

Deep Learning

Deep Learning

A Practical Introduction

Manel Martínez-Ramón
Department of Electrical and Computer Engineering, The University of New Mexico,
Albuquerque, NM, USA

Meenu Ajith
Tri-Institutional Center for Translational Research in Neuroimaging and Data Science
(TReNDS), Georgia State University, Georgia Institute of Technology, and Emory
University, Atlanta, GA, USA

Aswathy Rajendra Kurup
Machine learning Engineer, Intel Corporation, Hillsboro, OR, USA

This edition first published 2024.
© 2024 John Wiley & Sons Ltd

All rights reserved, including rights for text and data mining and training of artificial intelligence
technologies or similar technologies. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title
is available at http://www.wiley.com/go/permissions.

The right of Manel Martínez-Ramón, Meenu Ajith, and Aswathy Rajendra Kurup to be identified as the
authors of this work has been asserted in accordance with law.

Registered Offices
John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA
John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

For details of our global editorial offices, customer services, and more information about Wiley products
visit us at www.wiley.com.

Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Some content that
appears in standard print versions of this book may not be available in other formats.

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc.
and/or its affiliates in the United States and other countries and may not be used without written
permission. All other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not
associated with any product or vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty
While the publisher and authors have used their best efforts in preparing this work, they make no
representations or warranties with respect to the accuracy or completeness of the contents of this work and
specifically disclaim all warranties, including without limitation any implied warranties of merchantability
or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written
sales materials or promotional statements for this work. This work is sold with the understanding that the
publisher is not engaged in rendering professional services. The advice and strategies contained herein may
not be suitable for your situation. You should consult with a specialist where appropriate. The fact that an
organization, website, or product is referred to in this work as a citation and/or potential source of further
information does not mean that the publisher and authors endorse the information or services the
organization, website, or product may provide or recommendations it may make. Further, readers should
be aware that websites listed in this work may have changed or disappeared between when this work was
written and when it is read. Neither the publisher nor authors shall be liable for any loss of profit or any
other commercial damages, including but not limited to special, incidental, consequential, or other
damages.

Library of Congress Cataloging-in-Publication Data applied for:
Hardback ISBN: 9781119861867

Cover Design: Wiley
Cover Image: © Yuichiro Chino/Getty Images

Set in 9.5/12.5pt STIXTwoText by Straive, Chennai, India

http://www.wiley.com/go/permissions
http://www.wiley.com

To our families, who have been unwavering in their support and understanding throughout
the long nights and weekends spent on this journey. Your love and encouragement have
fueled our passion for the world of deep learning, and this book is dedicated to you with
profound gratitude.

To all the dreamers, may this book inspire you to chase your passions and never give up. Keep
reaching for the stars.

To our shared dreams, relentless passion, and enduring friendship – this book is a testament
to our collective journey.

vii

Contents

About the Authors xv
Foreword xvii
Preface xix
Acknowledgment xxi
About the Companion Website xxiii

1 The Multilayer Perceptron 1
1.1 Introduction 1
1.2 The Concept of Neuron 2
1.2.1 The Perceptron 4
1.2.2 The Perceptron (Training) Rule 6
1.2.3 The Minimum Mean Square Error Training Criterion 8
1.2.4 The Least Mean Squares Algorithm 13
1.3 Structure of a Neural Network 14
1.3.1 The Multilayer Perceptron 17
1.3.2 Multidimensional Array Multiplications 19
1.4 Activations 21
1.5 Training a Multilayer Perceptron 22
1.5.1 Maximum Likelihood Criterion 22
1.5.2 Activations and Likelihood Functions 24
1.5.2.1 Logistic Activation for Binary Classification 24
1.5.2.2 Softmax Activation for Multiclass Classification 26
1.5.2.3 Gaussian Activation in Regression 28
1.5.3 The Backpropagation Algorithm 29
1.5.3.1 Gradient with Respect to the Output Weights 29
1.5.3.2 Gradient with Respect to Hidden Layer Weights 31
1.5.4 Summary of the BP Algorithm 34
1.6 Conclusion 37

Problems 37

2 Training Practicalities 41
2.1 Introduction 41
2.2 Generalization and Overfitting 42

viii Contents

2.2.1 Basic Weight Initializations 43
2.2.2 Activation Aware Initializations 44
2.2.3 MiniBatch Gradient Descent 44
2.3 Regularization Techniques 45
2.3.1 L1 and L2 Regularization 46
2.3.2 Dropout 47
2.3.3 Early Stopping 48
2.3.4 Data Augmentation 48
2.4 Normalization Techniques 50
2.5 Optimizers 52
2.5.1 Momentum Optimization 53
2.5.2 Nesterov-Accelerated Gradient 54
2.5.3 AdaGrad 54
2.5.4 RMSProp 55
2.5.5 Adam 55
2.5.6 Adamax 56
2.6 Conclusion 58

Problems 59

3 Deep Learning Tools 61
3.1 Python: An Overview 61
3.1.1 Variables 62
3.1.2 Statements, Indentation, and Comments 65
3.1.3 Conditional Statements 66
3.1.4 Loops 67
3.1.5 Functions 69
3.1.6 Objects and Classes 69
3.2 NumPy 72
3.2.1 Installation and Importing NumPy Package 72
3.2.2 NumPy Array 72
3.2.3 Creating Different Types of Arrays 74
3.2.4 Manipulating Array Shape 75
3.2.5 Stacking and Splitting NumPy Arrays 76
3.2.6 Indexing and Slicing 78
3.2.7 Arithmetic Operations and Mathematical Functions 79
3.3 Matplotlib 83
3.3.1 Plotting 83
3.3.1.1 Functional Method 83
3.3.1.2 Object Oriented Method 84
3.3.2 Customized Plotting 85
3.3.3 Two-dimensional Plotting 86
3.3.3.1 Bar Plot 87
3.3.3.2 Histogram 88
3.3.3.3 Pie Plot 89
3.3.3.4 Scatter Plot 89

Contents ix

3.3.3.5 Quiver Plot 90
3.3.3.6 Contour Plot 91
3.3.3.7 Box Plot 91
3.3.3.8 Violin Plot 92
3.3.4 Three-dimensional Plotting 93
3.3.4.1 3D Contour 93
3.3.4.2 3D Surface 94
3.3.4.3 3D Wireframe 95
3.4 Scipy 97
3.4.1 Data Input–Output Using Scipy 97
3.4.2 Clustering Methods 98
3.4.3 Constants 99
3.4.4 Linear Algebra and Integration Routines 99
3.4.5 Optimization 101
3.4.6 Interpolation 102
3.4.7 Image Processing 105
3.4.8 Special Functions 106
3.5 Scikit-Learn 107
3.5.1 Scikit-Learn API 107
3.5.1.1 Estimator Interface 107
3.5.1.2 Predictor Interface 107
3.5.1.3 Transformer Interface 107
3.5.2 Loading Datasets 108
3.5.3 Data Preprocessing 109
3.5.4 Feature Selection 113
3.5.5 Supervised and Unsupervised Learning Models 114
3.5.6 Model Selection and Evaluation 115
3.6 Pandas 116
3.6.1 Pandas Data Structures 117
3.6.1.1 Series 117
3.6.1.2 Dataframe 117
3.6.2 Data Selection 118
3.6.3 Data Manipulation 118
3.6.3.1 Sorting 118
3.6.3.2 Grouping 119
3.6.4 Handling Missing Data 120
3.6.5 Input–Output Tools 121
3.6.6 Data Information Retrieval 122
3.6.7 Data Operations 122
3.6.8 Data Visualization 123
3.7 Seaborn 125
3.7.1 Seaborn Datasets 125
3.7.2 Plotting with Seaborn 126
3.7.2.1 Univariate Plots 126
3.7.2.2 Bivariate Plots 126

x Contents

3.7.2.3 Multivariate Plots 127
3.7.3 Additional Plotting Functions 129
3.7.3.1 Correlation Plots 129
3.7.3.2 Point Plots 130
3.7.3.3 Cat Plots 130
3.8 Python Libraries for NLP 131
3.8.1 Natural Language Toolkit (NLTK) 131
3.8.2 SpaCy 132
3.8.3 NLP Techniques 132
3.8.3.1 Tokenization 133
3.8.3.2 Stemming 135
3.8.3.3 Lemmatization 136
3.8.3.4 Stop Words 137
3.9 TensorFlow 138
3.9.1 Introduction 138
3.9.2 Elements of Tensorflow 139
3.9.3 TensorFlow Pipeline 139
3.10 Keras 141
3.10.1 Introduction 141
3.10.2 Elements of Keras 141
3.10.2.1 Models 142
3.10.2.2 Layers 142
3.10.2.3 Core Modules 142
3.10.3 Keras Workflow 142
3.11 Pytorch 144
3.11.1 Introduction 144
3.11.2 Elements of PyTorch 145
3.11.2.1 PyTorch Tensors 145
3.11.2.2 PyTorch Variables 146
3.11.2.3 Dynamic Computational Graphs 146
3.11.2.4 Modules 146
3.11.3 Workflow of Pytorch 147
3.12 Conclusion 149

Problems 150

4 Convolutional Neural Networks 153
4.1 Introduction 153
4.2 Elements of a Convolutional Neural Network 153
4.2.1 Overall Structure of a CNN 154
4.2.2 Convolutions 155
4.2.3 Convolutions in Two Dimensions 156
4.2.4 Padding 158
4.2.5 Stride 159
4.2.6 Pooling 160
4.3 Training a CNN 160

Contents xi

4.3.1 Formulation of the Convolution Layer in a CNN 160
4.3.2 Backpropagation of a Convolution Layer 162
4.3.3 Forward Step in a CNN 163
4.3.4 Backpropagation in the Dense Section of a CNN 164
4.3.5 Backpropagation of the Convolutional Section of a CNN 164
4.4 Extensions of the CNN 166
4.4.1 AlexNet 166
4.4.2 VGG 168
4.4.3 Inception 169
4.4.4 ResNet 170
4.4.5 Xception 171
4.4.6 MobileNet 172
4.4.6.1 Depthwise Separable Convolutions 173
4.4.6.2 Width Multiplier 174
4.4.6.3 Resolution Multiplier 174
4.4.7 DenseNet 174
4.4.8 EfficientNet 176
4.4.9 Transfer Learning for CNN Extensions 177
4.4.10 Comparisons Among CNN Extensions 181
4.5 Conclusion 184

Problems 184

5 Recurrent Neural Networks 187
5.1 Introduction 187
5.2 RNN Architecture 188
5.2.1 Structure of the Basic RNN 188
5.2.2 Input–Output Configurations 190
5.3 Training an RNN 191
5.3.1 Gradient with Respect to the Output Weights 194
5.3.2 Gradient with Respect to the Input Weights 195
5.3.3 Gradient with Respect to the Hidden State Weights 196
5.3.4 Summary of the Backpropagation Through Time in an RNN 196
5.4 Long-Term Dependencies: Vanishing and Exploding Gradients 199
5.5 Deep RNN 201
5.6 Bidirectional RNN 203
5.7 Long Short-Term Memory Networks 204
5.7.1 LSTM Gates 205
5.7.2 LSTM Internal State 205
5.7.3 Hidden State and Output of the LSTM 206
5.7.4 LSTM Backpropagation 208
5.7.5 Machine Translation with LSTM 210
5.7.6 Beam Search in Sequence to Sequence Translation 212
5.8 Gated Recurrent Units 218
5.9 Conclusion 221

Problems 222

xii Contents

6 Attention Networks and Transformers 225
6.1 Introduction 225
6.2 Attention Mechanisms 227
6.2.1 The Nadaraya–Watson Attention Mechanism 227
6.2.2 The Bahdanau Attention Mechanism 229
6.2.3 Attention Pooling 232
6.2.4 Representation by Self-Attention 233
6.2.5 Training the Self-Attention Parameters 234
6.2.6 Multi-head Attention 235
6.2.7 Positional Encoding 236
6.3 Transformers 242
6.4 BERT 249
6.4.1 BERT Architecture 250
6.4.2 BERT Pre-training 250
6.4.3 BERT Fine-Tuning 252
6.4.4 BERT for Different NLP Tasks 252
6.5 GPT-2 256
6.5.1 Language Modeling 257
6.6 Vision Transformers 262
6.6.1 Comparison between ViTs and CNNs 264
6.7 Conclusion 269

Problems 270

7 Deep Unsupervised Learning I 273
7.1 Introduction 273
7.2 Restricted Boltzmann Machines 274
7.2.1 Boltzmann Machines 274
7.2.2 Training a Boltzmann Machine 275
7.2.3 The Restricted Boltzmann Machine 276
7.3 Deep Belief Networks 278
7.3.1 Training a DBN 278
7.4 Autoencoders 279
7.4.1 Autoencoder Framework 279
7.5 Undercomplete Autoencoder 284
7.6 Sparse Autoencoder 285
7.7 Denoising Autoencoders 287
7.7.1 Denoising Autoencoder Algorithm 287
7.8 Convolutional Autoencoder 288
7.9 Variational Autoencoders 291
7.9.1 Latent Variable Inference: Lower Bound Estimation Approach 292
7.9.2 Reparameterization Trick 294
7.9.3 Illustration: Variational Autoencoder Implementation 295
7.10 Conclusion 297

Problems 298

Contents xiii

8 Deep Unsupervised Learning II 301
8.1 Introduction 301
8.2 Elements of GAN 303
8.2.1 Generator 304
8.2.2 Discriminator 304
8.3 Training a GAN 305
8.4 Wasserstein GAN 309
8.5 DCGAN 312
8.5.1 DCGAN Training and Outcomes Highlights 313
8.6 cGAN 316
8.6.1 cGAN Training and Outcomes Highlights 318
8.7 CycleGAN 318
8.7.1 CycleGAN Training and Outcomes Highlights 321
8.7.2 Applications of CycleGAN 323
8.8 StyleGAN 323
8.8.1 StyleGAN Properties and Outcome Highlights 326
8.9 StackGAN 328
8.9.1 StackGAN Training and Outcomes Highlights 331
8.10 Diffusion Models 333
8.10.1 Forward Diffusion Process 334
8.10.2 Reverse Diffusion Process 335
8.10.3 Diffusion Process Training 335
8.11 Conclusion 338

Problems 339

9 Deep Bayesian Networks 341
9.1 Introduction 341
9.2 Bayesian Models 342
9.2.1 The Bayes’ Rule 342
9.2.2 Priors as Regularization Criteria 343
9.3 Bayesian Inference Methods for Deep Learning 344
9.3.1 Markov Chain Monte Carlo Methods 344
9.3.2 Hamiltonian MCMC 347
9.3.3 Variational Inference 349
9.3.4 Bayes by Backpropagation 351
9.4 Conclusion 352

Problems 353

List of Acronyms 355
Notation 359
Bibliography 365
Index 387

xv

About the Authors

Dr. Manel Martínez-Ramón received his Telecommunication Engineering degree from
Universitat Politècnica de Catalunya, Spain, in 1994 and his PhD in Telecommunication
Engineering from Universidad Carlos III de Madrid, Spain, in 1999. He is currently
a professor of Artificial Intelligence with the Department of Electrical and Computer
Engineering of the University of New Mexico, NM, USA, where he holds the King Felipe
VI Endowed Chair. His research interests are in the area of machine learning, where he
has produced numerous contributions to kernel learning methods, Gaussian processes,
and deep learning, with applications to electromagnetics and antenna array processing,
smart grid, scientific particle accelerators, and others. As an instructor, he teaches graduate
courses in statistical learning theory, Gaussian process learning, probabilistic machine
learning, and deep learning both face-to-face and online.

Dr. Meenu Ajith earned her PhD in Electrical Engineering from the University of New
Mexico, USA, in 2022. Presently, she serves as a postdoctoral research associate at the
Tri-Institutional Center for Translational Research in Neuroimaging and Data Science
(TReNDS), a collaborative research institute supported by Georgia State, the Georgia
Institute of Technology, and Emory University in Atlanta, GA, USA. Her research focuses
on deep learning, image processing, time-series analysis, and neuroimaging. She obtained
her MS in Electrical Engineering from the University of New Mexico in 2017 and her
bachelor’s degree in Electronics and Communication Engineering from Amrita School of
Engineering in 2015. In her current role as a postdoctoral researcher, Dr. Ajith concentrates
on implementing and applying various deep-learning models and neuroinformatic tools
that leverage advanced brain imaging data. Her objective is to translate these approaches
into biomarkers, addressing pertinent aspects of brain health and diseases.

Dr. Aswathy Rajendra Kurup earned her PhD in Electrical Engineering from the
University of New Mexico USA in the year 2022, where her research focused on designing
CNN-based deep-learning models for applications such as smart grids, medical diagnosis,
and computer vision. She completed her MS in Electrical Engineering from the University
of New Mexico, USA, in 2017. Currently, she serves as a Machine Learning Engineer at
Intel Corporation, a leading force in the semiconductor chip manufacturing landscape.

xvi About the Authors

In her current role, she applies her extensive knowledge to address real-world challenges,
utilizing her expertise in handling diverse data types, including images, videos, and
time-series data. As a part of the role, she applies data mining and statistical modeling
techniques along with developing Machine learning/Deep learning solutions for enabling
factory decision-making, improved equipment performance, and higher product yields.

xvii

Foreword

Deep Learning: A Practical Introduction, authored by Manel Martínez-Ramón, Meenu Ajith,
and Aswathy Rajendra Kurup, stands as a pragmatic guide, which prepares the engaged
student to digest and understand advanced deep learning concepts. Designed primarily as
an educational resource for graduate-level courses in deep learning, this book is enriched
with a valuable collection of exercises and practical Python tutorials, making it an ideal
educational tool.

Deep learning, a cornerstone of modern artificial intelligence, has seen a meteoric rise in
usage, powering the creation of text, images, and videos, from simple prompts, and enhanc-
ing our predictive capabilities in a diverse array of applications. This book offers a thorough
exploration of deep learning fundamentals, an essential component for students in engi-
neering or computer science.

The authors begin by tracing the intriguing history of deep learning, setting the stage for
a deeper dive into the subject. They skillfully introduce various methods for training and
optimizing algorithms, alongside an overview of essential programming tools and libraries
which are prevalent today, including Python, NumPy, TensorFlow, and Pytorch.

The book then covers a broad range of fundamental models including recurrent neural
networks, transformers, unsupervised learning, and deep Bayesian networks. Within each
of these chapters, there is an accessible introduction and detailed explanation of each mod-
eling framework, which allows the reader who is new to deep learning to gain a foothold
in this extraordinarily important space, while also providing practical examples including
code and data as well as references for further learning. Additionally, it offers references for
extended learning, bridging the gap between fundamental concepts and recent advance-
ments in the field.

The author’s provides a clear and comprehensive introduction to deep learning, making
it an essential addition to the field’s literature. Whether you are an instructor designing a
course or a student embarking on self-directed learning, this book is an invaluable resource
for navigating the complexities and applications of deep learning.

In essence, Deep Learning: A Practical Introduction is not just a textbook; it is a gateway to
understanding and applying one of the most influential technologies in the field of artificial
intelligence today. It is a useful tool for (i) instructors who want to teach core deep learning
topics to their students, (ii) researchers in a variety of fields, including my own field of
neuroimaging, who want to develop domain-specific methods, and (iii) students who are
interested in self-learning on this important topic.

xviii Foreword

Overall, I strongly endorse Deep Learning: A Practical Introduction as a valuable resource
for both educators aiming to impart core deep learning concepts to their students and for
learners pursuing self-study in this vital area. The book’s blend of theoretical insights and
practical applications, including code and data examples, makes it a standout choice for
anyone looking to delve into the world of deep learning.

Vince Calhoun

xix

Preface

The present book is intended to be a comprehensive introduction to deep learning that
covers all major areas in this discipline. This document is designed to cover a full semester
graduate class in deep learning, and it contains all the materials necessary to build the
class. We structured our work in a classical way, starting from the fundamentals of neural
networks, which are then used to describe the different elements of deep learning used
in artificial intelligence, from the classic convolutional neural network and recurrent
neural networks (RNNs) to the transformers, plus unsupervised learning structures and
algorithms. In every chapter, we follow a schema where first the structures are described,
and then the criteria and algorithms to optimize them are developed. In most cases, full
mathematical developments are included in the description of the structure optimization.

Chapter 1 is a first contact with deep learning, where we introduce the most basic type
of feedforward neural network (FFNN), which is called the multilayer perception (MLP).
Here, we first introduce the low-level basic elements of most neural networks and then the
structure and learning criteria.

Chapter 2 is complementary to Chapter 1, but its contents are valid for the rest of the book
since it provides details about the practical training of deep learning structures, which we
have omitted from the first chapter in order to make it more concise and compact.

These readers who do not have a knowledge of basic Python will benefit from using
Chapter 3 in order to start experimenting with learning machines in this programming
language. In this chapter, authors assume that the reader has reviewed Chapter 1, which
implies that they have been introduced to the concepts of structure, criteria, and algorithms.
If so, readers already had the opportunity to see some basic Python codes containing at least
a class with methods and an instantiation of it to be used in the examples and exercises,
without needing to understand their Python structure. In this chapter, we introduce the
basic elements of Python to be used throughout the book, and we will revisit the code
previously introduced in Chapter 3, among other examples.

The concepts and structure of convolutional neural structures are described in
Chapter 4. It starts with the concept of convolution in two dimensions and its justification
for its use in deep learning, after which the structure of a convolutional neural network is
described. The training of such a structure is not commonly found in the literature, assum-
ing that the students and practitioners understand and can apply the backpropagation to
them. We offer in this chapter a full development of the backpropagation for convolutional
neural networks and we summarize the algorithms, so the practitioner can program it.
Still, most importantly, they will understand exactly how it works.

xx Preface

Chapter 5 covers the basics of the RNN. The chapter starts off with the architecture of
the RNN and then explains how these networks are used for modeling sequential infor-
mation. Further into the chapter, the training criterion is introduced, which describes the
feed-forward training, loss functions, and backpropagation through time. Next, the different
types of RNN and their application are discussed. The following section explains the short-
comings of RNNs and highlights the details on different types of gradient problems and
the solutions to these problems. Then, the shortcomings of RNNs and highlights the details
on different types of gradient problems and the solutions to these problems are explained.
After that, the details on other RNN-derived structures which were introduced to mitigate
the short-term memory problem associated with the traditional RNNs are discussed.

Chapter 6 provides a structured and comprehensive overview of the developments in
attention-based networks. The first section summarizes the different types of attention
mechanisms based on sequence, levels, positions, and representations. Finally, we review
the network architectures that widely use attention and also discuss a few applications in
which attention-based networks have shown a significant impact.

Chapter 7 gives a comprehensive outline of deep unsupervised learning. The overview
gives an introduction to the two main categories of deep unsupervised learning such
as probabilistic and nonprobabilistic models. The chapter is mainly devoted to the
autoencoder, which is one of the widely used nonprobabilistic deep unsupervised learning
methods. First, the basic elements, training criteria, and the extensions of autoencoders
are explained. Following this, an overview of the deep belief networks (DBNs) is given and
it constitutes the basic blocks (restricted Boltzmann machines), training using contrastive
divergence, and the variations of DBN. Finally, we also provide different applications of
unsupervised deep learning.

Chapter 8 briefly covers the generative adversarial networks (GANs). Primarily, it intro-
duces the two elements of GANs namely discriminator and generator. After this, the com-
plete architecture of the GAN is illustrated to have a higher level of understanding of the
network. Next, the training criteria are outlined which describes the alternate training pro-
cess between the discriminator and the generator. The loss functions that model the prob-
ability distribution of the data is also added in this section. Finally, popular models derived
from GAN are presented, and the chapter is concluded by summarizing the advantages and
trade-offs of GAN.

Chapter 9 covers the main topics of deep Bayesian networks. Here, the authors do not
intend to be exhaustive by covering the state of the art of deep Bayesian networks, Instead,
we propose a chapter that gives the reader a general view of the characteristics and different
philosophies of Bayesian networks with respect to previously introduced structures and
algorithms. After introducing the general concepts of deep Bayesian networks, including
structures and criteria (thus following the same format used in the rest of the book) we
explain the main optimization algorithms used in the current literature, with several
examples.

June, 2024
Albuquerque, New Mexico

Manel Martínez-Ramón
Meenu Ajith
Aswathy Rajendra Kurup

xxi

Acknowledgment

Manel Martínez-Ramón has been partially supported by the King Felipe VI Endowed Chair
of the University of New Mexico, NM, USA.

xxiii

About the Companion Website

A repository in GitHub with the URL

https://github.com/DeepLearning-book

contains all the additional materials of this book. In particular, readers will find:
● The Python code (in Jupyter Notebook format) of all the examples provided throughout

the book, so that the student or the practitioner can run them immediately.
● A complete set of slides written in LaTex that summarize all chapters, intended to help

instructors in the development of their lectures. The source files are also available so that
instructors can modify the material and adapt it to each particular course design. All
materials are available in the repository.

https://github.com/DeepLearning-book

1

1

The Multilayer Perceptron

1.1 Introduction

The concept of artificial intelligence (AI) is relatively simple to explain, and it can be enun-
ciated as a possible answer to the question of how to make a machine that is able to perform
a given task without being explicitly programmed for it, but instead, extracting the neces-
sary information from a set of data. Let us say, for example, that a machine is needed to
classify green and red apples. The machine is provided with a camera, and all the mecha-
nisms necessary to place one apple at a time in front of it and then throw it in one of two
buckets. A machine wired to do this will relay in binary operators as “IF,” “THEN.” If the
color is red, throw it in bucket A, otherwise, in bucket “B.”

The limitations of this method are obvious. If a pear is mistakenly introduced in the pro-
cess, it will be classified as a green apple. Also, how can we use the same or similar structure
for a different or more complex task? As in the previous machine, an AI approach uses fea-
tures found in the data in order to take the decision, but the algorithm is not explicitly
programmed. Instead, the machine has a specific parametric structure capable of learning
from data. The learning process involves the optimization of a certain measurable criterion
with respect to the parameters. The deep learning (DL) structures for artificial intelligence
are able to learn complex tasks from the available data, but they also have capabilities such
as learning how to extract the useful features for the task at hand, provide probabilistic out-
puts (i.e. “the probability of apple is 97%”), and many others. The basic element of such a
structure in DL is the so-called artificial neuron, a simple concept that provides the power
and nonlinear properties.

This chapter is intended to be a first contact with DL, where we introduce the most
basic type of feedforward neural network (FFNN), which is called the multilayer percep-
tron (MLP). Here, we first introduce the low-level basic elements of most neural network
(NN)s, then the structure and learning criteria.

The elements introduced in this chapter will be used throughout the book. We start from
the single perceptron, we construct a basic MLP, where the different activations are devel-
oped, and then the notation based on tensors is also justified as a generalized tool to be
used throughout the book. After this, we present the maximum likelihood (ML) criterion
as a general criterion, which is then particularized to the classic cases corresponding to the

Deep Learning: A Practical Introduction, First Edition.
Manel Martínez-Ramón, Meenu Ajith, and Aswathy Rajendra Kurup.
© 2024 John Wiley & Sons Ltd. Published 2024 by John Wiley & Sons Ltd.
Companion website: https://github.com/DeepLearning-book

https://github.com/DeepLearning-book

2 1 The Multilayer Perceptron

different output activations. Finally, the backpropagation (BP) is detailed and then summa-
rized so that can be translated into a computer program.

In this chapter, examples and exercises are presented in a way that assumes that the stu-
dent does not necessarily know about programming in Python. Examples will be focused on
the behavior of the MLP, without focusing on the programming, and the exercises intended
to modify, at a high-level data, parameters, and structures in order to answer questions to
different practical cases. Chapter 3 explains, in particular, how the different examples have
been coded, thus they will be reviewed in that chapter from the point of view of practical
programming.

1.2 The Concept of Neuron

The idea of the artificial neural network (ANN) is obviously inspired by the structure
of the nervous system. The first attempt to understand how neural tissue works from a
logical perspective was published in 1943 by Warren S. McCulloch and Walter Pitts (1943)
(Fig. 1.1). They proposed the first mathematical model for a biological neuron in his paper.
In this model, the neuron has two possible states, defined as 0 or 1 depending on whether
the neuron is resting or it has been activated or fired. This represents the axon of the
neuron. The input of this neuron model consists of a number of dendrites whose excitation
is also binary. This elemental structure is completed with an inhibitory input. If this input

Figure 1.1 Warren S. McCulloch (left) and Walter Pitts in 1949. Source: R. Moreno-Díaz and
A. Moreno-Díaz (2007)/with permission from Elsevier.

1.2 The Concept of Neuron 3

is activated, the neuron cannot fire. If the inhibitory input is deactivated, the neuron can
be activated if the combination of inputs is larger than a given threshold. This model is
fully binary and, since it includes mathematical functions that cannot be differentiated, it
cannot be treated mathematically in an easy way. Certain modifications that will be seen
further give rise to what is known as the artificial neuron in use today.

Section 1.2.1 contains an introduction to the concept of artificial perceptron from an alge-
braic point of view. A possible way to train a single perceptron is introduced in Sections 1.2.2
and 1.2.3, as well as the limitations of this structure as a linear classifier.

The concept of artificial NN was introduced by the psychologist Frank Rosenblatt
(Fig. 1.2) in 1958 Rosenblatt (1957, 1958). In this paper, he proposed a structure of the
visual cortex perceptron (Fig. 1.3). The structure presented in Rosenblatt (1958) contained
the fundamental idea that is used in any artificial learning structure. In the first stage

Figure 1.2 Frank Rosenblatt. Source: https://news.cornell.edu/stories/2019/09/professors-
perceptron-paved-way-ai-60-years-too-soon/ last accessed November 30, 2023.

(Localized
connections)

(Random
connections)

(Random
connections)

Retina
AI

(Projection
area)

AII
(Association

area)

R1

R2

RN

Responses

Figure 1.3 The perceptron as described in Rosenblatt (1958)/American Psychological Association.

https://news.cornell.edu/stories/2019/09/professors-perceptron-paved-way-ai-60-years-too-soon/
https://news.cornell.edu/stories/2019/09/professors-perceptron-paved-way-ai-60-years-too-soon/

4 1 The Multilayer Perceptron

(Retina), the device collects the available observation or input pattern intended to be
processed in order to extract knowledge of it. The second stage (Projection area) is in
charge of processing this observation to extract the information needed for the task at hand.
This information is commonly called the set of features of the input pattern. The third stage
(Association area) is intended to process these features to map them into a given response.
For example, the response may be to recognize some given object classes present in the
scene. Rosenblatt is the father of the artificial perceptron. He proved that by modifying
the McCulloch–Pitts neuron model, the neuron could actually learn tasks from the data.
In particular, his model had weights that multiplied each of the inputs to the neuron as
well as the input bias or threshold that could be adjusted for the neuron to perform a given
task. He developed the Mark 1 perceptron machine, which was the first implementation
of his perceptron algorithm. This device was not a computer but an electromechanical
learning machine. The machine consisted of a camera constructed with an array of 400
photocells, the output of each one connected randomly to the dendrites of a set of neurons.
The weights, or attenuations applied to these inputs, were controlled with potentiometers
whose axes were connected to electric motors. During the learning procedure, the motors
adjusted the input weights. This machine was able to distinguish linearly separable
patterns, or patterns that were at one or another side of a hyperplane in the space of 400
dimensions spanned by the camera inputs depending on its binary class. The invention
was then limited in its capabilities until it was proven that a perceptron constructed with
more than one layer of neurons MLP had nonlinear capabilities, that is, the ability to
separate patterns that could not be separated by a hyperplane. Nevertheless, the MLP could
not be trained using the techniques introduced by Rosenblatt for his perceptron. It was in
1971 that Paul Werbos, in his PhD thesis (P. J. Werbos 1974) introduced the BP algorithm,
which made it possible to adjust the weights of a multilayer perceptron.

1.2.1 The Perceptron

From a conceptual point of view, a perceptron is a function made to perform a binary
classification. In order to describe this function, let us first introduce the necessary nota-
tion and concepts associated with it. Assume a given observation that consists of a collec-
tion of D magnitudes observed from a physical phenomenon. These magnitudes are stored
in a column vector, which will be called x ∈ ℝD, which lies in a space of D dimensions.
For illustrative purposes, let us construct a set of artificial data in a space of D = 2 dimen-
sions as in Fig. 1.4.

The figure shows a set of points with coordinates x = (x1, x2)⊤, where operator ⊤ denotes
the transpose operation, meaning that the vector is a column one even if it is written as
a row vector. In this toy example, the data belongs to one of two classes (black or white)
that we will label arbitrarily with the labels 1,−1, though in some cases, labels 1, 0 are more
convenient. It can be seen that the data is linearly separable, that is, both classes can be sep-
arated by placing a line between the black and white clusters of data. That is, roughly speak-
ing, the idea of the perceptron. It must be trained to place a separating hyperplane between
both classes. We define the hyperplane (particularized to a line in the two-dimensional
example) as

w⊤x + b = 0 (1.1)

1.2 The Concept of Neuron 5

Figure 1.4 A set of observations in a space of two
dimensions.

x2

x1

Figure 1.5 A point x1 lying in the semi-space
opposite to the one pointed by vector w.

x1

z

x0 w

w �
x +

 b =
 0

x2

x1

where w ∈ ℝD is a set of parameters, and thus operation w⊤x defines an inner product
or dot product between two vectors. Strictly speaking, Eq. (1.1) defines a space affine to
hyperplane w⊤x = 0, which contains the origin.

The important point here is that all vectors x that belong to the hyperplane satisfy the
above definition. Therefore, for all points outside the hyperplane, the result of operation
(1.1) is different from zero. Moreover, all the points at one side of the plane have a posi-
tive response, and all the points at the opposite side have a negative response. In order to
prove this, we have to notice that w is a vector normal to the hyperplane defined by Eq.
(1.1). Indeed, that hyperplane is trivially parallel to the hyperplane defined by w⊤x = 0.
Since the plane is defined as all vectors whose dot product with w is zero, all vectors in
the plane are normal to w and, therefore, all vectors in the plane defined by Eq. (1.1) must
be normal to w. Now, let us assume arbitrarily that vector w has the direction depicted in
Fig. 1.5. Assume a vector x0 that belongs to the plane, and another vector x1 that is placed
in the semi-space opposite to the one pointed by the vector. For this vector, the response of
the operation (1.1) is w⊤x + b < 0. Indeed, point x1 = xo + z where z is the segment going
from x0 to x1. Then,

w⊤x1 + b = w⊤(x0 + z) + b = w⊤x0 + b + w⊤z = w⊤z (1.2)

6 1 The Multilayer Perceptron

w �
x +

 b =
0

x2

x1

Figure 1.6 A separating hyperplane that classifies
among the two classes of a set of data.

since by definition w⊤x0 + b = 0 because x0 belongs to the plane. Then, notice that since
x1 is opposite to w, this vector forms an angle with z higher than 90∘, and thus this dot
product must be negative. If point x1 was in the semi-space pointed by w, then the angle
with z would be less than 90∘ and the dot product would be positive. This is the principle
used in binary linear classification. In conclusion, to classify the points in Fig. 1.4, it is only
necessary to place a hyperplane defined by parameters w, b between the two classes as seen
in Fig. 1.6. The classification operation is then

f (x) = sign
(
w⊤x + b

)
(1.3)

where sign(z) is an activation function whose response is 1 if z > 0 and −1 otherwise. The
dot product of this equation can be expanded as

f (x) = sign

(D∑
i=1

wi xi + b

)
(1.4)

and the operation can be expressed in a graphic form as the perceptron, depicted in
Fig. 1.7. In this structure, an observation consisting of a vector x with components xi,
1 ≤ i ≤ 3 is element-wise multiplied by the elements wi of parameter vector w, and then
a bias b is added. The corresponding operations are represented by the arrows incoming
to the first node (an addition operator) that emulate the behavior of the dendrites in
a neuron. All the products are added together and then passed to a sign detector. This
is equivalent to applying a threshold to dot product w⊤x to obtain an output equal
to 1 if the dot product is higher than −b and −1 otherwise. The sum and comparison
operations emulate the behavior of the soma of a neuron. The output arrow represents
the axon.

1.2.2 The Perceptron (Training) Rule

The training of the perceptron described by Rosenblatt, usually called the Perceptron Rule,
is very easy to implement. The training procedure needs to use a training dataset composed
by a set of samples xi, 1 ≤ i ≤ N for which the corresponding labels yi ∈ {0, 1} are known.
Usually, we will define the labeled datasets as = {xi, yi}, 1 ≤ i ≤ N.

1.2 The Concept of Neuron 7

Figure 1.7 Structure of a perceptron where the input x has three
dimensions.

1

z
σ(z)

b

x2

x3

x1

w1

w2

w3

The goal of the perceptron rule is to reduce the classification error over the training
dataset. We define the error of the response to input sample xi as

ei =
1
2
(

yi − sign(w⊤xi + b)
)

(1.5)

This error is zero if the sample has been classified correctly. If the sample is labeled with
y = −1 and the classification is 1, the error is ei = −1, and if the sample is labeled with 1 and
the classification is 0, then the error is ei = 1. That is, when a misclassification is observed,
the error is equal to the true label.

The algorithm has to be initialized with some arbitrary values for w, b, for example, all
coefficients can be initialized at zero. Then, all samples are classified using the perceptron
until an error, say for sample xk, is reported. At this moment, the algorithm updates the
weights using the following rule:

w(k + 1) = w(k) + ykxk
b(k + 1) = b(k) + yi

(1.6)

where w(k), b(k) denote the values of the parameters at iteration k. It is relatively easy to
prove that this algorithm converges to a solution if the data set is linearly separable, but con-
vergence is not guaranteed when the data is not linearly separable. We must assume that
the norm of the data vectors is bounded by some value, i.e. ∀i, 1 ≤ i ≤ N, ∥xi∥ < R. Assume
further that, since the data is linearly separable, some optimal parameters w∗, b∗ must exist
that define a separating hyperplane able to classify the data with no errors. These param-
eters are thus normalized such that ∥w∗∥2 + |b∗|2 = 1. For this classification hyperplane,
and for some 𝜂 > 0, it must be the case that

yi
(
w∗⊤xi + b∗) > 𝜂, ∀i ∈ [1,N] (1.7)

This is true for an optimal classifier since the sign of w∗⊤xi + b∗ will be the same as the one
of the labels for all samples.

Theorem 1.2.1 If the training dataset is linearly separable, then the perceptron rule
converges in a finite number of iterations (Novikoff 1963).

Proof: The following inequality holds:

w∗⊤w(k + 1) + b∗b(k + 1)
= w∗⊤ (w(k) + ykxk

)
+ b∗ (b(k) + yi

)
= w∗⊤w(k) + ykw∗⊤xk + b∗b(k) + b∗yi > w∗⊤w(k) + b∗b(k) + 𝜂

(1.8)

where we have used, in the first line, the perceptron rule of Eq. (1.6), and in the second line,
inequality (1.7). By induction, then, it can be seen that

w∗⊤w(k + 1) + b∗b(k + 1) > k𝜂 (1.9)

8 1 The Multilayer Perceptron

On the other side, we know that the optimal parameters have been normalized to ∥w∗∥2 +|b∗|2 = 1, and then using the Schwartz inequality k2𝜂2 <
(
w∗⊤w(k + 1) + b∗b(k + 1)

)2
≤

∥w(k + 1)∥2 + (b(k + 1))2. Thus,

∥w(k + 1)∥2 + (b(k + 1))2
> k2𝜂2 (1.10)

On the other side, by applying again the perceptron rule, it can be said that

∥w(k + 1)∥2 + (b(k + 1))2 = ∥w(k) + ykxk∥2 +
(

b(k) + yk
)2

= ∥w(k)∥2 + ∥xk∥2 + 2ykw(k)⊤xk + (b(k))2 + 2b(k)yk + 1
≤ ∥w(k)∥2 + ∥xk∥2 + (b(k))2 + 1 ≤ ∥w(k)∥2 + R2 + (b(k))2 + 1

(1.11)

then by induction

∥w(k) + 1∥2 + (b(k + 1))2
≤ k

(
R2 + 1

)
(1.12)

Using both inequalities (1.10) and (1.12) together

k2𝜂2 < k
(

R2 + 1
)

(1.13)

and then k <

(
R2 + 1

)
𝜂

.

Example 1.2.1 (Perceptron rule)
In the following example, a set of data is generated in a space of two dimensions that is
linearly separable. The data is classified with a function (1.4), whose parameters w, b are
updated following the perceptron rule. The result of the iteration is shown in Fig. 1.8.
The first pane shows the initial position of the classifier, which has been initialized ran-
domly. The classifier is given all the samples in an arbitrary sequence, and it is found that
the first sample is misclassified (black dot). This sample is used to update the classifier,
which goes to the position shown in the right upper pane. The samples are classified again
and, this time, sample number 8 is misclassified. This sample is used to update the classifier
function. The process is repeated 16 times. Since after this iteration, there are no misclas-
sified samples, the algorithm stops. For this particular set of data, the data separability is
𝜂 = 0.2 (see the corresponding script) and, by computing the radius of the sphere contain-

ing the data, the bound of the number of iterations is R2 + 1
𝜂

= 228, which is clearly very
conservative taking into account that the actual number of iterations was 16. This upper
bound is not meant to be a practical estimate of the number of iterations, but merely the
result of the proof that the convergence is achieved in a finite number of iterations if the
data is linearly separable.

The example is expanded in Exercise 1.1, where the reader is asked to modify the param-
eters of the example, code in the corresponding Jupyter notebook, in particular, to make
the data nonseparable.

1.2.3 The Minimum Mean Square Error Training Criterion

The limitations of the above-presented perceptron are two, the first one being that it can
only synthesize linear functions. The second one is that it will not converge if the data is
not linearly separable.

1.2 The Concept of Neuron 9

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3
Iteration 0, sample 0

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3
Iteration 1, sample 9

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3
Iteration 5, sample 42

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3
Iteration 6

Figure 1.8 Example of the application of the perceptron rule in a set of separable data in
dimension 2. Before the first iteration (upper left pane), the classifier is set with random
parameters. The first sample in the dataset gives a misclassification, so the classifier parameters are
updated in iteration 1, after which sample number nine is found to be misclassified. The algorithm
goes through six iterations until it classifies all samples with no errors. In this particular example,

the bound on the number of iterations is R2 + 1
𝜂

= 228.

The first limitation is to be corrected by the introduction of the MLP, which will provide
nonlinear properties to the classifier, but then the perceptron rule cannot be applied as
it has been presented. The second limitation comes from the fact that the error measure
applied to the perceptron is binary rather than continuous. The first modification applied
to the structure in order to obtain a continuous measure of the error is to change the sign
operator by a continuous activation function that tends to 1 when the machine classifies the
sample as +1 and to 0 or −1 when the sample is classified as −1. Such activations are often
called sigmoids because they have a shape that reminds of a stylized s. For this example,

10 1 The Multilayer Perceptron

−2.0 −1.5 −1.0 −0.5 0.0

(a) (b)

0.5 1.0 1.5 2.0
z

−1.00

−0.75

−0.50

−0.25

0.0

0.25

0.50

0.75

1.00

ta
nh

(z
)

−4 −3 −2 −1 0 1 2 3 4
z

0.0

0.2

0.4

0.6

0.8

1.0

σ
(z

)

Figure 1.9 Hyperbolic tangent function (a) and logistic function (b).

we use the hyperbolic tangent function, and the classification function will have the
following form:

f (x) = tanh
(
w⊤x + b

)
(1.14)

where the expression of the hyperbolic tangent is

tanh (z) = ez − e−z

ez + e−z (1.15)

where z = w⊤x + b. It is straightforward to see that when argument z tends to ∞, the func-
tion approaches 1, and if z tends to −∞, then the function tends to −1. The function is
represented in Fig 1.9a.

Its derivative will be needed in the construction of the algorithm, and it has the expression

d tanh(z)
dz

= 1 − tanh2(z) (1.16)

Instead of using a hyperbolic tangent, one may prefer to use a function that goes from 0
to 1 in order to give the activation properties of a probability measure. The logistic function
𝜎(z) can be obtained by adding a bias to the tangent to raise it so it tends to 0 instead of
tending to −1 when z → ∞ and rescaling it so it tends to −1

1
2
(1 + tanh(z)) = 1

2

(
1 + ez − e−z

ez + e−z

)
= ez

ez + e−z = 1
1 + e−2z (1.17)

Since the constant multiplying the argument is arbitrary, it is often removed, and the logistic
function has the expression

𝜎(z) = 1
1 + e−z (1.18)

The logistic function is represented in Fig. 1.9b. Its derivative has the expression

d𝜎(z)
dz

= 𝜎(z) (1 − 𝜎(z)) (1.19)

The differentiation of both sigmoid functions is left to the reader in Exercise 1.2.
The optimization criterion for the classifier (1.14) or its equivalent with the logistic

function consists of minimizing the expectation of the mean square error (MSE) over the
training dataset. This criterion, usually called minimum mean square error (MMSE), will

1.2 The Concept of Neuron 11

provide a solution since it is a convex function of the error, thus having a single minimum.
The criterion for the optimal set of parameters is

min
w,b

𝔼
[
e2

i
]
= min 𝔼

[(
tanh

(
w⊤xi + b

)
− yi

)2
]

(1.20)

The expectation cannot be computed, but, by virtue of the weak law of large numbers
(WLLN), a sample average of the training errors tends in probability to the actual mean
when the number of samples tends to infinity. Then, an adequate approximation to the
previous criterion is

min
w, b

N∑
i=1

(
tanh

(
w⊤xi + b

)
− yi

)2 (1.21)

This expression, to be minimized with respect to the parameters, is a particular example of
what is often referred to as a cost function. In order to derive the optimization, it is sufficient
to compute the gradient of this cost function with respect to parameters w

∇w

N∑
i=1

(
tanh

(
w⊤xi + b

)
− yi

)2 =
N∑

i=1
2ei

(
1 − tanh2 (w⊤xi + b

))
xi (1.22)

and the derivative of the cost function with respect to parameter b.

d
db

N∑
i=1

(
tanh

(
w⊤xi + b − yi

))2 =
N∑

i=1
ei
(
1 − tanh2 (w⊤xi + b

))
(1.23)

In this derivation, we made use of the definition (1.14) and the derivative of the hyperbolic
tangent in Eq. (1.16). This is a way to solve the classification problem at hand. Nevertheless,
there is a problem with this approach, as pointed out above. This problem is related to the
fact that when the argument of the tangent has a high absolute value, the tangent tends to 1.
When this happens, gradient (1.23) tends to zero, thus stalling the training. In Section 1.5,
we will revisit this problem, and we will propose a more justified solution that, among other
properties, overcomes this issue.

An optimization algorithm consists of initially choosing arbitrary values for the param-
eters of the classifier and then iteratively modifying them in a direction opposite to the
direction of the squared error gradient, with the purpose of approaching the values of the
parameters to the point of minimum squared error. For this reason, the algorithms based on
this strategy are called gradient descent algorithms (see e.g. (S. S. Haykin 2005)). The pro-
cedure is illustrated in Fig. 1.10, and the update rule can be applied in batch mode

w(k + 1) = w(k) − 𝜇

N∑
i=1

ei
(
1 − f 2(xi)

)
xi (1.24)

b(k + 1) = b(k) − 𝜇

N∑
i=1

ei
(
1 − f 2(xi)

)
(1.25)

where f (x) = tanh
(
w⊤xi + b

)
. Once the update has been applied, it must be repeated until

a criterion has been reached. Similarly, the update can be applied one sample at a time

w(k + 1) = w(k) − 𝜇ek
(
1 − f 2(xk)

)
xk (1.26)

b(k + 1) = b(k) − 𝜇ek
(
1 − f 2(xk)

)
(1.27)

12 1 The Multilayer Perceptron

w(k) w(k+1) w*

–µ∇w e2

e2

Figure 1.10 Illustration of the gradient descent procedure. The graph represents a cost function
consisting of the expectation of a square error as a function of a parameter w. The optimum value
w∗ of the parameters is achieved when the cost function is the minimum. At this point, the gradient
is zero. At iteration k, the value of the parameter is wk . The gradient ∇w𝔼

[
e2
]

of the cost function is
computed, and then the parameter is modified in the direction opposite to the gradient, multiplied
by a small constant 𝜇. The operation must be repeated until the gradient is zero.

where 𝜇 is a small scalar usually called learning rate, and it determines the length of the
movement toward the minimum of the cost function relative to the gradient. Notice the
similarity of these two expressions with the perceptron rule of Eqs. (1.6). The difference
consists of that now the error is a continuous function, that can be differentiated, and
that a new term relative to the activation function appears in these equations. This new
term is precisely the reason why such an update rule is still not a good algorithm. Indeed,
when the machine classifies the samples almost correctly, term

(
1 − f 2(xk)

)
tends to zero,

which may seem a good sign, but since the activation is squared, if a sample is misclassified
and the corresponding activation saturates to 1 or −1, this term tends to zero, which may
stall the learning. Therefore, this criterion must be further modified in order to obtain an
adequate criterion that does not suffer from this effect. A different approach to optimiza-
tion and its relationship with the activation functions will be explained in Sections 1.5.1
and 1.5.2.

An equivalent expression of the update rule can be obtained with the use of a logistic
activation. Note that if a logistic function is used, then the labels should be changed to
y ∈ {1, 0}. A stronger justification for the use of these activations is provided in this chapter.
The derivation of such rules is left to the reader as exercise 1.3.

Example 1.2.2 (MMSE update rule for a perceptron.)
The graphics of Fig. 1.11 correspond to the application of the MMSE criterion to the percep-
tron whose activation has been set as a hyperbolic tangent. The learning rate 𝜇 has been set
at 0.1. The upper row corresponds to the initial and final positions of the classifier for a sep-
arable case, whereas the lower row corresponds to a nonseparable case. A noticeable differ-
ence between the perceptron rule and the MMSE is that the number of iterations increases

1.2 The Concept of Neuron 13

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3
Iteration 0

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3
Iteration 100

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3
Iteration 0

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3
Iteration 100

Figure 1.11 Example of the application of the MMSE criterion to a perceptron with hyperbolic
tangent activation. The first row corresponds to a separable case and the second one to a
nonseparable one.

significantly since the update is applied for all samples and not for the misclassified ones.
The other difference is that the MMSE achieves a stable solution after a number of iterations
even in the nonseparable problem.

1.2.4 The Least Mean Squares Algorithm

Notice that when the activation tends to 1, the gradient will stall. If a linear activation is
used, that is, f (x) = w⊤x + b, then the gradient becomes

w(k + 1) = w(k) − 𝜇ekxk (1.28)

b(k + 1) = b(k) − 𝜇ek (1.29)

This algorithm is known as the least mean squares (LMS) algorithm, and it was first
derived in Widrow and Hoff (1960).

14 1 The Multilayer Perceptron

1.3 Structure of a Neural Network

The perceptron unit in the structure presented before has a linear nature, that is, it can only
classify problems that are linearly separable for data distributed in other ways, it would
be impossible for such a structure to do a good job. The exclusive OR (XOR) problem in
Fig. 1.12, is a classic example that a linear perceptron cannot solve. In this example, the
data has a label that is an XOR function of its coordinates. Therefore, the black dots are
labeled as +1, and the white dots are labeled as 0.

It is clear that a linear function cannot classify the data. Nevertheless, it is possible to con-
struct a nonlinear function with several perceptrons in two layers. The proposed structure
to solve this problem is shown in Fig. 1.13.

The input data represented by column vector x =
[
x1, x2

]⊤ is applied the linear affine
transformation

z =
[

z1
z2

]
= W⊤x + b =

[
w11 w21
w12 w22

] [
x1
x2

]
+
[

b1
b2

]
(1.30)

where W is a 2 × 2 matrix, and b =
[
b1, b2

]⊤ is a column vector containing bias terms, as
shown in Eq. (1.30). The output of this linear transformation is then passed by a nonlinear

(0, 1) (1, 1)

(0, 0) (1, 0)

x2

x1

Figure 1.12 The XOR problem. The black dots are
labeled as 1, and the white dots are labeled hyperplane
as −1. This corresponds to the XOR function between
the coordinates of the points, i.e. f (x1, x2) = x1 ⊕ x2.
Clearly, a linear algorithm cannot classify the points of
this problem. A possible solution is the boundary
represented with dashed lines.

b1

b2

W w

x2

x1 h1

h2

Figure 1.13 A two-layer perceptron. The data input
is fed into a layer of two neurons through the linear
transformation represented by matrix W and bias
vector b = [b1, b2]⊤. The neurons apply a nonlinear
activation and pass the outputs hi to the next layer,
which applies another transformation with vector w.

1.3 Structure of a Neural Network 15

monotonic function as, for example, the logistic function (1.18) to produce output
h =

[
h1, h2

]⊤:

h = 𝝈 (z) =
[
𝜎
(

z1
)

𝜎
(

z2
)] (1.31)

where we use the notation 𝝈(⋅) to represent a vector of functions 𝜎(⋅) each one applied to
the elements of a vector.

The layer of two neurons is often called a hidden layer, and its corresponding output
is vector h, which is a nonlinear transformation of the input. The vector is then linearly
transformed using vector w, and then the result is passed through another monotonically
increasing activation function 𝜙(⋅)

o = 𝜙
(
w⊤h

)
(1.32)

This is the simplest possible example of an NN, which applies a nonlinear transformation
to the input in order to produce a nonlinear classification. But let us take a close look at
how this simple NN with three neurons is able to solve the XOR problem in Fig. 1.12. This
is explained in Example 1.3.1.

Example 1.3.1 (The XOR problem)
Let us assume the XOR problem above and the structure of Fig. 1.13 (see also I. Goodfellow
et al. 2016). A possible hand-made solution for this problem can be constructed by drawing
a line that separates points (0, 0) from the rest of the points in Fig. 1.12, and another
line that discriminates between point (1, 1) and the rest. Both lines are defined for zi = 0
(see Fig. 1.14) where

z1 = x1 + x2 −
1
2
= 0

z2 = x1 + x2 −
3
2
= 0

(1.33)

Notice that the above equations can be expressed as

z = W⊤x + b = 𝟎 (1.34)

where W =
[

a a
a a

]
and b =

[
−a

2
,−3a

2

]⊤
, and where a > 0 is an arbitrary constant. The

expression of z1 classifies point (0, 0) as “negative,” and the rest are classified as “positive.”
Indeed z1(0, 0) = 0 + 0 − a

2
< 0, and for the other three points the response is positive. z2

classifies as positive point (1, 1) and the rest are classified as negative. Let us now construct
an input data matrix X with the points of the XOR problem:

X =
[

0 1 0 1
0 1 1 0

]
(1.35)

and the corresponding linear transformation is

z =
[

a a
a a

] [
0 1 0 1
0 1 1 0

]
− 1

2

[
a a a a

3a 3a 3a 3a

]
= a

2

[
−1 3 1 1
−3 1 −1 −1

] (1.36)

16 1 The Multilayer Perceptron

x2

x1

x
1 + x

2 – –12 = 0

x
1 + x

2 – –32 = 0

(0, 0)

(0, 1) (1, 1)

(1, 0)

Figure 1.14 The two neurons of the example apply a
linear function over the sample, which can be seen as a
linear classifier. The lower line corresponds to the points
that satisfy x1 + x2 −

1
2
= 0. The points under the line

are classified as negative. The same effect is given by
the upper line.

It can be seen that the first row of the last matrix in Eq. (1.36) has negative outputs, cor-
responding to input (0, 0) in matrix (1.35), and the second row of last matrix in (1.36) has
positive outputs, corresponding to input (1, 1). But most importantly, the transformation
has collapsed both (0, 1) and (1, 0) into point

(
a
2
,
−a
2

)
.

Now, in order to proceed to the classification, we need to apply a nonlinear activation 𝜎(z)
to each one of the neurons. The idea in this example is to apply an activation whose output
tends to be 1 if z is positive and zero otherwise. To make this more evident, we choose a
large number for a, for example, a = 10. If we apply a logistic function, then the result of
the operation is

h = 𝝈
⎛⎜⎜⎜⎝10

⎡⎢⎢⎢⎣
−1

2
3
2

1
2

1
2

−3
2

1
2

−1
2

−1
2

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠ =

[
0.01 1.00 0.99 0.99
0.00 0.99 0.01 0.01

]
(1.37)

and finally, we apply a linear transformation with w = [1,−1]⊤:

o = w⊤h = [1,−1]
[

0.01 1.00 0.99 0.99
0.00 0.99 0.01 0.01

]
= [0.01, 0.01, 0.98, 0.98]

(1.38)

This output is clearly close to the values of the labels, which are [0, 0, 1, 1].

The previous example shows the bare minimum structure of an NN able to solve a non-
linear problem. As it can be seen, the parameters of the NN have been found painfully
and after some heuristic considerations that cannot constitute a criterion to construct a
learning algorithm similar to the perceptron rule or the MMSE introduced in Sections 1.2.2
and 1.2.2.

Nevertheless, it is possible to have a much better solution to this problem. A better solu-
tion will provide a classification with a lower probability of error in an extended version of
this problem, and the parameters should be obtained automatically by a learning algorithm
from data. In order to achieve such a solution, we first need to introduce more about acti-
vation functions and a generalized algorithm to train an MLP, known as the BP algorithm,
which will be introduced respectively in Sections 1.3.1 and 1.5.3.

1.3 Structure of a Neural Network 17

1.3.1 The Multilayer Perceptron

In the previous example, a two-layer perceptron has been presented to demonstrate its capa-
bility to solve a nonlinear problem. The expressive capacity of an NN relies primarily on
the use of nonlinear activations, and on the complexity of this network, or, in other words,
in the number of layers and neurons or nodes in its layers. A generalized NN or MLP is then
a structure with L + 1 layers, where layer l = 0 is the input x and, therefore, its number of
nodes D0 = D is equal to the dimension of input space. The network has L − 1 hidden lay-

ers with Dl nodes that produce the column vector of outputs h(l) =
[

h(l)
1 ,… , h(l)

Dl

]⊤
. The last

layer is the output o =
[

o1,… , oDL

]⊤
of the MLP.

The layers are interconnected by edges. Each edge contains a weight w(l)
i,j that connects

the output of node i of layer l − 1 to the input of node j in layer l. Also, each node has a bias
input b(l)

j . In summary, each node contains an affine transformation of the output of the
previous layer as

z(l)j =
Dl−1∑
i=1

w(l)
i,j h(l−1)

i + b(l)
j = w(l)

j
⊤

h(l−1) + b(l)
j (1.39)

where w(l)
j =

[
w(l)

1,j ,… ,w(l)
Dl−1,j

]⊤
is the column weight vector of node j in layer l. Each hidden

node applies a nonlinear activation function 𝜙(⋅) to the affine transformation of the input.
Therefore, the output of each hidden node h(l)

i is

h(l)
j = 𝜙

(
z(l)j

)
= 𝜙

(
w(l)

j
⊤

h(l−1) + b(l)
j

)
(1.40)

The corresponding graphical representation of the operation is in Fig. 1.15. At each layer l,
the corresponding parameters are matrix W(l) that can be constructed with the concatena-
tion of the weight vectors of the layer as

W(l) =
[
w(l)

1 · · ·w(l)
Dl

]
∈ ℝDl−1×Dl (1.41)

and a column bias vector b(l) as

b(l) =
[

b(l)
1 · · · b(l)

Dl

]⊤
(1.42)

Figure 1.15 Graphical representation of a
neuron or node l in an MLP, where the input
is the vector of outputs h(l−1) of the
previous layer with dimension Dl−1 = 3. The
node performs affine transformation
z(l)j = w(l)

j

⊤
h(l−1) + b(l)

j over this vector, and
then a nonlinear activation 𝜙(⋅) is applied
to compute the node output h(l)

j .

h1
(l –1)

bj
(l)

hj
(l) = ϕ

ϕ(∙)
w3, j
 (l)

w2, j
 (l)

w1, j
 (l)

h2
(l –1)

h3
(l –1)

wj
(l) h(l –1) + bj

(l)

1

18 1 The Multilayer Perceptron

With this, the expression of the vector of outputs h(l) of layer l can be written with the
following pair of equations

z(l) = W(l)⊤h(l−1) + b(l)

h(l) = 𝝓
(
z(l)

) (1.43)

This operation is often referred to as a forward step in an MLP since the operation transforms
the output of one layer into the output of the next layer. Function 𝝓(⋅), written in bold font,
represents a vector of operations 𝜙(⋅) applied elementwise over each one of the elements of
z(l) =

[
z(l)1 ,… , z(l)Dl

]⊤
.

The output of the last layer is applied to a nonlinear transformation that can be differ-
ent from 𝜙(⋅), which will be called o(⋅) hereinafter. The expression of the MLP output is
therefore

o
(
z(L)

)
= o

(
W(L)⊤h(L−1) + bL

)
(1.44)

The graphical representation of the MLP is shown in Fig. 1.16, where biases b(l)
j are not

shown for simplicity.
Usually, the graphical representation of a multilayer perceptron is purely illustrative, and

the information about its structure is given in the number of layers and the number of
nodes in each layer. Nevertheless, sometimes one wants to represent a very dense MLP,
in whose case, instead of drawing all nodes and connections or edges between nodes, a
more compact drawing is used, as the one shown in Fig. 1.17. The upper pane of the figure
shows a traditional way of representing the MLP, while the lower one shows a more compact
representation where the nodes are symbolized by boxes.

It is common to think of an MLP as a structure to process inputs in the form of vectors,
but as a general matter of fact, an MLP can be used to process information organized as
multidimensional arrays, particularly 2D or 3D arrays or matrices when the input data is
an image. In these cases, the weight matrices become 3D or 4D arrays, and then it is also
common to call them tensors. We do not use any of the properties of tensors in machine
learning, and the use of this name for a multidimensional array of an NN is controversial;

h(1) h(2)

ox

W(2)

W(1)

W(3)

Figure 1.16 Graphical structure of a
multilayer perceptron with L = 3, where the
biases b(l)

i connected to each one of the nodes
are not shown.

1.3 Structure of a Neural Network 19

Figure 1.17 An MLP with three hidden layers
and a compact representation of the same
structure.

therefore, we will avoid the use of this term except when it is needed in order to be consistent
with nomenclature in other scholarship or software.

1.3.2 Multidimensional Array Multiplications

So far, matrix-vector multiplications have been used as a basic operation to express the MLP
operation, which, among other issues, constrains the MLP input to a vector of components.
But, in general, it is possible to use different configurations as inputs. For example, an input
may be a matrix representing an image, or a 3D matrix representing information in the
space, as a 3D image. In order to construct an MLP with data organized in these structures,
it is sufficient to vectorize or flatten the inputs, that is, reorganize the data in a vector with
arbitrary order. Nevertheless, if the spatial information is important, this limits or heavily
difficulties the types of operations to apply to the inputs, such as the convolution operation,
as is seen in Chapter 4. In general, it is more convenient not to flatten the input (though
sometimes it will be done) and, instead of using matrices and vectors, use the more general
concept of multidimensional arrays. Let us define, as an example, an array A ∈ ℝP×Q×R in
three dimensions. It has entries i, j, k defined as

[A]i,j,k = ai,j,k (1.45)

where 1 ≤ i ≤ P, 1 ≤ j ≤ Q, 1 ≤ k ≤ R.
Assume two multidimensional arrays A, B with different dimensions and number of ele-

ments, but with a dimension with a common number P of elements. For example, take
A ∈ ℝP×Q and B ∈ ℝR×P×S. The first one has two dimensions (a matrix) whose first dimen-
sion has P components and the second one is an array of three dimensions with P elements
in its second dimension. The product between both arrays along the first dimension of A
and second dimension of B is possible, which produces an array C whose dimensions with
components cj,k,l

cj,k,l = [A ⋅ B]j,k,l =
P∑

i=1
ai,jbk,i,l (1.46)

20 1 The Multilayer Perceptron

As a result, the common dimension disappears, and the new array has as many dimen-
sions as the sum of the remaining ones. In this case, the first dimension of array A and
the second dimension of tensor B disappear, so the remaining dimensions are Q × R × S.
In general, the dimension across which the product is performed must be specified, but on
occasions, there is only one common dimension, in which case the operation will not need
such specification.

Example 1.3.2 (Vector-matrix product)
Assume vector a ∈ ℝP and matrix B ∈ ℝQ×P. The vector-matrix product assumes that the
vector is a row or a column, and then it needs a particular disposition of the operands. For
example, if the vector is a row, then the operation must be written as

c = Ba⊤ (1.47)

and the result is a column vector of Q components. The orientation of the vector and the
matrix is irrelevant if the operation is defined in Eq. (1.46). Indeed

c = B ⋅ a (1.48)

whose elements are1

ci =
P∑

j=1
ajbi,j (1.49)

and the orientation of the resulting array (particularized in this case as a vector) is also
irrelevant.

Example 1.3.3 (Forward step in an MLP multidimensional layer)
The MLP in Fig. 1.18 is organized in layers represented by 2D arrays. Each node of a layer
receives inputs from all the elements of the array of the previous layer. Each node of a given
2D layer can be denoted as h(l)

i,j , so it is entry i, j of an order 2 array H(l). The transformation

Figure 1.18 A compact representation of an MLP structured to process data presented in the form
of 2D arrays. In this structure, the input is a 2D array with 3 × 3 components. The second layer is an
array of 9 × 9 elements. Therefore, the set of weights that transform from the first layer to the
second layer is array W ∈ ℝ3×3×3×9×9, that is, it must be a 4D array with dimensions 3 × 3 × 9 × 9.

1 A very widely used convention in tensor calculus is the use of the Einstein notation, which omits the
sum symbol, and it assumes that the element to accumulate is the one that is repeated in the product.
Therefore, using Einstein’s notation, the product is simply written as ci = ajbi,j.

1.4 Activations 21

from the previous layer to a node of the next layer is

z(l)i,j =
∑
m

∑
n

h(l−1)
m,n w(l)

m,n,i,j + b(l)
i,j

h(l)
i,j = 𝝓

(
z(l)i,j

) (1.50)

In this expression, we find:

● Element w(l)
m,n,i,j, which is the weight that connects node m,n of layer l − 1 with node

i, j of layer l. This is therefore an entry of a four-dimensional array W whose first two
dimensions are equal to the dimensions of layer l − 1, and the third and fourth dimensions
are equal to the dimensions of layer l. That is, if H(l−1) ∈ ℝDl−1,1×Dl−1,2 and H(l) ∈ ℝDl,1×Dl,2 ,
then

W ∈ ℝDl−1,1×Dl−1,2×Dl,1×Dl,2 (1.51)

The transformation between the first layer and the second one in Fig. 1.18 is then an array
of order 4 with dimensions 3 × 3 × 9 × 9, that is, W ∈ ℝ3×3×3×9×9.

● The set of bias elements is in this case a 2D array with the same dimensions as layer l.

Equation (1.50) simply describes a product along two of the dimensions of both arrays
H(l−1) and W(l). As a result, these dimensions disappear from the resulting array H(l).
In Chapter 4, it is shown that the 2D convolutions used in convolutional NNs are nothing
but a particular case of this expression.

1.4 Activations

As seen before, activations play an important role in the MLP. The activations that are
applied in the hidden nodes are necessary in order to endow the structure with nonlin-
ear properties. But it also makes sense to use nonlinear activations in the output layer for a
different purpose. The activations here play the role of probability estimation. The simplest
example consists of using logistic activations at the output of a binary classifier, so the out-
put approaches zero when the input sample is classified as belonging to class “0” and to one
when the sample is classified as belonging to class “1.” With this, the intention is to use this
output as an approximation of the probability that the class is 1 given the observation, i.e.
p(y = 1|x). The usual activations for hidden and output layers are presented here, where
the use of output activations as a probabilistic estimation is treated in Section 1.5.

So far, we have presented the hyperbolic tangent and the logistic activation in Eqs. (1.15)
and (1.18) that we reproduce here. If z = w⊤x + b is the affine operation performed into any
arbitrary neuron, the hyperbolic tangent is defined as

tanh (z) = ez − e−z

ez + e−z

𝜎(z) = 1
1 + e−z

Among them, the most used is the logistic activation, since it has an interpretation in terms
of probability, which is important in some kinds of NNs as restricted Boltzmann machines,
that are treated in Chapter 7. Nevertheless, these activations are not widely used in other

22 1 The Multilayer Perceptron

NNs because they may produce training stalling (see Subsection 1.2.3). A more suitable
activation for the hidden nodes of an MLP is a surprisingly simple one (Jarrett et al. 2009),
called rectified linear unit (ReLU). The expression of the ReLU is

𝜙ReLU (z) = max (0, z) (1.52)

This activation is hardly nonlinear, but it has proven to be very powerful (Nair and Hinton
2010) even in structures such as the above-mentioned restricted Boltzmann machines. One
can argue that this activation can also stop an algorithm since its derivative is always zero
for negative inputs. An easy modification of this unit is the following:

𝜙MaxOut(z) = max (0, z) + a min 0, z (1.53)

In this activation, the derivatives are 1 when z > 0 and a when z < 0, which fixes the issue.
The value of a is supposed to be smaller than 1. This is usually referred to as a leaky ReLU.

Another activation, called maximum output (MaxOut), was presented in Ian Goodfellow
et al. (2013a). In a traditional activation, each neuron is assigned a weight vector w and a
bias b. In a MaxOut, each neuron is assigned K vectors wk and weights bk. The dot products
between the input and all the vectors are computed, and the biases are added to each dot
product. The MaxOut chooses the result with the maximum value as

𝜙(z) = max
(
w⊤

1 x + b1,… ,w⊤
Kx + bK

)
(1.54)

The MaxOut activation can be seen as a generalization of the ReLU activation, which
comes with the advantage that each neural network learns multiple functions of the same
feature through the training of multiple weight vectors. Nevertheless, this has the disad-
vantage of an increased computational burden and the need to cross validate the number
K of weight vectors.

1.5 Training a Multilayer Perceptron

The simple MMSE criterion has been applied to the solution of a linear problem in
Section 1.2.3, in order to solve a problem that is not purely linearly separable. Then, the
multilayer perceptron has been defined in Subsection 1.3.1, where a two-layer structure
has been applied to solve the classical XOR problem using the bare minimum structure
with two nodes in the hidden layer. Nevertheless, this solution is purely ad hoc for this
problem, and this cannot be generalized to a higher dimensional arbitrary problem.
Nevertheless, a strategy similar to the algorithm applied to the linear perceptron can
be generalized to the MLP. Also, we have seen different forms of activation for hidden
nodes and activations adequate to binary and multiclass problems. In this section, we put
everything together to construct a generalized set of training algorithms depending on the
nature of the classification problem at hand. These algorithms fall under the umbrella of
the so-called BP algorithm. The general criterion to apply is called ML.

1.5.1 Maximum Likelihood Criterion

Assume a dataset {xi, yi}, 1 ≤ i ≤ N consisting of N labeled patterns to be used for training
purposes, where the labels are binary, that is, yi ∈ {0, 1}. In order to develop the training

1.5 Training a Multilayer Perceptron 23

criterion, we assume further that a conditional probability of the labels over the samples
p(y|X) exists, where we defined y =

(
y1,… , yn

)⊤ as the sequence of labels corresponding
to the training input patterns X =

(
x1,… , xN

)
. An adequate way to perform a classifica-

tion would be to know this probability. In this case, we just need to find the sequence y of
labels that maximizes this probability. Besides, it is reasonable to assume that the labels are
conditionally independent, that is, for any pair xi, yi, we assume

p(yi|xi, xj) = p(yi|xi), ∀j (1.55)

The second probability p(yi|xi) is the probability of yi conditional to xi. If we had this prob-
ability, then we can easily make a decision: if the probability p(yi = 1|xi) is higher than
0.5, then we decide that yi = 1, or zero otherwise. The first probability is the probability
of yi conditional to observations xi, xj. In principle, adding more observations may add
more information to a better decision. While this may be true in specific scenarios, we will
assume that all the information needed to make a decision on yi is contained in xi, and that
adding a new observation does not change the probability, and this is what Eq. (1.55) means.
Now, assume that we have two samples x1 and x2 and we want to compute the probability
p(y1, y2|x1, x2) of the sequence y1, y2. By using Bayes’ rule, we get

p(y1, y2|x1, x2) = p(y1|y2, x1, x2)p(y2|x1, x2)
= p(y1|x1)p(y2|x2)

(1.56)

We have used here the assumption that y1 is independent of x2 and y2 given the knowledge
of x1 and that y2 is independent of x1 given the knowledge of x2. It is worth noting that this
does not mean that y1 and y2 are independent, they are independent only if their respective
patterns x1, x2 are known. This can be easily generalizable as

p(y|X) = p(y1,… , yn|x1,… , xN) =
N∏

i=1
p(yi|xi) (1.57)

If these patterns and their labels are known, that is, they are a set of training data, the
above expression (1.57) is called a likelihood, and it has the property of being factorizable in
elements p(yi, xi).

Provided that likelihood is constructed by a parametric function with a set of parameters
𝜽 containing all weights and biases w(l)

i,j , b(l)
j of a learning machine, for example, an MLP, the

training criterion for this MLP is to maximize this likelihood with respect to its parameters.
Since the logarithm is a monotonically increasing function, maximizing the logarithm of the
likelihood, or log-likelihood is equivalent to maximizing Eq. (1.57). This is the ML criterion.

JML(𝜽,X, y) = log p(y|X) (1.58)

In many situations, an information-theoretic interpretation of this cost function is used.
For this purpose, we change the sign, and divide the equation by the number N of training
data to obtain the so-called negative log-likelihood (NLL)

JML(𝜽,X, y) = − 1
N

log p(y|X) = − 1
N

N∑
i=1

log p(yi|xi) ≈ −𝔼x,y log p(y|x) (1.59)

where 𝜽 represents the set of parameters of an MLP that needs to be optimized by
maximizing this cost function. The purpose of dividing the expression by N is to obtain

24 1 The Multilayer Perceptron

the sample average of log probabilities − 1
N

∑
i

log p(yi|xi), which is, by virtue of the WLLN

(Bertsekas and Tsitsiklis 2000), an approximation to the expectation of these logarithms.
Assuming that the actual probabilities of yi are known, one can change this measure by
−𝔼x,y

[
p(y) log p(y|x)], which is, by definition, the cross-entropy measure between the

actual and the estimated probabilities (Cover and Thomas 2006).

1.5.2 Activations and Likelihood Functions

Apart from the above interpretation in terms of Information Theory, the logarithm has a
practical purpose, which will become apparent next, when we formulate the probabilities in
terms of the output of an MLP, which is related to the chosen form for the output activations.
Assume an MLP with a number of hidden layers and some activation functions for the
hidden nodes. We take care here of the justification and interpretation of the choice of the
activation function for the output layer. The first activation to be presented is the logistic
one, which must be adequately constructed, and it is useful when the MLP is used for binary
classification, so the output gives an estimation of the probability p(y = 1|x), that is, the
probability that the label corresponding to input x is one, which is a Bernoulli distribution.
Then we generalize this activation for the case where the classification neuron is multiclass,
where the probability is a Multinoulli distribution. Finally, we present the activation used
when the output is assumed to have a Gaussian distribution.

1.5.2.1 Logistic Activation for Binary Classification
Here we assume that an MLP is used for binary classification (Fig. 1.19). Then, as mentioned
before, the output is modeled as the probability of that y = 1, that is, the probability func-
tion is a Bernoulli mass function. We start by constructing an unnormalized log probability
function as

log p̃(y|x) = yz −−−−→ p̃(y|x) = eyz (1.60)

The probability is unnormalized because p̃(y = 0|x) + p̃(y = 1|x) ≠ 1, so this output does
not have probability mass function properties. The way it works is the following: for y = 1,
if the linear output z produced by the last layer of the MLP is positive, the product will
be positive, producing a high value for the unnormalized probability, implying that the
probability of 1 is high, but if z is negative, this implies that the probability of 1 is low
since the unnormalized probability will be close to zero. In order to provide this func-
tion with probability mass function properties, we must construct a function for which

w(3)

W(2)

W(1)

x o(z)

Figure 1.19 An MLP for binary
classification, where the output o(z) is a
scalar. The set of parameters of the last layer
(layer 3) is organized in a vector, and
z = w(3)⊤h(2) + b(3). The biases are not
shown.

1.5 Training a Multilayer Perceptron 25

p(y = 0|x) + p(y = 1|x) = 1 as

o(z) = p(y|x) = p̃(y|x)
p̃(y = 0|x) + p̃(y = 1|x) = eyz

1 + ez = 1
e−yz + e−(y−1)z (1.61)

Since y can only be 1 or 0, the following expression is equivalent to the previous one

o(z) = p(y|x) = 1
1 + e−(2y−1)z = 𝜎((2y − 1)z) (1.62)

This is then the log-likelihood expression for the Bernoulli model, and it is often called
logistic activation. According to Eq. (1.59), the cost function to be optimized in the case of
binary classification is

JML(𝜽,X, y) = −
N∑

i=1

[
log 𝜎((2yi − 1)zi)

]
=

N∑
i=1

[
log

(
1 + e(1−2yi)zi

)]
(1.63)

Any cost function J(𝜽,X, y) uses a loss function between the estimator output (in our case a
classifier output) and the actual label of the sample. In subsection 1.2.3, the used similarity
measure was the squared error ei = o(zi) − yi, where the output o(zi) was a logistic function.
Here, the loss function 𝓁i is

𝓁i = log
(
1 + e(1−2yi)zi

)
(1.64)

that compares the sign of the output z with (2y − 1), which is a signed version of the labels.
In order to later make the derivation of the training of an MLP, it is worth computing the

derivative of this loss with respect to input zi, which is

d𝓁i

dzi
=

(1 − 2yi)e(1−2yi)zi

1 + e(1−2yi)zi
(1.65)

Now we particularize to the possible values of label yi ∈ {0, 1} in order to find a more com-
pact expression. If yi = 0, then

d𝓁i(yi = 0)
dzi

= ezi

1 + ezi
= 1

1 + e−zi
= 𝜎(zi) (1.66)

and for the case yi = 1 the corresponding expression is

d𝓁i(yi = 1)
dzi

= −e−zi

1 + e−zi
= 1

1 + e−zi
− 1 = 𝜎(zi) − 1 (1.67)

and thus both cases the expression of the derivative can be written as
d𝓁i

dzi
= 𝜎(zi) − yi = 𝛿

(L)
i (1.68)

where 𝛿(L)i is the classification error measured at the output (layer L) of the. This expression
will be used later for the derivation of the MLP training.

The following example shows a fundamental difference between the use of the ML loss
and the application of the MMSE loss.

Example 1.5.1 ML versus MMSE in binary classification
An MMSE criterion to optimize a linear classifier with logistic activation is explained in
Section 1.2.3. The loss function between the label and the output of the classifier used in

26 1 The Multilayer Perceptron

−4 −3 −2 −1 0 1 2 3 4
z

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

L
os

s

Logistic
Logit

Figure 1.20 Cross-entropy loss function and square error loss function for a single sample with
y = 1. The cross-entropy loss function has a derivative that increases when the value of the
function increases. The squared error loss function has a very small derivative when the function
tends to its maximum.

MMSE is the square error. In a classifier with logistic activation and labels y∈{0, 1}used with
the MMSE criterion (see Problem 1.2). This loss is computed as e2

i = (𝜎(zi) − yi)2, whereas
the loss in ML is 𝓁i = log

(
1 + e(1−2yi)zi

)
as stated in Eq. (1.64).

Assume without loss of generality that the label corresponding to sample i is yi = 1. If z is
positive, then in both cases the similarity measures tend to zero, and the derivatives of these
functions tend to zero, as it can be seen in Fig. 1.20 (see (Y. A. LeCun et al. 2012) for a general
study of this effect). So, using a gradient descent algorithm should converge to situations
where for y = 1, output z is positive. Nevertheless, when zi is negative and yi is positive,
there is an important difference between both similarity functions. In this case, the logistic
function 𝜎(z) tends to zero and hence the squared error tends to one, while the ML similar-
ity log

(
1 + e(1−2yi)zi

)
tends to infinity. We can see in the figure that while using the square

error, the derivative tends to zero, thus stopping the gradient descent. The ML similarity gra-
dient is positive, actually tending to -1, which prevents a gradient descent algorithm from
stopping in case z takes large negative values.

1.5.2.2 Softmax Activation for Multiclass Classification
In multiclass classification, it is common to construct structures whose output is vectorial,
that is, the NN has an output consisting of a node per each one of the possible classes of the
input patterns. These outputs are interpreted as the posterior probability of each one of the
classes given the input. That is, if the number of possible classes is K, then one can denote
a predictive posterior as p(y = k|x), 0 ≤ k ≤ K − 1. The linear component of the output is
then written as

z = W(L)⊤h(L−1) (1.69)

Then, each element zk in z is modeled through an unnormalized probability, and it has
the form

zk = log p̃(y = k|x) (1.70)

1.5 Training a Multilayer Perceptron 27

with

p̃(y = k|x) = exp(zk) (1.71)

The softmax function is an activation consisting of the normalization of the above
probability

p(y = k|x) = ok(h
(L−1)) = softmax(zk) =

exp(zk)
K∑

j=1
exp(zj)

(1.72)

This output has probability mass function properties, as the sum of outputs adds to 1. In
order to construct a loss function, the common approach is to maximize the cross entropy
between the outputs and the labels, which is equivalent to maximizing the likelihood. Since
the output is a vector with K elements, we transform the scalar label yi = k corresponding
to training input xi into a binary vector yi =

[
y0,i,… , yK−1,i

]⊤ where only element yk,i = 1
and the rest are zeros, which denotes that the class of the input pattern is k. This is often
called one-hot encoding.

We denote the real probability of that yi = k as

q
(

yk,i = 1
)
= qi(k) =

{
1, yi = k
0, yi ≠ k

(1.73)

and then the cross-entropy loss function can be written as

𝓁i = −
K−1∑
k=0

qi(k) log p(yi = k|x) (1.74)

Then, by identifying terms with Eq. (1.72) and by assuming that qi(k) = yk,i, we obtain the
following expression for the cross entropy:

𝓁i = −
K−1∑
k=0

yk,i log softmax
(

zk,i
)

= −
K−1∑
k=0

yk,i log
exp(zk,i)

K−1∑
j=0

exp(zj,i)

= −
K−1∑
k=0

yk,izk,i +
K−1∑
k=0

yk,i log
K−1∑
j=0

exp(zj,i)

(1.75)

where zi,k is the kth output for input sample xi. Since only one of the elements of vector yi
is one, then we can simplify the second summation of Eq. (1.75) to obtain the expression of
the loss function:

𝓁i = −
K−1∑
k=0

yk,izk,i + log
K−1∑
k=0

exp(zk,i) (1.76)

The cost function is obtained by adding all the losses corresponding to all samples:

JML (𝜽,X,Y) = −
N∑

i=1

(K−1∑
k=0

yk,izk,i − log
K−1∑
k=0

exp(zk,i)

)
(1.77)

28 1 The Multilayer Perceptron

where Y = (y1,… , yN) is a matrix containing all the multiclass labels corresponding to the
training dataset. The derivative of the loss function with respect to zk,i has the expression

d𝓁i

dzk,i
= −yk,i +

exp(zk,i)
K−1∑
j=0

exp(zj,i)
= softmax(zk,i) − yk,i = 𝛿

(L)
k,i (1.78)

which tends to zero when the norm of zk,i increases if it has the same sign as the label, and
otherwise, it tends to ±1. That is, again the classification error of output k of the multiclass
classifier.

The loss function obtained in Eq. (1.64) for binary classification can be also obtained
by applying the cross entropy reasoning above. The corresponding proof is given in the
following example.

Example 1.5.2 The application of the cross entropy to a binary classifier leads to the loss
function of Eq. (1.64). The binary classifier is modeled with a single output whose activation
is a logistic function. Nevertheless, in order to proceed with the derivation, we can model
an NN with two redundant outputs modeling probabilities p(yi = 1|x) = 1

1+e−zi
and p(yi =

0|x) = 1 − p(yi = 1|x) = e−zi

1+e−zi
. The corresponding labels are straightforwardly y(0)i = 1 − yi

and y(1)i = yi since the logistic activation is used to model the first probability, then the cross
entropy of Eq. (1.75) is particularized here as

𝓁i = −(1 − yi) log e−zi

1 + e−zi
− yi log 1

1 + e−zi

= −yi log ezi − log e−zi

1 + e−zi
= − log e−zi (ezi)yi

1 + e−zi

(1.79)

If yi = 1, then li = log(1 + e−zi) and otherwise li = log(1 + ezi). Then, we can write this loss
function by using the equivalent expression

𝓁i = log
(
1 + e(1−2yi)zi

)
(1.80)

which matches the loss function in Eq. (1.64).

1.5.2.3 Gaussian Activation in Regression
A multitask regression can be considered in problems where a vector y ∈ ℝK is the desired
output for a given pattern x. A simple model assumes that the estimation error components
are conditionally independent and Gaussian. Therefore, the error distribution given sample
x is

p(y|x) = 1
(2𝜋𝜎2)K∕2 exp

(
− 1

2𝜎2 ||y − z||2) (1.81)

The cost function in Eq. (1.59) to this model is

JML(𝜽) = −𝔼x,y log p(y|x) = 𝔼x,y

(1
2𝜎2 ∥z − y∥2 + K

2
2𝜋𝜎2

)
= 1

2𝜎2 𝔼x,y
(
∥z − y∥2) + constant

∝
∑N

i=1∥W(L)⊤h(L−1) + b(L) − yi∥2

(1.82)

1.5 Training a Multilayer Perceptron 29

In other words, the ML criterion applied in regression is simply the MMSE. The output of
the NN in this case is the linear expression

z
(
hL−1) = W(L)⊤h(L−1) + b(L) (1.83)

The loss function of a single input sample is then

𝓁i = ‖zi − yi‖2 (1.84)

and its derivative with respect to the output zi,k is the regression error, with an expression
identical to the ones obtained for binary and multiclass classification. In particular,

d𝓁i

dzk,i
= zi,k − yi,k = 𝛿

(L)
i,k (1.85)

1.5.3 The Backpropagation Algorithm

The BP algorithm seeks to optimize the parameters of the NN according to the ML
criterion or a regularized criterion as summarized in Section 2.3. The BP algorithm
uses a gradient descent procedure, where the derivative of the cost function corre-
sponding to each training sample is computed with respect to each one of the weights
of the network, and then these weights are updated in the direction opposite to this
gradient.

A gradient procedure applied to an NN is in principle cumbersome since the weights of
each layer are connected to the next layer through nonlinear functions; however, the use
of the chain rule of derivatives, extended to gradients, is applied to solve the problem in a
generalized way that is simple and efficient to program.

The optimization of the NN, then, takes two steps. In the first one, the estimation cost
function evaluated for a training sample is computed. This step is often called the forward
step. Once the cost is computed, the backward step is applied to recursively compute the
derivative of the error with respect to each weight, from the output layer to the input layer,
and finally update the weights. The backward step optimizes the structure with respect to
all parameters 𝜽 ∶

{
w(l)

j,k , b(l)
k

}
by

𝜕J(𝜽)
𝜕w(l)

j,k

= 0, 𝜕J(𝜽)
𝜕b(l)

k

= 0 (1.86)

The chain rule is used to compute this derivative as follows.

1.5.3.1 Gradient with Respect to the Output Weights
Let us first express the function implemented by the NN as a composition of functions

f(x) = o
(
z(L)

)
= o

(
W(L)⊤h(L−1) + b(L)

)
= o

(
W(L)⊤𝝓

(
W(L−1)⊤h(L−2) + b(L−1)

)
+ b(L)

)
= · · ·

(1.87)

The objective now is to compute a general expression of the derivative of the cost function
with respect to a weight of layer L. In order to express this derivative, we first write the

30 1 The Multilayer Perceptron

derivative as a function of the weights W(L) of this layer

d
dw(L)

i,j

JML(y, f(x)) =
d

dw(L)
i,j

JML
(
y, o

(
z(L)

))
= d

dw(L)
i,j

JML

(
y, o

(
W(L)⊤h(L−1) + b(L)

)) (1.88)

The derivative is then a function of three elements, namely, the output activation o with
components oj and the outputs z(L) = W(L)⊤h(L−1) + b(L) as a function of the previous layer,
with components h(L−1)

i . We need to apply the chain rule to these three elements, first com-
puting the derivative of the cost function with respect to oj, then the derivative of oj with
respect to z(L)j , and then the derivative of z(L)j with respect to a weight w(L)

i,j .

dJML

dw(L)
i,j

=
dJML

doj

doj

dz(L)j

dz(L)j

dw(L)
i,j

(1.89)

The first derivative of the chain can be computed directly for any differentiable cost func-
tion. The second one can be also computed directly for any differentiable output function,
and it is defined hereinafter as doj(z(L))

dz(L)j
= o′j . Finally, the third one is the derivative of a linear

function of, that is,
dz(L)j

dw(L)
i,j

= h(L−1)
i . Therefore,

dJML

dw(L)
i,j

=
dJML

doj
o′j h

(L)
i = 𝛿

(L)
j h(L−1)

i (1.90)

In the above expression, we use the definition

𝛿
(L)
j =

dJML

dz(L)j

=
dJML

doj

oj
(
z(L)

)
dz(L)j

=
dJML

doj
o′j (1.91)

from which we can define the output error term vector 𝜹(L) =
[
𝛿
(L)
0 ,… , 𝛿

(L)
K−1

]⊤
of a single

input sample as the elementwise product of the cost function gradient with respect to o and
the vector of output derivatives o′, this is

𝜹(L) = ∇z(L)JML = ∇oJML(y, o)⊙ o′ (1.92)

The expression of this vector will depend on the nature of the classification or regression
task at hand. In Section 1.5.2 we have seen the derivation of the error term for the case of
binary classification in Eq. (1.68), for multiclass classification in Eq. (1.78), and for multitask
regression in Eq. (1.85). In all cases, the elements of the error vector are expressed as the
actual output minus the desired output, that is, as a general matter of fact

𝜹(L) = o − y (1.93)

This vector will be propagated backward during the BP operation. Derivative in Eq. (1.90)
is the element i, j of a matrix computed as the product of column vector h(L−1), with D(L−1)

1.5 Training a Multilayer Perceptron 31

elements, and row vector 𝜹(L)⊤, with D(L) elements. The gradient with respect to the last
weight matrix evaluated for an input sample can be written as

∇W(L)JML = h(L−1)𝜹(L)⊤ (1.94)

In order to update the output weights, we use the above cost function gradient together
with expression (1.92). The single input sample update rule is then

W(L) ← W(L) − 𝜇h(L−1)𝜹(L)⊤ (1.95)

where 𝜇 is a small scalar usually called the learning rate.
In order to compute the update of the bias vector b(L), we must repeat the derivation

particularized to these parameters, and the result is

b(L) ← b(L) − 𝜇𝜹(L) (1.96)

1.5.3.2 Gradient with Respect to Hidden Layer Weights
Using the same reasoning as before, let us now compute the gradient, evaluated for a sample
pair (x, y), of the cost function with respect to weight w(L−1)

i,j , that is,

d
dw(L−1)

i,j

JML(y, f(x)) =
d

dw(L−1)
i,j

JML

(
y, o

(
W(L)⊤𝝓

(
W(L−1)⊤h(L−2)

)))
(1.97)

Figure 1.21 depicts the situation. First, notice that w(L−1)
i,j is inside of each output ok, so in

order to apply the chain rule, we need to compute the derivative of the cost function with
respect to all of them. Second, the derivative to be computed is with respect to w(L−1)

i,j , which
connects h(L−2)

i with h(L−1)
j .

Specifically, the elements of the chain are

ok = o(z(L)k), ∀k

z(L)k = w(L)
k h(L−1)

, ∀k

h(L−1)
j = 𝜙

(
z(L−1)

j

)
z(L−1)

j = w(L−1)
j h(L−2)

(1.98)

Figure 1.21 Elements involved in the
computation of the derivative of the cost
function JML with respect to w(L−1)

i,j .

Okx

w
(L−1)
i,j w

(L)
j,kh(L−2)

i h(L−1)
j

32 1 The Multilayer Perceptron

where vector w(L−1)
j in the last equation contains the element of interest w(L−1)

i,j . With this in
mind, we can compute the derivative of the cost function with respect to w(L−1)

i,j as follows

d
dw(L−1)

i,j

JML(y, f(x)) =
∑

k

𝛿JML

dok

dok

dz(L)k

dz(L)k

dh(L−1)
j

dh(L−1)
j

dzL−1
j

dz(L−1)
j

dw(L−1)
i,j

(1.99)

which, taking into account the expressions in Eq. (1.98), turns into equation
d

dw(L−1)
i,j

JML(y, f(x)) =
∑

k
𝛿
(L)
k w(L)

k,j 𝜙
′
(

z(L−1)
j

)
hL−2

i = h(L−2)
i 𝛿

(L−1)
j (1.100)

where element 𝛿(L)k = dJML
dok

dok

dz(L)k
is defined in Eq. (1.91). We can write now the derivatives

with respect to all parameters in matrix W(L−1) in matrix form. To this purpose, notice that
expression

∑
k
𝛿
(L)
k w(L)

k,j is an element of vector W(L)𝜹(L), which is then elementwise multiplied

with the elements of 𝝓′ (z(L−1)). Therefore, we can define the error term of layer L − 1 from
Eq. (1.100) as

𝜹(L−1) = W(L)𝜹(L) ⊙ 𝜙′ (z(L−1)) (1.101)

The update rule of the previous layer for a single input sample is in matrix form,

W(L−1) ← W(L−1) − 𝜇h(L−2)𝜹(L−1)⊤ (1.102)

The process can be iterated down to the input layer, with the same result and therefore
the update of weight matrix Wl−1 is

W(l−1) ← W(l−1) − 𝜇h(l−2)𝜹(l−1)⊤ (1.103)

with the definition

𝜹(l−1) = W(l)𝜹(l) ⊙ 𝜙′ (z(l−1)) (1.104)

Again, the process can be repeated for bias vector b(l−1), which leads to the update rule

b(l−1) ← b(l−1) − 𝜇𝜹(l−1) (1.105)

Example 1.5.3 (A single BP step)
Consider the NN of Fig. 1.22. This is a structure with a single hidden layer, with ReLU
activations in this layer, of three nodes, and whose output has a single node and sigmoid
activation for binary classification. The hidden weights have the values

W(1) =
(

1 1 −1
1 1 −1

)
and the output layer has weights w(2) = (1,−1,−2)⊤. The biases are all zeros. Assume an
input vector whose values are all ones, i.e. x = (1, 1). The desired output is y = 1.

In the forward step, for the present input, and assuming that the biases are zero, the linear
values of the hidden layer are

z(1) = W(1)⊤x =
⎛⎜⎜⎝

1 1
1 1

−1 −1

⎞⎟⎟⎠
(

1
1

)
=
⎛⎜⎜⎝

2
2

−2

⎞⎟⎟⎠

1.5 Training a Multilayer Perceptron 33

Figure 1.22 Structure of the NN of Example 1.5.3.

b1
(1)

b2
(1)

b3
(1)

W(1)

w(2)

o

b(2)

x

h(1)

This vector has to be processed through the nonlinear activation to produce h(1). The
activation is the ReLU, therefore,

h(1) = ReLU
⎛⎜⎜⎝

2
2

−2

⎞⎟⎟⎠ =
⎛⎜⎜⎝

2
2
0

⎞⎟⎟⎠
The output of the second layer is then

z(2) = w(2)⊤h(1) = (1,−1,−2)
⎛⎜⎜⎝

2
2
0

⎞⎟⎟⎠ = 0

Then, the output of the NN is o = 𝜎 (0) = 0.5.
The corresponding error is 𝛿(2) = o − y = −0.5. The BP applied to this error gives an error

for the previous layer as

𝜹(1) = w(2)𝛿(L) ⊙ sign(h(1)) =
⎛⎜⎜⎝

1
−1
−2

⎞⎟⎟⎠ ⋅ 0.5 ⊙

⎛⎜⎜⎝
1
1
0

⎞⎟⎟⎠ =
⎛⎜⎜⎝
−0.5

0.5
0

⎞⎟⎟⎠
since sign(⋅) is the derivative of the ReLU function. With these errors, we can apply the
weight updates. If we assume, for example, that is, 𝜇 = 1

w(2) =
⎛⎜⎜⎝

1
−1
−2

⎞⎟⎟⎠ − 𝜇𝛿(2)h(1) =
⎛⎜⎜⎝

2
0

−2

⎞⎟⎟⎠ (1.106)

and for the bias of the output layer, the update is

b(2) = 0 − 𝜇𝛿(2) = 0.5 (1.107)

The hidden layer weight matrix and biases have an update given by

W(1) =
(

1 1 −1
1 1 −1

)
− 𝜇x𝜹(1)⊤ =

(
1.5 0.5 −1
1.5 0.5 −1

)
(1.108)

34 1 The Multilayer Perceptron

and

b(1) =
⎛⎜⎜⎝

0
0
0

⎞⎟⎟⎠ − 𝜇𝜹(1) =
⎛⎜⎜⎝

0.5
−0.5

0

⎞⎟⎟⎠ (1.109)

Finally, if we repeat the forward pass with the new parameters, the resulting output is
o ≈ 0.9999 which reduces the error to 𝛿(L) = −10−4.

1.5.4 Summary of the BP Algorithm

The BP algorithm derived above is formulated for a single input sample. The BP of a single
error is depicted in Fig. 1.23. In the figure, a training sample is applied to the input, and
then the error 𝛿 is computed. With it, the BP starts by updating the weights of the output
layer with the product between the input to this layer and the error. The process continues
with the error BP, which consists of transforming the error with the previous weight matrix
and the derivatives of the activations, after which the update of the weights of this layer is
applied.

Nevertheless, the gradient with respect to all weights must be computed and averaged for
all samples in the batch of training data and then used to update the weights. A general BP
algorithm can be summarized as follows. Assume a training set of data {x1,… , xN} with
corresponding labels {y1,… , yN}. The machine learning task can be a multiclass classifica-
tion or a multitask regression. Here, without loss of generality, all data is used in a BP step,
but later the concept of minibatch is discussed where the dataset is broken into training
subsets, which generally improves the training results.

The first step will be the forward step, where all training data is applied to the NN, and
all outputs are computed. In particular, we compute vectors z(l)i ,h(l)

i for al layers and input
samples xi, output oi, and output errors 𝜹(L)

(
xi, yi

)
= oi(xi) − yi = 𝜹

(L)
i corresponding to all

input samples.
This error can be backpropagated with Eq. (1.104), that is, we compute 𝜹(l−1)

i = W(l)𝜹
(l)
i ⊙

𝜙′
(

z(l−1)
i

)
for all samples. Once the error is backpropagated to layer l, one can apply an

h(1)

W(1)

δ(1) = W(2) δ(2) � ϕ′

µxδ(1)� µh(1)δ(2)� µh(2)δ(3)� µh(3)δW(1) W(1) W(2) W(3) W(3) w(4)w(4)W(2)

δ(2) = W(3) δ(3) � ϕ′ δ(3) = w(4) δ� ϕ′ δ = o – y

x

W(2)
W(3)

w(4)

o

h(2)
h(3)

Figure 1.23 Illustration of the BP procedure in a binary multilayer perceptron with three hidden
layers and an input of three dimensions. The biases are not depicted in the figure.

1.5 Training a Multilayer Perceptron 35

update to this layer as

W(l) ← W(l) − 𝜇

N∑
i=1

h(l−1)
i 𝜹

(l)⊤
i

b(l) ← b(l) − 𝜇

N∑
i=1
𝜹
(l)
i

(1.110)

where the update term is always equal to the input to this layer (or the output of the previous
one) times the error. The bias term has the same treatment, where it can be assumed that
the input that goes through this parameter is a constant equal to 1. For the first layer, with
l = 1, the input is h(0)

i = xi.
This is the basic procedure for the training of an MLP. This procedure is nevertheless

applied to optimize the NN using the ML criterion with any suitable likelihood function of
the output. This procedure is illustrative of the strategy applied to the optimization of other
structures, in particular, the convolutional NNs introduced in Chapter 4 or the recurrent
NNs introduced in Chapter 5.

Example 1.5.4 Two common toy examples to play with NNs are the XOR and the CIRCLE
binary problems depicted in Fig. 1.24. The output corresponds to a Bernoulli likelihood. In
the experiments, we train and test two NNs, both with an input layer of two nodes, corre-
sponding to the dimensions of the input data, and two hidden layers, with 40 and 10 nodes,
respectively. One NN uses logistic activations in all the nodes, while the other one uses
ReLU activations in the hidden nodes. The results and training parameters are depicted in
Figs. 1.25 and 1.26. For the XOR problem, with 200 samples per class, the ReLU activations
seem to solve the problem in a more accurate way, with a slightly lower validation error.
The convergence of this NN is also much faster than the one with logistic activations in
the hidden nodes. The same effect in the convergence can be seen in the CIRCLE problem,
with 250 samples per class, where again the ReLU activations achieve a slightly lower error
in the validation dataset.

Further experiments are proposed with this NN and its corresponding notebook in the
problems section.

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

Figure 1.24 The XOR and the circles toy problems.

36 1 The Multilayer Perceptron

0 250 500 750 1000 1250 1500 1750 2000

Number of epochs

0.10

0.15

0.20

0.25

M
M

SE

0 250 500 750 1000 1250 1500 1750 2000

Number of epochs

0.05

0.10

0.15

0.20

0.25

0.30

M
M

SE

−2 −1 0 1 2 3

−2

−1

0

1

2

3

−2 −1 0 1 2 3

−2

−1

0

1

2

3

Figure 1.25 Results of the training of an NN of two hidden layers of 40 and 10 nodes, respectively,
with the XOR example. The upper left pane corresponds to the training (dashed line) and validation
MMSE for an NN with logistic activations in all layers and 𝜇 = 0.8. The upper right pane shows the
results for ReLU activations in the hidden layers and logistic activations at the output, and 𝜇 = 0.1.
The lower panes show the validation data and the constructed classification boundaries

0 2000 4000 6000 8000 10 000

Number of epochs

0.05

0.10

0.15

0.20

0.25

M
M

SE

0 2000 4000 6000 8000 10 000

Number of epochs

0.00

0.05

0.10

0.15

0.20

0.25

M
M

SE

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

Figure 1.26 Results of the training of an NN of two hidden layers of 40 and 10 nodes, respectively,
with the CIRCLE example. The upper left column corresponds to the training (dashed line) and
validation MMSE for an NN with logistic activations in all layers and 𝜇 = 0.5. The upper right pane
shows the results for ReLU activations in the hidden layers and logistic activations at the output,
and 𝜇 = 0.5. The lower panes show the validation data and the resulting classification boundaries.

Problems 37

1.6 Conclusion

The multilayer perceptron is the earliest form of deep learning that ever appeared, but it
establishes the basics of the training procedures applied to any deep learning structure.

The concept of neuron is an idea that roughly reproduces the structure of a biological
neuron, though the dynamics of an artificial neuron are very simplistic compared to the
dynamics of a biological neuron. Nevertheless, this simple idea is able to implement pow-
erful machine learning structures, as the multilayer perceptron summarized in this chapter.
The first activation ever to be applied to a neuron is the sigmoid, but later it has been seen
that simpler mathematical operations produce good results in an MLP. Namely, in present
days, the most used nonlinear operation is the ReLU and its generalizations. The output
layers usually contain activations that provide a probabilistic interpretation. While the first
criterion to optimize an MLP is the MSE, we have seen that, when the output activation
is a sigmoid, this criterion has points with vanishing gradient, which may make a gradient
descent algorithm to stall.

In particular, we choose sigmoidal activations to represent the conditional probability of a
training output given the corresponding input patterns, that is, its likelihood. We have seen
likelihoods for binary outputs (Bernoulli) or multiclass outputs (Multinoulli) that lead to
optimization criteria that do not show the risk of stalling in a point of vanishing gradient.
Besides, in regression, we may use linear activations. The interpretation of these activations
is given by the modeling of the regression error as a Gaussian distribution, which leads to
a log-likelihood that is estimated via these linear outputs.

The BP algorithm summarized here is a powerful way to implement the ML criterion in
an MLP. The chain rule of calculus is used to derive a general procedure to implement a
gradient descent algorithm to the weights of the MLP that computes an error term from the
derivative of the cost function that is later transformed back through the MLP weights. This
transformed error term is used to iteratively update the NN.

Problems

1.1 Change the parameters of Example 1.2.1 in order to
1. Decrease and increase the separability of the data.
2. Increase or decrease the radius of the sphere R containing the data.
3. Produce nonseparable data.
What is the effect of the number of iterations in each case?

1.2 Obtain the derivatives of sigmoid functions in Eqs. (1.15) and (1.18) provided in Eqs.
(1.16) and (1.19)

1.3 Obtain the derivations of the MMSE algorithm for the perceptron when the activation
is the logistic function in Eq. (1.18) and when the activation is linear, that is, f (x) =
w⊤x + b.

1.4 Modify the code of Example 1.2.2 in order to use the logistic and the linear activations
whose corresponding algorithms are derived in Exercise 1.3.

38 1 The Multilayer Perceptron

1.5 Modify the code of Example 1.2.2 to run in batch mode, that is, by using the update
rules described in Eqs. (1.24) and (1.25). Plot a graph with the evolution of the errors
of the batch algorithm and the algorithm that updates the weights one sample at a
time. What are the conclusions that can be extracted from the differences between both
errors?

1.6 Reproduce Example 1.3.1 but using ReLU activations, where the parameters are
(I. Goodfellow et al. 2016).

W =
[

1 1
1 1

]
, w =

[
1
−2

]
, b =

[
0
−1

]
(1.111)

What is the effect of multiplying W and b by a large scalar (e.g. a = 10 as in the
example)?

1.7 Equation (1.82) gives the maximum likelihood cost function for regression where the
error is assumed to be Gaussian and independent across elements of the output.
1. Derive a general expression for this likelihood that does not assume that the error

components are independent.
2. Assume that a prior distribution exists for the weight matrices. Using this expres-

sion, write a posterior distribution for these weights. By applying a log-posterior
maximization criterion rather than the ML, prove that the cost function takes the
form

N∑
i=1

‖‖‖yi − W(L)⊤h(L−1)‖‖‖2
+ 𝜎2 ‖W‖2

F (1.112)

if the prior is a Gaussian distribution over all weights that assumes independence
across terms.

1.8 Derive expressions for the binary MLP activation like the ones in Eqs. (1.62) and (1.63)
but for the case where the label takes values −1 and 1.

1.9 (Cross entropy in binary classification) The loss function for multiclass classifi-
cation is shown in Eq. (1.76). By particularizing the multiclass classification to two
classes and using the cross-entropy criterion, find a binary loss function equivalent to
the one in Eq. (1.64) by using unnormalized probability functions as activations.

1.10 By applying the procedure in Eq. (1.100), prove the general BP step in Eq. (1.104).

1.11 In example 1.5.4 we present an NN with two hidden layers and its test with two dif-
ferent problems and activations. Modify that example to see the result of changing the
number of layers and hidden nodes. In particular, by changing parameter D in the note-
book, test the NN with only a hidden layer of 10 nodes and 100 nodes. Comment on the
aspect of the classification boundary and error. Try then an NN with three layers. What
are the differences in convergence time and validation error with respect to the NN of
10 nodes?

Problems 39

1.12 (Cross validation of the number of epochs) Use the notebook of example 1.5.4 to
write a script able to validate the number of epochs. To this end, save the set of param-
eters of the NN at each epoch. Keep the set of parameters that minimize the validation
error. Check the error rate in a separate test set and check whether this is the best choice.
Repeat this for a training set of only 100 samples and a validation set of 10 samples.
Compare the results.

1.13 (Cross validation of the number of layers and nodes) Work out a script to vali-
date the number of nodes and layers for both the XOR and the CIRCLE problems when
the number of training data is 400 samples and for a validation set of 100 samples. Try
the test error in a separate set of 1000 samples.

41

2

Training Practicalities

2.1 Introduction

In this chapter, it is assumed that the reader is familiar with the fundamental, classic con-
cepts of DL. Namely, Chapter 1 reviews the concept of neuron, the structure of a NN and
associated functions like the ReLU, the softmax, the criteria used for the optimization of
a NN, and the backpropagation algorithm, which should be connected with the concepts
of gradient descent (GD) and overfitting, which is discussed below. Therefore, the reader
is able to construct a basic learning machine and train it. Nevertheless, the training of a
machine has certain particularities, among them, overfitting or local minima problems,
low training speed, or others. These difficulties can be properly addressed by the use of
additional training techniques that help to ease the learning process of a machine.

Under the above prerequisites, the present chapter is intended to introduce the reader
to these techniques. First, the concept of generalization and overfitting is introduced,
as overfitting is a phenomenon that is inherent to any learning machine, and it is particu-
larly important in DL when the models to be trained have a large number of parameters.
The overfitting is usually controlled by controlling the expressive capacity of the machine,
which is achieved by the use of the so-called regularization techniques.

First, it must be noticed that the gradient descent is initiated from an arbitrary point,
that is, from arbitrary values of the parameters. It is obvious that not all initial values
are adequate. This chapter presents the two main methods to properly initialize the NN
parameters.

A common element in DL is the use of normalization techniques. They are necessary to
have a set of features that are scaled in the same range of values. This makes the param-
eter optimization more efficient since normalization eases the machine from the burden
of adapting its parameters to features of different scales. This would force the parameters
associated with different features to converge to different scales associated with different
dynamic ranges and average values, which, in turn, can lead to convergence difficulties.

Finally, it is common to modify the gradient descent procedure in order to speed it up
through the use of features that modify the speed and direction of the parameter update
vector with respect to the one produced by the gradient only.

Deep Learning: A Practical Introduction, First Edition.
Manel Martínez-Ramón, Meenu Ajith, and Aswathy Rajendra Kurup.
© 2024 John Wiley & Sons Ltd. Published 2024 by John Wiley & Sons Ltd.
Companion website: https://github.com/DeepLearning-book

https://github.com/DeepLearning-book

42 2 Training Practicalities

2.2 Generalization and Overfitting

The whole purpose of training a learning machine is to achieve the best possible accu-
racy in a test sample, not previously seen by the training algorithm. If the training pro-
cedure is designed so it just minimizes a loss function over the training data, this may
compromise the test performance. It is desired that the training dataset contains enough
information about its structure, and this information is what one wants to transmit to the
NN. Nevertheless, the information about the structure of the data is always limited, and this
limitation becomes more important as the number of samples decreases. When the data
does not contain enough information to represent its distribution, the difference between
the performance of the NN during training and test may be significant. For a training dataset
with a low number of data, the training error may be arbitrarily low if the complexity or
the number of layers and nodes of the NN is sufficiently high. However, the test error rate
will be high, as the NN will not be able to learn the distribution of the data. The difference
between the training and test errors in an NN with sufficient complexity is called overfitting.
The ability to obtain a sufficiently low error both in training and test is called generalization
ability. Let us illustrate this in the following example.

Example 2.2.1 (Overfitting of a linear classifier)
Figure 2.1 shows a set of data in two dimensions generated with two Gaussian distributions
with equal covariances 𝚺 = 𝜎2I with 𝜎 = 0.5. The Gaussian distributions are centered at
points (−1, 1) and (1,−1). Therefore, the optimal classification boundary is a line normal
to the line defined by these two points, thus being a line of slope 1 crossing the origin of
coordinates. The figure shows the optimal boundary as a dashed line.

−2 −1 0
(a) (b)

1 2
−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

−2 −1 0 1 2
−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

Figure 2.1 A set of two class data is generated where each class is drawn from one of two
circularly symmetric Gaussian distributions with 𝜎 = 0.5 centered at (−1, 1) and (1,−1). The
optimal classification boundary is represented with a dashed line. A classifier is trained with only
the 10 samples highlighted as squares and dots. The resulting classifier is depicted as a solid line
that is clearly biased with respect to the optimum. As the number of training data increases, the
classifier gets closer to the optimum (b).

2.2 Generalization and Overfitting 43

A linear classifier y = w⊤x + b is trained with the 10 samples highlighted in the figure,
where the training criterion is the MMSE. Since the 10 data do not represent sufficiently the
structure of the data, the classifier shows a significant bias with respect to the optimal one
(Fig. 2.1a). Nevertheless, if the number of training data increases, the classifier gets closer
to the optimal one, as can be seen in Fig. 2.1b.

The classifier is trained with an increasing number of data from 2 samples to 100 samples
and then tested with 100 new samples not used during the training. Figure 2.2 shows, in log-
arithmic units, the error rate or fraction of misclassified data e for the training data (dashed
line) and test data (continuous line) averaged for 104 realizations of the experiment. When
the number of training data is low, then the training error is low. Indeed, when the number
of samples is 2, the error is of the order 10−3.5. Conversely, the test error rate for the test is
over 0.1. The difference between both errors is the overfitting. If the training data increases,
the difference between both errors decreases, and then the classifier is able to generalize.

0 20 40 60 80 100
Number of epochs

−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

lo
g 10

 (e
)

Train error

Test error

Figure 2.2 Test error rate (continuous line) and train error rate (dashed line) as a function of the
number of training samples, for example, Example 2.2.1.

Generalization bounds in NNs are treated in the works by Cao and Gu (2019), Hole (1996)
among others. The last work provides, with a given probability, the bounds on the perfor-
mance of NNs as a function of the NN complexity and the number of training samples. This
number has a high impact in the generalization ability of an NN, and authors show that for
an NN that is overly complex, the generalization bounds are good as long as the number of
training samples is high enough.

2.2.1 Basic Weight Initializations

With the use of the BP algorithm, it is straightforward to code a procedure to train an MLP
given a set of input data. The easiest way to program it consists of computing the gradient of
the cost function with respect to the weight matrices for each one of the samples. The very
first step of training consists of assigning initial values to the weights of the MLP. The tech-
niques may slightly vary depending on the kind of activations used, but all of them assume

44 2 Training Practicalities

implicitly that the optimal weights are distributed with a given probability that is centered
around the origin.

If one initializes all weights to zero, the inputs to all activation functions will be zero. If the
output layer contains sigmoidal activations modeling a Bernoulli or Multinoulli probability
mass function, then the outputs will be uniform. For the case of a Bernoulli, the activation
will show an output of 0.5, and for the case of a Multinoulli, the activations will be 1∕K.
The entropy of the output is then maximized, which can be interpreted as that initially the
uncertainty of the NN is maximized. This may not work properly in the BP. Indeed, once
the error term of the first layer is computed, it is back-propagated to the previous layers. As
a result, as the last layer has weights initialized to zero, the transformed error term will be
simply zero and during the first update, only the last layer is updated, and all values of the
weight matrix will be low. In the second iteration, only error terms of layer L and L − 1 will
be different from zero, but the one for L − 1 will be low, thus producing a low update speed
and possibly a local minimum solution.

In order to improve the results, it is advisable to start with random values in the weights.
This may also pose problems to the training. If the values are too small, we may encounter
the same difficulties as above, while if the values are too high, in these cases where the
hidden activations are sigmoidal, all of them will be showing values close to 1 or to zero,
and with derivatives close to zero, which will stall the training as well. While the problem
is partially solved with the use of ReLU units, a more effective initialization can be applied
that depends on the type of activation and the size of each layer (Mishkin and Matas 2015).
These are the activation aware initializations, namely the Xavier (Glorot and Yoshua Bengio
2010) and He initializations (He et al. 2015) described below.

2.2.2 Activation Aware Initializations

Xavier Glorot and Yoshua Bengio proposed in Glorot and Yoshua Bengio (2010) an opti-
mal initialization for sigmoidal activations. This initialization consists of applying random
values to the weights of layer l distributed using a Gaussian distribution with standard devi-
ation 𝜎 = 1√

Dl−1
, that is, the variance of the distribution is set as the number of nodes of

the previous layer. This is commonly known as the Xavier initialization. They experimen-
tally show that this simple initialization produces good results in NNs with logistic and
hyperbolic tangent activations. Authors provide reasoning about the adequacy of their ini-
tialization, but they agree that many effects remain not understood. Nevertheless, He et al.
(2015) show that this initialization does not produce adequate results when the used acti-
vations for the hidden layers are ReLU, since they are not symmetric. They proposed a
modified initialization (known as He initialization) with standard deviation 𝜎 =

√
2

Dl−1
.

In their work, they test a NN with 30 layers and ReLU activations where their initializa-
tion results in convergence, but where the results with the Xavier initialization show a poor
convergence. The reasons for this are not fully understood (Kumar 2017).

2.2.3 MiniBatch Gradient Descent

The standard gradient descent (GD) method, also called batch descent method and defined
as the one that uses the whole data to compute the gradient, is quantitatively discussed

2.3 Regularization Techniques 45

against the stochastic gradient descent (SGD) (that uses one sample at a time) in Y. A.
LeCun et al. (2012). The GD method has several advantages. First, under some assump-
tions, the convergence of the algorithm is properly understood. Also, the conjugate gradient
approach (Shewchuk 1994) can be used to accelerate the convergence.

Nevertheless, the cost function landscape does not usually present a single minimum, but
it may have many local minima. A batch gradient descent will converge to the minimum,
which is closer to the initial position of the weights, which precludes finding the optimal
solution. On the contrary, the use of SGD translates into a poor (often called noisy) estima-
tion of the gradient, so at every iteration, the gradient will point to a different direction that,
on average, would be the same as the one computed by the batch method. This turns out to
be advantageous because it tends to avoid local minima, and it has been shown to converge
to better solutions.

Also, in some structures, if the convergence rate is high enough, the algorithm can be
adaptive, this is, if the distribution of the data changes with time (i.e. it is nonstationary),
an SGD may track these changes. The disadvantage of the SGD is also inherent to this noisy
convergence. Due to this, the convergence is not consistent in variance, that is, while the
expected solution of the SGD is the same as the one of the gradient descent if they converge
to the same minimum, the SGD will have a variance in the solution that depends on the
learning rate.

A natural solution that takes advantage of both methods is the use of mini batches
(Møller 1993; Orr 1996). This consists of computing the gradient with a fraction or mini-
batch of the data, then making an update, choosing another fraction, and repeating the
process until convergence. This reduces the noise, which provides a better convergence,
and it reduces the risk of local minima. Besides, conjugate descent or second-order
methods can be applied when using mini-batches. The methods described below usually
take advantage of mini-batch training.

2.3 Regularization Techniques

Any model’s overall performance depends on its ability to generalize any new input data
from the problem domain. In the case of convolutional neural network (CNN) and other
deep learning models, bias error, and variance significantly influence the model’s quanti-
tative performance. The bias error is an error from incorrect assumptions in the learning
algorithm and performs poorly on a training dataset. The algorithm fails to capture the rel-
evant relations between features and target outputs and causes underfitting due to high
bias. On the other hand, variance is an error from sensitivity to small fluctuations in the
training set. A high variance may result in modeling the training data’s random noise and
overfitting. In both these cases, the model does not perform well with new unseen test data.
A proper bias-variance trade-off is necessary to develop an optimal model that achieves bet-
ter generalization. Regularization is an essential technique in machine learning that can
prevent the model from overfitting and underfitting by minimizing these two sources of
error. We can address underfitting by changing the structure of the model so that it can
fit more types of functions for mapping inputs to outputs. It is more common to have an
overfit model since it is easier to identify and resolve an underfit model. An overfit model

46 2 Training Practicalities

can be diagnosed by either training the network on more samples or changing the model’s
complexity. The structure and parameters of a model define its complexity. The complexity
reduces when there is either a change in the number or the value of weights. The regular-
ization techniques penalize the coefficients of the features so that it will result in a simpler
network. For example, in some instances, the regularization coefficient is so high that some
weight matrices are nearly equal to zero. Thus, it reduces the significance of each feature
by keeping the same number of features.

2.3.1 L1 and L2 Regularization

The most popular ways of regularization are L2 and L1. The concept underlying regulariza-
tion is that smaller weights result in simpler models, which helps to minimize overfitting.
So, to produce a smaller weight matrix, these methods incorporate a regularization term
and add it to the loss function. The L2 regularization works by adding a norm penalty||W(l)||2F to the parameters of each layer (Hoerl and Kennard 1970). This corresponds to
the sum of squares of all feature weights to the loss function. The regularization rate 𝜆

is the hyperparameter (defined as non-trainable parameter) that weighs the regulariza-
tion term. The L2 approach pushes the weight to decrease but never to zero. This strategy
works best when all input attributes impact the output and all the weights are the same size
(A. Y. Ng 2004).

In the case of L2 regularization, when our training algorithm tries to minimize the new
loss function J(𝜃), it will lower both the original loss function JML(𝜃) and the regularization
term as

J(𝜃) = JML(𝜃) +
𝜆

2
∑

l
||W(l)||2F (2.1)

In linear estimators, this is known as also known as ridge regression (Shawe-Taylor and
Cristianini 2004; Hastie 2020), and it is a form of Tikhonov regularization (see Tikhonov
and Arsenin 1977).

We can calculate the gradient of the new loss function and incorporate it into the update
algorithm for the weights in the next step:

∇W(l)J(𝜃) = ∇W(l)JML(𝜃) + 𝜆
∑

l
W(l) (2.2)

The L1 regularization, also known as least absolute shrinkage and selector operator (Lasso)
regression (Tibshirani 1996), uses another regularization term ||W(l)||1, which is the sum
of the absolute values of the weight parameters in a weight matrix. Unlike L2 regulariza-
tion, this approach assigns zero weight to irrelevant input features and nonzero weight to
important input features.

J(𝜃) = JML(𝜃) + 𝜆
∑

l
||W(l)||1 (2.3)

The following expression is the result of the derivative of the new loss function obtained by
adding the gradient of the previous loss function and the sign of the weight value times 𝜆.

∇W(l)J(𝜃) = ∇W(l)JML(𝜃) + 𝜆
∑

l
sign(W(l)) (2.4)

2.3 Regularization Techniques 47

Choosing an appropriate value for 𝜆 is necessary to achieve the right balance between low
complexity and high accuracy. If a high value of 𝜆 is chosen, the solution will be simple,
but it will not contain sufficient information from the training data to produce efficient
predictions. When the value of 𝜆 is too low, the solution becomes increasingly complicated.
It retains too much information about the data specificities, and it will not make accurate
predictions on new data.

2.3.2 Dropout

Dropout regularization is a method in which specific neurons are deactivated randomly
with probability p during training (N. Srivastava et al. 2014). These randomly picked neu-
rons are dropped out and temporarily removed from the network for the current forward
pass, and no weight updates are made on the backward pass. During dropout, the remaining
neurons will search for alternative paths to pass the information and provide predictions
for the missing neurons. As a result, the network learns separate internal representations,
making it less sensitive to the specific weight of the neurons. A network of this type is more
generic and helps to minimize overfitting. For example, in Fig. 2.3a, the NN is fully con-
nected; hence, all the neurons are active. While using this model for training, some neurons
tend to memorize the patterns within the training data. Hence, without dropout, the model
does not generalize well to the test data. In Fig. 2.3b, dropout enhances the sparsity of the
network. This drives neurons to extract robust features from training data and also aids in
eliminating co-adaptations across neurons, allowing each neuron to function more inde-
pendently.

In this section, the dropout is formulated for the dense NNs presented in Chapter 1, but
the formulation can be straightforwardly adapted for any structure, in particular for the
convolutional models presented in Chapter 4.

The training of a NN with dropout is performed the following way. At each layer, a vector
r(l) with binary components r(l)j ∼ Bernoulli(p) is drawn at random from a Bernoulli distri-
bution. This vector acts as an inhibitor for the nodes such that the forward operation of this

(a) (b)

Figure 2.3 The network connections of a neural network before and after dropout regularization.
(a) Before dropout and (b) after dropout.

48 2 Training Practicalities

layer becomes

h̃(l) = r(l) ⊙ h(l)

z(l+1) = W(l+1)⊤h̃(l) = b(l+1)

h(l+1) = 𝜙
(
z(l+1)) (2.5)

This iteration is repeated in all layers. The values of r(l) are drawn once and kept constant for
all elements of a given mini-batch of data. Then the backpropagation is applied to the net-
work by using hidden outputs h̃(l) instead of the originals. This prevents nonselected nodes
from having their weights updated. New vectors r(l) are then generated and the operation
is repeated for all data mini-batches until the end of the training.

A NN trained like that is equivalent to training 2n different NNs, where n is the total
number of nodes of the original NN. Therefore, the test should be performed by averaging
the outputs of these NNs. However, this is not feasible because 2n is usually a very large
number. An approximation to this ensemble training consists of scaling the weights of every
node by factor p. The interpretation of this is that if a node is retained during training with
probability p, the expected output of this node is the same as the actual output at test time.

The dropout is usually combined with max-norm regularization, which is a form of regu-
larization that imposes that the maximum norm of the weight vector associated with each
node must be lower than a given constant. This constant must be cross-validated during
the training. This strategy usually improves the results over the generalization achieved by
dropout only.

2.3.3 Early Stopping

It is a regularization strategy in which one part of the training set is utilized as a valida-
tion set, this is, the model’s performance is measured using it (Bishop 2006). The network
fits the training data for each iteration and tests the model on the unseen validation data.
If the validation error worsens or remains the same for a particular number of iterations,
the model’s training immediately stops. Early stopping refers to this technique of stopping
the model’s training before it reaches the lowest training error (Prechelt 1998). Overfitting
during training causes the training error to decrease steadily, while the validation error also
reduces until a point and rises hereafter. Even if training continues after this moment, early
stopping effectively returns the set of parameters used at this stage and is thus comparable
to terminating training at that point. So, the final model will have the lowest variance and
better generalization. In contrast to L1 and L2 regularization, early stopping takes less train-
ing time. It is usually integrated into the experiment using the callbacks offered by popular
frameworks such as Pytorch, Keras, and TensorFlow.

2.3.4 Data Augmentation

Data augmentation refers to generating new training data samples and increasing the diver-
sity of the original dataset. In the case of images, primary data augmentation is done by
performing geometric transformations on data. Cropping, flipping, zooming, translations,
and blurring specific pixels in the original image generate the new image instances as shown

2.3 Regularization Techniques 49

in Fig. 2.5. Though geometric transformations can fix the positional biases in training data,
the lighting biases can only be fixed using color space transformations. Another quick color
space manipulation is to decrease or increase the pixel values by a constant value to change
highly bright or dark images. Another modification is to limit pixel values to a specific
minimum or maximum value. Deep learning-based data augmentation employs GAN (Ian
Goodfellow et al. 2020) and feature space augmentations. Generative modeling is the pro-
cess of constructing fake instances from a dataset that preserves comparable features to
the original set. GANs can create new training data, resulting in more robust classification
models. Feature space augmentation is commonly done using autoencoders and CNNs.
Autoencoders extract latent representations and add noise to them so that it results in
the transformation of the data. In the case of CNN, feature space augmentation can be
accomplished by separating the vector representations. Consequently, adding more data
will make it more difficult for the network to drive the training error to zero. The resultant
model has reduced variance and more generalization capability on test data (Taylor and
Nitschke 2018).

Example 2.3.1 (Image data augmentation)
In this example, the CIFAR10 database (Krizhevsky 2009) is used to perform data augmen-
tation to artificially increase the size of the training data. The CIFAR-10 dataset contains
60,000 images at low resolution as shown in Fig. 2.4, and they are in color, so each image
has three channels corresponding to the R, G, and B colors. The images are labeled in 10
different classes or categorical values, corresponding to the objects that they contain, which
are airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck. They are divided

Figure 2.4 Some images from the CIFAR10 dataset in their original resolution of 32 × 32 pixels.

50 2 Training Practicalities

in 50,000 images for training and another 10,000 for test. Here additional training images
are created by using geometric operations with rotation range of 359∘, horizontal flip, width
shift range of 0.1, height shift range of 0.1, and zoom range equal to 0.1. A few sample images
after this data augmentation are shown in Fig. 2.5.

Figure 2.5 Data augmentation on the CIFAR10 dataset.

2.4 Normalization Techniques

The main aim of normalization is to create a set of features that are on the same scale as
each other. When the data is not normalized, it makes the network drastically harder to
train and decreases its learning speed.

Hence, normalizing inputs to the model aids in improving model performance. However,
normalizing the inputs to intermediate layers is more challenging than normalizing the
model’s inputs since the activations are dynamic. It is also computationally expensive to
repeatedly calculate statistics over the entire training data.

Batch normalization (Ioffe and Szegedy 2015) is a technique for training deep NNs that
standardizes the inputs to a layer for each mini-batch. This technique helps to reduce the
internal covariate shift (Shimodaira 2000), which refers to the phenomenon where the
distribution of network activations changes across layers due to the change in network
parameters during training. Generally, batch normalization layers are inserted after a con-
volutional or fully connected layer. Since it is done along mini-batches instead of the entire
data set, it serves to speed up training and has the effect of stabilizing the learning process
(Santurkar et al. 2018).

2.4 Normalization Techniques 51

While performing batch normalization, we first calculate the mean and variance of the
mini-batch for the forward pass. The normalization of the data using these mini-batch
statistics is performed by subtracting the mean from the data and dividing it by the standard
deviation. Finally, two learnable parameters are used to scale and shift this data.

In a CNN (see Chapter 4), at layer l, the linear output Z(l) is a multidimensional instead
of a vector. Let us assume that the batch normalization is performed over a mini-batch of
size M. First, the mean for each component of the array is computed as

M = 1
M

M∑
i=0

Z(l)
i (2.6)

Then, for every component z(l)ik of the arrays Z(l)
i , the variance is computed as

𝜎2
k = 1

M

M∑
i=0

(z(l)ik − mk)2 (2.7)

and the component is normalized with the mean and the variance

ẑ(l)ik =
(z(l)ik − mk)

𝜎2
k + 𝜀

(2.8)

where 𝜖 is a small number added for stability.
The primary drawback of batch normalization is that it requires bigger batch sizes dur-

ing training to successfully estimate the population mean and variance from the mini-
batch since it calculates the batch statistics in every training iteration. It is computationally
expensive to operate with high input resolution and train with bigger batch sizes for tasks
like object recognition, segmentation, and 3D medical image processing. Second, despite
reducing the total number of iterations needed for convergence, the per-iteration time has
increased while using batch normalization. Additionally, it is also unsuitable for online
learning since the data may arrive individually or in batches during test time. Due to this,
there is a change in batch size at every iteration. It leads to poor scale and shift parameter
generalization, which eventually reduces the performance. Furthermore, with recurrent
NNs (Rumelhart et al. 1986) (see Chapter 5), batch normalization does not perform well.
The issue is that these networks would require distinct parameters 𝛽 and 𝛾 for each timestep
in the batch normalization layer. Since they have a recurrent relationship to earlier times-
tamps adding a batch normalization layer increases complexity during training. Later, in
the following years, several alternatives such as layer normalization (J. L. Ba et al. 2016),
instance normalization (Ulyanov et al. 2016), group normalization (Y. Wu and He 2018),
and many others were introduced to mitigate the drawbacks of batch normalization.

During batch normalization, statistical parameters are calculated for both the batch and
the spatial dimensions (height and width of the image). In contrast, the mean and variance
are calculated for all channels and spatial dimensions during layer normalization. Hence,
eliminating reliance on batches improves the drawbacks of batch normalization and makes
it easier to use with recurrent structures.

Instance normalization, also known as contrast normalization, was used instead of batch
normalization for real-time image generation for style transfer (Jing et al. 2020). The nor-
malization method allows the elimination of instance-specific contrast information from an
image while performing style transfer. It normalizes over the width and height of a single

52 2 Training Practicalities

sample’s feature map. As a result, this minor modification to the stylization structure results
in a large qualitative improvement in the generated images. Furthermore, unlike batch nor-
malization, instance normalization can be implemented at test time as it is not dependent
on mini-batch.

Group normalization divides the channels into groups, computes mean and variance
along spatial dimensions, and a group of channels. The number of groups G is a hyperpa-
rameter that is normally necessary to partition channels C. When G = C, indicating that
each group has just one channel, group normalization becomes instance normalization;
when G = 1, it becomes layer normalization. Hence, group normalization interpolates
between layer and instance normalizations. Layer normalization assumes that all channels
in a layer contribute equally. Group normalization, on the other hand, is more adaptable
since it enables different distributions to be learned for each group of channels. It is also
superior to instance normalization, which fails to utilize channel dependency and only
normalizes across each sample for each channel.

2.5 Optimizers

The optimization of convolutional structures (Chapter 4), as well as the MLP in Chapter 1,
has been described above as a simple gradient descent where the optimizer computes an
approximation to the gradient of the cost function and then updates the weights in the
direction opposite to this gradient with the purpose of moving it to a position closer to a
cost function minimum. This method was first described in Robbins and Monro (1951),
and it has been used in a myriad of different learning machines. The scholarship about
the topic tends to distinguish between GD, where the gradient is estimated with the whole
batch of data, and SGD where the gradient is estimated based on the use of one sample at a
time (Y. A. LeCun et al. 2012).

Probably, the first learning machine to use an SGD approach was the Adaline, introduced
in 1960 by Widrow and Hoff (1960). The device (Fig. 2.6) had essentially the structure of a
neuron with a sign detector as nonlinear activation, and it was similar to the perceptron,
except that this device used a gradient descent in its training. The LMS algorithm, sum-
marized in Section 1.2.4, became universally used in linear adaptive filtering structures
(S. Haykin 1996). While that form of gradient descent was very simplistic, the more com-
plex form of gradient descent method called backpropagation, introduced in Sections 1.5.3
and 4.3.2, has been used with great success in many NN approaches and structures (see,
for example, Y. LeCun et al. (1989), Geoffrey E. Hinton and R. R. Salakhutdinov (2006) or
Graves et al. (2013) as examples of highly successful contributions).

Although gradient descent methods have been widely used in the DL literature, there is a
need for speeding up the learning processes, mainly when the structures are highly complex
and when a large number of data is used for the training. Also, these methods tend to have
decreased performance when the input data is noisy. Gradient descent is essentially based
on a first-order approximation of the cost function around the parameter vector. Second-
order methods, or methods that, roughly speaking, use a second-order approximation of the
cost function surface through the computation of the Hessian matrix of the cost function
(D. C. Liu and Nocedal 1989; Byrd et al. 2011; Bollapragada et al. 2018) were introduced in

2.5 Optimizers 53

Figure 2.6 Photograph of the Adaline developed at the Stanford Electronics Laboratory at the
University of Stanford in 1960. This is possibly the first electronic learning device to use a gradient
descent approach. Source: Widrow and Hoff (1960).

machine learning to speed up the process, although they may be ill-posed in situations with
many data or parameters and, in general, they require a higher computational power. There-
fore, in the last decade, some first-order approximations have been proposed that became
very popular among DL practitioners. The methods are summarized later.

2.5.1 Momentum Optimization

The momentum optimization (B. T. Polyak 1964) can be understood if one thinks of the
gradient descent as a particle that moves over the surface of the error in the direction of
the steepest descent. If we ignore the aspects related to the position, velocity, and accelera-
tion units, the gradient can be thought of as an instantaneous change in the velocity of the
particle. If the gradient is zero, the particle will not move.

This mechanical analogy is useful for interpreting momentum optimization. Assume that
the particle has a certain mass and that at every update, the optimizer gives an impulse to
the particle, thus increasing its speed. Assume that the particle has an initial velocity vector
v0, and assume without loss of generality that the set of weights to update are arranged in a
vector w. If a gradient∇w J(w) is computed with respect to a mini-batch of training samples,
the particle velocity at optimization iteration k can be written as

vk = vk−1 − 𝜇∇w J(wk) = v0 −
k∑

k′=0
𝜇∇w J(wk′) (2.9)

The gradient plays the role of acceleration, and the integral of this quantity determines the
relative position from a given initial one. Notice that, in this situation, if the gradient has
always the same sign, the particle accelerates. Therefore, we need to model a viscous friction
component proportional to the speed, so that when no impulses are applied to the particle,

54 2 Training Practicalities

its velocity will asymptotically vanish. The model of this particle decreases its velocity in a
quantity proportional to itself at every iteration. This is

vk = 𝛾vk−1 − 𝜇∇w J(wk) (2.10)

The position of the particle at iteration k is the integral of the above velocity, this is

wk+1 = w0 +
k∑

k′=0
vk′ = wk + vk (2.11)

This produces a convergence that is more stable than the original SGD optimization
because the particle tends to keep a direction similar to the one of the previous step, and
the changes are parsimonious.

2.5.2 Nesterov-Accelerated Gradient

When using the momentum optimization, if the particle arrives at the minimum, it will
not stop until the gradient changes its direction. At this point, it will go back, and it will
keep moving with a vanishing oscillatory movement. It is desirable to modify this algorithm
so that when the oscillation appears, it vanishes faster. The Nesterov-accelerated gradient
descent tackles this problem by looking at the gradient one step ahead. Assume that at a
given point, the velocity vector is vk. With this velocity, the update of the weight vector
would be

w̃k+1 = wk + vk (2.12)

The strategy consists of updating the velocity vector with the gradient computed at that
position, rather than computing it at the present position. The updating equations are

vk = 𝛾vk−1 − 𝜇∇w J(w̃k)

wk+1 = wk + vk (2.13)

Essentially, the algorithm updates the velocity with the gradient ahead of its actual posi-
tion, which decreases the velocity if this gradient is smaller, thus stopping at the minimum
faster than with the momentum gradient. The name of the algorithm is due to Yuri Nesterov,
who introduced the algorithm in 1983 (Nesterov 1983), but it was first used and analyzed
in deep learning in article by Sutskever et al. (2013).

2.5.3 AdaGrad

The adaptive gradient (AdaGrad) is the basic implementation of a family of subgradient
methods presented in algorithm (Duchi et al. 2011) that take into account the geometry
of the cost function of previous iterations in order to incorporate them into the optimiza-
tion. The underlying idea comes from the fact that in gradient descent, when the algorithm
encounters features that are dense (i.e. that appear frequently), the update as a response
to these features will be faster than for those features that are sparse (i.e. that appear more
rarely).

The AdaGrad algorithm adapts the learning rate to each one of the parameters as a func-
tion of the norm of the gradient at each one of these parameters. Specifically, the algorithm

2.5 Optimizers 55

first computes the gradient with respect to all parameters, and then it computes the accu-
mulated square value of each component of the gradient as follows:

gk = gk−1 + ∇w J(wk)⊙ ∇w J(wk) (2.14)

Since operator ⊙ performs an elementwise product of the gradient, the result is a vector
containing the square values of the elements of this gradient. Then, this vector is used ele-
mentwise to update each one of the parameters wi,k in wk as

wi,k+1 = wi,k −
𝜇√

gi,k + 𝜀

[
∇w J(wk)

]
i (2.15)

where
[
∇w J(wk)

]
i =

d
dwi

J(wk) is the ith element of the gradient vector, and 𝜀 is a small
number that is used for numerical stability.

The Adadelta algorithm (Matthew D. Zeiler 2012) is similar to the AdaGrad one, where
the learning rate 𝜇 is changed by an average of the squared gradient of the weight. This way,
when the gradient is high, this produces a fast convergence, and when the weights are close
to the optimum, the convergence gradually slows down, leading to a faster convergence and
better stability than SDG.

2.5.4 RMSProp

As pointed out in (I. Goodfellow et al. 2016), however, using a learning rate that accumu-
lates squared gradients from the beginning of the training can produce a very slow learning
speed, and then it may be inadequate for deep learning algorithms. Indeed, the AdaGrad
algorithm has a learning rate that decreases monotonically with time, which will end up in
a learning rate that tends to zero, thus stalling the learning if the number of training epochs
is sufficiently large. A variant more suitable for deep learning, where the number of epochs
may be considerable, is the root mean square propagation (RMSProp) algorithm, introduced
in 2012 by Geoffrey Hinton in a series of deep learning lectures (Geoffrey E. Hinton et al.
2012a). The idea in RMSProp is to allow the algorithm to forget about the squared gradients
of remote time instants, which is done through a forgetting factor 𝛾 < 1. The modification
of the algorithm is thus very simple, and it consists of computing the accumulated squared
gradient through an exponential decay window. This is

gk = 𝛽gk−1 + (1 − 𝛽) ∇w J(wk)⊙ ∇w J(wk) (2.16)

where if 𝛽 = 1, the algorithm only takes into account the square value of the last gradient,
thus forgetting everything about the past gradients. If 𝛾 = 0, the algorithm is identical to
the AdaGrad one.

2.5.5 Adam

The adaptive moment estimation (Adam) algorithm (Kingma and J. Ba 2014) can be seen
as a combination of the momentum and the RMSProp algorithms. Specifically, the first
algorithm computes the update of the algorithm in a similar way as in (2.10)

vk = 𝛽1vk−1 + (1 − 𝛽1)∇w J(wk) (2.17)

56 2 Training Practicalities

where 𝛽1 < 1 plays the role of a forgetting factor or exponentially decaying window.
Then, the accumulated squared gradient is computed as in Eq. (2.16) of the RMSProp
algorithm.

gk = 𝛽2gk−1 + (1 − 𝛽2)∇w J(wk)⊙ ∇w J(wk) (2.18)

Then, these two magnitudes are biased

ṽk =
vk

1 − 𝛽k
1

g̃k =
gk

1 − 𝛽k
2

(2.19)

The justification for this bias is related to its initialization. Assume, for example, that
the gradient has a constant value v in Eq. (2.18). In this case, we want that vk = v at all
iterations k, but, by iterating Eq. (2.18), it is straightforward to see that if ∇w J(wk) = v,∀k,
then vk =

(
1 − 𝛽k

1
)

v, which asymptotically converges to v and therefore, it is sufficient by
dividing vk by 1 − 𝛽k

1 to make it constant.
Finally, each element of the weight vector wk is updated as

wi,k+1 = wi,k − 𝜇
v̂i,k√

ĝi,k + 𝜀

(2.20)

The authors of the algorithm suggest in Kingma and J. Ba (2014) to set the parameters
at values 𝛽1 = 0.9, 𝛽2 = 0.999, and 𝜀 = 10−8. The robustness of this choice is shown in a
variety of experiments. However, in some circumstances, these values may need to be cross-
validated.

A variant of this algorithm is the Nesterov-accelerated adaptive momentum estimation
(Nadam) algorithm (Dozat and Adam 2016). It is a modification of the Adam optimizer that
includes the Nesterov method.

2.5.6 Adamax

In the Adam algorithm, the term gk accumulates the history of the squared elements of
the gradient, whose square root is later used to inversely proportionally weight the gradient
of the parameters. A generalization of the algorithm could be to use an Lp norm, which
is the pth power of the components of the gradient. Nevertheless, this method will lead to
instability if p is too large, except if p tends to infinity. First, we redefine components gi,k of
gk by changing power 2 by power p and rewrite it in a convenient way.

gi,k = 𝛽2gp
i,k−1 − (1 − 𝛽

p
2)
|||||dJ(wk)

dwi,k

|||||
p

= (1 − 𝛽
p
2)

k∑
j=1

𝛽
p(k−j)
2

|||||
dJ(wj)

dwi,j

|||||
p

(2.21)

Then we define update ui,k as the limit when p tends to infinity of the update of its inverse.

ui,k = lim
p→∞

(
(1 − 𝛽

p
2)

k∑
j=1

𝛽
p(k−j)
2

|||||
dJ(wj)

dwi,j

|||||
p)1∕p

2.5 Optimizers 57

= max

(
𝛽 t−1

2

|||||dJ(w1)
dwi,1

||||| ,… , 𝛽2

|||||dJ(wk−1)
dwi,k−1

||||| ,
|||||dJ(wk)

dwi,k

|||||
)

(2.22)

which leads to the simpler expression

ui,k = max

(
ui,k−1,

|||||dJ(wk)
dwi,k

|||||
)

(2.23)

with what we can construct the Adamax update as

wi,k+1 = wi,k − 𝜇
v̂i,k

ui,k + 𝜀
(2.24)

The justification of these two equations is left as an exercise for the reader.

Example 2.5.1 (Comparison between SGD and Adam)
In order to compare the standard SGD to the Adam methods, a toy example is constructed
where the Beale function is used to simulate a cost function. This bivariate function was
introduced by Beale (1955) in order to experiment with different optimization algorithms.

The function is defined as

L(w1,w2) = (a − w1 + w1w2)2 + (b − w1 + w1w2
2)

2 + (c − w1 + w1w3
2)

2 (2.25)

with a = 1.5, b = 2.25, c = 2.2625. The shape of this function is shown in Fig. 2.7

–2
0

2
4 –2

–1

0
1

2
3

2500
5000
7500
10,000
12,500
15,000
17,500

w1

w2

Figure 2.7 Representation of the Beale function.

The function has a minimum around the point (2.5, 1.5) invisible in this figure. Figure 2.8
shows a contour plot of the surface, where the minimum can be seen. The continuous line
shows the evolution of the gradient descent during 100 iterations with a value of the learn-
ing parameter 𝜇 = 0.1. The Adam algorithm (dotted line) has been tested on this surface

58 2 Training Practicalities

–3 –2 –1 0 1 2 3 4 5
–2

–1

0

1

2

3

w1

w2

Figure 2.8 Evolution of the gradient descent (continuous line) and Adam (dotted line) algorithms.

with 𝜇 = 0.3, 𝛽1 = 0.9, 𝛽2 = 0.999, 𝜀 = 10−8. It can be seen that the Adam algorithm is more
parsimonious in this example, which makes it less prone to instability.

2.6 Conclusion

The idea of gradient descent introduced in Chapter 1 is the key to training most of the
DL models presented in this book, and it is widely used as a training procedure in arti-
ficial intelligence (AI). Nevertheless, this technique is not sufficient to produce satisfac-
tory test results. First of all, the practitioner has to deal with the overfitting phenomenon
that is present in all learning machines and it increases when the complexity of the data
increases and when the number of training samples is low in relationship with the num-
ber of parameters of a machine (see e.g. (Vapnik 1998)). Also, the likelihood cost func-
tion that is used as a criterion to optimize is almost always guaranteed to have multiple
local minima and finding one that produces test results sufficiently accurate for the prob-
lem at hand is not straightforward. This chapter has presented the main technologies that
are in use in order to overcome these difficulties, which are usually applied in the order
for this chapter, namely, parameter initialization, data normalization, regularization, and
optimization.

Problems 59

Problems

2.1 In order to experiment with overfitting, construct a binary classification problem.
The training data of each class consists of a pair of N∕2 points drawn from two
Gaussian distributions with dimension D with means m1 and m2 and covariances 𝜎2I,
where 𝜎2 = 0.5 ∥m1 − m2∥2.

Measure the overfitting of a binary classifier trained as in Example 2.2.1 for various
values of N and D between 2 and 1000. The overfitting can be measured as the difference
between the training error and the test error.

2.2 Use the code corresponding to Example 1.5.4 to implement the Xavier initialization of
Section 2.2.2. Compare the results to other initializations as a Gaussian random initial-
ization with unitary variance. What other initialization may be used and how do they
compare to the Xavier initialization?

2.3 Repeat Problem 2.1 but with the use of L1 and L2 regularization for various values of 𝜆
and comment on the differences.

2.4 Justify Eqs. (2.22) and (2.24). For the first one, use the fact that

lim
p→∞

(k∑
j=1

|xi|p
)1∕p

= max (|x1|,… , |xk|)
which is, by definition, the L∞ norm of vector x with components x1,… , xk. The second
equation can be justified by analyzing its recursion.

2.5 Use the code corresponding to Example 2.5.1 to implement and test the rest of the
optimizers in Section 2.5.1.

2.6 Use the code corresponding to Example 1.5.4 to apply the optimizers implemented in
Problem 2.5 in a simple neural network with the data provided in the example.

61

3

Deep Learning Tools

3.1 Python: An Overview

Python is a high-level object-oriented dynamic programming language developed by
Guido van Rossum and first released on February 20, 1991. It provides a well-defined
syntax designed to give emphasis on code readability and to demonstrate concepts in fewer
lines of code. Python programming can be done in both interactive mode and script mode.
The interactive mode is suitable for testing and debugging a few lines of code. It runs in
the Python shell that is accessible from the terminal of the operating system. The script
mode is used for larger applications, and it requires you to create a file with a.py extension
to run the code.

Python is an extendable language. This property allows interfacing Python with libraries
written in other languages such as C/C++. It converts the program into byte code, and any
platform can add or modify this code to improve efficiency. Python also allows easy error
checking compared to other languages such as C/C++. The datatypes used in Python are
dictionaries and arrays, which are more flexible and higher level. The main advantage of
Python is that it offers a wide spectrum of libraries that are compatible with multiple plat-
forms such as UNIX (as MAC OS), Windows, and Linux. It provides a vast range of libraries
for various fields such as Web Development, Data Science, Machine Learning, Mathemat-
ics, and Statistical Programming. Python also supports graphical user interface (GUI) pro-
gramming across different cross-platform frameworks. The available toolkits for developing
GUIs are PyQT5, Tkinter, and WxPython. Python is an open-source programming language
that is freely usable and distributable from its official website www.python.org.

The installation of Python is the basic step if you are a Python programmer. There are
several methods that can be used for the installation of the Python package. The installa-
tion process varies depending on the type of operating system you are working on. Based on
whether you have Windows, Mac OS, or Linux/UNIX OS, the step for installation varies.
This section gives an overview of the installation of Python on different platforms. The offi-
cial Python distributions and the different versions can be downloaded from python.org.
There are multitudes of specialized packages or distributions depending on the area of
interest. For example, there are specific distributions that can be used for applications on

Deep Learning: A Practical Introduction, First Edition.
Manel Martínez-Ramón, Meenu Ajith, and Aswathy Rajendra Kurup.
© 2024 John Wiley & Sons Ltd. Published 2024 by John Wiley & Sons Ltd.
Companion website: https://github.com/DeepLearning-book

www.python.org
https://github.com/DeepLearning-book

62 3 Deep Learning Tools

embedded systems, machine learning, and the Internet of Things. However, official distri-
butions are preferable if you are starting to learn Python.

In this section, the programming fundamentals of Python are discussed. Here, we cover
the understanding of the data types, the complex data structures used, conditionals, loops,
functions, and object-oriented programming basics. In further sections of the chapter, we
introduce the basic libraries, packages, and functions that are useful for data analysis, data
processing, data visualization, and the implementation of machine learning algorithms.
Later we move on to advanced libraries for deep learning such as Tensorflow, Keras, and
PyTorch. Throughout the chapter, these tools are used to familiarize with the structural
framework and working of a basic neural network.

3.1.1 Variables

They are used to store data values in reserved memory locations. The variables are assigned
using an equal sign (=) to a data type. Since Python is a dynamically typed programming
language, it is not required to declare the variable type before using it. Python’s basic vari-
ables comprise numbers, lists, tuples, strings, and dictionaries. The variables supported by
Python are as follows:

Numbers: The commonly used numbers consist of integers, floating point numbers, and
complex numbers.

mynum = 1 #assigning an integer.
myfloat = 1.0 #assigning a floating point.
mycomplex = 2+5j #assigning a complex number.

Lists: It is a collection of ordered elements separated by commas, enclosed in square
brackets [].

a_list = [5, 6, 7, 8] #defining a list.

The items in a list can belong to different data types. Hence, the list can also include
another list as an element, thereby forming a nested list.

b_list = [’hai’, 3.5, 10] #a list with different data types
c_list = [5.8, [4,5,9], 15] #a nested list

The elements in a list can be extracted by using square brackets. Since Python facili-
tates negative indexing, the last element of the list can be extracted by using the index
[−1] and the second last using [−2] and so on. Further, multiple list elements can be
extracted using the slicing operator : (colon).

d_list = [1,3,5,7]
print(d_list[2]) #outputs the value 5
print(d_list[-1]) #outputs the value 7
print(d_list[1:3]) #output values [3, 5, 7]
e_list = [1,4,[8,12]]
print(e_list[2][1]) #outputs the value 12 from the nested list

3.1 Python: An Overview 63

Output:

5
7
[3, 5]
12

The elements of the list can be modified, the order of the values can be changed and each
individual value can be replaced even after creating the list. Hence, lists belong to the
category of mutable data types. However, due to its mutable nature, Python allocates an
extra memory block to allow the extension of its size.

f_list = [2, 4, 6, 8, 10]
f_list[0] = ’hai’
print(f_list) #outputs the list [’hai’, 4, 6, 8, 10]

Output:

[’hai’, 4, 6, 8, 10]

Finally, the list also allows the user to add and remove elements easily.

g_list = [10, 20, 30, ’first’, ’second’]
del g_list[4]
print(g_list)# outputs the list [10, 20, 30, ’first’]
g_list.remove(20)# removes 20
print(g_list)
h_list = [1, 2, 3]
h_list.extend([4,5])# add each element to the list and extend it
print(h_list)
h_list.append([4,5])# adds one element to the end of the list
print(h_list)

Output:

[10, 20, 30, ’first’]
[10, 30, ’first’]
[1, 2, 3, 4, 5]
[1, 2, 3, 4, 5, [4, 5]]

Tuples: It is an immutable data type that cannot be modified after it is created, unlike lists.
Hence, it can be used for memory-efficient programming. All the elements of a tuple are
placed inside parentheses () separated by commas. A tuple consists of ordered elements,
and it also allows different data types as its elements. The below code shows how to define
a tuple and its memory efficiency over a list.

import sys
tuple_one = (3,6,7,1.9, ’hai’, [3,4], (8,10,12))# defining a tuple.
list_one = [3,6,7,1.9, ’hai’, [3,4], (8,10,12)]# defining a list
print(sys.getsizeof(tuple_one)) #outputs the size of tuple in bytes
print(sys.getsizeof(list_one)) #outputs the size of list in bytes

Output:

96
112

64 3 Deep Learning Tools

A tuple can also be created without using parenthesis, and each element can be
accessed using square tuple elements.

tuple_two = 4, 3
u,v = tuple_two
print(u) #outputs 4
print(v) #outputs 3
tuple_three = (5,6,7, 8, 9,10, 11)
print(tuple_three[0]) #outputs 5
print(tuple_three[3:5]) #outputs (8, 9, 10)
tuple_three[0] = 2
#It causes an error.
#The elements in a tuple cannot be changed once it is created.

Output:

4
3
5
(8, 9)
TypeError: ’tuple’ object does not support item assignment

Strings: These are sequences of characters enclosed using single or double quotes. The
character at each index position can be extracted by using square brackets []. Strings are
also immutable and hence cannot be changed after it is created.

a = ’hai’ #defining a string
b = "hai"
str_one = ’welcome’
str_two = ’all’
str_three = str_two[0] #extracts the character ’a’ from position 0
str_four = str_one + str_two
print(str_four) #outputs the concatenation of two strings

Output:

welcomeall

Sets: It represents a group of unordered elements separated by commas inside curly braces
{} without any duplicates. A set can have any number of elements belonging to different
immutable data types (integer, float, string, tuple, and boolean), whereas mutable data
types (lists, dictionaries, and sets) generate an error. Further, it does not allow slicing and
indexing since there is no order associated with the elements.

set_item = {3,66,87,5,448} #defining a set.
set_item1 = {5, 4.2, ’hai’, True, (1, 2, 3)} #set with immutable data

types.
set_item2 = {1, 4, [7, 9]}
#Here [7,9] is a list that is a mutable data type.
#Hence it will cause an error.

Output:

TypeError: unhashable type: ’list’

3.1 Python: An Overview 65

Dictionaries: It is a collection of elements represented as key-value pairs separated using
the colon operator and placed inside curly braces {}. Each element is separated by
commas and has a key and a corresponding value associated with it. Here the keys are
immutable data types whereas values can belong to any data type. The curly braces
without any elements correspond to an empty dictionary. To access each element of
a dictionary, the keys are used along with the square brackets. Since dictionaries are
mutable, we can easily add and remove element values to it.

diction = {’number’:23, ’name’:’Tom’,’age’: 16} #define a dictionary
the_diction = {} #empty dictionary
print(diction[’age’]) #outputs the value corresponding to the key ’age’
diction[’name’] = ’Harry’
print(diction) #outputs the new dictionary
del diction[’age’]
print(diction) #outputs the new dictionary
print(diction.pop(’name’)) #removes the value corresponding to key ’name

’ from the dictionary

Output:

16
{’number’: 23, ’name’: ’Harry’, ’age’: 16}
{’number’: 23, ’name’: ’Harry’}
Harry

Example 3.1.1 (Manipulating lists and dictionaries)
Create a list, t1= [’Germany’, ’George’, ’Sam’, ’Italy’, 30, 90].

1. Extract the zeroth, second, and fifth elements from the given list and print them.
2. Add these elements to the keys in the dictionary, diction1 = ’Country’: [], ’Name’: [],

’Age’: []and print the dictionary.

3.1.2 Statements, Indentation, and Comments

Statements are the executable instructions written in the Python source code. The differ-
ent types of statements include print statements, assignment statements, conditional state-
ments, etc. In the case of print statements, when Python executes the statement in the
command line it outputs a value, whereas an assignment statement does not display the
result. Multiline statements represent the line continuation using parentheses (), braces {},
square brackets [], semi-colon (;), and continuation character slash (∖).

print(’Welcome’) #print statement
a = 10 #assignment statement
b = 1 + 2 + 3 + \
5 + 6 + 7 + \
8 + 4 #multiline statement
elements=[’air’, ’water’, ’earth’,
’wind’, ’fire’]

Output:

Welcome

66 3 Deep Learning Tools

A block consists of a group of statements used for a defined task. Python uses indentation
to indicate this block of code. Generally in C, C++, and Java curly braces are used to high-
light a particular block of code, whereas Python uses whitespaces to indent the statements.
The indentation moves the statements to the right using the same number of whitespaces
for the same block of code.

if a < 0:
print(’Negative number’)

elif a == 0:
print(’Neither positive nor negative’)

else:
print(’Positive number’)

Output:

Positive number

if 10
print(’10 is divisible by 2’)

print(’10 is a multiple of 2’) #Indentation error

Output:

IndentationError: unexpected indent

In Python, single-line comments are denoted using the hash symbol #, whereas, for mul-
tiline comments, the # is used before each line. A multiline string enclosed in triple quotes
either “’ or “”” is yet another way to represent multiline comments.

#The hash symbol is used for single-line comments.
print(’Welcome to Python Coding’)
"""
The triple quotes denote a multiline comment.
It is commonly used when we need to give a brief description of the code.
"""
print(’Welcome to Python Coding’)

Output:

Welcome to Python Coding
Welcome to Python Coding

3.1.3 Conditional Statements

In Python, decision-making is done after evaluating certain conditions while executing a
program. The ‘if’ statement is used to evaluate whether the boolean expression is True or
False. When the statement is false, the else or the elif statement is executed.

a = 1
if a == 2:

print(’Even prime number’)
elif a == 3:

print(’Odd prime number’)
else:

print(’Neither prime nor composite number’)

3.1 Python: An Overview 67

Output:

Neither prime nor composite number

3.1.4 Loops

They are used to iterate over the same block of code multiple times. The commonly used
iterators are for loop and while loop. The for loop iterates over a sequence of numbers until
the last element of the sequence is reached. The range function can be called in several
ways, while it is used in the for loop. In the first example, it is range (stop number).

for i in range(2):
print(i)

Output:

0
1

Here the format of the range function is range (start number, stop number).

for j in range(6,10):
print(j)

Output:

6
7
8

Finally, in the below example, the range function used in the for loop has the start num-
ber, stop number, and increment value.

for k in range(2,10,3):
print(k)

Output:

2
5
8

On the other hand, the while loop executes and iterates over the code, only if the condi-
tional statement is true.

a = 1
while a <= 5:

print(a)
a = a+1

Output:

1
2
3
4
5

68 3 Deep Learning Tools

The loop also has control statements such as break, continue, and pass. As shown below,
a loop can be terminated using a break statement.
num = [2,4,6,8,10]
for i in num:

if i == 6:
break

print(i)

Output:
2
4

The continue statement skips the rest of the loop during the current iteration and pro-
ceeds to execute the next iteration.
for k in range(5):

if k == 3:
continue

print(k)

Output:
0
1
2
4

A pass statement on the other hand is a null operation used as a placeholder for future
functionality.
seq = [’h’,’e’,’l’,’l’,’o’]
for j in seq:

pass
#Acts as a placeholder for code that will be implemented in the future.
#An empty for loop can generate an error.

Example 3.1.2 (For loop example for creating patterns)
Use a nested ’for’ loop to create a full diamond of stars ’*’. Initialize n= 5 to create a diamond
that looks like the pattern shown below:

*
* * *

* * * * *
* * * * * *
* * * * *

* * *
*

The first step is to use 1 outer loop and 2 nested loops to print the upper triangle. In this
case, the outer loop is used to iterate the rows and the first nested loop handles the number
of spaces, whereas the second nested loop is used for printing the star patterns. These steps
need to be repeated to print the lower triangle. Later, change the n values to see how the
diamond grows bigger for larger values of n.

3.1 Python: An Overview 69

3.1.5 Functions

It is a reusable block of code that is used to perform a specific task. Functions make the code
more structured and help to eliminate repetitions. Every function starts with the keyword
‘def’ followed by a function name. Next, we can either pass the parameters to the function
or avoid this step. Following this, the body of the function is defined with an optional return
value toward the end.

def addition(a,b): #function name and parameters.
out = a+b #function body.
return out #return value of the function.

#Here the function definition ends.
#Note the indentation change from the next line.
a = 10
b = 40
out = addition(a,b)
print(out)

Output:

50

A variable can be defined inside as well as outside the function, which further defines
the scope of the variable. When it is defined inside a function, it has a local scope whereas
when it is outside the function it has a global scope.

global_name = ’Harrison’ #variable with global scope.
def new_func():

local_name = ’Harry’#variable with local scope.
print(local_name)

new_func()
print(global_name)

Output:

Harry
Harrison

3.1.6 Objects and Classes

Python uses an object-oriented programming model to design and represent a program
using objects and classes. A class is a user-defined design of the object whereas an object is a
group of variables and functions that form an instance of the class. This process of declaring
an object is called instantiation.

The body of a class consists of two main elements named attributes and methods.
Attributes correspond to the properties of an object and methods are the functions that
represent the behaviors of an object. For example, we can define class as a prototype
of a smartphone that has different attributes such as brand, color, camera, and storage.
The methods would be the activities carried out using a smartphone such as making
phone calls, sending text messages, playing games, and the object corresponds to the
smartphone.

70 3 Deep Learning Tools

class Smartphone: #Defining the object.
def _ _init_ _(self, brand,storage):

self.brand=brand #Attribute defining the property of the object.
self.storage=storage #Attribute defining the property of the

object.

def capacity(self): #Method defining the behavior of the object.
if self.storage >= 512:

return ’Large Storage’
elif (self.storage < 512) & (self.storage > 128):

return ’Average Storage’
else:

return ’Low Storage’
phone1 = Smartphone(’EyePhone’,256)
space = phone1.capacity()

print(phone1.brand)
print(phone1.storage)
print(phone1.brand, ":",space)

Output:

EyePhone
256
EyePhone: Average Storage

In the above example, we have created a class to denote smartphones. Unlike functions
that use the ‘def’ keyword, a class definition is created using the keyword ‘class’. This is
followed by the name of the class beginning with a capital letter. Next, we have the __init__()
method that is used while creating a new instance of this class. This method passes different
variables to initialize the state of the object. The first attribute of the __init__() method
will always be the variable named self, which is the object calling itself. Meanwhile, in this
example, the other two attributes are brand and storage which denote the company and
space capacity of the smartphone. The second method is capacity(), which returns the extent
of storage available depending on the type of smartphone. Next, we create an object named
phone1 with the parameters “EyePhone” and 256. Further, the storage capacity of phone1
is checked using the capacity() method, and the results are displayed.

Example 3.1.3 (Defining datasets using classes)
Let us now look into Example 1.5.4 from Chapter 1 where we use toy datasets to work with
a basic neural network using functions. Similarly, in the below code, we use numpy arrays
and classes to define these datasets. We first define a class named data that generates toy
datasets. Our datasets are the xor problem and the circle problem. We define them here
using two methods namely data_xor and data_circle. The two main attributes for both the
functions are self.N and self.sigma corresponding to the number of data per cluster and
the standard deviation of the clusters. Additionally, the data_xor method has an instance
attribute named classes that corresponds to the labels of the cluster.

3.1 Python: An Overview 71

import numpy as np

class Data:
def _ _init_ _(self, N, sigma):

self.N=N #Number of data per cluster.
self.sigma=sigma #standard deviation of the clusters.

def data_xor(self, classes):
Generate 4*N random vectors (gaussian) centered around zero.

X=self.sigma*np.random.randn(2,4*self.N)
mean=np.array([[-1,-1, 1, 1],[-1,1,-1,1]]) # define four means
M=np.ones((self.N,2))*mean[:,0] # Means of the first cluster
y=np.ones((1,self.N))*classes[0] # Labels of the first cluster
for i in range(1,4):

m=np.ones((self.N,2))*mean[:,i] # Means of cluster i
M=np.concatenate((M,m)) #Concatenate all means
y=np.concatenate((y,np.ones((1,self.N))*classes[i]),axis=1) #

concatenate labels
M=M.T
X=X+M # Add means to the data.
return X,y

def data_circle(self):
theta=np.random.rand(1,self.N)*np.pi*2
rho=np.random.randn(1,self.N)*self.sigma+1
X1=rho*np.block([[np.cos(theta)],[np.sin(theta)]]) #circular data

corresponding to class 1

theta=np.random.rand(1,self.N)*2*np.pi
rho=np.random.randn(1,self.N)*self.sigma+0.8
X2=rho*np.block([[np.cos(theta)],[np.sin(theta)]])

y=np.concatenate((0*np.ones((1,self.N)),np.ones((1,self.N))),
axis=1) # labels

X=np.concatenate((X1,X2),axis=1)
return X,y

#The class definition ends here.

np.random.seed(30) # allows to reproduce the same results
N=100; sigma=0.6 #attributes for xor.
N1=250; sigma1=0.05 #attributes for circle.
classes=[0,1,1,0] #attribute for xor.
T=Data(N,sigma) #define the object corresponding to xor data.
T1=Data(N1,sigma1) #define the object corresponding to circle data.
X,y=T.data_xor(classes) #method with instance variable classes.
X1,y1=T1.data_circle() #method without any instance variable.
print(X.shape,y.shape,X1.shape,y1.shape)

Output:

(2, 400) (1, 400) (2, 500) (1, 500)

72 3 Deep Learning Tools

3.2 NumPy

NumPy is a standard package used in Python for scientific computing. NumPy basically
stands for numerical Python and is useful in facilitating advanced mathematical computa-
tions and operations using multidimensional arrays and matrices. The operations that are
generally dealt with include mathematical, logical, statistical, algebra, selection, sorting,
shape-changing operations, and transforms such as Fourier transform, and much more.
The base of NumPy packages constitutes ndarray. It allows to work around with multidi-
mensional arrays. It can be used to get the shape information and other properties associ-
ated with the array. This section explores how we can initialize an array using NumPy, the
types of operations that can be performed on an array using the package, and extracting
the shape, and axis properties of an array using the package. The main advantage of using
NumPy for array operations is that it reduces the need for the usage of loops and is faster
as it is based on C.

3.2.1 Installation and Importing NumPy Package

NumPy package can be installed using pip or conda install command depending on the
environment you are working on.

Using the pip command, the installation can be done using the following command:

pip install numpy
In Anaconda prompt, the installation of the package can be done using the following
command:

conda install numpy
Once the NumPy package is installed, the basic step is to import the package in Python as
shown below. You can also check the version of the NumPy package using ._ _version_ _
command.

import numpy as np
print(np._ _version_ _)

Output:

1.21.6

3.2.2 NumPy Array

Arrays can be initialized in Python using np.array command.
There are several attributes associated with NumPy arrays. The size, shape, data type, and

number of dimensions of the array can be checked using the package.

array.shape: This gives the shape of the array
array.size: This gives the total number of elements in an array
array.ndim: Number of axes in an array
array.dtype: Gives the datatype of elements in the array

3.2 NumPy 73

Example 3.2.1 (NumPy array)
In the following code, we start with initializing different types of arrays.

A one-dimensional array can be initialized as

arr1 = np.array([1,2,3,4]) #intializing a simple array
print(arr1) # printing the 1-d array

Output:

[1 2 3 4]

Next, we define a two-dimensional array as follows:

arr2 = np.array([[1,2],[3,4]]) #initializing a 2 dimensional array
print(arr2) # printing the 2-d array

Output:

[[1 2]
[3 4]]

Using np.array we can also define arrays with different data types as shown below:

arr3 = np.array([[1.5, 3.2, 4.5, 3.8],
[1.3, 3.2, 5.6, 4.2]]) #initializing a different data

type array
print(arr3)

Output:

[[1.5 3.2 4.5 3.8]
[1.3 3.2 5.6 4.2]]

Additionally, NumPy package can also be used to check the shape, size, dimension, and
data type of the initialized arrays as shown below:

print(arr1.shape, arr2.shape, arr3.shape) #shape of the array

Output:

(4,) (2, 2) (2, 4)

Output:

print(arr1.size, arr2.size, arr3.size) # size of different arrays

Output:

4 4 8

print(arr1.ndim, arr2.ndim, arr3.ndim) #number of dimensions of the arrays

Output:

1 2 2

74 3 Deep Learning Tools

print(arr1.dtype, arr2.dtype, arr3.dtype) # the data type of array
elements

Output:
int64 int64 float64

3.2.3 Creating Different Types of Arrays

NumPy package can be used to define different types of arrays such as arrays with zeros and
ones using np.zeros and np.ones commands. np.eye is used for creating an identity matrix,
and np.full can generate a matrix containing one constant value. You can also define an
empty array using np.empty. np.arange can be used to create arrays containing sequences of
numbers. np.linspace function work similar to that of np.arange but is generally used for cre-
ating graphs. This function can create lots of data points within a specified range. np.arange
command uses a step to generate the sequence, whereas for np.linspace the number of data
points or elements needed within a range can be specified.
mat1 = np.zeros((5,4)) #using the function to create a zero matrix
print(mat1)

Output:
[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]

mat2 = np.ones((3,2)) #using the function to create a ones matrix
print(mat2)

Output:
[[1. 1.]
[1. 1.]
[1. 1.]]

mat3 = np.empty((2,2)) #using the function to create a random empty matrix
print(mat3)

Output:
[[2.04114407e-316 0.00000000e+000]
[-3.50519043e-210 6.90618343e-310]]

mat4 = np.eye(3) #defining an 3x3 identity matrix
print(mat4)

Output:
[[1. 0. 0.]
[0. 1. 0.]
[0. 0. 1.]]

3.2 NumPy 75

mat5 = np.full((3,3),2) #creating a matrix containing a constant value
print(mat5)

Output:

[[2 2 2]
[2 2 2]
[2 2 2]]

mat6 = np.arange(1,50,3) #generating a sequence of data
print(mat6)

Output:

[1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49]

mat7 = np.linspace(1,50,3) #another way to generate sequence data
print(mat7)

Output:

[1. 25.5 50.]

3.2.4 Manipulating Array Shape

The shape of the array can be changed using a few commands. .ravel is used to flatten
a matrix to array. .reshape can modify the shape of the array or matrix as shown in the
code example. The transpose of a matrix can be obtained using the .T command. Similar
to .reshape, .resize can also be used to modify the shape of the array or matrix. The main
difference between the two is that .reshape gives a modified array and does not change the
original array, whereas .resize modifies the original array.

ar = np.array([[1,3,4,6,7],[1,5,6,5,4], #initializing an array
[1,6,2,1,1],[2,4,5,8,3]])

print(ar)
print(ar.shape) #checking the shape of the array
ar1 = ar.reshape((5,4)) #modifying the shape of the array
print(ar1)
print(ar1.shape) #checking the shape of the modified array

Output:

[[1 3 4 6 7]
[1 5 6 5 4]
[1 6 2 1 1]
[2 4 5 8 3]]

(4, 5)
[[1 3 4 6]
[7 1 5 6]
[5 4 1 6]
[2 1 1 2]
[4 5 8 3]]

(5, 4)

76 3 Deep Learning Tools

ar2 = ar.ravel() #flattening a 2d array to 1d
print(ar2)
print(ar2.shape) #checking the shape of the modified array

Output:

[1 3 4 6 7 1 5 6 5 4 1 6 2 1 1 2 4 5 8 3]
(20,)

ar3 = ar.T #taking the transpose of the array
print(ar3)
print(ar3.shape) #checking the shape of the transposed array

Output:

[[1 1 1 2]
[3 5 6 4]
[4 6 2 5]
[6 5 1 8]
[7 4 1 3]]
(5, 4)

ar.resize((2,10)) #using resize to modify the original array
print(ar)
print(ar.shape) #checking the shape of the original array

Output:

[[1 3 4 6 7 1 5 6 5 4]
[1 6 2 1 1 2 4 5 8 3]]
(2, 10)

3.2.5 Stacking and Splitting NumPy Arrays

NumPy package is useful in doing concatenation and splitting operations. .hstack and
.vstack are the most commonly used stacking methods. Stacking along the rows, that is,
along the first axes is done using .vstack. .hstack can be used to stack along the second
axes. .column_stack and .row_stack are similar commands when stacking 1D arrays to
2D arrays. However, .column_stack might work slightly different compared to .hstack as
shown below. .r_ and .c_ can be used for some complex cases where you need to include
sequences or ranges.

import numpy as np
array1 = np.array([1,2,3,4])
array2 = np.array([5,6,3,1])

ar_horizontal = np.hstack((array1,array2)) # using hstack
print(" Using hstack")
print(ar_horizontal, np.shape(ar_horizontal))
ar_vertical = np.vstack((array1,array2)) # using vstack
print("using vstack")
print(ar_vertical, np.shape(ar_vertical))

3.2 NumPy 77

ar_column = np.column_stack((array1,array2)) # using column_stack
print("Using column_stack: ")
print(ar_column, np.shape(ar_column))

ar_row = np.row_stack((array1, array2)) # using row_stack
print("Using row_stack:")
print(ar_row, np.shape(ar_row))

ar_r = np.r_[4:10,5:16, 0,1,2] # using r_
print(ar_r)
ar_c = np.c_[4:10,5:11] # using c_
print(ar_c)

Output:

Using hstack
[1 2 3 4 5 6 3 1] (8,)
using vstack
[[1 2 3 4]
[5 6 3 1]] (2, 4)

Using column_stack:
[[1 5]
[2 6]
[3 3]
[4 1]] (4, 2)

Using row_stack:
[[1 2 3 4]
[5 6 3 1]] (2, 4)

[4 5 6 7 8 9 5 6 7 8 9 10 11 12 13 14 15 0 1 2]
[[4 5]
[5 6]
[6 7]
[7 8]
[8 9]
[9 10]]

Similar to stacking the splitting can also be done using NumPy. The two most common
commands used for this are the .hsplit and .vsplit to do splitting along the horizontal axis
and vertical axis, respectively. Alternatively, .array_split can be used for doing the splitting
similarly by specifying the axis.

import numpy as np
print("\n using hsplit")
print(np.hsplit(ar_row,2)) # using hsplit for splitting

along the columns
print("\n using vsplit")
print(np.vsplit(ar_row,2)) # using vsplit for splitting

along the rows

print("\n using array_split")

print("\n along column similar to hsplit")
print(np.array_split(ar_row,2, axis = 1)) # using array_split command
print("\n along row similar to vsplit")
print(np.array_split(ar_row,2, axis = 0))

78 3 Deep Learning Tools

Output:
using hsplit
[array([[1, 2],

[5, 6]]), array([[3, 4],
[3, 1]])]

using vsplit
[array([[1, 2, 3, 4]]), array([[5, 6, 3, 1]])]

using array_split

along column similar to hsplit
[array([[1, 2],

[5, 6]]), array([[3, 4],
[3, 1]])]

along row similar to vsplit
[array([[1, 2, 3, 4]]), array([[5, 6, 3, 1]])]

3.2.6 Indexing and Slicing

Indexing is used for accessing an array element. In the case of a 1D array, the nth element
can be accessed using ar[n] and the rest can be accessed by changing the index value. For a
2D array, the row elements can be accessed by changing the row index and the column
elements can be accessed using column index, i.e. ar[i,j] accesses the element located at the
ith row and jth column. For higher dimensions, a similar pattern applies.

Slicing allows us to access certain portions of the array. Slicing works similarly to index-
ing, however, we can use the colon operation to select a range of data.

Example 3.2.2 (Slicing and indexing)
In this example, we will be using NumPy arrays to demonstrate different slicing and index-
ing operations.

Let us initialize a one-dimensional array (array1) as follows:
[1 2 3 4]

Next, display the elements at different locations. Note that the first element of the array
corresponds to index 0 in Python.
printing first and fourth elements:
1 4

Compute the sum of the displayed elements, for example:
sum of the 2nd and 3rd element:
5

Next, we create another 1D array (array2):
[2 3 4 6]

Using any stacking operation let us create a two-dimensional array from array1 and
array2, for example, using np.vstack we can obtain a 2D array (array3) as follows:
[[1 2 3 4]
[2 3 4 6]]

3.2 NumPy 79

Now, use the indexing method to display the individual elements of the resulting 2D array
(array3). You can explore different types of indexing such as row, column, and negative
indexing to familiarize yourself with these operations.
2nd row, 4th element: 6
1st row, 3rd element: 3
last element of 1st row: 4

Similarly create another 2D array (array4) as follows:
[[1 2]
[2 3]
[3 4]
[4 6]]

Let us examine how we can perform a slicing operation on this array. Note that we can do
the slicing across individual dimensions to get certain regions of the matrix. Also, the slicing
can be simultaneously performed across both dimensions. An example output would be:
Slicing a 2D array along a row:
[[2 3]
[3 4]
[4 6]]

Slicing a 2D array along a column:
[[1]
[2]
[3]
[4]]

Negative slicing 2D:
[[1 2]
[2 3]
[3 4]]

Slicing along both row and column:
[[1]
[2]]

3.2.7 Arithmetic Operations and Mathematical Functions

NumPy library can be used to perform basic arithmetic and mathematical operations. This
helps the user to perform complex functions on a multidimensional array without compli-
cations. The different kinds of operations and functions are discussed below:

Arithmetic operations: You can use the package to perform basic arithmetic operations
such as addition, subtraction, multiplication, division, remainder, and reciprocal.
import numpy as np

a = np.array([1,2,3,4]) # creating two arrays a and b
b = np.array([4,5,1,2])
print(a,b)
add_ab = np.add(a,b) # using the NumPy addition operation
print("after addition")
print(add_ab)

Output:
[1 2 3 4] [4 5 1 2]
after addition
[5 7 4 6]

80 3 Deep Learning Tools

While using the np.reciprocal function in case of elements larger than 1, the return value
is always 0 as this operation comes under integer division.

c = b*0.1 # creating another array by multiplying "b"
with 0.1

rec_b = np.reciprocal(b) # computing the reciprocal of array b
rec_c = np.reciprocal(c) # computing the reciprocal of new array c
print("using reciprocal on b and b*0.1")
print(rec_b, rec_c)

Output:

using reciprocal on b and b*0.1
[0 0 1 0] [2.5 2. 10. 5.]

You can use np.pow(a,b) to compute the power of a to b. There are other functions such
as np.sqrt to compute the square root of the array.

pow_ab = np.power(a,b) # computing the power of a to b
print("taking the power of a & b")
print(pow_ab)

sqrt_a = np.sqrt(a) # computing the square root of a
print("taking the square root of a")
print(sqrt_a)

Output:

taking the power of a & b
[1 32 3 16]
taking the square root of a
[1. 1.41421356 1.73205081 2.

When working with complex arrays, the package can be used for getting the real, imagi-
nary, conjugate, absolute, and angle of the elements of the array.

zip_obj = zip(a, b) # lets zip the two arrays to get a complex data
comp = [] # create an empty list

for a,b in zip_obj: # use for loop to obtain the elements of arrays
a & b

c = np.complex(a,b) # compute a+jb using np.complex function
comp.append(c) # append these to the empty list

print("complex array:")
print(comp)

print("real part of the array")
print(np.real(comp)) # getting real part of the complex array

Output:

complex array:
[(1+4j), (2+5j), (3+1j), (4+2j)]
the real part of the array
[1. 2. 3. 4.]

3.2 NumPy 81

Mathematical functions: The main advantage of this package is the use of trigonometric
functions. We can use NumPy commands to do trigonometric operations such as com-
puting the sine, cosine, and tan of different angles arranged in an array. You can also take
values of angles in radians, and convert them to degrees or vice versa.

import numpy as np
a = np.array([30,45,60,90]) # creating an array of degrees
print(a)
print("\n sin(a) = ")
print(np.sin(np.radians(a))) # convert to radians and print the sine of

it
print("\n tanh(a) = ")
print(np.tanh(np.radians(a))) # convert to radians and print the tanh of

it

Output:

[30 45 60 90]

sin(a) =
[0.5 0.70710678 0.8660254 1.]

tanh(a) =
[0.48047278 0.6557942 0.78071444 0.91715234]
[0.3506607 2.6782232]

NumPy also provides functions to work around with decimals. np.around is used to
round the decimal numbers to the desired number of decimal places (the default is 0).

b = np.array([0.35066070245,2.67822320434]) # creating an array of
decimal numbers

print(b)

print("\n round of decimal to fourth decimal place:")
print(np.around(b, 4)) #print the round of decimal values to the 4th

decimal place

Output:

round of decimal to fourth decimal place:
[0.3507 2.6782]

Similarly, other commands such as np.floor and np.ceil can be used to specify the type of
rounding that can be done based on whether we need to round to the lower value or the
upper value.

print("\n using floor")
print(np.floor(b)) # use floor command
print("\n using ceil")
print(np.ceil(b)) # use ceil command

Output:

using floor
[0. 2.]

using ceil
[1. 3.]

82 3 Deep Learning Tools

NumPy is a basic tool used for handling arrays of different dimensions. It can be used to
simplify larger loops, and it helps in several mathematical operations. Here we looked
into a few basic commands that can be used as building blocks for creating datasets
and models for various machine-learning applications. The extensive information on the
wide range of commands can be found in https://NumPy.org/.

Example 3.2.3 (Neural network with NumPy and classes)
Again we are going to revisit Example 1.5.4 from Chapter 1. In Example 3.1.3, we define
the two datasets as a class. Similarly, we are going to construct a class named ’NeuralNet-
work’ for defining the structure of the multilayer perceptron. In both these cases, we are
using basic NumPy to construct the code. Through these examples, you can learn various
functionalities associated with the NumPy package.

import numpy as np

class NeuralNetwork:
def _ _init_ _(self,D,activation,output):

Puts the neural network as a dictionary
self.NN={"weights":[],"bias":[],"dimensions":[],"activation":[]}
D: np. array with the number of nodes in each layer, including

input and output
self.D=D
activations: Hidden node activations--’ReLU’, ’logistic’, ’

maxOut’
self.activation=activation
output: Output layer activations--’linear’, ’logistic’, ’softMax
self.output=output

def layer(self,Di,Do):
Create some structures for the weights and the biases
Here we assume that the input is a vector, so the weights are a

2D array
W=np.random.randn(Di,Do)/np.sqrt(Di) #This is simply the Xavier

initialization
b=np.random.randn(1,Do)/np.sqrt(Di)
return W,b

def network_structure(self):
for i in range(self.D.size-1):

W,b= self.layer(self.D[i],self.D[i+1])
self.NN["weights"].append(W)
self.NN["bias"].append(b)
self.NN["dimensions"]=self.D
if i<self.D.size-2:

self.NN["activation"].append(self.activation)
else:

self.NN["activation"].append(self.output)
MLP=self.NN
return MLP

output_activation="logistic" #define the activation.
hidden_activation="relu" #define the activation.
D=np.array([2,100,1]) #define the number of nodes in each layer.
#define the object and the instance variables.
NN1=NeuralNetwork(D,hidden_activation,output_activation)
#define the method corresponding to the network structure.
neural_net=NN1.network_structure()

https://NumPy.org/

3.3 Matplotlib 83

3.3 Matplotlib

Matplotlib is a powerful Python package created by John. D. Hunter in 2003 for the task of
data visualization. It is an open-source and cross-platform plotting library for implement-
ing 2D graphics across Python and various interactive environments such as IPython, and
Jupyter Notebooks.

The Matplotlib package can be installed in the Anaconda prompt using either of the
following commands:

pip install matplotlib
conda install matplotlib

After installation, Matplotlib is imported as follows.

import matplotlib
print(matplotlib._ _version_ _) #outputs the version of Matplotlib.

Output:

3.2.2

The most commonly used module of Matplotlib is pyplot, which has a set of functions
that is modeled similarly to MATLAB. Despite its analogy to the MATLAB commands, all
the plotting commands in pyplot are written in Python and NumPy. Pyplot can be imported
under plt alias using the following command.

import matplotlib.pyplot as plt

3.3.1 Plotting

After importing pyplot under the alias of plt, we can use this command to do various types
of plotting. The pyplot module adds text, images, color, and lines while plotting a figure.
A few of the plotting functions supported by pyplot are bar plot, histogram, pie plot, scatter
plot, quiver plot, etc. Further, it can also be used to read, save, and display images. We can
use two different methods for plotting.

3.3.1.1 Functional Method
The first method is to directly use plt.plot command as shown below. Note that while
using this method we need to add the plt.show() command to display the plots. The plt.plot
has several additional attributes such as color, and markers, and plt.plot(x,y) can be used
directly for plotting the data. Further, additional commands such as plt.title, plt.legend,
plt.xlabel, and plt.ylabel can also be added to label the figure and the axes. Simple plotting
using the functional method can be done using the following code snippet. The data gener-
ated for implementing the xor dataset in Example 3.1.3 can be visualized using Matplotlib
in Fig. 3.1.

84 3 Deep Learning Tools

–3 –2 –1 0 1 2 3
X label

–2

–1

0

1

2

Y
 la

be
l

Functional plot

Figure 3.1 Visualization of toy dataset using functional plot.

import matplotlib.pyplot as plt
import numpy as np
indexn=np.where(y==0) #get the index corresponding to class 0
indexp=np.where(y==1) #get index corresponding to class 1
plt.plot(X[0,indexp], X[1,indexp], ’k*’) #plot the data of class 0
plt.plot(X[0,indexn], X[1,indexn], ’k+’) #plot the data of class 1
csfont = {’fontname’:’serif’} #define the font family
plt.xlabel("X label",fontsize=12,**csfont) #Set the x-axis label of the

current axes
plt.ylabel("Y label",fontsize=12,**csfont) #Set the y-axis label of the

current axes
plt.title("Functional plot",fontsize=12,**csfont) #Set a title of the

current axes
plt.show() #Display a figure

3.3.1.2 Object Oriented Method
The second method is to indirectly use the plt command by first specifying the figure
method and then adding axes using the figure method .add_axes. We can then use these
axes to get the desired plots. Further, we can use the set_ commands to set the xlabel,
ylabel, and title of the plot. The below code snippet uses the object-oriented method for
implementing the toy dataset.

fig = plt.figure() #create a new figure.
#add_axes contains a list [x0, y0, width, height]
The list denotes the lower left point of the new axes in figure

coordinates (x0,y0) and its width and
height

axes = fig.add_axes([0.1,0.1,0.8,0.8])
indexn=np.where(y==0) #get the index corresponding to class 0
indexp=np.where(y==1) #get index corresponding to class 1
axes.plot(X[0,indexp], X[1,indexp], ’k*’) #plot the data of class 0

3.3 Matplotlib 85

axes.plot(X[0,indexn], X[1,indexn], ’k+’) #plot the data of class 1
csfont = {’fontname’:’serif’} #define the font family
axes.set_xlabel("X Label",fontsize=12,**csfont) #Set the x-axis label of

the current axes
axes.set_ylabel("Y Label",fontsize=12,**csfont) #Set the y-axis label of

the current axes
axes.set_title("Object Oriented Plot",fontsize=12,**csfont) #Set the title

of the current axes

3.3.2 Customized Plotting

The plots can be customized by specifying the size of the figure, changing the axes limits,
and adding an x-y grid. In an object-oriented plot, the properties of the line plot are speci-
fied using various arguments such as color, marker, markersize, markerfacecolor, linestyle,
and linewidth. The plotted figures can be saved in various formats such as PNG, PDF, EPS,
and SVG using the savefig() command. Similar to labeling the axes, we can also set and cus-
tomize the font size of the tick labels using set_xticklabels and set_yticklabels. Further, the
limit of the x and y axes can be specified using set_xlim and set_ylim. Moreover, all these
customizations can also be implemented in a functional plot.

#CUSTOMIZED OBJECT ORIENTED PLOT
import matplotlib.pyplot as plt
import numpy as np
x2 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
x3 = [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]
fig = plt.figure(figsize=(5,4),dpi=100)
#add_axes contains a list [x0, y0, width, height]
ax = fig.add_axes([0,0,1,1])
#plots function with different properties
ax.plot(x2,label = ’$x2,color=’r’,marker=’o’,

markerfacecolor=’green’,markersize=16,linestyle=’solid’,linewidth=
2)

ax.plot(x3,label = ’$x3,color=’b’,marker=’*’,
markerfacecolor=’yellow’,markersize=12,linestyle=’dashed’,

linewidth=4)
csfont = {’fontname’:’serif’} #define the font family
ax.set_xticklabels(x2,fontsize=12,**csfont) #Sets the xticklabels and its

font size.
ax.set_yticklabels(x3,fontsize=12,**csfont) #Sets the yticklabels and its

font size.
ax.set_xlabel("X Label",fontsize=12,**csfont) #Sets the x-axis label with

font size=12
ax.set_ylabel("Y Label",fontsize=12,**csfont) #Sets the y-axis label with

font size=12
ax.set_xlim(-1,10) #Sets the x limit
ax.set_ylim(0,25) #Sets the y limit
ax.grid(color=’k’, ls = ’-.’, lw = 0.5) #Add color, linestyle and

linewidth to the grid function
ax.legend(loc =2) #Sets the location of the legend to upper left
ax.set_title("Custom Object Oriented Plot",fontsize=12,**csfont) #Set the

title with font size=12
ax.figure.savefig(’linear.pdf’) #Save the figure

86 3 Deep Learning Tools

Example 3.3.1 (Matplotlib subplot)
In this example, we demonstrate how to create multiple plots in a single figure. In order to
compare and analyze different plots together, Matplotlib uses the subplots function to create
multiple smaller axes within a single figure. The subplots() method has three parameters
‘nrows’, ‘ncols’, and ‘index’ to describe the layout of the figure. Here in Fig. 3.2 we create
4 plots that are stacked together in one figure. The nrows and ncols are 2, whereas the index
ranges from 1 to 4.

0 10 20 30 40 50 60
X Data

0

10

20

30

40

50

60

Y
 D

at
a

Linear

0 10 20 30 40 50 60
X Data

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Y
 D

at
a

Log

0 10 20 30 40 50 60
X Data

0

500

1000

1500

2000

2500

3000

3500

Y
 D

at
a

Square

0 10 20 30 40 50 60
X Data

1

2

3

4

5

6

7

8

Y
 D

at
a

Square root

Figure 3.2 Visualizing multiple plots using subplots.

3.3.3 Two-dimensional Plotting

The Pyplot package is not only used for plotting simple graphs and curves but it can also
be used to develop various other kinds of plots such as bar plots, scatter plots, and so on.
This section covers the various kinds of such plots that can be generated using the pyplot
package and also we will see the different commands and arguments that can be changed
to customize these plots.

3.3 Matplotlib 87

Person A Person B Person C Person D
0

20

40

60

80

Person A Person B Person C Person D
0

20

40

60

80

0 20 40 60 80

Person A

Person B

Person C

Person D

Person A Person B Person C Person D
0

20

40

60

80

Figure 3.3 Different ways to generate a bar plot.

3.3.3.1 Bar Plot
The function used for plotting bar graph is plt.bar. This command generates vertical bars.
Horizontal bar graphs can be created using plt.barh command. The color argument of the
graph can be changed to show the bars in different colors. Additionally, the width of the bars
can be modified by changing the width argument of the bar function. Similarly, you can also
modify the height of the bars. In addition to direct plotting, you can change the positions,
colors, and thickness of the bar to give more information about different categories of data.
Stacked bars can also be plotted using this function by plotting one set of bar graphs over
another. Figure 3.3 showcases commonly employed bar plot types.

import matplotlib.pyplot as plt
import numpy as np

x = np.array(["PersonA", "PersonB", "PersonC", "PersonD"])
y = np.array([88, 95, 66, 72])
plt.style.use(’grayscale’)
plt.figure(figsize=(10,10),dpi=90)
csfont = {’fontname’:’serif’} #define the font family
plt.subplot(2, 2, 1)
plt.bar(x,y) #plot the bar graph

88 3 Deep Learning Tools

plt.xticks(fontsize=12,**csfont)
plt.yticks(fontsize=12,**csfont)
plt.subplot(2, 2, 2)
plt.bar(x, y, color = "grey") #plot the bar graph with a specific color

plt.xticks(fontsize=12,**csfont)
plt.yticks(fontsize=12,**csfont)
plt.subplot(2, 2, 3)
plt.barh(x, y) #plot the bar graph horizontally
plt.xticks(fontsize=12,**csfont)
plt.yticks(fontsize=12,**csfont)
plt.subplot(2, 2, 4)
plt.bar(x, y, width = 0.1) #plot the bar graph with a specific width

plt.xticks(fontsize=12,**csfont)
plt.yticks(fontsize=12,**csfont)
plt.show()

3.3.3.2 Histogram
Histogram plots are used to represent the distribution of the data. The command that is used
for plotting histogram is plt.hist. Similar to bar plots, histogram plots can also be customized
by changing the color of the bar, the number of bins and also the transparency of the plots
by changing the alpha value. Figure 3.4 illustrates a histogram plot with 10 bins.

import numpy as np
import matplotlib.pyplot as plt
#draw random samples from a normal distribution with mean,standard

deviation and size of the output
array

x = np.random.normal(0,0.1,1000)
num_bins = 10
#histogram with specific bin size, face color and alpha
n, bins, patches = plt.hist(x, num_bins, facecolor=’black’, alpha=0.5)
csfont = {’fontname’:’serif’} #define the font family
plt.xlabel(’X data’,fontsize=12,**csfont)
plt.ylabel(’Frequency’,fontsize=12,**csfont)
plt.xticks(fontsize=12,**csfont)
plt.yticks(fontsize=12,**csfont)
plt.show()

–0.3 –0.2 –0.1 0.0 0.1 0.2 0.3 0.4
X data

0

50

100

150

200

250

Fr
eq

ue
nc

y

Figure 3.4 Histogram plot.

3.3 Matplotlib 89

USA

UK

Russia

USA

UK

Russia

Figure 3.5 Types of pie plot.

3.3.3.3 Pie Plot
A pie plot is used to display a pie chart of one series of data. The plot consists of wedges
that show the size of items and represent a portion of the whole pie. Pie charts are plotted
using the command plt.pie. You can specify the labels of the pie plot using labels argument.
Further, another method would be making a specified wedge stand out by using the explode
argument. Similar to other plots, you can also specify different colors for different wedges
of the pie plot. Figure 3.5 displays two commonly used pie charts. [

import matplotlib.pyplot as plt
import numpy as np
a = np.array([900, 742, 1200])
b = ["USA", "UK", "Russia"]
ep = [0, 0, 0.3]
plt.figure(figsize=(8,8),dpi=90)
plt.subplot(1, 2, 1)
plt.pie(a, labels = b, textprops={"fontsize":12,"family":"serif"}) #pie

plot with label parameter
plt.subplot(1, 2, 2)
#pie plot with explode parameter that makes the specified wedge to stand

out
plt.pie(a, labels = b, explode = ep, textprops={"fontsize":12,"family":"

serif"})
plt.show()

3.3.3.4 Scatter Plot
Scatter plots can be used to show the variation in the data by allowing each data point
to have individual points to represent them in the plot. The color of the scatter plot can
be defined using the argument color. Different colors can be used to do a comparison
between two different kinds of data. You can also add different colors to different points
by adding the number of colors in the color parameter and doing the scatterplot. The
customization technique can also be applied here to change the size of the markers
using size parameter s. Just like the histograms, the alpha argument can be used to
change the transparency of the points. Figure 3.6 provides a visual representation of a
scatter plot.

90 3 Deep Learning Tools

2 3 4 5 6 7 8 9 10
X Data

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Y
 D

at
a

Figure 3.6 Scatter plot.

import matplotlib.pyplot as plt
import numpy as np
p = np.linspace(2,10,15)
q = np.log10(p)
plt.scatter(p,q, color=’k’) #Scatter plot with a defined color
csfont = {’fontname’:’serif’} #define the font family
plt.xlabel("X Data",fontsize=12,**csfont) #define the x label
plt.ylabel("Y Data",fontsize=12,**csfont) #define the y label
plt.show()

3.3.3.5 Quiver Plot
Quiver plots are a form of 2D plots that represent the vectors associated with a point in the
form of arrows. Quiver plots can be useful in visualizing flow or wave propagation such as
in electric potential fields or gradients, where the direction and magnitude information are
very important. Four parameters are used for quiver plots. X, Y are the x and y positions
of the data points. U, V is the directional component of these points. In the code shown
below, we create a grid out of two 1D arrays. The points in the grid correspond to the X, Y
parameter, which corresponds to the location of the arrows. The x and y components of the
arrow vectors are given by U and V parameters. The quiver plots can also be used to assign
different colors to arrows using a c argument. Figure 3.7 provides a visual representation of
a quiver plot.
import matplotlib.pyplot as plt
import numpy as np
x = np.arange(-1, 1.6, 0.2)
y = np.arange(-1, 1.6, 0.2)
#Define a rectangular grid out of two given one-dimensional arrays
X, Y = np.meshgrid(x, y)
U, V = X/5, -Y/5
#Quiver plot with X and Y as the starting positions of the arrows
#U and V are the directions of the arrow
plt.quiver(X, Y, U, V)
csfont = {’fontname’:’serif’} #define the font family
plt.xlabel("X Data",fontsize=12,**csfont) #define the x label
plt.ylabel("Y Data",fontsize=12,**csfont) #define the y label
plt.xticks(fontsize=12,**csfont)
plt.yticks(fontsize=12,**csfont)
plt.show()

3.3 Matplotlib 91

Figure 3.7 Quiver plot.

–1.0 –0.5 0.0 0.5 1.0 1.5
X Data

–1.0

–0.5

0

0.5

1.0

1.5

Y
 D

at
a

3.3.3.6 Contour Plot
Contour plots are used for representing three-dimensional surface data on a two-
dimensional plot. The X, Y are the positional parameters, and the response function is
given by a Z parameter. X and Y are two independent variables. In general, we initialize the
X, Y parameter as a mesh grid spanning the space of two input arrays corresponding to x
and y positions. Then, Z = f(X, Y) is the third dimension that is represented using a contour
plot. The contour plots using Matplotlib can be done using two commands: contour() and
contourf(). Command contour() generates contour lines, whereas contourf() gives filled
contour plots. Additionally, we can also add the desired color bar to show different contour
regions. Figure 3.8 provides a visual representation of a contour plot.

import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(-100, 100, 2000)
y = np.linspace(-100, 100, 2000)
#Define a rectangular grid out of two given one-dimensional arrays
X, Y = np.meshgrid(x,y)
Z = X**2+Y**2
plt.contourf(X, Y, Z) #Creates a filled contour plot
plt.colorbar() #Add a colorbar to the plot
csfont = {’fontname’:’serif’} #define the font family
plt.xlabel("X Data",fontsize=12,**csfont) #define the x label
plt.ylabel("Y Data",fontsize=12,**csfont) #define the y label
plt.xticks(fontsize=12,**csfont)
plt.yticks(fontsize=12,**csfont)
plt.show()

3.3.3.7 Box Plot
Box or whisker plots can be used to obtain five details about the data: the minimum score,
lower quartile (first), median, upper (second) quartile, and maximum score. Each box plot
has a box going from the first quartile to the second quartile of the data, and a vertical line
within the box that represents the median value and the lines begin from the minimum
value and go to the maximum value. The main information that can be read from the box
plot is the range of the data points and their median value. Figure 3.9 provides a visual
representation of a box plot.

92 3 Deep Learning Tools

–100 –75 –50 –25 0 25 50 75 100

X Data

–100

–75

–50

–25

0

25

50

75

100

Y
 D

at
a

0

2500

5000

7500

10,000

12,500

15,000

17,500

20,000 Figure 3.8 Contour plot.

1 2 3 4
X Data

65

70

75

80

85

Y
 D

at
a

Figure 3.9 Box plot.

import matplotlib.pyplot as plt
import numpy as np
#create a list of normal distributions with varying standard deviation
x1 = [np.random.normal(75, std, 200) for std in range(1,5)]
#displays the minimum, median and maximum using the box plot
plt.boxplot(x1)
csfont = {’fontname’:’serif’} #define the font family
plt.xlabel("X Data",fontsize=12,**csfont) #define the x label
plt.ylabel("Y Data",fontsize=12,**csfont) #define the y label
plt.xticks(fontsize=12,**csfont)
plt.yticks(fontsize=12,**csfont)
plt.show()

3.3.3.8 Violin Plot
Violin plots are similar to box plots and are used to check for variation in the distribu-
tion of data from different classes or categories. The violin plots also have added informa-
tion related to the probability density of the data in addition to the mean, median, and
interquartile range details. Hence, they can provide more information than simple box
plots. plt.violinplot is used for obtaining violin plots. Figure 3.10 provides a visual repre-
sentation of a violin plot.

3.3 Matplotlib 93

Figure 3.10 Violin plot.

1.0 1.5 2.0 2.5 3.0
X Data

–2

0

2

4

6

8

10

12

14

Y
 D

at
a

import matplotlib.pyplot as plt
import numpy as np
#create a list of normal distributions with varying standard deviation
xx = [np.random.normal(5, std, 100) for std in range(1,4)]
#displays the distribution of the data using the violin plot
plt.violinplot(xx)
csfont = {’fontname’:’serif’} #define the font family
plt.xlabel("X Data",fontsize=12,**csfont) #define the x label
plt.ylabel("Y Data",fontsize=12,**csfont) #define the y label
plt.xticks(fontsize=12,**csfont)
plt.yticks(fontsize=12,**csfont)
plt.show()

3.3.4 Three-dimensional Plotting

3.3.4.1 3D Contour
Similar to the 2D contour plots discussed in Section 3.3.3.6, Pyplot can also be used to cre-
ate three-dimensional contour plots. We use the command plt.contour3D. This function
requires the X data and Y data to be in the form of a grid, and Z data is a function of X and
Y . The plots can be created using various colormaps. You can also define the maximum
number of samples in each direction. The code snippet shown below can be used to do a
3D contour plot. For doing a 3D plot, it is required to import mplot3d which enables 3D
plotting. Figure 3.11 provides a visual representation of a 3D Contour plot.

import matplotlib.pyplot as plt
import nump as np
from mpl_toolkits import mplot3d #Importing the mplot3d toolkit to enable

3d plots.
x_a = np.linspace(-1, 1, 10)
y_b = np.linspace(-1, 1, 10)
#Define a rectangular grid out of two given one-dimensional arrays.
X, Y = np.meshgrid(x_a, y_b)
Z = np.sqrt(X ** 2 + Y ** 2)
fig = plt.figure(figsize=(10,8))
csfont = {’fontname’:’serif’} #define the font family
ax = plt.axes(projection=’3d’) #Creates a 3D axis.
#Creates the 3D contour plot with colormap greys.

94 3 Deep Learning Tools

x

–1.00
–0.75

–0.50
–0.25

0.00
0.25

0.50
0.75

1.00

y

–1.00
–0.75

–0.50
–0.25

0.00
0.25

0.50
0.75

1.00

z

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Figure 3.11 3D contour plot.

Here 50 denotes the maximum number of samples used in each direction.
ax.contour3D(X, Y, Z, 50, cmap=’Greys’)
ax.set_xlabel(’x’,fontsize=12,**csfont) #labels the x-axis.
ax.set_ylabel(’y’,fontsize=12,**csfont) #labels the y-axis.
ax.set_zlabel(’z’,fontsize=12,**csfont) #labels the z-axis.
ax.xaxis.label.set_size(12) ## setting label size
ax.yaxis.label.set_size(12)
ax.zaxis.label.set_size(12)
ax.figure.savefig(’3dcontour.pdf’)

3.3.4.2 3D Surface
The surface plots are similar to 3D contour plots. The main difference is surface plots give
us additional information about the functional dependencies between dependent and inde-
pendent variables of three-dimensional data. The pyplot command used for plotting 3D
surface plots is plt_surface. Similar to other 3D plots, we can specify the desired colormap
for plotting. Figure 3.12 provides a visual representation of a 3D surface plot.

import matplotlib.pyplot as plt
import nump as np
from mpl_toolkits import mplot3d #Importing the mplot3d toolkit to enable

3d plots.
x_a = np.linspace(-1, 1, 10)
y_b = np.linspace(-1, 1, 10)

3.3 Matplotlib 95

#Define a rectangular grid out of two given one-dimensional arrays.
X, Y = np.meshgrid(x_a, y_b)
Z = np.exp(X ** 2 + Y ** 2)
fig = plt.figure(figsize=(10,8))
csfont = {’fontname’:’serif’} #define the font family
ax = plt.axes(projection=’3d’) #Creates a 3D axis.
#Creates the 3D surface plot with colormap binary.
ax.plot_surface(X, Y, Z, cmap=’binary’)
ax.set_xlabel(’x’,fontsize=12,**csfont) #labels the x-axis.
ax.set_ylabel(’y’,fontsize=12,**csfont) #labels the y-axis.
ax.set_zlabel(’z’,fontsize=12,**csfont) #labels the z-axis.
ax.xaxis.label.set_size(12) ## setting label size
ax.yaxis.label.set_size(12)
ax.zaxis.label.set_size(12)

3.3.4.3 3D Wireframe
Wireframes are great tools for visualizing a three-dimensional plot of a function. The 3D
wireframe takes the grid values as input and does a projection of this grid to a 3D surface.
The wireframe plots have the advantage of better visualization of such 3D surfaces. The
command used for such plots is plot_wireframe. You can specify the color of the wireframe
using the color argument in the function. Figure 3.13 provides a visual representation of a
3D Wireframe plot.

x

–1.00
–0.75

–0.50
–0.25

0.00
0.25

0.50
0.75

1.00

y

–1.00
–0.75

–0.50
–0.25

0.00
0.25

0.50
0.75

1.00

z

2

3

4

5

6

7

Figure 3.12 3D surface plot.

96 3 Deep Learning Tools

x

–1.00
–0.75

–0.50
–0.25

0.00
0.25

0.50
0.75

1.00

y

–1.00
–0.75

–0.50
–0.25

0.00
0.25

0.50
0.75

1.00

z

0.2

0.4

0.6

0.8

Figure 3.13 3D wireframe plot.

import matplotlib.pyplot as plt
import nump as np
from mpl_toolkits import mplot3d #Importing the mplot3d toolkit to enable

3d plots.
x_a = np.linspace(-1, 1, 10)
y_b = np.linspace(-1, 1, 10)
#Define a rectangular grid out of two given one-dimensional arrays.
X, Y = np.meshgrid(x_a, y_b)
Z = np.sin(X ** 2 + Y ** 2)
fig = plt.figure(figsize=(10,8))
csfont = {’fontname’:’serif’} #define the font family
ax = plt.axes(projection=’3d’) #Creates a 3D axis.
#Creates the 3D wireframe plot with color black.
ax.plot_wireframe(X, Y, Z, color=’black’)
ax.set_xlabel(’x’,fontsize=12,**csfont) #labels the x-axis.
ax.set_ylabel(’y’,fontsize=12,**csfont) #labels the y-axis.
ax.set_zlabel(’z’,fontsize=12,**csfont) #labels the z-axis.
ax.xaxis.label.set_size(12) ## setting label size
ax.yaxis.label.set_size(12)
ax.zaxis.label.set_size(12)

3.4 Scipy 97

3.4 Scipy

Scipy is a data science library built on top of NumPy. Scipy has functions that are more opti-
mized compared to NumPy. Therefore, Scipy allows you to process the multidimensional
arrays in a faster and more efficient way compared to NumPy. The package can be used
for performing different kinds of mathematical operations on multidimensional arrays.
The different operations include algebraic and integration routines, statistical operations,
and other special functions. Scipy is a great tool to work with N-dimensional images and
can also be used for signal processing. The package is able to do different types of complex
operations on large data which makes it quite useful as a data analysis tool.

The Scipy package can be installed in the Anaconda prompt using either of the following
commands:

pip install scipy
conda install -c anaconda scipy

After installation, Scipy can be imported as follows:
import scipy # importing scipy package
scipy._ _version_ _ # displaying the version of the scipy package

Output:
1.7.3

Scipy supports many multidimensional array operations, which are discussed below:

3.4.1 Data Input–Output Using Scipy

The Scipy.io library can be used to work around various types of file formats such as Matlab,
IDL, and WAV sound files. The most commonly used files include .mat files. The Scipy.io
provides functions to load, save, and work around with these .mat files. Similarly, the pack-
age allows reading, writing, and processing of other file formats. For each of the file formats,
commands vary and these specific sets of commands can be used for reading and writing to
those formats. For data created in Matlab the Scipy.io package supports only the.mat files
created in versions above MATLAB 7.3.
import scipy.io as sio
import numpy as np

arr = np.array([1,2,3,4]) # create an array
sio.savemat(’sample_data.mat’, {’arr_samp’: arr}) #saving the array by the

name ’arr_samp’ using sio.savemat

sample_arr = sio.loadmat(’sample_data.mat’) # loading the array into the
variable from mat file using sio.
loadmat

print(sample_arr[’arr_samp’])

Output:
[[1 2 3 4]]
[(’arr_samp’, (1, 4), ’int64’)]

98 3 Deep Learning Tools

–2 0 2 4 6

Data1

–2

0

2

4

6

D
at

a2

Data

Centroid

Figure 3.14 Scatterplot of the data with centroids.

3.4.2 Clustering Methods

Scipy.cluster is used to perform clustering operations on the input data points. A clustering
operation is used to divide the data into different groups. During this operation, the data
points that are similar to each other cluster together, and the data points that are dissimilar
fall into separate groups. The most popular clustering approach used is K-means clustering.
This is an unsupervised approach meaning the data points are not labeled. The K-means
approach iterates through the training points such that the data points closer to the center
are identified at each run. Further, the next step involves computing the mean of each clus-
ter which becomes the new center. These two steps are iterated through till the centers do
not move. Scipy.cluster has the implementation of the K-means algorithm.

The following code snippet shows the implementation of K-Means clustering on ran-
domly generated data points. For this, first, we create two different random datasets of nor-
mal distribution using np.random.randn command. The second dataset (data2) is created
by adding distance to the normal data to shift its center. Now, using the KMeans package,
the centers are identified. Following this, we plot both the data and the centroids obtained
using k-Means clustering (see Fig. 3.14). Note that, here we also use vector quantization(vq)
to assign codes to the observations. These codes identify the cluster each point belongs.

from scipy.cluster.vq import kmeans, vq, whiten #importing the packages
required

#for Kmeans clustering
import numpy as np
import matplotlib.pyplot as plt
data1 = np.random.randn(500,2) # generating a random 2D data of normal

distribution
data2 = np.random.randn(500,2) + np.array([3,3]) # adding distance to the

previously generated data
to create two clusters

3.4 Scipy 99

data = np.vstack((data1,data2)) # stacking the two data together
[center,_] = kmeans(data, 2) # Apply Kmeans clustering to cluster the data

plt.scatter(data[:,0], data[:,1]) # plotting the scatterplots
plt.scatter(center[:,0], center[:,1]) # plotting the two centroids
plt.show()

into two groups
out = vq(data, center)
print(out)

3.4.3 Constants

The package scipy.constants gives access to many constants. It includes different categories
of constants such as mathematical constants (pi, golden), physical constants (Planck con-
stant (h), Boltzmann constant (k), etc.), SI units (milli, micro, kilo), and other units (gram,
degree, minute, etc.). These constants can be used in mathematical expressions to make
calculations easier. They can be imported into the code in a similar way as other packages.

import scipy.constants
from scipy.constants import find

print(find(’light’)) # find all the possible constants with the keyword ’
light’

print(find(’Planck’)) #find all the possible constants with the keyword ’
Planck’

print(scipy.constants.physical_constants[’Planck constant’]) #printing
Planck’s constant

print(scipy.constants.golden_ratio) # printing the golden ratio

Output:

[’speed of light in vacuum’]

[’Planck constant’, ’Planck constant in eV/Hz’, ’Planck length’,
’Planck mass’, ’Planck mass energy
equivalent in GeV’, ’Planck
temperature’, ’Planck time’, ’molar
Planck constant’, ’reduced Planck
constant’, ’reduced Planck
constant in eV s’, ’reduced Planck
constant times c in MeV fm’]

(6.62607015e-34, ’J Hz^-1’, 0.0)

1.618033988749895

3.4.4 Linear Algebra and Integration Routines

The package scipy.linalg can be used for performing linear algebra operations in Python.
The package is an implementation of basic linear algebra subprograms (BLAS) and linear
algebra package (LAPACK) libraries, which are standard software used for linear algebra
implementation. The scipy.linalg is faster compared to these libraries.

100 3 Deep Learning Tools

from scipy import linalg
import numpy as np

a = np.array([[1,2],[3,2]]) # create a square matrix
print(’deteminant of matrix a=’)
print(a, linalg.det(a)) # compute the determinant of the matrix
print(’Inverse of the matrix a = ’)
print(linalg.inv(a)) # compute the inverse of the matrix
val, vect = linalg.eig(a) # calculate the eigenvalue and eigenvector of a
print(’\neigenvalue =’)
print(val)
print(’\neigenvector =’)
print(vect)
b = np.array([2,4]) # create another 2D vector which is the right-

hand side of the algebra equation
print(’Solution to equation using matrix a and b gives:’)
print(linalg.solve(a,b)) # print the solution to the equation using a and

b

Output:

deteminant of matrix a=
[[1 2]
[3 2]] -4.0

Inverse of the matrix a =
[[-0.5 0.5]
[0.75 -0.25]]

eigenvalue =
[-1.+0.j 4.+0.j]

eigenvector =
[[-0.70710678 -0.5547002]
[0.70710678 -0.83205029]]

Solution to equation using matrix a and b gives:
[1. 0.5]

The package scipy.integrate is used for doing single, double, and multiple integrations.
Additionally, you can use this package for applying numerical analysis rules such as
Simpson’s rule and trapezoidal rule. This type of numerical integration becomes essential
when we cannot do the integration analytically.

Look at the following example:

∫

1
2

y=0 ∫

1−2y

x=0
xydx dy = 1

96
≈ 0.0104167

from scipy import integrate
def f(x, y):

return x*y
def bounds_y():

return [0, 0.5]
def bounds_x(y):

return [0, 1-2*y]

3.4 Scipy 101

integ = integrate.nquad(f, [bounds_x, bounds_y])
print(’\nafter integration’)
print(integ)

Output:

after integration
(0.010416666666666668, 4.101620128472366e-16)

3.4.5 Optimization

The optimization module can be used in the case of minimizing or maximizing a func-
tion, especially in the case of curve fitting, or root fitting, that can be scalar or multidi-
mensional. The package can deal with both constrained and unconstrained minimization
problems. The package used is scipy.optimize and for minimization minimize() function is
used. We can define any function and use this module to optimize a parameter by the min-
imum value of the function. For solving multivariate systems, the roots of these systems
can be found using the root() command. The package also has most commonly used opti-
mization approaches such as least squares (least_squares()) and curve-fitting techniques
(curve_fit()).

Let us look into the following code snippet where we first create a function to optimize
and find the minimum of the function using scipy.optimize.

Let us define the following function f (x). f ′(x) is the derivative of this function.

f (x) = x3 − 2x2 + x

f ′(x) = 3x2 − 4x + 1

x0 = 1
3
, 1

import matplotlib.pyplot as plt
from scipy import optimize
import numpy as np

def func(x):
return x**2 + 2*x + 1 # create the function to be optimized

x = np.linspace(-1,1,num=10) # plot the data to visualize the function
plt.plot(x, func(x))
plt.show()

Figure 3.15 illustrates a graphical representation of the function x2 + 2x + 1 that is the
subject of optimization. In this case, optimization involves finding the best possible input
values or parameters for this function to achieve a specific goal, such as maximizing or
minimizing its output.

Next, using minimize_scaler() we can find the minimum of the function as shown below:

out = optimize.minimize_scalar(func) #Find the minimum of the function
using minimum_scalar

print(out)

102 3 Deep Learning Tools

–1.0 –0.5 0.0 0.5 1.0 1.5 2.0 2.5

–2

0

2

4

6

Figure 3.15 Plot of the function to be optimized.

Output:

success: True
fun: 1.0
x: 1.0
nit: 8
nfev: 11

3.4.6 Interpolation

Interpolation is a useful technique for estimating the missing values in a function using the
known values. Scipy package scipy.interpolate is used to perform this operation. If we have
a function and few points to describe the sequence of the data, the interpolate function
can be used to predict values that fall into the existing set of data. This can be done in
1D data.

First, create an input signal consisting of 10 points, as displayed in Fig. 3.16, using the
following code snippet:

import numpy as np
from scipy import interpolate
import matplotlib.pyplot as plt

#1D interpolation

x = np.linspace(0, 10, 10)
y = np.cos(2*x) + 1 # creating the input signal with 10 points

plt.plot(x, y,’o’)
plt.legend([’input signal’]) # plotting the input signal points
plt.title(’input signal’)
plt.show()

There are different kinds of interpolation: ’linear’, ’cubic’, ’quadratic’ etc. This kind
of interpolation can be specified as an attribute to the interpolate.interp1d() function.

3.4 Scipy 103

0 2 4 6 8 10

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00 Input signal

Figure 3.16 Plot of input signal.

Figure 3.17, provides a graphical representation that illustrates the results of the various
kinds of interpolation, including ’linear’, ’cubic’, and ’quadratic’.
f1 = interpolate.interp1d(x, y,kind = ’linear’) # performing 1D linear

interpolation
f2 = interpolate.interp1d(x, y, kind = ’cubic’) # performing 1D cubic

interpolation
f3 = interpolate.interp1d(x, y, kind = ’quadratic’) # performing 1D

quadratic interpolation

x_new = np.linspace(0, 10, 30)

plt.plot(x, y, ’o’, x_new, f1(x_new), ’-’, x_new, f2(x_new), ’--’, x_new,
f3(x_new), ’-*’)

plotting all the interpolated data points along with the original data
plt.legend([’data’, ’linear’, ’cubic’,’quadratic’])
plt.title(’1D interpolation’)
plt.show()

Smooth curves can be plotted through a limited number of points using the Splines
command. We can specify the degree of the smoothing data. Let us define a different input
data:

y = x2 + sin(x) (3.1)

After creating this input signal, random noise is added to this data making the signal
distorted. Figure 3.18 illustrates the plot of this distorted data.
using spline

x = np.linspace(0, 6, 50) # creating the input signal
y = x**2 + np.sin(x)
n = np.random.randn(50) # adding random noise to the data to
data = y + n # make the signal distorted

plt.plot(x, data, ’o’) # plotting the generated data
plt.title(’input signal’)
plt.show()

104 3 Deep Learning Tools

0 2 4 6 8 10

0.0

0.5

1.0

1.5

2.0
Data
Linear
Cubic
Quadratic

Figure 3.17 Interpolation comparison – 1-D linear, cubic, and quadratic.

0 1 2 3 4 5 6

0

5

10

15

20

25

30

35

Figure 3.18 Plot of the distorted input signal.

Now using spline we can perform interpolation on this distorted data and also we can
smoothen the data as shown in Fig. 3.19:

smth = interpolate.UnivariateSpline(x, data) # performing interpolation
and smoothing using spline

x_new = np.linspace(0, 6, 1000)
plt.plot(x, data, ’o’, x_new, smth(x_new), ’r*’)
plt.legend([’data’, ’smooth curve’])
plt.title(’smoothing and curve fitting using spline package’)
plt.show()

3.4 Scipy 105

0 1 2 3 4 5 6

0

5

10

15

20

25

30

35
Data
Smooth curve

Figure 3.19 Smoothing and curve fitting using spline interpolation.

0 1 2 3 4 5 6

0

5

10

15

20

25

30

35
Data
Smooth curve

Figure 3.20 Smoothing and curve fitting using spline interpolation after adjusting the smoothing
factor.

Additionally, we can also change the smoothing factor of the interpolated data as shown
in Fig. 3.20:

smth.set_smoothing_factor(0.5) # adjusting the smoothing factor
plt.plot(x, data, ’o’, x_new, smth(x_new), ’g’)
plt.legend([’data’, ’smooth curve’])
plt.title(’after setting the smooth factor as 0.5’)
plt.show()

3.4.7 Image Processing

The package scipy.ndimage can be used to perform image processing operations in Python.
The package can be used to display an image, perform geometric transformations such

106 3 Deep Learning Tools

as rotation and flipping, filtering, and edge detection and can be used for segmentation,
classification, etc. The Scipy package also has access to images through a library
called miscellaneous routines (MISC) that can be used as a sample to perform the
operations.

Example 3.4.1 (Image processing operations using Scipy package)
In this example, we are going to learn how to display an image imported from MISC pack-
age and apply image processing techniques to this image. Import the face image using the
misc library in Scipy. Display the image and now let us perform some geometric trans-
formations to the image. The ndimage library allows us to do several operations such as
rotation, flipping, and cropping. Let us perform a downward flip using NumPy package
followed by a rotation by an angle of 60∘ using ndimage library. In addition to geometric
transformation, we can also do several filtering operations on the images. Begin with blur-
ring the image using a standard Gaussian filter. Different kinds of filters can be accessed
using the ndimage. Further, the sigma value can be tuned to see the difference between
the intensity of blurring. Another important image processing that can be performed using
this package is edge detection. Several methods are available. Let us apply the Prewitt algo-
rithm to one of the channels of the original image and the cropped image. Display all the
output images.

3.4.8 Special Functions

Apart from all the above-mentioned libraries, Scipy also provides us with special func-
tions. scipy.special package gives us access to certain universal functions such as cubic root,
exponential, permutation, combinations, and gamma functions. The syntax for each of
these functions is slightly different. In the case of mathematical functions, i.e. exponential,
gamma, cubic root, and element-wise operations are performed.

import numpy as np
from scipy import special

a = np.array([1, 3, 5, 2])

print(special.cbrt(a)) # computing the cube root of a
print(special.exp10(a))# computing the 10^a
print(special.gamma(a))# computing the gamma to s

out_comb = special.comb(5, 2, exact = False,repetition=True)
Combination(5,2)

print(out_comb)
out_perm = special.perm(5, 2, exact = True)
print(out_perm) #permutation(5,2)

Output:

[1. 1.44224957 1.70997595 1.25992105]
[1.e+01 1.e+03 1.e+05 1.e+02]
[1. 2. 24. 1.]
15.0
20

3.5 Scikit-Learn 107

3.5 Scikit-Learn

Scikit-learn is a free machine learning library in Python developed by David Cournapeau as
a Google summer of code project in 2007. It has various features for preprocessing, model
selection, classification, clustering, regression, and dimensionality reduction that are built
on top of NumPy, SciPy, and Matplotlib.

The scikit-learn package can be installed in the Anaconda prompt using either of the
following commands:

pip install scikit-learn
conda install scikit-learn

After installation, scikit-learn is imported as sklearn.

import sklearn
print(sklearn. _ _version_ _) #outputs the version of scikit-learn.

Output:

1.0.2

3.5.1 Scikit-Learn API

The scikit-learn application programming interface (API) consists of three basic interfaces
namely estimator, predictor, and transformer that allow it to do most of the machine
learning tasks. It also provides a wide variety of prebuilt algorithms to model the data with
just a few lines of code.

3.5.1.1 Estimator Interface
It denotes the fundamental interface applied in scikit-learn. It uses the fit() method to train
the machine learning model on the given dataset. All learning algorithms, regardless of
regression or classification problem; supervised or unsupervised tasks use the estimator
interface to fit the model on the training data. For example, in the case of supervised learn-
ing, the fit method takes in as input a feature vector as well as target labels so that the
estimator learns and infers some properties on unseen data.

3.5.1.2 Predictor Interface
This is an extension of the estimator interface that uses the predict() method to make useful
predictions given the test features. After training, the model for a given input feature vec-
tor, the predictor returns predicted labels in the form of probabilities as well as prediction
scores. Moreover, in a machine learning pipeline in alternative to calling fit() and predict()
separately, a single fit_predict() method can be used to first train a model and then obtain
the prediction results.

3.5.1.3 Transformer Interface
It helps to perform various transformations on the data by enabling the transform()
method. Scikit-learn provides a library of transformers for data preprocessing, dimen-
sionality reduction, feature extraction, and feature selection. Commonly, the transform()

108 3 Deep Learning Tools

method is used after the fit() method since the operations that are used to convert the data
are also treated as estimators. But for convenience, one can also use the fit_transform()
method for efficiently modeling and transforming the training data simultaneously.

Example 3.5.1 (A machine learning pipeline for classification.)
In this example, we discuss how to use the scikit-learn instances to construct a basic
machine learning pipeline. At first, we load the necessary modules and use the xor dataset
defined in the previous codes. This dataset contains two labels corresponding to ‘0’ and
‘1’. Before constructing the pipeline, the dataset is loaded and split into training and test
data. A very basic pipeline that consists of a scaler, feature extractor, and classifier. As the
preprocessing step, the StandardScaler() function is used to remove the mean and scale
the data to unit variance. Next, the feature extraction is done using principal component
analysis which uses the PCA() function to extract the most significant feature vectors. After
implementing both transformers, the MLPClassifier() function is used to implement the
multilayer perceptron (MLP) classifier that acts as the estimator. The classifier function
inputs the size of the hidden layers and a maximum number of iterations. After adding
these parameters the final model is fitted and the performance is evaluated by calculating
the confusion matrix (see Fig. 3.21).

0.0 1.0
Predicted labels

0.0

1.0

O
bs

er
ve

d
la

be
ls

41 3

1 35

5

10

15

20

25

30

35

40 Figure 3.21 Confusion matrix for the
classification of xor problem. The confusion
matrix gives a summary of the overall
performance of the classifier. It shows the
number of true negatives (TN), false
negatives (FN), false positives (FP), and true
positives (TP) corresponding to each class.
A higher value for TN and TP shows that the
classifier performs well.

3.5.2 Loading Datasets

This module comes with a few small built-in datasets that can be used to illustrate the per-
formance of various machine learning algorithms. These are known as toy datasets and they
can be easily loaded with a few lines of code. In order to load these datasets, a simple for-
mat is followed as load_DATASET(), where DATASET refers to the name of the dataset. The
main disadvantage of these datasets is that they are too small to be depictive of real-world
problems in machine learning. Hence, this module comes with a dataset fetcher that can be

3.5 Scikit-Learn 109

Figure 3.22 Creating blobs of points with
a Gaussian distribution for clustering.

–4 –3 –2 –1 0 1 2 3 4
X label

–4

–2

0

2

4

6

8

10

Y
 la

be
l

used to download and load larger real-world datasets. Additionally, the dataset generator
functions can be used for developing controlled artificial datasets. Figure 3.22 illustrates a
dataset comprising Gaussian blobs of points, which serves as the input data for a clustering
analysis.

#LOADING THE TOY DATSET
from sklearn import datasets
data = datasets.load_wine() #Load and returns the wine dataset.

#LOADING REAL-WORLD DATASET
from sklearn.datasets import fetch_california_housing
house_data = fetch_california_housing() #Load the California housing

dataset.

#LOADING GENERATED DATASET
from sklearn.datasets import make_blobs
import numpy as np
import matplotlib.pyplot as plt
#Develop isotropic Gaussian blobs for clustering.
X, y = make_blobs(n_samples=200, centers=3, n_features=3, random_state=0)
string=[’*k’,’+k’,’ok’]
for j in range(3):

ind = np.where(y==j)
plt.plot(X[ind,0],X[ind,1],string[j])

csfont = {’fontname’:’serif’}
plt.xlabel("X label",fontsize=12,**csfont)
plt.ylabel("Y label",fontsize=12,**csfont)
plt.xticks(fontsize=12,**csfont)
plt.yticks(fontsize=12,**csfont)
plt.show()

3.5.3 Data Preprocessing

This is an extremely important step in machine learning since we need to process the raw
data to boost the performance of the models. The commonly used preprocessing methods
are shown in Table 3.1.

110 3 Deep Learning Tools

Table 3.1 Data preprocessing methods and functions.

Preprocessing methods Functions

Standardization StandardScaler()- Rescales data to have zero mean and unit variance.
MinMaxScaler()- Scaling data to lie between the minimum and
maximum value.

Normalization Normalizer()- Scaling each data sample to have unit norm.
Imputing values SimpleImputer()- Filling up missing values using four main strategies

such as mean, most frequent, median, or a constant.
Polynomial features PolynomialFeatures()- Adds complexity to the dataset by generating

polynomial features.
Categorical features OneHotEncoder()- Encodes each categorical value into a new

categorical column and allocates a binary value to each column.
OrdinalEncoding()- Encodes each unique category
with a numerical value

Numerical features KBinsDiscretizer()- Transforms the continuous numerical values into
discrete bins.
Binarizer()- Assigning a boolean value to each sample by thresholding
the numerical features.

Custom transformers FunctionTransformers()- Accepts an existing function and uses it to
transform the data.

#STANDARDIZATION
import numpy as np
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import MinMaxScaler
arr1 = np.array([[1,2,3],[4,5,6],[7,8,9]]) #define an array.
print("Original array:",arr1)
scale1 = StandardScaler() #define the preprocessing module.
scale2 = MinMaxScaler(feature_range=(0,1)) #define the preprocessing

module.
arr_scale1 = scale1.fit_transform(arr1) #fit the transformer to the data.
arr_scale2 = scale2.fit_transform(arr1) #fit the transformer to the data.
org_arr1 = scale1.inverse_transform(arr_scale1) #transform back to

original data.
org_arr2 = scale2.inverse_transform(arr_scale2) #transform back to

original data.
print("Standardized array:",arr_scale1)
print("Minmax scaled array:",arr_scale2)
print("Transformed the standardized array:",org_arr1)
print("Transformed the minmax scaled array:",org_arr2)

Output:

Original array: [[1 2 3]
[4 5 6]
[7 8 9]]
Standardized array: [[-1.22474487 -1.22474487 -1.22474487]
[0. 0. 0.]
[1.22474487 1.22474487 1.22474487]]

3.5 Scikit-Learn 111

Minmax scaled array: [[0. 0. 0.]
[0.5 0.5 0.5]
[1. 1. 1.]]

Transformed the standardized array: [[1. 2. 3.]
[4. 5. 6.]
[7. 8. 9.]]

Transformed the minmax scaled array: [[1. 2. 3.]
[4. 5. 6.]
[7. 8. 9.]]

[]

#NORMALIZATION
from sklearn.preprocessing import Normalizer
arr2 = np.array([[100,20,550],[43,620,111],[248,15,89]]) #define an array.
print("Original array:",arr2)
normal = Normalizer() #define the preprocessing module.
arr_normal = normal.fit_transform(arr2) #fit the transformer to the data.
print("Normalized array:",arr_normal)

Output:

Original array: [[100 20 550]
[43 620 111]
[248 15 89]]

Normalized array: [[0.17877106 0.03575421 0.98324084]
[0.06811083 0.98206308 0.17582097]
[0.9397041 0.05683694 0.33723252]]

#IMPUTING VALUES
import numpy as np
from sklearn.impute import SimpleImputer
arr3 = np.array([[np.nan, 2, 8, np.nan], [6, np.nan, np.nan, 12],

[7, 6, 4, np.nan]]) #define an array.
print("Original array:",arr3)
im = SimpleImputer(missing_values=np.nan, strategy=’median’) #define the

preprocessing module.
arr_im = im.fit_transform(arr3) #fit the transformer to the data.
print("Array after imputing values:",arr_im)

Output:

Original array: [[nan 2. 8. nan]
[6. nan nan 12.]
[7. 6. 4. nan]]

Array after imputing values: [[6.5 2. 8. 12.]
[6. 4. 6. 12.]
[7. 6. 4. 12.]]

#POLYNOMIAL FEATURES
import numpy as np
from sklearn.preprocessing import PolynomialFeatures
arr4 = np.array([[5,8],[4,3],[7,9]]) #define an array.
print("Original array:",arr4)
poly = PolynomialFeatures(2) #define the preprocessing module.
poly_feat = poly.fit_transform(arr4) #fit the transformer to the data.
print("Polynomial features of array:",poly_feat)

112 3 Deep Learning Tools

Output:
Original array: [[5 8]
[4 3]
[7 9]]
Polynomial features of array: [[1. 5. 8. 25. 40. 64.]
[1. 4. 3. 16. 12. 9.]
[1. 7. 9. 49. 63. 81.]]

#CATEGORICAL FEATURES
import numpy as np
from sklearn.preprocessing import OneHotEncoder
from sklearn.preprocessing import OrdinalEncoder
arr5 = np.array([[1,’one’],[2,’two’],[3,’three’]]) #define an array.
print("Original arry:",arr5)
enc1 = OneHotEncoder() #define the preprocessing module.
enc2 = OrdinalEncoder() #define the preprocessing module.
cat_feat1 = enc1.fit_transform(arr5).toarray() #fit the transformer to the

data.
cat_feat2 = enc2.fit_transform(arr5) #fit the transformer to the data.
print("One hot encoded array:",cat_feat1)
print("Ordinal array:",cat_feat2)

Output:
Original array: [[’1’ ’one’]
[’2’ ’two’]
[’3’ ’three’]]
One hot encoded array: [[1. 0. 0. 1. 0. 0.]
[0. 1. 0. 0. 0. 1.]
[0. 0. 1. 0. 1. 0.]]
Ordinal array: [[0. 0.]
[1. 2.]
[2. 1.]]

#NUMERICAL FEATURES
import numpy as np
from sklearn.preprocessing import KBinsDiscretizer
from sklearn.preprocessing import Binarizer
arr6 = np.array([[5, 8, 14], [17, 2, 12], [21, 6, 4]]) #define an array.
print("Original array:",arr6)
dis = KBinsDiscretizer(n_bins=[2, 3, 2], encode=’ordinal’) #define the

preprocessing module.
bina = Binarizer(threshold=10, copy=True) #define the preprocessing module

.
num_feat1 = dis.fit_transform(arr6) #fit the transformer to the data.
num_feat2 = bina.fit_transform(arr6) #fit the transformer to the data.
print("Array with bins:",num_feat1)
print("Binarized array:",num_feat2)

Output:
Original array: [[5 8 14]
[17 2 12]
[21 6 4]]
Array with bins: [[0. 2. 1.]
[1. 0. 1.]
[1. 1. 0.]]
Binarized array: [[0 0 1]
[1 0 1]
[1 0 0]]

3.5 Scikit-Learn 113

#CUSTOM TRANSFORMERS
import numpy as np
from sklearn.preprocessing import FunctionTransformer
arr7 = np.array([[3, 9], [18, 27], [39, 63]]) #define an array.
print("Original array:",arr7)
trans = FunctionTransformer(np.expm1, validate=True) #define the

preprocessing module.
cust_feat = trans.transform(arr7) #fit the transformer (exp(x)-1) to the

data.
print("Transformed array:",cust_feat)

Output:
Original array: [[3 9]
[18 27]
[39 63]]

Transformed array: [[1.90855369e+01 8.10208393e+03]
[6.56599681e+07 5.32048241e+11]
[8.65934004e+16 2.29378316e+27]]

3.5.4 Feature Selection

This process helps in the selection of the most relevant features from the data that con-
tribute most to the prediction and hence plays a crucial role in building accurate machine
learning models. Although scikit-learn provides several feature selection algorithms, two
of the widely used methods are recursive feature elimination (RFE) and SelectKBest. RFE
feature selector essentially is a backward selection process, that allows eliminating the least
significant features after recursive training. On the other hand, SelectKBest is one of the uni-
variate feature selection methods that can be used to select a number K of features based
on statistical test results.

#Feature elimination using RFE
import pandas as pd
import seaborn as sns
from sklearn.feature_selection import RFE
from sklearn.ensemble import GradientBoostingClassifier
dat1 = sns.load_dataset(’anagrams’) #Load the dataset.
X1 = dat1.drop(’attnr’, axis = 1) #Create the independent variable.
y1 = dat1[’attnr’] #Create the dependent variable.
#Select the significant features using Gradient boosting classifier
rfe = RFE(estimator=GradientBoostingClassifier(),n_features_to_select =2)
rfe.fit(X1, y1) #Fit the model.
print(X1.columns[rfe.get_support()]) #Display the best 2 features.

Output:
Index([’subidr’, ’num3’], dtype=’object’)

Example 3.5.2 (Feature selection using SelectKBest)
In this example, we create a SelectKbest instance that selects the three best features of a
predictor xi based on their mutual information with a regressor yi. The implementation is
done on the ‘diamonds’ dataset from Seaborn. After loading the dataset, the script drops the
features that are not numerical and extracts the regressor or scalar to be predicted (the num-
ber of carats) from the provided table of data. Then, it computes the mutual information of

114 3 Deep Learning Tools

each column of the data X with the column y of regressors. Please notice that y is the name
of the y dimension, but later we use y to store the regressor, which is called carat in the
database. Also, x is the name of the x dimension, and later we use X to store all inputs or
predictors. As a result, the best features, which are the dimensions, are selected. Indeed,
the carat measure is related to the volume of the diamond, and therefore the dimensions
are the inputs that carry this information.

3.5.5 Supervised and Unsupervised Learning Models

In general, machine learning algorithms can be either supervised or unsupervised. In super-
vised learning, the models are trained using labeled data while the latter uses unlabeled data
to identify the patterns in the dataset. The most commonly used supervised learning method
includes linear models such as linear regression, logistic regression, ridge regression, and
Lasso regression. A regression model is mainly used to predict continuous output variables
by analyzing the correlation between them. In the case of classification tasks where dis-
crete values are predicted, the main supervised algorithms include Decision trees, Naive
Bayes classifiers, support vector machines, Random Forests, etc. But when labeled data is
not available, unsupervised learning tasks such as manifold learning and clustering analy-
sis are done for dimensionality reduction and for inferring the hidden structure of the data.
A few examples of manifold learning algorithms are Isomap and t-SNE, whereas K-Means
and Gaussian mixture models include the main clustering methods.

#Regression
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
Create a NumPy array of data:
X = np.array([5, 10, 15, 20, 25, 30]).reshape((-1, 1))
y = np.array([12, 20, 25, 32, 35, 40])
model = LinearRegression() #Create a linear regression model.
model_fit = model.fit(X, y) #Fit the model.
y_pred = model_fit.predict(X) #Make predictions using the model.
print(’Prediction:’, y_pred) #Display the predictions.

Output:

Prediction: [13.61904762 19.1047619 24.59047619 30.07619048 35.56190476
41.04761905]

#Classification
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from sklearn import svm
from sklearn import metrics
ds = load_breast_cancer() #Load the dataset.
#Display the size of the feature and the label.
print(’Dataset Size: ’, ds.data.shape, ds.target.shape)
Split dataset into training set and test set
X_train, X_test, y_train, y_test = train_test_split(ds.data, ds.target,

test_size=0.2)
clf = svm.SVC(kernel=’rbf’) #Use the non linear kernel of SVM for

classification.

3.5 Scikit-Learn 115

clf.fit(X_train, y_train) #Fit the model.
y_pred = clf.predict(X_test) #Make predictions using the model.
#Display the accuracy score.
print("Accuracy:",metrics.accuracy_score(y_test, y_pred))

Output:

Dataset Size: (569, 30) (569,)
Accuracy: 0.9035087719298246

#Dimensionality Reduction
from sklearn.datasets import load_digits
from sklearn import manifold
digits = load_digits(n_class=6) #Load the dataset.
#Assign the feature and labels to variables.
X_digits, Y_digits = digits.data, digits. target
#Display the size of the features.
print(’Dataset Size: ’, X_digits.shape)
#Define the Isomap model for dimensionality reduction.
isomap = manifold.Isomap(n_neighbors=10)
Fit the model
X_iso= isomap.fit_transform(X_digits)
#Display the size of the reduced feature set.
print(’Reduced Feature Size: ’, X_iso.shape)

Output:

Dataset Size: (1083, 64)
Reduced Feature Size: (1083, 2)

#Clustering
import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs
from sklearn.mixture import GaussianMixture
Create dataset
X, y = make_blobs(n_samples=200, n_features=2,centers=4,

cluster_std=0.5, shuffle=True, random_state=0)
#Define the Gaussian Mixture Model with 4 clusters.
gmm = GaussianMixture(n_components=4).fit(X)
#Predicts the labels for the features.
labels = gmm.predict(X)

3.5.6 Model Selection and Evaluation

Model selection is an iterative process of finding the best model by evaluating its perfor-
mance and tuning the hyperparameters of this model. Scikit-learn offers us many cross-
validation techniques such as KFold, stratified k-fold, and Leave One Out to compare and
select the most suitable model for the problem. Following this, various performance mea-
sures such as accuracy, precision, recall, and mean squared error are used to assess the
model’s quality. These are the metric functions of scikit-learn that are used to evaluate the
prediction error for various classification or regression tasks.

116 3 Deep Learning Tools

from sklearn.datasets import load_iris
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import KFold
from sklearn.metrics import accuracy_score

dataset = load_iris() #Load the dataset
X, y = dataset.data, dataset.target #Assign the feature and labels to

variables.
#Display the size of the features and labels.
print(’Dataset Size: ’, X.shape, y.shape)
scores = list()
Initialize k-fold cross validation
k_fo = KFold(n_splits=5, shuffle=True)
enumerate splits
count = 0
for train_i, test_i in k_fo.split(X):

count = count+1
train_X, test_X = X[train_i], X[test_i] #Extract the train and test

data.
train_y, test_y = y[train_i], y[test_i] #Extract the train and test

data.
model = LogisticRegression(solver= ’liblinear’) #Assign the logistic

regression model.
model.fit(train_X, train_y) #Fit the model.
yhat = model.predict(test_X) #Make predictions.
acc = accuracy_score(test_y, yhat) #Evaluate the predictions using

accuracy score.
scores.append(acc)
print(’Accuracy for Fold {}: ’.format(count), acc) #Print the accuracy

for each fold.

Output:
Dataset Size: (150, 4) (150,)
Accuracy for Fold 1: 0.9666666666666667
Accuracy for Fold 2: 0.9333333333333333
Accuracy for Fold 3: 0.9666666666666667
Accuracy for Fold 4: 0.9333333333333333
Accuracy for Fold 5: 0.9333333333333333

3.6 Pandas

Pandas is an open-source Python library built on NumPy. It provides various data structures
and data analysis tools for flexible and high-performance data processing. The term pan-
das is coined from the word “panel data,” which is an econometrics term for multivariate
datasets. In general, Pandas are used for loading, cleaning, arranging, modeling, and inves-
tigating the data. The application of Pandas can be found in economics, statistics, stock
prediction, analytics, and advertising.

The Pandas package can be installed in the Anaconda prompt using either of the follow-
ing commands:

pip install pandas
conda install pandas

3.6 Pandas 117

After installation, Pandas is imported using the alternate name pd.

import pandas as pd
print(pd.__version__) #outputs the version of Pandas.

Output:

1.3.5

3.6.1 Pandas Data Structures

3.6.1.1 Series
It is a one-dimensional labeled array, generally a column that contains similar data types.
If the labels are not defined, the values are given their corresponding index number as their
labels.

s = pd.Series([10,20,30,40], index = [’a’,’b’,’c’,’d’])
#defining a series with specified labels.
s1 = pd.Series([10,20,30,40]) #defining a series with no labels specified.
print(s1[0]) #outputs 10 by accessing the zeroth value of the series.

Output:

10

3.6.1.2 Dataframe
It is made up of multiple rows and columns, forming a table consisting of a collection of
series. When we use a dictionary to construct a data frame, each key and value corresponds
to a column of the data frame.

import pandas as pd
data = {’Day’:[’Monday’,’Thursday’,’Saturday’], ’Year’:[2001,2010,2020]}
#defining a dataframe object to load the data from a dictionary of lists.
df = pd.DataFrame(data)
print(df)

Output:

Day Year
0 Monday 2001
1 Thursday 2010
2 Saturday 2020

Example 3.6.1 (Different inputs for series and dataframe)
In this example, we discuss the different ways to create a series and data frame from differ-
ent inputs. In the previous code snippet, a series was defined using a list. The three other
ways to define the input of a series are by using a dictionary, a scalar, or an array. Let us
define a dictionary diction = {‘apple’:45, ‘melon’:20, ‘avocado’:32}. When it is passed as
an input to the series without any index, the keys are used as the indices. Here the output
column will contain the numbers 45, 20, and 30 with their indices as apple, melon, and

118 3 Deep Learning Tools

avocado. When a scalar is used as the input to the series, it is necessary to provide indices.
The scalar repeats itself to match the length of the index. Finally, in order to create a series
from an array, we import a NumPy module to use the array() function to define an array arr
= np.array([’p’,’ a’, ’n’,’ d’, ’a’,’s’]). This array is later given as input to the series. A data frame
on the other hand can also have multiple inputs such as a list of lists, a list of dictionaries, a
dictionary of NumPy array, and a dictionary of pandas series. When the input is a list of lists
defined as list1=[[’Japan’,’ Tokyo’],[’Chile’,’ Santiago’],[’Qatar’, ’Doha’]], each inner list cor-
responds to each row of the data frame. In the case of a list of dictionaries, we define list_dict
= [{’Student’: ’Robert’, ’Subject’: ’Physics’, ’Marks’: 90}, {’Student’: ’Nick’, ’Subject’: ’Chem-
istry’, ’Marks’: 85}, {’Student’: ’Audrey’, ’Subject’: ’Biology’, ’Marks’: 72}]. Here each key of
the dictionary corresponds to the column names and each of the values represents each row.
Next, to create a data frame from a dictionary of arrays, we first import a NumPy module to
use the array() function. Let us define the array as arr = np.array([[’Norton’, ’Steve’, ’Liam’],
[5, 2, 7], [’Dancer’, ’Singer’, ’Producer’]]). Next a dictionary of arrays is created as dict_arr
= {’Name’: arr[0],’Experience’: arr[1],’Profession’: arr[2]}. The dictionary keys denote the
column names and each array element corresponds to a column. Finally, to create a dictio-
nary we first define different series and then pass it to a dictionary as dict_series = {’Fruit’:
series1, ’Count’: series2, ’Color’:series3}. Here each series denotes a column whereas the
dictionary keys represent the column names.

3.6.2 Data Selection

Pandas use data selection to choose specific rows and columns from the data frame. The
data is identified using specific indicators such as axis labels, and this is further used in
multiaxis indexing. Primarily, pandas use the loc[] operator to select specific rows by using
the labels of the data frame. In order to select the data by position, integer-based indexing
is implemented using the iloc[] operator.

import pandas as pd
data = {’Month’:[’December’,’March’,’October’],
’Season’:[’Winter’,’Spring’,’Fall’]} #create a dictionary of lists.
df = pd.DataFrame(data) #define a dataframe.
df.loc[1] #loc function is used to return row 1.
df.loc[[1,2]] #returns rows 1 and 2.
df1 = pd.DataFrame(data, index = ["Climate1", "Climate2", "Climate3"])
#naming the indices of the dataframe
df1.loc["Climate1"] # returns the row corresponding to index Climate1.
df1.iloc[:2] #returns the row corresponding to index 1 and 2

3.6.3 Data Manipulation

3.6.3.1 Sorting
It can be done in two ways, which include sorting by label and by value. While sorting by
label, the sort_index() method is used to sort row labels of the data frame and the default
sorting is done in ascending order. Further, the order of sorting can be changed by setting the
ascending parameter in the sort_index() function to false. In order to sort by column labels,
the axis argument of the sort_index() function is set to 1. Next, the sort_values() method

3.6 Pandas 119

of pandas is used to sort the values of the data frame along either axis by defining a ‘by’
argument.

#SORT BY LABEL
import pandas as pd
import numpy as np
#define a list of lists.
list_list = [[’Canada’,’Ottawa’],[’Italy’,’Rome’],[’Peru’,’Lima’]]
#create the dataframe.
df_nosort = pd.DataFrame(list_list,index=[3,1,2],columns=[’Country’, ’

Capital’])
df_sorta = df_nosort.sort_index() #sorting by label in ascending order.
df_sortd = df_nosort.sort_index(ascending=False) #sorting by label in

descending order.
df_sortc = df_nosort.sort_index(axis=1) #sorting by column label.

#SORT BY VALUE
import pandas as pd
datax = {’A’: [10,40,30,25],’B’: [2016,2007,2020,2001]} #define a

dictionary of lists.
dfx_unsort = pd.DataFrame(datax, columns=[’A’,’B’]) #create a dataframe.
print(dfx_unsort) #outputs unsorted dataframe.
dfx_sort = dfx_unsort.sort_values(by = ’B’) #sort by values along an axis.
dfx_sortm = dfx_unsort.sort_values(by = [’A’,’B’]) #sort by multiple

columns.
print(dfx_sortm) #outputs sorted dataframe.
print(dfx_sortm.rank()) #assign rank to the values of the dataframe and

outputs the result.

Output:

A B
0 10 2016
1 40 2007
2 30 2020
3 25 2001

A B
0 10 2016
3 25 2001
2 30 2020
1 40 2007

A B
0 1.0 3.0
3 2.0 1.0
2 3.0 4.0
1 4.0 2.0

3.6.3.2 Grouping
This operation is used to split the data into groups and apply a function to these subsets.
The most common functions are aggregation, transformation, and filtration. The main
functionality of data aggregation is that it can be used to provide a statistical summary by
computing the mean, sum, minimum, maximum, etc. In transformation, a group-specific
computation is performed so that the output and input data frames are able to maintain
the same size. Finally, filtration is used to eliminate unwanted data using a condition.

120 3 Deep Learning Tools

The two main functions for grouping include groupby and get_group. The groupby function
is used to split the data frame by column name, and get_group function is used to select a
group from a pandas groupby object.
#GROUPING THE DATAFRAME
import pandas as pd
data1 = {’Date’:[’1-1-2021’, ’1-2-2021’, ’1-3-2021’, ’1-4-2021’,

’1-5-2021’, ’1-6-2021’, ’1-7-2021’, ’1-8-2021’],
’High’:[270, 214, 522, 632,

343, 836, 427, 132],
’Low’:[16, 24, 22, 32,

33, 36, 27, 32],
’Open’:[45,183,261,382,

90,534,60,55],
’Close’:[103,89,333, 384,

200,136,68,118]} #define a dictionary. of lists.
df = pd.DataFrame(data1) #create a dataframe.
group1 = df.groupby(’Date’)
df.groupby(’Date’).groups #grouping data with one key.
group1.get_group(’1-6-2021’) #selects a single group.

#APPLYING A FUNCTION
import pandas as pd
import numpy as np
dataw = {’Name’:[’Fred’, ’George’, ’Fred’, ’Harry’,
’Ron’, ’Percy’, ’Harry’, ’Fred’], #define a dictionary of lists.

’Marks’:[80, 95, 75, 70,
98, 60, 75, 62]}

df = pd.DataFrame(dataw) #create a dataframe.
groupw = df.groupby(’Name’) #grouping data with one key.
groupw.aggregate(np.sum) #performing aggregation using aggregate method.
tf = lambda x: x - x.mean() #subtracting the mean.
groupw.transform(tf) #applying the transform function.
groupw.filter(lambda x: len(x) >= 2) #filtering the data.

3.6.4 Handling Missing Data

This is a common problem prevalent in most real-time databases. The tabulated data might
have multiple missing values leading to reduced performance for many data science prob-
lems. Henceforth, data cleaning is highly essential, and one of the most powerful tools
employed is pandas. It uses various functions to detect the missing values and manages
them efficiently as per the problem statement. The standard missing values in pandas are
NaN(Not a number), NA(Not available), and None. In order to detect the missing values,
pandas use the isnull() and nonnull() functions. They output the boolean values to denote
the missing values in the data frame.
import pandas as pd
import numpy as np
datag = {’A’:[None, 90, np.nan, 95],

’B’: [30, 45, 56, np.nan],
’C’:[np.nan, 40, 80, None],
’D’:[70, 40, 24, None]} #define a dictionary of lists.

df = pd.DataFrame(datag) #create a dataframe.
df.isnull() #check the missing values using isnull().
df.notnull() #check the missing values using notnull().

3.6 Pandas 121

After finding the missing values, it is possible to either drop or replace these values in
the data frame. The dropna() function is used to drop a row or column with null values.
It has three parameters axis, how, and thresh. The default value of the axis is 0 representing
the rows, whereas the how parameter takes either of the two string values ‘any’ or ‘all’. The
third parameter thresh inputs an integer that corresponds to a threshold for missing values
in order for a row or column to be dropped. The fillna() function on the other hand is used
to replace the missing values.
import pandas as pd
listq = [[200,np.nan,800],[np.nan,np.nan,600],

[900,None,None],[500,np.nan,None]] #define a list of lists.
df = pd.DataFrame(listq,columns=[’Column1’,’Column2’,’Column3’]) #create

the dataframe.
df.dropna(axis=1,how=’any’,thresh=3)
df1=df.dropna(axis=1,how=’all’) #drops a column when all of its values are

missing.
df2=df.dropna(axis=1,thresh=2) #drops a column with atleast 2 missing

values.
df3=df.fillna(0) #replaces the missing values with zeros.

3.6.5 Input–Output Tools

In practical problems, we usually work with data that already exists. Specifically, this data
is saved in multiple formats, and it is most commonly stored as comma-separated values
also known as CSV files. It is a table of values that are separated by commas and pandas
use the read_csv() function to read this as a data frame and to_csv() function to save the
data frame as a CSV file. Since CSVs do not have indexes like data frames, while reading the
CSV file we add the index by setting the index_col parameter as zero. This forces pandas to
use the first column of the data frame as the index. In the below code, we convert the xor
dataset implemented in Example 3.1.3 to a data frame to illustrate how the users can read
and write from custom datasets.
#WRITING TO A CSV FILE
import pandas as pd
#create a dictionary and define the dataframe.
df = pd.DataFrame({’Feature1’:X[0,:],’Feature2’:X[1,:],’Label’: y[0,:]},

columns=[’Feature1’,’Feature2’,’Label
’])

df.to_csv(’pandas_write.csv’,index=False) #write to a csv file and drop
the index.

#READING FROM A CSV FILE
import pandas as pd
xor = pd.read_csv("pandas_write.csv") #read csv file as a dataframe.
print(xor.shape)

Output:
(400, 3)

The other common formats used for reading and writing data are Excel, JSON, and SQL.
Pandas use functions such as read_excel, read_json, and read_sql to import the data from
different sources. On the other hand, the to_excel, to_json, and to_excel commands are used
in order to write a data frame to xlsx, JSON, and SQL formats.

122 3 Deep Learning Tools

3.6.6 Data Information Retrieval

The information present in the data can be inspected for data analysis using various pandas
functions. The info() function provides the necessary details about the data frame. It sum-
marizes the number of rows and columns, the number of non-null values, the data type in
each column, and the memory usage of the data frame. Moreover, a detailed description of
the statistical parameters such as mean and standard deviation can be retrieved using the
describe() function. When there are a large number of values in a data frame, the contents
can be examined by using two commands. The head() command outputs only the first five
rows, whereas the tail() command outputs the last five rows of the data frame. Finally, the
value_counts() function can be used in order to display the count of the unique rows of the
data frame.
import pandas as pd
df = pd.read_csv("pandas_write.csv") #read csv file as a dataframe
df.info() #outputs details about the dataframe
df.head() #outputs the first five rows of the dataframe
df.tail() #outputs the last five rows of the dataframe
df.describe(include=’all’) #outputs some basic statistical details of a

data frame of numeric values
df.Feature1.value_counts() #outputs a series with counts of distinct rows

in the dataframe

3.6.7 Data Operations

Data analysis in pandas is further facilitated using functions that perform the merge, join,
append, and concatenate operations. Both merge() and join() functions support horizontal
combination, whereas append() and concat() are used for vertical combination. The main
role of merge() function is to combine the data frame with common columns or indices.
The different types of merge operations performed are left, right, inner, and outer. As the
name suggests, the left and right operations use only keys from the left and right dataframe
while preserving the key order. In the case of outer operation, the keys are sorted lexico-
graphically, and it uses the union of keys from both left and right dataframe. The intersec-
tion of keys from both data frames is used in the inner operation, which further preserves
the order of only the left keys.
import pandas as pd
df_left=pd.DataFrame({"keyx": ["A", "B", "C", "D"],

"keyy": ["A", "A", "D", "B"],
"Name": ["Alex", "Daniella", "Fiona", "Kiara"],
"Age": ["23", "31", "26", "29"]}) #define a dataframe.

df_right = pd.DataFrame({"keyx": ["A", "B", "C", "D"],
"keyy": ["A", "A", "A", "A"],
"Job": ["Writer", "Painter", "Doctor", "Engineer"],
"Country": ["Russia", "France", "Italy", "Greece"]}) #define

another dataframe.
out = pd.merge(df_left, df_right, on=["keyx", "keyy"]) #merge two

dataframes using the keys.
out1 = pd.merge(df_left, df_right, how=’outer’) #merges the union of keys

from both dataframes.

The join() function is used to combine the columns of two data frames with different
indexes. Here only one data frame can be specified and later by using the join() function

3.6 Pandas 123

it can be combined with the other data frame. This function uses the lsuffix and rsuffix
parameters to define a suffix to add to any overlapping column.

import pandas as pd
#create a dataframe.
left_df = pd.DataFrame({"X": ["X1", "X2", "X3", "X4"],
"Y": ["Y1", "Y2", "Y3", "Y4"]},
index=[1,2,3,4])
#create another dataframe.
right_df = pd.DataFrame({"X": ["X11", "X12", "X13"],
"Q": ["Q1", "Q2", "Q3"]}, index=[1,3,4])
#join the dataframe with overlapping columns.
out = left_df.join(right_df,lsuffix=’_left’, rsuffix=’_right’)

The concat() function links the two data frames along an axis, either rows or columns.
Unlike the merging techniques, concatenation does not allow the resultant dataset to have
the rows of the input data frames shuffled together based on any commonality. Additionally,
the append() function is used as a simple yet efficient shortcut for concatenation.

import pandas as pd
dfx = pd.DataFrame({’Name’: [’A’, ’B’, ’C’, ’D’],

’Marks’: [50,99,72,60]}) #define a dataframe.
dfy = pd.DataFrame({’Name’: [’E’, ’F’, ’G’, ’H’],

’Marks’: [76,85,93,96]}) #define another dataframe.
out = pd.concat([dfx, dfy]) #concatenate along the rows.
out1 = pd.concat([dfx, dfy], axis=1) #concatenate along the columns.
out2 = pd.concat([dfx, dfy], ignore_index=True) #concatenate to ignore

existing indices.
out3 = dfy.append(dfx) #append along the rows.

3.6.8 Data Visualization

Pandas provide an easy-to-use interface built over matplotlib for data visualization by using
less code. Unlike matplotlib, it uses less code to create a meaningful visual representation
of the data. Pandas visualization tool uses the plot() function to produce line plots, scatter
plots, bar graphs, histograms, pie plots, area plots, box plots, and kernel density estimation
plots. It essentially provides a graphical representation of all the columns along with their
labels. Figure 3.23 presents three distinct bar plots, and Fig. 3.24 shows the kernel density
estimation plots created using the pandas library for data visualization.

import numpy as np
import pandas as pd
#define a dataframe.
df = pd.DataFrame(np.random.rand(8,5),columns=(’Data1’, ’Data2’, ’Data3’))
print(df) #outputs the dataframe.

#LINE PLOT
df.plot() #line plot
df.plot(subplots=True, figsize=(10,10)) #create subplots for each columns.

#SCATTER PLOT
#scatter plot to check correlation.
df.plot(x="Data1", y="Data2", kind="scatter",color="red", marker="*", s=

100)

124 3 Deep Learning Tools

0 1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0
Data1

Data2

Data3

0 1 2 3 4

0.0

0.5

1.0

1.5

2.0

Data1

Data2

Data3

0.0 0.5 1.0 1.5 2.0

0

1

2

3

4

Data1

Data2

Data3

Figure 3.23 Different bar plots using pandas.

0.25

0.5

0.75

D
at

a1

0.0

0.2

0.4

D
at

a2

0.
25

0.
50

0.
75

Data1

0.4

0.6

0.8

D
at

a3

0.
0

0.
2

0.
4

Data2

0.
4

0.
6

0.
8

Data3

Figure 3.24 Kernel density estimation plot using pandas.

#BAR PLOT
fig, axes = plt.subplots(nrows=1, ncols=3,figsize=(15, 5))
df.plot(kind="bar",ax=axes[0]) #bar plot of the dataframe from the above

example.
#stacked bar plot to highlight the comparison between different

categories.
df.plot(kind="bar", stacked=True,grid = True, legend = True,ax=axes[1])
df.plot(kind="barh", stacked=True,grid = True, legend = True,ax=axes[2])

#horizontally stacked bar plot.
plt.show()

#HISTOGRAM PLOT
df.plot.hist(bins=20) #histogram plot.
#plot the histograms separately.
df[[’Data1’,’Data2’]].hist(bins=20,figsize=(10, 10))

#PIE PLOT
#specifying color to pie plot.
colors = [’lightgreen’, ’lightpink’, ’coral’, ’magenta’, ’yellow’]
#subplots for the pie plot.
df.plot(kind=’pie’,colors=colors,subplots=True, figsize=(15, 4),title = "

Data points")

#AREA PLOT

3.7 Seaborn 125

#specifying colors to area plot.
color1=[’coral’, ’skyblue’, ’yellow’]
#The alpha parameter adds some translucent look to the area plot.
df.plot(kind=’area’, alpha=0.4, color=color1,figsize=(8, 6), title=’Area

Plot’, fontsize=12)
#Unstacked area plot.
df.plot(kind=’area’,stacked=False, figsize=(8, 6), fontsize=12)

#BOX PLOT
df.plot(kind=’box’,figsize=(8, 6)) #box plot.
df.plot.box(vert=False, positions=[1, 2, 3],figsize=(8, 6)) #horizontal

box plot.

#KERNEL DENSITY ESTIMATION PLOT
from pandas.plotting import scatter_matrix
#kernel density estimation plot
scatter_matrix(df[[’Data1’, ’Data2’, ’Data3’]], alpha = 0.9, diagonal = ’

kde’)

3.7 Seaborn

Seaborn is a data visualization library in Python that provides a high-level interface to Mat-
plotlib. It is also a tool of choice for statistical data exploration in Python. The high-level
commands in Seaborn are used to add esthetically pleasing default themes and custom
color palettes to the statistical plots. Further, it is also used to extract visual information
from data frames. The main dependencies of Seaborn are Python, NumPy, Scipy, pandas,
and Matplotlib.

The Seaborn package can be installed in the Anaconda prompt using either of the
following commands:

pip install seaborn
conda install seaborn

After installation, Seaborn is imported as follows.

import seaborn as sns
print(sns.__version__) #outputs the version of Seaborn.

Output:

0.11.2

3.7.1 Seaborn Datasets

The current version of seaborn provides a total of 18 built-in datasets. These datasets can
be used to demonstrate the ability of seaborn and its powerful plotting functions. They are
stored in designated GitHub repositories so that when seaborn is installed, the datasets are
downloaded automatically. A list of the available datasets can be obtained using the func-
tion get_dataset_names(). Finally from the available datasets, we use the sns.load_dataset
method to load them into a pandas dataframe.

126 3 Deep Learning Tools

import seaborn as sns
import pandas as pd
print(sns.get_dataset_names()) #list the available datasets in seaborn.
df = sns.load_dataset(’iris’) #loading dataset.
df.head() #viewing the first 5 rows of the dataframe.

3.7.2 Plotting with Seaborn

3.7.2.1 Univariate Plots
These plots are used to describe the nature of a single variable, and they represent the
rate of occurrence of each unique value of a given variable. These visualizations are done
using barplots and histograms, and the commonly used functions are the histplot() and
countplot(). A histplot() outputs a histogram by plotting the distribution of the given vari-
able. Figure 3.25 showcases a histogram plot focusing on a single variable, created using
Seaborn. In the case of the countplot() function, it is used to display the distribution of cat-
egorical variables.
#HISTPLOT
import seaborn as sns
import matplotlib.pyplot as plt
df = sns.load_dataset(’iris’) #loading dataset.
#set figure
f, ax = plt.subplots(1,1)
csfont = {’fontname’:’serif’} #define the font family
#graph histogram
sns.histplot(df[’sepal_length’], bins=10, alpha=0.5, color=’black’, label=

’sepal length’)
sns.histplot(df[’sepal_width’], bins=10, alpha = 0.5, color=’grey’, label=

’sepal width’)
#set legend
plt.legend(loc=’upper right’)
#set title & axis titles
plt.xlabel(’Frequency’,fontsize=12,**csfont) #labels the x-axis.
plt.ylabel(’Values’,fontsize=12,**csfont) #labels the y-axis.
plt.xticks(fontsize=12,**csfont)
plt.yticks(fontsize=12,**csfont)
#set x & y ranges
plt.xlim(0,10)
plt.ylim(0,40)
plt.savefig(’uni.pdf’)
plt.show()

#COUNTPLOT
sns.countplot(x="species", data=df)
plt.title("Count of Species")
plt.show()

3.7.2.2 Bivariate Plots
These plots are mainly used to demonstrate the relationship between two variables.
Depending upon the type of variables, different types of functions such as scatterplot()
and jointplot() are used for plotting. Scatterplot() method provides a joint representation of
two or more variables by using a set of points and hence it is available in both 2D as well

3.7 Seaborn 127

0 2 4 6 8 10
Frequency

0

5

10

15

20

25

30

35

40
V

al
ue

s

Sepal length

Sepal width

Figure 3.25 Univariate plot using the histplot() function.

as 3D. Lineplot() is a version of scatterplot() where the data is represented using a line. On
the other hand, the jointplots() function is used in both univariate and bivariate plotting.
Figure 3.26 showcases a joint plot between two variables. The central plot will correspond
to a bivariate analysis, whereas the univariate plots of the variables are displayed on the
top and right sides of the graph.

import seaborn as sns
import matplotlib.pyplot as plt
plt.style.use(’grayscale’)
df1 = sns.load_dataset(’tips’) #loading dataset.

##
#SCATTERPLOT
sns.scatterplot(x=’total_bill’, y=’tip’, data=df1, hue=’time’)
plt.title("Scatterplot of total_bill vs. tip") #displays the title.
plt.show()

##
#LINEPLOT
sns.lineplot(x="total_bill", y="tip", data=df1)
plt.title("Lineplot of total_bill vs. tip") #displays the title.
plt.show()

#JOINTPLOT
h=sns.jointplot(x=’total_bill’, y=’tip’, data=df1)
csfont = {’fontname’:’serif’} #define the font family
h.ax_joint.set_xlabel(’total_bill’,fontsize=12,**csfont) #custom axis

label for x axis
h.ax_joint.set_ylabel(’tip’,fontsize=12,**csfont) #custom axis label for y

axis
plt.show()

3.7.2.3 Multivariate Plots
These plots can show the relationship between three or more different variables. In order
to separate features in multiple dimensions, seaborn uses the hue parameter. The different

128 3 Deep Learning Tools

10 20 30 40 50
total_bill

2

4

6

8

10

T
ip

Figure 3.26 Joint plot of total_bill vs tip.

plot functions used for multivariate analysis are scatterplot(), barplot(), and pairplot(). While
plotting three variables in scatterplot(), two variables can be numerical variables, while the
third variable can be categorical and can be used to differentiate the groups within the data.
Figure 3.27 showcases a scatterplot using three variables. In order to aggregate categorical

0 10 20 30 40 50 60 70 80
Age

0

100

200

300

400

500

Fa
re

Class
First
Second
Third

Figure 3.27 Multivariate plot using scatterplot() function.

3.7 Seaborn 129

data, we use barplot() to illustrate the relationship between the variables. Here two variables
can be categorical, whereas the third can be a numerical variable. Finally, the pairplot()
function shows the pairwise relationships in a dataset.
import seaborn as sns
import matplotlib.pyplot as plt
plt.style.use(’grayscale’)
df2 = sns.load_dataset(’titanic’) #loading dataset.
#BARPLOT
sns.barplot(x=’who’, y=’age’, data=df2, hue=’class’)
plt.show()
##
#PAIRPLOT
sns.pairplot(df2[[’survived’, ’pclass’, ’age’, ’sibsp’, ’parch’]], hue=’

survived’)
plt.show()

#SCATTERPLOT
sns.scatterplot(x=’age’, y=’fare’, data=df2, hue=’class’)
csfont = {’fontname’:’serif’} #define the font family
plt.xlabel(’age’,fontsize=12,**csfont)
plt.ylabel(’fare’,fontsize=12,**csfont)
plt.show()

Example 3.7.1 (Plotting numerical and categorical variables)
In this example, we discuss the different ways to visualize numerical and categorical vari-
ables. Numerical features are features with continuous data points. We can use two popular
plots to observe the distribution and variability of these features. In the case of numerical
features where the measurable quantity is features with continuous data points, we use box-
plots and violinplots to facilitate the comparison between these variables. Boxplots are used
to depict the distribution of the data through their quartiles, whereas violin plots are a com-
bination of box plots and kernel density estimation plots. In order to visualize these plots,
let us first load an inbuilt dataset ’flights’ from Seaborn into a data frame named df3. Later
the numerical variables ’year’ and ’passengers’ are passed on to the boxplot() and violinplot()
methods for visualization. Meanwhile, to plot categorical features, seaborn uses plots such
as stripplot() and swarmplot(). Here we load the inbuilt dataset named ’mpg’ and compare
its categorical features ’origin’ and ’cylinders’ against the numerical feature ’weight’. The
stripplot is a single-axis scatterplot that is used to differentiate different categories by spec-
ifying the hue parameter. Whereas, swarm plots are similar to strip plots, but here the data
points are arranged in such a manner that it does not overlap each other.

3.7.3 Additional Plotting Functions

3.7.3.1 Correlation Plots
In regression models, it is essential to check the correlation between the variables. Seaborn
uses two main functions, regplot() and lmplot(), to visualize this linear relationship. Both
these functions create a scatterplot of two variables, fit the regression model, and plot the
resulting regression line. In each case, the resulting plots are identical, except that the
shapes of the figures are different. Figure 3.28 displays a visual representation of the linear
correlation between two variables, achieved through the use of the lmplot() function.

130 3 Deep Learning Tools

35 40 45 50 55 60
bill_length_mm

14

16

18

20

bi
ll_

de
pt

h_
m

m

Figure 3.28 Correlation plot using
lmplot() function.

3.7.3.2 Point Plots
These plots help to visualize the show point estimates and confidence intervals of values at
each level of the categorical variable. They are mainly used to find the change in a variable
as it shows the mean values and error rate surrounding those mean values.

3.7.3.3 Cat Plots
Cat plots show the frequencies of the classes of one or more categorical variables. The cat-
plot() function provides a new framework to visualize and compare different features of the
data by giving access to several types of plots. Currently, catplot encompasses eight different
categorical plots available in Seaborn. We are able to specify the type of plot using the kind
parameter and the default value for it is “strip”, denoting stripplot(). Figure 3.29 presents a
cat plot visualizing relationships between distinct categorical variables.

import seaborn as sns
import matplotlib.pyplot as plt
df5 = sns.load_dataset(’penguins’) #loading dataset.
#REGPLOT
sns.regplot(x="bill_length_mm", y="bill_depth_mm", data=df5)
plt.show()

#LMPLOT
sns.lmplot(x="bill_length_mm", y="bill_depth_mm", data=df5, order=1)
csfont = {’fontname’:’serif’} #define the font family
plt.xlabel(’bill_length_mm’,fontsize=12,**csfont)
plt.ylabel(’bill_depth_mm’,fontsize=12,**csfont)
plt.show()

#POINTPLOT
sns.pointplot(x="sex", y="body_mass_g", hue="species", data=df5)
plt.show()

3.8 Python Libraries for NLP 131

Male Female

Sex

3000

3500

4000

4500

5000

5500

6000

bo
dy

_m
as

s_
g

Species

Adelie

Chinstrap

Gentoo

Figure 3.29 Categorical plot using catplot() function.

#CATPLOT
sns.catplot(x="sex", y="body_mass_g", hue="species", data=df5)
csfont = {’fontname’:’serif’} #define the font family
plt.xlabel(’sex’,fontsize=12,**csfont)
plt.ylabel(’body_mass_g’,fontsize=12,**csfont)
plt.show()

Output:

3.8 Python Libraries for NLP

Natural language processing (NLP) is the subfield of artificial intelligence, linguistics, and
computer science that provides computers the ability to understand and process human
language. Through this technology, the machines are able to understand the context of doc-
uments/texts and can use them to automate certain repetitive tasks using languages. Some
examples of natural language processing (NLP) include machine translation, text genera-
tion, summarization, spell checking, etc. The most popular NLP tools available in Python
are NLTK and spaCy. Both these libraries can be installed and used for building chatbots,
extracting entities, summarizing texts, etc.

3.8.1 Natural Language Toolkit (NLTK)

natural language toolkit (NLTK) is one of the most commonly used NLP libraries in python.
It was developed by Steven Bird and Edward Loper from the University of Pennsylvania
(Bird et al. 2009). NLTK comprises libraries that can be used to develop statistical and sym-
bolic NLP programs using Python. It supports different functionalities such as tokenization,

132 3 Deep Learning Tools

classification, stemming, semantic reasoning, tagging, and parsing. More details on NLTK
API can be found here: https://www.nltk.org/.

The NLTK library can be installed in the Anaconda prompt using either of the following
commands:

pip install nltk
conda install -c anaconda nltk

After installation, NLTK can be imported as follows:
import nltk
print(nltk.__version__)

Output:
3.8.1

3.8.2 SpaCy

SpaCy is an open-source library that is used for much more advanced NLP techniques
(https://spacy.io). It was developed by Matthew Honnibal and Ines Montani and was first
released on October 19, 2016 (github link). SpaCy has a lot of in-built functionalities and
is known for its efficiency in analyzing data associated with NLP. SpaCy is more focused
on production usage as it supports machine learning as well as deep learning workflows.
This allows easy integration of SpaCy with Tensorflow and PyTorch. This package is mainly
written in Python and Cython Choi et al. (2015). SpaCy has the ability to provide support
in NLP-related tasks in various languages. The languages that are supported by SpaCy can
be found here: Spacy|model-languages.

SpaCy can be installed in Anaconda prompt using the following commands
pip install -U spacy
conda install -c conda-forge spacy
The next step would be to download the English language pipeline en_core_web_sm,

which is trained on web text data which includes entities, vocabulary, and syntax associated
with the language.

python -m spacy download en_core_web_sm
After installation, the spaCy library can be imported as follows:

import spacy
print(spacy.__version__)

Output:
3.5.2

3.8.3 NLP Techniques

The NLP tools can be used for various kinds of functionalities or techniques that can be used
to easily interpret the human language. These techniques can be further supplemented with

https://www.nltk.org/
https://spacy.io/
https://github.com/explosion/spaCy/releases/tag/v1.0.0

3.8 Python Libraries for NLP 133

statistical or machine-learning methods to automate the process. The basic idea behind
these techniques includes breaking down the language into shorter, more interpretable ele-
mental pieces. This can help understand the relationship between these pieces as well as
interpret their meanings when put together.

Let us now look into the specific operations/techniques with the terminologies used for
them in NLP. The NLP techniques discussed below are most commonly used for data pre-
processing and cleaning, which helps in making the text data easy to analyze. Following
this, we can implement algorithms or machine learning/deep learning techniques to pro-
cess these features to perform the necessary task.

3.8.3.1 Tokenization
This is the first preprocessing step in most of the NLP pipeline. Here, the unstructured data
(natural language text) is divided into small discrete elements of information. In the pro-
cess, an unstructured string is immediately converted to a numerical data structure. These
discrete elements or components are called tokens. There are different ways to perform tok-
enization such as based on white space, punctuation, words, and sentences. An example of
white space tokenization is shown in Fig. 3.30.

Let us analyze an example of tokenizing a sentence into words using NLTK. Note that
for tokenizing using NLTK, we need to download Punkt Sentence Tokenizer, which uses an
unsupervised algorithm to divide the text into sentences.

import nltk
nltk.download(’punkt’)
from nltk.tokenize import word_tokenize
Let us use a simple sentence here
doc = """How are you doing?"""
word_tokenize(doc) # Tokenizing the sentence into words

Output:

[’How’, ’are’, ’you’, ’doing’, ’?’]

How are you doing?

How are doingyou ?

Tokenization

Figure 3.30 Example of a white space tokenization of a sentence.

134 3 Deep Learning Tools

Similar to word tokenization, we can also do sentence tokenization as follows:

import nltk
nltk.download(’punkt’)
from nltk.tokenize import sent_tokenize

Let us use a quote by Benjamin Franklin as an example
doc = """Tell me and I forget. Teach me and I remember. Involve me and I

learn."""

#Splitting the text into sentences
sent_tokenize(doc)

Output:

[’Tell me and I forget.’,
’Teach me and I remember.’,
’Involve me and I learn.’]

Similarly, tokenization can be done using SpaCy library as follows:

import spacy
nlp = spacy.load(’en_core_web_sm’)
Create a Doc object
doc = nlp(u’How are you doing?’)
Print each token separately
for token in doc:

print(token.text)

Output:

How
are
you
doing
?

To split the text into sentences using Spacy, the sents attribute can be used as follows:

import spacy
nlp = spacy.load(’en_core_web_sm’)

Create a Doc object
doc = nlp(u’Tell me and I forget. Teach me and I remember. Involve me and

I learn.’)

Print each token separately
for sent in doc.sents:

print(sent.text)

Output:

Tell me and I forget.
Teach me and I remember.
Involve me and I learn.

3.8 Python Libraries for NLP 135

Figure 3.31 Example of stemming.

connect

connecting

connection

connected

connections

connects

3.8.3.2 Stemming
Stemming is the process of getting the stem of a word by removing affixes from a specific
word. The stem of the word corresponds to its basic form. In the English language, we come
across several variants of a single term. This might result in redundancy during processing.
Most of such words are associated with the same root word even though they are used
to communicate in different grammatical contexts such as tense, case, person, and mood.
An example of Stemming is shown in Fig. 3.31. In the example, “connect” is the stem word.
The rest of the words i.e. “connecting”, “connection”, “connected”, “connections”, “connects”
are associated with this root word connect and they share similar meaning as that of the
root. In many NLP applications, this process can help in feature reduction by avoiding data
redundancy associated with the language. This helps in avoiding repetition, hence helping
to build a robust model.
from nltk.stem import PorterStemmer
porter = PorterStemmer() # PorterStemmer
print(porter.stem("connecting"))

Output:
connect

Similar to NLTK, we can use SpaCy to perform stemming as follows:
import spacy

Load the English language model in Spacy
nlp = spacy.load("en_core_web_sm")
Word for stemming and lemmatization
word = "connecting"
Create a single-token document
doc = nlp(word)
Stemming using Spacy
stemmed_word = doc[0].lemma_
print("Stemmed Word:", stemmed_word)

Output:
Stemmed Word: connect

136 3 Deep Learning Tools

3.8.3.3 Lemmatization
Lemmatization works similarly to stemming but has the added advantage of understanding
the structure of the language to better interpret the context of the word and then associate
it with a root word. Stemming can sometimes lead to root/stem words with meaningless
base forms. However, lemmatization not only looks into word reduction but also considers
the context of the word being used, hence giving it a meaningful base form. Let us take
the example of the word ”caring”. Stemming this word gives us ”car”, whereas lemmatiz-
ing this word gives us the word ”care” which is the right meaningful root word associated
with ”caring”. The only drawback of lemmatization is that it is computationally expensive.
The process of lemmatization involves looking into the language’s full vocabulary, which
might require look-up tables etc. Therefore, for large datasets, stemming can be a good
alternative option.

from nltk.stem import PorterStemmer
from nltk.stem import LancasterStemmer
porter = PorterStemmer() # PorterStemmer
lancaster = LancasterStemmer() # LancasterStemmer
print(porter.stem("caring"))
print(lancaster.stem("caring"))

Output:

care
car

Using the SpaCy library, we can perform stemming and lemmatization using the
following code snippet:

import spacy

Load the English language model in Spacy
nlp = spacy.load("en_core_web_sm")
Word for stemming and lemmatization
word = "caring"
Create a single-token document
doc = nlp(word)
Stemming using Spacy
stemmed_word = doc[0].lemma_
Lemmatization using Spacy
lemmatized_word = doc[0].lemma_ if doc[0].lemma_ != ’-PRON-’ else doc[0].

text

Print the results
print("Original Word:", word)
print("Stemmed Word:", stemmed_word)
print("Lemmatized Word:", lemmatized_word)

Output:

Original Word: caring
Stemmed Word: care
Lemmatized Word: care

3.8 Python Libraries for NLP 137

3.8.3.4 Stop Words
Stop words correspond to a set of most commonly used words in a language. This can help
a lot in processing speeds as well as in applications such as search query pages where it is
important to bring up results by searching the relevant words instead of searching for the
widely used words. For example, if we search for ”What is NLP?”, we would like to learn
more about ”NLP” rather than talking about ”what is”. Such common words need to be
avoided in these kinds of applications. Generally, these stop words are stored in the form of
a list, and this list can be used to avoid such words from being analyzed. Similarly, the stop
words can also help in understanding the context of the search query better. For example,
there can different types of search queries on the same topic, such as ”What is NLP?” or
”Where is NLP used?”. The stop words here, ”What is and ”Where is” can be quite useful in
refining the search results.

import nltk
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
nltk.download(’stopwords’)
nltk.download(’punkt’)
sentence = "What is NLP?" # Example sentence
words = word_tokenize(sentence) # Tokenize the sentence into words
stop_words = set(stopwords.words(’english’)) # Get the English stopwords

from NLTK
filtered_words = [word for word in words if word.lower() not in stop_words

] # Remove stopwords from the
sentence

print("Stopwords in the sentence are:", filtered_words) # Print the
filtered words

Output:

Stopwords in the sentence are: [’NLP’, ’?’]

The removal of stopwords using the SpaCy library is shown in the below code snippet:

import spacy
nlp = spacy.load(’en_core_web_sm’) # Load the English language model in

spaCy
sentence = "What is NLP?" # Example sentence
doc = nlp(sentence) # Tokenize the sentence using spaCy
filtered_words = [token.text for token in doc if not token.is_stop] #

Remove stopwords from the sentence
print("Stopwords in the sentence are:", filtered_words) # Print the

filtered words

Output:

Stopwords in the sentence are: [’NLP’, ’?’]

Example 3.8.1 (Sentiment analysis using NLTK)
This example introduces one of the major applications of NLP, i.e. sentiment analysis.
It focuses on identifying and extracting attitudes, sentiments, evaluations, and emotions

138 3 Deep Learning Tools

within textual data. It helps to determine whether the sentiment expressed in the text
is positive, negative, or neutral. This analytical technique finds extensive applications
in various industries such as healthcare, customer service, and banking. In Python,
this can be implemented using the VADER (Valence Aware Dictionary for Sentiment
Reasoning) function which is available in the NLTK package. It is a simple rule-based
model for sentiment analysis that can efficiently handle vocabulary, abbreviations, capi-
talizations, repeated punctuations, emoticons, etc. VADER has the advantage of assessing
the sentiment of any given text without the need for prior training.

In this example, we perform sentiment analysis on two sentences. The first sentence,
“The hotel stay was horrible and uncomfortable,” conveys a negative sentiment. The sec-
ond sentence, “Always :) and be: D !” expresses a positive sentiment with the use of smiley
faces. By analyzing the sentiment in these sentences by using VADER, we gain insights into
the underlying emotions and evaluations conveyed within the text. The result generated by
VADER is a dictionary of 4 keys neg, neu, pos, and compound. The neg, neu, and pos val-
ues represent the respective proportions of negative, neutral, and positive sentiments and
their sum should equal 1. The compound score is a single value that represents the overall
sentiment intensity of a given text and it ranges, between (most extreme negative) and +1
(most extreme positive).

Output:

The hotel stay was horrible and uncomfortable. {’neg’: 0.55, ’neu’: 0.45,
’pos’: 0.0, ’compound’: -0.7269}

Always:) and be:D !------------------- {’neg’: 0.0, ’neu’: 0.291, ’pos’: 0
.709, ’compound’: 0.8087}

3.9 TensorFlow

3.9.1 Introduction

TensorFlow is an open-source machine learning library developed by the Google Brain
team in 2012. It comprises various sets of tools and libraries that can be imported into
the Python environment for developing various deep-learning applications. It makes use
of multidimensional arrays called tensors as the basic building blocks for implementing
and optimizing mathematical operations. Tensorflow also supports the efficient use of
large-scale datasets. The feature scalability and performance of TensorFlow are improved
by the reuse of the same memory with the help of graphical processing unit (GPU)
computations.

The TensorFlow package can be installed in the Anaconda prompt using either of the
following commands:

pip install tensorflow
conda install -c conda-forge tensorflow

3.9 TensorFlow 139

For getting GPU support for TensorFlow, we need to install tensorflow-gpu version which
can be done in anaconda prompt using the following two methods:

pip install tensorflow-gpu
conda install -c anaconda tensorflow-gpu

After installation, TensorFlow is imported using the alternate name tf.

import tensorflow as tf
print(tf.__version__) #outputs the version of tensorflow.

Output:

2.11.0

3.9.2 Elements of Tensorflow

Tensors are the fundamental building blocks of TensorFlow, and they can have various
shapes, denoting their dimensions, such as scalars (0-D), vectors (1-D), matrices (2-D), and
higher-dimensional arrays. TensorFlow places strict constraints on the data types associ-
ated with tensors, ensuring both numerical accuracy and computational efficiency. Fur-
thermore, TensorFlow operates within the framework of a computational graph, where
mathematical operations are defined as nodes and tensors flow through these nodes to
carry out computations. To execute this graph and effectively assess or modify the tensor
values within it, TensorFlow employs a session. This combination of tensors, their shapes,
data types, computational graphs, and sessions form the foundational components that
empower TensorFlow for deep learning and machine learning tasks. Table 3.2 provides a
detailed description of the main elements of TensorFlow.

3.9.3 TensorFlow Pipeline

In this section, we describe the basic steps involved in creating a TensorFlow code. The var-
ious steps involved in the process are illustrated using the below example (Example 3.9.1).

Example 3.9.1 (Ridge regression using TensorFlow)
In this example, we discuss how to implement a basic ridge regression model using Ten-
sorFlow. Ridge regression is a special case of linear regression with an added penalty term.
While performing linear regression, a known independent variable ’X’ is used to predict
an unknown dependent variable ’y’. In case of a high correlation between the indepen-
dent variables, we introduce a penalty term 𝛽 to the linear regression equation. The overall
expression for the cost function is given by

Cost = argmin
𝛽

‖y − X𝛽‖2
2 + 𝜆 ‖𝛽‖2

2 (3.2)

At first, we import all the required libraries from Tensorflow and Python. Following this,
we create a computational graph, load a predefined dataset from Scikit-Learn, and initialize

140 3 Deep Learning Tools

Table 3.2 Elements of tensorFlow.

Terminology Definition Example

Tensor Multidimensional vectors or
matrices representing data
in higher dimensions.

Scalar: Zero-dimensional tensor
Vector: One-dimensional tensor
Matrix: Two-dimensional tensor

Shape Number of elements
in each dimension of a
tensor.

Scalar = 25, shape = []
Vector = [1,2], shape = [2]
Matrix = [[3, 4],
[5, 5]], shape = [2,2]
Tensor = [[[1,2],
[2,5],
[3,2]]
[[4,5],
[7,8],
[4,1]]], shape = [2, 3, 2]

Type Data structure that is used to
represent tensor.
Commonly used tensor types:
1. Constant: Fixed value data type
(can be an integer, float, etc.)
2. Variables: Tensors whose value
can be kept as well as updated
over its run time.
3. Placeholder: These are basic level
variables that act as holders for
future
data. Unlike variables, initialization
is not required.

tf.constant(value)
eg: tf.constant(5)
tf.Variable(<initial-value>,
name = <optional-name>)
eg: tf.Variable([[1,1], [5,5]],
name = ’matrix’)
tf.placeholder(<data_type>,
shape = <shape>)
eg: tf.placeholder(tf.float64,
shape = [None,5])

Graph Data structures that consists of
nodes that allows the flow of
computational operations.

a = 10
b = 6
out = tf.subtract(a,b)

Session It is used to evaluate the
computational
operations in a graph.

s = tf.Session()
s.run(out)
s.close()

the variables using NumPy. Next, the placeholders are defined for the independent variable
’X’ and the dependent variable ’y’. The model parameters ’A’ and ’b’, corresponding to slope
and bias are initialized as TensorFlow variables. Further, we define the model operation on
the node and the ridge regression cost function using Eq. (3.2). Later, various optimizers
from the TensorFlow library are imported in order to compute the cost function. Finally,
the session is run during training, and the ridge regression model is evaluated to obtain the
desired output (see Fig. 3.32).

3.10 Keras 141

10 15 20 25
Radius

10

15

20

25

30

35

40
T

ex
tu

re

Data points
Best fit line

Figure 3.32 Plot of the best-fit line for ridge regression.

3.10 Keras

3.10.1 Introduction

TensorFlow is a low-level language with high complexity. Another deep-learning library
named Keras can be used to simplify these complexities. It was developed at Google by an
artificial intelligence researcher named Francois Chollet. Keras is an open-source high-level
deep learning library, written in Python. It can run on top of various deep learning libraries
such as Tensorflow, Cognitive Toolkit (CNTK), and Theano. Keras has a minimalistic struc-
ture that allows faster execution and implementation of complex neural networks in fewer
lines of code. The key feature of Keras is the highly modular interface that makes it easier
for the users to execute the code without having in-depth knowledge about the libraries.
These existing modules can also be redesigned to create custom modules for the desired
application. Keras supports both CPU and GPU, and it has been used widely in machine
learning, computer vision, and time series-related applications.

The Keras package can be installed in the Anaconda prompt using either of the following
commands:

pip install keras
conda install -c conda-forge keras

3.10.2 Elements of Keras

Keras is an easy-to-learn platform that incorporates a complete framework to implement
any kind of neural network. The core components of Keras include the following: Model,
Layer, and Core Modules.

142 3 Deep Learning Tools

3.10.2.1 Models
Keras models are composed of layers. The different layers constituting the Neural network
are arranged to form the Keras model. Keras models contain the basic structural elements
of neural networks. The simple linear composition models are called sequential models.
Sequential models are the most commonly used model structure where we add each of the
layers to the predefined sequential block using model.add command. The steps involved
include importing the sequential model, followed by adding dense layers or other layers
to the model. The subclassing technique can be used to develop further complex models.
Function API models are used to develop complex models. The models developed using this
method are more flexible compared to the sequential ones. It basically uses the approach
of building using graphs of layers.

3.10.2.2 Layers
Layers are next in the hierarchy when looking at the structure of Keras implementation.
In general, there are input, hidden, and output layers in the neural network model. The
main advantage of Keras is the already available predefined layers. The most commonly
used Keras layers are convolutional layers, pooling layers, recurrent layers, and core layers.
In between the layers, the dropout layer can be added. Dropout layers are useful to avoid
overfitting. Additionally, to complete the layers, the activation modules are also important.
The layers are added one by one to create a sequential model setup.

3.10.2.3 Core Modules
Modules are the basic building blocks of any keras model architecture. These modules
are built-in functions that support the Keras model ensuring its proper functioning. The
modules used include Activation functions such as softmax and ReLU, loss function module
(mean square error, Poisson, mean absolute error, etc.), optimizer module that uses opti-
mizers such as adam and stochastic gradient descent (SGD), and regularizers (L1 and L2
regularizers). These predefined modules are important concepts that support the training
of the Neural network models.

3.10.3 Keras Workflow

The first step of a basic Keras workflow is loading and preprocessing the training data.
Keras has a few in-built datasets such as MNIST, CIFAR10, CIFAR100, IMDB, Fashion
MNIST, Reuters newswire, and Boston housing price datasets that help you to build simple
deep learning models. These predefined datasets can be accessed using the keras.datasets
module. Generally, these data are stored as NumPy arrays, TensorFlow Dataset objects, or
Python generators. These data are further preprocessed before feeding into the model. For
example, for image data, the common preprocessing methods include center cropping,
rescaling, assigning random rotation, and generating multiple versions of the images. Next,
we define the desired model architecture using either the sequential API or the functional
API. The sequential API allows you to create models by stacking them sequentially. Its
main limitation is that it does not allow the sharing or branching of layers as well as to have
multiple inputs or outputs. But these constraints are overcome by using the functional
API, which provides more flexibility in creating complex networks. After building the

3.10 Keras 143

model, it is compiled using the loss function, optimizer, and validation metrics (accuracy,
mean square error). Further, the network is trained using the fit method for the desired
number of epochs. The principal goal during training is the minimization of error and
loss function. The three main loss functions available in Keras are binary cross-entropy
(two-class classification), categorical cross-entropy (multiclass classification), and mean
square error (regression). Based on the loss function, the network parameters are updated
using the optimizers. Finally, the test data is introduced in order to evaluate the overall
performance of the model.

Example 3.10.1 (Creating a sequential model using Keras)
In this tutorial, we will be implementing a simple sequential model in order to improve our
understanding of the workflow in KERAS.

The first step is to load the data. Let us load the xor dataset defined in the previous codes.
After loading the data, we split the data so that it has 320 training and 80 test samples.
Following this, we construct the sequential model with two dense layers. The first dense
layer has the number of output units as 2 with ReLU activation function and the second
dense layer has 1 output unit corresponding to the labels. Finally, the SoftMax activation
function is used to provide the probabilistic output corresponding to each class.

Once the sequential model is created, the next step is to compile the model. In this case,
any optimizer can be used and so here we use the Adam optimizer with a default learning
rate of 0.001. The type of loss function used for optimization is the binary cross-entropy loss
that compares each of the predicted probabilities to the actual class output which can be
either 0 or 1.

After compiling the model, we fit it with the training data and labels. The training batch
size is initialized to 32, with the number epochs = 100 and the test data is used as the vali-
dation set to check the accuracy of the training.

When the training is completed, we can plot the loss function as shown in Fig. 3.33a
to analyze the behavior of the model. Similarly, we can look at the training and validation
accuracy as shown in Fig. 3.33b. Further, you can also plot the confusion matrix to compute
the model performance as shown in Fig. 3.34.

0 20 40 60 80 100

Epoch

(a) (b)

0.2

0.3

0.4

0.5

0.6

0.7

A
cc

u
ra

cy

0 20 40 60 80 100

Epoch

0.5

0.6

0.7

0.8

0.9

A
cc

u
ra

cy

Training accuracy

Validation accuracy

Training loss

Validation loss

Figure 3.33 Loss and accuracy curves for training and validation. (a) Loss curve and (b) accuracy
curve.

144 3 Deep Learning Tools

0 1

Predicted label

0
1

A
ct

ua
l l

ab
el

36 5

6 33

5

10

15

20

25

30

35

Figure 3.34 Confusion matrix for the XOR problem using the sequential model.

3.11 Pytorch

3.11.1 Introduction

PyTorch is one of the rapidly growing deep learning frameworks used by researchers
to create new models. It was developed by Facebook’s AI Research Lab in 2016. It
is a Python-based package that offers a substitution for NumPy by using GPU opti-
mized tensors for various computations. Another highlight of Pytorch is automatic
differentiation that allows to training of neural networks by automatically computing
the gradients. Pytorch also ensures that the graphs are built dynamically so that the
users can make necessary changes even during run time. Moreover, the strong GPU
support of Pytorch makes it a fast and powerful tool for running complex deep-learning
programs.

The PyTorch can be imported using the following command:

import torch
print(torch.__version__) #displays the version of PyTorch

Output:

1.13.1+cu116

3.11 Pytorch 145

3.11.2 Elements of PyTorch

3.11.2.1 PyTorch Tensors
These are PyTorch objects that are used to represent multidimensional data. Tensors are
considered similar to NumPy arrays, although NumPy arrays run only on CPU while tensors
use both CPU and GPU. PyTorch is optimized for handling these tensors and accelerates
computing by utilizing the GPU. While using a GPU, the tensors are initially assigned to
the GPU memory with the help of a specific API named CUDA. It is a platform developed
for parallel computing by NVIDIA for enhanced computations on the GPU. Any tensor
can be assigned automatically to the device (CPU or GPU) you are using with the help
of CUDA. Further operations and results using these tensors will also be computed and
stored on this allocated device. But currently, the CUDA API is limited to being used only
on NVIDIA GPUs.

The different types of tensors such as scalars, vectors, and matrices can be created using
PyTorch using the following commands.

#SCALAR
s=torch.tensor(8) #read a scalar
print(s)
print(s.ndim) #displays the dimension of the scalar
print(s.item()) #extract the number from the scalar

Output:

tensor(8)
0
8

v=torch.tensor([3,5,7]) #read a vector
print(v)
print(v.ndim) #displays the dimension of the vector
print(v.shape)# displays how the elements are arranged in the vector

Output:

tensor([3, 5, 7])
1
torch.Size([3])

m=torch.tensor([[2,5],[8,9]]) #read a matrix
print(m)
print(m.ndim) #displays the dimension of the vector
print(m.shape) #displays how the elements are arranged in the vector

Output:

tensor([[2, 5],
[8, 9]])

2
torch.Size([2, 2])

146 3 Deep Learning Tools

3.11.2.2 PyTorch Variables
These represent the wrapper around a PyTorch tensor. All the operations carried out using
a tensor can be also done using variables since they both use the same API. But unlike
tensors, PyTorch has an autograd package for the variables that allow it to compute the gra-
dients automatically. For example, in a computational graph, if p is a variable, the tensor
value and the gradient of p can be accessed by using p.data and p.grad commands, respec-
tively. While performing backpropagation using a neural network, the parameters need to
be optimized in order to minimize the error. In this case, the variables are at first imported
from the torch.autograd package. Next, they are used to execute the operations in a directed
acyclic graph (DAG) with function objects. After this calculation, the .backward() command
is used for the computation of all the gradients during the backpropagation. A trainable
variable can be initialized by passing the parameter requires_grad and setting it to boolean
value True.

3.11.2.3 Dynamic Computational Graphs
These are directed acyclic graphs in which the nodes denote the variables, whereas the
mathematical operations on these variables are represented using the edges. Unlike static
graphs, they are efficient in handling variable-sized data. Dynamic graphs have the bene-
fit of being more flexible and allow us to alter and evaluate the graph at any time. These
graphs also allow line-by-line execution of the code thereby making the code debugging
process much easier. The main drawback is the limited graph optimization time as it may
take longer to rebuild the graph after each iteration of training.

3.11.2.4 Modules
It corresponds to the base class of PyTorch for constructing neural networks. All the
elements of a network including the learnable parameters should inherit from nn.Module.
Additionally, the commonly used loss functions for training neural networks are also
included in the nn package. In PyTorch, the nn package provides higher-level abstractions
over the graphs that are used for creating the neural networks. The module can contain
other modules as well as submodules allowing it to have a nested tree form. The set of
modules defined by the nn package is comparable to the neural network layers. Hence,
while building a network, the main functionality of a module is to receive input tensors,
hold the internal state of a tensor, and compute output tensors.

The below code snippet describes the implementation of a PyTorch module. Here the
fully connected layer is constructed using the nn.Linear() module.

import torch
torch.manual_seed(20) #set a seed for reproducibility
linear_func=torch.nn.Linear(in_features=4,out_features=5) #create a fully

connected layer using the module
x=torch.rand(size=(3,4)) #create the input for the fully connected layer
y=linear_func(x)
print("Input to the layer:",x)
print("Output of the layer:",y)

3.11 Pytorch 147

Output:

Input to the layer: tensor([[0.2113, 0.6839, 0.7478, 0.4627],
[0.7742, 0.3861, 0.0727, 0.8736],
[0.3510, 0.3279, 0.3254, 0.2399]])

Output of the layer: tensor([[0.1618, 0.0404, 0.3000, -0.1494, -0.2235]
,

[0.0100, -0.5980, 0.1969, 0.0284, -0.5175],
[0.1903, -0.1587, 0.3172, -0.1097, -0.1623]],
grad_fn=<AddmmBackward0>)

3.11.3 Workflow of Pytorch

The most basic step here is to import the necessary libraries and load the dataset that can
be used for training the model. The preparation of the data includes preprocessing the data,
splitting the data into train and test sets, and splitting the data into batches for the model
to process. Similar to Keras, Pytorch also gives access to several datasets such as CIFAR10,
CIFAR100, MNIST, Imagenet, and COCO. Pytorch provides access to dataloaders, which
can be used to do data preparation efficiently. Dataloader can be used for complete setup
of the data, which includes splitting the data into train and test sets, initializing batch size,
preprocessing the data, and normalizing it. The next step is to build a network. The module
used for that is torch.nn module. This works similarly to Model in Keras where we can
initialize the number of layers, units, activation function, dropout layers, etc. The functional
module (torch.nn.functional) helps in defining the path from the input to the output layer.
The optimizers can be defined using torch.optim module. The training of the network is
done using autograd package. The gradient with respect to all parameters is computed using
the .backward() module. The loss function required for minimization of error criterion can
be obtained from torch.nn module. Several loss functions are available in the package. Some
examples are L1 loss, MSE loss, cross-entropy loss, etc.

Example 3.11.1 (Building a neural network using Pytorch)
This example implements the training and testing of a neural network model using the
PyTorch deep learning framework. The primary objective is to classify handwritten digits
from the MNIST dataset. Initially, download and load the MNIST dataset using PyTorch’s
‘DataLoader’ function. It applies essential data transformations, including converting the
images to tensors and normalizing the pixel values to a range between −1 and 1. This pre-
processing step is crucial for ensuring that the data is suitable for training deep learning
models.

Next, construct a feedforward neural network consisting of an input layer with 784 units
(corresponding to flattened 28 × 28 pixel images), followed by two hidden layers with 128
and 64 units, respectively. ReLU activation functions are applied after each hidden layer
to introduce nonlinearity. Finally, there is an output layer with 10 units, representing the
10 possible digit classes (0 to 9). The output layer utilizes a LogSoftmax activation function,
which is common for classification tasks.

For training the neural network, the choice of the loss function is cross-entropy loss,
a suitable option for addressing multiclass classification tasks such as digit recognition.

148 3 Deep Learning Tools

0 20 40 60 80 100
Epoch

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

T
ra

in
in

g
lo

ss

Figure 3.35 Plot illustrating the relationship between the training loss and the number of epochs.

0 1 2 3 4 5 6 7 8 9

Predicted labels

0
1

2
3

4
5

6
7

8
9

O
bs

er
ve

d
la

be
ls

0.99 0 0 0 0 0 0 0 0 0

0 0.99 0 0 0 0 0 0 0 0

0 0 0.98 0 0 0 0 0.01 0.01 0

0 0 0 0.98 0 0.01 0 0 0 0

0 0 0 0 0.97 0 0 0 0 0.01

0 0 0 0.01 0 0.97 0.01 0 0 0

0 0 0 0 0 0 0.98 0 0 0

0 0.01 0.01 0 0 0 0 0.97 0 0.01

0.01 0 0 0.01 0 0 0 0 0.96 0.01

0 0 0 0 0.01 0 0 0 0 0.98

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3.36 Confusion matrix is generated to obtain the summary of the performance of the
classification model.

3.12 Conclusion 149

Moreover, the code employs the Adam optimizer, configured with a learning rate of 0.001,
to facilitate the optimization process. The optimizer is responsible for updating the model’s
parameters during training, using gradients computed through backpropagation. The train-
ing loop runs for a total of 100 epochs. During each epoch, it processes the training data in
mini-batches of 64 samples, performing forward and backward passes to compute gradi-
ents and update the model’s parameters. The training loss for each epoch is subsequently
computed and displayed, as depicted in Fig. 3.35.

After completing the training process, the code evaluates the trained model on the test
dataset. It calculates and prints the overall accuracy of the test dataset, indicating how well
the model generalizes to unseen data. Additionally, the confusion matrix is also computed
to understand the model’s performance on each digit class (see Fig. 3.36).

3.12 Conclusion

Python as a platform supports several programs or packages to implement deep learning-
based approaches. The basic understanding of Python tools used for deep learning allows
us to slowly learn the concepts of Deep learning in a much better way. Being a popular
programming language, Python can be used as an interface to create web applications, can
be connected to database systems to read and write files, handle big data, for prototyping,
and product-based software development.

There are several packages that can support the implementation of deep learning
applications in Python. The numerical package NumPy comes to use anywhere in our
code as it helps us work around arrays and do numerical, algebraic, transforms, and
multidimensional array computations. The visualization tools like Matplotlib, Seaborn,
and Pandas are of great use for understanding the nature of the data. This feature can be
useful for data analysis and visualization. Pandas can also be used for processing various
kinds of data, which is useful for statistical, analytical, and mathematical modeling of
the data. Other packages such as Scipy and Scikit-Learn can be used to do machine
learning, signal processing, and image processing-related tasks. Additionally, they give
access to a large number of datasets, which can aid us in testing and learning on them
for developing machine learning applications. The three main packages: Tensorflow,
Keras, and Pytorch can be used individually or in combination to develop structures and
functions associated with any deep learning applications. TensorFlow is an open-source
framework that can be considered as a math tool for neural networks. The networks can
be built from scratch, and it also supports multiple levels of abstraction to build and train
them. Keras, on the other hand, is a user-friendly, high-level application programming
interface (API) that can be used for experimenting with different kinds of deep learning
structures in a fast and efficient way. It can run on Tensorflow or Theano. Pytorch was
developed recently by Facebook and is relatively simple to use and also has the advan-
tage of efficient memory usage and processing speed along with a manageable coding
experience.

150 3 Deep Learning Tools

Problems

3.1 List the different methods to assign value to variables and find the type of these
variables.

3.2 In the given tuple tp= (37,89,10,33,72,10,10,12,90,10,46)
1. Find the sum of all elements.
2. Find the number of times the number 10 gets repeated.
3. Find the minimum and maximum value.
Print the results.

3.3 Define a 2-D empty NumPy array. Develop a Python code to fill this array with consecu-
tive integer values. Also, calculate the memory size in bytes occupied by all the elements
in this NumPy array.

3.4 Generate 15,000 random numbers from a Gaussian distribution with a mean of 16 and
a variance of 3. Plot the histogram and a curved distribution line that best fits the data
displayed by the histogram.

3.5 Singular value decomposition is a method for factorizing a m × n matrix A into
3 matrices such as U (orthonormal eigenvectors of AA⊤), Σ (diagonal matrix
containing square roots of eigenvalues) and V⊤ (orthonormal eigenvectors of A⊤A).
Use Scipy to perform singular value decomposition on the following matrix

A =
⎛⎜⎜⎝
10 12, 33
64 35 46
70 18 39

⎞⎟⎟⎠
3.6 GridSearchCV is a scikit_learn library that is used to select the optimal values

for a model by performing hyperparameter tuning. Import this library from the
model_selection package of scikit_learn and modify Example 3.5.1 to output the best
model parameters.

3.7 Define a Pandas data frame with missing values. Apply linear interpolation on the data
frame to fill these values and iterate over the rows of the interpolated data frame.

3.8 Data visualization using Seaborn.
● Load the taxis dataset from Seaborn.
● Use the Seaborn relplot() function to visualize the statistical relationship between any

two numerical features of the dataset.
● Use the Seaborn scatterplot() function and repeat the above plot by adding color,

label, and style to the graph.
● Split the graph into multiple graphs based on the categorical variables present in the

dataset.

Problems 151

3.9 Given the following dataset D= [4,16,7,12,32,10,2,9,14,24,30,20,8,15], Make a Tensor-
Flow data pipeline that:
1. Gets the elements that are divisible by 2 from this dataset.
2. Finds the square of this data.
3. Shuffles the data with buffer_size = 3.

3.10 Define a custom relu activation function and add it to the Keras model defined in
Example 3.10.1.

3.11 Create a class in PyTorch to load a custom dataset.

3.12 Using the classes defined in Examples 3.1.3 and 3.2.3, construct a training criterion for
a multilayer perceptron using only classes and NumPy arrays. Reproduce the training
results in Figs. 1.25 and 1.26 by creating separate functions for each of them.

153

4

Convolutional Neural Networks

4.1 Introduction

David Huben and Torsten Wiesel described two cell types in the visual cortex of cats
(Hubel and Wiesel 1962). They suggested that these cells were in stages in the construction
of the receptive field of the cat. In 1980, Fukushima (1980) developed an artificial model,
called the neocognitron, based on Hubel and Wiesel’s discoveries (Lindsay 2021). This
model is considered the first CNN, and it consists of two layers of neurons. The first ones
named the simple cells (s-cells) as the biological counterparts described by Hubel and
Wiesel use a matrix of weights to apply a linear transformation to nonoverlapping locations
of an input image to generate the s-cell response. The output of the s-cells is applied to
an array of complex cells (c-cells), which perform a nonlinear operation on these outputs.
This sequence is applied several times in order to mimic the behavior of the visual cortex.

During the 1990s, several hierarchical models similar to the one presented by Fukushima
were introduced in Riesenhuber and Poggio (2000), but the most successful one, devised
from the field of computer vision, was the CNN, first published in Y. LeCun (1989), but
its structure seems to be inspired in the model by Huben and Wiesel. A CNN is a type of
neural network for image processing that has been extremely successful in many applica-
tions. The model can be justified as a structure able to extract, in its successive elements of
the hierarchy, features of increasing level of abstraction that are local in the first stages of
the structure, but that become global as the information is processed in deeper stages of the
neural network.

In this chapter, we describe the CNN in several stages. First, the overall structure is pre-
sented and commented on. Then, the basic idea of convolution is reviewed, and then the
elements of the structure are detailed. The training of the neural network is then devel-
oped and compared to the backpropagation of a dense NN, and then the most successful
developments based on the CNN are summarized.

4.2 Elements of a Convolutional Neural Network

The basic NN developed in Chapter 1 can be thought of as a structure designed to extract
features of a pattern, represented as a vector, through a nonlinear representation in a higher

Deep Learning: A Practical Introduction, First Edition.
Manel Martínez-Ramón, Meenu Ajith, and Aswathy Rajendra Kurup.
© 2024 John Wiley & Sons Ltd. Published 2024 by John Wiley & Sons Ltd.
Companion website: https://github.com/DeepLearning-book

https://github.com/DeepLearning-book

154 4 Convolutional Neural Networks

dimensional space, expanded by the nodes of a neuron layer. In the next layer, the features
are represented in a higher level of abstraction, and, in the last layer, the features produce
representations of the input pattern that can be linearly classified.

The trick used in an NN to produce such representations is to compute affine transforma-
tion of all the input features of vector x with the form w(l)⊤

j x + b(l)
j , which are then passed

through a nonlinear activation in node j of layer l. In some applications, like in ML applied
to images, each input feature is related to only a few neighbor input features, and it may
be nearly independent of other features. Indeed, where two pixels that are side by side may
be highly dependent (almost the same color, almost the same intensity, similar behavior
from frame to frame), but two pixels of the image that are far away will probably share low
information in common. NNs are not directly able to treat differently the local and global
relationships in this case. An image can be introduced into an NN without loss of gener-
ality by flattening it or transforming it into a vector with an arbitrary organization. Then,
this vector is transformed into a different space by an affine transformation with a matrix
W and a bias b so every single element of the output vector is a function of all pixels, so the
spatial dependencies are not explicitly captured.

The CNN is an approach that can extract the spatial dependencies (and also the temporal
dependencies in sequential data) through the application of a set of small spatial filters
(more usually called convolutional kernels) that scan the image. Each one of these filters
can extract different local features of the image if they are designed properly to do so.

Therefore, one can think of a layer of a CNN as a set of filters that automatically extract
features from the input. These features are extracted automatically because the user does
not need to design these filters. Instead, the CNN can be trained to do it automatically.
These features and the filters can be often represented to extract some interpretations too.
The overall description of a CNN was first published by Yan LeCun (1989), but probably the
most cited article where the structure of the CNN is displayed is his 1998 paper (Y. LeCun
et al. 1998), where the NN was used for handwritten digit recognition.

4.2.1 Overall Structure of a CNN

The basic block diagram structure of a CNN is depicted in Fig. 4.1. The structure consists of
several layers that perform three different operations, which will be detailed and interpreted
further. The input can be in general a multidimensional array but, for illustrative purposes,
assume that this input is an image organized as a two-dimensional array or matrix.

In each of the so-called convolutional layers, the first block consists of what is known as
a convolution block. This block is the one that filters the input pattern with a set of small

C
on

vo
lu

tio
ns

Po
ol

in
g

A
ct

iv
at

io
n

C
on

vo
lu

tio
ns

Po
ol

in
g

A
ct

iv
at

io
n

Fu
lly

 c
on

ne
ct

ed
 N

N

Figure 4.1 Basic block diagram of a CNN.

4.2 Elements of a Convolutional Neural Network 155

two-dimensional arrays called receptive fields or kernels. The filter operations are modeled
as convolutions of the input with the receptive fields. Each receptive field outputs, then, a
filtered image. The second block, called pooling block, simply subsamples the output of the
convolution to reduce the number of pixels of the filtered images. There are several options
for this block that will be explained below. The last element of each block consists of the
nonlinear activation function applied to each one of the pixels of the filtered image. Again,
there are several options for the activations, among them the sigmoid or the ReLU activa-
tions are introduced in Section 1.4. The output of the first layer with the three operations
is a set of filtered and reduced images. The same three operations are then applied to each
one of these smaller images several times and then the outputs of the last convolutional
layer are flattened and introduced in a fully connected (FC) NN, which is a block with an
MLP structure as the one introduced in Chapter 1. This section of the CNN is often called a
dense network. Each one of the operations is detailed and interpreted in Subsections 4.2.2
to 4.2.6.

4.2.2 Convolutions

The convolution is the fundamental operation of the CNN and the one that gives this NN
most of its unique properties. The convolution operation is, as explained above, the way
to compute the filtering of an image with a kernel. But let us briefly describe the one-
dimensional discrete time convolution of two signals first. Assume two discrete time signals
f [n] and g[n]. The convolution between two signals is defined as

(f ∗ g) [n] =
∞∑

m=−∞
f [m]g[n − m] (4.1)

At point n, the convolution is the sum of products of one signal times the other one shifted
n positions and reversed. The output signal is the result of the modification of one signal
with the other one. One of the signals is then a sliding waveform that is passed through the
other one.

Figure 4.2 shows two examples of the convolution of two different signals. The left pane
shows the operation over a Gaussian pulse (a square exponential function with variance
equal to five and centered around the origin) and a rectangular pulse of width 10. The result
of the convolution is in the lower left graph. As can be seen, the effect of the convolution

−20 −10 0 10 20
n

0

0.5

1.0

f (
n)

(
f *

 g
)

(n
)

(
f *

 g
)

(n
)

f (
n)

g
(n

)

g
(n

)

−20 −10 0 10 20
n

0

0.5

1.0

−40 −30 −20 −10 0 10 20 30 40
n

0

2

4

−10 −5 0 5
n

−1

0

1

−20 −10 0 10 20
n

0

0.5

1.0

−30 −20 −10 0 10 20 30
n

−1

0

1

Figure 4.2 Examples of convolutions.

156 4 Convolutional Neural Networks

of the pulse with the Gaussian produces a smoothing of the pulse. This is an example of
lowpass filtering since the edges of the second signal have been removed. The left pane
shows a different situation where the Gaussian has been replaced by a function that can
be called a finite difference operator. Indeed, at every instant n in Eq. (4.1), this operator
multiplies all elements of the other function a by zero, except for elements n and n − 1,
so that the convolution, in this case, can be written as

(f ∗ g) [n] = (𝛿[n] − 𝛿[n − 1]) ∗ g[n] = g[n] − g[n − 1] (4.2)

which is a finite difference operation. Since function g[n] is flat except in the edges, the
operation results in a function that is zero except in these edges of positions n = −1 and
n = 10 where it shows, respectively, the values 1 and −1. This is an interesting operation
when applied to images because it can detect their edges, as we will see in example 4.2.1.

4.2.3 Convolutions in Two Dimensions

The extension of the convolution to two dimensions is immediate, and it keeps the idea
of a function sliding over the other one. Assume that an image I of dimension MI × NI
is available, and we define a convolution kernel W as an array of MW × NW dimensions,
smaller than the image dimensions. Figure 4.3 shows an example of a convolutional oper-
ation where an image (represented by an array of bricks, each one is a pixel of the image) is
convolved with two different convolution kernels W1 and W2, giving, as a result, two images
that are the convolution of the two kernels with the image. The convolution operation can
be defined as

(I ∗ W) [m,n] =
MW−1∑

i=0

NW−1∑
j=0

W[i, j]I[m + i,n + j] (4.3)

where 0 ≤ m ≤ MI − MW and 0 ≤ NI − NW . This is, the dimensions of the resulting array
are MI − MW + 1 × NI − NW + 1.

An example of a convolution can be seen in Fig. 4.4, where I is an array of dimensions
5 × 4 and the kernel W is a 2 × 2 array. The result of the convolution W ∗ I is depicted in
the figure, and it has dimensions 4 × 3.

Image

Convolved
images

W2W1

Figure 4.3 Representation of convolutions of an
image with two different convolution kernels.

4.2 Elements of a Convolutional Neural Network 157

Figure 4.4 Example of a 2D convolution.
1 2 1 3 1 0 1 4 2 5 2

2 4 2 6
4 2 5 2

1 02 1 2 1 3
1 2 1 3 1
2 1 2 1 3

I W W * I

* =

The convolution is computed as in Eq. (4.3). The first value is achieved by multiplying the

submatrix 1 2
2 1

marked with a square in the figure, elementwise with kernel 0 1
1 0

which

gives the result 0 2
2 0

. The elements of the product are added together, which gives the first

element of the convolution. Then, the square is shifted to the next position to get the sub-

matrix 2 1
1 2

. This is again multiplied elementwise with the kernel, and the result is added

together. The result is 2, which is the second element of the convolution. The operation is
repeated for all possible shifts to obtain the convolution result.

Example 4.2.1 (Finding the edges of an image)
As an example of the convolution applied to a real image, we use the one in Fig. 4.5. The
objective is to detect the edges of the figure. To that purpose, we use the following kernel

W =
⎛⎜⎜⎝
−1 −1 −1
−1 8 −1
−1 −1 −1

⎞⎟⎟⎠ (4.4)

Figure 4.5 Example of the convolution of an image with a convolution kernel designed to
enhance the edges of the image.

Notice that the sum of the array is zero, so if during the convolution, this array is multi-
plied by pixels of the image that have the same value, the result of the convolution at that
position will be zero. If for a given position the pixel in the center is higher than the sur-
rounding ones, the result will be positive. This kernel is used to find abrupt changes in the
image, as edges.

The kernel is convolved with the image, and then the absolute value of the result of the
convolution is computed for illustration purposes. The result of the operation can be seen
in the right pane of Fig. 4.5. It can be seen that the most abrupt changes are enhanced in
this image, for example, the edges of the cup or the ones of the pen, and in general, the

158 4 Convolutional Neural Networks

shape of the objects is obtained in the convolution regardless of the pixel intensity of each
object. This is an example of feature extraction on an image that could be used to classify
or detect objects in an image. Convolutional NNs use convolutions as feature extractors,
but the convolutions applied to a are not predesigned by the user. Instead, the parameters or
weights of each one of the convolution kernels are trained using a gradient descent method
to optimize a given cost function. Thus, the design of the convolution kernels is automatic.

4.2.4 Padding

There is a little problem with the convolution, and it is the fact that the array at the output
of the convolution operator has decreased dimensions. In particular, if the input image has
dimensions MI × NI and the convolution kernel W has dimensions MW × NW , then the out-
put image will be MI − MW + 1 × NI − NW + 1 as stated before. Also, it must be noted that
due to the nature of the convolution, the pixels at the edge of the image are seen only when
the convolution kernel touches the edge of the image, while the rest of the pixels are seen a
higher number of times. Therefore, in the convolution, the information on the edges is not
used in the same way as the rest of the pixels. To mitigate or solve these two problems, the
padding operation is used. This operation consists of adding columns and rows of zeros to
the edges of the image. Assuming that we add p rows and p columns of zeros to the image,
the dimensions of the convolution output will be(

MI − MW + p + 1
)
×
(

NI − NW + p + 1
)

(4.5)

An example of padding is in Fig. 4.6, where p = 2 rows and columns of zeros have been
added to the input array.

Assume that p∕2 rows are added to each side of the input image so the number of rows
of the convolved image is equal to the number of rows of the input image. Then, the output
dimensions are

MO = MI + p − MW + 1 = MI

Then
p
2
=

MW − 1
2

hence MW must be odd.

0 0 00
* =

2

1

2

1

11

1

4

2

4

2

2

2

4

2

1

1

5

2

5

3

3

2

6

2

1

0

3

1

3

000
I W * IW

00

01 013121

031212

013121

031212

0000000

0

0

0

0

Figure 4.6 Example of zero padding in a convolution. The input, which has dimensions 5 × 4, has
been padded with 2 zeros in each dimension. The output has dimensions 6 × 5 since the
dimensions of the kernel are even. For a convolution kernel of dimensions 3 × 3, the output will
have dimensions 5 × 4.

4.2 Elements of a Convolutional Neural Network 159

0 0 0 0

2
2

2

2
4

3

3
6

* =
100000

01 013121

031212

013121

031212

0000000

0

0

0

0

I W * IW

Figure 4.7 Example of padding and stride, where p = 1 and s = 2. The resulting dimensions
are 3 × 3.

4.2.5 Stride

The stride defines the amount of overlap between areas covered by the convolution kernel
across the image. A stride of 1 means that two adjacent values of the convolution have
been obtained by shifting one position of the convolution kernel in either direction. This
is what the standard convolution defined in Eq. (4.3) does: for a given pair of indexes i, j,
the product W[i, j]I[m + i,n + j] is computed and then either i or j are incremented in
one unit. Then, the overlap between the elements of the image that produces the first
value of the convolution and the second one is a section of dimensions Mw − 1 × Nw or
Mw × Nw − 1.

A stride of s means that index i or index j is incremented in s positions, thus decreasing the
fraction of overlapping between convolution values. As a consequence of the stride, the out-
put has lower dimensions than the input. It is straightforward to see that for a convolution
with padding p and stride s, the output dimensions will be⌊MI + p − Mw + s

s

⌋
×
⌊NI + p − Nw + s

s

⌋
(4.6)

Figure 4.7 shows an example of padding and stride, where p = 1 and s = 2, in whose case
the overlap between convolution areas is zero. The resulting dimensions are

⌊
5+2−2+2

2

⌋
×⌊

4+2−2+2
2

⌋
= 3 × 3.

Example 4.2.2 (Adding stride to Example 4.2.1)
In this example, a 2D convolution class included in Pytorch has been used to perform
the same task as in the previous example, but padding and stride are added to observe
the effect. The script of the example is coded and fully commented on in the corre-
sponding Jupyter Notebook. The convolution kernel used in this example is the same as
before, so the operation looks for edges in the image. Nevertheless, now a stride of 4 is
applied, which means that every convolution is 4 pixels apart from each other either in
the horizontal or vertical direction. The original image has dimensions 587 × 1024, so
the final one, according to Eq. (4.6), has dimensions 147 × 256. The result can be seen
in Fig. 4.8.

160 4 Convolutional Neural Networks

Figure 4.8 Results of Example 4.2.2.

4.2.6 Pooling

A pooling operation is a function applied to the output of a convolution that reduces the size
of the convolution in a controlled way, which reduces the complexity of the structure. This
is desired to limit the computational cost and the overfitting risk. The operation selects
a window of the image, usually square, with q × q pixels, and it applies an operation to
the pixels of each area to map them into a scalar. Next, the window is shifted to one or
more positions (usually q) and the operation is repeated. Usually, max-pooling and average
pooling are used in CNN. Max-pooling consists of selecting the maximum value among the
pixels of the window, and average pooling computes the average of the pixels inside the
window.

4.3 Training a CNN

The full derivation of the training of a CNN is developed in this section. While the final
expression of the CNN backpropagation uses the convolution operator, this optimization
is formally almost identical to the one of the MLP. The derivation of the operation is done
through the identification of the 2D convolution as a sparse product of two matrices, which
is useful to utilize the expression of the MLP backpropagation in order to obtain the CNN
backpropagation.

4.3.1 Formulation of the Convolution Layer in a CNN

The convolution layers of the CNN need to be conveniently formulated to be implemented
in a program, and their functionalities need to be extended in several ways. There are several
facts to take into account when designing a convolutional layer. First, let us take a look at the
data structure. The CNN was first introduced to process images that were monochromatic,
but later the CNN was extended to process color images. Color images are usually con-
structed with three channels that represent the red, green, and blue colors (RGB) or affine
transformations of them, as the YUV standard (see, e.g. Podpora et al. (2014)). Thus, every

4.3 Training a CNN 161

input sample to the CNN is then an array with three dimensions, say [CI ,MI ,NI] where
the first dimension corresponds to the different colors in the case of an image. In general,
we must think of an input sample as an array composed of different planes, each one called
a channel.

Finally, to train a CNN, a collection of N images must be processed one at a time, but they
are stored in the same array, thus having dimension [N,CI ,MI ,NI]. This is the usual array
(often called tensor) notation used in Python.

Every channel of every image is then convolved with several different convolution ker-
nels. Assume that image I with dimensions [CI ,MI ,NI] is to be convolved with a convolu-
tion layer that has CZ channels.

We define Wj,k as a convolution kernel that convolved with input channel Ij with dimen-
sions [MI ,NI] and sends it to output channel Zk.

The general convolution operation is formulated as

Zk =
CI−1∑
j=0

Wj,k ∗ Ij + Bk

0 ≤ k ≤ CZ − 1
(4.7)

This operation computes the output channel Zk, with dimensions [MZ ,NZ], which is com-
posed of the sum of the convolutions of all input channels with different kernels. After the
convolution, a bias Bk is added to the operation.

As summarized in Section 4.2.1, convolutions are followed by a pooling function and
then possibly a nonlinear activation. These blocks are stacked in layers, so more than one
convolution operation is applied to the input data. To make the derivation of the BP algo-
rithm for these layers, it is desirable to change the notation to make it closer to the one of
the NN whose BP procedure is introduced in Chapter 1. In a convolution, the linear oper-
ation is a sparse version of the general linear operation of feature vector h(l−1) in layer l of
a NN, which is denoted as z(l) in these networks. The application of a nonlinear activation
to this vector gives feature vector h(l). In a CNN, the input of a given convolution at layer l
is then array H(l−1), and the result of the convolution can be called Z(l), and the application
of a pooling and possibly a nonlinear activation gives the feature array H(k). Therefore, the
whole operation that includes convolution, pooling, and activation can be written as

Z(l)
k =

C(l−1)−1∑
j=0

W(l)
j,k ∗ H(l−1)

j + B(l)
k

H(l)
k = 𝝋

(
Z(l)

k

)
0 ≤ k ≤ C(l) − 1

(4.8)

where 𝝋(•) here represents the combination of the pooling and activation functions. By
defining the above operation, we have defined the following arrays (or tensors, if we use
the standard deep learning notation):

● H(l), with dimensions [C(l),M(l),N(l)], is an array containing the nonlinear output of layer
l, each one with C(l) channels and size M(l)

H × N(l)
H .

● W(l) is an array of dimensions [C(l−1),C(l),M(l)
W ,N(l)

W] containing the convolution kernels,
where C(l−1) determines the number of input channels and C(l) the number of output
channels.

162 4 Convolutional Neural Networks

● B is an array of dimensions [C(l),M(l),N(l)] representing the bias term added to every pixel
of each output channel.

● Z(l) is the output of the convolution, with dimensions [C(l),M(l)
z ,N(l)

z], where M(l)
z ,N(l)

z are
determined by Eq. (4.6).

4.3.2 Backpropagation of a Convolution Layer

The BP when using convolutional layers is analogous to the BP presented in Chapter 1.
Indeed, a convolution layer operation is identical to the operation of a dense layer except for
the fact that the connectivity is sparse. This can be easily illustrated with a figure. Assume
a simple convolution layer where the input data has dimensions MI = 8 and NI = 1, so the
input is a vector. There is only an input and an output channel, and the kernel is a vector of
dimension MW = 2. The stride applied to the convolution is s = 2 and then a pooling with
q = 2. Graphically, the operation can be drawn as the one in Fig. 4.9.

The first layer of the figure represents the input, and the connections from the first one
to the second one represent the convolutions between the input and the kernel. Note that
the connection weights are repeated since they represent the elements of the convolution
kernel. A convolution would generate an output of NI − NW + 1 + 7 elements, but since a
stride of 2 is applied, then the output of the convolution has

⌊
MI+p−Mw+s

s

⌋
= 4 elements,

and only 8 out of the 32 possible connections are present. The convolution operation can be
computed as operation

(l)⊤h(l−1) where in this case
(l) would be a matrix with the form

(l) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

w0 0 0 0
w1 0 0 0
0 w0 0 0
0 w1 0 0
0 0 w0 0
0 0 w1 0
0 0 0 w0
0 0 0 w1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4.9)

which is a sparse matrix.

h0
(l – 1)

w
0 h

0
(l – 1)

+ w
1 h

1
(l – 1)

w0h2
(l – 1)

+ w1h3
(l – 1)

w 0
h 6
(l –

 1) + w 1
h 7
(l –

 1)

w0h4
(l – 1)

+ w1h5
(l – 1)

h0
(l)

w0

w1

w0

w1

w0

w1

w0

w1

h1
(l – 1)

h1
(l)

Pooling

Convolution

h2
(l – 1)

h3
(l – 1)

h4
(l – 1)

h5
(l – 1)

h6
(l – 1)

h7
(l – 1)

Figure 4.9 Convolution represented as
sparse connectivity. The figure shows an
input h(l−1) = (h(l−1)

0 ,… , h(l−1)
7)⊤ of 8 pixels

organized in a vector, with a convolution
kernel w(l) = (w0,w1)⊤ of two elements.
The convolution is applied with a stride
s = 2, and then a pooling of two pixels
(q = 2) is added.

4.3 Training a CNN 163

The next layer represents the pooling, which takes two adjacent pixels and outputs one.
The resulting output has two pixels. This connection is also sparse since only 4 out of 8
possible connections exist.

During the BP process, the objective is to approximate solutions that satisfy
𝜕J(𝜽)

𝜕w(l)
j,k,m,n

= 0

𝜕J(𝜽)
𝜕b(l)

k,m,n

= 0
(4.10)

where superindex l is the index for layer k, and the subindexes are the indexes of the
elements of arrays W and B by applying a gradient descent procedure as explained in
Section 1.5.3. The computation of the gradients in a convolutional layer is analogous.
Let us consider convolutional layer l where the input is array H(l−1)

j and the output is Z(l)
k

corresponding to input channel j and output channel k.
We can compute derivatives (4.10) for this particular case in a very straightforward way

by taking into account that the convolution layer is a sparse version of a standard layer, so
we can compute the convolution as a normal layer linear operation.

Assuming that a CNN has LC convolutional layers and LD dense layers, and by using the
same reasonings as in Section 1.5.3 we can arrive at an algorithm for the CNN BP. The CNN
output can be written as a chain of embedded functions up to layer LC as

o = o
(

W(LD+LC)⊤
(
· · ·W(LC+1)⊤𝝋f

(
Z(LC)

)
+ b(LC+1)

))
Z(LC)

k =
∑

j
W(LC)

j,k ∗ H(LC−1)
j + B(LC)

k
(4.11)

where in 𝝋f (•) the subindex stands for flattening. This is the activation of the last convolu-
tional layer, and therefore, this activation includes, besides the nonlinear function and the
pooling, a flattening operation that maps all the pixels of the results of the convolutions into
a vector, that is, then processed by the first dense layer. In other words, operation𝝋f

(
Z(LC)

)
produces output vector h(LC).

In this expression, we see the output, which is generated after the activation of the linear
operation performed by array W(LC+LD), which is the set of parameters of the last dense
layers and the activation output of the previous layer. The first dense layer is the one with
an index LC + 1. Before that, the machine has convolutional layers with the arrays of kernels
Wl, l ≤ LC. But we have seen that these kernels can be changed by sparse matrices (l)

j,k that
turn the convolutions into array products, so the function can be written as

o = o

(
W(LC+LD)⊤𝝓

(
· · ·W(LC+1)⊤𝝋f

((
· · ·

∑
j

(LC)
j,k H(LC−1)

j + B(LC)
k · · ·

))))
(4.12)

(where only output channel k of layer LC is shown in the equation) and after that the BP
can be derived exactly as in Subsection 1.5.3.

4.3.3 Forward Step in a CNN

Assume, for example, that a given batch of input samples Xi ∈ ℝC(0)×D(0)
1 ×D(0)

2 , 1 ≤ i ≤ N and
their corresponding labels yi are available for training purposes. Then, the forward step
must be applied to the CNN for each one of these samples. In particular, all outputs of all

164 4 Convolutional Neural Networks

layers for each one of the samples must be computed, i.e. we need to store outputs Z(l)
i and

H(l)
i for all convolutional layers, and z(l)i , h(l)

i , and oi for the dense layers and the output.
Besides, all output errors 𝜹(LC+LD)

i = oi − yi, which must be computed and stored.
The backward procedure is the same as in a standard NN, and it is described in

Subsections 4.3.4 and 4.3.5.

4.3.4 Backpropagation in the Dense Section of a CNN

The BP in the dense layer section of a CNN is identical to one of the MLP in Chapter 1,
expressed in Eq. (1.110), that we reproduce here.

𝜹
(l−1)
i = W(l)𝜹

(l)
i ⊙ 𝜙′

(
z(l−1)

i

)
W(l−1) ← W(l−2) − 𝜇

N∑
i=1

h(l−2)
i 𝜹

(l−1)⊤
i

b(l−1) ← b(l−1) − 𝜇

N∑
i=1
𝜹
(l−1)
i

where LC + 1 ≤ l ≤ LC + LD. This is, first, the errors 𝜹(l)i are backpropagated to the previous
layer, starting with the last layer, for which 𝜹(LC+LD)

i has been previously computed.

4.3.5 Backpropagation of the Convolutional Section of a CNN

By the notation of Eq. (4.12) that transforms the convolution into a product with a sparse
matrix, the update can be expressed as follows:

(l−1)
j,k ←

(l−1)
j,k − 𝜇H(l−2)

j 𝚫(l−1)⊤
k (4.13)

with the definition

𝚫(l−1)
k =

∑
m

(l)
k,m𝚫

(l)
m ⊙ 𝜑′

(
Z(l−1)

k

)
(4.14)

where array 𝚫(l) is the backpropagated error term, which is the counterpart of the error BP
vector 𝜹(l) in an MLP. Here we express it in a capital symbol to denote that this term is an
array with the same dimension as the corresponding convolution output H(l).

Besides, we know that the product with
(l)
j,k is equivalent to a convolution with W(l)

j,k,
therefore we can write

W(l−1)
j,k ← W(l−1)

j,k − 𝜇H(l−1)
j 𝚫(l−1)⊤

k

B(l−1)
k ← B(l−1)

k − 𝜇𝚫(l−1)
k

(4.15)

with the definition

𝚫(l−1)
k =

∑
m

W(l)
k,m ∗ 𝚫(l)

m ⊙ 𝜑′
(

Z(l−1)
k

)
(4.16)

To formulate the algorithm, it is necessary to backpropagate error 𝜹(LC+1) to 𝚫(LC). This
is straightforward if we remember that the last convolutional layer performs a pooling and
then a flattening. Therefore, to backpropagate the error, it is necessary to undo the flattening
and then undo the pooling (by filling with zeros the positions not selected by the pooling), to
find an error 𝚫(LC+1) with the same dimensions as H(LC+1). The pooling cannot be reversed,

4.3 Training a CNN 165

and therefore, to increase the dimensions to the same values as they were before the pooling,
we just need to change the positions of 𝚫(LC+1) corresponding to the positions discarded by
max-pooling or to repeat the error values in the case that average pooling was applied. Then,
the convolutional section BP applied over a batch of N samples is for all convolutional layers
LC ≥ l ≥ 1 as follows:

𝚫(l−1)
i,k =

∑
m

W(l)
k,m ∗ 𝚫(l)

i,m ⊙ 𝜙′
(

Z(l−1)
i,k

)
W(l−1) ← W(l−1) − 𝜇

N∑
i=1

H(l−2)
i 𝚫(l−1)⊤

i

B(l−1) ← B(l−1) − 𝜇

N∑
i=1

𝚫(l−1)
i

(4.17)

Here, the subindex i refers to each one of the training input images. This set of equations is
identic to Eq. (1.110), with the only difference that the outputs are matrices and the product
inside the update for the convolution kernels is changed by a convolution product.

Example 4.3.1 (Training and testing a CNN)
In this example, the Canadian Institute for Advanced Research (CIFAR)10 database from
the CIFAR is used to train and test a CNN. They are divided into 50,000 images for training
and another 10,000 for test. A CNN has been constructed with three convolutional layers
and three dense layers. The first convolutional layer has three input channels and 32 output
channels. The second layer has 32 input channels and 64 output channels, and the third one
has 64 input channels and 128 output channels. All kernels are 3 × 3. All convolutions are
followed by ReLU activations and 2 × 2 max-pooling and no padding and stride is applied
to the convolutions.

The first convolution, then, produces an output of 32 channels with dimension 32 × 30.
After the max pooling, the output is reduced to 15 × 15. The second convolution outputs
64 channels with dimension 13 × 13, and after the max pool, the output is reduced to
6 × 6. Finally, the third convolution outputs 128 channels with dimension 4 × 4, reduced
to 2 × 2 after the max pool. The channels are then placed in a vector (flattened). Since
there are 12 channels with 4 pixels each, the vector has a dimension of 512. This vector is
the input to a dense layer that connects to a second layer of 128 nodes, and this one to a
third layer of 10 nodes. The first and second layers have ReLU activation and the third one
has linear activation. Figure 4.10 illustrates the architecture of the CNN model used in this
experiment.

Inputs
3 × 3 × 32

Feature
maps
32 × 30 × 30

Feature
maps
32 × 15 × 15

Feature
maps
64 × 13 × 13

Feature
maps
64 × 6 × 6

Feature
maps
128 × 4 × 4

Feature
maps
128 × 2 × 2

Max pooling
2 × 2 kernal

Max pooling
2 × 2 kernal

Max pooling
2 × 2 kernal

Convolution
3 × 3 kernal

Convolution
3 × 3 kernal

Convolution
3 × 3 kernal

Hidden
units
512

Hidden
units
256

Hidden
units
128

Outputs
10

Fully
connected

Fully
connected

Fully
connectedFlatten

Figure 4.10 Architectural framework of the CNN model outlined in Example 4.3.1.

166 4 Convolutional Neural Networks

The CNN is trained with the 50,000 images of the training set with mini-batches of 50
images each, during 100 epochs. The training is performed using the Adam optimizer with
𝛾 = 0.01, 𝛽1 = 0.9, 𝛽2 = 0.999, 𝜖 = 10−8, and no weight decay.

The test was done with the 10,000 test images provided in the dataset. The overall accu-
racy was 75%. The confusion matrix of the experiment is shown in Fig. 4.11. The left pane
shows the training convergence, and the right pane shows the confusion matrix of the CNN.

0 20 40 60 80 100

Number of epochs

0.000

0.005

0.010

0.015

0.020

0.025

0.030

L
os

s

Plane Car Bird Cat Deer Dog Frog Horse Ship Truck
Predicted

Plane

Car

Bird

Cat

Deer

Dog

Frog

Horse

Ship

Truck

A
ct

ua
l

0.70 0.02 0.06 0.02 0.02 0.01 0.03 0.02 0.06 0.05

0.03 0.80 0.00 0.02 0.00 0.01 0.00 0.01 0.05 0.08

0.04 0.00 0.69 0.00 0.11 0.07 0.08 0.00 0.01 0.00

0.00 0.00 0.12 0.43 0.03 0.22 0.06 0.10 0.01 0.02

0.02 0.00 0.09 0.08 0.63 0.08 0.03 0.08 0.00 0.00

0.01 0.01 0.07 0.21 0.03 0.60 0.01 0.05 0.00 0.01

0.00 0.02 0.07 0.07 0.03 0.03 0.74 0.02 0.00 0.01

0.00 0.01 0.03 0.04 0.06 0.03 0.00 0.82 0.00 0.00

0.06 0.04 0.04 0.04 0.00 0.00 0.00 0.01 0.79 0.03

0.05 0.05 0.01 0.00 0.00 0.02 0.01 0.00 0.02 0.84

Confusion matrix

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 4.11 Loss as a function of the number of epochs and confusion matrix of Example 4.3.1.

4.4 Extensions of the CNN

CNNs have revolutionized the field of computer vision, especially in the field of object
recognition and other visual-related applications. The ability of CNNs to extract hierarchi-
cal features from input data has made them quite popular, mainly in processing images.
Researchers have explored different approaches to extend and enhance the traditional CNN
architecture to tackle new challenges (M. Ajith and Calhoun 2023), each time improving
the model performance in specific domains.

We will be going over a spectrum of such extensions and will explore more about the
advantages and disadvantages of these architectures. Throughout the section, we will pro-
vide an overview of the different kinds of CNNs that were inspired by traditional archi-
tecture for solving complex challenges associated with image classification problems. The
ability of these structures to efficiently process information at multiscale levels, especially in
extracting meaningful features also helped with improved the interpretability of the model
results and the features extracted. This indeed proved to be useful in various domains/ap-
plications. These extensions continue to be popular in different domains such as medical
imaging (A. R. Kurup et al. 2023; Maqsood et al. 2019; Marcus et al. 2010; Byra et al. 2020),
object detection (Zhiqiang and Jun 2017; M. Ajith and A. R. Kurup 2018; Duan et al. 2012),
natural language processing (Wróbel et al. 2020; Moriya and Shibata 2018), or solar energy
applications (M. Ajith and Manel Martínez-Ramón 2023).

4.4.1 AlexNet

AlexNet takes its name from Alex Krizhevsky, who introduced it in 2012 in collaboration
with Ilya Sutskever and Geoffrey Hinton (Alex Krizhevsky et al. 2012). It was able to solve

4.4 Extensions of the CNN 167

Input
data

227 × 227 × 3

Convolutional
layer + ReLU
55 × 55 × 96

11

11

5

5

3

3

3

3

3

3

Convolutional
layer + ReLU
27 × 27 × 256

Convolutional
layer + ReLU
13 × 13 × 384

Convolutional
layer + ReLU
13 × 13 × 384

Convolutional
layer + ReLU
13 × 13 × 256

Fully
Connected

layer
+ ReLU

4096

Fully
Connected

layer
+ ReLU

4096

Fully
Connected

layer
+ SoftMax

1000

Maxpooling
layer

27 × 27 × 96

3

3

Maxpooling
layer

13 × 13 × 256

3

3

Maxpooling
layer

6 × 6 × 256

3

3

3

3

Figure 4.12 Alexnet architecture.

the problem of image classification on the ImageNet database consisting of 1000 different
classes. Hence, this network was able to win the ImageNet ImageNet large scale visual
recognition challenge (ILSVRC)-2012 competition with the highest accuracy. Its structure
is shown in Fig. 4.12.

The red–green–blue (RGB) images with dimensions 224 × 224 × 3 are passed through a
set of 96 convolution kernels with dimensions 11 × 11 × 3 to produce 96 outputs. The con-
volutions include a stride of 4 pixels. Each element of the outputs is passed through a ReLU
function. The dimensions of each one of the convolution outputs are ⌊(224 − 11 + 4)∕4⌋ =
54, but authors report dimensions of 55 × 55, which may be produced by padding of 3 pixels.

In the overall architecture, initially, an input image of size 224 × 224 × 3 is given to the
first convolutional layer. This input is convolved using 96 kernels of size 11 × 11 × 3 and
stride 4. The second convolutional layer on the other hand used 256 kernels of size 5 ×
5 × 48. The following three convolutional layers are linked together without any pooling
layers. The third and fourth convolutional layers have 384 kernels of size 3 × 3 × 256 and
3 × 3 × 192, respectively. Finally, the fifth convolutional layer contains 256 kernels of size
3 × 3 × 192, and each of the FC layers has 4096 neurons.

The AlexNet paper introduced several novelties such as data augmentation, dropout,
ReLU, overlapping pooling, and multi-GPU training. Both data augmentation and dropout
were developed to eliminate the overfitting problem. While performing data augmentation,
the network was given different variations of the same image. This strategy is used while
training the models to increase the heterogeneity of the available data without gathering
new data. Specifically, they increased the size of the data by a factor of 2048 by extracting
random patches from the images and altering the intensities of the RGB channels.

Dropout was another technique introduced by Geoffrey E. Hinton in 2012 for preventing
overfitting (Geoffrey E. Hinton et al. 2012b). In dropout, a neuron is dropped from the net-
work with a predetermined probability (see Subsection 2.3.2). Every iteration uses a differ-
ent network architecture, which forces each neuron to have more robust features. However,
the number of iterations needed for the model’s convergence is increased during dropout.

Previously, sigmoidal activation functions were the standard way of introducing nonlin-
earity to the CNN. But in AlexNet, the ReLU activation (see Section 1.4) was used for this
purpose. The training time of ReLU-based CNNs was faster than compared to tanh or logis-
tic activation functions. Since they are saturating nonlinear functions, they have a compact
range between−1 or 0 and 1, whereas ReLU does not exhibit any restraints at its boundaries,
thereby resulting in faster training.

168 4 Convolutional Neural Networks

Another unique feature of AlexNet is overlapping pooling so that the adjacent kernels
over which the max is computed overlap each other. The traditional CNN used pooling
layers without overlapping for downsampling the features. In AlexNet, the overlapping
max-pooling layers helped to reduce the error rates of the classifier and avoided overfit-
ting. Moreover, AlexNet used the ImageNet dataset that had roughly 1.2 million training
images. To avoid the memory issue and increase the training time, multiple GPUs were
used for training this network.

4.4.2 VGG

The visual geometric group (VGG) is another classic CNN network named after the research
group from Oxford University that developed the architecture for the network. This net-
work was developed in the year 2014 by Karen Simonyan and Andrew Zisserman (2015).
This network was the second place holder in the ILSVRC 2014 competition.

The main idea of the VGG nets was to see the effect of the depth of the convolutional
network on the accuracy in large-scale image recognition settings. Smaller convolutional
filters were used in this network, which allowed the increased depth of the network by
adding more weight layers.

The VGG architecture consists of a stack of convolutional layers through which the
images are passed. The network uses convolutional filters of relatively smaller size and
is significantly deeper in structure compared to previously developed structures using
smaller convolutions (Ciresan et al. 2011). The framework has five max-pooling layers
with a window size of 2 × 2 and a stride of 2. The max-pooling layers follow only a few
convolutional layers and not all convolutional layers. The VGG architecture has three FC
layers. The first two FC layers have 4096 nodes, the last one has 1000 nodes for each class,
and the final layer uses a softmax activation.

The VGG framework was the first network to use a preprocessing block where the input
size of the RGB images is cropped to 224× 224 during training. The mean RGB value com-
puted on the training set is subtracted from each pixel. Second, they use smaller receptive
fields or kernels of 3 × 3 in the convolutional layers compared to the ones of ALexNets and
their derivatives. The idea is that instead of using large receptive fields such as 11 × 11 (Alex
Krizhevsky et al. 2012) and 7 × 7 (Matthew D. Zeiler and Fergus 2014; Sermanet et al. 2013),
the same operation can be achieved by stacking the smaller 3 × 3 convolutional layers. The
3 × 3 layer stacked twice can be equally effective as that of a 5 × 5 receptive field. Simi-
larly, the 7 × 7 receptive field can be replaced using 3 stacked 3 × 3 convolutional layers. In
addition, the structure also incorporates 1 × 1 convolutions, which act as a linear transfor-
mation of the inputs. These units are then followed by ReLU activations (Alex Krizhevsky
et al. 2012) for introducing nonlinearity. The stride for convolutions is set to 1.

The spatial resolution is preserved while performing padding of inputs. This is done by
padding using just 1 pixel for 3 × 3 convolutional layers. The depth of the network is another
key feature. The depth of the structure is varied by adding more weight layers. There are six
different versions based on the number of weight layers in the network. The initial version
had 11 weight layers which were increased to 16 layers (VGG-16) (Fig. 4.13) and lastly 19
layers (VGG-19). VGG-16 and VGG-19 were the most popular ones. The configurations were
varied mainly by adding the convolutional layers. The FC layer remained the same for all
the different versions.

4.4 Extensions of the CNN 169

2
D

-C
O

N
V

+
R

eL
U

,
fi

lt
er

 s
iz

e
=

 3
×

3

2
D

-M
A

X
P

O
O

L
IN

G
,
fi

lt
er

 s
iz

e
=

 3
×

3

2
D

-C
O

N
V

+
R

eL
U

,
fi

lt
er

 s
iz

e
=

 3
×

3

2
D

-C
O

N
V

+
R

eL
U

,
fi

lt
er

 s
iz

e
=

 3
×

3

2
D

-C
O

N
V

+
R

eL
U

,
fi

lt
er

 s
iz

e
=

 3
×

3

2
D

-M
A

X
P

O
O

L
IN

G
,
fi

lt
er

 s
iz

e
=

 3
×

3

2
D

-C
O

N
V

+
R

eL
U

,
fi

lt
er

 s
iz

e
=

 3
×

3

2
D

-C
O

N
V

,+
R

eL
U

 fi
lt

er
 s

iz
e

=
 3

×
3

2
D

-C
O

N
V

+
R

eL
U

,
fi

lt
er

 s
iz

e
=

 3
×

3

2
D

-M
A

X
P

O
O

L
IN

G
,
fi

lt
er

 s
iz

e
=

 3
×

3

2
D

-C
O

N
V

+
R

eL
U

,
fi

lt
er

 s
iz

e
=

 3
×

3

2
D

-C
O

N
V

+
R

eL
U

,
fi

lt
er

 s
iz

e
=

 3
×

3

2
D

-C
O

N
V

+
R

eL
U

,
fi

lt
er

 s
iz

e
=

 3
×

3

2
D

-M
A

X
P

O
O

L
IN

G
,
fi

lt
er

 s
iz

e
=

 3
×

3

2
D

-C
O

N
V

+
R

eL
U

,
fi

lt
er

 s
iz

e
=

 3
×

3

2
D

-C
O

N
V

+
R

eL
U

,
fi

lt
er

 s
iz

e
=

 3
×

3

2
D

-C
O

N
V

+
R

eL
U

,
fi

lt
er

 s
iz

e
=

 3
×

3

2
D

-M
A

X
P

O
O

L
IN

G
,
fi

lt
er

 s
iz

e
=

 3
×

3

F
U

L
L

Y
 C

O
N

N
E

C
T

E
D

+
R

eL
U

,
4
0
9
6

F
U

L
L

Y
 C

O
N

N
E

C
T

E
D

+
R

eL
U

,
4
0
9
6

F
U

L
L

Y
 C

O
N

N
E

C
T

E
D

+
S

o
ft

m
ax

,
1
0
0
0

IN
P

U
T

 I
M

A
G

E
,
2
2
4

×
2
2
4

×
3

224×224×3 224×224×64

112×112×128

56×56×256

28×28×512
14×14×512 7×7×512 1×1×4096 1×1×1000

Input image

Convolutional layer

Max pooling layer

Fully connected layer

Figure 4.13 VGG-16 architecture.

4.4.3 Inception

The Inception-v1/GoogLeNet is a CNN architecture with 22 layers and 5M parameters
(Szegedy et al. 2015). It was the winner of the ImageNet Large Scale Visual Recogni-
tion Competition in 2014. The previous CNN models were focused on going deeper
to improve accuracy, but this compromised the computational cost of these networks.
The Inception-v1 network consists of recurring blocks of convolutional designs called
Inception modules that make it wider. A naive inception module performs max-pooling
and 1 × 1, 3 × 3 and 5 × 5 convolutions on the input. The final outputs are generated
after passing them through the concatenation layer. But the 3 × 3 and 5 × 5 convolutions
were computationally expensive. Hence, dimensionality reduction was necessary, and it
was achieved by incorporating 1 × 1 convolutions. The total number of layers utilized in
the network’s design is around 100, and a ReLU activation is used in all convolutions,
including those inside the Inception modules. Toward the end of the architecture, the
global average pooling layer replaced the FC layers, which further reduced the number of
parameters and increased the top-1 accuracy by 0.6%. Thus, the complexity of the model
was reduced to a great extent without decreasing the speed and accuracy.

The Inception-v1 contains the 1 × 1 convolutions that were first introduced in the Net-
work In Network paper by Min Lin in 2013 (M. Lin et al. 2014a). The 1 × 1 convolutional
layer was used to decrease the number of parameters by reducing the number of channels.
Its activation function also added nonlinearity to the model. For example, consider the fol-
lowing operations in which we convolve 28 × 28 × 64 input feature maps with 5 × 5 × 32
filters. Here the total no. of parameters = (28 × 28 × 32) × (5 × 5 × 64) = 40 million opera-
tions. Repeat the operations with the same input feature maps but with a 1 × 1 layer before
the 5 × 5 convolutional layer. The total no. of parameters = (28 × 28 × 16) × (1 × 1 × 32) +

170 4 Convolutional Neural Networks

Convolution Input:
299 × 299 × 3

Output:
8 × 8 × 2048

Input: 299 × 299 × 3, Output 8 × 8 × 2048

Final; part: 8 × 9 × 2048 1001
AvgPool
MaxPool
Concat
Dropout
Fully connected
Softmax

Figure 4.14 Inception-v3 architecture.

(28 × 28 × 32) × (5 × 5 × 16) = 10 million operations. Hence, the use of 1 × 1 convolutions
has reduced the number of operations by a factor of 4.

Additionally, the Inception-v1 network introduced two auxiliary classifiers to prevent the
vanishing gradient problem. An auxiliary loss was computed by applying a softmax activa-
tion at the output of the inception module, and this loss was added to the main network loss.
Other variations of inception such as Inception-v2 (Ioffe and Szegedy 2015), Inception-v3
(Fig. 4.14) (Szegedy et al. 2016), and Inception-v4 (Szegedy et al. 2017) were introduced in
the later years to curb the limitations of the initial version.

4.4.4 ResNet

The residual neural network (ResNet) was a CNN architecture introduced in the year
2015 (He et al. 2016). These structures were the winner of localization, ImageNet detec-
tion, segmentation, and detection in the 2015 common objects in context (COCO) and
ILSVRC competitions. These structures were successful in providing great generalization
performance on image recognition tasks. The idea of ResNet was to develop an efficient
way to curb the huge problem of vanishing gradients (Yoshua Bengio et al. 1994; Glorot
and Yoshua Bengio 2010) associated with training deeper networks which indeed affects
the convergence. Previously, this problem was addressed using normalized initialization
(Y. A. LeCun et al. 2012; Glorot and Yoshua Bengio 2010; He et al. 2015) and intermediate
normalization layers (Ioffe and Szegedy 2015). These techniques were able to make the
networks with a significant number of layers converge using SGD and BP (Y. LeCun
et al. 1989). The convergence was achieved, but there was another problem called the
degradation problem whereas the network depth increases, the accuracy starts getting
saturated and degrades rapidly later on (He et al. 2016). This resulted in higher training
error after adding more layers to a deeper model compared to their shallower counterparts
(He and J. Sun 2015).

ResNet was the first network to introduce residual learning and skip connections
skipping one or more weight layers to solve the degradation problem. The idea was that
instead of jumping through the stacked layers try to fit a residual mapping. For example,
if the original mapping before adding the skip connection was Fl(xl−i), then after skipping
connection it will fit Gl(xl−i), i.e. the stacked nonlinear layers will fit another mapping

4.4 Extensions of the CNN 171

Residual connection

Im
ag

e

7
×

 7
 c

on
v,

 6
4,

/2

Po
ol

, /
2

3
×

 3
 c

on
v,

 1
28

,/2

3
×

 3
 c

on
v,

 6
4

3
×

 3
 c

on
v,

 6
4

3
×

 3
 c

on
v,

 6
4

3
×

 3
 c

on
v,

 6
4

3
×

 3
 c

on
v,

 6
4

3
×

 3
 c

on
v,

 6
4

3
×

 3
 c

on
v,

 1
28

3
×

 3
 c

on
v,

 1
28

3
×

 3
 c

on
v,

 1
28

3
×

 3
 c

on
v,

 1
28

3
×

 3
 c

on
v,

 1
28

3
×

 3
 c

on
v,

 1
28

3
×

 3
 c

on
v,

 2
56

3
×

 3
 c

on
v,

 2
56

3
×

 3
 c

on
v,

 2
56

3
×

 3
 c

on
v,

 2
56

3
×

 3
 c

on
v,

 2
56

3
×

 3
 c

on
v,

 2
56

3
×

 3
 c

on
v,

 2
56

3
×

 3
 c

on
v,

 2
56

3
×

 3
 c

on
v,

 2
56

3
×

 3
 c

on
v,

 2
56

3
×

 3
 c

on
v,

 2
56

3
×

 3
 c

on
v,

 5
12

3
×

 3
 c

on
v,

 5
12

3
×

 3
 c

on
v,

 5
12

3
×

 3
 c

on
v,

 5
12

3
×

 3
 c

on
v,

 5
12

A
vg

. p
oo

l

f c,
 1

00
0

3
×

 3
 c

on
v,

 2
56

,/2

3
×

 3
 c

on
v,

 5
12

,/2

3
×

 3
 c

on
v,

 1
28

7
×

 7
 c

on
v,

 6
4,

/2

Po
ol

, /
2

3
×

 3
 c

on
v,

 1
28

,/2

3
×

 3
 c

on
v,

 6
4

3
×

 3
 c

on
v,

 6
4

3
×

 3
 c

on
v,

 6
4

3
×

 3
 c

on
v,

 6
4

3
×

 3
 c

on
v,

 6
4

3
×

 3
 c

on
v,

 6
4

3
×

 3
 c

on
v,

 1
28

3
×

 3
 c

on
v,

 1
28

3
×

 3
 c

on
v,

 1
28

3
×

 3
 c

on
v,

 1
28

3
×

 3
 c

on
v,

 1
28

3
×

 3
 c

on
v,

 1
28

3
×

 3
 c

on
v,

 2
56

3
×

 3
 c

on
v,

 2
56

3
×

 3
 c

on
v,

 2
56

3
×

 3
 c

on
v,

 2
56

3
×

 3
 c

on
v,

 2
56

3
×

 3
 c

on
v,

 2
56

3
×

 3
 c

on
v,

 2
56

3
×

 3
 c

on
v,

 2
56

3
×

 3
 c

on
v,

 2
56

3
×

 3
 c

on
v,

 2
56

3
×

 3
 c

on
v,

 2
56

3
×

 3
 c

on
v,

 5
12

3
×

 3
 c

on
v,

 5
12

3
×

 3
 c

on
v,

 5
12

3
×

 3
 c

on
v,

 5
12

3
×

 3
 c

on
v,

 5
12

A
vg

. p
oo

l

f c,
 1

00
0

3
×

 3
 c

on
v,

 2
56

,/2

3
×

 3
 c

on
v,

 5
12

,/2

3
×

 3
 c

on
v,

 1
28

Im
ag

e
Residual network

Plain network

Weight layer

φ(H)

φ(H) + H

ReLU

ReLU

H

Weight layer

Figure 4.15 Resnet-34 architecture. Adapted from He, X. Zhang, et al., 2016 / IEEE.

Fl(xl−i) = Gl(xl−i) − xl−i, where l is the layer index and i is the total number of layers
skipped. The original mapping is hence transformed to Fl(xl−i) + xl−i. This is shown in
Fig. 4.15 Using this technique, the optimization became simpler as it was easier to learn
the residual mapping than the original underlying mapping. The connections are identity
mapping, which is then added to the output of the stacked layers. These identity mappings
do not add to the computational complexities, hence the number of parameters before and
after remains the same. Through this concept, the structures were able to be successfully
trained for 100s and 1000s of layers.

Other networks also used the shorter skip connections, in particular, gated shortcut con-
nections such as highway network (R. K. Srivastava et al. 2015) and long short term memory
(LSTM) (Schmidhuber and Hochreiter 1997). ResNets were very popular among them due
to their capability of training very deep networks going up to 1001 layers, outperforming
their shallower counterparts.

4.4.5 Xception

Xception was inspired by the concept of the Inception network introduced in 4.4.3. The
Xception network was introduced by a Google researcher, Francois Chollet in 2017 (Chollet
2017), and it used the idea of depthwise separable convolutions by taking the concept of
Inception to the extreme.

The Inception module introduced in Inception-V3 made use of 1 × 1 convolutions to cap-
ture cross-channel correlations, and the spatial correlations were learned using the regular
3 × 3 or 5 × 5 operations as shown in Fig. 4.16. This idea of the Inception module can be
reformed to have the input passed through 1 × 1 convolution followed by just one particular
size convolution for example: of 3 × 3 as shown in Fig. 4.17.

This version can be considered the “extreme version” of Inception. This version of the
Inception module is close to the depthwise separable convolution operation. The concept
of depthwise separable convolutions was introduced in Sifre and Mallat (2014) in 2014.
These operations were also incorporated into programming frameworks such as Tensor-
Flow in 2016 (Abadi et al. 2016). Depthwise separable convolution has two parts: depthwise
convolution followed by pointwise convolution. Depthwise convolution performs spatial
convolutions independently on each of the channels of the input. Pointwise convolution
performs a 1 × 1 convolutional operation. This operation helps with projecting the output
to a new channel space.

172 4 Convolutional Neural Networks

Concat

Input

1 × 1 conv 1 × 1 conv 1 × 1 conv 1 × 1 conv

3 × 3 conv 3 × 3 conv 3 × 3 conv

3 × 3 conv

Figure 4.16 Inception module as in Inception-V3.

Concat

Output channels

1 × 1 conv

3 × 3 conv 3 × 3 conv 3 × 3 conv 3 × 3 conv 3 × 3 conv 3 × 3 conv 3 × 3 conv

Input

Figure 4.17 “Extreme” version of the Inception Module as described in [?].

The Xception architecture shown in Fig. 4.18 consists of 36 convolutional layers organized
into 14 different modules. The stacked linear layers make use of depthwise separable con-
volutions. These modules include residual connections around them which are linear. The
convolutional base is followed by a layer dedicated to logistic regression. The experiments
were also evaluated for a configuration where a FC layer was also introduced ahead of a
logistic regression layer. The number of parameters was nearly the same for both Inception
V3 and Xception. The comparison between the models was done using two image classifi-
cation setups: the famous single-labeled 1000-class classification on the ImageNet dataset
and the 17000-class test for performing multilabel classification on the JFT dataset. The
JFT dataset was an internal Google dataset first introduced in (Geoffrey E. Hinton et al.
2015). The dataset contains 350 million images with labels corresponding to 17000 classes.
For both datasets, different optimization configuration was set. In both cases, the Xception
architecture showed significant improvement in performance with a higher margin for the
JFT dataset.

4.4.6 MobileNet

MobileNets (Howard et al. 2017) represent a class of efficient CNN models specifically
designed for mobile and embedded vision applications. The first version of MobileNets was

4.4 Extensions of the CNN 173

Entry flow

1 × 1 conv., 32, s = 2

1 × 1 conv., 32, s = 2

1 × 1 conv., 32, s = 2

1 × 1 conv., 32, s = 2
3 × 3 sep. conv., 728

3 × 3 separable conv, 256

3 × 3 separable conv, 256

3 × 3 sep. conv., 728

3 × 3 sep. conv., 728

3 × 3 sep. conv., 728

3 × 3 sep. conv., 1024

3 × 3 sep. conv., 1536

3 × 3 sep. conv., 2048

3 × 3 sep. conv., 728

3 × 3 sep. conv., 728

ReLU

ReLU

ReLU

ReLU

19 × 19 × 728 feature maps

19 × 19 × 728 feature maps

19 × 19 × 728 feature maps 19 × 19 × 728 feature maps

Repeated 8×

 Maxpool 3 × 3, s = 2

 Maxpool 3 × 3, s = 2

 Maxpool 3 × 3, s = 2

3 × 3 separable conv, 128

3 × 3 separable conv, 128

3 × 3 conv., 32, s = 2

299 × 299 × 3 images

3 × 3 conv, 64

ReLU

ReLU

ReLU
ReLU

ReLU

ReLU

ReLU

ReLU

ReLU

Global Avg. pooling

2048 dim. vectors

Optional fully connected
layers

Logistic regression

ReLU

 Maxpool 3 × 3, s = 2

Middle flow Exit flow

Figure 4.18 Xception architecture.

introduced by Google in 2017. These models leverage a novel convolutional layer called
depthwise separable convolution, which was later adopted in advanced Inception models.
This approach significantly reduces computational demands and model size compared to
other well-known CNN architectures. MobileNets are characterized by their compactness,
speed, and efficiency, and they find utility across a diverse range of applications, includ-
ing object detection, fine-grain classification, face attribute analysis, and large-scale geo-
localization. The key features of MobileNets are

4.4.6.1 Depthwise Separable Convolutions
The MobileNet model utilizes a convolution technique known as depth-wise separable con-
volutions. This method breaks down a standard convolution operation into two distinct
steps: a depthwise convolution and a pointwise convolution with a 1 × 1 kernel. The depth-
wise convolution applies a single filter to each input channel, and then the pointwise con-
volution employs a 1 × 1 convolution to combine the results of the depthwise convolution
(refer to Fig. 4.19). In contrast, a standard convolution carries out filtering and combin-
ing inputs in a single step. Depthwise separable convolutions effectively divide this process
into two separate layers: one for filtering and another for merging inputs. This factorization
technique brings about significant advantages, notably reducing computational demands
and the overall size of the model.

174 4 Convolutional Neural Networks

Convolution

3

224 × 224 × 3
s = 2 112 × 112 × 64

s = 2

7 × 7 × 1024
s = 2 7 × 7 × 1024

1024 Output
classes

112 × 112 × 32 112 × 112 × 32
56 × 56 × 128

3 3

3

3

1 1

1

32

643

3

128

3

3

3
1024

3

Depthwise
convolution

Pointwise
convolution

Depthwise
separable

convolution

Depthwise
separable

convolution

Global
average
pooling

Full
connections

Figure 4.19 MobileNet architecture.

4.4.6.2 Width Multiplier
The width multiplier parameter which is represented as 𝛼 was introduced to achieve an
even smaller and faster MobileNet model. The purpose of this width multiplier 𝛼 was to
uniformly reduce the network’s width at each layer. For any given layer and width multiplier
𝛼, the number of input channels M becomes 𝛼M, and the number of output channels N
becomes 𝛼N. The width multiplier takes values in the range (0, 1], with typical settings being
1, 0.75, 0.5, and 0.25. When 𝛼 equals 1, it represents the baseline MobileNet, and for 𝛼 < 1,
it corresponds to reduced MobileNets. The width multiplier has the effect of quadratically
reducing computational cost and the number of parameters by approximately 𝛼2.

4.4.6.3 Resolution Multiplier
The resolution multiplier 𝛾 serves as an additional parameter used to reduce the computa-
tional demands of MobileNets. It is applied uniformly to shrink both the input image and
the internal representation of each layer. In practical terms, 𝛾 is initially set according to
the desired input resolution, allowing for flexible adjustments based on the level of com-
putational efficiency you aim to achieve. The resolution multiplier 𝛾 falls within the range
of (0, 1], which results in the input resolution of the network being set to values such as
224, 192, 160, or 128. When 𝛾 is equal to 1, it corresponds to the standard MobileNet, while
𝛾 values less than 1 represent MobileNets with reduced computational requirements. The
resolution multiplier has the effect of reducing computational cost by a factor of 𝛾2.

MobileNets represent a computationally efficient CNN architecture, making them
suitable for resource-constrained devices. These models are known for their compact size,
making them easy to deploy on devices with limited memory and storage capacity. Users can
fine-tune width multiplier, and resolution multiplier parameters to balance computational
cost and model performance, making MobileNets adaptable to various scenarios. However,
their compactness may limit their capacity for complex tasks, and aggressive parameter
reductions can lead to trade-offs in model size versus performance. Nonetheless, MobileNet
remains a compelling choice for achieving efficient deep learning inference on mobile
platforms.

4.4.7 DenseNet

DenseNet was developed by Cornell Uni, Tsinghua Uni, and Facebook Research in 2017 for
visual object recognition (G. Huang et al. 2017). In most CNN architectures, due to the depth

4.4 Extensions of the CNN 175

Input

BN-ReLU-conv

BN-ReLU-conv

BN-ReLU-conv

BN-ReLU-conv

Transitio
n layer

H1

H2

H3

H4

Figure 4.20 DenseNet architecture.

of the network, the information flow from input to output is disrupted and the model expe-
riences the vanishing gradient problem. DenseNets were created to exploit the full potential
of deep CNNs by applying feature reuse. Despite being similar to ResNets, the DenseNets
improve accuracy by concatenating the feature maps from various layers. The mathematical
formulation is shown in the below equation:

f l = Fl([f 0, f 1, f 2, f l−1]) (4.18)

where Fl corresponds to the function that concatenates the output feature maps of the pre-
vious layers. This function can be a combination of operations such as batch normalization,
ReLU, pooling, or convolution. The feature maps of all preceding layers, i.e. f 0, f 1, f 2, f l−1

are sent into the lth layer f l.
The key features of DenseNet are (see Fig. 4.20):

Dense blocks: DenseNets are composed of several dense blocks with n dense layers. Each
dense layer is made up of 1 × 1 and 3 × 3 convolutions. The dense layer receives input
from the preceding feature maps, which are then passed on to the subsequent layers. The
number of filters in the convolutional layers changes with each dense block, while the
size of the feature maps stays constant. Transition layers are the layers that exist between
dense blocks. If a dense block comprises m feature maps, the transition layer creates
𝜃m output feature maps, where 0 < 𝜃 ≤ 1. As a result, it aids in reducing the number of
feature maps and improving the model’s compactness.

Growth rate: The number of parameters and model complexity are determined by the
initial number of feature maps. If each function Fl generates k feature maps, the lth layer

176 4 Convolutional Neural Networks

must have k0 + k × (l − 1) input feature maps, where k0 is the number of channels in the
input layer. Here k is the hyperparameter which denotes the growth rate. This means that
for each layer added, we add k additional feature maps to the overall number of feature
maps and hence the total number of parameters. The feature maps may be viewed as the
network’s overall state. The authors have used a k value of 32 for all the experiments.
These 32 feature maps are concatenated and fed as input to the next layer. Consequently,
the growth rate governs how much new information each layer contributes to the overall
system.
The main advantages of DenseNets include the requirement of fewer parameters for
creating compact models that deliver state-of-the-art performances. Additionally, the net-
work is also parameter efficient; a 250-layer model has just 15.3M parameters; and it out-
performs models with more than 30M parameters, such as FractalNet and Wide ResNets.
DenseNets can also extend to hundreds of layers while posing no optimization chal-
lenges. This structure produces constant improvements in accuracy as the number of
parameters increases, with no indications of performance deterioration or overfitting.
Furthermore, DenseNets require significantly fewer parameters and less computation to
achieve state-of-the-art performance.

4.4.8 EfficientNet

EfficientNet was the latest model introduced by Tan and Q. Le (2019) in this series of image
classification CNN architectures. EfficientNets were able to efficiently scale up ResNet and
MobileNets using a compound coefficient scaling model as shown in Fig. 4.21. The results
were evaluated on different state-of-the-art datasets. The common practice of model scaling
was focused on increasing the number of layers depthwise or width-wise. Another approach
was to introduce only high-resolution images as inputs for improved performance. But, in
both these cases the requirement of manual tuning becomes huge. The idea of Efficient-
Net was to scale up the CNNs using a more structured approach without compromising
efficiency and performance.

The models analyzed the effect of scaling each of the dimensions in the network with
respect to a fixed resource constraint. The baseline network was evaluated under the same
condition for different scaling options which gave the scaling coefficient. The scaling coef-
ficient is further used to scale up the model size and also to keep the computational cost
minimal.

The base model plays a key role in determining the effectiveness of the model scaling
approach. Additionally, using the neural architecture search approach (Wistuba et al. 2019)
using the AutoML mobile neural architecture search (MNAS) (Tan et al. 2019) framework,

22
4

×
 2

24
 ×

 3

11
2

×
 1

12
 ×

 3
2

3
×

 3
 c

on
v.

3
×

 3
 M

B
co

nv
1.

3
×

 3
 M

B
co

nv
6.

3
×

 3
 M

B
co

nv
6.

5
×

 5
 M

B
co

nv
6.

5
×

 5
 M

B
co

nv
5.

3
×

 3
 M

B
co

nv
6.

3
×

 3
 M

B
co

nv
6.

3
×

 3
 M

B
co

nv
6.

5
×

 5
 M

B
co

nv
6.

5
×

 5
 M

B
co

nv
6.

3
×

 3
 M

B
co

nv
6.

5
×

 5
 M

B
co

nv
6.

5
×

 5
 M

B
co

nv
6.

5
×

 5
 M

B
co

nv
6.

5
×

 5
 M

B
co

nv
6.

3
×

 3
 M

B
co

nv
6.

11
2

×
 1

12
 ×

 1
6

56
 ×

 5
6

×
 2

4

56
 ×

 5
6

×
 2

4

28
 ×

 2
8

×
 4

0

28
 ×

 2
8

×
 4

0

28
 ×

 2
8

×
 8

0

28
 ×

 2
8

×
 8

0

28
 ×

 2
8

×
 8

0

14
 ×

 1
4

×
 1

12

14
 ×

 1
4

×
 1

12

14
 ×

 1
4

×
 1

12

7
×

 7
 ×

 1
92

7
×

 7
 ×

 1
92

7
×

 7
 ×

 1
92

7
×

 7
 ×

 1
92

7
×

 7
 ×

 3
20

Figure 4.21 EfficientNet architecture.

4.4 Extensions of the CNN 177

a new base network was developed. The resulting model was similar to MNasNET and
MobileNetV2 in structure but was larger in terms of higher FLOPs. The baseline model
was scaled up using the compound coefficient scaling approach to obtain the family of Effi-
cientNet models. The scaling approach was able to give an improvement in performance
with respect to ResNet, DenseNet, Inception, etc. Hence, the EfficientNet family of models
gave a good performance and model efficiency.

4.4.9 Transfer Learning for CNN Extensions

Most of the above-mentioned CNN extensions are heavy models and hence training them
from scratch can be computationally expensive. Therefore, these models are trained com-
monly in a computationally simpler way using Transfer Learning. Transfer learning is an
approach that uses the principle idea of helping machine learning algorithms to improve the
performance in the domain of interest by borrowing labeled data or extracting knowledge
from related domains (Pan 2014). Transfer learning can be defined as a machine learn-
ing technique that incorporates additional information apart from the knowledge gained
from the training data which may be from one or more related domains. The approach
focuses on the idea of reusing previously learned knowledge (Pan and Q. Yang 2009) and
transferring the knowledge across domains (Zhuang et al. 2020).

In real-world scenarios, we can find many examples of transfer learning. For example,
knowledge gained from playing the ukelele might help you with learning other instruments
such as guitar and piano. A person having some musical background can learn musical
instruments faster compared to someone who is not familiar with the background. In such
a case, a person learning knowledge from a particular background is extending it or transfer-
ring it to learn a related task. Similarly, in machine learning, we can leverage the knowledge
gained in one domain to be shared and applied in a related domain of interest. Now, in
machine learning, this can be viewed as the train data and target data being in two differ-
ent subdomains, with them being linked by a common higher-level domain which gives a
foundation on how the subdomains are related (K. Weiss et al. 2016).

This kind of knowledge engineering using transfer learning is beneficial when it comes to
fields where the data gets outdated frequently or fields where the data availability is low. The
lack of sufficient training data poses difficulty in training such models efficiently. In such
cases, the reuse of training data or extracted knowledge in related domains can be of great
use for improving the performance of the system. The transfer learning idea has been imple-
mented across different domains such as for object detection problems (M. Ajith and A. R.
Kurup 2018), in image classification (M. Ajith and Manel Martínez-Ramón 2021, 2023),
text classification (Harel and Mannor 2010), in medical fields (A. Kurup et al. 2020), image
segmentation, and sentiment classification (C. Wang and Mahadevan 2011).

There are two different types of transfer learning: Homogeneous and heterogeneous (Pan
2014). Homogenous transfer learning directly correlates to a big data environment. The
idea is to avoid the collection of more data samples and use the available resources from a
domain to build predictive models for other target domains. Homogeneous transfer learn-
ing has overlapping feature space across both the source domain and target domain, and
even the label spaces between the categories/tasks will be identical. Further, the homoge-
neous approaches can be subcategorized as instance-based, feature-based, relational-based,

178 4 Convolutional Neural Networks

and parameter-based. These subcategories are based on the type of transfer of the model.
As for heterogeneous transfer learning, the feature spaces are also heterogeneous, and they
come from different domains with the labels being nonidentical.

The heterogeneous transfer learning problems are solved using two main approaches:
symmetric transformations and asymmetric transformations. In the case of symmetric
transformation, both the source and target domains are separately transformed into a
common latent feature space. The asymmetrical transformation aims at transforming the
source and target instances of the same class without having context feature bias (K. Weiss
et al. 2016). In most of the heterogeneous scenarios, an initial assumption is made that
the source and target instances are coming from the same domain and do not have any
difference in distributions.

Now let us look into an example of transfer learning using the CNN extension. The
example here depicts a homogeneous transfer learning approach where we are using
a pretrained model learned on a larger dataset (ImageNet dataset) sharing a similar
feature space as that of the training inputs to adapt to a new dataset. For using the CNN
architecture for transfer learning, we remove the top layers of the model and freeze the rest
of the layers which constitute the base model. The base model uses the pretrained weights
obtained from the model trained on the large ImageNet database which has previously
learned knowledge. This knowledge is transferred using a transfer learning approach to
learn features that could help classification in the new dataset.

Example 4.4.1 (Transfer Learning using CNN extensions)
In this example, we dig deep into how to train these huge models. Here, we are imple-
menting the transfer learning approach for training EfficientNet. For this example, the
implementation is done using the same CIFAR10 database as in Example 4.4.1.

Dataset: As mentioned in Example 4.4.1, the CIFAR10 dataset consists of 50000 train
images and 10,000 test images. First, we load the dataset as train and test sets. Further,
the train images are split into train and validation sets. Following this, one-hot encoding
is performed on the labels of the 10 possible categories (see Section 1.5.2.2). Once the data
is configured, the next step is to perform image data augmentation (see Section 2.3.4).
Data augmentation is helpful in artificially increasing the size of the dataset, which helps
in improving the model performance.

Transfer learning model: The example uses EfficientNet models (introduced in Section
4.4.8) for demonstrating the transfer learning approach. This family of models is known
for its balance in both efficiency and accuracy. The EfficientNet family consists of
eight different versions (named B0 to B7). The model being used for this example is
EfficientNet-B0. First, the base model is defined by removing the top layers and using
pretrained weights. This freezes the top layers. Next, the trainable layers are added to
the model. In this case, five dense layers are added on top of the base model. Note that
the last layer has 10 outputs corresponding to the number of classes being classified
(CIFAR10 has 10 classes on data to be classified).

Training: Following this, we can define the parameters and optimizer for compiling
and then training the model. The model is trained with batches of 100 images during
50 epochs. The training is done using Adam Optimizer with 𝜇 = 0.001, 𝛽1 = 0.9,
𝛽2 = 0.999, 𝜖 = 10−7 and no weight decay. Here, we also reduce the learning rate when
the monitored metric (accuracy) has stopped improving.

4.4 Extensions of the CNN 179

0 20 40 60 80 100

Number of epochs

0.2

0.4

0.6

0.8

1.0

L
os

s

Training loss

Validation loss

0 20 40 60 80 100

Number of epochs

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

A
cc

ur
ac

y

Train accuracy

Validation accuracy

Figure 4.22 Loss and accuracy as a function of the number of epochs of Example 4.4.1.

Plane Car Bird Cat Deer Dog Frog Horse Ship Truck
Predicted

Plane

Car

Bird

Cat

Deer

Dog

Frog

Horse

Ship

Truck

A
ct

ua
l

0.86 0.01 0.03 0.01 0.01 0.00 0.00 0.01 0.03 0.03

0.01 0.93 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.04

0.03 0.00 0.82 0.03 0.03 0.01 0.06 0.02 0.00 0.00

0.01 0.01 0.04 0.73 0.03 0.08 0.06 0.03 0.01 0.01

0.00 0.00 0.05 0.02 0.84 0.01 0.04 0.03 0.00 0.00

0.01 0.01 0.03 0.15 0.03 0.68 0.04 0.04 0.01 0.01

0.00 0.00 0.02 0.02 0.00 0.00 0.95 0.00 0.00 0.00

0.01 0.00 0.02 0.02 0.03 0.02 0.01 0.89 0.00 0.01

0.04 0.02 0.01 0.01 0.00 0.00 0.00 0.00 0.91 0.02

0.01 0.05 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.92

Confusion matrix

0.0

0.2

0.4

0.6

0.8

Figure 4.23 Confusion matrix of Example 4.4.1.

Testing and results: The test was done on the 10,000 images provided in the dataset. The
overall accuracy was 85.4%. The convergence in terms of Loss and accuracy can be seen
in Fig. 4.22. The confusion matrix is shown in Fig. 4.23. The convergence in terms of loss
and accuracy can be seen in Fig. 4.22.
We can also train the EfficientNet-B0 from scratch to evaluate its result and compare
it with that of architecture trained using transfer learning. For training the architec-
ture from scratch the main change that we implement is to not have pretrained weights
loaded to the base model. This lets the model train from scratch without any pretrained
weights.

180 4 Convolutional Neural Networks

0 20 40 60 80 100

Number of epochs

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

L
os

s

Training loss

Validation loss

0 20 40 60 80 100

Number of epochs

0.3

0.4

0.5

0.6

0.7

0.8

A
cc

ur
ac

y

Train accuracy

Validation accuracy

Figure 4.24 Loss and accuracy as a function of the number of epochs in case of training
EfficientNet-B0 from scratch.

Plane Car Bird Cat Deer Dog Frog Horse Ship Truck
Predicted

Plane

Car

Bird

Cat

Deer

Dog

Frog

Horse

Ship

Truck

A
ct

ua
l

0.80 0.04 0.03 0.01 0.02 0.00 0.01 0.01 0.04 0.05

0.01 0.88 0.00 0.00 0.00 0.00 0.02 0.00 0.01 0.06

0.08 0.01 0.61 0.05 0.07 0.04 0.10 0.03 0.00 0.01

0.01 0.02 0.07 0.52 0.06 0.12 0.12 0.04 0.01 0.03

0.02 0.00 0.06 0.04 0.68 0.02 0.11 0.06 0.01 0.00

0.01 0.00 0.03 0.23 0.05 0.54 0.06 0.06 0.01 0.02

0.00 0.01 0.02 0.03 0.02 0.01 0.90 0.00 0.00 0.01

0.01 0.01 0.03 0.02 0.05 0.04 0.02 0.80 0.00 0.02

0.08 0.04 0.01 0.01 0.01 0.00 0.01 0.00 0.81 0.03

0.03 0.09 0.00 0.01 0.01 0.00 0.01 0.01 0.01 0.83

Confusion matrix

0.0

0.2

0.4

0.6

0.8

Figure 4.25 Confusion matrix in case of training EfficientNet-B0 from scratch.

The overall accuracy while training from scratch was obtained to be 73% and the loss and
accuracy curves can be seen in Fig: 4.24. The convergence in terms of loss and accuracy for
the case can be seen in Fig. 4.25.

We can see here that using transfer learning gives a balanced solution in terms of
computational expense as well as performance. The approach has a better performance
in terms of accuracy compared to CNN implementation and also training the architecture
from scratch. In Example 4.4.1, we see the accuracy on the same dataset is 75%, and
with the transfer learning method using EfficientNet-B0, the accuracy improved to 85.4%.

4.4 Extensions of the CNN 181

Additionally, under similar training conditions (same number of epochs, trainable layers,
hyperparameters, and batch size) and training the architecture from scratch gave a much
lesser accuracy of 73%. The performance could have been improved if the EfficientNet-B0
structure had been trained from scratch for a longer duration. Hence, for a more com-
putationally effective solution transfer learning approach can be used instead. Using the
transfer learning approach, training time can be reduced to a great extent compared to that
of training the architecture from scratch.

The script corresponding to this example for training the architecture using transfer
learning and from scratch has been implemented in TensorFlow Keras and can be seen in
the corresponding Jupyter Notebook.

4.4.10 Comparisons Among CNN Extensions

The advent of AlexNet, which included the ReLU activation layer, started the emergence
of deep learning in image classification in 2012. The use of a CNN in image classification
improved the accuracy while minimizing the need to manually feature engineer each
image. Following AlexNet, various CNN architectures were developed with more charac-
teristics to efficiently categorize images. The accuracy of an algorithm for a classification
task is the measure of the number of accurate predictions divided by the total number
of data points. Now, in the case of the top-1 accuracy, you check if the predicted class
with the highest probability is the same as the actual label. In the case of the top-5
accuracy, you check if the target label is one of your top 5 predictions, i.e. the ones with
the highest probabilities. For example, consider a sentiment analysis machine learning
classification task with seven classes such as anger, surprise, sadness, happiness, neutral,
fear, and disgust. Let the image containing fear emotion be present during the test, and the
output predictions of the classification model have the probabilities such as anger – 0.4,
sadness – 0.2, fear – 0.3, happiness – 0.04, disgust – 0.03, neutral – 0.01, and surprise – 0.02.
Here it can be seen while using top-1 accuracy, the output is counted as incorrect since
it predicted anger. While using top-5 accuracy, the output is correct, as fear is among
the top-5 predictions. Hence, in a classification problem with k possible labels, every
classifier has 100% top-k accuracy. In the ImageNet classification problem, top-1, and top-5
accuracies are important units for evaluating the performance of the various models (see
Fig. 4.26 and Fig. 4.27). In 2012, AlexNet competed in the ImageNet challenge and easily
outperformed all prior nondeep learning-based models. It was trained on a GTX580 GPU
with 3GB of RAM. In the ImageNet large scale visual recognition challenge (ILSRVC),
it achieved a top-5 accuracy of 84.6%. In 2014, the VGG network was introduced that
used a deeper structure with much smaller filters. The Visual Geometry Group at Oxford
University proposed two new designs, VGG-16 and VGG-19, with the key distinction being
that VGG-16 utilized 16 convolutions while VGG-19 used 19. The authors believed that the
extra layers enhanced the robustness of the model and allowed it to learn more complex
features. As a result of the new layers, the number of parameters increases from 138 to
143M. So these structures are computationally expensive with 138M total parameters and
each image having a memory of 96MB, which is significantly larger than a normal image.
Furthermore, in the 2014 ILSVRC competition, VGG-16 was the runner-up with a top 5
accuracy rate of 91.90%. The Google researchers proposed a novel architecture called the

182 4 Convolutional Neural Networks

63.3

74.4
78.8

82.8

70.9
76.2

79
84.484.6

91.9 94.4 96.42
89.9

93.2 94.5 97.1

0

20

40

60

80

100

120

AlexNet (2012) VGG16 (2015) ResNet-50
(2015)

Inception-v3
(2015)

MobileNetV1
(2017)

DenseNet-169
(2017)

Xception (2017) EfficientNet-B7
(2018)

Top 1% accuracy Top 5% accuracy

Figure 4.26 Comparison of top 1% and top 5% accuracy of different CNN architectures for image
classification.

0 5 10 15 20 25 30 35

Operations (G-FLOPs)

65

70

75

80

85

T
op

 1
%

 a
cc

ur
ac

y

MobileNetV1

AlexNet

DenseNet-169

ResNet-50

Inception-v3 Xception

VGG-16

EfficientNet-B7

4.2M

62M

14M

26M

24M

23M

138M

66M

Figure 4.27 Comparison of top 1% accuracy, number of parameters and operations (G-Flops)
different CNN architectures for image classification.

GoogLeNet network, also known as the Inception-v1 architecture, in 2014. With a top 5
accuracy rate of 93.3%, the authors won the ImageNet competition. The basic idea behind
the GoogLeNet architecture was to employ several convolution layers in the same block
to go not only deeper but also wider; these blocks are known as Inception blocks. The
existence of an inception module allows the network to gather several aspect ratios of the
same image by employing the convolution layers in parallel. The biggest disadvantage of
this network is the computational power required to train it with a large number of deep

4.4 Extensions of the CNN 183

and wide layers. Following the popularity of Inception-v1, the authors released subsequent
versions such as Inception-v2 and Inception-v3 in the subsequent years. Among these
networks, Inception-v1 and Inception-v3 are the most popular architectures. Six convolu-
tion layers are utilized in the Inception-v1 inception blocks, whereas seven convolution
layers are used in the Inception-v3 inception blocks. The computational cost of Inception-
v3 which is 42 layers deep is just roughly 2.5 times that of Inception-v1. Finally, the
Inception-v3 has also achieved a top 5 error rate of 3.58% and finished first runner up at the
ILSVRC 2015.

The ResNet, which stands for residual network, was also developed in 2015, and its key
advantage is the use of residual connections, which allows for the usage of a large number
of layers. Moreover, increasing the network’s depth rather than its width results in fewer
parameters. Hence, to be fully trained, this network requires huge datasets, resulting
in a computationally expensive training process. There are several ResNet architectural
versions, which have the same principle but with a variable number of layers. Also,
ResNet won the 2015 ILSVRC and COCO competitions with a top five accuracy rate
of 94.4%.

In 2017, DenseNet was developed after being inspired by ResNet. However, instead of
residual connections, the authors proposed using dense blocks. The DenseNet architecture
maximizes the residual mechanism by densely connecting each layer to its succeeding
layers. As a result, feature and gradient transmission is more effective, and the network is
easier to train. DenseNet utilized fewer parameters and achieved a top 5 accuracy rate of
93.2% on the ILSVRC competition. The information loss is minimized between the deep
layers due to the presence of connections between all layers. It also minimizes vanishing
gradients and helps in feature reuse. However, this structure requires a very large dataset
to achieve a good performance. Later in 2017, the Inception-v3 architecture inspired the
Xception network, and the fundamental concept was to replace the inception module
with depthwise separable convolutions. The Xception model outperformed the VGG-16,
ResNet-152, and Inception-v3 architectures, with a top 5 accuracy rate of 94.50% on the
ILSVRC challenge. In comparison with Inception, Xception has fewer parameters and is
faster. As a result, the main advantage of this network is that even though it has a deep
structure it utilizes a minimum number of parameters. This makes it computationally
efficient in comparison to other deep networks.

In 2017, a group of Google researchers introduced MobileNetV1. MobileNets, and
Xception share similar concepts but have different advantages. Xception has high preci-
sion, whereas MobileNets is a lightweight model that strikes the balance between model
compression and accuracy. Later in 2018, MobileNetV2 was presented as an improvement
to V1 followed by other versions in upcoming years. The key differences between the
MobileNetV2 architecture and the V1 design are that the former uses residual connections
and the expand/projection layers. The MobileNetV2 has fewer parameters than the v1
and scored slightly higher on the classification test. The top-5 accuracy for MobileNetV1
on ImageNet is 89.9%, compared to 91.9% for VGG-16. Hence, the MobileNets can be
used to replace the VGGNet-16 that is widely used as a feature extractor for otherNNs
for an instant 10 speedup. Furthermore, MobileNets also offers a huge speed boost
as it uses only 4.2M learned parameters in comparison to VGG-16 which uses 138M
parameters.

184 4 Convolutional Neural Networks

In 2019, Google released a research paper on EfficientNet, a new family of CNNs. Instead
of laborious manual tweaking, these CNNs provide a more principled way for scaling up
a CNN to improve accuracy and efficiency. To enhance accuracy, typical techniques strive
to increase the depth and scale the width of the networks. However, the majority of deeper
networks suffer from vanishing gradients and are difficult to train. Although strategies such
as batch normalization and skip connections are useful in tackling this problem, empirical
investigations show that accuracy decreases as network depth increases. Increasing width,
on the other hand, hinders the network from learning complicated characteristics, result-
ing in diminishing accuracy. Unlike traditional techniques, EfficientNets evenly scales each
dimension with a given set of scaling coefficients, exceeding the state-of-the-art accuracy.
The initial architecture was EfficientNet-B0, which achieved 93.5% top-5 accuracy with only
5.3M parameters, while the most recent version, EfficientNet-B7, achieves state-of-the-art
97.1% top-5 accuracy on ImageNet while being significantly smaller and quicker. Efficient-
Nets were evaluated on eight commonly used transfer learning datasets to further evaluate
their performance, and they obtained state-of-the-art accuracy in 5 out of the 8 datasets.

4.5 Conclusion

This chapter provides an overview of the CNN. This structure, which has been proven to
be very successful in image processing, is inspired in what is believed to be the structure of
the visual cortex of mammals, and the successive layers of the network extract features that
are at the initial states local ones, but that become also global in deeper stages.

The nature of the CNN is sparse, this is, the convolutions can be seen as sparse matrix
multiplications between the inputs and the convolution kernels. This fact, among other
properties, makes the CNN less computationally complex than a fully connected neural
network with similar depth.

The training process consisting of forward and BP is explained in detail, and the deriva-
tion is done by using the basic equation of the MLP BP together with the representation
of the convolution as sparse matrix multiplication, to prove that this backpropagation is
formally very similar to the one of the MLP.

Finally, popular models derived from CNN are presented, and the chapter is concluded
by summarizing the advantages and trade-offs of CNN.

Problems

4.1 Modify the code of Example 4.5.1 in order to use the VGG16 model for classification of
CIFAR10 dataset using transfer learning. Similar to Example 4.5.1 Keras has built-in
libraries to load the VGG16 model. The example in the Keras documentation on VGG16
(https://keras.io/api/applications/vgg/) can be used to load the VGG16 model.
● Compare the confusion matrix with EfficientNetB0.
● Remove the data augmentation step and analyze the performance difference.

4.2 List the advantages and disadvantages of deep and wide architectures in CNNs.

https://keras.io/api/applications/vgg/

Problems 185

4.3 Select a pretrained CNN model and visualize the filters in one of its convolutional
layers. Explain how these filters change during training and what kind of features they
detect.

4.4 Download the COCO dataset, which includes labeled images and annotations (bound-
ing box coordinates and class labels). You can find the dataset at the official COCO
website: http://cocodataset.org/. Implement an object detection task utilizing a CNN
architecture like Faster R-CNN, with ResNet serving as the backbone network. Evalu-
ate the trained model on the test dataset using common metrics like average precision
(AP), intersection-over-union (IoU), and mean average precision (mAP).

4.5 Explain the concept of dilated convolutions in CNN architectures. How do dilated con-
volutions differ from regular convolutions in terms of receptive field and feature extrac-
tion? Provide examples of applications where dilated convolutions are advantageous.

4.6 Explore methods for making CNN models more interpretable. How can techniques like
gradient-based visualization (Selvaraju et al. 2017), occlusion analysis (Matthew D.
Zeiler and Fergus 2014), and class activation maps (CAM) (Zhou et al. 2016) be used
to understand what features a CNN has learned and how it makes predictions?

4.7 Build an age estimation model using transfer learning with a pretrained CNN architec-
ture. Given a dataset of facial images labeled with individuals’ ages, design and train
a model to estimate the age of individuals from facial features. Utilize a pretrained
ResNet50 to leverage knowledge from a large-scale image dataset. Evaluate the model’s
performance on a validation set using regression evaluation metrics and compare it to
a baseline model trained from scratch. Finally, deploy the model to estimate ages in
new facial images and analyze its accuracy and potential sources of error.

4.8 Develop a CNN-based semantic segmentation model for autonomous vehicles to seg-
ment input images into distinct classes of objects and road-related entities such as cars,
pedestrians, lanes, traffic signs, and obstacles. Utilize the Cityscapes dataset, which
provides urban street scenes with pixel-level annotations, for training and validation.
The dataset can be downloaded from the official Cityscapes website: https://www
.cityscapes-dataset.com/. Design and train the model, incorporate data preprocessing
techniques, specify the loss function, and set up the criteria for evaluation.

4.9 Explain the importance of hyperparameters in CNN training. Discuss key hyperparam-
eters like learning rate, batch size, and the number of layers. How can a grid search or
random search approach be used to find optimal hyperparameter values for a CNN
architecture?

4.10 Select a pretrained CNN model and fine-tune it on a custom dataset for a specific task.
Evaluate the model’s performance using different optimizers, including SGD, Adam,
and RMSprop. Analyze how the choice of optimizer affects training speed, convergence,
and final accuracy.

http://cocodataset.org/
https://www.cityscapes-dataset.com/
https://www.cityscapes-dataset.com/

187

5

Recurrent Neural Networks

5.1 Introduction

The NNs, including CNNs, use predetermined input and output sizes and a feedforward
mechanism for the information flow. However, sequential data requires a mechanism to
retain past information to predict future values due to the dependencies between the data
points. For these problems, a class of networks known as recurrent neural network (RNN)
is frequently utilized.

The RNN was introduced in the decade of 1980 by various scholars. The work by
Rumelhart et al. (1986) introduces the backpropagation algorithm for both FFNNs and
RNNs, where the RNNs are introduced with an application to learn sequences of alphanu-
meric characters. The first applications of RNN were in head tracking for virtual reality
(Saad et al. 1999), financial time-series prediction (Giles et al. 1997), music synthesis
(Liang et al. 1999) and electric load forecast (Costa et al. 1999), among others (Medsker
and L. Jain 2001).

While they are inspired in the FFNN, they can deal with variable-length sequential data.
In as way, one can think of the comparison between a CNN and an RNN by noticing that a
CNN has a finite time (or space) response, while an RNN has an infinite time response as
a consequence of its recurrent nature.

They have a high-dimensional hidden state with nonlinearities that give them the ability
to recall and process previous information. The RNN takes an input, modifies its hidden
state, and produces a prediction at every timestep. The high-dimensional hidden state of
the RNN allows it to integrate data over several timesteps and utilize it to generate pre-
cise predictions. RNNs take advantage of current prediction to provide the future one, and
this mechanism is commonly known as a recurrence. Let us assume that we have an input
word “apple,” and it is first fed into an FFNN. The network processes the word by consid-
ering a single character at a time and predictions are made for the character that comes
after “l.” This task becomes impossible for the model since it does not have any memory
about the previous characters “a,” “p,” “p,” and “l.” RNNs on the other hand memorize
the previous inputs due to their internal memory. Hence, they are commonly used for
sequential data like speech (Lim et al. 2016), text (Sutskever et al. 2011), audio (Feng et al.
2017), video (Güera and Delp 2018), weather (Alemany et al. 2019), and financial data
(Tino et al. 2001).

Deep Learning: A Practical Introduction, First Edition.
Manel Martínez-Ramón, Meenu Ajith, and Aswathy Rajendra Kurup.
© 2024 John Wiley & Sons Ltd. Published 2024 by John Wiley & Sons Ltd.
Companion website: https://github.com/DeepLearning-book

https://github.com/DeepLearning-book

188 5 Recurrent Neural Networks

There are several variants of RNN, including long short-term memory (LSTM) networks
and gated recurrent unit (GRU). These variants introduce additional gates and memory cells
that help the network to better propagate information over longer periods of time. Overall,
the architecture of an RNN is defined by the number of units in the network, the type of
units used, and the connections between the units.

5.2 RNN Architecture

Probably the earliest RNN to be incepted, before the works of Rumelhart, Hinton, and
Williams, is the Hopfield Network, introduced in 1982 by John Hopfield (1982), but in this
paper, the author acknowledges that his structure was first introduced in 1974 by W. A.
Little (1974) in order to model the existence of persistent states in the brain. Hopfield’s
work is the first one that incorporates the idea of recurrence in artificial neural networks.
This network has a set of neurons with binary threshold outputs that are bidirectionally
connected to each other (Fig. 5.1). The Hopfield network was used in system optimization
problems as the classic traveling salesman problem (Hopfield and Tank 1985). Continuous
state Hopfield networks were used to model the human memory (Amit and Amit 1989).
See Section 7.2 for more details about the Hopfield network.

5.2.1 Structure of the Basic RNN

The first RNN of interest for sequence modeling that can be trained using the backprop-
agation algorithm as described in Rumelhart et al. (1986) is the so-called Elman network,
introduced by J. L. Elman in 1990 (Elman 1990), which follows a similar structure intro-
duced by M. Jordan (1986).

An Elman RNN block consists of a single unit in the network, along with the input and
output connections for that unit. The structure is represented in Fig. 5.2. At time instant
t, the unit receives an input xt as well as a feedback consisting of the hidden state ht−1
computed from the previous time step. The unit processes this input and produces a new
hidden state ht whose nonlinear activation is a hyperbolic tangent. The RNN then computes
linear transformation zt of the hidden state ht. This is followed by a nonlinear activation
that produces output ot =

[
o0,t,… , oK−1,t

]⊤, which is usually a softmax activation when the

Figure 5.1 A Hopfield network is a type of RNN where all
nodes are interconnected. The states described by each node
are binary. Continuous state Hopfield networks were used to
model the human memory.

5.2 RNN Architecture 189

tanh

xt
ht

ht–1

tz(x)

tz(o) ot

Wxh

Whh

Who

tanh

tanh

T

T

T

so
ft

m
ax

Figure 5.2 RNN. The input sample xt is linearly transformed and then added to a linear
transformation of the previous hidden state ht−1. There, the blocks marked with labels T represent
one sample delay or, equivalently, one sample memory registers where when sample ht is
introduced, value ht−1 is at the output. The combination is applied to a hyperbolic tangent
activation to produce a hidden state ht . This state is then processed to produce output ot . Biases bh
and bo are not shown for simplicity. The compact version of the RNN is shown in Fig. 5.3.

tanhxt

bh

bo

ht

ht–1

tz(x)
tz(o)

ot
Wxh

Whh

Who

T

softmax

Figure 5.3 Compact representation of an RNN. The input vector xt is transformed through matrix
Wxh and then bias vector bh is added. After this, the resulting vector is passed through the nonlinear
activation (hyperbolic tangent) to produce state vector ht . This vector is then delayed with delay T,
which can be thought of as a first in first out (FIFO) memory of one element, where when ht is
introduced, the previous value ht−1 is extracted. The state ht−1 is then transformed with Whh and
added to the transformed input. State ht is also transformed with matrix Who and bias vector b0 and
then passed through the softmax activation to produce the output.

RNN is used for multiclass classification among K classes. This process is repeated at each
time step in the sequence, allowing the RNN to process sequential data.

Thus, a standard RNN predicts the output sequence o1,… , oT from a given a sequential
input x1,… , xT by passing it through multiple hidden states h1,… ,hT . The expressions for
the output and hidden states are

z(x)t = W⊤

xhxt + W⊤

hhht−1 + bh

ht = tanh(z(x)t)

z(o)t = W⊤

hoht + bo

ot = o(z(o)t) = softmax(z(o)t) (5.1)

190 5 Recurrent Neural Networks

where operation softmax(z(o)t) produces a vector with elements softmax(z(o)k,t). The compu-
tation of the hidden states and output states in the forward pass of the RNN is done by
repeating these operations.

The three matrices Wxh, Whh, and Who together with the bias vectors bh and b0 perform
respectively the affine transformation from the input to the hidden state, the transformation
from the hidden state ht−1 to ht and from the hidden state to the output.

The recurrent nature of the network is shown in Eq. (5.1), where one can see that the
hidden state ht contains information for input xt, but it also retains information coming
from the previous inputs, carried by previous state ht−1. It is straightforward to see that for
any set of non-null parameters, this structure has an infinite-time impulse response, this
is, assuming a nonzero input x1 followed by an infinite sequence of null vectors xt = 0,
recursive Eq. (5.1) produces an varying input ht for an indefinite time. In a feedforward
array, such a sequence will produce a constant response for t > 1.

The interpretation of the function of the three weight matrices is straightforward. Input
matrix Wxh is in charge of the extraction of features from the input at instant t, while output
matrix Who is used to interpret the hidden state ht in terms of the task at hand, this is, to infer
a classification or regression from the hidden state. Therefore, the only recurrent matrix is
Whh, which is the one designated to store the information of the sequence that relates past
instants of time to the classification or regression at hand.

5.2.2 Input–Output Configurations

The RNN learn from sequences of inputs, which can be configured in several ways, depend-
ing on the particular task to solve. These structures are used in many sequence learning
problems such as in NLP and speech recognition. RNNs can be categorized input differ-
ent types based on the number of inputs and outputs being processed it. It is to be noted
that these types can both be extended to univariate and multivariate models based on the
application at hand.

An RNN is said to be Single Input–Single Output when the structure is constructed so the
input is a single pattern or element of a sequence, and the output is also an element cor-
responding to the response of the input. These structures represent the traditional Vanilla
Neural network architecture. These models are also known as One-to-One RNN.

Single input–multiple output architectures are commonly known as One-to-many RNN.
They receive one input and generate multiple outputs. An example of a One-to-many RNN
would be an Image captioning model where the input is a single image and the output is a
sequence of words or sentences describing the image.

The Multiple inputs–Single Output configuration learns from multiple input nodes
and gives only one output. They are more commonly known as Many-to-One RNN.
An example of this category of RNN would be an architecture that takes a sequence of
words as input to detect the sentiment of the text in the form of a label such as positive or
negative. Another example would be predicting a nth sample using a sequence of past n − 1
samples. These models can be used to provide an overall label or summary of a sequence of
inputs.

Last, the Multiple input–multiple outputs RNN use multiple inputs to produce multiple
outputs. They are more commonly known as Many-to-Many RNN. Many-to-many RNNs

5.3 Training an RNN 191

are often used where both the input and output sequences are in the form of a sequence.
For example, this approach can be used in forecasting problems to predict n future samples
from past m samples. In this scenario, both the input and output data are sequence data.
Similarly, another example would be translating a sequence of words from one language to
another word by word which also uses sequence data as input and output. The number of
input samples can be the same as that of the output samples m = n, There can also be cases
where the input and output samples are not equal. This often happens in translation prob-
lems where the translation of a sentence in one language can be shorter or longer compared
to that of the output language.

5.3 Training an RNN

Dynamic visualization of the RNN is shown in Fig. 5.4 where the structure is unrolled over
the input sequence. The corresponding compact representation is in Figs. 5.5 and 5.6. Here
every neuron in the hidden layer receives input from both the most recent hidden states
and the current input vector at each time step. This representation is useful to illustrate
the training process, where each time instant here can be seen as a layer of a neural net-
work, similar to the FFNN, with two main differences with respect to these structures.
First, the RNN produces an output at each layer. Namely, in the layer corresponding to
instant t, the structure produces output ot. Also, weights Wxh, Whh, Who, bh and b0 are
the same in each layer, while in an FFNN the weights are different and they have different
dimensions.

By observing these fundamental differences, a backpropagation algorithm based on the
same principles as the ones applied for FFNN in Chapter 1 and CNN in Chapter 4 can be
applied to this type of neural network. Here, the backpropagation through the layers of
Fig. 5.4 is actually performed from the last time instant to the first one, and for this reason,
this algorithm is known as backpropagation through time (BPTT) (R. J. Williams and Zipser
1995).

Assume that the RNN is designed to classify among K classes of data and a training
sequence xt ∈ ℝD, yt ∈ ℝK , 1 ≤ t ≤ T is available. We must then maximize the cross entropy
between the labels and the outputs or, equivalently, the output likelihood. This is, the cost
function to optimize is

JML(𝜽,X,Y) =
T∑

t=1
𝓁(xt) = −

T∑
t=1

K−1∑
k=0

yk,t log softmax
(

z(o)k,t

)
(5.2)

where l(xt) is the cross entropy loss of Eq. (1.75) expressed as a function of the input pattern
xt. Here the matrices are defined as X =

[
x1 … xT

]
and Y =

[
y1 … yT

]
.

Parameter 𝜽 = {Wxh,Whh,Who} symbolizes the set of all trainable parameters of
the RNN.

The BPTT algorithm is now derived by computing the derivative of the cost function with
respect to each parameter at each time instant.

It should be noticed that there is a peculiarity in the training of these structures that comes
from their recurrent nature. We must consider that the hidden state ht at every instant

192 5 Recurrent Neural Networks

t–2z(o)
ht–2xt–2 ot–2

Wxh Who

Whh

tanh

tanh

tanh

so
ft

m
ax

t–1z(o)
ht–1xt–1 ot–1

Wxh Who

Whh

tanh

tanh

tanh

so
ft

m
ax

tz(o)
htxt ot

Wxh Who

Whh

tanh

tanh

tanh

so
ft

m
ax

Figure 5.4 The RNN structure unrolled.

depends on the states ht′ , t′ < t. During the application of the backpropagation through the
chain rule ∇ht

JML appears. For the case of t = T,

∇hT
JML =

𝛿z(o)T

𝛿hT
∇z(o)T

JML (5.3)

5.3 Training an RNN 193

tz(x)

t–1z(x)

t–2z(x)

tz(o)

t–1z(o)

t–2z(o)

ot

ot–1

ot–2

xt

xt–1

xt–2
ht–2

ht–1

ht

Who

Who

WhoWxh

Wxh

Wxh

Whh

Whh
Wxh

Whh

bh

bh

bh

bo

bo

bo

softmax

softmax

softmaxtanh

tanh

tanh

Figure 5.5 Compact representation of the RNN structure unrolled.

Figure 5.6 Even more compact representation
of the RNN structure unrolled.

ot

ot–1

ot–2

ht

ht–1

ht–2

xt

xt–1

xt–2

where the gradient of the cost function with respect to z(o)T is the error at the output, as it
can be seen by computing the derivatives of the cost function with respect to z(o)k,T

dJML

dz(o)k,T

=
dJML

dok,T

ok,t

dz(o)k,T

=
dJML

dok,T
o′k,T = 𝛿k,T (5.4)

where 𝛿z(o)T
𝛿hT

is the Jacobian matrix whose components are
dz(o)i,T

dhj,t
= who,i,j. With this, we can

write gradient (5.3) as

∇hT
JML = Whh𝜹T (5.5)

and since the output of the RNN is a softmax, 𝜹t = softmax(z(o)t) − yt a shown in Eq. (1.78).
A more general case is seen where we compute the gradient with respect to a time instant

t < T. In this case, the cost function in Eq. (5.2) contains ht in element 𝓁(xt) and in the next

194 5 Recurrent Neural Networks

one, 𝓁(xt+1), since, from Eq. (5.1)

ht+1 = tanh
(

z(x)t+1

)
= tanh

(
W⊤

xhxt+1 + W⊤

hhht + bh
)

(5.6)

and then, Jacobian 𝛿ht+1

𝛿ht
appears in the chain rule, with elements 𝛿hi,t+1

𝛿hi,t
, and that must be

developed carefully. By applying the chain rule of calculus to these elements, it can be
found that

𝛿hj,t+1

𝛿hi,t
=

𝛿hj,t+1

𝛿z(x)j,t+1

𝛿z(x)j,t+1

𝛿hi,t
=

𝛿hj,t+1

𝛿z(x)j,t+1

𝛿w⊤

hh,jht

𝛿hi,t
(5.7)

The first one of the derivatives of the right side of expression (5.7) is the derivative of the
hyperbolic tangent in Eq. (5.1) evaluated with z(x)j,t+1. The second of the derivatives simply
results in the parameter whh,i,j, which is inside matrix Whh. Therefore, derivative (5.7) is
written as

𝛿hj,t+1

𝛿hi,t
= whh,i,jtanh′

(
z(x)j,t+1

)
(5.8)

and therefore, Jacobian 𝛿ht+1

𝛿ht
is the matrix resulting of multiplying each column j of matrix

Whh by derivative tanh′
(

z(x)j,t+1

)
, which can be expressed as (Salehinejad et al. 2017)

𝛿ht+1

𝛿ht
= Whhdiag

(
tanh′

(
z(x)t+1

))
(5.9)

where diag
(

tanh′
(

z(x)t+1

))
constructs a diagonal matrix with the derivatives of the tangent,

and it post multiplies matrix Whh so column k of the matrix is multiplied by tanh
(

z(x)k,t+1

)
.

With all these elements, the gradient of the cost function with respect to hidden state ht is

∇ht
JML =

𝛿z(o)t

𝛿ht
∇zo

t
JML +

𝛿ht+1

𝛿ht
∇ht+1

JML

= Who𝜹t + Whhdiag
(

tanh′
(

z(x)t+1

))(
∇ht+1

JML

)
(5.10)

The first term of the right side of Eq. (5.10) is the expression of the error backpropagated
from the output at instant t through the output weights Who. The error backpropagated
from the next time instant is the second term, which contains the output error at instant
t + 1 backpropagated to the network at instant t through the hidden weights Whh.

This is a recursive gradient, where Whh appears again inside the gradient with respect to
ht+1 and, as a result when the full recursion is computed, this matrix appears raised to the
power T − t. This can produce difficulties in learning long-term dependencies, as we will
see in Section 5.4.

5.3.1 Gradient with Respect to the Output Weights

We start with the derivation of the gradient with respect to parameters Who by just noticing
that the output of the RNN can be expressed as

f(xt) = softmax
(

z(o)t

)
= softmax

(
W⊤

hoht + bo
)

(5.11)

5.3 Training an RNN 195

For this set of parameters, we do not need to go deeper into the function because this
parameter matrix is not found anymore in the recursion, as it is just an output matrix.
Indeed, if we take a look into Fig. 5.5 and we follow the path from output ot backward in
time, we see that the matrix is never revisited. Therefore, the derivative of the cost function
at instant t with respect to parameter who,i,j is

dJML

dwho,i,j
=

T∑
t=1

dJML

doj,t

doj,t

dz(o)j,t

dz(o)j,t

dwho,i,j

=
T∑

t=1

dJML

doj,t
o′j,thi,t

=
T∑

t=1
𝛿j,thi,t (5.12)

In vector notation, the gradient with respect matrix Who is then

∇Who
JML

(
ot
)
=

T∑
t=1

ht𝜹
⊤
t (5.13)

where 𝜹t has components 𝛿j,t. When the output of the RNN is a softmax, 𝛿j,t =
softmax(z(o)j,t) − yj,t (see Eq. (1.78)), therefore

𝜹t = softmax(z(o)t) − yt (5.14)

The derivation can be repeated for biases bo, with the result

∇bo
JML

(
ot
)
=

T∑
t=1
𝜹t (5.15)

5.3.2 Gradient with Respect to the Input Weights

By inspection of Fig. 5.5, if we undo the path from ot, the error term 𝜹t at this point must
be first backpropagated through Who in order to reach Wxh at input xt, but then, it has to
be repeatedly backpropagated through Whh in order to reach the input matrix at each one
of the inputs xt−t′ .

If we compute directly the gradient with respect to the weights, the chain rule must be
used as follows. First, the gradient∇ht

JML of the cost function is computed with respect to ht,
which is done in Eq. (5.10). After, we need to compute the derivatives of the components of
ht with respect to each component of z(x)t , which will give the derivative of the hyperbolic
tangent activation. The final element of the chain is the gradient of z(x)t with respect to Wxh,
which gives vector xt. The product of these elements has to be written in the right order so
the gradient has the same dimensions as matrix Wxh. The result is

∇Wxh
JML =

T∑
t=1

∇Wxh
z(x)t

(
∇ht

JML

)⊤ 𝛿ht

𝛿z(x)t

=
T∑

t=1
xt

(
∇ht

JML

)⊤

diag
(

tanh′
(

z(x)t

))
(5.16)

196 5 Recurrent Neural Networks

In this expression, we find Jacobian 𝛿ht

𝛿z(x)t
with elements dhi,t

dz(x)j,t
. Since the state ht is an

elementwise hyperbolic tangent operation, these elements are zero if i ≠ j and otherwise,
dhi,t

dz(x)i,t
= tanh′(z(x)i,t). Therefore, this Jacobian is a diagonal matrix containing these elements.

A similar result can be found for the biases

∇bh
JML =

T∑
t=1

diag
(

tanh′
(

z(x)t

))(
∇ht

JML

)
(5.17)

The above equations have the same form as any previously computed gradient, this is it
is the product of the input sample xt as a column vector times a vector representing the
backpropagated error, which, in this case, it is embedded in the (recursive) gradient with
respect to the hidden state. This is, the error backpropagated to the input can be written as
diag

(
tanh′

(
z(x)t

))(
∇ht

JML

)
.

5.3.3 Gradient with Respect to the Hidden State Weights

For this set of weights, the backpropagation of the error at instant t goes from the output
ot in Fig. 5.5, it is transformed with output weights Who, and this error is used to update
Whh with the input to these weights, which is ht−1. The backpropagation in time then goes
to the previous time instant, which requires another transformation of the error with the
hidden state matrix.

In order to see this, we can just compute the gradient of the cost function as in
Section 5.3.2.

∇Whh
JML =

T∑
t=1

∇Whh
z(x)t

(
∇ht

JML

)⊤ 𝛿ht

𝛿z(x)t

=
T∑

t=1
ht−1

(
∇ht

JML

)⊤

diag
(

tanh′
(

z(x)t

))
(5.18)

Algebraically, the only difference is that the gradient of z(x)t is computed now with respect
to the hidden weights, and the result is the input to these weights, i.e. ht−1, This, inside the
summation along time, is the BPTT.

Finally, one may assume that weights bh belong to the hidden layers. For these biases, the
backpropagated error (without multiplying it times an input) is applied as an update. If we
remove ht−1 from (5.18), we obtain the same result as in Eq. (5.17).

5.3.4 Summary of the Backpropagation Through Time in an RNN

All the above elements of the training can be summarized as follows in order to describe
the backpropagation procedure in an RNN. Assuming a labeled training batch consisting
of a sequence with T samples, the first step is to compute the output errors 𝜹t, 1 ≤ t ≤ T.
These errors are then used to update the output weights with Eqs. (5.13) and (5.15).

Who ← Who − 𝜇

T∑
t=1

ht𝜹
⊤
t

bo ← bo − 𝜇

T∑
t=1
𝜹t (5.19)

5.3 Training an RNN 197

With the output errors, the gradient of the cost function with respect to the hidden states
is computed recursively through time as

∇hT
JML = Who𝜹T (5.20)

for the last time instant, and

∇ht
JML = Who𝜹t + Whhdiag

(
tanh′

(
z(x)t+1

))(
∇ht+1

JML

)
(5.21)

for the previous instants. Then, these gradients are used to update the rest of the weights.
For the input weights, with Eqs. (5.16) and (5.17) we obtain the updates

Wxh ← Wxh − 𝜇

T∑
t=1

xt

(
∇ht

JML

)⊤

diag
(

tanh′
(

z(x)t

))
bh ← bh − 𝜇

T∑
t=1

diag
(

tanh′
(

z(x)t

))(
∇ht

JML

)
(5.22)

The hidden weights are then updated with Eq. (5.18).

Whh ← Whh − 𝜇

T∑
t=1

ht−1

(
∇ht

JML

)⊤

diag
(

tanh′
(

z(x)t

))
(5.23)

Example 5.3.1 (Time-series prediction using RNN)
This example illustrates the implementation of RNN using PyTorch. The RNN in the
example is built to perform one step-ahead prediction of a time series that consists of a
harmonic signal with the expression

x[t] = cos
[
𝜋

6
t
]
+ 1

2
cos

[
𝜋

3
t
]
+ 1

2
cos

[2𝜋
3

t
]
+ g[t] (5.24)

for 0 ≤ t ≤ 200, and where g[n] is an additive Gaussian noise of independent and identically
distributed samples with standard deviation 𝜎 = 0.1. The data shown in Fig. 5.7 is divided
into 150 samples for training and 50 for testing. The data is scaled between 0 and 1. As part of
the data preprocessing, we must construct a data structure to train and test the RNN. A total
of NT samples are used to train an RNN whose input is a sliding window of W samples.
The desired output corresponds to the first sample after the last one of the sliding window.

Time steps

C
os

in
e

w
av

e
w

ith
 h

ar
m

on
ic

s

0

0.50

0.25

–0.25

–0.50

–0.75

–1.00

0.00

50 100 150 200 300250

Figure 5.7 Plot of the cosine function with harmonics against the time points.

198 5 Recurrent Neural Networks

In other words, if the input pattern at instant n is vector x[t] then the corresponding output
is y = x[t + 1] where

x[t] = (x[t − W + 1],… , x[t])⊤ (5.25)

The input time series is arranged in an array representing each one of the elements of the
sliding window at each time instant as:

X =

⎛⎜⎜⎜⎜⎝
x[0] x[1] · · · x[NT − W − 1]
x[1] x[2] · · · x[NT − W]
⋮ ⋮ · · · ⋮
x[W − 1] x[W] · · · x[NT − 2]

⎞⎟⎟⎟⎟⎠
(5.26)

which is an array of dimensions W × NT − W . The corresponding regressors or desired
output array contains the samples to be predicted. If one looks at the first column of the
matrix (5.26), it can be seen that the one step ahead sample to be predicted is x[W], and the
last column of this matrix is the predictor for sample x[NT − 1], which is the last sample of
the training sequence. Therefore, the array of NT − W regressors at the output of the RNN is

y =
(

x[W],… , x[NT − 1]
)⊤ (5.27)

In this approach, the RNN model is trained to make single-step predictions. To train the
model, we iterate over the training data and update the model parameters by minimizing the
loss function. In this case, we use the Adam optimizer and MSE loss for optimization. The
Adam optimizer is used to update the model parameters based on the gradients of the loss
with respect to the model parameters. The number of hidden units, this is, the dimension
of the hidden state ht, is set to 100. Figure 5.8 shows the loss curve of the training samples
for 500 epochs. After the convergence of the loss function, the trained model is used for
prediction in the test data. A plot highlighting the actual and the predicted test output is
shown in Fig. 5.9 to visualize the performance of the model.

Epoch

T
ra

in
in

g
 l

o
ss

 (
M

S
E

)

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

0 100 200 300 400 500

Figure 5.8 Plot of the loss function vs
the number of epochs.

5.4 Long-Term Dependencies: Vanishing and Exploding Gradients 199

Time points
110

Actual

Predicted

Noiseless

0.50

0.25

–0.25

–0.50

–0.75

–1.00

0.00

120 130 140 150 160 170 180 190

C
o
si

n
e

w
av

e
w

it
h
 h

ar
m

o
n
ic

s

Figure 5.9 Visualization of the predicted and the actual output.

5.4 Long-Term Dependencies: Vanishing and Exploding
Gradients

The RNN structure is intended to infer an output sequence from input sequences by learn-
ing about the input sequences across time. This property follows from the structure of the
RNN, which is of an infinite impulse response nature. As a comparison, an FFNN has a
finite response, this is, if a test pattern is presented at the input, it will produce a given
output and, when another pattern is presented at the input, the output will be produced
in a way that is independent of the previous input. Therefore, the FFNN does not keep
any information on past inputs. The RNN, contrary to the FFNN, keeps information on
past inputs, and therefore the output is a function that depends on the history of the input
sequence. The structure extracts the information from the input sequence through time to
perform a task as recognition or prediction. Nevertheless, when the information needed to
perform the task at hand spans a long time, the RNN has difficulties capturing this infor-
mation (Yoshua Bengio et al. 1994; Allen-Zhu et al. 2019; Pascanu et al. 2013; A. H. Ribeiro
et al. 2020). The problem is rooted both in the internal structure of the RNN and in the
gradient-based training that has been presented in Section 5.3.

The phenomena that make the preservation of long-term dependencies difficult in an
RNN are called the exploding and vanishing problems. The explanation of these phenom-
ena is relatively simple if we take into account the equations of the training recursion or
BPTT. Particularly, it has been stated that this procedure implies the recursive computation
of the Jacobian in Eq. (5.9). By using it in the recursion in Eq. (5.21), it is straightforward to
see that this recursion simplicity includes the product of Jacobians (Salehinejad et al. 2017):

T−1∏
t=t′

𝛿ht+1

ht
=

T−1∏
t=t′

Whhdiag
(

tanh′
(

z(x)t+1

))
(5.28)

200 5 Recurrent Neural Networks

In the best-case scenario, the derivatives of the hyperbolic tangent are all unitary and
then in this case, in stage t of the BPTT we find matrix

(
Whh

)T−t. This matrix is square, so
it admits an eigendecomposition(

Whh
)T−t =

(
Qhh𝜦hhQ⊤

hh
)T−t = Qhh𝜦

T−t
hh Q⊤

hh =
∑

d
𝜆T−t

hh,dqhh,dqhh,d (5.29)

where Qhh and 𝜦hh are respectively the eigenvector matrix and the diagonal matrix con-
taining the eigenvalues of the decomposition. When t ≪ T two possible problems arise.
The first one appears when one eigenvalue is less than 1. In this case, 𝜆T−t

hh,d tends to zero.
This is known as the vanishing gradient phenomenon. The opposite problem appears when
one eigenvalue is higher than 1, and in this case, its power diverges. This is the so-called
exploding gradient problem. Notice that this product of Jacobians multiplies the error back-
propagated to the instant T − t. If the vanishing gradient phenomenon dominates, that
translates into the RNN neglecting or excluding the information carried in sample xT−t and
hidden state hT−t−1 from the training. Therefore, if there is a dependency on this or previous
samples for the classification of the sequence at instant T, this will not be stored in the hid-
den state weights or the input weights. If the exploding gradient phenomenon dominates,
then the backpropagation will simply diverge.

Yosua Bengio and co-workers proposed in 1994 in his paper (Yoshua Bengio et al. 1994)
solutions to thevanishing and exploding gradient phenomena for the RNNs to be able to
learn long-term dependencies. Rather than changing the structure of the RNN, they con-
sidered the fact that this problem originated from the gradient descent procedure inside the
BPTT. The first alternative presented consisted of using simulated annealing (S. Kirkpatrick
et al. 1983; Corana et al. 1987). Roughly speaking, the algorithm performs a random search
by assigning a random value to the parameters and then accepting or rejecting them based
on a criterion consisting of computing the output error with respect to these parameters.
The process is repeated for a set of random values. After that, new random values are gen-
erated around the chosen ones, they are accepted or rejected, and the process starts over.
The generation of random points has a variance that decreases with time, simulating an
annealing process that cools down with time. While the process can show good results, it is
naturally very slow compared to other methods. Multi-grid random search is also proposed,
which is a process similar to the simulated annealing but generating points around the best
point only.

Another proposed algorithm is based on pseudo-Newton approximations of the cost func-
tion (Becker and Cun 1988). Essentially, for a given value of the weights, a second-order
approximation of the surface of the cost function can be constructed with the gradient and
the Hessian (or an approximation of it). Then, it is easy to find analytically the optimum
value of this approximation, which is taken as a new point to start over the algorithm until
convergence.

While these solutions and others also proposed may solve the problem, other struc-
tures have been proposed further that tackle directly solutions to capture long-term
dependencies such as the long short-term memory network, that will be introduced in
Section 5.7.

5.5 Deep RNN 201

5.5 Deep RNN

The deep recursive neural network (DRNN) is a natural extension of the RNN to endow it
with higher expressive capacity. While there are several ways to extend an RNN, the easiest
one is to stack multiple recurrent hidden layers (Pascanu et al. 2019) as in Figs. 5.10 and 5.11,
This structure is called a stacked RNN. A different structure that is also a deep RNN is the so-
called deep-transition RNN, which, instead of using a linear layer to compute the transition
between hidden states, uses a fully connected (FC) neural network. These networks have
been used in music prediction and language modeling among others.

Example 5.5.1 (Digit classification using DRNN)
This example illustrates the implementation of DRNN for digit classification using PyTorch.
A commonly used dataset in machine learning for digit recognition applications is the
MNIST dataset (Y. LeCun et al. 1998). It is an inbuilt dataset in PyTorch and it consists

tz(1)
tz(L)

tz(o)
th(L)

hhW(1)

t–1
h(1) hhW(L)

t–1
h(L)

th(1)

otxt

Whx
Woh

so
ft

m
ax

T

T

T

T

T

T

tanh

tanh

tanh

tanh

tanh

tanh

Figure 5.10 Deep recursive neural network.

t–2h(1)
t–2h(L)

t–1h(L)

th(L)

t–1h(1)

th(1)

xt–1

xt

xt–2

ot–1

ot

ot–2

Figure 5.11 Compact representation of an unrolled DRNN.

202 5 Recurrent Neural Networks

False positive rate
0.0

0.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8

ROC curve of class 0 (area = 1.00)

ROC curve of class 1 (area = 1.00)
ROC curve of class 2 (area = 1.00)
ROC curve of class 3 (area = 1.00)

ROC curve of class 4 (area = 1.00)

ROC curve of class 5 (area = 1.00)
ROC curve of class 6 (area = 1.00)
ROC curve of class 7 (area = 1.00)

ROC curve of class 8 (area = 1.00)
ROC curve of class 9 (area = 0.99)

1.0

T
ru

e
p

o
si

ti
v

e
ra

te

Figure 5.12 ROC curve for MNIST digit classification.

of 70,000 grayscale images of hand-written digits (0–9), with 60,000 images in the train-
ing set and 10,000 in the test set. The DeepRNN architecture used in this example has
more than 1 recurrent layer and it uses the default activation function, which is the hyper-
bolic tangent function. The RNN is followed by a FC layer which takes the last hidden
state of the RNN and maps it to the number of output classes. Here we use 3 recurrent
layers, 1 dense layer, and 10 output classes. The DeepRNN is trained on a set of image-
label pairs using the cross-entropy loss criterion and the Adam optimizer. Next, the for-
ward pass of the model is performed on the input images to obtain the predicted outputs
and the cross-entropy loss function calculates the loss between the predicted and actual
labels. Following this, the backward pass is performed to compute the gradients of the loss
with respect to the parameters of the model. Later the optimizer is updated to adjust the
parameters of the model based on the computed gradients. The model is trained for five
epochs, and its performance is evaluated on the test data using metrics such as accuracy,
precision, recall, and f1 score. Additionally, the receiver operation characteristic (ROC)
curve is used to analyze the DeepRNN model by plotting the true positive rate against
the false positive rate. The area under the ROC curve in Fig. 5.12 represents the overall
performance of the model. This ranges from 0 to 1, where 0 indicates that the classifier
makes all incorrect predictions and 1 indicates a perfect classifier. The zoomed-in ROC
curve in Fig. 5.13 provides a detailed view of the curve, highlighting the model’s perfor-
mance in a specific region. The plot focuses on the trade-off between the false positive
rate and the true positive rate, revealing finer details of the model’s discrimination capa-
bility.

5.6 Bidirectional RNN 203

False positive rate
0.000

0.90

0.92

0.94

0.96

0.98

1.00

0.025 0.050 0.075 0.100 0.125

ROC curve of class 0 (area = 1.00)
ROC curve of class 1 (area = 1.00)
ROC curve of class 2 (area = 1.00)
ROC curve of class 3 (area = 1.00)
ROC curve of class 4 (area = 1.00)
ROC curve of class 5 (area = 1.00)
ROC curve of class 6 (area = 1.00)
ROC curve of class 7 (area = 1.00)
ROC curve of class 8 (area = 1.00)
ROC curve of class 9 (area = 0.99)

0.150 0.175 0.200

T
ru

e
po

si
tiv

e
ra

te

Figure 5.13 Zoomed version of the ROC curve for MNIST digit classification.

5.6 Bidirectional RNN

The RNN presented so far is intended to infer some latent variable yt from input samples
1 ≤ t ≤ t of a given sequence and the present sample, this is, from the past and the present.
In signal processing, this approach is often called causal, since the present and the future are
modeled with dependencies on the past. Nevertheless, when the whole sequence is avail-
able, the inference of the latent variable at instant t can be modeled as dependent on samples
of the next instants. This is sometimes called anti-causal modeling.

The bidirectinal recursive neural network (BRNN) (Schuster and Paliwal 1997) was intro-
duced to make causal and anti-causal inferences in sequences. The BRNN has been used
in handwritten recognition (Liwicki et al. 2007), translation (Sundermeyer et al. 2014), and
part-of-speech detection, among others.

The BRNN (Fig. 5.14) has the following forward and backward state equations:

ht = tanh
(
W⊤

xhxt + W⊤

hhht−1 + bh
)

h′
t = tanh

(
W⊤

xh′xt + W⊤

h′h′h′
t+1 + bh′

)
(5.30)

and the output is computed as in the standard RNN with the following equations

ot = softmax
(
W⊤

hoht + W⊤

h′oh′
t + bo

)
(5.31)

204 5 Recurrent Neural Networks

xt–1

xt

xt–2

ht–1

ht

ht–2

h't–1

h't

h't–2

ot–1

ot

ot–2

Figure 5.14 Bidirectional RNN.

The DRNN has also training that is similar to one of the standard RNN. The derivation is
left as an exercise for the student.

5.7 Long Short-Term Memory Networks

The long short-term memory network (LSTM) is a variation of RNNs that can handle long-
term connections and that was first introduced by Sepp Hochreiter and Jürgen Schmidhu-
ber in 1997 (Schmidhuber and Hochreiter 1997). Ideally, RNNs are capable of handling any
kind of long-term as well as short-term dependencies present in the input sequences. For
instance, in the case of short-term connections, only the most recent information needs to
be examined to perform the current task. In this situation, RNNs can store activation repre-
sentations of current inputs utilizing their feedback connections. However learning to store
information over long time intervals by recurrent backpropagation, on the other hand, con-
sumes time, owing to decreasing error backflow. The gradients in time tend to explode or
vanish in traditional BPTT (R. J. Williams and Zipser 1995; Paul J. Werbos 1988) or Real-
Time Recurrent Learning (Robinson and Fallside 1987). As the gradients grow smaller and
approach zero, the weights stay constant and cause vanishing gradients. But when gradients
explode, the weights fluctuate and result in the divergence of the gradient descent algo-
rithm. Hence, Hochreiter and Schmidhuber designed LSTM to tackle the problems posed
by standard RNNs.

First, it is worth noticing that these phenomena of vanishing and exploding gradients
can be avoided if Eq. (5.28) remains constant. The LSTM passes an internal state from one
time instant to the next one, with unit gain and without using any nonlinear function. This
ensures that the gradient can be propagated without exploding or vanishing. In the origi-
nal LSTM paper by Hochreiter and Schmidhuber this mechanism is called constant error
carousel (CEC). Later, in equivalent depictions of the LSTM structure, this mechanism has
been called internal state ct (see, e.g. (A. Zhang et al. 2021)).

5.7 Long Short-Term Memory Networks 205

5.7.1 LSTM Gates

The LSTM unit is a cell whose inputs are the internal state ct−1, the hidden state ht−1, and
the present input pattern xt. The LSTM unit computes the values of three gates, usually
called forgetting gate ft, input gate it, and output gate ot. The expressions of these three
activations are

ft = 𝝈
(

W⊤

xf xi + Whf ht−1 + bf

)
it = 𝝈

(
W⊤

xixi + Whiht−1 + bi
)

ot = 𝝈
(
W⊤

xoxi + Whoht−1 + bo
)

(5.32)

From the above expressions, it is clear that these gates can be seen as three neural network
layers in a parallel configuration (Fig. 5.15), but usually it is more convenient, for the sake
of simplicity, to represent them in a compact fashion as in Fig. 5.16.

The input node c̃t is also computed as a function of the previous hidden state ht−1 and
the input pattern xt, but its corresponding activation is a hyperbolic tangent (Fig. 5.17), i.e.

c̃t = tanh
(
W⊤

xcxi + Whcht−1 + bc
)

(5.33)

5.7.2 LSTM Internal State

The above gates and the input node are used in the LSTM unit to compute the so-called
internal state ct. This state is first multiplied elementwise by the forgetting gate ft. This
operation is intended to attenuate or erase components of the previous internal state ct−1
when it is necessary. Therefore, the forgetting gate is trained so it can forget the internal
state as a function of the previous hidden state and the current input. After this operation,
the previous internal state is used to compute the present one. The operation is done in

ct–1

ft

ht–1

whi
xtwxi

it ct̃ ot

ct

ht

tanhtanhtanhtanh

tanh σσσσσσσσσ σ σ σtanhtanhtanh

Figure 5.15 The full structure of the LSTM gates. They are four NN layers placed in parallel,
where, in the figure, the weights Whf and Wxf that map the previous hidden state ht−1 and the input
pattern xt into the forgetting gate ft are shown. This representation is never used in the LSTM.
Instead, the more compact representation in Fig. 5.19 is commonly used.

206 5 Recurrent Neural Networks

otitft

xt

ht–1 σ σ σ

Figure 5.16 Compact representation of the three LSTM gates. The first one (ft) is trained to
partially or totally forget the previous internal state if forgetting is necessary. The second one (it)
determines how much of the input must be taken into account in order to modify the internal
state. The third one (ot) constitutes the output, and it will modulate the internal state ct to
compute state ht .

xt

ht–1

ft it ot

σ σ σtanh

ct˜

Figure 5.17 The LSTM gates and
input node c̃t .

two steps. First, an update of the previous current state is computed by elementwise mul-
tiplication of the input node c̃t and the input gate it. Essentially, c̃t is used to update the
previous internal state to obtain the new one. The input gate is therefore trained to deter-
mine what fraction of each component of the input node is necessary for the update. The
full expression of the forgetting and update operations shown in Fig. 5.18 is

ct = ct−1 ⊙ ft + c̃i ⊙ it (5.34)

Here it is worth noticing the equivalence of the structure in Fig. 5.18 with the unit gain
self-feedback described as constant error carousel (CEC) in the original paper by Schmid-
huber and Hochreiter (1997). Indeed, the backpropagation of the error through the internal
state line is done without transformation through any nonlinear function derivative or
weight matrix, therefore avoiding the phenomena of vanishing or exploding gradients.

5.7.3 Hidden State and Output of the LSTM

The full structure of the LSTM cell is depicted in Fig. 5.19. The output of the LSTM is the
gate ot. This output must be normalized in order to produce a softmax output, which will be

5.7 Long Short-Term Memory Networks 207

ht–1

ct–1

xt

ct

σ σ σtanh

ft it otct˜

Figure 5.18 The forgetting gate ft is elementwise multiplied with the internal state at the
previous instant ct−1. If the outputs of the forgetting gate are low, this means that this gate is
applying a forgetting factor to the internal state. At the same time, input gate it elementwise
multiplies input node c̃t , and the product is added to the previous internal state to produce the new
internal state ct .

ct–1

ht–1 σ σ σtanh

tanh

ct˜
ct

xt

ht

otitft

Figure 5.19 The hidden state ht is constructed with the internal state ct modulated by the output
state. This figure represents the full structure of the LSTM.

used for the classification and to compute the error for the backpropagation, but this gate is
also used to modulate the hidden state, and this is why the activations are sigmoids, which
ensures that each element of the output gate ranges from 0 to 1. The computation of the
hidden state is done as

ht = tanh
(
ct
)
⊙ ot (5.35)

Notice that the internal state is not bounded by a nonlinear operation in order to avoid
vanishing effects. Therefore, the hidden state ht is constructed by simply bounding the val-
ues of the internal state between −1 and +1 with a hyperbolic tangent activation. Then, the
output of this activation is elementwise multiplied by the output gate. If an element of the
output gate is close to 1, then the corresponding element of the hidden state is kept and
transmitted to the next stage. But if an element of the output gate is close to zero, the cor-
responding element of the hidden state is inhibited. To interpret this, we must notice that
when element k of the output gate is low, that means that the class of input xt is probably

208 5 Recurrent Neural Networks

not k, i.e. p
(

yt = k|xt
)
≈ 0. Therefore, we drop the corresponding component of the hidden

state so it does not influence the next cells with respect to the current time instant.

5.7.4 LSTM Backpropagation

The backpropagation in an LSTM is similar to the one that was derived for the Elman RNN
in Section 5.3. Here we assume that the output of the LSTM is its hidden state, but it is
common to use this state in an FC structure in order to perform a given task, in which case
the backpropagation can be extended straightforwardly. The cost function in our case is to
be expressed as a function of the hidden states, and therefore 𝜹t is

𝜹t = f(ht) − yt (5.36)

The hidden state depends on the elementwise product of the output state ot and the
internal state passed through the hyperbolic tangent activation, as defined in Eq. (5.35).
By applying the chain rule, the gradient of the cost function with respect to the output
gate is

∇ot
JML = ∇ht

JML
𝛿ht

𝛿ot
= 𝜹t ⊙ tanh(ct) (5.37)

where in this expression we find Jacobian 𝛿ht
𝛿ot

with elements dhi,t

𝛿oj,t
. The elements of this

Jacobian out of the diagonal are zero since the product is elementwise. Since the error com-
ponent 𝜹t is a vector, it is convenient to express the product of this vector times the Jacobian
as an elementwise product.

Next, we compute, by using the chain rule, the gradient with respect to the internal state
ct by using the same procedure, with the result

∇ct
JML = 𝜹t ⊙ ot ⊙ tanh′(ct) (5.38)

By visual inspection of Fig. 5.19, it can be seen that this internal state is a function of the
previous state ct−1, the forgetting gate bbft, the input node c̃t, and the input gate it, as defined
in Eq. (5.34), so progression with the chain rule needs to compute the gradient with respect
to these variables. The results are the following. For the internal state, the gradient is

∇ct−1
JML = ∇ct

JML
𝛿ct

𝛿ct−1
= 𝜹t ⊙ ot ⊙ tanh′(ct)⊙ ft (5.39)

By following the same procedure, we obtain the gradients for the input gate, the input
state, and the forgetting gate as

∇it
JML = 𝜹t ⊙ ot ⊙ tanh′(ct)⊙ c̃t (5.40)

∇c̃t
JML = 𝜹t ⊙ ot ⊙ tanh′(ct)⊙ it (5.41)

∇ft
JML = 𝜹t ⊙ ot ⊙ tanh′(ct−1) (5.42)

The above gradients are necessary to compute the updates of the weights in Eqs. (5.32)
and (5.33). We start with the output gate weights Wxo, Who, and bo. They are inside of the
sigmoid activation corresponding to the output gate. Therefore, the gradient with respect

5.7 Long Short-Term Memory Networks 209

to these weights is the result of the chain rule applied over the gradient with respect to
ot. From Eq. (5.32), the gradients of the output gate with respect to these weights are
∇Wxo

ot = 𝝈′(zo)⊙ xi, ∇Wxo
ot = 𝝈′(zo)⊙ ht−1, and ∇bxo

ot = 𝝈′(zo)⊙. With this, and making
use of expression (5.36), the results are

∇Wxo
JML = ∇ot

JML•∇Wxo
ot = 𝜹t ⊙ tanh(ct)⊙ 𝝈′(zo)⊙ xt

∇Who
JML = ∇ot

JML•∇Who
ot = 𝜹t ⊙ tanh(ct)⊙ 𝝈′(zo)⊙ ht−1

∇bo
JML = ∇ot

JML = 𝜹t ⊙ tanh(ct)⊙ 𝝈′(zo) (5.43)

Similarly, the gradient with respect to forgetting gate weights is

∇Wxf
JML = 𝜹t ⊙ ot ⊙ tanh′(ct)⊙ ct ⊙ 𝝈

′(zf)⊙ xt

∇Whf
JML = 𝜹t ⊙ ot ⊙ tanh′(ct)⊙ ct ⊙ 𝝈

′(zf)⊙ ht−1

∇bf
JML = 𝜹t ⊙ ot ⊙ tanh′(ct)⊙ ct ⊙ 𝝈

′(zf) (5.44)

The gradient with respect to the input gate weights follows the expression

∇Wxi
JML = 𝜹t ⊙ ot ⊙ tanh′(ct)⊙ c̃t ⊙ 𝝈

′(zg)⊙ xt

∇Whi
JML = 𝜹t ⊙ ot ⊙ tanh′(ct)⊙ c̃t ⊙ 𝝈

′(zg)⊙ ht−1

∇bbi
JML = 𝜹t ⊙ ot ⊙ tanh′(ct)⊙ c̃t ⊙ 𝝈

′(zg) (5.45)

Finally, the gradient with respect to the input state weights is

∇Wxc
JML = 𝜹t ⊙ ot ⊙ tanh′(ct)⊙ ct ⊙ 𝝈

′(zf)⊙ xt

∇Whc
JML = 𝜹t ⊙ ot ⊙ tanh′(ct)⊙ ct ⊙ 𝝈

′(zf)⊙ ht−1

∇bc
JML = 𝜹t ⊙ ot ⊙ tanh′(ct)⊙ ct ⊙ 𝝈

′(zf) (5.46)

Example 5.7.1 (Time-series prediction using LSTM)
This example illustrates the implementation and use of an LSTM using Keras. The LSTM
in the example is built to perform one step-ahead prediction of a time series. The used
sequence is a dataset called flight data available in the Seaborn package. This dataset records
the number of flight passengers that flew on a given route every month from 1949 to 1960.
The months are labeled from 0 to 143.

The time-series data obtained from the dataset is shown in Fig. 5.20. The plot shows a
clear seasonal pattern and growing trend. Seasonality is a property of a time series in which
the data goes through predictable and recurring changes on a yearly basis.

Once the data is loaded and visualized, the passenger data is extracted and divided into
train and test sets. The training dataset consists of the first 126 samples, and the test set is
constructed with the remaining samples from months 127 to 144. Feature normalization
is performed using the MinMaxScaler function. Note that, we fit only the training data to
the MinMaxScaler function and transform both train and test data using the same scaling
operation. This is the most efficient way of analyzing the model performance ensuring that
the test data is completely new to the model.

Once, we have the train and test sets, the data needs to be modified into a sequence. Since
we are predicting one time-step ahead, we divide the data in the following format similar

210 5 Recurrent Neural Networks

Months

T
ot

al
 P

as
se

ng
er

s

0

–1

0

1

2

3

4 Train
Test

20 40 60 80 100 120 140

Figure 5.20 Flights time-series data.

x1 x2 x3 x4

h4

o4

h3h2h1

Dense layer

LSTM LSTM LSTM LSTM

Prediction

Figure 5.21 Architectural framework of the LSTM model used for time-series prediction.

to the arrangement in Eq. (5.26) shown in Example 5.7.1. Once we have the data in the
desired format, we move on to building the LSTM model for training.

In Keras, similar to Example 3.10.1, we can build a sequential model having an LSTM
layer followed by a dense layer both with a tanh activation. Here, the loss function is set
as MSE, and the optimizer is initialized to Adam. The number of hidden units, this is,
the dimension of the hidden state ht, is set to 4. An illustration of the model is shown
in Fig. 5.21.

Once the model setup is ready, we can fit the training data to the LSTM model. The train-
ing is performed for 1000 epochs to obtain the final model.

Figure 5.22a shows the loss curve of the training samples for 1000 epochs. After the con-
vergence of the loss function, the trained model is used for prediction in the test data. A
plot highlighting the actual and the predicted test output is shown in Fig. 5.22b.

5.7.5 Machine Translation with LSTM

A translation machine consists of a structure where the inputs are sequences of different
lengths in a given input language (e.g. English):

Spring begins today.

and whose outputs are sentences of a different length in a target language (e.g. French):

5.7 Long Short-Term Memory Networks 211

MonthsEpoch
(a) (b)

T
ot

al
 p

as
se

ng
er

s

T
ra

in
in

g
lo

ss
 (

M
SE

)

00 100

100

10–1

200 300 400 500
100

200

300

400

500

600
Actual train
Predicted train
Actual test
Predicted test

20 40 60 80 100 120 140

Figure 5.22 (a) shows the training loss curve for LSTM model over 1000 epochs. (b) shows the
comparison between the actual time series and the prediction performed by the LSTM.

Le printemps commence aujourd’hui.

At first sight, large feedforward structures like CNN may seem like a good idea since
they can have a great number of parameters, necessary to store the complexities of both
the source and the target language. It is noteworthy that for each language, a translator
must have available more than 105 words of each language. To this first complexity, we
must add the language structure complexities. As a result, actual translation machines may
need many millions of parameters. But to these difficulties, another one must be added,
and it is the fact that the sequences to be translated have arbitrary lengths, and the same
sentence can have two different lengths in two different languages, as is the case of the
example above. While deep feedforward structures have been successfully used in language,
in particular for speech processing (see e.g. the works by Geoffrey E. Hinton et al. (2012c)
in acoustic modeling or (George E. Dahl et al. 2011) in speech recognition), these structures
are tremendously limited in their use for translation due to the fact that the input and output
dimensions are fixed.

Coding a sentence with arbitrary length into a vector of fixed dimensionality, neverthe-
less, is possible with the use of RNN, through the use of its hidden state. One of the first suc-
cessful variable length machine translation schemes is given by Sutskever et al. (2014) while
working at Google, Inc. The main idea of the translation strategy is depicted in Fig. 5.23. The
structure consists of two sections. In the figure, the upper section is the so-called encoder,
and it is in charge of encoding or compressing a sequence of words into a hidden state. The
lower section is another RNN, and it uses the hidden state as an input in order to translate
the sentence.

The first step for sequence-to-sequence translation consists of creating a word embedding,
this is, a dictionary of tokens, this is, a corpus of words for each language, where each word
is associated with a token. A token is a vector of integers representing each one of the words.
The corpus may also contain signs such as stops, commas, and the beginning of sequence
(_BOS) and end of sequence (_EOS) tokens.

212 5 Recurrent Neural Networks

h1 h2 h3

c1 c2 c3

c'2c'1 c'3 c'4

h'1 h'2 h'3 h'4 h'5

h4

h4 h4h4h4h4

le primtemps commemce

LSTM

_EOS

_EOS

_BOS

beginsspring

Dense
layers

Figure 5.23 Sequence to sequence translation with LSTM. The upper sequence codes the English
sentence “spring begins.” into state h4. The lower sequence uses this state to sequentially translate
the sentence into the French sentence “le primtemps commence.”

Assuming that word embeddings are available for both languages, the methodology
works as follows. An RNN (for example the Elman RNN or an LSTM) is initialized with
the token corresponding to the first word of the sequence (spring). The recurrent block is
then fed back with the current state and the next word (begins). The process is iterated
until the _EOS is found, indicating that the recursion can be finished. The final state hT
of the encoding machine is then used in the decoder RNN for the translation. This state
is concatenated with the _BOS token. The hidden state h′

1 of the decoder RNN is then
used as the input of an FC structure with as many softmax outputs as words in the target
dictionary to predict the token of the first word of the translated sequence. The hidden
state, together with the internal state c′1, and the predicted token are fed back into the RNN
to predict the next token. When the recursion predicts the _EOS token, the translation is
finished. In the paper by Sutskever et al. (2014), a deep LSTM is used. Such a structure
simply stacks several LSTM blocks, so the state of each one is fed back into itself and at the
same time, it is used as an input to the next one. These structures have been successful in
speech recognition tasks (Graves et al. 2013; Sak et al. 2014).

The FC output estimates the probability of each word in the dictionary, and this output
is used to optimize the structure according to a ML criterion. In particular, the criterion is
intended to maximize the translation log-likelihood

JML = 1|S|∑T,S log p (T|S) (5.47)

where |•| denotes the cardinality of the source sequence s and T is the target sequence.
Equivalently, one can minimize the NLL of the sequence, which is equal to the previous
expression with a minus sign. Accounting for the length of the sequence is important here,
as it will be discussed in Section 5.7.6.

5.7.6 Beam Search in Sequence to Sequence Translation

In the sequence-to-sequence translation method described above, each token of the
target sequence is decided through the observation of the probability of each token in the

5.7 Long Short-Term Memory Networks 213

dictionary estimated by a FC layer whose output has thousands of elements, corresponding
to the number of words in the target dictionary.

This practically guarantees that at each iteration, a subset of words will have a high prob-
ability, thus adding uncertainty to the prediction. In order to reduce the uncertainty, each
iteration is repeated with a subset (or beam) of k tokens with the highest probability. The
procedure creates a tree of decisions whose paths have associated probabilities that can be
computed and then the decision is taken according to them.

The procedure is illustrated as follows. Assume a dictionary with only three tokens y1,
y2, y3, and _EOS. In the greedy search illustrated in Fig. 5.24, at each iteration a token is
chosen according to the maximum probability criterion, which is then introduced in the
next iteration to compute a new set of probabilities. According to all estimated probabilities,
the obtained sequence is y1, y2, y3, _EOS. But notice that in the first iteration, token y3 has
a significant probability and, therefore, it is worth trying the evolution of the tree starting
with this. This is the principle of the beam search.

In a beam search, at each iteration, the k tokens with the highest probability are chosen
and then sequentially used as input for the next iteration. This produces k possible outcomes
of the FC output, which creates k possible paths. In the example of Fig. 5.25, a beam search

0.5

0.1

0.4

0.0_EOS

y3

y2

y1

0.2

0.3

0.4

0.1 0.1

0.1

0.3

0.6

0.0

0.2

0.4

0.3

Figure 5.24 Greedy search in sequence-to-sequence translation. The dictionary has tokens y1, y2,
y3, and _EOS. After the first iteration of the decoder, the FC layer outputs the probabilities 0.5, 0.3,
0.2, and 0.0, and therefore token y1 is used in the next iteration, where y2 obtains the highest
probability. The procedure is repeated until token _EOS is chosen, as it has the maximum
probability.

_EOS

y3

y2

y1 0.5

0.1

0.4

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.1

0.1 0.1

0.0

0.7

0.2

0.8

0.0

0.2

0.0

0.2

0.4

0.3

0.1

0.1

0.3

0.6

0.0

Figure 5.25 Beam search with k = 2 in a dictionary with four tokens.

214 5 Recurrent Neural Networks

with k = 2 is applied. During the first recursion of the decoder, the FC layer outputs four
probabilities, of which y1 and y3 have the highest probabilities. Them, both tokens are tested
as inputs for the next recursion, which creates two sets of probabilities. If y1 is used, then
y2 and y3 have the highest probability. If y3 are used, y3 and _EOS are the most probable.
This creates more possible paths in the next iteration, where 4 tokens are tested. Each time
that _EOS is found among the k most probable tokens, the corresponding path is finished.
After all paths are finished, the log-likelihoods or the NLL of the paths is computed, and
the path with the lowest NLL is chosen.

Table 5.1 summarizes the (unfinished) process of Fig. 5.25. Among all the finished paths,
all except the one with the lowest NLL are discarded. The search must be continued for all
the remaining paths. Notice that since the sequences have different lengths, here it is very
important to divide the log probabilities in Eq. (5.47) by the sequence length. Of course,
this translation example is not realistic, because two of the non-discarded sequences have a
word repeated two and three times, which, in natural languages is very very very unlikely.

Once all paths are finished, the final translation will be the sequence with the lowest NLL
or, in other words, the translation with the highest probability.

Sutskever et al. (2014) describe the experimental setup as follows. They used the WMT
2014 English–French translation dataset (Bojar et al. 2014), with 12 million sentences, 284
million French words, and 304 million English words, with a dictionary containing 160.000
English words and 80.000 French words. The source language was English. The out-of-
dictionary words were changed by a UNK (unknown) token, and the translations were
produced by beam search. The authors noticed that the results improved slightly when the
source sentences were reversed.

The tested structures were single and deep LSTMs with hidden states of 1000 cells. The
word embeddings had dimension 1000 (this is, the tokens were coded in vectors of length
1000), and the output of the FC structure was a softmax of dimension 80.0000. The param-
eters of the LSTM were initialized at random with a uniform distribution between −0.08
and 0.08, and the optimization algorithm was a momentum gradient descent with 𝜇 = 0.7.
The gradient descent was applied in batches of 128 sequences. Also, in order to avoid any

Table 5.1 Probabilities of the tokens across finished and unfinished
paths in Fig. 5.25 and NLL of each one of the paths.

T 1 2 3 4 NLL(T|S)

y1, y2, y3, y3 0.5 0.4 0.4 0.3 0.93
y1, y2, y3, _EOS 0.5 0.4 0.4 0.6 0.76
y1, y2, _EOS 0.5 0.4 0.3 0.94
y1, y3, y3, y1 0.5 0.3 0.7 0.8 0.62
y1, y3, y3, y3 0.5 0.7 0.7 0.2 0.75
y1, y3, _EOS 0.5 0.3 0.2 1.17
y3, y3 0.4 0.3 1.06
y3, _EOS 0.4 0.4 0.92

All finished paths except the one with lowest NLL can be discarded.

5.7 Long Short-Term Memory Networks 215

Table 5.2 Bilingual Evaluation Understudy (BLEU).

BLEU score Interpretation

<10 Almost useless
10–19 Hard to get the gist
20–29 Clear gist, significant grammatical errors
30–40 Understandable to good translations
40–50 High-quality translations
50–60 Very high quality, adequate, fluent translations
>60 Quality often better than human

Source: Data from Google Cloud.

Table 5.3 Comparisons among different sequence to
sequence translation mechanisms.

Method BLEU score

Bahdanau et al. (2014) 28.45
Baseline system 33.30
Single forward LSTM, beam size 12 26.17
Single reversed LSTM, beam size 12 30.59
Ensemble of 5 reversed LSTMs, beam size 1 33.00
Ensemble of 2 reversed LSTMs, beam size 12 33.27
Ensemble of 5 reversed LSTMs, beam size 2 34.50
Ensemble of 5 reversed LSTMs, beam size 12 34.81

Source: Sutskever et al. (2014)/NeurIPS.

possible exploding gradients, the training included a hard limit constraint in the norm of
the weights. The evaluation metrics were the bilingual evaluation understudy (BLEU) (see
Table 5.2).

Table 5.3 shows the main results of the experiments, where the best performance was
shown by an ensemble of 5 LSTM with reversed input sequence and a beam size of 12.

Example 5.7.2 (Text generation using Bidirectional LSTM)
The bidirectional long short-term memory network (B-LSTM) follows the same structure as
the BRNN in Fig. 5.14 where the hidden state blocks are simply changed by LSTM blocks.
This example uses B-LSTM to generate a story given an input text of a fixed length.

For this example, we can use the The Sleeping Beauty book by C.S. Evans. The Project
Gutenberg Ebook of Sleeping Beauty is used here which can be found at https://www
.gutenberg.org/files/25451/25451-8.txt. The entire book is used here as the training data.
Before using the entire book as text input, the irrelevant sections or symbols are removed
so that only the actual text containing the story is fed to the model. This ensures efficient
learning of the model from the input data.

https://www.gutenberg.org/files/25451/25451-8.txt
https://www.gutenberg.org/files/25451/25451-8.txt

216 5 Recurrent Neural Networks

Once we have the cleaned-up version of the text, we can load it into the notebook. Follow-
ing this, we need to perform certain preprocessing steps to convert the data into the desired
format for the model to learn from. It is important to note that the model understands small
chunks of information compared to big sentences. So we need to first tokenize the text to
obtain the words in the text. The preprocessing steps include converting all the text to lower
case followed by splitting them into smaller chunks based on the next line. Once we split
the data into chunks, we fit it into the tokenizer to map each of the words to a number.
Therefore, the sentence shown below would be converted to a set of numbers:

once upon a time there were a king and a queen
[346, 41, 4, 68, 25, 19, 4, 32, 2, 4, 45]

Following this, we need to convert the sentence to a sequence so that it can be fed to the
model. The sequence is built by appending the adjacent token every time so that the model
can learn the usage of the tokens consecutively in a sentence. This problem is similar to a
time-series problem as also we construct the input in a sequential manner so that the model
can learn what comes next. Below (Table 5.4) is an illustration of how the tokens look like
after converting them into a sequence:

Since the model can accept only a fixed length of input, each of these sequence is
prepadded with zeros as follows (in Table 5.5):

Now, since we have the sequence, we can convert the input into predictors and labels by
splitting the last column of the sequence as the label and keeping the rest as the input to
the model.

Table 5.4 After converting the sentence to sequence.

[346, 41]
[346, 41, 4]
[346, 41, 4, 68]
[346, 41, 4, 68, 25]
[346, 41, 4, 68, 25, 19]
[346, 41, 4, 68, 25, 19, 4]
[346, 41, 4, 68, 25, 19, 4, 32]
[346, 41, 4, 68, 25, 19, 4, 32, 2]
[346, 41, 4, 68, 25, 19, 4, 32, 2, 4]
[346, 41, 4, 68, 25, 19, 4, 32, 2, 4, 45]

Table 5.5 Prepadding the sequence with zeros.

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 346, 41]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 346, 41, 4]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 346, 41, 4, 68]

5.7 Long Short-Term Memory Networks 217

LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM

timeuponOnce
Embedding layer

Forward
LSTM

Bidirectional
LSTM

Backward
LSTM

0

a

LSTMLSTM LSTM

Dense (N_WORDS/2)

Dense (N_WORDS)

there

0

LSTM LSTM

Figure 5.26 The B-LSTM architecture that is being used for Example 5.7.2.

As for the model, it consists of an embedding layer, which receives the tokens. This is
then followed by a B-LSTM with 150 hidden units. Next, we add the dropout layer with
dropout probability 20%. To this model, we can add LSTM with 100 units followed by two
dense layers. The final dense layers have the same number of outputs as the total words.
The overall architecture is shown in Fig. 5.26. The loss function used here is the categorical
cross entropy and we use the Adam optimizer. The metric in this case is the accuracy as we
are trying to see how well the model predicts the label token.

The model is trained for 100 epochs. But we can train the model for a longer duration
as well as this will benefit the performance a lot. For the sake of this experiment with 100
epochs of training, the model was able to predict the following:

Input text:
“There was once a sweet prince”
Model output:
“There was once a sweet prince guarded there
was a hundred years passed away at the end of
that time”

For better performance, the model can be trained even further for more number of epochs.

218 5 Recurrent Neural Networks

5.8 Gated Recurrent Units

The traditional RNNs suffer from the vanishing gradient problem, which can make it dif-
ficult to propagate important information from the past to the present, leading to a loss of
context and meaning. The GRU (Cho et al. 2014a) is a new type of RNN that uses a gat-
ing mechanism to update or forget information from the past selectively was proposed to
address these issues. The GRU is intended to find a compromise between the ease of use
and interpretability of classic RNNs and the complexity of more sophisticated designs such
as LSTMs. It was found to be more effective on several benchmark datasets for machine
translation. The performance comparison of GRU to that of LSTMs showed that it is faster
to train, and it uses less memory. GRU outperformed traditional RNNs and is competitive
with LSTMs while processing datasets with longer sequences.

GRUs solve the vanishing gradient problem using two gates namely the update gate and
reset gate. These gates decide what information to retain or discard through to the output.
The update gate determines both how much information to retain from the previous hidden
state and how much information to use in the current hidden state. The reset gate functions
much like the forgetting gate of an LSTM. This gate determines how much of the previous
hidden state to discard and how much information to consider when updating the current
hidden state.

In a GRU, the hidden state of instant t − 1 is concatenated with current input xt and
passed through two dense layers with sigmoid activation (Fig. 5.27) that constitute the reset
rt and update ut gates, with expressions

rt =𝝈
(
W⊤

xrxt + W⊤

hrht−1 + br
)

ut =𝝈
(
W⊤

urxt + W⊤
urht−1 + bu

)
(5.48)

After this, a candidate state h̃t is computed by passing the elementwise product of the
reset gate rt with the previous state ht through a dense layer with tanh activation (Fig. 5.28),
this is,

h̃t = tanh
(
W⊤

xhxt + W⊤

hh
(
rt ⊙ ht−1

)
+ bh

)
(5.49)

xt

rt utht–1

σ σ

Figure 5.27 Reset and update gates in
the GRU.

5.8 Gated Recurrent Units 219

Figure 5.28 Candidate hidden state in
the GRU.

xt

rt
ut ht

˜
ht–1

σ σ tanh

xt

ht
rt ut ht

˜
ht–1

σσ tanh

+
–

1

Figure 5.29 Computation of the new hidden state.

Finally, a convex combination of the previous state ht−1 and the candidate state h̃t is con-
structed through the update gate ut (Fig. 5.29) as

ht = ut ⊙ ht−1 +
(
𝟏 − ut

)
⊙ h̃t (5.50)

which computes the new state.

Example 5.8.1 (Sentiment analysis using GRU)
Sentiment analysis is a technique used in NLP to determine the polarity of a given text.
There are several types of sentiment analysis, but one of the most generally used ways
categorize data as positive or negative. This aids in the study of various text elements,
such as comments, tweets, and customer reviews, in order to understand the insights and
feedback from the audience. In this example, we use the NLTK, which is an open-source
framework for developing applications that handle human language data. It includes robust
text-processing libraries for common NLP operations. For instance, in the nltk.tokenize
package, the word tokenize method is used to split a text into smaller pieces known as
tokens. These tokens may include sentences or individual words.

The implementation of this example for sentiment analysis is done using the IMDB movie
dataset (A. Maas et al. 2011). This dataset has 50,000 movie reviews for binary sentiment
classification. Both training and testing have 25,000 movie reviews each that are labeled
by sentiment (positive/negative). The dataset is used to estimate the amount of favorable

220 5 Recurrent Neural Networks

and unfavorable reviews by applying GRU for classification. The next step involves data
preprocessing and this process entails eliminating any unnecessary information, address-
ing formatting problems, managing missing value, and fixing any mistakes in grammar or
spelling errors. For the IMDB dataset, this process has the following steps:

Removal of stopwords: Common terms like “the,” “a,” and “an” that appear often in a
speech are known as stopwords. They are often eliminated from the text because they do
not contribute any information to the analysis.

HTML tag removal: Unstructured text often has a significant amount of background
noise. HTML tags are usually one of these elements that do not significantly contribute
to studying and interpreting the text, thus it should be avoided.

Lowercasing: Change all characters to lowercase to reduce the total quantity of distinct
words.

Stemming: Stemming is a method for eliminating affixes from words to reveal their basic
structure. For instance, the term bloat is the stem of the phrases bloating, bloats, and
bloated. Porter’s method (Porter 1980) for stemming is one of the popular stemming algo-
rithms. The Porter Stemmer class in NLTK allows us to apply Porter Stemmer algorithms
for the words we need to stem.

Tokenization: The text is divided into tokens or individual words during the tokenization
process.

In the next step, the reviews are encoded as integers so that they can be used as input to
the GRU model. Then, a dictionary is created that counts the number of times each word
appears in IMDb reviews. Each word in the review serves as a key in this dictionary, and
its matching count acts as the value. The words are arranged in decreasing order by the
number of occurrences so that these words appear at the start of the dictionary. For example,
consider two reviews for a movie:

“This movie was thrilling. It was good!”
“I hated the ending of the movie. It was horrible.”

The resultant dictionary will be as follows:

{“this”: 1, “movie”: 2, “was”: 3, “thrilling”: 1, “it”: 2, “good”: 1, “I”: 1, “hated”: 1, “the”: 2,
“ending”: 1, “of”: 1, “horrible”: 1}

Following that, an index mapping dictionary is created to assign a unique index to each
word in the IMDb review. This is accomplished by iterating over the reviews and assigning
lower indices to frequently occurring words. The resultant index mapping dictionary will
be as follows:

{“was”: 1, “movie”: 2, “it”: 3, “the”: 4, “this”: 5, “thrilling”: 6, “good”: 7, “I”: 8, “hated”: 9,
“ending”: 10, “of”: 11, “horrible”: 12} After completing the encoding of the reviews, the
labels are encoded. Since there are two output labels, we shall designate the “positive”
label as 1 and the “negative” as 0. Next, the outliers present in the reviews are identi-
fied by measuring various statistical parameters such as mean, minimum, maximum,
and standard deviation. As a result, outliers are eliminated by removing reviews that are
considerably longer or shorter than the average review length. Moreover, as the length of
each review varies, padding must be added or words must be truncated to maintain the
same size.

5.9 Conclusion 221

……………..

……………..

0
h(2)

1
o(1)

i
o(2)

t
o(2)

t
o(1)

0
h(1)

1
h(1)

1
h(2)

t–1
h(2)

t–1
h(1)

2
h(1)

2
h(2)

GRU GRU

GRU GRU

GRU

Predicted
sentiment

Dense layer

Embedding layer

word1 word2 wordt

Dropout layer

GRU

24

e1 e2 et

Figure 5.30 Architectural framework of the GRU model used for sentiment analysis.

Lastly, the preprocessed and feature-extracted reviews and labels are divided into 80% for
training, 10% for validation, and 10% for testing. The dataset is trained using the GRU, and
the overall model architecture consists of an embedding layer, a GRU layer, a FC layer, and
an activation function layer. An embedding layer transforms input in the form of words
represented as integers into continuous vectors of a predetermined length. The main objec-
tive of the embedding layer is to represent the input in a way that accurately conveys its
semantics/meaning. Hence, words with similar meanings, such as “joy” and “cheerful,”
will have similar embeddings, whereas nonidentical words will have different embeddings.
See Section 6.4 for additional details.

During the forward pass in training, the input is first passed through the embedding layer
to obtain an embedded tensor, which is then fed into the GRU layer. To prevent overfitting,
a dropout with a probability of 0.5 is applied to the output of the GRU layer. Finally, the
resulting tensor is passed through a FC layer with a sigmoid activation function. The net-
work is trained for 10 epochs with a batch size of 50 using the binary cross-entropy loss
function and Adam optimizer. The embedding dimension is the number of dimensions
used to represent each word in the input data, and in this case, it is set to 400. Addition-
ally, the model employs a GRU with two recurrent layers, where each layer has 256 hidden
units. The resultant sentiment analysis model is illustrated in Fig. 5.30.

5.9 Conclusion

The RNN models, originally inspired in the Hopfield network, are the first structures able
to process sequential models with arbitrary length. Indeed, the previously introduced deep
structures are designed to process inputs with fixed dimensions, and, hence, their use for
sequences is limited.

222 5 Recurrent Neural Networks

The Elman RNN is the first recursive structure, introduced to make predictions based on
the information stored in the hidden layer conveyed by the past elements of the sequence.
The training of the RNN is carried out by the backpropagation of the error. The particularity
of the RNN is that the error is backpropagated from the current output at each time instant
to the present input and to all the past inputs, and this is why this optimization is called
backpropagation through time. The RNN has many variants, among them the bidirectional
RNN is used in those cases where at a time instant, elements of posterior time instants in
the sequence are available. This is particularly interesting in translation or text prediction.
Deep structures consisting of stacking several RNN or others, as RNN with hidden states
based on FC neural networks exist.

A main drawback of the RNN consists of the vanishing and exploding gradients phe-
nomena, that in particular preclude the retention of information from remote samples, or
long-term information. This is due to the fact that the backpropagation contains a term that
is a function of the tth power of the hidden matrix weight. The LSTM is a recursive neural
network introduced to solve this problem by the propagation of an internal state that is not
processed by the matrix. The GRU was introduced later to produce similar results with a
lower computational complexity.

The RNN has played a prominent role in tasks related to signal processing and language
modeling, such as translation, part of speech detection, financial time series, energy load
forecast, and others.

Problems

5.1 Modify the code of Example 5.3.1 in order to implement multistep prediction for 10
timesteps ahead. Determine the model performance by plotting MSE as a function of
the horizon.

5.2 Implement an LSTM model from scratch in the programming language of your prefer-
ence and replicate the Example 5.7.1 using the same seaborn flights dataset to predict
single time step ahead. Further, modify the code to perform multistep prediction and
evaluate the model performance.

5.3 Implement a deep LSTM with 3 layers of basic LSTM cells, each with 256 hidden units.
Use this network to classify the MNIST dataset of handwritten digits into corresponding
numeric values. Evaluate the performance by plotting the ROC curve for this multiclass
classification.

5.4 In the sentiment analysis problem presented in Example 5.8.1, remove the preprocess-
ing step and implement the model using Keras. Evaluate the impact of the preprocessing
step on the model’s performance by comparing the resulting confusion matrices with
and without the preprocessing step.

5.5 Implement a bidirectional LSTM model for sentiment classification in Example 5.8.1
and check if it outperforms the GRU model.

Problems 223

5.6 Describe the importance of data preprocessing when working with sequential data in
RNNs. What are some common preprocessing steps and why are they necessary for
effective model training?

5.7 The Stanford Sentiment Treebank (SST) dataset (Socher et al. 2013) consists of movie
reviews labeled with sentiment scores ranging from 0 (highly negative) to 4 (highly
positive). In this problem, a pretrained word embedding named Global Vectors for
Word Representation (GloVe) embedding (Pennington et al. 2014) is used to train
an LSTM. These embeddings are pretrained on a large collection of text and hence
capture the semantic relationships between words, allowing for better generalization
when retrained to newer datasets.

Implement a multiclass sentiment classification model on the SST dataset using the
pretrained GloVe word embeddings. Assess the model on the test sets and report the
accuracy, precision, recall, and F1 score.

5.8 Use the historical stock price data to build a GRU-based model for stock price pre-
diction. Yahoo Finance provides historical stock price data for a wide range of pub-
licly traded companies. You can access this data through their website: https://finance
.yahoo.com/. Predict future stock prices based on historical price and volume data and
evaluate the model’s performance using appropriate evaluation metrics.

5.9 Explain why regularization techniques are important in training RNNs, particularly
LSTMs and GRUs. Discuss common regularization methods used in RNN architectures
and their impact on model generalization.

5.10 Use a time-series electrocardiogram data for anomaly detection using LSTM. The
dataset can be downloaded from the website: http://www.timeseriesclassification
.com/description.php?Dataset=ECG5000. This dataset contains 5000 time series
samples of electrocardiogram data, with both normal and anomalous ECG patterns.
Train an LSTM-based model to detect anomalies in this dataset and evaluate the
model’s performance using metrics like precision, recall, and F1-score.

https://finance.yahoo.com/
https://finance.yahoo.com/
http://www.timeseriesclassification.com/description.php?Dataset=ECG5000
http://www.timeseriesclassification.com/description.php?Dataset=ECG5000

225

6

Attention Networks and Transformers

6.1 Introduction

Attention mechanisms are a natural step in the evolution of the way in which AI is under-
stood and designed, in an attempt to imitate the function of the biological neural tissue
(see e.g. (Lotter et al. 2020)). The first versions of deep learning (DL) mechanisms were
inspired by the structure of the brain tissue, and later, researchers tried to reproduce the
function of the memory. Starting in the first years of the 21st century, major investigations
focused on human behavior, which produced an explosion of advanced and very complex
AI structures.

The inception of the first neural network mechanisms can be seen as an attempt to mimic
the structure of a biological neuron, through the introduction of the perceptron by Warren
McCulloch and Walter Pitts in 1948 and first implemented by Frank Rosenblatt (1958).

Yan LeCun, in the 1980s, featured a quantum leap in the development of machine
learning-based AI for image processing. In order to find the inspiration for that work, we
need to go back to 1959, when David Hubel and Torsten Wiesel first described the visual
cortex in cats. A neural network structure that imitated the cortex model, constructed
with artificial neurons, the first functional image recognition machine, was the CNN,
first introduced by LeCun in 1989. CNN structures, which somehow modeled biological
vision (Kriegeskorte 2015). These approaches roughly simulated the structure of the brain
tissue in a simplified fashion (Kuzovkin et al. 2018; De Cesarei et al. 2021). This neural
network was successful in character recognition to handwritten digits with unprecedented
accuracy. This was the first one of a series of models with increasing complexity that
ended with some very successful image recognition structures around 2012. Several CNNs
were published that had outstanding accuracy in classifying images among 1000 different
classes, and they were trained which huge image databases.

The previous approaches roughly simulated the structure of the brain tissue in a sim-
plified fashion and worked for visual recognition. But what about language model (LM)s?
At practically the same time, recurrent neural networks (RNNs) were first introduced as a
model that went away from such a merely structural conceptualization to take an approach
based on the function of the brain, in particular, to reproduce the persistence of the mem-
ory (Bitzer and Kiebel 2012; Güçlü and Van Gerven 2017; Hallez et al. 2023), and they were

Deep Learning: A Practical Introduction, First Edition.
Manel Martínez-Ramón, Meenu Ajith, and Aswathy Rajendra Kurup.
© 2024 John Wiley & Sons Ltd. Published 2024 by John Wiley & Sons Ltd.
Companion website: https://github.com/DeepLearning-book

https://github.com/DeepLearning-book

226 6 Attention Networks and Transformers

first applied by John Hopfield in 1982 to solve optimization problems. In 1997, alternative
recurrent models, already introduced by Jeff Elman in 1972 and later improved.

An even more sophisticated path toward the evolution of AI was opened when
researchers started to devise mechanisms to emulate human behavior through attention
mechanisms. Interestingly, the use of these mechanisms gave rise to the first machines that
could likely pass the Turing test (Pinar Saygin et al. 2000). The first released attention-based
chatbot released by Google Inc., developed in 2017 and named language model for dialogue
applications (LaMDA) (Thoppilan et al. 2020) created a significant amount of controversy
when Blake Lemoine, one of the engineers of the team that developed the chatbot,
suggested that the machine may present signs that imitate consciousness (Tiku 2022),
something that was widely misinterpreted as him claiming that the machine was actually
sentient. He was doing a study related to gender, ethnicity, and religious biases. In the
course of his experiments, he asked what religion the machine would be if it was an
officiant in Israel. The machine responded “The only true one: the Jedi religion.” That
triggered in him a feeling that the machine was perceiving that the question was tricky,
and deflected with irony. Lemoine concluded that if the machine was not able to pass the
Turing test, we can say that it is not sentient, but if it passed, then we cannot discard it.

Blaise Agüera y Arcas, an AI research leader at Google denied that claim. But this opened
a debate that escalated later. In March 2023, MLRI researcher Eliezer Yudkowsky wrote in
Time Magazine “Progress in AI capabilities is running vastly, vastly ahead of progress in AI
alignment or even progress in understanding what the hell is going on inside those systems.
If we actually do this, we are all going to die.”

In May of this year, Geoffrey Hinton, the godfather of AI resigned from Google in order
to “freely speak out about the risks of AI.” He claimed that a part of him now regrets his
life’s work (C. Metz 2023). He thinks that the computer models that we have now may be
better than the human brain for certain tasks, and the idea of artificial superintelligence
may come very soon.

Yoshua Bengio, a second father of AI, is more specific: AI can pass the Turing test, and
they can fool us into thinking that they are human beings: which can destabilize democracy
through disinformation since AI is basically in the hands of anyone. An AI can achieve lev-
els of complexity similar to those of the human brain without the limitations of the human
brain, so one of these machines can be smarter than we are. A machine could act in a way
that we could not, and it could, for example, misuse legislation by finding loopholes more
efficiently that the smartest lawyer. Bengio claims a regulatory body for these and many
more, maybe unknown, issues of AI. He signed, with Hinton and many other scientists, a
letter claiming a pause in the AI experiments.1 See also Bilefsky (2023).

Max Tegmark, another of the authors of the letter, an MIT researcher in AI wrote an
article in Time Magazine (Tegmark 2023) that warns of the risk of extinction due to the AI.
He wrote “Before superintelligence and its human extinction threat, AI can have many
other side effects worthy of concern, ranging from bias and discrimination to privacy loss,
mass surveillance, job displacement, growing inequality, cyberattacks, lethal autonomous
weapon proliferation, humans getting ‘hacked’, human enfeeblement and loss of meaning,

1 https://futureoflife.org/open-letter/pause-giant-ai-experiments.

https://futureoflife.org/open-letter/pause-giant-ai-experiments

6.2 Attention Mechanisms 227

non-transparency, mental health problems (from harassment, social media addiction, social
isolation, dehumanization of social interactions) and threats to democracy[…].”

The debate is open and, beyond educated apocalyptic claims, it is a natural consequence
of the great and previously unseen power of AI nowadays in general and, in particular,
of attention mechanisms.

6.2 Attention Mechanisms

Attention is a core human brain functioning mechanism and is a complex cognitive func-
tion (Rensink 2000; Corbetta and Shulman 2002). One important property of the human
learning mechanism is the ability to concentrate on information in parts and not as an
entirety. This capability of human learning is called attention. For example, while perceiv-
ing things visually humans tend to focus on certain parts or aspects of the scene, and this
part is identified by them to find similarities with other scenes having the same component.
Humans tend to learn to focus on an individual aspect rather than the scene as a whole
(Niu et al. 2021). Therefore, humans process information by selecting high-value features
from a huge information source with the help of limited resources for processing informa-
tion. With this kind of approach, humans learn more accurately and efficiently over time.
This type of learning in humans is referred to as an attention mechanism as they focus or
attend to certain specific information out of massive information.

Attention in machine learning refers to giving importance and priority to certain pieces
of input data while disregarding the rest to replicate the cognitive attention mechanism.
It enabled researchers to develop algorithms that can distinguish between input compo-
nents that are crucial for solving an issue and those that are not. According to research,
adding an attention layer to several types of deep learning neural networks increases their
performance (Bahdanau et al. 2014). The attention model has been utilized successfully in
practice to address a variety of real-world issues in the fields of natural language processing
(NLP) and computer vision, including language translation (Z. Lin et al. 2017), document
classification (Z. Yang et al. 2016), image captioning (K. Xu et al. 2015), and image synthesis
(S. E. Reed et al. 2016a). For instance, in tasks involving machine translation, only selected
words may be useful for predicting the subsequent word. While in an image-captioning
problem, certain areas of the input image are more useful for generating the caption. Atten-
tion models integrate the idea of relevance by assisting the model to constantly focus on only
those portions of the input that aid in effectively finishing the task.

6.2.1 The Nadaraya–Watson Attention Mechanism

In 1964, Nadaraya and Watson proposed a regression model (Nadaraya 1964; Watson 1964)
that may be considered an initial foundation of attention mechanisms in deep learning.
It is a non-parametric regression approach that computes the conditional probability of a
target variable given a set of features or predictor variables, with no assumptions about the
actual data distribution. Given n training data with features and their associated target val-
ues (x1, y1), (x2, y2),… , (xn, yn), for a new instance xj (this instance is usually called a query

228 6 Attention Networks and Transformers

in this context), we want to estimate the target value ŷj. A naive regression model may sim-
ply estimate the median or average value of the target variable for all observations without
taking into account the relationship with the features. The expression for this model can be
defined as:

ŷj =
n∑

i=1
yi (6.1)

On the other hand, the Nadaraya–Watson model assigns weights for every observation and
aggregates the weighted responses to determine the regression function at a specific point.
The weights represent the significance of each of the training feature samples to the query x.
Thus the Nadaraya–Watson model is able to capture more complicated and non-linear inter-
actions between features and target variables than the naive approach. The target variable ŷ
may be estimated in this case as

ŷj =
n∑

i=1
𝛼i,jyi (6.2)

Coefficients 𝛼i,j are referred to as the attention coefficients, and they are computed as

𝛼i,j =
K
(xj−xi

h

)
∑n

k=1 K
(xj−xk

h

) (6.3)

where K(•) is a kernel function, or a positive definite function that is used to measure the
similarity between samples xi and x. By virtue of the Mercer’s Theorem (Aizerman 1964),
positive definite functions are equivalent to dot products of mappings of vectors xi, xj into
a higher dimension Hilbert space. The kernels used in the Nadaraya and Watson regres-
sion papers were radial basis functions as the square exponential kernel, (sometimes called
Gaussian kernel) the Epanechnikov Epanechnikov (1969) kernel, the triangular kernel, and
others, this is, functions that are circularly symmetric around the origin and monotoni-
cally decreasing when the distance |xi − x| increases. Therefore, parameter h establishes
the width of the kernel that controls the bias-variance tradeoff of the regression (Geman
et al. 1992).

Essentially, the weighting function in the Nadaraya–Watson regression model and the
attention mechanism in the current deep learning models have a conceptual similarity.
These models aim to give more priority to specific regions of the input while making a
prediction. Nevertheless, there exist some significant differences between the two models.
For instance, in the Nadaraya–Watson model, the weights are determined based on the dis-
tance between the test point and the training samples. However, the weights in the attention
mechanism are learned by the model during training and frequently rely on the content of
the input sequence.

Example 6.2.1 (Nadaraya–Watson regression model)
This example implements the Nadaraya–Watson model for non-parametric regression.
To perform the estimation, it takes four inputs, which are two sequences representing the
independent variable xi, the dependent variables yi, a query point x, which is the point for
which we want to estimate the function value y, and a kernel parameter that determines
the influence of nearby points on the estimation.

6.2 Attention Mechanisms 229

In this example, a set of random data with xi ∈ ℝ is generated containing 100 random
values ranging from 0 to 10. The dependent variable is generated by computing a sinusoid
of the independent variable plus some noise as

yi = sin(𝜔xi) + gi (6.4)

where sequence gi is a set of Gaussian random values with zero mean and variance 1.
Next, a set of query points is defined as xj = j, 0 ≤ j ≤ 10. These query points will serve

the purpose of estimating the function values in the regression model. The width param-
eter h in Eq. (6.3) is set to 0.5, which determines the width of a square exponential kernel
K(xj − xi) = exp

(
∥xi − xj∥∕h

)
and affects the smoothness of the estimated function. Finally,

the Nadaraya–Watson model is applied to each query point, utilizing the defined function.
As a result, a list of estimated function values is obtained by evaluating the model at each
query point. Figure 6.1 plots the data points and the Nadaraya–Watson regression line.
The resulting plot helps visualize the relationship between the independent and depen-
dent variables, showcasing the effectiveness of the Nadaraya–Watson model in capturing
the underlying pattern in the data.

Training data points

(a) (b)

50

40

30

20

10

0
0 10 20 30 40 50

0 2 4 6 8 10

0.35
1.0

0.5

0.0

–0.5

–1.0

0.30

0.25

0.20

0.15

0.10

0.05

0.00

Training data points
Nadaraya–Watson regression line

Q
ue

ry
 p

oi
nt

s

y

x

Figure 6.1 (a) Attention matrix represents the attention weights between the training data and
the queries. (b) Nadaraya–Watson regression model.

6.2.2 The Bahdanau Attention Mechanism

The sequence-to-sequence translation machine presented in Section 5.7.5 based on an
encoder–decoder architecture constructed with recurrent networks may have a major
limitation due to the fact that the source sequence is entirely coded in a single hid-
den state h. The encoder–decoder architecture is efficient for tasks where the source
sequence is small. However, when the sequence is long, it becomes challenging for the
encoder–decoder to store all the contextual information as a single fixed-length vector.
By coupling the attention mechanism with the traditional encoder–decoder framework,
the decoder can selectively focus on relevant parts of the input sequence when generating
each output token. This enables the model to overcome the limitation of the fixed-length
context vector and improves its performance in tasks with longer input sequences.

230 6 Attention Networks and Transformers

Consider the given source and target sentences in a machine translation task from English
to German:

● Source (English): “How does the bird fly?”
● Target (German): “Wie fliegt der Vogel?”

The word “How” in the source sequence is linked to the word “Wie” in the target sequence.
Moreover, “bird” corresponds to “Vogel,” and “fly” translates to “fliegt” in German. Instead
of analyzing the entire sequence, the focus shifts to specific sections that influence the pre-
diction in the target sentence. The word “does” is given less importance, resulting in its
hidden states in the context vector computation containing less information compared to
terms like “bird” and “flight.”

This limitation can be overcome with the use of attention mechanisms. The power of
attention mechanisms relies on the fact that these mechanisms only attend to the parts of
the input sequence that are important for the prediction of the next word. These are the parts
of the sentence that are then used to modify the state before producing the next prediction.
This is essentially the idea that gave rise to the transformers.

The attention mechanisms were developed by Bahdanau and his team for sequence-to-
sequence modeling tasks (Bahdanau et al. 2014). It is a type of neural network architecture
that is commonly used for applications that involve processing sequences of data, not only
for machine translation (Neubig 2017) but also for speech recognition (Prabhavalkar et al.
2017), and text summarization (Shi et al. 2021).

In the Bahdanau attention model shown in Fig. 6.2, the source sequence xi, 1 ≤ I ≤ T is
first passed through an encoder consisting of a bidirectional RNN which creates a collection
of hidden states hi, capturing the contextual information of the input. At each time step

x1 x2 x3

h1

αt,1

st–1

yt–1

st

ct

yt

αt,2 αt,3 αt,T

h2 h3

xT

hT

h1́ h 2́ h3́ hT́

Figure 6.2 The Bahdanau attention mechanism. Source: Adapted from Bahdanau et al. (2014).
At instant t, the decoder is fed with a linear combination ct of the forward section of the encoder
recurrent network. The elements of the linear combination are attention coefficients that use the
present decoder state and the forward states of the encoder.

6.2 Attention Mechanisms 231

i of the encoder, it produces a hidden state hi and at each time step t of the decoder,
it produces a hidden state st as a function of the previous state si−1, the previously decoded
word yi−1 and a context vector ci as

st = tanh(st−1, yt−1, ct) (6.5)

Alignment scores are calculated as a measure of similarity between the current decoder
time step and each encoder hidden state. The alignment score may be determined in sev-
eral ways; however, Bahdanau utilized the additive alignment score, which can be repre-
sented as:

f(st−1,hi) = vT
a tanh

(
Wa

[
st−1
hi

])
(6.6)

where va and Wa are, respectively, a learnable vector and matrix of the alignment score.
The alignment scores are normalized using a softmax function to generate the attention
weights 𝛼t,i. The softmax procedure ensures that the weights are between 0 and 1 and the
sum of the total weights is equal to 1. The attention weights determine how much of each
source’s hidden state should be taken into account when calculating the output. For the ith
encoder hidden state, the attention weight can be determined as follows:

𝛼t,i =
exp(f(st−1,hi))

T∑
i′=1

exp(f(st−1,hi′))
(6.7)

where T is the length of the source sequence. Finally, the context vector ct is generated
by calculating the weighted sum of the encoder hidden states and their respective context
vectors.

ct =
T∑

i=1
𝛼t,ihi (6.8)

The new state st of the decoder RNN is then used as the input of a dense structure in
order to predict the token corresponding to the next word. A compact representation of the
process is represented in Fig. 6.3.

The experiments presented in Bahdanau et al. (2014) were applied to English to French
translation, with the bilingual corpora provided with ACL WMT’14,2 and a subset of the

Figure 6.3 A compact representation of the
Bahdanau attention mechanism. The input
source of T elements is fed into a bidirectional
RNN (encoder) that outputs a sequence of
T states. The attention mechanism computes
attention scores between the present state of the
target RNN (decoder) and then a linear
combination of the states, together with the
previous decoder state is used to generate a new
state that is fed into a dense layer to produce the
next predicted word.

Source Target

RNN RNN

Attention

Dense
layersAggregate

2 http://www.statmt.org/wmt14/translation-task.html.

http://www.statmt.org/wmt14/translation-task.html

232 6 Attention Networks and Transformers

most used words in both languages were tokenized with the use of the open-source machine
translation package Moses.3 ,4 The model is compared to the RNN encoder–decoder pro-
posed in Cho et al. (2014b), both systems constructed with RNNs with 1000 hidden units.
The output of the decoder consisted of a multilayer network (labeled as dense layers in
Fig. 6.3) with a single MaxOut activation (see Section 1.4) in the hidden layer and a soft-
max output in order to compute the probability of the predicted word. A beam search (see
Section 5.7.6) is used for the translation. When the method is trained with sentences of up
to 50 words, its BLEU score was 31.44, while the same experiment performed on an RNN
encoder–decoder showed a BLEU of 24.19.

6.2.3 Attention Pooling

In Sections 6.2.1 and 6.2.2 we have seen different examples. In this section, a more formal
definition of attention is derived, and all the concepts previously introduced are redefined
for clarity.

Assume that a database is available where each entry i has two fields, namely a key ki
and a value vi. In order to retrieve values of interest, a query q is constructed and com-
pared to all the keys in the database. A classic query would be, for example, a sentence
written in SQL (a language used to construct queries in databases) that establishes a set of
conditions. For example, in a people database, get all entries whose name is “Óscar Gar-
cía.” The result will retrieve the data (value) corresponding exclusively to the people with
this name (used as a key). An approximate search will extend the results to those people
whose name is “Oscar Garcia” (without the tildes) or “Óscar Garci,” people with longer
names (“Óscar Gómez García”), or people with typos or alphabet code errors in their names
(“óscar Garcíia”). The approximate search can establish a score that denotes
the degree of similarity between the query and the key. This is the idea of an attention
mechanism, applied to any type of data.

Now assume a set of queries, keys, and values that have a representation as vectors con-
structed with real numbers, and that the result of the query is to be reconstructed as a linear
combination of the retrieved values in a way formally equal to the Nadaraya–Watson regres-
sion in Eq. (6.2). The result of the query can be written as

z =
N∑

i=1
𝛼(q,ki)vi (6.9)

where 𝛼(q,ki) is the so-called attention score between query q and key ki, and its value
is high if the similarity between both is high. Equation (6.9) is called an attention pooling.
Representation z is a result of the attention of the query toward all keys. The attention scores
must satisfy a couple of properties, namely

0 ≤ 𝛼(q,ki) ≤ 1
N∑

i=1
𝛼(q,ki) = 1

(6.10)

3 https://www2.statmt.org/moses/index.php?n=Main.HomePage.
4 https://pypi.org/project/mosestokenizer.

https://www2.statmt.org/moses/index.****php?****n****=Main.HomePage
https://pypi.org/project/mosestokenizer

6.2 Attention Mechanisms 233

So
ft

m
ax

+k3

k2

k1

v1 v2 v3

kN

vN

q

f

f

f

f

Figure 6.4 Attention mechanism.

This is, the linear combination in Eq. (6.9) must be convex. The scores must satisfy the
properties of a probability mass function, something that is satisfied with the use of a soft-
max function. Therefore, in order to construct an attention pooling, an appropriate non-
negative function f (q,ki) that measures similarity between the query and the keys must
be found and then all the similarity outputs must be processed with a softmax function to
construct the set of scores as depicted in Fig. 6.4.

The dot product between vectors is an adequate similarity function. For a collection of
vectors over a hypersphere of radius r, the dot product between two vectors is minimal (−r2)
if both vectors have opposite directions and it is maximal (r2) if both vectors are equal. But
since the function must be not nonnegative, one can use the exponential of the negative
dot product, which is then a nonnegative function. If the query q and the keys ki have a
Euclidian norm that is approximately constant, then the softmax operation applied to these
exponentials is

𝛼
(
ki,q

)
=

exp
(

D1∕2q⊤Mki
)

N∑
j=1

exp
(

D1∕2q⊤Mkj
) (6.11)

where the dot product is normalized with the length D of the query and key vectors and
matrix M is needed when the query and the key do not have the same dimension in
order to map them into a common space. In this case, the operation is called a scaled
dot product.

6.2.4 Representation by Self-Attention

The idea of attention pooling can be implemented for machine learning. Assuming a
sequence of N elements x1,… , xN , a representation of the entire sequence can be con-
structed as a function of the attention 𝛼i,j = 𝛼

(
ki,qj

)
of each one of the patterns over all

the sequence. Representation

zj =
N∑

i=1
𝛼i,jvi (6.12)

234 6 Attention Networks and Transformers

will then contain information on local and global relationships between elements of the
sequence according to a similarity criterion, to be used for a given task.

In self-attention, the queries, keys, and values are all represented by the elements of the
sequence. Assuming that the dot product-based attention in Eq. (6.11) is used to compute
the attention coefficient between elements xi and xj, one of the elements will be playing
the role of the query and the other will be the key. But this attention mechanism is very
simple, and it is essentially a function of the angle between both vectors. If we want to make
this comparison more powerful, we can transform the query and the key with a parameter
matrix with arbitrary coefficients. The similarity criterion is then driven by the values of
these two matrices, which need to have the same dimensions for the dot product to work.
The value can also be mapped in a given space by a matrix. The queries, keys, and values are
then transformed as qi = W(q)⊤xi, ki = W(k)⊤xi, and vi = W(v)⊤xi. Matrices W(q) and W(k)

must have the same size, while matrix W(v) has arbitrary size. This structure is built this
way for the parameters in the matrices to be easily trainable.

If matrix A is constructed with entries 𝛼i,j corresponding to the attention coefficients, and
matrix X contains column vectors xi then the representation of all input data through the
attention mechanism can be written as

Z = (W(v)⊤X)A (6.13)

6.2.5 Training the Self-Attention Parameters

The parameter matrices that transform the data into queries, keys, and values are trainable
by using the standard backpropagation method, according to, for example, to the ML cri-
terion and a given task. For example, if a sequence xi, 1 ≤ i ≤ N is available, the attention
mechanism will produce a representation zi. This representation can be passed through a
FC layer to perform a given pattern recognition task. In this simple structure, we only have
three layers (see Fig. 6.5).

x1

x1 x2 x3

x2

x3

xj

So
ft

m
ax

D
en

se
 la

ye
r

(W
)

+

W(k)

W(k)

W(k)

W(k)

W(v)W(v)W(v) W(v)

W(q)

xN

xN

zj oj

Figure 6.5 Representation zj of a single element xj through dot product attention over a sequence
of N elements processed through a dense layer with weights W to illustrate the backpropagation
procedure. The output error is backpropagated to the output zj to update parameters W(v) and then
to the output of the softmax function in order to update W(k) and W(q). The process must be
repeated for all elements of the sequence.

6.2 Attention Mechanisms 235

The output of the fully connected layer will give an error 𝜹j, one error vector per element
of the sequence. For each one of the elements of this sequence, this error will be backprop-
agated to the output of the self-attention mechanism with the backpropagation equations
introduced in Chapter 1, in particular with Eq. (1.110). Let us call 𝜹(v)j to the error back-
propagated to the self-attention layer output. Here, we find representation zj, which can be
expressed as a combination of the values corresponding to each one of the elements of the
sequence as

zj =
N∑

i=1
𝛼i,jW(v)⊤xi = W(v)⊤

N∑
i=1

𝛼i,jxi (6.14)

Following Eq. (1.104), and taking into account that here there are no nonlinear activations,
the error backpropagated to this point is 𝜹(v)j = W𝜹j where W are the weights of the dense
layer. Then we apply Eq. (1.103), which says that the update for W(v) and element xj is
constructed with the product of the input times the error, where the input is the linear
combination of the sequence, as seen in Eq. (6.14), this is

W(v) ← W(v) − 𝜇

(N∑
i=1

𝛼i,jxi

)
𝜹
(v)⊤
j (6.15)

Therefore, similarly as in (1.110), the update taking into account all elements of the input
sequence are

W(v) ← W(v) − 𝜇

N∑
i=1

N∑
j=1

𝛼i,jxi𝜹
(v)⊤
j (6.16)

Here it is worth introducing a matrix notation for this update. We define𝚫(v) as the matrix
containing all the backpropagated errors 𝜹(v)j , and using the already defined matrices con-
taining elements xi and 𝛼i,j, the previous update can be written as

W(v) ← W(v) − 𝜇XA𝚫(v)⊤ (6.17)

The updates for W(q) and W(k) are also derived by backpropagating error 𝜹(v)j to the output
of these matrices, but it is left as Problem 6.2 for the reader.

6.2.6 Multi-head Attention

The actual power of attention mechanisms consists of constructing representations that
are a function of a diversity of attention modules. Each one of these modules is called an
attention head, and a representation that combines different attention mechanisms is called
a multi-head attention mechanism.

The mechanism is illustrated in Fig. 6.6, where a single query qj is represented with the
keys and values corresponding to element i of the sequence, to produce the scalar com-
ponent zi,j of the representation. In a self-attention mechanism, the query is represented
by element xj of the sequence itself, and the key and value are represented by element xi.
These values are linearly transformed S times by arrays W(q)

s , W(k)
s , W(v)

s . produces a vec-
tor hi,j,s which is a nonlinear operation of query j with key and value i, to produce the

236 6 Attention Networks and Transformers

ki

αi,j,2 αi,j,S

zi,j

αi,j,1

ki

vi

vi

q

q

Attention Attention Attention

ki viq

W(q)
1 W(k)

1 W(υ)
1 W(q)

2 W(q)
S W(k)

S W(υ)
S

w(C)

W(k)
2 W(υ)

2

Figure 6.6 Multi-head attention.

attention element s, with the form

hi,j,s = f
(

W(q)⊤
s qj,W

(k)⊤
s ki,W

(v)⊤
s vi

)
(6.18)

Function f(•) can be a dot product score function as in (6.11) or an additive attention score,
in which case, the output is expressed as

hi,j,s = tanh
(

W(q)⊤
s qj + W(k)⊤

s ki + W(v)⊤
s vi

)
(6.19)

with an arbitrary dimension. The sequence of outputs is concatenated in a vector and then
mapped through an output matrix W(C) as

zi,j = W(C)
⎡⎢⎢⎣

hi,j,1
⋮

hi,j,N

⎤⎥⎥⎦ (6.20)

which can be interpreted as the representation of the query j through multiple attention cri-
teria applied to sample i. Then, assuming that vector zi,j has dimension Dz, and a sequence
of N elements is to be represented through S multi-head attention heads, then the sequence
will be represented by N × N vectors of dimension Dz, which can be stored in a three-
dimensional array.

6.2.7 Positional Encoding

In machine-to-machine translation and other NLP applications, the position of each word
relative to the sequence that is to be processed is fundamental for the meaning of the sen-
tence. The same has to be said of the possible applications of attention mechanisms to other
types of data, namely images or sequences of images, where the images are chinked into
patches and introduced in an attention machine. The position of each patch inside the
image is fundamental to interpreting the image and extracting knowledge from it.

Therefore, the elements of the sequences used as inputs must contain information about
their position that can be used by these attention mechanisms. The concept of positional
encoding was introduced with this purpose in Vaswani et al. (2017) for sequence translation.
The authors point out that their model does not contain any recurrence or any convolu-
tional operation that can take advantage of the positions from a structural point of view.
In other words, if we introduce a sequence into a recurrent structure or a convolutional

6.2 Attention Mechanisms 237

structure, it will produce an output. If we change the order of the elements, the output will
be different. In an attention mechanism, the output will be the same, but with a different
order. This is, the attention mechanism does not inherently capture the particularities of a
different position of the sequences.

This inconvenience can be overcome by injecting positional information to each one of
the elements by simply adding a positional vector to each element. This vector has to have
the same length as the elements of the sequence. This idea was originally introduced by
Gehring et al. (2017). Given a sequence of elements x̃i ∈ ℝD, with components x̃i,j, subindex
i represents the position of the element inside the sequence and j the position of each scalar
inside each vector. Then, a positional encoding is applied as

xi = x̃i + pi (6.21)

where pi is a positional vector whose components with even and odd indexes are

pi,2j = sin

(
i

T
2j
D

)

pi,2j+1 = cos

(
i

T
2j
D

) (6.22)

for 1 ≤ 2i, 2i + 1 ≤ D. In Vaswani et al. (2017) parameter T is set to 104, while the dimension
of the sequence elements is 512.

Example 6.2.2 (Visualization of positional encoding)
This example illustrates the generation and visualization of positional encoding, which
are commonly employed in sequence models like transformers. When dealing with tasks
that rely on the order of elements in a sequence, such as NLP or time series analysis,
it becomes crucial for the model to grasp the relative positions of those elements. Posi-
tional encoding plays a vital role in enabling the model to distinguish between elements
based on their positions within the sequence. In this example, position encodings are
generated for a given sequence length denoted as s and dimensionality denoted as D.
The positional encoding matrix, denoted as P ∈ ℝs×D, is created with all initial values set
to zero.

The position encodings are computed using sine and cosine functions. The even-indexed
columns (starting from 0) of matrix P are assigned the values obtained by applying the
sine function to the sequence index divided by a denominator based on the dimension-
ality. The denominator is obtained by evaluating the equation T

2j
D , where T is equal to

10,000 and j represents the indexes. Similarly, the odd-indexed columns are assigned cosine
values using the same calculation. In this specific example, position encodings are gen-
erated for a sequence length of 100 and a dimensionality of 512. The resulting position
encodings are visualized in Fig. 6.7, where the x-axis represents the dimension of the posi-
tion encodings, while the y-axis represents the position in the sequence. Furthermore, a
3D plot is also generated to visualize the position encodings. This 3D plot in Fig. 6.8 pro-
vides an additional perspective, where the x-axis represents the dimension, the y-axis rep-
resents the position in the sequence, and the z-axis represents the value of the position
encoding.

238 6 Attention Networks and Transformers

Dimension

P
o

si
ti

o
n

0

0 1.00

0.75

0.50

0.00

0.25

–0.25

–0.50

–0.75

20

40

60

80

100 200 300 400 500

Figure 6.7 Visualization of positional encoding in 2D.

Dimension

Po
si

tio
n

V
al

u
e

1.00

0.75

0.50

0.25

–0.25

–0.50

–0.75

100

80

60

40

20

0

0
100

200
300

400
500

0.00

Figure 6.8 Visualization of positional encoding in 3D.

Example 6.2.3 (Multi-head attention implementation)
In this toy example, we use an attention mechanism to predict text, where the training
data is a poem with 18,696 words in English. The mechanism has an input consisting of
eight characters of the poem, and the target is the next character of the sequence. Dur-
ing the training, the error between the actual input and the desired one is computed and
then a backpropagation is used to optimize the structure. The sequence of characters at
the input is embedded with a dictionary that contains 30 embeddings corresponding to
the characters present in the text, which are all lowercase letters in the English alphabet

6.2 Attention Mechanisms 239

plus 4 punctuation characters. The length of each embedding is 32, this is, each character is
coded in a token of length 32. This is coded as a simple example of how multi-head attention
can be constructed.

The structure contains one attention layer where each character of the input sequence
is transformed in a token through the embedding, and then introduced into two different
dense layers, to produce a query and a key. Assuming a matrix X containing a sequence, the
queries and keys are

Q = W(q)⊤X

K = W(k)⊤X
(6.23)

The size of these vectors has been chosen as 16. The dot product between all queries and
keys are computed to obtain the attention matrix A and the upper diagonal of the dot prod-
uct matrix is discarded by multiplying it by a triangular matrix of ones. This is done so the
attention between a character and a future one is not used, so the prediction is based only on
past characters. The query is computed with a third linear dense layer as vi = W(v)⊤xi. This
vector is then transformed by the attention coefficients to get the attention representation.
The representation for the whole sequence is

Z = softmax(VA) (6.24)

Sixteen of such attention mechanisms are implemented to create a multi-head attention
with 16 heads, so 16 attention matrices A1,… ,A16 are computed, and then 16 attention
representations zi,1,… , zi,16 are obtained. These vectors are then concatenated and used as
input of a dense layer with 32 logistic outputs (as many as elements in the input embed-
dings). The output of this dense layer is used as input of a dense layer with softmax output
and length 30, corresponding to the 30 characters.

The whole structure is trained with a cross-entropy or ML criterion and a backpropa-
gation (see Chapter 1). The data is split into a training and a validation set, the first one
containing 90% of the data. At every 1000 epochs of the training, the training and valida-
tion losses are computed. The evolution of these errors is illustrated in Fig. 6.9. It can be
seen that this optimization decreases the error with the number of iterations.

Figure 6.9 Test and validation
errors in the text prediction
Example 6.2.3.

0 10 20 30 40 50

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4 Time
Validation

E
rr

o
r

Epoch number ×1000

240 6 Attention Networks and Transformers

During the test, the structure generates text in a recursive way. When a character is
predicted, it is used as input to predict the next one. Nevertheless, this machine still
does not work in practice, due to the low complexity of the parameters. For example,
the first predicted sentence is “of theanr the meat,” which is pure gibberish. The same
data is used in Example 6.3.1 below, where an attention mechanism with the same
structure that this one is used in a transformer structure, with a more successful
result.

Example 6.2.4 (Machine translation with encoder–decoder attention)
An LSTM network-based encoder–decoder model with attention is utilized to translate text
from German to the English language. The encoder interprets the German-language input
sequence and stores the relevant data as a context vector. On the other hand, the decoder
uses this context vector as input to create the output sequence in English. The network
uses the data downloaded from the website: https://tatoeba.org. Tatoeba is an open and
free machine translation dataset comprising sentences and translations that are collabo-
ratively contributed by volunteers worldwide. The training set comprises approximately
199,378 sentence pairs in German and English, while the test set encompasses approxi-
mately 22,154.

The input text undergoes preprocessing, which involves converting it into lowercase,
removing leading and trailing spaces, as well as eliminating punctuation and newline char-
acters using regular expressions. Following preprocessing, the text is tokenized, resulting in
a list of tokens that are returned for further processing. Also, special tokens such as <sos>
(start of sentence) and <eos> (end of sentence) are included to identify the beginning and
conclusion of each sentence. Next, vocabularies are constructed for both the German and
English fields using the training data. The vocabulary size is limited to a maximum of
10,000 words, and any word occurring less than twice in the training data is considered
an unknown token. As a result, only the 10,000 most frequent words are retained in the
vocabulary for each language.

The structure introduced is a sequence-to-sequence model equipped with attention,
specifically utilizing a B-LSTM network architecture, as shown in Fig. 6.10. It is composed
of three key elements: an encoder, a decoder, and an attention layer. The sequence-to-
sequence model takes a source sequence (German) and a target sequence (English) as
inputs and generates the translated output sequence. The encoder processes the source
sequence, and the decoder generates the target sequence using attention mechanisms to
focus on relevant parts of the source during decoding.

The encoder block is configured with the following hyperparameters: It takes the
German language’s specific vocabulary size as input, utilizes an embedding size of 256,
consists of a single layer with 512 hidden units, and incorporates a dropout probability
of 0.5 to aid in regularization during the training process. The encoder consists of an
embedding layer, an LSTM layer with bidirectional processing, and linear layers for
transforming the hidden and cell states. During the forward pass, the input sequence is
embedded, passed through the LSTM, and the final hidden and cell states are updated and
returned.

https://tatoeba.org

6.2 Attention Mechanisms 241

softmax

LSTM

cell
LSTM

cell

Target embeddingSource embedding

<END> <START>

Decoder B-LSTM

Encoder B-LSTM Attention

[ci,si]

p[yi|y1,···,yi–1]

s1

y1 ykx2x1

h2h1 hm ci

s2 sk

Figure 6.10 The encoder–decoder B-LSTM architecture for German to English translation.

In the same manner, the decoder is composed of an embedding layer of size 256, an
LSTM layer, an attention layer, a linear layer responsible for generating the output, and
a dropout layer of probability 0.5. During the forward pass, the decoder takes three main
inputs: the current target token, the encoder states, and the decoder’s previous hidden and
cell states. It then calculates attention scores between the encoder states and the previous
hidden state of the decoder. These attention scores are combined to form a context vector,
which is then concatenated with the current target token’s embedding. The combined input
is passed through the LSTM layer, and the output from the LSTM is used to predict the next
target token in the sequence. Figure 6.10 denotes the architecture of the encoder–decoder
model used for translating German to English.

The training procedure is executed for a total of 100 epochs. At each epoch, the model
processes batches containing pairs of source and target sequences from the training
dataset. The model takes the source sequence and the corresponding target sequence
as inputs to generate predictions. The cross-entropy loss is then utilized to compute the
loss between the model’s predictions and the actual target values. To prevent poten-
tial issues with exploding gradients during training, the gradients are computed and
clipped. Subsequently, the Adam optimizer is updated with the calculated gradients,
and the loss is recorded for the purpose of visualization and monitoring the training
progress.

The assessment of the machine translation model involves an evaluation of its perfor-
mance using the test dataset. Additionally, an attention map is generated to visually evaluate
the translation quality of the model. The attention map is displayed as an image, where the
x-axis represents the words in the German sentence and the y-axis represents the words in
the translated English sentence (see Fig. 6.11). This visualization helps understand which
parts of the German sentence the model paid attention to while generating the English
translation.

242 6 Attention Networks and Transformers

<so
s>

.
bi

tte
,

la
ut

er

sp
ric

h

<eo
s>

speak

louder

,

please

.

Figure 6.11 Visualization of the attention
mechanism of a neural machine
translation model, specifically for
translating German sentences to English.
The attention map is then displayed as a
heatmap, with brighter areas indicating
higher attention.

Output:

ACTUAL GERMAN: . tisch einem an sitzt tom
ACTUAL ENGLISH: tom is sitting at a table .
PREDICTED ENGLISH: tom is sitting on a table .
===
ACTUAL GERMAN: . bitte, lauter sprich
ACTUAL ENGLISH: please speak more loudly .
PREDICTED ENGLISH: speak louder, please .
===
ACTUAL GERMAN: . aufzupassen kinder toms auf, helfen mir musst du
ACTUAL ENGLISH: i need you to help me take care of tom <unk> kids .
PREDICTED ENGLISH: you need to help me look at tom <unk> children .
===
ACTUAL GERMAN: ? das du brauchst <unk>
ACTUAL ENGLISH: what do you need that for ?
PREDICTED ENGLISH: what do you need for for ?
===
ACTUAL GERMAN: . sich langweile er, sagte tom
ACTUAL ENGLISH: tom said that he <unk> bored .
PREDICTED ENGLISH: tom said he <unk> bored .
===

6.3 Transformers

Attention-based models were mainly introduced to perform sequence-to-sequence tasks
mainly in language processing, for example, machine translation. Later, they were also
extended to accept other types of inputs such as images or videos, an example would be
image captioning. The models were initially built with RNN encoder–decoder architecture
without attention. Such models were taking input sequences one word at a time and pro-
viding the output the same way. Later on, attention was introduced which connected the
encoder and decoder parts of the models using the attention mechanism. This helped the
models to understand the relationship between the encoder outputs and the hidden states
of the decoder.

The encoder–decoder architecture was upscaled in Transformer architecture as it did not
use any type of time-series models such as RNNs or LSTMs. Later on, several other variants

6.3 Transformers 243

of transformers were introduced. Most of these models were application-specific. These
modified transformer-based architectures mainly constituted the family of large language
model (LLM)s. These variants were only either encoder-only models, decoder-only mod-
els, or encoder–decoder hybrid models. The encoder-only architectures are autoencoding
models that were developed using only the encoder part of the transformer architecture
and can be used mainly for classification tasks such as sentiment analysis, named entity
recognition (NER), word classification, etc. These models are particularly focused on recon-
structing sentences and, therefore, have the denoising objective. The decoder models tend
to understand the unidirectional context of the sentence and are autoregressive models.
Such models use only the decoder part of the transformer. Additionally, there have been
more advanced encoder–decoder architectures that make use of both the components of
transformer architecture. These models can be very useful in tasks with varying lengths for
input and output sequences as well as in scenarios where there exists a complex mapping
between input and output sequences. An example of the tasks would be text summarization
and text translation.

In the following, we summarize the most popular architectures that are being used
in applications of different domains. We will also explore more about the encoder-only,
decoder-only, and encoder-decoder models in detail later.

Transformers are one of the most popular networks that made use of attention mech-
anism (Vaswani et al. 2017). This architecture was a great advancement in the models
using attention mechanisms. In fact, transformer models inspired several advanced NLP-
associated architectures such as GPT-2, GPT-3, bidirectional encoder representations from
transformer (BERT), etc.

The encoder–decoder architectures that were introduced before made use of RNNs or
LSTMs to process sequential data using the attention mechanism. The attention mecha-
nism was incorporated by taking a weighted sum of all the previous encoder states. There-
fore, the decoder assigns more importance or greater weight to a particular element of the
input. The main disadvantage of this approach was that each input sequence had to be
treated as a single element at a time. This results in increased sequential computation,
i.e. if we take the input to the encoder as (x1, x2,… , xn) which is converted to a continu-
ous sequence representation of context vector given by (z1, z2,… , zn). Given c, the decoder
generates the output sequence (o1, o2,… , on) one element at a time. Therefore, due to its
recurrent nature, the model has to wait for the entire sequence again as the additional
input for generating the next. This results in increased time consumption and computa-
tional burden. To solve this problem, the transformer model incorporates both stacked self-
attention and point-wise, fully connected layers in the encoder–decoder architecture. The
features are obtained without using any recurrent units. The efficiency of the structure
is improved further by using only weighed sum and activations. This makes the archi-
tecture computationally efficient and parallelizable. The complete architecture is shown
in Fig. 6.12.

From Fig. 6.12, it is clear that the transformer structure has an encoder part on the left
half and a decoder part on the right half. Both the encoder and decoder combine the self-
attention mechanism with a position-wise feed-forward network.

The encoder part of the architecture consists of S layers. Each of the layers consists of
two sub-layers: one with a multi-head self-attention mechanism introduced in Section 6.2.6,

244 6 Attention Networks and Transformers

Encoder

Output

probabilities

Fully connected

Add and norm

Add and norm

Add and norm

Add and norm

Add and norm

Masked

multihead

attention

Multi-head

attention

Positional

encoding

Positional

encoding

EmbeddingEmbedding

OutputsInputs

Feed

forward

Feed

forward

Multi-head

attention
× S

S ×

D
ec

o
d
er

Figure 6.12 The transformer
structure. Source: Adapted from
Vaswani et al. (2017).

and the second layer is a position-wise fully connected feed-forward network. The structure
also uses residual connections for each of the sub-layers. This is then followed by layer
normalization (J. L. Ba et al. 2016). The output of each sub-layer is given by

LayerNorm(x + Fsl(x)) (6.25)

where Fsl(x) is the function implemented by the given sub-layer. The output dimensions
are kept constant. In the original work (Vaswani et al. 2017), the embedding layers as well
as all the sub-layers used the same output dimension of Dmodel = 512.

The decoder architecture is composed of the same S layers. The decoder architecture has
the same sub-layers as the encoder with an added third sub-layer. This third sub-layer per-
forms multi-head attention on the encoder output. The residual connections across each
sub-layer are implemented the same way as the encoder layer. Further, layer normalization
is also applied toward the end. The self-attention sub-layer is modified in the decoder to
prevent the positions from attending consecutive positions.

The multi-head attention layer shared between the encoder and decoder attention layer
uses queries from the previous decoder layer and the keys and values are the encoder
outputs. This setup is very similar to the encoder–decoder attention technique used in
sequence-to-sequence models such that the decoder attends to all the positions in the input
sequence. The self-attention layers in both the encoder and decoder are set up such that
each position in the encoder/decoder attends to all the positions in the previous layer of the
encoder/decoder. However, in the decoder layer to avoid the leftward flow of information

6.3 Transformers 245

masking is performed where the output embeddings are shifted by one position to make
sure the predictions of the position t are only dependent on the outputs of positions at
instants prior to t. This helps in masking out (setting to −∞) all the input values of the
softmax with the illegal connection. This is done using a padding mask and look-ahead
mask. The masking operation helps in performing causal attention mainly to discard the
outputs occurring in the future.

The transformer architecture uses the scaled dot product introduced in Eq. (6.11), with
the normalization or scaling factor (1∕

√
D) as the dimension of the keys, i.e. D = Dk.

The fully connected feed-forward network is present in both the encoder and decoder.
This fully connected network is applied to each of the positions separately. This layer per-
forms two linear transformations with ReLU activations between these transformations, as
shown in Eq. (6.26). These linear transformations that are implemented are the same across
different positions, however, the parameters stay different from layer to layer.

FCN(x) = W⊤
2 max (0,W⊤

2 x + b1) + b2 (6.26)

As for the sequence input to the models, transformers also make use of embeddings. The
embeddings are used to convert the input and output tokens to vectors. These vectors have
the dimension Dmodel. Another feature of these networks is the use of the softmax function
and learned linear transformation of the decoder output to convert them to probabilities of
the next token. Further, the same weight is shared between the pre-softmax layer and two of
the embedding layers. However, in the embedding layer, the weights are scaled by a factor
of

√
Dmodel.

Example 6.3.1 (Text generation using a decoder-only transformer architecture)
In this example, a model to predict text is constructed with the same purpose as in
Example 6.2.3, this is, given a sequence of characters, the structure is trained to predict a
character given the previous ones. The text used during the training is the same as the one
used in Example 6.2.3, but here, the decoder part of the transformer in Fig. 6.12 is used. In
the figure, the decoder uses a cross-attention mechanism that takes the key and the query
from the encoder. In the present example, the key, query, and value are taken from the
previous multi-head attention. The structure is presented in Fig. 6.13.

The description of the blocks is as follows. The output is a vector of probabilities with the
same length as the total number of characters in the training set. After a prediction, the pre-
dicted character is decided based upon the maximum probability element in the output vec-
tor. The input is fed with a sequence of previous predicted characters (during the training,
instead of the predicted outputs, the target or desired ones are used). The maximum length
of the sequence is set to 256. Each character is passed through an embedding block that
produces, for each character, a vector of length 384 (note that in the previous example,
the length was 32). Each vector is added a positional encoding.

The first block called the masked multi-head attention, is implemented in a way simi-
lar to the one in Example 6.2.3. For each of the six attention heads implemented in this
block, a matrix of attention coefficients is computed, and then they are masked with a lower
triangular matrix. This way, only the representation of each character is constructed with
attention coefficients corresponding to the previous characters. The value is transformed
with the six attention coefficient matrices to obtain six attention representations, which

246 6 Attention Networks and Transformers
D

ec
o
d
er

Output

probabilities

Fully connected

Add and norm

Add and norm

Positional

encoding

Embedding

Outputs

Feed

forward

Masked

multihead

attention

× S

Figure 6.13 Decoder-only transformer structure used in
Example 6.3.1.

are concatenated. In this example, the concatenated representations are passed through
another linear layer with the same dimensions at the input and output. After this, each
attention head is applied a 20% dropoff, and the result is the output of the multi-head atten-
tion, which is the attention representation of the input sequence.

This output is passed through an Add and normalization block. If the multi-head atten-
tion representation of an element of a sequence is zi, then the mean and the variance of this
vector are computed as

𝜇i =
1
D
∑

j
zi,j

𝜎i =
1
D
∑

j
(zi,j − 𝜇i)2

(6.27)

where D is the length of the vector. Then, the vector is normalized with these values. This
process is known as (J. L. Ba et al. 2016). The result is added to the input of the previous
multi-head attention.

The result of the previous operation is fed into a feed-forward network, which consists
of a linear layer, followed by a ReLU activation, another linear layer, and a dropout of 20%.
The result is then passed again through an add and normalization block.

This process is repeated S = 6 times. The result of this operation is then passed into the
fully connected block. In this block, the input is again normalized using the same layer

6.3 Transformers 247

normalization process explained above and then passed through a linear layer with as many
inputs as characters in the embedding dictionary.

The structure is trained with an Adam optimizer, a total of 5000 epochs, and a learn-
ing rate 𝜇 = 5 × 10−5. The structure is tested to generate several sentences with the result
below:

Generated text:
her the jakes wolle the own,
And left long blooked fram with your lack
The gold will behind flaJohbin Maureen.
Where lily wedding, they she lay were girl my now
Where she and Im dweet forget you fall.
The paled shows houses quijewely hence.
Heet ver unery will be hows
There though longs were a gave they bow
Twas down the runky row
Till how the arts now
Twy thy hey same loves easing bright
The mainlys where, here nor plays of wnine
They she eyes protest the for over
My broad friends to rave a see well

While in the previous Example 6.2.3, the generated works did not have any meaning, most
of the words generated in this example do have a meaning in English. Nevertheless, the sen-
tences are meaningless, due to the relative simplicity of this model. In a more sophisticated
language model, the predictions would be words instead of characters, and the context used
to predict (i.e. the sequence used as input to predict the next word) would consist of sen-
tences. This way, the sentences, and not only the words, can constitute meaningful units.

Example 6.3.2 (Time-series forecast using encoder only transformer architecture)
Now let us understand the working of transformer architecture from a time-series per-
spective. In Chapter 5, we used LSTMs and RNNs for performing time-series forecasting.
Transformers are mostly used in NLP-related applications. However, we can also use them
for time-series classification and forecasting. We will be replicating the Example 5.3.1 using
transformer architecture. Note that, here we will be using only the encoder part of the trans-
former architecture to perform the time-series prediction. In Example 5.3.1, a one-step
ahead prediction of a time series data was introduced that consisted of harmonic signal
given by Eq. (5.24). The generation of the data and pre-processing part follows the same
procedure as in Example 5.3.1. Due to the higher number of parameters of the model, a
larger dataset size is used here. Therefore, the training dataset set size is increased to 25,000
samples and the test dataset contains 2500 samples.

The transformer architecture used here consists of only the encoder part. As you can see
in Fig. 6.12, the encoder part consists of multi-head attention block, layer normalization
and feed-forward part. In this case, for the feed-forward network we can also add additional
layers such as convolutional layers to extract more information from the data.

248 6 Attention Networks and Transformers

Similar to the encoder block of transformer architecture Fig. 6.12, we have the layer
normalization followed by Multi-head attention block. This portion of the encoder block
performs normalization followed by attention. The residual connections are also made sim-
ilar to the original architecture by skipping from input layer to the output of the multi-head
attention block.

As for the feed-forward part, again the Layer normalization is performed at the begin-
ning followed by the feed-forward section. So since the main aim was to extract complex
features from the data, 1d CNN layers were substituted instead of the usual feed-forward
neural network. The skip connections are again made similar to the original architec-
ture. The number of heads is set to 2 and the number of transformer blocks used is 4.
After stacking all the transformer blocks, the output is flattened and then finally passed
through an LSTM layer with the number of hidden units equal to the number of time
steps that is being predicted. The overall architecture used in this experiment is shown
in Fig. 6.14.

Flatten

1D conv.

1D conv.

Encoder

LSTM LSTM LSTM

Prediction

Add and norm

Add and norm

Feed

forward

Input

Multi-head
attention

4 ×

Figure 6.14 Architecture of the transformer model
used in Example 6.3.2.

While compiling the model, Adam optimizer is used for optimization and Mean
squared error is used as the loss function to track the performance. The training loss is
shown in Fig. 6.15. Further, the testing part shows the result of actual vs predicted in
Fig. 6.16.

We can improve the model performance even further by modifying and experimenting
with the final layers. We can add more LSTM layers which would further help in capturing
more time-dependent information.

6.4 BERT 249

Figure 6.15 Training loss MSE over 100
epochs in Example 6.3.2.

0 20 40 60 80 100

Epoch

0.01

0.02

0.03

0.04

0.05

0.06

T
ra

in
in

g
 l

o
ss

 (
M

S
E

)

Figure 6.16 Actual vs predicted
sequences in Example 6.3.2.

180.0 182.5 185.0 187.5 190.0 192.5 195.0 197.5

Time points

0

1

2

3

C
o
si

n
e

w
av

e
w

it
h
 h

ar
m

o
n
ic

s

Actual

Predicted

Noiseless

6.4 BERT

The type of structures named Bidirectional Encoder Representations from Transformers
(BERT) is a model coming under the family of LMs which was introduced by researchers
at Google in 2018 (Devlin et al. 2018). It was originally introduced for English Language
and became one of the most famous baseline models for NLP. In particular, this model
incorporated the idea of efficient transfer learning in NLP-related tasks.

The main motivation behind such a model was the lack of sufficient training data for
specific NLP tasks. Though we have huge amounts of text data to train a model, it is
difficult to partition them into datasets dedicated to specific NLP tasks. Even if we split
the data into task-specific datasets, it would result in just a few labeled training examples
for each of the specific tasks. Most of the deep learning-based NLP methods require a
large amount of labeled training samples to perform well. Hence, to tackle this issue
with task-specific datasets, the researchers developed generic language representation
models trained on huge amount of unlabeled text available on the web. This part of the
training is called pre-training. The models are then further fine-tuned to specific NLP task
datasets similar to transfer learning. For example, let us say we have a model that can
predict the next word in a sentence, and this model was pre-trained on a huge dataset.

250 6 Attention Networks and Transformers

(a)

Add and norm

BERTbase BERTlarge

Add and norm

Multi-head

attention

Feed

forward

Add and norm

Add and norm

Multi-head

attention

Feed

forward

24×12×

(b)

Figure 6.17 BERT architecture
with two different sizes. (a) BERTbase
with 12 layers of transformer
blocks. (b) BERTlarge with 24 layers
of transformer blocks.

This model can be used for question–answer tasks by just fine-tuning this model with a
small amount of this task-specific labeled dataset constituting question answering (QA)
sequences.

6.4.1 BERT Architecture

BERT architecture is based on the transformer architecture introduced in Section 6.3 and
consists of the encoder layers from the transformer architecture. The architecture makes
use of bidirectional training of the transformer architecture, and it has proven to perform
better in the context of LMs. The basic transformer has an encoder and decoder part.
The encoder part receives the input text, and the decoder predicts the output for the task.
BERT being a language representation model, only the encoder part of the transformer
is used.

As for the architecture of BERT, there were two versions introduced in Devlin et al. (2018)
shown in Fig. 6.17. BERTbase consisted of 12 layers of transformer blocks, 768 hidden units,
and 12 self-attention heads in the encoder stack. It has a total of 110M parameters. BERTlarge
is the larger model with 24 layers, 1024 hidden units, and 16 self-attention heads with 340M
parameters on the encoder side. Both these models basically had the encoder portion of the
transformer architecture. Another notable difference of BERT from other architectures is
the use of a different input data representation. The input sentence is not just a sequence
of tokens, but it also has the possibility of packing two sentences together.

6.4.2 BERT Pre-training

Prior to BERT, most of the LMs focused on looking at a text in one particular direction
from left to right. Most of these models were introduced for completing the sentence by
predicting the next word of the sequence. BERT, on the other hand, introduced the idea
of bidirectional training which is one of the most important innovations of this model and
allowed it to work better to understand the context of the language better than the previous
one-directional LMs.

BERT achieves this using two techniques during training. The first one is the use of a
method called masked LM (MLM). In this approach, in a sentence, 15% of the words are

6.4 BERT 251

masked randomly and the model tries to predict these words. The main goal of this approach
is to predict the masked words in the sentence, and to perform this, the model needs to
understand the full context behind the sentence in any direction. This allows the model to
consider both left and right surroundings simultaneously to predict the missing words. This
is a very powerful approach as the model now tries to fit in the words based on the context
of the sentence. This kind of approach identifies the word based on other words in the
sentence. For example, the use of the word “close” in both these sentences: Our home is close
to the factory. and The shop was closed when I visited. It can be better understood based on the
context of the sentence. The one-directional models might look at the word “close” based on
only the previous words in the sentence. However, context-based models like that of BERT
complete the word using a representation of the other words in the sentence irrespective of
the direction.

As for the MLM approach, there can be the problem that the model might get biased
to predict the masked token only when it is present in the input. The main goal of this
approach is to make sure that the Masked token is predicted regardless. In order to achieve
this, some randomizations were introduced in this approach. Out of the 15% of masked
tokens, 10% of the time these tokens were replaced with random tokens, 10% of the time
the tokens were kept as such, and for the rest of the 80% of the time tokens were actually
masked. While training BERT loss function takes only the prediction for the masked tokens
into account and ignores predictions related to the normal tokens.

The other unsupervised task introduced during the pre-training of BERT model is
the next sentence prediction (NSP). This allows the model to have the ability to under-
stand the relationship between two different sentences. This particular understanding
is not captured well across other LMs. This can be very important in NLP tasks such as
natural language inference (NLI) and QA. BERT model achieves this by adding addi-
tional metadata as a preprocessing step before passing the input to the encoder part.
The following embeddings are added to the input embeddings as a preprocessing step
(Fig. 6.18):

Token embeddings: This a [CLS] token that is added to the input word at the beginning
of the first sentence. The [SEP] token is included at the end of each sentence.

Segment embeddings: This is introduced for differentiating between the sentences.
A marker indicating sentence A or B is added to each token.

Positional embeddings: The position of each token in the sentence is indicated using this
embedding.

Input

Token

embeddings

Segment

embeddings

Position

embeddings

[CLS] my dog is cute [SEP] he likes play ##ing [SEP]

E A E A E A E A E A E A E B E B E B E BE B

E 0 E 1 E 2 E 3 E 4 E 5 E 6 E 7 E 8 E 10E 9

E CLS E my E dog E is E cute E [SEP] E he E likes E play E [sep]E ##ing

Figure 6.18 Input data representation in BERT. The input embeddings are constructed by adding
the token embeddings together with the segmentation and the position embeddings. Source:
Reproduced from Devlin et al. (2018).

252 6 Attention Networks and Transformers

To facilitate the task of NSP, during the training phase, BERT model receives the input
in the form of a pair of sentences, i.e. sentences A and B per sample. While choosing these
sentences as input pairs, it is made sure that 50% of the time the sentence B is actually
the subsequent sentence of A and is labeled as IsNext. For the rest of the 50% cases, B is a
random sentence and is labeled as NotNext. Using this approach, the model has to predict
whether sentence B is random or not based on the pattern of whether there is a discon-
nection between the sentence pair. Further, several steps are performed to understand if
sentence B is connected to sentence A. Firstly, the whole input sequence is passed through
the transformer model. Then, the output having [CLS] token is converted into a vector of
length 2. This is done using a classification layer. Following this, the sequence is determined
to be as IsNext sequence using the softmax output of the classifier. The training of the BERT
model involves training of both MLM and NSP together to minimize the combined loss
function corresponding to both strategies.

6.4.3 BERT Fine-Tuning

Fine-tuning of BERT is performed based on the tasks it is used for. This model can be used
for various language tasks with an addition of a small layer. For all of these tasks, the input
data was in the form of sentence pairs or text pairs. During fine-tuning the model for individ-
ual tasks, the task-specific input sentences are passed into the BERT model and the param-
eters are fine-tuned end-to-end. The input sentence pair can be the question–answering
pair, paraphrasing sentence pair, hypothesis-premise pair, or paragraph summary pair. In
the case of classification tasks, such as sentiment analysis or entailment, the [CLS] repre-
sentation is passed to the output layer. As for the token-level tasks, the token representations
are passed into the output layer which helps in performing token-level tasks.

6.4.4 BERT for Different NLP Tasks

BERT model was used to train on 11 different tasks.

Sentence classification tasks: One of the main applications that BERT is used for
includes classification tasks such as sentiment analysis or Intent classification. In this
case, a classification layer with layer weights W ∈ ℝn×H (n = number of labels) is added
at the top of the transformer output. Also, a final hidden vector h ∈ ℝH is also added
corresponding to the [CLS] token. The standard classification loss is computed using

l = log(softmax(WTh)) (6.28)

In Devlin et al. (2018), the dataset used for testing the classification tasks was the general
language understanding evaluation (GLUE) datasets (A. Wang et al. 2018). The fine-
tuning was done on these datasets for 3 epochs and the batch size was set to 32. For the
most widely used task, MNLI, BERT achieves 4.6% accuracy improvement. It was also
observed that BERTLARGE outperforms BERTBASE in all the tasks, mainly for the tasks
with limited training data. As for the classification task, a single sentence (Fig. 6.19b)
classification or sentence pair (Fig. 6.19a) both are possible. The only difference is that in
case of the sentence pair classification tasks, the two sentences are concatenated together
for achieving classification.

6.4 BERT 253

(a)

Sentence 1

[CLS] [SEP]TOK
1

[CLS] TOK
1

TOK
2

TOK
1

TOK
N

TOK
N

TOK
M

Class
label

Class
label

T1 T'1T[SEP]

E'1E[SEP]
E[CLS] E1

TN TN

EN EN

T'M

E'M

C

[CLS] [SEP]TOK
1

TOK
1

TOK
N

TOK
M

T1 T'1T[SEP]

E'1E[SEP]
E[CLS] E1

TN

EN

T'M

E'M

C

T1 T2C

Sentence 2

Start/end span O OB-PER

Question Paragraph

Single sentence

Single sentence

(b)

(c) (d)

E1 E2
E[CLS]

[CLS] TOK
1

TOK
2

TOK
N

TN

EN

T1 T2C

E1 E2
E[CLS]

Figure 6.19 Fine-tuning BERT architecture for various NLP tasks. (a) Sentence pair classification
tasks. (b) Single sentence classification tasks. (c) Question answering tasks. (d) Single sentence
tagging tasks.

Sentence completion: The other task was performed using the situations with adversarial
generations (SWAG) dataset. The SWAG dataset included 113,000 sentence-completion
examples in the form of sentence pairs (Zellers et al. 2018). This was to evaluate the most
plausible continuing sentence or grounded commonsense inference. The main task was
to identify the best continuation sentence out of the four choices that were provided.
The input representation for this task had four sentence pairs where the given sentence
(A) was concatenated with the possible continuation (B), i.e. one of four choices. The
only additional parameter that was introduced during fine-tuning is a vector whose dot-
product with [CLS] token gives a score for each of the four choices that were normalized
using the Softmax layer. For this task, the fine-tuning was done with a batch size of 16,
the learning rate of 2e−5, and the number of epochs for fine-tuning was set to 3.

Question answering: QA task was experimented with using Stanford question answering
dataset (SQuAD). SQuAD is a dataset that contains 100,000 question–answer pairs
(Rajpurkar et al. 2016). The main task was to identify the text span of the answer in a
passage given a question. For this task, the input was represented as the input question

254 6 Attention Networks and Transformers

(A embedding), and the entire paragraph (B embedding) packed together as shown in
Fig. 6.19c. The main idea is to identify the start vector and end vector during fine-tuning.
The training objective is initialized on the sum of log-likelihoods to identify the exact
start and end positions. Again, for this task, the model was fine-tuned for 3 epochs
and the batch size was set to 32. A similar approach can be followed for NER task
as well.

Single sentence tagging: This task is similar to NER, where the model needs to predict a
particular tag for every word in the input. For this task, each of the sentence is tokenized
into sub-words which are then passed through the embedding layer. In Fig. 6.19d, we can
see that the final hidden states of each of the input token is passed on to a classification
layer. Therefore, the model provides predictions for each of these tokens. The labels in
this case would be derived from the type of tagging task the model is intended to perform.
Each of the sentence in the training data will also have the labels associated with the
tagging task.

Overall, The BERT architecture has proved to be an innovative transformer-based archi-
tecture for NLP-related tasks with the added advantage of understanding the context of
the text, especially in terms of capturing the relationships between words in the sentence.
We will now look into an example of Intent classification using BERT.

Example 6.4.1 (Intent classification using pre-trained BERT model)
Intent classification refers to the task of determining the intention or purpose behind a given
text or user query. It involves categorizing a piece of text into predefined classes or categories
based on its intended meaning. It is a fundamental task in natural language understanding
(NLU) and plays a crucial role in various applications, including chatbots, virtual assistants,
customer support systems, and more. The airline travel information systems (ATIS) dataset
is a widely used benchmark dataset for intent classification and slot filling in the field of
NLU. It was collected from the travel domain and contains queries and their corresponding
intents and slots.

Here are some examples of intents and queries from the ATIS dataset:

● Intent: flight_time, Query: “What time does the flight from Boston to New York depart?”
● Intent: flight_booking, Query: “I want to book a flight from San Francisco to Los

Angeles.”
● Intent: flight_status, Query: “Is my flight from Chicago to Denver delayed?”
● Intent: flight_cost, Query: “How much does a ticket from Seattle to Houston cost?”
● Intent: airport_information, Query: “What is the phone number for O’Hare International

Airport?”

In the ATIS dataset, the intent represents the intention or purpose of the user query.
The queries are user-generated sentences or questions related to airline travel information.
The dataset also includes slot annotations, where each slot corresponds to a specific piece
of information extracted from the query (e.g. source airport, destination airport, departure
time, etc.). However, in this example, we are focusing on intent classification. It provides
a realistic representation of the types of queries users might ask in the context of airline
travel.

6.4 BERT 255

The ATIS dataset is composed of user queries and the corresponding intent labels.
The intent classification task in this scenario utilizes the BERT model, a state-of-the-art
language representation model. The first step involves loading the pre-trained BERT
tokenizer, which will be instrumental in processing the text data and converting it into a
format suitable for BERT’s input. The tokenizer can be applied to a list of sentences, and it
will split each sentence into subwords or tokens. The tokenizer replaces each subword in
the sentence with its numerical ID, effectively converting the sentence into a sequence of
numerical tokens that represent the original text. The BERT model has a fixed vocabulary,
containing a predefined set of subwords and special tokens such as “[CLS]” (classification)
and “[SEP]” (separator).

For instance, the “[CLS]” token is inserted at the beginning of each input sequence.
This token is essential for classification tasks, as it helps BERT understand that the input is
meant for classification purposes. On the other hand, the “[SEP]” token is inserted at the
end of each input sequence. It is a separator between sentences when dealing with multiple
sentences in tasks like sentence pair classification. During tokenization, the tokenizer auto-
matically inserts these special tokens at the appropriate positions in the input sequence to
adhere to BERT’s input format requirements.

For example, consider the sentence: “What is the flight duration to Los Angeles?” The tok-
enization process might look like the following:

● Tokenized sentence: [“[CLS],” “what,” “is,” “the,” “flight,” “duration,” “to,” “los,”
“angeles,” “?,” “[SEP]”]

● Token IDs: [101, 2054, 2003, 1996, 3463, 5265, 2000, 7622, 3817, 1029, 102]

Here, “101” corresponds to the ID for the “[CLS]” token, and “102” corresponds to the ID
for the “[SEP]” token. The other token IDs represent the numerical IDs for the subwords
“what,” “is,” “the,” “flight,” “duration,” “to,” “los,” “angeles,” and “?” respectively. Thus,
the provided train and test sentences are tokenized and encoded using the BERT tokenizer,
with truncation and padding applied for consistent input lengths. After this tokenization
process, the numerical representation of the sentence is ready to be fed into the BERT model
for classification.

The “BertForSequenceClassification” is a pre-trained BERT model fine-tuned specifically
for sequence classification tasks. In this instance, the model is loaded from the “bert-base-
uncased” variant, which uses the BERT architecture with a pre-trained model on a large
corpus of uncased text. Here, the number of labels is set as 8, and it indicates that the
model is customized for a sequence classification task with eight different intent classes.
This model can input tokenized and encoded sequences and produce classification scores
for each intent class as output. The output can be further processed to predict the most
probable intent class for a given sentence.

The training parameters are as follows: the batch size is set to 16, the number of epochs is
5, and the learning rate is 0.00001. The optimizer is defined as AdamW, which is a variant
of the Adam optimizer specifically designed for Transformer-based models like BERT. The
loss function is cross-entropy loss, appropriate for multi-class classification tasks.

Therefore, the mini-batch training efficiently processes the data, calculates loss and
accuracy metrics, and prints the results for each epoch, allowing for model performance
monitoring and analysis. After the training, the model is put into evaluation mode

256 6 Attention Networks and Transformers

which calculates the test loss and the number of correctly predicted samples for the test
dataset. At the end of the evaluation, the test accuracy is calculated by dividing the number
of correctly predicted test samples by the total number of samples in the test dataset.

Output:

Epoch 1/5
Train Loss: 199.2293 | Train Accuracy: 0.8244
Test Loss: 11.4113 | Test Accuracy: 0.9425

Epoch 2/5
Train Loss: 52.4783 | Train Accuracy: 0.9617
Test Loss: 2.9591 | Test Accuracy: 0.9900

Epoch 3/5
Train Loss: 23.1584 | Train Accuracy: 0.9857
Test Loss: 1.8841 | Test Accuracy: 0.9950

Epoch 4/5
Train Loss: 12.4296 | Train Accuracy: 0.9948
Test Loss: 1.8042 | Test Accuracy: 0.9938

Epoch 5/5
Train Loss: 6.9761 | Train Accuracy: 0.9979
Test Loss: 1.8635 | Test Accuracy: 0.9925

6.5 GPT-2

In the field of NLP, LMs were traditionally applied to tasks like question answering,
machine translation, reading comprehension, and summarization. These tasks utilized
supervised learning with task-specific datasets. Although these models excelled at their
individual tasks due to their training on specific datasets, they often struggled to generalize
effectively when encountering new inputs (Recht et al. 2018). Additionally, they were sus-
ceptible to even minor changes in data distribution and task requirements (J. Kirkpatrick
et al. 2017).

To address this challenge, a shift was proposed toward more general systems capable of
performing various tasks without relying on manually created and labeled training datasets
for each task. The dominant approach in machine learning involves collecting task-specific
training examples, training models to replicate these behaviors, and evaluating their perfor-
mance on independent and identically distributed held-out examples. While this method-
ology has successfully advanced narrow expert systems, it reveals its shortcomings when
faced with diverse and varied inputs.

The limited generalization observed in current NLP systems can be attributed to
their heavy reliance on single-task training with single-domain datasets. To address this
challenge and enhance system robustness, researchers have adopted multitask learning
(Caruana 1997). This approach involves training models on diverse domains and tasks, ulti-
mately improving overall performance (Yogatama et al. 2019). The current best-performing
systems utilize a combination of pre-training and supervised fine-tuning, where models are

6.5 GPT-2 257

initially pre-trained on extensive text corpora and then fine-tuned on specific tasks using
smaller supervised datasets. This approach has a rich history, following a more flexible
transfer methods trajectory. Initially, word vectors were learned and utilized as inputs to
task-specific architectures (Mikolov et al. 2013; Collobert et al. 2011). Subsequently, the
focus shifted to transferring contextual representations of recurrent networks (Dai and
Q. V. Le 2015). More recently, cutting-edge research suggests that task-specific architectures
are no longer essential, and the transfer of multiple self-attention blocks alone suffices
(Radford et al. 2018; Devlin et al. 2018).

The introduction of zero-shot task transfer (Pal and Balasubramanian 2019) using
LMs marks a significant advancement in the field. LMs were found to adeptly handle
downstream tasks in a zero-shot setting, without the need for any parameter or architecture
modifications. This type of approach demonstrated remarkable potential, showcasing the
LMs’ versatility in effectively tackling various tasks without explicitly training data for
each task.

Learning to perform a single task can be represented as estimating a conditional distribu-
tion p(output | input). However, to achieve a more general system that can handle diverse
tasks, the model should be conditioned not only on the input but also on the task to be
performed, denoted as p(output | input, task). This formalization is commonly employed in
multitasking and meta-learning settings. Such settings can be implemented at the archi-
tectural level using task-specific encoders and decoders or at the algorithmic level (Finn
et al. 2017).

6.5.1 Language Modeling

Language modeling involves constructing and training a statistical model capable of pre-
dicting the probability of word or symbol sequences in a given language. This process entails
analyzing extensive textual data and learning the patterns, relationships, and probabilities
of different word sequences within the language. By employing LMs, tasks can be defined
flexibly, allowing inputs and outputs to be represented as sequences of symbols (McCann
et al. 2018).

A highly proficient LM has the potential to deduce and execute diverse tasks presented
through natural language sequences, thereby enhancing its predictive abilities, indepen-
dent of the data’s source. In this scenario, the model can effectively engage in unsupervised
multitask learning. To explore this notion, LMs’ performance is assessed in a zero-shot
setting, encompassing a broad spectrum of tasks, to evaluate their capacity to generalize
without explicit task-specific training.

Datasets: In most prior studies, LMs were trained on single-domain text sources, such as
news articles (Jozefowicz et al. 2016), Wikipedia (Merity et al. 2016), or fiction books
(R. Kiros et al. 2015). However, the approach focuses on building a more extensive and
diverse dataset, involving the collection of natural language demonstrations of tasks from
various domains and contexts. To achieve this, a new web scraping process was devel-
oped, prioritizing high-quality documents curated and filtered by human reviewers. The
resulting dataset, known as WebText, consists of the textual subset extracted from 45 mil-
lion links. A combination of content extractors, including Dragnet (Peters and Lecocq
2013) and Newspaper1, was used to extract text from HTML responses.

258 6 Attention Networks and Transformers

The following analysis utilized a preliminary version of WebText, which excluded links
created after December 2017. After applying de-duplication and heuristic-based clean-
ing, this preliminary version contains slightly over 8 million documents, with a total
text size of approximately 40 GB. To ensure distinct training and evaluation datasets,
all Wikipedia documents were removed from WebText, as Wikipedia is a common data
source for other datasets and could introduce overlapping training data with the test
evaluation tasks.

Input representation: A comprehensive LM should be capable of computing the probabil-
ity and generating any possible string. However, current large-scale LMs have limitations
due to preprocessing steps like lowercasing, tokenization, and out-of-vocabulary tokens,
which restrict the range of modellable strings. Although processing Unicode strings as
UTF-8-byte sequences addresses this issue, existing byte-level LMs are not as competitive
as word-level LMs on vast datasets like the One Billion Word Benchmark (Al-Rfou et al.
2019).

Byte pair encoding (BPE) (Sennrich et al. 2015) is an intermediate solution between
character and word-level language modeling, effectively balancing frequent symbol
sequences with word-level inputs and infrequent symbol sequences with character-level
inputs. While standard BPE implementations use Unicode code points, leading to a
large base vocabulary, a byte-level version requires only a smaller vocabulary of size 256.
However, directly applying BPE to byte sequences can result in suboptimal merges, lead-
ing to the inclusion of multiple variations of common words like “cat” (e.g. “cat,” “cat!,”
and “cat?”). As a consequence, this inefficiently utilizes vocabulary slots and model
capacity. To mitigate this, the proposed approach prevents BPE from merging across
character categories, except for spaces, optimizing compression efficiency and minimiz-
ing word fragmentation. This input representation combines the benefits of word-level
language models and the flexibility of byte-level approaches. It enables the evaluation
of any Unicode string on various datasets, regardless of preprocessing, tokenization, or
vocabulary size.

Model and training: The language model used is built upon the Transformer architecture
and bears resemblances to the OpenAI GPT model but with several modifications (see
Fig. 6.20). Layer normalization was shifted to the input of each sub-block, resembling a
pre-activation residual network. Moreover, an extra layer of normalization was included
after the final self-attention block. The model utilizes a modified initialization method
that addresses the accumulation on the residual path as the model depth increases. The
weights of residual layers were scaled by a factor of 1√

N
, where N corresponds to the

number of residual layers. The vocabulary was expanded to 50,257, enabling the model
to handle a wider variety of tokens and words. Moreover, the context size was extended
from 512 to 1024 tokens, making it easier for the model to understand longer connections
between words. Additionally, a larger batch size of 512 was used to improve training
efficiency.

Four LMs were trained and evaluated, covering a range of sizes spaced approximately
in a log-uniform manner. The smallest model in this setup consists of 12 layers and 117M
parameters, making it equivalent to the original GPT. The next size-up comprises 24 lay-
ers, matching the largest model in BERT. In contrast, the largest model, known as GPT-2,
is composed of 48 layers and 1542M parameters, significantly surpassing the parameter

Decoder-only language model

Output tokens

Decoder block

Decoder block

Feedforward neural network

Masked self-attention

Input tokens

Token/position embedding

Language model pre-training

Unlabeled textual corpus

Common
crawl

Sample data

The chicken crossed the...
The dog ate his...
The student aced his...
The weather today is...

road

the chicken crossed the the student aced his

the dog ate his the weather today is

test

food cloud

Figure 6.20 Language model pre-training using GPT-2. Source: Reproduced from https://towardsdatascience.com.

https://towardsdatascience.com
https://towardsdatascience.com

260 6 Attention Networks and Transformers

count of the original GPT. To optimize the models, the learning rate for each one was
manually adjusted to achieve the best perplexity on a 5% held-out sample of WebText.

Zero-shot results: For exploring zero-shot domain transfer, the study aimed to assess the
performance of WebText LMs in their primary task of language modeling. The evalua-
tion was conducted by computing the log probability of datasets using a WebText LM
and dividing it by the number of canonical units, such as characters, bytes, or words.
The WebText LMs were tested on diverse datasets, presenting out-of-distribution chal-
lenges, including standardized text, tokenization artifacts, shuffled sentences, and even
rare strings like “<UNK>” occurring only 26 times in 40 billion bytes.

As depicted in Table 6.1, WebText LMs exhibited strong domain transfer capabilities
across various datasets, surpassing state-of-the-art approaches on 7 out of 8 datasets in
a zero-shot setting. Significant improvements were evident on smaller datasets, such
as Penn treebank (PTB) and WikiText-2, which contained only 1 to 2 million training
tokens (Gong et al. 2018). The model also demonstrated substantial progress on datasets
specifically designed to assess long-term dependencies, such as LAMBADA (Paperno et al.
2016) and the children’s book test (CBT) (Hill et al. 2015). However, when compared to
prior work on the one billion word (1BW) Benchmark (Chelba et al. 2013), this model’s
performance was notably lower, attributed to the dataset’s size and highly disruptive
pre-processing, including sentence-level shuffling that removed all long-range structures.

GPT-2’s performance was assessed in various tasks, including question answering, read-
ing comprehension, summarization, and translation. The Winograd Schema Challenge
was designed to assess a system’s capacity for commonsense reasoning by evaluating
its ability to resolve ambiguities in the text. In this challenge, GPT-2 achieved a 7%
improvement in accuracy, surpassing the previous state-of-the-art in the Winograd Schema
Challenge. For reading comprehension, GPT-2 either matched or surpassed three out
of four baseline systems. In the summarization task, it was only marginally better than
randomly selecting three sentences from the article, and it dropped when the task hint
was removed. Meanwhile, in translation tasks, GPT-2 demonstrated lower performance

Table 6.1 Zero-shot results of GPT-2 on different datasets.

Dataset Evaluation metric Value

LAMBADA Accuracy 63.24
Perplexity 8.63

CBT-Common Nouns Accuracy 93.30
CBT-Named Entities Accuracy 89.05
WikiText2 Perplexity 18.34
PTB Perplexity 35.76
enwik8 Bits per character 0.93
text8 Bits per character 0.98
WikiText103 Perplexity 17.48
1BW Perplexity 42.16

6.5 GPT-2 261

compared to a bilingual lexicon-based method for French-to-English translation. However,
for English-to-French translation, it surpassed many unsupervised baselines, although
still falling short of the current best-unsupervised translation approach. In question
answering, GPT-2 provided a reasonable probability estimate of giving an accurate answer
and demonstrated good performance in the 30 most confident questions, achieving an
accuracy of 63.1%. However, it was noticeably less effective than the state-of-the-art
approach.

Example 6.5.1 (Text generation using pre-trained GPT-2)
Text generation is an NLP task that involves producing coherent and contextually relevant
textual content. It has a wide range of applications, including chatbots, creative writing,
content generation, code generation, translation, summarization, and more. The goal of text
generation is to create human-like text that follows grammatical rules, maintains context,
and conveys meaningful information.

The given example showcases the utilization of the Hugging Face Transformers library
for generating text through a pre-trained GPT-2 language model. The code utilizes the
GPT2LMHeadModel and GPT2Tokenizer classes from the Transformers library, which
simplifies the process of working with language models. The “GPT2LMHeadModel” class
represents the GPT-2 language model, while the “GPT2Tokenizer” class handles the tok-
enization of input text. Next, a prompt is established for initiating the text generation. The
prompt is a short introductory sentence: “On a distant planet, a curious explorer stumbles
upon an ancient temple guarded by.” This will serve as the starting point for the generated
text.

Subsequently, the GPT2Tokenizer is employed to perform tokenization on the provided
prompt. Tokenization involves the division of the input text into smaller entities referred
to as tokens. These tokens are the fundamental building blocks that the GPT-2 model
comprehends. This tokenization procedure yields two important outputs: “input_ids”
and “attention_mask.” The “input_ids” represents the tokenized form of the prompt, and
the “attention_mask” is used to specify which tokens the model should pay attention to
during text generation. To initiate text generation, the pre-trained model is provided with
inputs including the tokenized input, attention mask, maximum generated text length,
end-of-sequence token ID, and the desired count of generated sequences. The generated
text is then decoded so that it converts the token IDs back into human-readable text.
Various decoding techniques can be configured based on the desired output style, such as
controlling the level of randomness, temperature settings, and other relevant parameters.
Temperature setting refers to a parameter that influences the randomness and creativity of
the generated text. It is a value that controls the likelihood of selecting less probable words
during the generation process. The different decoding methods available are as follows:

Greedy search: It is a technique that involves selecting the word with the highest prob-
ability from the set of all possible words at each step of the generation process. This
method is employed when no specific parameters are provided for the generation process.
The resulting text generated using Greedy Search remains consistent for a given prompt,
meaning that if the same starting point is used, the generated text will be identical. How-
ever, there are notable issues associated with greedy search. Firstly, its deterministic

262 6 Attention Networks and Transformers

nature can lead to repetitive and predictable output, resulting in a lack of diversity in
the generated content. Additionally, greedy search tends to disregard words with lower
probabilities that could lead to more coherent and contextually relevant sentences in the
longer term.

Beam search: It is an enhanced text generation technique that maintains a collection of
the top B sequences with the highest probabilities at each generation step, ultimately
selecting the sequence with the highest cumulative probability as the final output. The
parameter B, determines the number of sequences retained and considered during each
step of generation. However, beam search introduces certain challenges. One signifi-
cant issue is its tendency to generate repetitive sequences, making it difficult to control
the diversity and creativity of the generated content. Unlike human language, which
embraces variety and spontaneity, beam search can produce predictable and monotonous
language patterns.

Sampling: It is a text generation approach that injects randomness into the process by
selecting the next word according to a probability distribution derived from preceding
words. Here the concept of temperature adjustment is used to modulate the likelihood
of word selection. Top K sampling is a variant of sampling that adds an element of con-
trol. In this method, the top K words with the highest probabilities are identified based
on the given distribution. Subsequently, the next word is selected randomly from this
reduced set of K words. On the other hand, Top-P sampling takes a different approach. It
involves choosing the next word from words that cumulatively account for a probability
greater than or equal to p. Both these approaches strike a balance between randomness
and control, allowing for creative and varied text generation while ensuring that the cho-
sen words are still among the most probable options.

In this instance, we utilize the beam search method for decoding. Below, you will find
the prompt and the resulting generated text.

Output:

Prompt: On a distant planet, a curious explorer stumbles upon an ancient
temple guarded by

Generated Text 1: On a distant planet, a curious explorer stumbles upon an
ancient temple guarded by a

mysterious creature. The creature is
a giant, with a long, dark, and
twisted body.

6.6 Vision Transformers

The emergence of the ViT (Dosovitskiy et al. 2020) represents a significant advancement
in integrating language and vision within a single model architecture. In 2021, this trans-
former model showcased superior performance and efficiency compared to CNNs for image
classification tasks. Subsequently, a study conducted in June 2021 incorporated a trans-
former backend into ResNet, resulting in a substantial reduction in costs and improved

6.6 Vision Transformers 263

accuracy (B. Wu et al. 2020; Xiao et al. 2021). ViT has recently emerged as a compelling alter-
native to CNNs, which currently serve as the state-of-the-art for various computer vision
tasks related to image recognition. ViTs find wide-ranging applications in various popular
image recognition tasks, encompassing object detection, image segmentation, image clas-
sification, and action recognition (Khan et al. 2022).

Transformer models are typically designed to process inputs in the form of words or
tokens. However, when considering the application of transformers to image recognition,
there arises a need to establish an analogous concept to words in the context of images.
One approach includes treating each pixel as an individual word. Nevertheless, it should be
acknowledged that the computational complexity associated with calculating the attention
matrix is O(N2), where N denotes the sequence length. If we were to treat each pixel as a
distinct word, an example being a relatively modest image size of 64 × 64, the resulting
attention matrix would assume dimensions of 4096 × 4096. Clearly, this presents an
intractable computational burden, even for the most powerful GPUs.

Hence, ViT models employ a strategy that involves treating patches of pixels of the input.
Within this framework, the RGB image I with dimensions MI × NI × CI is divided into fixed-
sized patches of PI × PI × CI . Each patch is then flattened and passed through a trainable
linear layer called an embedding layer. The primary purpose of the embedding layer is
to convert the flattened patch, which is initially a high-dimensional input, into a lower-
dimensional representation called an embedding. This conversion is accomplished using a
set of adjustable weights. By applying the same weights to all image patches, the embedding
layer ensures that patches with similar visual characteristics have similar embedded repre-
sentations. These resulting vectors with dimension D serve as patch embeddings, represent-
ing the information within each small image patch. Subsequently, the patch embeddings
are flattened and used as a sequence of tokens, which are fed into the transformer model.
Position embeddings are added to the patch embeddings to preserve positional informa-
tion. Standard learnable 1D position embeddings are used, as no significant performance
gains have been observed from the utilization of more advanced 2D-aware position embed-
dings. Overall, during the first step, the ViT model encodes an image by arranging it into
a sequence of fixed-size patches that do not overlap. These patches are then subjected to
linear embedding, transforming them into 1D vectors, considered input tokens within the
transformer architecture, as depicted in Fig. 6.21.

The tokens are then fed into a transformer encoder, which includes multiheaded self-
attention (MSA), MLP blocks, and Layernorm. In the ViT, MSA involves performing parallel
self-attention operations, with each attention head focusing on different input patches of the
input image. MLP blocks in the ViT process the information extracted by the self-attention
mechanism. These blocks consist of two fully connected layers, followed by the application
of a Gaussian error linear unit (GELU) activation function (Hendrycks and Gimpel 2016).
Following this, Layernorm is employed to normalize the activations within each layer of
the transformer encoder. It contributes to training stability and enhances the overall model
performance. Hence, these components work together to capture complex relationships
and dependencies between the input tokens and generate meaningful output predictions
for image recognition tasks.

In the context of image classification, CNNs have an inductive bias for spatial locality and
translation equivariance. This bias assumes that local patterns and features are important

264 6 Attention Networks and Transformers

MLP
head

0 1 2 3 4 5 6 7 8 9*

MLP

L×

Norm

Norm

Embeded
patches

Multi-head
attention

Transformer encoder

Linear projection of flattened patches

Vision transformer

Patch + position
embedding

* Extra learnable
[class embedding]

Class
apple
pen
...

Transformer encoder

Figure 6.21 Structure of the Vision Transformer. The image is split into a set of patches with fixed
size, and they are then linearly embedded. The embeddings are used as input for a standard
transformer encoder. The classification is performed through the technique of adding an extra
learnable classification token. Source: Dosovitskiy et al. 2020/Cornell University.

for image understanding and that the spatial arrangement of features is preserved across
the image. The ViT exhibits a significantly lower image-specific inductive bias compared
to CNNs. In contrast, the ViT’s MLP layers are the only components that possess a local
receptive field, while the self-attention layers operate globally, allowing each token to attend
to all other tokens. This global perspective enables the model to understand the contextual
information and long-range dependencies within the input. The ViT makes limited use of
the two-dimensional neighborhood structure. It is mainly employed at the initial stages
of the model, where the image is divided into patches. Additionally, during fine-tuning,
the position embeddings are adjusted to accommodate images with different resolutions.
However, apart from these cases, the position embeddings at the start do not encode any
information about the 2D positions of the patches. Consequently, all spatial relationships
between the patches need to be learned from the beginning.

6.6.1 Comparison between ViTs and CNNs

The original research on ViTs investigates the ability of three models, namely ResNet,
ViT, and a hybrid model, to learn representations. The hybrid model presents an alter-
native approach where the input sequence is constructed from feature maps obtained
through a CNN, rather than using raw image patches. In this model, the patch embed-
ding projection is applied to patches extracted from a CNN feature map. To understand
the data requirements of each model, pre-training is conducted on datasets of vary-
ing sizes, and their performance is evaluated on numerous benchmark tasks. When
considering the computational cost of pre-training, ViT demonstrates highly favorable
performance, achieving state-of-the-art results on most recognition benchmarks at a lower
pre-training cost.

The experiment involved the utilization of a few pre-training datasets. These include
the ILSVRC-2012 ImageNet dataset with 1000 classes and 1.3 million images, its superset
ImageNet-21k (Jia Deng et al. 2009) with 21,000 classes and 14 million images, and

6.6 Vision Transformers 265

Table 6.2 Exploring ViT model alternatives.

Models ViT-Base ViT-Large ViT-Huge

Layers 12 24 32
Hidden size 768 1024 1280
MLP size 3072 4096 5120
Heads 12 16 16
Params 86M 307M 632M

JFT (C. Sun et al. 2017) with 18,000 classes and 303 million high-resolution images.
The pre-trained models were tested on several benchmark datasets: ImageNet using
both the original validation labels and the cleaned-up ReaL labels (Beyer et al. 2020),
CIFAR-10/100 (A. Krizhevsky 2009), Oxford-IIIT Pets (Parkhi et al. 2012), and Oxford
Flowers-102 (Nilsback and Zisserman 2008). Additionally, the Visual Task Adapta-
tion Benchmark (VTAB) classification suite (Zhai et al. 2019), comprising 19 diverse
tasks was also evaluated. VTAB measures transfer learning performance across various
tasks using 1000 training examples per task. The tasks are categorized into natural,
specialized (medical and satellite imagery), and structured tasks (requiring geometric
understanding).

ViT configurations are based on those employed for BERT (Devlin et al. 2018), as summa-
rized in Table 6.2. The “Base” and “Large” models are directly adapted from BERT, and a
larger “Huge” model is added to this work. In the subsequent discussion, a concise notation
is used to denote the model size and input patch size. For instance, ViT-L/16 represents the
“Large” variant with a 16 × 16 input patch size. The sequence length of the Transformer is
inversely proportional to the square of the patch size, resulting in smaller patch sizes requir-
ing more computational resources. In the case of the baseline CNNs, ResNet is utilized, with
the replacement of batch normalization layers by group normalization and the adoption of
standardized convolutions (Qiao et al. 2019). These adjustments result in enhanced transfer
capabilities (Kolesnikov et al. 2020), and the modified model is denoted as ResNet (BiT). In
the case of the hybrid model, the intermediate feature maps are fed into ViT with a patch
size of one pixel.

All models, including ResNets, are trained using Adam with 𝛽1 = 0.9, 𝛽2 = 0.999, a
batch size of 4096, and a high weight decay of 0.1. For fine-tuning, SGD with momentum
and a batch size of 512 is employed for all models. In the ImageNet results presented
in Fig. 6.22, fine-tuning is conducted at higher resolutions: 512 for ViT-L/16 and 518
for ViT-H/14. Additionally, Polyak & Juditsky (1992) averaging with a factor of 0.9999 is
applied (Ramachandran et al. 2019). Figure 6.22 shows the comparison made between
two large models, ViT-H/14 and ViT-L/16, and state-of-the-art CNNs from the literature.
The first point of comparison was with BigTransfer (BiT), which utilizes supervised
transfer learning with large ResNets. The second comparison involved NoisyStudent, a
large EfficientNet trained using semi-supervised learning on ImageNet and JFT300M with
removed labels. NoisyStudent currently holds the state-of-the-art position on ImageNet,
while BiT-L performs well on the other datasets considered in this research.

266 6 Attention Networks and Transformers

Model

Model

88.55 ± 0.04

90

89

88

87
90

91

92

89

88

87

96

95

94

93

96

97

98

99

95

94

93

92

86

85

84

101.5

101.0

100.5

100.0

99.5

99.0

98.5

97.5

98.0

100.5

100.0

99.5

99.0

98.5

98.0

101.5

101.0

100.5

100.0

99.5

99.0

98.5

98.0

88.50 ± 0.00 90.72 ± 0.05
90.54 ± 0.03

88.62 ± 0.05

90.54 ± 0.00 90.55 ± 0.0087.76 ± 0.03

85.30 ± 0.02

99.50 ± 0.06

97.56 ± 0.03 97.32 ± 0.11

94.67 ± 0.15

77.63 ± 0.23

76.28 ± 0.46

72.72 ± 0.21

76.29 ± 1.70

96.62 ± 0.23
99.68 ± 0.02 99.74 ± 0.00

99.61 ± 0.02 99.63 ± 0.03

99.42 ± 0.03
99.15 ± 0.03

99.37 ± 0.06

94.55 ± 0.04

93.90 ± 0.05

93.25 ± 0.05
93.51 ± 0.08

87.54 ± 0.02

Im
ag

eN
et

 d
at

as
et

 a
cc

u
ra

cy
 (

%
)

C
IF

A
R

-1
0

 d
at

as
et

 a
cc

u
ra

cy
 (

%
)

O
x

fo
rd

-I
II

T
P

et
s

d
at

as
et

 a
cc

u
ra

cy
 (

%
)

V
T

A
B

 (
1

9
 t

as
k

s)
 d

at
as

et
 a

cc
u

ra
cy

 (
%

)

O
x

fo
rd

F
lo

w
er

s-
1

0
 d

at
as

et
 a

cc
u

ra
cy

 (
%

)

C
IF

A
R

-1
0

0
 d

at
as

et
 a

cc
u

ra
cy

 (
%

)
Im

ag
eN

et
 r

ea
l

d
at

as
et

 a
cc

u
ra

cy
 (

%
)

Model

(a) (b)

(c) (d)

(e)

(g)

(f)

ViT
-H

/1
4

(J
FT)

ViT
-L

/1
6

(J
FT)

ViT
-L

/1
6

(1
21

-K
)

Res
N

et
15

2×
4

ViT
-H

/1
4

(J
FT)

ViT
-L

/1
6

(J
FT)

ViT
-L

/1
6

(1
21

-K
)

Res
N

et
15

2×
4

Model

ViT
-H

/1
4

(J
FT)

ViT
-L

/1
6

(J
FT)

ViT
-L

/1
6

(1
21

-K
)

Res
N

et
15

2×
4

Model

ViT
-H

/1
4

(J
FT)

ViT
-L

/1
6

(J
FT)

ViT
-L

/1
6

(1
21

-K
)

Res
N

et
15

2×
4

Model

ViT
-H

/1
4

(J
FT)

ViT
-L

/1
6

(J
FT)

ViT
-L

/1
6

(1
21

-K
)

Res
N

et
15

2×
4

Model

ViT
-H

/1
4

(J
FT)

ViT
-L

/1
6

(J
FT)

ViT
-L

/1
6

(1
21

-K
)

Res
N

et
15

2×
4

Effi
ci

en
tN

et
-L

2

ViT
-H

/1
4

(J
FT)

ViT
-L

/1
6

(J
FT)

ViT
-L

/1
6

(1
21

-K
)

Res
N

et
15

2×
4

Effi
ci

en
tN

et
-L

2

Figure 6.22 Assessment of popular image classification benchmarks by comparing them with the
ViTs. The different databases used are: (a) ImageNet, (b) ImageNet Real (c) CIFAR-10, (d) CIFAR-100
(e) Oxford-IIIT Pets (f) Oxford Flowers-102 (g) and the VTAB (19 tasks).

6.6 Vision Transformers 267

The models were trained on TPUv3 hardware, and the pre-training process took 2.5 k,
0.68 k, 0.23 k, 9.9 k, and 12.3 k TPUv3-core-days for ViT-H/14 (JFT), ViT-L/16 (JFT), ViT-
L/16 (I21-K), ResNet152x4, and EfficientNet-L2, respectively. TPUv3-core-days is a met-
ric obtained by multiplying the number of TPUv3 cores (2 per chip) used for training by
the training duration in days. The results indicate that the smaller ViT-L/16 model, pre-
trained on JFT-300M, outperforms ResNet152x4 pre-trained on the same dataset on all
tasks while demanding significantly fewer computational resources for training. The larger
model, ViT-H/14, further enhances performance, particularly on more challenging datasets
like ImageNet, CIFAR-100, and the VTAB suite. Notably, even the larger model required
considerably less computation to complete pre-training compared to prior state-of-the-art
methods.

Finally, the ViT-L/16 model pre-trained on the public ImageNet-21k (I21-K) dataset also
demonstrated strong performance across most datasets while necessitating fewer resources
for pre-training. Specifically, this model could be trained using a standard cloud TPUv3 with
8 cores in approximately 30 days.

Example 6.6.1 (Image captioning using pre-trained ViT)
Image captioning constitutes an end-to-end sequence-to-sequence embedding task, where
the input sequences are image pixels, and the desired output is a caption that describes the
image. This example uses a pre-trained image captioning model to generate captions for
images. The model employed for image captioning is the vit-gpt2-image-captioning model,
made accessible through the Hugging Face library. Hugging Face is an open-source plat-
form for data science and machine learning, empowering users to create, train, and deploy
machine learning models. A standout feature of the platform is its transformer library,
which is specifically designed for NLP applications.

Three pre-trained models from the Transformers library have been introduced. Let’s now
provide a brief overview of their functions.

VisionEncoderDecoderModel: This model is a combination of two powerful archi-
tectures: ViT and GPT-2 (Radford et al. 2019). ViT was originally designed for image
classification tasks. It applies the Transformer architecture, initially developed for
NLP, to process image data. The core concept of ViT involves treating the input image
as a sequence of patches, which are then fed into a standard Transformer encoder.
By dividing the image into smaller patches and applying linear projections, spatial
information is embedded into the patch embeddings. These embeddings, along with
positional embeddings, undergo multiple Transformer layers to capture both global and
local dependencies within the image.

GPT-2 is a LM based on the Transformer architecture. It is trained on a large corpus
of text data, allowing it to generate coherent and contextually relevant text. The model
follows a decoder-only architecture, utilizing multiple stacked Transformer decoder lay-
ers to generate text while attending to previously generated tokens and their context.
By combining the strengths of ViT and GPT-2, the ViT-GPT2 architecture enhances ViT
with the powerful language generation capabilities of GPT-2. Thus, the ViT-GPT2 model

268 6 Attention Networks and Transformers

combines a vision encoder and a language decoder, leveraging both visual and textual
information for image captioning.

GPT2TokenizerFast: This tokenizer is specifically designed for the GPT-2 LM. It has
been developed using the Hugging Face tokenizers library, which has been inte-
grated into the transformer’s framework. This tokenizer comes pre-trained and is
fully equipped to handle all the essential features necessary for the captioning task.
With its pre-training, the GPT2TokenizerFast efficiently tokenizes input text, breaking
it down into individual tokens, subwords, or special tokens that the GPT-2 model
can understand and process. Additionally, the tokenizer handles tasks like padding,
truncation, and special token embeddings required to facilitate the captioning process
effectively.

Moreover, this tokenizer has been trained to treat spaces as integral parts of the tokens.
This means that how a word is encoded will depend on its position in the sentence,
especially concerning spaces before or after the word.

For instance, consider the word “example” in the following two sentences:
● This is an example.
● Example is given here.
In the first sentence, the word “example” is at the end of the sentence and follows a
space after “an.” In the second sentence, “example” is at the beginning of the sentence
and does not have a space before it. Due to the tokenizer’s training, these two instances of
the word “example” will be encoded differently, reflecting their unique positions in their
respective sentences. This behavior helps the model understand sentence structures and
relationships between words, contributing to more accurate and context-aware language
generation and processing. Hence by utilizing the GPT2TokenizerFast, we can efficiently
prepare textual data to be fed into the GPT-2 model for generating high-quality and
contextually appropriate captions.

ViTImageProcessor: It is responsible for processing the image before training, such as
normalizing and resizing the image into the appropriate dimensions. Additionally, it per-
forms data augmentation to improve model generalization and performance.

In this example, a pre-trained ViT-GPT2 model is employed to perform image caption-
ing on a sample test image. The initial step involves loading essential components such
as the pre-trained model, tokenizer, and image processor. In this case, since the image is
loaded from a web URL. Once the image is loaded, it needs to be preprocessed to prepare
it for input to the pre-trained model. The image is passed through the ViT Image Processor
which applies transformations such as resizing, normalization, and converting the image
to a tensor.

After the image is preprocessed, it is passed as input to the pre-trained model and
generates captions based on the visual features extracted from the image by the vision
encoder. The captions are generated using the language decoder component of the
ViT-GPT2 architecture. The generated captions are in the form of sequences of tokens.
The GPT2TokenizerFast is used to convert these tokenized sequences back into human-
readable text strings. It helps to reconstruct the original sentences by removing any special
tokens or special formatting added during tokenization. Figure 6.23 displays the sample
image and its generated caption.

6.7 Conclusion 269

A woman walking down a path with a backpack Diana Piklaps / Pexels

Figure 6.23 Image captioning using pre-trained ViT.

6.7 Conclusion

Transformers are an important breakthrough in DL because they achieved previously
unseen results in language processing, including machine translation, text summarization,
text generation, and many others, but the use of these techniques also produced important
advances in image processing, including synthetic image generation, image captioning or
image classification, just to cite some.

Attention mechanisms are at the core of transformers, and they are an efficient way of
representing input features as a combination of other features given by attention scores.
These scores determine which parts of the input sequence (for example a sentence of
arbitrary length or a sequence of patches of an image) are relevant for the representation.
This methodology to code an input differs from the traditional methods that are intended
to extract the information present in the data in order to compress it. Attention mech-
anisms are closer to the behavior of the brain by taking these elements of a sequence
that are relevant and discarding the rest. Self-attention criteria are constructed by linear
transformation of the sequences tokens that are learned by backpropagation according to
the task at hand, which can be supervised or unsupervised, and multiple attention heads
are used simultaneously in order to provide the machine with an unprecedented expressive
capability.

The original transformer structure used for machine translation has been presented in
this chapter, which is an encoder–decoder structure where the encoding is based on self-
attention mechanisms and the decoder is based on a cross-attention mechanism between
the source sequence and the elements of the target sequence previously decoded. After this,
particular attention has been given to the BERT structure, which is based on an encoder

270 6 Attention Networks and Transformers

architecture only, and to the GPT model, based on this structure. Examples of application
of this structure have been presented.

Finally, the main vision transformers have been described and examples have been
presented for image classification and image captioning.

Problems

6.1 Reproduce Example 6.2.1 for different values of the width parameter h. What is the
effect of using a very small or very high value for this parameter in the estimation and
in the attention matrix?

6.2 Complete the derivation of the backpropagation equations for the self-attention weights
that are presented in Section 6.2.5.

6.3 Adapt the Example 6.2.4 to develop a transformer model to perform German-to-
English text translation. Compute the BLEU scores and compare the results with the
B-LSTM encoder–decoder in Example 6.2.4.

6.4 Investigate the application of transformers in the domain of protein structure
prediction by using the critical assessment of structure prediction (CASP) dataset
(Kryshtafovych et al. 2021). The dataset contains a collection of amino acid sequences
along with their corresponding experimentally determined 3D structures, and it can
be downloaded from the website https://www.predictioncenter.org/download_area.
1. Design a transformer-based model to predict the 3D structure of proteins from their

amino acid sequences.
2. Explain how the self-attention mechanism can be utilized to capture long-range

dependencies between amino acids and aid in accurately predicting the protein’s
structure.

3. Compare the performance of your transformer-based model with traditional meth-
ods used for protein structure prediction, discussing both accuracy and computa-
tional efficiency.

4. Highlight the potential advantages and challenges of using transformers for this
critical bioinformatics task.

6.5 Modify the Example 6.5.1 and implement decoding methods such as beam search and
sampling and compare the outcomes. Analyze how each decoding method influences
the quality and style of the generated text.

6.6 Reproduce the image classification experiment conducted in the ViT paper (Dosovitskiy
et al. 2020) for different patch sizes and analyze their impact on classification accuracy.
Explain how changing the patch size affects the model’s ability to capture local and
global image features.

https://www.predictioncenter.org/download_area

Problems 271

6.7 Implement a fine-tuning pipeline for the BERT model on a sentiment analysis task
using a dataset of your choice. Train the model and evaluate its performance on a
test set. Discuss the challenges of choosing an appropriate learning rate and batch
size during fine-tuning and how they can impact the model’s convergence and final
accuracy.

6.8 Develop a custom multi-head attention module in PyTorch or Keras. Use it to process
an input sequence and visualize the attention weights for different heads.

6.9 Design an experiment to evaluate the impact of different positional encoding schemes
in transformer models. Compare the results with and without positional encodings.

6.10 Explain the concept of transfer learning with pre-trained models like BERT and GPT-2.
1. Discuss the advantages of transfer learning, such as improved performance,

reduced training data requirements, and faster convergence in downstream tasks.
2. Explore the limitations of pre-trained models, including computational resources,

model size, and domain-specific adaptability.

273

7

Deep Unsupervised Learning I

7.1 Introduction

In the field of artificial intelligence and machine learning, there exists a fascinating subfield
known as unsupervised deep learning. Unsupervised learning techniques play an important
role in revealing hidden patterns and representations within large and complex datasets,
without the need for explicit labels. In contrast to supervised learning, which depends on
having labeled examples to make predictions, unsupervised learning operates in a self-
guided manner. It seeks to capture complex relationships, dependencies, and latent features
that exist within data, making it invaluable in scenarios where labeled data is scarce or
expensive to obtain. In this case, three models have become essential components of deep
unsupervised learning: restricted Boltzmann machine (RBM), autoencoder (AE), and deep
belief networks (DBNs).

RBMs are a type of probabilistic graphical model that excels at learning intricate patterns
in high-dimensional data. They are composed of visible and hidden layers of binary units,
connected by weighted edges. Through a process called Gibbs sampling, RBMs iteratively
adjust their parameters to approximate the data distribution. Gibbs sampling effectively
explores the joint probability distribution of the visible and hidden units in the RBM. By iter-
atively updating the states of these units, it allows the RBM to learn and adapt its weights
and biases to better match the data distribution. Over time, as more Gibbs sampling steps
are performed, the RBM converges to a state that approximates the data distribution more
accurately. RBMs have found applications in diverse domains, including recommendation
systems (R. Salakhutdinov et al. 2007), dimensionality reduction (Van Der Maaten et al.
2009), and feature learning (Längkvist et al. 2014), as they can efficiently capture complex
data representations.

AE, on the other hand, are NN architectures designed for unsupervised feature learning
and data compression. They were initially explored in the 1990s for non-linear data
compression, extending the concept of principal component analysis (PCA). An AE
consists of an encoder and a decoder, where the encoder maps the input data into a lower-
dimensional bottleneck layer (latent space), and the decoder reconstructs the original
input from this representation. The output vector from the bottleneck layer in AEs can be
employed for non-linear data compression. The goal of training an AE is to minimize the

Deep Learning: A Practical Introduction, First Edition.
Manel Martínez-Ramón, Meenu Ajith, and Aswathy Rajendra Kurup.
© 2024 John Wiley & Sons Ltd. Published 2024 by John Wiley & Sons Ltd.
Companion website: https://github.com/DeepLearning-book

https://github.com/DeepLearning-book

274 7 Deep Unsupervised Learning I

reconstruction error, effectively forcing it to capture the most salient features of the data.
AEs have become instrumental in various domains, such as image denoising (Gondara
2016), anomaly detection (Sakurada and Yairi 2014), and generative modeling (Yoshua
Bengio et al. 2013).

DBNs were initially introduced as probabilistic generative models to provide an alterna-
tive to the discriminative nature of traditional neural nets. It is a specific type of deep neural
network (DNN) that consists of layers stacked with RBMs. They leverage the strengths of
both RBMs and NNs to create hierarchical representations of data. The RBM layers cap-
ture low-level features, while the neural network layers learn increasingly abstract and
complex representations. Moreover, DBNs are versatile in their applications, as they can
address unsupervised learning challenges by reducing feature dimensionality and also han-
dle supervised learning tasks for constructing classification or regression models.

These unsupervised learning methods have found applications in a wide range of
domains, addressing challenges where obtaining labeled data is difficult or costly. By let-
ting algorithms uncover meaningful insights on their own, unsupervised learning can
unlock the full potential of data, paving the way for improved decision-making, data-driven
discoveries, and enhanced model performance across a wide range of applications.

7.2 Restricted Boltzmann Machines

A RBM is a neural structure introduced by Geoffrey E. Hinton and Sejnowski (1983) and
Ackley et al. (1985), used to represent a domain from examples of that domain. This way,
the machine constructs a generative model that can produce examples with the same
probability distribution as the distribution of the examples presented.

7.2.1 Boltzmann Machines

The RBM is constructed from the concept of the Boltzmann machine (BM), which is a struc-
ture of nodes si (see Fig. 7.1) fully connected through bidirectional edges. Each connection
between node i and node j has a bidirectional weight wij ∈ ℝ. Each node has a binary state
1 or 0, that are computed probabilistically as a function of the states of its connected nodes
and their corresponding weights. If two connected nodes have a positive weight, this means
that both nodes positively support their state, and when a weight is negative, that means
that each node negates the state of the other. The structure is equal to the Hopfield Network
(Hopfield 1982), mentioned in Section 5.2.

The global state of the network can be described by a function called the energy of the
system, which is defined as

E = −
∑
i<j

wijsisj −
∑

i
bisi (7.1)

The energy of the system can be interpreted as to what extent the combination of states
violates the constraints implicit in the problem domain. The minimization of the energy
produces an interpretation of the input that satisfies increasingly the constraints of the
problem domain. A simple algorithm to find the values of the free states that find a local

7.2 Restricted Boltzmann Machines 275

s1

h1

(a) (b)

υ1

w6,7

υ2

υ3

υ4

h2

h3

s2

s3

s4

s5s6

s7

Figure 7.1 (a) A fully connected Boltzmann machine. Each node has a binary state si ∈ {0,1}. Each
pair si , sj of nodes are connected by weight wi,j . (b) A Boltzmann machine with hidden nodes hi and
visible nodes vi . Visible nodes can be clamped or given particular states during training.

minimum in the energy is simply to switch each hypothesis into the state that gives the
minimum energy. Indeed, the energy gap between states of node j, or the energy contribu-
tion related to the choice of state 1 for node j is

ΔEj =
∑

i
wijsi + bj (7.2)

If the contribution of forcing state sj = 1 decreases the energy, the state is chosen. Otherwise,
the state is rejected. To escape the local minima, noise can be added to the decision by choos-
ing states in a stochastic way. The method adopted in Geoffrey E. Hinton and Sejnowski
(1983) consists of choosing state 1 with probability

pj =
1

1 + e
−ΔEj

T

= 𝜎

(ΔEj

T

)
(7.3)

where T is a parameter that can be interpreted as a temperature. This function is a logit
where if the temperature is T = 0, the derivative at the origin is infinite, and when the
temperature increases, the derivative decreases. If the temperature is zero, then the decision
is hard (we choose hk = 1 if ΔEk > −bj and zero otherwise). If the temperature is positive,
the probability of sk = 1 increases with the energy gap. The ratio between the probabilities
of the two states obeys the Boltzmann distribution

p0

p1
= e

E1−E0
T (7.4)

The model in Eq. (7.3) is very important for the solvability of the problem, as it uses a prob-
abilistic representation that describes the behavior of the nodes rather than their states, and
it is based on a differentiable function that makes the problem mathematically tractable.

7.2.2 Training a Boltzmann Machine

Assume that a subset of the nodes are clamped or forced to be in a certain state for training
purposes. These are the visible nodes vi, while the nodes that are not clamped are the hidden
nodes hi. To train the parameters, at each step of the training, two phases are defined.

276 7 Deep Unsupervised Learning I

In the positive phase, the visible units are clamped according to the given inputs, and the
probabilities of the hidden units are modeled using these inputs. We define distribution
over the training set as p (v). In the negative phase, the clamping is removed and the
probabilities of the visible nodes are computed from the hidden nodes as p

(
v′). Then, the

Kullback–Leibler (KL) divergence between both probabilities is computed as

KL(p(v)∥p(v′)) =
∑

k
p(vk) log

p(vk)
p(v′k)

(7.5)

and the gradient of this divergence with respect to a weight w + i, j can be computed, taking
into account Eq. (7.3), with the result

𝛿G
𝛿wi,j

= 1
T

(
pij − p′

ij

)
(7.6)

where pij is the probability that nodes i and j have state 1 in the positive phase and p′
i,j is the

probability that they have state 1 in the negative phase.

7.2.3 The Restricted Boltzmann Machine

The RBM was introduced in Smolensky (1986) as a Boltzmann machine where the connec-
tions are restricted to be between visible and hidden nodes, but where there are no connec-
tions between any two visible nodes or any two hidden nodes. In their works Geoffrey E.
Hinton et al. (2006) and Geoffrey E. Hinton and R. R. Salakhutdinov (2006), these struc-
tures are used to construct generative machines. A representation of an RBM is depicted in
Fig. 7.2, where it can be seen that it can be arranged into a two-layer model where the input
is connected to a feature layer.

The energy function corresponding to this structure is written as

E(v,h) = −
∑

i,j
wijvihj −

∑
i,j

bivi −
∑

i
cihi (7.7)

where bi, ci are the biases of the visible and hidden units. The probability p(hi) of that state
of hidden unit i is one is expressed as in Eq. (7.3). The training of the RBM follows the same
strategy as in the BM. More specifically, assume a set of binary input data {x1,… , xN},
xi ∈ ℝD0 and an RBM with D0 visible nodes and D1 < D0 hidden nodes. For each input
sample, visible state probabilities are clamped with the values of that sample. Then, the
probabilities of the hidden nodes are computed as

p(hj|v) = 𝜎

(∑
i

wijvi + cj

)
(7.8)

h1 h2 h3

υ1 υ2 υ3 υ4

Figure 7.2 A restricted Boltzmann machine.

7.2 Restricted Boltzmann Machines 277

where v represents the vector containing all visible states. States hi of the hidden nodes are
set to 1 with these probabilities. This is what constitutes the positive phase of the training.
In the negative phase, the visible units are unclamped, and their probabilities are chosen
as a function of hidden states as

p(v′j |h) = 𝜎

(∑
i

wijhi + bj

)
(7.9)

where h is a vector containing all hidden states. Finally, hidden states are updated again
with generated inputs v′i to obtain states h′

i . This is repeated for all samples, and then a sam-
ple estimation of Eq. (7.6) is computed, with the restriction that the connections or weights
between hidden nodes and the ones between visible nodes are zero. Taking into account
that probabilities pij and p′

i,j are defined as Bernoulli mass functions, we can redefine and
estimate them as

pij = p
(

vi = 1, hj = 1
)
= 𝔼

[
vihj

]
≈ 1

N

N∑
k=1

vi,nhj,n

p′
ij = p

(
v′i = 1, h′

j = 1
)
= 𝔼

[
v′i h

′
j

]
≈ 1

N

N∑
k=1

v′i,nh′
j,n

(7.10)

and then, an update rule can be constructed as

wij ← wij + 𝜇

N∑
k=1

(
vi,nhi,n − v′i,nh′

i,n

)
(7.11)

The criterion that gives this training procedure is known as contrastive divergence
(Geoffrey E. Hinton 2002). Weights wij can be expressed as matrix W ∈ ℝD0×D1 and
therefore the above expression can be written as (K. P. Murphy 2012)

W ← W + 𝜇

(
VH⊤ − V′H′⊤

)
(7.12)

where matrices H ∈ ℝD1×N and V,V′ ∈ 𝔻0 × ℕ contain states vi,n, v′i,n, and hi,n, respectively.
The biases are updated similarly. We simply need to assume that a bias is a connection
between all nodes in the layer and a single state with a value equal to 1, and, as a result

b ← b + 𝜇
(
V − V′) ⋅ 𝟏

c ← c + 𝜇
(
H − H′) ⋅ 𝟏 (7.13)

where vector 𝟏 multiplying the state matrices is a column vector of N ones.
An immediate way of extending the RBM to the DL area is to construct a machine

that stacks a series of RBM structures. Such models are known as a deep Boltzmann
machine (DBM) (R. Salakhutdinov and G. Hinton 2009). The advantage of this structure
is that the training can be done layer-wise since all layers are conditionally independent
of each other given the previous and following layers. A DBN has the same structure,
except that it is partially directed, which can be trained using a form of greedy layer-wise
algorithm.

278 7 Deep Unsupervised Learning I

7.3 Deep Belief Networks

The DBN (Geoffrey E. Hinton et al. 2006; Geoffrey E. Hinton 2007) were the first noncon-
volutional model that could be successfully trained when constructed as deep structures.
Indeed, the existing deep models before the DBN were very hard to train since they posed
many practical difficulties, and therefore, Kernel machines and the support vector machine
(SVM) (see, e.g. Schölkopf and Sung (1997) and Smola et al. (1998) or Gaussian process (GP)
(Rasmussen and C. K. I. Williams 2005)) were the most popular learning machines at that
time (I. Goodfellow et al. 2016).

In a DBN, the structure is constructed as a stack of RBM. This is because the struc-
ture has several layers of hidden units with no connections between nodes of the same
layer. The hidden units are binary, but the input and output layers can have a continuous
representation.

7.3.1 Training a DBN

The training of a DBM proposed by Hinton is simply to apply the contrastive divergence
sequentially to each one of the layers starting from the input one (see e.g. (Yoshua
Bengio et al. 2006)). It is proven that using this procedure, when a new layer is added, a
bound on the training likelihood is increased (Geoffrey E. Hinton et al. 2006). When it is
necessary to fine-tune it with labeled training data. For example, in Geoffrey E. Hinton
et al. (1995), the wake-sleep algorithm is proposed. After the fine-tuning of the structure,
a gradient descent can be applied with respect some criterion to continue training the
model. For example, if the structure is to be used in supervised learning, the likelihood
with respect to a set of desired outputs yk corresponding to training samples xk can be used
Kurup et al. (2019).

Example 7.3.1 Using a DBN for feature extractions in the MNIST classification.
Here we illustrate the use of a DBN to extract nonlinear features from images that can be
used as the input of a simple classification model in order to improve its performance. The
input data is the MNIST handwritten digit database, whose pixel values are normalized
between 0 and 1, and therefore these values can be interpreted as the probability of each
pixel being 1. The DBM uses a Bernoulli distribution for its nodes.

In this experiment, a stack of two RBMs are used. The first one has 64 inputs, corre-
sponding to the 64 pixels of the images, and 100 hidden units. The second one has 100
visible units and 100 hidden units. They are trained by contrastive divergence during 10 iter-
ations each, and then a simple classifier of one layer with 10 outputs, corresponding to
the 10 classes and softmax output is trained using ML. For the sequential training of both
structures, 80% of the data has been used as training data, and the rest for test.

Figure 7.3 shows the differences in the classification performance between both classi-
fiers. It can be seen that with the use of extracted features, the classification is improved.
For example, class “1” goes from 107 correct classifications to 160. In average, the classifi-
cation accuracy increases from 78% to 87%. If the first layer is constructed with 256 nodes,
the accuracy increases to 89%.

7.4 Autoencoders 279

169

160

149

156

174

145

203

143

143

129

160

107

141

153

156

137

181

136

106

128

0 1 2 3 4 5 6 7 8 9
Predicted label

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9
Predicted label

(a) (b)

0

1

2

3

4

5

6

7

8

9

T
ru

e
la

be
l

0 0

0 0 0 3 0 2 0 0 0

6 3 0 2 2 2 9

3 0 0 0 0 4 0

0 7 0 3 11 12

1 0 10 0 0

0 1 8 16

0 1 0

1 3

7 2

0 10

0 0 5

0 1 0 0

2 2 1 5 1

1 0 0 0 2 0

0 5 0 0 2 0 0

0 11 6 2 1 9 1

0 2 1 14 2 9 0 8 4
0

25

50

75

100

125

150

175

200

T
ru

e
la

be
l

2 0

3

2 1 0 4 2 2 1

13 15 11 7 3 2 16 7

7 2 2 1 0 3 2

1 6 1 3 9 7

1 6 4 3 8

3 3 4 7

0 4 0

4 4

7 8

0 8

0 7 7

1 7 0 0

0 6 10 7 4

5 8 2 0 4 3

3 1 3 0 2 1 0

1 25 8 8 3 13 3

4 6 1 6 4 7 1 4 8
0

25

50

75

100

125

150

175

DBN classifier Raw data classifier

Figure 7.3 (a) Shows the confusion matrix of the combination of the DBM and the classifier for the
MNIST dataset. (b) Shows the confusion matrix for a raw data classifier.

7.4 Autoencoders

An AE is an NN designed to compress input data into a meaningful representation and
reconstruct it as closely as possible to the original data. Geoffrey Hinton and the paral-
lel distributed processing (PDP) research group first introduced AEs in (Rumelhart 1986).
They aimed to solve the challenge of backpropagation without a teacher by utilizing the
input data as a guide to the learning process. In a traditional supervised learning scenario,
the labels provide the correct answers for training. AEs use unsupervised learning, where
the model learns from the input data without explicit labels.

Over the past decade, starting around 2006, AEs have regained prominence within the
framework of the deep architecture paradigm (Geoffrey E. Hinton et al. 2006; Geoffrey
E. Hinton and R. R. Salakhutdinov 2006; Yoshua Bengio et al. 2007; Erhan et al. 2010).
During this time AEs, notably in the form of RBMs, were arranged hierarchically and
trained in an unsupervised manner from the bottom up. Afterward, the process involved a
supervised learning phase to train the top layer and refine the architecture. These archi-
tectures demonstrated exceptional performance on various classification and regression
challenges.

AEs are generative models that can be used in many applications due to their ability to
learn representations. These learned representations can be assumed to have useful prop-
erties which was translated to its many variants. A few of the common applications using
AE architecture or its variants include facial recognition (Geoffrey E. Hinton et al. 2011;
A. R. Kurup et al. 2019), compression, denoising, feature reduction, clustering, anomaly
detection and image processing (Ye et al. 2018; Bando et al. 2018; Bevilacqua et al. 2008).

7.4.1 Autoencoder Framework

An AE neural network represents an unsupervised learning algorithm that employs back-
propagation, with the target values set to replicate the input data. The basic configuration of

280 7 Deep Unsupervised Learning I

Encoder

i o

o

o

o

o

o

o

o

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

i

i

i

i

i

i

i
Decoder

Bottleneck

Input
x

Reconstructed output
x'

Figure 7.4 A fundamental view of the AE architecture, illustrating its encoder-decoder structure.

an AE is shown in Fig. 7.4. It consists of three layers: the input layer, the hidden layer, and
the output layer. The input layer, together with the hidden layers, serves as the encoder,
while the hidden layer in conjunction with the output layers functions as the decoder.
The AE operates by taking an input vector, x ∈ Rd, and initially transforming it into a hidden
representation, h ∈ Rd, through a mapping function defined as:

h = 𝜎(W⊤x + b) (7.14)

Here x represents input data and h signifies latent variables within the information bottle-
neck (IB). The concept of IB (Tishby et al. 2000), posits that it can extract essential informa-
tion by compressing the data flow in the network. These compressed pieces of information
are known as latent variables or representations. Latent variables are unobservable random
variables extracted from the distribution, offering abstract insights into data topology and
distribution. The equation f (x) = h forms the encoder part of the network. Conversely, to
reconstruct the input, the decoder takes latent variables from the bottleneck and constructs
a reverse mapping function, denoted as f ′(h) = x′ which is defined as:

x′ = 𝜎(W′h + b′) (7.15)

For example, consider an input image sized at 28 × 28. This image needs to be flattened
before it can be fed into a neural network. When flattened, the representation becomes a
vector of 784 elements, which is then inputted into the encoder. The output of the encoder
is directed toward the bottleneck’s latent space to create a compact representation. For
instance, having 8, 16, or any other chosen number of nodes in the latent space indicates
the effective reduction of a 784-sized image into a more compact dimension. Subsequently,
the decoder network endeavors to reconstruct the original 28 × 28 input image from this
compressed state within the bottleneck. After the image is reconstructed, a comparison is
made between the reconstructed image and the original image. This involves calculating
the difference and determining the loss.

The training process of an AE involves optimizing the model parameters (W,W′,b,
and b′) to minimize the reconstruction error between the input data x and the reconstructed
output x′. This optimization is performed using an optimizer such as SGD and involves
employing loss functions such as MSE or binary cross-entropy, especially in binary sce-
narios. Consequently, this type of network is trained in an unsupervised manner with the
objective of reproducing its input at the output layer.

7.4 Autoencoders 281

The MSE is computed as the sum of squared differences between the individual data
points:

𝔼[e(x, x′)] = 1
2N

N∑
i=1

∥xi − x′
i∥

2
2 (7.16)

The cross-entropy error, represented as JCE(x, x′), is computed as a measure of dissimi-
larity between the input data x and the reconstructed output x′. This error is quantified by
evaluating the negative sum over all data points from 1 to N of a logarithmic expression.
Specifically, it calculates the negative log-likelihood of the reconstruction.

JCE(x, x′) = −
N∑

i=1
(xi log x′

i + (1 − xi) log(1 − x′
i)) (7.17)

In recent years, the deep learning literature has witnessed the emergence of various AE
architectures, each particularly designed to tackle specific challenges and tasks. Among the
notable variants of AEs, the undercomplete AE stands out for its focus on acquiring com-
pact and informative representations through constraints on the hidden layer’s size, which
encourages feature selection and compression. The denoising AE has been engineered to
robustly learn meaningful features, even in the presence of noisy or corrupted input data,
making it invaluable for noise reduction and data denoising tasks.

Meanwhile, convolutional AEs are proficient in handling structured data like images, uti-
lizing convolutional layers to capture spatial hierarchies. This enables their use in applica-
tions such as image reconstruction, generation, and feature learning. Sparse AEs, another
noteworthy variant, emphasizes the importance of sparsity in the learned representations.
By promoting sparse activations in the hidden layer, these AEs encourage the selection
of only the most essential features, enhancing interpretability and reducing redundancy.
Lastly, variational autoencoders (VAEs) introduce probabilistic encoding, enabling AEs to
effectively model data distributions and generate diverse samples.

Example 7.4.1 (Anomaly detection using AEs)
Anomaly detection is a vital data analysis technique that identifies infrequent items, occur-
rences, or observations showing significant deviations from the dataset. Anomalies, also
called outliers or novelties, can be of interest due to their uniqueness and importance. They
might signal errors, fraud, rare events, or unusual phenomena needing attention. This tech-
nique applies to domains like finance, cybersecurity, manufacturing, and healthcare, where
detecting unusual behavior holds substantial significance.

AEs are particularly well-suited for effective anomaly detection due to several reasons.
First, anomaly detection often encounters situations where labeled anomalous instances
are either scarce or absent. In such unsupervised scenarios AEs, gain insights from the
distribution of normal data without using labeled anomalies for training. Second, through
training on normal data, AEs adeptly grasp the underlying patterns and inherent structures
within the dataset. Consequently, they become proficient at generating precise reconstruc-
tions of regular data instances. Lastly, anomalies tend to yield heightened reconstruction
errors as they pass through the AE. This discrepancy arises because anomalies deviate from
the established patterns, leading to more substantial disparities between their original and
reconstructed representations.

282 7 Deep Unsupervised Learning I

Here we are trying to detect anomalies in Amazon (AMZN) stock prices from 1997 to
2023. The data is obtained through Yahoo Finance which is a popular and widely used
online platform that offers a comprehensive suite of tools, data, and resources related to
stocks, investments, market trends, financial news, and more. It provides historical stock
price data that you can access by searching for the stock symbol “AMZN” on its website.
You can then navigate to the “Historical Data” section to download or view the data. Here
we have downloaded this data from the URL https://finance.yahoo.com/ and saved it as
a CSV file. The CSV file has seven columns, namely Date, Open, High, Low, Close, Adj
Close, and Volume. Here we only use the “Date” and “Close” columns for the detection.
The trend of AMZN’s stock price is shown in Fig. 7.5 by plotting the closing prices
over time.

Year

C
lo

si
ng

 s
to

ck
 p

ri
ce

2000

Close price
175

150

125

100

75

50

25

0

2004 2008 2012 2016 2020 2024

Figure 7.5 AMZN stock price over the years.

Following that, the initial stages of data preprocessing involve establishing the sizes of the
training and test datasets, and subsequently partitioning the data accordingly. The “Close”
prices are transformed into standardized features, whereby their mean is subtracted and
they are scaled to attain unit variance. Subsequently, input–output pairs are crafted for both
the training and test datasets. In this context, each input is formed from a sequence of data
points spanning the designated number of time steps, with the corresponding output being
the data point right after the sequence. For this purpose, a sequence length of 30 time steps
has been specified.

The model architecture for this application is an LSTM AE. It consists of several layers
that collectively enable the model to learn temporal patterns and generate reconstructed
sequences. The first layer in the architecture is an LSTM layer with 64 hidden units that
function as the encoder. Following the encoder, a dropout layer is added to mitigate over-
fitting. This dropout layer randomly deactivates 20% of the units during each training itera-
tion, thereby enhancing the model’s generalization capability. A RepeatVector layer is then
introduced, which repeats the encoded representation of the input sequence. This repeti-
tion ensures that the same encoded representation is available for every time step in the
decoding process, facilitating accurate sequence reconstruction.

Subsequently, another LSTM layer comes into play, serving as the decoder. This decoder
LSTM layer mirrors the encoder’s configuration, with 64 hidden units. To counter

https://finance.yahoo.com/

7.4 Autoencoders 283

overfitting on the decoding side, a second dropout layer, with the same 20% deactivation
rate, is incorporated. The final layer in the architecture is a TimeDistributed layer coupled
with a dense layer. The number of units in this dense layer corresponds to the number of
features in the output data, which ensures the proper reconstruction of the sequence.

In the training stage, the model is configured with mean absolute error (MAE) loss func-
tion and optimized using the Adam optimizer. Training takes place across 100 epochs, with
each epoch processing a batch size of 32 data points. The trained model is used to predict
reconstructed data for both the training and test sets. A threshold for anomaly detection is
set as the maximum training MAE loss. Anomalies are shown as points above the thresh-
old, helping to visualize the time points where the stock prices deviate significantly from
the expected pattern. The test data’s loss values are compared against the threshold to label
anomalies.

The loss values and the anomaly threshold are plotted over time in Fig. 7.6 to visually
identify anomalies. Additionally, the visualization extends to Fig. 7.7, wherein the anoma-
lies are depicted alongside their respective dates and the original closing prices.

Test MAE
2.5

2.0

1.5

1.0T
es

t M
A

E

0.5

0.0

2021-01
2021-04

2021-07
2021-10

2022-01
2022-04

2022-07
2023-01

2023-04

2023-07
2022-10

Threshold

Figure 7.6 Thresholding the test MAE loss to identify the anomalies.

Close price
Anomaly

C
lo

se
 p

ri
ce

180

160

140

120

100

80

2021-01
2021-04

2021-07
2021-10

2022-01
2022-04

2022-07
2023-01

2023-04

2023-07
2022-10

Figure 7.7 Visualization of anomalies in the original closing prices of AMZN.

284 7 Deep Unsupervised Learning I

7.5 Undercomplete Autoencoder

Undercomplete AE is the simplest architecture in the family of AEs. In general, AEs are
unsupervised learning approaches where the neural network is trained to generate the copy
of input at the output end (Buongiorno et al. 2019). In AE, the hidden layer h generates a
latent representation of the input data x. This latent representation is used to reconstruct the
copy of the data. The encoder part generates the codes which gives a higher-level represen-
tation of the data that needs to be reconstructed by the decoder layer. The number of layers
in the encoder defines how well the input data is coded. In other words, the encoder layers
need to approximate the data well so that it can reconstructed properly by the decoder.

An important factor in the level of compression that is achieved includes the input size
and the size of the latent code. The AEs can be constructed in such a manner that either
the size of the code is greater, smaller, or equal to that of the size of the input. When the
size of the code is greater than the size of the input, such networks are called overcomplete
AE. When the size of code and input are equal, they are complete AE. In undercomplete
AEs, the latent code generated is a compressed representation of input, i.e. the size of code
is lesser compared to that of the size of the input (see Fig. 7.8) (Thies and Alimohammad
2019). The idea behind undercomplete AE is to train a network that reconstructs the data
using a smaller representation. This type of network focuses on learning the most signifi-
cant features of the training data. Applications that commonly rely on these models include
compression (Thies and Alimohammad 2019), image denoising (Dodda et al. 2022), and
anomaly detection (Sreenatha and Mallikarjuna 2023).

The training criterion of undercomplete autoencoders is the same as that of the AE in
general, i.e. using the train data to minimize the MSE which corresponds to the difference
between actual input x and reconstructed output x′. In general, the loss function corre-
sponds to the following:

min
W

𝔼
[
e2

i
]
= min

(
𝔼
[
(xi − x′

i)
2] + c1r(W) + c2r(x, x̂)

)
(7.18)

Bottleneck

i o

o

o

o

o

o

o

o

i

i

i
h

h

h
i

i

i

i

Encoder Decoder

Figure 7.8 An example of undercomplete AE architecture.

7.6 Sparse Autoencoder 285

where the first term corresponds to the standard MSE, the second term is the weight regu-
larization and the third term is for sparsity regularization. c1 and c2 are the scaling factors
to adjust the weight of each of the terms in the function. These regularization functions
can be as simple as that of L1, and L0 norms. These regularization techniques help with the
generalization capabilities of the model.

7.6 Sparse Autoencoder

The basic architecture of autoencoders tries to approximate identity function since the ulti-
mate aim of such models is to reconstruct the input. This might seem like a trivial solution.
However, if we implement certain constraints to the network, i.e. by limiting a certain
number of hidden units, we can learn interesting details as well as structures of the data
(A. Ng et al. 2011; H. Lee et al. 2007).

Consider we have an input size of n = 100 and we are trying to reconstruct this input
using 50 hidden units. In this scenario, if the input features are Gaussian independently
and identically distributed (i.i.d.), meaning there is no correlation between the input sam-
ples, the task of reconstruction might be difficult. However, if we have an input with some
features that are correlated to each other, then we can assume that the neural network might
be able to identify a few of those correlations in the data. This means the network can learn
those correlations to reconstruct the input.

The above example points to a scenario where we have a lesser number of hidden
units compared to the input. What if the number of hidden units is large? In such a
case, the argument would be to impose certain constraints on the network. We can
introduce sparsity constraint over the hidden units. This would enable the AE to learn
the structure of data even with a large number of hidden units. Sparse autoencoder
(SAE) shown in Fig. 7.9 limits the constraints by penalizing activations within the
layers using a sparsity parameter. This means that the network will be limited to certain
specific attributes or features associated with the input. Given an observation, the model
will try to encode and decode using only a smaller number of neurons at a time. The
idea of sparse penalty term was inspired by sparse coding introduced in Olshausen and
Field (1996).

Within the network, assuming sigmoid activation, a neuron can either be in an “active”
state (outputs value close to 1) or an “inactive” state (outputs value close to 0). If we call
the activation of ith hidden unit as hi(x) for a given input x. The average activation of the
hidden unit i (over the entire training set) which corresponds to the sparse penalty term
(Jun Deng et al. 2013) is given by

𝜌i =
1
N

N∑
j=1

hi(xj) (7.19)

where N corresponds to the number of input examples. Now this average activation of the
hidden unit i can be approximately enforced to a parameter called sparsity parameter or
sparsity level, 𝜌.

𝜌i = 𝜌 (7.20)

286 7 Deep Unsupervised Learning I

Inputs

Active node (node output ≠ 0)

Input layer ∈ Output layer ∈Hidden layer ∈

Inactive node (node output = 0)

OutputsEncoder Decoder

12 12 12

Figure 7.9 SAE architecture. Node activations vary depending on the inputs. Therefore, not always
the same nodes become inactive. Source: https://towardsdatascience.com/Medium.

The sparsity parameter value is generally close to 0, for example, 𝜌 = 0.05. This would
push the hidden state activation to a near 0 value, making the hidden layer mostly
“inactive” (W. Sun et al. 2016). This sparsity parameter is now added to the objective func-
tion to penalize 𝜌i in case it deviates significantly from 𝜌. This can be expressed using the
penalty term:

Ppenalty =
Dl∑

i=1
KL(𝜌||𝜌i) (7.21)

where Dl is the number of neurons present in the hidden layer l. KL(𝜌∥𝜌i) corresponds to
the KL divergence (Kullback and Leibler 1951) given by:

KL(𝜌||𝜌i) = 𝜌 log 𝜌

𝜌i
+ (1 − 𝜌) log 1 − 𝜌

1 − 𝜌i
(7.22)

https://towardsdatascience.com/Medium.

7.7 Denoising Autoencoders 287

The above approach makes sure that when 𝜌 = 𝜌i, then the KL(𝜌||𝜌i) = 0. Otherwise,
when 𝜌j diverges from 𝜌, the KL(𝜌||𝜌i) increases monotonically. Hence, this acts like a spar-
sity constraint. Now, the overall cost function can be written as:

Jsp(W,b) = J(W,b) + 𝜆

Dl∑
i=1

KL(𝜌∥𝜌i) (7.23)

where 𝜆 is the weight of the sparsity penalty term. Note that the Jsp(W,b) is directly related
to parameters W and b and we need to minimize the cost function to obtain the two param-
eters. Again, the SGD approach is used to train this type of architecture, and the W and b
get updated at each iteration. The forward pass computes the average activation 𝜌i to obtain
the sparse error. The BP helps with updating the weight and bias parameters. Using this
approach the (SAE) learns the feature representations relevant for the reconstruction of
input data.

7.7 Denoising Autoencoders

So far we have looked into AE models that have identical input and output as the main goal
was to reconstruct the input and learn representations of it that would be relevant for recon-
struction. Also, we looked into models that can perform this reconstruction using different
strategies by modifying the number of layers or by putting a constraint on the hidden units.
There can be applications where we need the AE model that learns generalizable coding
to recreate the original data even if we pass corrupted data. Denoising is such an applica-
tion where the input is noisy or corrupted data, while the expectation from the model is to
provide a noiseless output.

Denoising autoencoder (DAE) (Vincent et al. 2008) changes the reconstruction criterion
for a more interesting and challenging objective of cleaning partially corrupted data, i.e.
denoising. The assumption made for implementing this criteria is that: firstly, the higher-
level representation is expected to be robust and stable even under corruptions of input.
Secondly, the denoising task helps with extracting useful features associated with the struc-
ture of input data and is a type of constraint that helps the model learn better. This would
help the model to capture a better high-level representation of the data (Vincent et al. 2010).

7.7.1 Denoising Autoencoder Algorithm

Denoising autoencoder (DAE) is a variation of the traditional AE. As described before, the
idea behind DAE is to retrieve the original clean input using the corrupted version of it (Fer-
les et al. 2018). The first step in this approach is to corrupt the input data using a stochastic
mapping given by:

x̂ ∼ Q(d)(x̂|x) (7.24)

where x̂ is the corrupted version of input x. Similar to Eq. (7.14), the input x̂ is encoded to
a hidden representation given by:

h = 𝝈(W⊤x̂ + b) (7.25)

288 7 Deep Unsupervised Learning I

h

x

LH(x,x')

x̂ x'

Figure 7.10 The DAE architecture. Source: Adapted from Vincent et al. (2010).

where instead of the original input we pass the noisy input x̂. Note that the parameters
in the encoder part are the W⊤ and b. Further, the reconstruction is obtained similar to
Eq. (7.15) given by:

x′ = 𝝈(Wh + b′) (7.26)

and the parameters associated with the decoder portion include W and b′. Both sets of
encoder and decoder parameters are trained to minimize the average reconstruction error
on the training dataset. This means the idea is to have the x′ to be as close to the uncorrupted
x as possible. Now, the main difference in the case of denoising is that the x′ is a determin-
istic function of x̂ rather than x as in AE. The loss function is either the cross-entropy loss
(ece(x, x′)) when using sigmoid combined with affine transformation in the decoder or the
MSE loss (emse(x, x′)) in case of just affine decoder. The parameters are initialized randomly,
followed by optimization using stochastic gradient descent.

It is to be noted that the same reconstruction error is being minimized between the clean
x and reconstructed x′ which corresponds to maximization of the lower bound on mutual
information between the reconstruction x′ and the clean noiseless version x. The main dif-
ference now is that x′ is obtained using the deterministic mapping to the corrupted input
‚x shown in Fig. 7.10. This allows the model to learn the hidden representation through far
more clever mapping than just identity mapping. This indeed aids with extracting useful
features to aid the denoising application.

7.8 Convolutional Autoencoder

Convolutional autoencoder (CAE) combines the concept of CNNs introduced in Chapter 4
and Autoencoder framework. Since CNNs are best known for their ability to model image
data, (CAE) can be used for applications such as image compression (Akyazi and Ebrahimi
2019; Cheng et al. 2018), image denoising (Gondara 2016), anomaly detection (M. Ribeiro
et al. 2018; Chow et al. 2020; Shen Yan et al. 2023), etc.

Autoencoders pose the main limitation of not being able to capture the two-dimensional
details in an image or video frame sequences (Masci et al. 2011). This can introduce redun-
dancy in the network parameters which may de-emphasize the local information associated
with the images. Most of the successful object recognition models (Lowe 1999; Serre et al.
2005) had the ability to extract localized scale-invariant features that occurred repeatedly
across the input. The concept of CAE was first introduced in Masci et al. (2011). Unlike the

7.8 Convolutional Autoencoder 289

conventional AE, in CAE, the weights are shared across all the locations in input. This helps
in preserving the spatial locality which is similar to CNN. In CAE, the latent representation
is in the form of image patches. Hence, the linear combination of these image patches is
used for reconstruction.

As for the CAE architecture, the concept is similar to the one described in Section 7.4.1.
Consider a single channel input x. Similar to Eq. (7.14), the latent representation of the kth
feature map corresponding to input x is given by the following equation:

h(k) = 𝝈(W(k) ∗ x + b(k)) (7.27)

where the bias is broadcast across the whole map, 𝜎 is the activation function and ∗ stands
for the two-dimensional convolutional operation between the weights of kth feature map
(W(k)) and the input. For each latent map, only a single bias is used. This is done to make
sure that each filter specializes in features of the entire input as having different bias values
per pixel might introduce many degrees of freedom. The reconstruction part is performed
using the following equation:

x′ = 𝝈

(∑
k∈H

W̃(k) ∗ h(k) + c

)
(7.28)

where the flip operation across the two dimensions is indicated using W̃. H corresponds
to the group of latent feature maps and again, we are using just a single bias c across the
entire input per channel. The cost function used for training purposes is the minimization
of MSE given by the following equation:

min
W

𝔼
[
e2

i
]
= min

(
𝔼
[
(xi − x′

i)
2]) (7.29)

Similar to the standard neural networks, the backpropagation algorithm is used to com-
pute the gradient of the error function with respect to the parameters, i.e. W(k). These
weights are then further updated using the stochastic gradient descent approach.

The translation-invariance can be achieved in the case of CAE using a Maxpooling layer
similar to CNNs. This layer helps with downsampling the latent representation using a
constant factor. This factor is usually taken as the maximum value of the overlapping sub-
regions. The advantage of this approach is that it improves the selectivity of the filter as
this approach considers the match that occurs between the feature and the input data
over the region of interest. The max-pooling operation used in the case of CAE erases the
non-maximal values in the nonoverlapping sub-regions, introducing sparsity over hidden
representations. This allows the feature detection process to be more broadly applicable,
hence the common/trivial solutions are avoided. Further, during the reconstruction part,
the sparse latent code formed using this approach decreases the number of filters required
for decoding each pixel. Hence, the filters tend to be more general in nature. Subsequently,
the max pool layers pose an advantage of not needing L1/L2 regularization overweights or
hidden units.

Example 7.8.1 (Building a CAE for Image denoising using MNIST)
The MNIST dataset is used here to demonstrate the Image denoising using CAE. Here, we
will use the digits data to map the noisy images to clean digits images. The first step is to
load the MNIST data. After loading the dataset, we preprocess it to normalize and reshape
the images to a standard size of 28 × 28.

290 7 Deep Unsupervised Learning I

Following this, we need to add noise to each of the images. We can do that using the
following equation:

Î = I + 𝜖 (7.30)

where I is the original image, 𝜖 is the noise vector. Î is the noisy image that will be used to
experiment with the CAE architecture for performing Image denoising. Now, we need to
split the data into train and test splits. We have 60,000 images in the training and 10,000
images in the test dataset. Also, we will be duplicating this data with and without noise.
A few examples of training samples with and without the noise are shown in Fig. 7.11.

Figure 7.11 Example of train data and
noisy data.

The next step is to construct the CAE architecture. We have the encoder part and the
decoder part. The encoder part consists of two 2D convolutional layers with “ReLU” acti-
vation, filter size of (3, 3) with number of filters = 32. Each of these convolutional layers is
followed by a 2D max-pooling layer with pooling size = (2, 2) which helps in spatial down-
sampling. The decoder part consists of stacked transposed 2D Convolutions with the same
filter size with a stride of 2 and the same number of filters. This output is then further passed
through 2D convolutional layers with 1 filter of size (3, 3) with a sigmoid activation.

Once we have the encoder and the decoder part ready, we can stack them and train the
model. The optimizer used for this example is Adam and the loss function used here is the
binary cross-entropy.

When we proceed to train the model, first we pass the train data as both the input as well
as the label or target. This is because the main aim of the model is to reconstruct the image
at the decoder end, which makes sure that the right latent representations are learned at
the bottleneck part of the CAE. We train the model for 50 epochs with a batch size = 128.
Once the model is trained we can use the noiseless test data as the input to the encoder and
see the predicted output. This should look the same (see Fig. 7.12) showing that the model
is able to learn the representations properly.

Figure 7.12 Input and predictions for
clean test data.

Now let us fit the model on the noisy data as the input and clean data as the target. Using
this approach, we are trying to make the CAE denoise the images. In this case, we are
training the model for 100 epochs with the same batch size. Once the training is done, the

7.9 Variational Autoencoders 291

Figure 7.13 Input and predictions for
noisy test data.

predictions are made on the noisy test data and you can see the CAE does a wonderful job
in denoising the images, as shown in Fig. 7.13

7.9 Variational Autoencoders

There arise several challenges to performing inference and learning in directed probabilis-
tic models with continuous latent variables that have intractable posterior distributions. In
many cases, these posterior distributions cannot be computed analytically, making tradi-
tional approaches like exact Bayesian inference or Markov chain Monte Carlo (MCMC)
(Gilks et al. 1995) computationally expensive. The variational Bayesian (VB) methodol-
ogy is based on the notion of approximating intractable posterior distributions with more
manageable alternatives. Rather than directly engaging with the intricacies of the complex
posterior distribution, a selection is made from a family of distributions, referred to as the
variational distribution. The optimization challenge consequently transforms into deter-
mining the member within this chosen family that best approximates the true posterior
distribution. The closeness of approximation is measured by assessing the KL divergence,
a mathematical metric used to quantify the dissimilarity between the variational distribu-
tion and the true posterior.

A common strategy in probabilistic modeling is the adoption of the mean-field approx-
imation (Honkela and Valpola 2004), wherein the variational distribution is assumed to
exhibit factorization properties, thereby helping the optimization process. This factoriza-
tion implies that the complex problem can be deconstructed into simpler, independent
components. However, despite this simplification, the calculation of expectations associ-
ated with this variational distribution may still pose computational challenges and remain
intractable. To mitigate the challenges presented, one may employ the reparameterization
trick (Kingma and Welling 2013). This technique enables the representation of a random
variable in terms of a deterministic function of another variable, coupled with a controlled
source of randomness. This transformation facilitates differentiation through the previously
random sampling process. Thus this method makes the process of optimizing a mathemat-
ical model suitable for use with SGD.

The stochastic gradient variational Bayes (SGVB) estimator is an estimator for the vari-
ational lower bound, a critical metric in probabilistic modeling and variational inference
(VI). It is derived through the application of the reparameterization trick combined with
Monte Carlo sampling to provide approximations for the expectations involved in the
optimization process. This methodology facilitates the utilization of standard stochastic
gradient ascent techniques in optimizing the variational lower bound. Meanwhile, the

292 7 Deep Unsupervised Learning I

auto-encoding variational Bayes (AEVB) algorithm is introduced while dealing with i.i.d.
datasets and continuous latent variables. This algorithm leverages the SGVB estimator for
the optimization of a recognition model. The role of this recognition model is to facilitate
efficient approximate posterior inference through a process known as ancestral sampling.
Ancestral sampling entails the incremental generation of samples layer by layer within
the generative model. When this recognition model is implemented as a neural network,
it gives rise to the concept of a VAE (Kingma and Welling 2019) (see Fig. 7.15). A VAE
encompasses both an encoder network (the recognition model) and a decoder network (the
generative model), thus enabling the acquisition of a probabilistic mapping between the
data space and a lower-dimensional latent space. Specifically, the encoder approximates
the true posterior distribution of latent variables given the observed data, while the decoder
generates data samples based on these latent variables.

The utility of the learned approximate posterior inference model, represented by the
encoder network, extends beyond the training of the generative model. It finds application
in various domains, including data point recognition, denoising by reconstructing clean
data from noisy inputs, representation learning for extracting meaningful latent features,
and data visualization techniques.

7.9.1 Latent Variable Inference: Lower Bound Estimation Approach

A lower bound estimator, characterized as a stochastic objective function, is derived for
a range of directed graphical models featuring continuous latent variables. This analysis
assumes an i.i.d. dataset with latent variables linked to each data point. The primary objec-
tives encompass two phases: firstly, the calculation of ML or maximum A posteriori (MAP)
inference concerning global parameters, and secondly, the VI of the latent variables.

Consider a dataset denoted as X comprising N i.i.d. samples, where each sample cor-
responds to either a continuous or discrete variable. These data are generated through a
stochastic process involving an unobserved continuous random variable zi. This genera-
tive process encompasses two sequential steps. The initial step involves producing a value
zi drawn from a prior distribution p𝜽∗ (z), followed by the subsequent step of generating
a value xi from a conditional distribution p𝜽∗ (x|z). Both the prior distribution p𝜽∗ (z) and
the conditional likelihood p𝜽∗ (x|z) are assumed to originate from parametric distribution
families identified as p𝜽(z) and p𝜽(x|z), respectively. Additionally, the probability density
functions (PDF) associated with these distributions demonstrate differentiability at nearly
all points w.r.t both model parameters 𝜽 and latent variables z. Throughout this gener-
ative procedure, the true values of the parameters 𝜽∗ and the latent variables zi remain
unknown. Here, the integral of the marginal likelihood p𝜽(x) = ∫ p𝜽(z)p𝜽(x|z)dz poses sig-
nificant computational challenges, making it intractable to calculate its derivative. Conse-
quently, determining the true posterior density p𝜽(z|x) = p𝜽(x|z)p𝜽(z)

p𝜽(x)
becomes an infeasible

task. These intractable computations are commonly encountered in scenarios involving
moderately complex likelihood functions, as observed in neural networks with non-linear
hidden layers. Figure 7.14 shows the intractable posterior distribution of the generative
model.

To address the aforementioned challenges effectively, a recognition model denoted as
q𝝓(z|x) is introduced, serving as an approximation to the true posterior p𝜽(z|x). In contrast

7.9 Variational Autoencoders 293

Figure 7.14 Intractable posterior. The continuous lines
represent the generative model p𝜽(z)p𝜽(x|z). The dashed lines
represent the variational approximation q𝝓(z|x) to the
intractable posterior distribution p𝜽(z|x). The generative
parameters 𝜽 and the variational parameters 𝝓 are inferred
simultaneously. Source: Adapted from Kingma and Welling 2013.

x

N

zϕ θ

to typical factorized approximate posteriors in mean-field VI, q𝝓(z|x) doesn’t necessarily
adhere to a factorial structure, and its parameters 𝝓 are not derived from closed-form
expectations. Instead, a methodology is proposed for jointly learning the recognition model
parameters 𝝓 alongside the generative model parameters 𝜽. Here the latent variables z
can be interpreted as latent representations. Therefore, q𝝓(z|x) is also referred to as a
probabilistic encoder because, given an input data point x, it generates a distribution
encompassing the potential values of the latent representation z. Similarly, p𝜽(x|z) is
termed a probabilistic decoder since, given a latent code latent representation z, it produces
a distribution covering the possible corresponding values of x. This encoder–decoder
framework plays a pivotal role in unraveling the hidden structures within the data.

Let us first define the marginal likelihood for the entire dataset, by summing the individ-
ual marginal likelihoods for each data point.

log p𝜽(x1, x2 · · · xN) =
N∑

i=1
log p𝜽(xi) (7.31)

Next, consider approximating p𝜽(z|x)with an alternative distribution, denoted as q𝝓(z|x).
Define this distribution in a way that it possesses a tractable form (Odaibo 2019). If the
parameters of q𝝓(z|x) can be chosen such that it closely resembles p𝜽(z|x), it can be used for
approximate inference of the intractable distribution. In this task, KL divergence serves as
a metric for measuring the differences between two probability distributions. The KL diver-
gence calculated between the approximate and true posterior distributions is expressed as
follows:

KL(q𝝓(z|xi)∥p𝜽(z|xi)) = −
∫

q𝝓(z|xi) log
(p𝜽(z|xi)

q𝝓(z|xi)

)
dz ≥ 0 (7.32)

Utilizing Bayes’ theorem on the equation above results in:

KL(q𝝓(z|xi)∥p𝜽(z|xi)) = −
∫

q𝝓(z|xi) log
(p𝜽(xi|z)p𝜽(z)

q𝝓(z|xi)p(xi)

)
dz ≥ 0 (7.33)

The above equation can be deconstructed using logarithmic laws, resulting in:

KL(q𝝓(z|xi)∥p𝜽(z|xi)) = −
∫

q𝝓(z|xi)
[

log
(p𝜽(xi|z)p𝜽(z)

q𝝓(z|xi)

)
− log p(xi)

]
dz ≥ 0

(7.34)

294 7 Deep Unsupervised Learning I

Expanding the integrand in the RHS results in:

−
∫

q𝝓(z|xi) log
(p𝜽(xi|z)p𝜽(z)

q𝝓(z|xi)

)
dz +

∫
q𝝓(z|xi) log p(xi)dz ≥ 0 (7.35)

In the equation provided above, it is important to observe that log p(xi) is a constant and
can, therefore, be factored out of the second integral, leading to:

−
∫

q𝝓(z|xi) log
(p𝜽(xi|z)p𝜽(z)

q𝝓(z|xi)

)
dz + log p(xi)∫ q𝝓(z|xi)dz ≥ 0 (7.36)

As q𝝓(z|xi) is a probability distribution, its integration in the equation above equals 1.
Then, by moving the integral to the opposite side of the inequality, we obtain the following:

log p(xi) ≥ ∫
q𝝓(z|xi) log

(p𝜽(xi|z)p𝜽(z)
q𝝓(z|xi)

)
dz (7.37)

Reformulating the equations by utilizing logarithmic rules.

log p(xi) ≥ ∫
q𝝓(z|xi)

[
log p𝜽(xi|z) + log p𝜽(z) − log q𝝓(z|xi)

]
dz (7.38)

Identifying the right-hand side of the inequality above as an expectation, we express it as
follows:

log p(xi) ≥ 𝔼∼q𝝓(z|xi)
[
log p𝜽(xi, z) − log q𝝓(z|xi)

]
(7.39)

Furthermore, employing Eq. (7.37), we deduce the following:

log p(xi) ≥ ∫
q𝝓(z|xi) log

(p𝜽(z)
q𝝓(z|xi)

)
dz +

∫
q𝝓(z|xi) log p𝜽(xi|z)dz (7.40)

log p(xi) ≥ −KL(q𝝓(z|xi)||p𝜽(z)) + 𝔼∼q𝝓(z|xi)[log p𝜽(xi|z)] (7.41)

The right-hand side of the preceding equation corresponds to the evidence lower bound
(ELBO), also referred to as the variational lower bound JELBO(𝜽,𝝓).

JELBO(𝜽,𝝓) = −KL(q𝝓(z|xi)||p𝜽(z)) + 𝔼∼q𝝓(z|xi)[log p𝜽(xi|z)] (7.42)

Within the ELBO, the KL term acts as a regularizer, imposing constraints on the form of
the approximate posterior. Meanwhile, the second term is termed a reconstruction term as
it quantifies the likelihood of the data’s reconstruction by the decoder. The objective is to
differentiate and optimize the lower bound with regard to both the variational parameters𝝓
and the generative parameters 𝜽. However, the gradient concerning the variational param-
eters 𝝓 poses challenges. The conventional method, the Monte Carlo gradient estimator,
exhibits significant variance, rendering it impractical for the intended purposes.

7.9.2 Reparameterization Trick

The challenges associated with estimating the lower bound and its parameter derivatives
prompted the introduction of a pragmatic estimation method. This approach relies on
an approximate posterior distribution, denoted as q𝝓(z|x) tailored to capture the latent
variables given the observed data x. Within this framework, a reparameterization tech-
nique is employed, wherein the continuous random variable z ∼ q𝝓(z|x) is expressed as a

7.9 Variational Autoencoders 295

deterministic variable z = g𝝓(𝝐, x). Here 𝝐 is an auxiliary noise variable characterized by
an independent marginal distribution p(𝝐), and g𝝓(.) represents a vector-valued function
parameterized by 𝝓. This transformation enables us to efficiently compute gradients and
derivatives, facilitating parameter optimization.

The reparameterization proves advantageous as it allows to reformulate the expectation
w.r.t q𝝓(z|x). This transformation yields a Monte Carlo estimate of the expectation that can
be easily differentiated w.r.t 𝝓. Given the deterministic mapping of z

q𝝓(z|x)∏
i

dzi = p(𝝐)
∏

i
d𝜖i (7.43)

where dz =
∏

i dzi.

∫
q𝝓(z|x)f (z)dz =

∫
p(𝝐)f (z)d𝝐 =

∫
p(𝝐)f (g𝝓(𝝐, x))d𝝐 (7.44)

Using the above equation a differentiable estimator can be constructed as follows:

∫
q𝝓(z|x)f (z)dz ≃ 1

N

N∑
n=1

f (g𝝓(x, 𝝐n)) (7.45)

where 𝝐n ∼ p(𝝐). Therefore, this reparameterization technique can be employed to derive a
differentiable estimator for the variational lower bound. Consequently, we can create Monte
Carlo approximations of expectations involving a function f (z)with respect to q𝝓(z|x) in the
following manner:

𝔼q𝝓(z|xi)[f (z)] = 𝔼p(𝝐)
[
f (g𝝓(𝝐, xi))

]
≃ 1

N

N∑
n=1

f (g𝝓(𝝐n, xi)) (7.46)

This method is applied to the variational lower bound Eq. (7.39), resulting in the creation
of a generic SGVB estimator J̃A

ELBO(𝜽,𝝓) ≃ JELBO(𝜽,𝝓).

J̃A
ELBO(𝜽,𝝓) =

1
N

N∑
n=1

log p𝜽(xi, z(i,n)) − logq𝝓 (z(i,n)|xi) (7.47)

where z(i,n) = g𝝓(𝝐(i,n), xi).
A second version of the SGVB estimator J̃B

ELBO(𝜽,𝝓) ≃ JELBO(𝜽,𝝓), can be constructed
using Eq. (7.42). Commonly, it is possible to analytically compute the KL divergence term
in Eq. (7.42). As a result, the estimation process only involves sampling to determine the
expected reconstruction error 𝔼∼q𝝓(z|xi)[log p𝜽(xi|z)]. This estimator can be represented as
follows:

J̃B
ELBO(𝜽,𝝓) = −KL(q𝝓(z|xi)||p𝜽(z)) + 1

N

N∑
n=1

(log p𝜽(xi|z(i,n))) (7.48)

7.9.3 Illustration: Variational Autoencoder Implementation

In this section, the focus is on an illustrative example involving the application of a neural
network as the probabilistic encoder, represented as q𝝓(z|x). This encoder plays a crucial

296 7 Deep Unsupervised Learning I

xi

μi μi εi

σi

xi˜
Encoder Decoder

Sampled
latent
vector

qϕ(z|x)

μϕ(xi)

σ2ϕ(xi)

pθ(x|z)
z

Figure 7.15 VAE architecture. Source: Addo et al. (2022)/MDPI/CC by 4.0.

role in approximating the posterior distribution within the generative model, p𝜽(x, z).
Furthermore, the AEVB algorithm is employed to jointly optimize two parameter sets
denoted as 𝜽 and 𝝓.

Assume that the prior distribution governing the latent variables adopts a specific
form, characterized as the centered isotropic multivariate Gaussian, and denoted as
p𝜽(z) = (z; 0, I). In the case of the data distribution, p𝜽(x|z), two scenarios are consid-
ered: a multivariate Gaussian for continuous data and a Bernoulli for binary data. In both
cases, the distribution parameters are derived from z using a neural network referred to
as an MLP. It is important to note that the true posterior distribution, p𝜽(z|x), remains
intractable. In these scenarios, it can be assumed that the true posterior distribution has an
approximate Gaussian shape with an almost diagonal spread. Thus, it is feasible to employ
a variational approximate posterior q𝝓(z|x) that resembles a multivariate Gaussian with a
diagonal spread pattern.

logq𝝓 (z|xi) = log (z;𝝁i,𝝈
2
i I) (7.49)

The mean 𝝁i and standard deviation 𝝈i of the approximated posterior, are outputs gener-
ated by the encoding MLP.

log p(x|z) = log (z; 0,𝝈2I) (7.50)

where h = tanh(W(l)
1 h + b(l)

1), 𝝁 = W(l)
2 h + b(l)

2 , and log𝝈2 = W(l)
3 h + b(l)

3 . The terms W(l)
1 ,

W(l)
2 ,W(l)

3 ,b(l)
1 ,b(l)

2 , and b(l)
3 represent the weights and biases associated with the MLP and 𝜽,

which functions as part of the decoder in the model. However, when this network serves as
an encoder, denoted as q𝝓(z|x), the roles of z and x are reversed, and the weights and biases
are associated with variational parameters 𝝓.

Following that, samples from the posterior distribution z(i,n) ∼ q𝝓(z|xi) are drawn using
the equation z(i,n) = g𝝓(xi, 𝝐n) = 𝝁i + 𝝈i

⨀
𝝐n, where 𝝐n ∼ (0, I). It is important to note

that both p𝜽(z) and q𝝓(z|x) in this model follow Gaussian distributions. In this specific sce-
nario, the estimator described in Eq. (7.48) is employed (Fig. 7.15). The resulting estimation
for this model can be expressed as follows:

J(𝜽,𝝓) ≃ 1
2

M∑
m=1

(1 + log((𝜎(i,m))2) − (𝜇(i,m))2 − (𝜎(i,m))2) + 1
N

N∑
n=1

(log p𝜽(xi|z(i,n))) (7.51)

Example 7.9.1 (Data imputation using variational autoencoders)
Data imputation is a method employed in data analysis and preprocessing to deal with miss-
ing or incomplete data points in a dataset. Missing data can occur for various reasons, such

7.10 Conclusion 297

as data collection errors, sensor failures, non-responses in surveys, or other data acquisi-
tion issues. Data imputation aims to address these missing values by estimating their values
based on the available information in the dataset.

Here we illustrate the use of a VAE for data imputation. A synthetic data set is created,
comprising 100 data points sampled from a standard normal distribution. It then generates a
binary mask, and this mask assigns a 20% probability of being 0 (indicating a missing value)
and an 80% probability of being 1 (indicating an observed value) to each entry. Subsequently,
the dataset is formed by element-wise multiplication of original data and the binary mask.

The VAE model is composed of two primary components: an encoder and a decoder. The
encoder accepts the observed data as input and encompasses several layers. It starts with
a dense layer consisting of 32 units and a ReLU activation function. Two additional dense
layers are employed to compute the mean and log-variance of the latent space. The latent
variable is sampled from a Gaussian distribution based on these mean and log-variance
values, using the reparameterization trick. On the contrary, the decoder takes the latent
variable as input. It contains a dense layer with 32 units and ReLU activation, followed by
an output layer with 1 unit. This output layer aims to reconstruct the missing values in
the dataset. The VAE model establishes a connection between the encoder and decoder. It
accepts the encoder’s output and passes it through the decoder to generate the imputed data.

The VAE’s loss function is composed of two essential terms: the reconstruction loss and
the KL divergence Loss. The reconstruction loss measures the dissimilarity between the
input data and the reconstructed data using mean squared error. The KL divergence loss
penalizes the discrepancy between the learned latent distribution and a standard Gaussian
distribution, promoting a normally distributed latent space. The total VAE loss is a combi-
nation of these two terms, with the KL divergence term weighted by a factor of 0.1. This
weight can be adjusted to suit specific application requirements. This VAE model is com-
piled using the Adam optimizer, and it undergoes training for 100 epochs, employing a
batch size of 32. Following training, the VAE is utilized to impute missing values within the
dataset.

Output:
Original Data Data with Missing Values Imputed Data
[1.76405235] [1.76405235] [1.6616584]
[0.40015721] [0.40015721] [0.48738545]
[0.97873798] [0.] [-0.08713832]
[2.2408932] [2.2408932] [1.5226918]
[1.86755799] [1.86755799] [1.9301624]
[-0.97727788] [-0.97727788] [-0.99653774]
[0.95008842] [0.95008842] [1.0577495]
[-0.15135721] [-0.15135721] [-0.19752263]
[-0.10321885] [-0.] [0.01812577]
[0.4105985] [0.4105985] [0.10737716]

7.10 Conclusion

This chapter gives a comprehensive outline of deep unsupervised learning. Here we dis-
cuss two main categories of deep unsupervised learning: probabilistic and non-probabilistic

298 7 Deep Unsupervised Learning I

models. Here, we focus on two powerful structures used in unsupervised learning: DBNs
and AE. Both these architectures are crucial pillars in the field of neural networks as they
facilitate the extraction of meaningful features from complex high-dimensional data. We
talk about RBMs and its training criterion. Following this, we introduce DBNs where the
basic elements of the DBN architecture are discussed in detail along with the contrastive
divergence training. DBNs come under the category of probabilistic models and it is known
for its ability to learn complex features in an unsupervised manner. The strength of DBN lies
in its ability to undergo unsupervised training and subsequent fine-tuning using methods
such as backpropagation. The training of the DBN as well as its extensions are discussed in
detail. the higher-level abstractions learned by DBN is used for various application such as
speech recognition, image processing, computer vision, etc.

Autoencoders, on the other hand, learn representations of the data that are compact and
efficient. Their ability to summarize the data representation is instrumental in applications
such as dimensionality reduction, denoising, compression, etc. The learning of AE happens
through the encoder and decoder framework. It is through this encoder–decoder setup that
the AE learn meaningful information from the raw input data. We further discuss the com-
plete architecture of the AE. We defined the training methodology of these structures in
general. Later on, we cover the extensions of AEs such as DAE, CAE, and VAE being a few
of them. The applications of AE span various domains of data analysis and pattern recogni-
tion. As we move forward exploring more Deep learning architectures, these concepts will
continue to evolve and get extended to develop more complex architectures and models.

Problems

7.1 Experiment with Example 7.3.1 in the following aspects:
● Cross-validate the number of contrastive divergence iterations with a validation set

constructed with 20% of the training data.
● Validate the number of layers and the number of nodes between 10 and 256.
● Train a structure with a single RBM with 100 hidden nodes. Represent each connec-

tion from all of the 64 input nodes to each one of the hidden nodes in an 8 × 8 grid.
Interpret the result.

7.2 Generate a set of 400 data where each 100 samples are drawn from one of four circu-
larly symmetric Gaussian distributions with means equal to the canonical vectors of a
base of 10 dimensions and variance 1.

Construct a DBN with several layers and a number of nodes decreasing from 10
dimensions to two dimensions. The input layer must be defined with Gaussian input
distribution, and the output layer needs a Gaussian distribution as well. The hidden
nodes must have Bernoulli distributions.

Train the DBN using contrastive divergence and plot the outputs corresponding to
the training samples. Use a different color for the outputs corresponding to each one of
the Gaussians. Interpret the results for different number of layers from 2 to 5.

Problems 299

7.3 Build a simple autoencoder using a deep learning framework of your choice (e.g. Keras
or PyTorch) to compress grayscale images. Utilize the Labeled Faces in the Wild dataset
(G. B. Huang et al. 2008), which comprises grayscale facial images, available for down-
load at the following website: http://vis-www.cs.umass.edu/lfw/. Train the model to
learn efficient representations of the images and evaluate its compression performance
by measuring the compression ratio and the quality of the reconstructed images.

7.4 Implement a VAE to generate novel images from a given dataset, such as the CelebA
dataset. The dataset comprises diverse color images of celebrity faces, featuring
individuals from entertainment, sports, and politics, and it can be downloaded from
the website: https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html. Experiment with
the latent space of the VAE and analyze how changing specific latent variables can
control the generation of unique facial features, expressions, or artistic styles in the
generated images. Additionally, evaluate the quality of the generated images using
MSE, structural similarity index (SSIM), and visual inspection.

7.5 Apply a sparse autoencoder to the Iris dataset, which is a simplified dataset comprising
measurements of four features (sepal length, sepal width, petal length, and petal width)
for three species of iris flowers (setosa, versicolor, and virginica). The goal is to demon-
strate how a sparse autoencoder can be utilized for feature selection by identifying the
most significant features in this low-dimensional dataset.

7.6 Design a convolutional autoencoder for semantic segmentation of images. Use the
Cityscapes dataset, a comprehensive collection of urban street scenes captured in
various cities, which includes images and corresponding pixel-wise labels. The dataset
can be downloaded from the website: https://www.cityscapes-dataset.com/. Train
the model to segment objects or regions of interest within the images. Calculate metrics
such as IoU and pixel-wise accuracy to quantitatively assess segmentation accuracy.

7.7 Implement an undercomplete autoencoder for text data. Use a small dataset and train
the autoencoder to learn a reduced-dimensional representation of the input text and
evaluate its performance by comparing the original and reconstructed text. Provide the
code and discuss the results.

7.8 Define sequence-to-sequence autoencoders and their applications in language model-
ing. Explain the architecture of such autoencoders, including the encoder, bottleneck
layer, and decoder. How are sequence-to-sequence autoencoders different from tradi-
tional sequence-to-sequence models like RNNs or LSTMs?

7.9 Extend a basic VAE to a semi-supervised VAE by incorporating labeled data. Use a
partially labeled dataset such as MNIST with some labeled digits. Modify the VAE to
perform both unsupervised and semi-supervised tasks. In the unsupervised task, the
main aim is to generate and reconstruct data samples, while in the semi-supervised

http://vis-www.cs.umass.edu/lfw/
https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
https://www.cityscapes-dataset.com/

300 7 Deep Unsupervised Learning I

task, design a mechanism for utilizing the labeled data to improve the model’s per-
formance in tasks like classification or attribute prediction. Evaluate its performance
based on metrics such as classification accuracy, generative quality, and the model’s
ability to leverage both labeled and unlabeled data effectively.

7.10 Compare and contrast VAEs with MCMC methods for approximate Bayesian inference.
List the advantages and disadvantages of each approach.

7.11 Design and implement a DBN or image classification using a deep learning framework.
● Train the DBN on the MNIST dataset and evaluate its performance in terms of accu-

racy. Include a discussion of the architecture choices made.
● Extend the evaluation by fine-tuning the pre-trained DBN using a supervised learning

approach for image classification. Compare the performance of the fine-tuned DBN
with the initial DBN.

● Discuss the advantages of fine-tuning and any challenges encountered.

7.12 Implement a simple RBM on a small binary image dataset. Use Scikit-learn to gener-
ate synthetic image data. Ensure that each image is flattened into a 1D array as input
for the RBM. Demonstrate its capability to reconstruct data. Provide code and a report
detailing the architecture, training procedure, and results.

301

8

Deep Unsupervised Learning II

8.1 Introduction

The underlying aspiration of deep learning resides in the endeavor to construct intricate,
hierarchical models capable of representing probability distributions. These models aim
to encapsulate diverse forms of data frequently encountered in artificial intelligence
domains (Yoshua Bengio 2009). Such data encompasses a spectrum ranging from natural
images and audio waveforms containing speech to symbolic representations present in
natural languages. The predominant achievements in the field of deep learning have been
primarily centered around discriminative models. These models are chiefly tasked with
the classification of high-dimensional and intricate sensory inputs into discrete categories
(Alex Krizhevsky et al. 2012; Geoffrey E. Hinton et al. 2012c). The success of these models
relied on the adept application of computational algorithms, such as backpropagation and
dropout, in conjunction with the utilization of piecewise linear activation functions (Glorot
et al. 2011; Jarrett et al. 2009). These activation functions offer favorable attributes in terms
of gradient computations, contributing significantly to the efficacy of discriminative model
training.

In contrast, the arena of deep generative models has encountered comparatively reduced
impact. This can be attributed to the inherent complexities associated with approximating
numerous intractable probabilistic computations that manifest in the context of ML esti-
mation and related methodologies. Consequently, researchers have explored alternative
approaches, such as undirected graphical models incorporating latent variables, notably
RBMs (Geoffrey E. Hinton et al. 2006), and their assorted derivatives. In these models,
conducting inference can be computationally expensive and often intractable, especially
as the model becomes deeper and more complex. However, we can estimate these cal-
culations using MCMC methods, but they may not guarantee convergence to the true
posterior distribution (Yoshua Bengio et al. 2014). Another common approach involves
using deep belief networks (DBNs), which are hybrid models featuring a single undirected
layer alongside multiple directed layers. Although DBNs offer a quick and approximate

Deep Learning: A Practical Introduction, First Edition.
Manel Martínez-Ramón, Meenu Ajith, and Aswathy Rajendra Kurup.
© 2024 John Wiley & Sons Ltd. Published 2024 by John Wiley & Sons Ltd.
Companion website: https://github.com/DeepLearning-book

https://github.com/DeepLearning-book

302 8 Deep Unsupervised Learning II

layer-by-layer training method, they still face computational challenges due to their
combination of both undirected and directed graphical model elements.

Some approaches in the field of generative modeling do not require a defined prob-
ability distribution. Instead, they focus on training a generative machine to produce
samples consistent with the desired distribution. A recent development in this domain
is the generative stochastic network (GSN) framework (Yoshua Bengio et al. 2014), an
extension of generalized denoising autoencoders (Yoshua Bengio et al. 2013). Both GSNs
and generalized DAE learn how to create new data points that resemble the data they
were trained on. They achieve this by modeling the transitions between different data
states, like how a Markov chain models transition between states, but with parameters
that they learn during training. In contrast, the Adversarial Nets framework does not
necessitate a Markov chain for the purpose of sampling. This framework eliminates the
need for feedback loops during the generation process. In the context of neural networks,
feedback loops can make training and generation more complex. Instead, adversarial nets
use piecewise linear units (a type of activation function in neural networks) to enhance
the performance of the backpropagation algorithm. However, when these piecewise
linear units are used within feedback loops repeatedly, they can face issues related to
activations that grow without bounds, which can be problematic for stable training. Recent
advancements in training generative models like VAE (Kingma and Welling 2013) and
Stochastic Backpropagation (Rezende et al. 2014), have shed light on the need for stable
training methods.

Furthermore, in the wider context of generative modeling, effectively using piecewise
linear activation functions presents a significant challenge. Hence, the latest approach for
estimating generative models not only addresses these difficulties but also holds the poten-
tial to improve data generation, thus contributing to the ongoing evolution of stable training
strategies for generative machines. In this framework of adversarial nets, the generative
model participates in a competitive scenario with a discriminative model. The discrimina-
tive model is tailored to develop the ability to distinguish whether a given sample origi-
nates from the model’s distribution or the actual data distribution. Conceptually, one can
compare the generative model to a team of counterfeiters striving to create fake currency
discreetly, while the discriminative model functions in a manner resembling law enforce-
ment, working diligently to detect counterfeit currency. This competitive dynamic drives
both teams to improve their methods until counterfeit items are indistinguishable from
genuine ones.

Importantly, this framework offers the potential to develop customized training
algorithms suitable for a wide range of models and optimization techniques. In this
research endeavor, a unique scenario is specifically explored in which the generative
model generates samples by passing random noise through a MLP, and the discrimi-
native model also takes the form of a MLP. This case is referred to as Adversarial Nets
(Ian Goodfellow et al. 2020). In this scenario, both models can be trained using the
backpropagation method, and sample generation from the generative model can be accom-
plished through forward propagation, removing the need for approximate inference or
Markov chains.

8.2 Elements of GAN 303

8.2 Elements of GAN

Generative adversarial networks (GANs) (Ian Goodfellow et al. 2020) were mainly
introduced to decipher the generative modeling problem by learning and modeling the
probability distribution that generated the samples. From the estimated probabilities GANs
are able to generate more examples of the same distribution. There are various generative
models out there; however, GANs have proven to be the most effective generative model,
especially in terms of constructing or generating high-resolution images. GANs are now
being used for both semi-supervised as well as unsupervised learning approaches.

The simplest way to understand the concept behind GANs is through the analogy of an
art forger and an art expert (Creswell et al. 2018). The generator G models the data in the
same way as the forger creates forgeries. The idea of the forger G is to make realistic images.
The discriminator D is the expert and the main objective of D is to differentiate between the
real and the forged images. It is important that both Generator G and discriminator D are
trained simultaneously as they compete with each other making the generator learn the dis-
tribution of the data properly. The generator G doesn’t have any access to real images and
the learning criterion of G is determined by its interaction with discriminator D. Discrim-
inator, however, has access to both synthetic images and a stack of real images. The error
signal for the discriminator is computed in a simplistic manner by determining whether
the image came from the stack of real images or from the generator. This error signal is also
propagated to the Generator and is used for its training making it produce forgeries that are
close to the real image with better quality.

To summarize, the GANs consists of a Generative and discriminative model. The
main goal of the generative model is to synthesize the data resembling the real data.
Discriminator on the other hand differentiates the real data from the synthesized ones
(Aggarwal et al. 2021; M.-Y. Liu and Tuzel 2016). The higher level illustration of the
training process of the Generator and discriminator is shown in Fig. 8.1.

Unsupervised learning aims at learning useful information about the data by examin-
ing the dataset consisting of unlabeled input samples (Ian Goodfellow et al. 2020). So far,
we have looked into a few of the unsupervised learning methods in Chapter 7, which can be
used for many applications such as clustering, dimensionality reduction, compression, etc.
Most of the discussed methods perform unsupervised model training by minimizing the
reconstruction error.

Generative modeling is a type of unsupervised learning where training samples, x are
obtained from an unknown distribution pdata(x). The main objective of the generative mod-
eling algorithm is to approximate pdata(x) as closely as possible by training a model pmodel(x).
This approximation is learned using a function pmodel(x|𝜽). Here, 𝜽 corresponds to a set
of parameters used to control the function pmodel(x|𝜽). The final goal is to search for the
optimum parameter values that make pdata as similar as possible to pmodel. Let us look into
how generative modeling is implemented in the two elements of GAN architecture, i.e.
generator and discriminator. It is to be noted that both the generator and discriminator
are implemented using a multilayer Neural network and generally consist of convolutional
layers and/or fully connected layers.

304 8 Deep Unsupervised Learning II

Or

Generator

Noise
generator

Discriminator

Real
or

synthetic?

x

x'

z

Figure 8.1 A higher level illustration of the training process for GAN using Generator G and
discriminator D. The Generator is trained to map a noise sample z to a synthetic data sample x′.
The discriminator is optimized to classify the real (x) and the synthetic or fake (x′) data.
Source: Adapted from Creswell et al. 2018.

8.2.1 Generator

The Generator network in GANs defines pmodel(x) implicitly. This means that the generator
network does not necessarily evaluate the density function pmodel. This is different from the
explicit density modeling networks. The explicit density model networks first try to repre-
sent the density function, from which it can also generate the samples. The main problem
with such explicit generative modeling techniques was its expensive nature to generate sam-
ples. Implicit generative models like GANs avoid this issue altogether. The generator draws
samples from the distribution pmodel. The generator function is defined here as G(z; 𝜃(G)),
with 𝜽(G) being the set of trainable parameters for the generator. The generator is defined
using a prior distribution p(z) defined over vector z. This vector z is of random nature in a
deterministic setting and serves as the input to the generator. We can think of z to be anal-
ogous to the seed of a pseudo-random number generator. It is to be noted that the prior
distribution, p(z) tends to have an unstructured distribution which makes the samples z
from this distribution noise. The main objective of the generator now is to transform this
unstructured noise z to the realistic samples, i.e. as close to x.

8.2.2 Discriminator

The Discriminator is the second learning model in GANs. This network performs the task
of differentiating between the real and fake which helps in perfecting the output of the
generator. The discriminator now looks into samples x first. It then provides an estimate
D(x;𝜽(D)) identifying whether the x is real, that is belonging to the training samples or
fake (that is belonging to the pmodel running by generator). Intuitively, the discriminator
tries to predict whether the input it receives is real or fake. This part is formulated in
different manners in different works. However, the original GAN formulation estimated

8.3 Training a GAN 305

the probability of the input being real or fake with the assumption that the real and fake
distributions are samples frequently. Let us consider an example of images. For a fixed
Generator, the Discriminator is trained to classify whether the image is being obtained from
the training examples (real) or if it is being drawn from the fixed Generator (fake) (Creswell
et al. 2018).

8.3 Training a GAN

Now that we have an understanding of the generator and discriminator part of GANs, the
next step is to learn how these structures are trained to obtain the optimal parameters.
Before that, let us dive into the overall structure of GANs.

The GANs can be imagined as a two-participant zero-sum game where the loss or gain
of one person is actually equal to the gain or loss of the other (Salehi et al. 2020). The two
architectures, i.e. the generator and the discriminator train together. The generator learns
the statistical distribution of the input data and tries to construct fake data. The goal of the
generator is to create counterfeit data indistinguishable from the real data such that the
discriminator is misled into thinking they are real. Discriminator on the other hand is a clas-
sifier that differentiates the given input of whether it looks like real data or if it is artificially
generated data. Both these structures continuously train together and optimize themselves
to improve their capabilities. Both the networks are trained in such a manner that they
become experts in their respective tasks, hence making the results look very close to real.

Let us first define the cost incurred by each participant. For the generator, this cost is
given by: J(G)(𝜽(G),𝜽(D)). For the discriminator, the cost is J(D)(𝜽(G),𝜽(D)). Both participants
will train to minimize their own cost functions. For example, the discriminator will have
a cost that will encourage it to classify the data correctly as whether it is real or fake. The
generator’s cost function, on the other hand, will generate samples corresponding to those
that we incorrectly classified by the discriminator as real. This way each of the participants
will understand their weakness as well the opponent’s weakness to take advantage of it and
improve the generation and classification task.

There are various methods by which these costs can be specifically formulated. In the
original GAN architecture (Ian Goodfellow et al. 2020), the discriminator acts just like
a regular binary classifier where the cost J(D) is defined as the negative log-likelihood
that the network assigns to the real vs fake labels given the input. For the generator,
as per the original work, two different versions of cost J(G) were used: minimax GAN
(M-GAN) and non-saturating GAN (NS-GAN). The M-GAN made use of the cost given
as follows:

J(G) = −J(D) (8.1)

This cost would correspond to a minimax game by flipping the sign of the cost function
of the discriminator.

The NS-GAN is another approach where the labels of the discriminator are flipped
instead of its cost. This would correspond to the minimization of the negative likelihood
of the wrong labels that were assigned by the discriminator. The advantage of the latter
method is that it prevents the gradient saturation problem that arises while training the
model.

306 8 Deep Unsupervised Learning II

This would ensure both the models are competing with each other such that the generator
works to produce the most realistic fake data very close to the real ones. The discrimina-
tor also simultaneously works on improving its classification skills by identifying even the
close-to-real fake data from the generator.

The major problem with this approach is due to a complication that one participant’s cost
is in fact a function of the other participant’s parameter, in addition to the fact that each of
the participants controls its own parameters. This situation can be reduced to optimization
by minimizing the function as shown by L. Metz et al. (2016):

J(G)
(
𝜽(G), arg min

𝜽(D)
J(D) (𝜽(G),𝜽(D))) (8.2)

However, minimization of the above function would be difficult using the argmin oper-
ation. Another approach to this would be to use the game theory literature to resolve this
complication. Hence, the ultimate aim of optimization is to establish a Nash equilibrium
(Ratliff et al. 2013) between the two participants. The Nash equilibrium point would
correspond to the point that is equal to the local minimum of each participant’s cost with
respect to its parameters. The assumption is that the other participant’s parameters do
not change and with local moves, once the point is reached the cost cannot be reduced
any further. The most common training approach would be to use a gradient-based
optimizer which would repeatedly take steps on both participants simultaneously and
then incrementally minimize the cost incurred by each participant with respect to its own
parameters.

While training GANs, the parameter of one network is updated while the other stays
fixed. In Ian Goodfellow et al. (2020), it is shown that for a fixed generator, there exists a
unique optimal discriminator given by:

D∗(x) =
pdata(x)

pdata(x) + pmodel(x)
(8.3)

Further, the generator G is optimal when pmodel(x) = pdata(x). This would mean that for
every sample drawn from x the optimal discriminator would predict 0.5 for all these sam-
ples. Therefore, an optimal generator G will successfully be able to confuse the discrimi-
nator D’s decision to such an extent that it won’t be able to distinguish between real and
synthesized samples.

Let us try to understand this using an example as shown in Fig. 8.2. Using this illustra-
tion, we can understand how the generator learns the scaling of the inverse cumulative
distribution function (CDF) for the data-generating distribution. In Fig. 8.2, the discrim-
inator function D is represented using a dotted line, and the data generating distribution
pdata is represented by lines with bold black dots, and the generative distribution pmodel is
represented using the solid black line. The GANs are trained by continuously updating the
discriminator function D. This allows the discriminator to distinguish between the sam-
ples from data generating distribution pdata from that of the generative distribution pmodel.
The upper horizontal line indicates a part of the domain of x. the horizontal line below cor-
responds to the domain from which z is sampled. It is to be noted that, in this case, sampling
is performed uniformly. The arrows that are pointing upwards indicate the mapping of
z to x given by x = G(z). This mapping imposes the non-uniform generative distribution
pmodel on transformed samples.

8.3 Training a GAN 307

(a) (b)

(c) (d)

x x

x

z

z

z

z

x

Figure 8.2 An illustration showing the basic intuition behind the GAN training process using 1D
Gaussian distribution. Source: Adapted from Ian Goodfellow, Pouget-Abadie, et al. 2020.

In Fig. 8.2a, we are considering the network at the initialization phase where the pmodel
is first initialized as a 1D unit gaussian and D is a randomly set DNN as you can see from
the plot. For Fig. 8.2b, we have the G held fixed and the discriminator D is trained to con-
vergence. In this scenario, from the previous discussion, we can see that D converges into
Eq. (8.3) which is the optimal discriminator. In Fig. 8.2c, both G and D are gradually trained
for some time. In this case, we can note that the samples x that were generated by G arrive at
regions where the data is more likely to be classified well. This corresponds to the direction
of increasing D and the estimate of D is updated based on the update in G. Fig. 8.2d shows
the Nash equilibrium scenario, where neither of the participants shows any improvement
in their performance since pmodel(x) = pdata(x) and the generator G is optimal. This indeed
means that the discriminator is unable to classify the real vs fake, i.e. D(x) = 1

2
. This is rep-

resented by a constant line showing that all the points are equally likely to be predicted as
real or fake.

In reality, the G and D are trained in simultaneous gradient steps, which means it is not
necessary that D will be optimal at every step of training. Therefore, the training would
mainly solve the function:

min
G

max
D

J(D,G) = 𝔼x∼pdata(x)[log D(x)] + 𝔼z∼pz(z)[log(1 − D(G(z)))] (8.4)

In the above equation, we have real data x drawn from the dataset and the fake data
synthesized by the generator continuously. The discriminator is trained on the real data

308 8 Deep Unsupervised Learning II

and tries to identify the real class of input. The fake data is constructed by randomly sam-
pling a vector z from the prior distribution over the model’s latent variables. Therefore,
the generator basically produces sample G(z). So the generator tries to provide structure to
unstructured data z by making it indistinguishable from the training samples. The discrimi-
nator then tries to classify this fake data. It is to be noted that the backpropagation algorithm
can be implemented to utilize the derivatives of the discriminator’s output with respect to
its input for training the generator network. The generator is not given any specific targets.
However, the discriminator training process is similar to that of a binary classifier except
that the fake class comes from a varying distribution as the generator learns.

Example 8.3.1 (GANs for generating 1D Gaussian data)
GANs are utilized to generate 1D Gaussian data, simulating univariate datasets with
characteristics similar to the bell-shaped, continuous probability distribution that defines
the Gaussian distribution. The input dataset consists of 1000 samples, each drawn from
a normal distribution with a mean of 0 and a standard deviation of 1. The GAN architec-
ture includes a generator network, which is responsible for creating synthetic samples.
It comprises several fully connected layers with activation functions. The input to this
network is a 10-dimensional vector, and it progressively transforms this input into a single-
dimensional output. Leaky ReLU activations are used as activation functions, and batch
normalization layers enhance training stability.

The discriminator is a separate neural network designed to distinguish between real and
synthetic data. Like the generator, it consists of fully connected layers with Leaky ReLU
activation functions. It takes one-dimensional input and produces a binary classification
output, indicating whether the input data is real or fake. The activation function used here
is the sigmoid function. The discriminator is compiled with a binary cross-entropy loss func-
tion, which measures the difference between the predicted labels and the actual labels (real
or fake). The Adam optimizer is employed with a learning rate of 0.0002 and a momen-
tum parameter of 0.5. The GAN model combines the generator and discriminator. It takes a
10-dimensional input, processes it through the generator to produce synthetic data, and
then passes this generated data to the discriminator. The GAN aims to generate data that is
convincing enough to deceive the discriminator. The GAN model is compiled with the same
binary cross-entropy loss function as the discriminator, but with distinct optimizer settings.
Here, the Adam optimizer employs a lower learning rate of 0.0001 and a momentum param-
eter of 0.5. The GAN undergoes a total of 1000 training epochs to refine its generative and
discriminative abilities.

During each epoch, the discriminator is trained with two batches of data: one contain-
ing real data with corresponding real labels (set to 1), and the other containing fake data
generated by the generator with fake labels (set to 0). This dual training process enables the
discriminator to become adept at distinguishing genuine data from synthetic data. Simul-
taneously, the GAN is trained with batches of random noise (the generator’s input) and
target labels set to 1. The GAN seeks to generate data that is realistic enough to fool the
discriminator into classifying it as genuine.

After training, the generator creates synthetic data samples and displays them alongside
real data using histograms. Figure 8.3 shows the real data’s histogram in light gray, and the
generated data’s histogram is in gray.

8.4 Wasserstein GAN 309

Real data

Generated data

Fr
eq

ue
nc

y

60

50

40

30

20

10

0
–4 –2 0 2 4

Figure 8.3 Comparison of real and generated data distributions: a histogram plot illustrating the
similarity between the 1D Gaussian real data (light gray) and synthetic data generated by a GAN
model (gray). The GAN successfully mimics the bell-shaped Gaussian distribution, showcasing its
ability to produce data with characteristics resembling the original dataset.

8.4 Wasserstein GAN

Wasserstein GAN (WGAN) is a variation of GAN framework introduced in 2017 by Arjovsky
et al. Arjovsky et al. (2017). The variant was focused on improving the stability of learning
GANs. Though GANs have gained popularity in various applications such as image syn-
thesis (M.-Y. Liu and Tuzel 2016; Shu et al. 2017), semantic segmentation (Isola et al. 2017;
V. Nguyen et al. 2017), etc., due to their successful modeling of probability distributions,
these architectures are known for their training complexity (H. Liu et al. 2019).

We know that GAN framework has two sub-models: Generator G and discriminator D
that are trained together on a set of training samples. The generator tries to generate sam-
ples of data that are indistinguishable compared to the real data. Discriminator, on the
other hand, tries to distinguish between the real samples and the ones generated by the
generator. Considering that the models are fully differentiable, we can train both these
models using backpropagation. Since the architecture is based on a two-player game, there
is no guarantee of convergence to equilibrium in terms of training. The competition that
occurs between these two participants makes it difficult to train the complete architec-
ture such that they produce meaningful images. The stabilization of GAN training has
itself been a field of interest among researchers (Berthelot et al. 2017; Roth et al. 2017;
Gulrajani et al. 2017; Hjelm et al. 2017). Further, the generator and the discriminator do
not correlate with the quality of samples which makes it difficult to understand whether
there is improvement in terms of convergence of the generator or whether it has collapsed

310 8 Deep Unsupervised Learning II

(Engelmann and Lessmann 2021). This problem is called mode collapse, where the gen-
erator tries to map all the values of z to the same output. This result corresponds to the
maximin-game rather than the minimax game, meaning the generator just identifies a sin-
gle sample that the discriminator is unable to distinguish from the real examples and sticks
to it. This is not the ideal purpose of the training of GANs.

WGAN aims at tackling this issue by performing the optimization of the framework using
a different type of distance known as the Wasserstein 1 distance. There are different types
of distances that can be used as a metric to measure the divergences between two distribu-
tions p1, p2 ∈ p() where is a compact metric set and p() corresponds to the space of
probability measures that are defined on (Arjovsky et al. 2017):

Total variation (TV) distance:

TV(p1, p2) = sup
A∈Ω

|p1(A) − p2(A)| (8.5)

This metric is the standard statistical distance metric and provides the maximum differ-
ence in the probabilities assigned by p1 and p2. Note that Ω is the collection of subsets
of a sample space and supA∈Ω is the supremum (least upper bound) taken over all sets A
in the set Ω. The value of this ranges from 0 to 1 and is 0 when the two distributions are
identical and 1 when both of them are completely disjoint.

KL divergence (Kullback and Leibler 1951) is given by equation:

KL(p1||p2) = ∫
log

(
p1(x)
p2(x)

)
p1(x)d𝜈(x) (8.6)

In the above equation, the assumption is that both p1 and p2 are continuous and they
admit probability densities with respect to the measure 𝜈 that is defined on2. The diver-
gence in this case is asymmetric and does not satisfy triangular inequality.

Jenson–Shanon (JS) divergence:

JS(p1, p2) = KL(p1||p3) + KL(p2||p3) (8.7)

where, p3 is the mixture of (p1+p2)
2

. The divergence in this case is symmetrical and it is
always defined as we are able to always choose 𝜈 = p3.

Wasserstein 1 distance: This is also called the earth-mover (EM) distance and is given by
the following equation:

W(p1, p2) = inf
∈Π(p1 ,p2)

𝔼(x1 ,x2)∈
[||x1 − x2||] (8.8)

where, the set of all joint distributions (x1, x2) is denoted as Π(p1, p2). The marginals
of (x1, x2) are p1 and p2. The operation inf∈Π(p1 ,p2) is the infimum (the greatest lower
bound) taken over all possible joint distributions . The naming of EM came from the
intuition that (x1, x2) can be considered as the “mass” that needs to be transported from
x1 to x2 for transforming the distribution p1 into p2. The EM distance is the “cost” for the
optimum transportation plan until one probability distribution equalizes to the other.

If we look at GANs, even if pmodel and pdata have disjoint supports, the Wasserstein 1
distance can be meaningful to be used for optimization. For example, say if we have two
candidates say p1

model and p2
model, then using Wasserstein 1 distance we can compute which

distribution is the closest to pdata even if there is no overlap between them. On the other
hand, for JS distance metric, it might return infinite for non-overlapping distributions
(Engelmann and Lessmann 2021).

8.4 Wasserstein GAN 311

The Wasserstein 1 distance can be approximated to modify the GAN objective Eq. (8.4)
as follows:

min
G

max
D

JW (D,G) = 𝔼x∼pdata(x)[D(x)] − 𝔼z∼pz(z)[D(G(z))] (8.9)

This holds as long as D is a k-Lipschitz function which will control the rate at which the
function corresponding to D can change. Lipschitz constraint ensures the smoothness and
differentiability of the function almost anywhere. This constraint can be implemented using
weight clipping of D such that it lies in a specific space or fixed box like [−b, b]. Hence, GANs
can be converted to WGANs with weight clipping using two modifications: (1) removing
the log in the loss function and (2) clipping the weight of the discriminator. Removal of the
logarithm in the loss function helps with the gradient stability during training. Weight clip-
ping helps with the weight parameter to lie in a compact space after each gradient update.
The main drawback of weight clipping would be if we set the parameter b to be large. In such
a scenario, the duration can be longer for the weight to reach a certain limit, which can cause
the training of the discriminator to be difficult. As for smaller values for the parameter, b can
easily lead to vanishing gradients when there are a large number of layers as well as when
batch normalization is not incorporated.

The continuous and differentiable nature of EM distance helps in training the WGAN
discriminator to optimality. Hence, the more we train the WGAN discriminator, the better
or more reliable the Wasserstein gradient as it is differentiable everywhere. this is illustrated
in Fig. 8.4. When both GAN and WGAN discriminator are trained until optimality, it can

–8 –6 –4 –2 0 2 4 6 8

–0.4

–0.2

0.0

0.2

0.4

0.6

0.8

1.0

Linear gradients

in a WGAN Vanishing gradients

in regular GAN

D
en

si
ty

Data

Density of real

Density of fake

GAN discriminator

WGAN discriminator

Figure 8.4 The learning approach of Optimal GAN discriminator and optimal WGAN discriminator
for differentiating two Gaussian distributions. The minimax GAN discriminator is seen to saturate
and results in vanishing gradients. WGAN discriminator successfully provides clean gradients across
all the parts of the space. Source: Adapted from Arjovsky et al. (2017).

312 8 Deep Unsupervised Learning II

be seen that the GAN discriminator trains learn faster to classify between the real and fake
samples but does not provide relevant gradient information. On the other hand, WGAN
discriminator seems to converge to a linear function which provides cleaner gradients
across the space and it never saturates.

Therefore, WGAN provides an alternative model that ensures stability in training com-
pared to the traditional GANs. It helps with getting rid of problems such as mode collapse,
helps to deal with vanishing gradient issues, and captures meaningful distances between
different probability distributions.

8.5 DCGAN

In recent years, there has been significant activity in the domain of learning reusable fea-
ture representations from large, unlabeled datasets. In the field of computer vision, one
can harness the vast reservoir of unlabeled images and videos to acquire valuable inter-
mediate representations that can subsequently enhance various supervised learning tasks,
such as image classification. One well-established approach to unsupervised representation
learning involves clustering data and using these clusters to improve classification accuracy.
In the context of images, a common method is to perform hierarchical clustering of image
patches (Coates and A. Y. Ng 2012). This allows for the creation of robust image represen-
tations. Another popular technique is training autoencoders (Vincent et al. 2010) or ladder
structures (Rasmus et al. 2015). These models encode images into compact codes and then
decode them to recreate the original images with great precision.

An effective approach for creating resilient image representations involves the utilization
of GANs during training, allowing the generator and discriminator networks’ components
to serve as feature extractors for supervised tasks. Nonetheless, early GAN implementa-
tions yielded images that exhibited issues with noise and clarity. A notable enhancement
emerged with the introduction of the Laplacian pyramid extension, leading to superior
image quality. This advancement brought its own challenge, as these images still suffered
distortions when multiple models were sequentially connected, primarily due to the intro-
duction of noise. Consequently, these methods have yet to fully exploit the potential of the
generators in supervised tasks.

Previous efforts to upscale GANs using convolutional neural networks (CNNs) for image
modeling yielded unsuccessful results. Through extensive model exploration, a family
of architectures named deep convolutional generative adversarial networks (DCGANs)
(Radford et al. 2015) was identified that achieved stable training across various datasets and
facilitated the training of higher-resolution and deeper generative models. The key idea in
this approach is to incorporate and adapt three innovations that have been popularly used
in CNN architectures. The first modification involves the usage of the all convolutional net
(Springenberg et al. 2014), which substitutes conventional spatial pooling functions, such
as max pooling, with strided convolutions. This change allows the network to essentially
teach itself how to down-sample spatial information. This approach is applied to both the
generator and the discriminator, allowing them to learn how to enhance spatial details on
their own.

8.5 DCGAN 313

Project and reshape Conv 1
Conv 2

Conv 3
Conv 4

64

64

3

128
256

512
1024

100 z

G (z)

5

5

5
5

5

5

5

32

32

16

16

8

8

4

4
5

5

5

5

5

Figure 8.5 DCGAN generator architecture used for LSUN scene modeling. Source: Adapted from
Radford et al. (2015).

The second modification involves the elimination of fully connected layers that appear
following the convolutional layers. Instead, an intermediary approach has proven to
be more effective, which utilizes the features extracted from the deepest convolutional
layers and connects them directly to the input and output components of the generator
and discriminator. The initial GAN layer, which receives a uniform noise distribution
as input, may be considered fully connected because it essentially performs a matrix
multiplication. However, the outcome of this operation is subsequently transformed into a
four-dimensional tensor and serves as the foundational input for the convolutional stack.
Conversely, for the discriminator, the feature map of the last convolution layer is flattened
into a one-dimensional array, which is then utilized to generate a singular output via a
sigmoid function. This single output quantifies the authenticity of the input data, providing
a value within the range of 0 to 1, representing the likelihood of the data being real or fake.
Figure 8.5 provides a visual depiction of the model architecture employed in the DCGAN.

Next, batch normalization is applied, a technique that enhances learning stability by stan-
dardizing the input for each unit to have a mean of zero and a variance of one. However,
the direct application of batch normalization to all layers resulted in sample oscillations
and model instability. To address this, batch normalization is intentionally omitted from
the generator’s output layer and the discriminator’s input layer. Additionally, the generator
employs the ReLU activation function, except for the output layer, which utilizes the tanh
function. In contrast, the discriminator benefits from the leaky rectified activation function
(A. L. Maas et al. 2013), particularly for higher-resolution modeling. This differs from the
original GAN paper, which utilized the (MaxOut) activation.

8.5.1 DCGAN Training and Outcomes Highlights

DCGANs were trained on three datasets: large-scale scene understanding (LSUN) (F. Yu
et al. 2015), Imagenet-1k, and a newly curated Faces dataset. To illustrate the model’s
scalability with larger datasets and higher-resolution image generation, a model was trained
on the LSUN bedrooms dataset, which contains just over 3 million training examples.

314 8 Deep Unsupervised Learning II

The Faces dataset was created by scraping images containing human faces from random
web image queries using individuals’ names obtained from dbpedia, with the criteria
that these individuals were born in the modern era. This dataset comprises 3 million
images from 10,000 individuals. An OpenCV face detector was applied to these images
to retain sufficiently high-resolution detections, resulting in approximately 350,000 face
boxes used for training. Additionally, Imagenet-1k served as a source of natural images for
unsupervised training.

The training images did not undergo any preprocessing steps, except for scaling to ensure
they fell within the range of the tanh activation function, which is [−1, 1]. Training was car-
ried out using mini-batch SGD with a batch size of 128. Weight initialization was performed
by sampling from a normal distribution with a mean of zero and a standard deviation of
0.02. All models employed a LeakyReLU activation function with a consistent slope of 0.2.
The optimization was done using the Adam optimizer with carefully tuned hyperparam-
eters. Initially, the recommended learning rate of 0.001 was found to be too high, and it
was subsequently reduced to 0.0002. Furthermore, maintaining the momentum term at
the suggested value of 0.9 led to training oscillations and instability, so it was adjusted to
0.5 to enhance training stability.

A common approach to assessing the quality of unsupervised representation-learning
algorithms involves employing them as feature extractors on supervised datasets and
evaluating the performance of linear models applied to these features. For instance, on
the CIFAR-10 dataset, a highly effective baseline performance of 80.6% accuracy has been
demonstrated using K-means as the feature learning algorithm (Coates and A. Ng 2011).
An extension of this base algorithm, incorporating multiple layers in an unsupervised
manner, reaches an accuracy of 82.0%. To assess the representations learned by DCGANs
for supervised tasks, training was conducted on the Imagenet-1k dataset. Subsequently,
the discriminator’s convolutional features were used from all layers and max pooling
was applied to each layer’s representation to generate a 4 × 4 spatial grid. These features
are then flattened and concatenated to create a 28,672-dimensional vector. A regularized
linear L2-SVM classifier is trained on top of this vector, achieving an accuracy of 82.8%,
surpassing the performance of all K-means-based approaches. Nevertheless, DCGANs
slightly underperform compared to Exemplar CNNs (Dosovitskiy et al. 2014), which
achieve 84.3% accuracy. Exemplar CNNs train conventional discriminative CNNs in an
unsupervised manner to distinguish specifically chosen, heavily augmented exemplar
samples from the source dataset.

In another experiment, DCGANs were employed as feature extractors for the purpose
of classifying StreetView house numbers (SVHN) digits (Netzer et al. 2011). In the SVHN
dataset, the features extracted by the discriminator in a DCGAN are utilized for super-
vised tasks, particularly in scenarios where there is limited labeled data available. For the
supervised training phase, 1000 training examples are randomly selected, with a focus on
ensuring that they are evenly distributed across different classes. These examples are then
used to train a regularized linear L2-SVM classifier which resulted in a test error rate of
22.48%. This achievement is particularly noteworthy considering the limited availability
of only 1000 labeled examples. This result also surpasses an alternative CNN modification
that was specifically designed to leverage unlabeled data (Zhao et al. 2015). A comparative

8.5 DCGAN 315

analysis was made to evaluate whether the DCGAN’s CNN architecture was the key factor
behind the model’s performance. To do so, a purely supervised CNN with the same archi-
tecture was trained on the same dataset. The optimization process involved exploring 64
different hyperparameter combinations (Bergstra and Yoshua Bengio 2012). However, this
purely supervised CNN surprisingly exhibited a significantly higher validation error rate
of 28.87%.

Example 8.5.1 (DCGANs for generating synthetic images)
DCGANs are utilized to generate synthetic digit images resembling the digits 0 to 9 as they
appear in the MNIST dataset. The MNIST dataset is a well-known collection of handwritten
digit images, consisting of 28 × 28 pixel grayscale images of digits from 0 to 9. These images
are commonly used for tasks such as digit recognition. However, in this problem, the aim
is to generate new, realistic digit images that resemble those in the MNIST dataset.

The DCGAN architecture includes a generator network, which is responsible for creat-
ing synthetic images. It starts with a dense layer taking a 100-dimensional random noise
vector as input and reshaping it into a 3D tensor. Batch normalization standardizes activa-
tions, while LeakyReLU introduces non-linearity, and two transposed convolutional layers
upsample the tensor. The first upsampling layer has 64 filters, a kernel size of 5, and a stride
of 2, maintaining spatial dimensions. Batch normalization and LeakyReLU activation are
applied again. The final layer has one filter, a kernel size of 5, and a stride of 2, using the
hyperbolic tangent activation function to generate images.

The discriminator network is a binary classifier that distinguishes real from fake images.
It begins with a convolutional layer with 64 filters, a kernel size of 5, and a stride of 2 with
LeakyReLU activation. Another convolutional layer follows with 128 filters, a kernel size
of 5, and a stride of 2, also using LeakyReLU activation. The Flatten layer converts the 2D
output into a 1D vector. Lastly, a dense layer with one neuron and a sigmoid activation
function produces a probability score. Values close to 0 indicate fake images, while values
close to 1 indicate real images.

The DCGAN is trained through a process of adversarial training. The generator’s goal is
to generate images that can fool the discriminator, while the discriminator aims to correctly
distinguish between real and fake images. Consequently, several essential hyperparameters
are specified to govern the training process of the DCGANs. The dimension of the random
noise vector is set to 100, influencing the diversity of generated images. A batch size of
32 is employed to determine the number of samples used in each training iteration. The
DCGAN undergoes a total of 10,000 training epochs to refine its generative and discrimi-
native abilities. The learning rate for the Adam optimizer is set to 0.0002, controlling the
step size during weight updates, while the beta parameter for the Adam optimizer is con-
figured as 0.5 to influence the optimizer’s behavior during training. These hyperparameters
collectively shape the DCGAN’s learning process and ultimately impact the quality of the
generated digit images.

Images produced during training are periodically stored at predefined intervals. When-
ever the ongoing training epoch is a multiple of 1000, a set of 16 synthetic images is gener-
ated from random noise. Figure 8.6 illustrates these generated images that are presented in
a 4 × 4 grid for easy visualization.

316 8 Deep Unsupervised Learning II

(a) (b)

Figure 8.6 (a) Generated images at Epoch 0: the initial output of the GAN model, where random
noise is transformed into synthetic images. (b) Generated images at Epoch 9000: the progress of
the GAN as it evolves over time, producing increasingly refined and realistic synthetic images.

8.6 cGAN

In recent years, supervised neural networks, particularly convolutional networks (Szegedy
et al. 2015), have achieved significant success in various tasks. However, they face two pri-
mary challenges. First, when dealing with an extensive range of output categories, scaling
these models becomes a computationally expensive task. For instance, in the case of an
image labeling problem, there can be numerous potential labels for a single image. Second,
much of the existing research has focused on establishing one-to-one mappings from inputs
to outputs, overlooking the more natural probabilistic one-to-many mapping that is often
encountered in real-world problems. For example, during image labeling, annotators might
use varying but closely related terms to describe the same image.

To address these challenges, researchers propose innovative approaches. One strategy
involves leveraging additional information from different sources, such as natural language
data, to create meaningful label representations that improve prediction accuracy and allow
for generalization to unseen labels. Additionally, a solution for the one-to-many mapping
problem is to adopt conditional probabilistic generative models (Mirza and Osindero 2014).
In this framework, inputs such as images condition the prediction process, resulting in
the generation of a distribution encompassing multiple potential outcomes, as opposed to
providing a single deterministic response. In the case of unconditioned generative mod-
els, the process of generating data lacks precise control or guidance regarding the char-
acteristics of the produced data. However, through the act of conditioning the generative
model with additional information, it becomes possible to exercise intentional influence
over the data generation process. Such conditioning can take various forms, including the
use of class labels to make the model generate specific kinds of data, the utilization of par-
tial data to complete missing portions (Ian Goodfellow et al. 2013b), or the incorporation

8.6 cGAN 317

of information from different data modalities to direct the generative process toward the
desired outcomes.

GANs can become more versatile by incorporating extra information, denoted as y, into
their models. This additional information, y, can take various forms, such as class labels
or data from different sources. The way this is achieved is by including y as an input for
both the generator and discriminator. In the generator, y is combined with the initial noise
input, typically denoted as pz(z), to form a joint hidden representation. The GAN framework
provides flexibility in how this hidden representation is constructed, allowing for various
ways to incorporate the additional information. Conversely, in the discriminator, the pri-
mary input data, x, and the supplementary information, y, are simultaneously presented as
inputs to a discriminative function, typically represented by a MLP. This approach equips
GANs with the capacity to generate data conditioned on specific attributes or contextual
information, broadening their applicability across various domains and tasks. Figure 8.7
provides an overview of the configuration of a basic conditional adversarial network.

The following expression illustrates the objective function of a two-player minimax game,
with a generator denoted as G and a discriminator referred to as D in a cGAN:

min
G

max
D

Jc(D,G) = 𝔼x∼pdata(x)[log D(x|y)] + 𝔼z∼pz(z)[log(1 − D(G(z|y)))] (8.10)

Discriminator

Generator

y

y

G(z|y)

D(x|y)

x

z

Figure 8.7 cGAN. Source: Adapted from Mirza and Osindero (2014).

318 8 Deep Unsupervised Learning II

8.6.1 cGAN Training and Outcomes Highlights

The conditional adversarial neural network was trained on MNIST images, where each
image was conditioned on a class label represented as a one-hot vector. In the generator
network, a random noise vector z of length 100 was sampled from a uniform distribution
within a unit hypercube. Both the noise vector z and the class label vector y were processed
through hidden layers with ReLU activation. These hidden layers had sizes of 200 and 1000
units, respectively, and the outputs of these two sets of hidden layers were combined into a
single hidden layer with 1200 units. Finally, there was a final output layer with a sigmoid
activation function responsible for generating 784-dimensional MNIST samples.

The discriminator network processed the input image x through a MaxOut layer with
240 units and 5 pieces or groups. In this setup, each of these five groups within the Max-
Out layer operated as a distinct set of neurons, with the output being determined by the
neuron within each group that exhibited the highest activation for the given input. On the
other hand, the class label y was processed through a MaxOut layer with 50 units and 5
pieces. Both hidden layers were then combined into a joint MaxOut layer with 240 units
and 4 pieces before being passed through a sigmoid layer.

The training process for the model employed SGD with mini-batches of 100 samples.
Initially, a learning rate of 0.1 was used, and this learning rate was gradually reduced expo-
nentially to reach 0.000001, with a decay factor of 1.00004. Additionally, momentum was
incorporated into the training process, starting with an initial value of 0.5 and gradually
increasing to 0.7. To prevent overfitting, a dropout with a probability of 0.5 was applied
to both the generator and discriminator networks. The stopping point during training was
determined by relying on the log-likelihood estimate obtained from the validation set.

Furthermore, conditional adversarial networks were employed for the automated tagging
of images with multilabel predictions. In this approach, image characteristics are extracted
using a pre-trained convolutional model trained on the ImageNet dataset, while textual rep-
resentations are generated from a collection of user-generated tags, titles, and descriptions
sourced from the YFCC100M dataset (Thomee et al. 2016). The training process encom-
passes the utilization of fixed convolutional and language models during adversarial net-
work training. Experiments were conducted on the MIR Flickr 25,000 dataset, with the
exclusion of images that lacked any tags. The model’s training process closely resembled
that of the MNIST dataset training. The hyperparameters and architectural decisions were
determined through a combination of cross-validation and a blend of random grid search
and manual selection.

8.7 CycleGAN

CycleGAN (Zhu et al. 2017) is a novel method presented to tackle the problem of image-
to-image translation without the need for paired training data. Image-to-image translation
(Isola et al. 2017) involves transforming an image from one representation to another, such
as converting grayscale images to color or mapping edge-maps (simplified sketches out-
lining the shapes and contours of objects in an image) to photographic images. Extensive
research efforts spanning the domains of computer vision, image processing, computa-
tional photography, and graphics have yielded robust translation systems in supervised

8.7 CycleGAN 319

settings (Eigen and Fergus 2015; Hertzmann et al. 2023; Johnson et al. 2016). These sys-
tems operate effectively when provided with pairs of example images. However, acquir-
ing such paired data can be challenging and resource-intensive for various applications.
For instance, datasets suitable for tasks like semantic segmentation (Cordts et al. 2016) are
relatively scarce and typically of limited scale. Acquiring input–output pairs for graphics-
related tasks, such as artistic stylization, can be even more demanding, given the intricacy
of the desired output, often necessitating the involvement of artistic expertise. In numerous
cases, such as object transfiguration, where, for instance, a zebra needs to be transformed
into a horse, defining the precise desired output becomes a complex process.

Numerous methods were designed to overcome the need for paired training examples.
For instance, Rosales et al. Resales et al. (2003) propose a Bayesian framework that
combines a prior derived from a patch-based Markov random field computed from a
source image and a likelihood term obtained from multiple style images. More recently,
approaches like CoGAN (M.-Y. Liu and Tuzel 2016) and cross-modal scene networks
(Aytar et al. 2017) utilize a weight-sharing strategy to learn a shared representation across
domains. Concurrently, Liu and collaborators (M.-Y. Liu et al. 2017) extend the above
framework by incorporating a combination of VAE and GAN. Another parallel line of
research (Shrivastava et al. 2017; Taigman et al. 2016; Bousmalis et al. 2017) promotes the
sharing of specific content features between input and output, even in the presence of style
differences. These methods also leverage adversarial networks and introduce additional
terms to ensure the output’s proximity to the input within predefined metric spaces, such
as class label space, image pixel space, and image feature space.

In contrast to the methods mentioned earlier, CycleGAN does not depend on a task-
specific, pre-defined similarity measure between the input and output, nor does it make an
assumption that the input and output must exist within the same low-dimensional embed-
ding space. This characteristic renders CycleGAN to be a versatile solution applicable to
a wide range of vision and graphics tasks. The fundamental assumption here is that an
underlying connection exists between these domains, implying that they represent different
portrayals of the same underlying scene. The primary goal is to uncover this hidden rela-
tionship through the training of a mapping function represented as G ∶ X → Y . This entails
utilizing one set of images in the domain X and another set in the domain Y . The objective
is to ensure that the resulting output, denoted as ŷ = G(x) for any x in X , closely resembles
the images in Y . This is achieved by training an adversary to differentiate between ŷ and y.
Thus, the optimal G consequently transforms domain X into a domain Ŷ that follows the
same distribution as Y . It is important to note that this approach does not ensure a one-to-
one correspondence between individual input and output images, as there exist infinitely
many mappings G that can induce the same distribution over ŷ. Additionally, in practice,
optimizing the adversarial objective on its own often leads to a phenomenon referred to
as mode collapse, where all input images map to the same output image, hindering the
optimization process.

To address these challenges, a structured approach is introduced that relies on the concept
of cycle consistency. This implies that when a sentence undergoes translation, such as from
English to French and subsequently from French to English, it should be possible to restore
the original sentence. In mathematical terms, if there’s a translator G ∶ X → Y and another
translator F ∶ Y → X , both G and F should function as inverses of each other, establishing

320 8 Deep Unsupervised Learning II

(a) (b)

Cycle-consistency
loss

Cycle-consistency
loss

X

X

Y
Y

F F

F

G

DX

Dx

Dy

Dy

Ŷ X̂x̂ ŷ

GG

x y

X Y

(c)

Figure 8.8 CycleGAN model formulation. Source: Reproduced from the original paper (Zhu et al.
2017).

one-to-one mappings between the two domains. To ensure this property, both G and F
are trained simultaneously, and a cycle consistency loss (Zhou et al. 2016) is introduced.
This loss function encourages the condition F(G(x)) ≈ x and G(F(y)) ≈ y. By combining
this loss with adversarial losses applied to domains X and Y , a comprehensive objective
for unpaired image-to-image translation is formulated. Here the two domains X and Y
has training samples {xi}N

i=1 where xi ∈ X and {yi}N
i=1 where yi ∈ Y . The data distribution

is denoted as x ∼ pdata(x) and y ∼ pdata(y). As depicted in Fig. 8.8, this model presents
two mapping functions: G ∶ X → Y and F ∶ Y → X , along with corresponding adversarial
discriminators, DY and DX . Here DY ’s role is to encourage G to translate X into outputs
that are indistinguishable from those in domain Y , while DX performs a similar task in
the reverse direction with F. The objective includes two types of terms: adversarial losses,
which aim to align the distribution of generated images with the data distribution in the tar-
get domain, and cycle consistency losses, which serve to ensure that the learned mappings
G and F do not contradict each other.

Adversarial losses are applied to both mapping functions. The objective for the mapping
function G ∶ X → Y and its discriminator DY is expressed as:

J(G,DY ,X ,Y) = 𝔼y∼pdata(y)[log DY (y)] + 𝔼x∼pdata(x)[log(1 − DY (G(x)))] (8.11)

where G is tasked with generating images G(x) that closely resemble samples from domain
Y , while DY ’s role is to differentiate between generated samples G(x) and authentic sam-
ples y. The objective here is for G to minimize this function, while its adversary D aims to
maximize it. This can be mathematically represented as minG maxDY

J(G;DY ;X;Y).
Nonetheless, if a network possesses sufficient capacity and complex function-processing

capabilities, it has the potential to transform the same input images into multiple random
permutations within the target domain. Therefore, relying solely on adversarial losses can-
not ensure that the learned function can accurately map an individual input, represented
as xi to a desired output, denoted as yi. Cycle consistency is used to address this challenge
and narrow down the space of possible mapping functions. Hence for every image x from
domain X , the image translation cycle should have the ability to bring x back to its origi-
nal form: x → G(x) → F(G(x)) ≈ x. This property is referred to as forward cycle consistency.
Similarly, for each image y from domain Y , the functions G and F should also exhibit
backward cycle consistency: y → F(y) → G(F(y)) ≈ y. The overall cycle consistency loss

8.7 CycleGAN 321

Start

Start

Generator
A2B

Generator
A2B

Generator
B2A

Generator
B2A

Discriminator A

Discriminator A

Discriminator B

Discriminator B

Decision [0,1]

Decision [0,1]

Decision [0,1]

Decision [0,1]

Input_A

Input_B

Generated_B

Generated_A

Cyclic_A

Cyclic_B

Figure 8.9 CycleGAN model formulation. (a) Mapping functions and associated adversarial
discriminators (b) Forward cycle-consistency loss and (c) Backward cycle-consistency loss.
Source: Reproduced from the blog https://hardikbansal.github.io/CycleGANBlog/ last accessed
November 30, 2023.”

function can be expressed as follows:

Jcyc(G,F) = 𝔼x∼pdata(x)[||F(G(x)) − x||1] + 𝔼y∼pdata(y)[||G(F(y)) − y||1] (8.12)

The complete objective at hand is as follows:

JCYC(G,F,DX ,DY) = J(G,DY ,X ,Y) + J(F,DX ,Y ,X) + 𝜆Jcyc(G,F) (8.13)

Here, the parameter 𝜆 denotes the weight given to the cycle consistency loss term. The
CycleGAN framework is shown in Fig. 8.9.

8.7.1 CycleGAN Training and Outcomes Highlights

The architectural framework for the generative networks is drawn from the work of Johnson
and their colleagues Johnson et al. (2016), who demonstrated impressive results in neural
style transfer and super-resolution. This network structure comprises three convolutional
layers, along with several residual blocks (He et al. 2016), two fractionally strided convolu-
tions with a stride of 1

2
, and a final convolutional layer responsible for mapping features to

https://hardikbansal.github.io/CycleGANBlog

322 8 Deep Unsupervised Learning II

RGB values. For images of size 128 × 128, six blocks are used, while for images of 256 × 256
resolution and higher, nine blocks are employed. In the case of the discriminator networks,
the architecture employed consists of a 70 × 70 PatchGANs (Ledig et al. 2017). These dis-
criminator networks are designed to classify whether 70 × 70 overlapping image patches
are genuine or generated.

In the model training procedure of cost function J, the negative log-likelihood objective has
been replaced with a least-squares loss. This change in the loss function is known to be more
stable during training and results in higher-quality outcomes. Specifically, for J(G;D;X;Y),
the approach is to train the generator G to minimize 𝔼x∼pdata(x)[(D(G(x)) − 1)2]. The dis-
criminator D is also trained to minimize 𝔼y∼pdata(y)[(D(y) − 1)2] + 𝔼x∼pdata(x)[(D(G(x))2].
Meanwhile, when the model’s performance fluctuates during training, instead of updating
the discriminators solely based on images generated by the latest generators, an image
buffer storage mechanism is employed to retain the 50 most recent images generated by
the generator. This buffer likely maintains a history of generated images over training
iterations. This provides a more stable and consistent set of training examples for the
discriminator, facilitating better convergence of the GAN. Further, the networks start
training with a constant learning rate of 0.0002 for 100 epochs, followed by linear decay to
zero over the next 100 epochs. In all the experiments the parameter 𝜆 is set to be 10 and
the Adam solver has a batch size of 1.

The CycleGAN model is assessed in comparison to several baseline methods through
a combination of qualitative and quantitative metrics. This evaluation encompasses two
main objectives: first, the translation of semantic labels into images, a task conducted using
the Cityscapes dataset (Cordts et al. 2016), and second, the transformation of maps into
aerial photographs using data sourced from Google Maps. Furthermore, perceptual studies
are conducted on Amazon Mechanical Turk to gauge the realism of the model’s generated
outputs. In these perceptual studies, participants are presented with pairs of images, one
being authentic and the other generated either by the CycleGAN or alternative methods.
Participants are then instructed to determine which image they believe to be real.

While perceptual studies are the established benchmark for evaluating graphical realism,
the evaluation of the Cityscapes labels-to-photo task employs an automated quantitative
metric like the FCN score, as depicted in Table 8.1. The FCN metric assesses the inter-
pretability of the generated photos using an off-the-shelf semantic segmentation algorithm
known as the FCN. The FCN generates a label map for a given generated photo, which can
then be compared to the input ground truth labels using standard semantic segmentation
metrics such as per-pixel accuracy, per-class accuracy, and mean class IoU. The underlying

Table 8.1 Comparison of FCN scores of CycleGAN with various baseline models using the
Cityscapes dataset.

Methods CoGAN BiGAN SimGAN
Feature
loss+GAN pix2pix CycleGAN

Per-pixel acc 0.40 0.19 0.20 0.06 0.71 0.52
Per-class acc 0.10 0.06 0.10 0.04 0.25 0.17
Class IoU 0.06 0.02 0.04 0.01 0.18 0.11

8.8 StyleGAN 323

concept is that if a photo is generated from a label map specifying “car on the road,” it is
considered successful if the FCN applied to the generated photo correctly identifies “car on
the road.”

8.7.2 Applications of CycleGAN

CycleGAN demonstrates its versatility in various tasks, even when paired training data is
limited or unavailable. The major applications of CycleGAN are as follows:

Collection style transfer: This application involves training the model on landscape pho-
tographs from sources like Flickr and WikiArt. Unlike traditional neural style transfer,
this method aims to mimic the style of entire collections of artworks, allowing for the
generation of photos in the style of specific artists like Cezanne, Monet, Van Gogh, or
Ukiyo-e. The dataset includes a substantial number of images for each artist.

Object transfiguration: In this application, the model is trained to translate one object
class from the ImageNet dataset to another. Each object class contains around 1000 train-
ing images. Unlike some approaches that focus on translating objects within the same
category, this method aims to transform objects between visually similar categories.

Season transfer: This application involves training the model on a dataset of winter and
summer photos of Yosemite, downloaded from Flickr. The goal is to translate images
between these two seasonal contexts, allowing for transformations from winter scenes to
summer scenes and vice versa.

Photo generation from paintings: For this task, the model translates paintings into
photographs. To improve the quality of translations, an additional loss is introduced
to encourage color composition preservation between input and output. This helps in
ensuring that the generated photos maintain the color integrity of the original paintings.

Photo enhancement: In this application, the model is trained on flower photos from
Flickr. The source domain comprises smartphone photos with deep depth of field (DoF)
due to a small aperture, while the target domain consists of DSLR photos with shallower
DoF due to a larger aperture. The model successfully generates photos with shallower
DoF, enhancing the aesthetic quality of smartphone photos.

8.8 StyleGAN

Computer vision applications demand higher resolution and quality of images. It has
been observed through various applications that networks inspired from GANs have
been able to produce high-resolution and good-quality images over the years. The style
transfer technique in computer vision is an application that is explored a lot using different
architectures inspired from GANs. The StyleGAN architecture was introduced to control
the image synthesis process and this architecture was motivated by the style transfer
literature (X. Huang and Belongie 2017). StyleGAN was first introduced by NVIDIA
researchers in late 2018 (Karras et al. 2019). Following the main version, other subsequent
versions such as StyleGAN2 (Karras et al. 2020a) and StyleGAN2-ADA (Karras et al. 2020b)
were also released which refined the architecture as well as training methodology. The

324 8 Deep Unsupervised Learning II

StyleGAN architecture makes use of the intermediate latent space to perform controlled
image modifications, i.e. the architecture will be able to modify a given image rather than
the randomly generated one by GANs (Abdal et al. 2019).

The GAN inspired architectures have seen their rapid utilization in the field of computer
vision with fast-paced improvements in image quality and resolution generated by such
networks. DCGAN introduced in Section 8.5 was the first milestone to use the fully CNN
in GANs. Following this various other architectures came up in different computer vision
applications with improvements in different training aspects such as loss functions (Mao
et al. 2017; Arjovsky et al. 2017), normalization or regularization (Miyato et al. 2018;
Gulrajani et al. 2017), as well as based on the architecture (Gulrajani et al. 2017). The
computational power was always a question for achieving high-quality training and most
of the testing was performed on poor-quality and low-resolution image datasets due to
the high computational demand. This computation issue was addressed in the work of
Karras et al. Karras et al. (2017) where they collected and created a high-quality human
face dataset CelebA-HQ and introduced a progressive methodology for training GANs
over higher-resolution input for image generation tasks. The architecture was called
ProGAN and it was the first GAN model to generate realistic 1024 × 1024 high-resolution
human face images. However, the training and generation using complex datasets such as
ImageNet was still a challenge. Later on, in Brock et al. (2018), using the BigGAN model,
it was argued that the training of GANs can be improved by using a larger batch size.
Following this Karras et al., came up with another much more diverse and high-quality
human face dataset called Flickr-Faces-HQ (FFHQ). Using this dataset StyleGAN was
introduced which improved the performance of GANs especially on the human face image
generation tasks.

StyleGAN architecture re-designs the generator architecture to expose novel approaches
that would accommodate the controlling of the image synthesis process. The generator,
in this case, adjusts to the “style” of the image at each convolutional layer. It starts with
a learned constant input and the modification to adjust the “style” is learned based on
the latent code. This would allow the architecture to directly control the strength of the
features of the image even at different scales. Additionally, noise is also injected into the
network which enables it to perform scale-specific interpolation operations and mixing.
This architecture does not change or modify the discriminator network or the loss function
and focuses on only improving the generator part of the GAN network.

Unlike the traditional generator, in StyleGAN the input latent code is embedded into an
intermediate latent space which captures the variation represented in the network. Also, the
input latent space must be aligned with the probability density of the training data which
might lead to some entanglement. It is claimed that the latent space is unrestrictive, the
degree of entanglement is explained using two automated metrics: perceptual path and lin-
ear separability. Using these metrics, later it is shown that StyleGAN generator architecture
allows more linear as well as less entangled representations with different variation factors
compared to that of the traditional generator architecture.

In a traditional generator, the input latent code is provided using an input layer which
is the first layer of the feedforward network, as shown in Fig. 8.10a. For StyleGAN, the
input layer is removed completely, instead starting part is basically learning from a con-
stant. Let us consider the latent space being represented as and the latent code as z.

8.8 StyleGAN 325

(a)

Normalize Normalize

Latent z ∈ Z– Latent z ∈ Z

Mapping network f

Synthesis network g

A

A

A

A

B

B

B

B

Noise–

Fully connected
Fully connected

Fully connected

Fully connected

Fully connected

Fully connected

Fully connected

Fully connected

Fully connected

PixelNorm

PixelNorm

PixelNorm

PixelNorm

Upsample

Upsample

AdaIN

AdaIN

AdaIN

AdaIN
Style

Style

Style

Style

3 × 3 conv.

3 × 3 conv.

Const 4 × 4 × 512

3 × 3 conv.

3 × 3 conv.

3 × 3 conv.

4 × 4

8 × 8
8 × 8

4 × 4

3 × 3 conv.

(b)

w ∈ W

Figure 8.10 (a) Traditional vs (b) style-based generator. Source: Karras, Laine, and Aila 2019 /
IEEE / Public Domain.

Now, a non-linear mapping network given by f ∶ → produces w ∈ , as shown in
Fig. 8.10b. For the sake of simplicity, the dimensions of both these spaces are set to 512. the
mapping f is created using MLP of 8 layers, as shown in Fig. 8.10. This mapping basically
is an affine transformation that learned and specialized w to various styles y. The styles
y = (ys, yb) basically control the adaptive instance normalization (AdaIN) (X. Huang and
Belongie 2017; Ghiasi et al. 2017; Dumoulin et al. 2016; Dumoulin et al. 2018) operation
which comes after each convolution layer in the synthesis network. The synthesis network
consists of 18 layers. The AdaIN operation can be represented as the following:

AdaI N(xi, y) = ys,i
xi − 𝜇(xi)
𝜎(xi)

+ yb,i (8.14)

where each of the feature maps given by xi is normalized individually and then the scaling is
performed followed by adding bias using some scalar component of style y. The dimension
of y is two times the number of feature maps for each layer. In Fig. 8.10, we can see that the
first step is to do a mapping from the input to the intermediate latent space . This mapping
is then used to control the AdaIN for each convolutional layer. The AdaIN operation is
particularly suitable for this purpose due to its efficiency and ability to provide compact
representation. Following this, Gaussian noise is added before evaluating the non-linearity.
The noise input helps in introducing stochastic detail to the generation process. This noise
image is passed onto each of the feature maps with the help of the learned scale factors. This
is then finally added to the output of the corresponding convolution as shown in the figure.
“A” in Fig. 8.10b corresponds to the learned affine transformation and “B” is the addition of

326 8 Deep Unsupervised Learning II

learned per-channel scaling factors with the noise input. Compared to other style transfer
approaches, StyleGAN performs a spatially invariant style y from vector w instead of using
a fixed image.

8.8.1 StyleGAN Properties and Outcome Highlights

The redesign of the generator not only helps with the controlled image synthesis but also
improves the image quality considerably. For evaluation purposes, the metric that is used
for StyleGANs is the FID (Heusel et al. 2017). It is claimed to be a much better metric than
the inception score in capturing the similarity of generated images compared to the real
image. This score also helps with capturing the level of disturbance as well. Since, it’s a
distance measure, for similarity the lower the value the better the result. FID is the distance
d between two Gaussians with one having mean 𝝁1 and covariance 𝚺1 obtained from a
particular probability distribution p1. The other Gaussian has mean 𝝁2 and covariance, 𝚺2
which is obtained from another distribution p2. The FID distance is given by:

d2((𝝁1,𝚺1), (𝝁2,𝚺2)) = ||𝝁1 − 𝝁2||22 + Tr(𝚺1 + 𝚺2 − 2(𝚺1𝚺2)1∕2) (8.15)

The evaluation of StyleGAN was performed on two different datasets n CELEBA-HQ
(Karras et al. 2017) and FFHQ (Karras et al. 2019). Table 8.2 shows the results related to
the quality of images generated using the FID metric with best scores indicated in bold for
each dataset. The starting baseline model was that of ProGAN (Karras et al. 2017) which
was then improved using bilinear upsampling/downsampling operations (R. Zhang 2019).
Further, the comparison of performance is done for (c) adding the mapping network along
with AdaIN operation (d) removing the traditional input layer and learning from the con-
stant tensor instead, as shown in Fig. 8.10. In column (e), the noise input is introduced,
and then finally, (f) the mixing regularization is added. The results keep improving as we
progress along the table which shows that modifying the network to (e) from the base archi-
tecture (b) has improved the FIDs significantly.

The main objective of StyleGAN generator was to make controlled image synthesis pos-
sible and this was achieved using scale-specific modifications to different styles. There is a
mapping network and affine transformations which allows the network to draw samples
corresponding to each of the styles from the distribution that is learned by the genera-
tor. The synthesis network then generates a novel image based on these style collections.

Table 8.2 The FID scores for different generator designs.

Dataset

(a)
Progressive
GAN
(Karras et al.
2017)

(b)
+ Tuning
(incl. bilinear
up/down

(c)
+ Mapping
and
styles

(d)
Remove
traditional
input layer

(e)
+
Noise
inputs

(f)
+
Mixing
regularization

CelebA-HQ 7.70 6.11 5.34 5.07 5.06 5.17
FFHQ 8.04 5.25 4.85 4.88 4.42 4.40

The FID here was calculated using 50,000 images randomly drawn from the training set (Karras et al. 2019).

8.8 StyleGAN 327

Additionally, the modification of a certain subset of styles affects only some specific aspects
of the image, meaning, the styles are localized within the network.

Next, let us understand the localization aspect of the network. Considering the AdaIN
operation shown in Eq. (8.14) each of the channels is first normalized to zero mean and
unit variance. Following this, to the normalized channels, the scales and biases are applied
based on the style.

Style mixing: The localization of styles in the network is further facilitated by using mix-
ing regularization. In this process, two random latent codes are used to produce a given
percentage of images during training instead of just using the usual one latent code
approach. Let’s say we pass two latent codes z1 and z2 through the mapping network
to obtain w1 and w2 which help in controlling the styles such that w1 comes before the
crossover point followed by w2. This type of regularization approach prevents the net-
work from getting confused about the correlation between adjacent styles. Using this
technique, the localization improves during the training. It also improves the tolerance
of the model to adverse operations along with retaining high-level, meaningful attributes
of the image.

Stochastic variation: The aspects that introduce randomness in human faces can be many,
such as hairs, freckles, pores, etc. These aspects can be indeed randomized without any
impact on the perception of the image. To achieve this stochastic variation in the image,
the StyleGAN generator adds per-pixel noise after each convolution. This makes sure
that the generator can produce different noise realizations of the same image. It can be
noted that these noise realizations affect only the stochastic aspect of the image. The
effect of the noise is localized in the network. At any point in the generator, the network is
always pushed toward introducing some novelty content as possible. The localized effect
for the stochastic variation is ensured by adding a fresh set of noise to each layer. This
makes sure that there are no side effects from the earlier activations.

Disentanglement: The main goal of disentanglement is that the latent space consists of
linear subspaces, where each of these subspaces controls an individual factor of varia-
tion. Additionally, the sampling probability of each of these variation factors in should
match the corresponding density of the training set. In the case of StyleGAN, the sam-
pling from is basically induced from the mapping f (z). The mapping can be manip-
ulated so that the factors of variation are more linear. Therefore, realistic images can be
easily generated based on disentangled representation compared to entangled represen-
tation. The metric introduced for quantifying this disentanglement includes Perceptual
path length and linear separability. Both these disentanglement methods can be used as
regularizers during training.

Perceptual path length quantifies the drastic variations that the image undergoes as inter-
polation is performed in the latent space. For example, the perceptually smoother transition
is observed in a less curved latent space compared to a highly curved latent space. The basis
for this metric is from the perceptual pairwise image distance (R. Zhang et al. 2018) which
stands for the weighted difference between two VGG16 embeddings (Simonyan and Zisser-
man 2015). here the weights are fit in such a way that they agree with human perceptual
similarity judgments. If we subdivide an interpolation path in the latent space into linear
segments, the total perceptual length of this path can be defined as the sum of perceptual

328 8 Deep Unsupervised Learning II

differences over each of these segments, using the image distance metric. The other metric
that can be used to quantify the disentanglement of the latent space is linear separability.
Using this metric, we can quantify how well the points in latent space can be separated into
two distinct portions using a linear hyperplane. This approach would provide us with sets
that correspond to a specific binary characteristic of the image.

Overall, the architecture is capable of performing better interpolation, along with adding
better disentangling of latent variation factors. Also, the added features in the generator
helped the model to perform unsupervised separation of higher-level characteristics and
stochastic variation in the synthesized images.

8.9 StackGAN

Creating photo-realistic images from textual descriptions is a significant challenge with
wide-ranging applications, such as enhancing photos through editing and facilitating
computer-aided design tasks. In recent times, GANs, have exhibited promising capabilities
in the synthesis of real-world images. Specifically, when conditioned on provided text
descriptions, cGANs (S. E. Reed et al. 2016a, 2016b) have demonstrated the ability to
produce images closely aligned with the intended textual meaning. However, augmenting
existing state-of-the-art GAN models with additional upsampling layers for the purpose of
generating high-resolution images typically leads to training instability and the generation
of nonsensical outputs. The primary challenge in generating high-resolution images with
GANs lies in the fact that the distributions representing natural images and the implied
model distributions may not effectively overlap within the expansive, high-dimensional
pixel space (Sønderby et al. 2016; Arjovsky and Bottou 2017). This issue becomes more
pronounced as the resolution of the images in question increases. Even though prior works
indicate the successful generation of credible 64 × 64 images conditioned on textual descrip-
tions, however, these images often lacked intricate details and vivid object components.

Therefore, to tackle the problem of text-to-photo-realistic image synthesis more effec-
tively, the approach with stacked generative adversarial networks (StackGAN) decomposes
it into two more manageable sub-problems. To create high-resolution images with realistic
details, a simple yet efficient StackGAN method was introduced (see Fig. 8.11). This method
breaks down the text-to-image generation process into two stages:

Stage I GAN: This stage sketches the fundamental shape and primary colors of the object
based on the provided text description. It also generates the background layout from a
random noise vector, resulting in a low-resolution image.

Stage II GAN: In the second stage, the low-resolution image from Stage I is refined to
correct any defects and enhance the object’s details. It achieves this by re-evaluating the
text description, ultimately producing a high-resolution, photo-realistic image.

The improved likelihood of the model distribution, derived from a somewhat aligned,
lower-resolution image, overlapping with the distribution of the actual image, serves as
the fundamental reason why Stage II GAN can produce superior high-resolution images.
This capability allowed StackGAN to generate the first photorealistic 256 × 256 resolution
images based on textual descriptions.

This bird is gray with

white on its chest and

has a very short beak

Test description 1
Embedding

Conditioning

augmentation

Conditioning

augmentation

Stage-I generator G
0

for sketch

Stage-II generator G

for refinement

Upsampling

Upsampling

Down-

sampling

Down-

sampling
Down-

sampling

64 × 64

results

64 × 64

Stage-I results

256 × 256
results

256 × 256
real images

64 × 64

real images

Stage-I discriminator D
0

Stage-II discriminator D
0

μ
0

ϕt

ϵ ~ N(0,1)
z ~ N(0,1)

σ
0

c
0

ˆ

Compression and

spatial replication

Spatial
replication

Compression and

spatial replication

4

4
128

128

512

512
Residual

blocks
16

16

4

4
128

512

{0,1}

{0,1}

Figure 8.11 StackGAN architecture. Source: H. Zhang et al. 2017/IEEE/Public Domain.

330 8 Deep Unsupervised Learning II

During the implementation of StackGAN, the initial process involves the encoding of
a textual description denoted as t, using an encoder, resulting in the generation of a text
embedding𝝍 t. However, the latent space associated with the text embedding typically pos-
sesses high dimensionality, often exceeding 100 dimensions. When confronted with limited
data, this high dimensionality can lead to non-smoothness within the latent data man-
ifold. Hence, a novel approach called conditioning augmentation was introduced to pro-
duce additional conditioning variables ĉ. Contrary to the fixed conditioning text variable c
described in prior studies, a distinct approach involves the random sampling of latent vari-
ables ĉ. These variables are drawn from an independent Gaussian distribution represented
as (𝝁(𝜓t),𝚺(𝝍 t)) where both the mean 𝝁(𝝍 t) and the diagonal covariance matrix 𝚺(𝝍 t)
are determined as functions of the text embedding. Consequently, conditioning augmen-
tation helps in augmenting the number of training pairs, which is particularly beneficial
when working with a limited set of image-text pairs.

To further promote smoothness within the conditioning manifold and prevent overfit-
ting (Larsen et al. 2016), an additional regularization term becomes part of the generator’s
training objective:

KL((𝝁(𝝍 t),𝚺(𝝍 t))|| (0, I)) (8.16)

The above term measures the KL divergence between the conditioning Gaussian distri-
bution, which is modeled by (𝜇(𝝍 t),Σ(𝝍 t)), and a standard Gaussian distribution, rep-
resented as (0, I). This technique promotes smoothness within the latent conditioning
manifold by permitting minor, random adjustments within it, ultimately enhancing the
variety of synthesized images.

Let 𝝍 t represent the text embedding obtained from the textual description using a pre-
trained encoder (S. E. Reed et al. 2016a). The Gaussian conditioning variables ĉ0 linked to
this text embedding are sampled from a Gaussian distribution (𝜇0(𝝍 t),Σ0(𝝍 t)). This sam-
pling procedure aims to capture the semantic essence of the textual description represented
by 𝝍 t while introducing valuable variations. While conditioned on ĉ0 and a stochastic vari-
able 𝝐, Stage I GAN undergoes a training process. This results in the maximization of JD0

,
which evaluates the authenticity of the generated images, and the simultaneous minimiza-
tion of JG0

. The latter focuses on aligning the generated images with the provided textual
description, and this iterative training procedure progressively enhances the performance
of both the discriminator D0 and the generator G0.

JD0
= 𝔼(I0,t)∼pdata

[log D0(I0,𝝍 t)] + 𝔼𝝐∼p𝝐 ,t∼pdata
[log(1 − D0(G0(𝝐, ĉ0),𝝍 t))] (8.17)

JG0
= 𝔼𝝐∼p𝝐 ,t∼pdata

[log(1 − D0(G0(𝝐, ĉ0),𝝍 t))]

+ 𝜆KL((𝜇0(𝝍 t),Σ0(𝝍 t))|| (0, I)) (8.18)

Here, I0 represents the real image, the text description t originates from the actual
data distribution pdata, and 𝝐 constitutes a noise vector, drawn randomly from the
distribution p𝝐 .

The initial output of Stage I GAN often results in low-resolution images that lack
detailed object parts and may even exhibit shape distortions. To overcome these short-
comings, Stage II GAN uses low-resolution images and text embedding, aiming to correct
imperfections in the Stage I results. This reintroduction of textual information previously

8.9 StackGAN 331

overlooked enables Stage II GAN to generate more complex and photo-realistic details
in the final images. To achieve this, Stage II GAN considers the low-resolution output,
represented as s0 = G0(𝝐; ĉ0), and incorporates Gaussian latent variables ĉ in the training
process for both the discriminator D and the generator G. This training involves an
optimization approach, where the objective is to maximize JD while simultaneously
minimizing JG.

JD = 𝔼(I,t)∼pdata
[log D(I,𝝍 t)] + 𝔼s0∼pG0 ,t∼pdata

[log(1 − D(G(s0, ĉ),𝝍 t))] (8.19)

JG0
= 𝔼s0∼pG0 ,t∼pdata

[log(1 − D(G(s0, ĉ),𝝍 t))]

+ 𝜆KL((𝜇(𝝍 t),Σ(𝝍 t))|| (0, I)) (8.20)

In contrast to the original GAN framework, this stage does not use the random noise vari-
able 𝝐 assuming that necessary randomness is already contained within s0. The Gaussian
conditioning variables ĉ in this stage and the ĉ0 in Stage I GAN both derive from the
same pre-trained text encoder, resulting in the generation of identical text embeddings,
denoted as t.

8.9.1 StackGAN Training and Outcomes Highlights

During the implementation of Stage I GAN generator, the process of obtaining the text
conditioning variable ĉ0 is as follows: The text embedding 𝝍 t is initially fed into a fully con-
nected layer, resulting in the generation of 𝜇0 and 𝜎0, for a Gaussian distribution defined as
 (𝜇0(𝝍 t),Σ0(𝝍 t)). Subsequently, ĉ0 is sampled from this Gaussian distribution and con-
catenated with a noise vector to facilitate the generation of an image with dimensions
M0 × N0 through a series of upsampling blocks.

The text embeddings𝝍 t are first reduced in dimensionality by the discriminator D0 using
a fully connected layer. Then, this condensed text information is spatially duplicated to
create a multidimensional tensor with dimensions Bd × Bd × Cd. Simultaneously, the asso-
ciated image data undergoes downsampling until it reaches a spatial dimension of Bd × Bd.
Next, the image’s feature map is combined with the spatially duplicated text tensor along
the channel dimension. A 1 × 1 convolutional layer is applied to this combined tensor to
extract important features representing the relationship between the textual and visual ele-
ments. Finally, a single-node fully connected layer is used to determine a decision score,
which indicates the discriminator’s judgment.

The Stage II generator uses an encoder-decoder network architecture with residual
blocks. It takes a text embedding 𝝍 t and transforms it into the text conditioning vector ĉ,
which is replicated spatially into a tensor with dimensions Bg × Bg × Cg. Concurrently, the
Stage I GAN’s output, denoted as s0, undergoes several downsampling blocks in the form
of an encoder until it reaches the spatial dimensions Bg × Bg. The features extracted from
both the image and text are concatenated along the channel dimension and are passed
through a series of residual blocks. Ultimately, a sequence of upsampling layers in the
decoder is employed to generate a high-resolution image with dimensions M × N. This
generator plays a crucial role in enhancing input images by rectifying imperfections and
introducing realistic details.

332 8 Deep Unsupervised Learning II

The discriminator in this stage shares similarities with the Stage I discriminator but
incorporates additional downsampling blocks due to the larger image size. To promote
improved alignment learning between the image and conditioning text, the approach uses
a matching-aware discriminator for both stages (S. Reed et al. 2016b). During training, the
discriminator considers real images paired with their corresponding text descriptions as
positive sample pairs. Meanwhile, negative sample pairs include two groups: one with real
images and mismatched text embeddings, and the other with synthetic images and their
corresponding text embeddings.

During the training phase, the process begins by training D0 and G0 of the Stage I GAN for
600 epochs while keeping Stage II GAN fixed. Then, the training shifts to iteratively train D
and G of the Stage II GAN for another 600 epochs, with Stage I GAN fixed. All networks are
trained using the Adam solver, with a batch size of 64 and an initial learning rate of 0.0002.
The learning rate is reduced to half of its previous value every 100 epochs. The experiments
used three different datasets: CUB (Wah et al. 2011), which includes 200 bird species with
11,788 images; Oxford-102 (Nilsback and Zisserman 2008), comprising 8189 flower images
across 102 categories; and MS COCO (T.-Y. Lin et al. 2014b), a more challenging dataset with
images featuring multiple objects and diverse backgrounds. MS COCO had 80 k training
images and 40 k validation images, each with 5 descriptions, while the CUB and Oxford-102
datasets had 10 descriptions for each image.

A numerical evaluation technique called the Inception score (Salimans et al. 2016) is
employed for quantitative assessment.

I = exp(𝔼xKL(p(y|x)||p(y))) (8.21)

Here, x represents an individual-generated sample, and y corresponds to the label predicted
by the Inception model. The underlying concept of this metric revolves around the idea that
effective models should produce various meaningful images. Consequently, the KL diver-
gence between the overall distribution of labels p(y) and labels given a specific image p(y|x)
will be large. Although the inception score has been shown to correlate with human per-
ceptions of visual quality, it does not evaluate the alignment between the generated images
and the provided text descriptions. To address this aspect, human evaluations are also con-
ducted. The Inception scores and average human ranks for the proposed StackGAN and the
compared methods such as GAN-INT-CLS (S. Reed et al. 2016b) and GAWWN (S. E. Reed
et al. 2016a) are listed in Table 8.3.

Table 8.3 Evaluation of inception scores and average human ranks for different datasets using
various methods.

Metric

Inception score Human rank

Dataset GAN-INT-CLS GAWWN StackGAN GAN-INT-CLS GAWWN StackGAN

CUB 2.88 ± 0.04 3.62 ± 0.07 3.70 ± 0.07 2.81 ± 0.03 1.99 ± 0.04 1.37 ± 0.02
Oxford 2.66 ± 0.03 — 3.20 ± 0.01 1.87 ± 0.03 — 1.13 ± 0.03
COCO 7.88 ± 0.07 — 8.45 ± 0.03 1.89 ± 0.04 — 1.11 ± 0.03

8.10 Diffusion Models 333

8.10 Diffusion Models

In the past, probabilistic models have struggled with a challenging dilemma characterized
by a balancing act between two opposing objectives: tractability and flexibility. Models
that are tractable, such as Gaussian or Laplace distributions, are straightforward to study
and apply to data. Nonetheless, they encounter difficulties when attempting to encompass
the intricate patterns within complex datasets. Conversely, flexible models can mold
themselves to the patterns within any given dataset by employing a non-negative func-
tion 𝜙(x) to establish their distribution p(x) = 𝜙(x)

Z
, where Z represents a normalization

constant. Nevertheless, calculating this normalization constant is a computationally
expensive task. Dealing with these adaptable models frequently necessitates the use of
resource-intensive Monte Carlo techniques for tasks like assessment, training, or generating
samples.

Several analytical approximations are available that improve, yet do not completely elim-
inate, this tradeoff. Examples include mean field theory and its extensions (Tanaka 1998),
variational Bayes (M. I. Jordan et al. 1999), contrastive divergence (Welling and Geoffrey
E. Hinton 2002), minimum probability flow (Sohl-Dickstein et al. 2011), minimum KL
contraction (Lyu 2011), proper scoring rules (Gneiting and Raftery 2007), score match-
ing (Hyvärinen and Dayan 2005), pseudolikelihood (Besag 1975), loopy belief propagation
(K. Murphy et al. 2013), and many others. Furthermore, non-parametric approaches can
also demonstrate significant effectiveness.

In recent years, an innovative method emerged for building probabilistic models, offering
multiple advantages. This methodology provides exceptional flexibility in model structure,
ensures precise data sampling, enables seamless integration with other probability distri-
butions, and facilitates cost-efficient evaluation of both the model’s log-likelihood and the
likelihood of individual states. This approach relies on the utilization of a Markov chain to
systematically transition from one distribution to another, drawing inspiration from non-
equilibrium statistical physics (Jarzynski 1997) and Sequential Monte Carlo (Neal 2001).
Specifically, it involves the construction of a generative Markov chain, which helps in the
transformation of a straightforward, well-defined distribution, such as a Gaussian, into the
desired target data distribution through a diffusion process.

The fundamental concept underlying diffusion models is rather straightforward. They
start with an initial input image and progressively introduce Gaussian noise to it through
a sequence of steps, which we refer to as the forward process. Importantly, this is distinct
from the forward pass of a neural network. It serves as a crucial step in generating the target
data for our neural network. Subsequently, a neural network is trained to reconstruct the
original data by reversing the noise application process. This ability to model the inverse
process enables the generation of novel data, which is commonly referred to as the reverse
diffusion process or the sampling process of a generative model.

In recent years, numerous generative models based on diffusion have been introduced, all
sharing similar foundational concepts. These include diffusion probabilistic models (Sohl-
Dickstein et al. 2015), noise-conditioned score networks (Y. Song and Ermon 2019), and
denoising diffusion probabilistic models (Ho et al. 2020).

334 8 Deep Unsupervised Learning II

x0

q(xt|xt–1)
xt–1 xt xT.

Figure 8.12 Forward diffusion process. Source: Reproduced from paper (Ho et al. 2020) / Neural
Information Processing Systems Foundation.

8.10.1 Forward Diffusion Process

Consider a data point sampled from a real data distribution, denoted as x0 drawn from
the distribution q(x). Let’s define a forward diffusion process where Gaussian noise with
a variance of 𝛽t is incrementally added to x0 over the course of T steps. This produces a
sequence of noisy samples: x1, x2,… , xT . More specifically, at each step of the Markov
chain, Gaussian noise with variance 𝛽t is introduced to xt−1, resulting in a new latent
variable xt with a distribution of q(xt|xt−1). This diffusion process can be formulated
as follows:

q(xt|xt−1) =

(
xt;𝝁t =

√
1 − 𝛽txt−1,𝚺t = 𝛽tI

)
(8.22)

In this case, the distribution q(xt|xt−1) shown in Fig. 8.12 is a normal distribution charac-
terized by a mean, denoted as 𝝁t, which is equal to

√
1 − 𝛽txt−1, and a standard deviation,

denoted as 𝚺t, which is a diagonal matrix consisting of variances 𝛽t.
The forward trajectory, starting from the initial data distribution and undergoing T diffu-

sion steps, can be written in closed form as follows:

q(x1∶T|x0) =
T∏

t=1
q(xt|xt−1) (8.23)

As the step t increases, the distinctive characteristics of the data sample x0 gradually
diminish. Ultimately, as the parameter T approaches infinity, xT converges to an isotropic
Gaussian distribution.

In this case, the reparameterization trick is employed, enabling tractable closed-form

sampling of xt at any timestep t. Let us define 𝛼t = 1 − 𝛽t, 𝛼t =
t∏

j=1
𝛼j and 𝝐0 … 𝝐t−2, 𝝐t−1 ∼

 (0, I). The sampling of xt can be expressed as follows:

xt =
√

1 − 𝛽txt−1 +
√
𝛽t𝝐t−1

=
√
𝛼txt−2 +

√
1 − 𝛼t𝝐t−2

= · · · · · · · · · · · ·
=
√
𝛼tx0 +

√
1 − �̄�t𝝐0

(8.24)

Consequently, for the generation of a sample xt, the following distribution can be employed:

q(xt|xt−1) = (xt;
√
𝛼tx0,

√
1 − �̄�tI) (8.25)

8.10 Diffusion Models 335

xT

q(xt|xt–1)

xt xt–1 x0.
pθ(xt–1|xt)

Figure 8.13 Reverse diffusion process. Source: Reproduced from paper (Ho et al. 2020) / Neural
Information Processing Systems Foundation.

8.10.2 Reverse Diffusion Process

Reversing the above forward process and sampling from q(xt−1|xt) enables us to recon-
struct the true sample from a Gaussian noise input, xT ∼ (0, I). In practical terms, the
knowledge of q(xt−1|xt) is limited, and estimating it becomes intractable since it uses
complex computations related to the data distribution. Consequently, one can opt for an
approximation of q(xt−1|xt) through the utilization of a parameterized model, denoted as
p𝜃 (see Fig. 8.13). Given that q(xt−1|xt) also exhibits Gaussian characteristics, particularly
when 𝛽t is sufficiently small, there is the flexibility to choose p𝜃 to be Gaussian and focus
solely on parameterizing the mean and variance:

p𝜃(xt−1|xt) = (xt−1;𝝁𝜃(xt, t),𝚺𝜃(xt, t)) (8.26)

The reverse trajectory for all timesteps can be written in closed form as follows:

p𝜃(x0∶T) = p𝜃(xT)
T∏

t=1
p𝜃(xt−1|xt) (8.27)

8.10.3 Diffusion Process Training

A diffusion-based generative model can be trained by maximizing the log-likelihood of the
sample generated at the end of the reverse process to ensure that it closely matches the
original data distribution. During training, the approach draws inspiration from VAEs and
reformulates the training objective using a variational lower bound, referred to as ELBO,
as demonstrated in Eq. (7.42). After various calculations, this final term for the variational
lower bound loss, denoted as vlb, is derived for individual timesteps:

Jvlb = J0 + J1 + · · · + JT−1 + JT (8.28)

J0 = − log p𝜃(x0|x1) (8.29)

Jt−1 = KL(q(xt−1|xt, x0)||p𝜃(xt−1|xt)) (8.30)

JT = KL(q(xT|x0)||p𝜃(xt)) (8.31)

The simplification of the loss function Jvlb involves omitting certain terms, leaving only Jt−1.
This term represents the KL divergence between the posterior of the forward process (condi-
tioned on xt and the initial sample x0) and the parameterized reverse diffusion process. The
term q(xt−1|xt, x0) is referred to as forward process posterior distribution. The deep-learning

336 8 Deep Unsupervised Learning II

model’s task during training is to estimate the parameters of this Gaussian posterior in such
a manner that it minimizes the KL divergence.

q(xt−1|xt, x0) = (xt−1; �̃�t(xt, x0), 𝛽tI) (8.32)

where �̃�t(xt, x0) =
√
𝛼t−1𝛽t

1−𝛼t
x0 +

√
𝛼t(1−𝛼t−1)

1−𝛼t
xt and 𝛽 t =

1−𝛼t−1
1−𝛼t

𝛽t. In this context, the expression
of x0 within �̃� can be formulated in terms of xt by employing the reparameterization trick
outlined in Eq. (8.24). Furthermore, in the training phase, we establish that 𝚺𝜃(xt, t) in
Eq. (8.26) equals 𝜎2I.

�̃�t(xt) =
1√
𝛼t

(
xt −

𝛽t√
1 − 𝛼t

𝝐

)
(8.33)

Settings

�̃�𝜃(xt, t) = 1√
𝛼t

(
xt −

𝛽t√
1 − 𝛼t

𝜖𝜃(xt, t)

)
(8.34)

The loss term was further simplified by omitting a weighting factor, and this simplified
version demonstrated superior performance compared to the full objective:

Jt−1 = 𝔼x0 ,𝝐

[
𝛽2

t

2𝜎2
t 𝛼t(1 − �̄�t)

||𝝐 − 𝝐𝜃(√�̄�tx0 +
√

1 − �̄�t𝝐, t)||2] (8.35)

At training and inference times, the 𝛽’s, 𝛼’s and xt are known. Consequently, the model’s sole
task is to predict the noise at each timestep. The final loss function is a result of reducing it
to a mean squared error between the noise introduced in the forward process and the noise
the model predicts.

Example 8.10.1 (Text-to-image generation using stable diffusion)
Let’s try out the stable diffusion model. Here, we are using the text-to-image latent dif-
fusion model which is trained on 512 × 512 image data from a subset of the LAION-5B
dataset (https://laion.ai/blog/laion-5b/) database. The base model uses a frozen CLIP ViT-
L/14 image and text model that maps text and images to a common shared vector space
(model details). The CLIP model was developed by researchers at OpenAI to measure the
robustness of computer vision-related tasks. This CLIP model assesses the ability of models
to generalize image classification tasks. ViT-L/14 (Dosovitskiy et al. 2020; Dong et al. 2022)
is being used as an image encoder. For the text encoder, the base model uses a masked
self-attention transformer model.

Stable diffusion models are based on the concept of latent diffusion models. These models
are capable of reducing memory and computational complexity by performing a diffusion
process in a lower dimensional space called latent space. The three main components of
latent diffusion are a text encoder, VAE and U-Net (Ronneberger et al. 2015).

Let us try to understand the full pipeline of the latent diffusion process. First, the text
encoder is used to transform the input prompt: “DSLR image of an elderly woman in black
and white” into a latent space that can be understood by U-Net. In this case, the model is a
transformer-based encoder that can map the input tokens to text embeddings.

https://laion.ai/blog/laion-5b/

8.10 Diffusion Models 337

“DSLR
image of an
elderly
woman in
black and
white”

Prompt Generated image

Text
encoder

Text conditioned
latent image

generator
Using U-NET and

scheduler

Image
decoder
(VAE

decoder)

Token embeddings Image tensor

Stable diffusion architecture

Figure 8.14 Stable diffusion model architecture used in the example.

The VAE has the encoder and the decoder part. The encoder part converts the image to
lower-dimensional latent space and serves as an input to the U-Net model. The decoder,
on the other hand, transforms the latent representation back to the image. For the forward
diffusion process, the latent representations are obtained using the VAE encoder. Also, here
more and more noise is added at each step.

U-Net also has an encoder and decoder part. The encoder part compresses the image
representation to lower lower-resolution image representation. The decoder converts back
the lower-resolution image to the original higher-resolution image representation which
is comparatively less noisy. The stable diffusion U-Net conditions the output based on text
embeddings using cross-attention layers.

The reverse diffusion process output corresponds to denoised latent representations. Dur-
ing inference, these are converted back to images using the VAE decoder. The overall archi-
tecture is shown in Fig. 8.14.

The model used here includes 860M UNet and 123M text encoder making it a lightweight
version to try and experiment with.

Hugging face Diffusers library is used for obtaining the pre-trained model and performing
inference using a prompt. For this, first, the pre-trained weights are loaded corresponding
to all the components in the model. The model used here is the Stable Diffusion version 1.4
(CompVis/stable-diffusion-v1-4) which is one of the variants of the diffusion libraries. This
variant provides a 512 × 512 image.

After loading all the pre-trained weights, this will be used for generating images based on
the prompt that is provided. In this case, we have used the following prompt:

DSLR image of an elderly woman in black and white

Using the pre-trained weights, it can be seen that the images generated look like Fig. 8.15.
The model performs really well in understanding the text prompt to specifically give the
image quality and depth similar to how the pictures are captured using DSLR cameras.
Further, the model can also be used to generate different images using the same prompt
shown in Fig. 8.16.

https://github.com/huggingface/diffusers
https://huggingface.co/CompVis/stable-diffusion-v1-4

338 8 Deep Unsupervised Learning II

Figure 8.15 The stable diffusion
model-generated image for the
prompt “DSLR image of an elderly
woman in black and white.”

Figure 8.16 A grid of model-generated images for the prompt “DSLR image of an elderly woman
in black and white.”

8.11 Conclusion

GANs represent a groundbreaking advancement in the field of computer vision for genera-
tive architectures. The results achieved by GANs have exceeded the performance of earlier
methods in deep unsupervised learning, which were known for their remarkable capabil-
ities. Over the years, different types of GANs have emerged, each with their own unique
architecture and applications. From the original vanilla GAN to more specialized variants
like DCGAN, CycleGAN, and cGAN, GANs have demonstrated their versatility in gener-
ating realistic data, transferring styles, and solving complex problems in domains ranging
from image synthesis to text-to-image translation. The central concept of every GAN vari-
ant is based on a two-player minimax game. The adversarial training framework puts the
generator against the discriminator in an ongoing feedback loop, facilitating the creation of
realistic and high-quality synthetic data.

Problems 339

One key aspect of GANs’ versatility is their ability to serve not only as data generators
but also as tools for feature learning and representation learning. Beyond their primary
objective of generating data, some GAN models incorporate secondary objectives, such
as learning meaningful features or representations through related semantic tasks. These
learned features can subsequently be employed for classification or recognition tasks in
unsupervised settings, extending the utility of GANs beyond generative tasks. However,
GANs also pose challenges, including issues related to training stability, mode collapse,
and ethical concerns surrounding the generation of deepfake content and potential mis-
use. Despite these challenges, ongoing research and development in the GAN domain are
actively addressing these issues.

Moreover, the development of GANs has given rise to the emergence of diffusion
models as a significant advancement within this field. These models, which fall under
the umbrella of generative models, have gained a lot of attention due to their unique
approach to probabilistic generative modeling. Unlike traditional GANs, which rely on
adversarial training, diffusion models work by gradually improving a data sample, making
it more realistic through a series of diffusion steps. This distinctive approach has shown
promise in generating high-quality samples and addressing some of the stability issues
associated with GANs. Diffusion models provide an alternative viewpoint on generative
modeling, and their incorporation into the field reflects an explorative for data generation
and representation learning.

Problems

8.1 Employ the GAN model to generate synthetic digit images that closely resemble
the MNIST dataset’s handwritten digits (0–9). Key hyperparameters include a 100-
dimensional noise vector, a batch size of 64, 10,000 training epochs, and a learning
rate of 0.0002 for the Adam optimizer. Evaluate the quality of these generated images
by calculating the Inception Score.

8.2 Define “mode collapse” in the context of GANs. Explain why mode collapse occurs
and discuss some strategies to mitigate or prevent it during GAN training. Provide
examples or scenarios where mode collapse might be problematic in generating
realistic data.

8.3 Use the CIFAR-10 dataset with labels and modify the cGAN architecture to condition-
ally generate samples based on a given label. Include code for both the generator and
discriminator, and demonstrate how the conditional information improves the quality
of generated images.

8.4 Design a GAN ensemble for improved image synthesis. Construct an ensemble of GANs,
incorporating different GAN architectures such as DCGAN, cGAN, and StackGAN, all
trained on the dataset of your choice.

8.5 Experiment with a variety of ensemble techniques, including averaging, voting, or
blending, to synthesize superior images. The objective is to devise an ensemble strategy

340 8 Deep Unsupervised Learning II

that skillfully merges the outputs of these individual GANs to generate high-quality
images. Evaluate the quality of the images produced by the ensemble against those
generated by the standalone GANs, employing both visual inspection and quantitative
metrics.

8.6 Assess the strengths and weaknesses of the ensemble method, considering scenarios
where this approach proves more advantageous during its implementation.

8.7 StackGAN incorporates both a text-to-image and an image-to-text generation
network. Describe five advantages and challenges of this dual network approach
in StackGAN.

8.8 Explain the concept of latent space in StyleGAN. How does StyleGAN manipulate this
latent space to control the appearance of generated images?

8.9 What are the advantages of using diffusion models in image synthesis compared to
other generative models like VAEs or GANs?

8.10 Provide a detailed analysis of the trade-off between model quality and inference speed
when using diffusion models for image generation.
1. Train a diffusion model on a custom dataset and optimize it for maximum image

quality.
2. Evaluate the quality of generated images using relevant metrics like Inception Score,

FID, and perceptual metrics.
3. Measure the inference speed of the trained diffusion model on a range of hardware

configurations (e.g. CPU, GPU, or specialized hardware like TPUs). Report the infer-
ence time per image.

341

9

Deep Bayesian Networks

9.1 Introduction

Deep learning (DL) models can be seen as very powerful approximations, that are able
to perform complex machine learning tasks. The power of these machines relies, roughly
speaking, on the high (often tremendous) number of parameters for the models, that endow
the structure with a high expressive capability in the space of the input pattern. This is
the ultimate reason why these machines have been successfully used in complex pattern
recognition tasks, such as image processing, speech recognition, and other natural language
processing tasks, and in complex generative tasks, including realistic synthetic image gen-
eration, just to cite some well-known applications.

The drawback of the structural complexity of DL machines is overfitting (Szegedy et al.
2013). Overfitting is a universal phenomenon particularly important in DL that can be con-
trolled by controlling the capacity of the machine in various ways, among them dropout
(N. Srivastava et al. 2014), cost functions that force sparsity in the parameters, and con-
trolling the Frobenius norm of the weights of the machine (often called weight decay),
are strategies that have been addressed in this book. These strategies have an interpreta-
tion from the point of view of Bayesian learning (Gal and Ghahramani 2016; Q. Li and
N. Lin 2010).

Bayesian learning is a way to address the overfitting phenomenon by modeling the uncer-
tainty of the weights. This is done by imposing a prior probability distribution in the weights
of the neural network, and this strategy has proven to be particularly advantageous in
presence of small datasets. But beyond the potential improvement of the generalization
properties in neural networks, the use of Bayesian techniques has another interesting prop-
erty. Bayesian neural networks are able to estimate the model uncertainties. Not only the
uncertainty on the model parameters, which can be obtained by the inference of a pos-
terior probability distribution of these parameters, but it is also possible to estimate the
uncertainty in the performance of the machine through the construction of predictive pos-
terior distribution. This provides the user with additional knowledge, which can be used to
determine whether the machine is producing a reliable prediction.

Deep Learning: A Practical Introduction, First Edition.
Manel Martínez-Ramón, Meenu Ajith, and Aswathy Rajendra Kurup.
© 2024 John Wiley & Sons Ltd. Published 2024 by John Wiley & Sons Ltd.
Companion website: https://github.com/DeepLearning-book

https://github.com/DeepLearning-book

342 9 Deep Bayesian Networks

9.2 Bayesian Models

Throughout this book, we have presented the main deep learning architectures, ranging
from the standard MLP to the transformers, and generative approaches. Most of these mod-
els are trained using the backpropagation algorithm that is constructed over the criterion
of the maximization of the output likelihood conditional to the available training input pat-
terns. This is, for a given set of parameters 𝜽 ∈ ℝD (containing, for example, all weights
w(l)

i,j , b(l)
j of a neural network), the criterion for its optimization can be written as

𝜽opt = arg max
𝜽

log p(Y|X,𝜽) (9.1)

and since the probability in Eq. (9.1) is the likelihood of the desired outputs yi given the cor-
responding inputs xi, this is a maximum likelihood (ML) criterion (see Eq. (1.57)). Assum-
ing that the labels or regressors yi are conditionally independent given the observation of
the input pattern xi, then the log probability is estimated as the sample estimation of the
negative log-likelihood (NLL) of the data (see Eq. (1.58)), which is equivalent to the data
cross-entropy (see Eq. (1.63) for binary classification, Eq. (1.78) for the multiclass classi-
fication case or Eq. (1.82) for multitask regression, as examples). The NLL is also used in
Bayesian inference, but it is applied in a different way.

9.2.1 The Bayes’ Rule

Bayesian inference is rooted in the Bayes’ theorem or Bayes’ rule, which is summarized
here. Assume two random variables u and v. Assume that the first variable u is observed,
and a probabilistic model in relation with the latent or unobservable variable v can be estab-
lished with the form p(u|v), this is the probability of the observation u varies depending on
the chosen hypothesis for v.

Now, assume that while variable v is unobservable, we have a specific probabilistic model
p(v) for this variable. This is what we call a prior probability, which is what we know about it
before having any additional knowledge. Roughly speaking, the goal of the Bayesian infer-
ence is to guess the most probable value of v given the observation of u, which depends on v.
This information is contained in the posterior probability distribution p(v|u). The Bayes’
rule establishes that this posterior probability is (Bertsekas and Tsitsiklis 2000)

p(v|u) = p(u|v)p(v)
p(u)

(9.2)

where

p(u) =
∫v

p(u|u)p(v) (9.3)

is called the marginal likelihood or sometimes the belief function. This function is often not
available, and therefore the posterior is not available either, but a function that is propor-
tional to it as

p̃(v|u) ∝ p(u|v)p(v) (9.4)

For the above function to have properties of a probability density function, its integral
defined over the domain of v mist be unitary, so it has to be divided by the integral

9.2 Bayesian Models 343

∫vp(u|v)p(v)dv, which proves Eq. (9.3). Expression (9.2) is proven from the definition of
conditional probability, which says that if a variable u is dependent of a variable v, the
probability of u conditional to the observation of v is

p(u|v) = p(u, v)
p(v)

(9.5)

whose proof is left as an exercise for the reader.

9.2.2 Priors as Regularization Criteria

The criterion of minimization of the NLL is complemented with an additional term for
regularization purposes as summarized in Section 2.3.1. In particular, the L2 regularization
criterion is widely used and, in this case the criterion can be written as

𝜽opt = arg min
𝜽

(
− log p(Y|X,𝜽) + 𝜆

2
∥𝜽∥2

)
(9.6)

The above criterion is sometimes called a maximum a posteriori (MAP) criterion (M. Ajith
and Manel Martínez-Ramón 2019), as it can be seen from a Bayes perspective.

If we define, without loss of generality, the set of all parameters of a deep learning model
as parameters 𝜽 = {W(1),b(1)

,… ,W(L),b(L)}, including all arrays and biases of the layers of
the structure. In such a learning model, parameters 𝜽 can be taken as unobservable or latent
variables, while the training data is the set of observables. Therefore, the Bayes’ rule can be
applied as

p(𝜽|Y,X) =
p(Y|X,𝜽)p(𝜽)

p(Y|X)
(9.7)

The derivation of this expression from the Bayes rule is not immediate and it is left as an
exercise for the reader. Its logarithm can be written as

log p(𝜽|Y,X) = log p(Y|X,𝜽) + log p(𝜽) + constant (9.8)

where the constant term, that can be neglected, is the logarithm of the marginal likelihood,
which does not depend on the parameters. If, for the set of parameters, the corresponding
prior model is simply the multivariate Gaussian distribution p(𝜽) ∝ exp(− 𝜆

2
∥𝜽∥2), then the

above expression can be written as log p(Y|X,𝜽) − 𝜆

2
∥𝜽∥2 and therefore, Eq. (9.6) can be

called a MAP criterion.
The prior distribution plays the role of prior belief or knowledge about the problem.

The no free lunch theorem (NFL) theorems (Wolpert 1996a, 1996b) express in the sen-
tence “there is no such thing as a free lunch” that we cannot find a single optimization
for all problems. The first theorem states that any two algorithms perform equally when
their performance is averaged over all possible problems. The second theorem says that if
an algorithm outperforms another one for a given cost function, then the reverse situation
must be true for all other cost function dynamics (Wolpert and Macready 1997). If the algo-
rithm does not contain prior information, the algorithm cannot learn from the data in a way
that can generalize to test data. In Bayesian learning, this prior knowledge can be specified
by the use of priors.

344 9 Deep Bayesian Networks

9.3 Bayesian Inference Methods for Deep Learning

A difference between a classical approach and a Bayesian approach is in how the posterior
for the parameters is chosen. In a classical approach, the parameter of the prior is adjusted
by a cross-validation of parameter 𝜆. In a Bayesian approach, the way in which this param-
eter is adjusted is different, based on a probabilistic criterion, which can provide a better
estimation of the posterior. Moreover, the Bayesian perspective allows to extract additional
knowledge of the structure and the process. In particular, the Bayesian model encodes the
uncertainties present in the learning model. The likelihood constructed with the training
data contains the information related to the of the model, this is, the uncertainties due to
the noise or error present in the process. The posterior expresses what is usually called
the Epistemic Uncertainty, or the uncertainty in the model parameters due to the limited
information carried by the data.

Therefore, a Bayesian model not only provides a probabilistic way to explain the regular-
ization of the structure but also a way to quantify the uncertainties of the model (Hubin and
Storvik 2023). Indeed, a posterior distribution of the test samples, usually called the can be
constructed by marginalization through the posterior probability of the model parameters.
In order to construct such posterior, we first need a posterior probability of the prediction
f (x) as p(f (x)|x,𝜽), and then the marginal predictive posterior is found as

p(f (x)|x,X) =
∫

p(f (x)|x,𝜽)p(𝜽|Y,X)d𝜽 (9.9)

The difficulty with this inference is that the computation of the parameter posterior
is intractable due to its high dimensionality and the fact that it is a nonconvex problem
(MacKay 1992). In order to circumvent this difficulty, two different frameworks for
inference have been developed. The first one falls in the family of the Markov chain Monte
Carlo (MCMC) methods (Hastings 1970), and the second one is based on variational
inference (VI) (Blei et al. 2017). In this section, these fundamental ideas used in Bayesian
inference for DL are reviewed.

The literature in Bayesian inference for DL is very extensive. The interested reader can
find a variety of tutorials (Lampinen and Vehtari 2001; Goan and Fookes 2020; H. Wang
and Yeung 2020; Jospin et al. 2022) that introduce the basics and the different approaches
to the problem of training a neural network from a Bayesian perspective.

9.3.1 Markov Chain Monte Carlo Methods

The original MCMC algorithm was introduced in Metropolis and Ulam (1949) and Hast-
ings (1970), and the idea behind the algorithm consists of constructing a Markov chain of
the parameters where at each time instant a parameter is sampled with a probability that
depends on the previously visited samples, in order to construct a stationary distribution of
these parameters (Hitchcock 2003; Chib and Greenberg 1995). In this chapter, we present
the basic MCMC algorithm, which is the Metropolis–Hasting algorithm.

The Metropolis–Hasting algorithm starts with an initial arbitrary value 𝜽(0) for the set
of parameters. For a given sample 𝜽(n), a proposal (prior) probability distribution q(𝜽|𝜽(n))
around this sample is used. Then, a new sample 𝜽(n + 1) is drawn from this distribution.

9.3 Bayesian Inference Methods for Deep Learning 345

The new sample is then tested by computing a posterior distribution p(Y|X,𝜽(n + 1)). This
is, in a deep learning setup, the probabilistic output of the learning machine. The corre-
sponding posterior probability for the sample is

p(𝜽(n + 1)|𝜽(n),Y,X) =
q(𝜽(n + 1)|𝜽(n))p(Y|X,𝜽(n + 1))

p(Y|X)
(9.10)

We can ignore the denominator in the Bayes’ rule here because it is not available, and we
simply state that the posterior is proportional to the prior times the likelihood. Then, an
acceptance probability is stated as

r = min
(

1,
q(𝜽(n + 1)|𝜽(n))p(Y|X,𝜽(n + 1))

q(𝜽(n)|𝜽(n + 1))p(Y|X,𝜽(n))

)
(9.11)

The quotient of this expression has, in the numerator, the posterior of the new sampled
parameters 𝜽(n + 1), which depends (through the prior), on the previous set of parameters,
and also on the training data. If the new posterior is higher than the previous one, the quo-
tient is higher than 1, and then r = 1, which means that the new sample has to be accepted.
If the previous posterior was higher, then the result of r is the quotient, so the sample must
be accepted with a probability that is high if both posteriors are similar, and with a low
probability if the new posterior is low compared to the previous one. This allows the system
to occasionally pick the new set of parameters even if the posterior is worse. Notice that the
prior of the previous sample is simply computed as a distribution around the new sample.
If the distribution is symmetric, this is q(𝜽|𝜽′) = q(𝜽′|𝜽), for example, when the prior is a
simple circularly symmetrical Gaussian, the formula is simplified as

r = min
(

1,
p(Y|X,𝜽(n + 1))

p(Y|X,𝜽(n))

)
(9.12)

Usual proposal distributions q are Gaussian distributions, since it is sufficient for those
proposals to produce samples that move from one sample to another one with a nonzero
likelihood in the targets. Therefore, a reasonable option is

p(𝜽|𝜽(n)) ∝ exp
(
(𝜽|𝜽(n))⊤s2M−1(𝜽|𝜽(n))) (9.13)

where M is a given covariance matrix and s2 is a scale factor. In some cases, it is possible to
compute the Hessian of the cost function surface at point𝜽(n), and then the distribution will
follow the curvature of this surface (Roberts and Rosenthal 2001). In many cases, however,
the Hessian cannot be easily computed or it has an unreasonable computational burden,
and then one can choose an identity matrix for the covariance. In this case, the distribution
is symmetric, and the acceptance probability is the one in Eq. (9.13).

Example 9.3.1 (Metropolis–Hasting over the Beale surface)
Here we compare the standard gradient descent (GD) algorithm to the Metropolis–Hasting
algorithm in a toy example. The cost function is simulated with the Beale function that was
also used in Example 2.5.1.

The function is defined as

L(w1,w2) = (a − w1 + w1w2)2 + (b − w1 + w1w2
2)

2 + (c − w1 + w1w3
2)

2 (9.14)

with a = 1.5, b = 2.25, c = 2.2625.

346 9 Deep Bayesian Networks

In order to run the GD algorithm and the Metropolis–Hasting algorithm with a covari-
ance matrix, we need to compute the gradient and the Hessian of the function. The com-
ponents of the gradient are

dL
dw1

= 2(a − w1 + w1w2)(−1 + w2)

+ 2(b − w1 + w1w2
2)(−1 + w2

2) + 2(c − w1 + w1w3
2)(−1 + w3

2)
dL

dw2
= 2(a − w1 + w1w2)w1 + 4(b − w1 + w1w2

2)w1w2

+ 6(c − w1 + w1w3
2)(w1w2

2)

(9.15)

and the components of the Hessian are

dL2

d2w1
= 2(−1 + w2)2 + 2(−1 + w2

2)
2 + 2(−1 + w3

2)
2

dL2

d2w2
= 2w2

1 + 2(a − w1 + w1w2) + 8w2
1w2

2 + 4(b − w1 + w1w2
2)w1

+ 18w4
2w2

1 + 12(c − w1 − w1w3
2)w1w2

dL2

dw1dw2
= 2w1(−1 + w2) + 2(a − w1 + w1w2) + 4w1w2(−1 + w2

2)

+ 4(b − w1 + w1w2
2)w2 + 6w1w2

2(−1 + w3
2)

+ 6(c − w1 + w1w3
2)w

2
2

(9.16)

where we use the property that dL2

dw1dw2
= dL2

dw2dw1
in order to construct the Hessian matrix.

In the experiment, the initial value for the set of parameters is w⊤ = (1.2, 2). The gradi-
ent descent algorithm is set with 𝜇 = 10−3. The Metropolis-Hasting (MH) algorithm uses a
Gaussian distribution as a proposal for the parameter prior. Figure 9.1 shows the results of
the experiment. The continuous line shows the behavior of the gradient descent. The dashed
line shows the MH algorithm with s = 0.3 and M = I. The dashed-dotted line shows the MH

Iteration

GD
M–H
M–H with Cov

C
os

t f
un

ct
io

n

0

102

101

100

10–1

20 40 60 80 100

Figure 9.1 Comparison of the error behavior when using GD (solid line), the basic Metropolis–
Hasting algorithm (dash), and the Metropolis–Hasting algorithm with a covariance function
computed as the Hessian of the error surface (dash-dot).

9.3 Bayesian Inference Methods for Deep Learning 347

algorithm with s = 0.1 and where M is chosen as the Hessian

M =

⎛⎜⎜⎜⎜⎝
dL2

d2w1

dL2

dw1dw2

dL2

dw2w1

dL2

d2w2

⎞⎟⎟⎟⎟⎠
(9.17)

constructed with Eq. (9.16). The MH with identity covariance is slower than the GD, but it
can be seen that it achieves a lower value of the cost function by more than a magnitude
order in about 80 iterations. The use of a covariance function significant of the shape of the
surface (the Hessian) helps the MH algorithm to achieve faster convergence by favoring
those directions with higher variation. It achieves a value of 10 about three times faster
than the other two algorithms and after that, it behaves with a speed that is roughly the
same as the one of the MH with an identity matrix. This is explained by the fact that in
areas where the cost function is very small, the surface is very flat, and the Hessian tends
to be an identity matrix.

9.3.2 Hamiltonian MCMC

The Hamiltonian MCMC variant (Neal et al. 2011) (see also Betancourt (2017)) is an
improvement of the MH MCMC algorithm that uses a Hamiltonian function to guide the
process so the chosen sample of the parameters has a reduced correlation with the previous
sample while maintaining a high probability of acceptance. The Hamiltonian is defined as
a function H(𝜽,p), where p is defined as the momentum of a particle at position 𝜽. The
Hamiltonian is constructed as

H(𝜽,p) = u(𝜽) + k(p) (9.18)

where u(𝛩) is called the potential energy and it is defined as the negative logarithm of a
function proportional to the probability density of the distribution of the parameters, and
k(p) is defined as the kinetic energy, typically defined as k(p) = 1

2
p⊤M−1p, where M is a

positive definite matrix. This function represents the total energy of a particle, and it has
the properties of a Hamiltonian function.

The distribution that is used to sample the parameters is then constructed with the poten-
tial function as

p(𝜽,p) = 1
Z

exp
(
−H(𝜽,p)

T

)
= 1

Z
exp

(
−u(𝜽)

T

)
exp

(
−k(p)

T

)
(9.19)

where T is a positive constant that simulates the temperature of the system, and
Z = ∫

𝜽,p exp
(

−H(𝜽,p)
T

)
d𝜽dp is the normalization factor needed for the distribution to have

probability density properties. The function of interest in this equation is the posterior
distribution for the parameters. Function u(𝜽) is then constructed as the negative logarithm
of the product between the prior of the parameters and the likelihood of the observations
(which is proportional to the posterior) as

u(𝜽) = − log (p(𝜽)p(Y|X,𝜽)) (9.20)

348 9 Deep Bayesian Networks

Also, kinetic energy k(p) can be simply modeled as

k(p) =
D∑

i=1

p2
i

2mi
(9.21)

in whose case M is defined as a diagonal matrix.
In the first step of the algorithm, the position 𝜽(n + 1) is updated with respect to the

momentum p(n) in the following steps, known as the Leap Frog algorithm, that numeri-
cally solves the Hamilton equations. Assume that at a given instant, the system has position
𝜽(n, 0) and a random momentum p(n, 0) is chosen given a Gaussian distribution. Then for
k = 1 to L, the following iteration is repeated

p
(

n, k
2

)
= p(n, k − 1) − 𝜇

2
∇𝜽u(𝜽)|𝜽 = 𝜽(n,k−1)

𝜽(n, k) = 𝜽(n, k − 1) + 𝜇M−1p
(

n, k
2

)
p(n, k) = p

(
n, k

2

)
− 𝜇

2
∇𝜽u(𝜽)|𝜽(n,k)

(9.22)

These equations solve the problem of finding the next position 𝜽(n,L) and new momentum
p(n,L) given an initial position 𝜽(n, 0) and a random momentum p(n, 0). Then, the new
position is chosen with a probability r by using the Metropolis–Hasting criterion

r = min
(

1,
p (𝜽(n,L),p(n,L))
p (𝜽(n, 0),p(n, 0))

)
(9.23)

with the use of distribution (9.19). Then, the next position of the parameters is chosen as

𝜽(n + 1,0) =

{
𝜽(n,L), with probability r

𝜽(n, 0), with probability 1 − r
(9.24)

and the algorithm (9.22) is iterated until convergence.
The Hamiltonian MCMC is a powerful algorithm for Bayesian inference, but it has two

main parameters, 𝜇 and L, that need to be chosen in advance or through some sort of cross-
validation. This is not straightforward, provided that in general there are no clear criteria
to select it, and the usual practice is to make use of heuristics (Neal et al. 2011). In order to
avoid this inconvenience, the software packages for inference using MCMC usually imple-
ment the no-U-turn sampler (NUTS) (Hoffman et al. 2014).

Example 9.3.2 (Neural network Regression with MCMC inference)
This example, extracted from the University of Amsterdam Deep Leanning Course1 is one-
dimensional regression problem where generating function, from which a set of training
samples is extracted, has the expression

f (x) = x + 0.3 sin(2𝜋x) + 0.3 sin(4𝜋x) (9.25)

A set of 500 samples drawn from uniform distributions in each of the intervals
−0.2 ≤ x ≤ 0.2 and 0.6 ≤ x ≤ 1 is obtained and they are added a Gaussian noise of standard
deviation 𝜎 = 0.3 and zero mean.

1 https://uvadlc.github.io/.

https://uvadlc.github.io/

9.3 Bayesian Inference Methods for Deep Learning 349

–0.4 –0.2 0.0 0.2 0.4 0.6

Generating function f(x)

Observations y

Predictive mean

0.8 1.0 1.2

x

–1.5

–1.0

–0.5

0.0

0.5

1.0

1.5

2.0

2.5
y

Figure 9.2 Example of neural network regression and confidence intervals with MCMC in a neural
network with one hidden layer of five nodes.

The neural network used to perform the regression task is a fully connected structure
with one hidden layer and five nodes with hyperbolic tangent activation, while the input
and output consist of one node. The output has a linear activation. The neural network is
trained with the Hamiltonian MCMC. The prior is chosen as a circularly symmetric Gaus-
sian distribution (0, 10I) and the likelihood is also Gaussian distributions, and th. The
result can be seen in Fig. 9.2. The inference has been done from the samples generated
in the two intervals. A test has been done with 3000 uniform samples of x in the interval
−0.5 ≤ x ≤ 1.2, The prediction confidence interval is obtained by sampling the posterior
predictive distribution, from which the prediction variance is estimated. The depicted con-
fidence is the 2𝜎 (95%) interval. It can be seen from the figure that the confidence interval
is a little optimistic, since the contained samples seem to be less than 95%. In the interval
between 0.2 and 0.6 the prediction is poor, since there is no information about the function
in this interval. Observe also how the confidence interval is wider in the segments between
–0.4 and –0.2 and between 1 and 1.2.

Figure 9.3 contains the result of the regression with a different neural network, where the
number of layers has been increased to five and where the number of nodes in each of the
hidden layers is 10. The prior distribution is again a Gaussian, but the variance has been
set to five. In this graph, the confidence interval is estimated in a better way. In particular,
the segment −0.2 ≤ x ≤ 0.6 has a poor estimation due to a lack of information. Hence, the
confidence interval is wide, indicating the estimation uncertainty.

9.3.3 Variational Inference

The MCMC algorithms are very efficient in sampling from an exact posterior (Bardenet
et al. 2017), but their drawbacks are obvious from the analysis of the previously introduced
algorithms. These methods may have poor scalability when the number of parameters is
large, which is the case of DL. The methods based on VI, also used in Section 7.9 to train
autoencoders, have a better scalability in DL, and this is why they have more popularity in
this field.

350 9 Deep Bayesian Networks

–0.4 –0.2 0.0 0.2 0.4 0.6

Generating function f(x)

Observations y

Predictive mean

0.8 1.0 1.2

x

–1.5

–1.0

–0.5

0.0

0.5

1.0

1.5

2.0

2.5

y

Figure 9.3 Example of neural network regression and confidence intervals with MCMC in a neural
network with five hidden layers of 10 nodes each.

In VI, rather than using an exact posterior and sample from it, a parametric function q𝝓(𝜽)
is used that depends on a set of parameters 𝝓 to approximate the actual posterior. This
approximation is usually called variational. In order to approximate the actual posterior
with the parametric one, the Kullback–Leibler (KL) divergence could be used, which is
defined here as

KL(q𝝓|p) = ∫𝜽
q𝝓(𝜽) log

(q𝝓(𝜽)
p(𝜽|Y,X)

)
d𝜽 (9.26)

This criterion, however, cannot be directly applied, because the actual posterior is not
available. Indeed, this is the function that must be approximated. But the posterior can be
reformulated by following the Bayes’ rule and the equation can be written as

KL(q𝝓|p) = ∫𝜽
q𝝓(𝜽) log

(
q𝝓(𝜽)p(Y|X)

p𝝋(𝜽)p(Y|X,𝜽)

)
d𝜽 (9.27)

and the denominator in the logarithm contains term p𝝋(𝜽)p(Y|X,𝜽), corresponding to the
parameter prior (which depends on its own parameters 𝝋) times the data likelihood. By
operating in the equation, the following expression can be obtained

 (𝜽,X,Y) = ∫
𝜽
q𝝓(𝜽) log

(
p𝝋(𝜽)p(Y|X,𝜽)

q𝝓(𝜽)

)
d𝜽

= log p(Y|X) − KL(q𝝓|p) (9.28)

which means that maximizing the KL divergence between the posterior and the approxi-
mate posterior q𝝓 is equivalent to minimizing (𝜽,X,Y), which is the evidence lower bound
(ELBO), also called the negative variational free energy (Neal and Geoffrey E. Hinton 1998;
Yedidia et al. 2000), also used in Section 7.9.1.

The most common choice for the variational distribution q𝝓(𝜽) is a Gaussian with a diag-
onal covariance matrix 𝝈i with elements 𝜎2

i in its diagonal and with a mean 𝝁, both vectors
with the same length as the total number of parameters in set 𝜽.

9.3 Bayesian Inference Methods for Deep Learning 351

A common way to optimize the ELBO is the use of stochastic variational inference (SVI)
(van de Schoot et al. 2021; Hubin and Storvik 2023). The methodology consists of apply-
ing stochastic gradient descent to the inference. This is useful when the datasets used for
training are large, but the convergence is slow when compared to the standard gradient
descent applied to a likelihood function. The usual functions for q𝝓(𝜽) are multivariate
Gaussians (Graves 2011), Gamma functions and Dirichlet distributions (Jospin et al. 2022).
The method presented in Ghahramani and Beal (2000) factorizes the elements of the ELBO
to separately treat the data and the parameters, which simplifies the procedure and gives
an optimization algorithm that is a generalization of the Expectation–Maximization algo-
rithm. The algorithm also applies a Gaussian prior for the parameters with an identity
matrix as a covariance matrix.

9.3.4 Bayes by Backpropagation

The Bayes by backpropagation algorithm (Blundell et al. 2015) uses an approximation to
the ELBO function as

 (𝜽,X,Y) ≈
M∑

n=1

(
log q𝝓(𝜽(n)) − log p𝝋(𝜽(n)) − log p(Y|X,𝜽(i))

)
(9.29)

where 𝜽(1),… ,𝜽M are M samples of the model parameters drawn from the variational
posterior q𝝓(𝜽). The distribution is chosen as a Gaussian with mean 𝝁 and a diago-
nal covariance whose standard deviations (elements of the diagonal) are written as
𝝈 = log(1 + exp(𝝆)), where it must be understood that 𝝆 is a vector with components
𝜌j ∈ ℝ and 𝝈 is a vector with components 𝜎j = log(1 + exp(𝜌j)). This expression is con-
venient to make sure that standard deviations 𝜎j are always positive for any vector 𝝆.
Therefore, the posterior parameters can be defined as 𝝓 = (𝝁,𝝆). Let us define function

f (𝜽) = log q𝝓(𝜽) − log p𝝋(𝜽) − log p(Y|X,𝜽) (9.30)

and assume that the parameter set 𝜽 is arranged as a vector containing all parameters
w(l)

i,j , b(l)
j of a DL model.

The posterior parameters can be iteratively optimized with respect to the ELBO in the
following steps, which have to be iterated until convergence:

1. Sample a vector 𝜺(n) from distribution (0, I).
2. Compute sample 𝜽(n) = 𝝁 + log(1 + exp(𝝆))

⨀
𝝐(n).

3. Compute the gradients of function f (𝜽) evaluated at 𝜽(n), whose elements 1 ≤ j ≤ D are

Δ𝜇j(n) =
df (𝜽)

d𝜃j
∣𝜽(n) +

df (𝜽)
d𝜇j

∣𝜽(n)

Δ𝜌j(n) =
df (𝜽)

d𝜃j
∣𝜽(n)

𝜖j

1 + exp(−𝜌j)
+

df (𝜽)
d𝜌j

∣𝜽(n)
(9.31)

4. Update the variational parameters with the above gradients

𝜇j ← 𝜇j − 𝛼Δ𝜇j(n)

𝜌j ← 𝜇j − 𝛼Δ𝜌j(n)
(9.32)

352 9 Deep Bayesian Networks

In the derivatives of Eq. (9.31) we find the derivatives df (𝜽)
d𝜃j

∣𝜽(n), which by visual inspection
of the expression of Eq. (9.30), can be written as

df (𝜽)
d𝜃j

= − d
d𝜃j

log p(Y|X,𝜽) (9.33)

which is simply computed with the standard backpropagation algorithm presented in
Section 1.5.3 for the MLp and in Chapters 4 and successive ones for CNN, RNN, and others.

Once the algorithm has converged, a MAP prediction of a test sample x∗ can be done
with the use of the MAP estimation of the parameters provided by the variational poste-
rior q𝝓(𝜽). The confidence interval of the prediction can be estimated by sampling equation
of (9.9), the predictive posterior in the usual case where the integral is not tractable. The
procedure consists of simply drawing samples of the parameters from the parameter pos-
terior, and obtaining predictions of x∗ with these sampled parameters. Then, a statistical
measure of the obtained outputs (for example, 2𝜎 or 95% confidence intervals) can be com-
puted for a regression application or the posterior Bernoulli or Multinoulli probability in a
classification application.

Example 9.3.3 (Regression with variational Bayesian neural networks)
The regression in Fig. 9.4 shows the data model of Example 9.3.2 is used in a neural net-
work of a single layer with five nodes and hyperbolic tangent activation, but the inference
is variational, with results similar to the ones in Fig. 9.2.

–0.4 –0.2 0.0 0.2 0.4 0.6

Generating function f(x)

Observations y

Predictive mean

0.8 1.0 1.2

x

–1.5

–1.0

–0.5

0.0

0.5

1.0

1.5

2.0

2.5

y

Figure 9.4 Neural network regression and confidence intervals with variational in a neural
network with one hidden layers of five nodes.

9.4 Conclusion

Neural networks are particularly underspecified by the training data, given that the number
of parameters is in many cases much higher than the number of training samples. The use of
Bayesian approaches is a compelling way to regularize neural networks. Most importantly,

Problems 353

Bayesian methods offer a way to quantify the uncertainty of the model parameters by the
inference of a parameter posterior with the possibility to compute a predictive posterior,
from which to calculate (often numerically) confidence intervals in the prediction.

In this chapter, we covered the basic elements of Bayesian learning. We first stated the
relationship between the regularization and the parameter priors, and then we summa-
rized the two main methodologies for Bayesian inference, which are the MCMC and the VI
frameworks.

Among the MCMC methods, the standard Metropolis–Hasting algorithm has been sum-
marized, with a variant that includes the Hessian of the cost function surface, and the
Hamiltonian Metropolis–Hasting algorithm, that uses a Hamiltonian function (modeling
the trajectory of the parameter as a particle with kinetic and potential energy). While the
MCMC methods. While the MCMC methods are able to produce inference sampling from
the exact posterior, they may present scalability problems.

VI methods are more popular in Bayesian learning because they have better scalability
properties through the use of an approximate parametric variational posterior. The Bayes by
backpropagation has been presented as it is a standard methodology for Bayesian inference
in DL. This method can be seen as an extension to the standard backpropagation algorithm
that, instead of optimizing a likelihood function, can optimize a posterior distribution of
the model weights.

Problems

9.1 Prove the Bayes’ theorem using the definition of conditional probability in Eq. (9.5)

9.2 provide a proof for Eq. (9.7). Start with the expression of the posterior as

p(𝜽|Y,X) =
p(Y,X|𝜽)p(𝜽)

p(Y,X)
(9.34)

and with the fact that since a conditional probability has to satisfy the properties of a
probability function, then for three random variables u, v, w,

p(u|v,w) =
p(u, v|w)

p(v|w)
(9.35)

9.3 Particularize the predictive posterior of Eq. (9.9) to the univariate regression case.
Assume that a Gaussian parameter posterior has been estimated using any Bayesian
method and that it has a mean �̂� and a covariance M. The likelihood of the regression
model is the one in Eq. (1.81) particularized to one dimension regression.
1. Prove that the predictive posterior is Gaussian.
2. Given a test sample x, what is the mean of the predictive posterior?
3. Propose a method to compute the variance of the prediction.

9.4 Provide a proof for Eq. (9.28) that describes the ELBO.

9.5 Derive Equations (9.31).

354 9 Deep Bayesian Networks

9.6 Use the scripts of Example (1.5.4) to implement a toy example Bayes by backpropagation
algorithm. In the exercise, you should use the function backward written in the Python
script to implement the update in Equations (9.31).

Plot the training error as a function of the number of epochs and compare it with the
original algorithm.

9.7 Modify the experiment in Example 9.3.3 so the neural network has five layers with 10
nodes each. Compare your results with these of Fig. 9.3.

355

List of Acronyms

1BW one billion word
AdaGrad adaptive gradient
AdaIN adaptive instance normalization
Adam adaptive moment estimation
AE autoencoder
AEVB auto-encoding variational Bayes
AI artificial intelligence
AMZN Amazon
ANN artificial neural network
AP average precision
ATIS airline travel information systems
BERT bidirectional encoder representations from transformer
BiT BigTransfer
BLEU bilingual evaluation understudy
B-LSTM bidirectional long short-term memory network
BM Boltzmann machine
BP backpropagation
BPE byte pair encoding
BPTT backpropagation through time
BRNN bidirectional recursive neural network
CAE convolutional autoencoder
CAM class activation maps
CASP critical assessment of structure prediction
CBT children’s book test
CDF cumulative distribution function
CIFAR Canadian Institute for Advanced Research
CNN convolutional neural network
COCO common objects in context
DAE denoising autoencoder
DBM deep Boltzmann machine
DBN deep belief network
DCGAN deep convolutional generative adversarial network

Deep Learning: A Practical Introduction, First Edition.
Manel Martínez-Ramón, Meenu Ajith, and Aswathy Rajendra Kurup.
© 2024 John Wiley & Sons Ltd. Published 2024 by John Wiley & Sons Ltd.
Companion website: https://github.com/DeepLearning-book

https://github.com/DeepLearning-book

356 List of Acronyms

DL deep learning
DNN deep neural network
DoF deep depth of field
DRNN deep recursive neural network
ELBO evidence lower bound
EM earth-mover
FC fully connected
FCN fully convolutional network
FFNN feedforward neural network
FID Fréchet inception distance
FIFO first in first out
GAN generative adversarial network
GD gradient descent
GELU Gaussian error linear unit
GLUE general language understanding evaluation
GP Gaussian process
GPT-2 generative pretrained transformer 2
GPU graphical processing unit
GRU gated recurrent unit
GSN generative stochastic network
GUI graphical user interface
i.i.d. independent and identically distributed
IB information bottleneck
ILSVRC ImageNet large scale visual recognition challenge
IoU intersection-over-union
JS Jenson–Shanon
KL Kullback–Leibler
LaMDA language model for dialogue applications
Lasso least absolute shrinkage and selector operator
LLM large language model
LM language model
LMS least mean squares
LSTM long short-term memory network
LSUN large-scale scene understanding
MAE mean absolute error
MAP maximum a posteriori
mAP mean average precision
MaxOut maximum output
MCMC Markov chain Monte Carlo
M-GAN minimax GAN
MH Metropolis-Hastings
ML maximum likelihood
MLM masked LM
MLP multilayer perceptron
MMSE minimum mean square error
MSA multiheaded self-attention

List of Acronyms 357

MSE mean square error
Nadam Nesterov-accelerated adaptive momentum estimation
NER named entity recognition
NFL no free lunch theorem
NLI natural language inference
NLL negative log-likelihood
NLP natural language processing
NLTK natural language toolkit
NLU natural language understanding
NN neural network
NS-GAN non-saturating GAN
NSP next sentence prediction
NUTS no-U-turn sampler
PCA principal component analysis
PDF probability density function
PDP parallel distributed processing
PTB Penn treebank
QA question answering
RBM restricted Boltzmann machine
ReLU rectified linear unit
ResNet residual neural network
RGB red–green–blue
RMSProp root mean square propagation
RNN recurrent neural network
ROC receiver operation characteristic
SAE sparse autoencoder
seq2seq sequence-to-sequence
SGD stochastic gradient descent
SGVB stochastic gradient variational Bayes
Squad Stanford question answering dataset
SSIM structural similarity index
StackGAN stacked generative adversarial networks
SVHN StreetView house numbers
SVI stochastic variational inference
SVM support vector machine
SWAG situations with adversarial generations
TV total variation
VAE variational autoencoder
VB variational Bayesian
VGG visual geometric group
VI variational inference
ViT vision transformer
WGAN Wasserstein GAN
WLLN weak law of large numbers
XOR exclusive OR

359

Notation

In the nomenclature of this book, scalar variables are represented with a lowercase normal
letter, while the constants are represented with normal uppercase letters. The vectors are
represented as bold lowercase letters (e.g. w), and they are assumed to be column vectors.
Matrices and multidimensional arrays are represented as bold uppercase letters (e.g. W).
When functions map to ℝ, they are also represented with normal face, and when they map
to a vector space, they are represented in boldface.

Below is an exhaustive list of the notation used in the book. The list is simply grouped
in functions, Greek symbols (including scalars, vectors, and arrays), matrices and vectors
represented with Latin characters, other symbols, and scalars represented with Latin
characters.

Functions

f(x) mathematical function of a neural network.
𝓁i loss function measured over a training sample xi.
𝔼u expectation operator computed with respect to the probability

density of variable u.
 (•) normal or Gaussian distribution.
𝜎(•) logistic function d𝜎(z)

dz
= 𝜎(z) (1 − 𝜎(z)).

max (•, •) maximum operator.
min (•, •) minimum operator.
tanh(•) hyperbolic tangent function tanh (z) = ez−e−z

ez+e−z .
J̃A

ELBO(𝜽,𝝓), J̃B
ELBO(𝜽,𝝓) generic SGVB estimator, an approximation of JELBO(𝜽,𝝓)(.)

D discriminator in a GAN.
D(x;𝜽) discriminator function in which x is the input to the function

D and 𝜽 represents the parameters of the function.
D∗(.) optimal discriminator in a GAN.
f nonlinear mapping network in StyleGAN
f [n], g[n] generic discrete time functions.
Fsl function implemented by a give sub-layer in transformers
G generator in a GAN.

Deep Learning: A Practical Introduction, First Edition.
Manel Martínez-Ramón, Meenu Ajith, and Aswathy Rajendra Kurup.
© 2024 John Wiley & Sons Ltd. Published 2024 by John Wiley & Sons Ltd.
Companion website: https://github.com/DeepLearning-book

https://github.com/DeepLearning-book

360 Notation

G, F generic image mapping function.
G(z;𝜽) generator function in which z is the input to the function G

and 𝜽 represents the parameters of the function.
H(•, •) Hamiltonian function.
J(𝜽,X, y) cost function or optimization criterion.
J(D,G) cost function of GAN.
J(D)(𝜽(G),𝜽(D)) cost function of the discriminator.
J(G)(𝜽(G),𝜽(D)) cost function of the generator.
Jcyc(G,F) cycle consistency loss function.
JCYC(G,F,DX ,DY) cost function of CycleGAN.
Jc(D,G) cost function of cGAN.
JELBO(𝜽,𝝓) variational lower bound in VAE.
JML(𝜽,X, y) maximum likelihood cost function or optimization criterion,

also known as cross-entropy cost function.
Jsp(W,b) cost function of SAE.
JW (D,G) cost function of WGAN.
k(•) kinetic energy function in Hamiltonian MCMC.
p(•) probability density function.
p𝝍 (•) parametric distribution used as a prior in Variational

Inference.
q𝝓(•) parametric distribution used as an approximate posterior in

Variational Inference.
r(•) regularization with respect to a parameter.
u(•) potential energy function in Hamiltonian MCMC.
Q(d) stochastic mapping in Denoising AE.

Greek symbols

𝛼 width multiplier in MobileNet.
𝛼 (k,q) attention coefficient between key k and query q.
𝛼t complement of 𝛽t in diffusion process
𝛼t,i attention weight between states in the Bahdanau attention mechanism.
𝛼t cumulative product of 𝛼 values up to time step t in diffusion process.
𝜹(L) error vector computed at the output of a neural network when this

output is multiclass (classification) or multitask (regression).
𝜹
(l)
i error vector backpropagated from the output to layer l of a neural

network for training sample xi.
𝜹t error at the output of an RNN at instant t.
𝝐 a noise vector, drawn randomly from the distribution p𝝐 in StackGAN.
𝛽 number used in exponentially decay windows of the elementwise

squared gradient in Adam.
𝛽 number used in exponentially decay windows of the elementwise

squared gradient in RMSProp.
𝛽1 number used in exponentially decay windows of the gradient in Adam.

Notation 361

𝛽t variance of Gaussian in diffusion process at time step t
𝝆 sparsity level in Sparse Autoencoders.
𝝓 variational parameters in VAE.
𝚺 covariance matrix.
𝝈(•) vector of logistic functions 𝜎(•).
𝜽 generative parameters in VAE.
𝜽,𝜽∗ set of all parameters of a machine learning structure.
𝝋(•) function constructed as the combination of the pooling operation and

nonlinear activation function in a CNN.
𝝋f (•) function constructed as the combination of the flattening operation and

nonlinear activation function in a CNN.
𝛿[n] kronecker’s delta function.
Δ(l) array of errors backpropagated to layer l.
𝛿
(L)
i prediction or classification error measured at the output of a single

output neural network for training sample xi.
𝛿
(l)
k,i error measured at the output to layer l of a neural network for training

sample xi and for class k.
𝛾 resolution multiplier in MobileNet.
𝜆 weight given to the cycle consistency loss term in CycleGAN
𝜆 weight of the sparsity penalty term.
𝜆 weight regularization parameter in cost functions.
𝜇 learning rate.
𝜈 a measure, which assigns a non-negative real number to each

measurable set.
Ω collection of subsets of a sample space.
𝜙(• non-negative function in diffusion models.
𝜙(•) generic nonlinear activation.
𝜓t text embedding of a textual description t.
𝜎 standard deviation in a univariate Gaussian distribution.

Matrices and vectors

b(l) bias in layer l of a neural network.
B(l)

k bias corresponding to the channel k of layer l in a CNN.
ft forgetting gate of an LSTM.
ct internal state of an LSTM.
gk accumulated elementwise squared gradient.
H group of latent feature maps in CAE.
H(l) multidimensional array containing the nonlinear outputs of layer l of a

neural network, typically a convolutional neural network.
h(l) nonlinear output of layer l of a neural network.
ht hidden state at instant t in an RNN.
I identity matrix
it internal state modifier of an LSTM.

362 Notation

ki query in an attention mechanism.
o output of a neural network.
ot output gate of an LSTM.
I input image in convolutional neural networks.
p momentum vector in Hamiltonian MCMC.
pi positional encoding vector in an attention mechanism.
qi key in an attention mechanism.
s0 low-resolution output in Stage-II GAN of StackGAN.
w Column vector containing the parameters of an estimator.
w(k) value of a set of parameters in instant k of an iterative optimization.
W(l) array of parameters of layer l in a neural network. An array of

convolution kernels in layer l of a convolutional neural network.
W(q),W(k),W(v) matrices of the transformation to an input to the query, key and value

vectors in a self-attention attention mechanism.
Whf weight vector that connects the previous state with the forgetting gate in

an LSTM.
Whf weight vector that connects the previous state with the output gate in an

LSTM.
Whi weight vector that connects the previous state with the internal gate in

an LSTM.
Wxf weight vector that connects the input with the forgetting gate in an

LSTM.
Wxf weight vector that connects the input with the output gate in an LSTM.
Wxh weight matrix of the hidden layer in an RNN.
Wxh weight matrix of the input layer in an RNN.
Wxh weight matrix of the output layer in an RNN.
Wxi weight vector that connects the input with the internal gate in an LSTM.
X matrix containing column vectors xi, 1 ≤ i ≤ N.
x column vector containing the input features of a learning model.
x′ reconstructed input.
xi input feature in a learning model.
Z(l) multidimensional array containing the linear outputs of layer l of a

neural network, typically a convolutional neural network.
z(l) linear output of layer l of a neural network.
Z(l)

k linear output of channel k at layer l of a CNN.
z(o)t linear output of an RNN at instant t.
z(x)t linear output of the input layer in an RNN at instant t.
Î noisy image in CAE.
x̂ corrupted or noisy input.
h̃ output of a layer to which a dropout procedure has been applied.
W̃ flip operation across the two dimensions of matrix W
g𝝓(•) a vector-valued function parameterized by 𝝓 in VAE.
K(•) Kernel function
 (l) convolution kernel expressed as a sparse matrix.
ĝk biased accumulated elementwise squared gradient in Adam.

Notation 363

v̂k biased accumulated gradient in Adam. Value in an attention
mechanism.

c̃t input node of an LSTM.

Other symbols

ℝ the set of real numbers.
 intermediate latent space in StyleGAN
 compact metric set.
 latent space representation in StyleGAN
∇w gradient operator computed with respect to vector w.⨀

elementwise product between two equal dimension vectors or matrices.
inf

∈Π(p1,p2)
the infimum (the greatest lower bound) taken over all possible joint
distributions .

sup
A∈Ω

supremum (least upper bound) taken over all sets A in the set Ω.

⊤ transpose operator.
X , Y domains of functions

Scalars

z latent variable
ĉ conditioning variable generated using conditioning augmentation in

StackGAN.
b bias of a linear model.
b weight clipping parameter of discriminator in WGAN.
B, C dimensions of tensor.
c fixed conditioning text variable.
D dimension of a space. Number of elements of a vector.
Dl number of nodes in layer l of a neural network.
e(•, •) mean square error between two variables of a model.
ek estimation error of a model.
f l feature map of layer l in a DenseNet.
JCE cross-entropy error of a model.
L number of layers in a neural network.
l index for the lth layer of a neural network.
L1 absolute value regularization.
L2 quadratic norm regularization.
LC number of convolutional layers in a CNN.
LD number of dense layers in a CNN.
M, N number of elements in a set of data.
MI horizontal dimension of an image.
MW horizontal dimension of a two-dimensional convolutional kernel.

364 Notation

NI vertical dimension of an image.
NW vertical dimension of a two-dimensional convolutional kernel.
p number of rows and columns added in a padding operation.
s number of positions shifted in a stride operation.
w(l)

m,n,i,j weight or parameter that connects node m,n of two-dimensional layer
l − 1 of a neural network with node i, j of two-dimensional layer l in a
neural network.

wi element i of vector w.
w(l)

i,j weight or parameter that connects node i of layer l − 1 with node j in
layer l. It is entry i, j of matrix W(l).

yi scalar representing a label in classification or a regressor in a regression
model.

Z normalization constant in diffusion models.
Z normalization factor in a probability density function.
z linear output of a neuron.

365

Bibliography

Abadi, Martín et al. (2016). “TensorFlow: Large-scale machine learning on heterogeneous
distributed systems”. In: URL: https://arxiv.org/pdf/1603.04467.

Abdal, Rameen, Yipeng Qin, and Peter Wonka (2019). “Image2StyleGAN: How to embed
images into the StyleGAN latent space?” In: Proceedings of the IEEE/CVF international
conference on computer vision, pp. 4432–4441.

Ackley, David H., Geoffrey E. Hinton, and Terrence J. Sejnowski (1985). “A learning algorithm
for Boltzmann machines”. In: Cognitive Science 9.1, pp. 147–169.

Addo, Daniel et al. (2022). “EVAE-Net: An ensemble variational autoencoder deep learning
network for COVID-19 classification based on chest X-ray images”. In: Diagnostics 12.11,
p. 2569.

Aggarwal, Alankrita, Mamta Mittal, and Gopi Battineni (2021). “Generative adversarial
network: An overview of theory and applications”. In: International Journal of Information
Management Data Insights 1.1, p. 100004.

Aizerman, Mark A. (1964). “Theoretical foundations of the potential function method in
pattern recognition learning”. In: Automation and Remote Control 25, pp. 821–837.

Ajith, Meenu and Vince D. Calhoun (2023). “Functional network connectivity based mental
health category prediction from Rest-fMRI data”. In: 2023 IEEE 20th international
symposium on biomedical imaging (ISBI), pp. 1–5. DOI: 10.1109/ISBI53787.2023.10230721.

Ajith, Meenu and Aswathy Rajendra Kurup (2018). “Pedestrian detection: Performance
comparison using multiple convolutional neural networks”. In: International conference on
machine learning and data mining in pattern recognition. Springer, pp. 365–379.

Ajith, Meenu and Manel Martínez-Ramón (2019). “Unsupervised segmentation of fire and
smoke from infra-red videos”. In: IEEE Access 7, pp. 182381–182394. DOI:
10.1109/ACCESS.2019.2960209.

Ajith, Meenu and Manel Martínez-Ramón (2021). “Deep learning based solar radiation micro
forecast by fusion of infrared cloud images and radiation data”. In: Applied Energy 294,
p. 117014.

Ajith, Meenu and Manel Martínez-Ramón (2023). “Deep learning algorithms for very short
term solar irradiance forecasting: A survey”. In: Renewable and Sustainable Energy Reviews
182, p. 113362.

Deep Learning: A Practical Introduction, First Edition.
Manel Martínez-Ramón, Meenu Ajith, and Aswathy Rajendra Kurup.
© 2024 John Wiley & Sons Ltd. Published 2024 by John Wiley & Sons Ltd.
Companion website: https://github.com/DeepLearning-book

https://arxiv.org/pdf/1603.04467
https://github.com/DeepLearning-book

366 Bibliography

Akyazi, Pinar and Touradj Ebrahimi (2019). “Learning-based image compression using
convolutional autoencoder and wavelet decomposition”. In: IEEE conference on computer
vision and pattern recognition workshops. CONF.

Alemany, Sheila et al. (2019). “Predicting hurricane trajectories using a recurrent neural
network”. In: Proceedings of the AAAI conference on artificial intelligence. Vol. 33. 01,
pp. 468–475.

Allen-Zhu, Zeyuan, Yuanzhi Li, and Zhao Song (2019). “On the convergence rate of training
recurrent neural networks”. In: Advances in Neural Information Processing Systems 32
(NeurIPS 2019).

Al-Rfou, Rami et al. (2019). “Character-level language modeling with deeper self-attention”.
In: Proceedings of the AAAI conference on artificial intelligence. Vol. 33.01, pp. 3159–3166.

Amit, Daniel J. and Daniel J. Amit (1989). Modeling Brain Function: The World of Attractor
Neural Networks. Cambridge University Press.

Arjovsky, Martin and Léon Bottou (2017). “Towards principled methods for training generative
adversarial networks”. In: URL: https://arxiv.org/pdf/1701.04862.

Arjovsky, Martin, Soumith Chintala, and Léon Bottou (2017). “Wasserstein generative
adversarial networks”. In: International conference on machine learning. PMLR, pp. 214–223.

Aytar, Yusuf et al. (2017). “Cross-modal scene networks”. In: IEEE Transactions on Pattern
Analysis and Machine Intelligence 40.10, pp. 2303–2314.

Ba, Jimmy Lei, Jamie Ryan Kiros, and Geoffrey E. Hinton (2016). “Layer normalization”.
In: URL: https://arxiv.org/pdf/1607.06450.

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio (2014). “Neural machine translation
by jointly learning to align and translate”. In: url: https://arxiv.org/pdf/1409.0473.

Bando, Yoshiaki et al. (2018). “Statistical speech enhancement based on probabilistic
integration of variational autoencoder and non-negative matrix factorization”. In: 2018 IEEE
international conference on acoustics, speech and signal processing (ICASSP). IEEE,
pp. 716–720.

Bardenet, Rémi, Arnaud Doucet, and Chris Holmes (2017). “On Markov chain Monte Carlo
methods for tall data”. In: Journal of Machine Learning Research 18.47, pp. 1–43.

Beale, Evelyn M.L. (1955). “On minimizing a convex function subject to linear inequalities”.
In: Journal of the Royal Statistical Society Series B: Statistical Methodology 17.2, pp. 173–184.

Becker, S. and Yan Le Cun (1988). “Improving the convergence of back-propagation learning
with second-order methods”. In: Proceedings of the 1988 connectionist models summer school,
pp. 29–37.

Bengio, Yoshua (2009). “Learning deep architectures for AI”. In: Foundations and Trends® in
Machine Learning 2.1, pp. 1–127.

Bengio, Yoshua, Patrice Simard, and Paolo Frasconi (1994). “Learning long-term dependencies
with gradient descent is difficult”. In: IEEE Transactions on Neural Networks 5.2, pp. 157–166.

Bengio, Yoshua et al. (2006). “Greedy layer-wise training of deep networks”. In: Advances in
neural information processing systems 19 (NIPS 2006).

Bengio, Yoshua et al. (2007). “Scaling learning algorithms towards AI”. In: Large-Scale Kernel
Machines 34.5, pp. 1–41.

Bengio, Yoshua et al. (2013). “Generalized denoising auto-encoders as generative models”.
In: Advances in neural information processing systems 26 (NIPS 2013).

https://arxiv.org/pdf/1701.04862
https://arxiv.org/pdf/1607.06450
https://arxiv.org/pdf/1409.0473

Bibliography 367

Bengio, Yoshua et al. (2014). “Deep generative stochastic networks trainable by backprop”.
In: International conference on machine learning. PMLR, pp. 226–234.

Bergstra, James and Yoshua Bengio (2012). “Random search for hyper-parameter
optimization”. In: Journal of Machine Learning Research 13.2, pp. 281–305.

Berthelot, David, Thomas Schumm, and Luke Metz (2017). “Began: Boundary equilibrium
generative adversarial networks”. In: URL: https://arxiv.org/pdf/1703.10717.

Bertsekas, Dimitri P. and John N. Tsitsiklis (2000). Introduction to Probability. Athena Scientific.
Besag, Julian (1975). “Statistical analysis of non-lattice data”. In: Journal of the Royal Statistical

Society Series D: The Statistician 24.3, pp. 179–195.
Betancourt, Michael (2017). “A conceptual introduction to Hamiltonian Monte Carlo”. In: URL:

https://arxiv.org/pdf/1701.02434.
Bevilacqua, Vitoantonio et al. (2008). “Retinal fundus biometric analysis for personal

identifications”. In: Advanced Intelligent Computing Theories and Applications. With Aspects
of Artificial Intelligence: 4th International Conference on Intelligent Computing, ICIC 2008,
Shanghai, China, September 15–18, 2008 Proceedings 4. Springer, pp. 1229–1237.

Beyer, Lucas et al. (2020). “Are we done with ImageNet?” In: URL: https://arxiv.org/pdf/2006
.07159.

Bilefsky, Dan (2023). “He Helped Create A.I. Now, He Worries About ‘Killer Robots’”. In: The
New York Times.

Bird, Steven, Ewan Klein, and Edward Loper (2009). Natural Language Processing with Python:
Analyzing Text with the Natural Language Toolkit. O’Reilly Media, Inc.

Bishop, Christopher M. (2006). Pattern Recognition and Machine Learning (Information Science
and Statistics). Berlin, Heidelberg: Springer-Verlag. ISBN: 0387310738.

Bitzer, Sebastian and Stefan J. Kiebel (2012). “Recognizing recurrent neural networks (rRNN):
Bayesian inference for recurrent neural networks”. In: Biological Cybernetics 106,
pp. 201–217.

Blei, David M., Alp Kucukelbir, and Jon D. McAuliffe (2017). “Variational inference: A review
for statisticians”. In: Journal of the American Statistical Association 112.518, pp. 859–877.

Blundell, Charles et al. (2015). “Weight uncertainty in neural network”. In: International
conference on machine learning. PMLR, pp. 1613–1622.

Bojar, Ondřej et al. (2014). “Findings of the 2014 workshop on statistical machine translation”.
In: Proceedings of the 9th workshop on statistical machine translation, pp. 12–58.

Bollapragada, Raghu et al. (2018). “A progressive batching L-BFGS method for machine
learning”. In: International conference on machine learning. PMLR, pp. 620–629.

Bousmalis, Konstantinos et al. (2017). “Unsupervised pixel-level domain adaptation with
generative adversarial networks”. In: Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 3722–3731.

Brock, Andrew, Jeff Donahue, and Karen Simonyan (2018). “Large scale GAN training for high
fidelity natural image synthesis”. In: URL: https://arxiv.org/pdf/1809.11096.

Buongiorno, Domenico et al. (2019). “An undercomplete autoencoder to extract muscle
synergies for motor intention detection”. In: 2019 International joint conference on neural
networks (IJCNN). IEEE, pp. 1–8.

Byra, Michal et al. (2020). “Knee menisci segmentation and relaxometry of 3D ultrashort echo
time cones MR imaging using attention U-Net with transfer learning”. In: Magnetic
Resonance in Medicine 83.3, pp. 1109–1122.

https://arxiv.org/pdf/1703.10717
https://arxiv.org/pdf/1701.02434
https://arxiv.org/pdf/2006.07159
https://arxiv.org/pdf/2006.07159
https://arxiv.org/pdf/1809.11096

368 Bibliography

Byrd, Richard H. et al. (2011). “On the use of stochastic hessian information in optimization
methods for machine learning”. In: SIAM Journal on Optimization 21.3, pp. 977–995.

Cao, Yuan and Quanquan Gu (2019). “Generalization bounds of stochastic gradient descent for
wide and deep neural networks”. In: Advances in neural information processing systems 32
(NeurIPS 2019).

Caruana, Rich (1997). “Multitask learning”. In: Machine Learning 28, pp. 41–75.
Chelba, Ciprian et al. (2013). “One billion word benchmark for measuring progress in

statistical language modeling”. In: URL: https://arxiv.org/pdf/1312.3005.
Cheng, Zhengxue et al. (2018). “Deep convolutional autoencoder-based lossy image

compression”. In: 2018 Picture coding symposium (PCS). IEEE, pp. 253–257.
Chib, Siddhartha and Edward Greenberg (1995). “Understanding the metropolis-hastings

algorithm”. In: The American Statistician 49.4, pp. 327–335.
Cho, Kyunghyun et al. (2014a). “Learning phrase representations using RNN encoder-decoder

for statistical machine translation”. In: Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2014, October 25–29, 2014, Doha, Qatar,
A meeting of SIGDAT, a Special Interest Group of the ACL. Ed. by Alessandro Moschitti,
Bo Pang, and Walter Daelemans. ACL, pp. 1724–1734.

Cho, Kyunghyun et al. (2014b). “On the properties of neural machine translation: Encoder-
decoder approaches”. In: URL: https://arxiv.org/pdf/1409.1259.

Choi, Jinho D., Joel Tetreault, and Amanda Stent (2015). “It depends: Dependency parser
comparison using a web-based evaluation tool”. In: Proceedings of the 53rd annual meeting of
the association for computational linguistics and the 7th International joint conference on
natural language processing (Volume 1: Long Papers), pp. 387–396.

Chollet, François (2017). “Xception: Deep learning with depthwise separable convolutions”. In:
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1251–1258.

Chow, Jun Kang et al. (2020). “Anomaly detection of defects on concrete structures with the
convolutional autoencoder”. In: Advanced Engineering Informatics 45, p. 101105.

Ciresan, Dan Claudiu et al. (2011). “Flexible, high performance convolutional neural networks
for image classification”. In: 22nd international joint conference on artificial intelligence.

Coates, Adam and Andrew Ng (2011). “Selecting receptive fields in deep networks”. In:
Advances in neural information processing systems 24 (NIPS 2011).

Coates, Adam and Andrew Y. Ng (2012). “Learning feature representations with k-means”.
In: Neural Networks: Tricks of the Trade, 2nd Edition. Springer, pp. 561–580.

Collobert, Ronan et al. (2011). “Natural language processing (almost) from scratch”. In: Journal
of Machine Learning Research 12.ARTICLE, pp. 2493–2537.

Corana, Angelo et al. (1987). “Minimizing multimodal functions of continuous variables with
the “simulated annealing” algorithm—Corrigenda for this article is available here”. In: ACM
Transactions on Mathematical Software (TOMS) 13.3, pp. 262–280.

Corbetta, Maurizio and Gordon L. Shulman (2002). “Control of goal-directed and
stimulus-driven attention in the brain”. In: Nature Reviews Neuroscience 3.3, pp. 201–215.

Cordts, Marius et al. (2016). “The cityscapes dataset for semantic urban scene understanding”.
In: Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 3213–3223.

https://arxiv.org/pdf/1312.3005
https://arxiv.org/pdf/1409.1259

Bibliography 369

Costa, Mario et al. (1999). “Short term load forecasting using a synchronously operated
recurrent neural network”. In: IJCNN’99. International joint conference on neural networks.
Proceedings (Cat. No. 99CH36339). Vol. 5. IEEE, pp. 3478–3482.

Cover, Thomas M. and Joy A. Thomas (2006). Elements of Information Theory, 2nd Edition
(Wiley Series in Telecommunications and Signal Processing). Wiley-Interscience.

Creswell, Antonia et al. (2018). “Generative adversarial networks: An overview”. In: IEEE
Signal Processing Magazine 35.1, pp. 53–65.

Dahl, George E. et al. (2011). “Context-dependent pre-trained deep neural networks for
large-vocabulary speech recognition”. In: IEEE Transactions on Audio, Speech, and Language
Processing 20.1, pp. 30–42.

Dai, Andrew M. and Quoc V. Le (2015). “Semi-supervised sequence learning”. In: Advances in
neural information processing systems 28 (NIPS 2015).

De Cesarei, Andrea et al. (2021). “Do humans and deep convolutional neural networks use
visual information similarly for the categorization of natural scenes?” In: Cognitive Science
45.6, e13009.

Deng, Jia et al. (2009). “ImageNet: A large-scale hierarchical image database”. In: 2009 IEEE
conference on computer vision and pattern recognition. IEEE, pp. 248–255.

Deng, Jun et al. (2013). “Sparse autoencoder-based feature transfer learning for speech emotion
recognition”. In: 2013 Humaine association conference on affective computing and intelligent
interaction. IEEE, pp. 511–516.

Devlin, Jacob et al. (2018). “BERT: Pre-training of deep bidirectional transformers for language
understanding”. In: URL: https://arxiv.org/pdf/1810.04805.

Dodda, Vineela Chandra et al. (2022). “An undercomplete autoencoder for denoising
computational 3D sectional images”. In: Adaptive Optics and Applications. Optica Publishing
Group, p. JW2A–19.

Dong, Xiaoyi et al. (2022). “Clip itself is a strong fine-tuner: Achieving 85.7% and 88.0% top-1
accuracy with vit-b and vit-l on ImageNet”. In: arXiv preprint arXiv:2212.06138.

Dosovitskiy, Alexey et al. (2014). “Discriminative unsupervised feature learning with
convolutional neural networks”. In: Advances in neural information processing systems 27
(NIPS 2014).

Dosovitskiy, Alexey et al. (2020). “An image is worth 16x16 words: Transformers for image
recognition at scale”. In: URL: https://arxiv.org/pdf/2010.11929.

Dozat, T. and Incorporating Nesterov momentum into Adam (2016). “ICLR 2016 workshop
submission”. In: URL: https://openreview.net/forum.

Duan, Lixin, Dong Xu, and Ivor Tsang (2012). “Learning with augmented features for
heterogeneous domain adaptation”. In: arXiv preprint arXiv:1206.4660.

Duchi, John, Elad Hazan, and Yoram Singer (2011). “Adaptive subgradient methods for online
learning and stochastic optimization”. In: Journal of Machine Learning Research 12.7,
pp. 2121–2159.

Dumoulin, Vincent, Jonathon Shlens, and Manjunath Kudlur (2016). “A learned
representation for artistic style”. In: URL: https://arxiv.org/pdf/1610.07629.

Dumoulin, Vincent et al. (2018). “Feature-wise transformations”. In: Distill 3.7, e11.
Eigen, David and Rob Fergus (2015). “Predicting depth, surface normals and semantic labels

with a common multi-scale convolutional architecture”. In: Proceedings of the IEEE
international conference on computer vision, pp. 2650–2658.

https://arxiv.org/pdf/1810.04805
https://arxiv.org/pdf/2010.11929
https://openreview.net/forum
https://arxiv.org/pdf/1610.07629

370 Bibliography

Elman, Jeffrey L. (1990). “Fnding structure in time”. In: Cognitive Science 14.2, pp. 179–211.
Engelmann, Justin and Stefan Lessmann (2021). “Conditional Wasserstein GAN-based

oversampling of tabular data for imbalanced learning”. In: Expert Systems with Applications
174, p. 114582.

Epanechnikov, Vassiliy A. (1969). “Non-parametric estimation of a multivariate probability
density”. In: Theory of Probability & Its Applications 14.1, pp. 153–158.

Erhan, Dumitru et al. (2010). “Why does unsupervised pre-training help deep learning?”
In: Proceedings of the 13th international conference on artificial intelligence and statistics.
JMLR Workshop and Conference Proceedings, pp. 201–208.

Feng, Weijiang et al. (2017). “Audio visual speech recognition with multimodal recurrent
neural networks”. In: 2017 International joint conference on neural networks (IJCNN). IEEE,
pp. 681–688.

Ferles, Christos, Yannis Papanikolaou, and Kevin J. Naidoo (2018). “Denoising autoencoder
self-organizing map (DASOM)”. In: Neural Networks 105, pp. 112–131.

Finn, Chelsea, Pieter Abbeel, and Sergey Levine (2017). “Model-agnostic meta-learning for fast
adaptation of deep networks”. In: International conference on machine learning. PMLR,
pp. 1126–1135.

Fukushima, Kunihiko (1980). “Neocognitron: A self-organizing neural network model for a
mechanism of pattern recognition unaffected by shift in position”. In: Biological Cybernetics
36.4, pp. 193–202.

Gal, Yarin and Zoubin Ghahramani (2016). “Dropout as a Bayesian approximation:
Representing model uncertainty in deep learning”. In: International conference on machine
learning. PMLR, pp. 1050–1059.

Gehring, Jonas et al. (2017). “Convolutional sequence to sequence learning”. In: International
conference on machine learning. PMLR, pp. 1243–1252.

Geman, Stuart, Elie Bienenstock, and René Doursat (1992). “Neural networks and the
bias/variance dilemma”. In: Neural Computation 4.1, pp. 1–58.

Ghahramani, Zoubin and Matthew Beal (2000). “Propagation algorithms for variational
Bayesian learning”. In: Advances in neural information processing systems 13 (NIPS 2000).

Ghiasi, Golnaz et al. (2017). “Exploring the structure of a real-time, arbitrary neural artistic
stylization network”. In: URL: https://arxiv.org/pdf/1705.06830.

Giles, C. Lee, Steve Lawrence, and Ah Chung Tsoi (1997). “Rule inference for financial
prediction using recurrent neural networks”. In: Proceedings of the IEEE/IAFE 1997
computational intelligence for financial engineering (CIFEr). IEEE, pp. 253–259.

Gilks, Walter R., Sylvia Richardson, and David Spiegelhalter (1995). Markov Chain Monte Carlo
in Practice. CRC Press.

Glorot, Xavier and Yoshua Bengio (2010). “Understanding the difficulty of training deep
feedforward neural networks”. In: Proceedings of the 13th international conference on artificial
intelligence and statistics. JMLR Workshop and Conference Proceedings, pp. 249–256.

Glorot, Xavier, Antoine Bordes, and Yoshua Bengio (2011). “Deep sparse rectifier neural
networks”. In: Proceedings of the 14th international conference on artificial intelligence and
statistics. JMLR Workshop and Conference Proceedings, pp. 315–323.

Gneiting, Tilmann and Adrian E. Raftery (2007). “Strictly proper scoring rules, prediction, and
estimation”. In: Journal of the American Statistical Association 102.477, pp. 359–378.

https://arxiv.org/pdf/1705.06830

Bibliography 371

Goan, Ethan and Clinton Fookes (2020). “Bayesian neural networks: An introduction and
survey”. In: Case Studies in Applied Bayesian Data Science: CIRM Jean-Morlet Chair, Fall
2018, pp. 45–87.

Gondara, Lovedeep (2016). “Medical image denoising using convolutional denoising
autoencoders”. In: 2016 IEEE 16th international conference on data mining workshops
(ICDMW). IEEE, pp. 241–246.

Gong, Chengyue et al. (2018). “FRAGE: Frequency-agnostic word representation”. In:
Advances in neural information processing systems 31 (NeurIPS 2018).

Goodfellow, Ian et al. (2013a). “Maxout networks”. In: Proceedings of the 30th International
Conference on Machine Learning. Ed. by Sanjoy Dasgupta and David McAllester. Vol. 28.
Proceedings of Machine Learning Research 3. Atlanta, Georgia, USA: PMLR, pp. 1319–1327.

Goodfellow, Ian et al. (2013b). “Multi-prediction deep Boltzmann machines”. In: Advances in
Neural Information Processing Systems 26 (NIPS 2013).

Goodfellow, I., Y. Bengio, and A. Courville (2016). Deep Learning. Cambridge, MA, USA:
The MIT Press.

Goodfellow, Ian et al. (2020). “Generative adversarial networks”. In: Communications of the
ACM 63.11, pp. 139–144.

Graves, Alex (2011). “Practical variational inference for neural networks”. In: Advances in
neural information processing systems 24 (NIPS 2011).

Graves, Alex, Abdel-rahman Mohamed, and Geoffrey E. Hinton (2013). “Speech recognition
with deep recurrent neural networks”. In: 2013 IEEE international conference on acoustics,
speech and signal processing. IEEE, pp. 6645–6649.

Güçlü, Umut and Marcel A.J. Van Gerven (2017). “Modeling the dynamics of human brain
activity with recurrent neural networks”. In: Frontiers in Computational Neuroscience 11, p. 7.

Güera, David and Edward J. Delp (2018). “Deepfake video detection using recurrent neural
networks”. In: 2018 15th IEEE international conference on advanced video and signal based
surveillance (AVSS). IEEE, pp. 1–6.

Gulrajani, Ishaan et al. (2017). “Improved training of Wasserstein GANs”. In: Advances in
neural information processing systems 30 (NIPS 2017).

Hallez, Quentin, Martial Mermillod, and Sylvie Droit-Volet (2023). “Cognitive and plastic
recurrent neural network clock model for the judgment of time and its variations”. In:
Scientific Reports 13.1, p. 3852.

Harel, Maayan and Shie Mannor (2010). “Learning from multiple outlooks”. In: URL: https://
arxiv.org/pdf/1005.0027.

Hastie, Trevor (2020). “Ridge regularization: An essential concept in data science”. In:
Technometrics 62.4, pp. 426–433.

Hastings, W. Keith (1970). “Monte Carlo sampling methods using Markov chains and their
applications”. In: Biometrika 57.1, pp. 97–109.

Haykin, Simon (1996). Adaptive Filter Theory, 3rd Edition. USA: Prentice-Hall, Inc. ISBN:
013322760X.

Haykin, Simon S. (2005). Adaptive Filter Theory. Pearson Education India.
He, Kaiming and Jian Sun (2015). “Convolutional neural networks at constrained time cost”.

In: Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 5353–5360.

https://arxiv.org/pdf/1005.0027
https://arxiv.org/pdf/1005.0027

372 Bibliography

He, Kaiming et al. (2015). “Delving deep into rectifiers: Surpassing human-level performance
on ImageNet classification”. In: Proceedings of the IEEE international conference on computer
vision, pp. 1026–1034.

He, Kaiming et al. (2016). “Deep residual learning for image recognition”. In: Proceedings of the
IEEE conference on computer vision and pattern recognition, pp. 770–778.

Hendrycks, Dan and Kevin Gimpel (2016). “Gaussian error linear units (GELUs)”. In: URL:
https://arxiv.org/pdf/1606.08415.

Hertzmann, Aaron et al. (2023). “Image analogies”. In: Seminal Graphics Papers: Pushing the
Boundaries 2, pp. 557–570.

Heusel, Martin et al. (2017). “GANs trained by a two time-scale update rule converge to a local
Nash equilibrium”. In: Advances in neural information processing systems 30 (NIPS 2017).

Hill, Felix et al. (2015). “The goldilocks principle: Reading children’s books with explicit
memory representations”. In: URL: https://arxiv.org/pdf/1511.02301.

Hinton, Geoffrey E. (2002). “Training products of experts by minimizing contrastive
divergence”. In: Neural Computation 14.8, pp. 1771–1800.

Hinton, Geoffrey E. (2007). “Learning multiple layers of representation”. In: Trends in Cognitive
Sciences 11.10, pp. 428–434.

Hinton, Geoffrey E. and Ruslan R. Salakhutdinov (2006). “Reducing the dimensionality of data
with neural networks”. In: Science 313.5786, pp. 504–507.

Hinton, Geoffrey E. and Terrence J. Sejnowski (1983). “Optimal perceptual inference”. In:
Proceedings of the IEEE conference on Computer Vision and Pattern Recognition. Vol. 448.
Citeseer, pp. 448–453.

Hinton, Geoffrey E. et al. (1995). “The “wake-sleep” algorithm for unsupervised neural
networks”. In: Science 268.5214, pp. 1158–1161.

Hinton, Geoffrey E., Simon Osindero, and Yee-Whye Teh (2006). “A fast learning algorithm for
deep belief nets”. In: Neural Computation 18.7, pp. 1527–1554.

Hinton, Geoffrey E., Alex Krizhevsky, and Sida D. Wang (2011). “Transforming auto-encoders”.
In: Artificial Neural Networks and Machine Learning–ICANN 2011: 21st International
Conference on Artificial Neural Networks, Espoo, Finland, June 14–17, 2011, Proceedings, Part
I 21. Springer, pp. 44–51.

Hinton, Geoffrey E., Nitish Srivastava, and Kevin Swersky (2012a). Neural networks for machine
learning. Lecture 6a: overview of mini-batch gradient descent. URL: http://www.cs.toronto.edu/
~hinton/coursera/lecture6/lec6.pdf.

Hinton, Geoffrey E. et al. (2012b). “Improving neural networks by preventing co-adaptation of
feature detectors”. In: CoRR abs/1207.0580.

Hinton, Geoffrey E. et al. (2012c). “Deep neural networks for acoustic modeling in speech
recognition: The shared views of four research groups”. In: IEEE Signal Processing Magazine
29.6, pp. 82–97.

Hinton, Geoffrey E., Oriol Vinyals, and Jeff Dean (2015). “Distilling the knowledge in a neural
network”. In: 2.7. URL: https://arxiv.org/pdf/1503.02531.

Hitchcock, David B. (2003). “A history of the Metropolis–Hastings algorithm”.
In: The American Statistician 57.4, pp. 254–257.

Hjelm, R. Devon et al. (2017). “Boundary-seeking generative adversarial networks”. In: URL:
https://arxiv.org/pdf/1702.08431.

https://arxiv.org/pdf/1606.08415
https://arxiv.org/pdf/1511.02301
http://www.cs.toronto.edu/~hinton/coursera/lecture6/lec6.pdf
http://www.cs.toronto.edu/~hinton/coursera/lecture6/lec6.pdf
https://arxiv.org/pdf/1503.02531
https://arxiv.org/pdf/1702.08431

Bibliography 373

Ho, Jonathan, Ajay Jain, and Pieter Abbeel (2020). “Denoising diffusion probabilistic models”.
In: Advances in neural information processing systems 33 (NeurIPS 2020), pp. 6840–6851.

Hoerl, Arthur E. and Robert W. Kennard (1970). “Ridge regression: applications to
nonorthogonal problems”. In: Technometrics 12.1, pp. 69–82.

Hoffman, Matthew D., Andrew Gelman, et al. (2014). “The No-U-Turn sampler: adaptively
setting path lengths in Hamiltonian Monte Carlo”. In: Journal of Machine Learning Research
15.1, pp. 1593–1623.

Hole, Arne (1996). “Vapnik-Chervonenkis generalization bounds for real valued neural
networks”. In: Neural Computation 8.6, pp. 1277–1299.

Honkela, Antti and Harri Valpola (2004). “Variational learning and bits-back coding:
an information-theoretic view to Bayesian learning”. In: IEEE Transactions on Neural
Networks 15.4, pp. 800–810.

Hopfield, John J. (1982). “Neural networks and physical systems with emergent collective
computational abilities”. In: Proceedings of the National Academy of Sciences of the United
States of America 79.8, pp. 2554–2558.

Hopfield, John J. and David W. Tank (1985). ““Neural” computation of decisions in
optimization problems”. In: Biological Cybernetics 52.3, pp. 141–152.

Howard, Andrew G. et al. (2017). “MobileNets: Efficient convolutional neural networks for
mobile vision applications”. In: CoRR abs/1704.04861.

Huang, Xun and Serge Belongie (2017). “Arbitrary style transfer in real-time with adaptive
instance normalization”. In: Proceedings of the IEEE international conference on computer
vision, pp. 1501–1510.

Huang, Gary B. et al. (2008). “Labeled faces in the wild: A database forstudying face
recognition in unconstrained environments”. In: Workshop on faces in ‘Real-Life’ Images:
detection, alignment, and recognition.

Huang, Gao, Zhuang Liu, and Kilian Q. Weinberger (2017). “Densely connected convolutional
networks”. In: 2017 IEEE conference on computer vision and pattern recognition (CVPR),
pp. 2261–2269.

Hubel, David H. and Torsten N. Wiesel (1962). “Receptive fields, binocular interaction and
functional architecture in the cat’s visual cortex”. In: The Journal of Physiology 160.1, p. 106.

Hubin, Aliaksandr and Geir Storvik (2023). “Variational Inference for Bayesian Neural
Networks under Model and Parameter Uncertainty”. In: URL: https://arxiv.org/pdf/305.00934.

Hyvärinen, Aapo and Peter Dayan (2005). “Estimation of non-normalized statistical models by
score matching”. In: Journal of Machine Learning Research 6.4, pp. 695–709.

Ioffe, Sergey and Christian Szegedy (2015). “Batch normalization: Accelerating deep network
training by reducing internal covariate shift”. In: International conference on machine
learning. PMLR, pp. 448–456.

Isola, Phillip et al. (2017). “Image-to-image translation with conditional adversarial networks”.
In: Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 1125–1134.

Jarrett, Kevin et al. (2009). “What is the best multi-stage architecture for object recognition?”
In: 2009 IEEE 12th international conference on computer vision. IEEE, pp. 2146–2153.

Jarzynski, Christopher (1997). “Equilibrium free-energy differences from nonequilibrium
measurements: A master-equation approach”. In: Physical Review E 56.5, p. 5018.

https://arxiv.org/pdf/305.00934

374 Bibliography

Jing, Yongcheng et al. (2020). “Neural style transfer: A review”. In: IEEE Transactions on
Visualization and Computer Graphics 26.11, pp. 3365–3385.

Johnson, Justin, Alexandre Alahi, and Li Fei-Fei (2016). “Perceptual losses for real-time style
transfer and super-resolution”. In: Computer Vision–ECCV 2016: 14th European Conference,
Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part II 14. Springer,
pp. 694–711.

Jordan, Michael I. (1986). Serial Order: A Parallel Distributed Processing Approach. Technical
Report, June 1985-March 1986. Tech. rep. California Univ., San Diego, La Jolla (USA). Inst.
for Cognitive Science.

Jordan, Michael I. et al. (1999). “An introduction to variational methods for graphical models”.
In: Machine Learning 37, pp. 183–233.

Jospin, Laurent Valentin et al. (2022). “Hands-on Bayesian neural networks—A tutorial for
deep learning users”. In: IEEE Computational Intelligence Magazine 17.2, pp. 29–48.

Jozefowicz, Rafal et al. (2016). “Exploring the limits of language modeling”. In: URL: https://
arxiv.org/pdf/1602.02410.

Karras, Tero et al. (2017). “Progressive growing of GANs for improved quality, stability, and
variation”. In: URL: https://arxiv.org/pdf/1710.10196.

Karras, Tero, Samuli Laine, and Timo Aila (2019). “A style-based generator architecture for
generative adversarial networks”. In: Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 4401–4410.

Karras, Tero, Samuli Laine, Miika Aittala, et al. (2020a). “Analyzing and improving the image
quality of stylegan”. In: Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 8110–8119.

Karras, Tero et al. (2020b). “Training generative adversarial networks with limited data”.
In: Advances in neural information processing systems 33 (NeurIPS 2020), pp. 12104–12114.

Khan, Salman et al. (2022). “Transformers in vision: A survey”. In: ACM Computing Surveys
(CSUR) 54.10s, pp. 1–41.

Kingma, Diederik P. and Jimmy Ba (2014). “Adam: A method for stochastic optimization”.
In: URL: https://arxiv.org/pdf/1412.6980.

Kingma, Diederik P. and Max Welling (2013). “Auto-encoding variational Bayes”. In: URL:
https://arxiv.org/pdf/1312.6114.

Kingma, Diederik P. and Max Welling (2019). “An introduction to variational autoencoders”.
In: Foundations and Trends® in Machine Learning 12.4, pp. 307–392.

Kirkpatrick, Scott, C. Daniel Gelatt Jr., and Mario P. Vecchi (1983). “Optimization by simulated
annealing”. In: Science 220.4598, pp. 671–680.

Kirkpatrick, James et al. (2017). “Overcoming catastrophic forgetting in neural networks”.
In: Proceedings of the National Academy of Sciences of the United States of America 114.13,
pp. 3521–3526.

Kiros, Ryan et al. (2015). “Skip-thought vectors”. In: Advances in neural information processing
systems 28 (NIPS 2015).

Kolesnikov, Alexander et al. (2020). “Big transfer (bit): General visual representation learning”.
In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28,
2020, Proceedings, Part V 16. Springer, pp. 491–507.

https://arxiv.org/pdf/1602.02410
https://arxiv.org/pdf/1602.02410
https://arxiv.org/pdf/1710.10196
https://arxiv.org/pdf/1412.6980
https://arxiv.org/pdf/1312.6114

Bibliography 375

Kriegeskorte, Nikolaus (2015). “Deep neural networks: A new framework for modeling
biological vision and brain information processing”. In: Annual Review of Vision Science 1,
pp. 417–446.

Krizhevsky, Alex (2009). “Learning Multiple Layers of Features from Tiny Images”. Master’s
Thesis, University of Toronto.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton (2012). “ImageNet classification with
deep convolutional neural networks”. In: Advances in Neural Information Processing Systems.
Ed. by F. Pereira et al., Vol. 25. Curran Associates, Inc.

Kryshtafovych, Andriy et al. (2021). “Critical assessment of methods of protein structure
prediction (CASP)—Round XIV”. In: Proteins: Structure, Function, and Bioinformatics 89.12,
pp. 1607–1617.

Kullback, Solomon and Richard A. Leibler (1951). “On information and sufficiency”. In: The
Annals of Mathematical Statistics 22.1, pp. 79–86.

Kumar, Siddharth Krishna (2017). “On weight initialization in deep neural networks”. In: URL:
https://arxiv.org/pdf/1704.08863.

Kurup, Aswathy Rajendra, Meenu Ajith, and Manel Martínez-Ramón (2019). “Semi-supervised
facial expression recognition using reduced spatial features and deep belief networks”.
In: Neurocomputing 367, pp. 188–197.

Kurup, A. et al. (2020). “Automated detection of malarial retinopathy using transfer learning”.
In: 2020 IEEE Southwest symposium on image analysis and interpretation (SSIAI). IEEE,
pp. 18–21.

Kurup, Aswathy Rajendra et al. (2023). “Automated malarial retinopathy detection using
transfer learning and multi-camera retinal images”. In: Biocybernetics and Biomedical
Engineering 43.1, pp. 109–123.

Kuzovkin, I. et al. (2018). Activations of deep convolutional neural networks are aligned with
gamma band activity of human visual cortex”. Communications Biology 1, pp. 1–12.

Lampinen, Jouko and Aki Vehtari (2001). “Bayesian approach for neural networks—review
and case studies”. In: Neural Networks 14.3, pp. 257–274.

Längkvist, Martin, Lars Karlsson, and Amy Loutfi (2014). “A review of unsupervised feature
learning and deep learning for time-series modeling”. In: Pattern Recognition Letters 42,
pp. 11–24.

Larsen, Anders Boesen Lindbo et al. (2016). “Autoencoding beyond pixels using a learned
similarity metric”. In: International conference on machine learning. PMLR, pp. 1558–1566.

LeCun, Yann (1989). “Generalization and network design strategies”. In: Connectionism in
Perspective 19.143–155, p. 18.

LeCun, Yann et al. (1989). “Backpropagation applied to handwritten zip code recognition”.
In: Neural Computation 1.4, pp. 541–551.

LeCun, Yann et al. (1998). “Gradient-based learning applied to document recognition”.
In: Proceedings of the IEEE 86.11, pp. 2278–2324.

LeCun, Yann A et al. (2012). “Efficient backprop”. In: Neural Networks: Tricks of the trade.
Springer, pp. 9–48.

Ledig, Christian et al. (2017). “Photo-realistic single image super-resolution using a generative
adversarial network”. In: Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 4681–4690.

https://arxiv.org/pdf/1704.08863

376 Bibliography

Lee, Honglak, Chaitanya Ekanadham, and Andrew Ng (2007). “Sparse deep belief net model
for visual area V2”. In: Advances in neural information processing systems 20 (NIPS 2007).

Li, Qing and Nan Lin (2010). “The Bayesian elastic net”. In: Bayesian Analysis 5.1, pp. 151–170.
Liang, Sheng-Fu, Alvin W.Y. Su, and Cheng-Teng Lin (1999). “A new recurrent-network-based

music synthesis method for Chinese plucked-string instruments-Pipa and Qin”.
In: IJCNN’99. International Joint Conference on Neural Networks. Proceedings (Cat. No.
99CH36339). Vol. 4. IEEE, pp. 2564–2569.

Lim, Wootaek, Daeyoung Jang, and Taejin Lee (2016). “Speech emotion recognition using
convolutional and recurrent neural networks”. In: 2016 Asia-Pacific signal and information
processing association annual summit and conference (APSIPA). IEEE, pp. 1–4.

Lin, Min, Qiang Chen, and Shuicheng Yan (2014a). “Network in network”. In: 2nd
International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April
14–16, 2014, Conference Track Proceedings. Ed. by Yoshua Bengio and Yann LeCun.

Lin, Tsung-Yi et al. (2014b). “Microsoft COCO: Common objects in context”. In: Computer
Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6–12, 2014,
Proceedings, Part V 13. Springer, pp. 740–755.

Lin, Zhouhan et al. (2017). “A structured self-attentive sentence embedding”. In: URL: https://
arxiv.org/pdf/1703.03130.

Lindsay, Grace W. (2021). “Convolutional neural networks as a model of the visual system:
Past, present, and future”. In: Journal of Cognitive Neuroscience 33.10, pp. 2017–2031.

Little, William A. (1974). “The existence of persistent states in the brain”. In: Mathematical
Biosciences 19.1–2, pp. 101–120.

Liu, Dong C. and Jorge Nocedal (1989). “On the limited memory BFGS method for large scale
optimization”. In: Mathematical Programming 45.1, pp. 503–528.

Liu, Ming-Yu and Oncel Tuzel (2016). “Coupled generative adversarial networks”. In: Advances
in neural information processing systems 29 (NIPS 2016).

Liu, Ming-Yu, Thomas Breuel, and Jan Kautz (2017). “Unsupervised image-to-image
translation networks”. In: Advances in neural information processing systems 30 (NIPS 2017).

Liu, Huidong, Xianfeng Gu, and Dimitris Samaras (2019). “Wasserstein GAN with quadratic
transport cost”. In: Proceedings of the IEEE/CVF international conference on computer vision,
pp. 4832–4841.

Liwicki, Marcus et al. (2007). “A novel approach to on-line handwriting recognition based on
bidirectional long short-term memory networks”. In: Proceedings of the 9th international
conference on document analysis and recognition, ICDAR 2007.

Lotter, William, Gabriel Kreiman, and David Cox (2020). “A neural network trained for
prediction mimics diverse features of biological neurons and perception”. In: Nature
Machine Intelligence 2.4, pp. 210–219.

Lowe, David G. (1999). “Object recognition from local scale-invariant features”. In: Proceedings
of the 7th IEEE International Conference on Computer Vision. Vol. 2. IEEE, pp. 1150–1157.

Lyu, Siwei (2011). “Unifying non-maximum likelihood learning objectives with minimum KL
contraction”. In: Advances in Neural Information Processing Systems 24 (NIPS 2011).

Maas, Andrew et al. (2011). “Learning word vectors for sentiment analysis”. In: Proceedings of
the 49th annual meeting of the association for computational linguistics: Human language
technologies, pp. 142–150.

https://arxiv.org/pdf/1703.03130
https://arxiv.org/pdf/1703.03130

Bibliography 377

Maas, Andrew L., Awni Y. Hannun, Andrew Y. Ng (2013). “Rectifier nonlinearities improve
neural network acoustic models”. In: Proceedings of ICML. Vol. 30.1. Atlanta, GA, p. 3.

MacKay, David J.C. (1992). “A practical Bayesian framework for backpropagation networks”.
In: Neural Computation 4.3, pp. 448–472.

Mao, Xudong et al. (2017). “Least squares generative adversarial networks”. In: Proceedings of
the IEEE international conference on computer vision, pp. 2794–2802.

Maqsood, Muazzam et al. (2019). “Transfer learning assisted classification and detection of
Alzheimer’s disease stages using 3D MRI scans”. In: Sensors 19.11, p. 2645.

Marcus, Daniel S. et al. (2010). “Open access series of imaging studies: Longitudinal MRI data
in nondemented and demented older adults”. In: Journal of Cognitive Neuroscience 22.12,
pp. 2677–2684.

Masci, Jonathan et al. (2011). “Stacked convolutional auto-encoders for hierarchical feature
extraction”. In: Artificial Neural Networks and Machine Learning–ICANN 2011: 21st
International Conference on Artificial Neural Networks, Espoo, Finland, June 14–17, 2011,
Proceedings, Part I 21. Springer, pp. 52–59.

McCann, Bryan et al. (2018). “The natural language decathlon: Multitask learning as question
answering”. In: URL: https://arxiv.org/pdf/1806.08730.

McCulloch, Warren S. and Walter Pitts (1943). “A logical calculus of the ideas immanent in
nervous activity”. In: The Bulletin of Mathematical Biophysics 5.4, pp. 115–133.

Medsker, Larry R. and L.C. Jain (2001). “Recurrent neural networks”. In: Design and
Applications 5, pp. 64–67.

Merity, Stephen et al. (2016). “Pointer sentinel mixture models”. In: URL: https://arxiv.org/pdf/
1609.07843.

Metropolis, Nicholas and Stanislaw Ulam (1949). “The Monte Carlo method”. In: Journal of the
American Statistical Association 44.247, pp. 335–341.

Metz, Cade (2023). “The Godfather of AI Leaves Google and Warns of Danger Ahead”. In: The
New York Times.

Metz, Luke et al. (2016). “Unrolled generative adversarial networks”. In: URL: https://arxiv.org/
pdf/1611.02163.

Mikolov, Tomas et al. (2013). “Distributed representations of words and phrases and their
compositionality”. In: Advances in neural information processing systems 26 (NIPS 2013).

Mirza, Mehdi and Simon Osindero (2014). “Conditional generative adversarial nets”. In: URL:
https://arxiv.org/pdf/1411.1784.

Mishkin, Dmytro and Jiri Matas (2015). “All you need is a good init”. In: URL: https://arxiv.org/
pdf/1511.06422.

Miyato, Takeru et al. (2018). “Spectral normalization for generative adversarial networks”.
In: URL: https://arxiv.org/pdf/1802.05957.

Møller, Martin (1993). “Supervised learning on large redundant training sets”. In: International
Journal of Neural Systems 4.01, pp. 15–25.

Moreno-Díaz, Roberto and Arminda Moreno-Díaz (2007). “On the legacy of W.S. McCulloch”.
In: Biosystems 88.3. BIOCOMP 2005: Selected papers presented at the International
Conference - Diffusion Processes in Neurobiology and Subcellular Biology, pp. 185–190.

Moriya, Shun and Chihiro Shibata (2018). “Transfer learning method for very deep CNN for
text classification and methods for its evaluation”. In: 2018 IEEE 42nd annual computer
software and applications conference (COMPSAC). Vol. 2. IEEE, pp. 153–158.

https://arxiv.org/pdf/1806.08730
https://arxiv.org/pdf/1609.07843
https://arxiv.org/pdf/1609.07843
https://arxiv.org/pdf/1611.02163
https://arxiv.org/pdf/1611.02163
https://arxiv.org/pdf/1411.1784
https://arxiv.org/pdf/1511.06422
https://arxiv.org/pdf/1511.06422
https://arxiv.org/pdf/1802.05957

378 Bibliography

Murphy, Kevin P. (2012). Machine Learning: A Probabilistic Perspective. MIT Press.
Murphy, Kevin, Yair Weiss, and Michael I. Jordan (2013). “Loopy belief propagation for

approximate inference: An empirical study”. In: arXiv preprint arXiv:1301.6725.
Nadaraya, Elizbar A (1964). “On estimating regression”. In: Theory of Probability & Its

Applications 9.1, pp. 141–142.
Nair, Vinod and Geoffrey E. Hinton (2010). “Rectified linear units improve restricted

Boltzmann machines”. In: ICML.
Neal, Radford M. (2001). “Annealed importance sampling”. In: Statistics and Computing 11,

pp. 125–139.
Neal, Radford M. and Geoffrey E. Hinton (1998). “A view of the EM algorithm that justifies

incremental, sparse, and other variants”. In: Learning in Graphical Models. Springer,
pp. 355–368.

Neal, Radford M. et al. (2011). “MCMC using Hamiltonian dynamics”. In: Handbook of Markov
Chain Monte Carlo 2.11, p. 2.

Nesterov, Yurii Evgen’evich (1983). “A method of solving a convex programming problem with
convergence rate O(k2)”. In: Doklady Akademii Nauk 269.3, pp. 543–547.

Netzer, Yuval et al. (2011). “Reading digits in natural images with unsupervised feature
learning”. In: NIPS Workshop on Deep Learning and Unsupervised Feature Learning 2011.

Neubig, Graham (2017). “Neural machine translation and sequence-to-sequence models:
A tutorial”. In: URL: https://arxiv.org/pdf/1703.01619.

Ng, Andrew Y. (2004). “Feature selection, L 1 vs. L 2 regularization, and rotational invariance”.
In: Proceedings of the 21st international conference on Machine learning, p. 78.

Ng, Andrew et al. (2011). “Sparse autoencoder”. In: CS294A Lecture Notes 72.2011, Stanford
University, pp. 1–19.

Nguyen, Vu et al. (2017). “Shadow detection with conditional generative adversarial networks”.
In: Proceedings of the IEEE international conference on computer vision, pp. 4510–4518.

Nilsback, Maria-Elena and Andrew Zisserman (2008). “Automated flower classification over a
large number of classes”. In: 2008 6th Indian conference on computer vision, graphics & image
processing. IEEE, pp. 722–729.

Niu, Zhaoyang, Guoqiang Zhong, and Hui Yu (2021). “A review on the attention mechanism of
deep learning”. In: Neurocomputing 452, pp. 48–62.

Novikoff, Albert B. (1963). “On Convergence Proofs on Perceptrons”. In: Proceedings of the
Symposium on the Mathematical Theory of Automata 12.1, pp. 615–622.

Odaibo, Stephen (2019). “Tutorial: Deriving the standard variational autoencoder (VAE) loss
function”. In: URL: https://arxiv.org/pdf/1907.08956.

Olshausen, Bruno A. and David J. Field (1996). “Emergence of simple-cell receptive field
properties by learning a sparse code for natural images”. In: Nature 381.6583, pp. 607–609.

Orr, Genevieve (1996). “Removing noise in on-line search using adaptive batch sizes”.
In: Advances in Neural Information Processing Systems 9 (NIPS 1996).

Pal, Arghya and Vineeth N. Balasubramanian (2019). “Zero-shot task transfer”. In: Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pp. 2189–2198.

Pan, Sinno Jialin (2014). “Transfer learning”. In: Data Classification: Algorithms and
Applications 21.

Pan, Sinno Jialin and Qiang Yang (2009). “A survey on transfer learning”. In: IEEE
Transactions on Knowledge and Data Engineering 22.10, pp. 1345–1359.

https://arxiv.org/pdf/1703.01619
https://arxiv.org/pdf/1907.08956

Bibliography 379

Paperno, Denis et al. (2016). “The LAMBADA dataset: Word prediction requiring a broad
discourse context”. In: URL: https://arxiv.org/pdf/1606.06031.

Parkhi, Omkar M. et al. (2012). “Cats and dogs”. In: 2012 IEEE conference on computer vision
and pattern recognition. IEEE, pp. 3498–3505.

Pascanu, Razvan, Tomas Mikolov, and Yoshua Bengio (2013). “On the difficulty of training
recurrent neural networks”. In: International conference on machine learning. PMLR,
pp. 1310–1318.

Pascanu, Razvan et al. (2019). “How to construct deep recurrent neural networks. arXiv 2013”.
In: URL: https://arxiv.org/pdf/1312.6026.

Pennington, Jeffrey, Richard Socher, and Christopher D. Manning (2014). “Glove: Global
vectors for word representation”. In: Proceedings of the 2014 conference on empirical methods
in natural language processing (EMNLP), pp. 1532–1543.

Peters, Matthew E. and Dan Lecocq (2013). “Content extraction using diverse feature sets”.
In: Proceedings of the 22nd international conference on world wide web, pp. 89–90.

Pinar Saygin, Ayse, Ilyas Cicekli, and Varol Akman (2000). “Turing test: 50 years later”.
In: Minds and Machines 10.4, pp. 463–518.

Podpora, Michal, Grzegorz Pawel Korbas, and Aleksandra Kawala-Janik (2014). “YUV vs
RGB-choosing a color space for human-machine interaction”. In: FedCSIS (Position Papers).
Citeseer, pp. 29–34.

Polyak, Boris T. (1964). “Some methods of speeding up the convergence of iteration methods”.
In: Ussr Computational Mathematics and Mathematical Physics 4.5, pp. 1–17.

Porter, Martin F. (1980). “An algorithm for suffix stripping”. In: Program 14.3, pp. 130–137.
Prabhavalkar, Rohit et al. (2017). “A Comparison of sequence-to-sequence models for speech

recognition”. In: Interspeech, pp. 939–943.
Prechelt, Lutz (1998). “Early stopping-but when?” In: Neural Networks: Tricks of the trade.

Springer, pp. 55–69.
Qiao, Siyuan et al. (2019). “Micro-batch training with batch-channel normalization and weight

standardization”. In: URL: https://arxiv.org/pdf/1903.10520.
Radford, Alec, Luke Metz, and Soumith Chintala (2015). “Unsupervised representation

learning with deep convolutional generative adversarial networks”. In: URL: https://arxiv
.org/pdf/1511.06434.

Radford, Alec et al. (2018). “Improving language understanding by generative pre-training”.
In: URL: https://deepsense.ai/wp-content/uploads/2023/03/language_understanding_paper
.pdf.

Radford, Alec et al. (2019). “Language models are unsupervised multitask learners”.
In: OpenAI Blog 1.8, p. 9.

Rajpurkar, Pranav et al. (2016). “Squad: 100,000+ questions for machine comprehension of
text”. In: URL: https://arxiv.org/pdf/1606.05250.

Ramachandran, Prajit et al. (2019). “Stand-alone self-attention in vision models”. In: Advances
in neural information processing systems 32 (NeurIPS 2019).

Rasmus, Antti et al. (2015). “Semi-supervised learning with ladder networks”. In: Advances in
neural information processing systems 28 (NIPS 2015).

Rasmussen, Carl Edward and Christopher K.I. Williams (2005). Gaussian Processes for Machine
Learning (Adaptive Computation and Machine Learning). The MIT Press.

https://arxiv.org/pdf/1606.06031
https://arxiv.org/pdf/1312.6026
https://arxiv.org/pdf/1903.10520
https://arxiv.org/pdf/1511.06434
https://arxiv.org/pdf/1511.06434
https://deepsense.ai/wp-content/uploads/2023/03/language_understanding_paper.pdf
https://deepsense.ai/wp-content/uploads/2023/03/language_understanding_paper.pdf
https://arxiv.org/pdf/1606.05250

380 Bibliography

Ratliff, Lillian J., Samuel A. Burden, and S. Shankar Sastry (2013). “Characterization and
computation of local Nash equilibria in continuous games”. In: 2013 51st Annual allerton
conference on communication, control, and computing (Allerton). IEEE, pp. 917–924.

Recht, Benjamin et al. (2018). “Do CIFAR-10 classifiers generalize to CIFAR-10?” In: URL:
https://arxiv.org/pdf/1806.00451.

Reed, Scott E. et al. (2016a). “Learning what and where to draw”. In: Advances in neural
information processing systems 29 (NIPS 2016).

Reed, Scott et al. (2016b). “Generative adversarial text to image synthesis”. In: International
conference on machine learning. PMLR, pp. 1060–1069.

Rensink, Ronald A. (2000). “The dynamic representation of scenes”. In: Visual Cognition 7.
1–3, pp. 17–42.

Resales, R., K. Achan, and B. Frey (2003). “Unsupervised image translation”. In: Proceedings
9th IEEE international conference on computer vision. IEEE, pp. 472–478.

Rezende, Danilo Jimenez, Shakir Mohamed, and Daan Wierstra (2014). “Stochastic
backpropagation and approximate inference in deep generative models”. In: International
conference on machine learning. PMLR, pp. 1278–1286.

Ribeiro, Manassés, André Eugênio Lazzaretti, and Heitor Silvério Lopes (2018). “A study of
deep convolutional auto-encoders for anomaly detection in videos”. In: Pattern Recognition
Letters 105, pp. 13–22.

Ribeiro, Antônio H et al. (2020). “Beyond exploding and vanishing gradients: analysing RNN
training using attractors and smoothness”. In: International conference on artificial
intelligence and statistics. PMLR, pp. 2370–2380.

Riesenhuber, Maximilian and Tomaso Poggio (2000). Computational Models of Object
Recognition in Cortex: A Review. Tech. rep. MIT, Artificial Intelligence Laboratory.

Robbins, Herbert and Sutton Monro (1951). “A stochastic approximation method”. In: The
Annals of Mathematical Statistics, 22.3, pp. 400–407.

Roberts, Gareth O. and Jeffrey S. Rosenthal (2001). “Optimal scaling for various
Metropolis-Hastings algorithms”. In: Statistical Science 16.4, pp. 351–367.

Robinson, A.J. and Frank Fallside (1987). The Utility Driven Dynamic Error Propagation
Network. Vol. 1. University of Cambridge Department of Engineering Cambridge.

Ronneberger, Olaf, Philipp Fischer, and Thomas Brox (2015). “U-Net: Convolutional networks
for biomedical image segmentation”. In: Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5–9,
2015, Proceedings, Part III 18. Springer, pp. 234–241.

Rosenblatt, Frank (1957). The Perceptron, A Perceiving and Recognizing Automaton (Project
Para). Cornell Aeronautical Laboratory.

Rosenblatt, Frank (1958). “The perceptron: a probabilistic model for information storage and
organization in the brain”. In: Psychological Review 65.6, p. 386.

Roth, Kevin et al. (2017). “Stabilizing training of generative adversarial networks through
regularization”. In: Advances in neural information processing systems 30 (NIPS 2017).

Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams (1986). “Learning
representations by back-propagating errors”. In: Nature 323.6088, pp. 533–536.

Saad, E.W., T.P. Caudell, and D.C. Wunsch (1999). “Predictive head tracking for virtual reality”.
In: IJCNN’99. International Joint Conference on Neural Networks. Proceedings (Cat.
No.99CH36339). Vol. 6, pp. 3933–3936.

https://arxiv.org/pdf/1806.00451

Bibliography 381

Sak, Hasim, Andrew W. Senior, and Françoise Beaufays (2014). “Long short-term memory
recurrent neural network architectures for large scale acoustic modeling”. In: Interspeech,
pp. 338–342.

Sakurada, Mayu and Takehisa Yairi (2014). “Anomaly detection using autoencoders with
nonlinear dimensionality reduction”. In: Proceedings of the MLSDA 2014 2nd workshop on
machine learning for sensory data analysis, pp. 4–11.

Salakhutdinov, Ruslan and Geoffrey Hinton (2009). “Deep Boltzmann machines”. In: Artificial
intelligence and statistics. PMLR, pp. 448–455.

Salakhutdinov, Ruslan, Andriy Mnih, and Geoffrey Hinton (2007). “Restricted Boltzmann
machines for collaborative filtering”. In: Proceedings of the 24th international conference on
Machine learning, pp. 791–798.

Salehi, Pegah, Abdolah Chalechale, and Maryam Taghizadeh (2020). “Generative adversarial
networks (GANs): An overview of theoretical model, evaluation metrics, and recent
developments”. In: URL: https://arxiv.org/pdf/2005.13178.

Salehinejad, Hojjat et al. (2017). “Recent advances in recurrent neural networks”. In: URL:
https://arxiv.org/pdf/1801.01078.

Salimans, Tim et al. (2016). “Improved techniques for training GANs”. In: Advances in neural
information processing systems 29 (NIPS 2016).

Santurkar, Shibani et al. (2018). “How does batch normalization help optimization?”
In: Advances in neural information processing systems 31 (NeurIPS 2018).

Schmidhuber, Jürgen and Sepp Hochreiter (1997). “Long short-term memory”. In: Neural
Computation 9.8, pp. 1735–1780.

Schölkopf, Bernhard and Kah-Kay Sung (1997). “Comparing support vector machines with
Gaussian Kernels to radial basis function classifiers”. In: IEEE Transactions on Signal
Processing 45.11, pp. 2758–65.

van de Schoot, Rens et al. (2021). “Bayesian statistics and modelling”. In: Nature Reviews
Methods Primers 1.1, p. 1.

Schuster, Mike and Kuldip K. Paliwal (1997). “Bidirectional recurrent neural networks”.
In: IEEE Transactions on Signal Processing 45.11, pp. 2673–2681.

Selvaraju, Ramprasaath R. et al. (2017). “Grad-CAM: Visual explanations from deep networks
via gradient-based localization”. In: Proceedings of the IEEE international conference on
computer vision, pp. 618–626.

Sennrich, Rico, Barry Haddow, and Alexandra Birch (2015). “Neural machine translation of
rare words with subword units”. In: URL: https://arxiv.org/pdf/1508.07909.

Sermanet, Pierre et al. (2013). “OverFeat: Integrated recognition, localization and detection
using convolutional networks”. In: URL: https://arxiv.org/pdf/1312.6229.

Serre, Thomas, Lior Wolf, and Tomaso Poggio (2005). “Object recognition with features
inspired by visual cortex”. In: 2005 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR’05). Vol. 2. IEEE, pp. 994–1000.

Shawe-Taylor, John and Nello Cristianini (2004). Kernel Methods for Pattern Analysis.
Cambridge University Press.

Shewchuk, Jonathan Richard (1994). “An introduction to the conjugate gradient method
without the agonizing pain”.

Shi, Tian et al. (2021). “Neural abstractive text summarization with sequence-to-sequence
models”. In: ACM Transactions on Data Science 2.1, pp. 1–37.

https://arxiv.org/pdf/2005.13178
https://arxiv.org/pdf/1801.01078
https://arxiv.org/pdf/1508.07909
https://arxiv.org/pdf/1312.6229

382 Bibliography

Shimodaira, Hidetoshi (2000). “Improving predictive inference under covariate shift by
weighting the log-likelihood function”. In: Journal of Statistical Planning and Inference 90.2,
pp. 227–244.

Shrivastava, Ashish et al. (2017). “Learning from simulated and unsupervised images through
adversarial training”. In: Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 2107–2116.

Shu, Zhixin et al. (2017). “Neural face editing with intrinsic image disentangling”. In:
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 5541–5550.

Sifre, Laurent and Stéphane Mallat (2014). “Rigid-motion scattering for texture classification”.
In: URL: https://arxiv.org/pdf/1403.1687.

Simonyan, Karen and Andrew Zisserman (2015). “Very deep convolutional networks for
large-scale image recognition”. In: 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7–9, 2015, Conference Track Proceedings. Ed. by Yoshua
Bengio and Yann LeCun.

Smola, Alex, Bernhard Schölkopf, and Klaus R. Müller (1998). “General cost functions for
support vector regression”. In: Proceedings of the 9th Australian conference on neural
networks. Brisbane, Australia, pp. 79–83.

Smolensky, Paul (1986). “Information processing in dynamical systems: foundations of
harmony theory”. In: Parallel Distributed Processing: Explorations in the Microstructure of
Cognition, vol. 1. MIT Press: Cambridge, MA, USA 15, p. 18.

Socher, Richard et al. (2013). “Recursive deep models for semantic compositionality over a
sentiment treebank”. In: Proceedings of the 2013 conference on empirical methods in natural
language processing, pp. 1631–1642.

Sohl-Dickstein, Jascha, Peter B. Battaglino, and Michael R. DeWeese (2011). “New method for
parameter estimation in probabilistic models: Minimum probability flow”. In: Physical
Review Letters 107.22, p. 220601.

Sohl-Dickstein, Jascha et al. (2015). “Deep unsupervised learning using nonequilibrium
thermodynamics”. In: International conference on machine learning. PMLR, pp. 2256–2265.

Sønderby, Casper Kaae et al. (2016). “Amortised map inference for image super-resolution”.
In: URL: https://arxiv.org/pdf/1610.04490.

Song, Yang and Stefano Ermon (2019). “Generative modeling by estimating gradients of the
data distribution”. In: Advances in neural information processing systems 32 (NeurIPS 2019).

Springenberg, Jost Tobias et al. (2014). “Striving for simplicity: The all convolutional net”.
In: URL: https://arxiv.org/pdf/1412.6806.

Sreenatha, M. and P.B. Mallikarjuna (2023). “A fault diagnosis technique for wind turbine
gearbox: An approach using optimized BLSTM neural network with undercomplete
autoencoder”. In: Engineering, Technology & Applied Science Research 13.1, pp. 10170–10174.

Srivastava, Nitish et al. (2014). “Dropout: A simple way to prevent neural networks from
overfitting”. In: The Journal of Machine Learning Research 15.1, pp. 1929–1958.

Srivastava, Rupesh K., Klaus Greff, and Jürgen Schmidhuber (2015). “Training very deep
networks”. In: Advances in neural information processing systems 28 (NIPS 2015).

Sun, Wenjun et al. (2016). “A sparse auto-encoder-based deep neural network approach for
induction motor faults classification”. In: Measurement 89, pp. 171–178.

Sun, Chen et al. (2017). “Revisiting unreasonable effectiveness of data in deep learning era”.
In: Proceedings of the IEEE international conference on computer vision, pp. 843–852.

https://arxiv.org/pdf/1403.1687
https://arxiv.org/pdf/1610.04490
https://arxiv.org/pdf/1412.6806

Bibliography 383

Sundermeyer, Martin et al. (2014). “Translation modeling with bidirectional recurrent neural
networks”. In: Proceedings of the 2014 conference on empirical methods in natural language
processing (EMNLP), pp. 14–25.

Sutskever, Ilya, James Martens, and Geoffrey E. Hinton (2011). “Generating text with recurrent
neural networks”. In: ICML.

Sutskever, Ilya, James Martens, George Dahl, et al. (2013). “On the importance of initialization
and momentum in deep learning”. In: International conference on machine learning. PMLR,
pp. 1139–1147.

Sutskever, Ilya, Oriol Vinyals, and Quoc Le (2014). “Sequence to sequence learning with neural
networks”. In: Advances in neural information processing systems 27 (NIPS 2014).

Szegedy, Christian et al. (2013). “Intriguing properties of neural networks”. In: URL: https://
arxiv.org/pdf/1312.6199.

Szegedy, Christian et al. (2015). “Going deeper with convolutions”. In: Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 1–9.

Szegedy, Christian et al. (2016). “Rethinking the inception architecture for computer vision”.
In: 2016 IEEE conference on computer vision and pattern recognition (CVPR). IEEE,
pp. 2818–2826.

Szegedy, Christian et al. (2017). “Inception-v4, Inception-ResNet and the impact of residual
connections on learning”. In: Proceedings of the 31st AAAI Conference on Artificial
Intelligence. AAAI’17. AAAI Press, pp. 4278–4284.

Taigman, Yaniv, Adam Polyak, and Lior Wolf (2016). “Unsupervised cross-domain image
generation”. In: URL: https://arxiv.org/pdf/1611.02200.

Tan, Mingxing and Quoc Le (2019). “EfficientNet: Rethinking model scaling for convolutional
neural networks”. In: International conference on machine learning. PMLR, pp. 6105–6114.

Tan, Mingxing et al. (2019). “MnasNet: Platform-aware neural architecture search for mobile”.
In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 2820–2828.

Tanaka, Toshiyuki (1998). “Mean-field theory of Boltzmann machine learning”. In: Physical
Review E 58.2, p. 2302.

Taylor, Luke and Geoff Nitschke (2018). “Improving deep learning with generic data
augmentation”. In: 2018 IEEE symposium series on computational intelligence (SSCI). IEEE,
pp. 1542–1547.

Tegmark, Max (2023). “The ‘don’t look up’ thinking that could doom us with AI”. In: Time
Magazine.

Thies, Jameson and Amirhossein Alimohammad (2019). “Compact and low-power neural
spike compression using undercomplete autoencoders”. In: IEEE Transactions on Neural
Systems and Rehabilitation Engineering 27.8, pp. 1529–1538.

Thomee, Bart et al. (2016). “YFCC100M: The new data in multimedia research”.
In: Communications of the ACM 59.2, pp. 64–73.

Thoppilan, Romal et al. (2020). “LaMDA: Language models for dialog applications”.
In: International conference on artificial intelligence and statistics. PMLR, pp. 2370–2380.
arXiv: 2201.08239 [cs.CL].

Tibshirani, Robert J. (1996). “Regression shrinkage and selection via the Lasso”. In: Journal of
the Royal Statistical Society: Series B (Methodological) 58.1, pp. 267–288.

https://arxiv.org/pdf/1312.6199
https://arxiv.org/pdf/1312.6199
https://arxiv.org/pdf/1611.02200

384 Bibliography

Tikhonov, Andrey N. and Vasilii Iakkovlevich Arsenin (1977). Solutions of Ill-Posed Problems.
Vol. 14. Winston, Washington, DC.

Tiku, Nitasha (2022). “The Google engineer who thinks the company’s AI has come to life”.
In: The Washington Post 11.

Tino, Peter, Christian Schittenkopf, and Georg Dorffner (2001). “Financial volatility trading
using recurrent neural networks”. In: IEEE Transactions on Neural Networks 12.4,
pp. 865–874.

Tishby, Naftali, Fernando C. Pereira, and William Bialek (2000). “The information bottleneck
method”. In: URL: https://arxiv.org/abs/physics/0004057.

Ulyanov, Dmitry, Andrea Vedaldi, and Victor Lempitsky (2016). “Instance normalization: The
missing ingredient for fast stylization”. In: URL: https://arxiv.org/pdf/1607.08022.

Van Der Maaten, Laurens, Eric O. Postma, and H. Jaap van den Herik (2009). “Dimensionality
reduction: A comparative review”. In: Journal of Machine Learning Research 10.66–71, p. 13.

Vapnik, Vladimir N. (1998). Statistical Learning Theory. Wiley-Interscience.
Vaswani, Ashish et al. (2017). “Attention is all you need”. In: URL: https://arxiv.org/pdf/1706

.03762.
Vincent, Pascal et al. (2008). “Extracting and composing robust features with denoising

autoencoders”. In: Proceedings of the 25th international conference on Machine learning,
pp. 1096–1103.

Vincent, Pascal, Hugo Larochelle, Isabelle Lajoie, et al. (2010). “Stacked denoising
autoencoders: Learning useful representations in a deep network with a local denoising
criterion”. In: Journal of Machine Learning Research 11.12.

Wah, Catherine et al. (2011). “The Caltech-UCSD Birds-200-2011 dataset”.
Wang, Chang and Sridhar Mahadevan (2011). “Heterogeneous domain adaptation using

manifold alignment”. In: 22nd International joint conference on artificial intelligence.
Wang, Hao and Dit-Yan Yeung (2020). “A survey on Bayesian deep learning”. In: ACM

Computing Surveys (CSUR) 53.5, pp. 1–37.
Wang, Alex et al. (2018). “GLUE: A multi-task benchmark and analysis platform for natural

language understanding”. In: URL: https://arxiv.org/pdf/1804.07461.
Watson, Geoffrey S. (1964). “Smooth regression analysis”. In: Sankhyā: The Indian Journal of

Statistics, Series A 26.4, pp. 359–372.
Weiss, Karl, Taghi M. Khoshgoftaar, and DingDing Wang (2016). “A survey of transfer

learning”. In: Journal of Big Data 3.1, pp. 1–40.
Welling, Max and Geoffrey E. Hinton (2002). “A new learning algorithm for mean field

Boltzmann machines”. In: International Conference on Artificial Neural Networks. Springer,
pp. 351–357.

Werbos, P.J. (1974). “Beyond Regression: New Tools for Prediction and Analysis in the
Behavioral Sciences”. PhD thesis. Harvard University.

Werbos, Paul J. (1988). “Generalization of backpropagation with application to a recurrent gas
market model”. In: Neural Networks 1.4, pp. 339–356.

Widrow, Bernard and Marcian E Hoff (1960). Adaptive Switching Circuits. Tech. rep. Stanford
Universty, CA. Stanford Electronics Laboratories.

Williams, Ronald J. and David Zipser (1995). “Gradient-based learning algorithms for recurrent
networks and their computational complexity”. In: Backpropagation: Theory, Architectures,
and Applications 433, p. 17.

https://arxiv.org/abs/physics/0004057
https://arxiv.org/pdf/1607.08022
https://arxiv.org/pdf/1706.03762
https://arxiv.org/pdf/1706.03762
https://arxiv.org/pdf/1804.07461

Bibliography 385

Wistuba, Martin, Ambrish Rawat, and Tejaswini Pedapati (2019). “A survey on neural
architecture search”. In: URL: https://arxiv.org/pdf/1905.01392.

Wolpert, David H. (1996a). “The existence of a priori distinctions between learning
algorithms”. In: Neural Computation 8.7, pp. 1391–1420.

Wolpert, David H. (1996b). “The lack of a priori distinctions between learning algorithms”.
In: Neural Computation 8.7, pp. 1341–1390.

Wolpert, David H. and William G. Macready (1997). “No free lunch theorems for optimization”.
In: IEEE Transactions on Evolutionary Computation 1.1, pp. 67–82.

Wróbel, Krzysztof et al. (2020). “Compression of convolutional neural network for natural
language processing”. In: Computer Science 21.1. DOI: 10.7494/csci.2020.21.1.3375.

Wu, Yuxin and Kaiming He (2018). “Group normalization”. In: Proceedings of the European
conference on computer vision (ECCV), pp. 3–19.

Wu, Bichen et al. (2020). “Visual transformers: Token-based image representation and
processing for computer vision”. In: URL: https://arxiv.org/pdf/2006.03677.

Xiao, Tete et al. (2021). “Early convolutions help transformers see better”. In: Advances in
Neural Information Processing Systems 34, pp. 30392–30400.

Xu, Kelvin et al. (2015). “Show, attend and tell: Neural image caption generation with visual
attention”. In: International conference on machine learning. PMLR, pp. 2048–2057.

Yan, Shen et al. (2023). “Hybrid robust convolutional autoencoder for unsupervised anomaly
detection of machine tools under noises”. In: Robotics and Computer-Integrated
Manufacturing 79, p. 102441.

Yang, Zichao et al. (2016). “Hierarchical attention networks for document classification”.
In: Proceedings of the 2016 conference of the North American chapter of the association for
computational linguistics: Human language technologies, pp. 1480–1489.

Ye, Fanghua, Chuan Chen, and Zibin Zheng (2018). “Deep autoencoder-like nonnegative
matrix factorization for community detection”. In: Proceedings of the 27th ACM international
conference on information and knowledge management, pp. 1393–1402.

Yedidia, Jonathan S., William Freeman, and Yair Weiss (2000). “Generalized belief
propagation”. In: Advances in neural information processing systems 13 (NIPS 2000).

Yogatama, Dani et al. (2019). “Learning and evaluating general linguistic intelligence”. In: URL:
https://arxiv.org/pdf/1901.11373.

Yu, Fisher et al. (2015). “LSUN: Construction of a large-scale image dataset using deep learning
with humans in the loop”. In: URL: https://arxiv.org/pdf/1506.03365.

Zeiler, Matthew D. (2012). “ADADELTA: An adaptive learning rate method”. In: URL: https://
arxiv.org/pdf/1212.5701.

Zeiler, Matthew D. and Rob Fergus (2014). “Visualizing and understanding convolutional
networks”. In: European conference on computer vision. Springer, pp. 818–833.

Zellers, Rowan et al. (2018). “SWAG: A large-scale adversarial dataset for grounded
commonsense inference”. In: URL: https://arxiv.org/pdf/1808.05326.

Zhai, Xiaohua et al. (2019). “A large-scale study of representation learning with the visual task
adaptation benchmark”. In: URL: https://arxiv.org/pdf/1910.04867.

Zhang, Richard (2019). “Making convolutional networks shift-invariant again”.
In: International conference on machine learning. PMLR, pp. 7324–7334.

https://arxiv.org/pdf/1905.01392
https://arxiv.org/pdf/2006.03677
https://arxiv.org/pdf/1901.11373
https://arxiv.org/pdf/1506.03365
https://arxiv.org/pdf/1212.5701
https://arxiv.org/pdf/1212.5701
https://arxiv.org/pdf/1808.05326
https://arxiv.org/pdf/1910.04867

386 Bibliography

Zhang, Han et al. (2017). “StackGan: Text to photo-realistic image synthesis with stacked
generative adversarial networks”. In: Proceedings of the IEEE international conference on
computer vision, pp. 5907–5915.

Zhang, Richard et al. (2018). “The unreasonable effectiveness of deep features as a perceptual
metric”. In: Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 586–595.

Zhang, Aston et al. (2021). “Dive into deep learning”. In: URL: https://arxiv.org/pdf/2106.11342.
Zhao, Junbo et al. (2015). “Stacked what-where auto-encoders”. In: URL: https://arxiv.org/pdf/

1506.02351.
Zhiqiang, Wang and Liu Jun (2017). “A review of object detection based on convolutional

neural network”. In: 2017 36th Chinese control conference (CCC). IEEE, pp. 11104–11109.
Zhou, Tinghui et al. (2016). “Learning dense correspondence via 3D-guided cycle consistency”.

In: Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 117–126.

Zhu, Jun-Yan et al. (2017). “Unpaired image-to-image translation using cycle-consistent
adversarial networks”. In: Proceedings of the IEEE international conference on computer
vision, pp. 2223–2232.

Zhuang, Fuzhen et al. (2020). “A comprehensive survey on transfer learning”. In: Proceedings
of the IEEE 109.1, pp. 43–76.

https://arxiv.org/pdf/2106.11342
https://arxiv.org/pdf/1506.02351
https://arxiv.org/pdf/1506.02351

387

Index

a
Acceptance probability 345
Activations 1, 9, 21
Adadelta optimization 55
AdaGrad optimization 54
Adaline 52
Adamax optimization 56
Adam optimization 55, 241
Adaptive instance normalization 325
Additive attention score 236
Adversarial losses 320
Adversarial nets 302
Affine transformation 14, 17
Aleatoric uncertainty 344
AlexNet 166, 181
Artificial neural network 2
Artificial neuron 1, 3
Attention 225, 227
Attention coefficient 228, 230, 234
Attention mechanism 226, 227, 232, 243
Attention pooling 233
Auto-encoding variational Bayes 291
Autoencoder 49, 273, 279–281
Average pooling 160, 165
Axon 6

b
Backpropagation 2, 4, 16, 29, 187, 234, 279
Backpropagation for LSTM 208
Backpropagation through time 191, 196
Backward step 29, 164
Bahdanau attention mechanism 229, 231

Batch normalization 50
Bayes by backpropagation 351
Bayes’ rule 23, 342
Beale function 57
Beam search 212
Bengio, Yoshua 226
Bernoulli 24, 44
Bias error 45
Bias-variance tradeoff 45, 228
Bias vector 31
Bidirectional encoder representations from

transformer (BERT) 243
Bidirectional LSTM 215
Bidirectional RNN 203
BigTransfer 265
Bilingual evaluation understudy (BLEU)

215, 232 Binary classification 4
Biological neuron 2, 225
Blurring 48
Boltzmann distribution 275
Boltzmann machine 274

c
Chain rule 29, 192, 208
Channel 161
CIFAR database 165, 178
Classification error 7, 25
CNN backpropagation 160, 162
Complexity 17, 46
Compression 284
Computer vision 227
Conditional adversarial neural network 318

Deep Learning: A Practical Introduction, First Edition.
Manel Martínez-Ramón, Meenu Ajith, and Aswathy Rajendra Kurup.
© 2024 John Wiley & Sons Ltd. Published 2024 by John Wiley & Sons Ltd.
Companion website: https://github.com/DeepLearning-book

https://github.com/DeepLearning-book

388 Index

Conditional probability 23
Conditioning augmentation 330
Constant error caroussel 206
Contrastive divergence 277
Convergence 7
Convex function 11
Convolution 154, 155, 160, 161
Convolutional autoencoder 281, 288
Convolutional kernels 154, 156
Convolutional layers 154, 163
Convolutional neural network 153, 154
Cost function 11
Cropping 48
Cross-entropy 24, 27, 280
Cross-entropy loss 26, 27, 241
Cumulative distribution function 306
Cycle consistency 319, 320
Cycle generative adversarial networks 318

d
Data augmentation 48
David Hubel, David 225
Decoder 212, 213, 229, 280
Deep belief network 273, 274, 278
Deep Boltzmann machine 277
Deep convolutional generative adversarial

networks 312
Deep depth of field 323
Deep generative models 301
Deep learning 1
Deep LSTM 212
Deep neural network 274, 307
Deep RNN 201
Dendrites 2
Denoising 243, 287
Dense layer 163
DenseNet 155, 174, 183
Depthwise separable convolution 171
Digit classification 201
Discriminative models 301
Discriminator 303, 304
Disentanglement 327
Diversity 48
Document classification 227
Dot product 5, 6

Dot product attention score 236
Downsampling 168
Dropout 47, 167

e
Early stopping 48
Earth-Mover distance 310
Edges 17
EfficientNet 176, 178, 184
Einstein’s notation 20
Elman network 188
Elman, Jeff 226
Embeddings 212, 221
Encoder 211, 229, 280
Encoder–decoder 229, 232, 240, 242
English-to-French translation 231
Epanechnikov kernel 228
Epistemic uncertainty 344
Evidence lower bound 294, 350
Exemplar CNNs 314
Exploding gradients 199, 200

f
Fake 308
Features 4, 153
Feed-forward neural network 1
Flattening 163
Flexibility 333
Flipping 48
Forward cycle consistency 320
Forward process posterior distribution 335
Forward step 20, 29, 163
Forward trajectory 334
Fractionally-strided convolutions 321
Frèchet inception distance 326
Fully convolutional network 322

g
Gated recurrent units 218
Gaussian activation 28
Gaussian conditioning variables 330
Gaussian distribution 42, 44
Gaussian kernel 228
Gaussian process 278
Generalization 41–43

Index 389

Generative 279
Generative adversarial networks 49, 303
Generative modeling 303
Generator 303, 304
Geometric transformations 48
Gibbs sampling 273
GoogleLeNet 181
GPT-2 243
GPT-3 243
Gradient descent 11, 12, 26, 29, 31
Greedy search 213
Group normalization 51

h
Hamiltonian MCMC 347
Handwritten digit recognition 154
He initialization 44
Hidden layer 15, 31
Hidden node 17
Hidden state 188
Hilbert space 228
Hinton, Geoffrey 226
Hiperparameter 46
Hopfield network 188, 274
Hopfield, John 226
HTML tag removal 220
Hyperbolic tangent 10, 21

i
Image captioning 227
Image synthesis 227
ImageNet 167, 170, 183
ImageNet large scale visual recognition 169
Inception 169, 183, 332
Information Bottleneck 280
Inhibitor 47
Inner product 5
Instance normalization 51
Interpolation 328
Intractable posterior 292
Irrelevant input features 46

j
Jacobian 193, 208
Jedi religion 226

Jenson–Shanon divergence 310
JFT dataset 172

k
Kernel function 228
Key 232
Kullback–Leibler divergence 276, 310

l
Labels 4
LaMBDA 226
Language model for dialogue applications

226
Language translation 227
Large-scale scene understanding

313
Latent repreentations 49
Latent variables 280
Layer 17
Layer normalization 51, 246
Leaky ReLU 22, 308
Leap Frog algorithm 348
Learning from data 1
Learning process 1
Learning rate 12, 31
Least absolute shrinkage and selector

operator 46
Least mean squares 13, 52
LeCun, Yan 225
Linear activation 13
Linear perceptron 14
Linear separability 327
Linearly separable 4, 7
Lipschitz constraint 311
Local minima 41, 45
Logistic activation 12, 21, 24
Logistic function 10, 15, 28
Log-likelihood 23
Long short-term memory networks

204
Long-term dependencies 199
Loss function 25, 28
Low-resolution output 331
Lower bound 292
Lowercasing 220

390 Index

LSTM gates 205
LSTM input node 205
LSTM internal state 205

m
Machine translation 210, 227, 230, 240
Many-to-Many 190
Mark 1, 4
Markov chain 334
Markov Chain Monte Carlo 291, 344
Max-pooling 160, 165
Maximum a posteriori 292, 343
Maximum likelihood 1, 22, 23, 25, 29
Maximum output 318
MaxOut 22, 232
McCulloch–Pitts neuron 4
McCulloch, Warren 2
Mean square error 10, 280
Mercer’s theorem 228
Mini-batches 45, 48, 166
Minimax 305
Minimum mean square error 10, 12, 25
Misclassification 7, 9
Mixing regularization 327
MNasNET 177
Mobilenet 172, 183
Mode collapse 310, 319
Momentum optimization 53
Monte Carlo 333
Multiclass classification 26
Multiclass classifier 28
Multidimensional array multiplication 19
Multidimensional arrays 18, 19
Multi-head attention 235, 236
Multilayer perceptron (MLP) 1, 9, 17
Multinoulli 24, 44
Multiple input–multiple outputs 190
Multiple inputs–single output 190
Multitask regression 28

n
Nadam optimization 56
Nadaraya–Watson attention mechanism 227
Nash equilibrium 306
Natural language processing 190, 227

Negative log-likelihood 23, 322
Neocognitron 153
Nervous system 2
Nesterov optimization 54
Neural style transfer 323
Neuron 2, 4, 6, 17, 21, 22, 24, 37
No free lunch theorems 343
No-U-turn sampler 348
Node 17
Non-equilibrium statistical physics 333
Non-linear mapping network 325
Nonlinear transformation 15
Nonseparable 8, 13
Normalization 41, 50

o
One-hot encoding 27
One-to-one 190
Optimal classification boundary 42
Overcomplete autoencoder 284
Overfitting 41–43, 48

p
Padding 158, 165
Per-pixel noise 327
Perceptron rule 4, 7, 8
Perceptual path length 327
Pitts, Walter 2
Pooling 155, 160, 163, 164
Positional encoding 236, 237
Positional vector 237
Predictive posterior 344
Principal component analysis 273
Probabilistic estimation 21
Probabilistic modeling 291
Pseudo-Newton approximations 200

q
Query 229, 232

r
Receiver operation characteristic 202
Receptive fields 155
Rectified linear unit 22
Recurrence 188

Index 391

Recurrent neural networks 187
Regression 28
Regularization 41, 45, 46, 48
Removal of stopwords 220
Reparameterization 294, 334, 336
Representation by self-attention 233
ResNet 170, 183
Restricted Boltzmann machine 21, 273, 274
Retina 4
Reverse trajectory 335
RGB 160
Ridge regression 46
RMSProp optimization 55
Rosenblatt, Frank 3

s
Schwartz inequality 8
Self-attention 234
Sentiment analysis 181, 219, 243
Separability 8
Separating hyperplane 4, 7
Sequence-to-sequence translation 211, 212,

229, 240
Sequential data 187
Sequential Monte Carlo 333
Sigmoid 9
Sign detector 6
Similarity 26, 233
Simulatedd annealing 200
Single input–multiple output 190
Single input–single output 190
Single minimum 11
Softmax activation 26
Sparse 160
Sparse autoencoder 285
Sparsity 47
Sparsity parameter 285
Speech recognition 230
Square error loss function 26
Square exponential kernel 228, 229
Stacked RNN 201
Stage-I GAN 328
Stage-II GAN 328
Stalling 12, 22, 44
Stemming 220

Stochastic Gradient Variational Bayes 291
Stochastic variation 327
Stochastic variational inference 351
StreetView House Numbers digits dataset

314
Stride 159
Strided convolutions 312
StyleGAN 323
Support Vector Machine 278

t
Tensor 1, 18, 20, 161
Text conditioning variable 331
Text embedding 331
Text generation 215
Text summarization 230
Tikhonov regularization 46
Time series prediction 197, 209
Token 211, 240
Tokenization 220
Total Variation distance 310
Tractability 333
Training dataset 7
Transfer learning 177

heterogeneous 178
homogeneous 177

Transformer 230, 242
Translation 48
Travelling salesman problem 188
Triangular inequality 310
Triangular kernel 228
Two-layer perceptron 14

u
Undercomplete autoencoder 281, 284
Underfitting 45
Update rule 11, 12, 31, 32, 38

v
Validation 48
Validation error 48
Value 232
Vanishing gradients 199, 200, 218
Variance error 45
Variational autoencoder 281

392 Index

Variational Bayesian 291
Variational free energy 350
Variational inference 291, 349
Variational lower bound 335
Vector-matrix product 20
Visual cortex 3, 153
Visual geometric group (VGG) 168, 181

w
Wake-sleep algorithm 278
Wasserstein Generative Adversarial Networks

309
Wasserstein-1 distance 310
Wasserstein gradient 311
Weak law of large numbers 11
Weight clipping 311

Weight initialization 43
Weight vector 17
Werbos, Paul 4
Wiesel, Torsten 225
Word classification 243

x
Xavier initialization 44, 59
Xception 171, 183
XOR problem 14, 22

y
YUV 160

z
Zooming 48

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

www.wiley.com/go/eula

	Cover
	Title Page
	Copyright
	Contents
	About the Authors
	Foreword
	Preface
	Acknowledgment
	About the Companion Website
	Chapter 1 The Multilayer Perceptron
	1.1 Introduction
	1.2 The Concept of Neuron
	1.2.1 The Perceptron
	1.2.2 The Perceptron (Training) Rule
	1.2.3 The Minimum Mean Square Error Training Criterion
	1.2.4 The Least Mean Squares Algorithm

	1.3 Structure of a Neural Network
	1.3.1 The Multilayer Perceptron
	1.3.2 Multidimensional Array Multiplications

	1.4 Activations
	1.5 Training a Multilayer Perceptron
	1.5.1 Maximum Likelihood Criterion
	1.5.2 Activations and Likelihood Functions
	1.5.2.1 Logistic Activation for Binary Classification
	1.5.2.2 Softmax Activation for Multiclass Classification
	1.5.2.3 Gaussian Activation in Regression

	1.5.3 The Backpropagation Algorithm
	1.5.3.1 Gradient with Respect to the Output Weights
	1.5.3.2 Gradient with Respect to Hidden Layer Weights

	1.5.4 Summary of the BP Algorithm

	1.6 Conclusion
	Problems

	Chapter 2 Training Practicalities
	2.1 Introduction
	2.2 Generalization and Overfitting
	2.2.1 Basic Weight Initializations
	2.2.2 Activation Aware Initializations
	2.2.3 MiniBatch Gradient Descent

	2.3 Regularization Techniques
	2.3.1 L1 and L2 Regularization
	2.3.2 Dropout
	2.3.3 Early Stopping
	2.3.4 Data Augmentation

	2.4 Normalization Techniques
	2.5 Optimizers
	2.5.1 Momentum Optimization
	2.5.2 Nesterov‐Accelerated Gradient
	2.5.3 AdaGrad
	2.5.4 RMSProp
	2.5.5 Adam
	2.5.6 Adamax

	2.6 Conclusion
	Problems

	Chapter 3 Deep Learning Tools
	3.1 Python: An Overview
	3.1.1 Variables
	3.1.2 Statements, Indentation, and Comments
	3.1.3 Conditional Statements
	3.1.4 Loops
	3.1.5 Functions
	3.1.6 Objects and Classes

	3.2 NumPy
	3.2.1 Installation and Importing NumPy Package
	3.2.2 NumPy Array
	3.2.3 Creating Different Types of Arrays
	3.2.4 Manipulating Array Shape
	3.2.5 Stacking and Splitting NumPy Arrays
	3.2.6 Indexing and Slicing
	3.2.7 Arithmetic Operations and Mathematical Functions

	3.3 Matplotlib
	3.3.1 Plotting
	3.3.1.1 Functional Method
	3.3.1.2 Object Oriented Method

	3.3.2 Customized Plotting
	3.3.3 Two‐dimensional Plotting
	3.3.3.1 Bar Plot
	3.3.3.2 Histogram
	3.3.3.3 Pie Plot
	3.3.3.4 Scatter Plot
	3.3.3.5 Quiver Plot
	3.3.3.6 Contour Plot
	3.3.3.7 Box Plot
	3.3.3.8 Violin Plot

	3.3.4 Three‐dimensional Plotting
	3.3.4.1 3D Contour
	3.3.4.2 3D Surface
	3.3.4.3 3D Wireframe

	3.4 Scipy
	3.4.1 Data Input–Output Using Scipy
	3.4.2 Clustering Methods
	3.4.3 Constants
	3.4.4 Linear Algebra and Integration Routines
	3.4.5 Optimization
	3.4.6 Interpolation
	3.4.7 Image Processing
	3.4.8 Special Functions

	3.5 Scikit‐Learn
	3.5.1 Scikit‐Learn API
	3.5.1.1 Estimator Interface
	3.5.1.2 Predictor Interface
	3.5.1.3 Transformer Interface

	3.5.2 Loading Datasets
	3.5.3 Data Preprocessing
	3.5.4 Feature Selection
	3.5.5 Supervised and Unsupervised Learning Models
	3.5.6 Model Selection and Evaluation

	3.6 Pandas
	3.6.1 Pandas Data Structures
	3.6.1.1 Series
	3.6.1.2 Dataframe

	3.6.2 Data Selection
	3.6.3 Data Manipulation
	3.6.3.1 Sorting
	3.6.3.2 Grouping

	3.6.4 Handling Missing Data
	3.6.5 Input–Output Tools
	3.6.6 Data Information Retrieval
	3.6.7 Data Operations
	3.6.8 Data Visualization

	3.7 Seaborn
	3.7.1 Seaborn Datasets
	3.7.2 Plotting with Seaborn
	3.7.2.1 Univariate Plots
	3.7.2.2 Bivariate Plots
	3.7.2.3 Multivariate Plots

	3.7.3 Additional Plotting Functions
	3.7.3.1 Correlation Plots
	3.7.3.2 Point Plots
	3.7.3.3 Cat Plots

	3.8 Python Libraries for NLP
	3.8.1 Natural Language Toolkit (NLTK)
	3.8.2 SpaCy
	3.8.3 NLP Techniques
	3.8.3.1 Tokenization
	3.8.3.2 Stemming
	3.8.3.3 Lemmatization
	3.8.3.4 Stop Words

	3.9 TensorFlow
	3.9.1 Introduction
	3.9.2 Elements of Tensorflow
	3.9.3 TensorFlow Pipeline

	3.10 Keras
	3.10.1 Introduction
	3.10.2 Elements of Keras
	3.10.2.1 Models
	3.10.2.2 Layers
	3.10.2.3 Core Modules

	3.10.3 Keras Workflow

	3.11 Pytorch
	3.11.1 Introduction
	3.11.2 Elements of PyTorch
	3.11.2.1 PyTorch Tensors
	3.11.2.2 PyTorch Variables
	3.11.2.3 Dynamic Computational Graphs
	3.11.2.4 Modules

	3.11.3 Workflow of Pytorch

	3.12 Conclusion
	Problems

	Chapter 4 Convolutional Neural Networks
	4.1 Introduction
	4.2 Elements of a Convolutional Neural Network
	4.2.1 Overall Structure of a CNN
	4.2.2 Convolutions
	4.2.3 Convolutions in Two Dimensions
	4.2.4 Padding
	4.2.5 Stride
	4.2.6 Pooling

	4.3 Training a CNN
	4.3.1 Formulation of the Convolution Layer in a CNN
	4.3.2 Backpropagation of a Convolution Layer
	4.3.3 Forward Step in a CNN
	4.3.4 Backpropagation in the Dense Section of a CNN
	4.3.5 Backpropagation of the Convolutional Section of a CNN

	4.4 Extensions of the CNN
	4.4.1 AlexNet
	4.4.2 VGG
	4.4.3 Inception
	4.4.4 ResNet
	4.4.5 Xception
	4.4.6 MobileNet
	4.4.6.1 Depthwise Separable Convolutions
	4.4.6.2 Width Multiplier
	4.4.6.3 Resolution Multiplier

	4.4.7 DenseNet
	4.4.8 EfficientNet
	4.4.9 Transfer Learning for CNN Extensions
	4.4.10 Comparisons Among CNN Extensions

	4.5 Conclusion
	Problems

	Chapter 5 Recurrent Neural Networks
	5.1 Introduction
	5.2 RNN Architecture
	5.2.1 Structure of the Basic RNN
	5.2.2 Input–Output Configurations

	5.3 Training an RNN
	5.3.1 Gradient with Respect to the Output Weights
	5.3.2 Gradient with Respect to the Input Weights
	5.3.3 Gradient with Respect to the Hidden State Weights
	5.3.4 Summary of the Backpropagation Through Time in an RNN

	5.4 Long‐Term Dependencies: Vanishing and Exploding Gradients
	5.5 Deep RNN
	5.6 Bidirectional RNN
	5.7 Long Short‐Term Memory Networks
	5.7.1 LSTM Gates
	5.7.2 LSTM Internal State
	5.7.3 Hidden State and Output of the LSTM
	5.7.4 LSTM Backpropagation
	5.7.5 Machine Translation with LSTM
	5.7.6 Beam Search in Sequence to Sequence Translation

	5.8 Gated Recurrent Units
	5.9 Conclusion
	Problems

	Chapter 6 Attention Networks and Transformers
	6.1 Introduction
	6.2 Attention Mechanisms
	6.2.1 The Nadaraya–Watson Attention Mechanism
	6.2.2 The Bahdanau Attention Mechanism
	6.2.3 Attention Pooling
	6.2.4 Representation by Self‐Attention
	6.2.5 Training the Self‐Attention Parameters
	6.2.6 Multi‐head Attention
	6.2.7 Positional Encoding

	6.3 Transformers
	6.4 BERT
	6.4.1 BERT Architecture
	6.4.2 BERT Pre‐training
	6.4.3 BERT Fine‐Tuning
	6.4.4 BERT for Different NLP Tasks

	6.5 GPT‐2
	6.5.1 Language Modeling

	6.6 Vision Transformers
	6.6.1 Comparison between ViTs and CNNs

	6.7 Conclusion
	Problems

	Chapter 7 Deep Unsupervised Learning I
	7.1 Introduction
	7.2 Restricted Boltzmann Machines
	7.2.1 Boltzmann Machines
	7.2.2 Training a Boltzmann Machine
	7.2.3 The Restricted Boltzmann Machine

	7.3 Deep Belief Networks
	7.3.1 Training a DBN

	7.4 Autoencoders
	7.4.1 Autoencoder Framework

	7.5 Undercomplete Autoencoder
	7.6 Sparse Autoencoder
	7.7 Denoising Autoencoders
	7.7.1 Denoising Autoencoder Algorithm

	7.8 Convolutional Autoencoder
	7.9 Variational Autoencoders
	7.9.1 Latent Variable Inference: Lower Bound Estimation Approach
	7.9.2 Reparameterization Trick
	7.9.3 Illustration: Variational Autoencoder Implementation

	7.10 Conclusion
	Problems

	Chapter 8 Deep Unsupervised Learning II
	8.1 Introduction
	8.2 Elements of GAN
	8.2.1 Generator
	8.2.2 Discriminator

	8.3 Training a GAN
	8.4 Wasserstein GAN
	8.5 DCGAN
	8.5.1 DCGAN Training and Outcomes Highlights

	8.6 cGAN
	8.6.1 cGAN Training and Outcomes Highlights

	8.7 CycleGAN
	8.7.1 CycleGAN Training and Outcomes Highlights
	8.7.2 Applications of CycleGAN

	8.8 StyleGAN
	8.8.1 StyleGAN Properties and Outcome Highlights

	8.9 StackGAN
	8.9.1 StackGAN Training and Outcomes Highlights

	8.10 Diffusion Models
	8.10.1 Forward Diffusion Process
	8.10.2 Reverse Diffusion Process
	8.10.3 Diffusion Process Training

	8.11 Conclusion
	Problems

	Chapter 9 Deep Bayesian Networks
	9.1 Introduction
	9.2 Bayesian Models
	9.2.1 The Bayes' Rule
	9.2.2 Priors as Regularization Criteria

	9.3 Bayesian Inference Methods for Deep Learning
	9.3.1 Markov Chain Monte Carlo Methods
	9.3.2 Hamiltonian MCMC
	9.3.3 Variational Inference
	9.3.4 Bayes by Backpropagation

	9.4 Conclusion
	Problems

	List of Acronyms
	Notation
	Bibliography
	Index
	EULA

