA", "Navajo", "tribeB", "Cherokee", "tribeC", "Sioux")
);

for (String x : tribes.keySet()) {
tribes.put(x, tribes.get(x).toUpperCase());

}

a) converts all the keys of the hashmap elements to uppercase.
b) converts all the values of the hashmap elements to uppercase.
c) convert all the key-value pairs of the hashmap elements to

uppercase.
d) none of the above

31.15 Review Exercises
Complete the following exercises.

1) Design a data structure to hold the weights (in pounds) of five people,
and then add some typical values to the structure.

2) Design the necessary data structures to hold the names and the weights
(in pounds) of seven people, and then add some typical values to the
structures.

3) Design the necessary data structures to hold the names of five lakes as
well as the average area (in square miles) of each lake in June, July, and
August. Then add some typical values to the structures.

4) Design a data structure to hold the three dimensions (width, height, and
depth in inches) of 10 boxes. Then add some typical values to the
structure.

5) Design the necessary data structures to hold the names of eight lakes as
well as the average area (in square miles) and maximum depth (in feet)
of each lake. Then add some typical values to the structures.

6) Design the necessary data structures to hold the names of four lakes as
well as their average areas (in square miles) for the first week of June,
the first week of July, and the first week of August.

7) Create the trace table for the following code fragment.

int[] a = new int[3];
a[2] = 1;
x = 0;

a[x + a[2]] = 4;
a[x] = a[x + 1] * 4;

8) Create the trace table for the following code fragment.
int[] a = new int[5];
a[1] = 5;
x = 0;

a[x] = 4;
a[a[0]] = a[x + 1] % 3;
a[a[0] / 2] = 10;
x += 2;
a[x + 1] = a[x] + 9;

9) Create the trace table for the following code fragment for three different
executions.
The input values for the three executions are: (i) 3, (ii) 4, and (iii) 1.
int[] a = new int[4];

a[1] = Integer.parseInt(cin.nextLine());
x = 0;
a[x] = 3;
a[a[0]] = a[x + 1] % 2;
a[a[0] % 2] = 10;

x++;
a[x + 1] = a[x] + 9;

10) Create the trace table for the following code fragment for three different
executions.
The input values for the three executions are: (i) 100, (ii) 108, and (iii)
1.
int[] a = new int[4];
a[1] = Integer.parseInt(cin.nextLine());
x = 0;

a[x] = 3;
a[a[0]] = a[x + 1] % 10;
if (a[3] > 5) {

a[a[0] % 2] = 9;
x += 1;
a[x + 1] = a[x] + 9;

}
else {

a[2] = 3;
}

11) Fill in the gaps in the following trace table. In steps 6 and 7, fill in the
name of a variable; for all other cases, fill in constant values,
arithmetic, or comparison operators.

Step Statement x y a[0] a[1] a[2]

1 int[] a = new int[3] ? ? ? ? ?

2 x = …… 4 ? ? ? ?

3 y = x ‐ …… 4 3 ? ? ?

4, 5

if (x …… y)
a[0] = …… ;
else
a[0] = y;

4 3 1 ? ?

6 a[1] = …… + 3 4 3 1 7 ?

7 y = …… ‐ 1 4 2 1 7 ?

8 a[y] = (x + 5) …… 2 4 2 1 7 1

12) Create the trace table for the following code fragment.
int[] a = {17, 12, 45, 12, 12, 49};
for (i = 0; i <= 5; i++) {

if (a[i] == 12)

a[i]--;
else

a[i]++;
}

13) Create the trace table for the following code fragment.
int[] a = {10, 15, 12, 23, 22, 19};

for (i = 1; i <= 4; i++) {
a[i] = a[i + 1] + a[i - 1];

}

14) Try, without using a trace table, to determine the values that are
displayed when the following code fragment is executed.
HashMap<String, String> tribes = new HashMap<>(

Map.of("Indian-1", "Navajo","Indian-2", "Cherokee", "Indian-3", "Sioux",
"African-1", "Zulu", "African-2", "Maasai", "African-3", "Yoruba")

);
for (String x : tribes.keySet()) {

if (x.substring(0, 6).equals("Indian")) {

System.out.println(tribes.get(x));
}

}

15) Write a Java program that lets the user enter 100 numbers into an array
and then displays these values raised to the power of three.

16) Write a Java program that lets the user enter 80 numbers into an array.
Then, the program must raise the array values to the power of two, and
finally display them in the exact reverse of the order in which they were
provided.

17) Write a Java program that lets the user enter 90 integers into an array
and then displays those that are exactly divisible by 5 in the exact
reverse of the order in which they were provided.

18) Write a Java program that lets the user enter 50 integers into an array
and then displays those that are even or greater than 10.

19) Write a Java program that lets the user enter 30 numbers into an array
and then calculates and displays the sum of those that are positive.

20) Write a Java program that lets the user enter 50 integers into an array
and then calculates and displays the sum of those that have two digits.
Hint: All two-digit integers are between 10 and 99.

21) Write a Java program that lets the user enter 40 numbers into an array
and then calculates and displays the sum of the positive numbers and
the sum of the negative ones.

22) Write a Java program that lets the user enter 20 numbers into an array
and then calculates and displays their average value.

23) Write a Java program that prompts the user to enter 50 integer values
into an array. It then displays the indexes of the elements that contain
values lower than 20.

24) Write a Java program that prompts the user to enter 60 numeric values
into an array. It then displays the elements with even-numbered indexes
(that is, indexes 0, 2, 4, 6, and so on).

25) Write a Java program that prompts the user to enter 20 numeric values
into an array. It then calculates and displays the sum of the elements
that have even indexes.

26) Write a code fragment in Java that creates the following array of 100
elements.

27) Write a code fragment in Java that creates the following array of 100
elements.

28) Write a Java program that prompts the user to enter an integer N and
then creates and displays the following array of N elements. Using a
loop control structure, the program must also validate data input and
display an error message when the user enters any value less than 1.

29) Write a Java program that prompts the user to enter 10 numeric values
into an array and then displays the indexes of the elements that contain
integers.

30) Write a Java program that prompts the user to enter 50 numeric values
into an array and then counts and displays the total number of negative
elements.

31) Write a Java program that prompts the user to enter 50 words into an
array and then displays those that contain at least 10 characters.
Hint: Use the length() method.

32) Write a Java program that lets the user enter 30 words into an array. It
then displays those words that have less than 5 characters, then those
that have less than 10 characters, and finally those that have less than
20 characters.
Hint: Try to display the words using two for-loops nested one within the
other.

33) Write a Java program that prompts the user to enter 40 words into an
array and then displays those that contain the letter “w” at least twice.

34) Roman numerals are shown in the following table.

Digit Roman Numeral
(Tens digits)

Roman Numeral
(Ones digits)

1 X I

2 XX I

3 XXX III

4 XL IV

5 L V

6 LX VI

7 LXX VII

8 LXXX VIII

9 XC IX

Each Roman numeral is a combination of tens and ones digits. For
example, the Roman numeral representation of the number 45 is XLV
(4 tens represented by XL and 5 ones represented by V). Write a Java
program that prompts the user to enter an integer between 1 and 99 and
displays the corresponding Roman numeral. Assume that the user enters
a valid value.
Hint: Avoid checking each integer individually, as this would require a
multiple-alternative decision structure with 99 cases. Try to find a more
efficient and clever approach instead!

Chapter 32
Two-Dimensional Arrays

32.1 Creating Two-Dimensional Arrays in Java
A two-dimensional array is a data structure that can store values organized in
rows and columns. It allows you to efficiently represent and manipulate
tabular data. For instance, an array that can hold the grades of four lessons
for three students is as follows.

A two-dimensional array has rows and columns. In this particular
example, array grades has 3 rows and 4 columns.

Unlike some other programming languages, Java does not directly support
two-dimensional arrays. Java primarily supports only one-dimensional
arrays, but there is a trick you can use to work around this and create
multidimensional arrays: you can create an array of arrays! Think of the
grades array as a single-column array with three elements (one for each
student), each of which contains a completely new array of four elements
(one for each lesson), as follows.

In Java, a two-dimensional array is an array of arrays, a three-
dimensional array is an array of arrays of arrays, and so on.

As in one-dimensional arrays, there are many ways to create and add
elements (and values) to a two-dimensional array. Let's try to create the array
grades using the most common approaches.

First approach
To create an array and directly assign values to its elements, you can use the
next Java statement, given in general form.
type[][] array_name = {

{value0-0, value0-1, value0-2, …, value0-M},
{value1-0, value1-1, value1-2, …, value1-M},
{value2-0, value2-1, value2-2, …, value2-M},
…

{valueN-0, valueN-1, valueN-2, …, valueN-M}
};

where
► type can be int, double, String and so on.
► array_name is the name of the array.
► value0-0, value0-1, value0-2, …, valueN-M are the values of the array elements.

For this approach, you can create the array grades using the following
statement:
String[][] grades = {

{"B+", "A+", "A", "C-"},
{"B", "A", "C", "A+"},

{"B", "B", "B-", "B+"}
};

which can also be written in one line as
String[][] grades = {{"B+", "A+", "A", "C-"}, {"B", "A", "C", "A+"}, {"B", "B", "B-",
"B+"}};

Indexes are set automatically. The first value “B+” is assigned to the
element at row index 0 and column index 0, second value “A+” is assigned
to the element at row index 0 and column index 1, and so on.

Second approach
You can create a two-dimensional array with empty elements in Java using
the following statement, given in general form,
type[][] array_name = new type[number_of_rows][number_of_columns];

where
► type can be int, double, String and so on.
► array_name is the name of the array.
► number_of_rows and number_of_columns can be any positive integer value.

Then you can assign a value to an array element using the following
statement, given in general form:
array_name[row_index][column_index] = value;

where row_index and column_index are the row index and the column index
positions, respectively, of the element in the array.
The following code fragment creates the array grades with 12 empty
elements arranged in 3 rows and 4 columns and then assigns values to its
elements.
String[][] grades = new String[3][4];
grades[0][0] = "B+";
grades[0][1] = "A+";
grades[0][2] = "A";
grades[0][3] = "C-";

grades[1][0] = "B";
grades[1][1] = "A";

grades[1][2] = "C";
grades[1][3] = "A+";
grades[2][0] = "B";

grades[2][1] = "B";
grades[2][2] = "B-";
grades[2][3] = "B+";

32.2 How to Get Values from Two-Dimensional Arrays
A two-dimensional array consists of rows and columns. The following
example shows a two-dimensional array with three rows and four columns.

Each element of a two-dimensional array can be uniquely identified using a
pair of indexes: a row index, and a column index, as shown next.

array_name[row_index][column_index]

The following code fragment creates the two-dimensional array grades
having three rows and four columns, and then displays some of its elements.
String[][] grades = {

{"B+", "A+", "A", "C-"},
{"B", "A", "C", "D"},
{"B", "B", "B-", "B+"}

};
System.out.println(grades[1][2]); //It displays: C
System.out.println(grades[2][2]); //It displays: B-
System.out.println(grades[0][0]); //It displays: B+

Exercise 32.2-1 Creating the Trace Table
Create the trace table for the next code fragment.
int[][] a = {

{0, 0},
{0, 0},
{0, 0}

};
a[1][0] = 9;
a[0][1] = 1;

a[0][0] = a[0][1] + 6;
x = 2;
a[x][1] = a[0][0] + 4;

a[x - 1][1] = a[0][1] * 3;
a[x][0] = a[x - 1][1] - 3;

Solution

This code fragment uses a 3 × 2 array, that is, an array that has 3 rows and 2
columns. The trace table is as follows.

Step Statement Notes x a

1

int[][] a = {
{0, 0},
{0, 0},
{0, 0}
}

This creates the array a with zero
values in it. ?

0 0

0 0

0 0

2 a[1][0] = 9 ?

0 0

9 0

0 0

3 a[0][1] = 1 ?

0 1

9 0

0 0

4 a[0][0] = a[0][1] +
6

?

7 1

9 0

0 0

5 x = 2 2

7 1

9 0

0 0

6 a[x][1] = a[0][0] +
4

2 7 1

9 0

0 11

7 a[x − 1][1] = a[0]
[1] * 3

2

7 1

9 3

0 11

8 a[x][0] = a[x − 1]
[1] − 3

2

7 1

9 3

0 11

32.3 How to Iterate Through a Two-Dimensional Array
Since a two-dimensional array consists of rows and columns, a program can
iterate either through rows or through columns.

Iterating through rows
Iterating through rows means that row 0 is processed first, row 1 is process
next, row 2 afterwards, and so on. Next there is an example of a 3 × 4 array.
The arrows show the “path” that is followed when iteration through rows is
performed or in other words, they show the order in which the elements are
processed.

A 3 × 4 array is a two-dimensional array that has 3 rows and 4 columns.
In the notation Y × X, the first number (Y) always represents the total
number of rows and the second number (X) always represents the total
number of columns.

When iterating through rows, the elements of the array are processed as
follows:

► the elements of row 0 are processed in the following order
a[0][0] → a[0][1] → a[0][2] → a[0][3]

► the elements of row 1 are processed in the following order
a[1][0] → a[1][1] → a[1][2] → a[1][3]

► the elements of row 2 are processed in the following order
a[2][0] → a[2][1] → a[2][2] → a[2][3]

First approach
Using Java statements, let's try to process all elements of a 3 × 4 array (3
rows × 4 columns) iterating through rows.
i = 0; //Variable i refers to row 0.
for (j = 0; j <= 3; j++) { //This loop control structure processes all elements of row 0

process a[i][j];

}
i = 1; //Variable i refers to row 1.

for (j = 0; j <= 3; j++) { //This loop control structure processes all elements of row 1

process a[i][j];

}
i = 2; //Variable i refers to row 2.
for (j = 0; j <= 3; j++) { //This loop control structure processes all elements of row 2

process a[i][j];

}

Of course, the same results can be achieved using a nested loop control
structure as shown next.
for (i = 0; i <= 2; i++) {

for (j = 0; j <= 3; j++) {

process a[i][j];

}
}

Let's see some examples. The following code fragment lets the user enter 10
× 10 = 100 values into array b.
for (i = 0; i <= 9; i++) {

for (j = 0; j <= 9; j++) {
b[i][j] = cin.nextLine();

}
}

The following code fragment decreases all values of array b by one.
for (i = 0; i <= 9; i++) {

for (j = 0; j <= 9; j++) {
b[i][j]--; //Equivalent to: b[i][j] = b[i][j] − 1

}
}

The following code fragment displays all elements of array b.
for (i = 0; i <= 9; i++) {

for (j = 0; j <= 9; j++) {
System.out.print(b[i][j] + "\t");

}

System.out.println();
}

The System.out.println() statement is used to “display” a line break
between rows.

Second approach
There is also another approach that is very simple but not as flexible as the
previous one. There are cases where it cannot be used, as you will see below.
Following is a code fragment, written in general form
for (type[] row : array_name) {

for (type element : row) {

process element;

}
}

in which process is any Java statement or block of statements that processes
one element of the array at each iteration.
The following Java program, displays all elements of array b, one at each
iteration.
for (String[] row : b) {

for (String element : row) {

System.out.print(element + "\t");
}
System.out.println();

}

Keep in mind, though, that this approach cannot be used to alter the values
of the elements in an array. For example, if you wish to double the values of
all elements in the array numbers, you cannot do the following:
int[][] numbers = {

{5, 10, 3, 2},
{2, 4, 1, 6}

};

for (int[] x : numbers) {
for (int number : x) {

number = number * 2;
}

}

Iterating Through Columns
Iterating through columns means that column 0 is processed first, column 1
is processed next, column 2 afterwards, and so on. Next there is an example
of a 3 × 4 array. The arrows show the order in which the elements are
processed.

When iterating through columns, the elements of the array are processed as
follows:

► the elements of column 0 are processed in the following order
a[0][0] → a[1][0] → a[2][0]

► the elements of column 1 are processed in the following order
a[0][1] → a[1][1] → a[2][1]

► the elements of column 2 are processed in the following order
a[0][2] → a[1][2] → a[2][2]

► the elements of column 3 are processed in the following order
a[0][3] → a[1][3] → a[2][3]

Using Java statements, let's try to process all elements of a 3 × 4 array (3
rows × 4 columns) by iterating through columns.
j = 0; //Variable j refers to column 0.
for (i = 0; i <= 2; i++) { //This loop control structure processes all elements of
column 0

process a[i][j];

}

j = 1; //Variable j refers to column 1.
for (i = 0; i <= 2; i++) { //This loop control structure processes all elements of
column 1

process a[i][j];

}
j = 2; //Variable j refers to column 2.
for (i = 0; i <= 2; i++) { //This loop control structure processes all elements of
column 2

process a[i][j];

}

j = 3; //Variable j refers to column 3.
for (i = 0; i <= 2; i++) { //This loop control structure processes all elements of
column 3

process a[i][j];

}

Of course, the same result can be achieved using a nested loop control
structure as shown next.
for (j = 0; j <= 3; j++) {

for (i = 0; i <= 2; i++) {

process a[i][j];

}
}

As you can see, this code fragment differs at only one point from the one
that iterates through rows: the two for-loops have switched places. Be
careful though. Never switch the places of the two index variables i and j in
the statement process a[i][j]. Consider the following code fragment, for
example. It attempts to iterate through columns in a 3 × 4 array (3 rows × 4
columns) but it does not satisfy the property of definiteness. Can you find
out why?
for (j = 0; j <= 3; j++) {

for (i = 0; i <= 2; i++) {

process a[j][i];

}
}

The trouble arises when variable j becomes equal to 3. The statement process
a[j][i] tries to process the elements at row index 3 (this is the fourth row)
which, of course, does not exist! Still confused? Don't be! There is no row
index 3 in a 3 × 4 array! Since row index numbering starts at 0, only rows 0,
1, and 2 actually exist!

32.4 How to Add User-Entered Values to a Two-Dimensional
Array

Just as in one-dimensional arrays, instead of reading a value entered from
the keyboard and assigning that value to a variable, you can directly assign
that value to a specific array element. The following code fragment creates
the two-dimensional array names, prompts the user to enter six values, and
assigns those values to the elements of the array.
public static void main(String[] args) throws Exception {

String[][] names = new String[3][2];

System.out.print("Name for row 0, column 0: ");
names[0][0] = cin.nextLine();
System.out.print("Name for row 0, column 1: ");
names[0][1] = cin.nextLine();
System.out.print("Name for row 1, column 0: ");

names[1][0] = cin.nextLine();
System.out.print("Name for row 1, column 1: ");
names[1][1] = cin.nextLine();
System.out.print("Name for row 2, column 0: ");
names[2][0] = cin.nextLine();

System.out.print("Name for row 2, column 1: ");
names[2][1] = cin.nextLine();

…

Using nested for-loops, this code fragment can equivalently be written as
static final int ROWS = 3;
static final int COLUMNS = 2;
public static void main(String[] args) throws Exception {

int i, j;
String[][] names = new String[ROWS][COLUMNS];
for (i = 0; i <= ROWS - 1; i++) {

for (j = 0; j <= COLUMNS - 1; j++) {
System.out.print("Name for row " + i + ", column " + j + ": ");

names[i][j] = cin.nextLine();
}

}
…

Exercise 32.4-1 Displaying Reals Only
Write a Java program that prompts the user to enter numeric values in a 5 ×
7 array and then displays the indexes of the elements that contain reals.

Solution

Iterating through rows is the most popular approach, so let's use it. The
solution is as follows.

 Project_32.4-1
static final int ROWS = 5;
static final int COLUMNS = 7;
public static void main(String[] args) throws Exception {

int i, j;
double[][] a = new double[ROWS][COLUMNS];

for (i = 0; i <= ROWS - 1; i++) {
for (j = 0; j <= COLUMNS - 1; j++) {

System.out.print("Enter a value for element " + i + ", " + j + ": ");
a[i][j] = Double.parseDouble(cin.nextLine());

}

}
for (i = 0; i <= ROWS - 1; i++) {

for (j = 0; j <= COLUMNS - 1; j++) {
if (a[i][j] != (int)(a[i][j])) { //Check if it is real (float)

System.out.println("A real found at position: " + i + ", " + j);
}

}
}

}

Exercise 32.4-2 Displaying Odd Columns Only

Write a Java program that prompts the user to enter numeric values in a 5 ×
7 array and then displays the elements of the columns with odd-numbered
indexes (that is, column indexes 1, 3, and 5).

Solution

The Java program is presented next.
 Project_32.4-2

static final int ROWS = 5;

static final int COLUMNS = 7;
public static void main(String[] args) throws Exception {

int i, j;
double[][] a = new double[ROWS][COLUMNS];
for (i = 0; i <= ROWS - 1; i++) {

for (j = 0; j <= COLUMNS - 1; j++) {
System.out.print("Enter a value for element " + i + ", "+ j + ": ");
a[i][j] = Double.parseDouble(cin.nextLine());

}
}
//Iterate through columns

for (j = 1; j <= COLUMNS - 1; j += 2) { //Start from 1 and increment by 2
for (i = 0; i <= ROWS - 1; i++) {

System.out.print(a[i][j] + " ");
}

}

}

This book tries to use, as often as possible, variable i as the row index
and variable j as the column index. Of course, you can use other variable
names as well, such as row, r for row index, or column, c for column index, but
variables i and j are widely used by the majority of programmers. After
using them for a while, your brain will relate i to rows and j to columns.
Thus, every algorithm or program that uses these variable names as indexes
in two-dimensional arrays will be more readily understood.

32.5 What's the Story on Variables i and j?
Many programmers believe that the name i stands for “index” and j is used
just because it is after i. Others believe that the name i stands for “integer”.
Probably the truth lies somewhere in the middle.
Mathematicians were using i, j, and k to designate integers in mathematics
long before computers were around. Later, in FORTRAN, one of the first

high-level computer languages, variables i, j, k, l, m, and n were integers by
default. Thus, the first programmers picked up the habit of using variables i
and j in their programs and it became a convention in most computer
languages.

32.6 Square Matrices
In mathematics, a matrix that has the same number of rows and columns is
called a square matrix. Following are some examples of square matrices.

Exercise 32.6-1 Finding the Sum of the Elements on the Main Diagonal
Write a Java program that lets the user enter numeric values into a 10 × 10
array and then calculates the sum of the elements on its main diagonal.

Solution

In mathematics, the main diagonal of a square matrix is the collection of
those elements that runs from the top left corner to the bottom right corner.
Following are some examples of square matrices with their main diagonals
highlighted by a dark background.

Note that the elements on the main diagonal have their row index equal
to their column index.

You can calculate the sum of the elements on the main diagonal using two
different approaches. Let's study them both.

First approach – Iterating through all elements
In this approach, the program iterates through rows and checks if the row
index is equal to the column index. For square matrices (in this case, arrays)
represented as N × N, the number of rows and columns is equal, so you can
define just one constant, N. The solution is as follows.

 Project_32.6-1a
static final int N = 10;

public static void main(String[] args) throws Exception {
int i, j;
double total;
double[][] a = new double[N][N];
for (i = 0; i <= N - 1; i++) {

for (j = 0; j <= N - 1; j++) {

a[i][j] = Double.parseDouble(cin.nextLine());
}

}

//Calculate the sum
total = 0;
for (i = 0; i <= N - 1; i++) {

for (j = 0; j <= N - 1; j++) {
if (i == j) {

total += a[i][j]; //This is equivalent to: total = total + a[i][j]
}

}
}
System.out.println("Sum = " + total);

}

Note that the program iterates through rows and checks if the row index
is equal to the column index. Alternatively, the same result can be achieved
by iterating through columns.

In this approach, the nested loop control structure that is responsible for
calculating the sum performs 10 × 10 = 100 iterations.

Second approach – Iterating directly through the main diagonal
In this approach, one single loop control structure iterates directly through
the main diagonal. The solution is as follows.

 Project_32.6-1b
static final int N = 10;
public static void main(String[] args) throws Exception {

int i, j, k;

double total;
double[][] a = new double[N][N];
for (i = 0; i <= N - 1; i++) {

for (j = 0; j <= N - 1; j++) {
a[i][j] = Double.parseDouble(cin.nextLine());

}
}
//Calculate the sum
total = 0;
for (k = 0; k <= N - 1; k++) {

total += a[k][k];

}
System.out.println("Sum = " + total);

}

This approach is much more efficient than the first one since the total
number of iterations performed by the for-loop that is responsible for
calculating the sum is just 10.

Exercise 32.6-2 Finding the Sum of the Elements on the Antidiagonal
Write a Java program that lets the user enter numeric values in a 5 × 5
array and then calculates the sum of the elements on its antidiagonal.

Solution

In mathematics, the antidiagonal of a square matrix is the collection of those
elements that runs from the top right corner to the bottom left corner of the
array. Next, you can find an example of a 5 × 5 square matrix with its
antidiagonal highlighted by a dark background.

The indexes of any element on the antidiagonal of an N × N array satisfy the
following equation:

i + j = N - 1

where variables i and j correspond to the row and column indexes
respectively.
If you solve for j, the equation becomes:

j = N - i - 1

Using this formula, you can calculate the indexes of any element on the
antidiagonal; that is, for any value of variable i, you can find the
corresponding value of variable j. For example, in the previous 5 × 5 square
array where N equals 5, when i is 3 the value of variable j is:

j = N - i - 1 ⟺ j = 5 − 3 − 1 ⟺ j = 1

Using all this knowledge, let's now write the corresponding Java program.
 Project_32.6-2

static final int N = 5;

public static void main(String[] args) throws Exception {
int i, j;
double total;
double[][] a = new double[N][N];
for (i = 0; i <= N - 1; i++) {

for (j = 0; j <= N - 1; j++) {
a[i][j] = Double.parseDouble(cin.nextLine());

}
}
//Calculate the sum
total = 0;

for (i = 0; i <= N - 1; i++) {
j = N - i - 1; //Equivallent to:
total += a[i][j]; //total += a[i][N - i - 1];

}
System.out.println("Sum = " + total);

}

Note that the for-loop that is responsible for finding the sum of the
elements on the antidiagonal iterates directly through the antidiagonal.

Exercise 32.6-3 Filling in the Array
Write a Java program that creates and displays the following array.

Solution

As you can see, there is the value of −1 in the main diagonal. You already
know that the common characteristic between the elements of the main
diagonal of a square matrix is that they have their row index equal to their
column index. Now, what you also need is to find a common characteristic
between all elements that contain the value 10, and another such common
characteristic between all elements that contain the value 20. And actually
there are! The row index of any element containing the value 10 is, in every
case, greater than its corresponding column index, and similarly, the row
index of any element containing the value 20 is, in every case, less than its
corresponding column index.
Accordingly, the Java program is as follows.

 Project_32.6-3
static final int N = 5;

public static void main(String[] args) throws Exception {
int i, j;
int[][] a = new int[N][N];
for (i = 0; i <= N - 1; i++) {

for (j = 0; j <= N - 1; j++) {

if (i == j) {
a[i][j] = -1;

}
else if (i > j) {

a[i][j] = 10;
}

else {
a[i][j] = 20;

}
}

}

for (i = 0; i <= N - 1; i++) {
for (j = 0; j <= N - 1; j++) {

System.out.print(a[i][j] + "\t");
}
System.out.println();

}
}

32.7 Review Questions: True/False
Choose true or false for each of the following statements.

1) All the elements of a two-dimensional array must contain different
values.

2) In order to refer to an element of a two-dimensional array you need two
indexes.

3) The two indexes of a two-dimensional array must be either both
variables, or both constant values.

4) A 5 × 6 array is a two-dimensional array that has five columns and six
rows.

5) To refer to an element of array b that exists at the second row and third
column, you would write b[2][3].

6) Iterating through rows means that first row of a two-dimensional array
is processed first, the second row is process next, and so on.

7) You cannot use variables other than i and j to iterate through a two-
dimensional array.

8) The following Java statement creates a two-dimensional array.
int[][] names = new int[3][7];

9) The following code fragment creates a two-dimensional array of four
elements and assigns values to them.
String[][] names = new String[2][2];
names[0][0] = "John";

names[0][1] = "George";
names[1][0] = "Sally";
names[1][1] = "Angelina";

10) The following code fragment assigns the value 10 to an element that
exists in the row with index 0.
values[0][0] = 7;
values[0][values[0][0]] = 10;

11) The following statement adds the name “Sally” to an element that exists
in the row with index 1.
String[][] names = {{"John", "George"}, {"Sally", "Angelina"}};

12) The following code fragment displays the name “Sally” on the screen.
String[][] names = new String[2][2];
k = 0;
names[0][k] = "John";
k++;
names[0][k] = "George";

names[1][k] = "Sally";
k--;
names[1][k] = "Angelina";

System.out.println(names[1][1]);

13) The following code fragment satisfies the property of definiteness.
String[][] grades = {{"B+", "A+"}, {"A", "C-"}};
System.out.println(grades[2][2]);

14) The following code fragment satisfies the property of definiteness.
int[][] values = {{1, 0}, {2, 0}};
System.out.println(values[values[0][0]][values[0][1]]);

15) The following code fragment displays the value 2 on the screen.
int[][] values = {{0, 1}, {2, 0}};
System.out.println(values[values[0][1]][values[0][0]]);

16) The following code fragment displays all the elements of a 3 × 4 array.
for (k = 0; k <= 11; k++) {

i = (int)(k / 4);
j = k % 4;
System.out.println(names[i][j]);

}

17) The following code fragment lets the user enter 100 values into array b.
for (i = 0; i <= 9; i++) {

for (j = 0; j <= 9; j++) {

b[i][j] = cin.nextLine();
}

}

18) If array b contains 10 × 20 elements, the following code fragment
doubles the values of all of its elements.
for (i = 9; i >= 0; i--) {

for (j = 19; j >= 0; j--) {

b[i][j] *= 2;
}

19) If array b contains 10 × 20 elements, the following code fragment
displays some of them.
for (i = 0; i <= 8; i += 2) {

for (j = 0; j <= 19; j++) {
System.out.println(b[i][j]);

}
}
for (i = 1; i <= 9; i += 2) {

for (j = 0; j <= 19; j++) {
System.out.println(b[i][j]);

}

}

20) The following code fragment displays only the columns with even-
numbered indexes.
for (j = 0; j <= 10; j += 2) {

for (i = 0; i <= 9; i++) {
System.out.println(a[i][j]);

}
}

21) A 5 × 5 array is a square array.
22) In the main diagonal of a N × N array, all elements have their row index

equal to their column index.
23) In mathematics, the antidiagonal of a square matrix is the collection of

those elements that runs from the top left corner to the bottom right
corner of the array.

24) Any element on the antidiagonal of an N × N array satisfies the
equation i + j = N − 1, where variables i and j correspond to the row
and column indexes respectively.

25) The following code fragment calculates the sum of the elements on the
main diagonal of a N × N array.
total = 0;
for (k = 0; k <= N - 1; k++) {

total += a[k][k];

}

26) The following code fragment displays all the elements of the
antidiagonal of an N × N array.
for (i = N - 1; i >= 0; i--) {

System.out.println(a[i][N - i - 1]);
}

27) The column index of any element of a N × N array that is below the
main diagonal is always greater than its corresponding row index.

32.8 Review Questions: Multiple Choice
Select the correct answer for each of the following statements.

1) The following statement
String lastNames = String[5][4];

a) contains logic error(s).
b) contains syntax error(s).

c) is a correct statement.
d) none of the above

2) The following code fragment
int[][] values = {{1, 0} {2, 0}};
System.out.println(values[values[0][0], values[0][1]]);

a) contains logic error(s).
b) contains syntax error(s).
c) none of the above

3) The following code fragment
x = Integer.parseInt(cin.nextLine());

y = Integer.parseInt(cin.nextLine());
names[x][y] = 10;

a) does not satisfy the property of finiteness.
b) does not satisfy the property of effectiveness.
c) does not satisfy the property of definiteness.
d) none of the above

4) If variable x contains the value 4, the following statement
names[x + 1][x] = 5;

a) assigns the value 5 to the element with row index 5 and column
index 4.

b) assigns the value 5 to the element with row index 4 and column
index 5.

c) assigns the value 5 to the element with row index 5 and column
index 5.

d) none of the above
5) The following statement

int[][] names = {{3, 5, 2}};

a) assigns the value 5 to the element with row index 0 and column
index 1.

b) assigns the value 3 to the element with row index 0 and column
index 0.

c) assigns the value 2 to the element with row index 0 and column
index 2.

d) all of the above
e) none of the above

6) The following statement
int[][] values = new int[1][2];

a) creates a 1 × 2 array.
b) creates a 2 × 1 array.
c) creates a one-dimensional array.
d) none of the above

7) You can iterate through a two-dimensional array with two nested loop
control structures that use
a) variables i and j as counters.
b) variables k and l as counters.
c) variables m and n as counters.
d) any variables as counters.

8) The following code fragment
String[][] names = {{"John", "Sally"}, {"George", "Maria"}};
for (j = 0; j <= 1; j++) {

for (i = 1; i >= 0; i--) {
System.out.println(names[i][j]);

}
}

a) displays all names in descending order.
b) displays some names in descending order.
c) displays all names in ascending order.
d) displays some names in ascending order.
e) none of the above

9) If array b contains 30 × 40 elements, the following code fragment
for (i = 30; i >= 1; i--) {

for (j = 40; j >= 1; j--) {
b[i][j] *= 3;

}
}

a) triples the values of some of its elements.
b) triples the values of all of its elements.

c) does not satisfy the property of definiteness.
d) none of the above

10) If array b contains 30 × 40 elements, the following code fragment
total = 0;
for (i = 29; i >= 0; i--) {

for (j = 39; j >= 0; j--) {

total += b[i][j];
}

}
average = total / 120;

a) calculates the sum of all of its elements.
b) calculates the average value of all of its elements.
c) all of the above

11) The following two code fragments calculate the sum of the elements on
the main diagonal of an N × N array,
total = 0;

for (i = 0; i <= N - 1; i++) {
for (j = 0; j <= N - 1; j++) {

if (i == j) {
total += a[i][j];

}
}

}
total = 0;
for (k = 0; k <= N - 1; k++) {

total += a[k][k];
}

a) but the first one is more efficient.
b) but the second one is more efficient.
c) none of the above; both code fragments perform equivalently

32.9 Review Exercises
Complete the following exercises.

1) Create the trace table for the following code fragment.
int[][] a = new int[2][3];

a[0][2] = 1;
x = 0;
a[0][x] = 9;
a[0][x + a[0][2]] = 4;

a[a[0][2]][2] = 19;
a[a[0][2]][x + 1] = 13;
a[a[0][2]][x] = 15;

2) Create the trace table for the following code fragment.
int[][] a = new int[2][3];
for (i = 0; i <= 1; i++) {

for (j = 0; j <= 2; j++) {
a[i][j] = (i + 1) * 5 + j;

}

}

3) Create the trace table for the following code fragment.
int[][] a = new int[3][3];
for (j = 0; j <= 2; j++) {

for (i = 0; i <= 2; i++) {
a[i][j] = (i + 1) * 2 + j * 4;

}

}

4) Try, without using a trace table, to determine the values that the array
will contain when the following code fragment is executed. Do this for
three different executions. The corresponding input values are: (i) 5, (ii)
9, and (iii) 3.
int[][] a = new int[2][3];
x = Integer.parseInt(cin.nextLine());
for (i = 0; i <= 1; i++) {

for (j = 0; j <= 2; j++) {

a[i][j] = (x + i) * j;
}

}

5) Try, without using a trace table, to determine the values that the array
will contain when the following code fragment is executed. Do this for
three different executions. The corresponding input values are: (i) 13,
(ii) 10, and (iii) 8.
int[][] a = new int[2][3];
x = Integer.parseInt(cin.nextLine());

for (i = 0; i <= 1; i++) {
for (j = 0; j <= 2; j++) {

if (j < x % 4)
a[i][j] = (x + i) * j;

else
a[i][j] = (x + j) * i + 3;

}

}

6) Try, without using a trace table, to determine the values that the array
will contain when the following code fragment is executed.
double[][] a = {{18, 10, 35}, {32, 12, 19}};
for (j = 0; j <= 2; j++) {

for (i = 0; i <= 1; i++) {
if (a[i][j] < 13)

a[i][j] /= 2;
else if (a[i][j] < 20)

a[i][j]++;

else
a[i][j] -= 4;

}
}

7) Try, without using a trace table, to determine the values that the array
will contain when the following code fragment is executed.
int[][] a = {{11, 10}, {15, 19}, {22, 15}};
for (j = 0; j <= 1; j++) {

for (i = 0; i <= 2; i++) {
if (i == 2)

a[i][j] += a[i - 1][j];
else

a[i][j] += a[i + 1][j];

}
}

8) Assume that array a contains the following values.

What displays on the screen after executing each of the following code
fragments?

i)
for (i = 0; i <= 2; i++) {

for (j = 0; j <= 2; j++) {

System.out.print(a[i][j]);
System.out.print(" ");

}

}

ii)
for (i = 2; i >= 0; i--) {

for (j = 0; j <= 2; j++) {
System.out.print(a[i][j]);
System.out.print(" ");

}
}

iii)
for (i = 0; i <= 2; i++) {

for (j = 2; j >= 0; j--) {
System.out.print(a[i][j]);
System.out.print(" ");

}
}

iv)
for (i = 2; i >= 0; i--) {

for (j = 2; j >= 0; j--) {
System.out.print(a[i][j]);

System.out.print(" ");
}

}

v)
for (j = 0; j <= 2; j++) {

for (i = 0; i <= 2; i++) {

System.out.print(a[i][j]);
System.out.print(" ");

}
}

vi)
for (j = 0; j <= 2; j++) {

for (i = 2; i >= 0; i--) {

System.out.print(a[i][j]);
System.out.print(" ");

}
}

vii)
for (j = 2; j >= 0; j--) {

for (i = 0; i <= 2; i++) {
System.out.print(a[i][j]);
System.out.print(" ");

}
}

viii)
for (j = 2; j >= 0; j--) {

for (i = 2; i >= 0; i--) {
System.out.print(a[i][j]);

System.out.print(" ");
}

}

9) Write a Java program that lets the user enter integer values in a 10 × 15
array and then displays the indexes of the elements that contain odd
numbers.

10) Write a Java program that lets the user enter numeric values in a 10 × 6
array and then displays the elements of the columns with even-
numbered indexes (that is, column indexes 0, 2, and 4).

11) Write a Java program that lets the user enter numeric values in a 12 × 8
array and then calculates and displays the sum of the elements that have
even column indexes and odd row indexes.

12) Write a Java program that lets the user enter numeric values in an 8 × 8
square array and then calculates the average value of the elements on its
main diagonal and the average value of the elements on its antidiagonal.
Try to calculate both average values within the same loop control
structure.

13) Write a Java program that creates and displays the following array.

14) Write a Java program that creates and displays the following array.

15) Write a Java program that lets the user enter numeric values in a 5 × 4
array and then displays the row and column indexes of the elements that
contain integers.

16) Write a Java program that lets the user enter numeric values in a 10 × 4
array and then counts and displays the total number of negative
elements.

17) Write a Java program that lets the user enter words in a 3 × 4 array and
then displays them with a space character between them.

18) Write a Java program that lets the user enter words in a 20 × 14 array
and then displays those who have less than five characters.
Hint: Use the length() method.

19) Write a Java program that lets the user enter words in a 20 × 14 array
and displays those that have less than 5 characters, then those that have
less than 10 characters, and finally those that have less than 20
characters.
Hint: Try to display the words using three for-loops nested one within
the other.

Chapter 33
Tips and Tricks with Data Structures

33.1 Introduction
Since arrays are handled with the same sequence, decision, and loop control
structures that you learned about in previous chapters, there is no need to
repeat all of that information here. However, what you will discover in this
chapter is how to process each row or column of a two-dimensional array
individually, how to solve problems that require the use of more than one
array, how to create a two-dimensional array from a one-dimensional array
(and vice versa), and some useful built-in array methods that Java supports.

33.2 Processing Each Row Individually
Processing each row individually means that every row is processed
separately and the result of each row (which can be the sum, the average
value, and so on) can be used individually for further processing.
Suppose you have the following 4 × 5 array.

Let's try to find the sum of each row individually. Both of the following
approaches iterate through rows.

First approach – Creating an auxiliary array
In this approach, the program processes each row individually and creates an
auxiliary array in which each element stores the sum of one row. This
approach gives you much flexibility since you can use this new array later in
your program for further processing. The auxiliary array total is shown on
the right.

Now, let's write the corresponding code fragment. To more easily understand
the process, the “from inner to outer” method is used. The following code
fragment calculates the sum of the first row (row index 0) and stores the
result in the element at position 0 of the auxiliary array total. Assume
variable i contains the value 0.
s = 0;
for (j = 0; j <= COLUMNS - 1; j++) {

s += b[i][j];
}

total[i] = s;

This code fragment can equivalently be written as
total[i] = 0;
for (j = 0; j <= COLUMNS - 1; j++) {

total[i] += b[i][j];
}

Now, nesting this code fragment in a for-loop that iterates for all rows results
in the following.
for (i = 0; i <= ROWS - 1; i++) {

total[i] = 0;
for (j = 0; j <= COLUMNS - 1; j++) {

total[i] += b[i][j];
}

}

Second approach – Just find it and process it.
This approach uses no auxiliary array; it just calculates and directly
processes the sum. The code fragment is as follows.
for (i = 0; i <= ROWS - 1; i++) {

total = 0;

for (j = 0; j <= COLUMNS - 1; j++) {
total += b[i][j];

}

process total;

}

What does process total mean? It depends on the given problem. It may just
display the sum, it may calculate the average value of each individual row
and display it, or it may use the sum for calculating even more complex
mathematical expressions.
For instance, the following example calculates and displays the average
value of each row of array b.
for (i = 0; i <= ROWS - 1; i++) {

total = 0;
for (j = 0; j <= COLUMNS - 1; j++) {

total += b[i][j];
}
average = total / COLUMNS;

System.out.println(average);
}

Exercise 33.2-1 Finding the Average Value
There are 20 students and each one of them has received their grades for 10
lessons. Write a Java program that prompts the user to enter the grades of
each student for all lessons and then calculates and displays, for each
student, all average values that are greater than 89.

Solution

Since you've learned two approaches for processing each row individually,
let's use them both.

First approach – Creating an auxiliary array
In this approach, the program processes each row individually and creates an
auxiliary array in which each element stores the average value of one row.
The two required arrays are shown next.

After the array average is created, the program can find and display all
average values that are greater than 89. The Java program is as follows.

 Project_33.2-1a
static final int STUDENTS = 20;
static final int LESSONS = 10;
public static void main(String[] args) throws Exception {

int i, j;
int[][] grades = new int[STUDENTS][LESSONS];

for (i = 0; i <= STUDENTS - 1; i++) {
System.out.println("For student No. " + (i + 1) + "...");
for (j = 0; j <= LESSONS - 1; j++) {

System.out.print("enter grade for lesson No. " + (j + 1) + ": ");
grades[i][j] = Integer.parseInt(cin.nextLine());

}

}
//Create array average. Iterate through rows
double[] average = new double[STUDENTS];
for (i = 0; i <= STUDENTS - 1; i++) {

average[i] = 0;

for (j = 0; j <= LESSONS - 1; j++) {
average[i] += grades[i][j];

}
average[i] /= LESSONS;

}

//Display all average values that are greater than 89
for (i = 0; i <= STUDENTS - 1; i++) {

if (average[i] > 89) {
System.out.println(average[i]);

}
}

}

Second approach – Just find it and display it!
This approach uses no auxiliary array; it just calculates and directly displays
all average values that are greater than 89. The Java program is as follows.

 Project_33.2-1b
static final int STUDENTS = 20;

static final int LESSONS = 10;
public static void main(String[] args) throws Exception {

int i, j;
double average;
int[][] grades = new int[STUDENTS][LESSONS];

for (i = 0; i <= STUDENTS - 1; i++) {
System.out.println("For student No. " + (i + 1) + "...");
for (j = 0; j <= LESSONS - 1; j++) {

System.out.print("enter grade for lesson No. " + (j + 1) + ": ");
grades[i][j] = Integer.parseInt(cin.nextLine());

}

}
//Calculate the average value of each row and directly display those who are greater
than 89
for (i = 0; i <= STUDENTS - 1; i++) {

average = 0;

for (j = 0; j <= LESSONS - 1; j++) {
average += grades[i][j];

}
average /= LESSONS;
if (average > 89) {

System.out.println(average);
}

}
}

33.3 Processing Each Column Individually
Processing each column individually means that every column is processed
separately and the result of each column (which can be the sum, the average
value, and so on) can be used individually for further processing. Suppose
you have the following 4 × 5 array.

As before, let's try to find the sum of each column individually. Yet again,
there are two approaches that you can use. Both of these approaches iterate
through columns.

First approach – Creating an auxiliary array
In this approach, the program processes each column individually and
creates an auxiliary array in which each element stores the sum of one
column. This approach gives you much flexibility since you can use this new
array later in your program for further processing. The auxiliary array total
is shown at the bottom.

Now, let's write the corresponding code fragment. To more easily understand
the process, the “from inner to outer” method is used again. The following
code fragment calculates the sum of the first column (column index 0) and
stores the result in the element at position 0 of the auxiliary array total.
Assume variable j contains the value 0.

s = 0;
for (i = 0; i <= ROWS - 1; i++) {

s += b[i][j];

}
total[j] = s;

This program can equivalently be written as
total[j] = 0;
for (i = 0; i <= ROWS - 1; i++) {

total[j] += b[i][j];

}

Now, nesting this code fragment in a for-loop that iterates for all columns
results in the following.
for (j = 0; j <= COLUMNS - 1; j++) {

total[j] = 0;
for (i = 0; i <= ROWS - 1; i++) {

total[j] += b[i][j];
}

}

Second approach – Just find it and process it.
This approach uses no auxiliary array; it just calculates and directly
processes the sum. The code fragment is as follows.
for (j = 0; j <= COLUMNS - 1; j++) {

total = 0;
for (i = 0; i <= ROWS - 1; i++) {

total += b[i][j];

}

process total;

}

Accordingly, the following code fragment calculates and displays the
average value of each column.
for (j = 0; j <= COLUMNS - 1; j++) {

total = 0;
for (i = 0; i <= ROWS - 1; i++) {

total += b[i][j];
}

System.out.println(total / ROWS);
}

Exercise 33.3-1 Finding the Average Value

There are 10 students and each one of them has received their grades for five
lessons. Write a Java program that prompts the user to enter the grades of
each student for all lessons and then calculates and displays, for each
lesson, all average values that are greater than 89.

Solution

Since you've learned two approaches for processing each column
individually, let's use them both.

First approach – Creating an auxiliary array
In this approach, the program processes each column individually and
creates an auxiliary array in which each element stores the average value of
one column. The two required arrays are shown next.

After the array average is created, the program can find and display all
average values that are greater than 89. The Java program is as follows.

 Project_33.3-1a
static final int STUDENTS = 10;

static final int LESSONS = 5;
public static void main(String[] args) throws Exception {

int i, j;
int[][] grades = new int[STUDENTS][LESSONS];

for (i = 0; i <= STUDENTS - 1; i++) {
System.out.println("For student No. " + (i + 1) + "...");
for (j = 0; j <= LESSONS - 1; j++) {

System.out.print("enter grade for lesson No. " + (j + 1) + ": ");
grades[i][j] = Integer.parseInt(cin.nextLine());

}
}
//Create array average. Iterate through columns

double[] average = new double[LESSONS];
for (j = 0; j <= LESSONS - 1; j++) {

average[j] = 0;
for (i = 0; i <= STUDENTS - 1; i++) {

average[j] += grades[i][j];
}

average[j] /= STUDENTS;
}
//Display all average values than are greater than 89
for (j = 0; j <= LESSONS - 1; j++) {

if (average[j] > 89) {

System.out.println(average[j]);
}

}
}

Second approach – Just find it and display it!
This approach uses no auxiliary array; it just calculates and directly displays
all average values that are greater than 89. The Java program is as follows.

 Project_33.3-1b
static final int STUDENTS = 10;
static final int LESSONS = 5;
public static void main(String[] args) throws Exception {

int i, j;
double average;

int[][] grades = new int[STUDENTS][LESSONS];
for (i = 0; i <= STUDENTS - 1; i++) {

System.out.println("For student No. " + (i + 1) + "...");
for (j = 0; j <= LESSONS - 1; j++) {

System.out.print("enter grade for lesson No. " + (j + 1) + ": ");

grades[i][j] = Integer.parseInt(cin.nextLine());
}

}
//Calculate the average value of each column
//and directly display those who are greater than 89

for (j = 0; j <= LESSONS - 1; j++) {
average = 0;

for (i = 0; i <= STUDENTS - 1; i++) {
average += grades[i][j];

}

average /= STUDENTS;
if (average > 89) {

System.out.println(average);
}

}

}

33.4 How to Use More Than One Data Structures in a Program
So far, every example or exercise has used just one array or one hashmap.
But what if a problem requires you to use two arrays, or one array and one
hashmap, or one array and two hashmaps? Next you will find some exercises
that show you how various data structures can be combined to tackle a
variety of unique challenges.

Exercise 33.4-1 Using Three One-Dimensional Arrays
There are 20 students and each one of them has received grades for two
lessons. Write a Java program that prompts the user to enter the name and
grades of each student for both lessons. The program must then find and
display the names of all students who have grades greater than 89 for both
lessons.

Solution

Following are the required arrays containing some typical values.

As you can see, there is a one-to-one correspondence between the elements
in the array names and those in the arrays gradesLesson1, and
gradesLesson2. The first of the twenty students is George, and he received
grades of 95 and 92 for the two lessons. The name “George” is stored at
index 0 of the array names, and at exactly the same index in the arrays
gradesLesson1 and gradesLesson2, his grades for the two lessons are stored.

The next student (Anna) and her grades are stored at index 1 of the arrays
names, gradesLesson1, and gradesLesson2, respectively, and so on.
The Java program is as follows.

 Project_33.4-1
static final int STUDENTS = 20;

public static void main(String[] args) throws Exception {
int i;
String[] names = new String[STUDENTS];
int[] gradesLesson1 = new int[STUDENTS];
int[] gradesLesson2 = new int[STUDENTS];

for (i = 0; i <= STUDENTS - 1; i++) {
System.out.print("Enter student name No" + (i + 1) + ": ");
names[i] = cin.nextLine();
System.out.print("Enter grade for lesson 1: ");
gradesLesson1[i] = Integer.parseInt(cin.nextLine());
System.out.print("Enter grade for lesson 2: ");

gradesLesson2[i] = Integer.parseInt(cin.nextLine());
}
//Display the names of those who have grades greater than 89 for both lessons
for (i = 0; i <= STUDENTS - 1; i++) {

if (gradesLesson1[i] > 89 && gradesLesson2[i] > 89) {

System.out.println(names[i]);
}

}
}

Exercise 33.4-2 Using a One-Dimensional Array Along with a Two-
Dimensional Array

There are 10 students and each one of them has received their grades for five
lessons. Write a Java program that prompts the user to enter the name of
each student and the grades for all lessons and then calculates and displays
the names of the students who have more than one grade greater than 89.

Solution

In this exercise, you could do what you did in the previous one. You could,
for example, use a one-dimensional array to store the names of the students
and five one-dimensional arrays to store the grades for each student for each
lesson. Not very convenient, but it could work. Obviously, when there are
more than two grades, this is not the most suitable approach.
The best approach here is to use a one-dimensional array to store the names
of the students and a two-dimensional array to store the grades for each

student for each lesson.
There are actually two approaches. Which one to use depends clearly on
you! If you decide that, in the two-dimensional array, the rows should refer
to students and the columns should refer to lessons then you can use the first
approach discussed below. If you decide that the rows should refer to lessons
and the columns should refer to students then you can use the second
approach that follows.

First approach – Rows for students, columns for lessons
In this approach, the two-dimensional array must have 10 rows, one for
every student and 5 columns, one for every lesson. All other arrays can be
placed in relation to this two-dimensional array as follows.

The auxiliary array count will be created by the program and will store
the number of grades for each student that are greater than 89.

Now, let's see how to read values and store them in the arrays names and
grades. One simple solution would be to use one for-loop for reading names,
and then nested for-loops for reading grades. However, it may not be very
practical for the user to first enter all names and then all grades. A more
user-friendly approach would be to prompt the user to enter one student
name and then all of their grades, then proceed to the next student name and
their corresponding grades, and so on. The solution is as follows.

 Project_33.4-2a
static final int STUDENTS = 10;
static final int LESSONS = 5;
public static void main(String[] args) throws Exception {

int i, j;
//Read names and grades all together. Iterate through rows in array grades
String[] names = new String[STUDENTS];

int[][] grades = new int[STUDENTS][LESSONS];
for (i = 0; i <= STUDENTS - 1; i++) {

System.out.print("Enter name for student No. " + (i + 1) + ": ");

names[i] = cin.nextLine();
for (j = 0; j <= LESSONS - 1; j++) {

System.out.print("Enter grade No. " + (j + 1) + " for " + names[i] + ": ");
grades[i][j] = Integer.parseInt(cin.nextLine());

}

}
//Create array count. Iterate through rows
int[] count = new int[STUDENTS];
for (i = 0; i <= STUDENTS - 1; i++) {

count[i] = 0;
for (j = 0; j <= LESSONS - 1; j++) {

if (grades[i][j] > 89) {
count[i]++;

}
}

}

//Displays the names of the students who have more than one grade greater than 89
for (i = 0; i <= STUDENTS - 1; i++) {

if (count[i] > 1) {
System.out.println(names[i]);

}

}
}

Second approach – Rows for lessons, columns for students
In this approach, the two dimensional array must have 5 rows, one for every
lesson and 10 columns, one for every student. All other arrays can be placed
in relation to this two-dimensional array, as shown next.

The auxiliary array count will be created by the program and will store
the number of grades for each student that are greater than 89.

Obviously, to create the array count, the program will iterate through
columns. The solution is as follows.

 Project_33.4-2b
static final int STUDENTS = 10;

static final int LESSONS = 5;
public static void main(String[] args) throws Exception {

int i, j;
//Read names and grades all together. Iterate through columns in array grades
String[] names = new String[STUDENTS];
int[][] grades = new int[LESSONS][STUDENTS];

for (j = 0; j <= STUDENTS - 1; j++) {
System.out.print("Enter name for student No. " + (j + 1) + ": ");
names[j] = cin.nextLine();
for (i = 0; i <= LESSONS - 1; i++) {

System.out.print("Enter grade No. " + (i + 1) + " for " + names[j] + ": ");

grades[i][j] = Integer.parseInt(cin.nextLine());
}

}
//Create array count. Iterate through columns
int[] count = new int[STUDENTS];

for (j = 0; j <= STUDENTS - 1; j++) {
count[j] = 0;
for (i = 0; i <= LESSONS - 1; i++) {

if (grades[i][j] > 89) {
count[j]++;

}
}

}

//Displays the names of the students who have more than one grade greater than 89
for (j = 0; j <= STUDENTS - 1; j++) {

if (count[j] > 1) {
System.out.println(names[j]);

}
}

}

Exercise 33.4-3 Using an Array Along with a HashMap
There are 30 students and each one of them has received their grades for a
test. Write a Java program that prompts the user to enter the grades (as a
letter) for each student. It then displays, for each student, the grade as a
percentage according to the following table.

Grade Percentage

A 90 ‐ 100

B 80 ‐ 89

C 70 ‐ 79

D 60 ‐ 69

E / F 0 ‐ 59

Solution

A hashmap can be used to hold the given table. The solution is
straightforward and requires no further explanation.

 Project_33.4-3
static final int STUDENTS = 30;
public static void main(String[] args) throws Exception {

int i;
String grade, gradeAsPercentage;
HashMap<String, String> gradesTable = new HashMap<>(

Map.of("A", "90-100", "B", "80-89", "C", "70-79", "D", "60-69", "E", "0-59", "F",
"0-59")

);

String[] names = new String[STUDENTS];
String[] grades = new String[STUDENTS];
for (i = 0; i <= STUDENTS - 1; i++) {

System.out.print("Enter student name No" + (i + 1) + ": ");
names[i] = cin.nextLine();

System.out.print("Enter their grade: ");
grades[i] = cin.nextLine();

}
for (i = 0; i <= STUDENTS - 1; i++) {

grade = grades[i];
gradeAsPercentage = gradesTable.get(grade);

System.out.println(names[i] + " " + gradeAsPercentage);
}

}

Now, if you fully understood how the last for-loop works, then take a look in
the code fragment that follows. It is equivalent to that last for-loop, but it
performs more efficiently, since it uses fewer variables!
for (i = 0; i <= STUDENTS - 1; i++) {

System.out.println(names[i] + " " + gradesTable.get(grades[i]));

}

33.5 Creating a One-Dimensional Array from a Two-Dimensional
Array

To more easily understand how to create a one-dimensional array from a
two-dimensional array, let's use an example.
Write a Java program that creates a one-dimensional array of 12 elements
from an existing two-dimensional array of 3 × 4 (shown below), as follows:
The elements of the first column of the two-dimensional array must be
placed in the first three positions of the one-dimensional array, the elements
of the second column must be placed in the next three positions, and so on.
The two-dimensional 3 × 4 array along with the new one-dimensional array
are presented below.

The Java program that follows creates the new one-dimensional array,
iterating through columns, as it is more convenient. It uses the existing array
given in the example.

 Project_33.5
static final int ROWS = 3;

static final int COLUMNS = 4;
static final int ELEMENTS = ROWS * COLUMNS;
public static void main(String[] args) throws Exception {

int i, j, k;
int[][] a = {

{5, 9, 3, 2},

{11, 12, 4, 1},
{10, 25, 22, 18}

};
k = 0; //This is the index of the new array.
int[] b = new int[ROWS * COLUMNS];

for (j = 0; j <= COLUMNS - 1; j++) { //Iterate through columns
for (i = 0; i <= ROWS - 1; i++) {

b[k] = a[i][j];
k++;

}

}
for (k = 0; k <= ELEMENTS - 1; k++) {

System.out.print(b[k] + "\t");
}

}

33.6 Creating a Two-Dimensional Array from a One-Dimensional
Array

To more easily understand how to create a two-dimensional array from a
one-dimensional array, let's use an example.

Write a Java program that creates a two-dimensional array of 3 × 4 from an
existing one-dimensional array of 12 elements (shown below), as follows:
The first three elements of the one-dimensional array must be placed in the
first column of the two-dimensional array, the next three elements of the one-
dimensional array must be placed in the next column of the two-dimensional
array, and so on.
The one-dimensional array of 12 elements along with the new two-
dimensional array are presented below.

The Java program that follows creates the new two-dimensional array,
iterating through columns, which is more convenient. It uses the existing
array given in the example.

 Project_33.6
static final int ROWS = 3;
static final int COLUMNS = 4;

public static void main(String[] args) throws Exception {
int k, j, i;
int[] a = {5, 11, 10, 9, 12, 25, 3, 4, 22, 2, 1, 18};
k = 0; //This is the index of array a.
int[][] b = new int[ROWS][COLUMNS];

for (j = 0; j <= COLUMNS - 1; j++) { //Iterate through columns
for (i = 0; i <= ROWS - 1; i++) {

b[i][j] = a[k];
k++;

}

}
for (i = 0; i <= ROWS - 1; i++) { //Iterate through rows

for (j = 0; j <= COLUMNS - 1; j++) {
System.out.print(b[i][j] + "\t");

}
System.out.println();

}
}

33.7 Useful Data Structures Methods (Subprograms), and More
Counting the number of elements
array_name.length

The length property contains the number of elements of an array.
Example

 Project_33.7a
public static void main(String[] args) throws Exception {

int i;
int[] a = {3, 6, 10, 12, 4, 2, 1};
System.out.println(a.length); //It displays: 7
for (i = 0; i <= a.length - 1; i++) {

System.out.print(a[i] + " "); //It displays: 3 6 10 12 4 2 1
}
int[][] b = {

{5, 9, 3, 2},
{11, 12, 4, 1},
{10, 25, 22, 18}

};
System.out.println(b.length); //It displays: 3
System.out.println(b[0].length); //It displays: 4

}

In the two-dimensional array b, b.length contains the value of 3 (three
rows), while b[0].length contains the value of 4 (four columns). If you want to
get the total number of elements in all the dimensions of the array, you
could use the product b.length * b[0].length, which would equal the value of
12.

Contrary to the length() method that you learned in Section 14.3, here
length is an attribute. Therefore, you must not put parentheses at the end. You
will learn more about attributes in Part VIII.

Sorting an array
Arrays.sort(array_name)

This method sorts the array array_name in ascending order.

Sorting is the process of putting the elements of an array in a certain
order.

Example

 Project_33.7b
public static void main(String[] args) throws Exception {

int i;
int[] a = {3, 6, 10, 2, 1, 10, 12, 4};
Arrays.sort(a);
for (i = 0; i <= a.length - 1; i++) {

System.out.print(a[i] + " "); //It displays: 1 2 3 4 6 10 10 12

}
String[] b = {"Hermes", "Apollo", "Dionysus"};
Arrays.sort(b);
for (i = 0; i <= b.length - 1; i++) {

System.out.print(b[i] + " "); //It displays: Apollo Dionysus Hermes
}

}

In order to use the Arrays class in your project, you need to import the
corresponding library using the import java.util.Arrays statement at the
beginning of the project.

Checking if Key Exists
struct.containsKey(key_name)

This method returns true if the key key_name exists in the hashmap struct; it
returns false otherwise.
Example

 Project_33.7c
public static void main(String[] args) throws Exception {

HashMap<String, String> family = new HashMap<>(
Map.of("father", "John", "mother", "Maria", "son", "George", "daughter", "Helen")

);
if (family.containsKey("father")) {

System.out.println(family.get("father")); //It displays: John

}
if (!family.containsKey("grandpa")) {

System.out.println("No grandpa"); //It displays: No gradpa
}

}

The statement if (!family.containsKey("grandpa")) is equivalent to the
statement if (family. containsKey("grandpa") == false).

33.8 Review Questions: True/False

Choose true or false for each of the following statements.
1) Processing each row individually means that every row is processed

separately, and the result of each row can then be used individually for
further processing.

2) The following code fragment displays the word “Okay” when the sum
of the elements of each column is less than 100.
for (i = 0; i <= ROWS - 1; i++) {

total = 0;
for (j = 0; j <= COLUMNS - 1; j++) {

total += a[i][j];
}
if (total < 100) System.out.println("Okay");

}

3) Processing each column individually means that every column is
processed separately and the result of each row can be then used
individually for further processing.

4) The following code fragment displays the sum of the elements of each
column.
total = 0;

for (j = 0; j <= COLUMNS - 1; j++) {
for (i = 0; i <= ROWS - 1; i++) {

total += a[i][j];
}
System.out.println(total);

}

5) Suppose that there are 10 students and each one of them has received
their grades for five lessons. Given this information, it is possible to
design an array so that the rows refer to students and the columns refer
to lessons, but not the other way around, that is, the rows referring to
lessons and the columns referring to students.

6) A one-dimensional array can be created from a two-dimensional array,
but not the opposite.

7) A one-dimensional array can be created from a three-dimensional array.
8) The following two code fragments display the same value.

int[] a = {1, 6, 12, 2, 1};
System.out.print(a.length);
String a = "Hello";
System.out.print(a.length());

9) The following code fragment displays three values.
int[] a = {10, 20, 30, 40, 50};
for (i = 3; i <= a.length - 1; i++) {

System.out.println(a[i]);

}

10) The following code fragment displays the values of all elements of the
array b.
int[] b = {10, 20, 30, 40, 50};
for (i = 0; i <= b.length - 1; i++) {

System.out.println(i);
}

11) The following code fragment doubles the values of all elements of the
array b.
for (i = 0; i < b.length; i++) {

b[i] *= 2;
}

12) The following code fragment displays the smallest value of array b.
int[] b = {3, 6, 10, 2, 1, 12, 4};
Arrays.sort(b);
System.out.println(b[0]);

13) The following two code fragments display the greatest value of array b.
int[] b = {3, 6, 10, 2, 1, 12, 4};
Arrays.sort(b);
System.out.println(b[b.length - 1]);

int[] b = {3, 6, 10, 2, 1, 12, 4};
Arrays.sort(b);

System.out.println(b[6]);

33.9 Review Questions: Multiple Choice
Select the correct answer for each of the following statements.

1) The following code fragment
int[] total = new int[ROWS];
for (i = 0; i <= ROWS - 1; i++) {

total[i] = 0;
for (j = 0; j <= COLUMNS - 1; j++) {

total[i] += a[i][j];
}

System.out.println(total[i]);

}

a) displays the sum of the elements of each row.
b) displays the sum of the elements of each column.
c) displays the sum of all the elements of the array.
d) none of the above

2) The following code fragment
for (j = 0; j <= COLUMNS - 1; j++) {

total = 0;

for (i = 0; i <= ROWS - 1; i++) {
total += a[i][j];

}
System.out.println(total);

}

a) displays the sum of the elements of each row.
b) displays the sum of the elements of each column.
c) displays the sum of all the elements of the array.
d) none of the above

3) The following code fragment
total = 0;
for (j = 0; j <= COLUMNS - 1; j++) {

for (i = 0; i <= ROWS - 1; i++) {
total += a[i][j];

}
System.out.println(total);

}

a) displays the sum of the elements of each row.
b) displays the sum of the elements of each column.
c) displays the sum of all the elements of the array.
d) none of the above

4) The following code fragment
k = 0;
for (i = ROWS - 1; i >= 0; i++) {

for (j = 0; j <= COLUMNS - 1; j--) {
b[k++] = a[i][j];

}
}

a) creates a one-dimensional array from a two-dimensional array.

b) creates a two-dimensional array from a one-dimensional array.
c) does not satisfy the property of definiteness
d) none of the above

5) The following code fragment
k = 0;
for (i = 0; i <= ROWS - 1; i++) {

for (j = COLUMNS - 1; j >= 0; j--) {

b[i][j] = a[k++];
}

}

a) creates a one-dimensional array from a two-dimensional array.
b) creates a two-dimensional array from a one-dimensional array.
c) none of the above

6) The following two code fragments
int[] a = {3, 6, 10, 2, 4, 12, 1};
for (i = 0; i < 7; i++) {

System.out.println(a[i]);
}
int[] a = {3, 6, 10, 2, 4, 12, 1};
for (i = 0; i <= a.length - 1; i++) {

System.out.println(a[i]);
}

a) produce the same results.
b) do not produce the same results.
c) none of the above

7) The following two code fragments
int[] a = {3, 6, 10, 2, 4, 12, 1};
for (i = 0; i < a.length; i++) {

System.out.println(a[i]);
}
int[] a = {3, 6, 10, 2, 4, 12, 1};

for (int element : a) {
System.out.println(element);

}

a) produce the same results.
b) do not produce the same results.
c) none of the above

8) The following two code fragments
int[] a = {6, 4, 3, 2, 1};
Arrays.sort(a);
for (i = 0; i <= a.length - 1; i++) {

System.out.println(a[i]);
}
int[] a = {1, 2, 3, 4, 6};
for (int x : a) {

System.out.println(x);

}

a) produce the same results.
b) do not produce the same results.
c) none of the above

33.10 Review Exercises
Complete the following exercises.

1) There are 15 students and each one of them has received their grades for
five tests. Write a Java program that lets the user enter the grades (as a
percentage) for each student for all tests. It then calculates, for each
student, the average grade and displays it as a letter grade according to
the following table.

Grade Percentage

A 90 ‐ 100

B 80 ‐ 89

C 70 ‐ 79

D 60 ‐ 69

E / F 0 ‐ 59

2) On Earth, a free-falling object has an acceleration of 9.81 m/s2

downward. This value is denoted by g. A student wants to calculate that
value using an experiment. She allows five different objects to fall
downward from a known height and measures the time they need to
reach the floor. She does this 10 times for each object. Then, using a
formula she calculates g for each object, for each fall. But since her
chronometer is not so accurate, she needs a Java program that lets her

enter all calculated values of g in a 5 × 10 array and then, it calculates
and displays
a) for each object, the average value of g
b) for each fall, the average value of g
c) the overall average value of g

3) A basketball team with 15 players plays 12 matches. Write a Java
program that lets the user enter, for each player, the number of points
scored in each match. The program must then display
a) for each player, the total number of points scored
b) for each match, the total number of points scored

4) Write a Java program that lets the user enter the hourly measured
temperatures of 20 cities for a period of one day, and then displays the
hours in which the average temperature of all the cities was below 10
degrees Fahrenheit.

5) In a football tournament, a football team with 24 players plays 10
matches. Write a Java program that lets the user enter, for each player, a
name as well as the number of goals they scored in each match. The
program must then display
a) for each player, his name and the average number of goals he

scored
b) for each match, the index number of the match (1, 2, 3, and so on)

and the total number of goals scored
6) There are 12 students and each one of them has received their grades for

six lessons. Write a Java program that lets the user enter the name of the
student as well as their grades in all lessons and then displays
a) for each student, their name and average grade
b) for each lesson, the average grade
c) the names of the students who have an average grade less than 60
d) the names of the students who have an average grade greater than

89, and the message “Bravo!” next to it
Assume that the user enters valid values between 0 and 100.

7) In a song contest, each artist sings a song of their choice. There are five
judges and 15 artists, each of whom is scored for their performance.
Write a Java program that prompts the user to enter the names of the

judges, the names of the artists, the title of the song that each artist
sings, and the score they get from each judge. The program must then
display
a) for each artist, their name, the title of the song, and their total score
b) for each judge, their name and the average value of the score they

gave
8) The Body Mass Index (BMI) is often used to determine whether a

person is overweight or underweight for their height. The formula used
to calculate BMI is

Write a Java program that lets the user enter into two arrays the weight
(in pounds) and height (in inches) of 30 people, measured on a monthly
basis, for a period of one year (January to December). The program
must then calculate and display
a) for each person, their average weight, average height, and average

BMI
b) for each person, their BMI in May and in August

Please note that all people are adults but some of them are between the
ages of 18 and 25. This means they may still grow taller, thus their
height might be different each month!

9) Write a Java program that lets the user enter the electric meter reading
in kilowatt-hours (kWh) at the beginning and at the end of a month for
1000 consumers. The program must then calculate and display
a) for each consumer, the amount of kWh consumed and the amount

of money that must be paid given a cost of each kWh of $0.07 and
a value added tax (VAT) rate of 19%

b) the total consumption and the total amount of money that must be
paid.

10) Write a Java program that prompts the user to enter an amount in US
dollars and calculates and displays the corresponding currency value in
Euros, British Pounds Sterling, Australian Dollars, and Canadian
Dollars. The tables below contain the exchange rates for each currency
for a period of five working days. The program must calculate the

average value of each currency and do the conversions based on that
average value.

11) Gross pay depends on the pay rate and the total number of hours
worked per week. However, if someone works more than 40 hours, they
get paid time-and-a-half for all hours worked over 40. Write a Java
program that lets the user enter a pay rate, as well as the names of 10
employees and the number of hours that they worked each day
(Monday to Friday). The program must then calculate and display
a) the names of employees who worked overtime
b) for each employee, their name and the average daily gross pay
c) the total gross pay for all employees
d) for each employee, their name, the name of the day they worked

overtime (more than 8 hours), and the message “Overtime!”
e) for each day, the name of the day and the total gross pay

12) Write a Java program to create a one-dimensional array of 12 elements
from the two-dimensional array shown below, as follows: the first row
of the two-dimensional array must be placed in the first four positions
of the one-dimensional array, the second row of the two-dimensional
array must be placed in the next four positions of the one-dimensional
array, and the last row of the two-dimensional array must be placed in
the last four positions of the one-dimensional array.

13) Write a Java program to create a 3 × 3 array from the one-dimensional
array shown below, as follows: the first three elements of the one-
dimensional array must be placed in the last row of the two-

dimensional array, the next three elements of the one-dimensional array
must be placed in the second row of the two-dimensional array, and the
last three elements of the one-dimensional array must be placed in the
first row of the two-dimensional array.

Chapter 34
More with Data Structures

34.1 Simple Exercises with Arrays
Exercise 34.1-1 Creating an Array that Contains the Average Values of its
Neighboring Elements

Write a Java program that lets the user enter 100 positive numerical values
into an array. Then, the program must create a new array of 98 elements.
This new array must contain, in each position the average value of the three
elements that exist in the current and the next two positions of the user-
provided array.

Solution Let's try to understand this exercise through an example using 10
elements.

Array newArr is the new array that is created. In array newArr, the element at
position 0 is the average value of the elements in the current and the next
two positions of array a; that is, (5 + 10 + 9) / 3 = 8. The element at position
1 is the average value of the elements in the current and the next two
positions of array a; that is, (10 + 9 + 2) / 3 = 7, and so on.
The Java program is as follows.

 Project_34.1-1
static final int ELEMENTS_OF_A = 100; static final int ELEMENTS_OF_NEW = ELEMENTS_OF_A -
2;
public static void main(String[] args) throws Exception {

int i;
double[] a = new double[ELEMENTS_OF_A]; for (i = 0; i <= ELEMENTS_OF_A - 1; i++) {

a[i] = Double.parseDouble(cin.nextLine());

}
double[] newArr = new double[ELEMENTS_OF_NEW]; for (i = 0; i <= ELEMENTS_OF_NEW - 1;
i++) {

newArr[i] = (a[i] + a[i + 1] + a[i + 2]) / 3;

}
for (i = 0; i <= ELEMENTS_OF_NEW - 1; i++) {

System.out.print(newArr[i] + "\t");

}
}

Exercise 34.1-2 Creating an Array with the Greatest Values
Write a Java program that lets the user enter numerical values into arrays a
and b of 20 elements each. Then, the program must create a new array newArr
of 20 elements. The new array must contain in each position the greatest
value of arrays a and b of the corresponding position.

Solution Nothing new here! You need two for-loops to read the values for
arrays a and b, one for creating the array newArr, and one to display the
array newArr on the screen.

The Java program is shown here.
 Project_34.1-2

static final int ELEMENTS = 20;

public static void main(String[] args) throws Exception {
int i;
//Read arrays a and b double[] a = new double[ELEMENTS]; for (i = 0; i <= ELEMENTS -
1; i++) {

a[i] = Double.parseDouble(cin.nextLine());
}

double[] b = new double[ELEMENTS]; for (i = 0; i <= ELEMENTS - 1; i++) {
b[i] = Double.parseDouble(cin.nextLine());

}
//Create array newArr double[] newArr = new double[ELEMENTS]; for (i = 0; i <=
ELEMENTS - 1; i++) {

if (a[i] > b[i]) {
newArr[i] = a[i];

}
else {

newArr[i] = b[i];

}
}
//Display array newArr for (i = 0; i <= ELEMENTS - 1; i++) {

System.out.println(newArr[i]);
}

}

Exercise 34.1-3 Merging One-Dimensional Arrays

Write a Java program that, for two given arrays a and b of 10 and 15
elements, respectively, creates a new array newArr of 25 elements. This new
array must contain in the first 10 positions the elements of array a, and in
the next 15 positions the elements of array b.

Solution As you can see in the example presented next, there is a direct one-
to-one correspondence between the index positions of the elements of array
a and those of array newArr. Specifically, the element from position 0 of
array a is stored in position 0 of array newArr, the element from position 1
of array a is stored in position 1 of array newArr, and so forth. However, this
correspondence doesn't hold for array b; its elements need to be shifted by
10 positions in newArr.

In order to assign the values of array a to array newArr you can use the
following code fragment.
for (i = 0; i <= a.length - 1; i++) {

newArr[i] = a[i]; }

However, to assign the values of array b to array newArr your code fragment
should be slightly different as shown here.
for (i = 0; i <= b.length - 1; i++) {

newArr[a.length + i] = b[i]; }

The final Java program is as follows.

 Project_34.1-3
public static void main(String[] args) throws Exception {

int i;
//Create arrays a and b int[] a = {5, 10, 9, 6, 7, -6, 13, 12, 11, 2}; int[] b =
{-11, 25, 4, 45, 67, 87, 34, 23, 33, 55, 13, 15, -4, -2, -22};
//Create array newArr int[] newArr = new int[a.length + b.length]; for (i = 0; i <=
a.length - 1; i++) {

newArr[i] = a[i];
}
for (i = 0; i <= b.length - 1; i++) {

newArr[a.length + i] = b[i];

}
//Display array newArr for (i = 0; i <= newArr.length - 1; i++) {

System.out.print(newArr[i] + "\t");

}
}

The length attribute contains the total number of the elements in an array.
Contrary to the length() method that you learned in Section 14.3, here

length is an attribute. Therefore, you must not put parentheses at the end. You
will learn more about attributes in Part VIII.

Exercise 34.1-4 Creating Two Arrays – Separating Positive from Negative
Values

Write a Java program that lets the user enter 100 numerical values into an
array and then creates two new arrays, pos and neg. Array pos must contain
positive values, whereas array neg must contain the negative ones. The value
0 (if any) must not be added to either of the final arrays, pos or neg.

Solution Let's analyze this approach using the following example.

In this exercise, there is no one-to-one correspondence between the index
positions of the elements of array ar and the arrays pos and neg. For
example, the element from position 1 of array ar is not stored in position 1
of array neg, or the element from position 2 of array ar is not stored in
position 2 of array pos. Thus, you cannot do the following,

for (i = 0; i <= ELEMENTS - 1; i++) {
if (ar[i] > 0) {

pos[i] = ar[i];
}
else if (ar[i] < 0) {

neg[i] = ar[i];
}

}

because it will result in the following two arrays.

What you need here are two independent index variables: posIndex for the
array pos, and negIndex for the array neg. These index variables must be
incremented independently, and only when an element is added to the
corresponding array. The index variable posIndex must be incremented only
when an element is added to the array pos, and the index variable negIndex
must be incremented only when an element is added to the array neg, as
shown in the code fragment that follows.
posIndex = 0;
negIndex = 0;
for (i = 0; i <= ELEMENTS - 1; i++) {

if (ar[i] > 0) {
pos[posIndex] = ar[i];

posIndex++;
}
else if (ar[i] < 0) {

neg[negIndex] = ar[i];
negIndex++;

}
}

which can equivalently be written as
posIndex = 0;
negIndex = 0;
for (i = 0; i <= ELEMENTS - 1; i++) {

if (ar[i] > 0) {
pos[posIndex++] = ar[i];

}
else if (ar[i] < 0) {

neg[negIndex++] = ar[i];
}

}

Note that variables posIndex and negIndex have dual roles. When the loop
iterates, each points to the next position in which a new element must be

placed. But when the loop finishes iterating, variables posIndex and negIndex
also contain the total number of elements in each corresponding array!

The complete solution is presented next.
 Project_34.1-4

static final int ELEMENTS = 100;

public static void main(String[] args) throws Exception {
int i, posIndex, negIndex;
double[] ar = new double[ELEMENTS]; for (i = 0; i <= ELEMENTS - 1; i++) {

ar[i] = Double.parseDouble(cin.nextLine());
}

//Create arrays pos and neg posIndex = 0; negIndex = 0; double[] pos = new
double[ELEMENTS]; double[] neg = new double[ELEMENTS]; for (i = 0; i <= ELEMENTS - 1;
i++) {

if (ar[i] > 0) {
pos[posIndex++] = ar[i];

}

else if (ar[i] < 0) {
neg[negIndex++] = ar[i];

}
}
for (i = 0; i <= posIndex - 1; i++) {

System.out.print(pos[i] + "\t");
}
System.out.println(); for (i = 0; i <= negIndex - 1; i++) {

System.out.print(neg[i] + "\t");
}

}

Note that the arrays pos and neg contain a total number of posIndex and
negIndex elements respectively. This is why the two last loop control structures
iterate until variable i reaches values posIndex − 1 and negIndex − 1,
respectively, and not until ELEMENTS – 1, as you may mistakenly expect.

Exercise 34.1-5 Creating an Array with Those who Contain Digit 5
Write a Java program that lets the user enter 100 two-digit integers into an
array and then creates a new array of only the integers that contain at least
one of the digit 5.

Solution This exercise requires some knowledge from the past. In Exercise
13.1-2 you learned how to use the quotient and the remainder to split an
integer into its individual digits. Here, the user-provided integers have two

digits; therefore, you can use the following code fragment to split any two-
digit integer contained in variable x.
lastDigit = x % 10;
firstDigit = (int)(x / 10);

The program that follows uses an extra variable as an index for the new
array. This is necessary when you want to create a new array using values
from an old array and there is no one-to-one correspondence between their
index positions. Of course, this variable must increase by 1 only when a new
element is added into the new array. Moreover, when the loop that creates
the new array finishes iterating, the value of this variable also matches the
total number of elements in the new array! The final Java program is as
follows.

 Project_34.1-5
static final int ELEMENTS = 100;
public static void main(String[] args) throws Exception {

int i, k, lastDigit, firstDigit;
int[] a = new int[ELEMENTS]; for (i = 0; i <= ELEMENTS - 1; i++) {

a[i] = Integer.parseInt(cin.nextLine());
}
k = 0;
int[] b = new int[ELEMENTS]; for (i = 0; i <= ELEMENTS - 1; i++) {

lastDigit = a[i] % 10;
firstDigit = (int)(a[i] / 10);

if (lastDigit == 5 || firstDigit == 5) {
b[k++] = a[i];

}
}
for (i = 0; i <= k - 1; i++) {

System.out.print(b[i] + "\t");
}

}

34.2 Data Validation with Arrays
As you have already been taught in Section 30.3, there are three approaches
that you can use to validate data input. Your approach will depend on
whether or not you wish to display an error message, and whether you wish
to display a different error message for each type of input error or just a
generic error message for any kind of error. Let's see how those three
approaches can be adapted and used with arrays.

First approach – Validating data input without error messages In Section
30.3, you learned how to validate one single value entered by the user
without displaying any error messages. For your convenience, the code
fragment given in general form is presented once again.
do {

System.out.print("Prompt message"); input_data = cin.nextLine(); } while (input_data
test 1 fails || input_data test 2 fails || …);

Do you remember how this operates? If the user enters a valid value, the
flow of execution simply proceeds to the next section of the program.
However, if they enter an invalid value, the primary objective is to
repeatedly prompt them until they eventually provide a valid one.
You can use the same principle when entering data into arrays. If you use a
for-loop to iterate for all elements of the array, the code fragment becomes as
follows.
for (i = 0; i <= ELEMENTS - 1; i++) {

do {
System.out.print("Prompt message");
input_data = cin.nextLine();

} while (input_data test 1 fails || input_data test 2 fails || …); input_array[i] =

input_data; }

As you can see, when the flow of execution exits the nested post-test loop
structure, the variable input_data definitely contains a valid value which in
turn is assigned to an element of the array input_array. However, the same
process can be implemented more simply, without using the extra variable
input_data, as follows.
for (i = 0; i <= ELEMENTS - 1; i++) {

do {
System.out.print("Prompt message");
input_array[i] = cin.nextLine();

} while (input_array[i] test 1 fails || input_array[i] test 2 fails || …); }

Second approach – Validating data input with a generic error message As
before, the next code fragment is taken from Section 30.3 and adapted to
operate with an array. It validates data input and displays a generic error
message (that is, the same error message for any type of input error).
for (i = 0; i <= ELEMENTS - 1; i++) {

System.out.print("Prompt message"); input_array[i] = cin.nextLine(); while
(input_array[i] test 1 fails || input_array[i] test 2 fails || …) {

System.out.println("Error message");
System.out.print("Prompt message");

input_array[i] = cin.nextLine();

}
}

Third approach – Validating data input with different error messages
Once again, the next code fragment is taken from Section 30.3 and
adapted to operate with an array. It validates data input and displays a
different error message for each type of input error.
for (i = 0; i <= ELEMENTS - 1; i++) {

do {
System.out.print("Prompt message");
input_array[i] = cin.nextLine();
failure = false;
if (input_array[i] test 1 fails) {

System.out.println("Error message 1");
failure = true;

}
else if (input_array[i] test 2 fails) {

System.out.println("Error message 2");
failure = true;

}
else if (…
…
}

} while (failure); }

Exercise 34.2-1 Displaying Odds in Reverse Order
Write a Java program that prompts the user to enter 20 odd positive integers
into an array and then displays them in the exact reverse of the order in
which they were provided. The program must validate data input, preventing
the user from entering a non-positive value, a float, or an even integer. Solve
this exercise in three versions: a) Validate data input without displaying any
error messages.

b) Validate data input and display a generic error message.
c) Validate data input and display a different error message for each type

of input error.

Solution All three approaches for validating data input that you learned in
Section 34.2 will be presented here. Let's first solve this exercise without
data validation.
static final int ELEMENTS = 20;
public static void main(String[] args) throws Exception {

int i, x;

int[] odds = new int[ELEMENTS]; for (i = 0; i <= ELEMENTS - 1; i++) {

System.out.print("Enter an odd positive integer: "); [More…]
x = Integer.parseInt(cin.nextLine());

odds[i] = x;

}
//Display elements backwards for (i = ELEMENTS - 1; i >= 0; i--) {

System.out.print(odds[i] + "\t");

}
}

Validation without error messages To validate data input without
displaying any error messages, use the first approach from Section 34.2.
Simply replace the statements marked with a dashed rectangle with the
following code fragment.
do {

System.out.print("Enter an odd positive integer: "); x =
Double.parseDouble(cin.nextLine()); } while (x <= 0 || x != (int)x || x % 2 == 0);
odds[i] = (int)x;

The final program becomes Project_34.2-1a
static final int ELEMENTS = 20;
public static void main(String[] args) throws Exception {

int i; double x;
int[] odds = new int[ELEMENTS]; for (i = 0; i <= ELEMENTS - 1; i++)
{

do { [More…]
System.out.print("Enter an odd positive integer: ");
x = Double.parseDouble(cin.nextLine());

} while (x <= 0 || x != (int)x || x % 2 == 0);
odds[i] = (int)x;

}
//Display elements backwards for (i = ELEMENTS - 1; i >= 0; i--) {

System.out.print(odds[i] + "\t");
}

}

Variable x must be of type double. This is necessary in order to allow the
user to enter either an integer or a float (real).

Validation with a generic error message To validate data input and
display a generic error message, replace the statements marked with the

dashed rectangle with a code fragment based on the second approach
from Section 34.2. The Java program is as follows.

 Project_34.2-1b
static final int ELEMENTS = 20;

public static void main(String[] args) throws Exception {
int i; double x;

int[] odds = new int[ELEMENTS]; for (i = 0; i <=
ELEMENTS - 1; i++) {

System.out.print("Enter an odd positive integer:
"); [More…]

x = Double.parseDouble(cin.nextLine());
while (x <= 0 || x != (int)x || x % 2 == 0) {

System.out.println("Invalid value!");
System.out.print("Enter an odd positive integer:

");
x = Double.parseDouble(cin.nextLine());

}
odds[i] = (int)x;

}
//Display elements backwards for (i = ELEMENTS - 1; i

>= 0; i--) {
System.out.print(odds[i] + "\t");

}
}

Validation with different error messages Here, the replacing code
fragment is based on the third approach from Section Section 34.2. To
validate data input and display a different error message for each type of
input error, the Java program is as follows.

 Project_34.2-1c
static final int ELEMENTS = 20;

public static void main(String[] args) throws Exception {
int i; boolean failure; double x;
int[] odds = new int[ELEMENTS];

for (i = 0; i <= ELEMENTS - 1; i++) {

do { [More…]
System.out.print("Enter an odd positive integer:

");
x = Double.parseDouble(cin.nextLine());

failure = false;
if (x <= 0) {

System.out.println("Invalid value: Non-
positive entered!");

failure = true;
}

else if (x != (int)x) {
System.out.println("Invalid value: Float

entered!");
failure = true;

}
else if (x % 2 == 0) {

System.out.println("Invalid value: Even
entered!");

failure = true;
}

} while (failure);
odds[i] = (int)x;

}
//Display elements backwards for (i = ELEMENTS - 1; i

>= 0; i--) {
System.out.print(odds[i] + "\t");

}
}

34.3 Finding Minimum and Maximum Values in Arrays
This is the third and last time that this subject is brought up in this book. The
first time was in Section 23.2 using decision control structures and the
second time was in Section 30.4 using loop control structures. So, there is
not much left to discuss except the fact that when you want to find the
minimum or maximum value of a data structure that already contains some
values, you needn't worry about the initial values of variables minimum or

maximum because you can just assign to them the value of the first element of
the data structure!

Exercise 34.3-1 Which Depth is the Greatest?
Write a Java program that lets the user enter the depths of 20 lakes and then
displays the depth of the deepest one.

Solution After the user enters the depths of the 20 lakes in the array depths,
the initial value of variable maximum can be set to the value of depths[0],
that is, the first element of array depths. The program can then search any
subsequent value greater than this, starting from index 1. The final solution
is quite straightforward and is presented next without further explanation.

 Project_34.3-1
static final int LAKES = 20;

public static void main(String[] args) throws Exception {
int i; double maximum;
double[] depths = new double[LAKES]; for (i = 0; i <= LAKES - 1; i++) {

depths[i] = Double.parseDouble(cin.nextLine());
}

maximum = depths[0]; //Initial value
//Search thereafter, starting from index 1
for (i = 1; i <= LAKES - 1; i++) {

if (depths[i] > maximum) {
maximum = depths[i];

}

}
System.out.println(maximum); }

It wouldn't be wrong to start iterating from position 0 instead of 1,
though the program would perform one useless iteration.

It wouldn't be wrong to assign an “almost arbitrary” initial value to
variable maximum but there is no reason to do so. The value of the first element
is just fine! If you insist though, you can assign an initial value of 0, since
there is no lake on planet Earth with a negative depth.

Exercise 34.3-2 Which Lake is the Deepest?
Write a Java program that lets the user enter the names and the depths of 20
lakes and then displays the name of the deepest one.

Solution If you don't know how to find the name of the deepest lake, you
may need to refresh your memory by re-reading Exercise 30.4-2.

In this exercise, you need two one-dimensional arrays: one to hold the
names, and one to hold the depths of the lakes. The solution is presented
next.

 Project_34.3-2
static final int LAKES = 20;

public static void main(String[] args) throws Exception {
int i; double maximum; String mName;
String[] names = new String[LAKES]; double[] depths = new double[LAKES]; for (i = 0;
i <= LAKES - 1; i++) {

names[i] = cin.nextLine();

depths[i] = Double.parseDouble(cin.nextLine());
}
maximum = depths[0]; mName = names[0]; for (i = 1; i <= LAKES - 1; i++) {

if (depths[i] > maximum) {
maximum = depths[i];
mName = names[i];

}
}
System.out.println(mName); }

Exercise 34.3-3 Which Lake, in Which Country, Having Which Average
Area, is the Deepest?

Write a Java program that lets the user enter the names and the depths of 20
lakes as well as the country in which they belong, and their average area.
The program must then display all available information about the deepest
lake.

Solution Let's look at the next example of six lakes. The depths are
expressed in feet and the average areas in square miles.

It's evident that Lake Baikal holds the record as the deepest lake, positioned
at index 2. If you were to approach this exercise in a manner similar to the
previous exercise (Exercise 34.3-2), you would need three more variables to
keep the name, country, and area each time a depth greater than the

previously stored one is found. However, the solution presented below
employs a more efficient approach, using only one variable (indexOfMax) to
track the index where these values are located.

 Project_34.3-3
static final int LAKES = 20;

public static void main(String[] args) throws Exception {
int i, indexOfMax; double maximum;
String[] names = new String[LAKES]; double[] depths = new double[LAKES]; String[]
countries = new String[LAKES]; double[] areas = new double[LAKES]; for (i = 0; i <=
LAKES - 1; i++) {

names[i] = cin.nextLine();
depths[i] = Double.parseDouble(cin.nextLine());
countries[i] = cin.nextLine();
areas[i] = Double.parseDouble(cin.nextLine());

}
//Find the maximum depth and the index in which this maximum depth exists maximum =

depths[0]; indexOfMax = 0; for (i = 1; i <= LAKES - 1; i++) {
if (depths[i] > maximum) {

maximum = depths[i];
indexOfMax = i;

}

}
//Display information using indexOfMax as index System.out.print(depths[indexOfMax] +
" " + names[indexOfMax] + " "); System.out.println(countries[indexOfMax] + " " +
areas[indexOfMax]); }

Assigning an initial value of 0 to variable indexOfMax is necessary since
there is always a possibility that the maximum value does exist in position 0.

Exercise 34.3-4 Which Students Have got the Greatest Grade?
Write a Java program that prompts the user to enter the names and the
grades of 200 students and then displays the names of all those who share
the one greatest grade. Using a loop control structure, the program must
also validate data input and display an error message when the user enters
an empty name or any negative values or values greater than 100 for grades.

Solution In this exercise, you need to validate both the names and the
grades. A code fragment, given in general form, shows the data input stage.
static final int STUDENTS = 200;

public static void main(String[] args) throws Exception {
String[] names = new String[STUDENTS]; int[] grades = new int[STUDENTS]; for (i = 0;
i <= STUDENTS - 1; i++) {

Prompt the user to enter a name and validate
it. It cannot be empty!

Prompt the user to enter a grade and validate
it. It cannot be negative or greater than 100.

}

…

After data input stage, a loop control structure must search for the greatest
value, and then, another loop control structure must search the array grades
for all values that are equal to that greatest value.
The solution in presented next.

 Project_34.3-4
static final int STUDENTS = 200;
public static void main(String[] args) throws Exception {

int i, maximum;

String[] names = new String[STUDENTS]; int[] grades = new int[STUDENTS]; for (i = 0;
i <= STUDENTS - 1; i++) {

//Prompt the user to enter a name and validate it.
System.out.print("Enter name for student No " + (i + 1) + ": ");
names[i] = cin.nextLine();

while (names[i].equals("")) {
System.out.println("Error! Name cannot be empty!");
System.out.print("Enter name for student No " + (i + 1) + ": ");
names[i] = cin.nextLine();

}

//Prompt the user to enter a grade and validate it.
System.out.print("Enter their grade: ");
grades[i] = Integer.parseInt(cin.nextLine());
while (grades[i] < 0 || grades[i] > 100) {

System.out.println("Invalid value!");
System.out.print("Enter their grade: ");

grades[i] = Integer.parseInt(cin.nextLine());
}

}
//Find the greatest grade maximum = grades[0]; for (i = 1; i <= STUDENTS - 1; i++) {

if (grades[i] > maximum) {

maximum = grades[i];
}

}
//Displays the names of all those who share the one greatest grade
System.out.println("The following students have got the greatest grade:"); for (i =

0; i <= STUDENTS - 1; i++) {
if (grades[i] == maximum) {

System.out.println(names[i]);
}

}

}

Note that this exercise could not have been solved without the use of an
array.

Exercise 34.3-5 Finding the Minimum Value of a Two-Dimensional Array
Write a Java program that lets the user enter the temperatures (in degrees
Fahrenheit) recorded at the same hour each day in January in 10 different
cities. The Java program must display the lowest temperature.

Solution In this exercise, you need the following array.

The array t has 31 columns (0 to 30), as many as there are days in
January.

There is nothing new here. The initial value of variable minimum can be the
value of the element t[0][0]. Then, the program can iterate through rows, or
even through columns, to search for the minimum value. The solution is
presented next.

 Project_34.3-5
static final int CITIES = 10; static final int DAYS = 31;
public static void main(String[] args) throws Exception {

int i, j, minimum;
//Read array t int[][] t = new int[CITIES][DAYS]; for (i = 0; i <= CITIES - 1; i++) {

for (j = 0; j <= DAYS - 1; j++) {

t[i][j] = Integer.parseInt(cin.nextLine());
}

}
//Find minimum minimum = t[0][0]; for (i = 0; i <= CITIES - 1; i++) {

for (j = 0; j <= DAYS - 1; j++) {

if (t[i][j] < minimum) {
minimum = t[i][j];

}
}

}
System.out.println(minimum); }

In this exercise you cannot do the following because if you do, and
variable j starts from 1, the whole column with index 0 won't be checked!
//Find minimum minimum = t[0][0];
for (i = 0; i <= CITIES - 1; i++) {

for (j = 1; j <= DAYS - 1; j++) { //This is wrong! Variable j must start from 0
if (t[i][j] < minimum) {

minimum = t[i][j];

}
}

}

Exercise 34.3-6 Finding the City with the Coldest Day
Write a Java program that lets the user enter the names of 10 cities as well
as the temperatures (in degrees Fahrenheit) recorded at the same hour each
day in January in those cities. The Java program must display the name of
the city that had the lowest temperature and on which day it was recorded.

Solution In this exercise, the following two arrays are needed.

The solution is simple. Every time variable minimum updates its value, two
variables, m_i and m_j, can hold the current values of variables i and j
respectively. In the end, these two variables will contain the row index and
the column index of the position in which the minimum value exists. The
solution is as follows.

 Project_34.3-6
static final int CITIES = 10; static final int DAYS = 31;
public static void main(String[] args) throws Exception {

int i, j, minimum, m_i, m_j;
String[] names = new String[CITIES]; int[][] t = new int[CITIES][DAYS]; for (i = 0; i
<= CITIES - 1; i++) {

names[i] = cin.nextLine();
for (j = 0; j <= DAYS - 1; j++) {

t[i][j] = Integer.parseInt(cin.nextLine());
}

}
minimum = t[0][0]; m_i = 0;
m_j = 0;

for (i = 0; i <= CITIES - 1; i++) {
for (j = 0; j <= DAYS - 1; j++) {

if (t[i][j] < minimum) {
minimum = t[i][j];
m_i = i;
m_j = j;

}
}

}
System.out.println("Minimum temperature: " + minimum); System.out.println("City: " +
names[m_i]); System.out.println("Day: " + (m_j + 1)); }

Assigning an initial value of 0 to variables m_i and m_j is necessary since
there is always a possibility that the minimum value is the value of the
element t[0][0].

Exercise 34.3-7 Finding the Minimum and the Maximum Value of Each
Row

Write a Java program that lets the user enter values into array b of 20 × 30
elements and then finds and displays the minimum and the maximum values
of each row.

Solution There are two approaches, actually. The first approach creates two
auxiliary one-dimensional arrays, minimum and maximum, and then displays
them. Arrays minimum and maximum will contain, in each position, the
minimum and the maximum values of each row respectively. On the other
hand, the second approach finds and directly displays the minimum and
maximum values of each row. Let's study both approaches.

First approach – Creating auxiliary arrays To better understand this
approach, let's use the “from inner to outer” method. When the following
code fragment completes its iterations, the auxiliary one-dimensional
arrays minimum and maximum will contain at position 0 the minimum and
the maximum values of the first row (row index 0) of array b respectively.
Assume variable i contains value 0.
minimum[i] = b[i][0];
maximum[i] = b[i][0];
for (j = 1; j <= COLUMNS - 1; j++) {

if (b[i][j] < minimum[i]) {
minimum[i] = b[i][j];

}
if (b[i][j] > maximum[i]) {

maximum[i] = b[i][j];

}
}

Note that variable j starts from 1. It wouldn't be wrong to start iterating
from column index 0 instead of 1, though the program would perform one
useless iteration.

Now that everything has been clarified, in order to process the whole array b,
you can just nest the previous code fragment into a for-loop that iterates for
all rows as shown next.

for (i = 0; i <= ROWS - 1; i++) {
minimum[i] = b[i][0]; maximum[i] = b[i][0]; for (j = 1; j <= COLUMNS - 1; j++) {

if (b[i][j] < minimum[i]) {

minimum[i] = b[i][j];
}
if (b[i][j] > maximum[i]) {

maximum[i] = b[i][j];
}

}
}

The final Java program is as follows.
 Project_34.3-7a

static final int ROWS = 30; static final int COLUMNS =
20;

public static void main(String[] args) throws Exception {
int i, j;

double[][] b = new double[ROWS][COLUMNS]; for (i = 0;
i <= ROWS - 1; i++) {

for (j = 0; j <= COLUMNS - 1; j++) {
b[i][j] = Double.parseDouble(cin.nextLine());

}
}

double[] minimum = new double[ROWS]; double[] maximum
= new double[ROWS]; for (i = 0; i <= ROWS - 1; i++) {

minimum[i] = b[i][0];
maximum[i] = b[i][0];

for (j = 1; j <= COLUMNS - 1; j++) {
if (b[i][j] < minimum[i]) {

minimum[i] = b[i][j];
}

if (b[i][j] > maximum[i]) {
maximum[i] = b[i][j];

}
}

}
for (i = 0; i <= ROWS - 1; i++) {

System.out.println(minimum[i] + " " + maximum[i]);
}

}

Second approach – Finding and directly displaying minimum and
maximum values Let's use the “from inner to outer” method once again.
The next code fragment finds and directly displays the minimum and the
maximum values of the first row (row index 0) of array b. Assume
variable i contains the value 0.
minimum = b[i][0];
maximum = b[i][0];
for (j = 1; j <= COLUMNS - 1; j++) {

if (b[i][j] < minimum) {

minimum = b[i][j];
}
if (b[i][j] > maximum) {

maximum = b[i][j];
}

}

System.out.println(minimum + " " + maximum);

In order to process the whole array b, you can just nest this code fragment
into a for-loop that iterates for all rows, as follows.
for (i = 0; i <= ROWS - 1; i++) {

minimum = b[i][0]; maximum = b[i][0]; for (j = 1; j <= COLUMNS - 1; j++) {
if (b[i][j] < minimum) {

minimum = b[i][j];

}
if (b[i][j] > maximum) {

maximum = b[i][j];
}

}

System.out.println(minimum + " " + maximum); }

The final Java program is as follows.
 Project_34.3-7b

static final int ROWS = 30; static final int COLUMNS =
20;

public static void main(String[] args) throws Exception {
int i, j; double minimum, maximum;

double[][] b = new double[ROWS][COLUMNS]; for (i = 0;
i <= ROWS - 1; i++) {

for (j = 0; j <= COLUMNS - 1; j++) {
b[i][j] = Double.parseDouble(cin.nextLine());

}
}

for (i = 0; i <= ROWS - 1; i++) {
minimum = b[i][0];
maximum = b[i][0];

for (j = 1; j <= COLUMNS - 1; j++) {
if (b[i][j] < minimum) {

minimum = b[i][j];
}

if (b[i][j] > maximum) {
maximum = b[i][j];

}
}

System.out.println(minimum + " " + maximum);
}

}

34.4 Sorting Arrays
Sorting algorithms are an important topic in computer science. A sorting
algorithm is an algorithm that puts elements of an array in a certain order. There
are many sorting algorithms and each one of them has particular strengths and
weaknesses.
Most sorting algorithms work by comparing the elements of the array. They are
usually evaluated by their efficiency and their memory requirements.
There are many sorting algorithms. Some of them are: ► the bubble sort
algorithm ► the modified bubble sort algorithm ► the selection sort algorithm
► the insertion sort algorithm ► the heap sort algorithm ► the merge sort
algorithm ► the quicksort algorithm As regards their efficiency, the bubble sort
algorithm is considered the least efficient, while each succeeding algorithm in the
list performs better than the preceding one. The quicksort algorithm is considered
one of the best and fastest sorting algorithms, especially for large scale data
operations.
Sorting algorithms can be used for more than just displaying data in ascending or
descending order; they can also assist in finding the minimum and the maximum
values from a set of given values. For instance, in an array sorted in ascending
order, the minimum value exists at the first index position and the maximum
value exists at the last index position. While sorting an array solely for the
purpose of finding the minimum and maximum values is very inefficient, if a
program sorts an array for other reasons, and you subsequently need the
minimum or maximum value, you know where you can find them!
Another scenario where you might need sorting algorithms is when you want to
find and display, for example, the three largest (or smallest) numbers in an array.
In this case, you can sort the array in descending order and then display only the
first three elements, located at index positions 0, 1, and 2.
As you already know, Java incorporates the method Arrays.sort() for array
sorting. However, there are situations where it's necessary to implement a custom
sorting algorithm, especially when you need to sort an array while preserving the
one-to-one correspondence with the elements of a second array.

Exercise 34.4-1 The Bubble Sort Algorithm – Sorting One-Dimensional Arrays
with Numeric Values

Write a Java program that lets the user enter 20 numerical values into an array
and then sorts them in ascending order using the bubble sort algorithm.

Solution

The bubble sort algorithm is probably one of the most inefficient sorting
algorithms but it is widely used for teaching purposes. The main idea (when
asked to sort an array in ascending order) is to repeatedly move the smallest
elements of the array to the positions of lowest index. This works as follows: the
algorithm iterates through the elements of the array, compares each pair of
adjacent elements, and then swaps their contents (if they are in the wrong order).
This process is repeated many times until the array is sorted.
For example, let's try to sort the following array in ascending order.

The lowest value is the value 5. According to the bubble sort algorithm, this value
must gradually “bubble” or “rise” to position 0, like bubbles rising in a glass of
cola. When the value 5 has been moved into position 0, the next smallest value is
the value 8. Now, the value 8 must “bubble” to position 1. Next is the value 12,
which must “bubble” to position 2, and so on. This process repeats until all
elements are placed in proper position.
But how can this “bubbling” be done using an algorithm? Let's see the whole
process in more detail. For the previous array A of six elements, five passes must
be performed.

First Pass
1st Compare Initially, elements at index positions 4 and 5 are compared. Since
the value 12 is less than the value 49, these two elements swap their content.
2nd Compare Elements at index positions 3 and 4 are compared. Since the value
12 is not less than the value 5, no swapping is done.
3rd Compare Elements at index positions 2 and 3 are compared. Since the value
5 is less than the value 8, these two elements swap their content.
4th Compare Elements at index positions 1 and 2 are compared. Since the value
5 is less than the value 25, these two elements swap their content.

5th Compare Elements at index positions 0 and 1 are compared. Since the value
5 is less than the value 17, these two elements swap their content.

The first pass has been completed but, as you can see, the array has not been
sorted yet. The only value that is guaranteed to be placed in proper position is the
value 5. However, since more passes will follow, there is no need for the value 5
to take part in the subsequent compares. In the pass that follows, one less
compare will be performed—that is, four compares.

Second Pass
1st Compare Elements at index positions 4 and 5 are compared. Since the value
49 is not less than the value 12, no swapping is done.
2nd Compare Elements at index positions 3 and 4 are compared. Since the value
12 is not less than the value 8, no swapping is done.
3rd Compare Elements at index positions 2 and 3 are compared. Since the value
8 is less than the value 25, these two elements swap their content.
4th Compare Elements at index positions 1 and 2 are compared. Since the value
8 is less than the value 17, these two elements swap their content.

The second pass has been completed and the value of 8 is guaranteed to be placed
in proper position. However, since more passes will follow, there is no need for

the value 8 (nor 5, of course) to take part in the subsequent compares. In the pass
that follows, one less compare will be performed—that is, three compares.

Third Pass
In this pass, three compares (but only two swaps) are performed, as shown below.

The third pass has been completed and the value of 12 is guaranteed to be placed
in proper position. As previously, since more passes will follow there is no need
for the value 12 (nor the values 5 and 8, of course) to take part in the subsequent
compares. In the pass that follows, one compare less will be performed—that is,
two compares.

Fourth Pass
In this pass, two compares (and no swaps) are performed, as shown below.

The fourth pass has been completed and the value 17 is guaranteed to be placed in
proper position. As previously, since one last pass will follow, there is no need for
the value 17 (nor the values 5, 8, and 12, of course) to take part in the subsequent
compares. In the last pass that follows, one compare less will be performed—that
is one compare.

Fifth pass
In this last pass, only one compare is performed. Since the value 49 is not less
than the value 25, no swapping is done.

The fifth pass has been completed and the final two values (25 and 49) are now
guaranteed to be in proper positions. The bubble sort algorithm has finished and
the array is sorted in ascending order!

Now you need a Java program that can do the whole previous process. Let's use
the “from inner to outer” method. The code fragment that performs only the first
pass is shown below. Please note that this is the inner (nested) loop control
structure. Assume variable m contains the value 1.
for (n = ELEMENTS - 1; n >= m; n--) {

if (a[n] < a[n - 1]) {
temp = a[n];

a[n] = a[n - 1];
a[n - 1] = temp;

}
}

In the first pass, variable m must contain the value 1. This assures that at the
last iteration, the elements that are compared are those at index positions 1 and 0.

Swapping the contents of two elements uses a method you have already
learned! Please recall the two glasses of orange juice and lemon juice. If this
doesn't ring a bell, you need to refresh your memory and re-read Exercise 8.1-3.

The second pass can be performed if you just re-execute the previous code
fragment. Variable m, however, needs to contain the value 2. This will ensure that
the element at index position 0 won't be compared again. Similarly, for the third
pass, the previous code fragment can be re-executed but variable m needs to
contain the value 3 for the same reason.
Accordingly, the previous code fragment needs to be executed five times (one for
each pass), and each time variable m must be incremented by 1. The final code
fragment that sorts array a using the bubble sort algorithm is as follows.
for (m = 1; m <= ELEMENTS - 1; m++) {

for (n = ELEMENTS - 1; n >= m; n--) {
if (a[n] < a[n - 1]) {

temp = a[n];
a[n] = a[n - 1];
a[n - 1] = temp;

}

}
}

For N elements, the algorithm needs to perform N − 1 passes. For example, if
array a contains 20 elements, the statement for (m = 1; m <= ELEMENTS - 1; m++)
performs 19 passes.

The complete Java program is as follows.
 Project_34.4-1

static final int ELEMENTS = 20;
public static void main(String[] args) throws Exception {

int i, m, n; double temp;

double[] a = new double[ELEMENTS]; for (i = 0; i <= ELEMENTS - 1; i++) {
a[i] = Double.parseDouble(cin.nextLine());

}
for (m = 1; m <= ELEMENTS - 1; m++) {

for (n = ELEMENTS - 1; n >= m; n--) {

if (a[n] < a[n - 1]) {
temp = a[n];
a[n] = a[n - 1];
a[n - 1] = temp;

}
}

}
for (i = 0; i <= ELEMENTS - 1; i++) {

System.out.print(a[i] + "\t");
}

}

The bubble sort algorithm is very inefficient. The total number of compares
that it performs is , where N is the total number of array elements.

The total number of swaps depends on the given array. The worst case is when
you want to sort in ascending order an array that is already sorted in descending
order, or vice versa.

Exercise 34.4-2 Sorting One-Dimensional Arrays with Alphanumeric Values
Write a code fragment that sorts the alphanumeric values of an array in
descending order using the bubble sort algorithm.

Solution

Comparing the wording of this exercise to the previous one, two things are
different. First, the bubble sort algorithm needs to sort alphanumeric values, such
as names of people or names of cities; and second, it has to sort them in
descending order.
In Java you cannot compare strings using comparison operators such as the equal
(==), the not equal (!=), the less than (<), or the greater than (>) operators.
As you already know from Section 14.3, Java supports two methods: equals()
and compareTo(), which can be used for this purpose. For these methods the letter
“A” is considered “less than” the letter “B”, “B” is considered “less than” the
letter “C”, and so on. Of course, if the array contains words in which the first
letter is identical, Java moves on to compare their second letter and perhaps their

third letter (if necessary). For example, the name “Jonathan” is considered “less
than” the name “Jone” as the fourth letter “a” is “less than” the fourth letter “e”.
In conclusion, if you replace the Boolean expression a[n] < a[n - 1] with the
expression a[n].compareTo(a[n - 1]) < 0, then the bubble sort algorithm
becomes able to sort alphanumeric values in ascending order.

Consider the alphanumeric sorting in the context of how words are organized
in an English dictionary.

Now, let's see what you need to change so that the algorithm can sort in
descending order instead of ascending. Do you remember how the bubble sort
algorithm actually works? Elements gradually “bubble” to positions of lowest
index, like bubbles rise in a glass of cola. What you want in this exercise is to
make the bigger (instead of the smaller) elements “bubble” to lower index
positions. Therefore, all you need to do is simply reverse the comparison operator
of the decision control structure!
The code fragment that sorts alphanumeric values in descending order is as
follows.
String tempStr; for (m = 1; m <= ELEMENTS - 1; m++) {

for (n = ELEMENTS - 1; n >= m; n--) {
if (a[n].compareTo(a[n - 1]) > 0) {

tempStr = a[n];
a[n] = a[n - 1];
a[n - 1] = tempStr;

}
}

}

Exercise 34.4-3 Sorting One-Dimensional Arrays While Preserving the
Relationship with a Second Array

Write a Java program that lets the user enter the names of 20 lakes and their
corresponding average area. The program must then sort them by average area in
ascending order using the bubble sort algorithm.

Solution

In this exercise you need the following two arrays.

If you want to sort array areas while preserving the one-to-one correspondence
between the elements of the two arrays, you must rearrange the elements of the
array names as well. This means that every time two elements of the array areas
swap contents, the corresponding elements of the array names must swap contents
as well. The Java program is as follows.

 Project_34.4-3
static final int LAKES = 20;

public static void main(String[] args) throws Exception {
int i, m, n; double temp; String tempStr;
String[] names = new String[LAKES]; double[] areas = new double[LAKES]; for (i = 0; i <=
LAKES - 1; i++) {

names[i] = cin.nextLine();
areas[i] = Double.parseDouble(cin.nextLine());

}
for (m = 1; m <= LAKES - 1; m++) {

for (n = LAKES - 1; n >= m; n--) {
if (areas[n] < areas[n - 1]) {

temp = areas[n];

areas[n] = areas[n - 1];
areas[n - 1] = temp;
tempStr = names[n];
names[n] = names[n - 1];
names[n - 1] = tempStr;

}
}

}
for (i = 0; i <= LAKES - 1; i++) {

System.out.println(names[i] + "\t" + areas[i]);
}

}

Note that you cannot use the variable temp for swapping the contents of two
elements of the array names; this is because variable temp is declared as double while

array names contains strings. So, you need a second variable (tempStr) declared as
String for this purpose.

Exercise 34.4-4 Sorting Last and First Names
Write a Java program that prompts the user to enter the last and first names of
100 people. The program must then display the names with the last names sorted
in alphabetical order. In cases where two or more people share the same last
name, their first names should be displayed in alphabetical order.

Solution

You already know how to sort an array while preserving the one-to-one
correspondence with the elements of a second array. Now, you have to handle the
case when two last names in the first array are equal. According to the wording of
the exercise, the corresponding first names in the second array must also be sorted
alphabetically. For example, the following array lastNm contains the last names of
100 people. It is sorted in alphabetical order and it contains the last name
“Parker” three times. The corresponding first names “Andrew”, “Anna”, and
“Chloe”, in array firstNm also have to be sorted alphabetically, as shown here.

For your convenience, the basic version of the bubble sort algorithm is presented
once again here. Please note that this algorithm preserves the one-to-one
correspondence between the elements of arrays lastNm and firstNm.
for (m = 1; m <= PEOPLE - 1; m++) {

for (n = PEOPLE - 1; n >= m; n--) {
if (lastNm[n].compareTo(lastNm[n - 1]) < 0) {

tempStr = lastNm[n];
lastNm[n] = lastNm[n - 1];

lastNm[n - 1] = tempStr;
tempStr = firstNm[n];
firstNm[n] = firstNm[n - 1];
firstNm[n - 1] = tempStr;

}
}

}

Note that variable tempStr is used for swapping the contents of the elements of
both arrays lastNm and firstNm. This is acceptable since both arrays contain strings.

To solve this exercise, however, this bubble sort algorithm must be adapted
correspondingly. According to this basic version of the bubble sort algorithm,
when the last name at position n is “less” than the last name at position n − 1, the
algorithm swaps the corresponding contents. However, if the last names at these
positions are equal, the algorithm must then verify whether the corresponding
first names are in the correct order. If not, a swap is required in the array firstNm.
The adapted bubble sort algorithm is depicted in the following code fragment.
for (m = 1; m <= PEOPLE - 1; m++) {

for (n = PEOPLE - 1; n >= m; n--) {
if (lastNm[n].compareTo(lastNm[n - 1]) < 0) {

tempStr = lastNm[n];
lastNm[n] = lastNm[n - 1];

lastNm[n - 1] = tempStr;
tempStr = firstNm[n];
firstNm[n] = firstNm[n - 1];
firstNm[n - 1] = tempStr;

}
else if (lastNm[n].equals(lastNm[n - 1])) { //If the last names are equal

if (firstNm[n].compareTo(firstNm[n - 1]) < 0) { //check the corresponding first
names

tempStr = firstNm[n]; //and swap if not in correct order
firstNm[n] = firstNm[n - 1];
firstNm[n - 1] = tempStr;

}
}

}
}

The final Java program is presented next.

 Project_34.4-4
static final int PEOPLE = 100;
public static void main(String[] args) throws Exception {

int i, m, n; String tempStr;
//Read arrays firstNm and lastNm String[] firstNm = new String[PEOPLE]; String[] lastNm =
new String[PEOPLE]; for (i = 0; i <= PEOPLE - 1; i++) {

System.out.print("First name for person No. " + (i + 1) + ": ");
firstNm[i] = cin.nextLine();
System.out.print("Last name for person No. " + (i + 1) + ": ");
lastNm[i] = cin.nextLine();

}
//Sort arrays lastNm and firstNm for (m = 1; m <= PEOPLE - 1; m++) {

for (n = PEOPLE - 1; n >= m; n--) {

if (lastNm[n].compareTo(lastNm[n - 1]) < 0) {
tempStr = lastNm[n];
lastNm[n] = lastNm[n - 1];
lastNm[n - 1] = tempStr;
tempStr = firstNm[n];

firstNm[n] = firstNm[n - 1];
firstNm[n - 1] = tempStr;

}
else if (lastNm[n].equals(lastNm[n - 1])) {

if (firstNm[n].compareTo(firstNm[n - 1]) < 0) {
tempStr = firstNm[n];

firstNm[n] = firstNm[n - 1];
firstNm[n - 1] = tempStr;

}
}

}

}
//Display arrays lastNm and firstNm for (i = 0; i <= PEOPLE - 1; i++) {

System.out.println(lastNm[i] + "\t" + firstNm[i]);
}

}

Exercise 34.4-5 Sorting a Two-Dimensional Array
Write a code fragment that sorts each column of a two-dimensional array in
ascending order. Assume that the array contains numerical values.

Solution

An example of a two-dimension array is as follows.

Since this array has seven columns, the bubble sort algorithm needs to be
executed seven times, one for each column. Therefore, the whole bubble sort

algorithm should be nested within a for-loop that iterates seven times.
But let's get things in the right order. Using the “from inner to outer” method, the
next code fragment sorts only the first column (column index 0) of the two-
dimensional array a. Assume variable j contains the value 0.
for (m = 1; m <= ROWS - 1; m++) {

for (n = ROWS - 1; n >= m; n--) {
if (a[n][j] < a[n - 1][j]) {

temp = a[n][j];
a[n][j] = a[n - 1][j];
a[n - 1][j] = temp;

}
}

}

Now, in order to sort all columns, you can nest this code fragment in a for-loop
that iterates for all of them, as follows.
for (j = 0; j <= COLUMNS - 1; j++) {

for (m = 1; m <= ROWS - 1; m++) {
for (n = ROWS - 1; n >= m; n--) {

if (a[n][j] < a[n - 1][j]) {
temp = a[n][j];

a[n][j] = a[n - 1][j];
a[n - 1][j] = temp;

}
}

}

}

That wasn't so difficult, was it?

Exercise 34.4-6 The Modified Bubble Sort Algorithm – Sorting One-
Dimensional Arrays

Write a Java program that lets the user enter the weights of 20 people and then
displays the three heaviest weights and the three lightest weights. Use the
modified bubble sort algorithm.

Solution

To solve this exercise, the Java program can sort the user-provided data in
ascending order and then display the elements at index positions 17, 18, and 19
(for the three heaviest weights) and the elements at index positions 0, 1 and 2 (for
the three lightest weights). But what is that modified version of the bubble sort
algorithm, and how does it actually work? Suppose you have the following array
containing the weights of six people.

If you look closer, you can confirm for yourself that the only elements not in the
proper position are those at index positions 3 and 4. If you swap their values, the
array w immediately becomes sorted! Unfortunately, the bubble sort algorithm
doesn't operate this way. For this given array of six elements, it will perform five
passes either way, with a total of compares, where N is the total

number of array elements. For larger arrays, the total number of compares that the
bubble sort algorithm performs increases exponentially! For example, for a given
array of 1000 elements, the bubble sort algorithm performs 499,500 compares!
Of course the modified bubble sort algorithm can overcome this situation as
follows: if a complete pass is performed and no swaps have been made, then this
indicates that the array is now sorted and there is no need for further passes. To
accomplish this, the Java program can use a flag variable that indicates if any
swaps were made. At the beginning of a pass, a value of false can be assigned to
the flag variable; when a swap is made, a value of true is assigned. If, at the end
of the pass, the flag is still false, this indicates that no swaps have been made,
thus iterations must stop. The modified bubble sort is shown next. It uses the
break statement and the flag variable swaps.
for (m = 1; m <= ELEMENTS - 1; m++) {

//Assign false to variable swaps swaps = false;
//Perform a new pass for (n = ELEMENTS - 1; n >= m; n--) {

if (w[n] < w[n - 1]) {
temp = w[n];

w[n] = w[n - 1];
w[n - 1] = temp;
swaps = true;

}
}

//If variable swaps is still false, no swaps have been made in this pass. Stop iterations!
if (!swaps) break; }

The value false must be assigned to variable swaps each time a new pass starts.
This is why the statement swaps = false must be placed between the two for
statements.

The statement if (!swaps) is equivalent to the statement if (swaps == false).

The final Java program is shown next.
 Project_34.4-6

static final int ELEMENTS = 20;
public static void main(String[] args) throws Exception {

int i, m, n; boolean swaps; double temp;

double[] w = new double[ELEMENTS]; for (i = 0; i <= ELEMENTS - 1; i++) {
w[i] = Double.parseDouble(cin.nextLine());

}
for (m = 1; m <= ELEMENTS - 1; m++) {

swaps = false;

for (n = ELEMENTS - 1; n >= m; n--) {
if (w[n] < w[n - 1]) {

temp = w[n];
w[n] = w[n - 1];
w[n - 1] = temp;
swaps = true;

}
}
if (!swaps) break;

}
System.out.println("The three heaviest weights are:"); System.out.println(w[ELEMENTS - 3]

+ " " + w[ELEMENTS - 2] + " " + w[ELEMENTS - 1]); System.out.println("The three lightest
weights are:"); System.out.println(w[0] + " " + w[1] + " " + w[2]); }

Exercise 34.4-7 The Selection Sort Algorithm – Sorting One-Dimensional
Arrays

Write a code fragment that sorts the elements of an array in ascending order
using the selection sort algorithm. Assume that the array contains numerical
values.

Solution

The selection sort algorithm is inefficient for large scale data, as is the bubble sort
algorithm, but it generally performs better than the latter. It is the simplest of all
the sorting algorithms and performs well on computer systems in which limited
main memory (RAM) comes into play.
The algorithm finds the smallest (or largest, depending on sorting order) element
of the array and swaps its content with that at position 0. Then the process is
repeated for the remainder of the array; the next smallest (or largest) element is
found and put into the next position, until all elements are examined.
For example, let's try to sort the following array in ascending order.

The lowest value is the value 4, found at position 4. According to the selection
sort algorithm, this element swaps its content with the element at position 0. The

array A becomes

The lowest value in the remainder of the array (index positions 1 to 5) is the value
9, found at position 5. This element swaps its content with the element at position
1. The array A becomes

The lowest value in the remainder of the array (index positions 2 to 5) is the value
18, found at position 4. This element swaps its content with the element at
position 2. The array A becomes

Proceeding the same way, the next lowest value is the value 19, found at position
5. The array A becomes

The next lowest value is the value 36, found at position 5. This element swaps its
content with the element at position 4 and the array A is finally sorted in
ascending order!

Now, let's write the corresponding Java program. The “from inner to outer”
method is used in order to help you better understand the whole process. The next
code fragment finds the smallest element and then swaps its content with that at
position 0. Please note that this is the inner (nested) loop control structure.
Assume variable m contains the value 0.
minimum = a[m];
indexOfMin = m;

for (n = m; n <= ELEMENTS - 1; n++) {
if (a[n] < minimum) {

minimum = a[n];
indexOfMin = n;

}
}
//Minimum found! Now, swap values.

temp = a[m];
a[m] = a[indexOfMin];
a[indexOfMin] = temp;

Now, in order to repeat the process for all elements of the array, you can nest this
code fragment within a for-loop that iterates for all elements. The final selection
sort algorithm that sorts an array in ascending order is as follows.
for (m = 0; m <= ELEMENTS - 1; m++) {

minimum = a[m];

indexOfMin = m;
for (n = m; n <= ELEMENTS - 1; n++) {

if (a[n] < minimum) {
minimum = a[n];
indexOfMin = n;

}

}
temp = a[m];
a[m] = a[indexOfMin]; a[indexOfMin] = temp; }

If you wish to sort an array in descending order, all you need to do is search
for maximum instead of minimum values.

As in the bubble sort algorithm, in order to sort alphanumeric data with the
selection sort algorithm, you can simply replace the Boolean expression a[n] <
minimum with the expression a[n].compareTo(minimum) < 0.

Exercise 34.4-8 Sorting One-Dimensional Arrays While Preserving the
Relationship with a Second Array

Write a Java program that prompts the user to enter the total number of kWh
consumed each month for a period of one year. It then displays the three months
with the highest consumption of kWh, along with the corresponding number of
KWh (in descending order). Use the selection sort algorithm.

Solution

In this exercise you need the following two one-dimensional arrays.

While the selection sort algorithm sorts the elements of array kwh, the one-to-one
correspondence with the elements of array months must be preserved. This means
that every time two elements of array kwh swap contents, the corresponding
elements of array months must swap their contents as well.
However, given that you solely require the three months with the highest
consumption of KWh, the selection sort algorithm should sort only the first three
elements. The Java program is as follows.

 Project_34.4-8
public static void main(String[] args) throws Exception {

int i, m, indexOfMax, n; double maximum, temp; String tempStr;

String[] months = {"January", "February", "March", "April", "May", "June", "July",
"August", "September", "October", "November", "December"};
double[] kwh = new double[months.length]; for (i = 0; i <= months.length - 1; i++) {

System.out.print("Enter kWh for " + months[i] + ": ");
kwh[i] = Double.parseDouble(cin.nextLine());

}
for (m = 0; m <= 2; m++) { //Sort only the first three elements
maximum = kwh[m];

indexOfMax = m;
for (n = m; n <= months.length - 1; n++) {

if (kwh[n] > maximum) {
maximum = kwh[n];
indexOfMax = n;

}
}
//Swap values of kwh

temp = kwh[m];
kwh[m] = kwh[indexOfMax];
kwh[indexOfMax] = temp;
//Swap values of months
tempStr = months[m];

months[m] = months[indexOfMax];
months[indexOfMax] = tempStr;

}

for (i = 0; i <= 2; i++) {
System.out.println(months[i] + ": " + kwh[i]);

}

}

If this exercise required the use of the bubble sort instead of the selection sort
algorithm, you could employ the same “trick”. The algorithm could perform 3
passes instead of ELEMENTS – 1 passes.

Exercise 34.4-9 The Insertion Sort Algorithm – Sorting One-Dimensional
Arrays

Write a code fragment that sorts the elements of an array in ascending order
using the insertion sort algorithm. Assume that the array contains numerical
values.

Solution

The insertion sort algorithm is inefficient for large scale data, as are the selection
and the bubble sort algorithms, but it generally performs better than either of
them. Moreover, the insertion sort algorithm can prove very fast when sorting
very small arrays— sometimes even faster than the quicksort algorithm.
The insertion sort algorithm resembles the way you might sort playing cards. You
start with all the cards face down on the table. The cards on the table represent the
unsorted “array”. In the beginning your left hand is empty, but in the end this
hand will hold the sorted cards. The process goes as follows: you remove from
the table one card at a time and insert it into the correct position in your left hand.
To find the correct position for a card, you compare it with each of the cards
already in your hand, from right to left. At the end, there must be no cards on the
table and your left hand will hold all the cards, sorted.
For example, let's try to sort the following array in ascending order. To better
understand this example, assume that the sorting process has already begun and
the first three elements of the array have been sorted.

The elements at index positions 0, 1, and 2 represent the cards in your left
hand, while the remaining elements of the array represent the unsorted cards on
the table.

The element at position 3 (which is 8) is removed from the array and all elements
on its left with a value greater than 8 are shifted to the right. The array A becomes

Now that a position has been released, the value 8 is inserted in there. The array

becomes

The element at position 4 (which is 10) is removed from the array and all
elements on its left with a value greater than 10 are shifted to the right. The array

A becomes

Now that a position has been released, the value of 10 is inserted in there. The
array becomes

The element at position 5 (which is 18) is removed from the array and all
elements on its left with a value greater than 18 are shifted to the right. The array

A becomes

The value of 18 is inserted in the released position. The array becomes

The element at position 6 (which is 9) is removed from the array and all elements
on its left with a value greater than 9 are shifted to the right. The array A becomes

Finally, the value of 9 is inserted in the released position, the algorithm finishes
and the array is now sorted.

What the algorithm actually does is to check the unsorted elements one by one
and insert each one in the appropriate position among those considered already
sorted.

The code fragment that sorts an array in ascending order using the insertion sort
algorithm is as follows.
for (m = 1; m <= ELEMENTS - 1; m++) {

//"Remove" the element at index position m from the array and keep it in variable element

element = a[m];
//Shift appropriate elements to the right n = m;
while (n > 0 && a[n - 1] > element) {

a[n] = a[n - 1]; //Equivallent to:
n--; //a[n--] = a[n – 1];

}
//Insert the previously "removed" element at index position n a[n] = element;

}

Please note that the element at index position m is not actually removed from
the array but is in fact overwritten when shifting to the right is performed. This is
why its value is kept in variable element before shifting the elements.

If you wish to sort an array in descending order, all you need to do is alter the
Boolean expression of the while statement to n > 0 && a[n − 1] < element.

As in the previous two sorting algorithms, in order to sort alphanumeric data
in Java, you can simply replace the Boolean expression n > 0 && a[n - 1] > element
with the expression n > 0 && a[n - 1].compareTo(element) > 0.

Exercise 34.4-10 The Three Worst Elapsed Times
Ten race car drivers run their cars as fast as possible on a racing track. Each car
runs 20 laps and for each lap the corresponding elapsed time (in seconds) is
recorded. Write a Java program that prompts the user to enter the name of each

driver and their elapsed time for each lap. The program must then display the
name of each driver along with their three worst elapsed times. Use the insertion
sort algorithm.

Solution

In this exercise, you need the following two arrays.

After the user enters all data, the Java program must sort each row of the array in
descending order but, in the end, must display only the first three columns.
Using the “from inner to outer” method, the next code fragment sorts only the
first row (row index 0) of the two-dimensional array elapsedTimes in descending
order using the insertion sort algorithm. Assume variable i contains the value 0.
for (m = 1; m <= LAPS - 1; m++) {

element = elapsedTimes[i][m]; n = m;

while (n > 0 && elapsedTimes[i][n - 1] < element) {
elapsedTimes[i][n] = elapsedTimes[i][n - 1];
n--;

}
elapsedTimes[i][n] = element; }

Now, in order to sort all rows, you need to nest this code fragment in a for-loop
that iterates for all of them, as follows.
for (i = 0; i <= CARS - 1; i++) {

for (m = 1; m <= LAPS - 1; m++) {
element = elapsedTimes[i][m];
n = m;
while (n > 0 && elapsedTimes[i][n - 1] < element) {

elapsedTimes[i][n] = elapsedTimes[i][n - 1];

n--;
}
elapsedTimes[i][n] = element;

}
}

And now, let's focus on the given exercise. The final Java program is as follows.

 Project_34.4-10
static final int CARS = 10; static final int LAPS = 20;

public static void main(String[] args) throws Exception {
int i, j, m, n; double element;
//Read names and elapsed times all together String[] names = new String[CARS]; double[][]
elapsedTimes = new double[CARS][LAPS]; for (i = 0; i <= CARS - 1; i++) {

System.out.print("Enter name for driver No. " + (i + 1) + ": ");

names[i] = cin.nextLine();
for (j = 0; j <= LAPS - 1; j++) {

System.out.print("Enter elapsed time for lap No. " + (j + 1) + ": ");
elapsedTimes[i][j] = Double.parseDouble(cin.nextLine());

}
}

//Sort array elapsedTimes for (i = 0; i <= CARS - 1; i++) {
for (m = 1; m <= LAPS - 1; m++) {

element = elapsedTimes[i][m];
n = m;
while (n > 0 && elapsedTimes[i][n - 1] < element) {

elapsedTimes[i][n] = elapsedTimes[i][n - 1];
n--;

}
elapsedTimes[i][n] = element;

}

}
//Display 3 worst elapsed times for (i = 0; i <= CARS - 1; i++) {

System.out.println("Worst elapsed times of " + names[i]);
System.out.println("-----------------------------------");
for (j = 0; j <= 2; j++) {

System.out.println(elapsedTimes[i][j]);

}
}

}

34.5 Searching Elements in Data Structures
In computer science, a search algorithm is an algorithm that searches for an item
with specific features within a set of data. In the case of a data structure, a search
algorithm searches the data structure to find the element, or elements, that equal a
given value.
When searching in a data structure, there can be two situations.

► You want to search for a given value in a data structure that may contain the
same value multiple times. Therefore, you need to find all the elements (or
their corresponding indexes) that are equal to that given value.

► You want to search for a given value in a data structure where each value is
unique. Therefore, you need to find just one element (or its corresponding

index), the one that is equal to that given value, and then stop searching any
further!

The most commonly used search algorithms are: ► the linear (or sequential)
search algorithm ► the binary search algorithm Both linear and binary search
algorithms have advantages and disadvantages.

Exercise 34.5-1 The Linear Search Algorithm – Searching in a One-
Dimensional Array that may Contain the Same Value Multiple Times

Write a code fragment that performs a search on a one-dimensional array to find
a user-provided value. Assume that the array contains numerical values and may
contain the same value multiple times. Use the linear search algorithm.

Solution

The linear (or sequential) search algorithm checks if the first element of the array
is equal to a given value, then checks the second element, then the third, and so
on until the end of the array. Since this process of checking elements one by one
is quite slow, the linear search algorithm is suitable for arrays with few elements.
The code fragment is shown next. It looks for a user-provided value needle in the
array haystack!
System.out.print("Enter a value to search: "); needle = Double.parseDouble(cin.nextLine());
found = false;
for (i = 0; i <= ELEMENTS - 1; i++) {

if (haystack[i] == needle) {
System.out.println(needle + " found at position: " + i);
found = true;

}
}

if (!found) {
System.out.println("Nothing found!"); }

Exercise 34.5-2 Display the Last Names of All Those People Who Have the Same
First Name

Write a Java program that prompts the user to enter the names of 20 people: their
first names into the array firstNames, and their last names into the array lastNames.
The program must then ask the user for a first name, upon which it will search
and display the last names of all those whose first name equals the provided one.

Solution

Even though it is not clear in the wording of the exercise, it is true that the array
firstNames may contain a value multiple times. How rare is it to meet two people
named “John”, for example?

The program must search for the user-provided first name in array firstNames
and every time it finds it, it must display the corresponding last name from the
other array.
The solution is as follows.

 Project_34.5-2
static final int PEOPLE = 20;

public static void main(String[] args) throws Exception {
int i; String needle; boolean found;
String[] firstNames = new String[PEOPLE]; String[] lastNames = new String[PEOPLE]; for (i
= 0; i <= PEOPLE - 1; i++) {

System.out.print("Enter first name: ");

firstNames[i] = cin.nextLine();
System.out.print("Enter last name: ");
lastNames[i] = cin.nextLine();

}
//Get name to search and convert it to uppercase System.out.print("Enter a first name to
search: "); needle = cin.nextLine().toUpperCase();

//Search for user-provided value in array firstNames found = false;
for (i = 0; i <= PEOPLE - 1; i++) {

if (firstNames[i].toUpperCase().equals(needle)) { //Convert to uppercase and compare
System.out.println(lastNames[i]);
found = true;

}
}
if (!found) {

System.out.println("No one found!");
}

}

When you want to compare two strings to find out if they are equal, you
cannot use the equal (==) comparison operator. Java incorporates the special
method equals() for this purpose.

Since the program deals with alphanumeric data, the toUpperCase() method is
required so that the program can operate correctly for any user-provided value.
For example, if the value “John” exists in the array firstNames and the user wants
to search for the value “JOHN”, the toUpperCase() method ensures that the program
finds all Johns.

Exercise 34.5-3 The Linear Search Algorithm – Searching in a Two-
Dimensional Array that May Contain the Same Value Multiple Times

Write a code fragment that performs a search on each row of a two-dimensional
array to find a user-provided value. Assume that the array contains numerical

values and may contain the same value multiple times. Use the linear search
algorithm.

Solution

This code fragment must search for the user-provided number in each row of a
two-dimensional array that may contain the same value multiple times. This
means that the code fragment must search in the first row and display all the
columns where the user-provided number is found; otherwise, it must display a
message that the user-provided number was not found in the first row. Then, it
must search in the second row, and this process must continue until all rows have
been examined.
To better understand this exercise, the “inner to outer” method is used. The
following code fragment searches for a given value (variable needle) only in the
first row of the two-dimensional array named haystack. Assume variable i
contains the value 0.
found = false;
for (j = 0; j <= COLUMNS - 1; j++) {

if (haystack[i][j] == needle) {

System.out.println("Found at column " + j);
found = true;

}
}
if (!found) {

System.out.println("Nothing found in row " + i); }

Now, in order to search in all rows, you need to nest this code fragment in a for-
loop that iterates for all of them, as follows.
System.out.print("Enter a value to search: "); needle = Double.parseDouble(cin.nextLine());
for (i = 0; i <= ROWS - 1; i++) {

found = false;
for (j = 0; j <= COLUMNS - 1; j++) {

if (haystack[i][j] == needle) {

System.out.println("Found at column " + j);
found = true;

}
}
if (!found) {

System.out.println("Nothing found in row " + i);
}

}

Exercise 34.5-4 The Linear Search Algorithm – Searching in a One-
Dimensional Array that Contains Unique Values

Write a code fragment that performs a search on a one-dimensional array to find
a user-provided value. Assume that the array contains numerical values and each
value in the array is unique. Use the linear search algorithm.

Solution

This case is quite different from the previous ones. Since each value in the array
is unique, when the user-provided value is found, there is no need to iterate
without reason until the end of the array, thus wasting CPU time. There are three
approaches, actually! Let's analyze them all!

First approach – Using the break statement In this approach, when the user-
provided value is found, a break statement is used to break out of the for-loop.
The solution is as follows.
System.out.print("Enter a value to search: "); needle = Double.parseDouble(cin.nextLine());
found = false;
for (i = 0; i <= ELEMENTS - 1; i++) {

if (haystack[i] == needle) {
System.out.println(needle + " found at position: " + i);
found = true;
break;

}

}
if (!found) {

System.out.println("Nothing found!"); }

Or you can do the same, in a little bit different way.
System.out.print("Enter a value to search: "); needle = Double.parseDouble(cin.nextLine());
indexPosition = -1;
for (i = 0; i <= ELEMENTS - 1; i++) {

if (haystack[i] == needle) {
indexPosition = i;
break;

}
}

if (indexPosition == -1) {
System.out.println("Nothing found!"); }

else {
System.out.println(needle + " found at position: " + indexPosition); }

Second approach – Using a flag The break statement doesn't actually exist in
all computer languages; and since this book's intent is to teach you
“Algorithmic Thinking” (and not just special statements that only Java
supports), let's look at an alternate approach.

In the next code fragment, when the user-provided value is found within array
haystack, the variable found forces the flow of execution to immediately exit the
loop.

System.out.print("Enter a value to search: "); needle = Double.parseDouble(cin.nextLine());
found = false;
i = 0;

while (i <= ELEMENTS - 1 && !found) {
if (haystack[i] == needle) {

found = true;
indexPosition = i;

}

i++;
}
if (!found) {

System.out.println("Nothing found!"); }
else {

System.out.println(needle + " found at position: " + indexPosition); }

Third approach – Using only a pre-test loop structure This approach is likely
the most efficient among the three. The while-loop iterates through the array,
comparing each element with the needle. The loop continues as long as two
conditions are met: variable i (representing the index) is within the valid
range for the array haystack, and the value at the current index in the array is
not equal to the needle. If both conditions are true, variable i is incremented
to move to the next element. This process continues until a match is found or
until the end of the array is reached.
System.out.print("Enter a value to search: "); needle = Double.parseDouble(cin.nextLine());
i = 0;
while (i < ELEMENTS - 1 && haystack[i] != needle) {

i++;
}

if (haystack[i] != needle) {
System.out.println("Nothing found!"); }

else {
System.out.println(needle + " found at position: " + i); }

Exercise 34.5-5 Searching for a Social Security Number
In the United States, the Social Security Number (SSN) is a nine-digit identity
number applied to all U.S. citizens in order to identify them for the purposes of
Social Security. Write a Java program that prompts the user to enter the SSN and
the first and last names of 100 people. The program must then ask the user for an
SSN, upon which it will search and display the first and last name of the person
who holds that SSN.

Solution

In the United States, there is no possibility that two or more people will have the
same SSN. Thus, even though it is not clear in the wording of the exercise, each
value in the array that holds the SSNs is unique!

According to everything you have learned so far, the solution to this exercise is as
follows.

 Project_34.5-5
static final int PEOPLE = 100;

public static void main(String[] args) throws Exception {
int i; String needle;
String[] SSNs = new String[PEOPLE]; String[] firstNames = new String[PEOPLE]; String[]
lastNames = new String[PEOPLE]; for (i = 0; i <= PEOPLE - 1; i++) {

System.out.print("Enter SSN: ");

SSNs[i] = cin.nextLine();
System.out.print("Enter first name: ");
firstNames[i] = cin.nextLine();
System.out.print("Enter last name: ");
lastNames[i] = cin.nextLine();

}

System.out.print("Enter an SSN to search: "); needle = cin.nextLine();
//Search for user-provided value in array SSNs i = 0;
while (i < PEOPLE - 1 && !SSNs[i].equals(needle)) {

i++;
}

if (!SSNs[i].equals(needle)) {
System.out.println("Nothing found!");

}
else {

System.out.println(firstNames[i] + " " + lastNames[i]);

}
}

When you want to compare two strings to find out if they are not equal, you
cannot use the not equal (!=) comparison operator. Java incorporates the special
method equals() for this purpose. When this method returns false, it means that the
two strings are not equal.

Exercise 34.5-6 The Linear Search Algorithm – Searching in a Two-
Dimensional Array that Contains Unique Values

A public opinion polling company makes phone calls in 10 cities and asks 30
citizens in each city whether or not they exercise. Write a Java program that
prompts the user to enter each citizen's phone number and their answer (Y for
Yes, N for No, S for Sometimes). The program must then prompt the user to enter
a phone number, and it will search and display the answer that was provided at
this phone number. The program must also validate data input and accept only
the values Y, N, or S as an answer.

Solution

In this exercise, you need the following two arrays.

Even though it is not clear in the wording of the exercise, each value in the array
phoneNum is unique! The program must search for the user-provided number and
if it finds it, it must stop searching thereafter. The solution is as follows.

 Project_34.5-6
static final int CITIES = 10; static final int CITIZENS = 30;
public static void main(String[] args) throws Exception {

int i, j, positionI, positionJ; boolean found; String needle;

String[][] phoneNum = new String[CITIES][CITIZENS]; String[][] ans = new String[CITIES]
[CITIZENS]; for (i = 0; i <= CITIES - 1; i++) {

System.out.println("City No. " + (i + 1));
for (j = 0; j <= CITIZENS - 1; j++) {

System.out.print("Enter phone number of citizen No. " + (j + 1) + ": ");

phoneNum[i][j] = cin.nextLine();
System.out.print("Enter the answer of citizen No. " + (j + 1) + ": ");
ans[i][j] = cin.nextLine().toUpperCase();
while (!ans[i][j].equals("Y") && !ans[i][j].equals("N") && !ans[i][j].equals("S")) {

System.out.print("Wrong answer. Enter a valid one: ");
ans[i][j] = cin.nextLine().toUpperCase();

}
}

}
System.out.print("Enter a phone number to search: "); needle = cin.nextLine();
found = false;

positionI = -1;
positionJ = -1;
for (i = 0; i <= CITIES - 1; i++) {

for (j = 0; j <= CITIZENS - 1; j++) {
if (phoneNum[i][j].equals(needle)) { //If it is found

found = true;
positionI = i; //Keep row index where needle was found
positionJ = j; //Keep column index where needle was found
break; //Exit the inner loop

}

}
if (found)

break; //If it is found, exit the outer loop as well

}
if (!found) {

System.out.println("Phone number not found!");
}
else {

System.out.print("Phone number " + phoneNum[positionI][positionJ] + " gave '");
switch (ans[positionI][positionJ]) {

case "Y":
System.out.print("Yes");
break;

case "N":

System.out.print("No");
break;

default:
System.out.print("Sometimes");

}

System.out.println("' as an answer");
}

}

Exercise 34.5-7 Checking if a Value Exists in all Columns
Write a Java program that lets the user enter numeric values into a 20 × 30
array. After all of the values have been entered, the program then lets the user
enter a value. In the end, a message must be displayed if the user-provided value
exists, at least once, in each column of the array.

Solution

This exercise can be solved using the linear search algorithm and a counter
variable count. The Java program will iterate through the first column; if the user-
provided value is found, the Java program must stop searching in the first column
thereafter, and the variable count must increment by one. Then, the program will
iterate through the second column; if the user-provided value is found again, the
Java program must stop searching in the second column thereafter, and the
variable count must once more increment by one. This process must repeat until
all columns have been examined. At the end of the process, if the value of count
is equal to the total number of columns, this means that the user-provided value
exists, at least once, in each column of the array.
Let's use the “from inner to outer” method. The following code fragment searches
in first column (column index 0) of the array and if the user-provided value is
found, the flow of execution exits the for-loop and variable count increments by
one. Assume variable j contains the value 0.

found = false;
for (i = 0; i <= ROWS - 1; i++) {

if (haystack[i][j] == needle) {

found = true;
break;

}
}
if (found) {

count++;
}

Now you can nest this code fragment in a for-loop that iterates for all columns.
for (j = 0; j <= COLUMNS - 1; j++) {

found = false;
for (i = 0; i <= ROWS - 1; i++) {

if (haystack[i][j] == needle) {

found = true;
break;

}
}
if (found) {

count++;
}

}

You are almost ready—but consider a small detail! If the inner for-loop doesn't
find the user-provided value in a column, the outer for-loop must stop iterating. It
is pointless to continue because the user-provided value does not exist in at least
one column. Thus, a better approach would be to use a break statement for the
outer loop as shown in the code fragment that follows.
for (j = 0; j <= COLUMNS - 1; j++) {

found = false;

for (i = 0; i <= ROWS - 1; i++) {
if (haystack[i][j] == needle) {

found = true;
break;

}
}

if (found) {
count++;

}
else {

break;

}
}

The final Java program is as follows.
 Project_34.5-7

static final int ROWS = 20; static final int COLUMNS = 30;
public static void main(String[] args) throws Exception {

int i, j, count; boolean found; double needle;

double[][] haystack = new double[ROWS][COLUMNS]; for (i = 0; i <= ROWS - 1; i++) {
for (j = 0; j <= COLUMNS - 1; j++) {

haystack[i][j] = Double.parseDouble(cin.nextLine());
}

}

System.out.print("Enter a value to search: "); needle =
Double.parseDouble(cin.nextLine());
count = 0;
for (j = 0; j <= COLUMNS - 1; j++) {

found = false;
for (i = 0; i <= ROWS - 1; i++) {

if (haystack[i][j] == needle) {
found = true;
break;

}
}

if (found) {
count++;

}
else {

break;

}
}
if (count == COLUMNS) {

System.out.println(needle + " found in every column!");
}

}

If you need a message to be displayed when a user-provided value exists at
least once in each row (rather than in each column), the Java program can follow
a procedure like the one previously shown but in this case, it must iterate through
the rows instead of the columns.

Exercise 34.5-8 The Binary Search Algorithm – Searching in a Sorted One-
Dimensional Array

Write a code fragment that performs a search on a sorted one-dimensional array
to find a given value. Use the binary search algorithm.

Solution

The binary search algorithm is considered very fast and can be used with large
scale data. Its main disadvantage, though, is that the data need to be sorted.

The main idea of the binary search algorithm is to first examine the element in the
middle of the array. If it does not match the “needle in the haystack” that you are
looking for, the algorithm determines whether the target is smaller or larger than
the middle element. This guides the search to the corresponding half of the array.
In other words, if the “needle” you are looking for is smaller than the value of the
middle element, it means that the “needle” might be in the first half of the array;
otherwise it might be in the last half of the array. The process continues,
narrowing down the search by checking the middle element in the remaining half
of the array until the "needle" is found or the portion of the array being examined
is reduced to a single element. If the latter occurs without finding the "needle," it
means the “needle” is not present in the array.
Confused? Let's try to analyze the binary search algorithm through an example.
The following array contains numeric values in ascending order. Assume that the
“needle” that you are looking for is the value 44.

Three variables are used. Initially, variable left contains the value 0 (this is the
index of the first element), variable right contains the value 13 (this is the index
of the last element) and variable middle contains the value 6 (this is
approximately the index of the middle element).

The “needle” (value 44) that you are looking for is larger than the value of 39 in
the middle, thus the element that you are looking for might be in the last half of
the array. Therefore, variable left is updated to point to index position 7 and
variable middle is updated to a point in the middle between left (the new one)
and right, as shown below.

Now, the “needle” (value 44) that you are looking for is smaller than the value of
57 in the middle, thus the element that you are looking for might be in the first
half of the portion of the array being examined. Therefore, it is the variable right

that is now updated to point to index position 9, and variable middle is updated to
point to the middle between left and right (the new one), as shown below.

You are done! The “needle” has been found at index position 8 and the whole
process can stop!

Each unsuccessful comparison reduces the number of elements left to check
by half!

The index variables left and right each time point to the beginning and end,
respectively, of the portion of the array being examined.

Now, let's see the corresponding code fragment.
left = 0;

right = ELEMENTS - 1;
found = false;
while (left <= right && !found) {

middle = (int)((left + right) / 2); //This is a DIV 2 operation
if (needle < haystack[middle]) { //If the needle is in the first half of the portion

right = middle - 1; //of the array being examined, update the right index
}
else if (needle > haystack[middle]) { //If it is in the second half,
left = middle + 1; //update the left index
}
else {

found = true;
}

}
if (!found) {

System.out.println("Nothing found!"); }

else {
System.out.println(needle + " found at position: " + middle); }

The binary search algorithm is very efficient because it drastically reduces the
search space with each iteration, making it highly effective for sorted arrays.
Using this algorithm on the example array, the value of 44 can be found within
just three iterations. In contrast, the linear search algorithm would require nine
iterations for the same data!

If the array contains a value multiple times, the binary search algorithm can
find only one occurrence.

Exercise 34.5-9 Display all the Historical Events for a Country
Write a Java program that prompts the user to enter the names of 10 countries in
alphabetical order and 20 important historical events for each country (a brief
description of each event). The Java program must then prompt the user to enter
a country, and it will search and display all events for that country. Use the
binary search algorithm.

Solution

In this exercise, the following two arrays are required.

Assume that the user enters a country to search for, and the binary search
algorithm finds that country, for example, at index position 2 of array
countryNames. The program can then use this value of 2 as a column index for the
array eventDescriptions, and display all the event descriptions of column 2.
The Java program is as follows.

 Project_34.5-9
static final int EVENTS = 20; static final int COUNTRIES = 10;
public static void main(String[] args) throws Exception {

int j, i, left, right, middle; boolean found; String needle;

String[] countryNames = new String[COUNTRIES]; String[][] eventDescriptions = new
String[EVENTS][COUNTRIES]; for (j = 0; j <= COUNTRIES - 1; j++) {

System.out.print("Enter Country No. " + (j + 1) + ": ");
countryNames[j] = cin.nextLine();
for (i = 0; i <= EVENTS - 1; i++) {

System.out.print("Enter description for event No. " + (i + 1) + ": ");

eventDescriptions[i][j] = cin.nextLine();

}
}
System.out.print("Enter a country to search: "); needle = cin.nextLine().toUpperCase();

//Country names are entered in alphabetical order.
//Use the binary search algorithm to search for needle.
middle = -1;
left = 0;
right = EVENTS - 1;

found = false;
while (left <= right && !found) {

middle = (int)((left + right) / 2);
if (needle.compareTo(countryNames[middle].toUpperCase()) < 0) {

right = middle - 1;
}

else if (needle.compareTo(countryNames[middle].toUpperCase()) > 0) {
left = middle + 1;

}
else {

found = true;

}
}
if (!found) {

System.out.println("No country found!");
}

else {
for (i = 0; i <= EVENTS - 1; i++) {

System.out.println(eventDescriptions[i][middle]);
}

}
}

Exercise 34.5-10 Searching in Each Column of a Two-Dimensional Array
Write a Java program that prompts the user to enter the names of 10 countries
and 20 important historical events for each country (a brief description of each
event), and the corresponding year of each event. The Java program must then
prompt the user to enter a year, and it will search and display all events that
happened that year for each country. Use the binary search algorithm. Assume
that for each country there is only one event in each year and that the user enters
the events ordered by year in ascending order.

Solution

In this exercise, the following three arrays are required.

In order to write the code fragment that performs a search on each column of the
array eventYears, let's use the “from inner to outer” method. The next binary
search algorithm searches in the first column (column index 0) for a user-
provided year. Assume variable j contains the value 0. Since the search is
performed vertically, and in order to increase program's readability, the variables
left and right of the binary search algorithm have been renamed to top and
bottom respectively.
top = 0;
bottom = EVENTS - 1;
found = false;
while (top <= bottom && !found) {

middle = (int)((top + bottom) / 2);
if (needle < eventYears[middle][j]) {

bottom = middle - 1;
}
else if (needle > eventYears[middle][j]) {

top = middle + 1;
}

else {
found = true;

}

}
if (!found) {

System.out.println("No event found for country " + countryNames[j]); }
else {

System.out.println("Country: " + countryNames[j]); System.out.println("Year: " +

eventYears[middle][j]); System.out.println("Event: " + eventDescriptions[middle][j]); }

Now, nesting this code fragment in a for-loop that iterates for all columns results
in the following.
for (j = 0; j <= COUNTRIES - 1; j++) {

top = 0;
bottom = EVENTS - 1;
found = false;
while (top <= bottom && !found) {

middle = (int)((top + bottom) / 2);
if (needle < eventYears[middle][j]) {

bottom = middle - 1;
}
else if (needle > eventYears[middle][j]) {

top = middle + 1;
}
else {

found = true;
}

}
if (!found) {

System.out.println("No event found for country " + countryNames[j]);
}
else {

System.out.println("Country: " + countryNames[j]);

System.out.println("Year: " + eventYears[middle][j]);
System.out.println("Event: " + eventDescriptions[middle][j]);

}
}

The final Java program is as follows.

 Project_34.5-10
static final int EVENTS = 20; static final int COUNTRIES = 10;
public static void main(String[] args) throws Exception {

int j, i, needle, top, bottom, middle; boolean found;
String[] countryNames = new String[COUNTRIES]; String[][] eventDescriptions = new

String[EVENTS][COUNTRIES]; int[][] eventYears = new int[EVENTS][COUNTRIES]; for (j = 0; j
<= COUNTRIES - 1; j++) {

System.out.print("Enter Country No. " + (j + 1) + ": ");
countryNames[j] = cin.nextLine();

for (i = 0; i <= EVENTS - 1; i++) {
System.out.print("Enter description for event No. " + (i + 1) + ": ");
eventDescriptions[i][j] = cin.nextLine();

System.out.print("Enter year for event No. " + (i + 1) + ": ");
eventYears[i][j] = Integer.parseInt(cin.nextLine());

}
}
System.out.print("Enter a year to search: "); needle = Integer.parseInt(cin.nextLine());

middle = -1;
for (j = 0; j <= COUNTRIES - 1; j++) {

top = 0;
bottom = EVENTS - 1;
found = false;
while (top <= bottom && !found) {

middle = (int)((top + bottom) / 2);
if (needle < eventYears[middle][j]) {

bottom = middle - 1;
}
else if (needle > eventYears[middle][j]) {

top = middle + 1;
}
else {

found = true;
}

}
if (!found) {

System.out.println("No event found for country " + countryNames[j]);
}
else {

System.out.println("Country: " + countryNames[j]);

System.out.println("Year: " + eventYears[middle][j]);
System.out.println("Event: " + eventDescriptions[middle][j]);

}
}

}

34.6 Exercises of a General Nature with Data Structures
Exercise 34.6-1 On Which Days was There a Possibility of Snow?

Write a Java program that lets the user enter the temperatures (in degrees
Fahrenheit) recorded at the same hour each day for the 31 days of January. The
Java program must then display the numbers of those days (1, 2, ..., 31) on which
there was a possibility of snow, that is, those on which temperatures were below
36 degrees Fahrenheit (about 2 degrees Celsius).

Solution

The one-dimensional array for this exercise is shown next.

and the Java program is as follows.
 Project_34.6-1

static final int DAYS = 31;
public static void main(String[] args) throws Exception {

int i;

int[] t = new int[DAYS]; for (i = 0; i <= DAYS - 1; i++) {
t[i] = Integer.parseInt(cin.nextLine());

}
for (i = 0; i <= DAYS - 1; i++) {

if (t[i] < 36) {
System.out.println((i + 1) + "\t");

}
}

}

Exercise 34.6-2 Was There Any Possibility of Snow?
Write a Java program that lets the user enter the temperatures (in degrees
Fahrenheit) recorded at the same hour each day for the 31 days of January. The
Java program must then display a message indicating if there was a possibility of
snow, that is, if there were any temperatures below 36 degrees Fahrenheit (about
2 degrees Celsius).

Solution

In this exercise, you cannot replicate the approach used in the previous exercise.
The code fragment that follows would be incorrect.
for (i = 0; i <= DAYS - 1; i++) {

if (t[i] < 36) {

System.out.println("There was a possibility of snow in January!");
}

}

If January had more than one day with a temperature below 36 degrees
Fahrenheit, the same message would be displayed multiple times—and obviously
you do not want this! You actually want to display a message once, regardless of
whether January had one, two, or even more days below 36 degrees Fahrenheit.

There are two approaches, actually. Let's study them both.
First approach – Counting all temperatures below 36 degrees Fahrenheit In
this approach, you can use a variable in the program to count all the days on
which the temperature was below 36 degrees Fahrenheit. After all of the days
have been examined, the program can check the value of this variable. If the
value is not zero, it means that there was at least one day where there was a
possibility of snow.

 Project_34.6-2a
static final int DAYS = 31;

public static void main(String[] args) throws Exception {
int i, count;

int[] t = new int[DAYS]; for (i = 0; i <= DAYS - 1; i++) {
t[i] = Integer.parseInt(cin.nextLine());

}
count = 0;

for (i = 0; i <= DAYS - 1; i++) {
if (t[i] < 36) {

count++;
}

}
if (count != 0) {

System.out.println("There was a possibility of snow in
January!");

}
}

Second approach – Using a flag In this approach, instead of counting all those
days that had a temperature below 36 degrees Fahrenheit, you can use a
Boolean variable (a flag). The solution is presented next.

 Project_34.6-2b
static final int DAYS = 31;

public static void main(String[] args) throws Exception {
int i; boolean found;

int[] t = new int[DAYS]; for (i = 0; i <= DAYS - 1; i++) {
t[i] = Integer.parseInt(cin.nextLine());

}
found = false;

for (i = 0; i <= DAYS - 1; i++) {
if (t[i] < 36) {

found = true;

break;
}

}
if (found) {

System.out.println("There was a possibility of snow in
January!");

}
}

Imagine the variable found as if it's a real flag. Initially, the flag is not hoisted
(found = false). Within the for-loop, however, when a temperature below 36
degrees Fahrenheit is found, the flag is hoisted (the value true is assigned to the
variable found) and it is never lowered again.

Note the break statement! Once a temperature below 36 degrees Fahrenheit is
found, it is meaningless to continue checking thereafter.

If the loop performs all of its iterations and no temperature below 36 degrees
Fahrenheit is found, the variable found will still contain its initial value (false)
since the flow of execution never entered the decision control structure.

Exercise 34.6-3 In Which Cities was There a Possibility of Snow?
Write a Java program that prompts the user to enter the names of ten cities and
their temperatures (in degrees Fahrenheit) recorded at the same hour each day
for the 31 days of January. The Java program must display the names of the cities
in which there was a possibility of snow, that is, those in which temperatures were
below 36 degrees Fahrenheit (about 2 degrees Celsius).

Solution

As in the previous exercise, you need to display each city name once, regardless
of whether it had one, two, or even more days below 36 degrees Fahrenheit.
There are two approaches. In the first approach, the auxiliary array count, as
presented below, is created by the program to count the total number of days on
which each city had temperatures lower than 36 degrees Fahrenheit. The second
approach, however, doesn't create the auxiliary array count. It uses just one extra
Boolean variable (a flag). Obviously the second one is more efficient. But let's
study both approaches.

First approach – Using an auxiliary array You were taught in Section 33.2
how to process each row individually. The nested loop control structure that
can create the auxiliary array count is as follows.
int[] count = new int[CITIES]; for (i = 0; i <= CITIES - 1; i++) {

count[i] = 0;
for (j = 0; j <= DAYS - 1; j++) {

if (t[i][j] < 36) {
count[i]++;

}
}

}

After array count is created you can iterate through it, and when an element
contains a value other than zero, it means that the corresponding city had at least
one day below 36 degrees Fahrenheit; thus the program must display the name of
that city. The final Java program is presented next Project_34.6-3a

static final int CITIES = 10; static final int DAYS = 31;
public static void main(String[] args) throws Exception {

int i, j;
String[] names = new String[CITIES]; int[][] t = new int[CITIES][DAYS];
for (i = 0; i <= CITIES - 1; i++) {

System.out.print("Enter a name for city No: " + (i + 1) + ": ");
names[i] = cin.nextLine();
for (j = 0; j <= DAYS - 1; j++) {

System.out.print("Enter a temperature for day No: " + (j + 1) + ": ");
t[i][j] = Integer.parseInt(cin.nextLine());

}
}
//Create auxiliary array count int[] count = new int[CITIES]; for (i = 0; i <=
CITIES - 1; i++) {

count[i] = 0;
for (j = 0; j <= DAYS - 1; j++) {

if (t[i][j] < 36) {
count[i]++;

}
}

}
System.out.println("Cities in which there was a possibility of snow in
January: "); for (i = 0; i <= CITIES - 1; i++) {

if (count[i] != 0) {
System.out.println(names[i]);

}
}

}
Second approach – Using a flag This approach does not use an auxiliary
array. It processes array t and directly displays any city name that had a
temperature below 36 degrees Fahrenheit. But how can this be done without
displaying a city name twice, or even more than twice? This is where you need
a flag, that is, an extra Boolean variable.

To better understand this approach, let's use the “from inner to outer” method.
The following code fragment checks if the first row of array t (row index 0)
contains at least one temperature below 36 degrees Fahrenheit; if so, it displays
the corresponding city name that exists at position 0 of the array names. Assume
variable i contains the value 0.
found = false;
for (j = 0; j <= DAYS - 1; j++) {

if (t[i][j] < 36) {

found = true;
break;

}
}
if (found) {

System.out.println(names[i]); }

Now that everything has been clarified, in order to process the whole array t, you
can just nest this code fragment in a for-loop that iterates for all cities, as follows.
for (i = 0; i <= CITIES - 1; i++) {

found = false;
for (j = 0; j <= DAYS - 1; j++) {

if (t[i][j] < 36) {
found = true;

break;
}

}
if (found) {

System.out.println(names[i]);
}

}

The final Java program is as follows.
 Project_34.6-3b

static final int CITIES = 10; static final int DAYS = 31;
public static void main(String[] args) throws Exception {

int i, j; boolean found;
int[] names = new int[CITIES]; int[][] t = new int[CITIES]

[DAYS]; for (i = 0; i <= CITIES - 1; i++) {
System.out.print("Enter a name for city No: " + (i + 1)

+ ": ");
names[i] = Integer.parseInt(cin.nextLine());

for (j = 0; j <= DAYS - 1; j++) {
System.out.print("Enter a temperature for day No: "

+ (j + 1) + ": ");
t[i][j] = Integer.parseInt(cin.nextLine());

}
}

System.out.println("Cities in which there was a
possibility of snow in January: "); for (i = 0; i <=

CITIES - 1; i++) {
found = false;

for (j = 0; j <= DAYS - 1; j++) {
if (t[i][j] < 36) {

found = true;
break;
}

}
if (found) {

System.out.println(names[i]);
}

}
}

Exercise 34.6-4 Display from Highest to Lowest Grades by Student, and in
Alphabetical Order

There are 10 students and each one of them has received their grades for five
lessons. Write a Java program that prompts a teacher to enter the name of each
student and their grades for all lessons. The program must then calculate each

student's average grade, and display the names and the average grades of the
students sorted by their average grade in descending order. Moreover, if two or
more students have the same average grade, their names must be displayed in
alphabetical order. Use the bubble sort algorithm, adapted accordingly.

Solution

In this exercise, you need the following three arrays. The values for the arrays
names and grades will be entered by the user, whereas the auxiliary array average
will be created by the Java program.

You're already familiar with all the steps in this exercise. You can create the
auxiliary array average (see Section 33.2), sort it while maintaining the one-to-
one correspondence with the elements in the array names (as shown in Exercise
34.4-3), and handle the scenario where, if two average grades are equal, the
corresponding student names should be sorted alphabetically (as demonstrated in
Exercise 34.4-4). Here's the final Java program.

 Project_34.6-4
static final int STUDENTS = 10; static final int LESSONS = 5;

public static void main(String[] args) throws Exception {
int i, j, m, n; double temp; String tempStr;
//Read array names and grades String[] names = new String[STUDENTS]; int[][] grades = new
int[STUDENTS][LESSONS]; for (i = 0; i <= STUDENTS - 1; i++) {

System.out.print("Enter name for student No. " + (i + 1) + ": ");

names[i] = cin.nextLine();
for (j = 0; j <= LESSONS - 1; j++) {

System.out.print("Enter grade for lesson No. " + (j + 1) + ": ");
grades[i][j] = Integer.parseInt(cin.nextLine());

}
}

//Create array average double[] average = new double[STUDENTS]; for (i = 0; i <= STUDENTS
- 1; i++) {

average[i] = 0;
for (j = 0; j <= LESSONS - 1; j++) {

average[i] += grades[i][j];

}
average[i] /= LESSONS;

}

//Sort arrays average and names for (m = 1; m <= STUDENTS - 1; m++) {
for (n = STUDENTS - 1; n >= m; n--) {

if (average[n] > average[n - 1]) {
temp = average[n];
average[n] = average[n - 1];

average[n - 1] = temp;
tempStr = names[n];
names[n] = names[n - 1];
names[n - 1] = tempStr;

}
else if (average[n] == average[n - 1]) {

if (names[n].compareTo(names[n - 1]) < 0) {
tempStr = names[n];
names[n] = names[n - 1];
names[n - 1] = tempStr;

}

}
}

}
//Display arrays names and average for (i = 0; i <= STUDENTS - 1; i++) {

System.out.println(names[i] + "\t" + average[i]);

}
}

Exercise 34.6-5 Archery at the Summer Olympics
In archery at the Summer Olympics, 20 athletes each shoot six arrows. Write a
Java program that prompts the user to enter the name of each athlete, and the
points awarded for each shot. The program must then display the names of the
three athletes that won the gold, silver, and bronze medals depending on which
athlete obtained the highest sum of points. Assume that no two athletes have an
equal sum of points.

Solution

In this exercise, you need the following three arrays. The values for the arrays
names and points will be entered by the user, whereas the auxiliary array total
will be created by the Java program.

After the auxiliary array total is created, a sorting algorithm can sort the array
total in descending order (while preserving the one-to-one correspondence with
the elements of the array names). The Java program can then display the names of
the three athletes at index positions 0, 1, and 2 (since these are the athletes that
should win the gold, the silver, and the bronze medals, respectively).
The following program uses the bubble sort algorithm to sort the array total.
Since the algorithm must sort in descending order, bigger elements must
gradually “bubble” to positions of lowest index, like bubbles rise in a glass of
cola. However, instead of performing 19 passes (there are 20 athletes), given that
only the three best athletes must be found, the algorithm can perform just 3
passes. Doing this, only the first three bigger elements will gradually “bubble” to
the first three positions in the array.
The solution is presented next.

 Project_34.6-5
static final int ATHLETES = 20; static final int SHOTS = 6;
public static void main(String[] args) throws Exception {

int i, j, m, n, temp; String tempStr;

//Read array names and points String[] names = new String[ATHLETES]; int[][] points = new
int[ATHLETES][SHOTS]; for (i = 0; i <= ATHLETES - 1; i++) {

System.out.print("Enter name for athlete No. " + (i + 1) + ": ");
names[i] = cin.nextLine();
for (j = 0; j <= SHOTS - 1; j++) {

System.out.print("Enter points for shot No. " + (j + 1) + ": ");

points[i][j] = Integer.parseInt(cin.nextLine());
}

}
//Create array total int[] total = new int[ATHLETES]; for (i = 0; i <= ATHLETES - 1; i++)
{

total[i] = 0;
for (j = 0; j <= SHOTS - 1; j++) {

total[i] += points[i][j];
}

}
//Sort arrays names and total. Perform only 3 passes for (m = 1; m <= 3; m++) {

for (n = ATHLETES - 1; n >= m; n--) {

if (total[n] > total[n - 1]) {
temp = total[n];
total[n] = total[n - 1];
total[n - 1] = temp;
tempStr = names[n];

names[n] = names[n - 1];
names[n - 1] = tempStr;

}
}

}
//Display gold, silver and bronze metal for (i = 0; i <= 2; i++) {

System.out.println(names[i] + "\t" + total[i]);
}

}

Exercise 34.6-6 The Five Best Scorers
Write a Java program that prompts the user to enter the names of the 32 national
teams of the FIFA World Cup, the names of the 24 players for each team, and the
total number of goals each player scored. The program must then display the
name of each team along with its five best scorers. Use the bubble sort algorithm.

Solution

In this exercise you need the following three arrays.

To save paper short array names are used, but it is more or less obvious that
array t holds the names of the 32 national teams, array p holds the names of the
24 players of each team, and array g holds the total number of goals each player
scored.

The Java program must sort each row of array g in descending order but it must
also take care to preserve the one-to-one correspondence with the elements of
array p. This means that, every time the bubble sort algorithm swaps the contents

of two elements of array g, the corresponding elements of array p must be
swapped as well. However, instead of performing 23 passes (there are 24
players), given that only the five best scorers must be found, the algorithm can
perform just 5 passes. When sorting is completed, the five best scorers should
appear in the first five columns.
The “from inner to outer” method is used again. The following code fragment
sorts the first row (row index 0) of array g in descending order and, at the same
time, takes care to preserve the one-to-one correspondence with the elements of
array p. Assume variable i contains the value 0.
for (m = 1; m <= 5; m++) { //Perform 5 passes for (n = PLAYERS - 1; n >= m; n--) {

if (g[i][n] < g[i][n - 1]) {
temp = g[i][n];

g[i][n] = g[i][n - 1];
g[i][n - 1] = temp;
tempStr = p[i][n];
p[i][n] = p[i][n - 1];
p[i][n - 1] = tempStr;

}
}

}

Now, in order to sort all rows, you need to nest this code fragment in a for-loop
that iterates for all of them, as shown next.
for (i = 0; i <= TEAMS - 1; i++) {

for (m = 1; m <= 5; m++) { //Perform 5 passes
for (n = PLAYERS - 1; n >= m; n--) {

if (g[i][n] < g[i][n - 1]) {
temp = g[i][n];
g[i][n] = g[i][n - 1];
g[i][n - 1] = temp;
tempStr = p[i][n];

p[i][n] = p[i][n - 1];
p[i][n - 1] = tempStr;

}
}

}

}

The final Java program is as follows.
 Project_34.6-6

static final int TEAMS = 32; static final int PLAYERS = 24;
public static void main(String[] args) throws Exception {

int i, j, m, n, temp; String tempStr;

//Read team names, player names and goals all together String[] t = new String[TEAMS];
String[][] p = new String[TEAMS][PLAYERS]; int[][] g = new int[TEAMS][PLAYERS]; for (i =
0; i <= TEAMS - 1; i++) {

System.out.print("Enter name for team No. " + (i + 1) + ": ");
t[i] = cin.nextLine();
for (j = 0; j <= PLAYERS - 1; j++) {

System.out.print("Enter name of player No. " + (j + 1) + ": ");
p[i][j] = cin.nextLine();
System.out.print("Enter goals of player No. " + (j + 1) + ": ");
g[i][j] = Integer.parseInt(cin.nextLine());

}

}
//Sort array g for (i = 0; i <= TEAMS - 1; i++) {

for (m = 1; m <= 5; m++) { //Perform 5 passes
for (n = PLAYERS - 1; n >= m; n--) {

if (g[i][n] > g[i][n - 1]) {
temp = g[i][n];

g[i][n] = g[i][n - 1];
g[i][n - 1] = temp;
tempStr = p[i][n];
p[i][n] = p[i][n - 1];
p[i][n - 1] = tempStr;

}
}

}
}
//Display 5 best scorers of each team for (i = 0; i <= TEAMS - 1; i++) {

System.out.println("Best scorers of " + t[i]);
System.out.println("-----------------------------------");
for (j = 0; j <= 4; j++) {

System.out.println(p[i][j] + " scored " + g[i][j] + " goals");
}

}

}

Exercise 34.6-7 Counting the Frequency of Vowels
Write a Java program that prompts the user to enter an English sentence and
counts the frequency of each vowel in the sentence. Use a hashmap to store the
vowels as keys and their frequencies as values.

Solution

In the realm of programming, the manipulation and analysis of textual data play a
crucial role. One common task involves counting the frequency of specific
elements within a given text, providing insights into its linguistic characteristics.
Vowels are fundamental components of the English language, and analyzing their
frequency can reveal patterns, aid in language processing, and even assist in
certain cryptographic algorithms.
In the solution that follows, the program starts by creating a hashmap named
vowelsFrequency to store and manage the frequency of each vowel (A, E, I, O,

U), with initial frequencies all set to zero. For each character in the user-provided
sentence, the program checks if it is a vowel and, if it is, the corresponding
frequency count in the hashmap is updated.

 Project_34.6-7
public static void main(String[] args) throws Exception {

int i; String letter;
//Create a hashmap to store the frequencies of each vowel with initial //frequencies all
set to zero.
HashMap<String, Integer> vowelsFrequency = new HashMap<>(

Map.of("A", 0, "E", 0, "I", 0, "O", 0, "U", 0)

);
System.out.print("Enter an English sentence: "); String sentence = cin.nextLine();
//Iterate through the characters of the user-provided sentence and if it is a vowel,
//update (increase) the corresponding frequency count in the vowelsFrequency hashmap.
for (i = 0; i < sentence.length(); i++) {

letter = ("" + sentence.charAt(i)).toUpperCase();

if (vowelsFrequency.containsKey(letter)) {
vowelsFrequency.put(letter, vowelsFrequency.get(letter) + 1);

}
}
//Display the frequencies of each vowel for (String vowel : vowelsFrequency.keySet()) {

System.out.println(vowel + ": " + vowelsFrequency.get(vowel));
}

}

In order to use the HashMap and Map classes in your project, you need to import
the corresponding libraries using the import java.util.HashMap and import java.util.Map
statements at the beginning of the project.

The Java built-in method struct.containsKey(key_name) returns true when the
hashmap struct contains the specified key key_name within its keys collection.

The statement if (vowelsFrequency.containsKey(letter)) is equivalent to the
statement if (vowelsFrequency.containsKey(letter) == true).

34.7 Review Questions: True/False
Choose true or false for each of the following statements.

1) The main idea of the bubble sort algorithm (when sorting an array in
ascending order) is to repeatedly move the smallest elements of the array to
the lowest index positions.

2) In an array sorted in ascending order, the first element is the greatest of all.
3) When using the bubble sort algorithm, the total number of swaps depends on

the given array.

4) The case in which the bubble sort algorithm performs the greatest number of
swaps is when you want to sort in descending order an array that is already
sorted in ascending order.

5) In the bubble sort algorithm, when the decision control structure tests the
Boolean expression A[n] > A[n − 1], it means that the elements of array A
are being sorted in descending order.

6) In Java, sorting algorithms compare letters not in the same way that they
compare numbers.

7) If you want to sort an array A but preserve the one-to-one correspondence
with the elements of an array B, you must rearrange the elements of array B
as well.

8) The bubble sort algorithm sometimes performs better than the modified
bubble sort algorithm.

9) According to the bubble sort algorithm, in each pass (except the last one)
only one element is guaranteed to be placed in proper position.

10) The bubble sort algorithm can be implemented only by using for-loops.
11) The quick sort algorithm cannot be used to sort each column of a two-

dimensional array.
12) The insertion sort algorithm can sort in either descending or ascending order.
13) One of the fastest sorting algorithms is the modified bubble sort algorithm.
14) The bubble sort algorithm, for a one-dimensional array of N elements,

performs compares.

15) The bubble sort algorithm, for a one-dimensional array of N elements,
performs passes.

16) When using the modified bubble sort algorithm, if a complete pass is
performed and no swaps have been done, then the algorithm knows the array
is sorted and there is no need for further passes.

17) When using the selection sort algorithm, if you wish to sort an array in
descending order, you need to search for maximum values.

18) The selection sort algorithm performs well on computer systems with limited
main memory.

19) The selection sort algorithm is suitable for large scale data operations.
20) The selection sort algorithm is a very complex algorithm.

21) The insertion sort algorithm generally performs better than the selection and
the bubble sort algorithm.

22) The insertion sort algorithm can sometimes prove even faster than the
quicksort algorithm.

23) The quicksort algorithm is considered one of the best and fastest sorting
algorithms.

24) A sorted array contains only elements that are different from each other.
25) A search algorithm is an algorithm that searches for an item with specific

features within a set of data.
26) The sequential search algorithm can be used only on arrays that contain

arithmetic values.
27) One of the most commonly used search algorithms is the quick search

algorithm.
28) One search algorithm is called the heap algorithm.
29) A linear (or sequential) search algorithm can work as follows: it can check if

the last element of the array is equal to a given value, then it can check the
last but one element, and so on, until the beginning of the array or until the
given value is found.

30) The linear search algorithm can, in certain situations, find an element faster
than the binary search algorithm.

31) The linear search algorithm can be used in large scale data operations.
32) The linear search algorithm cannot be used in sorted arrays.
33) The binary search algorithm can be used in large scale data operations.
34) If an array contains a value multiple times, the binary search algorithm can

find only the first in order occurrence of a given value.
35) When using search algorithms, if an array contains unique values and the

element that you are looking for is found, there is no need to check any
further.

36) The main disadvantage of the binary search algorithm is that data needs to be
sorted.

37) The binary search algorithm can be used only in arrays that contain
arithmetic values.

38) If the element you are looking for is in the last position of an array, a linear
search algorithm that starts searching from the beginning of the array will
examine all the elements in the array.

39) The linear search algorithm can be used on two-dimensional arrays.

40) If the element that you are looking for using the binary search algorithm is at
the first position of an array with at least three elements, it will be found in
just one iteration.

34.8 Review Exercises
Complete the following exercises.

1) Write the Java program that corresponds to the following flowchart fragment.

2) Design a flowchart and write the corresponding Java program that lets the
user enter 50 positive numerical values into an array. The algorithm, and
consequently the Java program, must then create a new array of 47 elements.
In this new array, each position must contain the average value of four
elements: the values that exist in the current and the next three positions of
the user-provided array.

3) Write a Java program that lets the user enter numerical values into arrays a,
b, and c, of 15 elements each. The program must then create a new array

newArr of 15 elements. In this new array, each position must contain the
lowest value of arrays a, b, and c, for the corresponding position.
Next, design the corresponding flowchart fragment for only that part of your
program that creates the array newArr.

4) Write a Java program that lets the user enter numerical values into arrays a,
b, and c, of 10, 5, and 15 elements respectively. The program must then
create a new array newArr of 30 elements. In this new array, the first 15
positions must contain the elements of array c, the next five positions must
contain the elements of array b, and the last 10 positions must contains the
elements of array a.
Next, design the corresponding flowchart fragment for only that part of your
program that creates the array newArr.

5) Write a Java program that for two given arrays a and b of 3 × 4 and 5 × 4
elements respectively it creates a new array newArr of 8 × 4 elements. In this
new array, the first 3 rows must contain the elements of array a and the next
5 rows must contain the elements of array b.

6) Write a Java program that lets the user enter numerical values into arrays a,
b, and c, of 5 × 10, 5 × 15, and 5 × 20 elements, respectively. The program
must then create a new array newArr of 5 × 45 elements. In this new array,
the first 10 columns must contain the elements of array a, the next 15
columns must contain the elements of array b, and the last 20 rows must
contain the elements of array c.

7) Write a Java program that lets the user enter 50 numerical values into an
array and then creates two new arrays, reals and integers. The array reals
must contain the real values, whereas the array integers must contain the
integer values. The value 0 (if any) must not be added to any of the final
arrays, either reals or integers.
Next, design the corresponding flowchart fragment for only that part of your
program that creates the arrays reals and integers.

8) Write a Java program that lets the user enter 50 three-digit integers into an
array and then creates a new array containing only the integers in which the
first digit is less than the second digit and the second digit is less than the
third digit. For example, the values 357, 456, and 159 are such integers.

9) A public opinion polling company asks 200 citizens to each score 10
consumer products. Write a Java program that prompts the user to enter the
name of each product and the score each citizen gave (A, B, C, or D). The
program must then calculate and display the following: a) for each product, the
name of the product and the number of citizens that gave it an “A”

b) for each citizen, the number of “B” responses they gave c) which product
or products are considered the best Moreover, using a loop control
structure, the program must validate data input and display an error
message when the user enters any score with a value other than A, B, C,
or D.

10) Write a Java program that prompts the user to enter the names of
20 U.S. cities and the names of 20 Canadian cities and then, for
each U.S. city, the distance (in miles) from each Canadian city.
Finally, the program must display, for each U.S. city, its closest
Canadian city.

11) Design a flowchart and write the corresponding Java program that
lets the user enter the names and the heights of 30 mountains, as
well as the country in which each one belongs. The algorithm, and
consequently the Java program, must then display all available
information about the highest and the lowest mountain.

12) Design the flowchart fragment of an algorithm that, for a given
array A of N × M elements, finds and displays the maximum value
as well as the row and the column in which this value was found.

13) Twenty-six teams participate in a football tournament. Each team
plays 15 games, one game each week. Write a Java program that
lets the user enter the name of each team and the letter “W” for
win, “L” for loss, and “T” for tie (draw) for each game. If a win
receives 3 points and a tie 1 point, the Java program must find and
display the name of the team that wins the championship based on
which team obtained the greatest sum of points. Assume that no
two teams have an equal sum of points.

14) On Earth, a free-falling object has an acceleration of 9.81 m/s2

downward. This value is denoted by g. A student wants to
calculate that value using an experiment. She allows 10 different
objects to fall downward from a known height, and measures the
time they need to reach the floor. However, since her chronometer
is not so accurate, she does this 20 times for each object. She
needs a Java program that allows her to enter the heights (from
which objects are left to fall), as well as the measured times that
they take to reach the floor. The program must then ► calculate g
and store all calculated values in a 10 × 20 array.
► find and display the minimum and the maximum calculated

values of g for each object.

► find and display the overall minimum and maximum
calculated values of g of all objects.

The required formula is

where
► S is the distance that the free-falling objects traveled, in

meters (m) ► uo is the initial velocity (speed) of the free-falling
objects in meters per second (m/sec). However, since the free-
falling objects start from rest, the value of u0 must be zero.

► t is the time that it took the free-falling object to reach the
floor, in seconds (sec) ► g is the acceleration, in meters per
second2 (m/sec2) 15) Ten measuring stations, one in each city,
record the daily CO2 levels for a period of a year. Write a Java
program that lets the user enter the name of each city and the
CO2 levels recorded at the same hour each day. The Java
program then displays the name of the city that has the
clearest atmosphere (on average).

16) Design the flowchart fragment of an algorithm that, for a given
array A of N × M elements, finds and displays the minimum and
the maximum values of each row.

17) Write a Java program that lets the user enter values into a 20 × 30
array and then finds and displays the minimum and the maximum
values of each column.

18) Twenty teams participate in a football tournament, and each team
plays 10 games, one game each week. Write a Java program that
prompts the user to enter the name of each team and the letter
“W” for win, “L” for loss, and “T” for tie (draw) for each game. If
a win receives 3 points and a tie 1 point, the Java program must
find and display the names of the teams that win the gold, the
silver, and the bronze medals based on which team obtained the
greatest sum of points. Use the modified bubble sort algorithm.
Assume that no two teams have an equal sum of points.
Moreover, using a loop control structure, the program must
validate data input and display an error message when the user
enters any letter other than W, L, or T.
Hint: Instead of performing 19 passes (there are 20 teams), given
that only the three best teams must be found, the modified bubble

sort algorithm can perform just 3 passes.
19) Write a Java program that prompts the user to enter the names and

the heights of 50 people. The program must then display this
information, sorted by height, in descending order. In cases where
two or more people share the same height, their names must be
displayed in alphabetical order. To achieve this, use the bubble
sort algorithm, adapted accordingly.

20) Write a Java program that prompts the user to enter the first
names, last names and father's names of 50 people. The program
must then display this information, sorted by last name. In cases
where two or more people share the same last name, their first
names must be displayed in alphabetical order. Additionally, if
two or more people share the same first name, their father's names
must be displayed in alphabetical order. To achieve this, use the
bubble sort algorithm, adapted accordingly.

21) In a song contest there are 10 judges, each of whom scores 12
artists for their performance. However, according to the rules of
this contest, the total score is calculated after excluding the
highest and lowest scores. Write a Java program that prompts the
user to enter the names of the artists and the score they get from
each judge. The program must then display a) for each artist, their
name and total score, after excluding the maximum and the
minimum scores. Assume that each artist's highest and lowest
scores are unique, meaning they won't have multiple scores with
the same value.
b) the final classification, starting with the artist that has the

greatest score. However, if two or more artists have the same
score, their names must be displayed in alphabetical order.
Use the bubble sort algorithm, adapted accordingly.

22) Design the flowchart fragment of an algorithm that, for a given
array A of 20 × 8 elements, sorts each row in descending order
using the bubble sort algorithm. Assume that the array contains
numerical values.

23) Design the flowchart fragment of an algorithm that, for a given
array A of 5 × 10 elements, sorts each column in ascending order
using the bubble sort algorithm. Assume that the array contains
numerical values.

24) Design the flowchart fragment of an algorithm that, for a given
array A of 20 × 8 elements, sorts each row in descending order

using the insertion sort algorithm. Assume that the array contains
numerical values.

25) Design the flowchart fragment of an algorithm that, for a given
array A of 5 × 10 elements, sorts each column in ascending order
using the selection sort algorithm. Assume that the array contains
numerical values.

26) In a Sudoku contest, 10 participants compete to solve eight
different Sudoku puzzles as quickly as possible. Write a Java
program that lets the user enter the name of each contestant and
their time (in hours, minutes and seconds) to complete each
puzzle. The program must then display a) for each contestant, their
name along with their three best times. Assume that the times of
each contestant are different.
b) the names of the three contestants who receive the gold, the

silver, and the bronze medals based on the contestant with the
lowest average time. Assume that no two contestants have the
same average time.

Use the selection sort algorithm when necessary.
Hint: Given that only the three best contestants must be found, the
selection sort algorithm could sort only the first three elements.

27) Five measuring stations, one in each area of a large city, record the
daily carbon dioxide (CO2) levels on an hourly basis. Write a Java
program that lets the user enter the name of each area and the CO2

levels recorded every hour (00:00 to 23:00) for a period of two
days. The Java program then must calculate and display a) for each
area, its name and its average CO2 level b) for each hour, the average
CO2 level of the city c) the hour in which the city atmosphere was
most polluted (on average) d) the hour and the area in which the
highest level of CO2 was recorded e) the three areas with the dirtiest
atmosphere (on average), using the insertion sort algorithm 28) Design
the flowchart fragment of the linear search algorithm that
performs a search on array a of N elements to find the value
needle and displays the position index(es) at which needle is
found. If needle is not found, the message “Not found” must be
displayed. Assume that the array contains numerical values.

29) Design the flowchart fragment of the binary search algorithm that
performs a search on array a of N elements to find the value
needle and displays the position at which needle is found. If

needle is not found, the message “Not found” must be displayed.
Assume that the array contains numerical values.

30) Twelve teams participate in a football tournament, and each team
plays 20 games, one game each week. Write a Java program that
prompts the user to enter the name of each team and the letter
“W” for win, “L” for loss, or “T” for tie (draw) for each game.
Then the program must prompt the user for a letter (W, L, or T)
and display, for each team, the week number(s) in which the team
won, lost, or tied respectively. For example, if the user enters “L”,
the Java program must search and display, for each team, the week
numbers (e.g., Week 3, Week 14, and so on) in which the team
lost the game.

31) Ten teams participate in a football tournament, and each team
plays 16 games, one game each week. Write a Java program that
prompts the user to enter the name of each team, the number of
goals the team scored, and the number of goals the team let in for
each match. A win receives 3 points and a tie receives 1 point.
The Java program must then prompt the user for a team name and
finally calculate and display the total number of points for this
team. If the user-provided team name is not found, the message
“This team does not exist” must be displayed.
Moreover, using a loop control structure, the program must
validate data input and display an error message when the user
enters any negative number of goals.
Assume that no two teams share the same name.

32) In a high school, there are two classes, with 20 and 25 students
respectively. Write a Java program that prompts the user to enter
the names of the students in two separate arrays. The program
then displays the names of each class independently in ascending
order. Afterwards, the program prompts the user to enter a name
and it searches for that user-provided name in both arrays. If the
student's name is found, the program must display the message
“Student found in Class No N”, where N can be either 1 or 2;
otherwise the message “Student not found in either class” must be
displayed. Assume that both arrays contain unique names.
Hint: Since the arrays are sorted and the names are unique, use the
binary search algorithm.

33) Suppose there are two arrays, usernames and passwords, that
contain the login information of 100 employees of a company.

Write a code fragment that prompts the user to enter a username
and a password and then displays the message “Login OK!” when
the combination of username and password is valid; the message
“Login Failed!” must be displayed otherwise. Both usernames and
passwords are case-insensitive. Assume that usernames are unique
but passwords are not.

34) Suppose there are two arrays, names and SSNs, that contain the
names and the SSNs (Social Security Numbers) of 1,000 U.S.
citizens. Write a code fragment that prompts the user to enter a
value (it can be either a name or an SSN) and then searches for
and displays the names of all the people that have this name or
this SSN. If the user-provided value is not found, the message
“This value does not exist” must be displayed.

35) There are 12 students and each one of them has received their
grades for six lessons. Write a Java program that lets the user
enter the grades for all lessons and then displays a message
indicating whether or not there is at least one student that has an
average value below 70. Moreover, using a loop control structure,
the program must validate data input and display a different error
message for each type of input error when the user enters any
negative value, or a value greater than 100.

36) Write a Java program that prompts the user to enter an English
message, and then, using the table that follows, displays the
corresponding Morse code using dots and dashes. Please note that
space characters must be displayed as slash characters (/) in the
translated message.

Morse Code

A .‐ N ‐.

B ‐... O ‐‐‐

C ‐.‐. P .‐‐.

D ‐.. Q ‐‐.‐

E . R .‐.

F ..‐. S ...

G ‐‐. T ‐

H U ..‐

I .. V ...‐

J .‐‐‐ W .‐‐

K ‐.‐ X ‐..‐

L .‐.. Y ‐.‐‐

M ‐‐ Z ‐‐..

Hint: Use a hashmap to hold the Morse code.
37) Write a Java program that prompts the user to enter an English

sentence. The program must then display: a) all letters that exist in
the user-provided sentence along with their frequency count b) all
letters that do not exist in the user-provided sentence c) the
percentage of letters that do not exist in relation to the letters of
the English alphabet d) the percentage of non-alphabetic characters
in relation to the characters of the user-provided sentence
(excluding space characters) Hint: Use a hashmap to store all 26
English letters as keys and their frequencies as values, but since
Java's map.of() method supports only up to 10 key-value pairs,
you need to find another way to create it.

Review in “Data Structures in Java”

Review Crossword Puzzle
1) Solve the following crossword puzzle.

Across
2) A sorting algorithm.
7) Each array element is assigned a unique number known as an
_______.
8) This sorting algorithm performs well on computer systems in
which limited main memory (RAM) comes into play.
9) A mutable data structure in Java.
10) The process of putting the elements of an array in a certain
order.
11) A search algorithm.

12) In a square matrix, the collection of those elements that runs
from the top right corner to the bottom left corner.

Down
1) A data __________ is a collection of data organized so that
you can perform operations on it in the most effective way.
3) Another name for the sequential search algorithm.
4) It is considered one of the best and fastest sorting algorithms.
5) Its elements can be uniquely identified using a key and not
necessarily an integer value.
6) In this diagonal, the elements have their row index equal to
their column index.
7) This sorting algorithm can prove very fast when sorting very
small arrays— sometimes even faster than the quicksort
algorithm.

Review Questions
Answer the following questions.
1) What limitation do variables have that arrays don't?
2) What is a data structure?
3) What is each item of a data structure called?
4) Name six known data structures that Java supports.
5) What is an array in Java?
6) What is a hashmap in Java?
7) What does it mean when we say that an array is “mutable”?
8) What happens when a statement tries to display the value of a non-

existing array element?
9) What happens when a statement tries to assign a value to a non-

existing hashmap element?
10) In an array of 100 elements, what is the index of the last element?
11) What does “iterating through rows” mean?
12) What does “iterating through columns” mean?
13) What is a square matrix?

14) What is the main diagonal of a square matrix?
15) What is the antidiagonal of a square matrix?
16) Write the code fragment in general form that validates data input to

an array without displaying any error messages.
17) Write the code fragment in general form that validates data input to

an array and displays a generic error message (that is, the same error
message for any type of input error).

18) Write the code fragment in general form that validates data input to
an array and displays a different error message for each type of input
error.

19) What is a sorting algorithm? Name five sorting algorithms.
20) Which sorting algorithm is considered the most inefficient?
21) Can a sorting algorithm be used to find the minimum or the

maximum value of an array?
22) Why is a sorting algorithm not the best option to find the minimum or

the maximum value of an array?
23) Write the code fragment that sorts array a of N elements in ascending

order, using the bubble sort algorithm. Assume that the array contains
numerical values.

24) For a given array of N elements, how many compares does the bubble
sort algorithm perform?

25) When does the bubble sort algorithm perform the maximum number
of swaps?

26) Using the bubble sort algorithm, write the code fragment that sorts
array a but preserves the one-to-one correspondence with the
elements of array b of N elements in ascending order. Assume that
the array contains numerical values.

27) Using the modified bubble sort algorithm, write the code fragment
that sorts array a of N elements in ascending order. Assume that the
array contains numerical values.

28) Using the selection sort algorithm, write the code fragment that sorts
array a of N elements in ascending order. Assume that the array
contains numerical values.

29) Using the insertion sort algorithm, write the code fragment that sorts
array a of N elements in ascending order. Assume that the array
contains numerical values.

30) What is a search algorithm? Name the two most commonly used
search algorithms.

31) What are the advantages and disadvantages of the linear search
algorithm?

32) Using the linear search algorithm, write the code fragment that
performs a search on array a to find value needle. Assume that the
array contains numerical values.

33) What are the advantages and disadvantages of the binary search
algorithm?

34) Using the binary search algorithm, write the code fragment that
performs a search on array a to find value needle. Assume that the
array contains numerical values and is sorted in ascending order.

Part VII
Subprograms

Chapter 35
Introduction to Subprograms

35.1 What Exactly is a Subprogram?
In computer science, a subprogram is a block of statements packaged as a
unit that performs a specific task. A subprogram can be called several times
within a program, whenever that specific task needs to be performed.
In Java, a built-in method is an example of such a subprogram. Take the
well-known Math.abs() method, for example. It consists of a block of
statements packaged as a unit under the name “abs”, and it performs a
specific task—it returns the absolute value of a number.

If you are wondering what kind of statements might exist inside the
method Math.abs(), here is a possible block of statements.
if (number < 0)

return number * (-1);
else

return number;

Generally speaking, there are two kinds of subprograms: functions and
procedures. The difference between a function and a procedure is that a
function returns a result, whereas a procedure doesn't. However, in some
computer languages, this distinction may not quite be apparent. There are
languages in which a function can also behave as a procedure and return no
result, and there are languages in which a procedure can return one or even
more than one result.

Depending on the computer language being used, the terms “function”
and “procedure” may be different. For example, in Visual Basic you can find
them as “functions” and “subprocedures”, in FORTRAN as “functions” and
“subroutines”, whereas in Java, the preferred terms are usually “methods”
and “void methods”.

35.2 What is Procedural Programming?
Suppose you were assigned a project to solve the drug abuse problem in
your area. One possible approach (which could prove very difficult or even
impossible) would be to try to solve this problem by yourself!

A better approach, however, would be to subdivide the large problem into
smaller subproblems such as prevention, treatment, and rehabilitation, each
of which could be further subdivided into even smaller subproblems, as
shown in Figure 35–1.

Figure 35–1 A problem can be subdivided into smaller problems

As the supervisor of this project, you could rent a building and establish
within it three departments: the prevention department, with all of its
subdepartments; the treatment department, with all of its subdepartments;
and the rehabilitation department with all of its subdepartments. Finally, you
would hire staff (specialists from a variety of fields), you would build teams
and employ them to do the job for you!
Procedural programming does exactly the same thing. It subdivides an
initial problem into smaller subproblems, and each subproblem is further
subdivided into smaller subproblems. Finally, for each subproblem a small
subprogram is written, and the main program (as does the supervisor), calls
(employs) each of them to do a different part of the job.
Procedural programming offers several advantages:

► It enables programmers to reuse the same code whenever necessary,
without the need for rewriting or copying it.

► It is relatively easy to implement.
► It helps programmers follow the flow of execution more easily,

simplifying the debugging process.

A very large program can prove very difficult to debug and maintain
when it is all in one piece. For this reason, it is often easier to subdivide it
into smaller subprograms, each of which performs a clearly defined process.

35.3 What is Modular Programming?
In modular programming, subprograms of common functionality can be
grouped together into separate modules, and each module can have its own
set of data. Therefore, a program can consist of more than one part, and each
of those parts (modules) can contain one or more smaller parts
(subprograms).

The Math module is such an example. It contains subprograms of common
functionality (related to Math), such as abs(), sqrt(), sin(), cos(), tan(), and
many more.

If you were to use modular programming in the previous drug problem
example, then you could have three separate buildings—one to host the
prevention department and all of its subdepartments, a second one to host the
treatment department and all of its subdepartments, and a third one to host
the rehabilitation department and all of its subdepartments (as shown in
Figure 35–2). These three buildings could be thought of as three different
modules in modular programming, each of which would contain
subprograms of common functionality.

Figure 35–2 Subprograms of common functionality can be grouped together into separate modules.

35.4 Review Questions: True/False
Choose true or false for each of the following statements.

1) A subprogram is a block of statements packaged as a unit that performs
a specific task.

2) In general, there are two kinds of subprograms: functions and
procedures.

3) In general, the difference between a function and a procedure is that a
procedure returns a result, whereas a function does not.

4) Java supports only procedures.
5) Procedural programming subdivides the initial problem into smaller

subproblems.
6) An advantage of procedural programming is the ability to reuse the

same code, without the need for rewriting or copying it.
7) Procedural programming helps programmers follow the flow of

execution more easily.
8) Modular programming increases program development speed.
9) In modular programming, subprograms of common functionality are

grouped together into separate modules.
10) In modular programming, each module can have its own set of data.
11) Modular programming uses different structures than structured

programming does.
12) A program can consist of more than one module.

Chapter 36
User-Defined Subprograms

36.1 Subprograms that Return a Value
In many computer languages, a subprogram that returns a value is called a
function. Java calls them methods and there are two categories of methods.
There are the built-in methods, such as Math.abs(), Math.sqrt(), and
there are the user-defined methods, those that you can personally write and
use in your own programs.
The general form of a Java method that returns a value is shown here.
static return_type name([type1 arg1, type2 arg2, type3 arg3, …]) {

Local variables declaration section

A statement or block of statements

return value; }

where
► return_type is the data type of the value that the method returns.
► name is the name of the method.
► arg1, arg2, arg3, … is a list of arguments (variables, arrays etc.) used to

pass values from the caller to the method. There can be as many
arguments as you need.

► type1, type2, type3, … is the data type of each argument. Each argument
must have a data type.

► value is the value returned to the caller. It can be a constant value, a
variable, an expression, or even a data structure. Its data type must
match the return_type of the method.

Note that arguments are optional; that is, a method may contain no
arguments.

In Section 5.4 you learned about the rules that must be followed when
assigning names to variables. Assigning names to subprograms follows
exactly the same rules!

The method name can be likened to a box (see Figure 36–1) which contains
a statement or block of statements. It accepts the arguments arg1, arg2, arg3,
… as input values and returns value as output value.

Figure 36–1 A method can be likened to a box For example, the next method accepts two numbers
through the arguments num1 and num2, then calculates their sum and returns the result.

static double getSum(double num1, double num2) {
double result;

result = num1 + num2; return result; }

Of course, this can also be written as
static double getSum(double num1, double num2) {

return num1 + num2; }

36.2 How to Make a Call to a Method
Every call to a method is as follows: you write the name of the method
followed by a list of arguments (if required), either within a statement that
assigns the method's returned value to a variable or directly within an
expression.
Let's see some examples. The following method accepts a numeric value
through the argument num and returns the result of that value raised to the
power of three.
static double cube(double num) {

double result;
result = num * num * num; return result; }

Now, suppose that you want to calculate a result of the following

expression

You can either assign the returned value from the method cube() to a
variable, as shown here

x = Double.parseDouble(cin.nextLine());

cb = cube(x); //Assign the returned value to a variable y = cb + 1 / x; //and
use that variable
System.out.println(y);
or you can call the method directly in an expression,

x = Double.parseDouble(cin.nextLine());
y = cube(x) + 1 / x; //Call the method directly in an expression
System.out.println(y);
or you can even call the method directly in a System.out.println()
statement.
x = Double.parseDouble(cin.nextLine()); System.out.println(cube(x) + 1 / x); //Call
the method directly
//in a System.out.println() statement

User-defined methods can be called just like the built-in methods of
Java.

Now let's see another example. The next Java program defines the method
getMessage() and then the main code calls it. The returned value is
assigned to variable a.

 Project_36.2a
//Define the method static String getMessage() {

String msg;
msg = "Hello Zeus"; return msg; }

//Main code starts here public static void
main(String[] args) throws Exception {

String a;
System.out.println("Hi there!"); a = getMessage();

System.out.println(a); }

If you run this program, the following messages are displayed.

Note that subprograms must be written outside of the main method.
A method does not execute immediately when a program starts

running. The first statement that actually executes in the last example is
the statement System.out.println("Hi there!").

You can pass (send) values to a method, as long as at least one argument
exists within the method's parentheses. In the next example, the method
display() is called three times but each time a different value is passed
through the argument color.

 Project_36.2b
//Define the method static String display(String color)

{
String msg;

msg = "There is " + color + " in the rainbow";
return msg; }

//Main code starts here public static void
main(String[] args) throws Exception {

System.out.println(display("red"));
System.out.println(display("yellow"));
System.out.println(display("blue")); }

If you run this program, the following messages are displayed.

In the next example, two values must be passed to method display().
 Project_36.2c

static String display(String color, boolean exists) {
String neg;
neg = "";

if (!exists) {
neg = "n't any";

}
return "There is" + neg + " " + color + " in the

rainbow"; }
public static void main(String[] args) throws Exception

{
System.out.println(display("red", true));

System.out.println(display("yellow", true));
System.out.println(display("black", false)); }

If you run this program the following messages are displayed.

In Java, you can place your methods either above or below your main
code. Most programmers, though, prefer to have them all on the top for
better observation.

36.3 Subprograms that Return no Values
In computer science, a subprogram that returns no values can be known as
a procedure, subprocedure, subroutine, void function, and more. In Java,
the preferred term is usually void method.
The general form of a Java void method is

static void name([type1 arg1, type2 arg2, type3 arg3, …]) {

Local variables declaration section

A statement or block of statements

}
where
► name is the name of the void method.
► arg1, arg2, arg3, … is a list of arguments (variables, arrays etc.) used to

pass values from the caller to the void method. There can be as many
arguments as you want.

► type1, type2, type3, … is the data type of each argument. Each argument
must have a data type.

Note that arguments are optional; that is, a void method may contain
no arguments.

For example, the next void method accepts two numbers through the
arguments num1 and num2, then calculates their sum and finally displays the
result.
static void displaySum(double num1, double num2) {

double result;
result = num1 + num2; System.out.println(result); }

36.4 How to Make a Call to a void Method
You can make a call to a void method by just writing its name. The next
example defines the void method displayLine() and the main code calls
the void method whenever it needs to display a horizontal line.

 Project_36.4a
//Define the void method static void displayLine() {

System.out.println("---------------------"); }
public static void main(String[] args) throws Exception

{
System.out.println("Hello there!"); displayLine();

System.out.println("How do you do?"); displayLine();
System.out.println("What is your name?");

displayLine(); }

You can pass (send) values to a void method, as long as at least one
argument exists within void method's parentheses. In the next example, the
void method displayLine() is called three times but each time a different
value is passed through the variable length, resulting in three printed lines
of different length.

 Project_36.4b
static void displayLine(int length) {

int i;
for (i = 1; i <= length; i++) {

System.out.print("-");
}

System.out.println(); }

public static void main(String[] args) throws Exception
{

System.out.println("Hello there!"); displayLine(12);
System.out.println("How do you do?");

displayLine(14); System.out.println("What is your
name?"); displayLine(18); }

Since the void method displayLine() returns no value, the following line
of code is wrong. You cannot assign the void method to a variable because
there isn't any returned value!
y = display_line(12);

Also, you cannot call it within a statement. The following line of code is
also wrong.
System.out.println("Hello there!\n" + display_line(12));

36.5 Formal and Actual Arguments
Each method (or void method) contains an argument list called a formal
argument list. As already stated, arguments in this list are optional; the
formal argument list may contain no arguments, one argument, or more
than one argument.
When a subprogram (method, or void method) is called, an argument list
may be passed to the subprogram. This list is called an actual argument
list.
In the next example, the formal arguments (variables) n1 and n2 constitute
the formal argument list whereas the formal arguments (variables) x and y,
as well as formal arguments (expressions) x + y and y / 2, constitute the
actual argument lists.

 Project_36.5
//Define the method multiply().

//The two arguments n1 and n2 are called formal arguments.

static double multiply(
double n1, double n2

) { [More…]
double result;
result = n1 * n2; return result; }

//Main code starts here public static void main(String[] args) throws Exception {
double x, y, w;
x = Double.parseDouble(cin.nextLine()); y = Double.parseDouble(cin.nextLine());

//Call the method multiply().
//The two arguments x and y are called actual arguments.

w = multiply(
x, y

); [More…]
System.out.println(w);
//Call the method multiply().
//The two arguments x + y and y / 2 are called actual arguments.

System.out.println(multiply(
x + 2, y / 2

)); [More…]
}

Note that there is a one-to-one correspondence between the formal and
the actual arguments. In the first call, the value of the actual argument x is
passed to the formal argument n1, and the value of actual argument y is
passed to the formal argument n2. In the second call, the value of the
actual argument (the result of the expression) x + 2 is passed to the formal
argument n1, and the value of the actual argument (the result of the
expression) y / 2 is passed to the formal argument n2.

36.6 How Does a Method Execute?
When the main code calls a method the following steps are performed:
► The execution of the statements of the main code is interrupted.
► The values of the variables or the result of the expressions that exist

in the actual argument list are passed (assigned) to the corresponding
arguments (variables) in the formal argument list, and the flow of
execution goes to where the method is written.

► The statements of the method are executed.
► When the flow of execution reaches a return statement, a value is

returned from the method to the main code and the flow of execution
continues from where it was before calling the method.

In the next Java program, the method maximum() accepts two arguments
(numeric values) and returns the greater of the two values.

 Project_36.6
static double maximum(double val1, double val2) {

double m;
m = val1;

if (val2 > m) {
m = val2;

}
return m; }

//Main code starts here public static void main(String[] args) throws Exception {

double a, b, maxim;
a = Double.parseDouble(cin.nextLine()); b = Double.parseDouble(cin.nextLine());
maxim = maximum(a, b); System.out.println(maxim); }

When the Java program starts running, the first statement executed is the
statement a = Double .parseDouble(cin.nextLine()) (this is considered
the first statement of the program).
Below is a trace table that shows the exact flow of execution, how the
values of the variables a and b are passed from the main code to the
method, and how the method returns its result. Suppose the user enters the
values 3 and 8.

Step Statements of the Main Code a b maxim

1 a = Double.parseD… 3.0 ? ?

2 b = Double.parseD… 3.0 8.0 ?

3 maxim = maximum(a, b)

When the call to the method maximum() is made, the execution of the
statements of the main code is interrupted, the values of the variables a
and b are passed (assigned, if you prefer) to the corresponding formal
arguments (variables) val1 and val2, and the flow of execution goes to
where the method is written. Then the statements of the method are
executed.

Step Statements of Method maximum() val1 val2 m

4 m = val1 3.0 8.0 3.0

5 if (val2 > m) This evaluates to true

6 m = val2 3.0 8.0 8.0

7 return m

When the flow of execution reaches the return statement, the value 8 is
returned from the method to the main code (and assigned to the variable
maxim) and the flow of execution continues from where it was before

calling the method. The main code displays the value of 8 on the user's
screen.

Step Statements of the Main Code a b maxim

8 .println(maxim) 3.0 8.0 8.0

Exercise 36.6-1 Back to Basics – Calculating the Sum of Two Numbers
Do the following: i) Write a subprogram named total that accepts two
numeric values through its formal argument list and then calculates and
returns their sum.
ii) Using the subprogram cited above, write a Java program that lets the

user enter two numbers and then displays their sum. Next, create a
trace table to determine the values of the variables in each step of the
Java program for two different executions.
The input values for the two executions are: (i) 2, 4; and (ii) 10, 20.

Solution In this exercise you need to write a method that accepts two
values from the caller (this is the main code) and then calculates and
returns their sum. The solution is shown here.

 Project_36.6-1
static double total(double a, double b) {

double s;
s = a + b;
return s; }

public static void main(String[] args) throws Exception {
double num1, num2, result;

num1 = Double.parseDouble(cin.nextLine()); num2 =
Double.parseDouble(cin.nextLine());
result = total(num1, num2); System.out.println("The sum of " + num1 + " + " + num2
+ " is " + result); }

Now, let's create the corresponding trace tables. Since you have become
more experienced with them, the column “Notes” has been removed.

i) For the input values of 2, 4, the trace table looks like this.

Step Statement
Main Code Method

total()

num1 num2 result a b s

1 num1 = Double.parseD… 2.0 ? ?

2 num2 = Double.parseD… 2.0 4.0 ?

3 result = total(num1,
num2)

2.0 4.0 ?

4 s = a + b 2.0 4.0 6.0

5 return s 2.0 4.0 6.0

6 .println("The sum of "+
…

It displays: The sum of 2.0 + 4.0 is
6.0

ii) For the input values of 10, 20, the trace table looks like this.

Step Statement
Main Code Method

total()

num1 num2 result a b s

1 num1 = Double.parseD… 10.0 ? ?

2 num2 = Double.parseD… 10.0 20.0 ?

3 result = total(num1,
num2)

10.0 20.0 ?

4 s = a + b 10.0 20.0 30.0

5 return s 10.0 20.0 30.0

6 .println("The sum of "+
…

It displays: The sum of 10.0 + 20.0 is
30.0

Exercise 36.6-2 Calculating the Sum of Two Numbers Using Fewer Lines
of Code!
Rewrite the Java program of the previous exercise using fewer lines of
code.

Solution The solution is shown here.

 Project_36.6-2
static double total(double a, double b) {

return a + b; }

public static void main(String[] args) throws Exception {
double num1 = Double.parseDouble(cin.nextLine()); double num2 =
Double.parseDouble(cin.nextLine());

System.out.println("The sum of " + num1 + " + " + num2 + " is " + total(num1,
num2)); }

Contrary to the solution of the previous exercise, in this method total(),
the sum is not assigned to variable s but is directly calculated and
returned. Furthermore, in this main code, variables num1 and num2 are
directly declared when first used, whereas the returned value in not
assigned to a variable but is directly displayed.

User-defined methods can be called just like the built-in methods of
Java.

36.7 How Does a void Method Execute?
When the main code calls a void method, the following steps are
performed: ► The execution of the statements of the main code is
interrupted.
► The values of the variables or the result of the expressions that exist

in the actual argument list are passed (assigned) to the corresponding
arguments (variables) in the formal argument list and the flow of
execution goes to where the void method is written.

► The statements of the void method are executed.
► When the flow of execution reaches the end of the void method, the

flow of execution continues from where it was before calling the void
method.

In the next Java program, the void method minimum() accepts three
arguments (numeric values) through its formal argument list and displays
the lowest value.

 Project_36.7
static void minimum(double val1, double val2, double val3) {

double minim;
minim = val1; if (val2 < minim) {

minim = val2;
}
if (val3 < minim) {

minim = val3;

}
System.out.println(minim); }

public static void main(String[] args) throws Exception {

double a, b, c;
a = Double.parseDouble(cin.nextLine()); b = Double.parseDouble(cin.nextLine()); c
= Double.parseDouble(cin.nextLine());
minimum(a, b, c);
System.out.println("The end"); }

When the Java program starts running, the first statement executed is the
statement a = Double .parseDouble(cin.nextLine()) (this is considered
the first statement of the program). Suppose the user enters the values 9, 6,
and 8.

Step Statements of the Main Code a b c

1 a = Double.parseD… 9.0 ? ?

2 b = Double.parseD… 9.0 6.0 ?

3 c = Double.parseD… 9.0 6.0 8.0

4 minimum(a, b, c)

When a call to the void method minimum() is made, the execution of the
statements of the main code is interrupted, the values of the variables a, b,
and c are passed to the corresponding formal arguments val1, val2, and
val3, and the statements of the void method are executed.

Step Statements of void Method minimum() val1 val2 val3 minim

5 minim = val1 9.0 6.0 8.0 9.0

6 if (val2 < minim) This evaluates to true

7 minim = val2 9.0 6.0 8.0 6.0

8 if (val3 < minim) This evaluates to false

9 .println(minim) It displays: 6.0

When the flow of execution reaches the end of the void method the flow
of execution simply continues from where it was before calling the void
method.

Step Statements of the Main Code a b c

10 .println("The end") It displays: The end

Note that between step 9 and step 10, no values are returned from the
void method to the main code.

Exercise 36.7-1 Back to Basics – Displaying the Absolute Value of a
Number
Do the following: i) Write a subprogram named displayAbs that accepts a
numeric value through its formal argument list and then displays its
absolute value. Do not use the built-in Math.abs() method of Java.
ii) Using the subprogram cited above, write a Java program that lets the

user enter a number and then displays its absolute value followed by
the user-provided value. Next, create a trace table to determine the
values of the variables in each step of the Java program for two
different executions.
The input values for the two executions are: (i) 5, and (ii) −5.

Solution In this exercise you need to write a void method that accepts a
value from the caller (this is the main code) and then calculates and
displays its absolute value. The solution is shown here.

 Project_36.7-1
static void displayAbs(double n) {

if (n < 0) {
n = (-1) * n;

}

System.out.println(n); }
public static void main(String[] args) throws Exception {

double a;
a = Double.parseDouble(cin.nextLine()); displayAbs(a); //This displays the
absolute value of the user-provided number.

System.out.println(a); //This displays the user-provided number.
}

Now, let's create the corresponding trace tables.
i) For the input value of 5, the trace table looks like this.

Step Statement Main Code void Method
displayAbs()

a n

1 a = Double.parseD… 5.0

2 displayAbs(a) 5.0

3 if (n < 0) This evaluates to false

4 .println(n) It displays: 5.0

5 .println(a) It displays: 5.0

ii) For the input value of −5, the trace table looks like this.

Step Statement
Main Code void Method

displayAbs()

a n

1 a = Double.parseD… −5.0

2 displayAbs(a) −5.0

3 if (n < 0) This evaluates to true

4 n = (‐1) * n 5.0

5 .println(n) It displays: 5.0

6 .println(a) It displays: −5.0

Note that at step 5 the variable n of the void method contains the
value 5.0 but when the flow of execution returns to the main code at
step 6, the variable a of the main code still contains the value −5.0.
Actually, the value of variable a of the main code had never changed!

36.8 Review Questions: True/False
Choose true or false for each of the following statements.
1) There are two categories of subprograms that return a value in Java.
2) The variables that are used to pass values to a method are called

arguments.
3) The method trim() is a user-defined method.

4) Every call to a user-defined method is made in the same way as a call
to the built-in methods of Java.

5) There can be as many arguments as you wish in a method's formal
argument list.

6) In a method, the formal argument list must contain at least one
argument.

7) In a method, the formal argument list is optional.
8) A method cannot return an array.
9) The following statement is a valid Java statement.

return x + 1;

10) A formal argument can be an expression.
11) An actual argument can be an expression.
12) A method can have no arguments in the actual argument list.
13) The next statement calls the method cubeRoot() three times.

cb = cubeRoot(x) + cubeRoot(x) / 2 + cubeRoot(x) / 3;

14) The following code fragment displays exactly the same value as the
statement System.out.println(cubeRoot(x) + 5);
cb = cubeRoot(x); y = cb + 5;
System.out.println(y);

15) A method must always include a return statement whereas a void
method mustn't.

16) The name play-the-guitar can be a valid method name.
17) In Java, you cannot place your methods below your main code.
18) When the main code calls a method, the execution of the statements

of the main code is interrupted.
19) In general, it is possible for a function to return no values to the

caller.
20) The method indexOf() is a built-in method of Java.
21) The following code fragment displays the value 0.5.

static double divide(double b, double a) {

return a / b; }
public static void main(String[] args) throws Exception {

double a = 10; double b = 5; System.out.println(divide(a, b)); }

22) In computer science, a subprogram that returns no result is known as
a void function.

23) In Java, you can call a void method by writing its name followed by
an opening and closing parenthesis.

24) In a void method call made in the main code, the variables used
within the actual argument list must be variables from the main code.

25) In a void method call, only variables can be used within the actual
argument list.

26) In a void method, all formal arguments must have different names.
27) A void method must always include at least one argument in its

formal argument list.
28) There is a one-to-one correspondence between the formal and the

actual arguments.
29) You can call a void method within a statement.
30) When the flow of execution reaches the end of a void method, the

flow of execution continues from where it was before calling the void
method.

31) A void method returns no values to the caller.
32) It is possible for a void method to accept no values from the caller.
33) A call to a void method is made differently from a call to a method.
34) In the following Java program, the first statement that executes is the

statement System.out.println("Hello Aphrodite!").
static void message() {

System.out.println("Hello Aphrodite!"); }
public static void main(String[] args) throws Exception {

System.out.println("Hi there!"); message(); }

36.9 Review Exercises
Complete the following exercises.
1) The following method contains some errors. Can you spot them?

static int findMax(int a int b) if (a > b) {
maximum = a;

}
else {

maximum = b;

}
}

2) Create a trace table to determine the values of the variables in each
step of the following Java program.
static int sumDigits(int a) {

int d1, d2;
d1 = a % 10;
d2 = (int)(a / 10);
return d1 + d2; }

public static void main(String[] args) throws Exception {

int s, i;
s = 0;
for (i = 25; i <= 27; i++) {

s += sumDigits(i);
}
System.out.println(s); }

3) Create a trace table to determine the values of the variables in each
step of the following Java program.
static int sss(int a) {

int k, total;
total = 0;
for (k = 1; k <= a; k++) {

total += k;

}
return total; }

public static void main(String[] args) throws Exception {
int i, s;
i = 1;

s = 0;
while (i < 6) {

if (i % 2 == 1) {
s += 1;

}
else {

s += sss(i);
}
i++;

}
System.out.println(s); }

4) Create a trace table to determine the values of the variables in each
step of the following Java program when the value 12 is entered.
static int customDiv(int b, int d) {

return (int)((b + d) / 2); }
public static void main(String[] args) throws Exception {

int k, m, a, x;

k = Integer.parseInt(cin.nextLine()); m = 2;
a = 1;
while (a < 6) {

if (k % m != 0) {
x = customDiv(a, m);

}
else {

x = a + m + customDiv(m, a);
}
System.out.println(m + " " + a + " " + x);
a += 2;

m++;
}

}

5) Create a trace table to determine the values of the variables in each
step of the following Java program when the values 3, 7, 9, 2, and 4
are entered.
static void display(int a) {

if (a % 2 == 0) {

System.out.println(a + " is even");
}
else {

System.out.println(a + " is odd");
}

}
public static void main(String[] args) throws Exception {

int i, x;
for (i = 1; i <= 5; i++) {

x = Integer.parseInt(cin.nextLine());
display(x);

}
}

6) Create a trace table to determine the values of the variables in each
step of the following Java program.
static void division(int a, int b) {

b = (int)(b / a); System.out.println(a * b); }
public static void main(String[] args) throws Exception {

int x, y;
x = 20;

y = 30;
while (x % y < 30) {

division(y, x);

x = 4 * y;
y++;

}
}

7) Create a trace table to determine the values of the variables in each
step of the following Java program when the values 2, 3, and 4 are
entered.
static void calculate(int n) {

int j; double s;
s = 0;
for (j = 2; j <= 2 * n; j += 2) {

s = s + Math.pow(j, 2);
}
System.out.println(s); }

public static void main(String[] args) throws Exception {
int i, m;
for (i = 1; i <= 3; i++) {

m = Integer.parseInt(cin.nextLine());
calculate(m);

}
}

8) Write a subprogram that accepts three integers through its formal
argument list and then returns their sum.

9) Write a subprogram that accepts four numbers through its formal
argument list and then returns their average.

10) Write a subprogram that accepts three numbers through its formal
argument list and then returns the greatest value.

11) Write a subprogram that accepts five numbers through its formal
argument list and then displays the greatest value.

12) Write a subprogram named myRound that accepts a real through its
formal argument list and returns it rounded to two decimal places.
Try not to use the Math.round() method of Java.

13) Do the following: i) Write a subprogram named findMin that accepts two
numbers through its formal argument list and returns the lowest one.

ii) Using the subprogram cited above, write a Java program that
prompts the user to enter four numbers and then displays the
lowest one.

14) Do the following: i) Write a subprogram named KelvinToFahrenheit
that accepts a temperature in degrees Kelvin through its formal
argument list and returns its degrees Fahrenheit equivalent.
ii) Write a subprogram named KelvinToCelsius that accepts a

temperature in degrees Kelvin through its formal argument list
and returns its degrees Celsius equivalent.

iii) Using the subprograms cited above, write a Java program that
prompts the user to enter a temperature in degrees Kelvin and
then displays its degrees Fahrenheit and its degrees Celsius
equivalent.

It is given that Fahrenheit = 1.8 ∙ Kelvin − 459.67
and

Celsius = Kelvin − 273.15
15) The Body Mass Index (BMI) is often used to determine whether a

person is overweight or underweight for their height. The formula

used to calculate the BMI is

Do the following: i) Write a subprogram named bmi that accepts a
weight and a height through its formal argument list and then
returns an action (a message) according to the following table.

BMI Action

BMI < 16 You must add weight.

16 ≤ BMI < 18.5 You should add some weight.

18.5 ≤ BMI < 25 Maintain your weight.

25 ≤ BMI < 30 You should lose some weight.

30 ≤ BMI You must lose weight.

ii) Using the subprogram cited above, write a Java program that
prompts the user to enter their weight (in pounds), age (in years),

and height (in inches), and then displays the corresponding
message. Using a loop control structure, the program must also
validate data input and display an error message when the user
enters a) any negative value for weight b) any value less than 18 for
age c) any negative value for height 16) Do the following: i) Write a
subprogram named numOfDays that accepts a year and a month (1
‐ 12) through its formal argument list and then displays the
number of days in that month. Take special care when a year is a
leap year; that is, a year in which February has 29 instead of 28
days.
Hint: A year is a leap year when it is exactly divisible by 4 and
not by 100, or when it is exactly divisible by 400.

ii) Using the subprogram cited above, write a Java program that
prompts the user to enter a year and then displays the number of
the days in each month of that year.

17) Do the following: i) Write a subprogram named numOfDays that accepts a
year and a month (1 ‐ 12) through its formal argument list and then
returns the number of days in that month. Take special care when a
year is a leap year, as you did in the previous exercise.
ii) Using the subprogram cited above, write a Java program that

prompts the user to enter a year and two months (1 ‐ 12). The
program must then calculate and display the total number of days
that occur between the first day of the first month, and the last
day of the second month.

18) Do the following: i) Write a subprogram named displayMenu that
displays the following menu.

1) Convert meters to miles 2) Convert miles to meters 3) Exit ii) Write a
subprogram named metersToMiles that accepts a value in
meters through its formal argument list and then displays the
message “XX meters equals YY miles” where XX and YY
must be replaced by actual values.

iii) Write a subprogram named milesToMeters that accepts a value in
miles through its formal argument list and then displays the
message “YY miles equals XX meters” where XX and YY must
be replaced by actual values.

iv) Using the subprograms cited above, write a Java program that
displays the previously mentioned menu and prompts the user to
enter a choice (of 1, 2, or 3) and a distance. The program must
then calculate and display the required value. The process must
repeat as many times as the user wishes.

It is given that 1 mile = 1609.344 meters.
19) The LAV Cell Phone Company charges customers a basic rate of $10

per month, and additional rates are charged based on the total number
of seconds a customer talks on their cell phone within the month. Use
the rates shown in the following table.

Number of Seconds a Customer
Talks on their Cell Phone

Additional Rates
(in USD per second)

1 ‐ 600 Free of charge

601 ‐ 1200 $0.01

1201 and above $0.02

Do the following: i) Write a subprogram named amountToPay that
accepts a number in seconds through its formal argument list and then
displays the total amount to pay. Please note that the rates are
progressive. Moreover, federal, state, and local taxes add a total of
11% to each bill ii) Using the subprogram cited above, write a Java
program that prompts the user to enter the number of seconds they
talk on the cell phone and then displays the total amount to pay.

Chapter 37
Tips and Tricks with Subprograms

37.1 Can Two Subprograms use Variables of the Same Name?
Each subprogram uses its own memory space to hold the values of its variables. Even the main
code has its own memory space! This means that you can have a variable named test in main
code, another variable named test in a subprogram, and yet another variable named test in
another subprogram. Pay attention! Those three variables are three completely different
variables, in different memory locations, and they can hold completely different values.
As you can see in the program that follows, there are three variables named test in three
different memory locations and each one of them holds a completely different value. The trace
table below can help you understand what really goes on.

 Project_37.1
static void f1() {

String test;
test = "Testing!"; System.out.println(test); }

static void f2(int test) {
System.out.println(test); }

//Main code starts here public static void main(String[] args) throws Exception {
int test;
test = 5;

System.out.println(test); f1(); f2(10); System.out.println(test); }

The trace table is shown here.

Step Statement Notes
Main
Code

void Method
f1()

void Method
f2()

test test test

1 test = 5 5

2 .println(test) It displays: 5 5

3 f1() f1() is called ?

4 test =
"Testing!"

Testing!

5 .println(test)
It displays:
Testing! Testing!

6 f2(10) f2() is called 10

7 .println(test) It displays: 10 10

8 .println(test) It displays: 5 5

Note that variables used in a subprogram “live” as long as the subprogram is being
executed. This means that before calling the subprogram, none of its variables (including those
in the formal argument list) exists in main memory (RAM). They are all defined in the main
memory when the subprogram is called, and they are all removed from the main memory when

the subprogram finishes and the flow of execution returns to the caller. The only variables that
“live” forever, or at least for as long as the Java program is being executed, are the variables
of the main code and the global variables! You will learn more about global variables in
Section 37.6.

37.2 Can a Subprogram Call Another Subprogram?
Up to this point, you might have gotten the impression that only the main code can call a
subprogram. However, this is not true! A subprogram can call any other subprogram which in
turn can call another subprogram, and so on. You can make whichever combination you wish.
For example, you can write a method that calls a void method, a void method that calls a
method, a method that calls another method, or even a method that calls one of the built-in
methods of Java.
The next example presents exactly this situation. The main code calls the void method
displaySum(), which in turn calls the method add().

 Project_37.2
static int add(int number1, int number2) {

int result;

result = number1 + number2; return result; }
static void displaySum(int num1, int num2) {

System.out.println(add(num1, num2)); }
public static void main(String[] args) throws Exception {

int a, b;
a = Integer.parseInt(cin.nextLine()); b = Integer.parseInt(cin.nextLine());

displaySum(a, b); }

When the flow of execution reaches the return statement of the method add(), it returns to its
caller, that is to the void method displaySum(). Then, when the flow of execution reaches the end
of the void method displaySum(), it returns to its caller, that is, to the main code.

Note that there is no restriction on the order in which the two subprograms should be
written. It would have been exactly the same if the void method displaySum() had been written
before the method add().

37.3 Passing Arguments by Value and by Reference
In Java, variables are passed to subprograms by value. This means that if the value of an
argument is changed within the subprogram, it does not get changed outside of it. Take a look
at the following example.

 Project_37.3a
static void f1(int b) {

b++; //This is a variable of void method f1() System.out.println(b);
//It displays: 11

}
public static void main(String[] args) throws Exception {

int a;
a = 10; //This is a variable of the main code f1(a);

System.out.println(a); //It displays: 10
}

The value 10 of variable a is passed to void method f1() through argument b. However,
although the content of variable b is altered within the void method, when the flow of execution
returns to the main code this change does not affect the value of variable a.
In the previous example, the main code and the void method are using two variables with
different names. Yet, the same would have happened if, for instance, both the main code and
the void method had used two variables of the same name. The next example operates exactly
the same way and displays exactly the same results as the previous example did.

 Project_37.3b
static void f1(int a) {

a++; //This is a variable of void method f1() System.out.println(a);
//It displays: 11

}
public static void main(String[] args) throws Exception {

int a;
a = 10; //This is a variable of the main code f1(a);

System.out.println(a); //It displays: 10
}

Passing an array to a subprogram as an argument is as easy as passing a simple variable. The
next example passes array a to the void method display(), and the latter displays the array.

 Project_37.3c
static final int ELEMENTS = 10;
static void display(int b[]) {

int i;
for (i = 0; i <= ELEMENTS - 1; i++) {

System.out.print(b[i] + "\t");
}

}
public static void main(String[] args) throws Exception {

int i;
int[] a = new int[ELEMENTS]; for (i = 0; i <= ELEMENTS - 1; i++) {

a[i] = Integer.parseInt(cin.nextLine());
}

display(a); }

Contrary to variables, data structures in Java are, by default, passed by reference. This means
that if you pass, for example, an array to a subprogram, and that subprogram changes the value
of one or more elements of the array, these changes are also reflected outside the subprogram.
Take a look at the following example.

 Project_37.3d
static void f1(int[] x) {

x[0]++;
System.out.println(x[0]); //It displays: 6

}
public static void main(String[] args) throws Exception {

int[] y = {5, 10, 15, 20};

System.out.println(y[0]); //It displays: 5
f1(y); System.out.println(y[0]); //It displays: 6

}

Passing an array to a subprogram passes a reference to the array, not a copy of the array,
meaning that y and x are actually aliases of the same array. Only one copy of the array exists in
the main memory (RAM). If a subprogram changes the value of an element, this change is also
reflected in the main program.

So, as you have probably realized, passing arrays by reference can provide an indirect way for a
subprogram to “return” more than one value. In the next example, the method myDivmod()
divides variable a by variable b and finds their integer quotient and their integer remainder. If
all goes well, it returns true; otherwise, it returns false. Moreover, through the array results,
the method also indirectly returns the calculated quotient and the calculated remainder.

 Project_37.3e
static boolean divMod(int a, int b, int[] results) {

boolean returnValue = true;
if (b == 0) {

returnValue = false;
}

else {
results[0] = (int)(a / b);

results[1] = a % b;
}

return returnValue; }
public static void main(String[] args) throws Exception {

int val1, val2; boolean ret; int[] res = new int[2];
val1 = Integer.parseInt(cin.nextLine()); val2 =

Integer.parseInt(cin.nextLine()); ret = divMod(val1, val2, res); if
(ret) {

System.out.println(res[0] + ", " + res[1]);
}

else {
System.out.println("Sorry, wrong values entered!");

}
}

A very good tactic regarding the arguments in the formal argument list is to have all of
those being passed by value written before those being passed by reference.

37.4 Returning an Array
In the next example, the Java program must find the three lowest values of array t. To do so,
the program calls and passes the array to the void method getArray() through its formal
argument x, which in turn sorts array x using the insertion sort algorithm. When the flow of
execution returns to the main code, array t is also sorted. This happens because, as already

stated, arrays in Java are passed by reference. So what the main code finally does is just display
the values of the first three elements of the array.

 Project_37.4a
static final int ELEMENTS = 10;

static void getArray(int[] x) { [More…]
int m, n, element;

for (m = 1; m <= ELEMENTS - 1; m++) {
element = x[m];

n = m;
while (n > 0 && x[n - 1] > element) {

x[n] = x[n - 1];
n--;
}

x[n] = element;
}

}
public static void main(String[] args) throws Exception {

int i;
int[] t = {75, 73, 78, 70, 71, 74, 72, 69, 79, 77};

getArray(t);
System.out.println("Three lowest values are: ");

System.out.println(t[0] + " " + t[1] + " " + t[2]);
//In this step, array t is sorted for (i = 0; i <= ELEMENTS - 1;

i++) {
System.out.println(t[i]);

}
}

Since the array t of the main code is passed to the void method by reference, only one copy
of the array exists in the main memory (RAM), meaning that t and x are actually aliases of the
same array. When the flow of execution returns to the main code, the array t is also sorted.

However, there are many times when passing an array by reference can be completely
disastrous. Suppose you have the following two arrays. Array names contains the names of 10
cities, and array t contains their corresponding temperatures recorded at a specific hour on a
specific day.

Now, suppose that for array t you wish to display the three lowest temperatures. If you call
void method getArray() of the previous Java program, you have a problem. Although the three
lowest temperatures can be displayed as required, the array t becomes sorted; therefore, the
one-to-one correspondence between its elements and the elements of array names is lost
forever!
One possible solution would be to write a method in which the array is copied to an auxiliary
array and the method would return a smaller array that contains only the three lowest values.
The proposed solution is shown here.

 Project_37.4b
static final int ELEMENTS = 10;
static int[] getArray(int[] x) {

int m, n, element;
//Copy array x to array auxX

int[] auxX = new int[ELEMENTS]; for (m = 0; m <= ELEMENTS - 1; m++)
{

auxX[m] = x[m];
}

//and sort array auxX
for (m = 1; m <= ELEMENTS - 1; m++) {

element = auxX[m];
n = m;

while (n > 0 && auxX[n - 1] > element) {
auxX[n] = auxX[n - 1];

n--;
}

auxX[n] = element;
}

int[] retArray = {auxX[0], auxX[1], auxX[2]}; return retArray; }
public static void main(String[] args) throws Exception {

int i;
int[] t = {75, 73, 78, 70, 71, 74, 72, 69, 79, 77};

int[] low = getArray(t);
System.out.println("Three lowest values are: ");

System.out.println(low[0] + " " + low[1] + " " + low[2]);
//In this step, array t is NOT sorted for (i = 0; i <= ELEMENTS - 1;

i++) {
System.out.println(t[i]);

}
}

Note that you cannot use a statement such as int[] auxX = x to copy the elements of array x to
auxX. This statement just creates two aliases of the same array. This is why a for-loop is used in
the previous example to copy the elements of array x to the array auxX.

37.5 Overloading Methods

Method overloading is a feature that allows you to have two or more methods with the same
name, as long as their formal argument lists are different. This means that you can perform
overloading as long as: ► the number of arguments in each formal argument list is different;
or ► the data type of the arguments in each formal argument list is different; or ► the
sequence of the data type of the arguments in each formal argument list is different.
To better understand all these concepts, let's try to analyze them using one example for each.

Different number of arguments in each formal argument list In the following example,
there are two methods display(), but they have different numbers of formal arguments.
The first method accepts one string through its formal argument list, while the second
accepts two strings.

 Project_37.5a
static void display(String firstName) {

System.out.println("First name: " + firstName);
System.out.println("-----------------------------"); }

static void display(String firstName, String lastName) {
System.out.println("First name: " + firstName);

System.out.println("Last name: " + lastName); System.out.println("--
---------------------------"); }

public static void main(String[] args) throws Exception {
display("George", "Washington"); //This calls the second method

display("George"); //This calls the first method }

The output result is shown here.

Different data type of arguments in each formal argument list In the following example,
there are two methods myAbs(), but their formal arguments are of different types. The first
method accepts an integer, while the second one accepts a real (a double) through its
formal argument list.

 Project_37.5b
static int myAbs(int a) {

if (a < 0) {
a *= -1;

}
System.out.print("An integer passed: "); return a; }

static double myAbs(double a) {
if (a < 0) {

a *= -1;
}

System.out.print("A real passed: "); return a; }
public static void main(String[] args) throws Exception {
System.out.println(myAbs(-5)); //This calls the first method

System.out.println(myAbs(-5.5)); //This calls the second method
System.out.println(myAbs(-5.0)); //This calls the second method }

The output result is as follows.

Different sequence of the data types of arguments in each formal argument list Last but
not least, in the following example, there are two methods displayDate(), but the sequence
of the data types of the arguments in each formal argument list is different. The first one
method accepts three arguments in the order string‒integer‒integer, while the second one
accepts three arguments in the order integer‒string‒integer.

 Project_37.5c
static void displayDate(String month, int day, int year) {

System.out.println(month + " " + day + ", " + year); }
static void displayDate(int day, String month, int year) {

System.out.println(day + " " + month + " " + year); }
public static void main(String[] args) throws Exception {
displayDate(4, "July", 1776); //This calls the second method
displayDate("July", 4, 1776); //This calls the first method }

The output result is shown here.

37.6 The Scope of a Variable
The scope of a variable refers to the range of effect of that variable. In Java, a variable can have
a local or global scope. A variable declared within a subprogram has a local scope and can be
accessed only from within that subprogram. On the other hand, a variable declared outside of a
subprogram has a global scope and can be accessed from within any subprogram, as well as
from the main code.
Let's see some examples. The next example declares a global variable test. The value of this
global variable, though, is accessed and displayed within the void method.

 Project_37.6a
static int test; //Declare test as global

static void displayValue() {
System.out.println(test); //It displays: 10

}
public static void main(String[] args) throws Exception {

test = 10; //This is a global variable displayValue();
System.out.println(test); //It displays: 10

}

To declare a global variable you must prepend the Java keyword static.
Global variables must be declared outside of the main method. Most programmers prefer to

have them all on the top for better observation.

Be careful though! If the value of a global variable is altered within a subprogram, this change
is also reflected outside of the subprogram. In the next example, the void method
displayValue() increases the value of global variable test to 11, and when the flow of
execution returns to the main code, a value of 11 is displayed.

 Project_37.6b
static int test; //Declare test as global

static void displayValue() {
test++;

System.out.println(test); //It displays: 11
}

public static void main(String[] args) throws Exception {
test = 10;

System.out.println(test); //It displays: 10
displayValue(); System.out.println(test); //It displays: 11

}

The next program declares a global variable test, a local variable test within the void method
displayValueA(), and another local variable test within the void method displayValueB().
Keep in mind that the global variable test and the two local variables test are three different
variables! Furthermore, the third method displayValueC() uses and alters the value of the
global variable test. This is because there isn't any local variable test declared within this
method.

 Project_37.6c
static int test; //Global variable test

static void displayValueA() {
int test; //Local variable test

test = 7;
System.out.println(test); //It displays: 7

}
static void displayValueB() {
int test; //Local variable test

test = 9;
System.out.println(test); //It displays: 9

}
static void displayValueC() {

//Use the value of the global variable test
System.out.println(test); //It displays: 10

test++; //Increase the value of the global variable test }
public static void main(String[] args) throws Exception {

test = 10; //This is the global variable test
System.out.println(test); //It displays: 10

displayValueA(); System.out.println(test); //It displays: 10
displayValueB(); System.out.println(test); //It displays: 10
displayValueC(); System.out.println(test); //It displays: 11

}

You can have variables of local scope of the same name within different subprograms,
because they are recognized only by the subprogram in which they are declared.

37.7 Converting Parts of Code into Subprograms
Writing large programs without subdividing them into smaller subprograms results in a code
that cannot be easily understood or maintained. Suppose you have a large program and you
wish to subdivide it into smaller subprograms. The next program is an example explaining the
steps that must be followed. The parts of the program marked with a dashed rectangle must be
converted into subprograms.

 Project_37.7a

public static void main(String[] args) throws Exception {
int totalYes, femaleNo, i; String temp1, gender, temp2, answer;

totalYes = 0; femaleNo = 0; for (i = 1; i <= 100; i++) {
do {

System.out.print("Enter gender for citizen No " + i + ": ");
temp1 = cin.nextLine();

gender = temp1.toLowerCase();
} while (!gender.equals("male") && !gender.equals("female") &&

!gender.equals("other"));

do {
System.out.print("Do you go jogging in the afternoon? ");

temp2 = cin.nextLine();
answer = temp2.toLowerCase();

} while (!answer.equals("yes") && !answer.equals("no") &&
!answer.equals("sometimes"));
if (answer.equals("yes")) {

totalYes++;
}

if (gender.equals("female") && answer.equals("no")) {
femaleNo++;

}
}

System.out.println("Total positive answers: " + totalYes);
System.out.println("Women's negative answers: " + femaleNo);

}

To convert parts of this program into subprograms you must: ► decide, for each dashed
rectangle, whether to use a method or a void method. This depends on whether or not, the
subprogram will return a result.
► determine which variables exist in each dashed rectangle and their roles in that dashed

rectangle.
The flowchart that follows can help you decide what to do with each variable, whether it must
be passed to the subprogram and/or returned from the subprogram, or if it must just be a local
variable within the subprogram.

So, with the help of this flowchart, let's deal with each dashed rectangle one by one! The parts
that are not marked with a dashed rectangle will comprise the main code.

First part
In the first dashed rectangle, there are three variables: i, temp1, and gender. However, not all of
them must be included in the formal argument list of the subprogram that will replace the
dashed rectangle. Let's find out why!
► Variable i: ► is initialized/updated outside the dashed rectangle; thus, it must be passed to

the subprogram ► is not updated within the dashed rectangle; thus, it should not be returned
to the caller ► Variable temp1: ► is not initialized/updated outside of the dashed rectangle; thus,
it should not be passed to the subprogram ► is initialized within the dashed rectangle but its
value is not used outside of it; thus, it should not be returned to the caller According to the
flowchart, since variable temp1 should neither be passed nor returned, this variable can
just be a local variable within the subprogram.

► Variable gender: ► is not initialized/updated outside of the dashed rectangle; thus, it should
not be passed to the subprogram ► is initialized within the dashed rectangle and then its
value is used outside of it; thus, it must be returned to the caller Therefore, since one
value must be returned to the main code, a method can be used as shown here.
//First part static String getGender(int i) {

String gender, temp1;
do {

System.out.print("Enter gender for citizen No " + i + ": ");
temp1 = cin.nextLine();
gender = temp1.toLowerCase();

} while (!gender.equals("male") && !gender.equals("female") && !gender.equals("other"));
return gender; }

Method's data type must match the data type of the value returned.

Second part
In the second dashed rectangle there are two variables, temp2 and answer, but they do not
both need to be included in the formal argument list of the subprogram that will replace
the dashed rectangle. Let's find out why!
► Variable temp2: ► is not initialized/updated outside of the dashed rectangle; thus, it

should not be passed to the subprogram ► is initialized/updated within the dashed
rectangle but its value is not used outside of it; thus, it should not be returned to the
caller According to the flowchart, since variable temp2 should neither be passed nor
returned, this variable can just be a local variable within the subprogram.

► Variable answer: ► is not initialized/updated outside of the dashed rectangle; thus, it
should not be passed to the subprogram ► is initialized within the dashed rectangle
and then its value is used outside of it; thus, it must be returned to the caller
Therefore, since one value must be returned to the main code, a method can be
used, as shown here.
//Second part static String getAnswer() {

String temp2, answer;
do {

System.out.print("Do you go jogging in the afternoon? ");
temp2 = cin.nextLine();
answer = temp2.toLowerCase();

} while (!answer.equals("yes") && !answer.equals("no") && !answer.equals("sometimes"));
return answer; }

Third part
In the third dashed rectangle of the example, there are two variables: totalYes and
femaleNo. Let's see what you should do with them.
► Both variables totalYes and femaleNo: ► are updated outside of the dashed

rectangle; thus, they must be passed to the subprogram ► are not updated within
the dashed rectangle; thus, they should not be returned to the caller Therefore,
since no value should be returned to the main code, a void method can be
used, as follows.
//Third part static void displayResults(int totalYes, int femaleNo) {

System.out.println("Total positive answers: " + totalYes);
System.out.println("Women's negative answers: " + femaleNo); }

The final program The final program, including the main code and all
the subprograms cited above, is shown here.

 Project_37.7b
//First part static String getGender(int i) {

String gender, temp1;
do {

System.out.print("Enter gender for citizen No " + i
+ ": ");

temp1 = cin.nextLine();
gender = temp1.toLowerCase();

} while (!gender.equals("male") &&
!gender.equals("female") && !gender.equals("other"));

return gender; }
//Second part static String getAnswer() {

String temp2, answer;
do {

System.out.print("Do you go jogging in the
afternoon? ");

temp2 = cin.nextLine();
answer = temp2.toLowerCase();

} while (!answer.equals("yes") && !answer.equals("no")
&& !answer.equals("sometimes"));

return answer; }
//Third part static void displayResults(int totalYes, int

femaleNo) {
System.out.println("Total positive answers: " +
totalYes); System.out.println("Women's negative

answers: " + femaleNo); }
public static void main(String[] args) throws Exception {

int i, totalYes, femaleNo; String gender, answer;
totalYes = 0; femaleNo = 0; for (i = 1; i <= 100; i++)

{
gender = getGender(i);
answer = getAnswer();

if (answer.equals("yes")) {
totalYes++;

}
if (gender.equals("female") && answer.equals("no"))

{
femaleNo++;

}
}

displayResults(totalYes, femaleNo); }

37.8 Recursion
Recursion is a programming technique in which a subprogram calls itself.
This might initially seem like an endless loop, but of course this is not true; a
subprogram that uses recursion must be written in a way that obviously
satisfies the property of finiteness.
Imagine that the next Java program helps you find your way home. In this
program, recursion occurs because the void method find_your_way_home()
calls itself within the method.
static void find_your_way_home() {

if (you_are_already_at_home) {
stop_walking();

}
else {

take_one_step_toward_home();

find_your_way_home();

}
}
public static void main(String[] args) throws Exception {

find_your_way_home(); }

Now, let's try to analyze recursion through a real example. The next Java
program calculates the factorial of 5 using recursion.

 Project_37.8
static int factorial(int value) {

if (value == 1) {

return 1;
}
else {

return value * factorial(value - 1);
}

}

public static void main(String[] args) throws Exception {
System.out.println(factorial(5)); //It displays: 120

}

In mathematics, the factorial of a non-negative integer N is the product
of all positive integers less than or equal to N. It is denoted by N! and the
factorial of 0 is, by definition, equal to 1. For example, the factorial of 5 is 1
× 2 × 3 × 4 × 5 = 120.

Recursion occurs because the method factorial() calls itself within the
method.

Note that there isn't any loop control structure!

You are probably confused right now. How on Earth is the product 1 × 2 × 3
× 4 × 5 calculated without using a loop control structure? The next diagram
may help you understand. It shows the multiplication operations that are
performed as method factorial(5) works its way backwards through the
series of calls.

Let's see how this diagram works. The main code calls the method
factorial(5), which in turn calls the method factorial(4), and the latter
calls the method factorial(3), and so on. The last call (factorial(1))
returns to its caller (factorial(2)) the value 1, which in turn returns to its
caller (factorial(3)) the value 1 × 2 = 2, and so on. When the method
factorial(5) returns from the topmost call, you have the final solution.
To avoid logic errors, all recursive subprograms must adhere to three
important rules: 1) They must call themselves.

2) They must have a base case, which is the condition that “tells” the
subprogram to stop recursions. The base case is usually a very small problem
that can be solved directly. It is the solution to the "simplest" possible
problem. In the method factorial() of the previous example, the base case is
the factorial of 1. When factorial(1) is called, the Boolean expression value
== 1 evaluates to true and signals the end of the recursions.

3) They must change their state and move toward the base case. A change of
state means that the subprogram alters some of its data. Usually, data are
getting smaller and smaller in some way. In the function factorial() of the
previous example, since the base case is the factorial of 1, the whole concept
relies on the idea of moving toward that base case.

In conclusion, recursion helps you write more creative and more elegant programs,
but keep in mind that it is not always the best option. The main disadvantage of
recursion is that it is hard for a programmer to think through the logic, and
therefore it is difficult to debug a code that contains a recursive subprogram.
Furthermore, a recursive algorithm may prove worse than a non-recursive one
because it may consume too much CPU time and/or too much main memory
(RAM). So, there are times where it would be better to follow the KISS principle
and, instead of using a recursion, solve the algorithm using loop control structures.

For you who don't know what the KISS principle is, it is an acronym for “Keep
It Simple, Stupid”! It states that most systems work best if they are kept simple,
avoiding any unnecessary complexity!

37.9 Review Questions: True/False
Choose true or false for each of the following statements.
1) Each subprogram uses its own memory space to hold the values of its

variables.
2) Variables used in a subprogram "live" as long as the subprogram is being

executed.
3) The only variables that “live” for as long as the Java program is being

executed are the variables of the main code and the global variables.
4) A subprogram can call the main code.
5) If an argument is passed by value and its value is changed within the

subprogram, it does not get changed outside of it.
6) The name of an actual argument and the name of the corresponding formal

argument must be the same.
7) The total number of actual arguments cannot be greater than the total number

of formal arguments.
8) An expression cannot be passed to a subprogram.
9) By default, arrays in Java are passed by reference.

10) You can pass an array to a void method but the void method cannot return
(directly or indirectly) an array to the caller.

11) A method can accept an array through its formal argument list.

12) In general, a void function can call any function.
13) In general, a function can call any void function.
14) Within a statement, a method can be called only once.
15) A void method can return a value through its formal argument list.
16) A subprogram can be called by another subprogram or by the main code.
17) Overloading is a feature in Java that allows you to have two or more

arguments with the same name.
18) You can perform overloading as long as the number of arguments in the

formal argument lists is equal.
19) Overloading is a feature in Java that allows you to have two or more methods

of different names as long as they have exactly the same formal argument list.
20) The scope of a variable refers to the range of effect of that variable.
21) If the value of a global variable is altered within a subprogram, this change is

reflected outside the subprogram as well.
22) You can have two variables of global scope of the same name.
23) Recursion is a programming technique in which a subprogram calls itself.
24) A recursive algorithm must have a base case.
25) Using recursion to solve a problem is not always the best option.

37.10 Review Exercises
Complete the following exercises.
1) Without using a trace table, can you find out what the next Java program

displays?
static void f1() {

int a = 22; }
static void f2() {

int a = 33; }

public static void main(String[] args) throws Exception {
int a;
a = 5;
f1(); f2();
System.out.println(a); }

2) Without using a trace table, can you find out what the next Java program
displays?
static int f1(int number1) {

return 2 * number1; }
static int f2(int number1, int number2) {

return f1(number1) + f1(number2); }
public static void main(String[] args) throws Exception {

int a, b;

a = 3;
b = 4;
System.out.println(f2(a, b)); }

3) Without using a trace table, can you find out what the next Java program
displays?

static int f1(int number1) {
return 2 * number1; }

static int f2(int number1, int number2) {

number1 = f1(number1); number2 = f1(number2);
return number1 + number2; }

public static void main(String[] args) throws Exception {
int a, b;
a = 2;

b = 5;
System.out.println(f2(a, b)); }

4) Without using a trace table, can you find out what the next Java program
displays?
static void display(String str) {

str = str.replace("a", "e"); System.out.print(str); }
static void display() {

System.out.print("hello"); }

public static void main(String[] args) throws Exception {
display("hello"); display(); display("hallo"); }

5) Without using a trace table, can you find out what the next Java program
displays?
static int a, b;
static void f1() {

a = a + b;

}
public static void main(String[] args) throws Exception {

a = 10;
b = 5;
f1(); b--;

System.out.println(a); }

6) Without using a trace table, can you find out what the next Java program
displays?
static int a, b;
static void f1() {

a = a + b;
f2(); }

static void f2() {

a = a + b;
}
public static void main(String[] args) throws Exception {

a = 3;
b = 4;

f1(); System.out.println(a + " " + b); }

7) Without using a trace table, can you find out what the next Java program
displays?
static int foo(int a[], int b) {

int c = 0; for (int x : a) {
if (x == b)

c++;

}
return c; }

public static void main(String[] args) throws Exception {
int[] a = {5, 9, 2, 5, 5}; System.out.println(foo(a, 5)); }

8) The following Java program is supposed to prompt the user to enter five
integers into an array and then display, for each element, its number of digits
and the integer itself. For example, if the user enters the values 35, 13565,
113, 278955, 9999, the program is supposed to display:
2 digits in number 35
5 digits in number 13565
3 digits in number 113
6 digits in number 278955
4 digits in number 9999
Unfortunately, the program displays

2 digits in number 0
5 digits in number 0
3 digits in number 0
6 digits in number 0
4 digits in number 0
Can you find out why?
static final int ELEMENTS = 5;
static int getNumOfDigits(int[] x, int index) {

int count = 0;

while (x[index] != 0) {
count++;
x[index] = (int)(x[index] / 10);

}
return count; }

public static void main(String[] args) throws Exception {
int[] val = new int[ELEMENTS]; int i;
for (i = 0; i <= ELEMENTS - 1; i++) {

val[i] = Integer.parseInt(cin.nextLine());
}
for (i = 0; i <= ELEMENTS - 1; i++) {

System.out.print(getNumOfDigits(val, i) + " digits in number " + val[i]);
}

}

9) For the following Java program, convert the parts marked with a dashed rectangle
into subprograms.
static final int STUDENTS = 10; static final int LESSONS = 5;
public static void main(String[] args) throws Exception {

int i, j, m, n; double temp; String tempStr;
String[] names = new String[STUDENTS]; int[][] grades = new int[STUDENTS][LESSONS];

for (i = 0; i <= STUDENTS - 1; i++) {
System.out.print("Enter name No" + (i + 1) + ": ");
names[i] = cin.nextLine();

for (j = 0; j <= LESSONS - 1; j++) {
System.out.print("Enter grade for lesson No" + (j + 1) + ": ");
grades[i][j] = Integer.parseInt(cin.nextLine());

}
}

double[] average = new double[STUDENTS]; for (i = 0; i <= STUDENTS - 1; i++) {
average[i] = 0;
for (j = 0; j <= LESSONS - 1; j++) {

average[i] += grades[i][j];
}
average[i] /= LESSONS;

}

for (m = 1; m <= STUDENTS - 1; m++) {
for (n = STUDENTS - 1; n >= m; n--) {

if (average[n] > average[n - 1]) {
temp = average[n];
average[n] = average[n - 1];
average[n - 1] = temp;

tempStr = names[n];
names[n] = names[n - 1];
names[n - 1] = tempStr;

}
else if (average[n] == average[n - 1]) {

if (names[n].compareTo(names[n - 1]) < 0) {
tempStr = names[n];
names[n] = names[n - 1];
names[n - 1] = tempStr;

}

}
}

}

for (i = 0; i <= STUDENTS - 1; i++) {
System.out.println(names[i] + "\t" + average[i]);

}
}

10) For the following Java program, convert the parts marked with a dashed rectangle
into subprograms.
public static void main(String[] args) throws Exception {

int i, middlePos, j; String message, messageClean, letter, leftLetter, rightLetter; boolean
palindrome;

System.out.print("Enter a message: "); message = cin.nextLine().toLowerCase();

messageClean = ""; for (i = 0; i <= message.length() - 1; i++) {

letter = "" + message.charAt(i);
if (!letter.equals(" ") && !letter.equals(",") &&

!letter.equals(".") && !letter.equals("?")) {
messageClean += letter;

}

}

middlePos = (int)((messageClean.length() - 1) / 2); j = messageClean.length() - 1;
palindrome = true; for (i = 0; i <= middlePos; i++) {

leftLetter = "" + messageClean.charAt(i);
rightLetter = "" + messageClean.charAt(j);

if (!leftLetter.equals(rightLetter)) {
palindrome = false;
break;

}
j--;

}

if (palindrome) {
System.out.println("The message is palindrome");

}
}

11) The next Java program finds the greatest value among four user-provided values.
Rewrite the program without using subprograms.
static int myMax(int n, int m) {

if (n > m) {
m = n;

}

return m; }
public static void main(String[] args) throws Exception {

int a, b, c, d, maximum;
a = Integer.parseInt(cin.nextLine()); b = Integer.parseInt(cin.nextLine()); c =
Integer.parseInt(cin.nextLine()); d = Integer.parseInt(cin.nextLine());

maximum = a; maximum = myMax(b, maximum); maximum = myMax(c, maximum); maximum = myMax(d,
maximum);
System.out.println(maximum); }

12) Write a void method that accepts three numbers through its formal argument list and
then returns their sum and their average.
Hint: Use an array within the formal argument list to “return” the required values.

13) Write a subprogram named myRound that accepts a real (a float) and an integer
through its formal argument list and then returns the real rounded to as many
decimal places as the integer indicates. Moreover, if no value is passed for the
integer, the subprogram must return the real rounded to two decimal places by
default. Try not to use the Math.round() method of Java.
Hint: Use overloading.

14) Do the following: i) Write a subprogram named getInput that prompts the user to enter
an answer “yes” or “no” and then returns the value true or false correspondingly to
the caller. Make the subprogram accept the answer in all possible forms such as
“yes”, “YES”, “Yes”, “No”, “NO”, “nO”, and so on.

ii) Write a subprogram named findArea that accepts the base and the height of a
parallelogram through its formal argument list and then returns its area.

iii) Using the subprograms cited above, write a Java program that prompts the user
to enter the base and the height of a parallelogram and then calculates and
displays its area. The program must iterate as many times as the user wishes. At
the end of each calculation, the program must ask the user whether they wish to
calculate the area of another parallelogram. If the answer is “yes” the program
must repeat.

15) Do the following: i) Write a subprogram named getArrays that prompts the user to
enter the grades and the names of 100 students into the arrays grades and names,
correspondingly. The two arrays must be returned to the caller.
ii) Write a subprogram named getAverage that accepts the array grades through its

formal argument list and returns the average grade.
iii) Write a subprogram named sortArrays that accepts the arrays grades and names

through its formal argument list and sorts the array grades in descending order
using the insertion sort algorithm. The subprogram must preserve the one-to-
one correspondence between the elements of the two arrays.

iv) Using the subprograms cited above, write a Java program that prompts the user
to enter the grades and the names of 100 students and then displays all student
names whose grade is less than the average grade, sorted by grade in
descending order.

16) In a song contest, there is an artist who is scored by 10 judges. However, according
to the rules of this contest, the total score is calculated after excluding the highest
and lowest scores. Do the following: i) Write a subprogram named getArray that
prompts the user to enter the scores of the 10 judges into an array and then returns
the array to the caller. Assume that each score is unique.
ii) Write a subprogram named findMinMax that accepts an array through its formal

argument list and then returns the maximum and the minimum value.
iii) Using the subprograms cited above, write a Java program that prompts the user

to enter the name of the artist and the score they get from each judge. The
program must then display the message “Artist NN got XX points” where NN
and XX must be replaced by actual values.

17) Do the following: i) Write a recursive method named sumRecursive that accepts an
integer through its formal argument list and then returns the sum of numbers from 1
to that integer.
ii) Using the subprogram cited above, write a Java program that lets the user enter

a positive integer, and then displays the sum of numbers from 1 to that user-
provided integer.

18) On a chessboard you must place grains of wheat on each square, such that one grain
is placed on the first square, two on the second, four on the third, and so on
(doubling the number of grains on each subsequent square). Do the following: i) Write
a recursive method named woc that accepts the index of a square and returns the
number of grains of wheat that are on this square. Since a chessboard contains 8 × 8
= 64 squares, assume that the index is an integer between 1 and 64.

ii) Using the subprogram cited above, write a Java program that calculates and
displays the total number of grains of wheat that are on the chessboard in the
end.

19) The Fibonacci sequence is a series of numbers in the following sequence: 0, 1, 1, 2,
3, 5, 8, 13, 21, 34, 55, …

By definition, the first two terms are 0 and 1 and each subsequent term is the
sum of the previous two.
Do the following: i) Write a recursive method named fib that accepts an integer
through its formal argument list and then returns the Nth term of the Fibonacci
series.

ii) Using the subprogram cited above, write a Java program that lets the user enter
a positive integer N and then displays the Nth term of the Fibonacci series.

20) The Tribonacci sequence is similar to the Fibonacci sequence but each term is the
sum of the three preceding terms. Write a recursive method named trib that accepts
an integer through its formal argument list and then returns the Nth term of the
Tribonacci series.

21) Write a recursive method named myPow that accepts a real and an integer and then
returns the result of the first number raised to the power of the second number,
without using the built-in Math.pow() method of Java. Ensure that the function
works correctly for both positive and negative exponent values.

22) Do the following: i) Write a recursive method named factorial that accepts an integer
through its formal argument list and then returns its factorial.
ii) Using the method cited above, write a recursive method named myCos that

calculates and returns the cosine of x using the Taylor series, shown next.

Hint: Keep in mind that x is in radians and .

iii) Using the method myCos() cited above, write a Java program that calculates and
displays the cosine of 45o.
Hint: To verify the result, note that the cosine of 45o is approximately
0.7071067811865475.

Chapter 38
More with Subprograms

38.1 Simple Exercises with Subprograms
Exercise 38.1-1 A Simple Currency Converter
Do the following: i) Write a subprogram named displayMenu that displays
the following menu.

1) Convert USD to Euro (EUR) 2) Convert Euro (EUR) to USD
3) Exit ii) Using the subprogram cited above, write a Java program that

displays the previously mentioned menu and prompts the user to
enter a choice (of 1, 2, or 3). If choice 1 or 2 is selected, the
program must prompt the user to enter an amount of money and
then it must calculate and display the corresponding converted
value. The process must repeat as many times as the user wishes.

It is given that $1 = 0.94 EUR (€).

Solution

According to the “Ultimate” rule, the while-loop of the main code must be
as follows, given in general form.
displayMenu(); choice = Integer.parseInt(cin.nextLine()); //Initialization of choice.
while (choice != 3) {

Prompt the user to enter an amount of money,
and then calculate and display the required
value.

displayMenu(); choice = Integer.parseInt(cin.nextLine()); //Update/alteration of
choice }

The solution is as follows.
 Project_38.1-1

static void displayMenu() {
System.out.println("1. Convert USD to Euro (EUR)"); System.out.println("2. Convert
Euro (EUR) to USD"); System.out.println("3. Exit"); System.out.println("----------

---------------"); System.out.print("Enter a choice: "); }
public static void main(String[] args) throws Exception {

int choice; double amount;
displayMenu(); choice = Integer.parseInt(cin.nextLine()); while (choice != 3) {

System.out.print("Enter an amount: ");
amount = Double.parseDouble(cin.nextLine());
if (choice == 1) {

System.out.println(amount + " USD = " + amount * 0.94 + " Euro");
}
else {

System.out.println(amount + " Euro = " + amount / 0.94 + " USD");
}

displayMenu();
choice = Integer.parseInt(cin.nextLine());

}
}

Exercise 38.1-2 Finding the Average Values of Positive Integers
Do the following: i) Write a subprogram named testInteger that accepts a
number through its formal argument list and returns true when the passed
number is an integer; it must return false otherwise.
ii) Using the subprogram cited above, write a Java program that lets the

user enter numeric values repeatedly until a real one is entered. In
the end, the program must display the average value of positive
integers entered.

Solution

To solve this exercise, a while statement will be used. According to the
“Ultimate” rule discussed in Section 29.3, the pre-test loop structure that
solves this problem should be as follows.
x = Double.parseDouble(cin.nextLine()); //Initialization of x while (testInteger(x))
{ //Boolean Expression dependent on x

A statement or block of statements

x = Double.parseDouble(cin.nextLine()); //Update/alteration of x }

The statement while (testInteger(x)) is equivalent to the statement while
(testInteger(x) == true).

The final solution is presented next.
 Project_38.1-2

static boolean testInteger(double number) {
boolean returnValue = false;
if (number == (int)(number)) {

returnValue = true;
}
return returnValue; }

public static void main(String[] args) throws Exception {
int count; double total, x;
total = 0;
count = 0;
x = Double.parseDouble(cin.nextLine()); //Initialization of x while

(testInteger(x)) { //Boolean Expression dependent on x
if (x > 0) {

total += x;
count++;

}
x = Double.parseDouble(cin.nextLine()); //Update/alteration of x

}
if (count > 0) {

System.out.println(total / count);
}

}

Note the last single-alternative decision structure, if (count > 0). It is
necessary in order for the program to satisfy the property of definiteness.
Think about it! If the user enters a real (float) right from the beginning, the
variable count, in the end, will contain a value of zero.

The following method can be used as an alternative to the previous
one. It directly returns the result (true or false) of the Boolean expression
number == (int)(number).
static boolean test_integer(double number) {

return number == (int)(number); }

Exercise 38.1-3 Finding the Sum of Odd Positive Integers
Do the following: i) Write a subprogram named testInteger that accepts a
number through its formal argument list and returns true when the passed
number is an integer; it must return false otherwise.
ii) Write a subprogram named testOdd that accepts a number through its

formal argument list and returns true when the passed number is odd;
it must return false otherwise.

iii) Write a subprogram named testPositive that accepts a number through
its formal argument list and returns true when the passed number is
positive; it must return false otherwise.

iv) Using the subprograms cited above, write a Java program that lets
the user enter numeric values repeatedly until a negative one is
entered. In the end, the program must display the sum of odd positive
integers entered.

Solution

This exercise is pretty much the same as the previous one. Each
subprogram returns one value (which can be true or false). The solution
is presented here.

 Project_38.1-3
static boolean testInteger(double number) {

return number == (int)(number); }
static boolean testOdd(double number) {

return number % 2 != 0; }
static boolean testPositive(double number) {

return number > 0; }

public static void main(String[] args) throws Exception {
int total; double x;
total = 0;
x = Double.parseDouble(cin.nextLine()); while (testPositive(x)) {

if (testInteger(x) && testOdd(x)) {
total += (int)x;

}
x = Double.parseDouble(cin.nextLine());

}
System.out.println(total); }

The statement if (testInteger(x) && testOdd(x)) is equivalent to the
statement if (testInteger(x) == true && testOdd(x) == true)

Exercise 38.1-4 Finding the Values of y
Write a Java program that finds and displays the value of y (if possible) in
the following formula.

For each part of the formula, write a subprogram that accepts x through
its formal argument list and then calculates and displays the result. The
subprogram must display an error message when the calculation is not
possible.

Solution

Each subprogram must calculate and display the result of the
corresponding formula or display an error message when the calculation is
not possible. As these two subprograms return no result, they can both be
written as void methods. The solution is shown here.

 Project_38.1-4
static void formula1(double x) {

double y;
if (x == 5) { //No need to check for $x == 0 when $x >= 1

System.out.println("Error! Division by zero");
}
else {

y = 3 * x / (x - 5) + (7 - x) / (2 * x);
System.out.println(y);

}
}
static void formula2(double x) {

double y;

if (x == -2) {
System.out.println("Error! Division by zero");

}
else {

y = (45 - x) / (x + 2) + 3 * x;

System.out.println(y);
}

}
public static void main(String[] args) throws Exception {

double x;

System.out.print("Enter a value for x: "); x = Double.parseDouble(cin.nextLine());
if (x >= 1) {

formula1(x);
}
else {

formula2(x);

}
}

38.2 Exercises of a General Nature with Subprograms
Exercise 38.2-1 Validating Data Input Using a Subprogram
Do the following: i) Write a subprogram named getAge that prompts the
user to enter their age and returns it. Using a loop control structure, the
subprogram must also validate data input and display an error message
when the user enters any non-positive values.
ii) Write a subprogram named findMax that accepts an array through its

formal argument list and returns the index position of the maximum
value of the array.

iii) Using the subprograms cited above, write a Java program that
prompts the user to enter the first names, last names, and ages of 50
people into three arrays and then displays the name of the oldest
person.

Solution

Since the subprogram getAge() returns one value, it can be written as a
method. The same applies to subprogram findMax() because it also returns
one value. The main code must prompt the user to enter the first names,
the last names, and the ages of 50 people into arrays firstNames,
lastNames, and ages respectively. Then, with the help of method
findMax(), it can find the index position of the maximum value of array
ages. The solution is shown here.

 Project_38.2-1
static final int PEOPLE = 50;

static int getAge() {
int age;
System.out.print("Enter an age: "); age = Integer.parseInt(cin.nextLine()); while
(age <= 0) {

System.out.print("Error: Invalid age\nEnter a positive number: ");

age = Integer.parseInt(cin.nextLine());
}
return age; }

static int findMax(int[] a) {
int i, maximum, maxI;
maximum = a[0];

maxI = 0;
for (i = 1; i <= PEOPLE - 1; i++) {

if (a[i] > maximum) {

maximum = a[i];
maxI = i;

}

}
return maxI; }

public static void main(String[] args) throws Exception {
int i, indexOfMax;
String[] firstNames = new String[PEOPLE]; String[] lastNames = new String[PEOPLE];

int[] ages = new int[PEOPLE]; for (i = 0; i <= PEOPLE - 1; i++) {
System.out.print("Enter first name of person No " + (i + 1) + ": ");
firstNames[i] = cin.nextLine();
System.out.print("Enter last name of person No " + (i + 1) + ": ");
lastNames[i] = cin.nextLine();
ages[i] = getAge();

}
indexOfMax = findMax(ages);
System.out.println("The oldest person is:");
System.out.println(firstNames[indexOfMax] + lastNames[indexOfMax]);
System.out.println("They are " + ages[indexOfMax] + " years old!"); }

Exercise 38.2-2 Sorting an Array Using a Subprogram
Do the following: i) Write a subprogram named mySwap that accepts an
array of strings through its formal argument list, as well as two indexes.
The subprogram then swaps the values of the elements at the
corresponding index positions.
ii) Using the subprogram mySwap() cited above, write a subprogram named

mySort that accepts an array of string through its formal argument list
and then sorts the array using the bubble sort algorithm. It must be
able to sort in either ascending or descending order. To do this,
include an addition Boolean argument within the formal argument
list.

iii) Write a subprogram named displayArray that accepts an array through
its formal argument list and then displays it.

iv) Using the subprograms mySort() and displayArray() cited above, write a
Java program that prompts the user to enter the names of 20 people
and then displays them twice: once sorted in ascending order, and
once in descending order.

Solution

As you can see in the Java program below, the void method mySort() uses
an adapted version of the bubble sort algorithm. When the value true is
passed to the argument ascending, the algorithm sorts array a in ascending
order. When the value false is passed, the algorithm sorts array a in
descending order.
Moreover, the void method mySort() calls the void method mySwap()
every time a swap is required between the contents of two elements.

 Project_38.2-2
static final int PEOPLE = 20;

static void mySwap(String[] a, int index1, int index2) {
String temp;
temp = a[index1]; a[index1] = a[index2]; a[index2] = temp; }

static void mySort(String[] a, boolean ascending) {
int m, n;

for (m = 1; m <= PEOPLE - 1; m++) {
for (n = PEOPLE - 1; n >= m; n--) {

if (ascending) {
if (a[n].compareTo(a[n - 1]) < 0) {

mySwap(a, n, n - 1);
}

}
else {

if (a[n].compareTo(a[n - 1]) > 0) {
mySwap(a, n, n - 1);

}

}
}

}
}
static void displayArray(String[] a) {

int i;
for (i = 0; i <= PEOPLE - 1; i++) {

System.out.println(a[i]);
}

}
public static void main(String[] args) throws Exception {

int i;
String[] names = new String[PEOPLE]; for (i = 0; i <= PEOPLE - 1; i++) {

System.out.print("Enter a name: ");
names[i] = cin.nextLine();

}

mySort(names, true); //Sort names in ascending order displayArray(names); //and
display them
mySort(names, false); //Sort names in descending order displayArray(names); //and

display them.
}

In Java, arrays are passed by reference. This is why there is no need to
include a return statement in the subprograms mySwap() and mySort().

Exercise 38.2-3 Progressive Rates and Electricity Consumption
The LAV Electricity Company charges subscribers for their electricity
consumption according to the following table (monthly rates for domestic
accounts).

Kilowatt‐hours (kWh) USD per kWh

kWh ≤ 400 $0.08

401 ≤ kWh ≤ 1500 $0.22

1501 ≤ kWh ≤ 2000 $0.35

2001 ≤ kWh $0.50

Do the following: i) Write a subprogram named getConsumption that prompts
the user to enter the total number of kWh consumed and then returns it.
Using a loop control structure, the subprogram must also validate data
input and display an error message when the user enters any negative
values.
ii) Write a subprogram named findAmount that accepts consumed kWh

through its formal argument list and then returns the total amount to
pay (according to the table above).

iii) Using the subprograms cited above, write a Java program that
prompts the user to enter the total number of kWh consumed and then
displays the total amount to pay. The program must iterate as many
times as the user wishes. At the end of each calculation, the program
must ask the user if they wish to calculate the total amount to pay for
another consumer. If the answer is “yes” the program must repeat; it
must end otherwise. Make your program accept the answer in all
possible forms such as “yes”, “YES”, “Yes”, or even “YeS”.

Please note that the rates are progressive and that transmission services
and distribution charges, as well as federal, state, and local taxes, add a
total of 26% to each bill.

Solution

There is nothing new here. Processing progressive rates is something that
you have already learned! If this doesn't ring any bells, you need to refresh
your memory and review the corresponding Exercise 23.4-5.
The Java program is as follows.

 Project_38.2-3
static int getConsumption() {

int consumption ;
System.out.print("Enter kWh consumed: "); consumption =
Integer.parseInt(cin.nextLine()); while (consumption < 0) {

System.out.println("Error: Invalid number!");
System.out.print("Enter a non-negative number: ");

consumption = Integer.parseInt(cin.nextLine());
}
return consumption; }

static double findAmount(int kwh) {
double amount;
if (kwh <= 400) {

amount = kwh * 0.08;
}
else if (kwh <= 1500) {

amount = 400 * 0.08 + (kwh - 400) * 0.22;
}

else if (kwh <= 2000) {
amount = 400 * 0.08 + 1100 * 0.22 + (kwh - 1500) * 0.35;

}
else {

amount = 400 * 0.08 + 1100 * 0.22 + 500 * 0.35 + (kwh - 2000) * 0.50;

}
amount += 0.26 * amount; return amount; }

public static void main(String[] args) throws Exception {
int kwh; String answer;
do {

kwh = getConsumption();

System.out.println("You need to pay: " + findAmount(kwh));
System.out.print("Would you like to repeat? ");
answer = cin.nextLine();

} while (answer.toUpperCase().equals("YES")); }

Exercise 38.2-4 Roll, Roll, Roll the… Dice!
Do the following: i) Write a subprogram named dice that returns a random
integer between 1 and 6.
ii) Write a subprogram named searchAndCount that accepts an integer and

an array of integers through its formal argument list and returns the
number of times the integer exists in the array.

iii) Using the subprograms cited above, write a Java program that fills
an array with 100 random integers (between 1 and 6) and then lets
the user enter an integer. The program must display how many times
that user-provided integer exists in the array.

Solution

Both subprograms can be written as methods because they both return one
value each. Method dice() returns a random integer between 1 and 6, and
method searchAndCount() returns a number that indicates the number of
times an integer exists in an array. The solution is presented here.

 Project_38.2-4
static final int ELEMENTS = 100;

static int dice() {
return 1 + (int)(Math.random() * 5); }

static int searchAndCount(int x, int[] a) {
int count = 0; int i;
for (i = 0; i <= ELEMENTS - 1; i++) {

if (a[i] == x) {
count++;

}
}
return count; }

public static void main(String[] args) throws Exception {

int x, i;
int[] a = new int[ELEMENTS]; for (i = 0; i <= ELEMENTS - 1; i++) {

a[i] = dice();
}
x = Integer.parseInt(cin.nextLine()); System.out.println("Provided value exists in

the array " + searchAndCount(x, a) + " times"); }

Exercise 38.2-5 How Many Times Does Each Number of the Dice
Appear?

Using the methods dice() and searchAndCount() cited in the previous exercise
(Exercise 38.2-4), write a Java program that fills an array with 100
random integers (between 1 and 6) and then displays how many times
each of the six numbers appears in the array, as well as which number
appears most often.

Solution

If you were to solve this exercise without using a loop control structure,
you would proceed as follows.
//Assign to n1 the number of times that value 1 exists in array a n1 =
searchAndCount(1, a); //Assign to n2 the number of times that value 2 exists in array
a n2 = searchAndCount(2, a); .

.

.
//Assign to n6 the number of times that value 6 exists in array a n6 =
searchAndCount(6, a);
//Display how many times each of the six numbers appears in array a

System.out.println(n1 + " " + n2 + " " + n3 + " " + n4 + " " + n5 + " " + n6);
//Find maximum of n1, n2,… n6
maximum = n1;
maxI = 1;
if (n2 > maximum) {

maximum = n2;

maxI = 2;
}
if (n3 > maximum) {

maximum = n3;
maxI = 3;

}
.
.
.
if (n6 > maximum) {

maximum = n6;
maxI = 6;

}
//Display which number appears in the array most often.
System.out.println(maxI);

But now that you are reaching the end of this book, of course, you can do
something more creative. Instead of assigning each result of the
searchAndCount() method to individual variables n1, n2, n3, n4, n5, and

n6, you can assign those results to the positions 0, 1, 2, 3, 4, and 5 of an
array named n, as shown here.
int[] n = new int[6]; for (i = 0; i <= 5; i++) {

n[i] = searchAndCount(i + 1, a); }

After that, you can find the maximum of the array n using what you
learned in Section 34.3.
The complete solution is shown here.

 Project_38.2-5
static final int ELEMENTS = 100;
static int dice() {

return 1 + (int)(Math.random() * 5); }
static int searchAndCount(int x, int[] a) {

int count = 0; int i;
for (i = 0; i <= ELEMENTS - 1; i++) {

if (a[i] == x) {
count++;

}
}

return count; }
public static void main(String[] args) throws Exception {

int i, maximum, maxI;
//Create array a of random integers between 1 and 6
int[] a = new int[ELEMENTS]; for (i = 0; i <= ELEMENTS - 1; i++) {

a[i] = dice();
}
//Create array n and display how many times each of the six numbers appears in
array a int[] n = new int[6]; for (i = 0; i <= 5; i++) {

n[i] = searchAndCount(i + 1, a);

System.out.println("Value " + (i + 1) + " appears " + n[i] + " times");
}
//Find maximum of array n maximum = n[0];
maxI = 0;
for (i = 1; i <= 5; i++) {

if (n[i] > maximum) {

maximum = n[i];
maxI = i;

}
}
//Display which number appears in the array most often.

System.out.println("Value " + (maxI + 1) + " appears in the array " + maximum + "
times."); }

38.3 Review Exercises
Complete the following exercises.
1) Do the following: i) Write a subprogram named displayMenu that

displays the following menu.
1) Convert USD to Euro (EUR) 2) Convert USD to British Pound

Sterling (GBP) 3) Convert USD to Japanese Yen (JPY) 4) Convert
USD to Canadian Dollar (CAD) 5) Exit ii) Write four different
subprograms named USD_to_EU, USD_to_GBP, USD_to_JPY,
and USD_to_CAD, that accept a currency through their formal
argument list and then return the corresponding converted
value.

iii) Using the subprograms cited above, write a Java program that
displays the previously mentioned menu and then prompts the
user to enter a choice (of 1, 2, 3, 4, or 5). If choice 1, 2, 3, or 4 is
selected, the program must prompt the user to enter an amount of
money and then it must calculate and display the corresponding
converted value. The process must repeat as many times as the
user wishes.
It is given that: ► $1 = 0.94 EUR (€) ► $1 = 0.81 GBP (£)
► $1 = ¥ 149.11 JPY
► $1 = 1.36 CAD ($) 2) Do the following: i) Write a

subprogram named displayMenu that displays the following
menu.

1) Convert USD to Euro (EUR) 2) Convert USD to British Pound
Sterling (GBP) 3) Convert EUR to USD

4) Convert EUR to GBP
5) Convert GBP to USD
6) Convert GBP to EUR
7) Exit ii) Write two different subprograms named USD_to_EUR, and

USD_to_GBP, that accept a currency through their formal
argument list and then return the corresponding converted
value.

iii) Using the subprograms cited above, write a Java program that
displays the previously mentioned menu and then prompts the

user to enter a choice (of 1 to 7) and an amount. The program
must then display the required value. The process must repeat as
many times as the user wishes. It is given that ► $1 = 0.94 EUR
(€) ► $1 = 0.81 GBP (£) 3) Do the following: i) Write a subprogram
named factorial that accepts an integer through its formal
argument list and returns its factorial.

ii) Using the subprogram factorial() cited above, write a
subprogram named mySin that accepts a value through its formal
argument list and returns the sine of x, using the Taylor series
(shown next) with an accuracy of 0.0000000001.

Hint: Keep in mind that x is in radians, and .

iii) Write a subprogram named degreesToRad that accepts an angle in
degrees through its formal argument list and returns its radian
equivalent. It is given that 2π = 360ο.

iv) Using the subprograms mySin() and degreesToRad() cited
above, write a Java program that displays the sine of all integers
from 0o to 360o.

4) Do the following: i) Write a subprogram named isLeap that accepts a
year through its formal argument list and returns true or false
depending on whether or not that year is a leap year.
ii) Write a subprogram named numOfDays that accepts a month and a

year and returns the number of the days in that month. If that
month is February and the year is a leap year, the subprogram
must return the value of 29.
Hint: Use the subprogram isLeap() cited above.

iii) Write a subprogram named checkDate that accepts a day, a
month, and a year and returns true or false depending on
whether or not that date is valid.

iv) Using the subprograms cited above, write a Java program that
prompts the user to enter a date (a day, a month, and a year) and
then calculates and displays the number of days that have passed

between the beginning of the user-provided year and the user-
provided date. Using a loop control structure, the program must
also validate data input and display an error message when the
user enters any non-valid date.

5) In a computer game, players roll two dice. The player who gets the
greatest sum of dice gets one point. After ten rolls, the player that
wins is the one with the greatest sum of points. Do the following:

i) Write a subprogram named dice that returns a random integer between
1 and 6.
ii) Using the subprogram cited above, write a Java program that

prompts two players to enter their names. Then, each player
consecutively “rolls” two dice ten times. The player that wins is
the one with the greatest sum of points.

6) The LAV Car Rental Company has rented 40 cars, which are divided
into three categories: hybrid, gas, and diesel. The company charges
for a car according to the following table.

Days
Car Type

Gas Diesel Hybrid

1 ‐ 5 $24 per day $28 per day $30 per day

6 ‐ 8 $22 per day $25 per day $28 per day

9 and above $18 per day $21 per day $23 per day

Do the following: i) Write a subprogram named getChoice that
displays the following menu.

1) Gas 2) Diesel 3) Hybrid The subprogram then prompts the user to
enter the type of the car (1, 2, or 3) and returns it to the
caller.

ii) Write a subprogram named getDays that prompts
the user to enter the total number of rental days
and returns it to the caller.

iii) Write a subprogram named getCharge that accepts
the type of the car (1, 2, or 3) and the total number
of rental days through its formal argument list and

then returns the amount of money to pay
according to the previous table. Federal, state, and
local taxes add a total of 10% to each bill.

iv) Using the subprograms cited above, write a Java
program that prompts the user to enter all
necessary information about the rented cars and
then displays the following: a) for each car, the total
amount to pay including taxes b) the total number of
hybrid cars rented c) the total net profit the company
gets after removing taxes Please note that the rates
are progressive.

7) TAM (Television Audience Measurement)
is the specialized branch of media research
dedicated to quantify and qualify television
audience information.
The LAV Television Audience
Measurement Company counts the number
of viewers of the main news program on
each of 10 different TV channels. The
company needs a software application in
order to get some useful information. Do the
following: i) Write a subprogram named
getData that prompts the user to enter into
two arrays the names of the channels and
the number of viewers of the main news
program for each day of the week (Monday
to Sunday). It then returns these arrays to
the caller.

ii) Write a subprogram getAverage that accepts a
one-dimensional array through its formal
argument list and returns the average value of the
first five elements.

iii) Using the subprograms cited above, write a Java
program that prompts the user to enter the names
of the channels and the number of viewers for
each day of the week and then displays the

following: a) the name of the channels whose
average viewer numbers on the weekend were at
least 20% higher than the average viewer numbers
during the rest of the week.
b) the name of the channels (if any) that, from

day to day, showed constantly increasing
viewer numbers. If there is no such channel, a
corresponding message must be displayed.

8) A public opinion polling company asks 300 citizens
whether they have been hospitalized during the Covid-
19 lockdown period. Do the following: i) Write a
subprogram named inputData that prompts the user to
enter the citizen's SSN (Social Security Number) and
their answer (Yes, No) into two arrays, SSNs and
answers, respectively. The two arrays must be returned
to the caller.
ii) Write a subprogram named sortArrays that

accepts the arrays SSNs and answers through its
formal argument list. It then sorts array SSNs in
ascending order using the selection sort algorithm.
The subprogram must preserve the one-to-one
correspondence between the elements of the two
arrays.

iii) Write a subprogram named searchArray that
accepts array SSNs and an SSN through its formal
argument list and then returns the index position
of that SSN in the array. If the SSN is not found, a
message “SSN not found” must be displayed and
the value −1 must be returned. Use the binary
search algorithm.

iv) Write a subprogram named countAnswers that
accepts the array answers and an answer through
its formal argument list. It then returns the number
of times this answer exists in the array.

v) Using the subprograms cited above, write a Java
program that prompts the user to enter the SSNs

and the answers of the citizens. It must then
prompt the user to enter an SSN and display the
answer that the citizen with this SSN gave, as well
as the percentage of citizens that gave the same
answer in relation to the total number of citizens.
The program must then ask the user if they wish to
search for another SSN. If the answer is “Yes” the
process must repeat; it must end otherwise.

9) Eight teams participate in a football tournament, and
each team plays 12 games, one game each week. Do
the following: i) Write a subprogram named inputData
that prompts the user to enter the name of each team
and the letter “W” for win, “L” for loss, or “T” for tie
(draw) for each game into two arrays, names and
results, respectively. It then returns the arrays to the
caller.
ii) Write a subprogram named displayResult that

accepts arrays names and results through its
formal argument list. It then prompts the user for a
letter (W, L, or T) and displays, for each team, the
week number(s) in which the team won, lost, or
tied respectively. For example, if the user enters
“L”, the subprogram must search and display, for
each team, the week numbers (e.g., week 3, week
14, and so on) in which the team lost the game.

iii) Write a subprogram named findTeam that accepts
array names through its formal argument list. It
then prompts the user to enter the name of a team
and returns the index position of that team in the
array. If the user-provided team name does not
exist, the value −1 must be returned.

iv) Using the subprograms cited above, write a Java
program that prompts the user to enter the name of
each team and the letter “W” for win, “L” for loss,
or “T” for tie (draw) for each game. It must then
prompt the user for a letter (W, L, or T) and

display, for each team, the week number(s) in
which the team won, lost, or tied respectively.
Finally, the program must prompt the user to enter
the name of a team. If the user-provided team is
found, the program must display the total number
of points for this team and then prompt the user to
enter the name of another team. This process must
repeat as long as the user enters an existing team
name. If user-provided team name is not found,
the message “Team not found” must be displayed
and the program must end.

It is given that a win receives 3 points and a tie
receives 1 point.

10) Do the following: i) Write a subprogram named
hasDuplicateDigits that accepts an integer and
returns true when any of its digits appears more than
once; it must return false otherwise.

Hint: Declare an array of 10 elements to keep
track of the occurrences of each digit. The array
must be initialized to all zeros.

ii) Using the subprogram cited above, write a Java
program that prompts the user to enter an integer
and displays a message indicating whether or not,
any of its digits appears more than once.
Moreover, using a loop control structure, the
program must validate data input and display an
error message when the user enters any value less
than 11.

Review in “Subprograms”

Review Crossword Puzzle
1) Solve the following crossword puzzle.

Across
1) A method may contain an argument list called a ________
argument list.
4) Generally speaking, this subprogram returns a result.
7) In this kind of programming, a problem is subdivided into
smaller subproblems.
10) A sequence of numbers where the first two numbers are 0 and
1, and each subsequent number is the sum of the previous two.
11) In this kind of programming, subprograms of common
functionality are grouped together into separate modules.
12) Send a value to a method.
13) Arrays in Java are passed by __________.

Down

2) A programming technique in which a subprogram calls itself.
3) A block of statements packaged as a unit that performs a
specific task.
5) Generally speaking, this subprogram returns no result.
6) When a subprogram is called, the passed argument list is called
an _______ argument list.
8) It refers to the range of effect of a variable.
9) The principle which states that most systems work best if they
are kept simple, avoiding any unnecessary complexity!

Review Questions
Answer the following questions.
1) What is a subprogram? Name some built-in subprograms of Java.
2) What is procedural programming?
3) What are the advantages of procedural programming?
4) What is modular programming? Name one module of Java you know.
5) What is the general form of a Java method?
6) How do you make a call to a method?
7) Describe the steps that are performed when the main code makes a call

to a method.
8) What is a void method?
9) What is the general form of a Java void method?

10) How do you make a call to a void method?
11) Describe the steps that are performed when the main code makes a call

to a void method.
12) What is the difference between a method and a void method?
13) What is the formal argument list?
14) What is the actual argument list?
15) Can two subprograms use variables of the same name?
16) How long does a subprogram's variable “live” in main memory?
17) How long does a main code's variable “live” in main memory?

18) Can a subprogram call another subprogram? If yes, give some
examples.

19) What does it mean to “pass an argument by value”?
20) What does it mean to “pass an argument by reference”?
21) What is an optional argument?
22) What is meant by the term “scope” of a variable?
23) What happens when a variable has a local scope?
24) What happens when a variable has a global scope?
25) What is the difference between a local and a global variable?
26) What is recursion?
27) What are the three rules that all recursive algorithms must follow?

Part VIII
Object-Oriented Programming

Chapter 39
Introduction to Object-Oriented Programming

39.1 What is Object-Oriented Programming?
In Part VII all the programs that you read or even wrote, were using
subprograms (methods and void methods). This programming style is
called procedural programming and most of the time it is just fine! But
when it comes to writing large programs, or working in a big company such
as Microsoft, Facebook, or Google, object-oriented programming is a must
use programming style!
Object-oriented programming, usually referred to as OOP, is a style of
programming that focuses on objects. In OOP, data and functionality are
combined and encapsulated inside something called an object. Applying
object-oriented programming principles enables you to maintain your code
more easily, and write code that can be easily understood and used by
others.
What does the statement “OOP focuses on objects” truly mean? Let's
consider an example from the real world. Imagine a car. How would you
describe a particular car? It has specific attributes, such as the brand, the
model, the color, and the license plate. Additionally, there are specific
actions this car can perform, or have performed on it. For instance,
someone can turn it on or off, accelerate or apply the brakes, or park.
In OOP, this car can be represented as an object with specific attributes
(commonly referred to as fields) that can perform specific actions (referred
to as methods).
Obviously, you may now be asking yourself, “How can I create objects in
the first place?” The answer is simple! All you need is a class. A class
resembles a "rubber inkpad stamp”! In Figure 39-1 there is a stamp (this is
the class) with four empty fields and three actions (methods).

Figure 39-1 A class resembles a “rubber inkpad stamp”

Someone who uses this stamp can stamp-out many cars (these are the
objects). In Figure 39-2, for example, a little boy stamped-out those two
cars and then he colored them and filled out each car's fields with specific
attributes.

Figure 39-2 You can use the same rubber stamp as a template to stamp-out many cars
The process of creating a new object (a new instance of a class) is called

“instantiation”.
A class is a template and every object is created from a class. Each class

should be designed to carry out one, and only one, task! This is why, most of
the time, more than one class is used to build an entire application!

In OOP, the rubber stamp is the class. You can use the same class as a
template to create (instantiate) many objects!

39.2 Classes and Objects in Java
Now that you have a grasp of the theoretical concepts behind classes and
objects, let's dive into writing a real class in Java! The following code
fragment creates the class Car. There are four fields and three methods
within the class.
class Car {

//Define four fields (attributes) public String brand = ""; public String model =
""; public String color = ""; public String licensePlate = "";
//Define method turnOn() public void turnOn() {

System.out.println("The car turns on");

}
//Define method turnOff() public void turnOff() {

System.out.println("The car turns off");
}
//Define method accelerate() public void accelerate() {

System.out.println("The car accelerates");
}

}

And here's an interesting tidbit: Fields and methods within classes are
essentially just ordinary variables and subprograms respectively!

The class Car is just a template. No objects are created yet!
The keyword public in front of a field or method specifies that this field

or method can be accessed from outside the class using an instance of the
class.

The name of a class should follow the Upper Camel Case convention as
well as all the rules for naming variables presented in Section 5.4.

To create two objects (or in other words to create two instances of the class
Car), you need the following two lines of code.
Car car1 = new Car(); Car car2 = new Car();

An object is nothing more than an instance of a class, and this is why,
many times, it may be called a “class instance” or “class object”.

When you create a new object (a new instance of a class) the process is
called “instantiation”.

Now that you have created (instantiated) two objects, you can assign values
to their fields. To do so, use the dot notation. This means you need to write
the name of the object, followed by a dot and then the name of the field or
method you want to access. The following code fragment creates two
objects, car1 and car2, and assigns values to their fields.
public static void main(String[] args) throws Exception {

Car car1 = new Car(); Car car2 = new Car();
car1.brand = "Mazda"; car1.model = "6"; car1.color = "Gray"; car1.licensePlate =
"AB1234";

car2.brand = "Ford"; car2.model = "Focus"; car2.color = "Blue"; car2.licensePlate =
"XY9876";
System.out.println(car1.brand); //It displays: Mazda
System.out.println(car2.brand); //It displays: Ford }

In the previous example, car1 and car2 are two instances of the same
class. Using car1 and car2 with dot notation allows you to refer to only one

instance at a time. If you make any changes to one instance they will not
affect the other instance!

The next code fragment calls the methods turnOff() and accelerate() of
the objects car1 and car2 respectively.
car1.turnOff(); car2.accelerate();

A class is a template that cannot be executed, whereas an object is an
instance of a class that can be executed!

One class can be used to create (instantiate) as many objects as you
want!

39.3 The Constructor and the Keyword this
In Java, there is a method that has a special role and is called constructor.
The constructor method is executed automatically whenever an instance of
a class (an object) is created. Any initialization that you want to do with
your object can be done within this method. In Java, the constructor is a
method whose name is the same as the name of its class.
Take a look at the following example. The constructor method Person() is
called twice automatically, once when the object p1 is created and once
when the object p2 is created, which means that the message “An object
was created” is displayed twice.

 Project_39.3a
class Person {

//Define the constructor public Person() {
System.out.println("An object was created");

}
}

public class App {
public static void main(String[] args) throws

Exception {
Person p1 = new Person();
Person p2 = new Person();

}
}

Note that there is no keyword void in front of the name of the constructor.

In object-oriented programming (OOP) with Java, there is a keyword
named this, which serves as a reference variable pointing to the current
object. Take a look at the following example.

 Project_39.3b
class Person {

public String name; public int age;
//Define the constructor public Person() {
System.out.println("An object was created");

}
public void sayInfo() {

System.out.println("I am " + this.name);
System.out.println("I am " + this.age + " years

old");
}

}
public class App {

public static void main(String[] args) throws
Exception {

Person person1 = new Person();
//Assign values to its fields

person1.name = "John";
person1.age = 14;

person1.sayInfo(); //Call the method sayInfo() of
the object person1

}
}

Note that when declaring the fields name and age outside of a method (but
within the class), you need to write the field name without dot notation. To
access the fields, however, from within a method, you should use dot
notation (for example, this.name and this.age) .

A question that is probably spinning around in your head right now is “Why
is it necessary to refer to these fields name and age within the method
sayInfo() as this.name and this.age? Is it really necessary to use the

keyword this in front of them?” A simple answer is that there is always a
possibility that you could have two extra local variables of the same name
(name and age) within the method. So you need a way to distinguish among
those local variables and the object's fields. If you are confused, try to
understand the following example. There is a field b within the class
MyClass and a local variable b within the method myMethod() of the class.
The this keyword is used to differentiate between the local variable and
the field.

 Project_39.3c
class FooClass {

public String b; //This is a field
public void myMethod() {

String b = " *** "; //This is a local variable
System.out.println(b + this.b + b);

}
}

public class App {
public static void main(String[] args) throws

Exception {
MyClass x = new FooClass(); //Create object x
x.b = "Hello!"; //Assign a value to its field
x.myMethod(); //It displays: *** Hello! ***

}
}

The keyword this can be used to refer to any member (field or method)
of a class from within a method of the class.

39.4 Passing Initial Values to the Constructor
Any method, even the constructor, method can have formal arguments
within its formal argument list. For example, in the constructor method you
can use arguments to pass some initial values to the object during creation.
The example that follows creates four objects, each of which represents a
Titan[24] from Greek mythology.

 Project_39.4
class Titan {

public String name; public String gender;
//Define the constructor public Titan(String n, String g) {

this.name = n;

this.gender = g;
}

}
public class App {

public static void main(String[] args) throws Exception {

Titan titan1 = new Titan("Cronus", "male");
Titan titan2 = new Titan("Oceanus", "male");
Titan titan3 = new Titan("Rhea", "female");
Titan titan4 = new Titan("Phoebe", "female");

}
}

In Java, it is legal to have one field and one local variable (or even a formal
argument) with the same name. So, the class Titan can also be written as
follows

class Titan {
public String name; public String gender;
//Define the constructor public Titan(String name, String gender) {

this.name = name; //Fields and arguments can have the same name
this.gender = gender;

}
}
The variables name and gender are arguments used to pass values to the
constructor whereas this.name and this.gender are fields used to store
values within the object.

Exercise 39.4-1 Historical Events
Do the following: i) Write a class named HistoryEvents which includes a) a
public string field named day.

b) a public string array field named events of size 2.
c) a constructor that accepts an initial value for the field day through

its formal argument list.
ii) Write a Java program that creates two objects of the class HistoryEvents

for the following historical events: 4th of July i) 1776: Declaration of
Independence in United States ii) 1810: French troops occupy Amsterdam
28th of October i) 969: Byzantine troops occupy Antioch ii) 1940: Ohi Day
in Greece and then displays all available information.

Solution

The solution is as follows.
 Project_39.4-1

class HistoryEvents {

public String day; public String[] events = new String[2];
//Define the constructor public HistoryEvents (String day) {

this.day = day;
}

}

public class App {
public static void main(String[] args) throws Exception {

HistoryEvents h1 = new HistoryEvents("4th of July");
h1.events[0] = "1776: Declaration of Independence in United States";
h1.events[1] = "1810: French troops occupy Amsterdam";
HistoryEvents h2 = new HistoryEvents("28th of October");

h2.events[0] = "969: Byzantine troops occupy Antioch";
h2.events[1] = "1940: Ohi Day in Greece";
System.out.println(h1.day);
System.out.println(h1.events[0]);
System.out.println(h1.events[1]);

System.out.println();
System.out.println(h2.day);
System.out.println(h2.events[0]);
System.out.println(h2.events[1]);

}

}

39.5 Getter and Setter Methods
A field is a variable declared directly in a class. The principles of the
object-oriented programming, though, state that the data of a class
should be hidden and safe from accidental alteration. Think that one
day you will probably be writing classes that other programmers will
use in their programs. So, you don't want them to know what is inside
your classes! The internal operation of your classes should be kept
hidden from the outside world. By not exposing a field, you manage
to hide the internal implementation of your class. Fields should be
kept private to a class and accessed through get and set methods.

Generally speaking, programmers should use fields only for data
that have private or protected accessibility. In Java you can set a

field (or a method) as private or protected using the special keywords
private or protected correspondingly.

Let's try to understand all of this new stuff through an example.
Suppose you write the following class that converts a degrees
Fahrenheit temperature into its degrees Celsius equivalent.

 Project_39.5a
class FahrenheitToCelsius {
public double temperature;

//Define the constructor public
FahrenheitToCelsius(double value) {
this.temperature = value; //Field is

initialized
}

//This method gets the temperature public double
getTemperature() {

return 5.0 / 9.0 * (this.temperature - 32.0);
}

}
public class App {

public static void main(String[] args) throws
Exception {

FahrenheitToCelsius x = new
FahrenheitToCelsius(-68); //Create object x
System.out.println(x.getTemperature());

}
}

This class is almost perfect but has a main disadvantage. It doesn't
take into consideration that a temperature cannot go below −459.67
degrees Fahrenheit (−273.15 degrees Celsius). This temperature is
called absolute zero. So a novice programmer who uses your class
and knows absolutely nothing about physics, might pass a value of
−500 degrees Fahrenheit to the constructor, as shown in the code
fragment that follows

FahrenheitToCelsius x = new FahrenheitToCelsius(-500);
System.out.println(x.getTemperature());

Even though the program can run perfectly well and display a value of
−295.55 degrees Celsius, unfortunately this temperature cannot exist in the
entire universe! So a slightly different version of this class might partially
solve the problem.

 Project_39.5b
class FahrenheitToCelsius {
public double temperature;

//Define the constructor public
FahrenheitToCelsius(double value) throws Exception {

this.setTemperature(value); //Use a method to set
the value of the field temperature

}
//This method gets the temperature public double

getTemperature() {
return 5.0 / 9.0 * (this.temperature - 32.0);

}
//This method sets the temperature public void
setTemperature(double value) throws Exception {

if (value >= -459.67) {
this.temperature = value;

}
else {

throw new Exception("There is no temperature
below -459.67");

}
}

}
public class App {

public static void main(String[] args) throws
Exception {

FahrenheitToCelsius x = new
FahrenheitToCelsius(-500); //Create object x

System.out.println(x.getTemperature());
}

}

The throw statement forces the program to throw an exception (a runtime
error) causing the flow of execution to stop.

This time, a method named setTemperature() is used to set the value of
the field temperature. This is better, but not exactly perfect, because the
programmer must be careful and always remember to use this method each
time they wish to change the value of the field temperature. The problem
is that the value of the field temperature can still be directly changed using
its name, as shown in the code fragment that follows.
FahrenheitToCelsius x = new FahrenheitToCelsius(-50); //Create object x
System.out.println(x.getTemperature());
x.setTemperature(-65); //This is okay!

System.out.println(x.getTemperature());
x.temperature = -500; //Unfortunately, this is still permitted!
System.out.println(x.getTemperature());

This problem can be completely solved if you declare the field
temperature as private! When a field is declared as private, the caller (here
the object x) cannot get direct access to the field, as shown in the Java
program that follows.

 Project_39.5c
class FahrenheitToCelsius {

private double _temperature; //Declare field
temperature as private

//Define the constructor public
FahrenheitToCelsius(double value) throws Exception {

this.setTemperature(value); //Call the setter
}

//This method gets the temperature public double
getTemperature() {

return 5.0 / 9.0 * (this._temperature - 32.0);
}

//This method sets the temperature public void
setTemperature(double value) throws Exception {

if (value >= -459.67) {
this._temperature = value;

}
else {

throw new Exception("There is no temperature
below -459.67");

}
}

}
public class App {

public static void main(String[] args) throws
Exception {

FahrenheitToCelsius x = new
FahrenheitToCelsius(-50); //Create object x. This

calls the
//constructor which,

//in turn, calls the setter.
System.out.println(x.getTemperature()); //This

calls the getter.
x.setTemperature(-65); //This calls the setter.
System.out.println(x.getTemperature()); //This

calls the getter.
x._temperature = -50; //This is NOT permitted!

System.out.println(x._temperature); //This is NOT
permitted as well!

}
}

Many programmers prefer to have private fields prefixed with an
underscore (_).

Exercise 39.5-1 The Roman Numerals
Roman numerals are shown in the following table.

Number Roman Numeral

1 I

2 II

3 III

4 IV

5 V

Do the following: ii) Write a class named Romans which includes a) a
private integer field named _number.

b) a getter and a setter method named getNumber and setNumber
correspondingly. They will be used to get and set the value of the
field _number in integer format. The setter method must throw an
error when the number is not recognized.

c) a getter and a setter method named getRoman and setRoman
correspondingly. They will be used to get and set the value of the
field _number in Roman numeral format. The setter method must
throw an error when the Roman numeral is not recognized.

iii) Using the class cited above, write a Java program that displays the
Roman numeral that corresponds to the value of 3 as well as the
number that corresponds to the Roman numeral value of “V”.

Solution

The getter and setter methods of the field _number in integer format are
very simple so there is nothing special to explain. The getter and setter
methods of the field _number in Roman numeral format, however, need
some explanation.
The getter method of the field _number in Roman numeral format can be
written as follows

//Define the getter public String getRoman() {
String retValue = "";
if (this._number == 1)
retValue = "I";
else if (this._number == 2)
retValue = "II";
else if (this._number == 3)
retValue = "III";
else if (this._number == 4)
retValue = "IV";
else if (this._number == 5)
retValue = "V";
return retValue; }

However, since you now know many about hashmaps, you can use a better
approach, as shown in the code fragment that follows.
//Define the getter public String getRoman() {

HashMap<Integer, String> number2roman = new HashMap<>(
Map.of(1, "I", 2, "II", 3, "III", 4, "IV", 5, "V")

);
return number2roman.get(this._number); }

Accordingly, the setter method can be as follows
//Define the setter public void setRoman(String key) throws Exception {

HashMap<String, Integer> roman2number = new HashMap<>(
Map.of("I", 1, "II", 2, "III", 3, "IV", 4, "V", 5)

);
if (roman2number.containsKey(key)) {

this._number = roman2number.get(key);
}
else {

throw new Exception("Roman numeral not recognized");
}

}

The Java built-in method struct.containsKey(key_name) returns true when
the hashmap struct contains the specified key key_name within its keys
collection.

The statement if (roman2number.containsKey(key)) is equivalent to the
statement if (roman2number .containsKey(key) == true).

The final Java program is as follows Project_39.5-1
class Romans {

private int _number;
//Define the getter public int getNumber() {

return this._number;
}
//Define the setter public void setNumber(int value) throws Exception {

if (value >= 1 && value <= 5) {
this._number = value;

}

else {
throw new Exception("Number not recognized");

}
}

//Define the getter public String getRoman() {
HashMap<Integer, String> number2roman = new HashMap<>(

Map.of(1, "I", 2, "II", 3, "III", 4, "IV", 5, "V")

);
return number2roman.get(this._number);

}
//Define the setter public void setRoman(String key) throws Exception {

HashMap<String, Integer> roman2number = new HashMap<>(

Map.of("I", 1, "II", 2, "III", 3, "IV", 4, "V", 5)
);
if (roman2number.containsKey(key)) {

this._number = roman2number.get(key);
}
else {

throw new Exception("Roman numeral not recognized");
}

}
}
public class App {

public static void main(String[] args) throws Exception {
Romans x = new Romans();
x.setNumber(3);
System.out.println(x.getNumber()); //It displays: 3
System.out.println(x.getRoman()); //It displays: III

x.setRoman("V");
System.out.println(x.getNumber()); //It displays: 5
System.out.println(x.getRoman()); //It displays: V

}
}

39.6 Can a Method Call Another Method of the Same Class?
In Section 37.2 you learned that a subprogram can call another subprogram.
Obviously, the same applies when it comes to class methods—a method
can call another method of the same class! Methods are nothing more than
subprograms after all! So, if you want a method to call another method of
the same class you should use the keyword this in front of the method that
you want to call (using dot notation) as shown in the example that follows.

 Project_39.6
class JustAClass {

public void foo1() {
System.out.println("foo1 was called");
this.foo2(); //Call foo2() using dot notation

}
public void foo2() {

System.out.println("foo2 was called");

}
}
public class App {

public static void main(String[] args) throws Exception {
JustAClass x = new JustAClass();

x.foo1(); //Call foo1() which, in turn, will call foo2()
}

}

Exercise 39.6-1 Doing Math
Do the following: i) Write a class named DoingMath which includes a) a
private void method named square that accepts a number through its formal
argument list and then calculates its square and displays the message “The
square of XX is YY”, where XX and YY must be replaced by actual values.

b) a private void method named squareRoot that accepts a number
through its formal argument list and then calculates its square
root and displays the message “The square root of XX is YY”
where XX and YY must be replaced by actual values. However, if
the number is less than zero, the method must display an error
message.

c) a public void method named displayResults that accepts a number
through its formal argument list and then calls the methods square()
and squareRoot() to display the results.

ii) Using the class cited above, write a Java program that prompts the
user to enter a number. The program must then display the root and
the square root of that number.

Solution

This exercise is quite simple. The methods square(), squareRoot(), and
displayResults() must have a formal argument within their formal
argument list so as to accept a passed value. The solution is as follows.

 Project_39.6-1
class DoingMath {

private void square(double x) { //Argument x accepts passed value
System.out.println("The square of " + x + " is " + (x * x));
}

private void squareRoot(double x) { //Argument x accepts passed value
if (x < 0) {

System.out.println("Cannot calculate square root");

}
else {

System.out.println("Square root of " + x + " is " + Math.sqrt(x));
}

}

public void displayResults(double x) { //Argument x accepts passed value
this.square(x);

this.squareRoot(x);
}

}
public class App {

static Scanner cin = new Scanner(System.in);
public static void main(String[] args) throws Exception {

double b;
DoingMath dm = new DoingMath();
System.out.print("Enter a number: ");

b = Double.parseDouble(cin.nextLine());
dm.displayResults(b);

}
}

39.7 Class Inheritance
Class inheritance is one of the main concepts of OOP. It lets you write a
class using another class as a base. When a class is based on another class,
the programmers use to say “it inherits the other class”. The class that is
inherited is called the parent class, the base class, or the superclass. The
class that does the inheriting is called the child class, the derived class, or
the subclass.
A child class automatically inherits all the methods and fields of the parent
class. The best part, however, is that you can add additional characteristics
(methods or fields) to the child class. Therefore, you use inheritance when
you have to write several classes that share many common characteristics
but aren't entirely identical. To do this, you work as follows. First, you
write a parent class containing all the common characteristics. Next, you
write child classes that inherit all those common characteristics from the
parent class. Finally, you add any additional and unique characteristics,
specific to each child class. Just as with humans, it's these additional and
unique characteristics that set a child apart from its parent, right?

Let's say that you want to write a program that keeps track of the teachers
and students in a school. They have some characteristics in common, such
as name and age, but they also have specific characteristics such as salary
for teachers and final grade for students that are not in common. What you
can do here is write a parent class named SchoolMember that contains all
those characteristics that both teachers and students have in common. Then
you can write two child classes named Teacher and Student, one for
teachers and one for students. Both child classes can inherit the class
SchoolMember but additional fields, named salary and finalGrade, must
be added to the child classes Teacher and Student correspondingly.
The parent class SchoolMember is shown here

class SchoolMember {
public String name; public int age;
//Define the constructor public SchoolMember(String name, int age) {

this.name = name;
this.age = age;
System.out.println("A school member was initialized");

}
}
If you want a class to inherit the class SchoolMember, it must be defined as
follows

class Name extends SchoolMember {

Define additional fields for this class

//Define the constructor public Name(String name, int age [, …]) {
super(name, age); //Call the constructor of the class
SchoolMember

Additional statement or block of statements

}

Define additional methods and/or properties
for this class

}
where Name is the name of the child class.
So, the class Teacher can be as follows

class Teacher extends SchoolMember {
public double salary; //This is an additional field for this class
//Define the constructor public Teacher(String name, int age, double
salary) {

super(name, age); //Call the constructor of the class
SchoolMember
this.salary = salary;
System.out.println("A teacher was initialized");

}
//This is an additional method for this class public void displayValues()
{

System.out.println("Name: " + this.name);
System.out.println("Age: " + this.age);
System.out.println("Salary: " + this.salary);

}
}

The statement super(name, age) calls the constructor of the class SchoolMember
and initializes the fields name and age of the class Teacher.

Similarly, the class Student can be as follows
class Student extends SchoolMember {

public String finalGrade; //This is an additional field for this class
//Define the constructor public Student(String name, int age, String
finalGrade) {

super(name, age); //Call the constructor of the class
SchoolMember
this.finalGrade = finalGrade;
System.out.println("A student was initialized");

}
//This is an additional method for this class public void displayValues()
{

System.out.println("Name: " + this.name);
System.out.println("Age: " + this.age);
System.out.println("Final grade: " + this.finalGrade);

}
}

The statement super(name, age) calls the constructor of the class SchoolMember
and initializes the fields name and age of the class Student.

The complete Java program is as follows.
 Project_39.7

//Define the class SchoolMember.

class SchoolMember {
public String name; public int age;
//Define the constructor public SchoolMember(String name, int age) {

this.name = name;
this.age = age;

System.out.println("A school member was initialized");
}

}
//Define the class Teacher. It inherits the class SchoolMember.
class Teacher extends SchoolMember {

public double salary; //This is an additional field for class Teacher

//Define the constructor public Teacher(String name, int age, double salary) {
super(name, age); //Call the constructor of the class SchoolMember
this.salary = salary;
System.out.println("A teacher was initialized");

}

//This is an additional method for this class public void displayValues() {
System.out.println("Name: " + this.name);
System.out.println("Age: " + this.age);
System.out.println("Salary: " + this.salary);

}

}
//Define the class Student. It inherits the class SchoolMember.
class Student extends SchoolMember {

public String finalGrade; //This is an additional field for this class
//Define the constructor public Student(String name, int age, String finalGrade) {

super(name, age); //Call the constructor of the class SchoolMember

this.finalGrade = finalGrade;
System.out.println("A student was initialized");

}
//This is an additional method for this class public void displayValues() {

System.out.println("Name: " + this.name);

System.out.println("Age: " + this.age);
System.out.println("Salary: " + this.finalGrade);

}
}
public class App {

public static void main(String[] args) throws Exception {
Teacher teacher1 = new Teacher("Mr. John Scott", 43, 35000);
Teacher teacher2 = new Teacher("Mrs. Ann Carter", 5, 32000);

Student student1 = new Student("Mark Nelson", 14, "A");
Student student2 = new Student("Mary Morgan", 13, "B");
teacher1.displayValues();
teacher2.displayValues();
student1.displayValues();

student2.displayValues();
}

}

39.8 Review Questions: True/False
Choose true or false for each of the following statements.
1) Procedural programming is better than object-oriented programming

when it comes to writing large programs.
2) Object-oriented programming focuses on objects.
3) An object combines data and functionality.
4) Object-oriented programming enables you to maintain your code more

easily but your code cannot be used easily by others.
5) You can create an object without using a class.
6) The process of creating a new instance of a class is called

“installation”.
7) In OOP, you always have to create at least two instances of the same

class.
8) The constructor method is executed when an object is instantiated.
9) When you create two instances of the same class, the constructor

method of the class will be executed twice.
10) The keyword private in front of a field specifies that this field can be

accessed from outside the class.
11) The keyword public in front of a method specifies that this method

can be called from outside the class.
12) The principles of the object-oriented programming state that the data

of a class should be hidden and safe from accidental alteration.
13) Getter and setter methods provide a flexible mechanism to read, write,

or compute the value of a field.

14) Getter and setter methods expose the internal implementation of a
class.

15) Class inheritance is one of the main concepts of OOP.
16) When a class is inherited, it is called the “derived class”.
17) A parent class automatically inherits all the methods and fields of the

child class.

39.9 Review Exercises
Complete the following exercises.
1) Do the following i) Write a class named Geometry that includes a) a public

method named rectangleArea that accepts the base and the height of a
rectangle through its formal argument list and then calculates and
returns its area.

b) a public method named triangleArea that accepts the base
and the height of a triangle through its formal argument list
and then calculates and returns its area. It is given that

ii) Using the class cited above, write a Java program
that prompts the user to enter the side of a square,
the base and the height of a rectangle, and the base
and the height of a triangle, and then displays the
area for each one of them.

2) Do the following i) Write a class named Pet which
includes a) a public string field named kind b) a public
integer field named legsNumber c) a public void method
named startRunning that displays the message “Pet is
running”

d) a public void method named stopRunning that
displays the message “Pet stopped”

ii) Write a Java program that creates two instances of
the class Pet (for example, a dog and a monkey)
and then calls some of their methods.

3) Do the following i) In the class Pet of the previous
exercise a) alter the fields kind and legsNumber to private
fields _kind and _legsNumber correspondingly.

b) add a getter and a setter method named
getKind and setKind correspondingly. They
will be used to get and set the value of the
field _kind. The setter method must throw an
error when the field is set to an empty value.

c) add a getter and a setter method named
getLegsNumber and setLegsNumber
correspondingly. They will be used to get and
set the value of the field _legsNumber. The
setter method must throw an error when the
field is set to a negative value.

d) add a constructor to accept initial values for
the private fields _kind and _legsNumber
through its formal argument list.

ii) Write a Java program that creates one instance of
the class Pets (for example, a dog) and then calls
both of its methods. Then try to set erroneous
values for fields kind and legsNumber and see what
happens.

4) Do the following i) Write a class named Box that includes
a) three private float (real) fields named _width, _length,

and _height.
b) a constructor that accepts initial values for the

three fields _width, _length, and _height
through its formal argument list.

c) a public void method named displayVolume
that calculates and displays the volume of a
box whose dimensions are _width, _length,
and _height. It is given that volume = width ×
length × height d) a public void method named
displayDimensions that displays box's
dimensions.

ii) Using the class cited above, write a Java program
that prompts the user to enter the dimensions of 30
boxes, and then displays their dimensions and their
volume.
Hint: Create an array of 30 objects of the class Box.

5) In the class Box of the previous exercise add three getter
and three setter methods named getWidth, getLength,
getHeight, and setWidth, setLength, setHeight
correspondingly. They will be used to get and set the
values of the fields _width, _length, and _height. The
setter methods must throw an error when the
corresponding field is set to a negative value or zero.

6) Do the following i) Write a class named Cube that includes
a) a private float (real) field named _edge.

b) a constructor that accepts an initial value for
the field _edge through its formal argument
list.

c) a public void method named displayVolume
that calculates and displays the volume of a
cube whose edge length is _edge. It is given
that volume = edge3

d) a public void method named
displayOneSurface that
calculates and displays the
surface area of one side of a
cube whose edge length is
_edge.

e) a public void method named
displayTotalSurface that
calculates and displays the total
surface area of a cube whose
edge length is _edge. It is given
that total surface = 6 × edge2

ii) Using the class cited
above, write a Java

program that prompts
the user to enter the
edge length of a
cube, and then
displays its volume,
the surface area of
one of its sides, and
its total surface area.

7) In the class Cube of the
previous exercise add a
getter and a setter method
named getEdge and
setEdge
correspondingly. They
will be used to get and
set the value of the field
_edge. The setter method
must throw an error when
the field is set to a
negative value or zero.

8) Do the following i) Write a
class named Circle that
includes a) a private float
(real) field named
_radius with an initial
value of −1.

b) a getter and a
setter method
named
getRadius and
setRadius
correspondingly.
They will be
used to get and
set the value of
the field
_radius. The

getter method
must throw an
error when the
field has not yet
been set, and the
setter method
must throw an
error when the
field is set to a
negative value or
zero.

c) a public method
named
getDiameter that
calculates and
returns the
diameter of a
circle whose
radius is
_radius. It is
given that
diameter = 2 ×
radius d) a public
method named
getArea that
calculates and
returns the area
of a circle whose
radius is
_radius. It is
given that area
= 3.14 × radius2

e) a
p
u
bl
ic

m
et
h
o
d
n
a
m
e
d
g
e
t
P
e
r
i
m
e
t
e
r
th
at
c
al
c
ul
at
es
a
n
d
re
tu
rn
s

th
e
p
er
i
m
et
er
of
a
ci
rc
le
w
h
o
se
ra
di
u
s
is
_
r
a
d
i
u
s.
It
is
gi
v
e
n
th
at

p
er
i
m
et
er
=
2
×
3.
1
4
×
r
a
di
u
s
i
i
)
W
ri
te
a
s
u
b
pr
o
gr
a
m
n
a
m
e

d
d
i
s
p
l
a
y
M
e
n
u
th
at
di
s
pl
a
y
s
th
e
fo
ll
o
w
in
g
m
e
n
u.

1) E
nt
er
ra
di

u
s

2) D
is
pl
a
y
ra
di
u
s

3) D
is
pl
a
y
di
a
m
et
er

4) D
is
pl
a
y
ar
e
a

5) D
is
pl
a
y
p
er
i

m
et
er

6) E
xi
t
i
i
i
)
U
si
n
g
th
e
cl
as
s
a
n
d
th
e
s
u
b
pr
o
gr
a
m
ci
te
d
a
b

o
v
e,
w
ri
te
a
Ja
v
a
pr
o
gr
a
m
th
at
di
s
pl
a
y
s
th
e
pr
e
vi
o
u
sl
y
m
e
nt
io
n

e
d
m
e
n
u
a
n
d
pr
o
m
pt
s
th
e
u
se
r
to
e
nt
er
a
c
h
oi
c
e
(o
f
1
to
6)
.
If
c

h
oi
c
e
1
is
se
le
ct
e
d,
th
e
pr
o
gr
a
m
m
u
st
pr
o
m
pt
th
e
u
se
r
to
e
nt
er
a
ra
di

u
s.
If
c
h
oi
c
e
2
is
se
le
ct
e
d,
th
e
pr
o
gr
a
m
m
u
st
di
s
pl
a
y
th
e
ra
di
u
s
e

nt
er
e
d
in
c
h
oi
c
e
1.
If
c
h
oi
c
es
3,
4,
or
5
ar
e
se
le
ct
e
d,
th
e
pr
o
gr
a
m
m
u

st
di
s
pl
a
y
th
e
di
a
m
et
er
,
th
e
ar
e
a,
or
th
e
p
er
i
m
et
er
c
or
re
s
p
o
n
di
n

gl
y
of
a
ci
rc
le
w
h
o
se
ra
di
u
s
is
e
q
u
al
to
th
e
ra
di
u
s
e
nt
er
e
d
in
c
h
oi
c

e
1.
T
h
e
pr
o
c
es
s
m
u
st
re
p
e
at
as
m
a
n
y
ti
m
es
as
th
e
u
se
r
w
is
h
es
.

9) Assume
that you
work in a
computer
software
company
that is
going to
create a
word
processor
applicatio
n. You are
assigned
to write a
class that
will be
used to
provide
informatio
n to the
user.
i) Write a

class
named
Info
that
includ
es a) a
privat
e
string
field
named
_user
Text.

b) a
g
et
te
r
a
n
d
a
se
tt
er
m
et
h
o
d
n
a
m
e
d
g
e
t
U
s
e
r
T
e
x
t
a
n
d
s

e
t
U
s
e
r
T
e
x
t
c
or
re
s
p
o
n
di
n
gl
y.
T
h
e
y
w
ill
b
e
u
se
d
to
g
et
a
n

d
se
t
th
e
v
al
u
e
of
th
e
fi
el
d
_
u
s
e
r
T
e
x
t.
T
h
e
se
tt
er
m
et
h
o
d
m
u

st
th
ro
w
a
n
er
ro
r
w
h
e
n
th
e
fi
el
d
is
se
t
to
a
n
e
m
pt
y
v
al
u
e.

c) a
p
u
bl
ic

m
et
h
o
d
n
a
m
e
d
g
e
t
S
p
a
c
e
s
C
o
u
n
t
th
at
re
tu
rn
s
th
e
to
ta
l
n
u

m
b
er
of
s
p
a
c
es
th
at
fi
el
d
_
u
s
e
r
T
e
x
t
c
o
nt
ai
n
s.

d) a
p
u
bl
ic
m
et
h

o
d
n
a
m
e
d
g
e
t
W
o
r
d
s
C
o
u
n
t
th
at
re
tu
rn
s
th
e
to
ta
l
n
u
m
b
er
of

w
or
d
s
th
at
fi
el
d
_
u
s
e
r
T
e
x
t
c
o
nt
ai
n
s.

e) a
p
u
bl
ic
m
et
h
o
d
n
a
m

e
d
g
e
t
V
o
w
e
l
s
C
o
u
n
t
th
at
re
tu
rn
s
th
e
to
ta
l
n
u
m
b
er
of
v
o
w
el

s
th
at
fi
el
d
_
u
s
e
r
T
e
x
t
c
o
nt
ai
n
s.

f) a
p
u
bl
ic
m
et
h
o
d
n
a
m
e
d
g

e
t
L
e
t
t
e
r
s
C
o
u
n
t
th
at
re
tu
rn
s
th
e
to
ta
l
n
u
m
b
er
of
c
h
ar
a
ct
er

s
(e
x
cl
u
di
n
g
s
p
a
c
es
)
th
at
fi
el
d
_
u
s
e
r
T
e
x
t
c
o
nt
ai
n
s.

ii) Using
the
class

cited
above,
write
a
testing
progra
m that
promp
ts the
user
to
enter
a text
and
then
displa
ys all
availa
ble
infor
matio
n.
Assu
me
that
the
user
enters
only
space
charac
ters or
letters
(upper
case
or
lower

case)
and
the
words
are
separa
ted by
a
single
space
charac
ter.

Hint: In a
text of
three
words,
there are
two
spaces,
which
means that
the total
number of
words is
one more
than the
total
number of
spaces.
Count the
total
number of
spaces,
and then
you can
easily find
the total

number of
words!

10) During the
Cold War
after
World War
II,
messages
were
encrypted
so that if
the
enemies
intercepte
d them,
they could
not
decrypt
them
without
the
decryption
key. A
very
simple
encryption
algorithm
is
alphabetic
rotation.
The
algorithm
moves all
letters N
steps "up"
in the
alphabet,

where N is
the
encryption
key. For
example,
if the
encryption
key is 2,
you can
encrypt a
message
by
replacing
the letter
A with the
letter C,
the letter
B with the
letter D,
the letter
C with the
letter E,
and so on.
Do the
following:

i) Write a
class
named
EncryptDe
crypt that
includes a) a
private
integer
field
named
_encrDecr
Key with

an initial
value of
−1.

b) a
g
et
te
r
a
n
d
a
se
tt
er
m
et
h
o
d
n
a
m
e
d
g
e
t
E
n
c
r
D
e
c
r
K

e
y
a
n
d
s
e
t
E
n
c
r
D
e
c
r
K
e
y
c
or
re
s
p
o
n
di
n
gl
y.
T
h
e
y
w
ill
b

e
u
se
d
to
g
et
a
n
d
se
t
th
e
v
al
u
e
of
th
e
fi
el
d
_
e
n
c
r
D
e
c
r
K
e
y.
T

h
e
g
et
te
r
m
et
h
o
d
m
u
st
th
ro
w
a
n
er
ro
r
w
h
e
n
th
e
fi
el
d
h
as
n
ot
y
et

b
e
e
n
se
t,
a
n
d
th
e
se
tt
er
m
et
h
o
d
m
u
st
th
ro
w
a
n
er
ro
r
w
h
e
n
th
e
fi

el
d
is
n
ot
se
t
to
a
v
al
u
e
b
et
w
e
e
n
1
a
n
d
2
6.

c) a
p
u
bl
ic
m
et
h
o
d
n
a

m
e
d
e
n
c
r
y
p
t
th
at
a
c
c
e
pt
s
a
m
es
sa
g
e
th
ro
u
g
h
it
s
fo
r
m
al
ar
g

u
m
e
nt
li
st
a
n
d
th
e
n
re
tu
rn
s
th
e
e
n
cr
y
pt
e
d
m
es
sa
g
e.

d) a
p
u
bl
ic
m
et

h
o
d
n
a
m
e
d
d
e
c
r
y
p
t
th
at
a
c
c
e
pt
s
a
n
e
n
cr
y
pt
e
d
m
es
sa
g
e

th
ro
u
g
h
it
s
fo
r
m
al
ar
g
u
m
e
nt
li
st
a
n
d
th
e
n
re
tu
rn
s
th
e
d
e
cr
y
pt
e

d
m
es
sa
g
e.

ii) Write
a
subpr
ogram
named
displ
ayMen
u that
displa
ys the
follow
ing
menu:

1) Enter
encry
ption/
decry
ption
key

2) Encry
pt a
messa
ge

3) Decry
pt a
messa
ge

4) Exit
iii) Using

the
class

and
the
subpr
ogram
cited
above,
write
a Java
progra
m that
displa
ys the
menu
previo
usly
menti
oned
and
then
promp
ts the
user
to
enter
a
choice
(of 1
to 4).
If
choice
1 is
select
ed, the
progra
m
must
promp

t the
user
to
enter
an
encry
ption/
decry
ption
key. If
choice
2 is
select
ed, the
progra
m
must
promp
t the
user
to
enter
a
messa
ge and
then
displa
y the
encry
pted
messa
ge. If
choice
3 is
select
ed, the
progra

m
must
promp
t the
user
to
enter
an
encry
pted
messa
ge and
then
displa
y the
decry
pted
messa
ge.
The
proces
s must
repeat
as
many
times
as the
user
wishe
s.
Assu
me
that
the
user
enters
only

lower
case
letters
or a
space
for the
messa
ge.

11) Do the
following:

i) Write a
parent
class
named
Vehicle
that
includes a) a
public
integer
field
named
numberOfW
heels, a
public
string field
named
color and
three
public
float (real)
fields
named
length,
width, and
height.

b) a
c

o
n
st
ru
ct
or
th
at
a
c
c
e
pt
s
in
iti
al
v
al
u
es
fo
r
th
e
fi
el
d
s
n
u
m
b
e
r
O
f

W
h
e
e
l
s,
c
o
l
o
r,
l
e
n
g
t
h,
w
i
d
t
h,
a
n
d
h
e
i
g
h
t
th
ro
u
g
h
it

s
fo
r
m
al
ar
g
u
m
e
nt
li
st
.

c) tw
o
p
u
bl
ic
v
oi
d
m
et
h
o
d
s
n
a
m
e
d
s
t
a

r
t
E
n
g
i
n
e
a
n
d
s
t
o
p
E
n
g
i
n
e
th
at
di
s
pl
a
y
th
e
m
es
sa
g
es
“
T

h
e
e
n
gi
n
e
st
ar
te
d
”
a
n
d
“
T
h
e
e
n
gi
n
e
st
o
p
p
e
d
”,
c
or
re
s
p
o

n
di
n
gl
y.

ii) Write
a
child
class
named
Car
that
inherit
s the
class
Vehic
le.
Additi
onally,
it
includ
es a) a
constr
uctor
with
an
additi
onal
public
intege
r field
named
bootC
apaci
ty and
an
initial

value
of
zero.
b) a

p
u
bl
ic
v
oi
d
m
et
h
o
d
n
a
m
e
d
t
u
r
n
W
i
n
d
s
h
i
e
l
d
W
i

p
e
r
s
O
n
th
at
di
s
pl
a
y
s
th
e
m
es
sa
g
e
“
T
h
e
w
in
d
s
hi
el
d
w
ip
er
s
h

a
v
e
b
e
e
n
tu
rn
e
d
o
n!
”.

iii) Write
a
child
class
named
Motor
cycle
that
inherit
s the
class
Vehic
le.
Additi
onally,
it
must
includ
e a) a
constr
uctor
with
an

additi
onal
public
Boole
an
field
named
hasLu
ggage
and an
initial
value
of
false.
b) a

p
u
bl
ic
v
oi
d
m
et
h
o
d
n
a
m
e
d
d
o
A
W
h

e
e
l
i
e
th
at
di
s
pl
a
y
s
th
e
m
es
sa
g
e
“I
a
m
d
oi
n
g
a
w
h
e
el
ie
!!
!”

iv) Using
the

classe
s cited
above,
write
a Java
progra
m that
create
s two
instan
ces of
the
class
Car
and
one
instan
ce of
the
class
Motor
cycle,
assign
s
some
values
to
their
fields,
and
then
calls
all of
their
metho
ds.

12) Alter the
Java
program
of Section
39.7 –
Class
Inheritanc
e
(Project_
39.7) as
follows: i) In
the class
SchoolMem
ber, alter
the fields
name and
age to
private
fields
_name and
_age
correspon
dingly,
and add
getter and
setter
methods
for both of
them. The
setter
method of
the field
_name
must
throw an
error when
it is set to

an empty
value,
whereas
the setter
method of
the field
_age must
throw an
error when
it is set to
a negative
value or
zero.
ii) In the

class
Teach
er,
alter
the
field
salar
y to
privat
e field
_sala
ry,
and
add
getter
and
setter
metho
ds for
it. The
setter
metho
d

must
throw
an
error
when
the
field
is set
to a
negati
ve
value.

iii) In the
class
Stude
nt,
alter
the
field
final
Grade
to
privat
e field
_fina
lGrad
e, and
add
getter
and
setter
metho
ds for
it. The
setter
metho
d

must
throw
an
error
when
the
field
is set
to a
value
other
than
A, B,
C, D,
E, or
F.

Review in “Object-Oriented Programming”

Review Crossword Puzzle
1) Solve the following crossword puzzle.

Across
1) Class __________ lets you write a class using another class as
a base.
4) The actions that an object performs.

6) This method is executed automatically whenever an object is
created.
8) An object's attribute.
9) Object-___________ programming is a style of programming
that focuses on objects.

Down
2) The process of creating a new object.
3) Every object is created from a ________.
5) In ______ you can combine data and functionality and enclose
them inside something called an object.
7) A class instance.

Review Questions
Answer the following questions.
1) What is object-oriented programming?
2) What is the constructor of a class?
3) When do you have to write a field name using dot notation?
4) What is the this keyword?
5) Why a field should not be exposed in OOP?
6) What are the getter and setter methods?
7) What is meant by the term “class inheritance”?

Part IX
Files

Chapter 40
Introduction to Files

40.1 Introduction
All programs you have seen so far can be described as “temporary”. Even
though they read some input data and display some output results, all of the
values are stored in variables, arrays, and other data structures that exist in
the main memory (RAM) of your computer; therefore, these values are all
lost when the program finishes executing. Even if this doesn't happen, they
are certainly lost when you shut down your computer. There are many cases,
however, where you need to keep those values in more permanent storage
devices, such as a Hard Disk Drive (HDD) or a Solid State Drive (SSD).
Java can read input data stored in a computer file or write output results in
the same or a different file. This reading/writing process is called File I/O
(File Input/Output) and can be implemented with some of Java's ready-to-
use methods.
Usually, the type of file being used is a text file. A text file contains a
sequence of characters and is stored in a permanent storage device (HDD,
SSD etc.).

Another type of file being used in computer programming is a “binary
file”; however, this type is beyond the scope of this book and will be no
further analyzed.

In the following sections, you will learn how to open and close a text file,
how to read values from or write values in a text file, and even how to search
a value within it.

40.2 Opening a File
The Scanner and FileWriter are two classes that can be used for reading
data from and writing data in a text file correspondingly. The FileWriter
class can also be used to append data to a text file.
To use a file for reading, the first thing you need to do is open the file. In
Java, this is accomplished using the following statements given in general
form

Scanner descriptor; descriptor = new Scanner(Paths.get(filename));

or the more concise statement
Scanner descriptor = new Scanner(Paths.get(filename));

where
► descriptor is the name of a file object and can be used to read from a file.
► filename is a string that contains the folder (directory) and the name of

the file stored in the hard disk (or any other storage device, such as
SSD, Flash USB disk etc.). If the file filename does not exist, Java throws
a runtime error.

When you open a file for reading, the file pointer is positioned at the
beginning of the file (position 0).

To some extent, the file pointer can be likened to the index of an array.
You will learn more about the file pointer in Section 40.5.

Correspondingly, to use a file for writing, the first thing you need to do is
open the file using the following statements given in general form

FileWriter descriptor; descriptor = new FileWriter(filename);
or the more concise statement

FileWriter descriptor = new FileWriter(filename);
If the file filename already exists, Java overwrites it; otherwise, Java creates a
new file.
Similarly, to use a file for appending, you need to open the file using the
following statements given in general form

FileWriter descriptor; descriptor = new FileWriter(filename, true);
or the more concise statement

FileWriter descriptor = new FileWriter(filename, true);
In this case, if the file filename does not exist, Java creates a new file.

When you open a file for appending, the file pointer is positioned at the
end of the file.

Let's see some examples.
Example 1

The following statement
Scanner f = new Scanner(Paths.get("names.txt"));

opens the text file “names.txt” for reading. The file “names.txt” must exist in
the same folder (directory) where the executable file (.class) has been saved.
If the file does not exist, Java throws a runtime error.

Example 2
The statement

FileWriter fgrades = new FileWriter("c:/temp/grades.txt");
creates the text file “grades.txt” in the folder (directory) “c:/temp” and opens
it for writing. If the file already exists, Java overwrites it.

Note that the path definition of a file uses the slash (/) and not the
backslash (\) character.

Example 3
The statement

FileWriter fgrades = new FileWriter("c:/temp/students/grades.txt", true);
opens the text file “grades.txt” for appending. The file must exist in the
subfolder (subdirectory) “students” of the folder (directory) “c:/temp”. If the
file does not exist, Java creates a new file.

In order to use the Scanner, Paths and FileWriter classes, you need to import
the corresponding libraries. Also, every method or void method (including
the void method main) that uses these classes must throw exceptions, as shown
in the example that follows.
import java.util.Scanner; import java.nio.file.Paths; import java.io.FileWriter;
public class App {

public static void main(String[] args) throws Exception {

Scanner f = new Scanner(Paths.get("a_file.txt"));
FileWriter fout = new FileWriter(PATH + "b_file.txt");
…
…

}

}

40.3 Closing a File
After completing reading, writing, or appending operations on a file, it is
crucial to close the file using the close() method. This method states that
the use of the file has been completed, leading the operating system (OS) to

save any unsaved data that may exist in the main memory (RAM). The
general form of the close() method is as follows:

descriptor.close();
where descriptor is the name of the file object that was used to open the file.
Let's see some examples.

Example 1
The following code fragment

Scanner fst = new Scanner(Paths.get("c:/temp/data.txt"));

A statement or block of statements

fst.close();
opens the text file “c:/temp/data.txt” for reading and, at the end, it closes it.

Example 2
The following code fragment

FileWriter f = new FileWriter("temperatures.txt", true);

A statement or block of statements

f.close();
opens the text file “temperatures.txt” for appending and, at the end, it closes
it.

40.4 Writing in (or Appending to) a File
To write a string in (or even append a string to) a file, you can use the
write() method. The general form of this method is as follows:

descriptor.write(str);
where

► descriptor is the name of the file object that was used to open the file.
► str is the string value that you want to write in (or append to) the file.

The following example creates the file “f_data40.4-i.txt” in the folder
(directory) “c:/temp”. If the file “f_data40.4-i.txt” already exists, Java
overwrites it; otherwise, Java creates a new file. Then, the program writes
three strings in the file, using the write() method.

 Project_40.4a
static final String PATH = "c:/temp/";

public static void main(String[] args) throws Exception {
FileWriter fout = new FileWriter(PATH + "f_data40.4-

i.txt");
fout.write("Good Morning"); fout.write("Good

Evening"); fout.write("Good Night");
fout.close(); }

Try to execute the above program and then locate and open (using a notepad
application) the recently created “c:/temp/f_data40.4-i.txt” file. What you
see in the file is the following:

Good MorningGood EveningGood Night
All three strings were written in a single row. This happened because, unlike
the println() method that you're familiar with, the write() method does not
automatically add a “line break” at the end of the string.

To open a text file and see what is written inside, you can use a simple
notepad application, such as the Notepad of Windows. Alternatively, you can
download free of charge and use the Notepad++ application, from the
following address: https://notepad-plus-plus.org

To force Java to write a “line break”, you can use the special sequence of
characters \n (presented in Section 6.2). The next example opens the
previously created file “c:/temp/f_data40.4-i.txt” for appending.
Subsequently, a “line break” is written along with three lines of text.

 Project_40.4b
static final String PATH = "c:/temp/";

public static void main(String[] args) throws Exception {
FileWriter fout = new FileWriter(PATH + "f_data40.4-

i.txt", true);
fout.write("\n"); fout.write("Good Morning\n");
fout.write("Good Evening\n"); fout.write("Good

Night\n");
fout.close(); }

If you execute this program, and then locate and open the
“c:/temp/f_data40.4-i.txt” file with a notepad application, you will now see
the following content:

Good MorningGood EveningGood Night Hello!

https://notepad-plus-plus.org/

Hi!
Bye!

The first line “Good MorningGood EveningGood Night” was already in
the file before opening the file for appending.

The next example creates the file “f_data40.4-ii.txt” in the folder “c:/temp”.
If the file “f_data40.4-ii.txt” already exists, Java overwrites it, otherwise,
Java creates a new file. Then, the program writes 10 strings on 10 separate
lines in the file.

 Project_40.4c
static final String PATH = "c:/temp/";

public static void main(String[] args) throws Exception {
int i; FileWriter fout = new FileWriter(PATH +

"f_data40.4-ii.txt", true);
for (i = 1; i <= 10; i++) {
fout.write("Line " + i + "\n");

}
fout.close(); }

40.5 The File Pointer
As already mentioned, the file pointer is quite similar to the index of an
array. Both are used to specify the point from which to read information or
where to write new information. However, the main distinction between the
file pointer and the array index is that the former is automatically moved
every time a read or write operation is performed.
Let's assume a file already contains the messages “HELLO JOHN\nHI
ALL!”. If you open this specific file for reading, the file pointer is
automatically placed at the beginning of the file, as shown below.

If you now perform a read operation (as described in the next section), the
reading will commence from the position indicated by the file pointer, and

the pointer will automatically advance towards the end, moving as many
positions as the characters you have read. Below is the position the file
pointer will be in if you read one line from the file.

The subsequent read operation will start from the position where the
word “HI” begins.

On the contrary, if you open a file for appending, the file pointer is
automatically positioned at the end of the file, as illustrated here:

If you then perform a write operation, the writing will commence from the
position indicated by the file pointer, and the pointer will automatically
advance towards the end, moving as many positions as the characters you
have written in the file.

40.6 Reading from a File
Suppose the file “f_data40.6.txt” contains the following text.
15.3 15 Round the number down 22.6 23 Round the number up 55.5 56 Round the number up
again

Reading until the end of the current line To read all the characters from
the current position of a file until the end of the current line and assign
them to variable var_name_str, you can use the following statement given in
general form

var_name_str = descriptor.nextLine()
where

► descriptor is the name of the file object that was used to open the file.
► var_name_str can be any variable of type String.

The program that follows assigns the three lines of the file “f_data40.6.txt”
to the variables s1, s2, and s3.

 Project_40.6a
static final String PATH = "c:/temp/";

public static void main(String[] args) throws Exception {
String s1, s2, s3; Scanner fin = new

Scanner(Paths.get(PATH + "f_data40.6.txt"));
s1 = fin.nextLine(); s2 = fin.nextLine(); s3 =

fin.nextLine();
fin.close();

System.out.println(s1); //It displays: 15.3 15 Round
the number down System.out.println(s2); //It displays:
22.6 23 Round the number up System.out.println(s3);
//It displays: 55.5 56 Round the number up again }

Reading a value To read a value from the current position of the file until
the first space character or until the end of the current line (whichever
comes first) and assign it to a variable, you can use one of the following
statements given in general form:
var_name_int = descriptor.nextInt(); var_name_dbl =
descriptor.nextDouble();

where
► descriptor is the name of the file object that was used to open the file.
► var_name_int can be any variable of type int.
► var_name_dbl can be any variable of type double.

The following program assigns the first two values from the file
“f_data40.6.txt” to the variables d1, i1 and the text of the first line to the
variable s1. Then, it perform the same operation for the second line of the
file, assigning the values to the variables d2, i2 and s2 respectively.

 Project_40.6b
static final String PATH = "c:/temp/";

public static void main(String[] args) throws Exception {
int i1, i2; double d1, d2; String s1, s2; Scanner fin
= new Scanner(Paths.get(PATH + "f_data40.6.txt"));
d1 = fin.nextDouble(); i1 = fin.nextInt(); s1 =
fin.nextLine(); d2 = fin.nextDouble(); i2 =

fin.nextInt(); s2 = fin.nextLine();
fin.close();

System.out.println(d1); //It displays: 15.3
System.out.println(i1); //It displays: 15

System.out.println(s1); //It displays: Round the
number down System.out.println(d2); //It displays:

22.6
System.out.println(i2); //It displays: 23

System.out.println(s2); //It displays: Round the
number up }

The nextLine() method reads all the characters from the current position of
a file until the end of the current line.

In the US, the decimal separator is a period (.). In many countries,
however, the decimal separator is a comma (,), not a period (.). For
example, if you live in Europe and attempt to execute this code, a runtime
error will occur. To resolve this, change in the file “f_data40.6.txt” the
values 15.3, 22.6, and 55.5 to 15,3, 22,6, and 55,5, respectively.

40.7 Iterating Through the Contents of a File
You can iterate through the contents of a file using a while-loop.
Let's suppose the file “f_to_be_or_not_to_be.txt” contains the following
text:

To be, or not to be: that is the question: Whether 'tis nobler in the mind to
suffer The slings and arrows of outrageous fortune, Or to take arms against a
sea of troubles, And by opposing end them? To die: to sleep;

The following example displays all the lines of the file, one at each iteration.

 Project_40.7a
static final String PATH = "c:/temp/";

public static void main(String[] args) throws Exception {

String line; Scanner fin = new Scanner(Paths.get(PATH
+ "f_to_be_or_not_to_be.txt"));

while (fin.hasNextLine()) {
line = fin.nextLine();

System.out.println(line);
}

fin.close(); }

The hasNextLine() method returns false when the current position is at the
end of the file.

Suppose the file “f_data40.7.txt” contains the following values.
15 19

22 28
55 50

The following example displays all six values from the file, one at each
iteration.

 Project_40.7b
static final String PATH = "c:/temp/";

public static void main(String[] args) throws Exception {
int x; Scanner fin = new Scanner(Paths.get(PATH +

"f_data40.7.txt"));
while (fin.hasNextInt()) { //Use hasNextDouble()

method when reading real numbers (floats)!
x = fin.nextInt();

System.out.println(x);
}

fin.close(); }

The hasNextInt() and hasNextDouble() methods return false when the current
position is at the end of the file.

40.8 Review Questions: True/False
Choose true or false for each of the following statements.

1) The contents of a file are lost when you shut down your computer.
2) If you open a file using the Scanner f = new

Scanner(Paths.get(filename)) statement and the file filename does not

exist, Java creates a new one.
3) If you open a file using the FileWriter f = new FileWriter(filename,

true) statement and the file filename does not exist, Java creates a new
one.

4) If you open a file using the FileWriter f = new FileWriter(filename)
statement and the file filename does not exist, Java throws a runtime
error.

5) The statement FileWriter f = new FileWriter(filename, true)
overwrites the file filename (when the file already exists).

6) The following program is correct
public static void main(String[] args) throws Exception {

Scanner ff = new Scanner(Paths.get("grades.txt"));
System.out.println(ff.nextLine()); fff.close(); }

7) The following code fragment is correct
FileWriter f = new FileWriter("grades.txt");
System.out.println(f.nextLine());

8) The following code fragment is correct
Scanner f = new FileWriter("grades.txt"); f.write("OK");

9) The following code fragment is correct
FileWriter f = new FileWriter("grades.txt"); f.write("OK");

10) If there are 10 characters in a file named “test.txt”, after executing the
following program, the size of the file gets bigger.
public static void main(String[] args) throws Exception {

FileWriter f = new FileWriter("test.txt"); f.write("Hello"); f.close(); }

11) If there are 10 characters in a file named “test.txt”, after executing the
following program, the size of the file gets bigger.
public static void main(String[] args) throws Exception {

FileWriter f = new FileWriter("test.txt", true); f.write("Hello"); f.close(); }

12) The following code fragment is correct.
FileWriter f = new FileWriter("c:\data\test.txt"); f.write(10); f.close();

13) After repeatedly executing the following program three times, there will
be only two lines of text in the file “test.txt”.
public static void main(String[] args) throws Exception {

FileWriter f = new FileWriter("test.txt", true); f.write("Good Morning\n");
f.write("Good Evening\n"); f.close(); }

14) After repeatedly executing the following program three times, there will
be only two lines of text in the file “test.txt”.
public static void main(String[] args) throws Exception {

FileWriter f = new FileWriter("test.txt"); f.write("Good Morning");
f.write("Good Evening"); f.close(); }

15) After repeatedly executing the following program three times, there will
be only two lines of text in the file “test.txt”.
public static void main(String[] args) throws Exception {

FileWriter f = new FileWriter("test.txt"); f.write("Good Morning\n");
f.write("Good Evening\n"); f.close(); }

16) The nextLine() method reads one line from a file.
17) The nextLine() method always reads all the characters from the current

line.
18) You cannot use a while-loop to iterate through the contents of a file.
19) You cannot use a for-loop to iterate through the contents of a file.
20) Suppose there are two lines of text in a file named “test.txt”. After

executing the following code fragment, only one line of text will be
displayed on the user's screen.
Scanner fin = new Scanner(Paths.get("test.txt")); while (fin.hasNextLine()) {

System.out.print(fin.nextLine()); }

fin.close();

21) If the current position is at the end of a file, the hasNextLine() method
returns false.

22) If the file “test.txt” contains the text as shown below
Hello
World!
then, the following code fragment displays “LOL!” without the double
quotes on the screen.
Scanner f = new Scanner(Paths.get("test.txt")); String[] x = new String[2]; x[0] =
f.nextLine(); x[1] = f.nextLine(); f.close();
String a = ""; a += x[0].charAt(2); a += x[0].charAt(4); a += x[1].charAt(3); a +=
x[1].charAt(5);
System.out.println(a.toUpperCase());

40.9 Review Exercises
Complete the following exercises.

1) Write a Java program that creates a text file and writes the days of the
week (Sunday, Monday etc.), one on each line.

2) Write a Java program that reads the days of the week from the file
created in the previous exercise (Sunday, Monday etc.) and stores them
into an array. Then, the program must display the days of the week in
the exact reverse of the order in which they are stored in the array.

3) Write a Java program that appends to the file of the previous exercise
the text “*** End of File ***”, without the double quotes.

4) Write a Java program that writes 50 random integers (between 1 and
100) in a file named “randoms.txt”, one on each line.

5) Write a Java program that creates 10 files named “file1.txt”, “file2.txt”,
… “file10.txt” and writes a random 3-digit integer in each one.

6) Write a Java program that writes the following multiplication table in a
file.
1 x 1 = 1
1 x 2 = 2
1 x 3 = 3
1 x 4 = 4
2 x 1 = 2
2 x 2 = 4
2 x 3 = 6
2 x 4 = 8
…
…
10 x 1 = 10
10 x 2 = 20
10 x 3 = 30
10 x 4 = 40

7) Write a Java program that displays the number of characters that exist in
each line of a file.

8) Write a Java program that, for each line of a file, displays the message
“There is a punctuation mark on line No XX”, in case there is a
punctuation mark in the line (check only for commas, periods, and

exclamation marks). Please note that XX must be replaced by an actual
value.

Chapter 41
More with Files

41.1 Exercises of a General Nature with Files
Exercise 41.1-1 Calculating the Sum of 10 Numbers
Suppose there is a file named “f_data41.1-1.txt” that contains 10 3-digit
integers (separated by a single space character). An example of the
structure of the file is shown here.
131 500 122 152 127 191 111 290 156 161

Write a Java program that calculates and displays their sum.

Solution There are two approaches to iterate through the numbers of this
file.

First approach In this approach, a string variable named values gets
the content of the whole line of the file. Then, the substring() method is
used in a for-loop to split the content into individual three-digit
numbers. These numbers are then converted to integers using the
Integer.parseInt() method to calculate their sum.

 Project_41.1-1a
static final String PATH = "c:/temp/";

public static void main(String[] args) throws Exception
{

int i, total; String values;
Scanner fin = new Scanner(Paths.get(PATH +

"f_data41.1-1.txt")); values = fin.nextLine();
fin.close();

total = 0; for (i = 0; i < 10; i++) {
total += Integer.parseInt(values.substring(i * 4,

i * 4 + 3));
}

System.out.println(total); }

Second approach Since the values are separated by a single space
character, you can use the nextInt() method in a for-loop. The
nextInt() method reads one value at each iteration.

 Project_41.1-1b
static final String PATH = "c:/temp/";

public static void main(String[] args) throws Exception
{

int i, total;
Scanner fin = new Scanner(Paths.get(PATH +

"f_data41.1-1.txt")); total = 0; for (i = 0; i < 10;
i++) {

total += fin.nextInt();
}

fin.close();
System.out.println(total); }

Exercise 41.1-2 Calculating the Average Value of an Unknown Quantity
of Numbers
Suppose there is a file named “f_data41.1-2.txt” that contains numbers,
one on each line, except the last one which contains the phrase “End of
file”. An example of the structure of the file is shown here.
16
13.172
33.5
.
.

End of file

Write a Java program that calculates and displays their average value.

Solution According to the “Ultimate” rule discussed in Section 29.3, the
while-loop should be as follows, given in general form.
sNumber = fin.nextLine(); while (!sNumber.equals("End of file")) {

A statement or block of statements

sNumber = fin.nextLine(); }

The final program is as follows.
 Project_41.1-2

static final String PATH = "c:/temp/";

public static void main(String[] args) throws Exception {
double total = 0; int count = 0; String sNumber; Scanner fin = new
Scanner(Paths.get(PATH + "f_data41.1-2.txt"));

sNumber = fin.nextLine(); while (!sNumber.equals("End of file")) {
total += Double.parseDouble(sNumber);
count += 1;

sNumber = fin.nextLine();
}
fin.close();
if (count > 0) {

System.out.println(total / count);

}
}

Exercise 41.1-3 Finding Minimum and Maximum Values
Suppose there is a file named “f_data41.1-3.txt” that contains numbers,
one on each line. An example of the structure of the file is shown here.
16
13.172
33.5
.

.

Write a Java program that finds the greatest and lowest values and stores
them in a file named “output.txt” in the following form

33.5 13.172
Assume that there is at least one value in the file “f_data41.1-3.txt”.

Solution The final program is as follows.

 Project_41.1-3
static final String PATH = "c:/temp/";
public static void main(String[] args) throws Exception {

double number, maximum, minimum; Scanner fin = new Scanner(Paths.get(PATH +
"f_data41.1-3.txt"));
//Read the first value maximum = fin.nextDouble(); minimum = maximum;
//Read the rest of the values, line by line while (fin.hasNextDouble()) {

number = fin.nextDouble();

if (number > maximum) {
maximum = number;

}
if (number < minimum) {

minimum = number;
}

}
fin.close();

//Write the greatest and lowest value in a file FileWriter fout = new
FileWriter(PATH + "output.txt"); fout.write(maximum + " " + minimum + "\n");
fout.close(); }

Exercise 41.1-4 Concatenating Files
Suppose there are two text files named “text1.txt” and “text2.txt”. Write a
Java program that concatenates the contents of the two files and writes the
concatenated text in a third file named “final.txt”, placing the contents of
the file “text1.txt” before the contents of the file “text2.txt”.

Solution This exercise can be solved using several approaches. Let's see
two of them.

First approach The program opens the file “text1.txt”, reads all of its
contents, assigns them to the variable contents, and then closes the file.
Next, it opens the file “text2.txt”, reads all of its contents, concatenates
them with the previous ones (those in the variable contents), and closes
the file. Finally, it opens the file “final.txt” and writes the concatenated
contents in it, as shown in the program that follows.

 Project_41.1-4a
static final String PATH = "c:/temp/";

public static void main(String[] args) throws Exception
{

String contents = ""; Scanner fin;
fin = new Scanner(Paths.get(PATH + "text1.txt"));

while (fin.hasNextLine()) {
contents += fin.nextLine() + "\n";

}
fin.close();

fin = new Scanner(Paths.get(PATH + "text2.txt"));
while (fin.hasNextLine()) {

contents += fin.nextLine() + "\n";
}

fin.close();
FileWriter fout = new FileWriter(PATH +

"final.txt"); fout.write(contents); fout.close(); }

Note how the object fin is declared at the beginning of the program.
This way you can use the same object again and again to open and read
multiple files.

Second approach The program that follows opens the three files, writes
the concatenated contents, and then closes them.

 Project_41.1-4b
static final String PATH = "c:/temp/";

public static void main(String[] args) throws Exception
{

String contents = ""; Scanner fin1 = new
Scanner(Paths.get(PATH + "text1.txt")); Scanner fin2

= new Scanner(Paths.get(PATH + "text2.txt"));
FileWriter fout = new FileWriter(PATH +

"final.txt");
while (fin1.hasNextLine()) {

contents += fin1.nextLine() + "\n";
}

while (fin2.hasNextLine()) {
contents += fin2.nextLine() + "\n";

}
fout.write(contents);

fout.close(); fin2.close(); fin1.close(); }

The order in which you close the files doesn't need to correspond to the
order in which you opened them. You can open, for example, the file
“text2.txt” first, and close it last, or open it first and close it first.

Exercise 41.1-5 Searching in a File
In the United States, the Social Security Number (SSN) is a nine-digit
identity number applied to all U.S. citizens in order to identify them for the
purposes of Social Security. Suppose there is a file named “SSN.txt” that
contains the SSNs (Social Security Numbers) of all citizens of the state of
California, as well as their full name, one record on each line. An example
of the structure of the file is shown here.
123456789 Aristides Bouras 123000000 Loukia Ainarozidou 121212121 John Papas Junior .

.

Write a Java program that prompts the user to enter the first digits of an
SSN to search and then searches in the file and displays the first and last
names of all citizens whose SSN starts with those digits.

Solution In this particular exercise, if the user enters all nine digits of an
SSN to search, and this SSN is found, the program must display the first
and last name of the corresponding citizen and stop searching thereafter.
On the other hand, if the user enters less than nine digits to search, the
program must search and display the first and last name of all the citizens
whose SSN starts with those digits. The solution to this exercise is as
follows.

 Project_41.1-5
static final String PATH = "c:/temp/";
public static void main(String[] args) throws Exception {

String ssnToSearch, line, ssn, fullName; boolean found;
System.out.print("Enter an SSN to search: "); ssnToSearch = cin.nextLine();
Scanner fin = new Scanner(Paths.get(PATH + "SSN.txt"));

found = false; while (fin.hasNextLine()) {
line = fin.nextLine();
ssn = line.substring(0, 9);
fullName = line.substring(10);
//If it is found
if (ssnToSearch.equals(ssn.substring(0, ssnToSearch.length()))) {

System.out.println(fullName);
found = true;
//If SSN to search contains 9 digits and it is found, exit loop
if (ssnToSearch.length() == 9) {

break;

}
}

}
fin.close();
if (!found) {

System.out.println("Not found!");
}

}

Exercise 41.1-6 Combining Files with Subprograms
Do the following: i) Write a subprogram named readContent that accepts the
filename of a file and returns its contents.

ii) Write a subprogram named writeContent that accepts the filename of a
file and a string, and writes that string in the file.

iii) Using the subprograms cited above, write a Java program that
prompts the user to enter the filenames of two files and then copies
the contents of the first file to the second one. Assume that the user
enters valid filenames.

Solution Even though this particular exercise seems quite easy, it is
necessary to highlight some things about the readContent() method.
Examine the readContent() method that follows and try to find the error
it contains. The error is a logic error, not a syntax one. This method is
executed successfully without any syntax errors thrown by the Java
interpreter. However, the error is there and quite difficult to spot!
static String readContent(String filename) throws Exception {

Scanner fin = new Scanner(Paths.get(filename));
String contents = ""; while (fin.hasNextLine()) {

contents += fin.nextLine() + "\n";
}
return contents;
fin.close(); }

What happens here is that, when the return statement is executed, Java
ignores the rest of the statements of the method, which means that the file
probably won't close. Imaging calling this particular method many times in
a program. You would end up with many open files that will probably
never close.

Latest versions of Java will probably close the file automatically when
there is no reference (fin) to it, but it is bad practice to leave a file open
and wait for Java to close it for you.

A good practice is to place the return statement at the end of the method,
as shown in the following program.

 Project_41.1-6
static String readContent(String filename) throws Exception {

Scanner fin = new Scanner(Paths.get(filename));
String contents = ""; while (fin.hasNextLine()) {

contents += fin.nextLine() + "\n";
}

fin.close();

return contents; }
static void writeContent(String filename, String contents) throws Exception {

FileWriter fout = new FileWriter(filename); fout.write(contents); fout.close(); }

public static void main(String[] args) throws Exception {
System.out.print("Enter source filename: "); String source = cin.nextLine();
System.out.print("Enter destination filename: "); String destination =
cin.nextLine();
String c = readContent(source); //Equivalent to: writeContent(destination, c);

//writeContent(destination, readContent(source)) }

41.2 Review Exercises
Complete the following exercises.
1) Suppose there is a file named “f_data41.2-1.txt” that contains 10 2-

digit integers (separated by a single space character). An example of
the structure of the file is shown here.
13 55 12 61 12 19 80 91 15 16

Write a Java program that calculates and displays the average value
of those that are greater than 50.

2) Suppose there is a file named “f_data41.2-2.txt” that contains 3-digit
integers (separated by a comma character). An example of the
structure of the file is shown here.
130,501,322,415,527,191

Write a Java program that calculates and displays the average value
of those that are between 300 and 500. Assume there is at least one
number in the file.

3) Suppose there is a file named “f_data41.2-3.txt” that contains the
grades and the full names of the students of a class (separated by a
comma character), one record on each line. An example of the
structure of the file is shown here.
96,George Papas
100,Anna Maria Garcia
89,Peter Smith
.

.

Write a Java program that finds and displays the full name of the best
and the worst student of the class. Assume there is at least one record
in the file and that all of the grades are different.

4) The IT administrator of a transportation company needs a program to
extract useful information from a file named “f_data41.2-4.txt”
regarding the items the company transports. Suppose the file contains
the width, length, height and description of each item. The
dimensions of the items are in inches and each dimension occupies 4
characters in the file (2 characters for the integer part, one for the
decimal point and one for the decimal digit). An example of the file's
structure is shown below:
110.5 011.2 020.9 Box No 37 (Plastic bottles) 022.6 023.1 040.2
Container No 23 (6 glasses) 009.5 156.6 020.0 Package No 12
(Fragile items) 024.2 020.1 030.1 Container No 29 (Glass bottles)
Write a Java program that: i) prompts the user to enter a keyword to
search within the description of the items. For example, if the user
enters the word “glass”, then the program must display the following
messages Keyword 'glass' found!

Container No 23 (6 glasses) – Dimensions: 22.6 x 23.1 x
40.2

Container No 29 (Glass bottles) - Dimensions: 24.2 x
20.1 x 30.1

ii) finds and displays the volume (in cubic feet) of each item. The
messages must be formatted as in the example below: Volume of
each item: Box No 37 (Plastic bottles): Volume = 14.9686
cubic feet Container No 23 (6 glasses): Volume = 12.1451
cubic feet Package No 12 (Fragile items): Volume =
17.2187 cubic feet Container No 29 (Glass bottles):
Volume = 8.472940 cubic feet iii) finds and displays the total
volume (in cubic feet) of all the items.

iv) finds and displays the description of the box with the greatest
volume.

Keep in mind that one cubic foot is equivalent to 1728 cubic inches.
5) Write a Java program that prompts the user to enter the filenames of

two files. The program must then concatenate the contents of the two
files and write the concatenated text in a third file named “final.txt”,
placing the contents of the first file after the contents of the second

file. If the user-provided filenames do not contain the “.txt” extension
the program must display an error message.

6) Suppose there is a file named “f_data41.2-6.txt” that contains 15
numbers, one on each line. Write a Java program that sorts those
numbers in ascending order using the bubble sort algorithm and
writes the sorted values in the same file, below the initial unsorted
values.

7) Suppose there is a file named “f_data41.2-7.txt” that contains names
of eight cities as well as their maximum temperatures on a specific
day. An example of the structure of the file is shown here.
New York
82.3
Washington DC

84.3
.
.

Thus, the odd-numbered lines contain city names and the even-
numbered lines contain the maximum temperature of each city. Write
a Java program that reads the file line by line and stores the city
names and the temperatures in the arrays cities and temperatures
correspondingly. Assume there is at least one name of a city and its
corresponding temperature in the file. The program must then
i) calculate and display the average temperature of all cities.
ii) find and display the highest temperature as well as all city names

that have this temperature.
8) Some words such as “revolutionary” and “internationalization” are so

lengthy that writing them out repeatedly can become quite tiresome.
Let's consider a word too long if its length is more than 10 characters.
In such cases, this word must be replaced with a special abbreviation
which is made like this: you keep the first and the last letter of the
word and insert the number of letters between them. For instance,
“revolutionary” becomes “r11y” and “internationalization” becomes
“i18n”.
Suppose there is a file named “f_data41.2-8.txt” that contains an
English text. Do the following: i) Write a subprogram named
abbreviate that accepts a word and when it is more than 10

characters long, it returns its abbreviation; it must return the same
word otherwise.
ii) Using the subprogram cited above, write a Java program that

reads the text from the file and displays it with all long words
replaced by their abbreviations.

Assume that the words are separated by a single space character.
9) Pig Latin is a playful language game often used in English-speaking

countries. It involves altering the letters of a word based on a set of
simple rules. Here are the rules for translating a word into Pig Latin:
► If the word begins with a vowel, simply add “way” to the end of
the word. For example, “apple” becomes “appleway”.
► If the word begins with one or more consonants, move the

consonant(s) to the end of the word and add “ay”. For example,
“banana” becomes “ananabay” and “flower” becomes
“owerflay”.

Suppose there is a file named “f_data41.2-9.txt” that contains an
English text. Do the following: i) Write a subprogram named
pigLatinTranslator that accepts an English word and returns the
corresponding Pig Latin translation.
ii) Using the subprogram cited above, write a Java program that

reads the text from the file and writes the corresponding Pig
Latin translation in a file named “pig_latin_translation.txt”.

Assume that the text contains only lowercase characters of the
English alphabet and the words are separated by a single space
character.

10) Given two strings, X = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" and Y =
"JKWCTAMEDXSLFBYUNG RZOIQVHP", you can encrypt any message. The
person who holds the Y string can decrypt the encrypted message by
mapping the letters of string X to string Y, one by one. To be more
specific, the letter “A” is encrypted as “J”, the letter “B” as “K”, the
letter “C” as “W”, and so on. According to this encryption method,
write a Java program that prompts the user to enter a message and
then writes the encrypted message in a file named “encrypted.txt”.
Space characters must not be encrypted and should remain as is in the
encrypted message.

11) Write a Java program that decrypts the message of the previous
exercise (in the file “encrypted.txt”) and writes the decrypted
message in a file named “decrypted.txt”.

12) Write a subprogram named copyFile that accepts two arguments
(source and destination) and then creates a new copy of the file
source using the name destination.

13) Suppose there is a file named “f_data41.2-13.txt” that contains the
lengths of all three sides of a triangle (one on each line). An example
of the structure of the file is shown here.
16.0
20.6
22.7

Do the following i) Write a class named Triangle that includes
a) three private float (real) fields named _sideA, _sideB, and _sideC.

b) a constructor that reads the three sides from the file and
assigns them to the fields _sideA, _sideB, and _sideC.

c) a public Boolean method named canBeTriangle that checks
and returns true when the values in fields _sideA, _sideB,
and _sideC can be lengths of the three sides of a triangle. It
must return false otherwise.
Hint: In any triangle, the length of each side is less than the
sum of the lengths of the other two sides.

d) a public void method named displayLengths that displays
the lengths of all three sides as well as a message indicating
whether those lengths can be lengths of the three sides of a
triangle or not.

e) a public void method named displayArea that, in case the
lengths can be lengths of the three sides of a triangle,
calculates and displays the area of the triangle. You can use
Heron's formula, which has been known for nearly 2,000
years!

where S is the semi-perimeter

f) a public void method named displayPerimeter that, in case
the lengths can be lengths of the three sides of a triangle,
calculates and displays the perimeter of the triangle.

ii) Using the class cited above, write a Java program that displays all
available information about the triangle.

Review in “Files”

Review Crossword Puzzle
1) Solve the following crossword puzzle.

Across
1) After completing reading from a file, you always need to
______ the file.
5) This pointer is quite similar to the index of an array.
6) There are two kinds of files, text files and ________ files.

Down
1) This is what a text file contains.
2) This operation must be performed before any reading/writing
operation.
3) When you open a file for appending, the file pointer is
positioned at the ____ of the file.

4) A file is stored in this kind of storage device.

Review Questions
Answer the following questions.
1) What is a text file?
2) What is a text file useful for?
3) What exactly does the method close() do?
4) What is the difference between nextLine() and nextInt() methods?
5) Describe the process of iterating through the contents of a file and

give an example.

Some Final Words from the Author
I hope you thoroughly enjoyed reading this book. I made every possible
effort to ensure it is beneficial and comprehensible, even for people who
may have no prior experience in programming.
If you found this book valuable, please consider visiting the web store
where you purchased it, as well as goodreads.com, to show your
appreciation by writing a positive review and awarding as many stars as
you think appropriate. By doing so, you will motivate me to keep writing
and, of course, you'll be assisting other readers in discovering my work.
And always remember: Learning is a lifelong, continuous process that
begins at birth and extends throughout your lifetime!

https://www.goodreads.com/

Footnotes
[1] The word "algorithm" derives from the word "algorism" and the Greek
word "arithmos". The word "algorism" comes from the Latinization of the
name of Al–Khwārizmī[2] whereas the Greek word “arithmos” means
“number”.

[2] Muḥammad ibn Al–Khwārizmī (780‐850) was a Persian mathematician,
astronomer, and geographer. He is considered one of the fathers of algebra.
[RETURN]

[3] Donald Ervin Knuth, (1938-), is a prominent American computer
scientist and mathematician, renowned as the “father of the analysis of
algorithms”. He authored the influential multi-volume work, The Art of
Computer Programming, and made groundbreaking contributions to
computational complexity analysis and literate programming.
[RETURN]

[4] Corrado Böhm (1923‐2017) was a computer scientist known especially
for his contribution to the theory of structured programming, and for the
implementation of functional programming languages.
[RETURN]

[5] Giuseppe Jacopini (1936‐2001) was a computer scientist. His most
influential contribution is the theorem about structured programming,
published along with Corrado Böhm in 1966, under the title Flow
Diagrams, Turing Machines, and Languages with Only Two Formation
Rules.
[RETURN]

[6] Grace Murray Hopper (1906‐1992) was an American computer scientist
and US Navy admiral. She was one of the first programmers of the Harvard
Mark I computer, and developed the first compiler for a computer
programming language known as A–0 and later a second one, known as B–
0 or FLOW-MATIC.
[RETURN]

[7] George Boole (1815‐1864) was an English mathematician, philosopher,
and logician. He is best known as the architect of what is now called
Boolean logic (Boolean algebra), the basis of the modern digital computer.
[RETURN]

[8] Daniel Gabriel Fahrenheit (1686‐1736) was a German physicist,
engineer, and glass blower who is best known for inventing both the alcohol
and the mercury thermometers, and for developing the temperature scale
now named after him.
[RETURN]

[9] William Thomson, 1st Baron Kelvin (1824‐1907), was an Irish-born
British mathematical physicist and engineer. He is widely known for
developing the basis of absolute zero (the Kelvin temperature scale), and
for this reason a unit of temperature measure is named after him. He
discovered the Thomson effect in thermoelectricity and helped develop the
second law of thermodynamics.
[RETURN]

[10] Anders Celsius (1701‐1744) was a Swedish astronomer, physicist, and
mathematician. He founded the Uppsala Astronomical Observatory in
Sweden and proposed the Celsius temperature scale, which takes his name.
[RETURN]

[11] Heron of Alexandria (c. 10‐c. 70 AD) was an ancient Greek
mathematician, physicist, astronomer, and engineer. He is considered the
greatest experimenter of ancient times. He described the first recorded
steam turbine engine, called an “aeolipile” (sometimes called a "Hero
engine"). Heron also described a method of iteratively calculating the
square root of a positive number. Today, though, he is known best for the
proof of “Heron's Formula” which finds the area of a triangle from its side
lengths.
[RETURN]

[12] Pythagoras of Samos (c. 571‐c. 497 BC) was a famous Greek
mathematician, philosopher, and astronomer. He is best known for the proof

of the important Pythagorean theorem. He was an influence for Plato. His
theories are still used in mathematics today.
[RETURN]

[13] William Shakespeare (1564‐1616) was an English poet, playwright,
and actor. He is often referred to as England's national poet. He wrote about
40 plays and several long narrative poems. His works are counted among
the best representations of world literature. His plays have been translated
into every major living language and are still performed today.
[RETURN]

[14] A quantity that is either zero or positive.
[RETURN]

[15] Francis Beaufort (1774‐1857) was an Irish hydrographer and officer in
Britain's Royal Navy. He is the inventor of the Beaufort wind force scale.
[RETURN]

[16] A quantity that is either zero or negative.
[RETURN]

[17] The value of −459.67° (on the Fahrenheit scale) is the lowest
temperature possible and it is called absolute zero. Absolute zero
corresponds to −273.15 °C on the Celsius temperature scale and to 0 K on
the Kelvin temperature scale.
[RETURN]

[18] A quantity that is either zero or negative.
[RETURN]

[19] Madhava of Sangamagrama (c. 1340‐c. 1425), was an Indian
mathematician and astronomer from the town of Sangamagrama (present
day Irinjalakuda) of India. He founded the Kerala School of Astronomy and
Mathematics and was the first to use infinite series approximations for
various trigonometric functions. He is often referred to as the “father of

mathematical analysis”.
[RETURN]

[20] Gottfried Wilhelm von Leibniz (1646‐1716) was a German
mathematician and philosopher. He made important contributions to the
fields of metaphysics, logic, and philosophy, as well as mathematics,
physics, and history. In one of his works, On the Art of Combination
(Dissertatio de Arte Combinatoria), published in 1666, he formulated a
model that is considered the theoretical ancestor of modern computers.
[RETURN]

[21] Leonardo Pisano Bigollo (c. 1170‐c. 1250), also known as Fibonacci,
was an Italian mathematician. In his book Liber Abaci (published in 1202),
Fibonacci used a special sequence of numbers to try to determine the
growth of a rabbit population. Today, that sequence of numbers is known as
the Fibonacci sequence. He was also one of the first people to introduce the
Arabic numeral system to Europe; this is the numeral system we use today,
based on ten digits with a decimal point and a symbol for zero. Before then,
the Roman numeral system was being used, making numerical calculations
difficult.
[RETURN]

[22] Brook Taylor (1685‐1731) was an English mathematician who is best
known for the Taylor series and his contributions to the theory of finite
differences.
[RETURN]

[23] Samuel Finley Breese Morse (1791‐1872) was an American painter
and inventor. Morse contributed to the invention of a single-wire telegraph
system and he was a co-developer of the Morse code.
[RETURN]

[24] In Greek mythology, the Titans and Titanesses were the children of
Uranus and Gaea. They were giant gods who ruled during the legendary
Golden Age (immediately preceding the Olympian gods). The male Titans
were Coeus, Oceanus, Crius, Cronus, Hyperion, and Iapetus whereas the

female Titanesses were Tethys, Mnemosyne, Themis, Theia, Rhea, and
Phoebe. In a battle, known as the Titanomachy, fought to decide which
generation of gods would rule the Universe, the Olympians won over the
Titans!
[RETURN]

More...
This is the nested decision control structure
[RETURN]

This is a nested case decision structure
[RETURN]

This is a nested single-alternative decision structure
[RETURN]

This is a nested dual-alternative decision structure
[RETURN]

This statement is not affected by the previous decision control structure and
does not affect the next one.
[RETURN]

The previous and next decision control structures are affected by this
statement
[RETURN]

Code Fragment 1
[RETURN]

Code Fragment 1
[RETURN]

The destination is inside the country. Check the weight and calculate the
corresponding shipping cost.
[RETURN]

The destination is outside the country. Check the weight and calculate the
corresponding shipping cost.

[RETURN]

-5 < x ≤ 0
[RETURN]

0 < x ≤ 6
[RETURN]

6 < x ≤ 20
[RETURN]

All other values of x
[RETURN]

Code Fragment 1
[RETURN]

This pair of statements is executed 4 times forcing the user to enter 4
numbers.
[RETURN]

This is the part of the program that somehow repeats.
[RETURN]

This must be written 20 times
[RETURN]

Nested loop
[RETURN]

This is the dual-alternative decision structure
[RETURN]

This is the post-test loop structure
[RETURN]

This is the dual-alternative decision structure
[RETURN]

A statement or block of statements 1
[RETURN]

A statement or block of statements 2
[RETURN]

A statement or block of statements 1
[RETURN]

A statement or block of statements 2
[RETURN]

A statement or block of statements 1
[RETURN]

This code fragment calculates the denominator.
[RETURN]

Code Fragment 1
[RETURN]

Data input stage without validation.
[RETURN]

Data input validation without error messages.
[RETURN]

Data input validation with one single error message.
[RETURN]

Data input validation with a different error message for each type of input
error.
[RETURN]

Data input stage without validation
[RETURN]

Data input validation with one single error message
[RETURN]

Data input validation
[RETURN]

Code Fragment 1
[RETURN]

Data input stage without validation.
[RETURN]

Data input and validation
[RETURN]

Data input and validation
[RETURN]

Data input and validation
[RETURN]

This is a formal argument list
[RETURN]

This is an actual argument list
[RETURN]

This is an actual argument list
[RETURN]

By default, arrays in Java are passed by reference.
[RETURN]

	Table of Contents
	Preface
	About the Author
	Acknowledgments
	How This Book is Organized
	Who Should Buy This Book?
	Conventions Used in This Book
	How to Report Errata
	Where to Download Material About this Book
	If you Like this Book

	Part I Introductory Knowledge
	Chapter 1 How a Computer Works
	1.1 Introduction
	1.2 What is Hardware?
	1.3 What is Software?
	1.4 How a Computer Executes (Runs) a Program
	1.5 Compilers and Interpreters
	1.6 What is Source Code?
	1.7 Review Questions: True/False
	1.8 Review Questions: Multiple Choice

	Chapter 2 Java and Integrated Development Environments
	2.1 What is Java?
	2.2 What is the Difference Between a Script and a Program?
	2.3 Why You Should Learn Java
	2.4 How Java Works
	2.5 Java Development Kit (JDK)
	2.6 Integrated Development Environments
	2.7 Microsoft Visual Studio

	Chapter 3 Software Packages to Install
	3.1 What to Install

	Review in “Introductory Knowledge”
	Review Crossword Puzzles
	Review Questions

	Part II Getting Started with Java
	Chapter 4 Introduction to Basic Algorithmic Concepts
	4.1 What is an Algorithm?
	4.2 The Algorithm for Making a Cup of Tea
	4.3 Properties of an Algorithm
	4.4 Okay About Algorithms. But What is a Computer Program Anyway?
	4.5 The Three Parties!
	4.6 The Three Main Stages Involved in Creating an Algorithm
	4.7 Flowcharts
	Exercise 4.7-1 Finding the Average Value of Three Numbers

	4.8 What are ”Reserved Words”?
	4.9 What is the Difference Between a Statement and a Command?
	4.10 What is Structured Programming?
	4.11 The Three Fundamental Control Structures
	Exercise 4.11-1 Understanding Control Structures Using Flowcharts

	4.12 Your First Java Program
	4.13 What is the Difference Between a Syntax Error, a Logic Error, and a Runtime Error?
	4.14 What “Debugging” Means
	4.15 Commenting Your Code
	4.16 User-Friendly Programs
	4.17 Review Questions: True/False
	4.18 Review Questions: Multiple Choice

	Chapter 5 Variables and Constants
	5.1 What is a Variable?
	5.2 What is a Constant?
	5.3 How Many Types of Variables and Constants Exist?
	5.4 Rules and Conventions for Naming Variables and Constants in Java
	5.5 What Does the Phrase “Declare a Variable” Mean?
	5.6 How to Declare Variables in Java
	5.7 How to Declare Constants in Java
	5.8 Review Questions: True/False
	5.9 Review Questions: Multiple Choice
	5.10 Review Exercises

	Chapter 6 Handling Input and Output
	6.1 How to Output Messages and Results to a User's Screen?
	6.2 How to Output Special Characters?
	6.3 How to Prompt the User to Enter Data?
	6.4 Review Questions: True/False
	6.5 Review Questions: Multiple Choice

	Chapter 7 Operators
	7.1 The Value Assignment Operator
	7.2 Arithmetic Operators
	7.3 What is the Precedence of Arithmetic Operators?
	7.4 Compound Assignment Operators
	Exercise 7.4-1 Which Java Statements are Syntactically Correct?
	Exercise 7.4-2 Finding Variable Types

	7.5 Incrementing/Decrementing Operators
	7.6 String Operators
	Exercise 7.6-1 Concatenating Names

	7.7 Review Questions: True/False
	7.8 Review Questions: Multiple Choice
	7.9 Review Exercises

	Chapter 8 Trace Tables
	8.1 What is a Trace Table?
	Exercise 8.1-1 Creating a Trace Table
	Exercise 8.1-2 Creating a Trace Table
	Exercise 8.1-3 Swapping Values of Variables
	Exercise 8.1-4 Swapping Values of Variables – An Alternative Approach

	8.2 Review Questions: True/False
	8.3 Review Exercises

	Chapter 9 Using Visual Studio Code
	9.1 Write, Execute and Debug Java Programs

	Review in “Getting Started with Java”
	Review Crossword Puzzles
	Review Questions

	Part III Sequence Control Structures
	Chapter 10 Introduction to Sequence Control Structures
	10.1 What is the Sequence Control Structure?
	Exercise 10.1-1 Calculating the Area of a Rectangle
	Exercise 10.1-2 Calculating the Area of a Circle
	Exercise 10.1-3 Where is the Car? Calculating Distance Traveled
	Exercise 10.1-4 Kelvin to Fahrenheit
	Exercise 10.1-5 Calculating Sales Tax
	Exercise 10.1-6 Calculating a Sales Discount
	Exercise 10.1-7 Calculating a Sales Discount and Tax

	10.2 Review Exercises

	Chapter 11 Manipulating Numbers
	11.1 Introduction
	11.2 Useful Mathematical Methods (Subprograms), and More
	Exercise 11.2-1 Calculating the Distance Between Two Points
	Exercise 11.2-2 How Far Did the Car Travel?

	11.3 Review Questions: True/False
	11.4 Review Questions: Multiple Choice
	11.5 Review Exercises

	Chapter 12 Complex Mathematical Expressions
	12.1 Writing Complex Mathematical Expressions
	Exercise 12.1-1 Representing Mathematical Expressions in Java
	Exercise 12.1-2 Writing a Mathematical Expression in Java
	Exercise 12.1-3 Writing a Complex Mathematical Expression in Java

	12.2 Review Exercises

	Chapter 13 Exercises With a Quotient and a Remainder
	13.1 Introduction
	Exercise 13.1-1 Calculating the Quotient and Remainder of Integer Division
	Exercise 13.1-2 Finding the Sum of Digits
	Exercise 13.1-3 Displaying an Elapsed Time
	Exercise 13.1-4 Reversing a Number

	13.2 Review Exercises

	Chapter 14 Manipulating Strings
	14.1 Introduction
	14.2 The Position of a Character in a String
	14.3 Useful String Methods (Subprograms), and More
	Exercise 14.3-1 Displaying a String Backwards
	Exercise 14.3-2 Switching the Order of Names
	Exercise 14.3-3 Creating a Login ID
	Exercise 14.3-4 Creating a Random Word
	Exercise 14.3-5 Finding the Sum of Digits

	14.4 Review Questions: True/False
	14.5 Review Questions: Multiple Choice
	14.6 Review Exercises

	Review in “Sequence Control Structures”
	Review Crossword Puzzle
	Review Questions

	Part IV Decision Control Structures
	Chapter 15 Making Questions
	15.1 Introduction
	15.2 What is a Boolean Expression?
	15.3 How to Write Simple Boolean Expressions
	Exercise 15.3-1 Filling in the Table

	15.4 Logical Operators and Complex Boolean Expressions
	Exercise 15.4-1 Calculating the Results of Complex Boolean Expressions

	15.5 Assigning the Result of a Boolean Expression to a Variable
	15.6 What is the Order of Precedence of Logical Operators?
	Exercise 15.6-1 Filling in the Truth Table
	Exercise 15.6-2 Converting English Sentences to Boolean Expressions

	15.7 What is the Order of Precedence of Arithmetic, Comparison, and Logical Operators?
	15.8 How to Negate Boolean Expressions
	Exercise 15.8-1 Negating Boolean Expressions

	15.9 Review Questions: True/False
	15.10 Review Questions: Multiple Choice
	15.11 Review Exercises

	Chapter 16 The Single-Alternative Decision Structure
	16.1 The Single-Alternative Decision Structure
	Exercise 16.1-1 Trace Tables and Single-Alternative Decision Structures
	Exercise 16.1-2 The Absolute Value of a Number

	16.2 Review Questions: True/False
	16.3 Review Questions: Multiple Choice
	16.4 Review Exercises

	Chapter 17 The Dual-Alternative Decision Structure
	17.1 The Dual-Alternative Decision Structure
	Exercise 17.1-1 Finding the Output Message
	Exercise 17.1-2 Trace Tables and Dual-Alternative Decision Structures
	Exercise 17.1-3 Who is the Greatest?
	Exercise 17.1-4 Finding Odd and Even Numbers
	Exercise 17.1-5 Weekly Wages

	17.2 Review Questions: True/False
	17.3 Review Questions: Multiple Choice
	17.4 Review Exercises

	Chapter 18 The Multiple-Alternative Decision Structure
	18.1 The Multiple-Alternative Decision Structure
	Exercise 18.1-1 Trace Tables and Multiple-Alternative Decision Structures
	Exercise 18.1-2 Counting the Digits

	18.2 Review Questions: True/False
	18.3 Review Exercises

	Chapter 19 The Case Decision Structure
	19.1 The Case Decision Structure
	Exercise 19.1-1 The Days of the Week

	19.2 Review Questions: True/False
	19.3 Review Exercises

	Chapter 20 Nested Decision Control Structures
	20.1 What are Nested Decision Control Structures?
	Exercise 20.1-1 Trace Tables and Nested Decision Control Structures
	Exercise 20.1-2 Positive, Negative or Zero?

	20.2 Review Questions: True/False
	20.3 Review Exercises

	Chapter 21 More about Flowcharts with Decision Control Structures
	21.1 Introduction
	21.2 Converting Java Programs to Flowcharts
	Exercise 21.2-1 Designing the Flowchart
	Exercise 21.2-2 Designing the Flowchart
	Exercise 21.2-3 Designing the Flowchart

	21.3 A Mistake That You Will Probably Make!
	21.4 Converting Flowcharts to Java Programs
	Exercise 21.4-1 Writing the Java Program
	Exercise 21.4-2 Writing the Java Program
	Exercise 21.4-3 Writing the Java Program

	21.5 Review Exercises

	Chapter 22 Tips and Tricks with Decision Control Structures
	22.1 Introduction
	22.2 Choosing a Decision Control Structure
	22.3 Streamlining the Decision Control Structure
	Exercise 22.3-1 “Shrinking” the Algorithm
	Exercise 22.3-2 “Shrinking” the Java Program
	Exercise 22.3-3 “Shrinking” the Algorithm

	22.4 Logical Operators – to Use, or not to Use: That is the Question!
	Exercise 22.4-1 Rewriting the Code
	Exercise 22.4-2 Rewriting the Code

	22.5 Merging Two or More Single-Alternative Decision Structures
	Exercise 22.5-1 Merging the Decision Control Structures
	Exercise 22.5-2 Merging the Decision Control Structures

	22.6 Replacing Two Single-Alternative Decision Structures with a Dual-Alternative One
	Exercise 22.6-1 “Merging” the Decision Control Structures

	22.7 Put the Boolean Expressions Most Likely to be True First
	Exercise 22.7-1 Rearranging the Boolean Expressions

	22.8 Why is Code Indentation so Important?
	22.9 Review Questions: True/False
	22.10 Review Questions: Multiple Choice
	22.11 Review Exercises

	Chapter 23 More with Decision Control Structures
	23.1 Simple Exercises with Decision Control Structures
	Exercise 23.1-1 Is it an Integer?
	Exercise 23.1-2 Validating Data Input and Finding Odd and Even Numbers
	Exercise 23.1-3 Where is the Tollkeeper?
	Exercise 23.1-4 The Most Scientific Calculator Ever!
	Exercise 23.1-5 Converting Gallons to Liters, and Vice Versa
	Exercise 23.1-6 Converting Gallons to Liters, and Vice Versa (with Data Validation)

	23.2 Finding Minimum and Maximum Values with Decision Control Structures
	Exercise 23.2-1 Finding the Name of the Heaviest Person

	23.3 Decision Control Structures in Solving Mathematical Problems
	Exercise 23.3-1 Finding the Value of y
	Exercise 23.3-2 Finding the Values of y
	Exercise 23.3-3 Solving the Linear Equation ax + b = 0
	Exercise 23.3-4 Solving the Quadratic Equation ax2 + bx + c = 0

	23.4 Exercises with Series of Consecutive Ranges of Values
	Exercise 23.4-1 Calculating the Discount
	Exercise 23.4-2 Validating Data Input and Calculating the Discount
	Exercise 23.4-3 Sending a Parcel
	Exercise 23.4-4 Finding the Values of y
	Exercise 23.4-5 Progressive Rates and Electricity Consumption
	Exercise 23.4-6 Progressive Rates and Text Messaging Services

	23.5 Exercises of a General Nature with Decision Control Structures
	Exercise 23.5-1 Finding a Leap Year
	Exercise 23.5-2 Displaying the Days of the Month
	Exercise 23.5-3 Checking for Proper Capitalization and Punctuation
	Exercise 23.5-4 Is the Number a Palindrome?

	23.6 Boolean Expressions Reference and Handy Tips
	23.7 Review Exercises

	Review in “Decision Control Structures”
	Review Crossword Puzzle
	Review Questions

	Part V Loop Control Structures
	Chapter 24 Introduction to Loop Control Structures
	24.1 What is a Loop Control Structure?
	24.2 From Sequence Control to Loop Control Structures
	24.3 Review Questions: True/False

	Chapter 25 Pre-Test, Mid-Test and Post-Test Loop Structures
	25.1 The Pre-Test Loop Structure
	Exercise 25.1-1 Designing the Flowchart and Counting the Total Number of Iterations
	Exercise 25.1-2 Counting the Total Number of Iterations
	Exercise 25.1-3 Counting the Total Number of Iterations
	Exercise 25.1-4 Counting the Total Number of Iterations
	Exercise 25.1-5 Finding the Sum of Four Numbers
	Exercise 25.1-6 Finding the Sum of Odd Numbers
	Exercise 25.1-7 Finding the Sum of N Numbers
	Exercise 25.1-8 Finding the Sum of an Unknown Quantity of Numbers
	Exercise 25.1-9 Finding the Product of 20 Numbers

	25.2 The Post-Test Loop Structure
	Exercise 25.2-1 Designing the Flowchart and Counting the Total Number of Iterations
	Exercise 25.2-2 Counting the Total Number of Iterations
	Exercise 25.2-3 Designing the Flowchart and Counting the Total Number of Iterations
	Exercise 25.2-4 Counting the Total Number of Iterations
	Exercise 25.2-5 Finding the Product of N Numbers

	25.3 The Mid-Test Loop Structure
	Exercise 25.3-1 Designing the Flowchart and Counting the Total Number of Iterations

	25.4 Review Questions: True/False
	25.5 Review Questions: Multiple Choice
	25.6 Review Exercises

	Chapter 26 Definite Loops
	26.1 The for statement
	Exercise 26.1-1 Creating the Trace Table
	Exercise 26.1-2 Creating the Trace Table
	Exercise 26.1-3 Counting the Total Number of Iterations
	Exercise 26.1-4 Finding the Sum of Four Numbers
	Exercise 26.1-5 Finding the Square Roots from 0 to N
	Exercise 26.1-6 Finding the Sum of 1 + 2 + 3 + … + 100
	Exercise 26.1-7 Finding the Product of 2 × 4 × 6 × 8 × 10
	Exercise 26.1-8 Finding the Sum of 22 + 42 + 62 + … (2N)2
	Exercise 26.1-9 Finding the Sum of 33 + 66 + 99 + … (3N)3N
	Exercise 26.1-10 Finding the Average Value of Positive Numbers
	Exercise 26.1-11 Counting the Vowels

	26.2 Rules that Apply to For-Loops
	Exercise 26.2-1 Counting the Total Number of Iterations
	Exercise 26.2-2 Counting the Total Number of Iterations
	Exercise 26.2-3 Counting the Total Number of Iterations
	Exercise 26.2-4 Counting the Total Number of Iterations
	Exercise 26.2-5 Finding the Sum of N Numbers

	26.3 Review Questions: True/False
	26.4 Review Questions: Multiple Choice
	26.5 Review Exercises

	Chapter 27 Nested Loop Control Structures
	27.1 What is a Nested Loop?
	Exercise 27.1-1 Say “Hello Zeus”. Counting the Total Number of Iterations.
	Exercise 27.1-2 Creating the Trace Table

	27.2 Rules that Apply to Nested Loops
	Exercise 27.2-1 Violating the First Rule
	Exercise 27.2-2 Violating the Second Rule

	27.3 Review Questions: True/False
	27.4 Review Questions: Multiple Choice
	27.5 Review Exercises

	Chapter 28 More about Flowcharts with Loop Control Structures
	28.1 Introduction
	28.2 Converting Java Programs to Flowcharts
	Exercise 28.2-1 Designing the Flowchart Fragment
	Exercise 28.2-2 Designing the Flowchart Fragment
	Exercise 28.2-3 Designing the Flowchart
	Exercise 28.2-4 Designing the Flowchart Fragment
	Exercise 28.2-5 Designing the Flowchart

	28.3 Converting Flowcharts to Java Programs
	Exercise 28.3-1 Writing the Java Program
	Exercise 28.3-2 Writing the Java Program
	Exercise 28.3-3 Writing the Java Program
	Exercise 28.3-4 Writing the Java Program

	28.4 Review Exercises

	Chapter 29 Tips and Tricks with Loop Control Structures
	29.1 Introduction
	29.2 Choosing a Loop Control Structure
	29.3 The “Ultimate” Rule
	29.4 Breaking Out of a Loop
	29.5 Cleaning Out Your Loops
	Exercise 29.5-1 Cleaning Out the Loop
	Exercise 29.5-2 Cleaning Out the Loop

	29.6 Endless Loops and How to Stop Them
	29.7 The “From Inner to Outer” Method
	29.8 Review Questions: True/False
	29.9 Review Questions: Multiple Choice
	29.10 Review Exercises

	Chapter 30 More with Loop Control Structures
	30.1 Simple Exercises with Loop Control Structures
	Exercise 30.1-1 Counting the Numbers According to Which is Greater
	Exercise 30.1-2 Counting the Numbers According to Their Digits
	Exercise 30.1-3 How Many Numbers Fit in a Sum
	Exercise 30.1-4 Finding the Total Number of Positive Integers
	Exercise 30.1-5 Iterating as Many Times as the User Wishes
	Exercise 30.1-6 Finding the Sum of the Digits

	30.2 Exercises with Nested Loop Control Structures
	Exercise 30.2-1 Displaying all Three-Digit Integers that Contain a Given Digit
	Exercise 30.2-2 Displaying all Instances of a Specified Condition

	30.3 Data Validation with Loop Control Structures
	Exercise 30.3-1 Finding Odd and Even Numbers
	Exercise 30.3-2 Finding the Sum of Four Numbers

	30.4 Finding Minimum and Maximum Values with Loop Control Structures
	Exercise 30.4-1 Validating and Finding the Minimum and the Maximum Value
	Exercise 30.4-2 Validating and Finding the Hottest Planet
	Exercise 30.4-3 ”Making the Grade”

	30.5 Using Loop Control Structures to Solve Mathematical Problems
	Exercise 30.5-1 Calculating the Area of as Many Triangles as the User Wishes
	Exercise 30.5-2 Finding x and y
	Exercise 30.5-3 The Russian Multiplication Algorithm
	Exercise 30.5-4 Finding the Number of Divisors
	Exercise 30.5-5 Is the Number a Prime?
	Exercise 30.5-6 Finding all Prime Numbers from 1 to N
	Exercise 30.5-7 Heron's Square Root
	Exercise 30.5-8 Calculating π
	Exercise 30.5-9 Approximating a Real with a Fraction

	30.6 Exercises of a General Nature with Loop Control Structures
	Exercise 30.6-1 Fahrenheit to Kelvin, from 0 to 100
	Exercise 30.6-2 Rice on a Chessboard
	Exercise 30.6-3 Just a Poll
	Exercise 30.6-4 Is the Message a Palindrome?

	30.7 Review Questions: True/False
	30.8 Review Exercises

	Review in “Loop Control Structures”
	Review Crossword Puzzle
	Review Questions

	Part VI Data Structures in Java
	Chapter 31 One-Dimensional Arrays and HashMaps
	31.1 Introduction
	31.2 What is an Array?
	Exercise 31.2-1 Designing an Array
	Exercise 31.2-2 Designing Arrays
	Exercise 31.2-3 Designing Arrays

	31.3 Creating One-Dimensional Arrays in Java
	31.4 How to Get Values from a One-Dimensional Array
	Exercise 31.4-1 Creating the Trace Table
	Exercise 31.4-2 Using a Non-Existing Index

	31.5 How to Alter the Value of an Array Element
	31.6 How to Iterate Through a One-Dimensional Array
	Exercise 31.6-1 Finding the Sum

	31.7 How to Add User-Entered Values to a One-Dimensional Array
	Exercise 31.7-1 Displaying Words in Reverse Order
	Exercise 31.7-2 Displaying Positive Numbers in Reverse Order
	Exercise 31.7-3 Finding the Average Value
	Exercise 31.7-4 Displaying Reals Only
	Exercise 31.7-5 Displaying Elements with Odd-Numbered Indexes
	Exercise 31.7-6 Displaying Even Numbers in Odd–Numbered Index Positions

	31.8 What is a HashMap?
	31.9 Creating HashMaps in Java
	31.10 How to Get a Value from a HashMap
	Exercise 31.10-1 Roman Numerals to Numbers
	Exercise 31.10-2 Using a Non-Existing Key in HashMaps

	31.11 How to Alter the Value of a HashMap Element
	Exercise 31.11-1 Assigning a Value to a Non-Existing Key

	31.12 How to Iterate Through a HashMap
	31.13 Review Questions: True/False
	31.14 Review Questions: Multiple Choice
	31.15 Review Exercises

	Chapter 32 Two-Dimensional Arrays
	32.1 Creating Two-Dimensional Arrays in Java
	32.2 How to Get Values from Two-Dimensional Arrays
	Exercise 32.2-1 Creating the Trace Table

	32.3 How to Iterate Through a Two-Dimensional Array
	32.4 How to Add User-Entered Values to a Two-Dimensional Array
	Exercise 32.4-1 Displaying Reals Only
	Exercise 32.4-2 Displaying Odd Columns Only

	32.5 What's the Story on Variables i and j?
	32.6 Square Matrices
	Exercise 32.6-1 Finding the Sum of the Elements on the Main Diagonal
	Exercise 32.6-2 Finding the Sum of the Elements on the Antidiagonal
	Exercise 32.6-3 Filling in the Array

	32.7 Review Questions: True/False
	32.8 Review Questions: Multiple Choice
	32.9 Review Exercises

	Chapter 33 Tips and Tricks with Data Structures
	33.1 Introduction
	33.2 Processing Each Row Individually
	Exercise 33.2-1 Finding the Average Value

	33.3 Processing Each Column Individually
	Exercise 33.3-1 Finding the Average Value

	33.4 How to Use More Than One Data Structures in a Program
	Exercise 33.4-1 Using Three One-Dimensional Arrays
	Exercise 33.4-2 Using a One-Dimensional Array Along with a Two-Dimensional Array
	Exercise 33.4-3 Using an Array Along with a HashMap

	33.5 Creating a One-Dimensional Array from a Two-Dimensional Array
	33.6 Creating a Two-Dimensional Array from a One-Dimensional Array
	33.7 Useful Data Structures Methods (Subprograms), and More
	33.8 Review Questions: True/False
	33.9 Review Questions: Multiple Choice
	33.10 Review Exercises

	Chapter 34 More with Data Structures
	34.1 Simple Exercises with Arrays
	Exercise 34.1-1 Creating an Array that Contains the Average Values of its Neighboring Elements
	Exercise 34.1-2 Creating an Array with the Greatest Values
	Exercise 34.1-3 Merging One-Dimensional Arrays
	Exercise 34.1-4 Creating Two Arrays – Separating Positive from Negative Values
	Exercise 34.1-5 Creating an Array with Those who Contain Digit 5

	34.2 Data Validation with Arrays
	Exercise 34.2-1 Displaying Odds in Reverse Order

	34.3 Finding Minimum and Maximum Values in Arrays
	Exercise 34.3-1 Which Depth is the Greatest?
	Exercise 34.3-2 Which Lake is the Deepest?
	Exercise 34.3-3 Which Lake, in Which Country, Having Which Average Area, is the Deepest?
	Exercise 34.3-4 Which Students Have got the Greatest Grade?
	Exercise 34.3-5 Finding the Minimum Value of a Two-Dimensional Array
	Exercise 34.3-6 Finding the City with the Coldest Day
	Exercise 34.3-7 Finding the Minimum and the Maximum Value of Each Row

	34.4 Sorting Arrays
	Exercise 34.4-1 The Bubble Sort Algorithm – Sorting One-Dimensional Arrays with Numeric Values
	Exercise 34.4-2 Sorting One-Dimensional Arrays with Alphanumeric Values
	Exercise 34.4-3 Sorting One-Dimensional Arrays While Preserving the Relationship with a Second Array
	Exercise 34.4-4 Sorting Last and First Names
	Exercise 34.4-5 Sorting a Two-Dimensional Array
	Exercise 34.4-6 The Modified Bubble Sort Algorithm – Sorting One-Dimensional Arrays
	Exercise 34.4-7 The Selection Sort Algorithm – Sorting One-Dimensional Arrays
	Exercise 34.4-8 Sorting One-Dimensional Arrays While Preserving the Relationship with a Second Array
	Exercise 34.4-9 The Insertion Sort Algorithm – Sorting One-Dimensional Arrays
	Exercise 34.4-10 The Three Worst Elapsed Times

	34.5 Searching Elements in Data Structures
	Exercise 34.5-1 The Linear Search Algorithm – Searching in a One-Dimensional Array that may Contain the Same Value Multiple Times
	Exercise 34.5-2 Display the Last Names of All Those People Who Have the Same First Name
	Exercise 34.5-3 The Linear Search Algorithm – Searching in a Two-Dimensional Array that May Contain the Same Value Multiple Times
	Exercise 34.5-4 The Linear Search Algorithm – Searching in a One-Dimensional Array that Contains Unique Values
	Exercise 34.5-5 Searching for a Social Security Number
	Exercise 34.5-6 The Linear Search Algorithm – Searching in a Two-Dimensional Array that Contains Unique Values
	Exercise 34.5-7 Checking if a Value Exists in all Columns
	Exercise 34.5-8 The Binary Search Algorithm – Searching in a Sorted One-Dimensional Array
	Exercise 34.5-9 Display all the Historical Events for a Country
	Exercise 34.5-10 Searching in Each Column of a Two-Dimensional Array

	34.6 Exercises of a General Nature with Data Structures
	Exercise 34.6-1 On Which Days was There a Possibility of Snow?
	Exercise 34.6-2 Was There Any Possibility of Snow?
	Exercise 34.6-3 In Which Cities was There a Possibility of Snow?
	Exercise 34.6-4 Display from Highest to Lowest Grades by Student, and in Alphabetical Order
	Exercise 34.6-5 Archery at the Summer Olympics
	Exercise 34.6-6 The Five Best Scorers
	Exercise 34.6-7 Counting the Frequency of Vowels

	34.7 Review Questions: True/False
	34.8 Review Exercises

	Review in “Data Structures in Java”
	Review Crossword Puzzle
	Review Questions

	Part VII Subprograms
	Chapter 35 Introduction to Subprograms
	35.1 What Exactly is a Subprogram?
	35.2 What is Procedural Programming?
	35.3 What is Modular Programming?
	35.4 Review Questions: True/False

	Chapter 36 User-Defined Subprograms
	36.1 Subprograms that Return a Value
	36.2 How to Make a Call to a Method
	36.3 Subprograms that Return no Values
	36.4 How to Make a Call to a void Method
	36.5 Formal and Actual Arguments
	36.6 How Does a Method Execute?
	Exercise 36.6-1 Back to Basics – Calculating the Sum of Two Numbers
	Exercise 36.6-2 Calculating the Sum of Two Numbers Using Fewer Lines of Code!

	36.7 How Does a void Method Execute?
	Exercise 36.7-1 Back to Basics – Displaying the Absolute Value of a Number

	36.8 Review Questions: True/False
	36.9 Review Exercises

	Chapter 37 Tips and Tricks with Subprograms
	37.1 Can Two Subprograms use Variables of the Same Name?
	37.2 Can a Subprogram Call Another Subprogram?
	37.3 Passing Arguments by Value and by Reference
	37.4 Returning an Array
	37.5 Overloading Methods
	37.6 The Scope of a Variable
	37.7 Converting Parts of Code into Subprograms
	37.8 Recursion
	37.9 Review Questions: True/False
	37.10 Review Exercises

	Chapter 38 More with Subprograms
	38.1 Simple Exercises with Subprograms
	Exercise 38.1-1 A Simple Currency Converter
	Exercise 38.1-2 Finding the Average Values of Positive Integers
	Exercise 38.1-3 Finding the Sum of Odd Positive Integers
	Exercise 38.1-4 Finding the Values of y

	38.2 Exercises of a General Nature with Subprograms
	Exercise 38.2-1 Validating Data Input Using a Subprogram
	Exercise 38.2-2 Sorting an Array Using a Subprogram
	Exercise 38.2-3 Progressive Rates and Electricity Consumption
	Exercise 38.2-4 Roll, Roll, Roll the… Dice!
	Exercise 38.2-5 How Many Times Does Each Number of the Dice Appear?

	38.3 Review Exercises

	Review in “Subprograms”
	Review Crossword Puzzle
	Review Questions

	Part VIII Object-Oriented Programming
	Chapter 39 Introduction to Object-Oriented Programming
	39.1 What is Object-Oriented Programming?
	39.2 Classes and Objects in Java
	39.3 The Constructor and the Keyword this
	39.4 Passing Initial Values to the Constructor
	Exercise 39.4-1 Historical Events

	39.5 Getter and Setter Methods
	Exercise 39.5-1 The Roman Numerals

	39.6 Can a Method Call Another Method of the Same Class?
	Exercise 39.6-1 Doing Math

	39.7 Class Inheritance
	39.8 Review Questions: True/False
	39.9 Review Exercises

	Review in “Object-Oriented Programming”
	Review Crossword Puzzle
	Review Questions

	Part IX Files
	Chapter 40 Introduction to Files
	40.1 Introduction
	40.2 Opening a File
	40.3 Closing a File
	40.4 Writing in (or Appending to) a File
	40.5 The File Pointer
	40.6 Reading from a File
	40.7 Iterating Through the Contents of a File
	40.8 Review Questions: True/False
	40.9 Review Exercises

	Chapter 41 More with Files
	41.1 Exercises of a General Nature with Files
	Exercise 41.1-1 Calculating the Sum of 10 Numbers
	Exercise 41.1-2 Calculating the Average Value of an Unknown Quantity of Numbers
	Exercise 41.1-3 Finding Minimum and Maximum Values
	Exercise 41.1-4 Concatenating Files
	Exercise 41.1-5 Searching in a File
	Exercise 41.1-6 Combining Files with Subprograms

	41.2 Review Exercises

	Review in “Files”
	Review Crossword Puzzle
	Review Questions

	Some Final Words from the Author
	Blank Page

