
NEXT

The Data Lakehouse The Data Lakehouse
ExplainedExplained

This comprehensive five-part explainer introduces
the concept of a “data lakehouse” and explores what
is new and different about the model.
By Stephen Swoyer

G
et

ty
 Im

ag
es

http://www.itprotoday.com
https://www.informatech.com/
https://www.facebook.com/ITProToday/
https://twitter.com/ITProToday
https://www.linkedin.com/company/itpro-today/
http://www.itprotoday.com

2
PREVIOUS NEXT

The Data Lakehouse Explained

TABLE OF CONTENTS
Part 1: An Introduction to Data Lakehouses.. 3

Part 2: Comparing the Data Lakehouse with the Conventional Data Warehouse 7

Part 3: Assessing the Viability of the Data Lakehouse ... 11

Part 4: The Use of Data Modeling with the Data Lakehouse 15

Part 5: The Data Lakehouse vs. the PaaS Data Warehouse 19

http://www.itprotoday.com

3
PREVIOUS NEXT

The Data Lakehouse Explained

he term “lakehouse” is a pun/
portmanteau. It derives from the
two foundational technologies — the

data lake and the data warehouse — from
which the concept of the data lakehouse
itself derives.

At a high level, the data lakehouse consists
of the following components:
• Data lakehouse
• Data lake
• Object storage

The data lakehouse describes a data
warehouse-like service that runs against
a data lake, which sits on top of an
object storage service. These services
are distributed in the sense that they are

not consolidated into a single, monolithic
application, as with a relational database.
They are independent in the sense that they
are loosely coupled — that is, they expose
well-documented interfaces that permit
them to communicate and exchange data
with one another. (Loose coupling is a
foundational concept in distributed software
architecture and a defining characteristic of
cloud services and cloud-native design. The
second part of this report explores the cloud-
native underpinnings of the lakehouse.)

How Does the Data Lakehouse Work?
From the top to the bottom of the data

lakehouse stack, each constituent service is
more specialized than the service that sits

Part 1: An Introduction to
Data Lakehouses
T

“underneath” it.

Data lakehouse: The titular data lakehouse
is a highly specialized abstraction layer
— basically, a semantic layer — that
exposes data in the lake for operational
reporting, ad hoc query, historical analysis,
planning and forecasting, and other data
warehousing workloads.

Data lake: The data lake is a less specialized
abstraction layer that schematizes and
manages the objects contained in an
underlying object storage service (e.g., AWS
S3, Google Cloud Platform Storage, Azure

Blob, etc.) as well as schedules operations
to be performed on them. The data lake
can efficiently ingest and store data of
every type, including not only relational
data (which it persists in a columnar object
format), but also semi-structured (text, logs,
documents) and multi-structured (files of
any type) data.

Object storage: As the foundation of the
lakehouse stack, object storage comprises
an even more basic abstraction layer:
a performant and cost-effective
means of provisioning and scaling

http://www.itprotoday.com
http://www.itprotoday.com/object-storage/object-storage-why-organizations-are-making-switch

4
PREVIOUS NEXT

The Data Lakehouse Explained

storage, on-demand storage.

Again, for this to work, data lakehouse
architecture must be more (or less) loosely
coupled, at least in comparison with the
classic data warehouse, which depends on
the RDBMS to provide most functions.

So, for example, several providers market
cloud SQL query services that, when
combined with cloud data lake and object
storage services, can be used to create the
data lakehouse. Think of this as the “ideal”
data lakehouse — ideal in the sense that it
is a rigorous implementation of a formal,
loosely coupled architectural design. The
SQL query service runs against the data lake
service, which sits on top of an object storage
service. Subscribers instantiate prebuilt
queries, views and data modeling logic in
the SQL query service, which functions like
a semantic layer. Voila: the data lakehouse.

This implementation is distinct from the
data lakehouse services that Databricks,
Dremio and others market. These

consist of the following:

• One or more ingest or landing zones
for data

• One or more staging zones, in which
experts work with and engineer data

• One or more “curated” zones, in
which prepared/engineered data is made
available for access.

In most cases, the data lake is home to all
of an organization’s useful data. This data is
already there. So, the data lakehouse begins
with an innocuous idea: Why not query
against this data where it lives?

It is in the curated zone of the data lake that
the data lakehouse itself lives, although it is
also able to access and query against data
that is stored in the lake’s other zones. In this
way, its proponents claim, the data lakehouse

implementations are usually coupled to a
specific data lake implementation, with the
result that deploying the lakehouse means,
in effect, deploying each vendor’s data lake
service, too.

The formal rigor of an ideal data lakehouse
implementation has one obvious benefit:
It is notionally easier to replace one type
of service (for example, a SQL query) with
an equivalent commercial or open source
service. As we shall see, however, there
are advantages to a less loosely coupled
data lakehouse implementation, especially
in connection with demanding data
warehousing workloads.

What Is New And/or Different About the
Data Lakehouse?

It all starts with the data lake. Again, the
data lakehouse is a higher-level abstraction
superimposed over the data in the lake. The
lake usually comprises several zones, the
names and purposes of which vary according
to implementation. At a minimum, these

is able to support not only traditional data
warehousing use cases, but also novel use
cases such as data science and machine
learning/artificial intelligence engineering.

The following is a mostly uncritical
summary of the claimed advantages of the
data lakehouse.

Subsequent parts of this report will explore
and assess the validity of these claims:

More agile and less fragile than the
data warehouse

Advocates argue that querying against
data in the lake eliminates the multi-step
process entailed in moving the data,
engineering it and moving it again prior to
loading it into the warehouse. (In extract,
load, transform [ELT], data is engineered in

“The data lakehouse is a higher-level abstraction
superimposed over the data in the lake.”

http://www.itprotoday.com/hybrid-cloud/red-hats-2021-open-source-survey-whos-using-software-and-why
http://www.itprotoday.com/hybrid-cloud/red-hats-2021-open-source-survey-whos-using-software-and-why
https://www.itprotoday.com/data-analytics-and-data-management/how-data-warehouse-automation-tools-do-and-dont-ease-cloud-moves
https://www.itprotoday.com/data-analytics-and-data-management/how-data-warehouse-automation-tools-do-and-dont-ease-cloud-moves
http://www.itprotoday.com

5
PREVIOUS NEXT

The Data Lakehouse Explained

the warehouse itself. This obviates a second
data movement operation.) This process is
closely associated with the use of extract,
transform, load (ETL) software. With the
data lakehouse, instead of modeling data
twice — first, during the ETL phase, and,
second, to design denormalized views for
a semantic layer, or to instantiate data
modeling and data engineering logic in code
— experts need only perform this second
modeling step.

The end result is less complicated (and
less costly) ETL, as well as a less fragile
data lakehouse.

Query against data in situ in the data lake

Proponents say that querying against the
data lakehouse makes sense because all of
an organization’s business-critical data is
already there — that is, in the data lake. Data
gets vectored into the lake from sensors
and other signalers, from cloud apps and
services, from online transaction processing
systems, from subscription feeds, and so on.

every type. Moreover, the lake’s curated zone
need not be restricted solely to relational
data: Organizations can store and model time
series, graph, document and other types of
data there. Even though this is possible with
a data warehouse, lakehouse proponents
concede, it is not usually cost-effective.

More rapidly provision data for time-
sensitive use cases

Expert users — say, scientists working
on a clinical trial — can access raw trial
results in the data lake’s non-curated ingest
zone, or in a special zone created for this
purpose. This data is not provisioned for
access by all users; only expert users who
understand the clinical data are permitted
to access and work with it. Again, this and
similar scenarios are possible because the

The strong claim is that the extra ability
to query against data in the whole of the
lake — that is, its staging and/or non-curated
zones — can accelerate data delivery for
time-sensitive use cases. A related claim is
that it is useful to query against data in the
lakehouse, even if an organization already
has a data warehouse, at least for some
time-sensitive use cases or practices.

The weak claim is that the lakehouse
is a suitable replacement for the data
warehouse. The third part of this report
assesses the case for the lakehouse as a
warehouse replacement.

Query against relational, semi-
structured and multi-structured data

The data lakehouse sits atop the data lake,
which ingests, stores and manages data of

lake functions as a central hub for data
collection, access and governance. The
necessary data is already there, in the data
lake’s raw or staging zones, “outside” the
data lakehouse’s strictly governed zone. The
organization is just giving a certain class of
privileged experts early access to it.

Better support for DevOps and
software engineering

Unlike the classic data warehouse, the lake
and the lakehouse expose a variety of access
APIs, in addition to a SQL query interface.

For example, instead of relying on ODBC/
JDBC interfaces and/or ORM techniques
to acquire and transform data from the
lakehouse — or using ETL software that
mandates the use of its own tool-specific
programming language and IDE design
facility — a software engineer can use her
preferred dev tools and cloud services,
so long as these are also supported by
her team’s DevOps toolchain. The data
lake/lakehouse, with its diversity of data

“The data lakehouse sits atop the data lake, which ingests, stores
and manages data of every type.”

http://www.itprotoday.com

6
PREVIOUS NEXT

The Data Lakehouse Explained

exchange methods, its abundance of co-
local compute services, and, not least, the
access it affords to raw data, is arguably a
better “player” in the DevOps universe than
is the data warehouse. In theory, it supports
a larger variety of use cases, practices and
consumers — especially expert users.

True, most RDBMSs, especially cloud PaaS
RDBMSs, now support access via RESTful
APIs and/or language-specific SDKs. This
does not change the fact that some experts,
particularly software engineers, are not — at
all — enamored of the RDBMS.

Another consideration is that the data
warehouse, especially, is a strictly governed
repository. The data lakehouse imposes its
own governance strictures, but the lake’s
other zones can be less strictly governed.
This makes the combination of the data
lake + data lakehouse suitable for practices
and use cases that require time-sensitive,
raw, lightly prepared, etc., data (such as
ML engineering).

an assortment of intra-cloud compute
services to engineer data. Experts need
not use SQL; rather, they can work with their
preferred languages, libraries, services and
tools (notebooks, editors and/or favorite CLI
shells). They can also use their preferred
conceptual vocabularies. So, for example,
experts can build and work with data
pipelines, as distinct to designing ETL

Support more and different types of
analytic practices

For expert users, the data lakehouse
simplifies the task of accessing and working
with raw or semi-/multi-structured data.

Data scientists, ML and AI engineers,
and, not least, data engineers can put
data into the lake, acquire data from it,
and take advantage of its co-locality with

jobs. In place of an ETL tool, they can use
a tool such as Apache Airflow to schedule,
orchestrate and monitor workflows.

Final Thoughts
It is impossible to disentangle the value

and usefulness of the data lakehouse
from that of the data lake. In theory, the
combination of the two — that is, the data
lakehouse layered atop the supervening data
lake — outstrips the usefulness, flexibility
and capabilities of the data warehouse.
The discussion above sometimes refers
separately to the data lake and to the data
lakehouse. What is usually implied, however,
is the co-locality of the data lakehouse with
the data lake — the “data lake/house,” if
you like.

So much for the claimed advantages of
the data lake. Part 2 of this report makes
the case that data lakehouse architecture
comprises a radical break with classic data
warehouse architecture.

http://www.itprotoday.com/devops-and-software-development/define-devops-terms-5-buzzwords-learn-2021
https://www.oreilly.com/radar/6-trends-framing-the-state-of-ai-and-ml/
https://www.oreilly.com/radar/6-trends-framing-the-state-of-ai-and-ml/
https://www.oreilly.com/radar/6-trends-framing-the-state-of-ai-and-ml/
http://www.itprotoday.com

7
PREVIOUS NEXT

The Data Lakehouse Explained

ow I focus on how the architecture
of the data lakehouse compares with
that of the classic, or conventional,

data warehouse. This part imagines data
lakehouse architecture as an attempt to
implement some of the core requirements
of data warehouse architecture in a modern
design based on cloud-native concepts,
technologies and methods. It explores
the advantages of cloud-native design,
beginning with the ability to dynamically
provision resources in response to specific
events, predetermined patterns and other
triggers. It likewise explores data lakehouse
architecture as its own thing — that is, as an
attempt to address new or different types of
practices, use cases and consumers.

to engineer their own novel implementations
of the warehouse, which is what Joydeep
Sen Sarma and Ashish Thusoo attempted
to do with Apache Hive, a SQL interpreter for
Hadoop, or what Google did with BigQuery,
its NoSQL query-as-a-service offering.

The data lakehouse is an example in kind.
In fact, to the extent that a data lakehouse

How Data Lakehouse Architecture Differs
from Data Warehouse Architecture

In an important sense, data lakehouse
architecture is an effort to adapt the data
warehouse — and its architecture — to cloud
and, at the same time, to address a much
larger set of novel use cases, practices and
consumers. This is a less counterintuitive,
and less daunting, claim than it might seem.

Think of data warehouse architecture as
akin to a technical specification: It does not
tell you how to design or implement the
data warehouse; rather, it enumerates and
describes the set of requirements (that is,
features and capabilities) that the ideal data
warehouse system must address. For all
intents and purposes, then, designers are free

implementation addresses the set of
requirements specified by data warehouse
architecture, it is a data warehouse.

In the first part of this report, we saw
that data lakehouse architecture eschews
the monolithic design of classic data
warehouse implementations, as well as the
more tightly coupled designs of big data-

Part 2: Comparing the Data Lakehouse with the Conventional
Data Warehouse
N

http://www.itprotoday.com/analytics-and-reporting/data-warehouse-automation-and-hybrid-multi-cloud
http://www.itprotoday.com

8
PREVIOUS NEXT

The Data Lakehouse Explained

era platforms, such as Hadoop+Hive, or
platform-as-a-service (PaaS) warehouses,
such as Snowflake.

Design-wise, then, data lakehouse
architecture is quite different. But how is it
different? And why?

Adapting Data Warehouse Architecture
to Cloud

The classic implementation of data
warehouse architecture is premised on
a set of dated expectations, particularly
with respect to how the functions and
resources that comprise the warehouse are
to be instantiated, connected together and
accessed. For one thing, early implementers
of data warehouse architecture expected
that the warehouse would be physically
instantiated as an RDBMS and that its
components would connect to one another
via a low-latency, high-throughput bus.
Relatedly, they expected that SQL would
be the sole means of accessing and
manipulating data in the warehouse.

But we tend to spend less time thinking
about cloud as a metaphor for the event-
driven provisioning of virtualized hardware
— and, by implication, for an ability to
provision software in response to events, too.

This on-demand dimension is arguably the
most important practical benefit of cloud’s
elasticity. It is also one of the most obvious
differences between the data lakehouse and
the classic data warehouse.

The Data Lakehouse as Cloud-native
Data Warehouse

Event-driven design at this scale
presupposes a fundamentally different set
of hardware and software requirements. It is

A second expectation was that the data
warehouse was to be online and available at
all times. Moreover, its constituent functions
were expected to be tightly coupled to one
another. This was a feature, not a bug, of
its instantiation in an RDBMS. This made
it impracticable (and, for all intents and
purposes, impossible) to scale the warehouse’s
resources independently of one another.

Neither of these expectations is true in the
cloud, of course. And we are all quite familiar
with the cloud as a metaphor for virtualization
— that is, the use of software to abstract and
define different types of virtual resources —
and for the scale-up/scale-down elasticity
that is cloud’s defining characteristic.

this event-driven dimension that cloud-native
software engineering concepts, technologies
and methods evolved to address. In place of
tightly coupled, monolithic applications that
expect to run atop always-on, always-
available, physically instantiated hardware
resources, cloud-native design presupposes
an ability to provision discrete software
functions (which developers instantiate
as loosely coupled services) on-demand,
in response to specific events. These
loosely coupled services correspond to the
constituent functions of an application.
Applications themselves are composed of
loosely coupled services, as with the data
lakehouse and its layered architecture.

What makes the data lakehouse cloud-
native? It is cloud-native to the degree that it
decomposes most, if not all, of the software
functions that are implemented in data
warehouse architecture. There are six functions:

• One or more functions capable of storing,
retrieving and modifying data

“The classic implementation of data warehouse architecture is
premised on a set of dated expectations, particularly with respect
to how the functions and resources that comprise the warehouse

are to be instantiated, connected together and accessed.”

https://www.itprotoday.com/microservices/5-mistakes-avoid-when-designing-microservices-architecture
http://www.itprotoday.com

9
PREVIOUS NEXT

The Data Lakehouse Explained

• One or more functions capable of
performing different types of operations
(such as joins) on data

• One or more functions exposing interfaces
that users/jobs can use to store, retrieve and
modify data, as well as to specify different
types of operations to perform on data

• One or more functions capable of
managing/enforcing data access and
integrity safeguards

• One or more functions capable of
generating or managing technical and
business metadata

• One or more functions capable of managing
and enforcing data consistency safeguards, as
when two or more users/jobs attempt to modify
the same data at the same time, or when a
new user/job attempts to update data that is
currently being accessed by prior users/jobs.

With this as a guideline, we can say that
a “pure” or “ideal” implementation of data
lakehouse architecture would consist of the
following components:

The lakehouse service itself. In addition
to SQL query, the lakehouse might provide
metadata management, data federation and
data cataloging capabilities. In addition to its core
role as a query service, the lakehouse doubles
as a semantic layer: It creates, maintains and
versions modeling logic, such as denormalized
views that get applied to data in the lake.

The data lake. At minimum, the data lake
provides schema enforcement capabilities,
along with the ability to store, retrieve, modify
and schedule operations on objects/blobs in
object storage. The lake usually provides data
profiling and discovery, metadata management,
and data cataloging capabilities, along with
data engineering and, optionally, data federation
capabilities. It enforces access and data integrity
safeguards across each of its constituent zones.
Ideally, it also generates and manages technical
metadata for the data in these zones.

An object storage service. It provides a
scalable, cost-effective storage substrate. It
also handles the brute-force work of storing,

retrieving and modifying the data stored in
file objects.

With that said, there are different ways
to implement the data lakehouse. One
pragmatic option is to fold all these functions
into a single omnibus platform — a data lake
with its own data lakehouse. This is what
Databricks, Dremio and others have done
with their data lakehouse implementations.

Why Does Cloud-native Design Matter?
This invites some obvious questions. First,

why do this? What are the advantages of a
loosely coupled architecture vs. the tightly
integrated architecture of the classic data
warehouse? As we have seen, one benefit of
loose coupling is an ability to scale resources
independently of one another — to allocate
more compute without also adding storage
or network resources. Another benefit is
that loose coupling eliminates some of the
dependencies that can cause software to
break. So, for example, a change in one service
will not necessarily impact, let alone break,

other services. Similarly, the failure of a service
will not necessarily cause other services to fail
or to lose data. Cloud-native design also uses
mechanisms (such as service-orchestration)
to manage and redress service failures.

Another benefit of loose coupling is
that it has the potential to eliminate the
types of dependencies that stem from an
implementation’s reliance on a specific
vendor’s or provider’s software. If services
communicate and exchange data with
one another solely by means of publicly
documented APIs, it should be possible to
replace a service that provides a definite set
of functions (such as SQL query) with an
equivalent service. This is the premise of pure
or ideal data lakehouse architecture: Because
each of its constituent components is, in
effect, commoditized (such that equivalent
services are available from all of the major
cloud infrastructure providers, from third-
party SaaS and/or PaaS providers, and as
open source offerings), the risk of provider-
specific lock-in is reduced.

http://www.itprotoday.com/hybrid-cloud/how-and-when-use-cloud-native-technology
http://www.itprotoday.com/attacks-and-breaches/api-attacks-breaches-piling
http://www.itprotoday.com

10
PREVIOUS NEXT

The Data Lakehouse Explained

In this respect, however, the lakehouse is

not actually all that different from a PaaS

data warehouse service. The fifth and final

part of this report will explore this similarity

in depth.

* The software required to make this work is still
very new. Arguably, some of it does not yet exist — at
least in a sense analogous to the RDBMS, whereby,
for example, a query optimizer parses each SQL query,
estimates the cost of running it and pre-allocates the
necessary resources. This is not magic; rather, it is
grounded in the rigor of mathematics. Under the covers,
the RDBMS’ query optimizer uses relational algebra to
translate SQL commands into relational operations. It
creates a query plan — that is, an optimized sequence
of these operations — that the database engine uses to
allocate resources to process the query. This proactive
model is quite different from the reactive model that
predominates in cloud-native software. For example,
cloud-native design principles might expect to use
real-time feedback from observable components to
determine the cost of running a workload and provision
sufficient resources. To the degree that cloud-native
software has a proactive dimension, this comes via pre-
built rules or ML models. Workloads are not proactively
soluble via math.

The Data Lakehouse as Event-driven
Data Warehouse

Cloud-native software design also expects
that the provisioning and deprovisioning
of the hardware and software resources
that power loosely coupled cloud-native
services is something that should happen
automatically. In other words, to provision a
cloud-native service is to provision its enabling
resources; to terminate a cloud-native service
is to deprovision these resources. In a sense,
cloud-native design wants to make hardware
— and, to a degree, software — disappear, at
least as a variable in the calculus of deploying,
managing, maintaining and, especially, scaling
business services.

From the viewpoints of consumers and
expert users, there are only services — that
is, tools that do things.

For example, if an ML engineer designs a
pipeline to extract and transform data from
100 GBs of log files, a cloud-native compute
engine dynamically provisions n compute
instances to process her workload. Once

the engineer’s workload finishes, the engine
automatically terminates these instances.*

Ideally, neither the engineer nor the usual
IT support people (DBAs, systems and
network administrators, and so on) need
to do anything to provision these compute
instances or, crucially, the software and
hardware resources on which they depend.
Instead, this all happens automatically — in
response, for example, to an API call initiated
by the engineer. The classic, on-premises
data warehouse was just not conceived
with this kind of cloud-native, event-driven
computing paradigm in mind.

The Data Lakehouse as Its Own Thing
The data lakehouse is, or is supposed to

be, its own thing. As we have seen, it provides
the six functions listed above. But it depends
on other services — namely, an object storage
service and, optionally, a data lake service
— to provide basic data storage and core
data management functions. In addition,
data lakehouse architecture implements a

novel set of software functions that have no
obvious parallel in classic data warehouse
architecture. In theory, these functions are
unique to the data lakehouse.

These are:
• One or more functions capable of

accessing, storing, retrieving, modifying and
performing operations (such as joins) on
data stored in object storage and/or third-
party services. The lakehouse simplifies
access to data in Amazon S3, AWS Lake
Formation, Amazon Redshift, and so on.

• One or more functions capable of
discovering, profiling, cataloging and/
or facilitating access to distributed data
stored in object storage and/or third-party
services. For example, a modeler creates
n denormalized views that combine data
stored in both the data lakehouse and in the
staging zone of an AWS Lake Formation (that
is, a data lake). The modeler also designs
a series of more advanced models that
incorporate data from an Amazon Redshift
sales data mart.

https://www.itprotoday.com/data-analytics-and-data-management/cloud-api-rate-limits-create-hurdles-data-analytics
http://www.itprotoday.com

11
PREVIOUS NEXT

The Data Lakehouse Explained

ow, let’s explore the advantages and
disadvantages of the data lakehouse
— both as its own thing and as a

replacement for the data warehouse. Part
3 considers the requirements the data
lakehouse must address if it is to completely
replace the warehouse.

The Formal, Technical Requirements of
Data Warehouse Architecture

First, what must the data lakehouse
be able to do if it is fully to replace the
data warehouse? At minimum, the set of
capabilities provided by its software functions
must also comply with the formal, technical
requirements of data warehouse architecture.

From the point of view of data warehouse

architecture, it is less important that a query
platform should provide fast results than
that these results should be uniform and
replicable.* In practice, the trick is to balance
these requirements against one another, to
achieve query results that are fast enough
and also uniform and replicable.

This is actually much easier said than done. It
is the reason why Hive + Hadoop consistently
failed when used as a data warehouse
replacement. It is the reason why distributed
NoSQL systems almost always have problems
when tapped for use as would-be RDBMS or
data warehouse replacements.

Against this backdrop, let’s review the
formal, technical requirements of data
warehouse architecture.

Part 3: Assessing the Viability
of the Data Lakehouse
N

The data warehouse is the following:
• A single, central repository for topical and

historical business data
• A system that permits a panoptic view

across the business and its function areas
• A system that permits a monitoring/

feedback loop into the performance of
the business

• A system that consumers can use to
pose common and/or unpredictable (ad
hoc) questions

• A system that delivers consistent,
uniform query results (i.e., everybody has
the same data)

• A system capable of hosting concurrent
jobs/users and highly demanding
mixed workloads

• A system capable of enforcing strict,
invariant data management and data
processing controls

• A system capable of anticipating and
resolving conflicts that occur between

https://jepsen.io/analyses
https://jepsen.io/analyses
http://www.itprotoday.com

12
PREVIOUS NEXT

The Data Lakehouse Explained

requirements 5, 6 and 7

Does the data lakehouse fit the bill?
It depends on how you implement data
lakehouse architecture.

If you architect your lakehouse by pointing
a SQL query service at the curated zone of a
data lake, you will have an implementation
that is almost certainly able to scale to
address requirements 1 through 4. However,
this implementation will probably struggle
with requirements 5 through 8, inasmuch as
each demands an engine that has the ability
to enforce strict consistency, uniformity and
replicability guarantees while also performing
multiple, simultaneous operations on data.
This is because requirements 5 through 8
go to the wicked problem of managing (and
resolving) the conflicts that occur as a result
of concurrency.

Reality Check: It Is Not OK To Drop
ACID-like Safeguards

In a classic, tightly coupled data warehouse
implementation, the warehouse is usually

and logic to resolve the conflicts that tend to
occur between concurrent operations on data.
So, it is possible to design the data warehouse
as an append-only data store and to commit
new records in a timeline — for example, as new
rows. If you can only append new records (that
is, you cannot change or delete existing ones),
concurrency conflicts cannot occur. You can
likewise design coordination logic to address
data uniformity requirements, to ensure that if
n users/jobs query the warehouse at the same
time, each will query against exactly the same
records in the timeline.

In practice, however, the easiest way to
address these requirements is by using an
RDBMS. The RDBMS is also optimized to
quickly and correctly perform the relational
operations (such as different kinds of joins)

instantiated in a relational database, or
RDBMS. Almost all RDMBSs enforce ACID
safeguards that enable them to perform
concurrent operations on data while at the
same time maintaining strong consistency.

In the popular imagination, ACID safeguards
are associated with online transaction
processing (OLTP), which is also strongly
associated with the RDBMS. It must be
emphasized, however, that a data warehouse
is not an OLTP system: You do not need to
deploy a data warehouse on an RDBMS.

Reduced to a primitive technology
prescription, the database engine at the heart of
the data warehouse requires two things: a data
store that has the ability to create and manage
tables, as well as to append records to them,

that are essential in analytical work. These
are but two of the reasons the on-premises
data warehouse is usually identical with the
RDBMS — and why a procession of would-be
replacements, such as Hadoop + Hive, failed
to displace the conventional warehouse.

It is also the reason almost all PaaS data
warehouse services are designed as RDBMS-
like systems. As I wrote in a previous article of
mine, “if you eschew in-database ACID database
safeguards, you must either roll your own ACID
enforcement mechanisms or accept data loss
as inevitable.” This means that you have a choice
among building ACIDic logic into your application
code, designing and maintaining your own ACID-
compliant database, or delegating this task to
a third-party database.

Data Warehouse Workloads Require
Consistency, Uniformity and
Replicability Safeguards

Like it or not, consistency, uniformity and
replicability are common requirements for
production data warehouse workloads.

“In a classic, tightly coupled data warehouse
implementation, the warehouse is usually instantiated

in a relational database, or RDBMS.”

http://en.wikipedia.org/wiki/Wicked_problem
https://aphyr.com/posts/313-strong-consistency-models
https://www.itprotoday.com/analytics-and-reporting/when-it-ok-drop-acid-database-safeguards
http://www.itprotoday.com

13
PREVIOUS NEXT

The Data Lakehouse Explained

For example, core operational business
workflows routinely query the warehouse. In a
production use case, then, the data lakehouse
that replaces it might be expected to service
hundreds of such queries per second.

Let’s consider what this entails by looking
closely at a representative workload — for
example, a credit-application process that
queries the lakehouse for credit-scoring
results dozens of times each second. For
statutory and regulatory reasons, queries
processed at the same time must return
correct results (“correct” as in they all use the
same scoring model). This model also uses
the same point-in-time data, albeit adjusted
for customer-specific variations.

But what if a concurrent operation attempts
to update the data used to feed one or more
of the model’s parameters? The RDBMS’
ACID safeguards would prevent this update
from being committed until after the results
of the (dependent) credit-scoring operations
had first been committed.

In the tightly coupled RDBMS, the database
kernel manages this. In the credit-scoring
example above, the RDBMS locks the rows
in the table(s) in which dependent data is
recorded; this prevents other operations
from modifying them. It is just not clear
how to manage this in the data lakehouse
architecture, with its layered stack of
decoupled services.

A fit-for-purpose data lakehouse service
should be able to enforce ACID-like
safeguards — if it is its own data lake and
can control concurrent access to (and
modification of) the objects in its data lake
layer. Again, this is what Databricks and
Dremio have done in their implementations
of data lakehouse architecture. They solve
the problem of coordinating concurrent

Can a SQL query service enforce the same
safeguards? Can it do this even if objects in
the data lake’s curated zone are accessible
to other services (say, an AWS Glue ETL
service), which are also able to update data
at the same time?

The example above is by no means
uncommon. It is, rather, the routine way of
doing things. In other words, if you need to
ensure consistent, uniform and replicable
results, you need ACIDic safeguards. The
upshot is that data warehouse workloads
require these safeguards.

Can Data Lakehouse Architecture Enforce
These Safeguards?

It depends. The first issue has to do with the
fact that it is difficult to coordinate dependent
operations across loosely coupled services.
So, for example, how does an independent
SQL query service restrict access to records
in an independent data lake service? This is
necessary to prevent concurrent users from
modifying objects in the lake’s curated zone.

access to (and operations on) resources that
are shared across services by less loosely
coupling these services to one another.

By contrast, this is much more difficult
if the data lakehouse is implemented as a
layered stack of loosely coupled, independent
services — for example, a discrete SQL query
service that sits atop the curated zone of a
discrete data lake service, which itself sits
atop a discrete object storage service. It
cannot achieve strong consistency because
it cannot control access to the objects in the
data lake.

Final Thoughts
In any distributed topology, the challenge

is to coordinate concurrent access to shared
resources while at the same time managing

“Like it or not, consistency, uniformity and replicability are common
requirements for production data warehouse workloads.”

http://www.itprotoday.com

14
PREVIOUS NEXT

The Data Lakehouse Explained

multiple dependent operations on these
resources across space and time. This is
true whether software functions (and the
resources they operate on) are tightly or
loosely coupled. So, for example, the way
distributed processing is handled in a classic
data warehouse implementation is by
instantiating the warehouse as a massively
parallel processing (MPP) database. The
MPP database kernel identifies, schedules
and coordinates dependent operations
across the nodes of the MPP cluster, as well
as manages (and resolves) the conflicts that
occur between dependent operations. In
other words, the MPP database kernel is
able to enforce strict ACID safeguards while
also performing concurrent operations in a
distributed topology. This is no mean feat.

By contrast, a loosely coupled
distributed software architecture, such as
data lakehouse architecture, is confronted
with the problem of coordinating access
to resources and managing dependencies
across what are, in effect, independent

itself. At a minimum, it is to tightly couple the
lakehouse and the lake, to introduce (and
to consolidate) a dependency on a single
software platform and, just as important,
on a single provider.

* For more on the distinction between uniformity
and replicability, read this article. The nickel summary:
If n consumers query the same data at the same time,
they should all receive exactly the same results, even if

services. This is a wicked problem.

This is one reason the data lakehouse
(like the data lake itself) usually
functions as what is called an eventually
consistent platform rather than as a strongly
consistent platform.

On the one hand, it is able to enforce ACID-
like safeguards; on the other hand, it may
lose data and be unable to deliver uniformly
replicable results. To enforce strict ACID
safeguards would require combining the
data lakehouse and the data lake into one
platform: to tightly couple both services to
one another.** For what it is worth, this is
the likely tendency of data lake/lakehouse
evolution: Each will converge into the other,
provided the idea of the data lakehouse
actually has staying power.

However, to implement the data
lakehouse as its own data lake is (in effect)
to recapitulate the phylogeny of the data
warehouse: It is to put the data lakehouse on
the same evolutionary path as the warehouse

another consumer (e.g., an ETL job) attempts to update
this data. This is what is meant by uniformity. If the
data warehouse were to re-sequence and re-run these
operations in times, it would produce exactly the same
results each time. This is what is meant by replicability.

** I will not attempt to vet the claims to strong
consistency made by prominent data lakehouse +
data lake providers. It seems to me that theirs is an
especially wicked problem indeed. Instead, I say with
Augustine: “I believe that I may understand.”

http://www.itprotoday.com/analytics-and-reporting/when-it-ok-drop-acid-database-safeguards
http://en.wikipedia.org/wiki/Eventual_consistency
http://en.wikipedia.org/wiki/Eventual_consistency
http://en.wikipedia.org/wiki/Recapitulation_theory
http://www.itprotoday.com

15
PREVIOUS NEXT

The Data Lakehouse Explained

ow we’ll look at the role of data
modeling in the context of designing,
maintaining and using the lakehouse.

I assess the claim that the lakehouse is a
light alternative to the data warehouse.

Data Lakehouse vs. Data Warehouse:
Death, Taxes and Data Modeling

In making the case for the lakehouse as a
data warehouse replacement, proponents
usually point to a few extra benefits.
The first benefit is that the lakehouse is
supposed to simplify data modeling, which
(in turn) is supposed to simplify ETL/data
engineering. A second claimed benefit
goes to the reduced cost of managing
and maintaining ETL code. A third claimed
benefit is that the elimination of data
modeling makes the lakehouse less apt to
“break” — that is, the routine alterations and

Part 4: The Use of Data Modeling with the Data Lakehouse
N

http://www.itprotoday.com/big-data/data-lakehouse-and-data-hub-going-beyond-just-data-storage
http://www.itprotoday.com

16
PREVIOUS NEXT

The Data Lakehouse Explained

vicissitudes of business, such as merger-
and-acquisition activity, expansion into
(or retreat from) new regions, and the
launching of new services, do not break
the lakehouse’s data model because there
is no data model to break.

How a Bill Becomes a Law, or How Data Is,
or Isn’t, Modeled for the Data Lakehouse

To understand what this means, let’s look
at a best-case scenario for modeling in the
data lakehouse.

• Data is ingested by the data lake’s
landing zone.

• Some/all raw data is optionally persisted
in a separate zone for archival storage.

• Raw data, or predefined extracts of raw
data, are moved into one of the data lake’s
staging zones. The lake may maintain
separate staging zones for different types
of users/practices.

• Raw OLTP data may undergo immediate
data engineering (for example, scheduled
batch ETL transformations) after which

is lightly engineered — put into a columnar
format — prior to its instantiation in the data
lake’s curated zone. This is where the data
lakehouse is supposed to take over.

How much data must be instantiated in the
lakehouse’s curated zone?

The simple answer is as little or as much
as you want. The pragmatic answer is it
depends on the use cases, practices and
consumers the data lakehouse is intended
to support. The nuanced answer: Modeling
data at the level of a historical data store
(such as the warehouse or the lakehouse)
has an essential strategic purpose, too.

Before we unpack this claim, let’s look at
what happens to data once it gets loaded
into the data lake’s curated zone. The data
in the curated zone is usually persisted in a
columnar format, such as Apache Parquet.
This means, for example, that the volume
of data that comprises the curated zone
is distributed across hundreds, thousands,
even millions of Parquet objects, all of

it gets loaded directly into the data lake’s
curated zone.

• Data in the lake’s staging zones is
made available to different kinds of
jobs/expert users.

• A subset of data in the lake’s staging
zones is engineered and moved into the
curated zone.

• Data in the curated zone is lightly
modeled — for example, it is stored in an
optimized columnar format.

• The data lakehouse is a modeling
overlay (akin to a semantic model) that is
superimposed over data in the lake’s curated
zone or, optionally, over select data in its
staging zones.

• Data in the lake’s curated zone is
unmodeled. In the data lakehouse, per se,
data modeling is instantiated in application-
or use case-specific logical models, akin to
denormalized views.

So, for example, rather than engineering
data so it can be stored in and managed by
a data warehouse (usually an RDBMS), data

which live in object storage. This is one
reason the curated zone usually eschews
a complex data model in favor of a flat or
one-big-table (OBT) schema — basically,
a scheme in which all data is stored in
a single denormalized table. (The idea
is to maximize the advantages of object
storage — high-bandwidth and sustained
throughput — while minimizing the cost
of its high and/or unpredictable latency.)
A claimed benefit of this is that the flat-
table or OBT schema eliminates the need
for the logical data modeling that is usually
performed in 3NF or Data Vault modeling,
as well as the dimensional data modeling
performed in Kimball-type data warehouse
design. This is a significant timesaver,
lakehouse proponents say.

But wait, isn’t this how data is also modeled
in some data warehouse systems?

One problem with this is that data
warehouse systems commonly run flat-
table and OBT-type schemas, too. In fact,

https://www.itprotoday.com/analytics-and-reporting/cloud-based-object-storage-pros-and-cons-data-management
http://www.itprotoday.com

17
PREVIOUS NEXT

The Data Lakehouse Explained

OBT schemas were used with the first data
warehouse appliance systems in the early
2000s. Today, OBT schemas are commonly
used with cloud PaaS data warehouses,
such as Amazon Redshift and Snowflake.
The upshot is that if you do not want to
perform heavy-duty data modeling for the
data warehouse, you do not have to. For
good or ill, plenty of organizations opt not
to model.

This gets at a more perplexing problem,
however: Why do we model data for the
warehouse in the first place? Why do data
management practitioners place such great
store in data modeling?

The reason is, like it or not, data modeling
and engineering are bound up with the
core priorities of data management, data
governance and data reuse. We model
data to better manage, govern and (a
function of both) reuse it. In modeling
and engineering data for the warehouse,
we want to keep track of where the data

for a semantic layer, or encapsulating
data engineering and modeling logic in
code itself. These alternatives tend to
focus on specific applications, use cases
and consumers.

The Unbearable Fragility of Data Modeling
A final problem is that the typical anti-data

modeling frame is misleading. To eschew
modeling at the data warehouse/lakehouse
layer is to concentrate data modeling in
another layer. You are still modeling and
engineering data; you are just doing it in
different contexts, such as in a semantic
layer or in code itself. You still have code
to maintain. You still have things that can
(and will) break.

Imagine, for example, that a business
treats Europe, the Middle East and Africa
(EMEA) as a single region, then suddenly
decides to create separate EU, ME and
Africa divisions. Yes, a change of this kind
will require it to make changes to its data
warehouse’s data model. However, it will also

came from and what has been done to
it, when, and (not least) by whom or by
what. (In fact, the ETL processes used to
populate the data warehouse generate
detailed technical metadata to this
effect.) Similarly, we manage and govern
data so that we can make it available to,
and discoverable by, more and different
types of consumers — and, especially, by
non-expert consumers.

To sum up, we model data so we can
understand it, so we can impose order on it,
and so we can productionize it in the form
of managed, governed, reusable collections
of data. This is why data management
practitioners tend to be adamant about
modeling data for the warehouse. As they
see it, this emphasis on engineering and
modeling data makes the warehouse
suitable for a very wide range of potential
applications, use cases and consumers.

This is in contrast to alternatives that
focus on engineering and modeling data

affect the denormalized views instantiated
in its semantic layer. At minimum, modelers
and business subject-matter experts must
refactor these views. They may also opt to
rebuild some of them from scratch.

The essence of the claim is that it is
easier, faster and cheaper to fix problems
in a semantic layer or in code than to make
changes to a central repository, be it a data
warehouse or a data lakehouse. This claim
is not wrong, exactly, just tendentious. At
the very least, it arises out of a distorted
sense of how and why data gets modeled,
be it for the old-school data warehouse or
for the data lakehouse.

Both sides have valid concerns and make
good points. It is a question of balancing
costs and benefits.

Final Thoughts
To assume that the lakehouse reduces

or eliminates data modeling — and, with it,
the complexity of ETL engineering — is to

https://www.fivetran.com/blog/star-schema-vs-obt
http://www.itprotoday.com/analytics-and-reporting/data-warehouse-automation-and-hybrid-multi-cloud
http://www.itprotoday.com/analytics-and-reporting/data-warehouse-automation-and-hybrid-multi-cloud
http://www.itprotoday.com/data-analytics-and-data-management/why-governance-data-starts-risk-awareness
http://www.itprotoday.com/data-analytics-and-data-management/why-governance-data-starts-risk-awareness
http://www.itprotoday.com

18
PREVIOUS NEXT

The Data Lakehouse Explained

ignore the purpose of data modeling in data
management. It is likewise to play a kind
of shell game with ETL. As a friend who
works as an ML solutions architect likes
to remind me: “You can never escape the
work of ETL; you can only ever push it
somewhere else.”

It is never easy to accommodate business
change. To change something about the
business is to break the correspondence
between a data model that represents
events and phenomena in the business’s
world and reality itself. This correspondence
is never identical.

At best, it serves a purpose: It makes
it possible for the business to see,
understand and manipulate its structure,
operations, and so on.

It is probably easier, on the whole, to
shift most data modeling logic to a BI/
semantic layer. In the scenario above, for
example, modelers and SMEs must design
a new warehouse data model; repopulate

the data lakehouse or the data warehouse,
that is an option — and has been for quite
some time.

On the other hand, an organization
that opts to model data for its lakehouse
should have less modeling to do in its BI/
semantic layer. Perhaps much less. Yet, the
data in this lakehouse should be lucid and
understandable to, as well as reusable by,
a larger pool of potential consumers.

For this reason, these consumers are
also more likely to trust the data in the
data lakehouse.

By the way, this is another case in

the data warehouse; and fix and identify
broken queries, stored procedures, UDFs,
and so on. However, they must also fix the
modeling logic that is instantiated in the
BI/semantic layer. This is extra work, no
doubt about it.

As I have shown, however, this is
not a problem that is specific to the
data warehouse. In fact, it has just as
much salience for any organization that
implements a data lakehouse system.
The idea of a lightly modeled historical
repository for business data is not new;
ergo, if you want to eschew modeling for

which a less loosely coupled data

lakehouse implementation (for example,

Databricks’ Delta Lake or Dremio’s SQL

Lakehouse Platform) has an advantage

relative to what I call an “ideal” data

lakehouse implementation — that is, an

implementation in which the data lakehouse

is cobbled together out of loosely coupled

services, such as a SQL query service, a

data lake service or a cloud object storage

service. It makes more sense to model

and govern data in a tightly coupled data

lakehouse implementation in which the

data lakehouse has sovereign control over

business data.

It is not clear how this is practicable in

an implementation in which a SQL query

service does not have sovereign control over

the objects that live in the curated zone of

the underlying data lake.

“To change something about the business is to break the
correspondence between a data model that represents events and

phenomena in the business’s world and reality itself.”

http://www.itprotoday.com

19
PREVIOUS NEXT

The Data Lakehouse Explained

or the most part, previous parts of
this report have treated the data
warehouse as a kind of strawman.

For example, I have mostly compared the
data lakehouse and its cloud-native design
with classic implementations of the data
warehouse — as if cloud-native concepts
and methods had not also been applied to
data warehouse architecture or, put another
way, as if data warehouse architecture were
stuck in time.

So far, I have said next to nothing about
the platform-as-a-service (PaaS) or query-
as-a-service (QaaS)* data warehouse, nor
have I discussed these schemes as novel
implementations that are comparable in both
capabilities and (as it were) cloud “nativity”

with the no less novel data lakehouse.

This idea is implicit in prior analysis,
however. In Part 2, for example, I made the
point that data warehouse architecture
is less a technology prescription than a
technical specification: Instead of telling
us how to build the data warehouse, it tells
us what that system is supposed to do and
how it is supposed to behave. It outlines
the features, capabilities, and so on that
are required by that system.

One implication of this is that there are
several possible ways to implement the data
warehouse. Another is that the requirements
of data warehouse architecture are not
necessarily in conflict with those of cloud-

Part 5: The Data Lakehouse
vs. the PaaS Data Warehouse
F

native design. A final implication is that
the cloud-native data warehouse actually
has quite a few things in common with the
data lakehouse, even as it departs from that
implementation in critical respects.

With this as background, let’s pivot to the
culminating questions of this report: What
do the data lakehouse and the PaaS data
warehouse have in common, and how are
they different?

The PaaS Data Warehouse Sure Looks
Like a Data Lakehouse

Both the PaaS data warehouse and
the data lakehouse have quite a bit in
common. Like the data lakehouse, the PaaS
data warehouse:

• Lives in the cloud
• Separates compute, storage and

other resources
• Can elastically expand/contract to suit

http://www.itprotoday.com/analytics-and-reporting/data-warehouse-automation-and-hybrid-multi-cloud
http://www.itprotoday.com/analytics-and-reporting/data-warehouse-automation-and-hybrid-multi-cloud
http://www.itprotoday.com

20
PREVIOUS NEXT

The Data Lakehouse Explained

spikes in demand, seasonal/one-off use
cases, and so on

• Is event-driven and can provision
compute or (if necessary) temporary
storage resources in response to event
triggers and deprovision these resources
once they are no longer needed

• Is co-local with (intra-cloud adjacent to)
other cloud services, including the data lake

• Like the data lake/house, writes data
to and reads data from inexpensive cloud
object storage

• Can query/facilitate federated access to
data stored in any of the data lake’s zones

• Can eschew all but basic data modeling,
as in flat or OBT schemas

• Can ingest, manage and perform
operations on semi- and multi-structured data

• Can query across multiple data models
(for example, time-series, document, graph
and text)

• Can expose denormalized views (models)
to support specific uses cases, applications
and so on

cloud-native data warehouse is able
to enforce strict ACID safeguards.

The “ideal” data lakehouse implementation
is cobbled together out of discrete, fit-
for-purpose services. So, for example,
an ideal data lakehouse implementation
consists of a SQL query service
superimposed on top of a data lake service,
which itself sits on top of a cloud object
storage service. This is consistent with
a trend in software design that aims to
decompose large, complex programs into
smaller, function-specific programs, which
are instantiated as discrete services. These
services are “decoupled” from one another
in the sense that they have very little
knowledge about how the complementary
services with which they interact are
supposed to work. By assembling multiple

• Exposes different types of RESTful
endpoints, in addition to SQL

• Supports — via discrete APIs or language-
specific SDKs — GraphQL, Python, R, Java
and more.

The PaaS Data Warehouse Is (More)
Tightly Coupled Where It Matters

Compared to the data lakehouse, the
cloud-native data warehouse seems like a
tightly coupled stack.**

The advantage of this is that the cloud-
native warehouse is able to manage and
control the software functions that read and
write data, as well as schedule, distribute
and perform operations on data; manage
dependencies between these operations;
implement consistency, uniformity and
replicability safeguards; and so on. The

services together, you can approximate
the behavior and performance of a large
(monolithic) application. And, you also
realize a few of the benefits that derive from
this design. (For more on this, see Part 2 of
this report.)

The disadvantage of this is that it poses
problems vis-à-vis concurrent computing,
especially when it comes to coordinating
concurrent access to shared resources.
As I showed in Part 3 of this report, the
data warehouse solves this problem by
having the RDBMS kernel enforce strict
ACID safeguards.

It is not obvious how to solve this problem
in an ideal data lakehouse implementation.
One solution is to follow Databricks’ lead —
that is, to couple the data lake to the data
lakehouse in a single platform.

If a data lakehouse was its own data lake
— and if it could also supervise concurrent
access to the data in this lake — a data
lakehouse service might be able to enforce

“The ‘ideal’ data lakehouse implementation is cobbled together out
of discrete, fit-for-purpose services.”

http://www.itprotoday.com/analytics-and-reporting/when-it-ok-drop-acid-database-safeguards
http://www.itprotoday.com

21
PREVIOUS NEXT

The Data Lakehouse Explained

ACID-like safeguards. However, in this
model, the data lakehouse and the data
lake would be tightly coupled, creating
dependency on a single software platform
— and a single provider.

A Data Warehouse Is a Data Warehouse …
Is a Data Lakehouse?

Let’s pivot to a provocative question: Can
the PaaS data warehouse do all of the things
the data lakehouse can do? Possibly. Think
about it: What is the difference between
a SQL query service that queries against
data in the curated zone of a data lake and
a PaaS data warehouse that lives in the
same cloud context, has access to the same
underlying cloud object storage service and
is able to do the same thing? What is the
difference between a SQL query service
that facilitates access to data in the lake’s
archival, staging and other zones and a
PaaS data warehouse that is able to do the
same thing?

The data lake and the data warehouse

As I also said in Part 3 of this report, it
is less important that a query platform
provide fast results than that these results
are uniform and replicable. In fact, the trick
is to balance all three requirements against
one another. This means the platform is
able to achieve query results that are fast
enough while at the same time maintaining
a consistent state and ensuring the
uniformity and applicability of results. The
PaaS data warehouse is just a much faster
query-processing platform than a SQL query
service. It wins this one easily.

Eliminates the requirement to model and
engineer data structures prior to storage

Part 4 of this report debunked this
claim. The practice of modeling and
engineering data structures prior to
instantiating them in storage is not
specific to the data warehouse; rather, it
is performed to promote data intelligibility,
data governance and data reuse.

The upshot is that organizations will opt to

seem to have been converging toward one
another for a long time. So, on the one hand,
the lakehouse looks like a textbook example
of lake-to-warehouse convergence. On the
other hand, the warehouse’s support for
multiple data models and its retrofitting with
data federation and multi-structured query
capabilities — that is, the ability to query
files, objects or arbitrary data structures
— are arguably examples of a warehouse-
to-lake convergence trend.

Let’s look at a few of the claimed
differences between the data lakehouse
and the data warehouse and see if these,
too, have been obviated by convergence.
Here are a few obvious ones to consider:

Has the ability to enforce safeguards to
ensure the uniformity and replicability
of results

I discussed this above. The PaaS data
warehouse wins this one easily.

Has the ability to perform core data
warehousing workloads

model and engineer data for both the PaaS
data warehouse and the data lakehouse.
Organizations that eschew all but basic data
modeling for their PaaS data warehouses
could realize significant improvements in
query performance, relative not only to
normalized (3NF) schemas but also to
denormalized schemas.

Protects against cloud-service-
provider lock-in

Advocates argue that ideal data lakehouse
architecture helps insulate subscribers
against the risk of service provider-
specific lock-in. So, to cite one example, if
a subscriber is dissatisfied with its existing
SQL query service, it can swap this service
out for another, comparable one.

How practicable is this, however? Will the
modeling instantiated in the subscriber’s
semantic layer also transfer? Will experts
have to refactor modeling logic to work with
the new service? And, if a subscriber wants
to switch to a different data lake — say, from

http://www.itprotoday.com

22
PREVIOUS NEXT

The Data Lakehouse Explained

AWS Lake Formation to a fit-for-purpose
data lake service, also hosted in AWS —
how simple is it, really, to swap out one
service for another? Quite aside from the
question of data movement, there is also
that of feature and function migration. For
example, will developers have to refactor the
data engineering and data modeling logic
instantiated in their code to work with the
new service?

On balance, an ideal data lakehouse
implementat ion st i l l has an
advantage here. However, this is less true
of an implementation that couples the data
lakehouse to a specific lake service.

Has the ability to support a diversity of
practices, use cases and consumers

The data warehouse has improved
significantly in this area. However, the
data lake has the advantage. It is cheaper
and more convenient to ingest, store,
engineer and experiment with data in the
lake than it is in the data warehouse. There

repositories and data producers, as well.
Similarly, commercial SQL query-as-a-
service providers will usually provide data
source connectors. (Several of these are
based on Presto, which simplifies things.)

The real trick is to link information
across data models — that is, across
relational, semi-, and multi-structured
data (for example, to relate CUST “Alan
Smithee,” who has loyalty CARD number
“8086486DX2,” in a relational data model
to client “Wang Ermazi,” who lives at “2500
West End Ave” in ZIP code “37203,” in a
document database). Again, this gets at
the difficulty of supporting use cases that
require or benefit from resource sharing in
any ideal implementation in which software
functions are supposed to be decomposed

are fewer impediments, such as internal
stumbling blocks in the form of policies,
controls and processes, to constrain the
use and the usefulness of the data lake
in connection with data engineering, ML/
AI engineering, data science and other
experimental use cases. The data lake wins
this one going away.

Has the ability to query against/across
multiple data models

The data lakehouse sits atop the data
lake, which is designed to ingest, store
and manage data of any type. Ergo, if
an organization puts time series, graph,
document and other data into the data lake,
this data will be available to, and queryable
by, its data lakehouse. Right?

Usually. For example, a SQL query services
such as Presto can use a connector to
access, say, MongoDB, a NoSQL document
database. In this scheme, Presto accesses
MongoDB as if it were one or more external
tables. Presto has connectors for other

into discrete, decoupled services.

How does one do this in ideal data
lakehouse architecture — that is,
with just a SQL query service?

As for the PaaS data warehouse, it, too,
can use Presto (or its own federated query
services) to get at data stored in NoSQL
repositories and other sources. More
importantly, many relational databases
can also ingest, manage, query against and
perform operations on time series, graph,
document, text and other data. They can
link information across data models, too.

Let’s call this one a draw, although
evidence suggests a multi-model RDBMS
will do a better job with this if it also stores
and manages the requisite time series,

“The data lakehouse sits atop the data lake, which is designed to
ingest, store and manage data of any type.”

https://en.wikipedia.org/wiki/Alan_Smithee
https://en.wikipedia.org/wiki/Alan_Smithee
http://www.itprotoday.com

23
PREVIOUS

The Data Lakehouse Explained

graph and other data internally.

Final Thoughts: The Complementary
Data Lakehouse

This is not to dismiss the data lakehouse
as a useful innovation. The use cases
described in Part 1 of this report are
indisputably compelling. Moreover, it is
arguably easier — in the sense that it is
possible both to move quickly and at the
same time to bypass internal impediments
— to use the data lakehouse to support
time-sensitive, unpredictable, one-off and
other workloads and use cases.

The data warehouse is (as it should be) a
strictly governed system: It does not “turn,”
it is not changed, on a dime. But this is to
the data lakehouse’s advantage, in that it
comprises a less strictly governed, more
agile alternative to the warehouse. In other
words, the lakehouse can be seen as a
complement to, and not a replacement of,
the data warehouse.

The problems I explore in Part 5 and its

companion parts stem from the drive to

replace the data warehouse with the data

lakehouse. In this specific respect, the data

lakehouse falls short. The upshot is that it

is difficult, if not impossible, to square the

circle — to reconcile the design requirements

of an ideal data lakehouse implementation

with the technical requirements of data

warehouse architecture.

* Basically, Google BigQuery, as distinct from the type

of SQL query services used with the data lakehouse.

** Under their covers, most PaaS data warehouse

services are probably architected on similar schemes.

Their constituent software functions — that is, services

— are typically tightly coupled, however, such that

they cannot be exchanged for equivalent services.

So, for example, a subscriber cannot expect to take

Amazon Redshift’s query optimizer and use it with

Snowflake’s PaaS data warehouse. Neither AWS nor

Snowflake expose API endpoints to permit anything

like this use case.

http://www.itprotoday.com

