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he term “lakehouse” is a pun/
portmanteau. It derives from the 
two foundational technologies — the 

data lake and the data warehouse — from 
which the concept of the data lakehouse 
itself derives.

At a high level, the data lakehouse consists 
of the following components:
• Data lakehouse 
• Data lake 
• Object storage

The data lakehouse describes a data 
warehouse-like service that runs against 
a data lake, which sits on top of an 
object storage service. These services 
are distributed in the sense that they are 

not consolidated into a single, monolithic 
application, as with a relational database. 
They are independent in the sense that they 
are loosely coupled — that is, they expose 
well-documented interfaces that permit 
them to communicate and exchange data 
with one another. (Loose coupling is a 
foundational concept in distributed software 
architecture and a defining characteristic of 
cloud services and cloud-native design. The 
second part of this report explores the cloud-
native underpinnings of the lakehouse.)

How Does the Data Lakehouse Work?
From the top to the bottom of the data 

lakehouse stack, each constituent service is 
more specialized than the service that sits 

Part 1: An Introduction to 
Data Lakehouses
T

“underneath” it.

Data lakehouse: The titular data lakehouse 
is a highly specialized abstraction layer 
— basically, a semantic layer — that 
exposes data in the lake for operational 
reporting, ad hoc query, historical analysis, 
planning and forecasting, and other data 
warehousing workloads.

Data lake: The data lake is a less specialized 
abstraction layer that schematizes and 
manages the objects contained in an 
underlying object storage service (e.g., AWS 
S3, Google Cloud Platform Storage, Azure 

Blob, etc.) as well as schedules operations 
to be performed on them. The data lake 
can efficiently ingest and store data of 
every type, including not only relational 
data (which it persists in a columnar object 
format), but also semi-structured (text, logs, 
documents) and multi-structured (files of 
any type) data.

Object storage: As the foundation of the 
lakehouse stack, object storage comprises 
an even more basic abstraction layer: 
a performant and cost-effective 
means of provisioning and scaling 

http://www.itprotoday.com
http://www.itprotoday.com/object-storage/object-storage-why-organizations-are-making-switch
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storage, on-demand storage.

Again, for this to work, data lakehouse 
architecture must be more (or less) loosely 
coupled, at least in comparison with the 
classic data warehouse, which depends on 
the RDBMS to provide most functions.

So, for example, several providers market 
cloud SQL query services that, when 
combined with cloud data lake and object 
storage services, can be used to create the 
data lakehouse. Think of this as the “ideal” 
data lakehouse — ideal in the sense that it 
is a rigorous implementation of a formal, 
loosely coupled architectural design. The 
SQL query service runs against the data lake 
service, which sits on top of an object storage 
service. Subscribers instantiate prebuilt 
queries, views and data modeling logic in 
the SQL query service, which functions like 
a semantic layer. Voila: the data lakehouse.

This implementation is distinct from the 
data lakehouse services that Databricks, 
Dremio and others market. These 

consist of the following:

•  One or more ingest or landing zones 
for data

•  One or more staging zones, in which 
experts work with and engineer data

•  One or more “curated” zones, in 
which prepared/engineered data is made 
available for access.

In most cases, the data lake is home to all 
of an organization’s useful data. This data is 
already there. So, the data lakehouse begins 
with an innocuous idea: Why not query 
against this data where it lives?

It is in the curated zone of the data lake that 
the data lakehouse itself lives, although it is 
also able to access and query against data 
that is stored in the lake’s other zones. In this 
way, its proponents claim, the data lakehouse 

implementations are usually coupled to a 
specific data lake implementation, with the 
result that deploying the lakehouse means, 
in effect, deploying each vendor’s data lake 
service, too.

The formal rigor of an ideal data lakehouse 
implementation has one obvious benefit: 
It is notionally easier to replace one type 
of service (for example, a SQL query) with 
an equivalent commercial or open source 
service. As we shall see, however, there 
are advantages to a less loosely coupled 
data lakehouse implementation, especially 
in connection with demanding data 
warehousing workloads.

What Is New And/or Different About the 
Data Lakehouse?

It all starts with the data lake. Again, the 
data lakehouse is a higher-level abstraction 
superimposed over the data in the lake. The 
lake usually comprises several zones, the 
names and purposes of which vary according 
to implementation. At a minimum, these 

is able to support not only traditional data 
warehousing use cases, but also novel use 
cases such as data science and machine 
learning/artificial intelligence engineering.

The following is a mostly uncritical 
summary of the claimed advantages of the 
data lakehouse.

Subsequent parts of this report will explore 
and assess the validity of these claims:

More agile and less fragile than the 
data warehouse

Advocates argue that querying against 
data in the lake eliminates the multi-step 
process entailed in  moving the data, 
engineering it and moving it again prior to 
loading it into the warehouse. (In extract, 
load, transform [ELT], data is engineered in 

“The data lakehouse is a higher-level abstraction  
superimposed over the data in the lake.”

http://www.itprotoday.com/hybrid-cloud/red-hats-2021-open-source-survey-whos-using-software-and-why
http://www.itprotoday.com/hybrid-cloud/red-hats-2021-open-source-survey-whos-using-software-and-why
https://www.itprotoday.com/data-analytics-and-data-management/how-data-warehouse-automation-tools-do-and-dont-ease-cloud-moves
https://www.itprotoday.com/data-analytics-and-data-management/how-data-warehouse-automation-tools-do-and-dont-ease-cloud-moves
http://www.itprotoday.com
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the warehouse itself. This obviates a second 
data movement operation.) This process is 
closely associated with the use of extract, 
transform, load (ETL) software. With the 
data lakehouse, instead of modeling data 
twice — first, during the ETL phase, and, 
second, to design denormalized views for 
a semantic layer, or to instantiate data 
modeling and data engineering logic in code 
— experts need only perform this second 
modeling step.

The end result is less complicated (and 
less costly) ETL, as well as a less fragile 
data lakehouse.

Query against data in situ in the data lake

Proponents say that querying against the 
data lakehouse makes sense because all of 
an organization’s business-critical data is 
already there — that is, in the data lake. Data 
gets vectored into the lake from sensors 
and other signalers, from cloud apps and 
services, from online transaction processing 
systems, from subscription feeds, and so on.

every type. Moreover, the lake’s curated zone 
need not be restricted solely to relational 
data: Organizations can store and model time 
series, graph, document and other types of 
data there. Even though this is possible with 
a data warehouse, lakehouse proponents 
concede, it is not usually cost-effective.

More rapidly provision data for time-
sensitive use cases

Expert users — say, scientists working 
on a clinical trial — can access raw trial 
results in the data lake’s non-curated ingest 
zone, or in a special zone created for this 
purpose. This data is not provisioned for 
access by all users; only expert users who 
understand the clinical data are permitted 
to access and work with it. Again, this and 
similar scenarios are possible because the 

The strong claim is that the extra ability 
to query against data in the whole of the 
lake — that is, its staging and/or non-curated 
zones — can accelerate data delivery for 
time-sensitive use cases. A related claim is 
that it is useful to query against data in the 
lakehouse, even if an organization already 
has a data warehouse, at least for some 
time-sensitive use cases or practices.

The weak claim is that the lakehouse 
is a suitable replacement for the data 
warehouse. The third part of this report 
assesses the case for the lakehouse as a 
warehouse replacement.

Query against relational, semi-
structured and multi-structured data

The data lakehouse sits atop the data lake, 
which ingests, stores and manages data of 

lake functions as a central hub for data 
collection, access and governance. The 
necessary data is already there, in the data 
lake’s raw or staging zones, “outside” the 
data lakehouse’s strictly governed zone. The 
organization is just giving a certain class of 
privileged experts early access to it.

Better support for DevOps and 
software engineering

Unlike the classic data warehouse, the lake 
and the lakehouse expose a variety of access 
APIs, in addition to a SQL query interface.

For example, instead of relying on ODBC/
JDBC interfaces and/or ORM techniques 
to acquire and transform data from the 
lakehouse — or using ETL software that 
mandates the use of its own tool-specific 
programming language and IDE design 
facility — a software engineer can use her 
preferred dev tools and cloud services, 
so long as these are also supported by 
her team’s DevOps toolchain. The data 
lake/lakehouse, with its diversity of data 

“The data lakehouse sits atop the data lake, which ingests, stores 
and manages data of every type.”

http://www.itprotoday.com


6  
PREVIOUS NEXT

The Data Lakehouse Explained

exchange methods,  its abundance of co-
local compute services, and, not least, the 
access it affords to raw data, is arguably a 
better “player” in the DevOps universe than 
is the data warehouse. In theory, it supports 
a larger variety of use cases, practices and 
consumers — especially expert users.

True, most RDBMSs, especially cloud PaaS 
RDBMSs, now support access via RESTful 
APIs and/or language-specific SDKs. This 
does not change the fact that some experts, 
particularly software engineers, are not — at 
all — enamored of the RDBMS.

Another consideration is that the data 
warehouse, especially, is a strictly governed 
repository. The data lakehouse imposes its 
own governance strictures, but the lake’s 
other zones can be less strictly governed. 
This makes the combination of the data 
lake + data lakehouse suitable for practices 
and use cases that require time-sensitive, 
raw, lightly prepared, etc., data (such as 
ML engineering).

an assortment of intra-cloud compute 
services to engineer data. Experts need 
not use SQL; rather, they can work with their 
preferred languages, libraries, services and 
tools (notebooks, editors and/or favorite CLI 
shells). They can also use their preferred 
conceptual vocabularies. So, for example, 
experts can build and work with data 
pipelines, as distinct to designing ETL 

Support more and different types of 
analytic practices

For expert users, the data lakehouse 
simplifies the task of accessing and working 
with raw or semi-/multi-structured data.

Data scientists, ML and AI  engineers, 
and, not least, data engineers can put 
data into the lake, acquire data from it, 
and take advantage of its co-locality with 

jobs. In place of an ETL tool, they can use 
a tool such as Apache Airflow to schedule, 
orchestrate and monitor workflows.

Final Thoughts
It is impossible to disentangle the value 

and usefulness of the data lakehouse 
from that of the data lake. In theory, the 
combination of the two — that is, the data 
lakehouse layered atop the supervening data 
lake — outstrips the usefulness, flexibility 
and capabilities of the data warehouse. 
The discussion above sometimes refers 
separately to the data lake and to the data 
lakehouse. What is usually implied, however, 
is the co-locality of the data lakehouse with 
the data lake — the “data lake/house,” if 
you like.

So much for the claimed advantages of 
the data lake. Part 2 of this report makes 
the case that data lakehouse architecture 
comprises a radical break with classic data 
warehouse architecture.

http://www.itprotoday.com/devops-and-software-development/define-devops-terms-5-buzzwords-learn-2021
https://www.oreilly.com/radar/6-trends-framing-the-state-of-ai-and-ml/
https://www.oreilly.com/radar/6-trends-framing-the-state-of-ai-and-ml/
https://www.oreilly.com/radar/6-trends-framing-the-state-of-ai-and-ml/
http://www.itprotoday.com
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ow I focus on how the architecture 
of the data lakehouse compares with 
that of the classic, or conventional, 

data warehouse. This part imagines data 
lakehouse architecture as an attempt to 
implement some of the core requirements 
of data warehouse architecture in a modern 
design based on cloud-native concepts, 
technologies and methods. It explores 
the advantages of cloud-native design, 
beginning with the ability to dynamically 
provision resources in response to specific 
events, predetermined patterns and other 
triggers. It likewise explores data lakehouse 
architecture as its own thing — that is, as an 
attempt to address new or different types of 
practices, use cases and consumers.

to engineer their own novel implementations 
of the warehouse, which is what Joydeep 
Sen Sarma and Ashish Thusoo attempted 
to do with Apache Hive, a SQL interpreter for 
Hadoop, or what Google did with BigQuery, 
its NoSQL query-as-a-service offering.

The data lakehouse is an example in kind. 
In fact, to the extent that a data lakehouse 

How Data Lakehouse Architecture Differs 
from Data Warehouse Architecture

In an important sense, data lakehouse 
architecture is an effort to adapt the data 
warehouse — and its architecture — to cloud 
and, at the same time, to address a much 
larger set of novel use cases, practices and 
consumers. This is a less counterintuitive, 
and less daunting, claim than it might seem.

Think of data warehouse architecture as 
akin to a technical specification: It does not 
tell you how to design or implement the 
data warehouse; rather, it enumerates and 
describes the set of requirements (that is, 
features and capabilities) that the ideal data 
warehouse system must address. For all 
intents and purposes, then, designers are free 

implementation addresses the set of 
requirements specified by data warehouse 
architecture, it is a data warehouse.

In the first part of this report, we saw 
that data lakehouse architecture eschews 
the monolithic design of classic data 
warehouse implementations, as well as the 
more tightly coupled designs of big data-

Part 2: Comparing the Data Lakehouse with the Conventional 
Data Warehouse
N

http://www.itprotoday.com/analytics-and-reporting/data-warehouse-automation-and-hybrid-multi-cloud
http://www.itprotoday.com
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era platforms, such as Hadoop+Hive, or 
platform-as-a-service (PaaS) warehouses, 
such as Snowflake.

Design-wise, then, data lakehouse 
architecture is quite different. But how is it 
different? And why?

Adapting Data Warehouse Architecture 
to Cloud

The classic implementation of data 
warehouse architecture is premised on 
a set of dated expectations, particularly 
with respect to how the functions and 
resources that comprise the warehouse are 
to be instantiated, connected together and 
accessed. For one thing, early implementers 
of data warehouse architecture expected 
that the warehouse would be physically 
instantiated as an RDBMS and that its 
components would connect to one another 
via a low-latency, high-throughput bus. 
Relatedly, they expected that SQL would 
be the sole means of accessing and 
manipulating data in the warehouse.

But we tend to spend less time thinking 
about cloud as a metaphor for the event-
driven provisioning of virtualized hardware 
— and, by implication, for an ability to 
provision software in response to events, too.

This on-demand dimension is arguably the 
most important practical benefit of cloud’s 
elasticity. It is also one of the most obvious 
differences between the data lakehouse and 
the classic data warehouse.

The Data Lakehouse as Cloud-native 
Data Warehouse

Event-driven design at this scale 
presupposes a fundamentally different set 
of hardware and software requirements. It is 

A second expectation was that the data 
warehouse was to be online and available at 
all times. Moreover, its constituent functions 
were expected to be tightly coupled to one 
another. This was a feature, not a bug, of 
its instantiation in an RDBMS. This made 
it impracticable (and, for all intents and 
purposes, impossible) to scale the warehouse’s 
resources independently of one another.

Neither of these expectations is true in the 
cloud, of course. And we are all quite familiar 
with the cloud as a metaphor for virtualization 
— that is, the use of software to abstract and 
define different types of virtual resources — 
and for the scale-up/scale-down elasticity 
that is cloud’s defining characteristic.

this event-driven dimension that cloud-native 
software engineering concepts, technologies 
and methods evolved to address. In place of 
tightly coupled, monolithic applications that 
expect to run atop always-on, always-
available, physically instantiated hardware 
resources, cloud-native design presupposes 
an ability to provision discrete software 
functions (which developers instantiate 
as loosely coupled services) on-demand, 
in response to specific events. These 
loosely coupled services correspond to the 
constituent functions of an application. 
Applications themselves are composed of 
loosely coupled services, as with the data 
lakehouse and its layered architecture.

What makes the data lakehouse cloud-
native? It is cloud-native to the degree that it 
decomposes most, if not all, of the software 
functions that are implemented in data 
warehouse architecture. There are six functions:

• One or more functions capable of storing, 
retrieving and modifying data

“The classic implementation of data warehouse architecture is 
premised on a set of dated expectations, particularly with respect 
to how the functions and resources that comprise the warehouse 

are to be instantiated, connected together and accessed.”

https://www.itprotoday.com/microservices/5-mistakes-avoid-when-designing-microservices-architecture
http://www.itprotoday.com
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• One or more functions capable of 
performing different types of operations 
(such as joins) on data

• One or more functions exposing interfaces 
that users/jobs can use to store, retrieve and 
modify data, as well as to specify different 
types of operations to perform on data

• One or more functions capable of 
managing/enforcing data access and 
integrity safeguards

• One or more functions capable of 
generating or managing technical and 
business metadata

• One or more functions capable of managing 
and enforcing data consistency safeguards, as 
when two or more users/jobs attempt to modify 
the same data at the same time, or when a 
new user/job attempts to update data that is 
currently being accessed by prior users/jobs.

With this as a guideline, we can say that 
a “pure” or “ideal” implementation of data 
lakehouse architecture would consist of the 
following components:

The lakehouse service itself. In addition 
to SQL query, the lakehouse might provide 
metadata management, data federation and 
data cataloging capabilities. In addition to its core 
role as a query service, the lakehouse doubles 
as a semantic layer: It creates, maintains and 
versions modeling logic, such as denormalized 
views that get applied to data in the lake.

The data lake. At minimum, the data lake 
provides schema enforcement capabilities, 
along with the ability to store, retrieve, modify 
and schedule operations on objects/blobs in 
object storage. The lake usually provides data 
profiling and discovery, metadata management, 
and data cataloging capabilities, along with 
data engineering and, optionally, data federation 
capabilities. It enforces access and data integrity 
safeguards across each of its constituent zones. 
Ideally, it also generates and manages technical 
metadata for the data in these zones.

An object storage service.  It provides a 
scalable, cost-effective storage substrate. It 
also handles the brute-force work of storing, 

retrieving and modifying the data stored in 
file objects.

With that said, there are different ways 
to  implement  the data lakehouse. One 
pragmatic option is to fold all these functions 
into a single omnibus platform — a data lake 
with its own data lakehouse. This is what 
Databricks, Dremio and others have done 
with their data lakehouse implementations.

Why Does Cloud-native Design Matter?
This invites some obvious questions. First, 

why do this? What are the advantages of a 
loosely coupled architecture vs. the tightly 
integrated architecture of the classic data 
warehouse? As we have seen, one benefit of 
loose coupling is an ability to scale resources 
independently of one another — to allocate 
more compute without also adding storage 
or network resources. Another benefit is 
that loose coupling eliminates some of the 
dependencies that can cause software to 
break. So, for example, a change in one service 
will not necessarily impact, let alone break, 

other services. Similarly, the failure of a service 
will not necessarily cause other services to fail 
or to lose data. Cloud-native design also uses 
mechanisms (such as service-orchestration) 
to manage and redress service failures.

Another benefit of loose coupling is 
that it has the potential to eliminate the 
types of dependencies that stem from an 
implementation’s reliance on a specific 
vendor’s or provider’s software. If services 
communicate and exchange data with 
one another solely by means of publicly 
documented APIs, it should be possible to 
replace a service that provides a definite set 
of functions (such as SQL query) with an 
equivalent service. This is the premise of pure 
or ideal data lakehouse architecture: Because 
each of its constituent components is, in 
effect, commoditized (such that equivalent 
services are available from all of the major 
cloud infrastructure providers, from third-
party SaaS and/or PaaS providers, and as 
open source offerings), the risk of provider-
specific lock-in is reduced.

http://www.itprotoday.com/hybrid-cloud/how-and-when-use-cloud-native-technology
http://www.itprotoday.com/attacks-and-breaches/api-attacks-breaches-piling
http://www.itprotoday.com
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In this respect, however, the lakehouse is 

not actually all that different from a PaaS 

data warehouse service. The fifth and final 

part of this report will explore this similarity 

in depth.

* The software required to make this work is still 
very new. Arguably, some of it does not yet exist — at 
least in a sense analogous to the RDBMS, whereby, 
for example, a query optimizer parses each SQL query, 
estimates the cost of running it and pre-allocates the 
necessary resources. This is not magic; rather, it is 
grounded in the rigor of mathematics. Under the covers, 
the RDBMS’ query optimizer uses relational algebra to 
translate SQL commands into relational operations. It 
creates a query plan — that is, an optimized sequence 
of these operations — that the database engine uses to 
allocate resources to process the query. This proactive 
model is quite different from the reactive model that 
predominates in cloud-native software. For example, 
cloud-native design principles might expect to use 
real-time feedback from observable components to 
determine the cost of running a workload and provision 
sufficient resources. To the degree that cloud-native 
software has a proactive dimension, this comes via pre-
built rules or ML models. Workloads are not proactively 
soluble via math.

The Data Lakehouse as Event-driven 
Data Warehouse

Cloud-native software design also expects 
that the provisioning and deprovisioning 
of the hardware and software  resources 
that power loosely coupled cloud-native 
services is something that should happen 
automatically. In other words, to provision a 
cloud-native service is to provision its enabling 
resources; to terminate a cloud-native service 
is to deprovision these resources. In a sense, 
cloud-native design wants to make hardware 
— and, to a degree, software — disappear, at 
least as a variable in the calculus of deploying, 
managing, maintaining and, especially, scaling 
business services.

From the viewpoints of consumers and 
expert users, there are only services — that 
is, tools that do things.

For example, if an ML engineer designs a 
pipeline to extract and transform data from 
100 GBs of log files, a cloud-native compute 
engine dynamically provisions n compute 
instances to process her workload. Once 

the engineer’s workload finishes, the engine 
automatically terminates these instances.*

Ideally, neither the engineer nor the usual 
IT support people (DBAs, systems and 
network administrators, and so on) need 
to do anything to provision these compute 
instances or, crucially, the software and 
hardware resources on which they depend. 
Instead, this all happens automatically — in 
response, for example, to an API call initiated 
by the engineer. The classic, on-premises 
data warehouse was just not conceived 
with this kind of cloud-native, event-driven 
computing paradigm in mind.

The Data Lakehouse as Its Own Thing
The data lakehouse is, or is supposed to 

be, its own thing. As we have seen, it provides 
the six functions listed above. But it depends 
on other services — namely, an object storage 
service and, optionally, a data lake service 
— to provide basic data storage and core 
data management functions. In addition, 
data lakehouse architecture implements a 

novel set of software functions that have no 
obvious parallel in classic data warehouse 
architecture. In theory, these functions are 
unique to the data lakehouse.

These are:
• One or more functions capable of 

accessing, storing, retrieving, modifying and 
performing operations (such as joins) on 
data stored in object storage and/or third-
party services. The lakehouse simplifies 
access to data in Amazon S3, AWS Lake 
Formation, Amazon Redshift, and so on. 

• One or more functions capable of 
discovering, profiling, cataloging  and/
or facilitating access to distributed data 
stored in object storage and/or third-party 
services. For example, a modeler creates 
n denormalized views that combine data 
stored in both the data lakehouse and in the 
staging zone of an AWS Lake Formation (that 
is, a data lake). The modeler also designs 
a series of more advanced models that 
incorporate data from an Amazon Redshift 
sales data mart.

https://www.itprotoday.com/data-analytics-and-data-management/cloud-api-rate-limits-create-hurdles-data-analytics
http://www.itprotoday.com
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ow, let’s explore the advantages and 
disadvantages of the data lakehouse 
— both as its own thing and as a 

replacement for the data warehouse. Part 
3 considers the requirements the data 
lakehouse must address if it is to completely 
replace the warehouse.

The Formal, Technical Requirements of 
Data Warehouse Architecture

First, what must the data lakehouse 
be able to do if it is fully to replace the 
data warehouse? At minimum, the set of 
capabilities provided by its software functions 
must also comply with the formal, technical 
requirements of data warehouse architecture.

From the point of view of data warehouse 

architecture, it is less important that a query 
platform should provide fast results than 
that these results should be uniform and 
replicable.* In practice, the trick is to balance 
these requirements against one another, to 
achieve query results that are fast enough 
and also uniform and replicable.

This is actually much easier said than done. It 
is the reason why Hive + Hadoop consistently 
failed when used as a data warehouse 
replacement. It is the reason why distributed 
NoSQL systems almost always have problems 
when tapped for use as would-be RDBMS or 
data warehouse replacements.

Against this backdrop, let’s review the 
formal, technical requirements of data 
warehouse architecture.

Part 3: Assessing the Viability 
of the Data Lakehouse
N

The data warehouse is the following:
• A single, central repository for topical and 

historical business data
• A system that permits a panoptic view 

across the business and its function areas
• A system that permits a monitoring/

feedback loop into the performance of 
the business

• A system that consumers can use to 
pose common and/or unpredictable (ad 
hoc) questions

• A system that delivers consistent, 
uniform query results (i.e., everybody has 
the same data)

• A system capable of hosting concurrent 
jobs/users and highly demanding 
mixed workloads

• A system capable of enforcing strict, 
invariant data management and data 
processing controls

• A system capable of anticipating and 
resolving  conflicts that occur between 

https://jepsen.io/analyses
https://jepsen.io/analyses
http://www.itprotoday.com
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requirements 5, 6 and 7

Does the data lakehouse fit the bill? 
It depends on how you implement data 
lakehouse architecture.

If you architect your lakehouse by pointing 
a SQL query service at the curated zone of a 
data lake, you will have an implementation 
that is almost certainly able to scale to 
address requirements 1 through 4. However, 
this implementation will probably struggle 
with requirements 5 through 8, inasmuch as 
each demands an engine that has the ability 
to enforce strict consistency, uniformity and 
replicability guarantees while also performing 
multiple, simultaneous operations on data. 
This is because requirements 5 through 8 
go to the wicked problem of managing (and 
resolving) the conflicts that occur as a result 
of concurrency.

Reality Check: It Is Not OK To Drop 
ACID-like Safeguards

In a classic, tightly coupled data warehouse 
implementation, the warehouse is usually 

and logic to resolve the conflicts that tend to 
occur between concurrent operations on data. 
So, it is possible to design the data warehouse 
as an append-only data store and to commit 
new records in a timeline — for example, as new 
rows. If you can only append new records (that 
is, you cannot change or delete existing ones), 
concurrency conflicts cannot occur. You can 
likewise design coordination logic to address 
data uniformity requirements, to ensure that if 
n users/jobs query the warehouse at the same 
time, each will query against exactly the same 
records in the timeline.

In practice, however, the easiest way to 
address these requirements is by using an 
RDBMS. The RDBMS is also optimized to 
quickly and correctly perform the relational 
operations (such as different kinds of joins) 

instantiated in a relational database, or 
RDBMS. Almost all RDMBSs enforce ACID 
safeguards that enable them to perform 
concurrent operations on data while at the 
same time maintaining strong consistency.

In the popular imagination, ACID safeguards 
are associated with online transaction 
processing (OLTP), which is also strongly 
associated with the RDBMS. It must be 
emphasized, however, that a data warehouse 
is not an OLTP system: You do not need to 
deploy a data warehouse on an RDBMS.

Reduced to a primitive technology 
prescription, the database engine at the heart of 
the data warehouse requires two things: a data 
store that has the ability to create and manage 
tables, as well as to append records to them, 

that are essential in analytical work. These 
are but two of the reasons the on-premises 
data warehouse is usually identical with the 
RDBMS — and why a procession of would-be 
replacements, such as Hadoop + Hive, failed 
to displace the conventional warehouse.

It is also the reason almost all PaaS data 
warehouse services are designed as RDBMS-
like systems. As I wrote in a previous article of 
mine, “if you eschew in-database ACID database 
safeguards, you must either roll your own ACID 
enforcement mechanisms or accept data loss 
as inevitable.” This means that you have a choice 
among building ACIDic logic into your application 
code, designing and maintaining your own ACID-
compliant database, or delegating this task to 
a third-party database.

Data Warehouse Workloads Require 
Consistency, Uniformity and 
Replicability Safeguards

Like it or not, consistency, uniformity and 
replicability are common requirements for 
production data warehouse workloads. 

“In a classic, tightly coupled data warehouse  
implementation, the warehouse is usually instantiated  

in a relational database, or RDBMS.”

http://en.wikipedia.org/wiki/Wicked_problem
https://aphyr.com/posts/313-strong-consistency-models
https://www.itprotoday.com/analytics-and-reporting/when-it-ok-drop-acid-database-safeguards
http://www.itprotoday.com
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For example, core operational business 
workflows routinely query the warehouse. In a 
production use case, then, the data lakehouse 
that replaces it might be expected to service 
hundreds of such queries per second.

Let’s consider what this entails by looking 
closely at a representative workload — for 
example, a credit-application process that 
queries the lakehouse for credit-scoring 
results dozens of times each second. For 
statutory and regulatory reasons, queries 
processed at the same time must return 
correct results (“correct” as in they all use the 
same scoring model). This model also uses 
the same point-in-time data, albeit adjusted 
for customer-specific variations.

But what if a concurrent operation attempts 
to update the data used to feed one or more 
of the model’s parameters? The RDBMS’ 
ACID safeguards would prevent this update 
from being committed until after the results 
of the (dependent) credit-scoring operations 
had first been committed.

In the tightly coupled RDBMS, the database 
kernel manages this. In the credit-scoring 
example above, the RDBMS locks the rows 
in the table(s) in which dependent data is 
recorded; this prevents other operations 
from modifying them. It is just not clear 
how to manage this in the data lakehouse 
architecture, with its layered stack of 
decoupled services.

A fit-for-purpose data lakehouse service 
should be able to enforce ACID-like 
safeguards — if it is its own data lake and 
can control concurrent access to (and 
modification of) the objects in its data lake 
layer. Again, this is what Databricks and 
Dremio have done in their implementations 
of data lakehouse architecture. They solve 
the problem of coordinating concurrent 

Can a SQL query service enforce the same 
safeguards? Can it do this even if objects in 
the data lake’s curated zone are accessible 
to other services (say, an AWS Glue ETL 
service), which are also able to update data 
at the same time?

The example above is by no means 
uncommon. It is, rather, the routine way of 
doing things. In other words, if you need to 
ensure consistent, uniform and replicable 
results, you need ACIDic safeguards. The 
upshot is that data warehouse workloads 
require these safeguards.

Can Data Lakehouse Architecture Enforce 
These Safeguards?

It depends. The first issue has to do with the 
fact that it is difficult to coordinate dependent 
operations across loosely coupled services. 
So, for example, how does an independent 
SQL query service restrict access to records 
in an independent data lake service? This is 
necessary to prevent concurrent users from 
modifying objects in the lake’s curated zone. 

access to (and operations on) resources that 
are shared across services by less loosely 
coupling these services to one another.

By contrast, this is much more difficult 
if the data lakehouse is implemented as a 
layered stack of loosely coupled, independent 
services — for example, a discrete SQL query 
service that sits atop the curated zone of a 
discrete data lake service, which itself sits 
atop a discrete object storage service. It 
cannot achieve strong consistency because 
it cannot control access to the objects in the 
data lake.

Final Thoughts
In any distributed topology, the challenge 

is to coordinate concurrent access to shared 
resources while at the same time managing 

“Like it or not, consistency, uniformity and replicability are common 
requirements for production data warehouse workloads.”

http://www.itprotoday.com
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multiple dependent operations on these 
resources across space and time. This is 
true whether software functions (and the 
resources they operate on) are tightly or 
loosely coupled. So, for example, the way 
distributed processing is handled in a classic 
data warehouse implementation is by 
instantiating the warehouse as a massively 
parallel processing (MPP) database. The 
MPP database kernel identifies, schedules 
and coordinates dependent operations 
across the nodes of the MPP cluster, as well 
as manages (and resolves) the conflicts that 
occur between dependent operations. In 
other words, the MPP database kernel is 
able to enforce strict ACID safeguards while 
also performing concurrent operations in a 
distributed topology. This is no mean feat.

By contrast, a loosely coupled 
distributed software architecture, such as 
data lakehouse architecture, is confronted 
with the problem of coordinating access 
to resources and managing dependencies 
across what are, in effect, independent 

itself. At a minimum, it is to tightly couple the 
lakehouse and the lake, to introduce (and 
to consolidate) a dependency on a single 
software platform and, just as important, 
on a single provider.

* For more on the distinction between uniformity 
and replicability, read this article. The nickel summary: 
If n consumers query the same data at the same time, 
they should all receive exactly the same results, even if 

services. This is a wicked problem.

This is one reason the data lakehouse 
(like the data lake itself) usually 
functions as what is called an eventually 
consistent platform rather than as a strongly 
consistent platform.

On the one hand, it is able to enforce ACID-
like safeguards; on the other hand, it may 
lose data and be unable to deliver uniformly 
replicable results. To enforce strict ACID 
safeguards would require combining the 
data lakehouse and the data lake into one 
platform: to tightly couple both services to 
one another.** For what it is worth, this is 
the likely tendency of data lake/lakehouse 
evolution: Each will converge into the other, 
provided the idea of the data lakehouse 
actually has staying power.

However, to implement the data 
lakehouse as its own data lake is (in effect) 
to recapitulate the phylogeny of the data 
warehouse: It is to put the data lakehouse on 
the same evolutionary path as the warehouse 

another consumer (e.g., an ETL job) attempts to update 
this data. This is what is meant by uniformity. If the 
data warehouse were to re-sequence and re-run these 
operations in times, it would produce exactly the same 
results each time. This is what is meant by replicability.

** I will not attempt to vet the claims to strong 
consistency made by prominent data lakehouse + 
data lake providers. It seems to me that theirs is an 
especially wicked problem indeed. Instead, I say with 
Augustine: “I believe that I may understand.”

http://www.itprotoday.com/analytics-and-reporting/when-it-ok-drop-acid-database-safeguards
http://en.wikipedia.org/wiki/Eventual_consistency
http://en.wikipedia.org/wiki/Eventual_consistency
http://en.wikipedia.org/wiki/Recapitulation_theory
http://www.itprotoday.com
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ow we’ll look at the role of data 
modeling in the context of designing, 
maintaining and using the lakehouse. 

I assess the claim that the lakehouse is a 
light alternative to the data warehouse.

Data Lakehouse vs. Data Warehouse: 
Death, Taxes and Data Modeling

In making the case for the lakehouse as a 
data warehouse replacement, proponents 
usually point  to a few extra benefits. 
The first benefit is that the lakehouse is 
supposed to simplify data modeling, which 
(in turn) is supposed to simplify ETL/data 
engineering. A second claimed benefit 
goes to the reduced cost of managing 
and maintaining ETL code. A third claimed 
benefit is that the elimination of data 
modeling makes the lakehouse less apt to 
“break” — that is, the routine alterations and 

Part 4: The Use of Data Modeling with the Data Lakehouse
N

http://www.itprotoday.com/big-data/data-lakehouse-and-data-hub-going-beyond-just-data-storage
http://www.itprotoday.com
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vicissitudes of business, such as merger-
and-acquisition activity, expansion into 
(or retreat from) new regions,  and the 
launching of new services, do not break 
the lakehouse’s data model because there 
is no data model to break.

How a Bill Becomes a Law, or How Data Is, 
or Isn’t, Modeled for the Data Lakehouse

To understand what this means, let’s look 
at a best-case scenario for modeling in the 
data lakehouse.

• Data is ingested by the data lake’s 
landing zone.

• Some/all raw data is optionally persisted 
in a separate zone for archival storage.

• Raw data, or predefined extracts of raw 
data, are moved into one of the data lake’s 
staging zones. The lake may maintain 
separate staging zones for different types 
of users/practices.

• Raw OLTP data may undergo immediate 
data engineering (for example, scheduled 
batch ETL transformations) after which 

is lightly engineered — put into a columnar 
format — prior to its instantiation in the data 
lake’s curated zone. This is where the data 
lakehouse is supposed to take over.

How much data must be instantiated in the 
lakehouse’s curated zone?

The simple answer is as little or as much 
as you want. The pragmatic answer is  it 
depends on the use cases, practices and 
consumers the data lakehouse is intended 
to support. The nuanced answer: Modeling 
data at the level of a historical data store 
(such as the warehouse or the lakehouse) 
has an essential strategic purpose, too.

Before we unpack this claim, let’s look at 
what happens to data once it gets loaded 
into the data lake’s curated zone. The data 
in the curated zone is usually persisted in a 
columnar format, such as Apache Parquet. 
This means, for example, that the volume 
of data that comprises the curated zone 
is distributed across hundreds, thousands, 
even millions of Parquet objects, all of 

it gets loaded directly into the data lake’s 
curated zone.

• Data in the lake’s staging zones is 
made available to different kinds of 
jobs/expert users.

•  A subset of data in the lake’s staging 
zones is engineered and moved into the 
curated zone.

• Data in the curated zone is lightly 
modeled — for example, it is stored in an 
optimized columnar format.

• The data lakehouse is a modeling 
overlay (akin to a semantic model) that is 
superimposed over data in the lake’s curated 
zone or, optionally, over select data in its 
staging zones.

• Data in the lake’s curated zone is 
unmodeled. In the data lakehouse, per se, 
data modeling is instantiated in application- 
or use case-specific logical models, akin to 
denormalized views. 

So, for example, rather than engineering 
data so it can be stored in and managed by 
a data warehouse (usually an RDBMS), data 

which live in object storage. This is one 
reason the curated zone usually eschews 
a complex data model in favor of a flat or 
one-big-table (OBT) schema — basically, 
a scheme in which all data is stored in 
a single denormalized table. (The idea 
is to maximize the advantages of object 
storage — high-bandwidth and sustained 
throughput — while minimizing the cost 
of its high and/or unpredictable latency.) 
A claimed benefit of this is that the flat-
table or OBT schema eliminates the need 
for the logical data modeling that is usually 
performed in 3NF or Data Vault modeling, 
as well as the dimensional data modeling 
performed in Kimball-type data warehouse 
design. This is a significant timesaver, 
lakehouse proponents say.

But wait, isn’t this how data is also modeled 
in some data warehouse systems?

One problem with this is that data 
warehouse systems commonly run flat-
table and OBT-type schemas, too. In fact, 

https://www.itprotoday.com/analytics-and-reporting/cloud-based-object-storage-pros-and-cons-data-management
http://www.itprotoday.com
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OBT schemas were used with the first data 
warehouse appliance systems in the early 
2000s. Today, OBT schemas are commonly 
used with cloud PaaS data warehouses, 
such as Amazon Redshift and Snowflake. 
The upshot is that if you do not want to 
perform heavy-duty data modeling for the 
data warehouse, you do not have to. For 
good or ill, plenty of organizations opt not 
to model.

This gets at a more perplexing problem, 
however: Why do we model data for the 
warehouse in the first place? Why do data 
management practitioners place such great 
store in data modeling?

The reason is, like it or not, data modeling 
and engineering are bound up with the 
core priorities of data management, data 
governance and data reuse. We model 
data to better manage, govern and (a 
function of both) reuse it. In modeling 
and engineering data for the warehouse, 
we want to keep track of where the data 

for a semantic layer, or encapsulating 
data engineering and modeling logic in 
code itself.  These alternatives tend to 
focus on specific applications, use cases 
and consumers.

The Unbearable Fragility of Data Modeling
A final problem is that the typical anti-data 

modeling frame is misleading. To eschew 
modeling at the data warehouse/lakehouse 
layer is to concentrate data modeling in 
another layer. You are still modeling and 
engineering data; you are just doing it in 
different contexts, such as in a semantic 
layer or in code itself. You still have code 
to maintain. You still have things that can 
(and will) break.

Imagine, for example, that a business 
treats Europe, the Middle East and Africa 
(EMEA) as a single region, then suddenly 
decides to create separate EU, ME and 
Africa divisions. Yes, a change of this kind 
will require it to make changes to its data 
warehouse’s data model. However, it will also 

came from and what has been done to 
it, when, and (not least) by whom or by 
what. (In fact, the ETL processes used to 
populate the data warehouse generate 
detailed technical metadata to this 
effect.) Similarly, we manage and govern 
data so that we can make it available to, 
and discoverable by, more and different 
types of consumers — and, especially, by 
non-expert consumers.

To sum up, we model data so we can 
understand it, so we can impose order on it, 
and so we can productionize it in the form 
of managed, governed, reusable collections 
of data. This is why data management 
practitioners tend to be adamant about 
modeling data for the warehouse. As they 
see it, this emphasis on engineering and 
modeling data makes the warehouse 
suitable for a very wide range of potential 
applications, use cases and consumers. 

This is in contrast to alternatives that 
focus on engineering and modeling data 

affect the denormalized views instantiated 
in its semantic layer. At minimum, modelers 
and business subject-matter experts must 
refactor these views. They may also opt to 
rebuild some of them from scratch.

The essence of the claim is that it is 
easier, faster and cheaper to fix problems 
in a semantic layer or in code than to make 
changes to a central repository, be it a data 
warehouse or a data lakehouse. This claim 
is not wrong, exactly, just tendentious. At 
the very least, it arises out of a distorted 
sense of how and why data gets modeled, 
be it for the old-school data warehouse or 
for the data lakehouse.

Both sides have valid concerns and make 
good points. It is a question of balancing 
costs and benefits.

Final Thoughts
To assume that the lakehouse reduces 

or eliminates data modeling — and, with it, 
the complexity of ETL engineering — is to 

https://www.fivetran.com/blog/star-schema-vs-obt
http://www.itprotoday.com/analytics-and-reporting/data-warehouse-automation-and-hybrid-multi-cloud
http://www.itprotoday.com/analytics-and-reporting/data-warehouse-automation-and-hybrid-multi-cloud
http://www.itprotoday.com/data-analytics-and-data-management/why-governance-data-starts-risk-awareness
http://www.itprotoday.com/data-analytics-and-data-management/why-governance-data-starts-risk-awareness
http://www.itprotoday.com
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ignore the purpose of data modeling in data 
management. It is likewise to play a kind 
of shell game with ETL. As a friend who 
works as an ML solutions architect  likes 
to remind me: “You can never escape the 
work of ETL; you can only ever push it 
somewhere else.”

It is never easy to accommodate business 
change. To change something about the 
business is to break the correspondence 
between a data model that represents 
events and phenomena in the business’s 
world and reality itself. This correspondence 
is never identical. 

At best, it serves a purpose: It makes 
it possible for the business to see, 
understand and manipulate its structure, 
operations, and so on.

It is probably easier, on the whole, to 
shift most data modeling logic to a BI/
semantic layer. In the scenario above, for 
example, modelers and SMEs must design 
a new warehouse data model; repopulate 

the data lakehouse or the data warehouse, 
that is an option — and has been for quite 
some time.

On the other hand, an organization 
that opts to model data for its lakehouse 
should have less modeling to do in its BI/
semantic layer. Perhaps much less. Yet, the 
data in this lakehouse should be lucid and 
understandable to, as well as reusable by, 
a larger pool of potential consumers.

For this reason, these consumers are 
also more likely to trust the data in the 
data lakehouse.

By the way, this is another case in 

the data warehouse; and fix and identify 
broken queries, stored procedures, UDFs, 
and so on. However, they must also fix the 
modeling logic that is instantiated in the 
BI/semantic layer. This is extra work, no 
doubt about it.

As I have shown, however, this is 
not a problem that is specific to the 
data warehouse. In fact, it has just as 
much salience for any organization that 
implements a data lakehouse system. 
The idea of a lightly modeled historical 
repository for business data is not new; 
ergo, if you want to eschew modeling for 

which a less loosely coupled data 

lakehouse implementation (for example, 

Databricks’ Delta Lake or Dremio’s SQL 

Lakehouse Platform) has an advantage 

relative to what I call an “ideal” data 

lakehouse implementation — that is, an 

implementation in which the data lakehouse 

is cobbled together out of loosely coupled 

services, such as a SQL query service, a 

data lake service or a cloud object storage 

service. It makes more sense to model 

and govern data in a tightly coupled data 

lakehouse implementation in which the 

data lakehouse has sovereign control over 

business data.

It is not clear how this is practicable in 

an implementation in which a SQL query 

service does not have sovereign control over 

the objects that live in the curated zone of 

the underlying data lake.

“To change something about the business is to break the 
correspondence between a data model that represents events and 

phenomena in the business’s world and reality itself.”

http://www.itprotoday.com
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or the most part, previous parts of 
this report have treated the data 
warehouse as a kind of strawman. 

For example, I have mostly compared the 
data lakehouse and its cloud-native design 
with classic implementations of the data 
warehouse — as if cloud-native concepts 
and methods had not also been applied to 
data warehouse architecture or, put another 
way, as if data warehouse architecture were 
stuck in time.

So far, I have said next to nothing about 
the platform-as-a-service (PaaS) or query-
as-a-service (QaaS)* data warehouse, nor 
have I discussed these schemes as novel 
implementations that are comparable in both 
capabilities and (as it were) cloud “nativity” 

with the no less novel data lakehouse.

This idea is implicit in prior analysis, 
however. In Part 2, for example, I made the 
point that data warehouse architecture 
is less a technology prescription than a 
technical specification: Instead of telling 
us how to build the data warehouse, it tells 
us what that system is supposed to do and 
how it is supposed to behave. It outlines 
the features, capabilities, and so on that 
are required by that system.

One implication of this is that there are 
several possible ways to implement the data 
warehouse. Another is that the requirements 
of data warehouse architecture are not 
necessarily in conflict with those of cloud-

Part 5: The Data Lakehouse 
vs. the PaaS Data Warehouse
F

native design. A final implication is that 
the cloud-native data warehouse actually 
has quite a few things in common with the 
data lakehouse, even as it departs from that 
implementation in critical respects.

With this as background, let’s pivot to the 
culminating questions of this report: What 
do the data lakehouse and the PaaS data 
warehouse have in common, and how are 
they different?

The PaaS Data Warehouse Sure Looks 
Like a Data Lakehouse

Both the PaaS data warehouse and 
the data lakehouse have quite a bit in 
common. Like the data lakehouse, the PaaS 
data warehouse:

• Lives in the cloud
• Separates compute, storage and 

other resources
• Can elastically expand/contract to suit 

http://www.itprotoday.com/analytics-and-reporting/data-warehouse-automation-and-hybrid-multi-cloud
http://www.itprotoday.com/analytics-and-reporting/data-warehouse-automation-and-hybrid-multi-cloud
http://www.itprotoday.com
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spikes in demand, seasonal/one-off use 
cases, and so on

• Is event-driven and can provision 
compute or (if necessary) temporary 
storage resources in response to event 
triggers and deprovision these resources 
once they are no longer needed

• Is co-local with (intra-cloud adjacent to) 
other cloud services, including the data lake

• Like the data lake/house, writes data 
to and reads data from inexpensive cloud 
object storage

• Can query/facilitate federated access to 
data stored in any of the data lake’s zones

• Can eschew all but basic data modeling, 
as in flat or OBT schemas

• Can ingest, manage and perform 
operations on semi- and multi-structured data

• Can query across multiple data models 
(for example, time-series, document, graph 
and text)

• Can expose denormalized views (models) 
to support specific uses cases, applications 
and so on

cloud-native data warehouse is able 
to enforce strict ACID safeguards.

The “ideal” data lakehouse implementation 
is cobbled together out of discrete, fit-
for-purpose services. So, for example, 
an ideal data lakehouse implementation 
consists of a SQL query service 
superimposed on top of a data lake service, 
which itself sits on top of a cloud object 
storage service. This is consistent with 
a trend in software design that aims to 
decompose large, complex programs into 
smaller, function-specific programs, which 
are instantiated as discrete services. These 
services are “decoupled” from one another 
in the sense that they have very little 
knowledge about how the complementary 
services with which they interact are 
supposed to work. By assembling multiple 

• Exposes different types of RESTful 
endpoints, in addition to SQL

• Supports — via discrete APIs or language-
specific SDKs — GraphQL, Python, R, Java 
and more.

The PaaS Data Warehouse Is (More) 
Tightly Coupled Where It Matters

Compared to the data lakehouse, the 
cloud-native data warehouse seems like a 
tightly coupled stack.**

The advantage of this is that the cloud-
native warehouse is able to manage and 
control the software functions that read and 
write data, as well as schedule, distribute 
and perform operations on data; manage 
dependencies between these operations; 
implement consistency, uniformity and 
replicability safeguards; and so on. The 

services together,  you can approximate 
the behavior and performance of a large 
(monolithic) application. And, you also 
realize a few of the benefits that derive from 
this design. (For more on this, see Part 2 of 
this report.) 

The disadvantage of this is that it poses 
problems vis-à-vis concurrent computing, 
especially when it comes to coordinating 
concurrent access to shared resources. 
As I showed in Part 3 of this report,  the 
data warehouse solves this problem by 
having the RDBMS kernel enforce strict 
ACID safeguards.

It is not obvious how to solve this problem 
in an ideal data lakehouse implementation. 
One solution is to follow Databricks’ lead — 
that is, to couple the data lake to the data 
lakehouse in a single platform.

If a data lakehouse was its own data lake 
— and if it could also supervise concurrent 
access to the data in this lake — a data 
lakehouse service might be able to enforce 

“The ‘ideal’ data lakehouse implementation is cobbled together out 
of discrete, fit-for-purpose services.”

http://www.itprotoday.com/analytics-and-reporting/when-it-ok-drop-acid-database-safeguards
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ACID-like safeguards. However, in this 
model, the data lakehouse and the data 
lake would be tightly coupled, creating 
dependency on a single software platform 
— and a single provider.

A Data Warehouse Is a Data Warehouse … 
Is a Data Lakehouse?

Let’s pivot to a provocative question: Can 
the PaaS data warehouse do all of the things 
the data lakehouse can do? Possibly. Think 
about it: What is the difference between 
a SQL query service that queries against 
data in the curated zone of a data lake and 
a PaaS data warehouse that lives in the 
same cloud context, has access to the same 
underlying cloud object storage service and 
is able to do the same thing? What is the 
difference between a SQL query service 
that facilitates access to data in the lake’s 
archival, staging and other zones and a 
PaaS data warehouse that is able to do the 
same thing?

The data lake and the data warehouse 

As I also said in Part 3 of this report,  it 
is less important that a query platform 
provide fast results than that these results 
are uniform and replicable. In fact, the trick 
is to balance all three requirements against 
one another. This means the platform is 
able to achieve query results that are fast 
enough while at the same time maintaining 
a consistent state and ensuring the 
uniformity and applicability of results. The 
PaaS data warehouse is just a much faster 
query-processing platform than a SQL query 
service. It wins this one easily.

Eliminates the requirement to model and 
engineer data structures prior to storage

Part 4 of this report debunked this 
claim.  The practice of modeling and 
engineering data structures prior to 
instantiating them in storage is not 
specific to the data warehouse; rather, it 
is performed to promote data intelligibility, 
data governance and data reuse.

The upshot is that organizations will opt to 

seem to have been converging toward one 
another for a long time. So, on the one hand, 
the lakehouse looks like a textbook example 
of lake-to-warehouse convergence. On the 
other hand, the warehouse’s support for 
multiple data models and its retrofitting with 
data federation and multi-structured query 
capabilities — that is, the ability to query 
files, objects or arbitrary data structures 
— are arguably examples of a warehouse-
to-lake convergence trend.

Let’s look at a few of the claimed 
differences between the data lakehouse 
and the data warehouse and see if these, 
too, have been obviated by convergence. 
Here are a few obvious ones to consider:

Has the ability to enforce safeguards to 
ensure the uniformity and replicability 
of results

I discussed this above. The PaaS data 
warehouse wins this one easily.

Has the ability to perform core data 
warehousing workloads

model and engineer data for both the PaaS 
data warehouse and the data lakehouse. 
Organizations that eschew all but basic data 
modeling for their PaaS data warehouses 
could realize significant improvements in 
query performance,  relative not only to 
normalized (3NF) schemas  but also to 
denormalized schemas.

Protects against cloud-service- 
provider lock-in

Advocates argue that ideal data lakehouse 
architecture helps insulate subscribers 
against the risk of service provider-
specific lock-in. So, to cite one example, if 
a subscriber is dissatisfied with its existing 
SQL query service, it can swap this service 
out for another, comparable one.

How practicable is this, however? Will the 
modeling instantiated in the subscriber’s 
semantic layer also transfer? Will experts 
have to refactor modeling logic to work with 
the new service? And, if a subscriber wants 
to switch to a different data lake — say, from 
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AWS Lake Formation to a fit-for-purpose 
data lake service, also hosted in AWS — 
how simple is it, really, to swap out one 
service for another? Quite aside from the 
question of data movement, there is also 
that of feature and function migration. For 
example, will developers have to refactor the 
data engineering and data modeling logic 
instantiated in their code to work with the 
new service?

On balance, an ideal data lakehouse 
implementat ion  st i l l  has  an 
advantage here. However, this is less true 
of an implementation that couples the data 
lakehouse to a specific lake service.

Has the ability to support a diversity of 
practices, use cases and consumers

The data warehouse has improved 
significantly in this area. However, the 
data lake has the advantage. It is cheaper 
and more convenient to ingest, store, 
engineer and experiment with data in the 
lake than it is in the data warehouse. There 

repositories and data producers, as well. 
Similarly, commercial SQL query-as-a-
service providers will usually provide data 
source connectors. (Several of these are 
based on Presto, which simplifies things.)

The real trick is to link information 
across data models — that is, across 
relational, semi-, and multi-structured 
data  (for example, to relate CUST “Alan 
Smithee,” who has loyalty CARD number 
“8086486DX2,” in a relational data model 
to client “Wang Ermazi,” who lives at “2500 
West End Ave” in ZIP code “37203,” in a 
document database). Again, this gets at 
the difficulty of supporting use cases that 
require or benefit from resource sharing in 
any ideal implementation in which software 
functions are supposed to be decomposed 

are fewer impediments, such as internal 
stumbling blocks in the form of policies, 
controls and processes, to constrain the 
use and the usefulness of the data lake 
in connection with data engineering, ML/
AI engineering,  data science and other 
experimental use cases. The data lake wins 
this one going away.

Has the ability to query against/across 
multiple data models

The data lakehouse sits atop the data 
lake, which is designed to ingest, store 
and manage data of any type. Ergo, if 
an organization puts time series, graph, 
document and other data into the data lake, 
this data will be available to, and queryable 
by, its data lakehouse. Right?

Usually. For example, a SQL query services 
such as Presto can use a connector to 
access, say, MongoDB, a NoSQL document 
database. In this scheme, Presto accesses 
MongoDB as if it were one or more external 
tables. Presto has connectors for other 

into discrete, decoupled services.

How does one do this in ideal data 
lakehouse architecture — that is,  
with just a SQL query service?

As for the PaaS data warehouse, it, too, 
can use Presto (or its own federated query 
services) to get at data stored in NoSQL 
repositories and other sources. More 
importantly, many relational databases 
can also ingest, manage, query against and 
perform operations on time series, graph, 
document, text and other data. They can 
link information across data models, too.

Let’s call this one a draw, although 
evidence suggests a multi-model RDBMS 
will do a better job with this if it also stores 
and manages the requisite time series, 

“The data lakehouse sits atop the data lake, which is designed to 
ingest, store and manage data of any type.”

https://en.wikipedia.org/wiki/Alan_Smithee
https://en.wikipedia.org/wiki/Alan_Smithee
http://www.itprotoday.com
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graph and other data internally.

Final Thoughts: The Complementary 
Data Lakehouse

This is not to dismiss the data lakehouse 
as a useful innovation. The use cases 
described in Part 1 of this report are 
indisputably compelling. Moreover, it is 
arguably easier — in the sense that it is 
possible both to move quickly and at the 
same time to bypass internal impediments 
— to use the data lakehouse to support 
time-sensitive, unpredictable, one-off and 
other workloads and use cases.

The data warehouse is (as it should be) a 
strictly governed system: It does not “turn,” 
it is not changed, on a dime. But this is to 
the data lakehouse’s advantage, in that it 
comprises a less strictly governed, more 
agile alternative to the warehouse. In other 
words, the lakehouse can be seen as a 
complement to, and not a replacement of, 
the data warehouse.

The problems I explore in Part 5 and its 

companion parts stem from the drive to 

replace the data warehouse with the data 

lakehouse. In this specific respect, the data 

lakehouse falls short. The upshot is that it 

is difficult, if not impossible, to square the 

circle — to reconcile the design requirements 

of an ideal data lakehouse implementation 

with the technical requirements of data 

warehouse architecture.

* Basically, Google BigQuery, as distinct from the type 

of SQL query services used with the data lakehouse.

** Under their covers, most PaaS data warehouse 

services are probably architected on similar schemes. 

Their constituent software functions — that is, services 

— are typically tightly coupled, however, such that 

they cannot be exchanged for equivalent services. 

So, for example, a subscriber cannot expect to take 

Amazon Redshift’s query optimizer and use it with 

Snowflake’s PaaS data warehouse. Neither AWS nor 

Snowflake expose API endpoints to permit anything 

like this use case.
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