

Essential Linux Commands

100 Linux commands every system administrator should know

Paul Olushile

BIRMINGHAM—MUMBAI

Essential Linux Commands
Copyright © 2023 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case
of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable
for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Group Product Manager: Pavan Ramchandani
Publishing Product Manager: Neha Sharma
Book Project Manager: Ashwin Kharwa
Senior Editor: Athikho Sapuni Rishana
Technical Editor: Arjun Varma
Copy Editor: Safis Editing
Proofreader: Safis Editing
Indexer: Manju Arasan
Production Designer: Joshua Misquitta
Marketing Coordinators: Marylou De Mello and Shruthi Shetty

First published: November 2023
Production reference: 1081123

Published by Packt Publishing Ltd.
 Grosvenor House
 11 St Paul’s Square
 Birmingham
 B3 1RB, UK

ISBN 978-1-80323-903-3
www.packtpub.com

http://www.packtpub.com

To my wife, Anthonia, for being my loving partner throughout our joint life journey.

– Paul Olushile

Contributors

About the author
Paul Olushile is a penetration tester at First City Monument Bank, specializing in Linux administration
and cybersecurity. With a strong track record of securing digital environments and a passion for
Linux, Paul has a proven ability to identify vulnerabilities and protect against cyber threats. His career
has been defined by a relentless pursuit of knowledge and expertise in the field. He has consistently
demonstrated proficiency in network security, ethical hacking, and system hardening. He is dedicated
to enhancing digital resilience, promoting secure practices, and fostering a culture of vigilance against
cyber threats.

I want to thank the people who have been close to me and supported me, especially my wife, Anthonia,
and my mom.

About the reviewers
Himanshu Sharma has 2 decades of experience in designing, architecting, and developing cloud and
network software. He had worked for some of the biggest companies, such as Brocade and Juniper, and
start-ups, such as Netskope. Currently, he works with Netskope as a principal engineer, responsible
for Netskope’s security service offering. He designed, architected, and developed Netskope’s Advanced
Threat Protection service from the ground up. He has a keen interest and experience in developing
scalable cloud services with cutting-edge technologies. His favorite hobbies are skiing and playing
video games.

I would like to thank my wife, Puja, who gave me lots of support, and my two loving and beautiful
daughters, Navya and Jaanvi.

Also, I want to thank my brother, Sudhanshu, for always having my back, and my parents for all their
sacrifices to get me where I am today.

Alan Lacerda, commonly recognized by the alias ifundef, is a seasoned Security Engineer, underlined
by two decades of rigorous experience in network, operating systems, and software development. As
a polymath of technology, his journey spans roles from being a Network Analyst to shaping solutions
using diverse programming languages such as Java, Python, and Golang. His prowess has magnified as
a penetration tester and, in recent years, as the mastermind behind a comprehensive malware toolkit.
This cutting-edge resource serves security assessments to prominent corporations across the North
American landscape. He holds the titles of CRTO, OSCP, eWPT, CRTP, DCPT, CCNA and LPIC.

To my irreplaceable wife, Naiane. This journey, every word written and every insight shared, belongs
to you. It is not an exaggeration to say that without you, the knowledge I possess today would
remain undiscovered.

I am deeply conscious that my role as a reviewer for this book is a testament to our shared journey.
From the core of my being, thank you, Naiane. My achievements are but a reflection of your love
and belief.

Preface xiii

Part 1: Server Installations and
Management Commands

1
Getting a CentOS
Server Up and Running 3

Downloading the OS installation
file 4
Downloading and setting up a
hypervisor 7
Package installation commands 28

YUM package management system 28
Common package installation
commands 29

Information commands 30
Summary 32

2
Linux User and Group Commands 33

useradd, userdel, and usermod 34
useradd 34
userdel 36
usermod 38

Files, directories, and permission
commands 40
chmod 41
chown 41

chgrp 41

groupdel, groupmod, groupadd,
and grpck 42
pwck, chage, and passwd
commands 44
find, locate, and whereis
commands 48
Summary 50

Table of Contents

Table of Contentsviii

3
File Compression and Archival Commands 51

gunzip and gzip 52
tar, rar, and unrar 55
zip and unzip 57

bunzip2, bzip2, and more 58
Summary 63

Part 2: Frequently Used Commands - Part 1

4
Format and Disk Space Commands 67

The history and evolution of disk
formatting and partitioning in
Linux 68
Steps to create a partition 69
fdisk, lsblk, df, and du 73
Checking the disk space usage of a
directory 75
Finding large files in a directory 76

Displaying (dpkg and rpm)
package space 76
Installing a package 77
Querying the details of a package 77

mkfs, mke2fs, fdformat, and
more 78
Summary 84

5
Linux Permissions Commands 87

Why permission commands? 88
Types of permissions 89
chmod 90
chown 94
Utilizing absolute paths in
commands 96

chgrp 98
umask 99
sudo 101
Summary 103

Table of Contents ix

6
Filesystem Mount and Manipulation Commands 105

Linux mount commands 106
The mount command 106
The umount command 109
The fuser command 111

File manipulation using cat,
grep, and more 114
Summary 117

Part 3: Frequently Used Commands - Part 2

7
File Content and Conversion Commands 121

The tail and file commands 122
The convert command 124
Using dos2unix to convert MS-DOS
files to Unix 127

Using unix2dos to convert Unix
files to MS-DOS 129
The recode command 131
Summary 132

8
Linux SWAP Commands 133

The swapon command 134
The free command 136

Summary 138

9
Linux Monitoring and Debugging Commands 139

The top command 140
The ps command 143
The pstree command 145
The strace command 146

The watch command 148
The smartctl command 148
The uptime command 149
The lsof command 150

Table of Contentsx

The lsmod command 151
The last reboot command 153
The last command 153
The w command 154

The vmstat command 154
The kill command 156
The pkill command 157
Summary 158

10
Linux IPTABLES and Network Commands 159

iptables -t ACCEPT 160
iptables -t DROP 162
ifconfig, ip, route, and netstat 163
ip, route, and netstat 163

Hostname and nslookup 165
host 167
Summary 168

11
File Transfer, Downloading, and Managing Log Files 169

Copying files into remote systems
using netcat and socat 170
Downloading files with wget and curl 173

Exploring common log files 175
Summary 178

Part 4: Linux Security and the Cloud

12
Exploring Linux Security 181

Utilizing enforcing and permissive
modes 182
A short introduction to Linux hardening and
the role of SELinux’s enforcing and passive
modes 183
The role of enforcing mode 183
The role of permissive mode 183

Enabling or disabling SELinux
Boolean values 184

Searching for a Boolean and getting its
information 186
Enabling a SELinux Boolean value 187
Disabling a SELinux Boolean value 187

Locking user accounts 188
Securing SSH 189
Summary 192

Table of Contents xi

13
Linux in the Cloud 193

Creating EC2 instances on AWS 194
Connecting to a created EC2
instance using PuTTY 207

Working on our EC2 instance 212
Summary 218

Index 219

Other Books You May Enjoy 228

Preface

Hello there! In our rapidly changing world of technology, it is essential to learn and understand the
Linux command-line interface. The Linux operating system (OS), known for its robustness, versatility,
and open source nature, has become an integral part of modern computing.

Essential Linux Commands is your gateway to this dynamic world of command-line proficiency.
Whether you’re a seasoned system administrator, a developer, or simply someone eager to explore
the power of Linux, this book offers a comprehensive and accessible guide to the fundamental tools
that make Linux tick.

Linux commands are the unsung heroes, silently but efficiently performing tasks ranging from managing
files to configuring networks, securing systems, and optimizing performance. Each command is a
valuable tool in your arsenal, capable of simplifying complex operations and automating routine chores.

As our digital landscape continues to transform, understanding Linux commands becomes a
fundamental skill. With this book, you’ll not only acquire the technical knowledge to navigate the
Linux environment but also the confidence to tackle real-world challenges.

The beauty of Linux commands lies in their universal applicability. They are equally relevant to
individuals working on personal projects and professionals overseeing complex enterprise-level
infrastructure. The knowledge gained from this book will empower you to efficiently manage and
manipulate Linux-based systems.

The book provides in-depth explanations, practical examples, and valuable insights, ensuring that you
gain both the technical proficiency and the practical wisdom needed to excel in the world of Linux.

Just as the world of Linux commands continues to grow and evolve, this book is designed to grow
with you, offering an essential foundation for Linux mastery.

So, as we embark on this journey through Essential Linux Commands, prepare to unlock the full potential
of Linux and transform the way you interact with the digital world. Whether you’re venturing into
Linux for the first time or seeking to enhance your existing skills, this book is your key to becoming
a proficient Linux command-line user.

Prefacexiv

Who this book is for
This book is designed for a diverse audience of technology enthusiasts, professionals, and learners. It caters
to a range of individuals who can benefit from a comprehensive guide to Linux command-line proficiency:

• Linux enthusiasts: If you’re passionate about Linux and want to deepen your understanding of
its command-line interface, this book provides a wealth of knowledge to further your expertise.

• Developers: Whether you’re a software developer, web developer, or programmer, understanding
Linux commands is invaluable for your work. This book helps you harness the power of the
command line to improve your productivity.

• IT professionals: If you work in the IT industry, this book offers insights into Linux commands
that can enhance your problem-solving capabilities and broaden your skill set.

• Students and aspiring professionals: If you’re studying computer science or pursuing a
career in IT, this book serves as a foundational resource to help you grasp the fundamentals
of Linux commands.

• Anyone curious about Linux: If you’ve been curious about Linux and want to explore its
command-line capabilities, this book is a user-friendly starting point.

What this book covers
Chapter 1, Getting a CentOS Server Up and Running, provides a comprehensive guide to the initial
setup of a CentOS server, offering essential insights and practical steps for a seamless start. It covers
key aspects such as downloading the OS installation file, downloading and setting up a hypervisor,
package installation commands, and information commands.

Chapter 2, Linux User and Group Commands, provides valuable insights and hands-on guidance for
using commands such as useradd, userdel, and usermod, as well as mastering file, directory,
and permission commands. Additionally, it covers the groupdel, groupmod, groupadd, and
grpck commands, along with the pwck, chage, and passwd commands. To enhance your Linux
skills further, this chapter also delves into the find, locate, and whereis commands.

Chapter 3, File Compression and Archival Commands, provides a comprehensive guide to essential
commands to manage and compress files and archives. It equips you with the knowledge and practical
skills needed to efficiently work with file compression and archival tools. The chapter covers commands
such as gunzip and gzip for compression, tar, rar, and unrar for archiving, zip and unzip
for creating and extracting archives, as well as commands such as bunzip2 and bzip2.

Chapter 4, Format and Disk Space Commands, offers a comprehensive guide to essential commands
to manage disk formatting and optimize disk space in a Linux environment. It equips you with the
knowledge and practical skills needed to efficiently work with disk formatting and space management
tools. It explores the history and evolution of disk formatting and partitioning in Linux, providing
step-by-step instructions to create partitions. It also covers essential commands such as fdisk,

Preface xv

lsblk, df, and du to analyze and manage disk space, as well as commands to display package space
such as dpkg and rpm. Additionally, the chapter delves into commands such as mkfs, mke2fs,
and fdformat.

Chapter 5, Linux Permissions Commands, provides a comprehensive guide to managing and optimizing
file permissions in a Linux environment. It equips you with the knowledge and practical skills necessary
to efficiently work with Linux permission commands. It also explores the significance of permission
commands and different types of permissions, and delves into commands such as chmod, chown,
chgrp, and umask. Additionally, it covers the utilization of absolute paths in commands and
introduces the use of sudo for executing commands with elevated privileges.

Chapter 6, Filesystem Mount and Manipulation Commands, equips you with the knowledge and
practical skills needed to efficiently manage filesystems, perform mounting, and manipulate files in a
Linux environment. It explores essential Linux mount commands, covering the mount and umount
commands to mount and unmount filesystems. Additionally, it introduces the fuser command and
delves into file manipulation, using commands such as cat and grep, enabling you to work with
files and directories effectively in a Linux environment.

Chapter 7, File Content and Conversion Commands, provides you with the knowledge and practical
skills necessary to efficiently work with file content and conversion in a Linux environment. It explores
essential commands such as tail and file to examine and analyze file content. It also covers the
convert command for file format conversion and introduces tools such as dos2unix to convert
MS-DOS files to the Unix format and unix2dos to convert Unix files to the MS-DOS format.
Additionally, the chapter discusses the recode command, offering you a comprehensive toolkit to
manage and convert file content effectively.

Chapter 8, Linux SWAP Commands, provides you with the essential knowledge and practical skills
required to efficiently manage SWAP memory in a Linux environment. It focuses on critical SWAP
commands such as swapon and free, enabling you to effectively manage and optimize SWAP
memory to enhance system performance.

Chapter 9, Linux Monitoring and Debugging Commands, equips you with an extensive toolkit to
effectively monitor, troubleshoot, and debug Linux systems. Delving into an array of critical commands,
including top, ps, pstree, strace, watch, smartctl, and uptime for real-time monitoring
and system analysis, this chapter ensures that you have the tools at your disposal to maintain a
smoothly running Linux environment. It also covers essential commands such as lsof, lsmod,
last reboot, last, w, and vmstat to track system processes and resource utilization. You’ll
explore the kill and pkill commands to terminate processes, further enhancing your proficiency
in Linux system management.

Chapter 10, Linux IPTABLES and Network Commands, equips you with a comprehensive toolkit to
manage network security and configuration in a Linux environment. This chapter delves into essential
iptables rules such as iptables -t ACCEPT and iptables -t DROP, allowing you to control
network traffic effectively. It also explores network management commands such as ifconfig, ip,

Prefacexvi

route, and netstat to configure and monitor network settings. Additionally, the chapter covers
hostname and nslookup to manage system and network identities, along with host for domain
name resolution, ensuring you have the skills to master network control and security.

Chapter 11, File Transfer, Downloading, and Managing Log Files, provides the tools to efficiently transfer
files, download content, and manage log files in a Linux environment. This chapter explores methods
to copy files into remote systems using netcat and socat, providing versatile file transfer solutions.
It also covers the use of wget and curl to download files from the web. Additionally, the chapter
delves into the exploration of common log files, enhancing your skills in managing and analyzing
system logs for troubleshooting and monitoring.

Chapter 12, Exploring Linux Security, equips you with the knowledge and tools to enhance the security
of your Linux system. This chapter delves into topics such as enforcing and permissive modes, enabling
or disabling SELinux Boolean values, locking user accounts, and securing SSH. It provides you with a
comprehensive understanding of Linux security measures and practical techniques to safeguard your
system from potential threats and vulnerabilities.

Chapter 13, Linux in the Cloud, provides an in-depth exploration within the scope of AWS services,
with a focus on creating EC2 instances on AWS, guiding you through the process of establishing
secure connections using PuTTY and efficiently working within these instances. It equips you with the
essential knowledge and skills required to seamlessly launch a Linux environment within the cloud.

To get the most out of this book

Software/hardware covered in the book OS requirements
VMware Windows
PuTTY Windows
convert (ImageMagick) Linux

The convert command doesn't come with Linux by default; it’s typically part of the ImageMagick
software suite. To install this, execute the following:

sudo yum install ImageMagick

The following are essential prerequisites to get the most out of this book:

• Basic Linux knowledge: While Essential Linux Commands is designed to be accessible to
beginners. Having a basic understanding of Linux fundamentals, such as filesystem navigation
and command-line usage, can be helpful.

• Desire to learn: You should approach the book with a willingness to learn and experiment with
the Linux commands presented. The more you practice, the more proficient you’ll become.

Preface xvii

• Willing to experiment and explore: Don’t limit yourself to the commands in the book.
Experiment with variations, and explore additional Linux commands that are relevant to your
specific interests or work.

We also have other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “The
useradd command in Linux is used to create a new user account or update an existing one.”

A block of code is set as follows:

username:password:lastpasswordchanged:minpasswordage:maxpasswordage:
passwordwarningperiod:inactivityperiod:expirationdate:reservedfield

When we wish to draw your attention to a particular part of a code block, the relevant lines or items
are set in bold:

username:password:lastpasswordchanged:minpasswordage:maxpasswordage:
passwordwarningperiod:inactivityperiod:expirationdate:reservedfield

Any command-line input or output is written as follows:

sudo "useradd [options] username"

Bold: Indicates a new term, an important word, or words that you see on screen. For example, words
in menus or dialog boxes appear in the text like this. Here is an example: “Our second step is to select
the x86_64 option for all architectures.”

Tips or important notes
Appear like this.

https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Prefacexviii

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book title in the
subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book, we would be grateful if you would report this to us. Please
visit www.packtpub.com/support/errata, select your book, click on the Errata Submission
Form link, and enter the details.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would
be grateful if you would provide us with the location address or website name. Please contact us at
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

Share your thoughts
Once you’ve read Essential Linux Commands, we’d love to hear your thoughts! Please click here to go
straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com
https://packt.link/r/1803239034
https://packt.link/r/1803239034

Preface xix

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781803239033

2. Submit your proof of purchase

3. That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781803239033

Part 1:
Server Installations and

Management Commands

In this part, we dive into fundamental system administration tasks for Linux systems, including
setup, maintenance, and the crucial role of package management in software installation. You’ll
gain proficiency in file structure navigation, user and group management, and file compression and
archiving. Each chapter equips you with distinct commands, essential knowledge, and practical skills
for effective server installations and management in a Linux environment.

This section contains the following chapters:

• Chapter 1, Getting a CentOS Server Up and Running

• Chapter 2, Linux User and Group Commands

• Chapter 3, File Compression and Archival Commands

1
Getting a CentOS

Server Up and Running

As a system administrator, one of the most fundamental tasks you may encounter is defining your
roles and responsibilities. However, how to do this varies greatly depending on who you ask. Different
individuals and companies may have their own unique perspectives on what the title of system
administrator entails.

Welcome to the first chapter of this book, where we will be learning about server installations and
management commands. Setting up a Linux system and keeping it up to date are the basic tasks that
most system administrators perform in their day-to-day work. In this chapter, we will start by setting
up a Linux server and then learn about the purpose of package management and how it provides an
easy way to install software on Linux hosts. We will then explore commands that allow us to view the
Linux file structure, add users and groups, and archive files.

By the end of this chapter, you will have a solid foundation of how to set up and manage Linux servers.
We will begin by learning how to download the CentOS server installation file, set up a hypervisor,
and install packages. We will also explore commands that allow you to view system, kernel, hardware,
and processor information. With the skills you learn in this chapter, you will be able to set up and
manage Linux servers with confidence.

In this chapter, we are going to cover the following main topics:

• Downloading the operating system (OS) installation file

• Downloading and setting up a hypervisor

• Package installation commands

• Information commands

Getting a CentOS Server Up and Running4

Downloading the OS installation file
In this section, we will cover the process of downloading the Linux server operating system, including
which Linux distributions are recommended and the requirements that need to be met.

When it comes to choosing a Linux distribution for your server, there are many options to choose from.
Some popular choices include Ubuntu, Debian, and Red Hat. However, one of the most popular and
stable choices for enterprise and web server environments is the Community Enterprise Operating
System (CentOS).

CentOS is a free and open source Linux distribution based on Red Hat Enterprise Linux (RHEL).
It is known for its stability and reliability, making it a popular choice for enterprise and web server
environments. It is also widely used in the hosting industry, education, research, and for personal use.
It is compatible with the Red Hat ecosystem, meaning that users can leverage their existing knowledge,
skills, and tools of RHEL. The distribution is maintained by a large community of developers and
users who work together to provide updates and security patches, making it a secure and stable choice.
Additionally, it is designed to be fully compatible with the upstream vendor, Red Hat, and it provides an
almost identical environment. This means that users can use the same set of commands and packages
as in Red Hat Linux, and they can also access the Red Hat customer portal and support. As we’ll be
making use of CentOS throughout this book, we’ll be downloading the installation image from the
official website (https://www.centos.org/). The website offers both DVD and minimal ISO
images, which can be used to install the server. Make sure to download the correct version for your
architecture (32-bit or 64-bit).

When it comes to downloading the installation image for CentOS 8, there are two options available:

• CentOS-Stream-8-x86_64-20220104-boot.iso

• CentOS-Stream-8-x86_64-20220104-dvd1.iso

The CentOS-Stream-8-x86_64-20220104-boot.iso file is a minimal image used for
booting the system and performing a network installation. It is designed to be used with a network-
based installation process and contains only the packages required to start the installation process.
Additional files will be downloaded during the installation.

The CentOS-Stream-8-x86_64-20220104-dvd1.iso file is the DVD image containing
all the packages included in the distribution. It can be used for a local installation (also known as an
offline installation, as there is no need to download files during the installation), and it contains a
complete set of packages.

https://www.centos.org/

Downloading the OS installation file 5

It’s important to note that, depending on your system requirements and the intended use of the server,
one of these images may be more suitable than the other. The minimal image is recommended for
servers with limited resources, while the DVD image is recommended for servers with more resources
and a wider range of needs. The following are the system requirements for setting up our own server:

• Processor: A 64-bit processor is required

• Memory: A minimum of 2GB of RAM is recommended, but 8 GB or more is recommended
for servers with a high workload

• Disk space: A minimum of 20 GB of storage space is recommended, but the more storage
space, the better

• Network connectivity: A network connection is required for downloading the installation
image and performing updates

• Graphics card: A graphics card is not necessary for a server, but if you’re planning on using
the server for graphical applications, a graphics card is recommended

• Operating system: A 64-bit version of Windows, macOS, or Linux is required for running
a hypervisor

Now that we know our system requirements, our first step is to open a web browser and go to www.
google.com:

1. In the search bar, type download CentOS ISO and press Enter. This will bring up the
official website for CentOS, which is https://www.centos.org/ (see Figure 1.1).

Figure 1.1 – Google search

https://www.centos.org/

Getting a CentOS Server Up and Running6

2. Our second step is to select the x86_64 option for all architectures:

Figure 1.2 – x86_64 architectures

3. Next, we select the available link for our region. As we can see from the figure, mine is http://
mirror.web4africa.ng/centos/8-stream/isos/x86_64/:

Figure 1.3 – Selection by region

http://mirror.web4africa.ng/centos/8-stream/isos/x86_64/
http://mirror.web4africa.ng/centos/8-stream/isos/x86_64/

Downloading and setting up a hypervisor 7

From the index /centos/8-stream/isos/x86_64/, we’ll need to download the CentOS-Stream-
8-x86_64-20221222-dvd1.iso DVD version. As we have read previously, the DVD image
contains all the packages that are included in the distribution, which means that it can be used to
perform a local installation.

Figure 1.4 – DVD download page

After downloading the image, we’ll need to download a hypervisor.

Downloading and setting up a hypervisor
In this section, we will cover the process of downloading and setting up a hypervisor. A hypervisor
is software that allows you to create and run virtual machines on a physical host. This is essential
knowledge for a system administrator, as it allows for more flexibility and resource management.
There are several hypervisors available, such as VMware, VirtualBox, and Hyper-V. In this book, we
will be using VMware as an example.

Getting a CentOS Server Up and Running8

Figure 1.5 – VMWare (Workstation 16 Pro)

The steps for downloading and setting up a hypervisor are as follows:

1. The first step is to download the VMware software from the official website:

Figure 1.6 – Downloading VMWare Workstation

2. Make sure to download the correct version for your operating system. Once the download is
complete, you will need to install the software on your physical host. This process is straightforward
and involves following the prompts during the installation process.

Downloading and setting up a hypervisor 9

Figure 1.7 – Setting up

Once the installation is complete, you will need to create a new virtual machine.

3. We’ll utilize the Custom configuration wizard. This process involves specifying the amount of
memory and storage and the network settings for the virtual machine.

Figure 1.8 – Custom configuration wizard

Getting a CentOS Server Up and Running10

4. Configure the Virtual machine hardware compatibility settings as follows:

Figure 1.9 – Hardware compatibility settings

5. Choose the operating system media, then choose the I will install the operating system later
option for a hands-on setup process:

Figure 1.10 – Choosing the operating system media

Downloading and setting up a hypervisor 11

6. Provide a name for the virtual machine and choose a location.

Figure 1.11 – Choosing a virtual machine name

7. Select a guest operating system:

Figure 1.12 – Selecting a guest operating system

Getting a CentOS Server Up and Running12

8. Allocate processor resources:

Figure 1.13 – Specifying the number of processors to allocate

9. Allocate memory to the virtual machine. Calculating memory allocation should be approached
in the same manner as processor allocation. Ensure that the host system has adequate memory
and allocate the remainder to the virtual machine. For this example, we’ll be going with 8 GB
or more.

Figure 1.14 – Specifying the amount of memory

Downloading and setting up a hypervisor 13

10. Configure the network settings. Choose the network configurations that meet your needs, or
just select the default NAT Network. Why do this?

Network address translation (NAT) in VMware is a networking feature that allows virtual
machines to access the internet and other network resources with the use of a host computer’s
IP address. This feature provides a secure and convenient way to access the internet for virtual
machines that do not have their own IP addresses. In NAT mode, the virtual machine’s network
traffic is transparently translated between the virtual network and the host’s physical network,
allowing the virtual machine to access network resources as if it were directly connected to the
physical network. NAT is often used in virtualization environments for testing and development,
where virtual machines need access to the internet for downloading software, updates, and so
on but do not require public access.

Figure 1.15 – Network type

11. Select the I/O controller type.

The SCSI controller type is the type of controller that is used to control a virtual disk. The
following figure contains these options:

 � BusLogic: This controller type is not available for 64-bit guests. It is an older controller type
that is no longer commonly used.

Getting a CentOS Server Up and Running14

 � LSI Logic (recommended): This controller type is recommended for most guests. It is a newer
controller type that offers better performance and compatibility than the BusLogic controller.

 � LSI Logic SAS: This controller type is designed for use with Serial Attached SCSI (SAS)
disks. It offers better performance than the LSI Logic controller, but it is not as widely
supported by guest operating systems.

 � Paravirtualized SCSI: This controller type is a high-performance controller that is designed
for use with VMware guest operating systems. It requires that the guest operating system
have a special driver installed.

If you are not sure which SCSI controller type to choose, I recommend using the LSI Logic
controller. It is a good all-purpose controller that is widely supported by guest operating systems.

Figure 1.16 – I/O controller types

12. Choose the disk type.

The screenshot that follows shows the different disk type options available in the New Virtual
Machine Wizard window. The options are as follows:

 � Integrated Drive Electronics (IDE): This is an older disk type that is not as fast as newer disk
types, such as SATA and NVMe. However, it is still supported by most guest operating systems.

 � Small Computer Systems Interface (SCSI): This is a faster disk type than IDE. It is also
more versatile, as it can support multiple disks and devices.

 � Serial ATA (SATA): This is the most common disk type in use today. It is faster and more
reliable than IDE and SCSI.

Downloading and setting up a hypervisor 15

 � Open non-volatile memory express (ONVMe): This is the newest and fastest disk type.
It is still under development, but it is becoming increasingly popular in high-performance
servers and workstations.

If you are running a guest operating system that supports newer disk types, such as SATA and
NVMe, then I recommend choosing one of those disk types. They will offer better performance
and reliability.

Figure 1.17 – Disk type

13. Select a virtual disk (select the virtual disk if you have one, or create one).

Figure 1.18 – Creating a new virtual disk

Getting a CentOS Server Up and Running16

14. Specify the disk capacity. The recommended disk space is 20 GB, but we’ll be allocating 30 GB
of space to ensure sufficient room for your virtual machine. Be sure to tick the Store virtual
disk as a single file option.

Figure 1.19 – Setting the disk capacity

15. Define the virtual disk file.

Figure 1.20 – Specify Disk File

Downloading and setting up a hypervisor 17

16. Create the virtual machine by selecting Finish.

Figure 1.21 – Ready to Create Virtual Machine

17. Next, to initiate the CentOS installation on VMware Workstation, provide the virtual machine
with the CentOS ISO image. Once you’ve done this, click on the Power on this virtual machine
option. This will create a new virtual machine and configure it according to the specifications
you have provided.

Figure 1.22 – Selecting the ISO image file

Getting a CentOS Server Up and Running18

After the installation is complete, you will power on the newly created virtual machine, which
will boot up and be ready for use. This process will allow you to have a fully functional CentOS
installation running within a virtual environment, providing you with the ability to easily test,
run, and manage multiple operating systems on a single physical machine.

The next step is to power on the virtual machine. This will bring the newly installed operating
system to life and allow you to start configuring and using it. It is important to ensure that
the virtual machine is properly configured before proceeding with the power-on process. This
includes verifying the network configuration, memory and processor allocation, and disk space
availability. Once you have confirmed that all the necessary parameters are set up correctly, you
can power on the virtual machine by clicking the Power On button in VMware Workstation.
This will move us into the next stage of the configuration process.

18. We’ll select Install CentOS Stream 8-Stream from the list of options. To navigate between the
options, use the arrow keys and press the Enter key to select the desired one.

Figure 1.23 – Powering on CentOS 8-Stream

19. Upon successful initiation of the CentOS installation, you will be presented with a welcome
screen that gives you the option to choose your preferred language. Simply select your desired
language and click Continue to proceed.

Downloading and setting up a hypervisor 19

Figure 1.24 – Choosing your preferred language

20. To move forward with the installation of CentOS, it is important to set up certain parameters
such as keyboard layout, language support, time and date settings, software packages to be
installed, root password, installation media, and disk partition information. These parameters
will ensure a smooth and successful installation.

Getting a CentOS Server Up and Running20

Figure 1.25 – The installation summary

21. The installation wizard in CentOS 8 can automatically detect all the locally accessible network
interfaces prior to the installation process. These interfaces will be displayed in the left pane
(see Figure 1.26), allowing you to easily choose the desired network and configure it as active
or inactive based on your specific requirements. This step ensures that the correct network
connection is established for the system during the installation process.

Downloading and setting up a hypervisor 21

Figure 1.26 – The Network & Host Name page

22. With all the necessary settings configured, it’s time to commence the installation process. Click
the Begin Installation button:

Getting a CentOS Server Up and Running22

Figure 1.27 – The Begin Installation button

As the installation process begins, the setup wizard will commence the installation of CentOS.
The process may take several minutes to complete, depending on the speed of your system and the
configuration settings selected. Keep an eye on the progress bar to track the installation’s progress.

Downloading and setting up a hypervisor 23

Figure 1.28 – Installation progress

23. After the successful installation of CentOS, it’s important to reboot the virtual machine to ensure
that all changes made during the installation process take effect. This will help in initializing
the newly installed operating system and making it ready to use. To reboot the virtual machine,
simply select the Reboot System button to restart from the system menu and wait for the
machine to complete the reboot process.

Getting a CentOS Server Up and Running24

Figure 1.29 – The Reboot System button

24. Upon rebooting the virtual machine, select the first option presented in the GRUB menu for
successful boot into the installed CentOS operating system.

Downloading and setting up a hypervisor 25

Figure 1.30 – The CentOS 8 GRUB menu

25. One more important step to remember is to read and accept the license information, as it is
required to proceed with the boot process.

Figure 1.31 – Accepting the license information

Getting a CentOS Server Up and Running26

26. Upon accepting the license information, the final step in the process is to complete the configuration
by clicking the Finish Configuration button. This action finalizes the setup and configuration
process and enables the system to boot into the newly installed CentOS operating system.

Figure 1.32 – Finishing the configuration

Downloading and setting up a hypervisor 27

27. With your credentials, log in to your newly installed CentOS Linux system.

Figure 1.33 – Logging in

28. Upon logging in, select the Start Using CentOS Linux option to begin utilizing the full
functionality of the operating system.

Getting a CentOS Server Up and Running28

Figure 1.34 – Ready to Go

It is recommended that you log in as the root superuser as soon as possible and run the commands in
the next section to ensure your newly installed CentOS Linux system has the latest updates and fixes.

Package installation commands
Package installation commands are used in CentOS to install and manage software packages on the
system. The package management system in CentOS is called Yellowdog Updater Modified (YUM),
and it provides a centralized method for managing and installing software packages.

YUM package management system

YUM is the default package manager for CentOS. It makes it easy to manage software packages
by resolving dependencies and downloading required packages. With YUM, users can install new
packages, update existing packages, and remove packages as needed. YUM provides a command line
interface that allows users to manage packages from the terminal, as well as a graphical user interface
for users who prefer a visual approach.

Package installation commands 29

Common package installation commands

The most common commands used with YUM include yum install to install a new package,
yum update to update an existing package, and yum remove to remove a package. Additionally,
yum list can be used to list all available packages, and yum search can be used to search for
packages. It is important to remember that when using YUM to manage packages, it is necessary to
have an active internet connection and to run the commands as root or with administrative privileges.

The following commands are the starting point of the 100 Linux Commands Every System Administrator
Should Know journey:

• yum upgrade: The yum upgrade command is used in CentOS Linux to upgrade all
installed packages to their latest available version. The command updates the system with
the latest packages, bug fixes, and security patches, ensuring the system remains secure and
stable. The yum upgrade command is executed in the terminal and it is executed with
administrative privileges, usually as the root user. By running the command, the system will
upgrade all installed packages and resolve any dependencies or conflicts that might arise during
the upgrade process.

Figure 1.35 – Upgrading the server

• yum update: This package management tool is used in CentOS and other Linux distributions
to upgrade and update system software packages. It downloads the latest package updates from
a repository and installs them on the system, ensuring that your system has the most up-to-date
security patches and bug fixes. Running yum update on a regular basis is an important part
of system maintenance, as it helps keep your system secure and running smoothly.

Figure 1.36 – Updating the server

Getting a CentOS Server Up and Running30

• reboot: This command is used to restart a computer running on a Unix-based operating
system such as Linux. It is used to apply changes made to the system or to refresh the system
after completing a process. The command can be executed by a user with root or superuser
privileges. Upon executing the command, the system initiates a reboot sequence and all running
processes are terminated. Then, the system is restarted. The reboot command is often used
after completing a system update or upgrade to ensure the changes are applied.

Figure 1.37 – Rebooting the server

Information commands
CentOS provides system administrators with a range of commands for obtaining information about
various aspects of the system, including hardware, software, networks, and users. These commands
are essential tools for monitoring and troubleshooting the system and its components, providing
insight into the current status, configuration, and performance of the system. With the ability to obtain
accurate and up-to-date information about the system, system administrators can quickly identify
and resolve issues, ensuring optimal performance and the stability of the system. These commands
provide information about the system’s hostname, disk usage, processes, CPU, and network interfaces,
respectively, making them valuable tools for system administrators who need to diagnose and resolve
system issues.

Here are a few commonly used information commands in CentOS:

• uname: The uname command is used to display information about the operating system and
the system’s hostname. This command can also display the type of hardware, the version of the
operating system, and the release number of the kernel.

Figure 1.38 – Displaying the operating system

The uname command comes with different flags that can be executed; for example, the -a
parameter displays the whole information, including the system name, network node hostname,
kernel release, version, and machine hardware name, as we can see in the following terminal:

Figure 1.39 – Displaying all system information

Information commands 31

• lsb_release: The lsb_release command is used to display information about the Linux
Standard Base (LSB) version, distributor ID, and release number. The LSB is a standard that
defines the Linux operating system and ensures compatibility among different Linux distributions.

Figure 1.40 – Displaying the Linux Standard Base version

To execute additional flags, we’ll make use of a flag commonly used by administrators to display
the distributor indicator.

Figure 1.41 – Displaying Distributor Indicator

• hostnamectl: The hostnamectl command is used to display and modify the system
hostname and to view various system settings such as the operating system architecture, boot
mode, and system time zone. This command is useful for changing the hostname or viewing
system settings without having to log in to the system as a root user.

Figure 1.42 – Displaying the system settings and architecture

Let us execute hostnamectl with another flag, set-hostname. This flag is used to set
the system hostname to a specified value. For example, you might execute hostnamectl
set-hostname myhost:

Getting a CentOS Server Up and Running32

Figure 1.43 – Setting a system hostname

The preceding useful information commands that we covered in this section will help you gather
information about your system. Throughout this chapter, we emphasized the importance of proper
server setup and installations, including regular software upgrades and updates, to ensure that your
system runs smoothly and remains secure. By following the steps outlined in this chapter, you will be
well on your way to setting up a reliable and secure server for your personal use, as well as building
a foundation to further learn about Linux system administration.

Summary
In our first chapter, we focused on the steps involved in downloading and setting up a server. We
began by discussing the process of downloading the server’s operating system, which is a crucial step
in the setup process. We then delved into the topic of downloading and setting up a hypervisor, which
is a virtualization platform that enables the creation of virtual machines. The hypervisor provides an
isolated environment for each virtual machine, which allows multiple virtual machines to run on the
same physical server.

Moving on, we discussed the importance of package installation commands in the server setup process.
These commands allow system administrators to install, upgrade, and remove packages from the
server, which are essential for the server to function properly. We also provided an overview of some
common package installation commands such as yum.

Finally, in the fourth section, we highlighted the role of informational commands in the server setup
process. These commands provide important information about the system, including information
about the operating system and the hardware. We covered three common information commands
in CentOS, including uname, lsb_release, and hostnamectl, and described their uses and
benefits. These information commands are useful for monitoring and troubleshooting the server and
ensuring that it is functioning optimally.

In our next chapter, we dive into Linux users and groups management. Essential for system security,
stability, and resource allocation, this chapter covers key commands and tools for system administrators
to manage users and groups.

2
Linux User and Group

Commands

As important as it is to choose the right distribution of Linux, it’s equally important to understand the
key components of Linux system administration, including Linux user and group management. The
Linux operating system allows administrators to create multiple users and assign different permissions
and group policies, ensuring system security, stability, and resource allocation. In this chapter, we will
dive into Linux user and group management and focus on the key commands and tools used by Linux
system administrators to manage users and groups.

The history of Linux user and group commands dates back to the early days of the Unix operating
system, where user and group management was a key aspect of system security and resource allocation.
With the growth of the open source movement, Linux adopted these concepts and expanded upon
them, allowing for granular control over user and group permissions, user authentication and access
control, and more. Today, Linux user and group commands form a critical component of any Linux
system, providing system administrators with the tools they need to manage users, assign permissions,
and ensure secure access to sensitive resources and data.

In this chapter we are going to cover the following main topics:

• useradd, userdel, and usermod

• Files, directories, and permission commands

• groupdel, groupmod, groupadd, and grpck

• pwck, chage, and passwd commands

• find, locate, and whereis commands

Linux User and Group Commands34

useradd, userdel, and usermod
In a Linux system, it is important to manage users and groups to ensure security and access control.
The useradd, userdel, and usermod commands are fundamental tools for creating, deleting,
and modifying users on a Linux system. These commands allow administrators to create user accounts,
assign permissions, and limit access to resources. Understanding how to use these commands is
essential for managing users on a Linux system. Whether you are setting up a single-user system or an
enterprise-level environment, the useradd, userdel, and usermod commands are indispensable
tools for Linux administrators. We will explore these commands in detail, including their usage, options,
and examples, to give you a comprehensive understanding of user management on a Linux system.

These tools—useradd, userdel, and usermod—are part of the Shadow Password Suite, which
is commonly used on Linux systems to manage user accounts. It is essential to understand how to
use these tools properly to ensure the security and stability of a Linux system. While these tools are
primarily used on Linux systems, they can also be used on other Unix-like systems.

We will cover their usage in detail, including the options and syntax for each command. We will also
discuss best practices for managing user accounts on a Linux system, such as creating a standard
user account and using sudo for administrative tasks. Now, let’s dive into these commands in the
following subsections.

useradd

The useradd command in Linux is used to create a new user account or update an existing one.
It is a powerful tool that can be used to manage user accounts in a variety of ways, from assigning a
home directory and shell to setting the user’s password and expiration date. When creating a new user
account, useradd requires several pieces of information to be provided, such as the username, the
user ID (UID), and the group ID (GID). The UID is a unique number assigned to the user, while
the GID is the primary group that the user belongs to. These values are used by the system to identify
and manage user accounts. In addition to the required information, there are several optional flags
that can be used with useradd to customize the user account. For example, the -m flag can be used
to create a home directory for the user, while the -s flag specifies the default shell for the user. The
-c flag can be used to add a comment or description to the user account, which can be helpful in
identifying the purpose of the account. Once the user account has been created, it can be modified
using the usermod command. This command is used to modify the user’s account information,
such as their password or expiration date. It can also be used to add or remove the user from groups,
change the user’s default shell, and much more. The basic syntax of the useradd command is as
follows (note that you will need sudo access to successfully run the command):

sudo "useradd [options] username"

useradd, userdel, and usermod 35

The following figure shows more details on the usage and options for the useradd command:

Figure 2.1 – useradd usage and options

To create a new user account named tester1 and a corresponding home directory, as well as
displaying the UID, use the following command:

Figure 2.2 – Creating a user and a home directory for the user

The -m option tells the system to create the home directory, which is where the user will store their
files and settings. The purpose of creating a home directory for a new user is to ensure that they have
their own space on the system to work in and allow them to store files and customize their environment
without affecting other users. Additionally, it provides a place for the user to store configuration files
and other settings that are specific to their account.

Linux User and Group Commands36

We also introduced another command, id, in the process of creating a new user.

The id command from the preceding example is a Linux/Unix command that is used to display the
UID and GID of our tester1 user account. When used with a specific username as an argument,
such as id username, the id instructor command will display output similar to the following
if the instructor user exists on the system:

Figure 2.3 – Displaying the ID

We can also check the existence of this user in the /etc/passwd file:

instructor:x:1000:1000:instructor:/home/instructor:/bin/bash
tester1:x:1001:1001::/home/tester1:/bin/bash

The following screenshot shows the result:

Figure 2.4 – Evidence of the existence of the users

The following are the details of the user information in the preceding figure:

• tester1: Username

• 1001: UID

• 1001: GID

• /home/tester1: User’s home directory

• /bin/bash: Login shell

• :: Separator

• ::: A password-less user account

• x: The stored password in the /etc/shadow file

userdel

userdel is a Linux command used to delete a user account and its associated files and directories.
It’s important to note that when a user account is deleted using userdel, all the files and directories
under the user’s home directory are also deleted. Therefore, userdel should be used with caution to
avoid the accidental deletion of important files. The command requires root privileges, and the syntax

useradd, userdel, and usermod 37

is userdel [options] username. The most commonly used option is -r, which removes
the home directory and mail spool of the deleted user. When deleting a user with userdel, it’s
important to make sure that the user account is no longer needed. It’s also important to consider the
impact that deleting the user account will have on any applications or services that rely on the user
account. This is especially true if the user account is used for system administration or runs any critical
services. In such cases, it’s important to create a backup or a copy of the user’s files and directories
before deleting the account.

Another consideration when using userdel is that it only deletes the user account from the
system’s user database. Any processes that were started by the user before the account was deleted
will continue to run until they are finished or manually stopped. It’s also possible that some system
files or configuration files might still reference the deleted user, which could cause issues in the future.

The following screenshot shows the usage and options of the userdel command:

Figure 2.5 – userdel usage and options

To delete the tester2 user, you would run the following command:

Figure 2.6 – Deleting the user account

As we observe the deletion of the tester2 entry from the /etc/passwd file, we can also confirm
whether the tester2 user’s home directory is still accessible:

Figure 2.7 – Switching to the user’s home directory

Linux User and Group Commands38

When you run the userdel command, it removes the user’s entry in the /etc/passwd file and
the user’s group, but it does not remove the user’s home directory, /home/tester2. To remove a
user and their home directory simultaneously, execute the userdel command followed by the -r
option. Attempting to switch to the deleted user’s home directory will not be successful, as it has been
removed. This can be verified by the following example:

Figure 2.8 – Deleting the user and the home directory

Here are the steps we took:

1. Deleted the user and the home directory using the -r flag

2. Verified whether we could do a switch to the user for confirmation

3. Checked whether we could switch to that user’s home directory

Overall, userdel is a powerful command that should be used with caution. It’s important to ensure
that the user account being deleted is no longer needed and that all necessary backups and precautions
have been taken to avoid data loss or system issues.

usermod

The usermod command is a powerful Linux administration tool that allows system administrators
to modify user account information. This includes changes to the user’s home directory, login shell,
UID, GID, and other account properties. Additionally, usermod can be used to add or remove user
groups, set password-aging policies, and more. This tool helps system administrators to manage user
accounts on a Linux system effectively.

To use usermod, the command is followed by options that specify the changes to be made. For example,
to add a user to a specific group, the -aG option is used, followed by the group name. Similarly, to
change the user’s home directory, the -d option is used, followed by the new directory path. When
making changes to a user’s account, it is important to consider the impact that the changes will have
on the system and other users.

usermod also has a useful feature that allows for the modification of multiple user accounts at once
using a script or a list of usernames. This feature saves time and effort when making changes to a large
number of user accounts. However, it is important to use usermod with caution, as improper use
of the command can result in unintended consequences or even system damage. We’ll take a look at
execution examples using usermod:

useradd, userdel, and usermod 39

• Adding a user to a group: Let’s say you want to add a user named tester1 to the developers
group and verify that the user has been added to the group. You can use the following command:

Figure 2.9 – Adding a user to a group

• Changing the home directory of a user: Suppose you want to change the home directory of
a user named tester1 to /home/tester1_new. You can use the following command:

Figure 2.10 – Changing the user’s home directory

• Lock/unlock a user account: If you want to lock/unlock the account of a user named tester1,
you can use the following command:

Figure 2.11 – Locking a user

The exclamation mark indicates that the tester1 account is locked. If the account is not
locked, the second field will contain the password hash for the user’s password.

Now let’s unlock the tester1 user:

Figure 2.12 – Unlocking a user

• Changing the UID and GID of a user: Let’s say you want to change the UID of a user named
tester1 to 1001 and the GID to 1002. You can use the following command:

Linux User and Group Commands40

Figure 2.13 – Changing a user’s UID and GID

This will change the UID of the user tester1 to 1001 and the GID to 1002.

Files, directories, and permission commands
Files and directories are organized in a hierarchical structure, with the root directory as the top-most
level. Each file and directory has a set of permissions that determine who can read, write, or execute
it. The file permissions are divided into three categories—user, group, and others:

• user: This refers to the owner of the file

• group: This refers to a group of users assigned to the file (e.g., developers)

• others: This refers to anyone else who is not the owner or part of the assigned group

Let’s take a look at the hierarchical structure:

Figure 2.14 – Linux files and directory hierarchical structure

To manage file and directory permissions in Linux, there are several command line tools available.
Some of the commonly used commands include chmod, chown, and chgrp.

Files, directories, and permission commands 41

chmod

The chmod command is used to change the permissions of a file or directory. To recursively change
the permissions of all files and subdirectories within a directory, we can use the -R flag of the chmod
command. This flag is essential for applying permissions changes to all contents within a directory.

However, the suggested text after that doesn’t seem to directly address the significance of the 700
permission setting.

For example, in the following screenshot, 700 signifies that the owner of the Confidential_files
directory has read, write, and execute (RWX) permissions (7), while the group and others have no
permissions (0). This configuration ensures that only the owner can access, modify, or execute files
within the directory, providing a high level of security for sensitive information:

Figure 2.15 – Granting the owner RWX permissions

chown

The chown command is used to change the owner and group of a given file or directory. To change
the owner and group of a directory, we must pass both arguments separated by the : sign. Just like
the chmod command, you can replicate the new settings recursively by adding -R to the command:

Figure 2.16 – Changing the owner and group of a directory

This command changes the owner and group of the directory located at /home/instructor/
Documents/office-docs/ along with all its content recursively. The -R option stands for recursive.

chgrp

chgrp is used to change the group of a file or directory without touching the owner’s permission. To
change the group ownership of a directory named project-001 and all of its contents to a group
named developers, use the following command:

Linux User and Group Commands42

Figure 2.17 – Changing the group ownership of a directory

Security is also an essential aspect of file and directory management in Linux. System administrators
must ensure that files and directories are secured and only accessible to authorized users. This can be
achieved by implementing access control measures such as using strong passwords and configuring
user access permissions appropriately.

groupdel, groupmod, groupadd, and grpck
Group management is an important aspect of Linux system administration. Groups are used to
organize users and define their access privileges to files and directories on the system. The four main
commands used for group management are groupadd, groupmod, grpck, and groupdel.

groupadd is used to create a new group on the system. To use this command, type groupadd
followed by the desired options and the new group name. For example, to create a new group called
DevSec-group, the command would be groupadd DevSec-group:

Figure 2.18 – Adding a new group

This command will create a new group with the default settings, including a new GID.

Now that we’ve created our groups, let’s do some modifications such as changing its membership using
the groupmod command. This is a command used to modify an existing group on the system. This
command can be used to change the group’s name, GID, or membership. To modify a group, type

groupdel, groupmod, groupadd, and grpck 43

groupmod followed by the desired options and the group name. For example, to change the name
of the group DevSec-group to DevSec-group-new, the command would be groupmod -n
DevSec-group-new DevSec-group:

Figure 2.19 – Modifying an existing group

Our next command is grpck, which is used to check the integrity of the group files on the system.
This command will check the group file (/etc/group) and make sure that all groups listed in
the file have valid entries in the password file (/etc/passwd). To use this command, simply type
grpck -r /etc/passwd:

Figure 2.20 – Checking the integrity of the /etc/passwd file

Lastly, the groupdel command is used to delete a group from the system. To use this command,
simply type groupdel followed by the group name. For example, to delete a group called DevSec-
group-new, the command would be groupdel -f DevSec-group-new.

Figure 2.21 – Deleting a group

Linux User and Group Commands44

This command will remove the group from the system. The -f option is used to force the deletion of
the group, along with any users who were assigned to that group.

Overall, group management is a critical aspect of Linux system administration. Proper management
of groups can ensure the security and accessibility of files and directories on the system. The four
main commands used for group management, groupdel, groupmod, groupadd, and grpck,
provide system administrators with the necessary tools to effectively manage groups on a Linux system.

pwck, chage, and passwd commands
The pwck command is a Linux system administration tool that is used to verify the consistency of
the passwd, shadow, and group files. The purpose of the command is to ensure that the user
accounts and groups listed in these files are valid and to detect any inconsistencies between them.
It is useful in maintaining the integrity and security of a Linux system, as it can help to identify and
correct errors that may arise due to manual edits of these files. For example, if a user account exists
in the passwd file but not in the shadow file, pwck will detect this and prompt the user to fix the
inconsistency. Let’s take a look at some examples using this tool:

• Verify the consistency of the passwd file with sudo pwck /etc/passwd.

The following output from the pwck command checks the consistency of the /etc/passwd
file on our Linux system:

Figure 2.22 – Checking the consistency of the /etc/passwd file

pwck, chage, and passwd commands 45

• Check the consistency of the shadow file:

Figure 2.23 – Checking the consistency of /etc/shadow file

The invalid password file entry message for the instructor user suggests deleting the
invalid line for the instructor user account. However, we can keep the instructor user and
resolve the error without deleting the invalid line by correcting it to ensure that it is properly formatted.

First, open the /etc/shadow file with the vipw command to edit the /etc/passwd and /
etc/shadow files, or their respective shadow versions (/etc/gshadow and /etc/gshadow),
with vigr. Locate the line that corresponds to the instructor user or any user you created and
correct any syntax errors.

Using vipw and vigr is the recommended and safer approach to editing these critical system files,
as these commands are specifically designed for this purpose and set appropriate locks to prevent
file corruption.

The line should contain nine fields separated by colons (:). We’ll fix this error using our next command.
Overall, the purpose of the pwck command is to ensure that the user and group information stored
on a Linux system is accurate and consistent:

username:password:lastpasswordchanged:minpasswordage:maxpasswordage:
passwordwarningperiod:inactivityperiod:expirationdate:reservedfield

The chage command is a Linux system administration tool that is used to change the aging and
expiration policy of a user’s password. The purpose of the command is to enforce password policies
and increase the security of a system by setting limits on the age of a password, the time between
password changes, and the maximum number of failed logins attempts before a user is locked out.
This helps to ensure that passwords are changed regularly and that users are prompted to create strong
and secure passwords. Now, let’s use this command to correct our error.

Linux User and Group Commands46

We’ll use the chage -d 2023-12-1 instructor command to set the date of the last password
change for the instructor user to December 1st, 2023. The -d option in the chage command is
used to set the date of the last password change. By default, the last password change date is set to the
current date, but using the -d option allows you (the admin) to set it to a specific date. In this case,
the date is set to December 1st, 2023.

chage -E 2023-12-31 instructor is used to set the account expiration date for a specific
user. The -E option is used to specify the expiration date, and the 2023-12-31 argument is the
date when the account will expire. The instructor parameter at the end of the command is the
username of the account that we want to set the expiration date for.

The chage -l instructor command shows the password aging information for the user
account named instructor:

Figure 2.24 – Using chage

It displays the following information:

• Last password change date: This shows the date when the password for the account was
last changed

• Password expiration date: This shows the date when the current password will expire

• Password inactive date: This shows the date when the password will be disabled and the
account will no longer be accessible

• Account expiration date: This shows the date when the account will expire and be disabled

• Minimum password age: This shows the minimum number of days that must pass before the
password can be changed

• Maximum password age: This shows the maximum number of days that the password can be
used before it must be changed

• Password warning period: This is the number of days before the password expiration date
that a warning is given to the user

chage is a very powerful command that’s useful for every system administrator who wants to improve
the security of their systems by enforcing strong password policies.

pwck, chage, and passwd commands 47

The passwd command, on the other hand, is used to manage user passwords, allowing users to
change their own password, while administrators can use it to change the password of another user.
Its purpose is to ensure that user passwords are secure and that the password policies are enforced.
The following are some examples:

• Configure password policies.

The /etc/security/pwquality.conf file is used to configure password quality-
checking policies. It defines rules and settings that control the complexity and strength of
user passwords. This file is used by the pluggable authentication module (PAM) system to
enforce password policies on the system, such as minimum length, complexity requirements,
and reuse prevention. Administrators can edit this file to customize password policy settings
to align with their security requirements.

As the admin with sudo privileges, you can locate and edit the /etc/security/pwquality.
conf file using the Vim editor. Here are the specific requirements for password quality
configuration you need to follow:

 � minlen = 8 or 16 (for the sake of this example we selected 8)

 � minclass = 3

 � maxrepeat = 2

 � minsequence = 4

 � maxclassrepeat = 4

 � reject_username = true

Figure 2.25 – Editing /etc/security/pwquality.conf

Here’s a brief summary of the configuration parameters:

 � minlen: This specifies the minimum length of a password (eight characters)

 � minclass: This sets the minimum number of character classes required (three classes,
e.g., lowercase, uppercase, and digits)

 � maxrepeat: This limits the maximum number of consecutive identical characters (two
consecutive identical characters are allowed)

 � minsequence: This sets the minimum length of a sequence (four characters, e.g., ‘1234’
or ‘abcd’)

Linux User and Group Commands48

 � maxclassrepeat: This limits the maximum number of consecutive characters from the
same character class (four consecutive characters from the same class are allowed)

 � reject_username: This ensures that the password does not contain the username

• Change the password of a specific user:

Figure 2.26 – Changing a user’s password

• Lock a user’s password:

Figure 2.27 – Locking a user’s password

• Unlock a user’s password:

Figure 2.28 – Unlocking a user’s password

Unlocking a user’s account with the passwd -u tester1 command is a crucial part of managing
user account settings in Linux. In our next topic, we’ll explore techniques for discovering and locating
files and identifying them within the Linux filesystem.

find, locate, and whereis commands
One of the most common tasks in Linux system administration is finding files. In CentOS 8, there are
several commands that you can use to find files based on different criteria. The most commonly used
commands for finding files are find, locate, and whereis. Each command has its own syntax
and options, making them suitable for different use cases.

The find command is used to search for files and directories based on various criteria such as name,
size, type, and modification time. Here’s an example of how to use the find command to search for
all files with the .txt extension in the current directory and its subdirectories:

find, locate, and whereis commands 49

Figure 2.29 – Finding files with the .txt extension

The first argument of the command is the starting directory for the search. In our example, the dot
. character means “current directory,” and -name is used to specify the filename pattern to match.
The * character is a wildcard that matches any number of characters, and *.txt matches all files
that end with .txt.

The locate command, on the other hand, uses a pre-built database to search for files based on
name or pattern. The advantage of locate over find is that it’s much faster since it searches a
pre-built database.

Here’s an example of how to use the locate command to find all files with sensitive in their names:

Figure 2.30 – Using the locate command to find all files

Finally, the whereis command is used to locate the binary, source, and manual page files for a
given command. Here’s an example of how to use the whereis command to find the location of
the ls command:

Figure 2.31 – Locating binary, source, and manual page files for the ls command

Linux User and Group Commands50

Here’s another example using whereis to find the location of the passwd command:

Figure 2.32 – Locating binary, source, and manual page files for the passwd command

These commands are essential tools for managing and locating files on a Linux system. By mastering
these commands, you can easily search for and identify files based on various criteria and improve
your productivity as a system administrator.

Summary
In this chapter, we explored Linux user and group management, a crucial aspect of system security,
stability, and resource allocation. We began by introducing the concept of user management and
explained how to use commands such as useradd, userdel, and usermod to add, remove, and
modify users on a Linux system. We also covered how to verify and set password expiration using the
pwck, chage, and passwd commands, ensuring that user accounts remain secure.

The second section focused on file permissions and security basics, essential knowledge for any system
administrator. We discussed the various file and directory permissions and how to use commands
such as chmod and chown to modify them. In the third section, we delved into group management
and covered commands such as groupadd, groupmod, groupdel, and grpck. We explained
how groups allow for the efficient management of multiple users with similar permissions and access,
and we learned how to use these commands to create and modify groups on a Linux system.

Moving on to the fourth section, we discussed the pwck and chage commands, which are used
to verify the integrity of user and password files and set password expiration policies, respectively.
We also covered the passwd command, which is used to change user passwords. Finally, the fifth
section, find, locate, and whereis commands, covered how to locate files in directories and print their
location using the find, locate, and whereis commands, which are particularly useful for system
administrators who need to quickly locate files on a Linux system.

The next chapter delves into the topic of file compression and archiving in Linux. Through this chapter,
readers will gain an understanding of how to use various commands such as gzip, tar, zip, and
more to compress and decompress files.

3
File Compression

and Archival Commands

File compression and archival commands have become an essential part of modern computing.
With the ever-increasing amount of data being generated and shared, it has become necessary to use
compression techniques to reduce the size of files, making them easier to store, transfer, and share.
This process involves using software tools that compress files by removing any unnecessary data from
them. The compressed file can then be stored in a smaller amount of space or transmitted over the
internet more quickly.

There are several file compression and archival commands available in Linux, including gunzip
and gzip, tar, rar and unrar, zip and unzip, bunzip2 and bzip2, and many more. Each
command has its own unique features, benefits, and limitations, making them suitable for specific
use cases. For instance, the gzip command is a simple and easy-to-use compression utility that can
compress files quickly. On the other hand, tar is a popular utility for creating and managing tarballs,
which can be used to bundle multiple files into a single archive file. In this chapter, we will explore
these commands and more, giving readers an overview of the different compression and archival
options available in Linux.

In this chapter, we are going to cover the following main topics:

• gunzip and gzip

• tar, rar, and unrar

• zip and unzip

• bunzip2, bzip2, and more

File Compression and Archival Commands52

gunzip and gzip
The gunzip (GNU Unzip) and gzip (GNU Zip) commands are used for file compression and
decompression on Linux systems. The gzip command is used to compress files and create a compressed
file with a .gz extension, while the gunzip command is used to decompress these .gz files. These
commands are particularly important for system administrators who need to save disk space by
compressing files and folders, as well as transfer files over a network using less bandwidth.

In addition to their practical benefits, the gunzip and gzip commands are also important for
maintaining system security. Compressed files can be used to hide malicious code, so system
administrators must be able to quickly and easily scan compressed files for security threats. The
gzip command also includes options for setting file permissions and modifying the timestamp of
files, allowing system administrators to maintain granular control over file access and modification.

gunzip is a command-line tool used to decompress files that have been compressed using the gzip
utility. The tool is used to extract the compressed data from a .gz file and restore it to its original
state. The command is vital for system administrators because it helps to reduce file sizes and save disk
space. Additionally, the command can be used to compress and decompress files while transferring
them over a network, which reduces the amount of bandwidth used. A scenario-based example should
help us understand the basic use of gunzip.

Suppose a system administrator receives a compressed file called largefile.txt.gz from
another team member. The file contains important data that they need to access. However, the file
is too large to be transferred over email or other messaging platforms in its uncompressed form. To
access the data in the file, the administrator will need to decompress it using the gunzip command.
Here’s how it is done:

1. First, navigate to the directory where the compressed file is located. For example, if the file is
located in the /home/instructor/Desktop/administrator/data directory, you
can navigate to that directory by running the following command in the terminal:

Figure 3.1 – Navigating to the file location

gunzip and gzip 53

2. Next, use the gunzip command to decompress the file. We’ll do this by running the
following command in the terminal:

Figure 3.2 – Decompressing the large file using gunzip

This will decompress the file and restore it to its original state, then we can access the data in the file
using our preferred text editor or other tool.

gzip is a command-line utility that is used to compress and decompress files. It is commonly used in
Linux and Unix systems to reduce the size of files for storage or transfer. The gzip command works
by compressing a file into a smaller size using a compression algorithm. This makes it easier to store
or transfer the file, as it takes up less space.

The gzip command is an important tool for system administrators, as it allows them to manage
large files more efficiently. For example, if a system administrator needs to transfer a large file over
the internet, they can use the gzip command to compress the file before sending it. This will reduce
the amount of time it takes to transfer the file and reduce the amount of bandwidth required. Let’s
take a look at the following two examples:

• A system administrator wants to compress a log file named app.log that is located in the
/var/log directory. The administrator can use the following command to compress
the file:

Figure 3.3 – Compressing a log file using gzip

File Compression and Archival Commands54

This will create a compressed file named app.log.gz in the same /var/log/ directory:

Figure 3.4 – Compressed app.log.gz file from 1 GB to 1.0 MB

• A system administrator wants to compress a directory named backup located in the /home/
instructor directory. This directory compression process is often referred to as creating a
“tarball,” which is a common method for bundling and compressing multiple files or directories
into a single archive file. The administrator can use the following command to compress the
backup directory:

Figure 3.5 – Compressing a directory called backup.tar.gz

This will create a compressed file named backup.tar.gz in the same directory. The tar
command will also be introduced for our next topic. The czvf option supplied in the preceding
command is used to create a compressed archive in gzip format.

The options are as follows:

 � Create an archive

 � Compress the archive using gzip

 � Display progress information

 � Specify the name of the archive file

tar, rar, and unrar 55

tar, rar, and unrar
The tar, rar, and unrar commands are essential tools for system administrators, providing
them with the ability to compress and archive files for more efficient storage and transfer. With these
commands, administrators can bundle up multiple files and directories into a single archive file, which
can then be compressed to save even more space. These archive files can then be transferred between
systems, backed up to remote storage, or stored for future use.

The tar command is particularly useful for creating archive files, as it allows administrators to specify
a range of options for compression and file organization. The rar and unrar commands, on the
other hand, are proprietary tools developed by RARLAB for creating and extracting RAR archive
files. These commands are widely used in the Windows environment but can also be used on Linux
systems with the proper installation.

Overall, the tar, rar, and unrar commands have greatly simplified the process of managing and
organizing files for system administrators. With their ability to bundle up files into archive files and
compress them for efficient storage and transfer, these commands have made it much easier to manage
large amounts of data across multiple systems.

tar, short for tape archive, is a command-line tool used in Linux and other Unix-based operating
systems for creating, manipulating, and extracting archive files. It is an essential tool for system
administrators, developers, and other users who frequently work with large amounts of data. The tar
command allows users to bundle multiple files and directories into a single file using the following syntax:

tar [options] [archive-file] [file or directory to be archived]

This archive file can then be easily compressed, transferred, and backed up.

This tool is important because it simplifies the process of creating and managing backups, as well as
allowing users to easily share files with others.

One common use case for tar is for creating backups of important files and directories on a system.
For example, a system administrator may use the tar command to create a backup of critical
configuration files and directories before making any major changes to the system. In this scenario,
the tar command can be used to bundle all of the necessary files and directories into a single archive
file, which can then be stored on a separate backup device or transferred to a remote location for
safekeeping. Another use case for tar is for distributing software packages. Developers can use tar
to bundle all of the necessary files and directories for a software package into a single archive file,
which can then be easily distributed to end users.

A system administrator may need to transfer a large file or directory to another server over the
network. In this case, the tar command can be used to bundle the necessary files and directories
into a single archive file, which can then be compressed and transferred over the network using tools
such as secure copy (SCP) or remote sync (RSYNC). For example, a system administrator may use

File Compression and Archival Commands56

the following command to create a TAR archive of a directory named webBackups and compress
it using the gzip compression algorithm:

Figure 3.6 – Creating a TAR archive of a directory

rar is a proprietary file-archiving utility used to compress and decompress files on Linux systems. The
tool was developed by Eugene Roshal and is used to create compressed files with the .rar extension.
It’s a popular file compression format that allows users to compress large files into smaller archives for
easier storage, transfer, and distribution. rar supports features such as password protection, error
recovery, and archive spanning, making it a versatile and efficient tool for managing large sets of files.

System administrators can use rar to compress large files or sets of files, reducing their size and
freeing up disk space. This can help improve system performance and reduce the amount of storage
required for backups and file transfers. Additionally, RAR archives can be protected with a password
to provide an extra layer of security to sensitive files. System administrators can also use rar to split
large files into multiple smaller files, which can be useful for transferring files over the internet or
storing them on portable media such as USB drives.

Scenario 1

A system administrator needs to transfer a large backup file to another server over the internet. The
file is too large to transfer in its current format, so the administrator decides to compress it using
rar. The administrator uses the rar a backup.rar backup_folder command to create
an archive of the backup folder:

Figure 3.7 – Creating an archive of the backup folder

zip and unzip 57

The resulting RAR archive is smaller than the original backup folder and can be easily transferred
over the internet.

zip and unzip
zip and unzip are file compression and archiving commands widely used by system administrators.
zip is used to compress and archive files, while unzip is used to extract and uncompress files from
ZIP archives. zip and unzip are important commands because they allow system administrators to
efficiently manage large files and directories, reduce storage space usage, and speed up file transfers.
The commands are easy to use and support various compression and archive formats, making them
versatile tools for system administration tasks.

zip is used to compress and archive files into a single file for easier backup, storage, and transfer. The
compressed .zip file takes up less storage space, reducing the need for additional storage devices.
System administrators can use the zip command to compress and archive files, directories, and even
entire filesystems. Let’s look at some scenario-based examples next.

A system administrator needs to create a backup of a web server directory on a Linux machine.
The directory contains several files and subdirectories, and the administrator decides to use zip to
compress and archive the directory into a single file for easier backup and storage. The administrator
uses the zip -r backup.zip web_server command to create a ZIP archive of the web server
directory, including all subdirectories and files. The resulting ZIP archive can be stored on a portable
hard drive or transferred over the network to another server for safekeeping:

Figure 3.8 – Creating a backup of a web server directory

In this example, the administrator compresses the web_server directory into a ZIP archive called
backup.zip using the -r flag to include all subdirectories and files recursively. Later, when the
administrator needs to restore the directory, they use the unzip command with the -d flag to extract
the archive to a new directory called restored_web_server.

unzip can also be used to list the contents of a ZIP archive, test the integrity of the archive, and
extract specific files from the archive. It is also used to extract and uncompress files from ZIP archives,
allowing system administrators to retrieve and use files contained in the archive. Here is an example
of using unzip:

File Compression and Archival Commands58

Figure 3.9 – Using the unzip “-d” flag to extract the archive to a new directory

The unzip backup.zip -d restored_web_server command is used to extract the
contents of a ZIP archive named backup.zip into a directory named restored_web_server.

To determine the directory size, you can use the du -H restored_web_server/ command,
which calculates the disk usage of files and directories, as shown in the following screenshot:

Figure 3.10 – The restored_web_server command

The -d flag specifies the destination directory for the extracted files. In this case, the destination
directory is restored_web_server. The contents of the ZIP archive will be extracted into this
directory, preserving the directory structure of the original archive. In our next topic, we will explore
how to use the tar command to compress files using the bzip2 and bunzip formats. We will also
touch on other archiving commands that system administrators commonly use in their daily tasks.

bunzip2, bzip2, and more
bzip2 and bunzip2 are two commands that are used for file compression and decompression on
Unix-based systems. The bzip2 command is used to compress a file, while the bunzip2 command
is used to decompress a file that has been compressed using bzip2. These commands are commonly
used by system administrators to save disk space and to transfer large files between systems.

bzip2 is a powerful compression tool that compresses files using the Burrows-Wheeler block sorting
text compression algorithm, followed by Huffman coding. This algorithm allows bzip2 to achieve a
high level of compression while maintaining a relatively fast decompression time. This makes bzip2
ideal for compressing large files, such as backups, databases, and software distributions. When a file
is compressed using bzip2, it is typically given a .bz2 extension. Here are a couple of examples to
demonstrate this.

bunzip2, bzip2, and more 59

Scenario 1

A system administrator wants to compress a large log file and save disk space on the server. The
administrator decides to use bzip2 to compress the file. The administrator navigates to the directory
where the log file is located and enters the bzip2 -k -v syslog.log command to compress
the log file using bzip2:

Figure 3.11 – Using bzip2 to compress a large log file

Then, we verify the compressed syslog.log file:

Figure 3.12 – Verifying the compressed log file

The -k option keeps the original file and creates a compressed version, while the -v option displays
the progress of the compression process. The compressed file is now much smaller than the original
and can be safely deleted to free up disk space.

Scenario 2

A system administrator needs to back up a large directory containing multiple files and subdirectories.
The administrator decides to use bzip2 to compress the directory and its contents into a single file.
The administrator enters the tar -cvf - directory_to_backup | bzip2 -9 -c >
backup.tar.bz2 command to create a TAR archive of the directory, compress it using bzip2
with the highest compression level (-9), and redirect the output to a backup file:

Figure 3.13 – Compressing a directory with a subdirectory

Let’s dive into the chained commands.

File Compression and Archival Commands60

The tar -cvf - /home/instructor/Desktop/administrator command is used to
create a TAR archive of the /home/instructor/Desktop/administrator directory; this
was the first command we introduced in this chapter. The -c option specifies that a new archive is
being created, the -v option enables verbose mode to display the progress of the archiving process,
and the -f option specifies the output file. The hyphen after the -f option indicates that the output
should be sent to standard output (stdout) instead of a file on disk.

The | (pipe) symbol is used to redirect the output of the tar command to the input of the bzip2
command; then, we have the bzip2 -9 -c command, which is used to compress the TAR archive
created by the tar command using the bzip2 algorithm. The -9 option specifies the highest
compression level, while the -c option sends the output to stdout. Finally, > backup.tar.bz2
redirects the compressed output to a file named backup.tar.bz2.

Here’s a brief explanation of the common compression levels in bzip2:

• -1 (fastest): This level provides the fastest compression but generates larger compressed files.
It’s suitable for situations where speed is more critical than file size reduction.

• -9 (maximum compression—our choice in Figure 3.13): This level offers the highest compression,
resulting in smaller compressed files. However, it is slower than lower levels. It’s useful when saving
disk space is a top priority and you don’t mind waiting for the compression process to finish.

• -2 to -8 (intermediate levels): These levels offer a trade-off between compression speed and
resulting file size. As you move from -2 to -8, the compression becomes better (smaller file
size) but slower compared to lower levels. Choose an intermediate level based on your specific
requirements for speed and file size reduction.

The resulting backup file is much smaller than the original directory and can be easily transferred or
stored for safekeeping.

The bunzip2 command is used to decompress files that have been compressed using bzip2. When
a compressed file is decompressed using bunzip2, the original file is restored with the same name
and directory path as the compressed file, but without the .bz2 extension. The bunzip2 command
is also able to decompress files that have been compressed using the gzip command.

System administrators can make use of bzip2 and bunzip2 in a variety of ways. One common
use case is to compress and decompress large log files on a web server. By compressing log files using
bzip2, system administrators can save disk space and transfer the logs to another system for analysis.
Another use case is to compress and transfer database backups between servers. By compressing backups
using bzip2, system administrators can reduce transfer times and conserve network bandwidth.
Let’s delve into an example to further clarify this.

bunzip2, bzip2, and more 61

Scenario 1

A system administrator needs to extract and decompress a large compressed file that has been split
into multiple parts. The compressed file has a .bz2 extension and was created using the bzip2
command. To extract and decompress the file, the administrator can use the bunzip2 command
followed by the filename. If the compressed file has been split into multiple parts, the administrator can
use the cat command to concatenate the files and then pipe the output to the bunzip2 command.
The following is an example command that the administrator can use:

Figure 3.14 – Using bunzip2 to decompress a compressed file

The cat syslog.log.bz2 command reads the contents of the syslog.log.bz2 compressed
file and passes it as input to the bunzip2 -c command. The -c option specifies that the output of
the command should be sent to stdout (that is, the terminal) instead of a file.

The bunzip2 -c command decompresses the input file using the bzip2 compression algorithm and
sends the uncompressed data to stdout. Finally, the output is redirected to a file named decompressed_
file using the > operator.

Let us explore additional archiving commands that can be utilized, such as 7zip and xz.

7-Zip is a popular open source file archiver that can handle various compression formats such as ZIP,
GZIP, TAR, and its own 7z format. It is widely used by system administrators for compressing and
extracting files and directories. The tool features a high compression ratio that helps in reducing the
file size significantly. The compression format used by 7-Zip is also known to be secure, making it a
suitable option for archiving confidential data. It can also create self-extracting archives that allow
users to extract compressed files without having to install any additional software. We’ll delve into a
scenario and explain.

Scenario 1

A system administrator needs to create a compressed archive of a large directory containing confidential
information. The administrator uses the 7z a -t7z -p -mhe=on archive.7z directory_
to_compress command to create a password-protected and encrypted 7z archive of the directory.
The -mhe=on option enables encryption of filenames to ensure the confidentiality of the data:

File Compression and Archival Commands62

Figure 3.15 – 7-Zip prompting the user to enter a password

The -p option is used to specify a password for the compressed archive. Since no password is provided
after the -p option, 7z will prompt the user to enter a password. The resulting 7z archive can be
easily transferred and stored on another server or external drive, and only authorized personnel with
the password can extract the data.

XZ is a command-line tool used for data compression and decompression. It is based on the Lempel-
Ziv-Markov-chain algorithm (LZMA), which is known for its high compression ratio and low
memory usage. XZ is used for creating compressed archives of large files and directories, particularly
in Linux systems. It is also used for compressing the Linux kernel during installation. XZ provides a
significant reduction in file size while maintaining the integrity of the original file. Additionally, XZ
can be used for compressing and decompressing files on the fly, which is useful in some scenarios.

Scenario 2

A system administrator needs to compress and archive a large log file generated by a web server. The
administrator uses the xz -z -k -9 logfile.log command to compress the file with a maximum
compression level (-9) and keep the original file (-k). The resulting compressed file is significantly
smaller than the original file, making it easier to store and transfer. The administrator can use the
xz -d logfile.log.xz command to decompress the file for analysis or further processing.

The following command is used for compressing the log file:

Figure 3.16 – Compressing the syslog file

Summary 63

Here, the xz command is used to compress the syslog.log file with the maximum compression
level of 9 (-9) and keep the original file (-k). The resulting compressed file will have a .xz extension.

The following command is used for decompressing the compressed log file:

Figure 3.17 – Decompressing the syslog file

To decompress the syslog file, we use the same xz command to decompress the syslog.log.xz
compressed file. The resulting file will have the original name, logfile.log.

In conclusion, Linux systems have several powerful tools for compressing and decompressing files,
including bunzip2, bzip2, 7z, and xz. These tools are especially useful for archiving large files
and directories, as well as for transferring files between systems or over networks. With the ability to
password-protect and encrypt data in some of these commands, administrators can ensure the security
and confidentiality of their files. By using these commands, system administrators can more efficiently
manage their files and storage, and optimize their computing resources. For example, 7z can compress
large databases, bzip2 can archive files, and xz can compress log files. Whether the administrator
needs to compress, transfer, or decompress files, these tools provide reliable and efficient solutions.

Summary
This chapter covered file compression and archival commands, which are important for efficient file
management and transferring files over networks. It also covered several powerful tools, including
gunzip, gzip, tar, rar, unrar, zip, unzip, bunzip2, bzip2, 7z, and xz, which enable
system administrators to compress and decompress files efficiently, archive large files and directories,
and transfer files over networks or between systems. These commands offer various compression levels
and encryption options to ensure the security and confidentiality of data. They are particularly useful
for managing large databases, backing up important files, and transferring files over the internet. By
using these commands, system administrators can efficiently manage their files and storage, making
the most of their computing resources.

Overall, this chapter provided a comprehensive guide to file compression and archiving commands
in Linux, which are essential for effective file management and storage optimization. By mastering
these commands, system administrators can efficiently manage their files and storage, ensuring the
security and confidentiality of their data.

As we move to Part 2, the next chapter will focus on format and disk space commands, which are
essential for system administrators to manage disk space and filesystems. Through this chapter, readers
will learn various commands such as mkfs, fdisk, du, df, and more to format disks, partition hard
drives, check disk usage, and manage filesystems. By learning these commands, system administrators
can effectively manage disk space and optimize storage performance.

Part 2:
Frequently Used

Commands – Part 1

In this part, we explore the essential commands frequently used by system administrators in the
command line interface (CLI). We cover their practicality and execution and provide hands-on
experience to ensure a proper understanding.

This section contains the following chapters:

• Chapter 4, Format and Disk Space Commands

• Chapter 5, Linux Permissions Commands

• Chapter 6, Filesystem Mount and Manipulation Commands

4
Format and Disk

Space Commands

As we progress in our comprehensive series on frequently used commands for system administrators,
the command-line interface (CLI) is an essential tool for getting many tasks done. The CLI offers
a streamlined and efficient way to perform various tasks, from managing files and directories to
monitoring system performance and troubleshooting issues. In this section, we will delve into
frequently used commands and explore their usefulness, execution, and best practices for effective
system administration. By mastering these commands, system administrators can work more efficiently
and effectively, making the most of their computing resources.

As a system administrator, managing storage and filesystems is an essential part of ensuring the
smooth operation of a system. The ability to format, partition, and manage disk space is critical for
managing files, backing up important data, and maintaining system stability. In this chapter, we will
explore the various commands used for formatting and disk space management, including fdisk,
lsblk, df, du, and more.

We will begin by discussing the history and evolution of disk formatting and partitioning, from the
early days of magnetic tapes to modern solid-state drives (SSDs). We will then delve into the steps
involved in creating a partition and explore various commands for disk space management. Additionally,
we will cover the use of package managers to display package space and explore various formatting
commands such as mkfs, mke2fs, fdformat, and others. By the end of this chapter, you will have
a comprehensive understanding of formatting and disk space commands, enabling you to effectively
manage storage and filesystems. It’s important to note that formatting a disk results in deleting all
data on that disk, so you should exercise caution when using these commands.

In this chapter, we are going to cover the following main topics:

• The history and evolution of disk formatting and partitioning in Linux

• Steps to create a partition

Format and Disk Space Commands68

• fdisk, lsblk, df, and du

• Displaying (dpkg and rpm) package space

• mkfs, mke2fs, and fdformat, and more

The history and evolution of disk formatting and
partitioning in Linux
The history of disk formatting and partitioning in Unix/Linux dates back to the early days of computing
when disk storage was a scarce resource. Disk partitioning was essential in organizing disk space into
smaller, manageable sections. It allowed system administrators to allocate disk space more efficiently
and reduced the risk of data loss in the event of a disk failure. In the early days of Unix, disk partitioning
was done using the fdisk command, which allowed the user to create, delete, and modify disk
partitions. With the introduction of Linux, the partitioning tool was updated to use the more advanced
GUID Partition Table (GPT) format, which provided support for larger disks and more partitions.

Over time, disk formatting and partitioning in Unix/Linux have become more sophisticated, with new
commands and utilities being added to improve the process. For instance, the mke2fs command, which
is used to create an ext2 or ext3 filesystem, was introduced in Linux version 1.2. This command
created a more efficient filesystem, which reduced the risk of data loss and made disk management more
manageable. The introduction of the mke2fs command was a significant milestone in the evolution
of disk formatting and partitioning in Unix/Linux as it allowed administrators to create more reliable
filesystems and manage disk space more efficiently. The advent of cloud computing and virtualization
has also had a significant impact on disk formatting and partitioning in Unix/Linux. Cloud computing
has enabled the use of virtual disks, which can be partitioned and formatted using the same tools as
physical disks. In virtualized environments, administrators can easily create, modify, and resize virtual
disks, making it easier to manage storage space. Additionally, cloud storage providers have developed
their own disk formatting and partitioning tools, such as Amazon Elastic Block Store (EBS), which
allows users to create and attach virtual disks to their instances. These tools have made it easier for
administrators to manage disk space in the cloud and ensure that their data is stored securely.

There are three types of partitions:

• Primary partition: A primary partition is a basic partition that can be used to boot an operating
system. In a hard disk, you can create up to four primary partitions. If you want to create more
partitions, you can create an extended partition, which is a special partition that can contain
multiple logical partitions.

• Logical partition: A logical partition is a partition that is created within an extended partition.
You can create multiple logical partitions within an extended partition, which can be useful
when you want to create multiple partitions but you have already created four primary partitions.

Steps to create a partition 69

• Extended partition: An extended partition is a special partition that is used to create multiple
logical partitions. An extended partition can only be created if there are no more than four
primary partitions on the hard disk. Once an extended partition has been created, you can
create multiple logical partitions within it.

These partition types are used to organize and manage data on a hard disk. By creating multiple
partitions, you can separate different types of data and manage them more effectively. For example,
you could create a separate partition for the operating system, one for user data, and one for backup
files. This can make it easier to manage your data and protect it in the event of a failure or data loss. The
different types of partitions offer flexibility in how you organize your data on a hard disk, depending
on your needs and the limitations of the hard disk.

Steps to create a partition
Partitioning is the process of dividing a physical hard drive into multiple logical storage units. In
Linux, the process of creating a partition involves defining the size and location of a new partition
on a physical hard drive, and then formatting it with a filesystem such as ext4, XFS, or btrfs.
Creating partitions is essential for managing disk space effectively and efficiently. With partitioning,
system administrators can organize and allocate space on a hard drive to various functions such as
the operating system, application files, user data, and swap space.

The process of creating partitions in Linux involves several steps. The first step is to identify the physical
hard drive that needs to be partitioned, using the fdisk command or other disk management tools
such as lsblk, df, and du. Next, the system administrator must decide on the size and location of
the new partition and use the fdisk command to create it. The new partition must then be formatted
with a filesystem using the mkfs command. Finally, the system administrator must mount the new
partition to make it accessible to the operating system and its applications.

Partitioning is important for several reasons. Firstly, it allows system administrators to manage
disk space efficiently by organizing data into logical units. With partitioning, it becomes easier to
back up and restore data, as well as to allocate space for specific applications or functions. Secondly,
partitioning can improve system performance by reducing disk fragmentation and optimizing access
times. Additionally, partitioning can improve security by isolating sensitive data on separate partitions
and protecting it from unauthorized access. Remember that partitioning is a critical tool for system
administrators to manage disk space, optimize system performance, and enhance security.

Format and Disk Space Commands70

The demonstration will be easy as we only require a drive connected to the Linux machine, and we
can begin partitioning by launching the Terminal. The commands we’ll be making use of for this
partitioning are lsblk and fdisk. The lsblk command will list the available devices so that we
can select the correct one to format, and fdisk command will effectively format the selected device.
Let’s get started with the demonstration:

1. To verify the available devices, execute the lsblk command:

Figure 4.1 – Verifying disk space

As we can see, we have listed the available devices and their respective disk spaces, but our main
target is the connected drive on /dev/sdb. Note that /dev represents the device directory in
Linux, where hardware devices are represented as files. In this case, /dev/sdb is the second
SCSI disk drive on the system. Notice that it already has a partition (sdb1). We will delete that
partition, verify it again, and then create our own partition. Let’s proceed with the next steps.

2. Next, execute the fdisk command to open its utility for the /dev/sdb drive. Please ensure
you have sudo access to run this command. Once you have opened the utility, you can create
a new partition, but first, let’s delete the previous one:

Figure 4.2 – Viewing the fdisk utility for the /dev/sdb drive

Steps to create a partition 71

Here, we used the p command, which stands for print, to display information about the existing
partition we had previously identified using the lsblk command. Now, we need to delete that
partition so that we can create a new one according to our needs.

3. To delete the sdb1 partition, use the d command, which stands for delete, to remove the
sdb1 partition:

Figure 4.3 – Deleting and saving changes made

4. After that, we can make use of the lsblk command to check whether the partition was really
deleted. As we can see, the deleted partition (sdb1) is not listed anymore, proving that the
deletion succeeded:

Figure 4.4 – Verifying that the partition was deleted

Once we have confirmed this, we can proceed with creating our own partition.

5. Now, call the fdisk utility for the /dev/sdb drive, and type p to print the current partition
table. This will help you understand how the disk is currently partitioned. Next, type n to create a
new partition. The n command in the fdisk tool is used to create a new partition on the selected
disk. When the command is entered, we are prompted to select the type of partition we wish
to create. In this case, we are presented with two partition types – primary and extended:

Format and Disk Space Commands72

Figure 4.5 – Creating a new partition

6. Next, we selected p for the primary partition type. Then, we were prompted to select the
number of partitions, and we left it as the default value by pressing Enter. For the first sector,
we also pressed Enter. The same went for the last sector. Finally, we confirmed that we wanted
to remove the signature by typing yes and then used the w command to save all the changes
that we made:

Figure 4.6 – Choosing the primary partition and saving changes

fdisk, lsblk, df, and du 73

7. Verify its creation by calling fdisk -l /dev/sdb and lsblk:

Figure 4.7 – Verifying the new partition (sdb1)

Congratulations! You have successfully created a partition.

fdisk, lsblk, df, and du
Among the utilities used in Linux systems to manage filesystems, there’s fdisk, lsblk, df, and
du. Each of these utilities performs a specific function in disk management, and their proper use is
essential to ensure the efficient functioning of the system.

We introduced fdisk, a command-line utility that’s used to partition disks, previously. It allows us
to create and modify partition tables, enabling administrators to organize storage space as required.
Partitioning is essential for efficiently utilizing storage space, improving system performance, and
simplifying the management of the filesystem. fdisk can create different types of partitions, including
primary, logical, and extended partitions. Additionally, it can be used to change the partition size,
delete partitions, and modify partition types. Without fdisk, managing and organizing the filesystem
would be complex, cumbersome, and prone to errors. We can call this command by simply typing
fdisk -l to list the partition:

Format and Disk Space Commands74

Figure 4.8 – List partition with fdisk

lsblk is another command-line utility that’s used in Linux systems to list all the available block
devices, including hard drives, USB devices, and CD-ROM drives. This utility is useful in identifying
the storage devices attached to the system, and the details of each block device. The output of lsblk
provides critical information about the block devices, such as the device name, the size, the filesystem
type, and the mount point. An example of this can be seen here:

Figure 4.9 – Output of block devices

This information is crucial in making decisions on how to allocate storage space and organize the
filesystem efficiently. lsblk is essential in disk management as it helps system administrators identify
the storage devices attached to the system, troubleshoot device connectivity issues, and make informed
decisions regarding partitioning and disk organization.

The df (Disk Free) utility is a command-line tool that displays the disk space used and available in
filesystems on Linux systems. This tool is important in monitoring filesystem usage, identifying storage
space consumption patterns, and making decisions on how to allocate storage space efficiently. Let’s
try and display the disk space usage for a specific filesystem, such as the root filesystem:

Figure 4.10 – Displaying disk usage with df

fdisk, lsblk, df, and du 75

With df, administrators can identify filesystems that are running low on disk space, which can cause
system performance issues or data loss:

Figure 4.11 – Monitoring disk usage

In this example, the administrator is monitoring the disk space usage on the filesystem where the
website files are stored, which is mounted on /var/www/html. The df command is used with the
-h option to display the output in a human-readable format, making it easier to understand the disk
space usage. The output shows the total size of the filesystem, the amount of space used, the available
space, the percentage of space used, and the mount point. The administrator can use this information to
identify the directories that are consuming the most space and optimize them for better performance.
Additionally, the administrator can use this information to plan for future disk space needs. The df
utility provides a detailed report on the filesystem usage, including the filesystem type, the total size,
the used space, the available space, and the percentage of the disk space used. With this information,
administrators can optimize disk usage, increase performance, and avoid system crashes.

The du utility is another essential command-line tool that’s used in Linux systems to determine the
amount of space used by specific directories and files. With du, administrators can identify files or
directories that are consuming too much space and decide whether to delete, archive, or move them to
another filesystem. The du utility also displays the amount of space used by each subdirectory, enabling
administrators to pinpoint storage hogs quickly. The du utility’s importance in disk management
cannot be overstated as it helps system administrators optimize disk usage, identify space-hogging
files, and troubleshoot space consumption issues.

Checking the disk space usage of a directory

In this example, we will use the du command to check the disk space usage of a directory.

The steps are as follows:

1. Navigate to the directory whose disk space usage you want to check.

2. Type the following command:

Figure 4.12 – Using du to check disk usage

We have used the du -sh command to check the disk space usage of the directory. The output
shows that the directory is using 13 GB of disk space.

Format and Disk Space Commands76

Finding large files in a directory

In this example, we will use the du command to find large files in a directory.

The steps are as follows:

1. Navigate to the directory whose large files you want to find.

2. Type the following command:

Figure 4.13 – Using du to find large files

Utilize the du -a | sort -rn | head –n 10 command to identify the 10 largest files in the
directory. The resulting output provides the size of each file in bytes, along with its corresponding file
path. Let’s apply this command to a different folder and observe the results:

Figure 4.14 – Viewing the file size with du

Utilities such as fdisk, lsblk, df, and du are essential in managing and organizing disk space in
Linux systems. fdisk is used in partitioning disks, lsblk is used in identifying the storage devices
attached to the system, df is used in monitoring filesystem usage, and du is used in determining
the amount of space used by specific directories and files. Proper use of these utilities is crucial in
optimizing disk usage, increasing system performance, and avoiding data loss.

Displaying (dpkg and rpm) package space
Package management systems such as dpkg and rpm are used to install, remove, and manage software
packages in Linux and Unix operating systems. The dpkg tool is used in Debian-based systems such
as Ubuntu and the rpm tool is used in Red Hat-based systems such as CentOS. These tools not only

Displaying (dpkg and rpm) package space 77

provide an easy way to manage software packages but also offer valuable information about disk space
usage by the installed packages. One important use of the dpkg and rpm tools is to display the package
space, which refers to the amount of disk space used by the installed packages. By using these tools,
administrators can identify the packages that are consuming the most disk space and make decisions on
whether to remove or keep them. This is particularly useful in systems with limited disk space, where
optimizing the use of disk space is critical to avoid system crashes, performance issues, or data loss.

In addition, the dpkg and rpm tools provide information about the package dependencies, which
are other packages that are required by the installed package to function properly. This information
is useful in identifying the packages that can be safely removed without affecting the system’s stability
or functionality. By removing unnecessary packages, administrators can free up disk space, reduce
system complexity, and improve system performance. The dpkg and rpm tools also offer an easy
way to upgrade or install packages with their dependencies automatically resolved. With these tools,
administrators can easily install security patches, updates, and new software packages without worrying
about the dependencies. This reduces the time and effort required to manage packages and ensures that
the system is up to date with the latest software versions. We are currently using CentOS 8, meaning
rpm (Red Hat Package Manager) will be our number one example.

Installing a package

The following example demonstrates how to utilize rpm to install packages on CentOS 8:

Figure 4.15 – Using rpm to install a package

This command installs the specified package using RPM. It searches for the package file in the current
directory, or you can specify a path to the package file. This command is useful for installing new
software on a Linux system, whether it is a single package or a set of packages.

Querying the details of a package

The rpm command can be used to query the details of a package installed on the system. For example,
to query the details of the ftp package, use the following command:

Format and Disk Space Commands78

Figure 4.16 – Querying the details of a package that’s been installed

The dpkg and rpm tools are essential for managing software packages and optimizing the use of disk
space in Linux and Unix systems. By providing valuable information about package space, dependencies,
and upgrade options, these tools enable administrators to make informed decisions and ensure the
stability, security, and performance of the system.

mkfs, mke2fs, fdformat, and more
Disk formatting is the process of preparing a storage device such as a hard drive, SSD, or USB flash
drive for data storage. Formatting creates a filesystem on the storage device, which allows the operating
system to organize and manage files on the device. In Linux, several disk formatting tool commands
can be used to format storage devices. These tools include mkfs, mke2fs, fdformat, and more.

mkfs is a command that’s used to create a filesystem on a storage device. This command can be used
to create a variety of filesystems, including ext2, ext3, ext4, XFS, btrfs, and more. The mkfs
command is important in preparing storage devices for use in Linux systems. For example, when a
new hard drive is added to a Linux server, it must be formatted before it can be used for data storage.
Let’s examine a straightforward approach to utilize this tool on CentOS 8:

mkfs, mke2fs, fdformat, and more 79

Figure 4.17 – Formatting a partition using mkfs.ext4

This will format the /dev/sdb1 partition with the ext4 filesystem. The newly formatted partition
can then be mounted and used for data storage.

mke2fs is a variant of the mkfs command that is specifically designed to create ext2, ext3, and
ext4 filesystems. The mke2fs command is important in creating and managing Linux filesystems.
With this command, administrators can specify the size of the filesystem, the block size, and other
parameters to optimize the filesystem for specific use cases. For example, a filesystem created with
the mke2fs command can be optimized for high-performance workloads or used with large files,
as shown in the following example:

Figure 4.18 – Creating an ext3 filesystem

Here, the command creates an ext3 filesystem on the /dev/sdb1 partition. The -t ext3 option
specifies the filesystem type as ext3.

The fdformat command is primarily used for low-level formatting of floppy disks, which are legacy
storage media. It writes a new disk geometry and sector layout to the floppy disk, preparing it for use.
However, this command is not intended for formatting modern storage devices such as pen drives
or USB flash drives.

For formatting pen drives or USB flash drives in Linux, mkfs (make filesystem) commands are
typically used, such as mkfs.fat for creating a FAT filesystem or mkfs.ext4 for creating an
ext4 filesystem, as shown in the previous examples. These commands are specifically designed for
formatting different types of storage devices, including pen drives, USB flash drives, and hard drives.

Format and Disk Space Commands80

The mkswap command is used to create a swap area on a Linux system. A swap area is a dedicated space
on a hard drive that the system can use as virtual memory when it runs out of physical memory. The
mkswap command initializes a disk partition or a file as a swap area and assigns it a unique identifier.

Let’s delve into comprehensive examples to demonstrate the practical utilization of these commands:

1. Check the available disk partitions:

Figure 4.19 – Viewing the available disk partitions

2. Identify the desired partition for swap, such as /dev/sdb1, and then proceed to execute the
sudo mkswap /dev/sdb1 command. This command formats the partition as swap,
resulting in the following output:

Figure 4.20 – Using mkswap to format the partition as swap

The gdisk command is a variant of the fdisk command and is used to partition hard drives
on Linux systems. gdisk is primarily designed for GPT, which is a newer partitioning scheme
that has replaced the older Master Boot Record (MBR) partitioning scheme on many modern
systems. The gdisk command is a powerful tool that allows you to create, modify, and delete
partitions on GPT disks.

mkfs, mke2fs, fdformat, and more 81

3. In this scenario, the system administrator is using the gdisk command to create a new partition
on the /dev/sdb disk. The administrator enters the gdisk /dev/sdb command to launch
the gdisk utility for the specified disk.

4. Once inside the gdisk utility, the administrator uses the n command to create a new partition.
The utility prompts for the partition number, first sector, and last sector. The administrator can
choose the default values or specify custom values based on their requirements:

Figure 4.21 – Using gdisk to create a new partition

5. In this example, the administrator sets the partition type to Linux swap by entering a hex
code of 8300. After confirming the changes, the administrator uses the w command to write
the changes to the disk and exit the gdisk utility:

Format and Disk Space Commands82

Figure 4.22 – The partition was created

The parted command is a partition editor that allows you to create, delete, resize, and move
partitions on a hard drive. Parted supports both MBR and GPT partitioning schemes and can work
with multiple filesystem types. It is a powerful tool for managing disk partitions and is commonly
used in server environments.

Let’s explore a practical scenario of using the parted command:

1. In this scenario, the system administrator is using the parted command to create a new
partition on the /dev/sdb disk. The administrator enters the parted /dev/sdb command
to launch the parted utility for the specified disk.

2. Once inside the parted utility, the administrator uses the mklabel gpt command to create
a new GPT partition table on the disk. This ensures compatibility with modern systems and
larger disk sizes.

3. Next, the administrator uses the mkpart primary ext4 0% 100% command to
create a new primary partition that spans the entire disk. The partition is formatted with the
ext4 filesystem.

4. After creating the partition, the administrator can use the print command to verify the
partition layout and details. This helps ensure that the partition was created correctly.

5. Finally, the administrator uses the quit command to exit the parted utility:

mkfs, mke2fs, fdformat, and more 83

Figure 4.23 – Using parted to create a partition table

By using the parted command in this scenario, the system administrator can easily create and manage
partitions on the specified disk, allowing for effective disk management and utilization.

The dd command is a low-level tool that’s used for copying and converting data between files, disks,
and partitions. The dd command is commonly used for creating bootable USB drives, backing up
and restoring disk images, and cloning disks. It can also be used to write zeros to a hard drive, which
is useful for securely wiping sensitive data.

Let’s explore a practical example scenario for the dd command:

1. In this scenario, the system administrator is using the dd command to copy the contents of a
source file to a USB device represented by /dev/sdb.

2. The administrator starts by executing the dd command. The if option is used to specify the
input file, followed by the path to the source file (/home/instructor/backup.tar.
gz in this example):

Format and Disk Space Commands84

Figure 4.24 – Using the dd command to copy on the USB device

3. Next, the of option is used to specify the output file, which is the USB device represented by
/dev/sdb. This means that the contents of the source file will be written to the USB device.

4. The bs option is used to specify the block size for data transfer. In this example, bs=4M
indicates a block size of 4 megabytes.

5. By executing this command, the system administrator can effectively copy the contents of the
source file to the USB device. This can be useful for tasks such as creating bootable USB drives,
transferring large files, or creating disk images.

6. It’s important to exercise caution when using the dd command with block devices such as
/dev/sdb as any data on the destination device will be overwritten. As an administrator,
you should double-check and ensure they are targeting the correct device to avoid accidental
data loss.

In conclusion, disk formatting tool commands are an essential part of managing storage devices in
Linux systems. These commands allow administrators to prepare storage devices for use, optimize
filesystems for specific use cases, and ensure that devices are reliable and performant. Understanding
the purpose and use of these commands is important for any Linux administrator who works with
storage devices.

Summary
This chapter explored the steps of creating a partition, a fundamental process in disk management.
We provided a detailed walk-through of utilizing tools such as fdisk, lsblk, df, and du to
create, modify, and analyze partitions on storage devices. These tools play a crucial role in partition
management, allowing system administrators to allocate disk space efficiently, monitor disk usage,
and make informed decisions for optimal storage utilization. Additionally, this chapter delved into
the topic of displaying package space using commands such as dpkg and rpm. These commands
enable system administrators to obtain information about installed packages, including their sizes
and disk space consumption. By leveraging dpkg and rpm, administrators can keep track of package
installations, identify space-intensive packages, and manage package dependencies to ensure efficient
disk utilization.

Furthermore, this chapter covered the usage of mkfs, mke2fs, and fdformat, among other disk
formatting tools. These commands provide administrators with the ability to format disks and partitions
with various filesystems, facilitating data organization and compatibility. Proper disk formatting is

Summary 85

crucial for optimal performance and storage utilization. System administrators can utilize these tools
to prepare disks for specific purposes, create filesystems for data storage, or format removable media.

In summary, this chapter served as a comprehensive guide to effective file management and storage
optimization in Linux. By incorporating the steps of creating a partition, utilizing tools such as fdisk,
lsblk, df, and du, displaying package space with dpkg and rpm, and employing disk formatting
commands such as mkfs, mke2fs, and fdformat, system administrators can efficiently manage
their files and storage resources. This enables them to enhance storage utilization, ensure data integrity,
and maintain an organized and optimized system environment.

In the next chapter, we will thoroughly explore and discuss important commands such as chmod,
chown, chgrp, umask, and sudo. These commands play a critical role in granting and managing file
permissions, modifying ownership and group settings, setting default file permissions, and executing
commands with administrative privileges.

5
Linux Permissions Commands

Linux permissions commands are a fundamental aspect of Linux system administration, providing a
powerful mechanism to control access to files and directories. These commands, including chmod,
chown, and more, play a crucial role in maintaining security, protecting sensitive data, and managing
user privileges. They allow Linux system administrators to define who can read, write, and execute
files, as well as specify access permissions for different users and groups. The importance of Linux
permissions commands lies in their ability to enforce the principle of least privilege, ensuring that
users and processes have only the necessary permissions to perform their intended tasks. By assigning
appropriate permissions, system administrators can safeguard critical files and prevent unauthorized
access, minimizing the risk of data breaches and unauthorized modifications. Additionally, these
commands enable administrators to allocate privileges based on user roles, maintaining a well-defined
security model within the system.

The purpose of Linux permissions commands is twofold: security and organization. From a security
perspective, they allow administrators to restrict access to sensitive files, directories, and system
resources. By granting or revoking permissions, administrators can limit the exposure of critical data
and prevent malicious activities. On an organizational front, these commands facilitate the management
of files and directories, ensuring that they are properly categorized, protected, and accessible to the
intended users. Linux permissions commands are widely used by Linux system administrators due
to their versatility and effectiveness in maintaining system security and managing user access. They
provide granular control over permissions, allowing administrators to set different access levels for
owners, groups, and other users. Furthermore, these commands can be applied recursively, allowing
for efficient management of permissions across directories and subdirectories. With the use of symbolic
and absolute modes, administrators can easily modify permissions based on specific requirements.

Linux permissions commands are essential for managing file and directory access permissions.
System administrators can use these commands to enforce security measures, control user access,
and safeguard sensitive data. By the end of this chapter, you will have a comprehensive understanding
of Linux permissions commands, enabling you to effectively manage file and directory permissions.

Linux Permissions Commands88

In this chapter, we will cover the following main topics:

• Why permission commands?

• Types of permissions

• chmod

• chown

• Utilizing absolute paths in commands

• chgrp

• umask

• sudo

Why permission commands?
By utilizing permission commands, administrators can enforce the principle of least privilege, granting
users only the necessary permissions required to perform their tasks. This practice reduces the risk
of unauthorized access or accidental modifications to critical files, minimizing the potential for data
breaches and system compromises. With proper permissions in place, organizations can maintain
control over their sensitive information and prevent unauthorized disclosure or alteration. Moreover,
permission commands enable administrators to implement security policies that align with industry
best practices and compliance regulations. For example, by restricting access to configuration files or
system directories, administrators can protect system files from unauthorized modifications, ensuring
system stability and preventing malicious activities. Additionally, by assigning appropriate ownership
and group permissions, administrators can facilitate collaboration among authorized users while
maintaining data privacy and segregation.

However, despite their importance, lapses in the proper configuration and management of Linux
permissions can lead to security vulnerabilities. Misconfigurations, such as granting excessive
permissions or neglecting to revoke access rights when no longer needed, can expose sensitive data
to unauthorized individuals or increase the risk of insider threats. Administrators must regularly
review and audit permission settings to identify and rectify any inconsistencies or misalignments
with organizational security policies.

Furthermore, the complexity of managing permissions in large-scale environments can pose challenges.
Ensuring the appropriate permissions for numerous files and directories across multiple users and
groups can be time-consuming and prone to human errors. It is crucial for administrators to implement
proper access control frameworks, utilize automation tools, follow standardized procedures to mitigate
the risk of misconfigurations, and maintain a secure environment. Permission commands serve as
a fundamental pillar of securing organizational and administrative files. They provide the means
to enforce access control, maintain data confidentiality, and mitigate security risks. However, it is

Types of permissions 89

essential for administrators to diligently configure, monitor, and manage permissions to avoid lapses
and ensure the ongoing integrity and security of their systems and data.

Types of permissions
In Linux, three types of permissions can be assigned to files and directories: read (r), write (w),
and execute (x). These permissions define the level of access and control users have over files and
directories. Let’s explore each type of permission and understand their meanings and implications:

• Read (r) permission:

 � The read permission allows a user to view and read the contents of a file or list the contents
of a directory

 � For directories, the read permission enables the user to see the names of files and subdirectories
within the directory

It’s important to note that having read permission allows users to open and view the contents
of a file. However, they cannot modify or delete it unless they possess additional permissions.

• Write (w) permission:

 � The write permission allows a user to modify or delete a file’s content or create new files
within a directory

 � For directories, the write permission enables users to add, delete, and rename files and
subdirectories within the directory

• Execute (x) permission:

 � The execute permission allows a user to execute or run a file if it is a program or script

For directories, the execute permission enables users to access and enter the directory, allowing
them to navigate through its contents. Unlike the read permission, the execute permission
specifically grants the ability to traverse or navigate the directory structure and access its
subdirectories. With the execute permission, users can execute programs, scripts, and commands
within the directory, provided they have the necessary read permission to view the file’s content.
This means they can run executable files within the directory, but listing its contents with
commands such as ls might not be allowed without read permission.

Permissions are assigned separately for three different entities: the file owner (also known as “user”), the
group associated with the file, and all other users (others) who are not the owner or part of the group.
These permissions can be set individually or combined into a three-digit numeric representation (for
example, 755) to represent the permissions for the owner, group, and others.

Linux Permissions Commands90

When a user attempts to access a file or directory, Linux follows a specific order to check permissions:

• User ownership (owner): Initially, Linux checks whether the accessing user is the owner of
the file. If the user is the owner, the system evaluates the permissions configured for the owner.

• Group ownership (group): If the accessing user is not the owner, Linux proceeds to examine
whether the user belongs to the group associated with the file. If the user is part of the group,
the system considers the permissions specified for the group.

• Others: If neither of the previous two conditions applies, Linux assesses the permissions granted
to “others,” which encompasses all users not falling into the owner or group categories.

This sequential approach to permission checking allows Linux to determine access rights with precision.
It ensures that file access and actions (such as read, write, and execute) are granted or denied based
on the user’s relationship with the file’s owner and group, facilitating robust access control.

Let’s delve into the various tools employed for granting permissions, beginning with the widely utilized
command known as chmod.

chmod
Short for change mode, chmod is a command in Linux and Unix-like operating systems that allows
users to modify the permissions of files and directories. It plays a fundamental role in controlling
access to files and ensuring data security. The importance of chmod lies in its ability to define who
can read, write, and execute files, thus determining the level of interaction and control that different
users have over the system resources.

One of the primary reasons why chmod is essential is that it can enforce security measures within an
organization. By setting appropriate file permissions, system administrators can restrict unauthorized
access to sensitive data and prevent unauthorized modifications. For example, critical system configuration
files or confidential documents may require strict read-only permissions to ensure that only authorized
personnel can view and access them. chmod empowers administrators to establish granular access
controls, allowing them to strike a balance between accessibility and security. Another crucial use
of chmod is in managing user access privileges. Different users or groups may have different levels
of permissions based on their roles and responsibilities. chmod enables administrators to assign
specific permissions to individuals or groups, ensuring that each user has the appropriate level of
access required to perform their tasks. This level of control helps maintain data integrity and prevents
accidental or intentional damage to files by unauthorized users. By using chmod, administrators can
ensure that only trusted individuals or groups have the necessary permissions to modify critical files
or execute certain programs.

Furthermore, chmod serves a vital purpose in the administrative aspect of file management. It allows
administrators to organize and control file permissions efficiently, making it easier to manage access
rights across a complex directory structure. By using chmod in conjunction with other tools such as
chown (change owner), administrators can effectively assign ownership and permissions to files and

chmod 91

directories, streamlining the administrative tasks associated with user management. This capability is
particularly crucial in large organizations with multiple users and diverse filesystems, where efficient
management of permissions is paramount to maintaining order and security. Let’s explore and observe
several scenarios that illustrate how to utilize this command effectively.

Scenario 1: Granting read and write permissions to a file:

1. Identify the file for which you want to grant read and write permissions.

2. Use the chmod command with the appropriate options to set the desired permissions:

Figure 5.1 – Granting permission to files

This command grants read and write permissions to the Management.txt file, allowing
users to both read from and write to the file.

Scenario 2: Revoking execute permission for a group:

1. Determine the file or directory from which you want to remove execute permission for a
specific group.

2. Use the chmod command with the appropriate options to revoke the execute permission:

 � g-w: This option removes the write permission for the group that the file belongs to.

 � g-x: This option removes the execute permission for the group that the file belongs to. This
means that the members of the group can no longer execute the file, even if they have read
and write access to it:

Figure 5.2 – Revoking execute permission

This command removes the execute permission for the group from the ChgMod.sh file,
ensuring that group members cannot execute the script.

Linux Permissions Commands92

Scenario 3: Setting specific permissions using numeric mode:

1. Determine the file or directory for which you want to set specific permissions.

2. Calculate the numeric value for the desired permissions – for example, read (4), write (2),
and execute (1):

user_permission=6 # read and write permission for the owner
group_permission=4 # read permission for the group
other_permission=4 # read permission for others

In Linux, file and directory permissions are often represented as a three-digit numeric code,
where each digit corresponds to a specific permission type. The three digits represent permissions
for the owner, the group, and others, in that order. Each digit is a combination of values that
signify read, write, and execute permissions, as follows:

 � 4: This digit represents read permission. It allows the user (or entity) to view the contents
of a file or list the files in a directory.

 � 2: This digit represents write permission. It grants the user the ability to modify or delete
the file’s contents or create new files within a directory.

 � 1: This digit signifies execute permission. It enables the user to run executable files and
scripts or traverse (enter) directories.

To create the three-digit numeric permission code, you can combine these values based on the
desired permissions for the owner, group, and others. Here’s an example:

 � 6: This code means that the owner has read and write permissions (4 + 2), but no
execute permission

 � 7: In this code, the owner has read, write, and execute permissions (4 + 2 + 1)

 � 4: This code represents read-only permissions for the group, with no write or execute permissions

 � 5: Here, the group has read and execute permissions (4 + 1), but no write permission

 � 0: This code indicates no permissions for a particular entity (owner, group, or others)

By understanding the meaning of each digit in the permission code, you can precisely control
who can read, write, and execute files and directories, ensuring the security and integrity of
your system.

chmod 93

3. Use the chmod command with the appropriate numeric mode to set the permissions:

Figure 5.3 – Numeric permissions modes

This command sets the permissions of the Approvals.txt file to read and write for the
owner, read for the group, and read for others.

Scenario 4: Applying recursive permissions to a directory and its subdirectories:

1. Identify the directory for which you want to apply permissions recursively.

2. Use the chmod command with the appropriate options to apply the desired permissions recursively:

Figure 5.4 – Applying recursive permissions to a directory

This command applies the permissions of 755 (read, write, and execute for the owner, and read
and execute for the group and others) to the ConfigFile directory and all its subdirectories.

chmod is a powerful command that plays a vital role in controlling file and directory permissions in
Linux and Unix-like systems. Its importance lies in its ability to enforce security measures, manage
user access privileges, and streamline administrative tasks. By utilizing chmod effectively, system
administrators can ensure the confidentiality, integrity, and availability of data within an organization
while maintaining a structured and secure filesystem.

Linux Permissions Commands94

chown
Short for change owner, the chown command is a powerful tool in Linux and Unix-based operating
systems that’s used to change the ownership of files and directories. However, it’s important to note
that in many cases, you need superuser privileges (often obtained via the sudo command) to execute
chown. This command allows system administrators to assign new ownership to files, determining
both the user and group that have control over them.

chown plays a crucial role in managing file permissions, enforcing security measures, and organizing
administrative files. One of its key purposes is to ensure proper access control and security within a
Linux system.

By specifying the correct user and group ownership for files and directories, system administrators
can maintain security and control over who can access, modify, or delete specific resources. This is
particularly important in multi-user and multi-group environments where precise control over file
access is essential for system integrity and data protection.

By changing the ownership of files and directories, administrators can restrict access to sensitive
information and prevent unauthorized users from modifying or accessing critical files. This is particularly
important in multi-user environments and organizations where data confidentiality is paramount.
chown enables administrators to assign ownership to specific users and groups, ensuring that only
authorized individuals have the necessary privileges.

Furthermore, chown is essential for system administration tasks and file management. It allows
administrators to transfer ownership of files when users are added or removed from the system.
When a user account is deleted, for example, it is crucial to assign ownership of their files to another
user or a system account to ensure continuity and prevent data loss. chown also facilitates efficient
collaboration within teams by enabling the transfer of file ownership between group members, allowing
them to work on shared projects or documents.

In addition to its security and administrative benefits, chown is a fundamental tool for organizing and
maintaining filesystems. It enables administrators to categorize files and directories by assigning ownership
to specific users or groups based on their role or purpose. This helps streamline file management,
simplifies permission management, and ensures files are properly organized and accessible to the
right individuals. chown plays a vital role in maintaining a well-structured and efficient filesystem,
enhancing productivity and ease of use for both administrators and users.

The chown command allows for various types of ownership changes, enabling administrators to
modify the ownership of files and directories based on different criteria. Here are the types of ownership
changes that are commonly used in Linux permissions:

• Changing user ownership: The chown command can be used to change the user ownership of
a file or directory. By specifying a new user as the owner, administrators can transfer ownership
to a different user account.

chown 95

• Changing group ownership: Along with changing user ownership, chown also supports
changing the group ownership of a file or directory. Administrators can assign a new group to
a file, allowing members of that group to access and modify the file.

• Changing user and group ownership: chown also provides the flexibility to change both user
and group ownership simultaneously. This allows administrators to completely modify the
ownership of a file or directory, assigning both a new user and a new group.

• Changing ownership recursively: In cases where directories contain multiple files and
subdirectories, administrators may need to change ownership recursively. The -R option in the
chown command enables recursive ownership change, ensuring that ownership is modified
for all files and directories within the specified directory.

• Preserving file context: On systems that implement mandatory access control (MAC)
mechanisms, such as SELinux, it’s important to preserve the file context (a special security label
used by MAC systems to focus on the security properties of the file) while changing ownership.
The -h option in the chown command ensures that the file context remains unchanged.

Let’s explore different scenarios that illustrate how to utilize this command effectively:

• Changing ownership of a directory and its contents:

Figure 5.5 – Changing ownership of a directory

In this scenario, we pass the ownership of the backup directory and all its contents to the
tester1 user, including files and subdirectories. The group ownership is also changed to
instructor. This is useful when transferring ownership of a project to a new team lead or
when organizing files under a specific user and group.

• Restoring ownership of system files:

Figure 5.6 – Restoring ownership of a file

Linux Permissions Commands96

This command recursively changes the ownership of all files and directories under the backup
directory back to the root user and root group. This is important for maintaining the integrity
and security of system configuration files, ensuring that only the root user has the necessary
privileges to modify them.

• Assigning ownership to a specific user in a shared directory:

Figure 5.7 – Assigning ownership to a specific user in a shared directory

Here, the ownership of the project/backup/ directory is changed to the instructor
user and the tester1 group. This is useful in scenarios where multiple users need access to a
shared directory, but specific ownership is required for certain files or folders within that directory.

By customizing the user and group names and applying the appropriate options, you can effectively
manage ownership and permissions in various situations.

Finally, chown is a crucial command for system administrators. Its ability to change file ownership
allows for proper access control, enhances security, facilitates administrative tasks, and contributes
to a well-organized filesystem. By leveraging chown effectively, administrators can ensure data
confidentiality, maintain system integrity, and promote efficient collaboration among users and groups.

Utilizing absolute paths in commands
Utilizing absolute paths in commands is a crucial aspect of working with the Linux operating system.
An absolute path refers to the complete and exact location of a file or directory in the filesystem
hierarchy. It starts from the root directory (/) and includes all the necessary directories to specify
the location precisely. The primary reason for using absolute paths in commands is to provide an
unambiguous and reliable way to refer to files or directories. By using an absolute path, you eliminate
any dependency on the current working directory. This ensures that the command will consistently
target the intended file or directory, regardless of your current location in the filesystem. Absolute
paths eliminate confusion and prevent potential errors that may occur when relying on relative paths.

The importance of utilizing absolute paths becomes evident in scenarios where scripts or commands
need to be executed from different directories or by different users. Absolute paths guarantee that the
same file or directory is accessed, regardless of the executing environment. This is especially crucial
when dealing with system administration tasks, automation scripts, or shared environments where
multiple users interact with the same filesystem. The use of absolute paths is widespread in various
Linux operations. It is especially vital when executing commands that require precise file or directory
targeting, such as file manipulation, data backups, system configuration, or application deployment.

Utilizing absolute paths in commands 97

Absolute paths are commonly used in commands such as file copying, moving, deletion, permissions
modification, and program execution. By utilizing absolute paths, you can ensure the accuracy and
predictability of these operations, minimizing the risk of unintended consequences or errors. To better
understand what we’re talking about, we’ll be focusing on scenario-based examples that demonstrate
the use of the absolute command in different situations:

• Copying a file to a specific directory: Suppose you have a file named document.txt located
in your home directory, and you want to copy it to the /var/www/html directory. You can
use the following absolute command:

Figure 5.8 – Copying a file to a specific directory

• Moving a directory to another location: Assume you have a directory named document.
txt in the current working directory, and you want to move it to the /home/instructor/
Documents directory. You can accomplish this using the following absolute command:

Figure 5.9 – Moving a directory to another location

• Accessing a file in a different directory: Assume you have a script located in the /usr/local/
bin directory, and it needs to access a configuration file named config.ini located in the
/etc directory. You can use the following absolute command to reference the file:

Figure 5.10 – Accessing a file in a different directory

Linux Permissions Commands98

These examples demonstrate how absolute commands are used to specify the exact location of files
and directories, regardless of the current working directory. By providing the complete path, you
ensure precise file operations and avoid any ambiguity in file references.

In conclusion, absolute commands enable accurate and reliable referencing of files and directories
using their complete paths from the root directory. It is important for maintaining consistency,
facilitating system administration tasks, enabling precise file access and manipulation in scripts and
programs, and ensuring the portability of scripts across different environments. By understanding and
leveraging the power of absolute paths, system administrators can effectively navigate the filesystem
and perform tasks with confidence and precision.

chgrp
The chgrp command in Linux is used to change the group ownership of files and directories. It stands
for change group and allows administrators to modify the group ownership of a file or directory to
a specific group. The primary purpose of chgrp is to ensure proper access control and facilitate
group-based permissions management in a Linux system. One of the key reasons for using chgrp is
to align file or directory ownership with a specific group. This is particularly important in multi-user
environments where different groups of users require varying levels of access to files and directories. By
changing the group ownership using chgrp, administrators can ensure that files are accessible to the
appropriate group and restrict access to others, enhancing the security and integrity of sensitive data.

The importance of chgrp lies in its role in managing file permissions effectively. It works hand in
hand with other permission-related commands, such as chmod, to define access rights and maintain
proper ownership. By using chgrp, administrators can assign ownership to a specific group, allowing
members of that group to collaborate on files and directories while maintaining control over access
privileges. The use of chgrp is widespread in various scenarios.

Both chown and chgrp are used to modify ownership attributes of files and directories in Linux.
However, they serve different purposes:

• chown is used to change both the owner and group owner of a file or directory. It allows you to
transfer full ownership of a file or directory from one user to another, including the associated
group ownership.

• chgrp, on the other hand, is specifically used to change the group ownership of a file or
directory while keeping the owner intact. It doesn’t affect the user owner, only the group owner.

When to use chown versus chgrp depends on your specific needs. If you want to change both
the owner and group owner of a file or directory, use chown. If you only need to modify the group
ownership while preserving the user owner, then chgrp is the appropriate choice.

For example, in a project-based environment, administrators can create different groups for each
project and assign the appropriate group ownership to project-related files and directories. This ensures
that only members of the relevant project group can access and modify those resources. chgrp is

umask 99

also valuable when managing shared directories where multiple users need to collaborate on files as
it simplifies the process of granting or revoking group-based permissions.

Let’s take a look at some examples:

• Assigning group ownership to a directory.

Suppose you have a directory named project that needs to be accessed and modified by the
tester1 group. You can use the following command:

Figure 5.11 – Assigning group ownership to a directory with chgrp

• Recursive group ownership change.

You want to change the group ownership of all files and directories within a directory named
data to the tester1 group. You can use the following command:

Figure 5.12 – Using chgrp -R recursively

By using chgrp, administrators can enforce group-based permissions, streamline collaboration
among users, and ensure that files and directories are accessible only to authorized individuals or
groups. It is crucial for managing group ownership in Linux. It provides a means to align file and
directory ownership with specific groups, facilitating proper access control and enhancing security.

umask
The umask command is used to set the default file permissions for newly created files and directories.
The term umask stands for user file-creation mode mask. It is a permission mask that determines
which permission bits are turned off by default when a new file or directory is created. The umask

Linux Permissions Commands100

value is subtracted from the maximum permissions (usually represented as 666 for files and 777 for
directories) to derive the effective permissions. This change reflects the more accurate terminology
for the permissions being modified by the umask value.

The importance of the umask command lies in enhancing security and controlling file permissions in
a multi-user environment. By setting the appropriate umask value, system administrators can ensure
that new files and directories have the desired permissions. This helps in enforcing security policies,
preventing unauthorized access, and maintaining the integrity of sensitive data.

The umask command is particularly useful in scenarios where multiple users share the same system
or when creating scripts and applications that generate files dynamically. By defining a specific umask
value, system administrators can establish a consistent permission scheme across the system, reducing
the risk of accidental exposure of sensitive information.

It’s important to note that setting a more restrictive umask can have certain consequences. For
example, if a highly restrictive umask is applied system-wide, newly installed libraries and their
associated files may not be readable by certain applications, potentially causing compatibility issues.
System administrators should carefully consider the impact of umask settings and strike a balance
between security and functionality when configuring umask values.

Let’s look at some examples:

• Restricting file permissions for newly created files:

Figure 5.13 – Restricting file permissions for newly created files

In this scenario, the umask command is used to calculate the default permissions for newly
created files. The umask value of 027 is applied as follows:

 � 0 in the leftmost position represents the user’s maximum permission, which remains unchanged

 � 2 in the middle position (masking writing permission) subtracts the group’s write permission
(2), effectively removing it

 � 7 in the rightmost position (masking all permissions for others) subtracts all permissions
for others (4 for read, 2 for write, and 1 for execute), leaving only read permissions

The touch command is then used to create a new file called systemconfig.txt. Finally,
the ls -l command is used to list the file’s permissions, which should reflect the permissions
specified by the umask value.

sudo 101

• Allowing group members to read and write files within a directory:

Figure 5.14 – Allowing group read/write permissions

In this scenario, the umask command sets the default permission mask to 002, allowing
group members to have read and write permissions for newly created files within a directory.
The mkdir command creates a new directory called dir_files.

Now, let’s dive into the significance of the setgid bit. The chmod g+s command is used to
set the setgid bit on the directory. This bit serves a specific purpose: it ensures that newly
created files within the directory inherit not only the group ownership of the parent directory
but also the group permissions.

For example, if a user creates a new file inside dir_files, that file will automatically be
assigned the group ownership of dir_files, and it will have the same group permissions
as dir_files, even if the user is not a member of that group. This is particularly useful in
collaborative environments where multiple users need access to shared directories, ensuring
that files within those directories maintain the correct group ownership and permissions.

• Setting restrictive permissions for newly created executable files:

Figure 5.15 – Setting restrictive permissions for newly created executable files

In this scenario, the umask command is used to set the default permission mask to 077, which
means that newly created files will have no permissions for the group and others. The touch
command is used to create a new file called devportal.sh. The chmod +x command is
then used to make the file executable. Since the umask value restricts permissions for the group
and others, the resulting file will only have executed permissions for the owner.

sudo
The sudo command in Linux stands for superuser do and it allows users to run commands with the
privileges of another user, usually the superuser or root. It provides a way to perform administrative
tasks without logging in as the root user. The sudo command is an essential tool for system
administrators as it enhances security, restricts access to critical operations, and promotes the principle
of least privilege. The importance of the sudo command lies in its ability to control and limit access
to privileged operations. By using sudo, administrators can grant specific users or groups the ability
to execute certain commands with elevated privileges, while still keeping a record of their actions.

Linux Permissions Commands102

This helps mitigate the risks associated with unrestricted access to the root account as it provides a
controlled and auditable way to perform administrative tasks.

The primary use of the sudo command is to execute commands as the root user or another specified
user with elevated privileges. It requires users to authenticate themselves using their credentials,
such as a password, before executing the privileged command. This adds an extra layer of security
by ensuring that only authorized users can perform administrative actions, reducing the chances of
accidental or malicious system modifications. The purpose of sudo is to promote the principle of least
privilege, which states that users should only be given the minimum privileges necessary to perform
their tasks. By using sudo, administrators can grant temporary administrative privileges to regular
users on an as-needed basis, without exposing the system to unnecessary risk. This helps maintain the
overall security and stability of the system, as well as prevent unauthorized modifications or misuse
of privileged commands.

Let’s look at some examples:

• Installing software as a privileged user.

In this scenario, the sudo command is used to run the yum install (yum stands for
Yellowdog Updater Modified) command with administrative privileges. By prefixing the
command with sudo, the user is prompted to enter their password and, if authorized, the
command is executed with elevated privileges. This allows the user to install software or make
system-wide changes that require administrative access:

Figure 5.16 – Installing software with a privileged user

• Restarting the system and checking services.

Summary 103

In this scenario, the sudo command is employed to restart and verify the status of the
sshd system service. By executing the systemctl restart/status command with
administrative privileges, users gain the ability to restart and monitor the status of essential
services that necessitate root access. This guarantees that any modifications made to the service
configuration or updates applied to it are properly implemented and activated:

Figure 5.17 – Using sudo to restart and verify the service’s status

In conclusion, Linux permissions commands play a crucial role in managing access to files and
directories in Linux systems. These commands allow system administrators to control and enforce
permissions, ensuring that only authorized users can read, write, or execute specific files. Understanding
the different types of permissions and how to manipulate them is essential for maintaining the security
and integrity of the system.

Summary
This chapter delved into the realm of Linux permissions commands, exploring various tools and
techniques to manage file and directory access permissions effectively. This chapter began with an
introduction to the chmod command, which allows users to modify the permissions of files and
directories. Understanding chmod is crucial for enforcing security measures, controlling user access,
and safeguarding sensitive data. Through the use of numeric and symbolic representation, administrators
can assign specific permissions to users, groups, and others. Next, we explored the chown command,
which is used to change the ownership of files and directories. By assigning ownership to specific
users and groups, administrators can control access and ensure appropriate responsibility for files and
directories. Understanding chown is essential for managing file permissions, facilitating collaboration,
and maintaining data integrity. Another important topic that was covered in this chapter was utilizing
absolute paths in commands. Absolute paths provide the precise location of a file or directory within
the filesystem hierarchy. This knowledge enables administrators to navigate and manipulate files and

Linux Permissions Commands104

directories with accuracy and efficiency. Understanding how to work with absolute paths is vital for
executing commands, managing permissions, and performing file operations. Additionally, this chapter
explored the chgrp command, which is used to change the group ownership of files and directories.
By assigning files and directories to specific groups, administrators can control access permissions
and group-level collaboration. We also covered the umask command, which plays a significant role
in setting default file permissions for newly created files and directories. By defining the umask
value, administrators can specify the initial permissions applied to files, ensuring consistency and
adherence to security standards. Finally, we delved into the sudo command, a powerful tool that
grants users the ability to execute commands with elevated privileges. By using sudo, administrators
can perform administrative tasks that require root access, while maintaining security by limiting the
scope of administrative permissions.

In summary, this chapter covered a comprehensive range of Linux permissions commands, including
chown, chmod, chgrp, umask, and sudo. These commands are instrumental in managing group
permissions, facilitating collaboration, establishing standardized file permissions, and executing
administrative tasks with elevated privileges.

In the next chapter, we will delve into essential tools and techniques that enable system administrators
to manage mounted filesystems and perform file manipulation tasks. We will cover four key topics:
the mount command, the umount command, the fuser command, and file manipulation using
commands such as cat, grep, and more.

6
Filesystem Mount and

Manipulation Commands

The Linux filesystem mount and manipulation commands are a set of essential tools that allow Linux
system administrators to manage and manipulate filesystems and storage devices. These commands
provide a flexible and efficient way to mount and unmount filesystems, manage disk partitions, and
perform various file manipulation tasks. They are widely used in Linux environments due to their
versatility, reliability, and ease of use. One of the key reasons why such commands are highly valued
by system administrators is their ability to manage filesystems and storage devices. These commands
enable administrators to mount different types of filesystems, such as ext4, NTFS, or NFS, making
data accessible and usable within the Linux system. They also provide options for managing network
filesystems, allowing administrators to connect and access remote filesystems over a network. Another
important aspect of these tools is their role in disk partition management. With them, administrators
can create, resize, and delete disk partitions, ensuring efficient allocation of disk space and organizing
data according to specific requirements. The ability to manipulate partitions is crucial for tasks
such as setting up multi-boot systems, creating dedicated storage areas, or managing disk space for
virtual machines.

These commands offer an added range of file manipulation capabilities, such as navigating and
exploring the filesystem, searching for files, manipulating file permissions and ownership, as well as
performing tasks such as copying, moving, and deleting files. This flexibility allows for efficient file
management and maintenance operations, ensuring data organization, integrity, and security within
the Linux system.

In this chapter, we will explore some of the most important commands in this category. These commands
play a vital role in managing filesystems, allowing for the mounting and unmounting of devices, and
enabling efficient data access and storage. System administrators heavily rely on these commands to
establish connections between devices and the filesystem, exercise control over mounted resources,
and carry out various file operations.

Filesystem Mount and Manipulation Commands106

In this chapter, we will cover the following main topics:

• Linux mount commands

• The mount command

• The umount command

• The fuser command

• File manipulation using cat, grep, and more

Linux mount commands
Mounting in Linux refers to the process of connecting a filesystem to a specific directory in the directory
tree hierarchy, allowing the operating system and its users to access the contents of that filesystem.
The mount command plays a crucial role in this process by associating a device or a remote network
share with a mount point, which is a directory where the filesystem becomes accessible. By using the
mount command, Linux system administrators can dynamically attach various types of filesystems,
including local disks, network shares, virtual filesystems, and removable storage devices, to specific
mount points in the filesystem hierarchy.

The Linux mount commands are vital tools in Linux for connecting filesystems to specific mount
points, allowing administrators to effectively utilize storage resources and provide seamless access to
data. Through the mount command, Linux system administrators can configure and manage various
filesystem types, set mounting options, and integrate additional storage devices. Mounting is essential
for organizing data, facilitating system boot processes, and expanding storage capacity, making it a
fundamental aspect of Linux filesystem management.

The mount command
The mount command in Linux is a powerful tool that’s used to connect and integrate filesystems into
the directory tree structure of the operating system. By using the mount command, administrators
can effectively extend the available storage capacity, manage data across different devices, and ensure
seamless data access for users. One of the key reasons for the importance of the mount command is
its ability to provide flexibility and scalability in storage management. With the mount command,
administrators can easily add new storage devices or network shares to the system, making them
accessible to users without disrupting the existing filesystem. This allows for efficient allocation and
utilization of storage resources, ensuring that data is stored in an organized and accessible manner.

The mount command also plays a crucial role in system boot processes. During boot, the root
filesystem, which contains the essential operating system files, is mounted using the mount command.
This operation requires superuser (sudo) privileges. Mounting the root filesystem ensures that the
system can access and load the necessary files to successfully start up. Without the mount command,

The mount command 107

the operating system would not be able to locate and access the root filesystem, leading to boot failures
and an unusable system.

Let’s see a scenario where the mount command is utilized:

• Mounting NFS shares: The following screenshot shows the code for mounting NFS shares:

Figure 6.1 – Mounting NFS shares

We will break down the command for more clarity:

 � The NFS server’s IP address: The command begins with the NFS server’s IP address, which
is represented by 10.10.XXX.XX. This IP address indicates the network location of the
NFS server that hosts the shared directory.

 � Exported share name: Following the IP address, /var is specified as the exported share
name. This refers to the specific directory or filesystem on the NFS server that is being made
available for sharing over the network.

 � Mount point: The command specifies the mount point where the NFS share will be mounted.
In this scenario, the mount point is set to /mnt/Keno. This directory serves as the access
point on the local system where the NFS share will be integrated.

 � Lastly, the ls -la /mnt/Keno command is used to list the contents of the /mnt/Keno
directory in a detailed and comprehensive format.

By executing ls -la /mnt/Keno, you will see a detailed listing of all the files and directories
present in the /mnt/Keno directory, including hidden files. The output will include information
such as the file/directory permissions, ownership, size, modification date, and name.

• Mounting second storage device and partition: The following screenshot shows the code for
mounting the second storage device and partition:

Filesystem Mount and Manipulation Commands108

Figure 6.2 – Mounting the second storage device and partition 1

Let’s break down the command for more clarity:

 � This first command creates two directories, /mnt/sdb and /mnt/sdb1, using the mkdir
command. The mkdir command is used to make directories in the specified locations. In
this case, it creates two directories under the /mnt directory: /mnt/sdb and /mnt/sdb1.
These directories will serve as mount points for the corresponding devices.

 � The second command attempts to mount the /dev/sdb device to the mount point, /mnt/
sdb, using the mount command. The mount command is used to attach a filesystem to
the directory hierarchy. In this case, it is trying to mount the /dev/sdb device (which
represents the entire disk) to the mount point, /mnt/sdb.

 � The third command mounts the /dev/sdb1 device (which represents a specific partition
on the disk) to the mount point, /mnt/sdb1, using the mount command. This command
successfully mounts the specified partition to the corresponding mount point.

 � Finally, the fourth command lists information about all available block devices in a tree-like
format. It provides an overview of the block devices present in the system, including their
names, sizes, and partition information. Running this command after the previous steps
allows you to see the details of the mounted devices (sdb and its partition, sdb1, in this
case) and any other connected storage devices.

The mount command without any arguments displays all currently mounted filesystems. To
check whethersdb1 is mounted, you can search for its entry in the output. You can do this
by using the Ctrl + F shortcut, which opens a search pop-up window on your terminal. Type
sdb1 in the search field to quickly locate the relevant information. This allows you to easily
find out whether sdb1 is mounted and retrieve its associated details. If sdb1 is mounted, you
will see its mount point and other relevant information listed:

The umount command 109

Figure 6.3 – Mounting the second storage device and partition 2

• Checking the /etc/mtab file.

This displays the content of the /etc/mtab file, which contains a list of currently mounted
filesystems. Look for a line in the output that corresponds to sdb1. The line will include the
device path (/dev/sdb1), the mount point, and other information:

Figure 6.4 – Checking the /etc/mtab file

By checking either the mount command output or the /etc/mtab file, you can determine whether
sdb1 is currently mounted and find its associated mount point.

The umount command
The umount command in Linux is used to unmount or detach a mounted filesystem from the
directory tree. It allows system administrators to safely remove mounted devices or network shares,
ensuring that all pending read and write operations are completed and any cached data is properly
flushed before the filesystem is unmounted. This command is essential for maintaining the integrity
of the filesystem and preventing data corruption. One of the primary reasons for using the umount
command is to safely disconnect storage devices or network shares from the system. When a filesystem
is mounted, it establishes a connection between the device or network share and a directory in the
filesystem hierarchy. Unmounting the filesystem ensures that any ongoing read or write operations
are completed, preventing data loss or corruption. It also releases system resources associated with
the mounted filesystem, freeing up memory and improving system performance.

Filesystem Mount and Manipulation Commands110

It’s important to note that directories mounted with this command are not permanent. They will be
unmounted automatically after a system reboot. If you want to make the mount points permanent
and have the filesystems mounted automatically at boot, you need to update the /etc/fstab
(filesystems table) configuration file with the appropriate entries. This ensures that the mount points
are reliable and persist across reboots.

The umount command in Linux is crucial for managing removable media, such as USB drives or
external hard disks. Before physically disconnecting the device from the system, it is necessary to
unmount it using the umount command. This ensures that all data is written to the device, preventing
data loss or filesystem inconsistencies. Additionally, the umount command is used to detach network
shares, such as NFS or Samba mounts, allowing users to disconnect from remote filesystems securely.

It’s important to note that umount typically requires superuser privileges, so you may need to use
sudo to execute it. Executing the umount command is of utmost importance for safely detaching
mounted filesystems in Linux. It ensures data integrity, releases system resources, and facilitates
the proper removal of storage devices or network shares. By using the umount command, system
administrators can effectively manage filesystem connections and maintain the stability and reliability
of the overall system.

Let’s look at some scenarios where the umount command was utilized:

• Unmounting a partition.

Unmounting a partition ensures that any pending read or write operations are completed, and
it allows you to safely disconnect or perform maintenance on the storage device without the
risk of data corruption:

Figure 6.5 – Unmounting a partition

After executing these commands, the system will unmount the specified partition from their
respective mount points. You can verify the unmounting by using the mount command or
checking the output of the df command to confirm that the devices are no longer listed as
being mounted at the specified locations.

• Unmounting multiple filesystems:

Figure 6.6 – Unmounting multiple filesystems

The fuser command 111

This command unmounts multiple filesystems simultaneously. In this example, it unmounts
the USB drives mounted at /mnt/usb1 and /mnt/usb2, as well as the NFS share mounted
at /mnt/nfs.

The fuser command
The fuser command in Linux is a powerful tool that’s used to identify processes that are currently
accessing or using specified files, directories, or sockets. It provides information about which
processes have active file handles or network connections to a given file or directory. The command
is primarily used to investigate and troubleshoot issues related to resource utilization, file locking,
and unresponsive processes.

Please note that the fuser command typically requires superuser privileges, so you may need to
use sudo to execute it. The importance of the fuser command lies in its ability to help system
administrators identify and resolve conflicts related to file access. By running the command with
appropriate options and specifying the target file or directory, administrators can obtain a list of
process IDs (PIDs) that have a file or directory open.

This information can be valuable in scenarios where a file is locked, preventing other processes from
accessing or modifying it. By identifying the process responsible for the lock, administrators can take
appropriate actions, such as terminating or restarting the process, to release the file lock and restore
normal operations.

The significance of the fuser command lies in its role in maintaining the integrity of the filesystem.
It ensures that resources tied to a device are properly released before undertaking any maintenance
tasks. This is crucial because attempting to unmount or detach a device that is still in use can lead to
unexpected errors and data inconsistencies. By identifying which processes are using specific files,
directories, or sockets, administrators can address resource contention issues, troubleshoot file access
conflicts, and ensure the smooth operation of the system. Furthermore, the fuser command aids in
releasing file locks and facilitating safe resource management. It allows administrators to proactively
address any potential conflicts or dependencies before making changes to the filesystem. By preventing
processes from holding exclusive access to files or directories, the fuser command ensures that other
operations can be performed seamlessly. Ultimately, the fuser command enhances system stability,
minimizes the risk of data loss, and contributes to the overall efficiency of managing filesystems and
storage devices.

Filesystem Mount and Manipulation Commands112

Let’s explore some scenario-based examples demonstrating the usage of the fuser command:

• Checking for any processes that are currently accessing files or directories:

Figure 6.7 – Checking for any processes that are currently accessing files or directories

Here’s what each part of the command does:

 � fuser is the actual command that is being executed

 � -v is an option that stands for verbose and provides more detailed information about the
processes accessing the directory

 � /home/instructor is the path to the directory that is being checked

When you run this command, it will display a list of processes, along with their PIDs that are
currently using files or directories within the specified directory. The verbose output will include
additional details such as the user, the type of access (read, write, or both), and the access time.

• Checking for processes using a specific file in your current directory:

Figure 6.8 – Checking for processes using a specific file in your current directory

The fuser command 113

Here’s what each part of the command does:

 � fuser is the actual command that is being executed

 � . represents the current directory

When you run this command, it will display a list of processes, along with their PIDs that are
currently using files or directories within the current directory. This includes any subdirectories
and files within the current directory.

The output also shows that the process has a PID of 12102. This means that the process can
be identified by the operating system using this unique identifier and the c character in the
PID output means that the process has the file open for reading and writing.

The fuser command will list the following types of access in the ACCESS column:

 � C: Open for reading and writing

 � R: Open for reading only

 � W: Open for writing only

 � U: Open by a process that is no longer running

• Determining processes using a network socket.

This command checks for processes using the TCP network socket on port 4330. The -n
option specifies the network protocol.

Figure 6.9 – Determining processes using a network socket

Here’s a breakdown of the command and its components:

 � fuser is the command itself, which stands for file user. It is used to identify processes that
are using files or network sockets.

 � -n tcp is an option that specifies the type of network protocol to search for. In this case,
it is set to tcp, indicating that we are interested in TCP connections.

 � 4330 is the specific TCP port number that we want to check for.

When you run this command, it will provide information about the processes that are currently
using TCP port 4330. It will display the PIDs of the processes, along with additional details,
such as the user who owns the process and the command associated with it.

Filesystem Mount and Manipulation Commands114

File manipulation using cat, grep, and more
Using commands such as cat and grep is a fundamental aspect of working with files in Linux
and other Unix-like systems. These commands provide powerful and versatile tools for managing
and extracting information from files. They are essential for system administrators, developers,
and anyone who works with text files regularly. One of the main reasons for the importance of file
manipulation commands is their ability to efficiently process and manipulate large amounts of data.
Commands such as cat, which stands for concatenate, allow users to concatenate multiple files or
display the contents of a file on the standard output. This can be useful for merging files, redirecting
output to other commands or files, and examining the contents of a file without opening it in a text
editor. Another essential command is grep, which is used for searching and pattern matching within
files. grep enables users to search for specific text patterns, extract relevant information, and filter
out unnecessary data. This is invaluable for analyzing log files, extracting specific lines of code from
source files, or searching for specific error messages within a file. Its versatility and efficiency make it an
indispensable tool for various tasks, such as data analysis, system troubleshooting, and log file parsing.

In addition to cat and grep, there are numerous other file manipulation commands available
in Linux, each serving a specific purpose. For example, commands such as sed and awk provide
advanced text processing capabilities, allowing users to perform complex operations such as search
and replace, pattern-based editing, and field extraction. These commands empower users to automate
repetitive tasks, transform data, and manipulate files in a precise and controlled manner. The ability
to efficiently manipulate files using these commands enhances productivity, enables effective data
analysis, and facilitates automation in various system administration and development tasks. Let’s
explore how system administrators can leverage these powerful tools in their day-to-day tasks:

• Extracting lines containing a specific pattern using cat and grep:

Figure 6.10 – Extracting lines containing a specific pattern using cat and grep

The cat output.txt | grep "pattern" command is used to display lines from the
output.txt file that match the specified pattern. Here, cat output.txt is used to display
the contents of output.txt, and the output is piped (|) to the grep command. The grep
command searches for lines containing the specified pattern and displays only those lines. To
use grep, you can simply run a command such as grep "search_term" your_file,
where search_term is the text or pattern you want to search for, and your_file is the
file in which you want to perform the search.

File manipulation using cat, grep, and more 115

• Replacing text in a file using sed:

Figure 6.11 – Replacing text in a file using sed

The sed -i 's/pattern/mad_max/g' output.txt command is used to replace
occurrences of the specified pattern with mad_max in the output.txt file and modify the
file in place.

Here’s a breakdown of the command:

 � sed: The command for the stream editor, used for text manipulation.

 � -i: Specifies the “in-place” editing mode, which means the changes will be made directly
to the output.txt file.

 � 's/pattern/mad_max/g': This is the substitution command in the form of 's/
old_text/new_text/g'. It tells sed to search for occurrences of the pattern and
replace them with mad_max. The g flag is used to perform the replacement globally on
each matching line, not just the first occurrence.

Lastly, the cat output.txt | grep "mad_max" command is used to search for lines
in the output.txt file that contain mad_max.

• Using awk to filter lines based on a condition.

This command uses awk to filter the lines in the file (output2.txt) based on the condition
that the first column is greater than 10. Only the lines satisfying the condition are displayed:

Figure 6.12 – awk – filtering lines based on a condition

Filesystem Mount and Manipulation Commands116

The awk '$1 > 10' output2.txt command is used to filter and print lines from a
file where the value in the first column is greater than 10. Here’s an explanation of each part
of the command:

 � awk: The command-line tool for text processing and pattern scanning in Linux.

 � '$1 > 10': The pattern or condition to be matched in the input file. In this case, it checks
whether the value in the first column (denoted by $1) is greater than 10.

 � output2.txt: The name of the file from which the command reads the input.

When you run this command, awk reads the contents of output2.txt and evaluates the
given pattern for each line. If the value in the first column of a line is greater than 10, that line
is printed to the output.

For example, let’s say file.txt contains the following lines:

Figure 6.13 – awk example 1

Running the awk '$1 > 10' file.txt command will output the following:

Figure 6.14 – awk example 2

It filters out the lines where the value in the first column is not greater than 10 and prints only
the lines that satisfy the condition.

• Counting the occurrence of a specific word in a file using cat, grep, and wc (word count):

Figure 6.15 – Counting the occurrence of a specific word in a file using cat, grep, and wc

This command counts the number of occurrences of the exact word, disproperty, in the
output2.txt file. The output is displayed as a single line count. Here’s the breakdown of
the command:

 � In the first command, cat output2.txt | grep -w "disproperty" | wc
-l, the output2.txt file is passed to the cat command, which reads and displays the
content of the file. The output is then piped (|) to the grep command with the -w flag,

Summary 117

which searches for the exact word, disproperty, in the input. The result is then piped
again to the wc -l command, which counts the number of lines (-l). The output of this
command is 1, indicating that disproperty appears once in the file.

 � In the second command, cat output2.txt | grep -w "mad_max" | wc -l,
the same process is followed. The output2.txt file is read by cat, and the output is
piped to grep -w "mad_max" to search for the exact word, mad_max. The result is
then piped to wc -l to count the number of lines. In this case, the output is 2, indicating
that mad_max appears twice in the file.

These examples showcase the versatility and power of the cat, grep, sed, and awk commands in
performing various file manipulation tasks, such as filtering lines, replacing text, extracting fields,
and counting occurrences.

Overall, file manipulation commands such as cat, grep, sed, and awk play a crucial role in
managing and extracting information from files in Linux. They provide powerful and efficient tools
for working with text-based data, allowing users to concatenate, search for, filter, and transform files
with ease. Their importance lies in their ability to handle large amounts of data, facilitate efficient data
analysis, and automate repetitive tasks. By mastering these commands, users gain valuable skills for
effectively working with files, enabling them to accomplish tasks more efficiently and improve their
overall productivity in a Linux environment.

In conclusion, Linux mount and manipulation commands are vital tools for managing filesystems,
mounting and unmounting devices, and manipulating files in Linux. These commands empower
system administrators to establish connections between devices and the filesystem, control access to
mounted resources, and perform diverse file operations. By skillfully utilizing these commands, system
administrators can optimize data access and storage, enforce robust security measures, and uphold
the integrity of the filesystem. Overall, Linux mount and manipulation commands are indispensable
in ensuring efficient system administration, safeguarding data, and maintaining a secure and well-
organized Linux environment.

Summary
This chapter focused on Linux mount and manipulation commands, which are essential tools for
managing filesystems, mounting and unmounting devices, and manipulating files in Linux. This chapter
began by highlighting the significance of these commands in establishing connections between devices
and the filesystem, controlling access to mounted resources, and performing various file operations.
The mount command takes center stage as it enables administrators to mount filesystems and devices
to specific mount points, ensuring efficient data access and storage. The umount command was
introduced as its counterpart, allowing for the safe unmounting of filesystems and detaching storage
devices. The fuser command proves invaluable in scenarios where it is necessary to check for
active processes accessing files or directories before unmounting or detaching devices, safeguarding
against potential data loss or corruption. Additionally, this chapter explored the usage of the cat,

Filesystem Mount and Manipulation Commands118

grep, sed, and awk commands for file manipulation, including searching for patterns, replacing
text, and extracting specific data. These commands provide versatile ways to manipulate and analyze
files efficiently. Overall, Linux mount and manipulation commands offer administrators the means
to manage filesystems, control access, troubleshoot conflicts, and ensure the integrity and security of
the Linux environment.

In the upcoming chapter, which is dedicated to file content and conversion commands, we will delve
into a diverse range of potent tools that empower system administrators to effectively handle and
modify file content within a Linux environment. This chapter, which is a part of our comprehensive
series on frequently used commands, will extensively cover a selection of indispensable commands
that are widely employed for seamless file content management and proficient file format conversions.

Part 3:
Frequently Used

Commands – Part 2

In Part 3, we concentrate on commonly used Linux commands for file analysis, conversion, activation,
monitoring, troubleshooting, network management, and so on. This section simplifies practical
command usage for various tasks.

This section contains the following chapters:

• Chapter 7, File Content and Conversion

• Chapter 8, Linux SWAP

• Chapter 9, Monitoring and Debugging

• Chapter 10, Linux IPTABLES and Networking

• Chapter 11, File Transfer, Downloading, and Log Management

7
File Content

and Conversion Commands

File content and conversion commands play a pivotal role in the daily operations of Linux system
administrators. These commands provide a wide array of tools and functionalities for efficiently managing
and manipulating file content in a Linux environment. With the ability to access, search, modify, and
convert file contents, these commands offer tremendous flexibility and convenience, making them
indispensable for administrators. One of the key reasons why file content and conversion commands
are extensively used by Linux system administrators is their importance in handling textual data. These
commands enable administrators to view and analyze file contents, extract specific information, and
perform operations based on patterns or conditions. Whether it’s searching for specific keywords,
filtering data, or extracting relevant information from log files, these commands streamline the process
and allow administrators to efficiently work with large volumes of textual data.

Moreover, file content and conversion commands serve a crucial purpose in managing and manipulating
file formats. They provide the capability to convert files between different formats, such as converting
between Unix and Windows line endings, character-encoding conversions, and transforming file formats
to suit specific requirements. This versatility ensures seamless compatibility and interoperability across
different systems and applications, making it easier to exchange data and work with files in various
contexts. The extensive usage of file content and conversion commands can also be attributed to their
role in automating tasks and enhancing productivity. These commands can be combined with scripting
and automation tools to perform complex operations on files, such as batch processing, data extraction,
and data transformation. By leveraging the power of scripting and these commands, administrators can
create efficient workflows, save time, and ensure consistency in file operations across multiple tasks or
systems. These commands are indispensable tools that Linux system administrators highly appreciate
for their exceptional capabilities in managing file content, extracting pertinent information, and
conducting file format conversions. The significance of these commands stems from their remarkable
capacity to handle textual data, efficiently handle various file formats, and streamline tasks through
automation, leading to heightened productivity and operational efficiency.

File Content and Conversion Commands122

In this chapter, we will explore the fascinating realm of file content and conversion commands, which
are highly valued tools for system administrators. These commands play a pivotal role in managing and
manipulating file content, extracting relevant information, and performing file format conversions.
They offer an array of powerful features that enhance the efficiency and productivity of administrators’
tasks. In this chapter, we are going to cover the following main topics:

• The tail and file commands

• The convert command

• Using dos2unix to convert MS-DOS files to Unix

• Using unix2dos to convert Unix files to MS-DOS

• The recode command

The tail and file commands
The tail and file commands are powerful tools in Linux that play a crucial role in file management
and analysis. The tail command is used to display the end of a file or continuously monitor file
changes in real time. It is particularly useful for monitoring log files, where administrators can view the
most recent entries and track system activities. The tail command also allows for various options,
such as specifying the number of lines to display or continuously updating the output. Its ability to
provide real-time insights into file contents makes it an indispensable tool for troubleshooting and
system monitoring. On the other hand, the file command is used to determine the file type of a
given file. It examines the file’s contents and provides information about its format, such as whether
it is a text file, binary file, or a specific file type such as an image, an audio, or a video file. The file
command uses a database of file signatures and performs a thorough analysis to accurately identify
the file type. This information is valuable in determining how to handle and interpret a file, as different
file types may require different processing or manipulation.

The importance of the tail and file commands lies in their ability to provide critical insights into
file contents and characteristics. By using the tail command, administrators can quickly access and
monitor the latest updates in log files, aiding in debugging and troubleshooting system issues. The
file command, on the other hand, helps administrators identify unknown or ambiguous file types,
ensuring that the appropriate tools and applications are used for further processing or analysis. These
commands save time and effort by providing immediate information about files, enabling administrators
to make informed decisions and take appropriate actions. Let’s examine a few examples:

• Monitoring a log file in real time:

We use the tail command to continuously display the last 10 lines of the syslog.log file
and update the output in real time as new log entries are appended. It helps monitor system
events and troubleshoot issues as they occur:

The tail and file commands 123

Figure 7.1 – Monitoring a log file in real time

When you run the tail -f /var/log/syslog.log command, the cursor will keep
blinking because the tail command with the -f option continuously monitors the specified
file for new updates or changes. It follows the file in real time and displays any new content that
gets appended to the file. The blinking cursor indicates that the tail command is actively
monitoring the file and waiting for events to occur. As soon as there are new entries written to
the /var/log/syslog.log file, they will be displayed in the terminal window, and the
cursor will update accordingly.

This functionality is particularly useful for monitoring log files or any other files where real-
time updates are important. It allows system administrators to keep track of the latest events
or changes without the need to manually refresh the file display. The blinking cursor serves
as a visual indicator that the command is actively running and capturing new content as it
becomes available.

• Checking the last 20 lines of a large log file:

We use the tail command to display the last 20 lines of the messages log file. By specifying
the -n option, administrators can customize the number of lines to be shown, which is useful
when dealing with large log files:

Figure 7.2 – Checking the last 20 lines of a large log file

• Determining the format or type of a file using the file command:

We use the file command to determine the file type of the backup.tar.gz file and provide
information about its format. It identifies the file as a gzip-compressed file and may display
additional details, such as the version:

File Content and Conversion Commands124

Figure 7.3 – Determining the file type of a document

• Analyzing a binary file:

We use the file command to analyze the ftp binary file and provide information about its
format. It identifies the file as a binary file and may provide additional details based on the
file’s structure and contents:

Figure 7.4 – Analyzing a binary file

These examples demonstrate the versatility of the tail and file commands in various file management
and analysis scenarios. Whether it’s monitoring log files, inspecting file types, or analyzing binary data,
these commands offer powerful capabilities for system administrators. Their ease of use, versatility,
and ability to provide crucial insights make the tail and file commands indispensable in file
management and analysis tasks.

The convert command
The convert command is a powerful utility used in Linux systems for file conversion and manipulation.
It provides a convenient way to convert files between different formats, such as image formats, document
formats, and more. The command is highly versatile and supports a wide range of file formats, making
it an essential tool for Linux system administrators and users alike. One of the key reasons why the
convert command is important is its ability to facilitate cross-platform compatibility. It allows files
to be converted from one format to another, ensuring that they can be easily accessed and utilized
across different systems and applications. For example, it can convert an image file from one format
to another, making it compatible with various image-viewing or -editing software. This enhances
file interoperability and promotes seamless collaboration. convert is commonly used for various
purposes, such as resizing images, changing image quality, applying filters or effects, merging or splitting
documents, and more. Its use extends beyond basic file format conversion, as it provides additional
features for modifying and enhancing files. This versatility makes it a valuable tool in fields such as
graphic design, web development, document processing, and multimedia production.

The convert command 125

The purpose of the convert command is to simplify and automate file conversion tasks. Instead of
manually converting files using different software or online tools, the command allows administrators
to perform conversions directly from the command line. This saves time and effort, especially when
dealing with large batches of files. Moreover, the command can be incorporated into scripts or
automated workflows, enabling efficient and consistent file conversion processes. Now that we have
discussed the convert command in detail, let’s put our knowledge into practice by exploring some
examples. We will utilize the convert command to perform various file conversions:

• Scenario 1: Converting an image file from PNG to JPEG format:

In this scenario, the convert command is used to convert a PNG image file to the JPEG
format and then save it as a new output.jpg file:

Figure 7.5 – Converting an image file from PNG to JPEG format (1)

Figure 7.6 – Converting an image file from PNG to JPEG format (2)

It can be useful when you need to convert image files to a different format, such as when
preparing images for web display or compatibility with certain applications.

Let’s break Figures 7.5 and 7.6 down:

 � file Screenshot\ 2023-06-07\ 211511.png: This command uses the file
command to determine the type of the Screenshot 2023-06-07 211511.png
file. It displays information about the file, such as its format, dimensions, color depth, and
interlacing. In this case, it indicates that the file is a PNG image with a resolution of 853 x
394 pixels, using 8-bit RGBA color space, and is non-interlaced.

 � convert Screenshot\ 2023-06-07\ 211511.png output.jpg: This
command utilizes the convert command to convert the Screenshot 2023-06-07
211511.png file to the JPEG format and save it as output.jpg.

File Content and Conversion Commands126

The following is a screenshot of the output.jpg file:

Figure 7.7 – output.jpg

In this case, it performs the conversion from PNG to JPEG, allowing for potential file size
reduction or compatibility with applications that only support JPEG images.

• Scenario 2: Converting a PDF file to a series of JPEG images:

Using the convert command, you can transform the input.pdf file, which is a PDF
document, into a sequence of JPEG images. The resulting images will be named output-1.
jpg, output-2.jpg, and so on. This conversion process allows you to extract the content
of the PDF and save each page as a separate JPEG image:

Figure 7.8 – Converting a PDF file to a series of JPEG images

Each page of the PDF is converted to a separate JPEG image. This can be useful when you want
to extract individual pages or convert a PDF into image files for further processing or display.

Let’s break Figure 7.8 down:

 � convert OWASP\ Checklist.pdf output-%d.jpg: This command utilizes the
convert command to convert the OWASP Checklist.pdf file into a series of JPEG
images. The %d character is a placeholder that will be replaced with sequential numbers,
creating multiple output files with names such as output-1.jpg, output-2.jpg, and
so on. The resulting JPEG images will be saved in the current directory.

Using dos2unix to convert MS-DOS files to Unix 127

 � ls -l output*: This command uses the ls command with the -l option to display
detailed information about files starting with the name output. The asterisk (*) acts as a
wildcard character, matching any characters that follow output. The -l option provides
a long listing format, showing permissions, owner, group, file size, modification timestamp,
and other attributes. This command is used to list the details of the output files created by
the previous convert command.

This convert command presents a versatile and efficient solution for performing file format
conversions and manipulations within the Linux environment. With its extensive support for various
formats, user-friendly interface, and automation capabilities, the convert command becomes an
essential tool for efficiently managing and transforming files. Whether the purpose is to achieve cross-
platform compatibility, carry out image editing, or facilitate document processing, the convert
command stands as a dependable means to convert and edit files, simplifying processes and boosting
overall productivity.

Using dos2unix to convert MS-DOS files to Unix
dos2unix is a powerful tool used to convert text files from the MS-DOS/Windows format to the
Unix format. In the MS-DOS format, lines in a text file are terminated by a carriage return followed
by a line feed (\r\n), while in the Unix format, lines are terminated by a single line feed (\n). The
dos2unix command automatically performs the necessary conversions to ensure compatibility
between different platforms. This command is particularly useful when working with text files that need
to be processed or executed in a Unix environment. One of the main reasons for using the dos2unix
command is to ensure seamless file compatibility when transferring or sharing files between MS-DOS/
Windows and Unix systems. By converting MS-DOS-formatted files to Unix format, you eliminate
any potential issues related to line termination characters. This is crucial when working with scripts,
configuration files, or any text-based files that need to be processed by Unix utilities. The dos2unix
command guarantees that files can be read, edited, and executed correctly in a Unix environment,
ensuring consistent and reliable results.

The importance of the dos2unix command lies in its ability to facilitate smooth collaboration and
interoperability between MS-DOS/Windows and Unix systems. It ensures that files created or modified
in MS-DOS can be seamlessly used in a Unix environment, allowing for efficient cross-platform
workflows. Additionally, the command is widely used in shell scripting and automation tasks. It allows
system administrators to automate the conversion process for multiple files or integrate it into scripts
to ensure consistent file format standards. This helps maintain the integrity of files and enhances
overall productivity by eliminating manual conversion efforts. We will provide demonstrations and
guide you through the following examples:

• Scenario 1: Converting a single MS-DOS file to Unix format:

The dos2unix utility is invoked, and it performs the conversion process. The utility detects
the file format of file.txt as MS-DOS and proceeds to convert it to the Unix format. The

File Content and Conversion Commands128

conversion involves adjusting the line endings and other formatting elements to comply with
the Unix standard:

Figure 7.9 – Converting a single MS-DOS file to Unix format

In the output of the command, you can see a dos2unix: converting file file.
txt to Unix format... message. This message indicates that the conversion process
is taking place, and the specified file, file.txt, is being converted to the Unix format.

• Scenario 2: Recursively converting all MS-DOS files in a directory and its subdirectories
to Unix format:

The find /home/instructor/Downloads/MS-files/ -type f -exec
dos2unix {} + command is used to find and convert multiple files from MS-DOS format
to Unix format in a specific directory and its subdirectories:

Figure 7.10 – Recursively converting all MS-DOS files in a directory and its subdirectories to Unix format

Here’s how the command works:

 � find: Initiates the find command, which searches for files and directories.

 � /home/instructor/Downloads/MS-files/: Specifies the starting directory where the
search will begin. In this case, it is the MS-files directory within the Downloads directory.

 � -type f: Specifies that the search should only consider regular files, excluding directories
and other types of files.

 � -exec: Specifies that the following command should be executed for each file found.

 � dos2unix {} +: The dos2unix command is invoked to convert found files to the
Unix format. The {} characters serve as a placeholder for each filename found by the find
command, and the + symbol indicates that multiple files can be passed to a single invocation
of the dos2unix command.

By executing this command, all regular files within the specified directory and its subdirectories
will be searched. Once a file is found, the dos2unix command will be executed to convert it
from the MS-DOS format to the Unix format. The command allows for efficient batch processing
of multiple files, reducing the need for individual conversion commands.

Using unix2dos to convert Unix files to MS-DOS 129

dox2unix is an essential command designed for converting MS-DOS-formatted text files to the Unix
format. Its application guarantees compatibility across various platforms and prevents complications
arising from line termination characters. By providing seamless file conversion, it fosters harmonious
collaboration and interoperability between MS-DOS/Windows and Unix systems. Moreover, this
command holds significance in automation activities and scripting, allowing for streamlined file
conversion procedures while upholding file format consistency.

Using unix2dos to convert Unix files to MS-DOS
Now, let’s address the evil twin known as unix2dos. It is a command-line utility used to convert
text files from the Unix/Linux format to the MS-DOS/Windows format. unix2dos originated in
the early days of Unix and was developed to facilitate file compatibility between Unix systems and
MS-DOS-based systems. In the Unix format, line endings are represented by a single newline character
(\n), whereas in the MS-DOS format, line endings are represented by a carriage return followed
by a newline character (\r\n). The importance of the unix2dos command lies in its ability to
ensure file compatibility and interoperability between Unix and MS-DOS systems. In the early days
of computing, Unix and MS-DOS were popular operating systems used on different platforms, and
file format differences posed challenges when sharing files across these systems. The unix2dos
command provided a solution by allowing Unix files to be converted to MS-DOS format, making them
readable and usable on MS-DOS-based systems. This conversion process ensures that line endings
are correctly interpreted, preserving the integrity of the file content.

The unix2dos command is primarily used when transferring text files from Unix/Linux systems
to MS-DOS/Windows systems. It is particularly useful when sharing files that contain text-based
content, such as code files, configuration files, scripts, or any other text document. By converting Unix
files to MS-DOS format using unix2dos, users can ensure that the files are compatible and can be
properly viewed, edited, and executed on MS-DOS/Windows systems. This command is commonly
used in scenarios where collaboration or file exchange is required between Unix and MS-DOS-based
environments. For example, let’s convert a single file.

This command converts document.txt from Unix format to MS-DOS format, but first, let’s
examine the file:

Figure 7.11 – Converting file.txt from Unix format to MS-DOS format

File Content and Conversion Commands130

As we can see from the preceding screenshot, the file we have created, documents.unix,
contains content or features that are not readable by MS-DOS-based systems due to their
limitations. When attempting to open or read this file on an MS-DOS system, it may encounter
errors or display the content incorrectly.

Now, let’s convert the file.

The unix2dos --convmode ascii documents.unix command is using the unix2dos
utility to convert the file named documents.unix from Unix format to DOS format:

Figure 7.12 – unix2dos converting the documents.unix file to DOS format

When you run this command, a --convmode ascii flag is specified, indicating that the
conversion should be performed using American Standard Code for Information Interchange
(ASCII) character encoding. ASCII encoding is a widely used character encoding scheme
that represents text in computers and communication systems. By specifying --convmode
ascii, you are instructing unix2dos to convert the file using ASCII encoding.

After running the command, the unix2dos: converting file documents.unix
to DOS format... output message indicates that the conversion process is taking place.
The original documents.unix file is being converted to the DOS format, which means
that the line endings in the file are changed from the Unix newline character (\n) to the DOS
format, which consists of a carriage return (\r) followed by a newline character (\n). Once
the conversion is completed, the documents.unix file will be in the DOS format, making
it compatible with DOS-based systems and applications. This format change ensures that the
file will be displayed and processed correctly on DOS or Windows platforms, which expect
files to have DOS-style line endings.

The purpose of unix2dos is to facilitate the seamless exchange of text files between Unix and
MS-DOS systems by converting the file format to ensure compatibility. It eliminates potential issues
caused by incompatible line endings, ensuring that files are correctly interpreted and displayed on
MS-DOS/Windows systems. The command achieves this purpose by converting newline characters
to carriage return and newline sequences, adhering to the line ending convention of the MS-DOS/
Windows platform. This conversion process allows files to be shared, edited, and processed without
any loss or distortion of the original content, enabling smooth interoperability between Unix and
MS-DOS systems.

The recode command 131

The recode command
The recode command in Linux is a versatile and powerful tool used for character set conversion
and manipulation. Its purpose is to transform the encoding of text files from one character set to
another, allowing for seamless compatibility and proper interpretation across different systems and
applications. The command supports a wide range of character sets, making it a valuable tool for
handling multilingual data and addressing encoding issues that may arise during data exchange. One
of the key reasons for the importance of the recode command is its ability to ensure consistent and
accurate representation of text data. Different systems and applications may use different character
sets or encodings, leading to issues such as garbled or incorrectly displayed text. By utilizing recode,
system administrators can convert text files to a desired character set, eliminating such problems and
enabling proper rendering and interpretation of text across various platforms.

The recode command finds extensive use in scenarios where character set conversions are required. It
enables seamless integration and data exchange between systems that use different encodings, ensuring
compatibility and uniformity in text representation. This is particularly valuable in multilingual
environments, where text data may contain characters from various languages and character sets.
By employing the recode command, system administrators can overcome encoding barriers and
facilitate smooth communication and collaboration among users working with diverse character sets.
By examining the following examples, we can gain insights into the practical applications and benefits
of the recode command:

• Example 1: Converting file encoding:

Suppose you have a text file encoded in ISO-8859-1 format and you need to convert it to
UTF-8. The recode command can accomplish this by executing the following command:

Figure 7.13 – Converting file encoding

Here’s a breakdown of the command:

 � recode UTF-8..ISO-8859-1 file.txt: This command converts the character
encoding of file.txt from UTF-8 to ISO-8859-1. UTF-8 is a widely used character
encoder that supports a wide range of characters from various languages, while ISO-8859-1
(also known as Latin-1) is a character encoder primarily used for Western European languages.
The command performs the conversion by mapping the UTF-8-encoded characters to their
corresponding ISO-8859-1 equivalents.

 � recode ISO-8859-1..UTF-8 file.txt: This command converts the character
encoding of file.txt from ISO-8859-1 to UTF-8. The command reverses the
process of the previous command, mapping the ISO-8859-1-encoded characters to their
corresponding UTF-8 representations.

File Content and Conversion Commands132

Both commands utilize the recode command-line tool, which is commonly used for character
encoding conversions in Linux. The purpose of these commands is to facilitate the conversion
of text files between different character encodings, allowing them to be correctly interpreted
and displayed by systems or applications that expect a specific encoding.

In summary, the recode command in Linux is a vital tool for character set conversion and manipulation.
Its significance lies in its ability to ensure compatibility, proper rendering, and accurate interpretation
of text data across different systems and applications. By employing recode, system administrators
can address encoding issues, achieve consistency in text representation, and promote seamless data
exchange in multilingual environments.

Summary
This chapter has provided us with a comprehensive understanding of various commands that are
essential for converting and manipulating file content in a Linux environment. The chapter covered
a range of important commands, including tail, file, convert, dos2unix, unix2dos, and
recode. These commands offer powerful functionalities for working with files, performing format
conversions, and ensuring compatibility between different systems. The tail and file commands
enable us to extract specific portions of files and gather valuable information about file types and
formats. The convert command proves to be a versatile tool for converting file formats, allowing
us to transform files from one format to another.

In the next chapter, we will delve into Linux SWAP commands. These commands are essential for
managing swap space, providing additional memory resources, initializing partitions or files for swap
usage, and monitoring memory consumption. By understanding and utilizing these commands,
system administrators can optimize memory management and enhance system performance in
Linux environments.

8
Linux SWAP Commands

Linux SWAP commands are an integral part of Linux system administration, allowing administrators
to effectively manage swap space within the operating system. Swap space serves as a crucial
component of memory management, providing additional virtual memory when the physical RAM
capacity is insufficient. These commands are widely utilized by Linux system administrators due to
their importance in optimizing system performance and ensuring efficient memory utilization. The
importance of Linux SWAP commands lies in their ability to enhance system stability and prevent
issues related to memory exhaustion. By effectively managing swap space, administrators can alleviate
memory constraints, allowing the system to handle memory-intensive tasks and prevent crashes or
slowdowns. This is particularly valuable in scenarios where the system encounters high memory
demands or when running multiple resource-intensive applications simultaneously. The purpose of
these commands is to provide administrators with the necessary tools to control and monitor swap
space. These commands enable the configuration and activation of swap devices or files, allowing
administrators to fine-tune the system’s memory management settings. Additionally, they provide
insights into memory usage, allowing administrators to monitor swap space utilization and make
informed decisions regarding memory allocation and optimization. They are highly valued by Linux
system administrators due to their role in ensuring efficient memory utilization and system stability.
By utilizing these commands, administrators can proactively manage and allocate memory resources
according to the system’s requirements. This, in turn, leads to improved system performance, reduced
memory-related issues, and enhanced overall reliability.

With these commands, system administrators can effectively manage swap space and optimize
memory utilization. Their significance lies in their ability to enhance system stability, prevent memory
exhaustion, and allow efficient handling of memory-intensive tasks.

In this chapter, we are going to cover the following main topics:

• The swapon command

• The free command

Linux SWAP Commands134

The swapon command
The swapon command is a crucial utility in Linux that allows system administrators to activate and
configure swap devices or files. Swap space serves as an extension to the physical memory (RAM)
and provides additional virtual memory to the system. It is located on disk, typically in the form of
a dedicated partition or a swap file. The operating system uses this disk space as an extension of the
physical RAM, allowing it to move data between RAM and the swap space as needed to efficiently manage
system memory. The swapon command plays a vital role in efficiently managing memory resources
and optimizing system performance. One of the main reasons why the swapon command is of utmost
importance is its ability to address situations where the system’s physical memory is insufficient to
handle the workload. By activating swap devices or files using the swapon command, administrators
can effectively increase available memory resources, allowing the system to handle memory-intensive
tasks without encountering memory exhaustion or performance degradation. This is particularly crucial
in environments with limited physical memory or when running resource-intensive applications.

This command is widespread among Linux system administrators due to its versatility and flexibility.
It enables administrators to configure swap devices or files according to their specific requirements.
This includes specifying the location and size of the swap space, as well as defining swap priority
levels for multiple swap devices. The swapon command empowers administrators to fine-tune
the system’s memory management settings, ensuring efficient utilization of available resources. The
primary purpose of the swapon command is to enable efficient memory management and optimize
system performance. By activating swap devices or files, the command expands the virtual memory
of the system, allowing it to handle memory demands beyond the physical RAM capacity. This helps
prevent memory-related issues such as out-of-memory (OOM) errors, system crashes, or sluggish
performance. The swapon command is a critical tool for maintaining system stability and ensuring
smooth operation, especially in environments where memory demands fluctuate or exceed physical
memory limitations. Let’s explore a few examples and leverage their practical applications:

• Example 1: The swapon command provides a means to obtain comprehensive details about
active swap devices, offering valuable information such as the device path, type, size, and
priority. This feature allows system administrators to gain insights into currently enabled
swap devices and their associated properties. By executing the swapon command, users can
retrieve a detailed summary of the active swap configuration, facilitating efficient monitoring
and management of swap resources:

Figure 8.1 – Executing the swapon command to obtain details about active swap devices

The swapon command 135

In the example, the output displays the following columns:

 � NAME: This column indicates the name or identifier of the swap device. In this case, it shows
/dev/dm-1, which represents a swap partition on the /dev/dm-1 device.

 � TYPE: This column indicates the type of the swap device. Here, it states that the device is a
partition type, indicating that it is a dedicated partition specifically used for swap space.

 � SIZE: This column displays the size of the swap device. In the example, the size is specified
as 3G, indicating that the swap partition has a capacity of 3 GB.

 � USED: This column indicates the amount of swap space that is currently being utilized. In
the output, it shows 0B, indicating that none of the swap space is currently in use.

 � PRIO: This column represents the priority assigned to the swap device. A higher priority
value indicates a higher preference for utilizing that particular swap device. In the example,
the priority is indicated as -2, suggesting that this swap device has a lower priority compared
to others.

• Example 2: Now, let’s explore a similar command that offers comparable functionality. We will
discuss this specific command in detail in our upcoming topic. In this case, the free command
is used to display information about the system’s memory usage, including the total physical
memory (RAM), used memory, free memory, and swap space. We will delve into the free
command in our upcoming topic on monitoring memory usage, where we will explain how
to interpret its output to assess the system’s memory health:

Figure 8.2 – Displaying information about memory usage

The output of the free -h | grep 'Mem|buffers/cache' command provides
information about the memory usage in the system. The line that starts with Mem: displays
details about the physical memory (RAM) in the system. In this example, it shows that the
total physical memory is 8.0Gi (GB). The next column indicates the amount of memory
used, which is 1.5Gi. The following column represents the amount of memory allocated for
buffers and cache, which is 5.3Gi. The subsequent columns provide information about other
memory metrics, such as the amount of memory used for kernel purposes (21Mi) and the
available memory (1.2Gi and 6.3Gi).

• Example 3: Check the available swap space:

Figure 8.3 – Checking the available swap space

Linux SWAP Commands136

The output of the swapon --summary | tail -n +2 | awk '{sum += $3} END
{print sum/1024 " MB"}' command provides the total size of the swap space in MB.

Let’s break down the command step by step:

 � swapon --summary displays a summary of currently active swap devices and their
respective sizes.

 � tail -n +2 filters the output and skips the first line, which is the header line, and displays
only the subsequent lines containing information about the swap devices.

 � awk '{sum += $3} END {print sum/1024 " MB"}' uses the awk command
to calculate the sum of the third column (which represents the size of each swap device)
and store it in the sum variable. The END block is executed after processing all the lines, and
it prints the sum divided by 1,024 to convert it from KB to MB, followed by the MB unit.

In this example, the 3072 MB output indicates that the total size of the swap space is 3,072 MB.
This information is useful for monitoring and managing the available swap space in the system.

By combining these commands, you can get an overview of both the free memory in RAM and the
available swap space in your Linux system. Additionally, the swapon command serves a crucial role
in configuring and enabling specific files or devices to be used as swap space, expanding the virtual
memory capacity of the system when needed. This enables efficient memory management and ensures
that the system can handle tasks that exceed the physical RAM capacity. To sum up, the swapon
command holds great significance for system administrators. Its primary function is to activate and
configure swap devices or files, which adds extra virtual memory to the system. This capability is
crucial for effectively managing memory resources, preventing memory depletion, and enhancing
overall system performance. The swapon command offers a range of options and settings that
empower administrators to fine-tune memory management parameters and maximize the utilization
of available resources. As a result, it has become an indispensable tool in the arsenal of Linux system
administrators, enabling them to optimize memory usage and maintain a well-performing system.

The free command
The free command is a powerful utility used in Linux systems to provide information about the system’s
memory usage. It plays a crucial role in monitoring and managing memory resources, allowing system
administrators to optimize system performance and ensure efficient utilization of available memory.
The command displays various metrics, including total memory, used memory, free memory, and
memory allocated for buffers and cache. By analyzing the output of the free command, administrators
can assess the memory status of the system, identify potential memory issues, and make informed
decisions regarding memory allocation and optimization. The importance of the free command lies
in its ability to provide real-time information about memory usage. Memory is a critical resource in
any system, and monitoring its usage is essential for maintaining system stability and performance.
The free command offers a comprehensive overview of memory utilization, enabling administrators
to identify memory-hungry processes, detect memory leaks, and take appropriate actions to mitigate

The free command 137

memory-related issues. It also allows administrators to gauge the impact of memory-intensive tasks
on the system’s overall performance and make necessary adjustments to optimize resource allocation.

The free command is extensively used by Linux system administrators for a variety of purposes.
It helps in troubleshooting memory-related problems, such as identifying excessive memory usage
or low available memory. Administrators can use the command to determine if a system is running
low on memory and take appropriate actions to alleviate the situation, such as freeing up memory
by terminating unnecessary processes or optimizing memory allocation for critical applications.
Additionally, the free command aids in capacity planning, as administrators can gather information
about memory usage trends over time to determine if additional memory resources are required
to meet future demands. It serves as a valuable tool for monitoring system performance, ensuring
optimal memory utilization, and maintaining a stable and efficient Linux environment. In our previous
discussion, we explored the functionality of the free command. Now, let’s further explore this
command by examining additional flags and options that can be applied to it:

• Check memory usage:

Figure 8.4 – Using the free command to check memory usage

This will display the memory usage in a human-readable format, showing the total, used, and
available memory.

• Check memory usage in continuous mode:

Figure 8.5 – Using the free command to check memory usage in continuous mode

The -s flag specifies the interval in seconds for updating the displayed memory information.
In this example, the command will continuously refresh the memory usage every 5 seconds,
providing real-time updates.

Overall, the free command provides real-time information about memory usage and assists
in troubleshooting memory-related problems. This makes it an essential component of memory
management. By leveraging the insights provided by the free command, administrators can make
informed decisions, enhance system performance, and ensure efficient resource allocation in their
Linux systems.

Linux SWAP Commands138

Summary
This chapter delves into the realm of Linux SWAP commands, which are crucial for efficient memory
management and performance optimization in Linux systems. The chapter highlights two key
commands: swapon and free. The swapon command enables system administrators to activate
and configure swap devices or files, thereby adding extra memory resources to the system. Lastly, the
free command provides real-time information on memory usage, aiding in the identification of
memory-related issues and assisting in capacity planning.

In the next chapter, we will explore a wide range of essential tools for monitoring system performance,
troubleshooting issues, and debugging problems in Linux environments. These commands provide
valuable insights into various aspects of the system, allowing administrators to identify and resolve
issues efficiently. By mastering these commands, system administrators can maintain the stability,
reliability, and performance of their Linux systems.

9
Linux Monitoring and

Debugging Commands

Linux monitoring and debugging commands are a crucial set of tools widely employed by Linux system
administrators for monitoring system performance, troubleshooting issues, and debugging problems
in Linux environments. These commands provide real-time insights into the various components
and processes of the system, enabling administrators to identify and address potential bottlenecks,
errors, or performance issues promptly. The importance of these commands lies in their ability to
ensure system stability, optimize resource utilization, and enhance overall system performance. By
leveraging monitoring and debugging commands, administrators can proactively manage system
health, mitigate risks, and maintain a reliable and efficient Linux environment. The primary objective
of these commands is to equip system administrators with essential tools for effectively monitoring
and diagnosing the status of their Linux systems. They can also provide valuable insights into critical
system metrics, including CPU usage, memory utilization, disk I/O, network activity, and process
information. By closely monitoring these metrics, administrators can proactively identify any unusual
behavior, track system performance trends, and detect potential issues before they escalate into
significant problems. Additionally, the debugging commands offer robust capabilities to investigate
and resolve system errors, software bugs, and compatibility issues. They empower administrators to
trace the execution of programs, capture error logs, analyze system logs, and perform troubleshooting
steps to identify the underlying causes of issues and implement appropriate remedies.

These commands are among the most widely used tools by system administrators for several reasons.
Firstly, these commands provide administrators with real-time and accurate insights into system
performance and behavior, enabling them to make informed decisions and take proactive measures
to optimize system resources. Secondly, the commands offer a wide range of functionalities, allowing
administrators to monitor and analyze specific components or processes based on their requirements.
This flexibility makes the commands adaptable to various use cases and scenarios. Additionally,
the commands facilitate efficient troubleshooting and debugging processes by providing detailed
information and diagnostic capabilities. This helps administrators save time and effort in identifying
and resolving issues, leading to improved system stability and reduced downtime.

Linux Monitoring and Debugging Commands140

In this chapter, we are going to cover the following main topics:

• The top, ps, pstree, strace, watch, smartctl, and uptime commands

• The lsof, lsmod, last reboot, last, w, and vmstat commands

• The kill command

• The pkill command

As Linux gained popularity and became a prominent choice for server and enterprise environments,
the need for robust monitoring and debugging tools became evident. The Linux community recognized
the importance of having comprehensive tools that could provide insights into system performance,
aid in troubleshooting, and enable efficient debugging of issues. Over time, numerous command-
line utilities, software packages, and frameworks were developed to meet these needs. These tools
aimed to provide administrators with real-time monitoring capabilities, detailed system information,
and advanced debugging features. The continuous evolution of Linux monitoring and debugging
commands has been driven by the ever-increasing complexity of modern systems, the demand for
optimal performance, and the need to quickly identify and resolve issues. Today, Linux administrators
have a vast array of powerful tools at their disposal to effectively monitor and debug their systems,
ensuring the stability, reliability, and performance of their Linux environments.

The top command
The top command is a powerful Linux utility that provides real-time monitoring of system processes
and resource usage. It is the go-to tool for system administrators to gain insights into the performance
and health of their Linux systems. The primary purpose of the top command is to display a dynamic
and interactive overview of system processes, CPU usage, memory utilization, load average, and other
critical system statistics. By continuously updating this information, administrators can quickly identify
resource-intensive processes, bottlenecks, or abnormalities that may impact system performance. The
top command is a vital component of Linux monitoring, offering a comprehensive view of system
activity and facilitating efficient troubleshooting.

One of the key reasons why the top command is widely used by system administrators is its versatility.
It provides a wealth of information in a compact and easy-to-understand format, making it an invaluable
tool for monitoring system health. Administrators can use the top command to observe real-time
CPU usage, memory allocation, and process activity. This allows them to detect potential performance
issues, identify processes consuming excessive resources, and take appropriate action to optimize
system performance. Additionally, the top command provides information on the system load average,
indicating the overall system workload and allowing administrators to determine if the system is under
heavy utilization. The importance of the top command extends beyond monitoring system resources.
It also serves as a diagnostic tool for troubleshooting system issues. Administrators can use the top
command to investigate the behavior of specific processes, identify potential bottlenecks, and analyze
resource consumption patterns. By understanding how system resources are allocated and utilized,

The top command 141

administrators can make informed decisions to optimize system performance and resolve issues. The
top command also supports interactive features, allowing administrators to dynamically adjust the
display, sort processes based on various criteria, and send signals to individual processes for further
analysis or control. This level of flexibility and control makes the top command an essential tool for
Linux system administrators. Let’s dive into exploring the top command on our CentOS terminal:

• Viewing overall system statistics:

The top command provides real-time insights into system statistics, including CPU usage,
memory utilization, and system load. This information is dynamically updated, offering a
comprehensive overview of the system’s performance and resource allocation:

Figure 9.1 – Viewing overall system statistics

• Sorting processes by CPU usage:

In addition to its regular functionalities, the top command also offers the capability to sort a
displayed list of processes based on their CPU usage. This can be seen in the following screenshot:

Figure 9.2 – Sorting processes by CPU usage

Linux Monitoring and Debugging Commands142

This feature allows you to quickly identify the process consuming the most CPU resources,
as it will be listed at the top of the output. Such capability provides a convenient way to
prioritize and monitor CPU-intensive processes. This, in turn, makes it easier for system
administrators to identify potential performance bottlenecks and take appropriate actions to
optimize system resources.

• Monitoring memory usage:

We use the -o %MEM option to monitor memory usage, as shown in the following screenshot:

Figure 9.3 – Command for monitoring memory usage

The result is as follows:

Figure 9.4 – Monitoring memory usage

The top command will display a list of processes sorted by their memory usage, allowing you
to monitor which processes are utilizing the most memory.

• Filtering processes by user:

For this, we will be replacing username with the actual username we want to filter:

Figure 9.5 – Command to filter processes by user

The ps command 143

The result is as follows:

Figure 9.6 – Using top to filter processes by user

The top command filters the displayed processes to show only those owned by the
specified username.

Overall, the top command is a versatile and essential tool for monitoring system processes and resource
usage in Linux environments. Its real-time insights into system performance, interactive features,
and diagnostic capabilities make it a valuable asset for system administrators. By utilizing the top
command, system administrators can effectively monitor system health, identify resource-intensive
processes, troubleshoot issues, and optimize system performance. Its widespread use among Linux
system administrators is a testament to its importance and effectiveness in maintaining the stability,
reliability, and optimal functioning of Linux systems.

The ps command
The ps command is a powerful utility in Linux used to provide information about the running
processes on a system. It stands for process status and plays a fundamental role in monitoring and
managing processes. The command offers insights into the current state of processes, including their
process IDs (PIDs), CPU and memory usage, running time, and other attributes. By displaying this
vital information, system administrators can gain a comprehensive view of processes running on
their system and make informed decisions to optimize system performance, troubleshoot issues, and
manage system resources effectively. The importance of the ps command lies in its ability to offer
real-time visibility into the system’s running processes. It is a valuable tool for monitoring the health
and efficiency of a system, allowing administrators to identify any misbehaving or resource-intensive
processes that may be affecting system performance.

The primary use of the ps command is for process monitoring and management. Administrators can
use it to view a snapshot of active processes on the system, including their status, resource utilization,

Linux Monitoring and Debugging Commands144

and relationships with other processes. This information is vital for troubleshooting system issues,
identifying potential bottlenecks, and optimizing system performance.

For example, the ps command can be used for the following:

• Viewing all running processes:

The ps command displays a list of all running processes in the system. It provides information
about each process, including the PID, the terminal associated with the process, the CPU and
memory usage since it was started, and the command that started the process:

Figure 9.7 – Using the ps command to view all running processes

• Viewing processes owned by a specific user:

Executing the -e option with the ps command shows a list of processes owned by a specific user,
where username is replaced with the actual username. It is useful for providing administrators
an overview of processes belonging to a particular user:

Figure 9.8 – Viewing processes owned by a specific user

In summary, the ps command is a cornerstone tool for Linux system administrators, providing essential
insights into running processes and facilitating process management and troubleshooting. Its real-
time information about process status, resource utilization, and relationships enables administrators

The pstree command 145

to ensure system stability, enhance performance, and efficiently allocate system resources. With its
versatility and broad range of applications, the ps command remains an indispensable part of the
Linux monitoring and management toolkit.

The pstree command
The pstree command is a Linux utility that displays a tree-like representation of running processes
on the system. It provides a visual and hierarchical view of processes, showing their parent-child
relationships. The command is particularly useful when trying to understand the process structure and
how different processes are related to each other. By displaying processes in a tree format, administrators
can quickly identify the parent process (init or system) and its descendants, helping them grasp
the overall process hierarchy. This information is crucial for system debugging, performance analysis,
and troubleshooting scenarios. The pstree command also aids in process management, as it allows
administrators to visualize complex process structures and their dependencies, making it easier to
identify potential issues and optimize system performance. Let’s take a closer look at how it can be used:

• Viewing a process tree:

 � The command will display a process tree, showing the hierarchy of processes in a
tree-like structure

 � Each process will be listed with its parent process and child processes, making it easy to
visualize the relationships between different processes

 � Use the tree structure to analyze the process hierarchy and understand the relationships
between different processes

The following output demonstrates the execution of the pstree command:

Figure 9.9 – Viewing a process tree with the pstree command

Linux Monitoring and Debugging Commands146

• Viewing a PID:

When you execute the pstree -p command in the terminal, it will show a hierarchical
representation of all running processes on your system, similar to the standard pstree output,
but with each process’s PID displayed next to its name. The PID is a unique ID assigned to each
process by the operating system:

Figure 9.10 – Viewing a PID with pstree

The pstree -p command can be particularly useful when troubleshooting or investigating processes
on your system. It allows you to quickly identify the parent-child relationships between processes
and their corresponding PIDs. This can aid in understanding the structure of the processes running
on your system and help you identify specific processes that might be causing issues or consuming
excessive resources.

The strace command
The strace command is a powerful Linux tool used for tracing and debugging system calls made by
a process. It intercepts and records the system calls a process makes while running, providing detailed
information about interactions between the process and the Linux kernel. This level of visibility is
invaluable for diagnosing and resolving issues related to system calls, application behavior, and software
errors. By analyzing the output of strace, administrators can identify issues such as file access
problems, library dependencies, permission errors, or resource conflicts. It is particularly useful for
debugging complex applications, troubleshooting crashes, and ensuring correct program execution.
The strace command is widely used by system administrators, developers, and support teams as
a fundamental tool for investigating low-level system interactions and understanding the root cause
of various software and performance problems. Please note that sudo access is required when using
strace to trace processes with elevated permissions or system-level access. Both pstree and
strace commands are essential tools in the Linux administrator’s arsenal. They provide valuable
insights into the process hierarchy and system interactions, helping administrators understand system
behavior, diagnose issues, and optimize performance. pstree facilitates a clear visualization of process
relationships, enabling administrators to comprehend complex process structures and identify possible

The strace command 147

process bottlenecks. On the other hand, strace offers in-depth tracing of system calls, allowing
administrators to monitor the interaction between processes and the kernel, thus aiding in debugging
and identifying problems with software applications. The importance of these commands is evident in
their ability to streamline the troubleshooting process, enhance system stability, and improve overall
system performance, making them indispensable tools for Linux system administrators. We will
explore illustrative examples of each of the commands:

• Filtering system calls:

 � The strace command will trace only open and read system calls made by the ls command

 � Filtering system calls allows focusing on specific operations and reduces the amount of
output generated by strace

 � Analyze the filtered output to gain insights into how the ls command interacts with files
by opening and reading them:

Figure 9.11 – Filtering system calls with strace

In conclusion, both the pstree and strace commands are indispensable tools for Linux system
administrators, each serving unique purposes in system monitoring and debugging. The pstree
command offers a clear and hierarchical view of running processes, simplifying the understanding of
process relationships and dependencies. This visual representation aids in troubleshooting, performance
analysis, and process management tasks, contributing to improved system stability and performance.
On the other hand, the strace command excels in tracing system calls and providing detailed insights
into process behavior, software errors, and low-level system interactions. This powerful level of visibility
is crucial for diagnosing complex issues and identifying the root cause of software problems. System
administrators and developers rely on strace for troubleshooting crashes, detecting permission
errors, resolving library dependencies, and ensuring correct program execution.

Linux Monitoring and Debugging Commands148

The watch command
The watch command is a powerful utility in Linux that's used to execute a specified command
repeatedly at defined intervals and display its output in the terminal. It is particularly useful for real-
time monitoring and observing changes in system data over time. The command takes a command-
line argument and refreshes the terminal screen at regular intervals to show the updated output of the
given command. This continuous refresh provides a dynamic view of the data, making it easier for
system administrators to track system metrics, analyze processes, or observe the behavior of certain
commands. The watch command is valuable for monitoring tasks that require frequent updates, such
as checking system resource usage, log file updates, or network activity. It streamlines the process of
obtaining real-time information, allowing administrators to react promptly to any changes or anomalies,
making it an essential tool in the Linux system administrator’s toolkit.

We can monitor network traffic in real time using the watch command with the ifconfig command:

Figure 9.12 – Command to monitor network traffic in real time

The result is as follows:

Figure 9.13 – Combining the watch and ifconfig commands

Let us now look at another command – the smartctl command.

The smartctl command
The smartctl command is a vital tool for Linux system administrators responsible for managing
hard drives and storage devices. It is part of the Self-Monitoring, Analysis, and Reporting Technology
(S.M.A.R.T.) suite, which is built into most modern hard drives and solid-state drives (SSDs). The
command enables administrators to access and interpret various attributes and health information
of storage devices, providing insights into their overall health, performance, and potential issues.
By using the smartctl command, administrators can proactively monitor the condition of their
storage devices, detect signs of imminent failure, and take necessary action to prevent data loss and
system downtime. This valuable information empowers system administrators to make informed

The uptime command 149

decisions about storage maintenance, upgrade planning, and replacement strategies, ensuring data
integrity and system stability.

We can retrieve the health and status of a storage device using the smartctl command:

Figure 9.14 – Using smartctl to retrieve the health status of a storage device

The uptime command
The uptime command is a simple yet essential tool for Linux system administrators to quickly check
the system’s current uptime and load average. When executed, the command displays the current time,
the system’s running time since the last boot, the number of users currently logged in, and the load
average for the last 1, 5, and 15 minutes. The load average represents the average number of processes
in the system’s run queue over the specified time intervals. The uptime command is invaluable for
assessing system performance, resource utilization, and system responsiveness. By regularly monitoring
the uptime and load average, administrators can identify periods of high system activity and potential
bottlenecks, allowing them to make informed decisions about system optimization, capacity planning,
and resource allocation. This tool is particularly useful when troubleshooting performance issues, as
it provides a quick snapshot of system health and helps administrators detect anomalies or periods
of heavy system load.

By further exploring the provided examples of the aforementioned command, we will delve into how
it can be efficiently employed by system administrators:

• Monitoring CPU usage:

Figure 9.15 – Command for monitoring CPU usage

Linux Monitoring and Debugging Commands150

The result is as follows:

Figure 9.16 – Monitoring CPU usage with uptime

In conclusion, the watch, smartctl, and uptime commands are indispensable tools for Linux system
administrators, offering valuable capabilities for real-time monitoring, storage device management,
and system performance evaluation.

The lsof command
The lsof command in Linux stands for list open files, and it is a powerful utility used by system
administrators to display information about files currently opened by processes on the system. It
provides a comprehensive view of all open files, directories, and network connections, along with
the corresponding processes that have them open. This information is invaluable for troubleshooting
purposes, as it allows administrators to identify processes that are holding file locks, investigate
resource utilization, and diagnose issues related to file access. It aids in monitoring and managing files,
network connections, and devices, enabling administrators to detect any abnormal behavior, track file
access patterns, and identify potential security risks. Furthermore, the lsof command allows system
administrators to perform various administrative tasks, such as killing processes that are holding locks
on critical files or identifying processes associated with specific network connections.

The primary use of the lsof command lies in its versatility and flexibility. It can be used to examine
various types of resources, such as regular files, directories, network sockets, and character/block
devices. This makes it an essential tool for investigating network-related issues, analyzing disk usage,
managing mounted filesystems, and checking for potential resource leaks. Overall, the lsof command
empowers Linux system administrators with a wealth of information about file and process interactions,
contributing to efficient system management and troubleshooting.

The lsmod command 151

We will list all open files in the system using the following command:

Figure 9.17 – Using lsof to list all open files in the system

Here’s a breakdown of the command:

• lsof: The executed command is lsof. It provides information about files and processes
currently open and in use by the system.

• >: This is the redirection operator in Linux. It is used to redirect the output of a command to
a file instead of displaying it on the terminal.

• file.txt: This is the name of the file where the output of the lsof command will be saved.
You can choose any desired filename, but file.txt is just an example.

The lsmod command
The lsmod command in Linux is used to display currently loaded kernel modules on the system. Kernel
modules are small pieces of code that can be dynamically loaded or unloaded into the Linux kernel,
adding or removing specific functionalities to the operating system. The lsmod command provides
a concise and organized view of the kernel modules, showing their names, sizes, and the number of
references or dependencies they have. The significance of the lsmod command lies in its capability
to inspect the runtime configuration of the kernel. This command provides system administrators
with the ability to confirm currently loaded and active modules in the kernel. This information holds
immense importance when troubleshooting hardware-related problems, as kernel modules play a
pivotal role in managing device drivers and other critical functionalities.

Linux Monitoring and Debugging Commands152

We will view currently loaded kernel modules using the following command:

Figure 9.18 – Using lsmod to view currently loaded kernel modules

Here’s an explanation of the output:

• The header row provides the names of the columns in the output. The three main columns are
Module, Size, and Used by.

• The Module column lists the names of the loaded kernel modules, and the Size and Used
by columns indicate the size of each module in memory and the number of kernel components
using each module, respectively.

• The output displays information for several kernel modules that are currently loaded and in
use by the system.

• Each row corresponds to a specific kernel module, and the columns provide details about
that module.

For example, let’s look at the first row:

 � The nls_utf8 module is loaded, and it occupies 16,384 bytes in memory

 � There is one kernel component using the nls_utf8 module

Similarly, the other rows provide information about different modules that are currently loaded
and their respective sizes and usage.

The last reboot command 153

The last reboot command
The last reboot command in Linux is a simple yet crucial utility that provides information about
the system’s reboot history. It displays the timestamps of previous system reboots, along with the time
since the last reboot. This information is helpful for system administrators to track system availability
and uptime. By regularly checking the last reboot timestamps, administrators can quickly identify
if the system experienced any unexpected shutdowns or reboots. This information can be vital for
diagnosing potential hardware or software issues that may be causing system instability.

The primary use of the last reboot command is for historical analysis and tracking system
availability. System administrators can utilize this information to calculate the system’s mean time
between failures (MTBF) and mean time to repair (MTTR), which are essential metrics for evaluating
system reliability.

To display the system’s reboot history, we use the following command:

Figure 9.19 – Using last reboot to display the system’s reboot history

The last command
The last command is a versatile and powerful tool used by Linux system administrators to view a
history of user login activity on the system. It displays a list of previous login sessions, including the
date, time, duration, and remote host from which the login occurred. This information is essential
for monitoring user access to the system, identifying potential security breaches, and investigating
unauthorized access attempts. The last command allows administrators to track user activities, detect
unusual login patterns, and ensure the security and integrity of the system. Moreover, it facilitates
auditing and compliance efforts by providing a comprehensive log of user login events, making it a
crucial component of the system administrator’s toolkit.

Linux Monitoring and Debugging Commands154

The following example shows the last logged-in users and system shutdown/reboot times:

Figure 9.20 – Viewing last logged-in users and system shutdown/reboot times

The w command
The w command is a valuable utility that provides real-time information about logged-in users and
their activities on the system. When executed, the w command displays a list of currently logged-in
users, along with details such as their username, terminal, login time, idle time, and current processes.
This command enables system administrators to monitor user sessions, check system load, and
assess resource utilization. The w command is particularly useful for managing system resources and
ensuring fair distribution of resources among users. It helps administrators identify users who may
be consuming excessive resources or causing system performance issues. By having access to this
real-time data, administrators can take proactive measures to optimize resource allocation, improve
system efficiency, and ensure a smooth and responsive user experience.

The following example displays information about currently logged-in users and their activities:

Figure 9.21 – Using the w command to display information about

currently logged-in users and their activities

The vmstat command
The vmstat command is a powerful tool for monitoring system performance and analyzing
resource usage. When executed, the vmstat command provides a detailed report on various system
statistics, including CPU usage, memory usage, virtual memory, disk I/O, and system processes. This
comprehensive overview allows system administrators to identify performance bottlenecks, detect
potential issues, and make informed decisions about system optimization and resource allocation.
The vmstat command is particularly valuable for performance tuning, capacity planning, and
troubleshooting system slowdowns or resource constraints. It offers valuable insights into the system’s

The vmstat command 155

health and performance, enabling administrators to proactively address any emerging issues and
ensure the smooth operation of the Linux environment.

The following example is to monitor system memory, processor, and I/O statistics in real time:

Figure 9.22 – Monitoring system memory and processes with vmstat

This command is used for displaying information about virtual memory statistics, system processes,
and CPU utilization.

Here is a breakdown of the command:

• procs: This displays information about processes and process states. The r column represents
the number of processes in the running state, and the b column indicates the number of
processes in the uninterruptible sleep or blocked state.

• memory: This provides details about memory usage. The swpd column shows the amount of
virtual memory used (in KB) that has been swapped to the disk. The free column displays the
amount of free memory (in KB) available for processes. The buff column shows the amount
of memory (in KB) used as buffer cache by the kernel. The cache column displays the amount
of memory (in KB) used as page cache by the kernel.

• swap: This displays information about swap space usage. The si column represents the
amount of memory (in KB) swapped in from disk per second, and the so column represents
the amount of memory (in KB) swapped out to disk per second.

• io: This provides information about I/O operations. The bi column shows the number of
blocks received from a block device (such as a hard disk) per second, and the bo column shows
the number of blocks sent to a block device per second.

• system: This section displays system-related statistics. The in column represents the number of
interrupts per second, and the cs column represents the number of context switches per second.

• cpu: This section provides CPU utilization statistics. The us column represents the percentage
of CPU time spent in user-level processes. The sy column represents the percentage of CPU
time spent in system-level processes. The id column represents the percentage of idle CPU
time. The wa column represents the percentage of CPU time spent waiting for I/O operations.
The st column represents the percentage of CPU time stolen from a virtual machine (VM).

Linux Monitoring and Debugging Commands156

The kill command
The kill command is a fundamental and powerful utility in Linux used to terminate or send signals
to running processes. In many cases, it requires superuser (sudo) privileges to terminate processes
that belong to other users or are critical to system operation. Its primary purpose is to gracefully stop
or forcibly terminate processes based on their PIDs. The kill command allows system administrators
to manage and control the execution of processes, ensuring smooth system operation and resource
management. One of the most common signals sent by the kill command is SIGTERM (signal
15), which politely asks a process to terminate, giving it a chance to perform cleanup tasks before
exiting. Additionally, the kill command can send other signals such as SIGKILL (signal 9), which
forcefully terminates a process without allowing it to perform any cleanup. This is useful in cases
where a process is unresponsive or causing system instability. The kill command is crucial for
handling unresponsive or problematic processes, preventing resource exhaustion, and maintaining
system stability. Moreover, the kill command plays a vital role in process management, enabling
administrators to prioritize certain processes over others. By sending different signals, administrators
can alter the behavior of running processes. For example, sending the SIGSTOP signal suspends
a process, while sending the SIGCONT signal resumes it. This capability is useful for pausing and
resuming processes or controlling their execution based on specific conditions. The kill command
is an essential tool for Linux system administrators when handling process-related issues, managing
system resources, and ensuring efficient and reliable system performance.

Additionally, the kill command is integral to process coordination and inter-process communication
(IPC). It allows processes to signal each other and synchronize their actions effectively. This feature
is critical for complex system architectures, where multiple processes need to cooperate and interact
with each other. By using the kill command, administrators can facilitate communication and
coordination among processes, resulting in better overall system performance and functionality. The
kill command is also commonly used in shell scripts and automation scripts to manage processes,
making it a valuable tool for automating system tasks and maintenance.

The steps for killing a specific process with the kill command are set out here:

1. Find the PID of the target process using the ps command.

2. Use the kill command followed by the PID to terminate the process:

Figure 9.23 – Killing a specific process with the kill command

The pkill command 157

3. We verify the process using the systemctl command, as demonstrated here:

Figure 9.24 – Verifying the kill process

The pkill command
The pkill command is a powerful utility in Linux used to terminate or signal processes based on
their names or other criteria. Its primary purpose is to provide a more user-friendly and efficient way
to kill processes compared to using their PIDs. One of the key reasons for its importance is its ability
to simplify the process of terminating multiple instances of a process with the same name. This is
particularly useful when dealing with applications that run multiple processes, such as web servers
or database servers. The pkill command ensures that all relevant processes are terminated without
the need to identify and input individual PIDs. Its ease of use makes it a valuable tool for system
administrators in various scenarios, including troubleshooting, process management, and automation.

We can kill multiple processes with the pkill command.

Use the pkill command followed by the process name to terminate all processes with the same name:

Figure 9.25 – Killing multiple processes with the pkill command

Linux Monitoring and Debugging Commands158

In conclusion, Linux monitoring and debugging commands are indispensable tools for Linux system
administrators. These commands empower administrators to monitor system performance, troubleshoot
issues, and ensure the stability and reliability of their Linux systems. With a wide range of commands
at their disposal, administrators can gain valuable insights into system behavior, identify problems,
and implement effective solutions. By mastering these commands, administrators can optimize system
performance, enhance security, and deliver a seamless user experience. Overall, Linux monitoring and
debugging commands are essential for maintaining the health and functionality of Linux environments.

Summary
This chapter delves into a diverse range of crucial tools designed to empower Linux system administrators
in efficiently monitoring system performance and identifying and resolving potential issues. The
chapter covers a wide array of commands, each serving a specific purpose in gaining insights into
various aspects of the system. From real-time monitoring using commands such as top and vmstat
to analyzing process relationships with pstree and debugging software issues using strace,
this chapter equips administrators with valuable tools to ensure the stability, reliability, and optimal
performance of their Linux systems.

Additionally, the chapter explores commands such as watch, smartctl, uptime, kill, and
pkill that aid in repetitive command execution, managing storage devices, terminating processes,
and checking system uptime and load average, respectively. The combination of these monitoring and
debugging commands equips system administrators with comprehensive visibility into system health,
resource utilization, and user activity, enabling them to make informed decisions and proactively
address potential issues.

In the next chapter, we will delve into a comprehensive array of indispensable tools designed to facilitate
network management and enhance system performance in Linux environments. This chapter covers a
diverse range of commands, each serving a specific purpose in configuring and monitoring network
settings. From iptables for firewall management to commands such as ifconfig and ip for
network interface configuration and more, this chapter equips system administrators with essential
tools to ensure smooth network operations and secure communication.

10
Linux IPTABLES

and Network Commands

Linux IPTABLES and network commands are essential tools for Linux system administrators to
manage and control network traffic and security. IPTABLES is a powerful firewall tool that allows
administrators to define rules for filtering, forwarding, and modifying network packets. It plays a crucial
role in ensuring network security by blocking unauthorized access, preventing malicious traffic, and
protecting sensitive data. Additionally, IPTABLES enables administrators to create complex network
configurations, such as network address translation (NAT) and port forwarding, to optimize network
performance and facilitate communication between internal and external networks, while the network
commands in Linux offer a wide range of functionalities to monitor and manage network connections,
interfaces, and network-related statistics. These commands provide insights into network performance,
bandwidth usage, and active connections, enabling administrators to identify bottlenecks, diagnose
network issues, and optimize network resources. Moreover, they facilitate troubleshooting network-
related problems, such as DNS resolution, packet loss, and connectivity issues, by offering real-time
information about network status and activity.

The importance of Linux IPTABLES and network commands lies in their ability to effectively secure
and manage network communication. As Linux-based systems are widely used in various domains,
including servers, routers, and IoT devices, the need for robust network security and efficient traffic
control becomes paramount. By utilizing IPTABLES and network commands, administrators can
implement customized network policies and access control lists, ensuring that only authorized traffic
is allowed while blocking potential threats. This granular control over network traffic provides an
additional layer of defense against cyberattacks, making these commands indispensable tools for
Linux system administrators.

Linux IPTABLES and Network Commands160

In this chapter, we will delve into the following main topics:

• iptables -t ACCEPT

• iptables -t DROP

• ifconfig, ip, route, and netstat

• hostname and nslookup

• host

Before we proceed, we must also recognize the significant contribution of IPTABLES and network
commands in optimizing network performance and resource utilization. By analyzing network statistics
and bandwidth usage, administrators can identify areas for improvement and make informed decisions
about network architecture and capacity planning. This proactive approach ensures that network
resources are used efficiently, enhancing overall network performance and minimizing downtime.
IPTABLES and network commands offer versatile functionalities to safeguard network security, monitor
network activity, and optimize network performance. Their flexibility and ability to configure custom
network policies make them indispensable for managing and maintaining stable and secure network
environments. As network security and efficient resource management are critical aspects of modern
computing, Linux IPTABLES and network commands remain among the most widely used tools by
Linux system administrators across diverse industries and environments.

iptables -t ACCEPT
In the realm of Linux networking and security, the iptables command with the -t option and the
ACCEPT target is crucial. iptables is a powerful firewall utility in Linux that allows administrators to
define rules for incoming and outgoing network packets, granting or denying access based on specified
criteria. The -t ACCEPT part of the command is used to specify the target of the rule, which, in
this case, is to accept the packet. The importance of iptables with the -t ACCEPT configuration
lies in its ability to provide granular control over network traffic, allowing administrators to define
rules that govern how data flows through the system. By using iptables with the ACCEPT target,
administrators can explicitly permit packets to pass through the firewall, ensuring that authorized
network communication is allowed while potentially harmful or unauthorized traffic is blocked. This
capability is essential for network security as it enables administrators to define access rules tailored
to their specific needs, protecting the system from malicious attacks and unauthorized access.

iptables -t ACCEPT 161

Next, we will delve into practical examples of utilizing the iptables -t ACCEPT command:

1. Check the current iptables rules to understand the existing configuration:

Figure 10.1 – Viewing current iptables rules

2. Allow incoming SSH connections from the specified IP address (192.168.x.xxx).

When you use the iptables command, it will add a rule to the INPUT chain of the iptables
firewall, allowing incoming TCP traffic from the source IP address, 192.168.x.xxx, to the
destination port, 22 (which is the default port for SSH), to be accepted and allowed through
the firewall. However, if the rule is successfully added, no confirmation or message will be
displayed in the Terminal.

3. To check the rules in the iptables firewall and verify that the new rule has been added, you
can use the following command:

Figure 10.2 – Allowing SSH connections from specified IPs

Linux IPTABLES and Network Commands162

iptables -t DROP
The iptables command in Linux is a fundamental tool for managing network traffic and enforcing
security policies. It allows system administrators to define rules for incoming and outgoing network
packets, granting or denying access based on specified criteria. The -t flag, used in conjunction with
iptables, specifies the target table within which the rule will be defined. In the context of security,
the DROP target is particularly significant. When combined with -t, as in iptables -t DROP, it
signifies that incoming network packets matching the defined rule will be dropped or blocked, effectively
denying access. In Linux, the iptables command allows administrators to manage and manipulate
the netfilter firewall rules, which determine how the kernel handles network packets. Administrators
can block malicious or suspicious traffic from entering the network by selectively dropping packets

For experts, iptables -t DROP provides fine-grained control over network traffic, enabling them
to customize rules and mitigate complex security risks effectively. Moreover, by strategically using
the DROP target, administrators can prevent certain types of attacks, such as denial-of-service (DoS)
and distributed denial-of-service (DDoS) attacks, from overwhelming the system and disrupting its
services or this command can be used to block specific IP addresses known for malicious activities,
limit access to certain services, or protect vulnerable ports.

The primary use and purpose of the DROP action is to filter and control incoming network traffic
based on defined criteria, such as source IP address, destination port, and protocol type. By specifying
rules, administrators can determine which packets should be dropped, preventing them from reaching
the intended destination. This command plays a crucial role in crafting network security policies as
it allows administrators to define rules that align with their organization’s security requirements and
regulatory compliance. By efficiently managing network traffic with iptables -t DROP, Linux
system administrators can create a robust and secure networking environment that safeguards their
infrastructure from potential threats. Let’s delve into practical examples of utilizing the iptables
-t DROP command.

To block incoming traffic from the specified IP address, use the following command:

Figure 10.3 – Blocking incoming traffic

ifconfig, ip, route, and netstat 163

This command adds a new rule to the INPUT chain of iptables, which drops any incoming packets
from the IP address, 192.168.x.xxx.

ifconfig, ip, route, and netstat
The ifconfig command, short for interface configuration, is a powerful utility in Linux that’s
used to view, configure, and manage network interfaces on a system. It provides essential information
about the network interfaces, such as IP addresses, subnet masks, MAC addresses, and link status. The
ifconfig command remains a fundamental command for network management and advanced
configurations. Experts can leverage ifconfig to manually configure network interfaces, set
static IP addresses, enable or disable specific interfaces, and modify advanced network settings. It is
particularly useful in server environments, where multiple network interfaces are present, and specific
configurations are required. Additionally, ifconfig can be combined with other commands for
network diagnostics and performance monitoring. While ifconfig is widely used and familiar to
Linux administrators, it is worth noting that some Linux distributions are deprecating this command
in favor of newer tools such as ip. Nonetheless, ifconfig remains relevant and valuable in many
Linux environments, providing a simple yet effective means to manage network interfaces.

ip, route, and netstat

The ip, route, and netstat commands are essential Linux network tools that collectively offer
a comprehensive set of functionalities for network configuration, routing, and monitoring. For both
beginners and experts, these commands provide vital insights into network setup, traffic routing, and
active network connections. ip is a versatile command that replaces many functionalities of ifconfig,
providing advanced configuration options for network interfaces, routing tables, and tunnels. route
allows users to view and modify the system’s IP routing table, controlling how packets are forwarded
between networks. netstat offers a detailed overview of network connections, open ports, and
active network statistics. Note that mastering these commands is essential for understanding network
setup and troubleshooting. The ip command offers a more modern and feature-rich alternative to
ifconfig, providing a broader range of functionalities for network configuration and management.
route assists beginners in grasping the concept of routing and how data packets are directed through
the network. netstat helps beginners identify active network connections, monitor port usage,
and diagnose network issues, such as identifying processes that are consuming network resources.
As beginners explore Linux networking, these commands equip them with the necessary tools to
comprehend and configure network settings effectively. These commands become indispensable in
network administration and troubleshooting. For example, the ip command’s advanced features enable
experts to set up complex network configurations, create virtual interfaces, manage routing tables, and
implement NAT. route allows experts to fine-tune routing rules, optimize traffic flow, and manage
multiple network interfaces efficiently. netstat is a valuable tool for experts to monitor network
performance, detect suspicious network activity, and identify potential security threats. In combination,
these commands provide experts with comprehensive network visibility, enabling them to maintain a
robust and secure networking environment. The depth and versatility of ip, route, and netstat

Linux IPTABLES and Network Commands164

make them indispensable tools for Linux network administrators, allowing them to optimize network
performance, troubleshoot issues, and ensure smooth and reliable network connectivity. Now that we
have gained an understanding of these commands, let’s apply them in practical examples:

• To view the current network interfaces and their configurations, run the following commands:

Figure 10.4 – Viewing current network interfaces

• Let’s utilize the ip command to view the network interface:

Figure 10.5 – Viewing current network interfaces

This will display a list of all network interfaces, along with their IP addresses, subnet masks,
and other network configuration details.

• To add a static route to the routing and viewing network statistics, such as open network
connections and listening ports, run the following command:

Hostname and nslookup 165

Figure 10.6 – Routing and viewing network statistics

This command adds a route to the 192.168.x.0/24 subnet via the 192.168.x.x
gateway. Then, the next command displays a list of all active network connections and the
corresponding ports.

The -tuln options in the netstat command are used to display a list of all open TCP and UDP
ports on the system, in numerical format:

• -t: Show TCP connections

• -u: Show UDP connections

• -l: Show listening ports

• -n: Show numerical addresses instead of trying to determine symbolic hosts, ports, or usernames

What is the impact of the ip route add command?

The ip route add command is used to add a new route to the routing table. The routing table is
a database that the kernel uses to determine how to route packets to their destinations.

The impact of the ip route add command is that it will allow the system to communicate with
devices on the 192.168.x.x/24 network.

The ip route add command can be used to add routes to any network, not just local networks.
This can be useful for configuring routing between different networks or for routing packets over VPNs.

Hostname and nslookup
The hostname command in Linux is used to view or set the system’s hostname. The hostname is
a unique identifier given to a device on a network, and it helps distinguish it from other devices.
The hostname is essential for various networking tasks, such as accessing the device over a network
and identifying it when communicating with other devices. The hostname command provides a
simple and efficient way to manage the system’s hostname, making it an indispensable tool for Linux
administrators. The hostname command’s importance lies in its role in networking and system

Linux IPTABLES and Network Commands166

identification. A meaningful hostname enhances the manageability and organization of systems
within a network, simplifying administrative tasks and making it easier to locate and communicate
with specific devices. Additionally, the hostname is often used in log files and system monitoring
tools to provide context and identify the origin of events, aiding in troubleshooting and auditing.
For servers hosting multiple services, setting a descriptive hostname helps users and administrators
identify the purpose or function of each server, streamlining system management and reducing the
risk of confusion. Overall, the hostname command plays a vital role in maintaining efficient network
operations and effective system administration.

The nslookup command is a powerful tool that’s used to query domain name system (DNS)
servers to obtain information about domain names and IP addresses. DNS is the system that
translates human-readable domain names (for example, www.example.com) into IP addresses
(for example, 192.168.x.x) that computers can understand. The nslookup command provides
a way to interactively query DNS servers, making it an invaluable utility for network administrators
and developers. The importance of the nslookup command lies in its ability to troubleshoot
DNS-related issues and validate DNS configurations. It allows administrators to verify DNS records,
check if a domain is resolving to the correct IP address, and troubleshoot DNS resolution problems.
By querying specific DNS servers with the nslookup command, administrators can ensure the
accuracy of DNS information and diagnose DNS-related problems, such as incorrect DNS entries or
misconfigured DNS servers. Additionally, the nslookup command can be used to test the response
time of DNS servers, helping administrators identify potential bottlenecks in the DNS infrastructure
and optimize DNS performance. Overall, the nslookup command is an indispensable tool for
managing and troubleshooting DNS in Linux environments, ensuring the smooth functioning of
network communication and internet connectivity.

Now, let’s apply these commands in practical examples:

• To display the system’s hostname, simply enter the following command:

Figure 10.7 – Displaying the system’s hostname

This command will output the hostname of your Linux system. The hostname is a unique name
that identifies the system on the network and is used for local and remote communication.

• To perform a DNS name resolution for a specific domain (for example, www.example.com),
you can use the nslookup or host command. Here’s an example:

host 167

Figure 10.8 – Performing DNS name resolution

host
The host command is a powerful utility that’s used for DNS-related tasks in Linux systems. It is
primarily used to perform DNS lookups, translating domain names into IP addresses, and vice versa.
The importance of the host command lies in its role as a versatile tool for network administrators
and developers to resolve DNS queries and troubleshoot domain resolution issues. By using the host
command, administrators can verify if a domain name is correctly mapped to an IP address and vice
versa, ensuring proper communication between devices across the internet. Additionally, the host
command provides information about DNS records, such as the authoritative name server for a
domain, time-to-live (TTL) values, and mail exchange (MX) records, aiding in DNS configuration
and debugging tasks. The host command is commonly used in various scenarios, such as checking
DNS propagation after domain changes, diagnosing DNS resolution problems, and verifying domain
name configurations. Its ease of use and ability to provide real-time DNS information make it an
essential tool for both novices and experts in the field of networking and system administration. Now,
let’s delve into practical examples to better understand the usage of these commands:

• Like nslookup, we can also perform the same actions using the host command.

Both commands will display the IP addresses associated with the domain name provided.
The DNS is responsible for translating human-readable domain names into IP addresses that
computers can understand. These commands allow you to check if DNS resolution is working
correctly and retrieve the IP address of a specific domain:

Figure 10.9 – Checking DNS resolution with the host command

In summary, Linux IPTABLES and network commands play a vital role in a Linux system administrator’s
arsenal, providing essential functionalities to ensure network security, monitor network activity, and
optimize overall performance.

Linux IPTABLES and Network Commands168

Summary
In this chapter, we explored essential tools for Linux system administrators that provide them with
powerful capabilities to manage network communication effectively and enhance network security.
This chapter covered a wide range of commands, each serving a specific purpose in configuring
network rules and gaining valuable insights into network activity. The iptables commands, such as
iptables -t ACCEPT and iptables -t DROP, allow administrators to customize network
policies, enabling authorized traffic while blocking potential threats. These commands play a critical
role in safeguarding network resources and defending against cyberattacks, making them indispensable
tools for Linux system administrators. This chapter also delved into network configuration and analysis
commands, including ifconfig, ip, route, and netstat. These commands offer administrators
the ability to view and manage network interfaces, configure IP addresses, inspect routing tables,
and monitor network statistics. By using these commands, administrators can optimize network
performance, troubleshoot connectivity issues, and ensure efficient resource utilization. Additionally,
this chapter explored the hostname, nslookup, and host commands, which provide insights into
DNS resolution and hostname-related information. These commands are valuable for verifying DNS
configurations, resolving domain names, and identifying network connectivity problems. The seamless
integration of these network commands equips Linux system administrators with the necessary tools
to maintain stable, secure, and high-performing network environments.

In the next chapter, we will explore a set of crucial tools that enable seamless file transfer, efficient
downloading, and effective log file management in Linux environments. We will cover a range
of commands, each serving a specific purpose in streamlining file transfers and ensuring log file
accessibility. From using netcat and socat for copying files into remote systems to leveraging
wget, curl, axel, and more for efficient file downloads, this will equip system administrators with
essential techniques to handle various file-related tasks effectively.

11
File Transfer, Downloading, and

Managing Log Files

File transfer, downloading, and managing log files are crucial aspects of managing a Linux system
effectively, enabling system administrators to efficiently handle data exchange, retrieve essential software
or content, and maintain a robust record of system activities. This multifaceted topic encompasses a
variety of commands and utilities, each serving distinct purposes and collectively supporting seamless
file operations and log management. Understanding and mastering these tools is vital for administrators
to ensure smooth system functioning, troubleshoot issues, and maintain data integrity.

The significance of file transfer, downloading, and managing log file commands lies in their essential
role in day-to-day system administration tasks. File transfer commands such as netcat, socat,
wget, curl, and axel facilitate seamless data exchange between local and remote systems. These
tools are critical for sharing files, backups, and configurations, both within an internal network and
across the internet. Similarly, downloading commands such as wget, curl, and axel empower
administrators to efficiently retrieve files, software packages, and updates from remote servers or
repositories. These commands are indispensable for obtaining the necessary resources efficiently and
ensuring the system remains up to date and well-equipped. Equally important is managing log files,
which plays a pivotal role in system analysis, performance monitoring, and troubleshooting. Log files
are records that contain critical information about system activities, errors, and events. By exploring
common log files, administrators can gain valuable insights into the system’s health, identify potential
issues, and take preventive measures. This level of visibility is essential for maintaining system stability,
ensuring security, and complying with regulatory requirements.

File Transfer, Downloading, and Managing Log Files170

In this chapter, we will delve into the following main topics:

• Copying files into remote systems using netcat and socat

• Downloading files with wget and curl

• Exploring common log files

The purpose of mastering file transfer, downloading, and managing log file commands is to equip
system administrators with the ability to perform a wide array of tasks effectively. By understanding
these tools, administrators can confidently perform file transfers, secure content exchange, and retrieve
essential data. They can also analyze and interpret log files to gain valuable information about the
system’s performance and diagnose any underlying issues. These commands provide the flexibility
and control needed to handle diverse file operations and maintain a well-organized log management
system. As such, file transfer, downloading, and managing log file commands remain essential and are
widely used by Linux system administrators, empowering them to efficiently manage their systems
and deliver optimal performance and security.

Copying files into remote systems using netcat and socat
Copying files into remote systems using the netcat and socat commands is a crucial aspect of file
transfer and system administration in Linux environments. Both netcat and socat are versatile
networking utilities that offer powerful capabilities for transferring data between systems over the
network. These commands provide a simple and efficient way to securely send files, directories, or
streams from one host to another, making them indispensable tools for Linux system administrators.
They operate at the network level, allowing data to be transmitted over TCP or UDP connections,
making them ideal for transferring large files or backups across the network. Unlike traditional file
transfer methods, such as File Transfer Protocol (FTP) or Secure Copy Protocol (SCP), netcat
and socat provide a more lightweight and flexible approach. FTP and SCP are well-established
methods for transferring files over networks, but they come with certain limitations. For instance,
FTP requires a dedicated FTP server setup, which can be resource-intensive and less flexible in ad
hoc network scenarios. SCP, while secure, relies on SSH and might not be available or practical in
all situations. netcat and socat, on the other hand, are lightweight and versatile tools that allow
for direct network communication, making them ideal for quick and ad hoc file transfers. They don’t
require dedicated servers or complex configurations to be set up, making them valuable tools in various
network administration and troubleshooting tasks. Moreover, they can be used in various scenarios,
including data replication, system backups, remote administration, and even tunneling encrypted
communication. These commands provide administrators with greater control over the data transfer
process, making it easier to customize and automate file transfer tasks.

Copying files into remote systems using netcat and socat 171

The use of netcat and socat in copying files into remote systems is highly practical and efficient.
Administrators can quickly transfer files by piping the content through netcat or socat to the
destination system. The process is relatively simple, involving a single line of command, reducing
the need for complex setups or additional software installations. Additionally, netcat and socat
support various options that allow administrators to specify data streams, handle multiple connections,
and control the transfer speed, providing greater flexibility and control over the file transfer process.
Overall, the netcat and socat commands provide efficient and reliable solutions for copying files
into remote systems, streamlining file transfer tasks, and enhancing the overall efficiency of system
administration. Now, let’s delve into practical examples of how these commands can be effectively
utilized by system administrators:

• Transferring files using netcat (CentOS machine):

 � The first command, ls -l /bin/wget, lists detailed information about the wget file
located in the /bin directory. The output includes various attributes such as permissions,
owner, group, size, modification date, and the name of the file. In this case, the wget file is
an executable with -rwxr-xr-x permissions, indicating that it is readable, writable, and
executable by the owner, and executable by others.

 � The second command, nc -nv 192.168.x.xxx 4444 < wget, involves the use
of the nc (netcat) command for network communication. Here, the user is attempting
to send the content of the wget file to a remote machine at IP address 192.168.x.xxx,
port 4444. The < symbol is used for input redirection, indicating that the content of the
wget file will be provided as input to the nc command.

 � The -n flag ensures that no DNS resolution is performed for the IP address, 192.168.x.xxx,
and -v provides verbose output about the connection process.

 � The subsequent lines show the output of the netcat command. It starts by displaying the
version of Ncat (a modern reimplementation of netcat) being used. Then, it reports that
a connection has been established to the specified IP address and port:

Figure 11.1 – File transfer with netcat

• Remote machine:

 � The first command that’s executed is nc -nlvp 4444 > wget. This command uses the
nc (netcat) utility to listen for incoming network connections on port 4444. The output
of the incoming connection is redirected to a file named wget in the current directory. The

File Transfer, Downloading, and Managing Log Files172

> symbol is used for output redirection. The output indicates that the system is now listening
on port 4444. Note that when sending a file via nc, no progress bar will be displayed in
the Terminal.

 � The second command that’s executed is ls -l wget. This command lists detailed
information about the wget file in the current directory. The output includes attributes such
as permissions, owner, group, size, modification date, and the name of the file.

 � The third command that’s executed is sudo chmod +x wget. This command uses
chmod to change the permissions of the wget file. The +x argument adds the executable
permission to the file.

 � The concluding command that’s issued is wget --help. This command aims to verify
the successful transfer of the file, as evidenced by the output, which demonstrates that it
was executed successfully:

Figure 11.2 – Receiving an incoming file using nc

• Transferring files using socat (remote machine):

On the remote machine, the socat TCP4-LISTEN:4444,fork file:shadow.
txt command is executed. This command sets up a TCP listener on port 4444. When a
connection is established to this port, socat reads the content of the local shadow.txt
file and sends it to the connected client. The fork option allows socat to handle multiple
incoming connections independently. In this example, the shadow.txt file contains text
stating file file, as shown here:

Downloading files with wget and curl 173

Figure 11.3 – Sending a file with socat on a remote machine

• CentOS machine:

On the CentOS machine, the socat TCP4:192.168.x.xxx:4444 file:shadow.
txt, create command is executed. This command initiates a TCP connection to the remote
machine at IP address 192.168.x.xxx on port 4444. Once connected, socat reads the
contents of the local shadow.txt file and sends it to the remote machine. The create option
instructs socat to create the shadow.txt file on the remote machine if it doesn’t already
exist. After the transfer is complete, the local shadow.txt file is created or overwritten with
the received data. The ls -l shadow.txt command confirms the creation of the file, and
the cat shadow.txt command displays its content, which is file file:

Figure 11.4 – Receiving and verifying the transferred file

While both Netcat and Socat are used for networking tasks and data transfer, Netcat is a simpler utility
that’s primarily used for basic networking tasks, whereas Socat offers more advanced capabilities
and options, making it suitable for a wider range of networking scenarios, including complex data
manipulation, encryption, and proxying.

Downloading files with wget and curl
Downloading files is a fundamental task in system administration, and tools such as wget and curl
play a pivotal role in simplifying and optimizing this process. These commands are designed to fetch
files from remote servers, repositories, or URLs and bring them to the local system. Their importance
stems from the need to keep systems updated with the latest software versions, retrieve critical data,
and efficiently manage resources. The significance of these commands lies in their versatility and ease
of use. wget, for instance, is a robust and feature-rich tool capable of handling various protocols,
such as HTTP, HTTPS, and FTP. Its ability to recursively download files and mirror entire websites
is particularly valuable for administrators managing large-scale systems or websites. curl, on the
other hand, is equally powerful, supporting a wide range of protocols and enabling administrators to

File Transfer, Downloading, and Managing Log Files174

not only download files but also perform various other network-related tasks, such as sending data
to servers and handling authentication.

These commands are indispensable for system administrators due to their role in maintaining up-to-
date software, retrieving critical data, and ensuring the smooth operation of a system. Their ease of
use, flexibility in handling different protocols, and ability to accelerate downloads make them essential
tools in the toolkit of every Linux system administrator. Let’s make use of these commands practically
on our Linux machine:

• Using wget:

The wget http://192.168.x.xxx:80/file.txt command is used to download
a file from a remote web server. Here’s a breakdown of what each part of the command does:

 � http://192.168.x.xxx:80/file.txt: This is the URL of the file we want to
download. Here http specifies the protocol to use for the download – in this case, HTTP

When we execute the command, wget establishes an HTTP connection to the provided
IP address and port, sends an HTTP GET request for the specified file (/file.txt), and
receives the file’s content in response. The downloaded file will be saved in the current working
directory on our local machine with the same name as on the server (in this case, file.txt):

Figure 11.5 – File download with wget

• Using curl:

The curl -O http://192.168.x.xxx:80/file.txt command is used to download
a file from a remote web server using the curl command-line tool. Here’s a breakdown of
what each part of the command does:

 � curl: This is a command-line utility that stands for client for URLs. It is used to transfer data
to or from a server and supports various protocols, including HTTP, HTTPS, FTP, and more.

 � -O: This option tells curl to save the downloaded file using the same name as on the remote
server. It’s used to preserve the original filename.

Exploring common log files 175

 � http://192.168.x.xxx:80/file.txt: This is the URL of the file you want to
download, similar to the previous explanation:

 � http: This specifies the protocol to use for the download – in this case, HTTP

When we execute this command, curl establishes an HTTP connection to the provided IP
address and port, sends an HTTP GET request for the specified file (/file.txt), and receives
the file’s content in response. The downloaded file will be saved in the current working directory
on the local machine with the same name as on the server (file.txt):

Figure 11.6 – File download with curl

By offering options for batch downloads, resumable transfers, and detailed progress reporting, wget
and curl streamline the process of obtaining files from remote sources, enhancing efficiency and
productivity for administrators across various domains and industries.

Exploring common log files
System administrators check log files for various reasons due to their critical importance in maintaining
system health, diagnosing issues, and ensuring security. These logs provide a comprehensive record of
system activities, errors, and events, allowing administrators to gain valuable insights into the system’s
behavior. For instance, the /var/log/messages log is a goldmine for general system-wide events,
which assists in troubleshooting issues that might affect the entire system. This log’s significance lies
in its ability to offer a holistic view of the system’s health and performance, aiding administrators in
detecting anomalies early on and addressing potential bottlenecks or threats.

Moreover, log files such as /var/log/secure and /var/log/auth.log are pivotal in upholding
system security. System administrators continuously monitor these logs to track authentication and
authorization activities, helping them identify unauthorized access attempts or breaches. The importance
of such logs cannot be overstated as they provide the necessary trail to investigate security incidents,
enforce access controls, and mitigate potential security risks. Additionally, logs related to web servers
such as /var/log/httpd/ hold the key to identifying unauthorized access attempts, suspicious
activities, or web server errors, which are crucial for maintaining the integrity and security of web
applications. Regularly checking these logs empowers administrators to proactively identify and rectify
security vulnerabilities, keeping sensitive data and systems safeguarded.

File Transfer, Downloading, and Managing Log Files176

In CentOS 8, several common log files are located in various directories that record system events,
application activities, and errors. Here is a list of some of the common log files, along with their paths:

• /var/log/messages:

This log file contains general system messages generated by various processes. It’s a catch-all
location for different log messages, including those from daemons, services, and the kernel.

• /var/log/dmesg:

The kernel ring buffer messages are stored here. These messages provide information about the
kernel’s interactions with hardware during boot and while the system is running.

• /var/log/boot.log:

This file contains messages related to the boot process and startup information. It’s useful for
diagnosing boot issues.

• /var/log/secure:

Authentication and security-related events, including successful and failed login attempts, are
logged here. Monitoring this file helps in tracking unauthorized access attempts.

• /var/log/wtmp:

This log file records the user’s login and logout history. It maintains a record of user sessions
and their durations.

• /var/log/yum.log and /var/log/dnf.rpm.log:

These logs contain package management activities. Entries include package installations,
updates, and removals performed using YUM or DNF package managers.

• /var/log/httpd/, /var/log/mariadb/, /var/log/nginx/:

These directories contain logs specific to Apache, MariaDB, and nginx servers, respectively.
They include access logs, error logs, and other server-related events.

• /var/log/maillog:

Tailored for email-related activities, this log tracks email sending, receiving, and errors for mail
server configurations, helping in troubleshooting email communication problems.

• /var/log/cron:

Focused on scheduled tasks, this log records the execution of cron jobs and their outcomes.
It’s indispensable for ensuring that automated tasks run as expected.

• /var/log/audit/audit.log:

The audit log is a treasure trove for security teams. It contains records of system activities and
security events, aiding in identifying suspicious activities and policy violations.

Exploring common log files 177

• /var/log/auth.log:

Like /var/log/secure, this log concentrates on authentication and authorization activities.
It’s a window into user access, password changes, and privilege modifications.

• /var/log/kern.log:

Kernel messages and hardware-related events are logged here. When troubleshooting hardware
issues or kernel-level problems, this log can be instrumental.

• /var/log/udev:

This directory contains logs related to device management and device events. It’s helpful for
understanding device-related problems.

• /var/log/sssd/ and /var/log/avahi-daemon/:

These logs pertain to System Security Services Daemon (SSSD) and Avahi Daemon, respectively.
SSSD handles authentication and identity resolution, while Avahi focuses on local network
service discovery.

• /var/log/firewalld:

firewalld logs provide information about firewall rules and activities, aiding in monitoring
and managing network security.

• /var/log/audit/:

This directory stores SELinux audit logs. It helps in tracking security-related incidents and
identifying policy violations.

• /var/log/sa/:

The system accounting (sa) logs help monitor system performance metrics such as CPU,
memory, and disk usage over time.

• /var/log/cloud-init.log:

Cloud initialization logs contain information about the initialization process on cloud instances,
aiding in tracking cloud-based system setups.

• /var/log/libvirt/:

Libvirt logs include events and activities related to virtualization using the Libvirt framework.

In essence, the regular scrutiny of these log files by system administrators is indispensable. These logs
serve as a vital toolset for troubleshooting, performance optimization, and security enhancement. By
harnessing the insights embedded in these logs, administrators can ensure seamless system operation,
prompt issue resolution, and robust security posture, ultimately contributing to the overall stability
and reliability of the Linux environment.

File Transfer, Downloading, and Managing Log Files178

Summary
This chapter provided a comprehensive exploration of crucial techniques and tools tailored for Linux
system administrators. This chapter should empower administrators with the proficiency to efficiently
manage file transfers, execute seamless downloads, and effectively handle log files, all of which are
integral aspects of maintaining robust and secure Linux systems. We began by learning how to copy files
into remote systems while leveraging the capabilities of netcat and socat. These utilities facilitate
secure and efficient file transfers, providing administrators with the means to exchange data across
networks with confidence. Subsequently, we delved into the art of downloading files by utilizing the
wget and curl commands. These commands empower administrators to seamlessly fetch content
from the web or other remote locations, simplifying the process of acquiring essential resources for
system management and enhancement. This chapter further enriched its content by delving into the
significance and diverse array of log files, which constitute a fundamental component of effective
system administration. Logging serves as an indispensable practice for monitoring system activities,
diagnosing potential issues, and safeguarding security protocols. By delving into the intricacies of
common log files, Linux system administrators can attain a comprehensive grasp of system health
and performance indicators. Proficiency in comprehending log files proves pivotal for troubleshooting
errors, promptly identifying security breaches, and optimizing overall system functionality. This
comprehensive exploration equips administrators with the expertise to proactively address challenges,
maintain system integrity, and drive efficient operations.

In the next chapter, we’ll delve into crucial security measures for Linux systems. We will show you how
to utilize enforcing and permissive modes in SELinux, manage SELinux Boolean values, strategies to
secure Secure Shell (SSH) access, methods for locking user accounts, and techniques for enhancing
system booting security.

Part 4:
Linux Security and the Cloud

In this part, we dive into Linux security, a critical duty for administrators of production systems.
Linux features powerful security tools such as SELinux, integrated firewalls, and standard system
permissions. This section offers a clear overview of Linux security measures and guides you through
setting up CentOS 8 on AWS.

This section contains the following chapters:

• Chapter 12, Exploring Linux Security

• Chapter 13, Linux in the Cloud

12
Exploring Linux Security

In the ever-evolving landscape of information technology, the security of systems and data stands as
an unwavering priority. As the backbone of countless infrastructures, Linux operating systems have
solidified their presence in various domains, from servers to embedded devices. Within this realm,
this chapter embarks on a comprehensive journey, delving into the realm of Linux security. This
exploration isn’t just an exercise in fortifying digital fortresses; it’s a pivotal pursuit that safeguards
sensitive information, guarantees operational integrity, and upholds user trust. In the contemporary
digital era, where interconnectedness dominates, the importance of Linux security cannot be overstated.
Organizations of all sizes rely on Linux-based systems to manage databases, power websites, and
orchestrate complex networks. These systems contain troves of sensitive information, from proprietary
algorithms to personal user data. Ensuring the security of this data is imperative not only to maintain
the competitive edge but also to safeguard the reputation of the entity in question. Breaches in security
can lead to dire consequences, including financial losses, legal ramifications, and the erosion of
customer confidence.

The purpose of this exploration transcends the realm of routine system administration. It’s a proactive
stance against potential threats that could exploit vulnerabilities and wreak havoc. Linux administrators,
armed with a profound understanding of security mechanisms, can erect potent defenses against a
multitude of cyber threats, from malware and ransomware to data breaches and denial-of-service
attacks. By comprehending the intricacies of Linux security, administrators can effectively mitigate
risks, respond swiftly to emerging threats, and prevent security incidents that could otherwise
cripple operations.

Linux security isn’t just a technical checklist – it’s an integral component of responsible administration.
First and foremost, Linux is an open source ecosystem, meaning that its source code is publicly
accessible. While this fosters collaboration and rapid development, it also exposes the system to
potential scrutiny and exploitation. Hence, understanding Linux security is paramount to identify
and rectify vulnerabilities that might otherwise go unnoticed. Moreover, the diverse applications
of Linux, from personal computing to corporate servers, demand a nuanced approach to security.
Administrators must navigate this spectrum while factoring in the unique security requirements of
each scenario. This necessitates a deep comprehension of Linux security mechanisms, such as access

Exploring Linux Security182

controls, encryption, authentication protocols, and intrusion detection systems. By harnessing these
tools effectively, administrators can customize security strategies that align with specific needs.

In essence, this chapter serves as a compass in the labyrinth of Linux administration. It equips
administrators with the knowledge and strategies needed to uphold the resilience and integrity of
Linux-based systems, fostering a digital landscape where security stands as an unwavering pillar of
operational success.

In this chapter, we will delve into the following main topics:

• Utilizing enforcing and permissive modes

• Enabling or disabling SELinux Boolean values

• Locking user accounts

• Securing SSH

Utilizing enforcing and permissive modes
In the realm of access control and security management, the concepts of enforcing and permissive
modes assume crucial roles, particularly within the context of operating systems such as Linux. These
modes pertain to the behavior of security mechanisms, such as Mandatory Access Control (MAC)
frameworks. For instance, RHEL and Fedora Linux use Security-Enhanced Linux (SELinux) as their
MAC framework, while Ubuntu employs AppArmor for similar purposes. Enforcing mode signifies
a state where strict adherence to security policies is upheld, disallowing any actions that contravene
these rules. On the other hand, permissive mode adopts a more lenient stance, allowing actions that
would typically be denied under “enforcing.” The purpose of these modes lies in striking a balance
between maintaining system integrity and facilitating essential operations without undue hindrance.
These modes are essential for system administrators aiming to enhance system security while ensuring
the smooth operation of their systems. By utilizing enforcing mode, administrators can ensure that all
actions, whether initiated by users or applications, adhere rigidly to established security policies. This
prevents unauthorized access, reduces the potential attack surface, and mitigates the risks associated
with breaches, malware infiltration, and unauthorized data manipulation. Conversely, permissive
mode proves invaluable in scenarios where the immediate implementation of strict security measures
might disrupt critical operations or lead to unintended consequences. Administrators can temporarily
switch to the permissive mode to identify potential issues that would arise under enforcing mode. This
approach aids in fine-tuning security policies without causing system-wide disruptions. Additionally,
permissive mode allows administrators to understand the scope and impact of security policy changes
before fully committing to them.

Utilizing enforcing and permissive modes 183

A short introduction to Linux hardening and the role of SELinux’s
enforcing and passive modes

In the ever-evolving landscape of cybersecurity, the term Linux hardening emerges as a critical practice
to enhance the security posture of Linux-based systems. Linux hardening refers to the systematic
process of fortifying the security of a Linux operating system by minimizing vulnerabilities, reducing
attack surfaces, and implementing robust defense mechanisms. At its core, Linux hardening seeks
to create an environment that withstands a broad spectrum of threats, ranging from cyberattacks
to unauthorized data breaches. In this intricate dance between technology and security, the roles of
SELinux’s enforcing and permissive modes stand out as pivotal players, shaping the defense strategies
adopted by system administrators.

The role of enforcing mode

In the realm of MAC, SELinux stands as a pioneering framework that enforces fine-grained security
policies within a Linux system. SELinux’s enforcing mode assumes a role akin to an unyielding guardian,
allowing only actions that align with meticulously defined security rules. When operating in enforcing
mode, SELinux rigidly enforces access controls and security contexts, thereby confining potentially
malicious actions and reducing the likelihood of unauthorized intrusion. This mode ensures that even
if an attacker gains access, their ability to maneuver and exploit vulnerabilities is severely curtailed,
thereby enhancing the overall resilience of the system to enable enforcing mode:

Figure 12.1 – SELinux’s enforcing mode

Let’s take a closer look:

• The setenforce command is used to modify SELinux’s enforcing mode. By running sudo
setenforce 1, you are instructing SELinux to switch to enforcing mode. In this mode, SELinux
will strictly enforce the defined security policies, denying actions that violate those policies.

• To verify that SELinux is in enforcing mode, you can use the getenforce command. The
getenforce command provides a simple way to query the status of SELinux and determine
whether it’s currently operating in enforcing mode or permissive mode.

The role of permissive mode

In contrast, SELinux’s permissive mode serves as an insightful observer in the security landscape. When
switched to permissive mode, SELinux refrains from blocking actions that breach security policies,
but it actively logs these incidents. This mode serves as an essential tool for system administrators
seeking to fine-tune their security policies without abruptly disrupting operations. By analyzing the

Exploring Linux Security184

logs generated in permissive mode, administrators can identify potential issues that would arise if the
system were operating in enforcing mode. This invaluable feedback loop empowers administrators to
iteratively refine security policies, ensuring they strike an optimal balance between stringent security
and operational functionality to enable SELinux’s permissive mode:

Figure 12.2 – SELinux’s permissive mode

Let’s take a closer look:

• This time, by running sudo setenforce 0, you are instructing SELinux to switch to
permissive mode. In permissive mode, SELinux does not actively block actions that violate
security policies. Instead, it logs these actions for later analysis.

• To verify that SELinux is in enforcing mode, you can use the getenforce command to verify
whether it’s switched to permissive mode.

To summarize, the dynamic interplay of SELinux’s enforcing and permissive modes exemplifies the
delicate art of Linux hardening. These modes offer administrators a granular approach to security,
allowing them to choose between airtight enforcement and pragmatic observation. By judiciously
deploying these modes, administrators can navigate the labyrinthine world of Linux security, creating
fortified environments that confidently withstand the evolving landscape of cyber threats.

Enabling or disabling SELinux Boolean values
In the intricate landscape of Linux security, SELinux emerges as a dynamic framework that empowers
administrators to finely tune access controls and enforce security policies. At the heart of SELinux’s
configurational arsenal lie Boolean values, encapsulating binary settings that enable or disable specific
security features. These Boolean values serve as cryptographic keys that can unlock a multitude of
security configurations, allowing administrators to sculpt the behavior of the system with precision.
From enabling network connectivity for web servers to permitting specific user interactions, Boolean
values offer a nuanced approach to tailoring security protocols, ensuring that the system operates within
the desired security boundaries. The importance of enabling or disabling SELinux Boolean values
transcends the realm of mere customization. It plays a pivotal role in aligning system security with the
ever-evolving operational demands of the digital landscape. A tangible example of their significance
is found in web server scenarios. When deploying a web application, certain functionalities might
require network connectivity, such as sending emails or accessing remote databases. By manipulating
Boolean values, administrators can enable specific network-related permissions for the web server
process while keeping other potentially vulnerable actions locked down. This granular control not
only mitigates risks but also ensures that security is an enabler, not an inhibitor, of functionality.

Enabling or disabling SELinux Boolean values 185

The use of SELinux Boolean values extends to scenarios where system administrators need to balance
security and usability. For instance, when introducing a new software package, it might demand
unconventional access rights to function optimally. Rather than compromising the overall system
security, administrators can modify Boolean values to grant temporary permissions. This empowers
administrators to evaluate the software’s behavior in a controlled environment while preserving
the integrity of the larger system. Moreover, the ability to enable or disable specific Boolean values
facilitates the implementation of security policies that are congruent with organizational policies and
regulatory requirements. This not only enhances security posture but also streamlines compliance
efforts by allowing administrators to cater to unique operational needs. Now, let’s take a look at the
current values for all SELinux Boolean settings and understand the output:

Figure 12.3 – Output of current Boolean values

The provided outputs are the results of running the getsebool -a command. This command is
used to display the current values of all SELinux Boolean settings. SELinux Boolean values are binary
settings that determine whether a specific security feature or permission is enabled (on) or disabled
(off). These Boolean values allow administrators to finely control the behavior and security policies
enforced by SELinux. Let’s break down the output and explain each line:

• abrt_anon_write --> off: This indicates that the SELinux Boolean value for allowing the
Automatic Bug Reporting Tool (ABRT) to write to anonymous memory is currently disabled.

• abrt_handle_event --> off: This Boolean value controls whether ABRT can handle
events is disabled. ABRT handles system events such as crashes or abnormal terminations.

• abrt_upload_watch_anon_write --> on: This means that the Boolean value that
allows ABRT to watch for uploads with anonymous write access is enabled.

• antivirus_can_scan_system --> off: This states that the Boolean value that
permits antivirus software to scan the entire system is currently disabled.

• antivirus_use_jit --> off: The Boolean value controlling whether antivirus software
can use Just-In-Time (JIT) scanning is disabled.

• auditadm_exec_content --> on: This indicates that the Boolean value allowing the
auditadm user to execute content is enabled.

Exploring Linux Security186

• authlogin_nsswitch_use_ldap --> off: The Boolean value that determines
whether the authlogin program should use the Network Security Services (NSS) LDAP
module is disabled.

• authlogin_radius --> off: The Boolean value that controls whether the authlogin
program can use the radius protocol for authentication is disabled.

• authlogin_yubikey --> off: This means that the Boolean value permitting the
authlogin program to use YubiKey for authentication is disabled.

• awstats_purge_apache_log_files --> off: The Boolean value that decides
whether awstats should be allowed to purge Apache log files is disabled.

Each of these lines represents a specific SELinux Boolean value and its current status. The value next
to the arrow (that is, on or off) indicates whether the Boolean is enabled or disabled. These Boolean
values allow system administrators to tailor the security policies of their systems to match their specific
operational requirements while maintaining a robust security posture.

Searching for a Boolean and getting its information

Follow these steps:

1. If you’re not sure about the exact name of a Boolean but want to search for it, you can use the
semanage boolean -l command:

Figure 12.4 – Searching for Booleans

2. To check the status of a specific SELinux Boolean, use the getsebool command followed by
the name of the Boolean. For example, to check its status, you can run the following command:

Figure 12.5 – Checking a specific Boolean’s status

Enabling or disabling SELinux Boolean values 187

3. Now, let’s run a command to get information about a Boolean:

Figure 12.6 – Getting information about a Boolean

The preceding command searches through the list of SELinux Booleans, finds the one named
xguest_connect_network, and displays its current status as on, indicating that network
connections are allowed for the xguest user or process. The comment provides additional
context about why this particular Boolean exists and what it controls.

Now, let’s enable and disable a Boolean value.

Enabling a SELinux Boolean value

To enable a SELinux Boolean value, you can use the setsebool command with the -P option (which
makes the change permanent), followed by the name of the Boolean and 1 to indicate on. For instance,
if you want to enable the xguest_use_bluetooth Boolean, you can run the following code:

Figure 12.7 – Enabling Boolean values

After executing this command, we used the semanage command to get information about the
changes that were made. This command sets the xguest_use_bluetooth Boolean to on and
makes the change permanent across system reboots.

Disabling a SELinux Boolean value

To disable an SELinux Boolean value, use the setsebool command with the -P option, followed
by the name of the Boolean and 0 to indicate off. For example, to disable the mount_anyfile
boolean, follow these steps:

1. Query the current state:

semanage boolean -l | grep mount_anyfile: This command lists all SELinux
Boolean values and filters the output using grep to find the line containing mount_anyfile.
This line shows that the mount_anyfile Boolean is currently enabled, as indicated by (on,
on). Additionally, it provides a description, Allow mount to anyfile, which explains
the purpose of this Boolean.

Exploring Linux Security188

2. Disable the Boolean:

setsebool -P mount_anyfile 0: This command uses setsebool to change the
status of the mount_anyfile Boolean. The -P flag makes this change permanent (persisting
across reboots), and 0 signifies off. After running this command, SELinux is configured to
disallow the mount command to mount any file as a filesystem.

3. Verify the change:

semanage boolean -l | grep mount_anyfile: This command is used to query
the status of the mount_anyfile Boolean after it has been modified. Now, it shows (off,
off) for this Boolean, confirming that it has been disabled. The description remains the same,
indicating that the mount command is not allowed to mount any file as a filesystem:

Figure 12.8 – Disabling Boolean values

This command sets the mount_anyfile Boolean to off and ensures that the change persists
after the system reboots.

In summary, the command checks the status of the mount_anyfile SELinux Boolean, disables it,
and verifies that the change took effect. SELinux Booleans allow administrators to finely control access
and permissions within the system, and modifying them should be done with a clear understanding
of the security implications for the system’s operation.

Locking user accounts
In SELinux, the concept of locking user accounts is often associated with standard Linux account
management practices, such as using the passwd command. SELinux itself does not directly handle
account locking; rather, it relies on Linux’s account management tools to lock and unlock user accounts.
Here are some Terminal examples of how to lock and unlock a user account:

• Locking a user account:

To lock a user account, you typically disable the account by changing the account’s password.
This can be achieved by using the passwd command with the -l (lock) option:

Securing SSH 189

Figure 12.9 – Locking a user account

• Unlocking a user account:

To unlock a user account that has been locked, you can use the passwd command again, with
-u to unlock and f for the force option:

Figure 12.10 – Unlocking a user account

The first command unlocks the password for the intruder user, and the output confirms
that the account was unlocked successfully. The second command provides information about
the user’s current password status, indicating that they have a password set and it is securely
encrypted using SHA-512. This scenario ensures that the intruder user can now access their
account with their password.

Securing SSH
Secure Shell (SSH) is a widely used protocol for secure remote access and secure file transfers over
an insecure network. It plays a pivotal role in modern IT infrastructures, enabling administrators,
developers, and users to access remote systems securely. However, to harness the full potential of SSH
and maintain the confidentiality and integrity of data during remote connections, it’s paramount to
implement robust security measures.

The primary purpose of securing SSH is to protect sensitive information and prevent unauthorized
access to remote systems. SSH achieves this by encrypting data during transmission and employing
strong authentication mechanisms. By utilizing cryptographic protocols, SSH ensures that data that’s
exchanged between the client and server remains confidential and is not susceptible to eavesdropping
by malicious actors. Furthermore, SSH’s public-key authentication and password-based authentication
mechanisms enhance the security of remote access, reducing the risk of unauthorized logins. The ability
to securely tunnel various network services through SSH, known as SSH tunneling, also extends its
use beyond remote access, making it a versatile tool for secure data transfer and network management.
In essence, securing SSH is integral to safeguarding sensitive data, protecting against malicious
intrusions, and ensuring the trustworthiness of remote connections. The importance of SSH security
is underscored by its ubiquity in enterprise environments and the critical role it plays in securing
remote access to servers, networking devices, and cloud infrastructure. Inadequate SSH security can

Exploring Linux Security190

lead to devastating consequences, including data breaches, unauthorized system access, and exposure
to confidential information. This underscores the necessity of implementing best practices, such as
enforcing strong password policies, using multi-factor authentication, and configuring SSH servers
to allow only trusted users and hosts. SSH security also aligns with compliance requirements and
regulatory standards, making it indispensable for organizations subject to data protection regulations
such as GDPR or HIPAA. Here are some examples:

• Change the default SSH port:

Changing the default SSH port (22) to a non-standard port can help deter automated scanning
and brute-force attacks.

To change the SSH port to 2222, edit the SSH configuration file, /etc/ssh/sshd_config,
located in the corner of the shell, as shown in the following screenshot:

Figure 12.11 – Changing the default port

Inside the file, locate the line with Port 22 and change it to Port 2222 or any other port
number of your choice. Save the file.

• Update SELinux rules:

When SELinux is enabled, it’s important to note that SELinux policies are designed to
enhance system security by enforcing strict rules and restrictions on various system resources,
including network ports. These policies might initially prevent SSH traffic on a new port that
you’ve configured.

To ensure that SSH traffic can flow smoothly on the new port, you’ll need to update the SELinux
policy to allow it. You can achieve this using the semanage command, which is a powerful
tool for managing SELinux policies. Specifically, you’ll need to use semanage to modify the
SELinux port policy to permit SSH communication on the new port.

Once you’ve made the necessary policy adjustments, it’s crucial to apply these changes and
then restart the SSH service to put the new configuration into effect. This ensures that SSH
connections on the modified port are allowed as per the updated SELinux policy. Here’s how
you can accomplish this:

Figure 12.12 – Updating SELinux rules and restarting sshd

Securing SSH 191

We can verify this by running the following command:

Figure 12.13 – Verifying the changes

• Disable password authentication:

Disabling password-based authentication in favor of public key authentication enhances security
by eliminating the risk of password-guessing attacks.

Edit the SSH configuration file, /etc/ssh/sshd_config, located in the corner of the
shell, as shown in the following screenshot:

Figure 12.14 – Disabling password authentication

Find the line with PasswordAuthentication yes and change it to Password
Authentication no. Save the file and restart SSH:

Figure 12.15 – Restarting sshd

Exploring Linux Security192

Ultimately, securing SSH is not only a matter of technological implementation but a fundamental
component of comprehensive cybersecurity strategies, contributing to the resilience and trustworthiness
of IT systems.

Summary
This chapter provided Linux administrators with a deep understanding of SELinux modes and how
they influence system security. We explored the concepts of enforcing and permissive modes and their
significance in the context of Linux administration. Administrators need to learn to leverage these
modes to strike a balance between security and system functionality, ensuring that SELinux policies
are effectively enforced. This chapter also covered the crucial topic of enabling or disabling SELinux
Boolean values. We delved into the reasons, importance, and practical use of SELinux Boolean values,
demonstrating how they allow administrators to fine-tune security policies to meet specific system
requirements. By enabling or disabling Boolean values, administrators gain flexibility in tailoring SELinux
policies to their system’s needs while maintaining a high level of security. Another essential aspect of
system security that we explored in this chapter was locking user accounts in SELinux security. Here,
you discovered the reasons for locking user accounts, the importance of doing so, and the methods
to achieve it within the SELinux framework. This knowledge should have equipped you to effectively
manage user access and enhance the overall security posture of your system.

Finally, we delved into securing SSH, a critical component of remote system administration.
Administrators learn best practices for securing SSH, including changing the default SSH port,
disabling password authentication in favor of public key authentication, and limiting SSH access to
specific users or groups. By implementing these security measures, administrators bolster the security
of remote access to their Linux systems.

In the next chapter, we’ll explore the world of cloud computing and how Linux plays a pivotal role in
it. This chapter will take you on a journey through running Linux machines on the cloud, creating
Linux instances, and various administrative tasks within a cloud-based Linux environment. By the
end, you will have the knowledge and skills to thrive in the cloud computing era.

13
Linux in the Cloud

The advent of cloud computing has revolutionized the world of IT infrastructure, and Linux has
been at the forefront of this transformative journey. Linux’s integration into the cloud ecosystem has
not only reshaped the way businesses and organizations manage their computing resources but has
also empowered system administrators with a dynamic and scalable environment. This introduction
delves into the pivotal role of Linux in the cloud and how it has redefined the landscape of system
administration. Linux, renowned for its open source nature and versatility, has seamlessly adapted to
the cloud environment. In doing so, it has provided a stable and flexible foundation for cloud-based
solutions. One of the key reasons for Linux’s prominence in the cloud is its ability to offer various
distributions tailored to specific cloud service providers, such as Amazon Web Services (AWS),
Microsoft Azure, and Google Cloud Platform. For system administrators, this means they can harness
the power of Linux in a way that aligns perfectly with the chosen cloud infrastructure, streamlining
resource management and deployment.

One of the major roles Linux plays in the cloud is enabling system administrators to create and manage
virtual instances effortlessly. Linux distributions such as CentOS offer robust and secure platforms
for administrators to deploy a wide array of cloud services, from web hosting to data analytics. While
CentOS is known for its stability, compatibility, and strong community support, it’s important to note
that Ubuntu and various other Linux-based servers are widely utilized in the cloud as well. When
conducting an internet search, you’ll find diverse opinions on these platforms’ suitability for your
specific needs. This not only simplifies the process of launching virtual machines but also allows
administrators to scale resources up or down as needed, providing a responsive and cost-effective
solution for businesses.

Linux also offers a wide range of features and tools that are essential for system administration in the
cloud, such as the following:

• Resource virtualization: Linux allows system administrators to create and manage virtual
machines (VMs), which are isolated computing environments that can run multiple operating
systems and applications on a single physical server. This enables efficient utilization of resources
and facilitates dynamic scaling of cloud-based services.

Linux in the Cloud194

• Containerization: Linux is also a popular platform for containerization, which is a lightweight
virtualization technology that allows applications to be packaged and deployed in isolated
environments called containers. Containers are highly portable and scalable, making them
ideal for running cloud-native applications.

• Security: Linux is known for its security features, such as Security-Enhanced Linux (SELinux),
which provides granular control over system access and permissions. This makes Linux a secure
platform for running cloud-based workloads, even in multi-tenant environments.

• Automation: Linux offers a wide range of tools and frameworks for automating system
administration tasks, such as configuration management, deployment, and monitoring. This
enables system administrators to manage large and complex cloud environments efficiently
and effectively.

Additionally, Linux distributions such as CentOS prioritize security and stability in the cloud environment.
System administrators rely on Linux’s rigorous security protocols and prompt updates to protect
cloud-based assets from threats. The open source nature of Linux further empowers administrators
to tailor security configurations to meet specific organizational requirements, ensuring the safety of
data and applications hosted in the cloud.

In this chapter, we will delve into the following main topics within the scope of AWS services:

• Creating EC2 instances on AWS

• Connecting to a created EC2 instance using PuTTY

• Working on our EC2 instance

Creating EC2 instances on AWS
Creating Elastic Compute Cloud (EC2) instances on AWS represents a foundational step in building
and deploying scalable and flexible computing resources in the cloud. An EC2 instance can be thought
of as a virtual server in the AWS cloud, and understanding how to create one is crucial for harnessing
the full power of AWS. The importance of this skill lies in the unparalleled agility and cost-efficiency
it offers to businesses and organizations. By creating EC2 instances, users can provision computing
capacity on-demand, scale resources vertically or horizontally to meet changing workloads, and achieve
operational efficiencies by paying only for what they consume. The primary reason for creating EC2
instances is the flexibility and versatility they bring to the cloud computing landscape. EC2 instances
can be customized to meet specific application requirements, whether it’s running a web server,
hosting a database, performing data analytics, or running machine learning workloads. The ability
to choose from a wide range of instance types, each optimized for different use cases, allows users to
tailor their virtual servers to the exact needs of their applications. Additionally, users can select the
operating system, configure network settings, and choose storage options, providing an unparalleled
level of control over their cloud infrastructure.

Creating EC2 instances on AWS 195

The use of creating EC2 instances extends beyond mere resource allocation; it encompasses high
availability, fault tolerance, and scalability. EC2 instances can be integrated with AWS services such
as Elastic Load Balancing (ELB), Auto Scaling, and Amazon RDS to build resilient and scalable
applications. The flexibility to start, stop, and terminate instances at will ensures optimal resource
utilization and cost management. Moreover, EC2 instances are the foundation of many cloud-based
solutions, including web hosting, data processing, and content delivery, making them a fundamental
component of AWS’s vast ecosystem. In summary, mastering the creation of EC2 instances is pivotal
for anyone seeking to leverage AWS’s cloud capabilities fully. It empowers users with the ability to
design and deploy robust, scalable, and cost-effective cloud solutions that meet the unique demands
of modern businesses and organizations.

Before creating an instance, visit the AWS website (https://aws.amazon.com/) to create
your account. Please note that initial account activation may take up to 24 hours, so it’s essential to
plan accordingly. In the context of AWS Free Tier, it’s important to understand that it offers users the
opportunity to explore AWS services at no cost with specific usage limitations. You can find further
information in the FAQ section as shown in the following screenshot:

Figure 13.1 – AWS Free Tier information

https://aws.amazon.com/

Linux in the Cloud196

Next, we can proceed to log into our AWS account and initiate the creation of EC2 instances on the
AWS platform:

1. We can locate EC2 on our dashboard, as illustrated in the screenshot provided:

Figure 13.2 – Searching for EC2 virtual servers

This action will take us to the EC2 Dashboard. In the Resources section, we currently have zero
instances running, zero dedicated hosts, and zero instances, as depicted in the next screenshot:

Figure 13.3 – The EC2 Dashboard and Resources panel

2. The AWS console offers a user-friendly interface for handling your EC2 instances. Clicking
the Instances button grants access to a page displaying your active EC2 instances. From
here, you can perform various actions such as halting or terminating running instances and
establishing connections to them. On the other hand, the Launch Instances button directs

Creating EC2 instances on AWS 197

you to a dedicated page for creating new EC2 instances. Here, you can choose from a variety of
instance types and customize the instance with your preferred operating system, applications,
and other necessary settings:

Figure 13.4 – Viewing active EC2 instances

3. First, we give our instance a name. Then, we click the Browse more AMIs link:

Figure 13.5 – Selecting an AMI (1)

Linux in the Cloud198

4. Next, we will navigate to the Amazon Machine Images (AMIs) section. For this walkthrough,
we will search for CentOS 8 in the Marketplace area and choose the one shown in the
following screenshot:

Figure 13.6 – Selecting an AMI (2)

The AMIs within AWS serve as ready-made templates or virtual machine images. They
encompass the essential components, such as the operating system, application server, and other
necessary software, required for launching a virtual instance. These AMIs simplify and expedite
the process of creating virtual machines by eliminating the need for manual installation and
setup. Furthermore, AMIs are versatile, available in diverse configurations, and compatible with
various operating systems, making them a cornerstone for rapidly deploying virtual instances
in the AWS cloud. For more in-depth information about AMIs, visit https://docs.aws.
amazon.com/AWSEC2/latest/UserGuide/AMIs.html?tag=buylocal0e8-20.

5. Next, we are presented with a pop-up showing the CentOS 8 information and a Continue
button. Click it:

Figure 13.7 – Selecting an AMI (3)

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html?tag=buylocal0e8-20
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html?tag=buylocal0e8-20

Creating EC2 instances on AWS 199

6. Next is Key pair (login).

A key pair consists of two cryptographic keys: a public key and a private key. The public key is
employed to encrypt data, while the private key is employed to decrypt data. When a key pair
is utilized to log in to an instance, the instance employs the public key to encrypt your login
credentials. Subsequently, you utilize the private key to decrypt the login credentials.

Additional information about the key pair login screen includes the following:

 � The Select a key pair drop-down menu displays a list of all key pairs linked to your account

 � The Create a new key pair button enables you to generate a new key pair

 � The Download your key pair button permits you to download the private key associated
with the selected key pair

Note
It is important to keep your private key secret. If someone else gains access to your private key,
they will be able to log in to your instances and access your data.

Figure 13.8 – The Key pair (login) window

7. Let’s create a new key pair. You will have to click on the Create new key pair link.

The Create key pair page includes the following fields:

 � Key pair name: This field is for specifying the name of the key pair. Key pair names can be
up to 255 ASCII characters in length and should not contain leading or trailing spaces. For
this example, we’ll be using the name connect.

 � Key pair type: This field allows you to choose the type of key pair you want to create. You
have two options: RSA or ED25519. RSA is the more common key pair type and is supported
by all AWS services. ED25519 is a newer and more secure key pair type compared to RSA,
but we’ll make use of the RSA.

Linux in the Cloud200

 � Private key file format: In this field, you can select the format in which you want to save
the private key. You have two choices: .pem or .ppk. .pem is the standard format for private
keys and is supported by all SSH clients. .ppk is a format specific to the PuTTY SSH client.
We’ll select the .ppk option and then click the Create key pair button:

Figure 13.9 – Create key pair

After clicking on the Create key pair button, the key will be automatically downloaded in the
Downloads folder:

Creating EC2 instances on AWS 201

Figure 13.10 – The downloaded .ppk key

Next, we will do the network settings. The Security Groups page provides a comprehensive
view of all security groups associated with your AWS account. Each security group entry on
this page includes information such as the security group name, description, and its virtual
private cloud (VPC) association. On the Security Groups page, you have the flexibility to
perform various actions, including creating new security groups, modifying existing ones, and
deleting those no longer needed.

Let’s delve into what a VPC is.

A VPC is a fundamental component of AWS and similar cloud computing platforms. It is a
virtual network environment that allows users to create and manage a logically isolated section
of the AWS cloud infrastructure. VPCs provide an additional layer of security and control over
the cloud resources, allowing users to design their own network architecture, define IP address
ranges, create subnets, and configure routing tables.

Within a VPC, users can launch and manage a wide range of cloud-based resources, including
virtual machines (EC2 instances), databases, load balancers, and more. By segmenting the
cloud environment into VPCs, organizations can establish isolated networks that mimic
traditional data center infrastructures with the added flexibility and scalability of the cloud.
This isolation enables users to implement fine-grained security policies, ensuring that only
authorized traffic can access resources within the VPC. VPCs also support the creation of
VPNs and direct connections to on-premises data centers, facilitating secure hybrid cloud
deployments. In summary, VPCs are a cornerstone of cloud networking, offering a flexible
and controlled environment for deploying and managing cloud resources while enhancing
security and network segmentation.

8. To initiate the creation of a new security group, click the Edit button on the Network settings page:

Figure 13.11 – Editing security groups (1)

9. On the next page, click the Create Security Group button to create a new security group.

Linux in the Cloud202

To edit an existing security group, click on the respective security group name:

Figure 13.12 – Editing security groups (2)

10. If you wish to remove a security group, click on the security group name and follow it up by
clicking the Delete Security Group button.

Here are some valuable tips for effectively utilizing security groups:

 � Keep restrictive rules: Maintain your security groups with the principle of least privilege
in mind. Only permit the traffic that is essential for the functionality of your EC2 instances.

 � Isolate traffic: Create distinct security groups for different types of traffic. For instance, separating
security groups for web servers and database servers can enhance your network security.

 � Review regularly: Periodically assess your security groups to ensure they align with your
evolving needs and security requirements.

Creating EC2 instances on AWS 203

11. Lastly, we take a look at the rules. They permit SSH traffic from any source on the internet to
connect to port 22 on the specified security group:

Figure 13.13 – Inbound Security Group Rules

Let’s break down the various components of this rule:

 � Type: This indicates the type of traffic allowed by the rule. In this instance, it’s ssh.

 � Protocol: This is the protocol to which the rule applies. In this case, it’s TCP.

 � Port range: This is the range of ports covered by the rule. Here, it’s port 22.

 � Source type: This specifies the source of the allowed traffic. In this case, it’s 0.0.0.0/0,
signifying that traffic from anywhere on the internet is permitted.

 � Description: This is a brief description of the rule, which, in this case, is SSH access.

12. Next, we will configure the storage.

The root volume type pertains to the storage used for an instance’s root device, which houses
the operating system and essential files.

There are two primary root volume types:

 � Elastic Block Store (EBS): EBS volumes are block storage devices attached to EC2 instances.
They offer persistence, ensuring data remains intact even if the instance is terminated.

Linux in the Cloud204

For the purposes of this book, we’ll be increasing the size to 30 GB:

Figure 13.14 – Configuring the storage

 � Instance Store: These volumes provide temporary storage for EC2 instances but lack
persistence. Data on instance store volumes is not retained when the instance is terminated.

Selection of the root volume type for an EC2 instance is made during the instance’s launch.
While it is possible to change the root volume type post-launch, doing so necessitates stopping
the instance.

The majority of EC2 instances opt for EBS volumes as their root storage due to the
following advantages:

 � Persistence: EBS volumes retain data even after instance termination, making them ideal
for storing crucial data such as operating system files and application data.

 � Scalability: EBS volumes can be adjusted in size, accommodating applications with varying
storage requirements.

 � Performance: EBS volumes offer multiple performance options, such as General Purpose
(SSD), Provisioned IOPS (SSD), and Magnetic, enabling users to select the appropriate
performance level for their applications.

13. After making these selections, we move to the summary area to launch our instance. The
summary includes the following information (see also Figure 10.15):

 � Number of instances: 1

 � Software Image (AMI): CentOS-7-2111-20220825_1.x86_64 ami-002070d43b0a4f171

 � Virtual server type (instance type): t2.micro

 � Firewall (security group): INS-Security-Group

 � Storage (volumes): 1 volume(s) - 30 GB

Creating EC2 instances on AWS 205

The summary also shows that the instance is eligible for the AWS Free Tier. This means that
you can use the instance for free for up to 750 hours per month in your first year.

Figure 13.15 – Summary

14. Click on Launch instance. When you see that the launching instance progress was successful,
click EC2 beside Instances:

Linux in the Cloud206

Figure 13.16 – The successful launch of an instance

15. After clicking EC2 in the preceding step, we’ll be redirected to the EC2 Dashboard page. The
following screenshot displays an AWS EC2 instance with a Running status and a 2/2 checks
passed status check:

Figure 13.17 – 2/2 checks passed

This indicates that the instance is currently operational and that both of the status checks
conducted by AWS EC2 have been successfully completed.

AWS EC2 conducts two types of status checks for each running instance:

• System status checks, which monitor the AWS systems supporting the instance

• Instance status checks, which identify issues within the EC2 instance itself

If one of these status checks fails, the overall status of the instance is marked as Impaired. In such
cases, the instance may not function as expected.

The Impaired status indicates that there might be issues with the instance’s health, but it doesn’t
automatically mean that the instance is irreparably damaged.

Connecting to a created EC2 instance using PuTTY 207

Depending on the nature of the issue, you may be able to troubleshoot and resolve it without recreating
the entire AMI. The specific steps to take to resolve the issue would depend on the nature of the failure.
Here are examples of types of issues:

• System status check fails: If this check fails, it often indicates problems with the underlying
infrastructure. AWS may automatically attempt to recover the instance. In some cases, you might
need to stop and start the instance or you may need to contact AWS support for assistance.

• Instance status check fails: When this check fails, it generally points to issues within the instance
itself, such as software or configuration problems. You can usually access the instance, identify
the problem, and apply fixes without creating a new AMI.

In the context of the previous screenshot, a 2/2 checks passed status confirms that both system and
instance checks have been successfully cleared, signifying that the instance is in a healthy and fully
operational state.

Connecting to a created EC2 instance using PuTTY
Establishing a connection to an EC2 instance within AWS is a fundamental step in harnessing the
capabilities of cloud computing. It involves creating a remote link to a virtual server hosted in the
AWS cloud infrastructure. This connection allows users to access, manage, and configure the virtual
server, taking advantage of the adaptability, scalability, and cost-efficiency provided by AWS.

The primary motivation for connecting to an EC2 instance is to gain secure and efficient remote
access to a cloud-based server environment. This connectivity is invaluable for system administrators,
developers, and DevOps practitioners, empowering them to perform critical tasks relating to server
setup, software installation, real-time monitoring, troubleshooting, and routine maintenance. It enables
the seamless administration of server resources and file transfers and the timely implementation
of system updates, all without any physical presence at the server’s location. Connecting to an EC2
instance is crucial for deploying and managing web applications, databases, and other cloud-native
services. It streamlines collaborative efforts and ensures that cloud resources are accessible from any
location, making it an essential component of modern cloud infrastructure management.

The purpose of connecting to an EC2 instance is multifaceted. System administrators use remote
access to oversee server configurations, apply security patches, and monitor performance metrics.
Developers leverage these connections for deploying and testing applications, debugging procedures,
and managing development environments in the cloud. DevOps teams rely on remote connections to
streamline server provisioning, configure extensive server fleets, and efficiently orchestrate complex
continuous integration/continuous deployment (CI/CD) pipelines. Organizations embracing
Infrastructure as Code (IaC) principles depend on remote access for programmatically managing
their cloud infrastructure systematically and efficiently.

Linux in the Cloud208

Before we can connect to our created instance, please visit https://www.chiark.greenend.
org.uk/~sgtatham/putty/latest.html to download PuTTY. Depending on your system’s
architecture, you can choose either the 64-bit or 32-bit version:

Figure 13.18 – PuTTY 64-bit version or 32-bit version

After installing PuTTY, we can proceed to check our created Linux instance. We will examine the
instance summary, which includes the public IPv4 address, as well as details related to security,
networking, storage, status checks, monitoring, tags, and private IPv4 addresses:

Figure 13.19 – View of the instance summary

https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html
https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html

Connecting to a created EC2 instance using PuTTY 209

We can try quickly connecting to our instance using PuTTY:

Figure 13.20 – PuTTY Configuration

Enter the public IP address from your instance summary into the Host Name (or IP address) field
shown in the screenshot. Keep the port at the default setting of 22 and click Open. Subsequently,
you’ll receive a PuTTY output. The information in the screenshot shows that our user is attempting
to log into the EC2 instance as the root user using a public key. This is because, by default, root login
is disabled on EC2 instances:

Figure 13.21 – PuTTY output

Linux in the Cloud210

The user is prompted to log in as the user centos instead, but first, let’s check how to load our .pkk
key on PuTTY. Locate the key:

Figure 13.22 – Adding the .pkk key to PuTTY

Connecting to a created EC2 instance using PuTTY 211

We can call it any name. Have a look at the following example:

Figure 13.23 – Saved session settings

The arrows in the image are pointing to the default settings for a PuTTY session. They are located in
the following places:

• Host Name (or IP address): This is the address of the server that you want to connect to. In
the image, the default setting is centos@35.172.201.164.

• Saved Sessions: This button allows you to save the current PuTTY session settings to a file.
This can be useful if you connect to the same server on a regular basis, as you can simply load
the saved session settings instead of having to enter them each time like with Linux-AWS in
the image.

• Load: This button allows you to load a saved PuTTY session. To do this, simply select the
session file that you want to load and click the Load button.

Linux in the Cloud212

• Open: This button allows you to open a PuTTY session using the current settings, and this
will lead us into authenticating with our .pkk key:

Figure 13.24 – Authenticating with the public key

After successfully establishing a connection, you’ll gain access to a terminal window, allowing you to
efficiently manage the instance.

In the process of verifying available free space on the system, we employ the df command to display
information about the file systems. This command provides insights into disk usage and available space.
Additionally, we execute the whoami && hostname && uname -a command sequence. The
whoami command retrieves the current user’s username, hostname displays the system’s hostname,
and uname -a provides you with comprehensive system information, including the kernel version
and architecture.

In summary, connecting to an EC2 instance is a pivotal step that unlocks the full potential of cloud
computing, facilitating server administration, cloud-native application development, and infrastructure
automation, all seamlessly integrated within the AWS cloud environment.

Working on our EC2 instance
In this section, we are going to make use of some commands similar to those used in CentOS and
apply them to perform some short tasks. So, let’s begin:

• Updating and upgrading:

You’ve just launched your CentOS 8 Linux instance on AWS. To ensure it’s up to date, use the
following commands:

Working on our EC2 instance 213

Figure 13.25 – Updating and upgrading

Here’s the transaction summary:

Figure 13.26 – Transaction summary

The summary indicates that one package is in the process of being installed, 42 packages
are undergoing updates, and the cumulative download size amounts to 110 MB. The user is
prompted to decide whether to continue with the installation process.

When it comes to updating software packages, package managers serve as essential tools for
users to effortlessly manage software installation, updates, and removal on their systems. These
utilities offer the flexibility to install software from diverse sources, encompassing official
repositories, third-party repositories, and local files, providing users with versatile options for
software management.

• Package installation:

The following shows the installation of an Apache web server on a CentOS 8 instance:

Figure 13.27 – Installing a package

Linux in the Cloud214

• Service management:

The following is how to start the Apache service and enable it to start on boot:

Figure 13.28 – Starting Apache on boot

Here’s a breakdown of the command:

 � sudo systemctl status httpd: This command checks the status of the Apache
HTTP Server (httpd). It displays information about the service, such as its description,
whether it’s loaded or active, and its related documentation. In this case, it shows that the
service is loaded but inactive (dead).

 � sudo systemctl start httpd: This command starts the Apache HTTP Server. It
initiates the service, making it active and running.

 � sudo systemctl enable httpd: This command enables the automatic start of the
Apache HTTP Server at boot. It creates a symbolic link from the multi-user target to the
httpd service, ensuring that the service starts when the system boots up.

 � sudo systemctl status httpd: After starting and enabling the service, this command
checks the status of the Apache HTTP Server again. Now, it shows that the service is loaded,
enabled, and active (running). It provides additional details about the service, including its
main process ID (PID) and current status.

Working on our EC2 instance 215

• Logging and monitoring:

journalctl is used to access and view the systemd journal on a Linux system. The
systemd journal is a system log that contains various log entries and messages generated by
the system and its components. The output of journalctl displays a chronological list of
log entries, providing information about the system’s activities and events.

In the provided output, we can observe the following details:

 � The command shows logs that can begin at a specific timestamp (e.g., Mon 2023-10-16
21:22:47 UTC) and end at another timestamp (e.g., Mon 2023-10-16 23:15:01
UTC) with the understanding that the timestamps may vary.

 � The logs display various system events, including messages from systemd components
and kernel-related activities.

 � These events may include system initialization, SELinux policy loading, hardware and kernel
configuration, virtualization detection, hostname configuration, and more.

 � The log entries also include details about systemd processes and their status, such as
whether they started successfully or encountered issues.

 � The journalctl command provides a comprehensive view of system activities, aiding
in system administration, debugging, and troubleshooting.

Figure 13.29 – Tracking system activities

Linux in the Cloud216

journalctl is a valuable tool that helps system administrators monitor system health and
diagnose issues. The provided output represents a portion of the system log with events and
timestamps, allowing users to track system activities and diagnose problems effectively.

• Directory management:

The sudo find / -size +100M command is used to search the entire filesystem (/) for
files that are larger than 100 megabytes (+100 MB). It begins at the root directory and searches
through all directories and subdirectories. The output displays the paths of any files found that
meet the size criteria:

Figure 13.30 – Finding files (1)

The provided output shows that it has located several files that are larger than 100 megabytes,
including the following:

 � /proc/kcore: This file represents the core memory of the kernel, which is a virtual file
and not an actual file on disk

 � /var/cache/yum/x86_64/7/updates/gen/primary_db.sqlite: This file is
a database used by the YUM package manager to store information about available packages
and updates

 � /usr/lib/locale/locale-archive: This file contains system locale information
used for internationalization and localization

The error messages following the file paths indicate that the find command couldn’t access
certain directories within the /proc directory, which is expected because /proc is a virtual
filesystem that doesn’t contain actual files on disk. The errors can be safely ignored in this context.

The sudo find / -user root -o -group root | less command is used to
search the entire filesystem (/) for files and directories that either belong to the root user or
the root group:

Working on our EC2 instance 217

Figure 13.31 – Finding files (2)

The | less part of the command pipes the output to the less command, which allows for
easier navigation and viewing of the results one screen at a time.

The provided output shows that it has located various files and directories within the /dev
directory that either have the owner set to root or belong to the root group. These include
the following:

 � /dev/vhci: This is a virtual host controller interface

 � /dev/vfio: This is a virtual function I/O interface

 � /dev/vfio/vfio: This is a subdirectory under /dev/vfio

 � /dev/ppp: This is related to Point-to-Point Protocol (PPP) devices

 � /dev/uinput: This is a virtual input device

 � /dev/mqueue: These are message queue devices

 � /dev/hugepages: These are files related to huge pages in memory management

 � /dev/initctl: This is a First In, First Out (FIFO) special file used for communication
with the init process

The command is helpful for system administrators when identifying files and directories with specific
ownership or group membership, which can be useful for managing system security and access control.
The less command is used to make the output more readable and navigable, especially when dealing
with large sets of search results.

Linux in the Cloud218

Summary
In this chapter, you were guided through the comprehensive process of creating Amazon EC2 instances
on AWS. The chapter explores the key steps required to establish virtual servers in the cloud while
delving into the multitude of instance types and configurations available on AWS. With a focus on
practicality, you also gained valuable knowledge of configuring instance details, changing their storage,
and setting up security groups for both performance and security. This chapter equipped you with
the knowledge and skills to manage EC2 instances in a cloud environment. It provided a step-by-
step guide on establishing secure connections to AWS EC2 instances following successful creation.
This chapter also introduced PuTTY, a widely used SSH client, and elaborated on its effective use in
connecting to Linux-based EC2 instances. The journey begins with an overview of PuTTY and the
essential concept of SSH key pairs for secure authentication. Furthermore, you were provided with
detailed guidance on installing and configuring PuTTY, including setting up a session, configuring
credential locations, and loading the session. Finally, in the Working on our EC2 Instance section,
we explored hands-on administrative tasks users can perform on AWS EC2 instances. The chapter
underscored the importance of updating and upgrading EC2 instances to ensure that they run optimally
and have the latest software packages installed. It offered step-by-step guidance on leveraging package
managers for effective software installation, updates, and upgrades. You were also introduced to
service management, enabling you to start and manage services using systemd. The chapter then
introduced you to journalctl, a powerful tool for accessing system logs to monitor activities,
troubleshoot issues, and gather essential system health information. It concluded with insights into
directory management using the find command, rounding out your comprehensive understanding
of EC2 instance administration in a dynamic cloud environment.

Index

Symbols
7-Zip 61, 62

A
absolute paths

utilizing, in commands 96-98
Amazon Elastic Block Store (EBS) 68
Amazon Machine Images (AMIs) 198
Amazon Web Services (AWS)

EC2 instances, creating on 19-207
ASCII encoding 130
Automatic Bug Reporting Tool (ABRT) 185
awk command 114

examples 116
using 115
working 116

B
bunzip2 command 51, 58-60

examples 61
BusLogic controller 13
bzip2 command 51, 58

examples 59, 60

C
cat command 114
CentOS server

system requirements 5
CentOS-Stream-8-x86_64-

20220104-boot.iso file 4
CentOS-Stream-8-x86_64-

20220104-dvd1.iso file 4
chage command 46, 47
change group (chgrp)

command 42, 43, 98, 99
change mode (chmode) command 90-93
change owner (chown) command 42, 94-96
chmod command 42, 90
chown (change owner)

others 90
client for URLs (curl) 174

used, for downloading files 173-175
command-line interface (CLI) 67
Community Enterprise Operating

System (CentOS) 4
URL 4

continuous integration/continuous
deployment (CI/CD) pipelines 207

convert command 124
examples 125-127

Index220

D
dd command 83

example 83, 84
denial-of-service (DoS) attack 162
df (Disk Free) utility 74, 75
directory disk space usage

checking, with du command 75
disk formatting

history 68
distributed denial-of-service

(DDoS) attack 162
domain name system (DNS) 166
dos2unix command 127

examples 127, 128
used, for converting MS-DOS

files to Unix 127
working 128

dpkg tool 76, 77
du utility 75

used, for checking directory
disk space usage 75

used, for finding large files in directory 76

E
EC2 instance, with PuTTY

connecting, to create 207-212
Elastic Block Store (EBS) volumes 203

advantages 204
Elastic Compute Cloud (EC2) instances

creating, on AWS 194-207
working on 212-217

Elastic Load Balancing (ELB) 195
enforcing mode

role 183
utilizing 182

F
fdformat command 79
fdisk command-line utility 73
file command 122

examples 122-124
used, for analyzing binary file 124
used, for determining file format or type 123

file compression and archival commands 51
bunzip2 51, 58-61
bzip2 51, 58-60
gunzip 51, 52
gzip 51, 52-54
rar 51, 55-57
tar 51, 55
unrar 51, 55
unzip 51, 57, 58
zip 51, 57

file content and conversion
commands 121, 122

convert command 124-127
dos2unix command 127-129
file command 122-124
recode command 131, 132
tail command 122-124
unix2dos command 129, 130

file manipulation commands
awk command 114-116
cat command 114
examples 116, 117
grep command 114
sed command 114, 115

file permissions
group 41
others 41
user 41

Index 221

files
copying, into remote systems with

netcat and socat 170-173
downloading, with wget and curl 173-175

File Transfer Protocol (FTP) 170
find command 49
First In, First Out (FIFO) 217
free command 136

using, to check memory usage 137
using, to check memory usage in

continuous mode 137
fuser command 111

scenario-based examples 112
working 112, 113

G
gdisk command 80

example 81
grep command 114
groupadd command 43
groupdel command 44
group ID (GID) 34
groupmod command 43
grpck command 44
GUID Partition Table (GPT) 68
gunzip command 51, 52
gzip command 51-53

examples 53, 54

H
host command 167
hostname command 165, 166
hostnamectl command 31
hypervisor 7

downloading 8, 9
setting up 8-27

I
information commands 30

hostnamectl command 31
lsb_release command 31
uname command 30

Infrastructure as Code (IaC) 207
Instance Store 204
Integrated Drive Electronics (IDE) 14
interface configuration (ifconfig) 163
inter-process communication (IPC) 156
ip command 163-165
iptables

-t ACCEPT 160, 161
-t DROP 162

J
Just-In-Time (JIT) 185

K
kill command 156, 157

L
large files

finding in directory, with du command 76
last command 153
last reboot command 153
Latin-1 131
Lempel-Ziv-Markov-chain algorithm

(LZMA) algorithm 62
Linux

features and tools, for system
administration 193, 194

Linux hardening 183
Linux IPTABLES and network

commands 159, 160

Index222

Linux monitoring and debugging
commands 139, 140

Linux mount commands 106
Linux Standard Base (LSB) version 31
Linux SWAP commands 133
list open files (lsof) 150
locate command 50
log files

exploring 175-177
lsblk command-line utility 74
lsb_release command 31
LSI Logic controller 14
LSI Logic SAS controller 14
lsmod command 151, 152
lsof command 150, 151

M
mail exchange (MX) records 167
Mandatory Access Control (MAC) 182
Master Boot Record (MBR)

partitioning scheme 80
mean time between failures (MTBF) 153
mean time to repair (MTTR) 153
mke2fs command 79
mkfs command 78
mkswap command 80

example 80
mount command 106

scenarios 107
working 108, 109

N
netcat

used, for copying files into
remote systems 170-173

netfilter firewall rules 162

netstat command 163-165
network address translation (NAT) 13, 159
Network Security Services (NSS) 186
nslookup command 166

O
of /etc/shadow file consistency

checking 46
offline installation 4
open non-volatile memory

express (ONVMe) 15
OS installation file

downloading 4-7
out-of-memory (OOM) errors 134
ownership changes

using, in Linux permissions 94-96

P
package installation commands 28

reboot command 30
yum update command 29
yum upgrade command 29

Paravirtualized SCSI controller 14
parted command 82

example 82
partitioning 69

extended partition 69
history 68
importance 69
logical partition 68
primary partition 68

partitions
creating 69-73

passwd command 48, 49
permission check, Linux

group ownership (group) 90

Index 223

others 90
user ownership (owner) 90

permission commands 88
permissions

types 89
permissive mode

role 183, 184
utilizing 182

pkill command 157, 158
pluggable authentication module (PAM) 48
Point-to-Point Protocol (PPP) 217
process IDs (PIDs) 111, 143, 215
process status 143
ps command 143, 144

processes owned by specific
user, viewing 144

running processes, viewing 144
pstree command 145, 146

PID, viewing 146
process tree, viewing 145

pwck command 45

R
rar command 51, 55-57
read, write, and execute (RWX) 42
reboot command 30
recode command 131, 132

examples 131
recursive 42
Red Hat Enterprise Linux (RHEL) 4
remote sync (RSYNC) 56
route command 163-165
rpm tool 77

package details, querying with 77
package, installing with 77

S
Secure Copy Protocol (SCP) 170
secure copy (SCP) 55
Secure Shell (SSH) 189

securing 189-192
Security-Enhanced Linux

(SELinux) 182, 194
security groups

utilizing, tips 202
sed command 114

using 115
working 115

Self-Monitoring, Analysis, and Reporting
Technology (S.M.A.R.T.) 148

SELinux Boolean value
disabling 184-188
enabling 184-187
information, obtaining 187
searching 186

SELinux’s enforcing mode
role 183

SELinux’s passive mode
role 183

Serial ATA (SATA) 14
Serial Attached SCSI (SAS) disks 14
Small Computer Systems Interface (SCSI) 14
smartctl command 148, 149
socat

used, for copying files into
remote systems 170-173

solid-state drives (SSDs) 67, 148
standard output (stdout) 60
strace command 146, 147

system calls, filtering 147
superuser do (sudo) command 101-103

Index224

swapon command 134-136
examples 134-136

System Security Services
Daemon (SSSD) 177

T
tail command 122

examples 122-124
used, for displaying last 20

lines of log file 123
used, for monitoring log file

in real time 122, 123
tape archive 55
tar command 51, 55
time-to-live (TTL) values 167
top command 140-143

memory usage, monitoring 142
overall system statistics, viewing 141
processes, filtering by user 142
processes, sorting by CPU usage 141, 142

U
umount command 109, 110

scenarios 110, 111
uname command 30
unix2dos command 129, 130

example 129, 130
used, for converting Unix files

to MS-DOS 129
unrar command 51, 55
unzip command 51, 57, 58
uptime command 149

CPU usage, monitoring 150
user account

locking 188, 189
useradd command 34-36

userdel command 34-38
user file-creation mode mask

(unmask) command 99-101
user ID (UID) 34
usermod command 34, 38-41

V
virtual machine (VM) 155, 193
virtual private cloud (VPC) 201
vmstat command 154, 155
VMWare Workstation

downloading 8, 9
setting up 9-27

W
watch command 148
w command 154
wget

used, for downloading files 173-175
whereis command 50

X
xz command 62, 63

Y
Yellowdog Updater Modified command 102
Yellowdog Updater Modified (YUM) 28
yum update command 29
yum upgrade command 29

Z
zip command 51, 57

www.packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as
industry leading tools to help you plan your personal development and advance your career. For more
information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos from over

4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www.packtpub.com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us at customercare@
packtpub.com for more details.

At www.packtpub.com, you can also read a collection of free technical articles, sign up for a range
of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://www.packtpub.com
http://www.packtpub.com
mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Fedora Linux System Administration

Alex Callejas

ISBN: 978-1-80461-840-0

• Discover how to configure a Linux environment from scratch

• Review the basics of Linux resources and components

• Familiarize yourself with enhancements and updates made to common Linux desktop tools

• Optimize the resources of the Linux operating system

• Find out how to bolster security with the SELinux module

• Improve system administration using the tools provided by Fedora

• Get up and running with open container creation using Podman

https://packt.link/9781804618400

227Other Books You May Enjoy

Cloud Penetration Testing for Red Teamers

Kim Crawley

ISBN: 978-1-80324-848-6

• Familiarize yourself with the evolution of cloud networks

• Navigate and secure complex environments that use more than one cloud service

• Conduct vulnerability assessments to identify weak points in cloud configurations

• Secure your cloud infrastructure by learning about common cyber attack techniques

• Explore various strategies to successfully counter complex cloud attacks

• Delve into the most common AWS, Azure, and GCP services and their applications for businesses

• Understand the collaboration between red teamers, cloud administrators, and other stakeholders
for cloud pentesting

https://packt.link/9781803248486

228

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just like you, to
help them share their insight with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share your thoughts
Now you’ve finished Essential Linux Commands, we’d love to hear your thoughts! If you purchased
the book from Amazon, please click here to go straight to the Amazon review page for this book and
share your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

http://authors.packtpub.com
https://packt.link/r/1803239034

229

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781803239033

2. Submit your proof of purchase

3. That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781803239033

	Cover
	Title Page
	Copyright
	Dedication
	Contributors
	Table of Contents
	Preface
	Part 1:
Server Installations and Management Commands
	Chapter 1: Getting a CentOS Server Up and Running
	Downloading the OS installation file
	Downloading and setting up a hypervisor
	Package installation commands
	YUM package management system
	Common package installation commands

	Information commands
	Summary

	Chapter 2: Linux User and Group Commands
	useradd, userdel, and usermod
	useradd
	userdel
	usermod

	Files, directories, and permission commands
	chmod
	chown
	chgrp

	groupdel, groupmod, groupadd, and grpck
	pwck, chage, and passwd commands
	find, locate, and whereis commands
	Summary

	Chapter 3: File Compression and Archival Commands
	gunzip and gzip
	tar, rar, and unrar
	zip and unzip
	bunzip2, bzip2, and more
	Summary

	Part 2:
Frequently Used
Commands Part 1
	Chapter 4: Format and Disk Space Commands
	The history and evolution of disk formatting and partitioning in Linux
	Steps to create a partition
	fdisk, lsblk, df, and du
	Checking the disk space usage of a directory
	Finding large files in a directory

	Displaying (dpkg and rpm) package space
	Installing a package
	Querying the details of a package

	mkfs, mke2fs, fdformat, and more
	Summary

	Chapter 5: Linux Permissions Commands
	Why permission commands?
	Types of permissions
	chmod
	chown
	Utilizing absolute paths in commands
	chgrp
	umask
	sudo
	Summary

	Chapter 6: Filesystem Mount and Manipulation Commands
	Linux mount commands
	The mount command
	The umount command
	The fuser command
	File manipulation using cat, grep, and more
	Summary

	Part 3:
Frequently Used
Commands Part 2
	Chapter 7: File Content
and Conversion Commands
	The tail and file commands
	The convert command
	Using dos2unix to convert MS-DOS files to Unix
	Using unix2dos to convert Unix files to MS-DOS
	The recode command
	Summary

	Chapter 8: Linux SWAP Commands
	The swapon command
	The free command
	Summary

	Chapter 9: Linux Monitoring and Debugging Commands
	The top command
	The ps command
	The pstree command
	The strace command
	The watch command
	The smartctl command
	The uptime command
	The lsof command
	The lsmod command
	The last reboot command
	The last command
	The w command
	The vmstat command
	The kill command
	The pkill command
	Summary

	Chapter 10: Linux IPTABLES and Network Commands
	iptables -t ACCEPT
	iptables -t DROP
	ifconfig, ip, route, and netstat
	ip, route, and netstat

	Hostname and nslookup
	host
	Summary

	Chapter 11: File Transfer, Downloading, and Managing Log Files
	Copying files into remote systems using netcat and socat
	Downloading files with wget and curl
	Exploring common log files
	Summary

	Part 4:
Linux Security and the Cloud
	Chapter 12: Exploring Linux Security
	Utilizing enforcing and permissive modes
	A short introduction to Linux hardening and the role of SELinux’s enforcing and passive modes
	The role of enforcing mode
	The role of permissive mode

	Enabling or disabling SELinux Boolean values
	Searching for a Boolean and getting its information
	Enabling a SELinux Boolean value
	Disabling a SELinux Boolean value

	Locking user accounts
	Securing SSH
	Summary

	Chapter 13: Linux in the Cloud
	Creating EC2 instances on AWS
	Connecting to a created EC2 instance using PuTTY
	Working on our EC2 instance
	Summary

	Index
	About Packt
	Other Books You May Enjoy

