

Data Analytics &
Visualization

A L L - I N - O N E

by Jack Hyman; Luca Massaron;
Paul McFedries; John Paul Mueller;

Lillian Pierson; Jonathan Reichental, PhD;
Joseph Schmuller; Alan Simon;

and Allen G. Taylor

Data Analytics & Visualization All-in-One For Dummies®

Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, www.wiley.com

Copyright © 2024 by John Wiley & Sons, Inc., Hoboken, New Jersey

Media and software compilation copyright © 2024 by John Wiley & Sons, Inc. All rights reserved.

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under
Sections 107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the Publisher.
Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons,
Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/
go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything Easier, and related
trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and may not be used without
written permission. All other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not
associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHORS MAKE NO REPRESENTATIONS
OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS WORK
AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES OF FITNESS
FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL
MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION.
THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL,
ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES
OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHORS
SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS
REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES
NOT MEAN THAT THE AUTHORS OR THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR
WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT
INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK
WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care Department within
the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002. For technical support, please visit
https://hub.wiley.com/community/support/dummies.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with
standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to
media such as a CD or DVD that is not included in the version you purchased, you may download this material at
http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2024932207

ISBN 978-1-394-24409-6 (pbk); ISBN 978-1-394-24411-9 (ePDF); ISBN 978-1-394-24410-2 (epub)

http://www.wiley.com
http://www.wiley.com/go/permissions
http://www.wiley.com/go/permissions
http://Dummies.com
https://hub.wiley.com/community/support/dummies
http://booksupport.wiley.com
http://www.wiley.com

Contents at a Glance

Introduction . 1

Book 1: Learning Data Analytics & Visualizations
Foundations . 7

CHAPTER 1: Exploring Definitions and Roles . 9

CHAPTER 2: Delving into Big Data . 19

CHAPTER 3: Understanding Data Lakes . 41

CHAPTER 4: Wrapping Your Head Around Data Science . 51

CHAPTER 5: Telling Powerful Stories with Data Visualization . 81

Book 2: Using Power BI for Data Analytics &
Visualization . 107

CHAPTER 1: Power BI Foundations . 109

CHAPTER 2: The Quick Tour of Power BI . 123

CHAPTER 3: Prepping Data for Visualization . 141

CHAPTER 4: Tweaking Data for Primetime . 167

CHAPTER 5: Designing and Deploying Data Models . 183

CHAPTER 6: Tackling Visualization Basics in Power BI . 203

CHAPTER 7: Digging into Complex Visualization and Table Data 227

CHAPTER 8: Sharing and Collaborating with Power BI . 247

Book 3: Using Tableau for Data Analytics &
Visualization . 265

CHAPTER 1: Tableau Foundations . 267

CHAPTER 2: Connecting Your Data . 285

CHAPTER 3: Diving into the Tableau Prep Lifecycle . 313

CHAPTER 4: Advanced Data Prep Approaches in Tableau . 337

CHAPTER 5: Touring Tableau Desktop . 351

CHAPTER 6: Storytelling Foundations in Tableau . 371

CHAPTER 7: Visualizing Data in Tableau . 391

CHAPTER 8: Collaborating and Publishing with Tableau Cloud 425

Book 4: Extracting Information with SQL 443

CHAPTER 1: SQL Foundations . 445

CHAPTER 2: Drilling Down to the SQL Nitty-Gritty . 455

CHAPTER 3: Values, Variables, Functions, and Expressions . 487

CHAPTER 4: SELECT Statements and Modifying Clauses . 513

CHAPTER 5: Tuning Queries . 539

CHAPTER 6: Complex Query Design . 557

CHAPTER 7: Joining Data Together in SQL . 591

Book 5: Performing Statistical Data Analysis &
Visualization with R Programming . 605

CHAPTER 1: Using Open Source R for Data Science . 607

CHAPTER 2: R: What It Does and How It Does It . 623

CHAPTER 3: Getting Graphical . 651

CHAPTER 4: Kicking It Up a Notch to ggplot2 . 671

Book 6: Applying Python Programming
to Data Science . 689

CHAPTER 1: Discovering the Match between Data Science and Python 691

CHAPTER 2: Using Python for Data Science and Visualization 703

CHAPTER 3: Getting a Crash Course in Matplotlib . 721

CHAPTER 4: Visualizing the Data . 739

Index .761

Table of Contents v

Table of Contents

INTRODUCTION . 1

About This Book .1

Foolish Assumptions .3

Icons Used in This Book .3

Beyond the Book .4

Where to Go from Here .4

BOOK 1: LEARNING DATA ANALYTICS &
VISUALIZATIONS FOUNDATIONS . 7

CHAPTER 1: Exploring Definitions and Roles . 9

What Is Data, Really? .10

Working with structured data .10

Looking at unstructured data .11

Adding semi-structured data to the mix .11

Discovering Business Intelligence .12

Understanding Data Analytics .13

Exploring Data Management .15

Diving into Data Analysis .16

Cooking raw data .16

Dealing with data .16

Building data models .17

Performing what-if analysis .17

Visualizing Data .17

CHAPTER 2: Delving into Big Data . 19

Identifying the Roles of Data .20

Operations .20

Strategy .21

Decision-making .22

Measuring .23

Monitoring .23

Insight management .24

Reporting .25

Other roles for data . .26

Grappling with data volume . .28

Handling data velocity .28

Dealing with data variety .29

vi Data Analytics and Visualization All-in-One For Dummies

What’s All the Fuss about Data? .30

Welcome to the zettabyte era .31

From data to insight .33

Identifying Important Data Sources .35

Role of Big Data in Data Science and Engineering 36

Defining data science .36

Defining machine learning engineering .37

Defining data engineering .38

Connecting Big Data with Business Intelligence 39

Analyzing Data with Enterprise Business Intelligence Practices 39

CHAPTER 3: Understanding Data Lakes . 41

Rock-Solid Water .42

A Really Great Lake .43

Expanding the Data Lake .43

More Than Just the Water .45

Different Types of Data . .45

Different Water, Different Data .47

Refilling the Data Lake .48

Everyone Visits the Data Lake .49

CHAPTER 4: Wrapping Your Head Around Data Science 51

Inspecting the Pieces of the Data Science Puzzle 52

Collecting, querying, and consuming data .53

Applying mathematical modeling to data science tasks 54

Deriving insights from statistical methods .55

Coding, coding, coding — it’s just part of the game 55

Applying data science to a subject area .55

Choosing the Best Tools for Your Data Science Strategy 57

Getting a Handle on SQL and Relational Databases 58

Knowing all about the keys .61

Investing Some Effort into Database Design .62

Defining data types .63

Designing constraints properly .63

Normalizing your database .64

Narrowing the Focus with SQL Functions .66

Making Life Easier with Excel .70

Using Excel to quickly get to know your data 71

Reformatting and summarizing with PivotTables 75

Automating Excel tasks with macros .77

CHAPTER 5: Telling Powerful Stories with Data Visualization . . 81

Data Visualizations: The Big Three .82

Data storytelling for decision-makers .82

Table of Contents vii

Data showcasing for analysts .83

Designing data art for activists .84

Designing to Meet the Needs of Your Target Audience 84

Step 1: Brainstorm (All about Eve) .85

Step 2: Define the purpose .86

Step 3: Choose the most functional visualization type
for your purpose .86

Picking the Most Appropriate Design Style .87

Inducing a calculating, exacting response .87

Eliciting a strong emotional response .88

Selecting the Appropriate Data Graphic Type .90

Standard chart graphics .91

Comparative graphics .94

Statistical plots .95

Topology structures .100

Spatial plots and maps .101

Testing Data Graphics .103

Adding Context .104

Creating context with data .105

Creating context with annotations .105

Creating context with graphical elements .105

BOOK 2: USING POWER BI FOR DATA ANALYTICS &
VISUALIZATION . 107

CHAPTER 1: Power BI Foundations . 109

Looking Under the Power BI Hood .109

Posing questions with Power Query .110

Modeling with Power Pivot .111

Visualizing with Power View .111

Mapping data with Power Map .111

Interpreting data with Power Q&A .112

Power BI Desktop .112

Power BI Services .112

Knowing Your Power BI Terminology .113

Capacities .113

Workspaces .114

Reports .115

Dashboards .117

Navigation pane .117

Power BI Products in a Nutshell .118

Introducing the Power BI license options .119

Looking at Desktop versus Services options 120

viii Data Analytics and Visualization All-in-One For Dummies

CHAPTER 2: The Quick Tour of Power BI . 123

Power BI Desktop: A Top-Down View .124

Ingesting Data .125

Files or databases? .126

Building data models .128

Analyzing data .129

Creating and publishing items .130

Services: Far and Wide .132

Viewing and editing reports .132

Working with dashboards .136

Collaborating inside Power BI Services .137

Refreshing data .138

CHAPTER 3: Prepping Data for Visualization . 141

Getting Data from the Source .142

Managing Data Source Settings .146

Working with Shared versus Local Datasets .147

Storage and Connection Modes .150

Data Sources Oh My! . .151

Getting data from Microsoft-based file systems 151

Working with relational data sources .153

Cleansing, Transforming, and Loading Your Data 162

Detecting anomalies and inconsistencies .162

Checking data structures and column properties 163

Data statistics to the rescue .164

CHAPTER 4: Tweaking Data for Primetime . 167

Stepping through the Data Lifecycle . .167

Resolving Inconsistencies .168

Replacing values .168

Removing rows using Power Query .170

Digging down to the root cause .170

Evaluating and Transforming Column Data Types 171

Finding and creating appropriate keys for joins 171

Shaping your column data to meet Power
Query requirements .174

Combining queries .175

Configuring Queries for Data Loading .180

Resolving Errors During Data Import .182

CHAPTER 5: Designing and Deploying Data Models 183

Creating a Data Model Masterpiece .183

Working with Data view and Modeling view 184

Importing queries .186

Table of Contents ix

Defining data types .188

Handling formatting and data type properties 189

Managing tables .191

Adding and modifying data to imported, DirectQuery,
and composite models .196

Managing Relationships .197

Creating automatic relationships .197

Creating manual relationships .198

Deleting relationships .199

Arranging Data .199

Sorting by and grouping by .200

Hiding data .200

Publishing Data Models .201

CHAPTER 6: Tackling Visualization Basics in Power BI 203

Looking at Report Fundamentals and Visualizations 203

Creating visualizations .204

Choosing a visualization .205

Filtering data .207

Choosing the Best Visualization for the Job .209

Working with Bar charts and Column charts 209

Using basic Line charts and Area charts .213

Combining Line charts and Bar charts .215

Working with Ribbon charts .216

Going with the flow with Waterfall charts .216

Funneling with Funnel charts .217

Scattering with Scatter charts .218

Sweetening the data using Pie charts and Donut charts 219

Branching out with treemaps .219

Mapping with maps .221

Indicating with indicators .222

CHAPTER 7: Digging into Complex Visualization
and Table Data . 227

Dealing with Table-Based and Complex Visualizations 228

Zeroing in with slicers .228

Tabling with table visualizations .228

Combing through data with matrices .229

Decomposing with decomposition trees .230

Zooming in on key influencers .230

Using AI Tools to Create Questions and Answers 231

Formatting and Configuring Report Visualizations 232

Applying conditional formatting .233

Configuring the report page .233

x Data Analytics and Visualization All-in-One For Dummies

Exporting reports .235

Perfecting reports for distribution .236

Diving into Dashboards .239

Configuring dashboards .240

Creating a new dashboard .240

Enriching your dashboard with content .242

Pinning reports .245

CHAPTER 8: Sharing and Collaborating with Power BI 247

Working Together in a Workspace .247

Defining the types of workspaces .248

Figuring out the nuts and bolts of workspaces 248

Slicing and Dicing Data .254

Analyzing in Excel .256

Benefiting from Quick Insights .256

Using Usage Metric reports .257

Working with paginated reports .258

Troubleshooting the Use of Data Lineage .258

Datasets, Dataflows, and Lineage .261

Defending Your Data Turf .262

BOOK 3: USING TABLEAU FOR DATA ANALYTICS &
VISUALIZATION . 265

CHAPTER 1: Tableau Foundations . 267

Understanding Key Tableau Terms . .268

Data source .268

Data type .269

Data fields .270

Dimensions and measures .270

Continuous versus discrete .272

Filter .273

Aggregation .273

Workbook and worksheet .274

Getting to Know the Tableau Product Line .275

Tableau Desktop .275

Tableau Prep .278

Tableau Server and Tableau Cloud .279

Choosing the Right Version .281

Knowing What Tools You Need in Each Stage of the Data
Life Cycle .282

Understanding User Types and Their Capabilities 283

Viewer .283

Explorer .283

Creator .284

Table of Contents xi

CHAPTER 2: Connecting Your Data . 285

Understanding Data Source Options .286

Connecting to Data .288

Making the Desktop or Prep connection .289

Locating the Server and Online connections 290

Setting Up and Planning the Data Source .292

Relating and Combining Data Sources .294

Working with Data Relationships .296

Knowing the advantages of relationships .296

Seeing the disadvantages of relationships 297

Creating relationships .297

Editing relationships .299

Moving tables to create different relationships 299

Changing the root table of a relationship .300

Removing tables from a relationship .301

Joining Data .302

Understanding join types .302

Setting up join clauses .303

Creating a join .304

Joining fields that contain null values .306

Blending data from multiple sources .307

Working with clipboard data .309

CHAPTER 3: Diving into the Tableau Prep Lifecycle 313

Dabbling in Data Flows .314

Connecting the data dots .314

Going down the data flow pathway .315

Configuring the data flow .317

Going with the data flow .318

Nurturing a flow .324

Grouping flows .327

Filtering flows .329

Saving Prep Data .333

Automating flows .334

Crafting published data sources .334

CHAPTER 4: Advanced Data Prep Approaches in Tableau 337

Peering into Data Structures .337

Rows and records .338

Columns and fields .339

Categorizing fields .340

xii Data Analytics and Visualization All-in-One For Dummies

Structuring for Data Visualization .342

Binning and histograms .343

Distributions and outliers .344

Pivoting with data: Tall versus wide .345

Normalizing Data .348

CHAPTER 5: Touring Tableau Desktop . 351

Getting Hands-On in the Tableau Desktop Workspace 351

Making Use of the Tableau Desktop Menus .353

File menu .353

Data menu .354

Worksheet menu .355

Dashboard menu .357

Story menu .358

Analysis menu .359

Map menu .361

Format menu .362

Server menu .363

Window menu .364

Help menu .365

Tooling Around in the Toolbar . .365

Understanding Sheets versus Workbooks .369

Renaming sheets .370

Deleting sheets .370

CHAPTER 6: Storytelling Foundations in Tableau 371

Working with Dashboards .371

Configuring the dashboard .372

Customizing the dashboard .374

Adding objects to dashboards .376

Creating a Compelling Story .383

Synthesizing data through a Tableau story 383

Planning your story to perfection .384

Surveying the story workspace .385

Crafting the story .386

Formatting the story .389

CHAPTER 7: Visualizing Data in Tableau . 391

Introducing the Visualizations .392

The text table .392

The heat map and highlight table .394

Maps with and without symbols .396

The pie chart .398

The bar chart .400

Table of Contents xiii

The treemap .401

Circles and bubbles .402

The line chart .406

The area chart .408

The dual combination chart .411

The scatter plot .412

The histogram .414

The box and whisker plot .415

The Gantt chart .416

The bullet chart .418

Converting a Visualization to a Crosstab .419

Publishing Visualizations .422

CHAPTER 8: Collaborating and Publishing with
Tableau Cloud . 425

Strolling through the Tableau Cloud Experience 426

Evaluating Personal Features in Tableau Cloud 430

Personal Space .430

Favorites .432

Recents .434

Sharing Experiences and Collaborating with Others 435

Sharing content .435

Shared with Me .436

Collections .437

Explore .439

Recommendations .440

BOOK 4: EXTRACTING INFORMATION WITH SQL 443

CHAPTER 1: SQL Foundations . 445

SQL and the Relational Model .445

Sets, Relations, Multisets, and Tables .446

Functional Dependencies .447

Keys .448

Views .450

Users .450

Privileges .451

Schemas .451

Catalogs .452

Connections, Sessions, and Transactions .452

Routines .453

Paths .454

xiv Data Analytics and Visualization All-in-One For Dummies

CHAPTER 2: Drilling Down to the SQL Nitty-Gritty 455

Executing SQL Statements .455

Interactive SQL .456

Challenges to combining SQL with a host language 457

Embedded SQL .457

Module language .460

Using Reserved Words Correctly .461

SQL’s Data Types .461

Exact numerics .462

INTEGER .462

SMALLINT .463

BIGINT .463

Approximate numerics .464

Character strings .466

Binary strings .468

Booleans .469

Datetimes .469

Intervals .471

XML type .471

ROW type .472

Collection types .473

REF types .475

User-defined types .475

Handling Null Values .478

Applying Constraints .479

Column constraints .480

Table constraints .481

Foreign key constraints . .483

Assertions .484

CHAPTER 3: Values, Variables, Functions, and Expressions 487

Entering Data Values .487

Row values have multiple parts .488

Identifying values in a column .488

Literal values don’t change .488

Variables vary .490

Special variables hold specific values .490

Working with Functions .491

Summarizing data with set functions .491

Dissecting data with value functions .494

Using Expressions .503

Numeric value expressions .503

String value expressions .503

Datetime value expressions .504

Table of Contents xv

Interval value expressions .505

Boolean value expressions .506

Array value expressions .506

Conditional value expressions .507

Converting data types with a CAST expression 510

Row value expressions .511

CHAPTER 4: SELECT Statements and Modifying Clauses 513

Finding Needles in Haystacks with the SELECT Statement 513

Modifying Clauses .514

FROM clauses .514

WHERE clauses .515

GROUP BY clauses .533

HAVING clauses .535

ORDER BY clauses .536

CHAPTER 5: Tuning Queries . 539

SELECT DISTINCT .540

Temporary Tables .542

The ORDER BY Clause .547

The HAVING Clause .551

The OR Logical Connective .555

CHAPTER 6: Complex Query Design . 557

What Is a Subquery? .557

What Subqueries Do .558

Subqueries that return multiple values .558

Subqueries that return a single value .560

Quantified subqueries return a single value 563

Correlated subqueries .566

Using Subqueries in INSERT, DELETE, and UPDATE Statements 571

Tuning Considerations for Statements Containing
Nested Queries .574

Tuning Correlated Subqueries .579

UNION .584

UNION ALL .586

UNION CORRESPONDING .587

INTERSECT .588

EXCEPT .590

CHAPTER 7: Joining Data Together in SQL . 591

JOINS .591

Cartesian product or cross join .592

Equi-join .594

xvi Data Analytics and Visualization All-in-One For Dummies

Natural join .596

Condition join .596

Column-name join .597

Inner join .598

Outer join .599

ON versus WHERE .603

Join Conditions and Clustering Indexes .603

BOOK 5: PERFORMING STATISTICAL DATA
ANALYSIS & VISUALIZATION WITH R PROGRAMMING 605

CHAPTER 1: Using Open Source R for Data Science 607

Downloading Open Source R .608

Comprehending R’s Basic Vocabulary .608

Delving into Functions and Operators .612

Iterating in R .615

Observing How Objects Work .617

Sorting Out R’s Popular Statistical Analysis Packages 619

Examining Packages for Visualizing, Mapping, and Graphing in R 620

Visualizing R statistics with ggplot2 . .620

Analyzing networks with statnet and igraph 621

Mapping and analyzing spatial point patterns with spatstat 622

CHAPTER 2: R: What It Does and How It Does It 623

The Statistical (and Related) Ideas You Just Have to Know 624

Samples and populations .624

Variables: Dependent and independent .625

Types of data .626

A little probability .626

Inferential statistics: Testing hypotheses .628

Null and alternative hypotheses .628

Two types of error .629

Getting R .630

Getting RStudio .631

A Session with R .634

The working directory .634

Getting started .635

R Functions .638

User-Defined Functions .639

Comments .640

R Structures .641

Vectors .641

Numerical vectors .642

Matrices .643

Table of Contents xvii

Lists .645

Data frames .646

for Loops and if Statements . .649

CHAPTER 3: Getting Graphical . 651

Finding Patterns .651

Graphing a distribution .652

Bar-hopping .653

Slicing the pie .654

The plot of scatter .654

Of boxes and whiskers .656

Doing the Basics: Base R Graphics, That Is .657

Histograms .657

Graph features .658

Bar plots .660

Pie graphs .662

Dot charts .662

Bar plots revisited .663

Scatter plots .666

Box plots .669

CHAPTER 4: Kicking It Up a Notch to ggplot2 . 671

Histograms .672

Bar Plots .675

Dot Charts .676

Bar Plots Re-revisited .679

Scatter Plots .683

Scatter Plot Matrix .683

Box Plots .686

BOOK 6: APPLYING PYTHON PROGRAMMING
TO DATA SCIENCE . 689

CHAPTER 1: Discovering the Match between Data
Science and Python . 691

Creating the Data Science Pipeline .692

Understanding Python’s Role in Data Science693

Considering the shifting profile of data scientists 693

Working with a multipurpose, simple, and efficient language . . .694

Learning to Use Python Fast .695

Loading data .695

Training a model .695

Viewing a result .696

xviii Data Analytics and Visualization All-in-One For Dummies

Working with Python .697

Contributing to data science .697

Getting a taste of the language .698

Understanding the need for indentation .698

Using the Python Ecosystem for Data Science 699

Accessing scientific tools using SciPy .699

Performing fundamental scientific computing using NumPy 700

Performing data analysis using pandas .700

Implementing machine learning using Scikit-learn 700

Going for deep learning with Keras and TensorFlow 701

Plotting the data using Matplotlib .701

Creating graphs with NetworkX .702

CHAPTER 2: Using Python for Data Science
and Visualization . 703

Using Python for Data Science .703

Sorting Out the Various Python Data Types .705

Numbers in Python .706

Strings in Python .706

Lists in Python .707

Tuples in Python .707

Sets in Python .708

Dictionaries in Python .708

Putting Loops to Good Use in Python .708

Having Fun with Functions .709

Keeping Cool with Classes .711

Checking Out Some Useful Python Libraries .713

Saying hello to the NumPy library .714

Getting up close and personal with the SciPy library 716

Bonding with MatPlotLib for data visualization 716

Peeking into the Pandas offering .718

Learning from data with Scikit-learn . .719

CHAPTER 3: Getting a Crash Course in Matplotlib 721

Starting with a Graph .722

Defining the plot .722

Drawing multiple lines and plots .723

Saving your work to disk . .724

Setting the Axis, Ticks, and Grids .725

Getting the axes .725

Formatting the axes .726

Adding grids .727

Table of Contents xix

Defining the Line Appearance .729

Working with line styles .729

Using colors .730

Adding markers .731

Using Labels, Annotations, and Legends .733

Adding labels .734

Annotating the chart .734

Creating a legend .735

CHAPTER 4: Visualizing the Data . 739

Choosing the Right Graph .740

Creating comparisons with bar charts .740

Showing distributions using histograms .741

Depicting groups using boxplots .743

Seeing data patterns using scatterplots .744

Creating Advanced Scatterplots .746

Depicting groups .746

Showing correlations .747

Plotting Time Series . .748

Representing time on axes .749

Plotting trends over time .751

Plotting Geographical Data .752

Using an environment in Notebook .753

Using Cartopy to plot geographic data .754

Visualizing Graphs .757

Developing undirected graphs .757

Developing directed graphs .759

INDEX . 761

Introduction 1

Introduction

E
verywhere you go in the business world, you are likely to encounter

 executives who make decisions driven by tidbits of raw data that together

tell a meaningful story. In fact, in our everyday worlds, websites and mobile

apps express data using powerful visualizations to explain complex numbers and

concepts, not extensive written passages anymore. The phrase “a picture speaks

a thousand words” rings true in the world of data analytics and visualization, and

for good reason.

Data analytics and visualization allow anyone to turn raw data into meaningful

stories and insights. You, as the analyst, act as the detective. Instead of having

to solve a mystery with clues, you are provided datasets that, if provided with

enough clarity, can answer complex questions using trend and pattern analysis.

If you review a dataset enough, you’ll inevitably have an ah-ha moment in your

interpretation quest, but if the dataset can be presented visually, you can accel-

erate your understanding like a racecar going from 0 to 100 miles per hour in

seconds.

Data analytics and visualization help you uncover creative ways to showcase data

in a manner that is both informative and engaging. Data often starts out as noth-

ing more than a bunch of jumbled numbers; turning those numbers into a story

that can influence decisions and drive change is incredibly powerful. Global enter-

prises rely on folks who have the skills you are about to embark on in this book as

a way to determine business strategies, make corporate decisions, and influence
change. If you are ready to learn these skills, you are in for a treat with this book.

About This Book

If you’ve picked up this book, you might be on a quest to piece together a whole

lot of terms being thrown around in the information economy regarding data,

the most precious tool in the information economy. Data is a business asset that

sits at the intersection of many disciplines; the resultant product from data can

be methodologies, processes, algorithms, and system outputs. To the end user

though, the end game is extracting knowledge and insights from the byproducts

of data, and taking action upon review.

2 Data Analytics & Visualization All-in-One For Dummies

Book 1 covers the foundational aspects of the data analytics and visualiza-

tion lifecycle that every user must understand to be proficient as an analyt-
ics and visualization savvy. Books 2 and 3 focus on the two leading tools in

the enterprise business intelligence market used to perform complex data

analytics and visualization tasks; Microsoft Power BI and Tableau. Books 4

through 6 cover the key programming languages used by both proprietary and

open-source data analytics and visualization platforms to extract, assess, and

visualize data at scale when commercial off-the-shelf enterprise business plat-
forms are unavailable.

This book uses the following technical conventions:

 » Bold text means that you’re meant to type the text just as it appears in the

book. The exception is when you’re working through a steps list: Because each

step is bold, the text to type is not bold.

 » Web addresses and programming code appear in monofont. If you’re

reading a digital version of this book on a device connected to the Internet,

note that you can click the web address to visit that website, like this: www.

dummies.com.

 » For command sequences in software, this book uses the command arrow.

Here’s an example that uses Microsoft Word: Click the Office button and
then choose Page Layout➪ Margins➪ Narrow to decrease the default

margin setting.

If you don’t think the book contains any conventions that need to be spelled out in

this section, discuss omitting conventions information with your editor.

To make the content more accessible, we divided it into 6 books:

 » Book 1, “Learning Data Analytics & Visualization Foundations.”

Book 1 introduces terms and fundamental concepts. You learn about big data,

data lakes, and data science, and you see how you can apply visualization

tools to create meaningful stories based on data you collect.

 » Book 2, “Using Power BI for Data Analysis & Visualization.”

Book 2 covers Microsoft Power BI, a data analysis and visualization tool used

by many large organizations. This book illustrates how you can use Power BI

to make sense of structured, unstructured, and semi-structured data, and

develop robust business analytics outputs for your organization.

http://www.dummies.com
http://www.dummies.com

Introduction 3

 » Book 3, “Using Tableau for Data Analysis & Visualization.”

Book 3 covers Tableau, a data analysis and visualization tool favored by

researchers and educational institutions. In this book, you discover how to

prepare data and present your findings using Tableau’s storytelling and
visualization features. You also see how to collaborate and publish your

work with Tableau Cloud.

 » Book 4, “Extracting Information with SQL.”

Book 4 describes SQL and the relational database model. You discover how

SQL is a powerful tool that nonprogrammers can use to write complex

queries to get the most out of their data, and more.

 » Book 5, “Performing Statistical Data Analysis & Visualization with

R Programming.”

Book 5 introduces the open-source R programming language. You see how

you can use R to perform statistical data analysis, data visualization, and other

data science tasks.

 » Book 6, “Applying Python Programming to Data Science.”

Book 6 describes how Python is used as a data science and visualization tool.

The book includes a “crash course” on MatPlotLib.

Foolish Assumptions

To get the most out of this book, you need the following:

 » Access to the Internet: This may sound a bit obvious. Even with the Desktop

client, an Internet connection is required in order to access datasets from

the Internet.

 » A meaningful dataset: A meaningful dataset includes at least 300 to 400

records containing a minimum of five or six columns’ worth of data.

Icons Used in This Book

Throughout this book, icons in the margins highlight certain types of valuable

information that call out for your attention. Here are the icons you’ll encounter

and a brief description of each.

4 Data Analytics & Visualization All-in-One For Dummies

Best Practice icons highlight points of common knowledge among seasoned

professionals in the data industry. If you don’t want to look like a complete new-

bie, follow the well-worn advice described in these paragraphs.

Tips point out shortcuts or essential suggestions that you can use to do things

quicker, faster, and more efficiently.

Consider these small suggestions that are quite helpful. Remember icons are like

signs on the road to suggest a potential better route.

The Technical Stuff icon marks information of a highly technical nature that you
can normally skip over. When appropriate, these paragraphs also suggest special-

ized resources you may find helpful down the road.

The Warning icon makes you aware of a common issue or product challenge many

users face. Don’t fret, but do take note when you see this icon.

Beyond the Book

In addition to the abundance of information and guidance related to data analy-

sis and visualization provided in this book, you get access to even more help and

information online at Dummies.com. Check out this book’s online Cheat Sheet. Just

go to www.dummies.com and search for “Data Analysis & Visualization All-in-One

For Dummies Cheat Sheet.”

Where to Go from Here

The book has three core themes: foundational concepts, tools, and programming

languages.

If you want to learn the essential data analytics and visualization concepts, includ-

ing learning the lingo of the land, head to Book 1.

http://dummies.com
http://www.dummies.com

Introduction 5

If you’re looking to get up to speed on Microsoft’s Enterprise BI tools, head to

Book 2. Tableau, a tool used for Enterprise BI but heavily leveraged in communi-

ties where data is regulated such as banking, healthcare, insurance, and govern-

ment, head to Book 3.

The underpinning for data analytics and visualization is SQL, a querying language.

To get a crash course on SQL, which is necessary for any proprietary or open-

source data analytics and visualization platform, head to Book 4.

Finally, Books 5 and 6 are an introduction to two popular open-source program-

ming languages, R and Python. Both languages can be configured for use with
Power BI and Tableau, but are more commonly used with open-source (free)

platforms like Jupyter Notebook and Anaconda to conceive data analytics outputs

and visualizations. Unlike Power BI and Tableau, open-source tools leveraging

programming languages are used in academic settings or by analysts requiring

technologies that are data intensive.

1Learning Data
Analytics &
Visualizations
Foundations

Contents at a Glance

CHAPTER 1: Exploring Definitions and Roles . 9

What Is Data, Really? . 10

Discovering Business Intelligence . 12

Understanding Data Analytics . 13

Exploring Data Management . 15

Diving into Data Analysis . 16

Visualizing Data . 17

CHAPTER 2: Delving into Big Data . 19

Identifying the Roles of Data . 20

What’s All the Fuss about Data? . 30

Identifying Important Data Sources . 35

Role of Big Data in Data Science and Engineering 36

Connecting Big Data with Business Intelligence 39

Analyzing Data with Enterprise Business Intelligence Practices . . . 39

CHAPTER 3: Understanding Data Lakes . 41

Rock-Solid Water . 42

A Really Great Lake . 43

Expanding the Data Lake . 43

More Than Just the Water . 45

Different Types of Data . 45

Different Water, Different Data . 47

Refilling the Data Lake . 48

Everyone Visits the Data Lake . 49

CHAPTER 4: Wrapping Your Head Around Data Science 51

Inspecting the Pieces of the Data Science Puzzle 52

Choosing the Best Tools for Your Data Science Strategy 57

Getting a Handle on SQL and Relational Databases 58

Investing Some Effort into Database Design 62

Narrowing the Focus with SQL Functions . 66

Making Life Easier with Excel . 70

CHAPTER 5: Telling Powerful Stories with Data
Visualization . 81

Data Visualizations: The Big Three . 82

Designing to Meet the Needs of Your Target Audience 84

Picking the Most Appropriate Design Style . 87

Selecting the Appropriate Data Graphic Type 90

Testing Data Graphics . 103

Adding Context . 104

CHAPTER 1 Exploring Definitions and Roles 9

Exploring Definitions
and Roles

D
ata is everywhere — literally. From the moment you awaken until the time
you sleep, some system somewhere collects data on your behalf. Even as
you sleep, data is being generated that correlates to some aspect of your

life. What is done with this data is often the proverbial 64-million-dollar ques-
tion. Does the data make sense? Does it have any sort of structure? Is the dataset
so voluminous that finding what you’re looking for is like finding a needle in a
haystack? Or is it more like you can’t even find what you need unless you have a
special tool to help you navigate?

The answer to that last question is an emphatic yes, and that’s where data analyt-
ics and business intelligence join the party. And let’s be honest: The party can be
overwhelming if data is consistently generating something on your behalf.

This chapter discusses the different types of data you may encounter when you
begin working with data. It introduces the key terminology you should become
familiar with upfront. You learn a few key concepts to give you a head start
working with business intelligence, and you get the “what’s what” of business
intelligence tools and techniques.

Chapter 1

IN THIS CHAPTER

 » Understanding the different types
of data

 » Managing large datasets with
business intelligence tools

 » Recognizing the importance of data
analytics

 » Appreciating the role of data
management

 » Presenting data analytics visually

10 BOOK 1 Learning Data Analytics & Visualizations Foundations

What Is Data, Really?
Ask a hundred people in a room what the definition of data is and you may receive
one hundred different answers. Why is that? Because, in the world of business,
data means a lot of different things to a lot of different people. So, let’s try to get
a streamlined response. Data contains facts. Sometimes, the facts make sense;
sometimes, they’re meaningless unless you add a bit of context.

The facts can sometimes be quantities, characters, symbols, or a combination of
sorts that come together when collecting information. The information allows
people — and more importantly, businesses — to make sense of the facts that,
unless brought together, make absolutely no sense whatsoever.

When you have an information system full of business data, you also must have a
set of unique data identifiers you can use so that, when searched, it’s easy to make
sense of the data in the form of a transaction. Examples of transactions might
include the number of jobs completed, inquiries processed, income received, and
expenses incurred.

The list can go on and on. To gain insight into business interactions and conduct
analyses, your information system must have relevant and timely data that is of
the highest quality.

Data isn’t the same as information. Data is the raw facts. That means you should
think of data in terms of the individual fields or columns of data you may find in a
relational database or perhaps the loose document (tagged with some descriptors
called metadata) stored in a document repository. On their own, these items are
unlikely to make much sense to you or a business. And that’s perfectly okay —
sometimes. Information is the collective body of all those data parts that result in
the factoids making logical sense.

Working with structured data
Have you ever opened a database or spreadsheet and noticed that data is bound
to specific columns or rows? For example, would you ever find a United States
zip code containing letters of the alphabet? Or, perhaps when you think of a first
name, middle initial, and last name, you notice that you always find letters in
those specific fields. Another example is when you’re limited to the number of
characters you can input into a field. Think of Y as Yes; N is for No. Anything else
is irrelevant.

This type of data is called structured data. When you evaluate structured data, you
notice that it conforms to a tabular format, meaning that each column and row

Exploring D
efi

nitions
and Roles

CHAPTER 1 Exploring Definitions and Roles 11

must maintain an interrelationship. Because each column has a representative
name that adheres to a predefined data model, your ability to analyze the data
should be straightforward.

If you’re using Power BI (covered in Book 2) or Tableau (covered in Book 3), you
notice that structured data conform to a formal specification of tables with rows
and columns, commonly referred to as a data schema. In Figure 1-1, you find an
example of structured data as it appears in a Microsoft Excel spreadsheet.

Looking at unstructured data
Unstructured data is ambiguous, having no rhyme, reason, or consistency what-
soever. Pretend that you’re looking at a batch of photos or videos. Are there
explicit data points that one can associate with a video or photo? Perhaps, because
the file itself may consist of a structure and be made of some metadata. However,
the byproduct itself — the represented depiction — is unique. The data isn’t rep-
licable; therefore, it’s unstructured. That’s why any video, audio, photo, or text
file is considered unstructured data. Products such as Power BI and Tableau offer
limited support for unstructured data.

Adding semi-structured data to the mix
Semi-structured data does have some formality, but it isn’t stored in a rela-
tional system and it has no set format. Fields containing the data are by no means
neatly organized into strategically placed tables, rows, or columns. Instead, semi-
structured data contains tags that make the data easier to organize in some form
of hierarchy. Nonrelational data systems or NoSQL databases are best associated
with semi-structured data, where the programmatic code, often serialized, is
driven by the technical requirements. There is no hard-and-fast coding practice.

For the business intelligence developer utilizing semi-structured languages, seri-
alized programming practices can assist in writing sophisticated code. Whether
the goal is to write data to a file, send a data snippet to another system, or parse
the data to be translatable for structured consumption, semi-structured data does
have the potential for business intelligence systems. A semi-structured dataset
has great potential if the serialized language can communicate and speak the
same language.

FIGURE	1-1:
An example of

structured data.

12 BOOK 1 Learning Data Analytics & Visualizations Foundations

Discovering Business Intelligence
Many IT vendors define business intelligence differently. They put their spin on
the term by injecting their tool lingo into the definition. For example, if you were
to go to a Microsoft website, you’d be sure to find a page or two that would have
a pure definition of business intelligence, but you’d also find a gazillion pages
detailing how you can apply Power BI or Excel-based solutions to every conceiv-
able business problem.

So, let’s avoid the vendor websites and stick with a no-frills definition of business

intelligence: Simply put, business intelligence (BI) is what businesses use in order
to be in a position where they can analyze current as well as historical data.
Throughout the process of data analysis, the hope is that an organization will be
able to uncover the insights needed to make the right decisions for the business’s
future. By using a combination of available tools, an organization can process
large datasets across multiple data sources in order to come up with findings that
can then be presented to upper management. Using the enterprise BI tool, for
example, interested parties can produce visualizations via reports, dashboards,
and KPIs as a way to ground their growth strategies in the world of facts.

Not so very long ago, businesses had to do many tasks manually. BI tools now
save the day by reducing the effort to complete mundane tasks. You can take four
actions right now to transform raw data into readily accessible data:

 » Collect and transform your data: When using multiple data sources, BI tools

allow you to extract, transform, and load (ETL) data from structured and

unstructured sources. When that process is complete, you can then store

the data in a central repository so that an application can analyze and

query the data.

 » Analyze data to discover trends: The term data analysis can mean many

things, from data discovery to data mining. The business objective, however,

is all the same: It all boils down to the size of the dataset, the automation
process, and the objective for pattern analysis. BI often provides users with a

variety of modeling and analytics tools. Some come equipped with visualiza-

tion options, and others have data modeling and analytics solutions for

exploratory, descriptive, predictive, statistical, and even cognitive evaluation

analysis. All these tools help users explore data — past, present, and future.

 » Use visualization options in order to provide data clarity: You may have

lots of data stored in one or more repositories. Querying the data to be

understood and shared among users and groups is the actual value of

business intelligence tools. Visualization options often include reporting,

dashboards, charts, graphics, mapping, key performance indicators,

and — yes — datasets.

Exploring D
efi

nitions
and Roles

CHAPTER 1 Exploring Definitions and Roles 13

 » Taking action and making decisions: The process culminates with all the

data at your fingertips to make actionable decisions. Companies act by taking
insights across a dataset. They parse through data in chunks, reviewing small

subsets of data and potentially making significant decisions. That’s why
companies embrace business intelligence — because with its help, they can
quickly reduce inefficiency, correct problems, and adapt the business to
support market conditions.

Understanding Data Analytics
Raw data is largely useless. If you’ve ever briefly glanced at a large data set that
has columns and rows of numbers, it quickly becomes clear that not much can be
gleaned from it.

In order to make sense of data, you have to apply specific tools and techniques.
The process of examining data to produce answers or find conclusions is called
data analytics. Data analysts take a formal and disciplined approach to data ana-
lytics. This step is necessary for any individual or organization seeking to make
good decisions.

The process of data analytics varies depending on resources and context, but gen-
erally follows the steps outlined in Figure 1-2. These steps commence after the
problem and questions have been identified.

Data analytics has four primary types. Figure 1-3 illustrates the relative complex-
ity and value of each type.

 » Descriptive: Existing data sets of historical data are accessed, and analysis is

performed to determine what the data tells stakeholders about the perfor-

mance of a key performance indicator (KPI) or other business objective. It is

insight on past performance.

FIGURE 1-2:
Basics steps in

data analysis.

(c) John Wiley & Sons

14 BOOK 1 Learning Data Analytics & Visualizations Foundations

 » Diagnostic: As the term suggests, this analysis tries to glean the answer from

the data as to why something happened. It uses descriptive analysis to look at

the cause.

 » Predictive: In this approach, the analyst uses techniques to determine what

may occur in the future. It applies tools and techniques to historical data and

trends to predict the likelihood of certain outcomes.

 » Prescriptive: This analysis focuses on what action should be taken. In

combination with predictive analytics, prescriptive techniques provide

estimates on the probabilities of a variety of future outcomes.

Data analytics involves the use of a variety of software tools depending on the
needs, complexities, and skills of the analyst. Beyond your favorite spreadsheet
program, which can deliver a lot of capabilities, data analysts use products such
as R, Python, Tableau, Power BI, QlikView, and others.

If your organization is big enough and has the budget, one or more data analysts
is certainly a minimum requirement for serious analytics. With that said, every
organization should now consider some basic data analytic skills for most staff. In
a data-centric, digital world, having data science as a growing business compe-
tency may be as important as basic word processing and email skills.

FIGURE 1-3:
The relative

complexity and

business value

of four types of

analytics.

(c) John Wiley & Sons

Exploring D
efi

nitions
and Roles

CHAPTER 1 Exploring Definitions and Roles 15

Exploring Data Management
No, data management is not the same as data governance. But they work closely
together to deliver results in the use of enterprise data.

Data governance concerns itself with, for example, defining the roles, policies,
controls, and processes for increasing the quality and value of organizational data.

Data management is the implementation of data governance. Without data man-
agement, data governance is just wishful thinking. To get value from data, there
must be execution.

At some level, all organizations implement data management. If you collect and
store data, technically you’re managing that data. What matters in data manage-
ment is the degree of sophistication that is applied to managing the value and
quality of data sets. If it’s on the low side, data may be a bottleneck rather than
an advantage. Poor data management often results in data silos across an orga-
nization, security and compliance issues, errors in data sets, and an overall low
confidence in the quality of data.

Who would choose to make decisions based on bad data?

On the other hand, good data management can result in more success in the mar-
ketplace. When data is handled and treated as a valuable enterprise asset, insights
are richer and timelier, operations run smoother, and team members have what
they need to make more informed decisions. Well-executed data management can
translate to reduced data security breaches and lower compliance, regulatory, and
privacy issues.

Data management processes involve the collection, storage, organization, main-
tenance, and analytics of an organization’s data. It includes the architecture of
technology systems such that data can flow across the enterprise and be accessed
whenever and by whom it is approved for use. Additionally, responsibilities will
likely include such areas as data standardization, encryption, and archiving.

Technology team members have elevated roles in all these activities, but all busi-
ness stakeholders have some level of data responsibilities, such as compliance
with data policies and realizing data value.

16 BOOK 1 Learning Data Analytics & Visualizations Foundations

Diving into Data Analysis
Data analysis is the application of tools and techniques to organize, study, reach
conclusions, and sometimes make predictions about a specific collection of
information.

For example, a sales manager might use data analysis to study the sales history
of a product, determine the overall trend, and produce a forecast of future sales.
A scientist might use data analysis to study experimental findings and determine
the statistical significance of the results. A family might use data analysis to find
the maximum mortgage it can afford or how much it must put aside each month
to finance retirement or the kids’ education.

Cooking raw data
The point of data analysis is to understand information on some deeper, more
meaningful level. By definition, raw data is a mere collection of facts that by
themselves tell you little or nothing of any importance. To gain some under-
standing of the data, you must manipulate the data in some meaningful way. The
purpose of manipulating data can be something as simple as finding the sum or
average of a column of numbers or as complex as employing a full-scale regres-
sion analysis to determine the underlying trend of a range of values. Both are
examples of data analysis, and Excel offers several tools — from the straightfor-
ward to the sophisticated — to meet even the most demanding needs.

Dealing with data
The data part of data analysis is a collection of numbers, dates, and text that repre-
sents the raw information you have to work with. In Excel, this data resides inside
a worksheet, which makes the data available for you to apply Excel’s satisfyingly
large array of data-analysis tools.

Most data-analysis projects involve large amounts of data, and the fastest and
most accurate way to get that data onto a worksheet is to import it from a non-

Excel data source. In the simplest scenario, you can copy the data from a text file,
a Word table, or an Access datasheet and then paste it into a worksheet. However,
most business and scientific data is stored in large databases, so Excel offers tools
to import the data you need into your worksheet. (See Book 1, Chapter 4.)

After you have your data in the worksheet, you can use the data as is to apply
many data-analysis techniques. However, if you convert the range into a table,

Excel treats the data as a simple database and enables you to apply a number of
database-specific analysis techniques to the table.

Exploring D
efi

nitions
and Roles

CHAPTER 1 Exploring Definitions and Roles 17

Building data models
In many cases, you perform data analysis on worksheet values by organizing those
values into a data model, a collection of cells designed as a worksheet version of
some real-world concept or scenario. The model includes not only the raw data
but also one or more cells that represent some analysis of the data. For example,
a mortgage amortization model would have the mortgage data — interest rate,
principal, and term — and cells that calculate the payment, principal, and inter-
est over the term. For such calculations, you use formulas and Excel’s built-in
worksheet functions.

Performing what-if analysis
One of the most common data-analysis techniques is what-if analysis, for which
you set up worksheet models to analyze hypothetical situations. The “what-if”
part means that these situations usually come in the form of a question: “What
happens to the monthly payment if the interest rate goes up by 2 percent?” “What
will the sales be if you increase the advertising budget by 10 percent?” Excel offers
four what-if analysis tools: data tables, Goal Seek, Solver, and scenarios.

Visualizing Data
Raw data that is transformed into useful information can only go so far. Assume
for a moment that you were able to aggregate ten data sources whose total record
count exceeded 5 million records. As a data analyst, your job was to try to explain
to your target audience what the demographics study dataset incorporates among
the 5 million records. How easy would that be? It’s not simple to articulate unless
you can summarize the data cohesively using some data visualization.

Data visualizations are graphical representations of information and data. Suppose
you can access visual elements such as charts, graphs, maps, and tables that can
concisely synthesize what those millions of records include. In that case, you
are effectively using data visualization tools to provide an accessible platform to
address trends, patterns, and outliers within data.

For those who are enamored with big data, the use of data visualization tools
helps users analyze massive amounts of data quickly by applying data-driven
decisions using graphical representations rather than requiring users to parse
through lines of text one by one.

CHAPTER 2 Delving into Big Data 19

Delving into Big Data

P
eople create and use data all the time. We usually take it for granted. It’s
part of our daily personal and business vernacular. As with many things,
your definition of data probably differs from someone else’s definition of

the same. In fact, your (or their) definition may not even be entirely accurate. We
tend to take data for granted and perhaps neglect to ensure we’re all on the same
page when discussing it.

For example, your colleague may ask you to gather data on a topic. Seems straight-
forward. But might they actually be asking you to gather information instead?
They’re different things. If you gather data and then produce it for them, they’re
going to be disappointed when their expectation was information.

This chapter helps get everyone on the same page with regard to data. First you
see how data is typically used as part of day-to-day business functions, and then
in the rest of the chapter, you get the scoop on big data and how organizations can
get the most from it today.

Chapter 2

IN THIS CHAPTER

 » Seeing how businesses use data

 » Understanding big data

 » Getting how data leads to insights

 » Knowing common data sources

 » Examining the role of big data in data

science and engineering

 » Combining big data and business

intelligence

20 BOOK 1 Learning Data Analytics & Visualizations Foundations

Identifying the Roles of Data

To fully appreciate the value that data brings to every organization, it’s worth
exploring the many ways that data shows up on a day-to-day basis. Recogniz-
ing the incredible diversity of data use and the exposure it has across all business
functions reinforces its importance. It’s critical to ensure that data is high quality,
secure, compliant, and accessible to the right people at the right time.

Data isn’t something that just concerns the data analytics team or the information
technology department. It’s also not something that is limited to decision-makers
and leaders.

Operations

Business operations concern themselves with a diverse set of activities to run
the day-to-day needs and drive the mission of an organization. Each business
has different needs, and operational functions reflect these specific requirements.
Some core functions show up in almost every organization. Consider payroll,
order management, and marketing. At the same time, some operational support
won’t be required. Not every organization needs its own IT organization, or if it’s
a service business, it may not have a warehouse.

Operations run on and are powered by a variety of data and information sources.
They also create a lot of both.

The performance of operations is often easily quantified by data. For example, in
a human resources (HR) function, they’ll want to know how many openings there
are, how long openings are taking to fill, and who is accepting offers. There’s a
multitude of data points to quantify the answers so that relevant decisions can be
made.

In HR, data is also created by the activities of the function. For example,
candidates enter data when they apply for a position, data is entered when
evaluating an applicant, and all along the way, the supporting systems log a vari-
ety of automated data, such as time, date, and how long an application took to
complete online.

In this HR example, and frankly, in any other operations teams explored, data is
abundantly created as a result of and in support of functions.

Operations use data to make decisions, to enable systems to run, and to deliver
data to internal and external entities. For example, a regional sales team will

D
e

lv
in

g
 in

to
 B

ig
 D

a
ta

CHAPTER 2 Delving into Big Data 21

deliver their monthly results to headquarters to be presented to vice presidents
or the C-suite.

Many data functions in support operations are automated. For example, a ware-
house inventory system may automatically generate a replenishment order when
stock drops to a certain level. Consider all the notifications that systems generate
based on triggers. Who hasn’t received an email notifying them that they haven’t
submitted their time and expense report?

As you’ll notice in almost all data scenarios, there are skilled people, dedicated
processes, and various technologies partially or wholly focused on handling oper-
ational data.

Strategy

Every organization has a strategy, whether it’s articulated overtly or not. At the
organizational level, this is about creating a plan that supports objectives and
goals. It’s essentially about understanding the challenges to delivering on the
organization’s purpose and then agreeing on the proposed solutions to those
challenges. Strategy can also be adopted at the department and division levels,
but the intent is the same: understand the journey ahead and make a plan.

Strategy leads to implementation and requires the support of operations to real-
ize its goals. In this way, strategy and operations are two sides of the same coin.
Done right, a data-driven strategy delivered with operational excellence can be a
winning ticket.

Creating a strategy typically comes down to a core set of activities. It begins with
an analysis of the environment followed by some conclusions on what has been
gathered. Finally, a plan is developed, driven by some form of guiding principles.
These principles may be derived from the nature of the work, the values of the
founders, or some other factors.

Deeply tied to all these steps is the availability of good quality data that can be
processed and analyzed and then turned into actionable insights.

Certainly, data and information won’t be the only mechanisms in which the plan
will be constructed. There must be room for other perspectives, including the
strength of belief that people with experience bring to the discussion. The right
mix of data and non-data sources must be considered. Too much of one or the
other may not deliver expected results.

22 BOOK 1 Learning Data Analytics & Visualizations Foundations

A best practice for strategy development is to consider it an ongoing process.
This doesn’t mean updating the strategy every month — that is a recipe for
chaos — but it may mean revisiting the strategy every six months and tweak-
ing it as necessary. Revisions to strategy should be guided by new data, which
can mean new knowledge and new insights. While a regular process of strategy
revisions is encouraged, new information that suddenly presents itself can trigger
an impromptu update.

In the 21st century, organizations need to react quickly to environmental condi-
tions to survive. Data will form the backbone of your response system.

Decision-making

It’s generally accepted in business that the highest form of value derived from
data is the ability to make better informed decisions. The volume and quality of
data available today has no precedent in history. Let’s just say it as it is: we’re
spoiled.

Without even creating a single unit of raw data, there’s a universe of existing data
and information at our fingertips. In addition, increasing numbers of easy-to-use
analysis capabilities and tools are democratizing access to insight.

Popular consumer search engines such as Google and Bing have transformed how
we make decisions. Doctors, for example, now deal with patients who are more
informed about their symptoms and their causes. It’s a mixed blessing. Some
of the information has reduced unnecessary clinic visits, but it’s also created a
headache for physicians when the information their patients have consumed is
incorrect.

Within organizations, access to abundant data and information has resulted
in quicker, more timely, and better-quality business decisions. For example,
 executives can understand their strengths, weaknesses, opportunities, and threats
closer to real time. For most, gone are the days of waiting until the end of the
fiscal quarter to get the good or bad news. Even if the information is tentative in
the interim, it’s vastly better than being in the dark until it may be too late.

While there’s little surprise that data-driven decision-making is a fundamental
business competency, it all hinges on decision-makers getting access to quality
data at the right time. Abundant and out-of-date data are not synonymous with
data value. Bad data may be worse than no data. Bad data processed into informa-
tion and then used as the basis for decisions will result in failure. The outcome of
decisions based on bad data could range from a minor mistake to job termination
right up to the closing of the business.

D
e

lv
in

g
 in

to
 B

ig
 D

a
ta

CHAPTER 2 Delving into Big Data 23

Measuring

Organizations are in a continuous state of measurement, whether it’s overt or
tacit. Every observed unit of data contributes to building a picture of the business.
The often-used adage, what gets measured gets managed, is generally applicable.
That said, some things are hard to measure and not everything gets measured.

The aspiration for every leader is that they have the information they need when
they need it. You might not always think of it this way, but that information is
going to be derived from data that is a result of some form of measurement.

Data measurements can be quantitative or qualitative. Quantitative data is most
often described in numerical terms, whereas qualitative data is descriptive and
expressed in terms of language.

My favorite way of distinguishing the two is described as follows: When asked to
describe a journey in a plane, a person could answer it quantitatively. For example,
the flight leveled off at 35,000 feet and traveled at a speed of 514 mph. Another
person who asked the same question could answer it qualitatively by saying the
flight wasn’t bumpy and the meals were tasty. Regardless, the data and informa-
tion tell a story that, depending on the audience, will have meaning. It might be
worthless, but meaningful.

The type of information desired directly correlates to the measurement approach.
This is going to inform your choices of at least what, when, where, and how data
is captured. A general rule is only to capture and measure what matters. Some
may argue that capturing data now to measure later has value even if there isn’t
a good case yet. That may be true, but be careful with your limited resources and
the potential costs.

Monitoring

Monitoring is an ongoing process of collecting and evaluating the performance
of, say, a project, process, system, or other item of interest. Often the results col-
lected are compared against some existing values or desired targets. For example,
a machine on a factory floor may be expected to produce 100 widgets per hour.
You engage in some manner of monitoring to inform whether this expectation is
being met. Across a wide range of activities, monitoring also helps to ensure the
continuity, stability, and reliability of that being supervised.

Involved in monitoring is the data produced by the thing being evaluated. It’s also
the data that is produced as a product of monitoring. For example, the deviation
from the expected result.

24 BOOK 1 Learning Data Analytics & Visualizations Foundations

The data is produced through monitoring feeds reports, real-time systems, and
software-based dashboards. A monitor can tell you how much power is left in your
smartphone, whether an employee is spending all their time on social media, or if
through predictive maintenance, a production line is about to fail.

Monitoring is another process that converts data into insight and as such, exists
as a mechanism to guide decisions. It’s probably not lost on you that the role of
data in measurement and monitoring often go together. Intuitively, you know you
have to measure something that you want to monitor. The takeaway here is not
the obvious relationship they have, but the fact that data is a type of connective
tissue that binds business functions. This interdependence requires oversight and
controls, as stakeholders often have different responsibilities and permissions.
For example, the people responsible for providing measurement data on processes
may belong to an entirely different team from those who have to monitor and
report on the measurement data. Those that take action may again belong to an
entirely different department in the organization.

This is not the only way to think about monitoring in the context of data. Data
monitoring is also the process of evaluating the quality of data and determining
if it is fit for purpose. To achieve this, it requires processes, technologies, and
benchmarks. Data monitoring begins with establishing data quality metrics and
then measuring results over time on a continuous basis. Data quality monitoring
metrics may include areas such as completeness and accuracy.

By continuously monitoring the quality of the data in your organization, oppor-
tunities and issues may be revealed on time. Then, if deemed appropriate, actions
can be prioritized.

Insight management

Data forms the building blocks of many business functions. In support of
decision-making — arguably its most important value — data is the source for
almost all insight. As a basic definition, business insight is sometimes referred
to as information that can make a difference.

It’s not enough to simply collect lots of data and expect that insight will suddenly
emerge. There must be an attendant management process. Thus, insight manage-
ment means ensuring that data and information are capable of delivering insight.

Insight management begins with gathering and analyzing data from different
sources. To determine what data to process, those responsible for insight man-
agement must deeply understand the organization’s information needs. They

D
e

lv
in

g
 in

to
 B

ig
 D

a
ta

CHAPTER 2 Delving into Big Data 25

must be knowledgeable about what data has value. In addition, these analysts
must know how information flows across the organization and who it must reach.

With the data gathered and processed, analytics will be applied — this is the
interpretation of the data and its implications.

Finally, insight management involves designing and creating the most effective
manner to communicate any findings. For different audiences, different mecha-
nisms may be required. This is seldom a one-size-fits-all. Some people will want
an executive summary while others may want the painful details. You’ll know
whether your organization’s insight communications are working if those who
receive it can make decisions that align with the goals of the organization.

For insight to be most valuable, it must be the right information, at the right time,
in the right format, for the right people. This is no simple task.

As you’ve probably guessed, there’s a strong overlap between insight manage-
ment and knowledge management. For simplicity, you can think of knowledge
management as the organizational support structures and tools to enable insight
to be available to employees for whatever reason they need it.

Reporting

Perhaps the most obvious manifestation of data and information management in
any organization is the use of reports. Creating, delivering, receiving, and acting
on reports are fundamental functions of any organization. Some say they are the
backbone of every business. That sounds overly glamorous, but it does speak to
the importance of reporting and reports.

The content of a report, which can be summarized or detailed, contains data and
information in a structured manner. For example, an expenditure report would
provide a basic overview of the purpose of the report and then support it with rel-
evant information. That could include a list of all expenditures for a department
over a certain period or it could just be a total amount. It will depend on the audi-
ence and purpose of the report. Including visuals is a recommended approach to
present such data.

For example, a chart, considered a visual form of storytelling, is a way to present
data so that it can be interpreted more quickly. With so much data and complexity
in today’s business environment, data storytelling is growing as both a business
requirement and an in-demand business skill.

26 BOOK 1 Learning Data Analytics & Visualizations Foundations

The report may discuss the findings and will conclude with a summary and some-
times a set of recommendations.

Reports are typically online or physical presentations of data and information on
some aspect of an organization. For example, a written and printed report may
show all the sales of a particular product or service during a specific period. Some-
times a report is given verbally in person or via a live or recorded video. Whatever
the format — and that’s less important today as long as it achieves its objective —
a report is developed for a particular audience with a specific purpose.

With so many uses of data and information, the purpose of reporting is largely
about improved decision-making. With the right information, in the right format,
at the right time, business leaders are empowered to make better decisions, solve
problems, and communicate plans and policies.

While reports do empower leaders and give them more tools, they don’t guarantee
the right decisions. Knowing something is not the equivalent of making the right
choices at the right time.

Other roles for data

Earlier sections of this chapter present some of the most visible uses of data in
organizations today. Listing every conceivable way that data is used is not possi-
ble, but following is a short list of some other important areas that shouldn’t be
overlooked.

 » Artificial intelligence (AI): Data is considered the fuel of AI. It requires a high
volume of good data (the more, the better!). With huge quantities of quality
data, the outcomes of AI improve. It’s from the data that AI learns patterns,
identifies relationships, and determines probabilities. In addition, AI is being
used to improve the quality and use of data in organizations.

 » Problem solving: Acknowledging the close association with decision-making,
it’s worth calling out problem solving as a distinctive use of data. Data plays a
role in how a problem is defined, determining what solutions are available,
evaluating which solution to use, and measuring the success or failure of the
solution that is chosen and applied.

 » Data reuse: While we collect and use data for a specific primary purpose,
data is often reused for entirely different reasons. Data that has been
collected, used, and stored can be retrieved and used by a different team

D
e

lv
in

g
 in

to
 B

ig
 D

a
ta

CHAPTER 2 Delving into Big Data 27

at another time — assuming they have permission, including access and legal
rights (notable controls within data governance). For example, the sales team
in an organization will collect your name and address in order to fulfil an
order. Later, that same data set may be used by the marketing team to create
awareness about other products and services. These are two different teams
with different goals using the same data. Data reuse can be considered a
positive given that it reduces data collection duplication and increases the
value of data to an organization, but it must be managed with care so that it
doesn’t break any data use rules. (Note: High-value shared data sets are called
master data; in data governance, they are subject to master data
management.)

DEFINING BIG DATA AND THE BIG THREE V

If companies want to stay competitive, they must be proficient and adept at infusing
data insights into their processes, products, as well as their growth and management
strategies. This means that business leaders must understand big data and know how
to work with it.

Big data is a term that characterizes data that exceeds the processing capacity of con-
ventional database systems because it’s too big, it moves too fast, or it lacks the struc-
tural requirements of traditional database architectures.

Three characteristics — also called “the three Vs” — define big data: volume, velocity,
and variety. Because the three Vs of big data are continually expanding, newer, more
innovative data technologies must continuously be developed to manage big data
problems.

In a situation where you’re required to adopt a big data solution to overcome a problem
that’s caused by your data’s velocity, volume, or variety, you have moved past the realm
of regular data — you have a big data problem on your hands.

Before investing in any sort of technology solution, business leaders must always assess

the current state of their organization, select an optimal use case, and thoroughly eval-
uate competing alternatives, all before even considering whether a purchase should
be made. This process is so vital to the success of data science that Data Science For

Dummies, 3rd Edition, covers the topic at length.

28 BOOK 1 Learning Data Analytics & Visualizations Foundations

Grappling with data volume

The lower limit of big data volume starts as low as 1 terabyte, and it has no upper
limit. If your organization owns at least 1 terabyte of data, that data technically
qualifies as big data.

In its raw form, most big data is low value — in other words, the value-to-data-
quantity ratio is low in raw big data. Big data is composed of huge numbers of very
small transactions that come in a variety of formats. These incremental compo-
nents of big data produce true value only after they’re aggregated and analyzed.
Roughly speaking, data engineers have the job of aggregating it, and data scien-
tists have the job of analyzing it.

Handling data velocity

A lot of big data is created by using automated processes and instrumentation
nowadays, and because data storage costs are relatively inexpensive, system
velocity is often the limiting factor. Keep in mind that big data is low-value. Con-
sequently, you need systems that are able to ingest a lot of it, in short order, to
generate timely and valuable insights.

OVERHYPING BIG DATA

Unfortunately, the term big data was so overhyped across industries that countless busi-
ness leaders made misguided impulse purchases. In a nutshell, they didn’t do their home-
work before purchasing expensive products and services, such as Hadoop clusters, that
ultimately failed to deliver on vendors’ promises, and the entire industry suffered for it.

Hadoop is a data processing platform designed to boil down big data into smaller data-
sets that are more manageable for data scientists to analyze. Hadoop is, and was, pow-
erful at satisfying one requirement: batch-processing and storing large volumes of data.
That’s great if your situation requires precisely this type of capability, but the fact is that
technology is never a one-size-fits-all sort of thing.

Unfortunately, in almost all cases, business leaders bought into Hadoop before evalu-
ating whether it was an appropriate choice. Vendors sold Hadoop and made lots of
money. Most of those projects failed. Most Hadoop vendors went out of business.
Corporations got burned on investing in data projects, and the data industry got a
bad rap.

For any data professional who worked in the field between 2012 and 2015, the term big

data represents a blight on the industry.

D
e

lv
in

g
 in

to
 B

ig
 D

a
ta

CHAPTER 2 Delving into Big Data 29

In engineering terms, data velocity is data volume per unit time. Big data enters
an average system at velocities ranging between 30 kilobytes (K) per second to
as much as 30 gigabytes (GB) per second. Latency is a characteristic of all data
systems, and it quantifies the system’s delay in moving data after it has been
instructed to do so. Many data-engineered systems are required to have latency
less than 100 milliseconds, measured from the time the data is created to the time
the system responds.

Throughput is a characteristic that describes a system’s capacity for work per
unit time. Throughput requirements can easily be as high as 1,000 messages per
second in big data systems! High-velocity, real-time moving data presents an
obstacle to timely decision-making. The capabilities of data-handling and data-
processing technologies often limit data velocities.

Tools that intake data into a system — otherwise known as data ingestion tools —
come in a variety of flavors. Some of the more popular ones are described in the
following list:

 » Apache Sqoop: You can use this data transference tool to quickly transfer
data back-and-forth between a relational data system and the Hadoop

distributed file system (HDFS) — it uses clusters of commodity servers to store
big data. HDFS makes big data handling and storage financially feasible by
distributing storage tasks across clusters of inexpensive commodity servers.

 » Apache Kafka: This distributed messaging system acts as a message broker
whereby messages can quickly be pushed onto and pulled from HDFS. You
can use Kafka to consolidate and facilitate the data calls and pushes that

consumers make to and from the HDFS.

 » Apache Flume: This distributed system primarily handles log and event data.
You can use it to transfer massive quantities of unstructured data to and from
the HDFS.

Dealing with data variety

Big data gets even more complicated when you add unstructured and semi-
structured data to structured data sources. This high-variety data comes from
a multitude of sources and most notably, is composed of a combination of
datasets with differing underlying structures (structured, unstructured, or
semi-structured). Heterogeneous, high-variety data is often composed of any
combination of graph data, JSON files, XML files, social media data, structured
tabular data, weblog data, and data that’s generated from user clicks on a web
page — otherwise known as click-streams.

30 BOOK 1 Learning Data Analytics & Visualizations Foundations

The terms data lake and data warehouse both describe methods of storing data;
however, each term describes a different type of storage system.

Practitioners in the big data industry use the term data lake to refer to a
 nonhierarchical data storage system that’s used to hold huge volumes of multi-
structured, raw data within a flat storage architecture — in other words, a
collection of records that come in uniform format and that are not cross-
referenced in any way. You can read more about data lakes later in Book 1,
Chapter 3.

HDFS and Azure Synapse can be used as a data lake storage repository, but you
can also use the Amazon Web Services (AWS) S3 platform or other Azure Data
Services — or a similar cloud storage solution — to meet the same requirements
on the cloud.

Unlike a data lake, a data warehouse is a centralized data repository that you can
use to store and access only structured data.

A more traditional data warehouse system commonly employed in business intel-
ligence solutions is a data mart — a storage system (for structured data) that you
can use to store one particular focus area of data belonging to only one line of
business in the company.

What’s All the Fuss about Data?

Data refers to collections of digitally stored units — in other words, stuff that is
kept on a computing device. These units represent something meaningful when
processed for a human or a computer. Single units of data are traditionally referred
to as datum and multiple units as data. However, the term data is often used in
singular and plural contexts. (This book uses the term data to refer to both single
and multiple units of data.)

Prior to processing, data doesn’t need to make sense individually or even in com-
bination with other data. For example, data could be the word orange or the num-
ber 42. In the abstract and most basic form, something we call raw data, we can
agree that these are both meaningless.

Units of data are largely worthless until they are processed and applied. It’s only
then that data begins a journey that, when coupled with good governance, can
be very useful. The value that data can bring to so many functions, from product
development to sales, makes it an important asset.

To begin to have value, data requires effort. If we place the word orange in a sen-
tence, such as “An orange is a delicious fruit,” suddenly the data has meaning.

D
e

lv
in

g
 in

to
 B

ig
 D

a
ta

CHAPTER 2 Delving into Big Data 31

Similarly, if we say, “The t-shirt I purchased cost me $42,” then the number 42
now has meaning. What we did here was process the data by means of struc-
ture and context to give it value. Put another way, we converted the data into
information.

This basic action of data processing cannot be overstated, as it represents the core
foundation of an industry that has ushered in our current period of rapid digital
transformation. Today, the term data processing has been replaced with informa-

tion technology (IT).

Figure 2-1 illustrates how you can think of data units at a basic level.

Welcome to the zettabyte era

Until a few years ago, few people needed to know what a zettabyte was. As we
entered the 21st century and the volume of data being created and stored grew
rapidly, we needed to break the term zettabyte out from its vault. A hypercon-
nected world accelerating in its adoption and use of digital tools has required
dusting off a seldom used metric to capture the enormity of data output we were
producing.

Today, we live in the zettabyte era. A zettabyte is a big number. A really big number.
It’s 1021, or a 1 with 21 zeros after it. It looks like this: 1,000,000,000,000,000,000,000
bytes.

FIGURE 2-1:
The qualitative

and quantitative
nature of data

types.

(c) John Wiley & Sons

32 BOOK 1 Learning Data Analytics & Visualizations Foundations

By 2020, we had created 44 zettabytes of data. That number continues to grow
rapidly. This datasphere — the term used to describe all the data created — is pro-
jected to reach 100 zettabytes by 2023 and may double in 3–4 years. If you own a
terabyte drive at home or at work, you’d need one billion of those drives to store
just one zettabyte of data. You read that right.

Here’s a simplified technical explanation of what a zettabyte is. Consider that each
byte is made up of eight bits. A bit is either a 1 or 0 and represents the most basic
unit of how data is stored on a computing device. Since a bit has only two states,
a 1 or 0, we call it binary. Some time ago, computer engineers decided that 8 bits
(or 1 byte) was enough to represent characters that we, as mere mortals, could
understand. For example, the letter A in binary is 01000001.

It was a mutually beneficial decision. We understand the A; the computer under-
stands the 01000001. A full word such as “hello” converted to binary reads:
01001000 01100101 01101100 01101100 01101111. Stick around with data experts long
enough, and they’ll have you speaking in bits.

With more data being produced in the years ahead, we’ll soon begin adopting
other words to describe even bigger volumes. Get ready for the yottabyte and
brontobyte eras!

From a more practical perspective, this book occasionally refers to the size of
data. Knowledge of data volume will be useful. Table 2-1 puts bits and bytes into
context.

TABLE 2-1	 Quantification of Data Storage
Storage Allocation Storage Capacity

8 bits 1 byte

1024 bytes 1 kilobyte

1024 kilobytes 1 megabyte

1024 megabytes 1 gigabyte

1024 gigabytes 1 terabyte

1024 terabytes 1 petabyte

1024 petabytes 1 exabyte

1024 exabytes 1 zettabyte

1024 zettabytes 1 yottabyte

1024 yottabytes 1 brontobyte

D
e

lv
in

g
 in

to
 B

ig
 D

a
ta

CHAPTER 2 Delving into Big Data 33

Understanding that we are in an era of vastly expanding data volume, often at
the disposal of organizations, elevates the notion that managing this data well is
complex and valuable.

Managing a small amount of data can have challenges, but managing data at scale
is materially more challenging. If you’re going to glean value from data, it has to
be understood and managed in specific ways.

From data to insight

Creating, collecting, and storing data is a waste of time and money if it’s being
done without a clear purpose or an intent to use it in the future. You may see the
logic behind collecting data even when you don’t have a reason because it may
have value at some point in the future, but this is the exception. Generally, an
organization is on-boarding data because it’s required.

Data that is never used is about as useful as producing reports that nobody reads.
The assumption is that you have data for a reason. You have your data and it’s
incredibly important to your organization, but it must be converted to informa-
tion to have meaning.

Information is data in context. Table 2-2 explores more of the differences between
data and information.

When we apply information coupled with broader contextual concepts, practical
application, and experience, it becomes knowledge. Knowledge is actionable. In
this way, knowledge really is “power.”

It doesn’t end there. When you take new knowledge and apply reasoning, values,
and the broader universe of our knowledge and deep experiences, you get wisdom.

TABLE 2-2	 The Differences Between Data and Information
Data Information

Raw Processed

Items such as characters, words, pictures, and
numbers that have no meaning in isolation

Data that is organized and given
context to have meaning

No analysis dependency Dependent on the analysis of data

Unorganized and not dependent on context Organized and dependent on context

Not typically useful alone Useful alone

34 BOOK 1 Learning Data Analytics & Visualizations Foundations

With wisdom, you know what to do with knowledge and can determine its con-
textual validity.

You could stop at knowledge, but wisdom will take you further to the ultimate
destination derived from data. All wisdom includes knowledge, but not all knowl-
edge is wisdom. Dummies books can be deep, too.

Finally, insight is an outcome that can emerge from knowledge but is best dem-
onstrated through a combination of knowledge and wisdom. With insight, you
can gain a deeper understanding of something and the skills to think or see it
differently.

To summarize, consider the following:

 » John Lennon is data.

 » The fact that John Lennon is in the group, The Beatles, is information.

 » The fact that The Beatles are looking for a record deal is knowledge.

 » The fact that The Beatles are very talented and popular and should get a
record deal is wisdom.

 » Avoiding the decision-making processes of Decca Records is insight.

(The author of the preceding list is a Beatles fan. That’s information.) Figure 2-2
illustrates the journey from data to insight.

It’s no surprise then that data has enormous value when considering it through
the lens of delivering wisdom. However, this journey from data to wisdom is full
of challenges. These are significant issues that organizations struggle with every
day. For example, it’s not a stretch to imagine what the outcome of using bad
data could be. Transforming good data into valuable information and beyond is no
simple task. It requires tools, skills, and processes.

FIGURE 2-2:
Data leads

to insight.

(c) John Wiley & Sons

D
e

lv
in

g
 in

to
 B

ig
 D

a
ta

CHAPTER 2 Delving into Big Data 35

Every day, different organizations with access to the same data have different
outcomes. While the best outcome can’t be guaranteed no matter which processes,
tools, or skills are used, good practices such as the right level of data governance
can absolutely lead to better results.

Identifying Important Data Sources

Humans, machines, and sensors everywhere continually generate vast volumes
of data. Typical sources include data from social media, financial transactions,
health records, click-streams, log files, and the Internet of Things — a web of digi-
tal connections that joins together the ever-expanding array of electronic devices
that consumers use in their everyday lives. Figure 2-3 shows a variety of popular
big data sources.

FIGURE 2-3:
Popular sources

of big data.

36 BOOK 1 Learning Data Analytics & Visualizations Foundations

Role of Big Data in Data Science
and Engineering

Data science, machine learning engineering, and data engineering cover differ-
ent functions within the big data paradigm — an approach wherein huge veloci-
ties, varieties, and volumes of structured, unstructured, and semi-structured data
are being captured, processed, stored, and analyzed using a set of techniques
and technologies that are completely novel compared to those that were used in
decades past.

All these functions are useful for deriving knowledge and actionable insights
from raw data. All are essential elements for any comprehensive decision-support
system and are extremely helpful when formulating robust strategies for future
business growth. Although the terms data science and data engineering are often
used interchangeably, they’re distinct domains of expertise. Over the past five
years, the role of machine learning engineer has risen to bridge a gap that exists
between data science and data engineering. The following sections introduce con-
cepts that are fundamental to data science and data engineering, as well as the
hybrid machine learning engineering role, and then show the differences in how
these roles function in an organization’s data team.

Defining data science
If science is a systematic method by which people study and explain domain-
specific phenomena that occur in the natural world, you can think of data science
as the scientific domain that’s dedicated to knowledge discovery via data analysis.

With respect to data science, the term domain-specific refers to the industry sec-
tor or subject matter domain that data science methods are being used to explore.

Data scientists use mathematical techniques and algorithmic approaches to derive
solutions to complex business and scientific problems. Data science practitioners
use its predictive methods to derive insights that are otherwise unattainable. In
business and in science, data science methods can provide more robust decision-
making capabilities:

 » In business, the purpose of data science is to empower businesses and
organizations with the data insights they need in order to optimize organiza-
tional processes for maximum efficiency and revenue generation.

 » In science, data science methods are used to derive results and develop

protocols for achieving the specific scientific goal at hand.

D
e

lv
in

g
 in

to
 B

ig
 D

a
ta

CHAPTER 2 Delving into Big Data 37

Data science is a vast and multidisciplinary field. To call yourself a true data sci-
entist, you need to have expertise in math and statistics, computer programming,
and your own domain-specific subject matter.

Using data science skills, you can do cool things like the following:

 » Use machine learning to optimize energy usage and lower corporate carbon
footprints.

 » Optimize tactical strategies to achieve goals in business and science.

 » Predict for unknown contaminant levels from sparse environmental datasets.

 » Design automated theft- and fraud-prevention systems to detect anomalies
and trigger alarms based on algorithmic results.

 » Craft site-recommendation engines for use in land acquisitions and real estate
development.

 » Implement and interpret predictive analytics and forecasting techniques for
net increases in business value.

Data scientists must have extensive and diverse quantitative expertise to be able
to solve these types of problems.

Machine learning is the practice of applying algorithms to learn from — and make
automated predictions from — data.

Defining machine learning engineering
A machine learning engineer is essentially a software engineer who is skilled enough
in data science to deploy advanced data science models within the applications
they build, thus bringing machine learning models into production in a live envi-
ronment like a Software as a Service (SaaS) product or even just a web page.
Contrary to what you may have guessed, the role of machine learning engineer
is a hybrid between a data scientist and a software engineer, not a data engineer.
A machine learning engineer is, at their core, a well-rounded software engineer
with a solid foundation in machine learning and artificial intelligence. This per-
son doesn’t need to know as much data science as a data scientist but should
know much more about computer science and software development than a typ-
ical data scientist.

Software as a Service (SaaS) is a term that describes cloud-hosted software services
that are made available to users via the Internet. Examples of popular SaaS com-
panies include Salesforce, Slack, HubSpot, and so many more.

38 BOOK 1 Learning Data Analytics & Visualizations Foundations

Defining data engineering
If engineering is the practice of using science and technology to design and
build systems that solve problems, you can think of data engineering as the engi-
neering domain that’s dedicated to building and maintaining data systems for
overcoming data processing bottlenecks and data handling problems that arise
from handling the high volume, velocity, and variety of big data.

Data engineers use computer science and software engineering skills to design
systems for, and solve problems with handling and manipulating big datasets.
Data engineers often have experience working with (and designing) real-time
processing frameworks and massively parallel processing (MPP) platforms (dis-
cussed later in this chapter), as well as with RDBMSs. They generally code in Java,
C++, Scala, or Python. They know how to deploy Hadoop MapReduce or Spark to
handle, process, and refine big data into datasets with more manageable sizes.
Simply put, with respect to data science, the purpose of data engineering is to
engineer large-scale data solutions by building coherent, modular, and scalable
data processing platforms from which data scientists can subsequently derive
insights.

Most engineered systems are built systems — they are constructed or manu-
factured in the physical world. Data engineering is different, though. It involves
designing, building, and implementing software solutions to problems in the data
world — a world that can seem abstract when compared to the physical reality of
the Golden Gate Bridge or the Aswan Dam.

Using data engineering skills, you can, for example:

 » Integrate data pipelines with the natural language processing (NLP) services
that were built by data scientists at your company.

 » Build mission-critical data platforms capable of processing more than
10 billion transactions per day.

 » Tear down data silos by finally migrating your company’s data from a more
traditional on-premise data storage environment to a cutting-edge cloud
warehouse.

 » Enhance and maintain existing data infrastructure and data pipelines.

Data engineers need solid skills in computer science, database design, and soft-
ware engineering to be able to perform this type of work.

D
e

lv
in

g
 in

to
 B

ig
 D

a
ta

CHAPTER 2 Delving into Big Data 39

Connecting Big Data with
Business Intelligence

Previous sections of this chapter discuss the foundation of data in terms of vol-
ume, velocity, and variety. This section connects the dots by adding two addi-
tional dimensions: velocity and veracity in the context of big data. Since the term
big data is undoubtedly a catch-all buzzword. The term is meant to encompass
five aspects of a business intelligence activity: data volume, data velocity, data
veracity, data value, and data variety. Each of the data types that big data brings
together (unstructured data, semi-structured data, and structured data) main-
tains some level of these five attributes:

 » Volume: The amount of data that exists

 » Velocity: The speed at which data is generated and moves

 » Veracity: The quality and accuracy of data available

 » Value: The credibility, in monetary and nonmonetary terms, that the data
provides

 » Variety: The diversity of data types available within the dataset

Big data is paramount for business intelligence solutions such as Power BI and
Tableau because businesses constantly create more data, practically by the min-
ute. These businesses must keep up with the data deluge. A good business intel-
ligence platform such as Tableau grows with the increasing demands; however,
if the data is not maintained, your ability to handle data visualizations and the
associated data sources also becomes impaired. Therefore, it’s essential to imple-
ment good data hygiene and maintenance practices.

Analyzing Data with Enterprise Business
Intelligence Practices

Don’t get business intelligence confused with data analytics. Business intelligence
platforms use data analytics as a building block to tell the complete story. A data
analyst or scientist evaluates the data using the treasure trove of tools built into
programs like Power BI and Tableau, from advanced statistics to predictive ana-
lytics or machine learning solutions to identify patterns and trends.

40 BOOK 1 Learning Data Analytics & Visualizations Foundations

Power BI and Tableau, in particular, offers that end-to-end data analytics experi-
ence so that the analyst, scientist, and collaborator can complete the entire data
life cycle, from gathering, prepping, analyzing, collaborating, and sharing data
insights. Unlike its competitors, both Power BI and Tableau include a predictive
AI engine, which allows users to ask questions or predict the kind of visualizations
they require without manually completing the work.

Like the three-year-old child asking “Why?” all the time, as you ask more ques-
tions and the platform learns, both Power BI and Tableau build an analysis output
while simultaneously learning from the output. The result is an opportunity for
the system to understand why something happens and what can happen next.
Business intelligence platforms take the resulting models and algorithms and
break these results into actionable language insights for data mining, predic-
tive analytics, and statistics. The final product is data analytics, the byproduct
of answering a specific question (or set of questions). The collection of questions
helps the organization move forward with its business agenda.

CHAPTER 3 Understanding Data Lakes 41

Understanding
Data Lakes

A
sk your favorite search engine this question: “What’s a data lake?” You’ll
find dozens of high-level definitions that will almost certainly spur plenty
of follow-up questions as you try to get your arms around the idea of a

data lake.

Instead of filtering through all that varying — and even conflicting — terminology
and then trying to consolidate all of it into a single comprehensive definition, just
think of a data lake as the following:

A solidly architected, logically centralized, highly scalable environment filled with
different types of analytic data that are sourced from both inside and outside your

Chapter 3

IN THIS CHAPTER

 » Architecting data lakes for stability

 » Seeing how data lakes are structured

 » Planning for scalability

 » Grasping how data lakes function

as an environment

 » Understanding how data lakes

handle various data types

 » Working with analytical and

operational data

 » Controlling the latency of data copied

into a data lake

 » Seeing how data lakes overcome
the shortfalls of enterprise data
warehousing

42 BOOK 1 Learning Data Analytics & Visualizations Foundations

enterprise with varying latency, which will be the primary go-to destination for your
organization’s data-driven insights

This chapter helps make that definition more understandable by breaking it
into bite-size pieces, beginning with what it means for a data lake to be solidly
architected.

Rock-Solid Water

A data lake should remain viable and useful for a long time after it becomes
operational. Also, you’ll be continually expanding and enhancing your data lake
with new types and forms of data, new underlying technologies, and support for
new analytical uses.

Building a data lake is more than just loading massive amounts of data into some
storage location.

To support this near-constant expansion and growth, you need to ensure that
your data lake is well architected and solidly engineered, which means that the
data lake

 » Enforces standards and best practices for data ingestion, data storage, data
transmission, and interchange among its components and data delivery
to end users

 » Minimizes workarounds and temporary interfaces that have a tendency to
stick around longer than planned and weaken your overall environment

 » Continues to meet your predetermined metrics and thresholds for overall
technical performance, such as data loading and interchange, as well as user
response time

Think about a resort that builds docks, a couple of lakeside restaurants, and other
structures at various locations alongside a large lake. You wouldn’t just hand out
lumber, hammers, and nails to a bunch of visitors and tell them to start building
without detailed blueprints and engineering diagrams. The same is true with a
data lake. From the first piece of data that arrives, you need as solid a foundation
as possible to help keep your data lake viable for a long time.

U
n

d
e

rsta
n

d
in

g

D
ata Lakes

CHAPTER 3 Understanding Data Lakes 43

A Really Great Lake

You’ll come across definitions and descriptions that tell you a data lake is a cen-
tralized store of data, but that definition is only partially correct.

A data lake is logically centralized. You can certainly think of a data lake as a single
place for your data, instead of having your data scattered among different data-
bases. But in reality, even though your data lake is logically centralized, its data is
physically decentralized and distributed among many different underlying servers.

The data services that you use for your data lake, such as the Amazon Simple
Storage Service (S3), the Microsoft Azure Data Lake Storage (ADLS), or the Hadoop
Distributed File System (HDFS) manage the distribution of data among poten-
tially numerous servers where your data is actually stored. These services hide the
physical distribution from almost everyone other than those who need to manage
the data at the server storage level. Instead, they present the data as being logi-
cally part of a single data lake. Figure 3-1 illustrates how logical centralization
accompanies physical decentralization.

Expanding the Data Lake

How big can your data lake get? To quote the old saying (and to answer a question
with a question), how many angels can dance on the head of a pin?

Scalability is best thought of as “the ability to expand capacity, workload, and mis-
sions without having to go back to the drawing board and start all over.” Your data

FIGURE	3-1:
A logically

centralized

data lake with
underlying

physical
decentralization.

44 BOOK 1 Learning Data Analytics & Visualizations Foundations

lake will almost always be a cloud-based solution (see Figure 3-2). Cloud-based
platforms give you, in theory, infinite scalability for your data lake. New servers
and storage devices (discs, solid state devices, and so on) can be incorporated into
your data lake on demand, and the software services manage and control these
new resources along with those you’re already using. Your data lake contents can
then expand from hundreds of terabytes to petabytes, and then to exabytes, and
then zettabytes, and even into the ginormousbyte range. (Just kidding about that
last one.)

Cloud providers give you pricing for data storage and access that increases as your
needs grow or decreases if you cut back on your functionality. Basically, your data
lake will be priced on a pay-as-you-go basis.

Some of the first data lakes built in the Hadoop environment may reside in your
corporate data center and be categorized as on-prem (short for on-premises,
meaning “on your premises”) solutions. But most of today’s data lakes are built
in the Amazon Web Services (AWS) or Microsoft Azure cloud environments. Given
the ever-increasing popularity of cloud computing, it’s highly unlikely that this
trend of cloud-based data lakes will reverse for a long time, if ever.

As long as Amazon, Microsoft, and other cloud platform providers can keep
expanding their existing data centers and building new ones, as well as enhancing
the capabilities of their data management services, then your data lake should be
able to avoid scalability issues.

FIGURE	3-2:
Cloud-based data

lake solutions.

U
n

d
e

rsta
n

d
in

g

D
ata Lakes

CHAPTER 3 Understanding Data Lakes 45

A multiple-component data lake architecture further helps overcome perfor-
mance and capacity constraints as your data lake grows in size and complexity,
providing even greater scalability.

More Than Just the Water

Think of a data lake as being closer to a lake resort rather than just the lake —
the body of water — in its natural state. If you were a real estate developer, you
might buy the property that includes the lake itself, along with plenty of acreage
surrounding the lake. You’d then develop the overall property by building cabins,
restaurants, boat docks, and other facilities. The lake might be the centerpiece
of the overall resort, but its value is dramatically enhanced by all the additional
assets that you’ve built surrounding the lake.

A data lake is an entire environment, not just a gigantic collection of data that is
stored within a data service such as Amazon S3 or Microsoft ADLS.

In addition to data storage, a data lake also includes the following:

 » One or (usually) more mechanisms to move data from one part of the data
lake to another.

 » A catalog or directory that helps keep track of what data is where, as well as
the associated rules that apply to different groups of data; this is known as
metadata.

 » Capabilities that help unify meanings and business rules for key data subjects
that may come into the data lake from different applications and systems; this
is known as master data management.

 » Monitoring services to track data quality and accuracy, response time when
users access data, billing services to charge different organizations for their
usage of the data lake, and plenty more.

Different Types of Data
If your data lake had a motto, it might be “All data are created equal.”

In a data lake, data is data is data. In other words, you don’t need to make spe-
cial accommodations for more complex types of data than you would for simpler
forms of data.

46 BOOK 1 Learning Data Analytics & Visualizations Foundations

Your data lake will contain structured data, unstructured data, and semi-
structured data (see Figure 3-3). To read more about each data type, see Book 1,
Chapter 1.

In your data lake, you need to have all these types of data sitting side by side. Why?
Because you’ll be running analytics against the data lake that may need more than
one form of data. For example, you receive and then analyze a detailed report of
sales by department in a large department store during the past month.

Then, after noticing a few anomalies in the sales numbers, you pull up in-store
surveillance video to analyze traffic versus sales to better understand how many
customers may be looking at merchandise but deciding not to make a purchase.
You can even combine structured data from scanners with your unstructured
video data as part of your analysis.

If you had to go to different data storage environments for your sales results
(structured data) and then the video surveillance (unstructured data), your over-
all analysis is dramatically slowed down, especially if you need to integrate and
cross-reference different types of data. With a data lake, all this data is sitting side
by side, ready to be delivered for analysis and decision-making.

In their earliest days, relational databases only stored structured data. Later, they
were extended with capabilities to store structured and unstructured data. Binary
large objects (BLOBs) were a common way to store images and even video in a
relational database. However, even an object-extended relational database doesn’t
make a good platform for a data lake when compared with modern data services
such as Amazon S3 or Microsoft ADLS.

FIGURE	3-3:
Different types
of data in your

data lake.

U
n

d
e

rsta
n

d
in

g

D
ata Lakes

CHAPTER 3 Understanding Data Lakes 47

Different Water, Different Data
A common misconception is that you store “all your data” in your data lake.
Actually, you store all or most of your analytic data in a data lake. Analytic data is,
as you may suspect from the name, data that you’re using for analytics. In con-
trast, you use operational data to run your business.

What’s the difference? From one perspective, operational and analytic data are
one and the same. Suppose you work for a large retailer. A customer comes into
one of your stores and makes some purchases. Another customer goes onto your
company’s website and buys some items there. The records of those sales —
which customers made the purchases, which products they bought, how many of
each product, the dates of the sales, whether the sales were online or in a store,
and so on — are all stored away as official records of those transactions, which are
necessary for running your company’s operations.

But you also want to analyze that data, right? You want to understand which
products are selling the best and where. You want to understand which customers
are spending the most. You have dozens or even hundreds of questions you want
to ask about your customers and their purchasing activity.

Here’s the catch: You need to make copies of your operational data for the deep
analysis that you need to undertake; and the copies of that operational data are
what goes into the data lake (see Figure 3-4).

FIGURE	3-4:
Source

applications
feeding data into

your data lake.

48 BOOK 1 Learning Data Analytics & Visualizations Foundations

Wait a minute! Why in the world do you need to copy data into your data lake?
Why can’t you just analyze the data right where it is, in the source applications
and their databases?

Data lakes, at least as you need to build them today and for the foreseeable future,
are a continuation of the same model that has been used for data warehousing
since the early 1990s. For many technical reasons related to performance, deep
analysis involving large data volumes and significant cross-referencing directly
in your source applications isn’t a workable solution for the bulk of your analytics.

Consequently, you need to make copies of the operational data that you want for
analytical purposes and store that data in your data lake. Think of the data inside
your data lake as (in used-car terminology) previously owned data that has been
refurbished and is now ready for a brand-new owner.

But if you can’t adequately do complex analytics directly from source applications
and their databases, what about this idea: Run your applications off your data lake
instead! This way, you can avoid having to copy your data, right? Unfortunately,
that idea won’t work, at least with today’s technology.

Operational applications almost always use a relational database, which manages
concurrency control among their users and applications. In simple terms, hundreds
or even thousands of users can add new data and make changes to a relational
database without interfering with each other’s work and corrupting the database.
A data lake, however, is built on storage technology that is optimized for retrieving
data for analysis and doesn’t support concurrency control for update operations.

Many vendors are working on new technology that will allow you to build a data
lake for operational as well as analytical purposes. This technology is still a bit
down the road from full operational viability. For the time being, you’ll build a
data lake by copying data from many different source applications.

Refilling the Data Lake
What exactly does “copying data” look like, and how frequently do you need to
copy data into the data lake?

Data lakes mostly use a technique called ELT, which stands for either extract,

transform, and load or extraction, transformation, and loading. With ELT, you “blast”
your data into a data lake without having to spend a great deal of time profiling
and understanding the particulars of your data. You extract data (the E part of
ELT) from its original home in a source application, and then, after that data has

U
n

d
e

rsta
n

d
in

g

D
ata Lakes

CHAPTER 3 Understanding Data Lakes 49

been transmitted to the data lake, you load the data (the L) into its initial storage
location. Eventually, when it’s time for you to use the data for analytical purposes,
you’ll need to transform the data (the T) into whatever format is needed for a
specific type of analysis.

For data warehousing — the predecessor to data lakes that you’re almost cer-
tainly still also using — data is copied from source applications to the data
warehouse using a technique called ETL, rather than ELT. With ETL, you need to
thoroughly understand the particulars of your data on its way into the data ware-
house, which requires the transformation (T) to occur before the data is loaded
(L) into its usable form.

With ELT, you can control the latency, or “freshness,” of data that is brought into
the data lake. Some data needed for critical, real-time analysis can be streamed
into the data lake, which means that a copy is sent to the data lake immediately
after data is created or updated within a source application. (This is referred to
as a low-latency data feed.) You essentially push data into your data lake piece by
piece immediately upon the creation of that data.

Other data may be less time-critical and can be “batched up” in a source applica-
tion and then periodically transmitted in bulk to the data lake.

You can specify the latency requirements for every single data feed from every
single source application.

Everyone Visits the Data Lake
Take a look around your organization today. Chances are, you have dozens or even
hundreds of different places to go for reports and analytics. At one time, your
company probably had the idea of building an enterprise data warehouse that would
provide data for almost all the analytical needs across the entire company. Alas, for
many reasons, you instead wound up with numerous data marts and other envi-
ronments, very few of which work together. Even enterprise data warehouses are
often accompanied by an entire portfolio of data marts in the typical organization.

Great news! The data lake will finally be that one-stop shopping place for the data
to meet almost all the analytical needs across your entire enterprise.

Enterprise-scale data warehousing fell short for many different reasons, includ-
ing the underlying technology platforms. Data lakes overcome those shortfalls and
provide the foundation for an entirely new generation of integrated, enterprise-
wide analytics.

50 BOOK 1 Learning Data Analytics & Visualizations Foundations

Even with a data lake, you’ll almost certainly still have other data environments
outside the data lake that support analytics. Your data lake objective should be to
satisfy almost all your organization’s analytical needs and be the go-to place for
data. If a few other environments pop up here and there, that’s okay. Just be care-
ful about the overall proliferation of systems outside your data lake; otherwise,
you’ll wind up right back in the same highly fragmented data mess that you have
today before beginning work on your data lake.

CHAPTER 4 Wrapping Your Head Around Data Science 51

Wrapping Your Head
Around Data Science

F
or over a decade now, everyone has been absolutely deluged by data. It’s

 coming from every computer, every mobile device, every camera, and every

imaginable sensor — and now it’s even coming from watches and other
 wearable technologies. Data is generated in every social media interaction we

humans make, every file we save, every picture we take, and every query we
 submit; data is even generated when we do something as simple as ask a favorite

search engine for directions to the closest ice cream shop.

Although data immersion is nothing new, you may have noticed that the phenom-

enon is accelerating. Lakes, puddles, and rivers of data have turned to floods and
veritable tsunamis of structured, semi-structured, and unstructured data that’s

streaming from almost every activity that takes place in both the digital and phys-

ical worlds. It’s just an unavoidable fact of life within the information age.

Chapter 4

IN THIS CHAPTER

 » Piecing together the core data

science components

 » Generating insights with software

applications

 » Getting a grip on relational databases

and SQL

 » Designing great relational databases

 » Doing data science tasks with SQL

functions

 » Using Excel spreadsheets to examine

your data

52 BOOK 1 Learning Data Analytics & Visualizations Foundations

Although just two decades ago no one was in a position to make much use of

most of the data that’s generated, the tides today have definitely turned. Special-
ists known as data engineers are constantly finding innovative and powerful new
ways to capture, collate, and condense unimaginably massive volumes of data,

and other specialists, known as data scientists, are leading change by deriving val-

uable and actionable insights from that data.

This chapter describes how data scientists use statistical and mathematical mod-

eling to derive insights from data and highlights the expertise required to do so.
It also covers some incredibly powerful low-code or no-code tools that help data

scientists generate more profits faster from the data they’re already working with
without the downtime of learning to build complicated predictive models in R or

Python.

Inspecting the Pieces of the
Data Science Puzzle

In its truest form, data science represents the optimization of processes and

resources. Data science produces data insights — actionable, data-informed con-

clusions or predictions that you can use to understand and improve your business,

your investments, your health, and even your lifestyle and social life. Using data

science insights is like being able to see in the dark. For any goal or pursuit you

can imagine, you can find data science methods to help you predict the most direct
route from where you are to where you want to be — and to anticipate every pot-
hole in the road between both places.

To practice data science, in the true meaning of the term, you need the analytical

know-how of math and statistics, the coding skills necessary to work with data,

and an area of subject matter expertise. Without this expertise, you might as well

call yourself a mathematician or a statistician. Similarly, a programmer without
subject matter expertise and analytical know-how might better be considered a

software engineer or developer, but not a data scientist.

The need for data-informed business and product strategy has been increas-

ing exponentially for about a decade, thus forcing all business sectors and

 industries to adopt a data science approach. As such, different flavors of data
science have emerged. The following are just a few titles under which experts

of every discipline are required to know and regularly do data science: director
of data science-advertising technology, digital banking product owner, clinical

W
ra

p
p

in
g

 Y
o

u
r H

e
a

d

A
ro

u
n

d
 D

a
ta

 S
c
ie

n
c
e

CHAPTER 4 Wrapping Your Head Around Data Science 53

biostatistician, geotechnical data scientist, data scientist–geospatial and agricul-

ture analytics, data and tech policy analyst, global channel ops–data excellence

lead, and data scientist–healthcare.

Nowadays, it’s almost impossible to differentiate between a proper data scientist
and a subject matter expert (SME) whose success depends heavily on their ability
to use data science to generate insights. Looking at a person’s job title may or may

not be helpful, simply because many roles are titled data scientist when they may

as well be labeled data strategist or product manager, based on the actual require-

ments. In addition, many knowledge workers are doing daily data science and not

working under the title of data scientist. It’s an overhyped, often misleading label

that’s not always helpful if you’re trying to find out what a data scientist does
by looking at online job boards. To shed some light, in the following sections I

spell out the key components that are part of any data science role, regardless of

whether that role is assigned the data scientist label.

Collecting, querying, and consuming data

Data engineers have the job of capturing and collating large volumes of structured,

unstructured, and semi structured big data — an outdated term that’s used to
describe data that exceeds the processing capacity of conventional database sys-

tems because it’s too big, it moves too fast, or it lacks the structural requirements
of traditional database architectures. (Find out more about big data in Book 1,

Chapter 2.)

Again, data engineering tasks are separate from the work that’s performed in data

science, which focuses more on analysis, prediction, and visualization. Despite

this distinction, whenever data scientists collect, query, and consume data during
the analysis process, they perform work similar to that of the data engineer.

Although valuable insights can be generated from a single data source, often

the combination of several relevant sources delivers the contextual information

required to drive better data-informed decisions. A data scientist can work from
several datasets that are stored in a single database, or even in several different
data storage environments. At other times, source data is stored and processed on

a cloud-based platform built by software and data engineers.

No matter how the data is combined or where it’s stored, if you’re a data scien-

tist, you almost always have to query data — write commands to extract relevant
datasets from data storage systems, in other words. Most of the time, you use
Structured Query Language (SQL) to query data, or some incarnation of SQL pro-

prietary to a specific tool. (The upcoming section “Getting a Handle on SQL and
Relational Databases” is all about SQL, so if the acronym scares you, jump ahead
to that section now.)

54 BOOK 1 Learning Data Analytics & Visualizations Foundations

Whether you’re using a third-party application such as Power BI or Tableau or

doing custom analyses by using a programming language such as R or Python,

you can choose from several universally accepted file formats:

 » Comma-separated values (CSV): Almost every brand of desktop and

web-based analysis application accepts this file type, as do commonly used
scripting languages such as Python and R.

 » Script: Most data scientists know how to use either the Python or R program-

ming language to analyze and visualize data. These script files end with the
extension .ply or .ipynb (Python) or .r (R).

 » Application: Excel is useful for quick-and-easy, spot-check analyses on
small- to medium-size datasets. These application files have the .xls or

.xlsx extension.

 » Web programming: If you’re building custom, web-based data visualizations,
you may be working in D3.js — or data-driven documents, a JavaScript library
for data visualization. When you work in D3.js, you use data to manipulate
web-based documents using .html, .svg, and .css files.

Applying mathematical modeling
to data science tasks

Data science relies heavily on a practitioner’s math skills (and statistics skills, as

described in the following section) precisely because these are the skills needed
to understand your data and its significance. These skills are also valuable in data
science because you can use them to carry out predictive forecasting, decision

modeling, and hypotheses testing.

Mathematics uses deterministic methods to form a quantitative (or numerical)
description of the world; statistics is a form of science that’s derived from mathe-

matics, but it focuses on using a stochastic (probabilities) approach and inferential
methods to form a quantitative description of the world. Data scientists use math-

ematical methods to build decision models, generate approximations, and make

predictions about the future.

This book presents advanced mathematical concepts using a plain language

approach. To get detailed coverage of the many mathematical approaches that are

useful when working in data science, check out Lillian Pierson’s Data Science For

Dummies, 3rd Edition (Wiley).

W
ra

p
p

in
g

 Y
o

u
r H

e
a

d

A
ro

u
n

d
 D

a
ta

 S
c
ie

n
c
e

CHAPTER 4 Wrapping Your Head Around Data Science 55

Deriving insights from statistical methods

In data science, statistical methods are useful for better understanding your data’s

significance, for validating hypotheses, for simulating scenarios, and for mak-

ing predictive forecasts of future events. Advanced statistical skills are somewhat

rare, even among quantitative analysts, engineers, and scientists. If you want to
go places in data science, though, take some time to get up to speed in a few basic

statistical methods, like linear and logistic regression, naïve Bayes classification,
and time series analysis. Lillian Pierson’s Data Science For Dummies, 3rd Edition
(Wiley), covers these topics.

Coding, coding, coding — it’s
just part of the game

Coding is unavoidable when you’re working in data science. You need to be able

to write code so that you can instruct the computer in how to manipulate, ana-

lyze, and visualize your data. Programming languages such as Python and R are

important for writing scripts for data manipulation, analysis, and visualization.

SQL, on the other hand, is useful for data querying. Finally, the JavaScript library
D3.js is often required for making cool, custom, and interactive web-based data
visualizations.

Although coding is a requirement for data science, it doesn’t have to be this big,
scary thing that people make it out to be. Your coding can be as fancy and complex

as you want it to be, but you can also take a rather simple approach. Although

these skills are paramount to success, you can pretty easily learn enough coding to

practice high-level data science. Books 4, 5, and 6 provide the basics of querying
in SQL, and describe how to get started in R and Python.

Applying data science to a subject area

Statisticians once exhibited some measure of obstinacy in accepting the signifi-

cance of data science. Many statisticians have cried out, “Data science is nothing
new — it’s just another name for what we’ve been doing all along!” But data
science is separate, and definitely distinct, from the statistical approaches that
comprise it.

Data scientists often use computer languages not used in traditional statistics

and take approaches derived from the field of mathematics. But the main point
of distinction between statistics and data science is the need for subject matter

expertise.

56 BOOK 1 Learning Data Analytics & Visualizations Foundations

Because statisticians usually have only a limited amount of expertise in fields
outside of statistics, they’re almost always forced to consult with a SME to verify
exactly what their findings mean and to determine the best direction in which to
proceed. Data scientists, on the other hand, should have a strong subject mat-

ter expertise in the area in which they’re working. Data scientists generate deep

insights and then use their domain-specific expertise to understand exactly what
those insights mean with respect to the area in which they’re working.

The following list describes a few ways in which today’s knowledge workers are

coupling data science skills with their respective areas of expertise in order to

amplify the results they generate.

 » Clinical informatics scientists combine their healthcare expertise with data

science skills to produce personalized healthcare treatment plans. They use
healthcare informatics to predict and preempt future health problems in
at-risk patients.

 » Marketing data scientists combine data science with marketing expertise to

predict and preempt customer churn (the loss of customers from a product or
service to that of a competitor’s, in other words). They also optimize marketing
strategies, build recommendation engines, and fine-tune marketing mix
models.

 » Data journalists scrape websites (extract data in bulk directly from the pages
on a website, in other words) for fresh data in order to discover and report the
latest breaking-news stories.

 » Directors of data science bolster their technical project management
capabilities with an added expertise in data science. Their work includes
leading data projects and working to protect the profitability of the data
projects for which they’re responsible. They also act to ensure transparent
communication between C-suite executives, business managers, and the data
personnel on their team who actually do the implementation work.

 » Data product managers supercharge their product management capabilities
with the power of data science. They use data science to generate predictive
insights that better inform decision-making around product design, develop-

ment, launch, and strategy. This is a classic type of data leadership role.

 » Machine learning engineers combine software engineering superpowers
with data science skills to build predictive applications. This is a classic data
implementation role.

W
ra

p
p

in
g

 Y
o

u
r H

e
a

d

A
ro

u
n

d
 D

a
ta

 S
c
ie

n
c
e

CHAPTER 4 Wrapping Your Head Around Data Science 57

Choosing the Best Tools for Your
Data Science Strategy

Data science strategy can best be described as a technical plan that maps out each

and every element required to lead data science projects that increase the profit-
ability of a business. R and Python are often part of the plan, which may make you

think that when it comes to data science strategy, Python and R are the obvious

answers to this question: “Which tools do I need for my strategy to succeed?” But
the obvious answer is not always the best answer. A data strategy that relies only

on data science to improve profits from data is a limited one, cutting itself off at
the pass by insisting on the use of code to monetize data.

For example, imagine that a human resources (HR) professional, without needing
to write even one line of code, is able to build a software application that auto-

matically collects applicant data, reads that data into an Applicants SQL database,
and then executes an automated response to each applicant based on the manual

determination of the HR personnel processing employment applications. Where
appropriate, the software automatically moves candidates forward in the hir-

ing process. This no-code application eliminates the need for manual data entry,

data clean-up, email follow-up, and candidate forwarding. That’s a lot of time

(money, in other words) saved right there.

Do you know of any prebuilt software whose vendor could come in and configure
it to create this type of system setup in-house? Yes, you probably do, but that’s a
lengthy, expensive, and inflexible route to take, considering that the same out-
come is now possible in a no-code environment like Airtable — a collaborative,
intuitive, cloud-based SQL-esque solution that acts and works like a spreadsheet
and database at the same time.

No-code is a type of development platform that leverages graphical user interfaces

in a way that allows coders and noncoders alike to build their software applica-

tions. If your start-up or small business has no complex data architecture, it’s

entirely possible to house your company’s data in a no-code environment and not

have to worry about integrating that data and platform with other data systems

you might have.

If your company is larger and more mature, you may want to investigate low-code

options — platforms that allow users to build applications without needing to use
any code whatsoever, but that does require a small bit of code to configure on the

58 BOOK 1 Learning Data Analytics & Visualizations Foundations

back end to enable data integration with the rest of the company’s data systems

and sources. Commonly used low-code solutions are Google Forms and Microsoft
Power Apps for self-service data collection and integration.

Concerning data strategy, what we’re really talking about here is leveraging low-

code and no-code solutions to deploy and directly monetize more of your com-

pany’s data, without needing to train existing team members, or hire experienced

data scientists. The idea is to equip all knowledge workers with intuitive data
technologies they can use right away to start getting better results from data,

without the intervention of data specialists — a true democratization of data and
data monetization across the business, in other words.

Bridging the gap between no-code, low-code, SQL, and spreadsheets, SQL data-

bases and spreadsheet applications such as Excel and Google Sheets provide just
the no-code and low-code environments that knowledge workers can start using

today to increase the productivity and profitability of their company’s data. These
technologies, covered throughout the rest of this chapter, are very accessible and

represent great upside potential to modern businesses.

Getting a Handle on SQL and Relational
Databases

Some data professionals are resistant to learning SQL because of the steep learn-

ing curve involved. They think, “I am not a coder, and the term Structured Query

Language sure sounds like a programming language to me.” In the case of SQL,
though, it is not a programming language (see Figure 4-1). As far as the upside
potential goes of learning to use SQL to query and access data, it’s worth the small
degree of hassle.

SQL, or Structured Query Language, is a standard for creating, maintaining, and

securing relational databases. It’s a set of rules you can use to quickly and effi-

ciently query, update, modify, add, or remove data from large and complex data-

bases. You use SQL rather than Python or a spreadsheet application to do these
tasks because SQL is the simplest, fastest way to get the job done. It offers a plain
and standardized set of core commands and methods that are easy to use when

performing these particular tasks. This chapter introduces basic SQL concepts and
explains how you can use SQL to do cool things like query, join, group, sort, and
even text-mine structured datasets.

W
ra

p
p

in
g

 Y
o

u
r H

e
a

d

A
ro

u
n

d
 D

a
ta

 S
c
ie

n
c
e

CHAPTER 4 Wrapping Your Head Around Data Science 59

Although you can use SQL to work with structured data that resides in relational
database management systems, you can’t use standard SQL as a solution for han-

dling big data. (Unfortunately, you just can’t handle big data using relational

database technologies.) SQL is simply a tool you can use to manipulate and edit
structured data tables. It’s nothing exceedingly innovative, but it can be helpful

to use SQL for the data querying and manipulation tasks that often arise in the
practice of data science. This introduces the basics of relational databases, SQL,
and database design.

Although the name Structured Query Language suggests that SQL is a
programming language, don’t be misled. SQL is not a programming language
like R or Python. Rather, it’s a language of commands and syntax that you can

use to create, maintain, and search relational database systems. SQL supports a
few common programming forms, like conditionals and loops, but to do any-

thing more complex, you’d have to import your SQL query results into another
programming platform and then do the more complex work there.

One fundamental characteristic of SQL is that you can use it only on structured
data that sits in a relational database. SQL database management systems (DBMSs)
optimize their own structure with minimal user input, which enables blazing-fast

operational performance.

An index is the lookup table. You create it in order to index, point to, and “look
up” data in tables of a database. Although SQL DBMSs are known for their fast
structured database querying capabilities, this speed and effectiveness are heavily
dependent on good indexing. Good indexing is vital for fast data retrieval in SQL.

Similar to how different web browsers comply with, add to, and ignore different
parts of the HTML standard in different ways, SQL rules are interpreted a bit
differently, depending on whether you’re working with open-source products or
commercial vendor software applications.

FIGURE 4-1:
An example

of how SQL is
human-readable.

60 BOOK 1 Learning Data Analytics & Visualizations Foundations

Because not every SQL solution is the same, it’s a good idea to know something
about the benefits and drawbacks of some of the more popular SQL solutions on
the market. Here are two popular open-source SQL implementations commonly
used by data scientists:

 » MySQL: By far the most popular open-source version of SQL, MySQL offers a
complete and powerful version of SQL. It’s used on the back end of millions
of websites.

 » PostgreSQL: This software adds object-oriented elements to SQL’s relational
language, making it popular with programmers who want to integrate SQL
objects into their own platforms’ object model.

As you might guess from the name, the most salient aspect of relational databases

is that they’re relational — they’re composed of related tables, in other words.
To illustrate the idea of a relational database, first imagine an Excel spreadsheet
with rows, columns, and predefined relationships between shared columns. Then
imagine having an Excel workbook with many worksheets (tables), in which every
worksheet has a column with the same name as a column in one or more other

worksheets. Because these worksheets have a shared relationship, if you use SQL
you can use that shared relationship to look up data in all related worksheets. This

type of relationship is illustrated in Figure 4-2.

FIGURE 4-2:
A relationship

between data

tables that share

a column.

W
ra

p
p

in
g

 Y
o

u
r H

e
a

d

A
ro

u
n

d
 D

a
ta

 S
c
ie

n
c
e

CHAPTER 4 Wrapping Your Head Around Data Science 61

Knowing all about the keys

The primary key of a table is a column of values that uniquely identifies every row
in that table. A good example of primary keys is the use of ISBN numbers for a
table of books or employee ID numbers for a table of employees. A foreign key is a

column in one table that matches the primary key of another and is used to link

tables.

Keeping the focus on terminology, remember that proper database science often

associates particular meanings to particular words, as you can see in this list:

 » Columns, called fields, keys, and attributes

 » Rows, called records

 » Cells, called values

The main benefits of using relational database management systems (RDBMSs,
for short) is that they’re fast, they have large storage and handling capacity (com-

pared to spreadsheet applications such as Excel), and they’re ideal tools to help
you maintain data integrity — the consistency and accuracy of data in your data-

base. If you need to make quick-and-accurate changes and updates to your data-

sets, you can use SQL and a RDBMS.

Let the following scenario serve as an illustration. This data table describes films
and lists ratings from viewers:

id title genre rating timestamp rating

1 The Even Couple NULL 2011-08-03 16:04:23 4

2 The Fourth Man Drama 2014-02-19 19:17:16 5

2 The Fourth Man Drama 2010-04-27 10:05:36 4

3 All About Adam Drama 2011-04-05 21:21:05 4

3 All About Adam Drama 2014-02-21 00:11:07 3

4 Dr. Yes Thriller NULL

What happens if you find out that All About Adam is a comedy rather than a drama?
If the table were in a simple spreadsheet, you’d have to open the data table, find
all instances of the film, and then manually change the genre value for that record.
That’s not so difficult in this sample table because only two records are related to
that film. But even here, if you forget to change one of these records, this incon-

sistency would cause a loss of data integrity, which can cause all sorts of unpre-

dictable problems for you down the road.

62 BOOK 1 Learning Data Analytics & Visualizations Foundations

In contrast, the relational database solution is simple and elegant. Instead of one

table for this example, you’d have three:

Film id title

 1 The Even Couple

 2 The Fourth Man

 3 All About Adam

 4 Dr. Yes

Genre id genre

 2 Drama

 3 Drama

 4 Thriller

Rating timestamp id rating

 2011-08-03 16:04:23 1 4

 2014-02-19 19:17:16 2 5

 2010-04-27 10:05:36 2 4

 2011-04-05 21:21:05 3 4

 2014-02-21 00:11:07 3 3

The primary key for the Film and Genre tables is id. The primary key for the Rat-

ing table is timestamp — because a film can have more than one rating, id is not a

unique field and, consequently, it can’t be used as a primary key. In this example,
if you want to look up and change the genre for All About Adam, you’d use Film.id

as the primary key and Genre.id as the foreign key. You’d simply use these keys

to query the records you need to change and then apply the changes systemati-
cally. This systematic approach eliminates the risk of stray errors.

Investing Some Effort into
Database Design

If you want to ensure that your database will be useful to you for the foresee-

able future, you need to invest time and resources into excellent database design.

If you want to create databases that offer fast performance and error-free results,
your database design has to be flawless, or as flawless as you can manage.
Before you enter any data into a data table, first carefully consider the tables and
columns you want to include, the kinds of data those tables will hold, and the

relationships you want to create between those tables.

W
ra

p
p

in
g

 Y
o

u
r H

e
a

d

A
ro

u
n

d
 D

a
ta

 S
c
ie

n
c
e

CHAPTER 4 Wrapping Your Head Around Data Science 63

Every hour you spend planning your database and anticipating future needs
can save you countless hours down the road when your database might hold a

 million records. Poorly planned databases can easily turn into slow, error-ridden

monstrosities — avoid them at all costs.

Keep just a few concepts in mind when you design databases:

 » Data types

 » Constraints

 » Normalization

The next few sections take a closer look at each topic.

Defining data types
When creating a data table, one of the first things you have to do is define the data
type of each column. You have several data type options to choose from:

 » Text: If your column is to contain text values, you can classify it as a Character
data type with a fixed length or a Text data type of indeterminate length.

 » Numerical: If your column is to hold number values, you can classify it as a
Numerical data type. These can be stored as integers or floats.

 » Date: If your column is to hold date- or time-based values, you can designate
this as a Date data type or Date-Time data type.

Text data types are handy, but they’re terrible for searches. When you use a text

field to do a search or select query, SQL will cause the computer to call up each
of the data objects individually instead of searching and sorting through them

in memory — in other words, processing data within the computer’s memory,
without actually reading and writing its computational results onto the disk.

Designing constraints properly

In the context of SQL, think of constraints as rules you use to control the type of
data that can be placed in a table. As such, they’re an important consideration

in any database design. When you’re considering adding constraints, first decide
whether each column is allowed to hold a NULL value. (NULL isn’t the same as

blank or zero data; it indicates a total absence of data in a cell.)

64 BOOK 1 Learning Data Analytics & Visualizations Foundations

For example, if you have a table of products you’re selling, you probably don’t

want to allow a NULL in the Price column. In the Product Description column,

however, some products may have long descriptions, so you might allow some of

the cells in this column to contain NULL values.

Within any data type, you can also constrain exactly what type of input values the

column accepts. Imagine that you have a text field for Employee ID, which must
contain values that are exactly two letters followed by seven numbers, like this:
SD0154919. Because you don’t want your database to accept a typo, you’d define
a constraint that requires all values entered into the cells of the Employee ID col-
umn to have exactly two letters followed by seven numbers.

Normalizing your database

After you’ve defined the data types and designed constraints, you need to deal
with normalization — structuring your database so that any changes, additions, or
deletions to the data have to be made only once and won’t result in anomalous,

inconsistent data. There are many different degrees and types of normalization
(at least seven), but a good, robust, normalized SQL database should have at least
the following properties:

 » Primary keys: Each table has a primary key, which is a unique value for every
row in that column.

 » Nonredundancy of columns: No two tables have the same column, unless
it’s the primary key of one and the foreign key of the other.

 » No multiple dependencies: Every column’s value must depend on only one
other column whose value does not in turn depend on any other column.
Calculated values — values such as the total for an invoice, for example — must
therefore be done on the fly for each query and should not be hard-coded into
the database. This means that zip codes should be stored in a separate table
because they depend on three columns — address, city, and state.

 » Column indexes: As you may recall, in SQL, an index is a lookup table that
points to data in database tables. When you make a column index — an index
of a particular column — each record in that column is assigned a unique key
value indexed in a lookup table. Column indexing enables faster data retrieval
from that column.

It’s an excellent idea to create a column index for frequent searches or to be
used as a search criterion. The column index takes up memory, but it increases
your search speeds tremendously. It’s easy to set up, too. Just tell your SQL
DBMS to index a certain column, and then the system sets it up for you.

W
ra

p
p

in
g

 Y
o

u
r H

e
a

d

A
ro

u
n

d
 D

a
ta

 S
c
ie

n
c
e

CHAPTER 4 Wrapping Your Head Around Data Science 65

If you’re concerned that your queries are slow, first make sure that you have
all the indexes you need before trying other, perhaps more involved, trouble-

shooting efforts.

 » Subject-matter segregation: Another feature of good database design is
that each table contains data for only one kind of subject matter. This isn’t
exactly a normalization principle per se, but it helps to achieve a similar end.

Consider again the film rating example, from the earlier section:

Film id title

 1 The Even Couple

 2 The Fourth Man

 3 All About Adam

 4 Dr. Yes

Genre id genre

 2 Drama

 3 Drama

 4 Thriller

Rating timestamp id rating

 2011-08-03 16:04:23 1 4

 2014-02-19 19:17:16 2 5

 2010-04-27 10:05:36 2 4

 2011-04-05 21:21:05 3 4

 2014-02-21 00:11:07 3 3

I could have designated Genre to be a separate column in the Film table, but
it’s better off in its own table because that allows for the possibility of missing
data values (NULLs). Look at the Film table just shown. Film 1 has no genre
assigned to it. If the Genre column were included in this table, then Film 1

would have a NULL value there. Rather than have a column that contains a
NULL value, it’s much easier to make a separate Genre data table. The primary
keys of the Genre table don’t align exactly with those of the Film table, but
they don’t need to when you go to join them.

NULL values can be quite problematic when you’re running a SELECT query. When
you’re querying based on the value of a particular attribute, any records that have
a NULL value for that attribute won’t be returned in the query results. Of course,
these records would still exist, and they may even fall within the specified range
of values you’ve defined for your query, but if the record has a NULL value, it’s

omitted from the query results. In this case, you’re likely to miss them in your
analysis.

66 BOOK 1 Learning Data Analytics & Visualizations Foundations

Any data scientist worth their salt must address many challenges when dealing

with either the data or the science. SQL takes some of the pressure off when you’re
dealing with the time-consuming tasks of storing and querying data, saving pre-

cious time and effort.

Narrowing the Focus with SQL Functions

When working with SQL commands, you use functions to perform tasks, and argu-

ments to more narrowly specify those tasks. To query a particular set from within
your data tables, for example, use the SELECT function. To combine separate

tables into one, use the JOIN function. To place limits on the data that your query
returns, use a WHERE argument. As indicated in the preceding section, fewer than

20 commands are commonly used in SQL. This section introduces SELECT, FROM,

JOIN, WHERE, GROUP, MAX(), MIN(), COUNT(), AVG(), and HAVING.

The most common SQL command is SELECT. You can use this function to gen-

erate a list of search results based on designated criteria. To illustrate, imagine

the film-rating scenario mentioned earlier in this chapter with a tiny database of
movie ratings that contains the three tables Film, Genre, and Rating.

To generate a printout of all data FROM the Rating table, use the SELECT function.

Any function with SELECT is called a query, and SELECT functions accept differ-

ent arguments to narrow down or expand the data that is returned. An asterisk

(*) represents a wildcard, so the asterisk in SELECT * tells the interpreter — the
SQL component that carries out all SQL statements — to show every column in
the table. You can then use the WHERE argument to limit the output to only certain

values. For example, here is the complete Rating table:

Rating timestamp id rating

 2011-08-03 16:04:23 1 4

 2014-02-19 19:17:16 2 5

 2010-04-27 10:05:36 2 4

 2011-04-05 21:21:05 3 4

 2014-02-21 00:11:07 3 3

If you want to limit your ratings to those made after a certain time, you’d use code

like that shown in Listing 4-1.

LISTING	4-1:	 Using SELECT, WHERE, and DATE() to Query Data

SELECT * FROM Rating

WHERE Rating.timestamp >= date('2014-01-01')

W
ra

p
p

in
g

 Y
o

u
r H

e
a

d

A
ro

u
n

d
 D

a
ta

 S
c
ie

n
c
e

CHAPTER 4 Wrapping Your Head Around Data Science 67

timestamp id rating

2014-02-19 19:17:16 2 5

2014-02-21 00:11:07 3 3

In Listing 4-1, the DATE() function turns a string into a date that can then be

compared with the timestamp column.

You can also use SQL to join columns into a new data table. Joins are made on the
basis of shared (or compared) data in a particular column (or columns). You can
execute a join in SQL in several ways, but the ones listed here are probably the
most popular:

 » Inner join: The default JOIN type; returns all records that lie in the intersect-
ing regions between the tables being queried

 » Outer join: Returns all records that lie outside the overlapping regions
between queried data tables

 » Full outer join: Returns all records that lie both inside and outside the
overlapping regions between queried data tables — in other words, returns all
records for both tables

 » Left join: Returns all records that reside in the leftmost table

 » Right join: Returns all records that reside in the rightmost table

Be sure to differentiate between an inner join and an outer join, as these func-

tions handle missing data in different ways. As an example of a join in SQL, if you
want a list of films that includes genres, you use an inner join between the Film
and Genre tables to return only the results that intersect (overlap) between the
two tables.

To refresh your memory, here are the two tables you’re interested in:

Film id title

 1 The Even Couple

 2 The Fourth Man

 3 All About Adam

 4 Dr. Yes

Genre id genre

 2 Drama

 3 Drama

 4 Thriller

68 BOOK 1 Learning Data Analytics & Visualizations Foundations

Listing 4-2 shows how you’d use an inner join to find the information you want.

LISTING	4-2:	 An Inner JOIN Function

SELECT Film.id, Film.title, Genre.genre

FROM Film

JOIN Genre On Genre.id=Film.id

id title genre

2 The Fourth Man Drama

3 All About Adam Drama

4 Dr. Yes Thriller

In Listing 4-2, specific columns (Film.title and Genre.genre) are named after
the SELECT command. This avoids creating a duplicate id column in the table that

results from the JOIN — one id from the Film table and one id from the Genre
table. Because the default for JOIN is inner, and inner joins return only records

that are overlapping or shared between tables, Film 1 is omitted from the results

(because of its missing Genre value).

If you want to return all rows, even ones with NULL values, simply do a full outer

join, like the one shown in Listing 4-3.

LISTING	4-3:	 A Full Outer JOIN

SELECT Film.id, Film.title, Genre.genre

FROM Film

FULL JOIN Genre On Genre.id=Film.id

id title genre

1 The Even Couple NULL

2 The Fourth Man Drama

3 All About Adam Drama

4 Dr. Yes Thriller

To aggregate values so that you can figure out the average rating for a film, use
the GROUP statement. (GROUP statement commands include MAX(), MIN(), COUNT(),

or AVG().)

Listing 4-4 shows one way you can aggregate values in order to return the
average rating of each film. The SELECT function uses the AS statement to rename

the column to make sure it was properly labeled. The Film and Ratings tables had

W
ra

p
p

in
g

 Y
o

u
r H

e
a

d

A
ro

u
n

d
 D

a
ta

 S
c
ie

n
c
e

CHAPTER 4 Wrapping Your Head Around Data Science 69

to be joined and, because Dr. Yes had no ratings and an inner join was used, that

film was left out.

LISTING	4-4:	 Using a GROUP Statement to Aggregate Data

SELECT Film.title, AVG(rating) AS avg_rating

FROM Film

JOIN Rating On Film.id=Rating.id

GROUP BY Film.title

title avg_rating

All About Adam 3.5

The Even Couple 4.0

The Fourth Man 4.5

To narrow the results even further, add a HAVING clause at the end, as shown in

Listing 4-5.

LISTING	4-5:	 A HAVING Clause to Narrow Results

SELECT Film.title, AVG(rating) AS avg_rating

FROM Film

JOIN Rating On Film.id=Rating.id

GROUP BY Film.title

HAVING avg_rating >= 4

title avg_rating

The Even Couple 4.0

The Fourth Man 4.5

The code in Listing 4-5 limits the data your query returns so that you get only
records of titles that have an average rating greater than or equal to 4.

Though SQL can do some basic text mining, packages such as Natural Language
Toolkit in Python (NLTK, at www.nltk.org) and General Architecture for Text
Engineering (GATE, at https://gate.ac.uk) are needed in order to do anything
more complex than count words and combinations of words. These more advanced

packages can be used for preprocessing data in order to extract linguistic items

such as parts of speech or syntactic relations, which can then be stored in a rela-

tional database for later querying.

http://www.nltk.org
https://gate.ac.uk

70 BOOK 1 Learning Data Analytics & Visualizations Foundations

Making Life Easier with Excel

Microsoft Excel holds a special place among data science tools. It was originally
designed to act as a simple spreadsheet. Over time, however, it has become the

people’s choice in data analysis software. In response to user demands, Microsoft
has added more and more analysis and visualization tools with every release. As

Excel advances, so do its data munging and data science capabilities. (In case you’re
curious, data munging involves reformatting and rearranging data into more man-

ageable formats that are usually required for consumption by other processing
applications downstream.) As early as Excel 2013, you’ll find features including
easy-to-use tools for charting, PivotTables, and macros. It also supports scripting

in Visual Basic so that you can design scripts to automate repeatable tasks. The

newer the product, the more advanced the functionality in Microsoft Excel.

The benefit of using Excel in a data science capacity is that it offers a fast-and-

easy way to get up close and personal with your data. If you want to browse every

data point in your dataset, you can quickly and easily do this using Excel. Most
data scientists start in Excel and eventually add other tools and platforms when
they find themselves pushing against the boundaries of the tasks Excel is designed
to do. Still, even the best data scientists out there keep Excel as an important tool
in their tool belt. When working in data science, you might not use Excel every
day, but knowing how to use it can make your job easier.

If you’re using Excel spreadsheets for data analysis but finding it to be rather
buggy and clunky, consider instead testing out Google Sheets — Google’s cloud-
based version of an Excel spreadsheet. It can be run offline on your computer,
and it offers an ease-of-use and a set of collaborative features that simply aren’t
available within the Microsoft Office environment today. Google Sheets offers all
the same functions discussed in this chapter, using all the same commands as

Excel spreadsheets, but most users find Sheets to be a far more intuitive, extensi-
ble tool for data analysis, visualization, and collaboration.

Although you have many different tools available to you when you want to see
your data as one big forest, Excel is a great first choice when you need to look at
the trees. Excel attempts to be many different things to many different kinds of
users. Its functionality is well-compartmentalized in order to avoid overwhelm-

ing new users while still providing power users with the more advanced function-

ality they crave. The following sections show how you can use Excel to quickly get
to know your data. You also see how you can use Excel PivotTables and macros to
greatly simplify your data clean-up and analysis tasks.

W
ra

p
p

in
g

 Y
o

u
r H

e
a

d

A
ro

u
n

d
 D

a
ta

 S
c
ie

n
c
e

CHAPTER 4 Wrapping Your Head Around Data Science 71

Using Excel to quickly get
to know your data

Use Excel if you’re starting with an unfamiliar dataset and need patterns or trends
as quickly as possible. Excel offers effective features for exactly these purposes. Its
main features for a quick-and-dirty data analysis are.

 » Filters: Filters are useful for sorting out all records that are irrelevant to the
analysis at hand.

 » Conditional formatting: Specify a condition, and Excel flags records that
meet that condition. By using conditional formatting, you can easily detect
outliers and trends in your tabular datasets.

 » Charts: Charts have long been used to visually detect outliers and trends in
data, so charting is an integral part of almost all data science analyses.

To see how these features work in action, consider the sample dataset shown in

Figure 4-3, which tracks sales figures for three employees over six months.

FIGURE 4-3:
The full
dataset

that tracks

employee sales

performance.

72 BOOK 1 Learning Data Analytics & Visualizations Foundations

Filtering in Excel

To narrow your dataset view to only the data that matters for your analysis, use

Excel filters to filter out irrelevant data from the data view. Simply select the
data, click the Home tab’s Sort & Filter button, and then choose Filter from the
options that appear. A little drop-down option then appears in the header row of

the selected data so that you can select the classes of records you want to have fil-
tered from the selection. Using the Excel Filter functionality allows you to quickly
and easily sort or restrict your view to only the subsets of the data that interest

you the most.

Take another look at the full dataset shown in Figure 4-3. Say you want to view
only data related to Abbie’s sales figures. If you select all records in the Sales-

person column and then activate the filter functionality (as just described), from
the drop-down menu that appears you can specify that the filter should isolate
only all records named Abbie, as shown in Figure 4-4. When filtered, the table
is reduced from 18 rows to only 6 rows. In this particular example, that change

doesn’t seem so dramatic, but when you have hundreds, thousands, or even a mil-

lion rows, this feature comes in very, very handy.

Excel lets you store only up to 1,048,576 rows per worksheet. That said, after
about 200,000 rows, data querying gets increasingly slow.

Using conditional formatting

To quickly spot outliers in your tabular data, use Excel’s Conditional Formatting
feature. Imagine after a data entry error that Abbie’s March total sales showed
$208,187.70 but was supposed to be only $20,818.77. You’re not quite sure where
the error is located, but you know that it must be significant because the figures
seem off by about $180,000.

FIGURE 4-4:
The sales

performance

dataset, filtered
to show only

Abbie’s records.

W
ra

p
p

in
g

 Y
o

u
r H

e
a

d

A
ro

u
n

d
 D

a
ta

 S
c
ie

n
c
e

CHAPTER 4 Wrapping Your Head Around Data Science 73

To quickly show such an outlier, select all records in the Total Sales column and
then click the Conditional Formatting button on the Ribbon’s Home tab. When the
button’s menu appears, choose the Data Bars option. Doing so displays the red data

bar scales shown in Figure 4-5. With data bars turned on, the bar in the $208,187.70
cell is so much larger than any of the others that you can easily see the error.

If you want to quickly discover patterns in your tabular data, you can choose
the Color Scales option (rather than the Data Bars option) from the Conditional
Formatting menu. After correcting Abbie’s March Total Sales figure to $20,818.77,
select all cells in the Total Sales column and then activate the Color Scales ver-

sion of conditional formatting. Doing so displays the result shown in Figure 4-6.
From the red-white-blue heat map, you can see that Abbie has the highest sales

total and that Brian has been selling more than Chris. (Okay, you can’t see the

red-white-blue in my black-and-white figures, but you can see the light-versus-

dark contrast.) Now, if you only want to conditionally format Abbie’s sales
performance relative to her own total sales (but not Brian and Chris’s sales), you
can select only the cells for Abbie (and not the entire column).

FIGURE 4-5:
Spotting outliers

in a tabular
dataset with

conditional

formatting

data bars.

74 BOOK 1 Learning Data Analytics & Visualizations Foundations

Excel charting to visually identify
outliers and trends

Excel’s Charting tool gives you an incredibly easy way to visually identify both
outliers and trends in your data. An XY (scatter) chart of the original dataset (refer
to Figure 4-3) yields the scatterplot shown in Figure 4-7. As you can see, the out-
lier is overwhelmingly obvious when the data is plotted on a scatter chart.

Alternatively, if you want to visually detect trends in a dataset, you can use

Excel’s Line Chart feature. The data from Figure 4-6 is shown as a line chart in
Figure 4-8. It’s worth mentioning, the outlier was fixed in this line graph, which
is what allows the Y-axis to have a more readable scale compared to Figure 4-7.

As you can clearly see from the figure, Chris’s sales performance is low — last
place among the three salespeople but gaining momentum. Because Chris seems

to be improving, maybe management would want to wait a few months before

making any firing decisions based on sales performance data.

FIGURE 4-6:
Spotting

outliers in a
tabular dataset

with color scales.

W
ra

p
p

in
g

 Y
o

u
r H

e
a

d

A
ro

u
n

d
 D

a
ta

 S
c
ie

n
c
e

CHAPTER 4 Wrapping Your Head Around Data Science 75

Reformatting and summarizing
with PivotTables

Excel developed the PivotTable to make it easier for users to extract valuable
insights from large sets of spreadsheet data. If you want to generate insights by

quickly restructuring or reclassifying your data, use a PivotChart. One of the main
differences between a traditional spreadsheet and a dataset is that spreadsheets
tend to be wide (with a lot of columns) and datasets tend to be long (with a lot of
rows). Figure 4-9 clearly shows the difference between a long dataset and a wide
spreadsheet.

FIGURE 4-7:
Excel XY (scatter)

plots provide a

simple way to

visually detect
outliers.

FIGURE 4-8:
Excel line charts

make it easy to

visually detect
trends in data.

76 BOOK 1 Learning Data Analytics & Visualizations Foundations

A PivotTable is a table that’s derived from data that sits within a spreadsheet. The

pivot allows for grouping, rearrangement, display, and summary of the raw data

that’s stored within the underlying spreadsheet.

The way that Excel is designed leads many users to intuitively prefer the wide
format — which makes sense because it’s a spreadsheet application. To counter
this preference, however, Excel offers the pivot table feature so that you can quickly
convert between long and wide formats. You can also use PivotTables to quickly
calculate subtotals and summary calculations on your newly formatted and rear-

ranged data tables.

Creating PivotTables is easy: Just select all cells that comprise the table you
seek to analyze. Then click the PivotTable button on the Insert tab. This action

opens the Create PivotTable dialog box, where you can define where you want
Excel to construct the PivotTable. Select OK, and Excel automatically generates
a PivotField Interface on the page you’ve specified. From this interface, you can
specify the fields you want to include in the PivotTable and how you want them
to be laid out.

The table shown in Figure 4-10 was constructed using the long-format sales
performance data shown in Figure 4-9. It’s an example of the simplest possible
PivotTable that can be constructed, but even at that, it automatically calculates

subtotals for each column and those subtotals automatically update when you

make changes to the data. What’s more, PivotTables come with PivotCharts — data
plots that automatically change when you make changes to the PivotTable filters
based on the criteria you’re evaluating.

FIGURE 4-9:
A long dataset

and a wide

spreadsheet.

W
ra

p
p

in
g

 Y
o

u
r H

e
a

d

A
ro

u
n

d
 D

a
ta

 S
c
ie

n
c
e

CHAPTER 4 Wrapping Your Head Around Data Science 77

Automating Excel tasks with macros

Macros are prescribed routines written in Visual Basic for Applications (VBA). You
can use macros to decrease the amount of manual processing you need to do when

working with data in Excel. For example, within Excel, macros can act as a set of
functions and commands that you can use to automate a wide variety of tasks. If

you want to save time (and hassle) by automating Excel tasks that you routinely
repeat, use macros.

To access macros, first activate Excel’s Developer tab from within the Options
menu on the File tab. (In other words, after opening the Options menu, choose

Customize Ribbon from your choices on the left and then click to select the

Developer check box in the column on the right.) Using the Developer tab,
you can record a macro, import one created by someone else, or code your

own in VBA.

To illustrate macros in action, imagine that you have a column of values and

you want to insert an empty cell between each one of the values, as shown in

Figure 4-11. Excel has no easy, out-of-the-box way to make this insertion. Using
Excel macros, however, you can ask Excel to record you while you step through
the process one time and then assign a key command to this recording to create

the macro. After you create the macro, every time you need to repeat the same task

in the future, just run the macro by pressing the key command, and the script

then performs all required steps for you.

Macros have an Absolute mode and a Relative mode. The Absolute mode refers to a
macros routine that runs the way you recorded it — down to the spreadsheet cell
positions in which the routine was recorded. Relative mode macros run the same

routine you record but can be placed in whatever cell position you need within the

spreadsheet.

For a more formal definition of Absolute and Relative macros, consider this:

 » Relative: Every action and movement you make is recorded as relative to
the cell that was selected when you began the recording. When you run the
macro in the future, it will run in reference to the cell that’s selected, acting
as though that cell were the same cell you had initially selected when you
recorded the macro.

FIGURE 4-10:
Creating a wide

data table from

the long dataset

via a PivotTable.

78 BOOK 1 Learning Data Analytics & Visualizations Foundations

 » Absolute: After you start recording the macro, every action and movement
you make is repeated when you run the macro in the future, and those
actions or movements aren’t made in any relative reference to whatever cell
was active when you started recording. The macro routine is repeated exactly
as you recorded it.

In the preceding example, the macro was recorded in Relative mode. This enables

the macro to be run continuously, anywhere, and on top of results from any pre-

ceding macros run. Since, in this scenario, the macro recorded only one iteration
of the process, if it had been recorded in Absolute mode, every time it was run,

the macro would have kept adding a space between only the one and two values.

In other words, it would not have operated on any cells other than the ones it was

recorded on.

Macro commands aren’t entered into Excel’s Undo stack. If you use a macro to
change or delete data, you’re stuck with that change.

FIGURE 4-11:
Using a macro to

insert empty cells

between values.

W
ra

p
p

in
g

 Y
o

u
r H

e
a

d

A
ro

u
n

d
 D

a
ta

 S
c
ie

n
c
e

CHAPTER 4 Wrapping Your Head Around Data Science 79

Test your macros first, and save your worksheets before using them so that you
can revert to the saved file if something goes wrong.

Excel power users often graduate to programming their own macros using
VBA. Because VBA is a full-fledged programming language, the possibilities from
pairing Excel with VBA are almost endless. Still, ask yourself this question: If
you’re going to invest time in learning a programming language, do you need

to work within the confines of Excel’s spreadsheet structure? If not, you might
consider learning a scientific computing language, like R or Python. These open-
source languages have a more user-friendly syntax and are much more flexible
and powerful.

CHAPTER 5 Telling Powerful Stories with Data Visualization 81

Telling Powerful Stories
with Data Visualization

A
ny standard definition of data analytics, data science, or data visualization
will specify that its purpose is to help you extract meaning and value from
raw data. Finding and deriving insights from raw data is at the crux of data

science, but these insights mean nothing if you don’t know how to communicate
your findings to others. Data visualization and storytelling are excellent means
by which you can visually communicate your data’s meaning. To design effective
data visualizations and stories, however, you must know and truly understand the
target audience and the core purpose for which you’re communicating with mem-

bers of that audience. You must also understand the main types of data graphics
available to you, as well as the significant benefits and drawbacks of each. This
chapter presents the core principles of data visualization and data storytelling
design.

A data visualization is a visual representation that’s designed for the purpose of
conveying the meaning and significance of data and data insights. Because data
visualizations are designed for a whole spectrum of different audiences, different
purposes, and different skill levels, the first step to designing an effective data
visualization is to know your audience. Audiences come in all shapes, forms, and

Chapter 5

IN THIS CHAPTER

 » Laying out the basics of data

visualization and storytelling

 » Choosing the perfect data

visualization type for the needs of

your audience

 » Picking the perfect design style

 » Crafting clear and powerful visual

messages with the right data graphic

 » Adding context

82 BOOK 1 Learning Data Analytics & Visualizations Foundations

sizes. For example, you might design a data visualization for the young-and-edgy
readers of Wired magazine or convey scientific findings to a research group. Your
audience might consist of board members and organizational decision-makers or
a local grassroots organization.

The one thing that’s consistent across all audiences, however, is the process you
should follow when creating your data visualization, as spelled out here:

1. Determine the type of data visualization you will create, based on your

audience and the purpose of your visualization.

2. Decide on a design style for your data visualization.

3. Choose which graphics make the most sense for your audience.

4. Test out different types of data graphics with the data, and then pick the ones
that display the most clear answers.

5. Arrange your data graphics within the data visualization.

6. Where appropriate, add context to enhance the meaning of the visualization.

This chapter walks you through each and every step in sequential order.

Data Visualizations: The Big Three

Every audience is composed of a unique class of consumers, each with unique
data visualization needs, so you have to clarify for whom you’re designing. (See
Table 5-1.) This section introduces the three main types of data visualizations
and then explains how to pick the one that best meets the needs of your audience.

Data storytelling for decision-makers

Sometimes, you have to design data visualizations for a less technical-minded
audience, perhaps to help members of this audience make better-informed

TABLE 5-1 Types of Data Visualization, by Audience

Data Storytelling Data Showcasing Data Art

Audience Less-technical business
decision-makers

Data implementers, analysts,
engineers, scientists, or
statisticians

Idealists, dreamers, and
social change-makers

T
e

llin
g

 P
o

w
e

rfu
l S

to
rie

s
w

ith
 D

a
ta

 V
isu

a
liza

tio
n

CHAPTER 5 Telling Powerful Stories with Data Visualization 83

business decisions. The purpose of this type of visualization is to tell your audi-
ence the story behind the data. In data storytelling, the audience depends on you
to make sense of the data behind the visualization and then turn useful insights
into visual stories they can easily understand.

With data storytelling, your goal should be to use data visualization, words, and
presentation skills to create a narrative that tells the story — the meaning, in other
words — of the data insights you seek to convey. With respect to the data visuali-
zation you use within a data story, you want it to be a clutter-free, highly focused
visualization that enables your audience members to quickly extract meaning
without having to make much effort. These visualizations are best delivered in
the form of static images, but more adept decision-makers may prefer to have an
interactive dashboard they can use to do a bit of exploration and what-if modeling.

Data storytelling involves more than just data visualization design, though. You
need to use words and presentation skills to communicate the data story as well.
You’ll want to use words sparingly within annotations on the data visualization
itself. Maybe you present the data story with an accompanying slideshow, or
maybe not — but you should present it with effective presentation skills.

Your presentation design should be part of the broader work you’re doing con-

cerning stakeholder management — the process of developing and maintaining
the trust of those key stakeholders whom your data work is meant to support, so
that you can bring your data insights to life by ensuring that they’re seen, heard,
and heeded in decision-making across your company.

Data showcasing for analysts

If you’re designing for a crowd of data implementers, or other logical, calculating
analysts, you can create data visualizations that are rather open-ended. The pur-

pose of this type of visualization is to help audience members visually explore the
data and draw their conclusions.

When using data showcasing techniques, your goal should be to display a lot of
contextual information that supports audience members as they make their inter-

pretations. These visualizations should include more contextual data and less con-

clusive focus so that people can get in, analyze the data for themselves, and then
draw their conclusions. These visualizations are best delivered as static images or
dynamic, interactive dashboards.

84 BOOK 1 Learning Data Analytics & Visualizations Foundations

Designing data art for activists

You might design for an audience of idealists, dreamers, and change-makers.
When designing for this audience, you want your data visualization to make a
point! You can assume that typical audience members aren’t overly analytical.
What they lack in math skills, however, they more than compensate for in solid
convictions.

These people look to your data visualization as a vehicle by which to make a state-

ment. When designing for this audience, data art is the way to go. The main goal
in using data art is to entertain, provoke, annoy, or do whatever it takes to make a
loud, clear, attention-demanding statement. Data art has little to no narrative and
offers no room for viewers to form their interpretations.

Data science experts have an ethical responsibility always to represent data accu-

rately. A data scientist should never distort the message of the data to fit what
the audience wants to hear — not even for data art! Nontechnical audiences don’t
even recognize, let alone see, the possible issues.

Designing to Meet the Needs
of Your Target Audience

To make a functional data visualization, you must get to know your target audi-
ence and then design precisely for their needs. But to make every design decision
with your target audience in mind, you need to take a few steps to make sure that
you truly understand your data visualization’s target consumers.

To gain the insights you need about your audience and your purpose, follow this
process:

1. Brainstorm.

Think about a specific member of your audience and make as many educated
guesses as you can about that person’s motivations.

Give this (imaginary) audience member a name and a few other identifying

characteristics. For example, imagine a 45-year-old divorced mother of two

named Eve.

2. Define the purpose of your visualization.

Narrow the purpose of the visualization by deciding exactly what action or

outcome you want audience members to make as a result of the visualization.

T
e

llin
g

 P
o

w
e

rfu
l S

to
rie

s
w

ith
 D

a
ta

 V
isu

a
liza

tio
n

CHAPTER 5 Telling Powerful Stories with Data Visualization 85

3. Choose a functional design.

Review the three main data visualization types (discussed earlier in this

chapter) and decide which type can best help you achieve your intended

outcome.

The following sections spell out this process.

Step 1: Brainstorm (All about Eve)

To brainstorm properly, pull out a sheet of paper and picture an imaginary audi-
ence member — “Eve,” for example. To create a more functional and effective
data visualization, you’d want to start by answering the more important questions
we could ask about Eve in order to better understand her and thus better under-

stand and design for your target audience.

Start by forming a picture of what Eve’s average day looks like — what she does
when she gets out of bed in the morning, what she does over her lunch hour,
and what her workplace is like. Also consider how Eve will use your visualiza-

tion. These things tell you a little bit about her psychographics — the psychological
characteristics that drive her high-level needs and wants.

To form a more comprehensive view of who Eve is and how you can best meet her
needs, you can pull from the following question bank:

 » Where does Eve work? What does she do for a living?

 » What kind of technical education or experience, if any, does she have?

 » How old is Eve? Is she married? Does she have children? What does she look

like? Where does she live?

 » What social, political, cause-based, or professional issues are important to

Eve? What does she think of herself?

 » What problems and issues does Eve have to deal with every day?

 » How does your data visualization help solve Eve’s work problems or her family

problems? How does it improve her self-esteem?

 » Through what avenue will you present the visualization to Eve — for example,
over the Internet or in a staff meeting?

 » What does Eve need to be able to do with your data visualization?

86 BOOK 1 Learning Data Analytics & Visualizations Foundations

As possible answers to these questions, suppose that Eve is the manager of the
zoning department in Irvine County. She is 45 years old and a single divorcee
with two children who are about to start college. She is deeply interested in local
politics and eventually wants to be on the county’s board of commissioners. To
achieve that position, she must get some major “oomph” on her county manage-

ment résumé. Eve derives most of her feelings of self-worth from her job and her
keen ability to make good management decisions for her department.

Until now, Eve has been forced to manage her department according to her gut-
level intuition, backed by a few disparate business systems reports. She isn’t
extraordinarily analytical, but she knows enough to understand what she sees.
The problem is that Eve lacks the visualization tools she needs in order to display
all the relevant data she should consider. Because she has neither the time nor the
skill to code something herself, she’s been waiting in the lurch. Eve is excited that
you’ll attend next Monday’s staff meeting to present data insights you’ve discov-

ered that she hopes will enable her to make more effective data-driven manage-

ment decisions.

Step 2: Define the purpose
After you brainstorm about the typical audience member (see the preceding
section), you can much more easily pinpoint exactly what you’re trying to achieve
with your data visualization. Are you attempting to get consumers to feel a
certain way about themselves or the world around them? Are you trying to make a
statement? Are you seeking to influence organizational decision-makers to make
good business decisions? Or do you simply want to lay all the data out there for all
viewers to make sense of and deduce from it what they will?

Returning to the hypothetical Eve: What decisions or processes are you trying to
help her achieve? Well, you’d first need to make sense of her data and uncover rel-
evant data insights. Then you’d need to present those data insights to her in a way
that she can clearly understand and use for improved decision-making. So, look-

ing at the data — what do you see that’s happening within the inner mechanics
of her department? Once you’ve discovered some clear trends and predictions, it’d
be time to use data visualization skills to guide Eve into making the most prudent
and effective management choices.

Step 3: Choose the most functional
visualization type for your purpose

Keep in mind that you have three main types of visualization from which to
choose: data storytelling, data art, and data showcasing. Remember that, if you’re

T
e

llin
g

 P
o

w
e

rfu
l S

to
rie

s
w

ith
 D

a
ta

 V
isu

a
liza

tio
n

CHAPTER 5 Telling Powerful Stories with Data Visualization 87

designing for organizational decision-makers, you’ll most likely use data story-

telling to directly tell your audience what their data means with respect to their
line of business. If you’re designing for a social justice organization or a political
campaign, data art can best make a dramatic and effective statement with your
data. Lastly, if you’re designing for analysts, engineers, scientists, or statisticians,
stick with data showcasing so that these analytical types have plenty of room to
figure things out on their own.

Back to Eve — because she’s not extraordinarily analytical and because she’s
depending on you to help her make excellent data-driven decisions, you need to
employ data storytelling techniques. Create either a static or interactive data visu-

alization with some, but not too much, context. The visual elements of the design
should tell a clear story about her business unit, such that Eve doesn’t have to
work through tons of complexity to get the point of what you’re trying to tell her
about her department.

Picking the Most Appropriate Design Style

If you’re the analytical type, you might say that the only purpose of a data
visualization is to convey numbers and facts via charts and graphs — no beauty
or design is needed. But if you’re a more artistic-minded person, you may insist
that you have to feel something in order to truly understand it. Truth be told, a
good data visualization is neither artless and dry nor completely abstract in its
artistry. Rather, its beauty and design lie somewhere on the spectrum between
these two extremes.

To choose the most appropriate design style, you must first consider your audi-
ence (discussed earlier in this chapter) and then decide how you want them to
respond to your visualization. If you’re looking to entice the audience into taking
a deeper, more analytical dive into the visualization, employ a design style that
induces a calculating and exacting response in its viewers. But if you want your
data visualization to fuel your audience’s passion, use an emotionally compelling
design style instead.

Inducing a calculating, exacting response

If you’re designing a data visualization for corporate types, engineers, scientists,
or organizational decision-makers, keep the design simple and sleek, using the
data showcasing or data storytelling visualization. To induce a logical, calculat-
ing feel in your audience, include a lot of bar charts, scatterplots, and line charts.
Color choices here should be rather traditional and conservative. The look and feel

88 BOOK 1 Learning Data Analytics & Visualizations Foundations

should scream “corporate chic.” (See Figure 5-1.) Visualizations of this style are
meant to quickly and clearly communicate what’s happening in the data — direct,
concise, and to the point. The best data visualizations of this style convey an
elegant look and feel.

Eliciting a strong emotional response

If you’re designing a data visualization to influence or persuade people, incorpo-

rate design artistry that invokes an emotional response in your target audience.
These visualizations usually fall under the data art category, but an extremely
creative data storytelling piece can also inspire this sort of strong emotional
response. Emotionally provocative data visualizations often support the stance
of one side of a social, political, or environmental issue. These data visualiza-

tions include fluid, artistic design elements that flow and meander, as shown in
Figure 5-2. Additionally, rich, dramatic color choices can influence the emotions
of the viewer. This style of data visualization leaves a lot of room for artistic cre-

ativity and experimentation.

Keep artistic elements relevant — and recognize when they’re likely to detract
from the impression you want to make, particularly when you’re designing for
analytical types.

FIGURE 5-1:
This design

style conveys a

calculating and

exacting feel.

T
e

llin
g

 P
o

w
e

rfu
l S

to
rie

s
w

ith
 D

a
ta

 V
isu

a
liza

tio
n

CHAPTER 5 Telling Powerful Stories with Data Visualization 89

FIGURE 5-2:
This design

style is intended

to evoke an

emotional

response.

90 BOOK 1 Learning Data Analytics & Visualizations Foundations

Selecting the Appropriate
Data Graphic Type

Your choice of data graphic type can make or break a data visualization. In case
it’s unclear, a data graphic is a graphical element that depicts your data insight in
visual format. (See Figure 5-3.) Most data visualizations have more than one data
graphic within them.

Because you probably need to represent many different facets of your data, you
can mix-and-match among the different graphical classes and types. Even among
the same class, certain graphic types perform better than others; therefore, it’s a
good idea to create several different mockups to see which graphic type conveys
the clearest and most obvious message.

This book introduces only the most used graphic types (among hundreds that are
available). Don’t wander too far off the beaten path. The further you stray from
familiar graphics, the harder it becomes for people to understand the information
you’re trying to convey.

Pick the graphic type that most dramatically displays the data trends you’re seek-

ing to reveal. (Figure 5-4 lists some general guidelines.) You can display the same
data trend in many ways, but some methods deliver a visual message more effec-

tively than others. The point is to deliver a clear, comprehensive visual message
to your audience so that people can use the visualization to help them make sense
of the data presented.

Among the most useful types of data graphics are standard chart graphics, com-

parative graphics, statistical plots, topology structures, and spatial plots and
maps. The next few sections take a look at each type in turn.

FIGURE 5-3:
Data visualiza-

tion versus data

graphics.

T
e

llin
g

 P
o

w
e

rfu
l S

to
rie

s
w

ith
 D

a
ta

 V
isu

a
liza

tio
n

CHAPTER 5 Telling Powerful Stories with Data Visualization 91

Standard chart graphics

When making data visualizations for an audience of non-analytical people, stick
to standard chart graphics. The more complex your graphics, the harder it is
for non-analytical people to understand them. And not all standard chart types
are boring — you have quite a variety to choose from, as the following list
makes clear:

 » Area: An area chart (shown in Figure 5-5) is a fun-yet-simple way to visually
compare and contrast attribute values. You can use this type to effectively tell
a visual story when you’ve chosen data storytelling and data showcasing. Not

all area charts are 3-D like the one shown in Figure 5-5, but they all represent
numerical values by the proportion of area those values consume visually on

the chart.

FIGURE 5-4:
Types of

data graphics,

broken down

by audience and

data visualization

type.

92 BOOK 1 Learning Data Analytics & Visualizations Foundations

 » Bar: Bar charts (see Figure 5-6) are a simple way to visually compare and
contrast values of parameters in the same category. Bar charts are best for

data storytelling and data showcasing.

 » Line: Line charts (see Figure 5-7) most commonly show changes in time-series
data, but they can also plot relationships between two, or even three,

parameters. Line charts are so versatile that you can use them in all data

visualization design types.

 » Pie: Pie chart graphics (see Figure 5-8), which are among the most commonly
used, provide a simple way to compare values of parameters in the same

category. Their simplicity, however, can be a double-edged sword; deeply

analytical people tend to scoff at them, precisely because they seem so
simple, so you may want to consider omitting them from data-showcasing

visualizations.

FIGURE 5-5:
An area chart in

three dimensions.

Source: Adapted from Lynda.com, Python for DS

http://Lynda.com

T
e

llin
g

 P
o

w
e

rfu
l S

to
rie

s
w

ith
 D

a
ta

 V
isu

a
liza

tio
n

CHAPTER 5 Telling Powerful Stories with Data Visualization 93

FIGURE 5-6:
A bar chart

showing the area

of US states by

their acreage, in

thousand acres.

FIGURE 5-7:
A line chart.

Source: Adapted from Lynda.com, Python for DS

http://Lynda.com

94 BOOK 1 Learning Data Analytics & Visualizations Foundations

Comparative graphics

A comparative graphic displays the relative value of multiple parameters in a shared
category or the relatedness of parameters within multiple shared categories. The
core difference between comparative graphics and standard graphics is that com-

parative graphics offer you a way to simultaneously compare more than one para-
meter and category. Standard graphics, on the other hand, provide a way to view
and compare only the difference between one parameter of any single category.
Comparative graphics are geared for an audience that’s at least slightly analytical,
so you can easily use these graphics in either data storytelling or data showcasing.
Visually speaking, comparative graphics are more complex than standard graphics.

This list shows a few different types of popular comparative graphics:

 » Bubble plots (see Figure 5-9) use bubble size and color to demonstrate the
relationship between three parameters of the same category.

 » Packed circle diagrams (see Figure 5-10) use both circle size and clustering to
visualize the relationships between categories, parameters, and relative

parameter values.

 » Gantt charts (see Figure 5-11) are bar charts that use horizontal bars to
visualize scheduling requirements for project management purposes. This

type of chart is useful when you’re developing a plan for project delivery. It’s

also helpful in determining the sequence in which tasks must be completed in

order to meet delivery timelines.

FIGURE 5-8:
A pie chart.

Source: Adapted from Lynda.com, Python for DS

http://Lynda.com

T
e

llin
g

 P
o

w
e

rfu
l S

to
rie

s
w

ith
 D

a
ta

 V
isu

a
liza

tio
n

CHAPTER 5 Telling Powerful Stories with Data Visualization 95

Choose Gantt charts for project management and scheduling.

 » Stacked charts (see Figure 5-12) are used to compare multiple attributes of
parameters in the same category. To ensure that it doesn’t become difficult to
make a visual comparison, resist the urge to include too many parameters.

 » Tree maps aggregate parameters of like categories and then use area to

show the relative size of each category compared to the whole, as shown in

Figure 5-13.

 » Word clouds use size and color to show the relative difference in frequency of
words used in a body of text, as shown in Figure 5-14. Colors are generally
employed to indicate classifications of words by usage type.

Statistical plots

Statistical plots, which show the results of statistical analyses, are usually useful
only to a deeply analytical audience (and aren’t useful for making data art). Your
statistical plot choices are described in this list:

 » Histogram: A diagram that plots a variable’s frequency and distribution as

rectangles on a chart, a histogram (see Figure 5-15) can help you quickly get a
handle on the distribution and frequency of data in a dataset.

Get comfortable with histograms. You’ll see a lot of them in the course of

making statistical analyses.

FIGURE 5-9:
A bubble chart.

96 BOOK 1 Learning Data Analytics & Visualizations Foundations

FIGURE 5-10:
A packed circle

diagram.

FIGURE 5-11:
A Gantt chart.

T
e

llin
g

 P
o

w
e

rfu
l S

to
rie

s
w

ith
 D

a
ta

 V
isu

a
liza

tio
n

CHAPTER 5 Telling Powerful Stories with Data Visualization 97

FIGURE 5-12:
A stacked chart.

FIGURE 5-13:
A tree map.

FIGURE 5-14:
A simple word

cloud.

98 BOOK 1 Learning Data Analytics & Visualizations Foundations

 » Scatterplot: A terrific way to quickly uncover significant trends and outliers in
a dataset, a scatterplot plots data points according to their x- and y-values in

order to visually reveal any significant patterns. (See Figure 5-16.) If you use
data storytelling or data showcasing, start by generating a quick scatterplot to

get a feel for areas in the dataset that may be interesting — areas that can
potentially uncover significant relationships or yield persuasive stories.

 » Scatterplot matrix: A good choice when you want to explore the relation-

ships between several variables, a scatterplot matrix places a number of

related scatterplots in a visual series that shows correlations between multiple

variables, as shown in Figure 5-17. Discovering and verifying relationships
between variables can help you to identify clusters among variables and

identify oddball outliers in your dataset.

FIGURE 5-15:
A histogram.

Source: Lynda.com, Python for DS

http://Lynda.com

T
e

llin
g

 P
o

w
e

rfu
l S

to
rie

s
w

ith
 D

a
ta

 V
isu

a
liza

tio
n

CHAPTER 5 Telling Powerful Stories with Data Visualization 99

FIGURE 5-16:
A scatterplot.

Source: Adapted from Lynda.com, Python for DS

FIGURE 5-17:
A scatterplot

matrix.

Source: Adapted from Lynda.com, Python for DS

http://Lynda.com
http://Lynda.com

100 BOOK 1 Learning Data Analytics & Visualizations Foundations

Topology structures

Topology is the practice of using geometric structures to describe and model the
relationships and connectedness between entities and variables in a dataset. You
need to understand basic topology structures so that you can accurately structure
your visual display to match the fundamental underlying structure of the concepts
you’re representing.

The following list describes a series of topological structures that are popular in
data science:

 » Linear topological structures: Representing a pure one-to-one relationship,

linear topological structures are often used in data visualizations that depict

time-series flow patterns. Any process that can occur only by way of a
sequential series of dependent events is linear (see Figure 5-18), and you
can effectively represent it by using this underlying topological structure.

 » Graph models: These kinds of models underlie group communication

networks and traffic flow patterns. You can use graph topology to represent
many-to-many relationships (see Figure 5-19), like those that form the basis of
social media platforms.

In a many-to-many relationship structure, each variable or entity has more

than one link to the other variables or entities in that same dataset.

 » Tree network topology: This topology represents a hierarchical classification,
where a network is distributed in top-down order — nodes act as receivers
and distributors of connections, and lines represent the connections between

nodes. End nodes act only as receivers and not as distributors. (See Figure 5-20.)
Hierarchical classification underlies clustering and machine learning method-

ologies in data science. Tree network structures can represent one-to-many

relationships, such as the ones that underlie a family tree or a taxonomy

structure.

FIGURE 5-18:
A linear topology.

T
e

llin
g

 P
o

w
e

rfu
l S

to
rie

s
w

ith
 D

a
ta

 V
isu

a
liza

tio
n

CHAPTER 5 Telling Powerful Stories with Data Visualization 101

Spatial plots and maps

Spatial plots and maps are two different ways of visualizing spatial data. A map is
just a plain figure that represents the location, shape, and size of features on the
face of the earth. A spatial plot, which is visually more complex than a map, shows
the values for — and location distribution of — a spatial feature’s attributes.

The following list describes a few types of spatial plots and maps that are
commonly used in data visualization:

 » Cloropleth: Despite its fancy name, a Cloropleth map is just spatial data

plotted out according to area boundary polygons rather than by point, line, or

FIGURE 5-19:
A graph mesh

network

topology.

FIGURE 5-20:
A hierarchical

tree topology.

102 BOOK 1 Learning Data Analytics & Visualizations Foundations

raster coverage. To better understand what this means, look at Figure 5-21.
On this map, each state boundary represents an area boundary polygon. The

color and shade of the area within each boundary represents the relative

value of the attribute for that state — where red areas have a higher attribute
value and blue areas have a smaller attribute value.

 » Point: Composed of spatial data that is plotted out according to specific
point locations, a point map presents data in a graphical point format (see

Figure 5-22) rather than in a polygon, line, or raster surface format.

 » Raster surface: This spatial map can be anything from a satellite image map

to a surface coverage with values that have been interpolated from underlying

spatial data points. (See Figure 5-23.)

Whether you’re a data visualization designer or a consumer, be aware of some
common pitfalls in data visualization. Simply put, a data visualization can be mis-

leading if it isn’t constructed correctly. Common problems include pie charts that
don’t add up to 100 percent, bar charts with a scale that starts in a strange place,
and multicolumn bar charts with vertical axes that don’t match.

FIGURE 5-21:
A Cloropleth map.

Source: Adapted from Lynda.com, Python for DS

http://Lynda.com

T
e

llin
g

 P
o

w
e

rfu
l S

to
rie

s
w

ith
 D

a
ta

 V
isu

a
liza

tio
n

CHAPTER 5 Telling Powerful Stories with Data Visualization 103

Testing Data Graphics

Your data visualizations must convey clear and powerful visual messages. To
make that happen, you have to test various data graphics and select only the most
effective ones to include in the final data visualization. For example, the two data
graphics shown in Figure 5-24 represent exactly the same statistic.

FIGURE 5-22:
A point map.

Source: Adapted from Lynda.com, Python for DS

FIGURE 5-23:
A raster

surface map.

Source: Adapted from Lynda.com, Python for DS

http://Lynda.com
http://Lynda.com

104 BOOK 1 Learning Data Analytics & Visualizations Foundations

Notice how the data graphic on the right does a much better job of visually
emphasizing the difference in numeric values? You should always test different
data graphics to make sure that you use the one that most clearly and effectively
displays your data. The graphic on the left is not effective. To choose only the
most effective data graphics for inclusion in your data visualization, simply follow
these four steps:

1. Make a list of the questions that your data is meant to answer.

2. Determine the data visualization type: data storytelling, data showcasing, or

data art.

3. Select options from among appropriate data graphic types for that type of data

visualization.

4. Test those data graphics with your data — see for yourself which graphic type
displays the most clear and obvious answers to your questions.

After testing different data graphics and deciding what you want to use, you need
to arrange those graphics within your data visualization. You can do that using
either Python or R or a spreadsheet. Alternatively, you can create your data visu-

alization using an online data visualization design tool, such as Microsoft Power
BI, Tableau, or IBM Cognos.

Adding Context

Once you know exactly which data graphics you’ll use, you need to decide whether
and how you’ll create the necessary context to add more meaning to the data
visualization. Adding context helps people understand the value and relative
significance of the information your data visualization conveys. Adding context

FIGURE 5-24:
Here you see the

importance of

selecting effective
data graphics.

T
e

llin
g

 P
o

w
e

rfu
l S

to
rie

s
w

ith
 D

a
ta

 V
isu

a
liza

tio
n

CHAPTER 5 Telling Powerful Stories with Data Visualization 105

to calculating, exacting data visualization styles helps to create a sense of relative
perspective, but in pure data art you may consider omitting additional context.
That’s because, with data art, you’re only trying to make a single point, and you
don’t want to add information that would distract from that point.

Creating context with data

In data showcasing, you should include relevant contextual data for the key met-
rics shown in your data visualization — in a situation where you’re creating a data
visualization that describes conversion rates for e-commerce sales, for example.
The key metric would be represented by the percentage of users who convert to
customers by making a purchase. Contextual data relevant to this metric might
include shopping cart abandonment rates, the average number of sessions before
a user makes a purchase, the average number of pages visited before making a
purchase, or specific pages that are visited before a customer decides to convert.
This sort of contextual information helps viewers understand the “why and how”
behind sales conversions.

Adding contextual data tends to decentralize the focus of data visualization, so
add this data only in visualizations that are intended for an analytical audience.
These folks are in a better position to assimilate the extra information and use it
to draw their own conclusions; with other types of audiences, context is only a
distraction.

Creating context with annotations

Sometimes, you can more appropriately create context by including annotations
that provide a header and a small description of the context of the data shown.
(See Figure 5-25.) This method of creating context is most appropriate for data
storytelling or data showcasing. Good annotation is helpful to both analytical and
non-analytical audiences alike.

Creating context with graphical elements

Another effective way to create context in a data visualization is to include
graphical elements that convey the relative significance of the data. Such graphi-
cal elements include moving average trend lines, single-value alerts, target trend
lines (as shown in Figure 5-26), and predictive benchmarks.

106 BOOK 1 Learning Data Analytics & Visualizations Foundations

FIGURE 5-25:
Using annotation

to create context.

Source: Adapted from Lynda.com, Python for DS

FIGURE 5-26:
Using graphical

elements to

create context.

http://Lynda.com

2Using Power
BI for Data
Analytics &
Visualization

Contents at a Glance

CHAPTER 1: Power BI Foundations . 109

Looking Under the Power BI Hood . 109

Knowing Your Power BI Terminology . 113

Power BI Products in a Nutshell . 118

CHAPTER 2: The Quick Tour of Power BI . 123

Power BI Desktop: A Top-Down View . 124

Services: Far and Wide . 132

CHAPTER 3: Prepping Data for Visualization 141

Getting Data from the Source . 142

Managing Data Source Settings . 146

Working with Shared versus Local Datasets 147

Storage and Connection Modes . 150

Data Sources Oh My! . 151

Cleansing, Transforming, and Loading Your Data 162

CHAPTER 4: Tweaking Data for Primetime . 167

Stepping through the Data Lifecycle . 167

Resolving Inconsistencies . 168

Evaluating and Transforming Column Data Types 171

Configuring Queries for Data Loading . 180

Resolving Errors During Data Import . 182

CHAPTER 5: Designing and Deploying Data Models 183

Creating a Data Model Masterpiece . 183

Managing Relationships . 197

Arranging Data . 199

Publishing Data Models . 201

CHAPTER 6: Tackling Visualization Basics in Power BI 203

Looking at Report Fundamentals and Visualizations 203

Choosing the Best Visualization for the Job 209

CHAPTER 7: Digging into Complex Visualization
and Table Data . 227

Dealing with Table-Based and Complex Visualizations 228

Using AI Tools to Create Questions and Answers 231

Formatting and Configuring Report Visualizations 232

Diving into Dashboards . 239

CHAPTER 8: Sharing and Collaborating with Power BI 247

Working Together in a Workspace . 247

Slicing and Dicing Data . 254

Troubleshooting the Use of Data Lineage . 258

Datasets, Dataflows, and Lineage . 261

Defending Your Data Turf . 262

CHAPTER 1 Power BI Foundations 109

Power BI Foundations

P
icking out the correct version of Power BI might be like visiting the world’s
biggest candy store: You can choose from many alternatives with sub-
tle nuances. The choice boils down to wants, needs, scale, and, of course,

money. Some versions are free (well, sort of), and other versions can be expensive.
And, of course, the most obvious difference is that some versions are desktop- or
server-based, whereas others offer online-only capabilities.

If you visit the Microsoft website on any given day and search for products, you
notice quite a few versions of Power BI exist. However, the Pricing page and the
Products page don’t necessarily match. (Thanks for the help, Microsoft!) It isn’t
clear whether “Free is free” or whether products are inclusive within specific
Power BI versions. This chapter clears up any confusion you may have so that,
moving forward, you know which product you should use.

Before moving forward with purchasing and licensing information, this chapter
explores the basic capabilities of Power BI and reviews some terminology.

Looking Under the Power BI Hood

Power BI is a product that brings together many smaller, cloud-based apps and
services with a specific objective: to organize, collect, manage, and analyze big
datasets. Big data is a concept, where the business and data analyst will evaluate

Chapter 1

IN THIS CHAPTER

 » Understanding your options for

business intelligence tooling

 » Familiarizing yourself with Power BI

terminology

 » Understanding the licensing options

available from Microsoft

110 BOOK 2 Using Power BI for Data Analytics & Visualization

extremely large datasets, which may reveal patterns and trends relating to human
behaviors and interactions not easily identifiable without the use of specific tools.
A typical big data collection is often expressed in millions of records. Unlike a tool
such as Microsoft Excel, Power BI can simultaneously evaluate many data sources
and millions of records. The sources don’t need to be structured using a spread-
sheet, either. They can include unstructured and semi-structured data.

After pulling these many data sources together and processing them, Power BI can
help you come up with visually compelling outputs in the form of charts, graphics,
reports, dashboards, and KPIs.

As you’ve already read, Power BI isn’t just a single source application. It has desk-
top, online, and mobile components.

Across the Power BI platforms, you are certain at some point to encounter one (or
more) of the following products:

 » Power Query: A data connection tool you can use to transform, combine, and

enhance data across several data sources

 » Power Pivot: A data modeling tool

 » Power View: A data visualization tool you can use to generate interactive

charts, graphs, maps, and visuals

 » Power Map: A visualization tool for creating 3D map renderings

 » Power Q&A: An artificial intelligence engine that allows you to ask questions
and receive responses using plain language

 » Power BI Desktop: A free, all-in-one solution that brings together all the apps

described in this list into a single graphical user interface

 » Power BI Services: A cloud-based user experience to collaborate and

distribute products such as reports with others

The following sections explore each product’s core functionality.

Posing questions with Power Query

Before Power BI became its own product line, it was originally an advanced query
and data manipulation add-in for Excel circa 2010. It wasn’t until around 2013
that Microsoft began to test Power BI as its own product line, with the formal
launch of Power BI Desktop and Services in July 2015. One of the justifications
for the switch to a dedicated product was the need for a more robust query edi-
tor. With the Excel editor, it was a single data source, whereas with Power BI’s

P
o

w
e

r
 B

I F
o

u
n

d
a

t
io

n
s

CHAPTER 1 Power BI Foundations 111

Power Query you can extract data from numerous data sources as well as read data
from relational sources, such as SQL Server Enterprise, Azure SQL Server, Oracle,
MySQL, DB2, and a host of other platforms. If you’re looking to extract data from
unstructured, semi-structured, or application sources — such as CSV files, text
files, Excel files, Word documents, SharePoint document libraries, Microsoft
Exchange Server, Dynamics 365, or Outlook — Power Query makes that possible
as well. And, if you have access to API services that map to specific data fields on
platforms such as LinkedIn, Facebook, or Twitter, you can use Power Query to
mine those platforms as well.

Whatever you have Power Query do, the procedure is always pretty much the same:
It transforms the data you specify (using a graphical user interface as needed)
by adding columns, rows, data types, date and time, text fields, and appropri-
ate operators. Power Query manages this transformation by taking an extensive
dataset, which is nothing more than a bunch of raw data (often disorganized and
confusing to you, of course) and then creates some business sense by organizing
it into tables, columns, and rows for consumption. The product produced by the
Power Query output in the Editor can then be transferred to either a portable file
such as Excel or something more robust, such as a Power Pivot model.

Modeling with Power Pivot

Power BI’s data modeling tool is called Power Pivot. With it, you can create mod-
els, such as star schemas, calculated measures, and columns, and build complex
diagrams. Power Pivot leverages another programming language called the Data
Analysis eXpression Language — or DAX, for short. DAX is a formula-based lan-
guage used for data analysis purposes. You soon discover that, as a language, it’s
chock-full of useful functions, so stay tuned.

Visualizing with Power View

The visualization engine of Power BI is Power View. The idea here is to connect
to data sources, fetch and transform that data for analysis, and then have Power
View present the output using one of its many visualization options. Power View
gives users the ability to filter data for individual variables or an entire report.
Users can slice data at the variable level or even break out elements in Power View
to focus like a laser on data that may be considered anomalous.

Mapping data with Power Map

Sometimes, visualizing data requires a bit more than a Bar chart or a table. Per-
haps you need a map that integrates geospatial coordinates with 3D requirements.

112 BOOK 2 Using Power BI for Data Analytics & Visualization

Suppose that you’re looking to add dimensionality to your data — perhaps with
the help of heat maps, by gauging the height and width of a column or basing
the color used on a statistical reference. In that case, you want to consider Power
BI’s Power Map feature set. Another feature built into Power Map is the use of
geospatial capabilities using Microsoft Bing, Microsoft’s external search engine
technology that includes capabilities for mapping locations. A user can highlight
data using geocoordinate latitude and longitudinal data as granular as an address
or as global as a country.

Interpreting data with Power Q&A

One of the biggest challenges for many users is data interpretation. Say, for exam-
ple, that you’ve built this incredible data model using Power Pivot. Now what?
Your data sample is often pretty significant in terms of size, which means that you
need some way to make sense of all the data you’ve deployed in the model. That’s
why Microsoft created a natural language engine, a way to interpret text, num-
bers, and even speech so that users can query the data model directly.

Power Q&A works directly in conjunction with Power View.

A classic example where Power Q&A can be enormously helpful would involve
determining how many users have purchased a specific item at a given store
location. If you want to drill down further, you could analyze a whole set of
 metrics — asking whether the item comes in several colors or sizes, for example,
or specifying which day of the week saw the most items sold. The possibilities are
endless as long as you’ve built your data model to accommodate the questions.

Power BI Desktop

All these Power BI platforms are great ideas, but the truly stupendous idea was
bundling together Power Query, Power Pivot, Power View, and Power Q&A to form
Power BI Desktop. Using Power BI Desktop, you can complete all your business
intelligence activities under a single umbrella. You can also develop BI and data
analysis activities far more easily. Finally, Microsoft updates Power BI Desktop
features monthly, so you can always be on the BI cutting edge.

Power BI Services

Over time, the product name for Power BI Services has evolved. When the product
was in beta, it was called Power BI Website. Nowadays, you often hear the prod-
uct referred to as Power BI Online or Power BI Services. Whatever you call it, it
functions as the Software as a Service companion to Power BI. Accessible at

P
o

w
e

r
 B

I F
o

u
n

d
a

t
io

n
s

CHAPTER 1 Power BI Foundations 113

https://app.powerbi.com, Power BI Services allows users to collaborate and
share their dashboards, reports, and datasets with other users from a single
location.

The version of Power BI you have licensed dictates your ability to share and ingest
data.

Knowing Your Power BI Terminology

Whether Microsoft or another vendor creates it, every product you come across
has its own terminology. It may seem like a foreign language, but if you visit a
vendor’s website and do a simple search, you’re sure to find a glossary that spells
out what all these mysterious terms mean.

Microsoft, unsurprisingly, has its own glossary for Power BI as well. (Those folks
refer to terminology as concepts, for reasons clear only to them.). Before you pro-
ceed any further on your Power BI journey, let’s establish the lay of the land. In
Microsoft Power BI-speak, some concepts resonate across vendors no matter who
you are. For example, all vendors have reports and dashboards as critical con-
cepts. Now, do all other vendors adopt Microsoft’s practice and call dataflows a
type of workflow? Not quite. They all have their names for these specific features,
although all such features generally work the same way.

Microsoft has done a pretty good job of trying to stick with mainstream names
for critical concepts. Nevertheless, some of the more advanced product features
specific to AI/machine learning and security adopt the rarefied lingo of Microsoft
products such as Azure Active Directory or Azure Machine Learning.

Capacities

What’s the first thing you think about when it comes to data? Is it the type, or
is it the quantity? Or do you consider both? With Power BI, the first concept you
must be familiar with is capacities, which are central to Power BI. Why, you ask?
Capacities are the sum total of resources needed in order for you to complete any
project you may create in Power BI. Resources include the storage, processor, and
memory required to host and deliver the Power BI projects.

There are two types of capacity: shared and dedicated. A shared capacity allows
you to share resources with other Microsoft end users. Dedicated capacities fully
commit resources to you alone. Whereas shared capacity is available for both
free and paying Power BI users, dedicated capacity requires a Power BI premium
subscription.

https://app.powerbi.com/

114 BOOK 2 Using Power BI for Data Analytics & Visualization

Workspaces

Workspaces are a means of collaborating and sharing content with colleagues.
Whether it’s personal or intended for collaboration, any workspace you create is
created on capacities. Think of a workspace as a container that allows you to man-
age the entire lifecycle of dashboards, reports, workbooks, datasets, and dataflows
in the Power BI Services environment. (Figure 1-1 shows a My Workspace, a par-
ticular example of a Power BI workspace.)

The My Workspace isn’t the only type of workspace available. You also have the
option to collaborate. If you want to collaborate, you have no choice but to upgrade
to a Power BI Pro or Premium plan. Features that come with collaboration include
the ability to create and publish Power BI-based dashboards, reports, workbooks,
datasets, and apps with a team.

Looking to upload the work you’ve created using Power BI Desktop? Or perhaps
you need to manipulate the work online without collaborating with anyone? If the
answer to either question is yes, My Workspace is all that is necessary. You only
require the use of the Power BI Online Free License. As soon as you want to col-
laborate with others, you need to upgrade to a paid Pro or Premium subscription.

So now you know that your work is stored in a workspace. Next question: What
happens with the data in that workspace? The answer is twofold: There is what
you see as the user, and then there’s what goes on behind the scenes as part of the
data transformation process. Let’s start with the behind-the-scenes activities.

A dataflow is a collection of tables that collects the datasets imported into Power
BI. After the tables are created and managed in your workspace as part of Power
BI Services, you can add, edit, and delete data within a dataflow. The data refresh
can occur using a predefined schedule as well. Keep in mind that Power BI uses an
Azure data lake, a way to store the extremely large volumes of data necessary for

FIGURE	1-1:
My Workspace

in Power BI
Services.

P
o

w
e

r
 B

I F
o

u
n

d
a

t
io

n
s

CHAPTER 1 Power BI Foundations 115

Power BI to evaluate, process, and analyze data rapidly. The Azure Data Lake also
helps with cleaning and transforming data quickly when the datasets are volumi-
nous in size.

Unlike a dataflow (which, you may remember, is a collection of tables), a dataset
should be treated as a single asset in your collection of data sources. Think of a
dataset as a subset of data. When used with dataflows, the dataset is mapped to a
managed Azure data lake. It likely includes some or all the data in the data lake.
The granularity of the data varies greatly, depending on the speed and scale of the
dataset available.

The analyst or developer can extract the data when building their desired output,
such as a report. Sometimes, there may be a desire for multiple datasets, in which
case dataflow transformation might be necessary. On the other hand, sometimes
multiple datasets can leverage the same dataset housed in the Azure data lake. In
this instance, little transformation is necessary.

After you’ve manipulated the data on your own, you have to publish the data
you’ve created in Power BI. Microsoft assumes that you intend to share the data
among users. If the intent is to share a dataset, assume that a Pro or Premium
license is required.

Reports

Data can be stored in a system indefinitely and remain idle. But what good is it if
the data in the system isn’t queried from time to time so that users like you and
me can understand what the data means, right? Suppose you worked for a hospi-
tal. You needed to query the employee database to find out how many employees
worked within five miles of the facility in case of an emergency. That’s when,
quickly (not warp speed, though), you can create a summary of your dataset, using
a Power BI report. Sure, there could be a couple of hundred records or tens of thou-
sands of records, all unique, of course, but the records are all brought together to
help the hospital home in just who can be all hands on deck in case of an emer-
gency whether it is just down the block, five miles away, or fifty miles away.

Power BI Reports translates that data into one or more pages of visualizations —
Line charts, Bar charts, donuts, treemaps — you name it. You can either evaluate
your data at a high level or focus on a particular data subset (if you’ve man-
aged to query the dataset beforehand). You can tackle creating a report in a num-
ber of ways, from taking a dataset using a single source and creating an output
from scratch to importing data from many sources. One example here would be
connecting to an Excel workbook or Google Sheets document using Power View
sheets. From there, Power BI takes the data from across the source and makes
sense of it. The result is a report (see Figure 1-2) based on the imported data using
predefined configurations established by the report author.

116 BOOK 2 Using Power BI for Data Analytics & Visualization

Power BI offers two Report view modes: Reading view and Editing view. When you
open a report, it opens in Reading view. If granted Edit permissions, you can edit
a report. When a report is in a workspace, any user with administrative, member,
or contributor rights can edit a report.

Administrative, member, or contributor access grants you access to exploring,
designing, building, and sharing capabilities within Edit view. Users who access
the reports created by these privileged users can interact with reports in Read-
Only mode. That means they can’t edit it — they can only view the output. Reports
created by privileged users are accessible under a workspace’s Reports tab, as
shown in Figure 1-3. Each report represents a single-page visualization, which
means it’s based on only one dataset.

FIGURE	1-2:
A sample Power

BI report.

FIGURE	1-3:
The Reports

tab in Power BI
Desktop.

P
o

w
e

r
 B

I F
o

u
n

d
a

t
io

n
s

CHAPTER 1 Power BI Foundations 117

Dashboards

If you’ve had any experience with Power BI whatsoever, you already know that it’s
a highly visual tool. In line with its visual nature, the Power BI dashboard, also
known as Canvas, brings your data story to life. If you’re looking to take all the
pieces of your data puzzle and capture a moment in time, you use the dashboard.
Think of it as a blank canvas. As you build your reports, widgets, tiles, and key
performance indicators (KPIs) over time, you pin the ones you like to the dash-
board to create a single visualization. The dashboard represents the large dataset
that you feel covers your topic at a glance. As such, it can help you make decisions,
support you in monitoring data, or make it possible for you to drill down in your
dataset by applying different visualization options.

To access a particular dashboard, you must first open a workspace. All you need
to do then is click the Dashboards tab for whichever app you’re working with.
Keep in mind that every dashboard represents a customized view of an underlying
dataset. To locate your personal dashboards, go to your My Workspaces tab (see
Figure 1-4) and then choose Dashboards to see what’s available.

If you own a dashboard, you have permission to edit it. Otherwise, you have only
read-only access. You can share a dashboard with others, but they may not be able
to save any changes. Keep in mind, however, that if you want to share a dashboard
with a colleague, you need, at minimum, a Power BI Pro license. (For more on the
ins and outs of licensing, see “Introducing the Power BI license options,” later in
this chapter.)

Navigation pane

This chapter covers a lot of the must-know concepts in Power BI, but it saves
the best — the Navigation pane — for last. Why is the Navigation pane the best?
Simple. All the capabilities discussed to this point in the chapter are labels found
in the Navigation pane. (See Figure 1-5.) You would, for example, use the Naviga-
tion pane to complete actions to locate and move between a workspace and the
various Power BI capabilities you want to use — dashboards, reports, workbooks,
datasets — whatever.

FIGURE	1-4:
Locating your

dashboards.

118 BOOK 2 Using Power BI for Data Analytics & Visualization

Your Navigation pane options are endless. For example, a user such as yourself can

 » Expand and collapse the Navigation pane.

 » Open and manage your favorite content with the help of the Favorites option.

 » View and open the most recently visited section of content.

Power BI Products in a Nutshell

Microsoft confuses customers by using the words version and license interchange-
ably. The following sections help clear up these terms before you read any further.

Licensing refers to the products a customer is procuring, whereas version deals
with where Power BI runs: on a desktop, from a server, or in the cloud. One or
more Power BI products may be required to fully support deployments of Power
BI. In some cases, you may require a hybrid solution of desktop and online ver-
sions of the product.

FIGURE	1-5:
The Navigation

pane.

P
o

w
e

r
 B

I F
o

u
n

d
a

t
io

n
s

CHAPTER 1 Power BI Foundations 119

Introducing the Power BI license options

You can choose from four product license options: Power BI Desktop, Power BI
Free, Power BI Pro, or Power BI Premium. You might be scratching your head
because Microsoft also shows a few other Power BI products, including two ver-
sions of Power BI Premium as well as Power BI Mobile, Power BI Embedded, and
Power BI Report Server on the Microsoft website. If you’re confused, you’re not
alone. The good news is that some of these products are included with all three
product licensing options, whereas others are specific to either the Pro or Pre-
mium version. Let’s review each product license:

 » Power BI Desktop: The free desktop version of Power BI allows a user to
author reports and data analytics inputs without publishing them to the
Internet. If you want to collaborate and share your desktop output, however,
you have to switch to either the Pro or Premium version.

 » Power BI Free: Considered the entry-level free cloud version, this version lets

you author and store reports online versus the desktop. The only drawback is
storage capacity, limited to 1GB, and no collaboration.

 » Power BI Pro: The entry-level paid version of Power BI gets you a larger
storage allocation, limited to 100GB, as well as the ability to collaborate with
Pro licensed users.

 » Power BI Premium: The enterprise paid version comes in two editions: per
user and capacity. Per-user licensing is intended for those with big data
aspirations who also need massive storage scale but have no global distribu-

tion requirements. Capacity is useful for an enterprise that intends to have
many users. Keep in mind one catch with capacity licensing: You also need to
procure Pro licenses because what you’re paying for is the storage and
security — Pro’s killer feature.

 » Power BI Mobile: Intended to be a complementary product to manage
reports, dashboards, and KPIs on the go, Power BI Mobile has limited, if any,
authoring capabilities. Your ability to collaborate on Mobile varies depending
on your license authorization.

 » Power BI Embedded: This version offers a way to integrate real-time reports
on public- or private-facing products using the Power BI API service in
Microsoft Azure,

 » Power BI Report Server: A server-based Power BI product intended to
produce reporting output offline, its users store their reports on a server, not
online. Note that you must still procure some form of Premium license, either

stand-alone or using a Software Assurance subscription (an enterprise-based
software plan).

120 BOOK 2 Using Power BI for Data Analytics & Visualization

Looking at Desktop versus Services options

The beauty of Software as a Service (SaaS) is that anytime a vendor such as Micro-
soft wants to add a new feature to a product, it can do so with little effort — a user
will see the magic of the new feature instantly and will start using it. That isn’t
the case with downloadable software. Once an application is configured for the
desktop, it’s up to the end user to keep track of the updates. Vendors also update
downloadable software less often. Whereas cloud-based solutions may be updated
daily, a software release for a significant product happens monthly with Power BI.

Power BI Desktop is a complete authoring tool for analytics and business intel-
ligence designers. You can download Power BI Desktop for free and install it on
your local computer. The desktop version allows a user to connect to more than
70 data source types and then transform those sources into data models. You can
take the reports you’ve created and add visuals based on the data models using
Desktop. Because Power BI Desktop exists as an application, it’s updated each
month cumulatively with all the features and functionality made available for
consumption on the Services platform.

To download a copy of the Power BI Desktop application, go to https://powerbi.
microsoft.com/en-us/desktop.

Except for the Power BI Desktop and Power BI Report Server, all other versions
of Power BI fall into the cloud delivery model commonly referred to as Services.
Why, you ask? Because each version is delivered as Software as a Service. SaaS
cloud delivery allows Microsoft to auto-update features regularly and deliver the
product over the Internet using a web browser, such as Microsoft Edge, Google
Chrome, or Apple Safari. In case of a technical issue, Microsoft doesn’t have to
wait for the end-of-the-month software release to update the code — it does so
immediately. In terms of features, end users and designers can view, manipulate,
and interact with reports online rather than have to rely on their desktop. Most
designers who use Power BI Desktop publish their reports to the Power BI Service
at some point. Suppose that you gain access to the service. In that case, you can
edit reports, create visual outputs based on existing data models and datasets, and
collaborate with other users requiring access to those reports, dashboards, and
KPIs you’ve made.

Though a small number of features overlap between the Desktop and Services
offerings, most users initially start with Power BI Desktop to create their reports.
In Table 1-1, notice the commonalities among the Power BI features and the obvi-
ous differences. Once users finish building the reports, the Power BI Service is
used to distribute the reports to others. A limited Power BI Service is offered for
free; true collaboration and expanded storage require a minimum of either the Pro
or Premium edition.

https://powerbi.microsoft.com/en-us/desktop/
https://powerbi.microsoft.com/en-us/desktop/

P
o

w
e

r
 B

I F
o

u
n

d
a

t
io

n
s

CHAPTER 1 Power BI Foundations 121

TABLE 1-1 Power BI Desktop, Common, Service Features

Power BI Desktop Common Power BI Services

More than 90 data sources

Data transformation

Data shaping

Data modeling

Measures

Calculated columns

DAX

Python

Themes

Row Level Security creation

Reports

Visualizations

Security

Filters

R visuals (big data outputs)

Bookmarks

Q&A

Limited data sources

Dashboarding

KPI management

Workspaces

Sharing and collaboration

Hosting and storage

Workflow/data flow

Paginated reporting

Gateway management

Row Level Security (RLS) management

CHAPTER 2 The Quick Tour of Power BI 123

The Quick Tour
of Power BI

L
ike a state fair judge evaluating a prize cake layered with many ingredients,
Power BI requires that its users familiarize themselves with the features
baked into the business intelligence (BI) solution. Virtually all users who

interact with Power BI start with the Desktop version. Users can mold the data
the way they want by following the old saying “Practice makes perfect” by way
of ingestion and modeling. Whether you’re manipulating the data to make the
model just right, tackling data transformation via wrangling, or trying to create
beautiful visualizations, the heavy lift is desktop-based. Seldom does the Power
BI participant start using online services unless the dataset was previously cre-
ated for sharing and collaboration. In this chapter, you learn the key features of
Power BI Desktop and Services to know precisely when and why you need to use a
specific product version.

Chapter 2

IN THIS CHAPTER

 » Learning the ropes on Power

BI Desktop

 » Ingesting data

 » Working with models

 » Trying out Power BI Services

124 BOOK 2 Using Power BI for Data Analytics & Visualization

Power BI Desktop: A Top-Down View
Power BI Desktop is the hub of all self-directed end user activities. The user
installs the application on a Windows based desktop to connect to, transform,
and visualize data. The data sources users can connect to aren’t limited to local
repositories — users can aggregate sources locally with third-party data that is
structured or unstructured to create data models. The data model lets the user
build a visual representation of the stored datasets. When you have many visuals,
the user can derive reports or dashboards for analysis. A typical usage of Power
BI Desktop is to

 » Ingest data across one or more data sources.

 » Model data to create reports and dashboards.

 » Refine, cleanse, and visualize the data by way of analysis.

 » Create reports for individual consumption.

Though you can complete these activities online, the Desktop platform is
purpose-built for individual user consumption or development work — it isn’t
intended for groups. Not until the user is ready to share the products created using
Desktop do you need to expose anything to Power BI Services.

The end user gains access to three distinct views in Power BI Desktop: Report,
Data, and Model. Figure 2-1 shows you the left-side navigation to find these views
in Power BI Desktop. Though these features are also available in Services, feature
richness for personal analysis is significantly greater in Power BI Desktop.

Each Power BI Desktop view carries out specific tasks:

 » Report: You can create reports and visualizations after you’ve ingested and
modeled the data. Users spend most of their time here post-data ingestion,
transformation, and modeling.

 » Data: You can find all data ingested, or migrated, from tables, measures, and
data sources associated with reports and visualizations created here. Sources
can be local to the desktop or from a third-party data source accessible over
the web.

 » Model: Like creating a relational data model in Microsoft SQL Server, Azure
SQL Server, or even Microsoft Access, you can fully manage the relationships
among the structured tables you’ve created after you’ve ingested the neces-
sary data using Power BI.

T
h

e
 Q

u
ic

k
 T

o
u

r

of Pow
er BI

CHAPTER 2 The Quick Tour of Power BI 125

Ingesting Data
Without data, you can’t do all that much with Power BI — data truly is the main
ingredient of your end-state recipe. Whether you’re trying to create a chart or a
dashboard or you’re posing questions with Questions and Answers (Q&A), you
must have data that comes from an underlying dataset. Each dataset comes from
a particular data source, either found on your local desktop (if you’re using Power
BI Desktop) or acquired from other online data sources. These sources may be
Microsoft-based applications, a third-party database, or even other application
data feeds. In Power BI Desktop, you either use the Power BI Ribbon (shown in
Figure 2-2) or click the Power BI Data Navigation icon (shown in Figure 2-3) to
access a data source.

FIGURE	2-1:
Power BI Desktop

navigation.

126 BOOK 2 Using Power BI for Data Analytics & Visualization

Files or databases?

In Power BI, you can create or import content yourself. When it comes to the type
of content users can create or import, it boils down to either files or data stored in
a database. A word to the wise: Files can be a bit more complicated than databases.
You need to get the data, transform the data, and then import the data into a

FIGURE	2-2:
Getting data

from the Power
BI Ribbon.

FIGURE	2-3:
Accessing a data
source using the
Data Navigation

icon and
landing page.

T
h

e
 Q

u
ic

k
 T

o
u

r

of Pow
er BI

CHAPTER 2 The Quick Tour of Power BI 127

readable form. Suppose that you want to import an Excel or .cvs file that includes
many data types. First, you load the data into Power BI. Then you format the data
into a Power BI-ready format in conjunction with dataflows, which transforms
the data to support a data model. Finally, you query the data using the Get and
Transform feature in Power Query.

Now, what if the data you’re trying to import isn’t structured or perhaps you don’t
want it housed in Power BI Desktop? Your best choice is to use native Microsoft
options such as OneDrive for Business. Such a choice offers the most flexibility
in mapping data through application interoperability and application integration.
If you prefer keeping your data on a local drive, you can do that as well.

Where you store your data makes a difference when dealing with data refresh.
Consider the frequency of data updates when selecting the data storage location.
When the data is on your local desktop, you’ll generally find better performance,
even with large datasets. With shared data accessible over the Internet, you are
reliant on network connectivity and other users accessing the data source. Data
stored on the desktop is managed by one person — you.

You don’t always have to store the data directly in Power BI Desktop. You can
always use Desktop to query and load data from external sources. If you prefer to
extend your data model with calculated measures or a specific relationship, con-
sider importing the Power BI Desktop file into a Power BI Online site for easier
manipulation.

Databases are a bit different from files because you connect to a live data source —
sources requiring an Internet connection that are made available to either a small
subset of users or to many users for consumption. This is especially true when the
database is available “as a service,” such as Azure SQL Database, Azure Cosmos
DB, Azure Synapse Analytics, or Azure HDInsight. Because the data is live, all that
a data professional must do is appropriately model the data first. Once satisfied
with the intended model, the user can explore the data, manipulate the data, and
create data visualizations.

If you want to explore a plethora of data sources beyond those offered by Microsoft,
including open-source and third-party options, you need to utilize Power BI
Desktop. Online Services offers a narrow range of options, whereas Desktop offers
over 100 options for you to choose from.

The term data gets thrown around a lot — you’re probably already confused about
data, datasets, dataflows, and even databases. When it comes to data ingestion,
“dataset” and “data source” are treated the same, even though they’re actually
just distant relatives that support the same mission.

128 BOOK 2 Using Power BI for Data Analytics & Visualization

You create a dataset in Power BI whenever you use the Get Data feature. It’s what
allows you to connect and import data, including from live data sources. A data-
set stores all the details about the data source and its security credentials. A data
source is where all the data stored in the dataset is derived, which can be a propri-
etary application data source, a relational database, or a stand-alone file storage
alternative such as a hard drive or file share.

Building data models

Some BI tools aren’t data-model-dependent; Power BI isn’t in that camp. Power
BI is a data-model-based reporting tool. First, you need to understand what
makes a data model unique.

These are the key characteristics of data models:

 » Tables hold meaningful data.

 » Relationships exist between the loaded tables with data.

 » Formulas, also known as measures, apply business rules to the raw data to
extract, transform, and load data to create meaningful business insights.

You might wonder why you even need a data model. Going back to my analogy of
the cake recipe from the beginning of this chapter, if you follow the recipe, it’s
easy to make the same cake time and time again. When the cake ingredients vary,
though, inconsistency leads to data irregularity and continual rebuild efforts. And,
like the cake’s failure to win any culinary awards, the data needs handling and
refinement. With BI solutions such as Power BI, users can streamline business
issues with a data model.

To summarize, models are useful for these reasons:

 » Reusability: Users can solve a reporting requirement or business chal-
lenge using a formulaic approach without having to reinvent queries or
rebuild datasets.

 » Management: Business users are in a position to manage the data on their
own after models are built. Seldom is a database expert or technical profes-
sional needed to handle infrastructure requirements.

 » Adaptive models: You can build a logical model with minimum code.
Changes are accommodative to technical and business requirements,
including the use of measures (formulas) and rule sets.

T
h

e
 Q

u
ic

k
 T

o
u

r

of Pow
er BI

CHAPTER 2 The Quick Tour of Power BI 129

Though you can find many tools on the market, including Microsoft Excel and
BI-based reporting tools, not all tools offer to build data models. A BI tool not
incorporating data models requires the analyst or data engineer to generate a
query to fetch the data. Though many of these tools have graphical user interfaces
to support query generation, you need to reinvent the process each time you use it,
with little extensibility available. In Power BI, the relationships you need to keep
track of are mapped out in the Model Viewer with the help of a data model. (See
Figure 2-4, which models a single table named Awards.)

You know the old saying “Reuse, reduce, recycle”? It’s synonymous with the data
model. A data model is a reusable asset that, when tweaked a little depending on
the business need, can dramatically reduce development efforts and cut costs.
Sometimes, you get lucky and can build new assets on top of the existing solu-
tion. At other times, recycling the asset with a few enhancements can score you
the desired results.

Analyzing data
Before sharing any data with a team, you first have to carry out your own, personal
data analysis using Power BI Desktop. You can conduct several forms of analysis.
At the most basic level, when the data enters the system, you must review it to
make sure it looks right and appears as it should. If it doesn’t, you manipulate
the data by cleansing it — a task often carried out by an analyst or engineer. The
process often takes a while because it’s quite laborious — kind of like preparing
a big holiday dinner. Yet when the results are available, they’re easy to read in a
matter of seconds. As much as this strategy sounds like a hassle, the results are
what you want to aim for in business intelligence.

FIGURE	2-4:
Example of a data

Model Viewer.

130 BOOK 2 Using Power BI for Data Analytics & Visualization

Once the data source has been cleaned up and you’ve mapped the data into refined
datasets, it’s time to create the necessary visualizations. Visualizations are pictures
that can serve as examples of your data sources — charts, maps, indicators, and
gauges. You’ll find these visuals in deliverables such as reports and dashboards.
Even the Q&A feature in Power BI produces visuals after you ask focused questions.

You eventually want to get to a point in your use of Power BI where you can rapidly
generate reports and access data using dashboards. A Power BI designer builds out
dashboard visualizations, referred to as tiles, using data in reports and datasets.
A user can build their own dashboards for personal use or share the dashboard
with others. (Note: If you share dashboards, security credentials are tied to each
visual.) Figure 2-5 shows an example of a collection of tiles across a dashboard
based on role and responsibility. Using the data in Snapshot format (a way to cap-
ture data at a specific moment in time) you’ve worked up in Desktop or shared
with others online, any everyday business user should be able to carry out a quick
(and productive) analysis of a whole series of large datasets.

Creating and publishing items

You may want to learn more about Power BI by trying out the free Desktop client
to tackle more complex data projects. And, at some point, you might want to post
that data project on the web in a read-only format to a limited audience. And you
certainly can for free. Suppose, however, that you want others to edit and col-
laborate with you beyond read-only support. In that case, you must pay for such
features.

When you publish items from Power BI Desktop to Power BI Services, the files are
workspace bound. Similarly, if you’ve produced any reports, they appear in Report
view. Datasets migrate from the desktop with the same name, as do any reports

FIGURE	2-5:
A sample

dashboard that

aggregates many
visual sources.

T
h

e
 Q

u
ic

k
 T

o
u

r

of Pow
er BI

CHAPTER 2 The Quick Tour of Power BI 131

to the workspace. The relationship is often a one-to-one relationship, with rare
exceptions. (For more about importing and publishing various types of data, visu-
alizations, and reports, see Book 2, Chapter 3.)

In Power BI Desktop, you can publish your files by choosing Publish ➪ Publish to
Power BI from the main menu or selecting Publish on the Ribbon. (See Figure 2-6
and Figure 2-7.)

When you publish an item from the Power BI Desktop to Services, you’re perform-
ing the same action as using the Get Data feature. That means connecting to a data
source, uploading a file from Power BI Desktop, and sending it to Services.

Saving in Power BI Services doesn’t make changes to the original Power BI
Desktop file. Therefore, don’t expect any updates when you or your colleagues
add, delete, or change any dataset, visualization, or report.

FIGURE	2-6:
Publishing items
using the Power

BI Desktop
File menu.

FIGURE	2-7:
Publishing items
using the Power

BI Desktop
Ribbon.

132 BOOK 2 Using Power BI for Data Analytics & Visualization

Services: Far and Wide
Services aren’t intended for a single user, whereas Desktop supports individ-
ual usage exclusively. The purpose of Services is to allow the individual user to
publish data from the desktop and then share it with user groups. In a perfect
Microsoft world, some users want to manipulate that data over time. The data
grows, requiring either a Pro or Premium license.

The Desktop user can continually update their data product, whether it is a dataset,
data model, or report, after they publish it online using Power BI Services. How-
ever, Power BI Services doesn’t refresh the data at the desktop level. Therefore,
it’s up to you to keep data in sync.

Services offers four significant product features beyond Desktop for multiuser
access that Desktop doesn’t support: the ability to view and edit reports, access
to dashboards based on credentials, collaboration among users, and data refresh
options depending on product type purchased.

Viewing and editing reports
The report lifecycle generally begins when a user sets up a dataset and builds
a functional data model in Power BI Desktop. The user also crafts one or more
reports. Once a report is developed, you can then publish it to Power BI Services.
The workflow is typical, as refinement with complex data makes it easier to build
a report deliverable offline. You can assume that you don’t need an Internet
connection to access the dataset.

Sometimes you might require online services access because you have large
datasets from third-party applications. Everyday use cases include when you have
a subscription to CRM or ERP solutions requiring data connections. Assuming that
you are part of an organization and have access to a service (SaaS) app, you’ll find
someone in your organization whose job is to publish apps. That person generally
distributes the app, granting you access to specific features and data. With Power
BI Services, you connect to these apps to generate reports specific to your busi-
ness needs.

Though you can directly connect to data sources such as databases, files, and
folders in Power BI Desktop, applications are different. You need Power BI Services
to access app data.

T
h

e
 Q

u
ic

k
 T

o
u

r

of Pow
er BI

CHAPTER 2 The Quick Tour of Power BI 133

Sharing your results

With Power BI Services, you publish your data to the Internet for a reason: You
want to share with colleagues and collaborate. Once you create reports or dash-
boards, you can share them with users who are given Power BI Services accounts.
The type of license in force dictates how the user can interact with the data, of
course. Some users may be able to view only the reports and dashboards, and
others may be able to collaborate fully. For you and your colleagues to manage a
report or dashboard, a workspace may be established. You bundle and distribute
the deliverable as an app. Once you share the dataset, it becomes the basis for a
new set of dashboards or reports.

A Power BI report, by default, supplies a holistic view of a dataset. It has visuals
representing findings from one or more datasets. Reports may hold a single vis-
ualization or many.

Seeing why reports are valuable

The basis of a report is a single dataset, whereas a dashboard collects many
reports. With reports, you get a laser-focused view of a topic. Moreover, data is
static in a non-data-model-based application; such is not the case in a tool such
as Power BI. The visuals are dynamic because, as the underlying data updates, so
do the reports in real time. In addition, a user is free to interact with the visuals
as little or as much as they want in a report. They can also use reports to filter and
query in a variety of different ways within Power BI. Reports are highly interac-
tive and even customizable based on your organizational role and responsibility.

Accessing reports from many directions

You should consider two basic scenarios when it comes to reporting access: Either
you created the report yourself and imported it from Power BI Desktop or some-
one has shared a report with you. Any report that you imported is on your My
Workspace. (See Figure 2-8.)

Within the framework of these two scenarios, access might come about as

 » Reports shared directly, for example, by email.

 » Reports shared as part of an app.

 » Reports accessible from the dashboard.

 » Recent or favorite reports, dashboards, apps, and workspaces accessible from
the Services Navigation pane.

134 BOOK 2 Using Power BI for Data Analytics & Visualization

Among these options, the three most common ways users view and edit reports
when collaborating are a) sharing directly, b) sharing as part of an app, and c)
accessing the dashboard.

To open a report that is shared with you, follow these steps:

1. Open Power BI Services, located at https://app.powerbi.com.

2. Select Home in the Navigation pane.

The Home canvas appears.

3. Click the Shared with Me icon.

4. Then, select a report found on the Shared with Me page.

In Figure 2-9, you can see one dashboard and one report. The report is named
FY20 Award Report. While you only see one report on the canvas, there are in
fact several reports available upon clicking the Report Card. In Power BI, a
single report can contain many sub-reports.

The second choice is receiving an app from someone directly or accessing the
app using Microsoft’s AppSource. You access these apps either from the Power
BI home screen or from the Apps and Shared with Me items found on the
Navigation pane.

FIGURE	2-8:
Reports imported
to the workspace.

FIGURE	2-9:
Accessing

reports directly.

https://app.powerbi.com

T
h

e
 Q

u
ic

k
 T

o
u

r

of Pow
er BI

CHAPTER 2 The Quick Tour of Power BI 135

Someone who wants to open an app must first either acquire a Power BI Pro
license or have an app workspace stored in a Power BI Premium capacity. In other
words, if you’re looking to use apps under the free model, it isn’t possible.

To access reports from an app, you need to navigate to the app source. Here’s one
example of how you’d do it:

1. Point your browser to the app source’s location, such as https://

appsource.microsoft.com.

2. Select the Power Platform check box.

3. Using the Search box at the top of the screen, search for Microsoft sample

Sales and Marketing.

4. Click the Get it Now button.

5. On the new page that appears, choose Continue ➪ Install to install the

app in the Apps canvas.

6. Open the app in the Apps canvas or Home canvas.

You should see the assigned app under Apps. (See Figure 2-10.)

FIGURE	2-10:
Access app from

Apps menu in
Power BI.

https://appsource.microsoft.com
https://appsource.microsoft.com

136 BOOK 2 Using Power BI for Data Analytics & Visualization

You can also open reports from a dashboard. Most times, a tile is a snapshot of a
pinned report. When you double-click the tile, a report will open. To open a report
from a dashboard, follow these steps:

1. From the dashboard, select any tile.

In the example (see Figure 2-11), the tile selected is NAICS Awarded By Agency
using the treemap.

2. Drill down into a more granular view of the report data by clicking on
data points within a report.

Working with dashboards

One reason to use Power BI Services is the dashboard feature. It’s all well and
good to be able to work with data on the desktop on a case-by-case basis, but
suppose that you want to aggregate your visualizations on a single page using a
canvas. In that case, the Dashboard feature is the tool to use. A dashboard lets you
tell a story from a series of visualizations — think of a dashboard as a single-page
menu at the restaurant. A dashboard must be well designed because it contains
the critical highlights so that a reader can drill down into related reports and view
details later.

Dashboards are available only with Power BI Services. You can create dashboards
with a Power BI Free license, but this feature isn’t integrated into Power BI
Desktop. Therefore, once you build your reports in Power BI Desktop, you need
to publish outputs to Power BI Services. Keep in mind that, although dashboards
can be created only on a desktop-based computer, you can view and share dash-
boards on all device form-factors, including Power BI Mobile. When you want

FIGURE	2-11:
Drill down from

the Power BI
dashboard for

a report.

T
h

e
 Q

u
ic

k
 T

o
u

r

of Pow
er BI

CHAPTER 2 The Quick Tour of Power BI 137

to create a dashboard, you need to have at least one or more reports pinned to
a blank canvas. Each tile (see Figure 2-12) represents a single report based on a
single dataset.

Collaborating inside Power BI Services

The transition from Power BI Desktop to Power BI Services is partially due to
collaboration — you’re unable to collaborate with others using Power BI Desktop.
You may want to share with a small subset of users, or perhaps the group of users
you’re looking to share information with is distributed. Depending on the Power
BI Services option you’re working with, you have these options:

 » Using workspace: The most common way to share reports and dashboards
is by using the workspace. Suppose that another user is given access to a
report or dashboard. In that case, the user either views or edits the workspace
area in Power BI Services.

 » Using Microsoft Teams: Using the Chat feature in Teams allows for collabo-
rating on reports and dashboards with Power BI.

 » Distributing your reports and dashboards via an app: If your results are
focused, the user can build a single app and create a working executable for
sharing among other users.

FIGURE	2-12:
Architecture of a

dashboard.

138 BOOK 2 Using Power BI for Data Analytics & Visualization

 » Embedding reports and dashboards on websites: Sometimes, the reports
and dashboards you create might be helpful for targeted public consumption
on an external or internal facing website. You can create an iteration of a
Power BI report or dashboard that’s viewable. Any user who visits that website
may view the data if they’re assigned permission to do so.

 » Printing reports: When in doubt, you can always print your reports and
distribute paper copies. Of course, each time the data is refreshed, you need
to print a new copy of the report. For dashboards, each output is printed
separately.

 » Creating a template app: If your deliverables are repetitious, distribute them
so that Power BI users can access them using the Microsoft AppSource. One
must assume that these items are publicly consumable for other businesses
to use.

No matter which collaboration options you select, a Power BI Pro license or higher
is required. The license is nonnegotiable because content needs to be implemented
in a Premium capacity. Though license requirements can vary for viewing items,
the ability to edit and manage the outputs mandates, at minimum, a Power BI
Professional license.

Refreshing data

Every time you access a report or a dashboard on Power BI Services, you must
query the data source. If there are new data points, the results are updated in the
dataset as part of the visualization. Depending on the refresh requirements, one or
more processes might be needed. The refresh process consists of several phases,
depending on the storage operation required for the dataset. You have two con-
cepts to consider: storage mode as well as data refresh type.

Storage modes and dataset types

Power BI offers several modes for allowing access to data in a dataset:

 » Import mode: Datasets are imported from the original data source into the
dataset. Power BI can query the reports and dashboards submitted to the
dataset and return results from the imported tables and columns. You may
find this to be a snapshot copy — a dataset representing a moment in time,
in other words. Each time Power BI copies the data, you can query the data to
fetch the changes.

 » DirectQuery/LiveConnect: Two connection types that don’t rely on importing
data directly are DirectQuery and LiveConnect. Data results come in from the
data source whenever the report or dashboard queries the dataset. Power BI

T
h

e
 Q

u
ic

k
 T

o
u

r

of Pow
er BI

CHAPTER 2 The Quick Tour of Power BI 139

will then transform the raw data into usable datasets. Only DirectQuery mode,
though, requires that Power BI not use queries using the Power Query Editor
Extract Transform Load (ETL) engine. The reason for this is that the queries
are processed directly using Analysis Services without having to consume
resources. Data refreshes aren’t required because no imports occur in the
Power BI Desktop environment. Features that are still updated include tiles
and reports, whereby the data updates about every hour. The schedule can
be changed to accommodate business needs.

 » Push mode: In Push mode, there’s no formal definition for a data source, so
there’s no requirement for a data refresh. Instead, you push the data into the
dataset through an external service, which is quite common for real-time
analytics processes in Power BI.

Licensed users are limited to a limited number of refreshes per day for Power BI
Services Free and Power BI Services Pro. If you buy Power BI Services Premium
Capacity or Power BI Services Premium per User, your refresh allotment increases
proportionally based on the capacity you purchased.

CHAPTER 3 Prepping Data for Visualization 141

Prepping Data
for Visualization

E
nterprise software vendors such as Microsoft have built data source con-

nectors to help organizations import data into applications such as Power

BI. You quickly realize that connecting to data sources isn’t necessarily the
tricky part — it’s often the data transformation that takes a bit of time. After you
figure out which method is best to prep and load the data into Power BI, you’re
well on your way to analyzing and visualizing the data in your universe.

In this chapter, you discover the methods you can apply to prep and load data
using Power BI Desktop and Services. Then you see how to detect anomalies and
inconsistencies, check data structures and column properties, and put data sta-

tistics to use.

Chapter 3

IN THIS CHAPTER

 » Defining the types of data sources
Power BI supports

 » Exploring how to connect and
configure data sources in Power BI

 » Working with shared datasets

 » Importing and connecting to datasets

 » Finding and working with common
data sources

 » Identifying cleansing needs based
on anomalies, properties, and data
quality issues

142 BOOK 2 Using Power BI for Data Analytics & Visualization

Getting Data from the Source
Without a data source, it’s hard to use Microsoft Power BI. You can connect to your
own data source or use one of the many connectors Microsoft makes available
to users as part of Power BI Desktop or Services. Before you begin loading data,
you must first grasp what the business requirements are for your data source.
For example, is the data source local to your desktop with occasional updates? Is
your data perhaps coming from a third-party data source that supplies real-time
feeds? The requirements for both scenarios are vastly different.

Microsoft continually adds data connectors to its Desktop and Services platform.
In fact, don’t be surprised to find at least one or two new connectors released
monthly as part of the regular Power BI update. As a result, Power BI offers well
over 100 data connectors. The most popular options include files, databases, and
web services.

You can find a list of all available data sources at

https://docs.microsoft.com/en-us/power-bi/connect-data/power-

bi-data-sources

To correctly map your data in Power BI, you must determine the exact nature of
the data. For example, would you use the Excel Connector if the document type
were meant for an Azure SQL database? That wouldn’t produce the results you’re
looking for as a Power BI user.

For the following steps, you can use any XLS- or CVS-based document on your
hard drive that has a sufficient number of rows and columns. A reasonable num-

ber to conduct an evaluation is 500 – 1,000 records. Place the file on your desktop,
and follow these steps using the filename of your file.

To connect to the C:\Desktop\<filename.xlsx> file using the Excel Connector
with Power BI Desktop, follow these steps:

1. On the Excel Home tab, click either the Excel button or the Get Data
button, and then choose Excel from the drop-down menu that appears,
as shown in Figure 3-1.

2. In the Open window, navigate to the C:\Desktop\<filename.xlsx> file,
click to select it, and then click Open.

3. With the file open, head to the Navigator and select both check boxes on
the left: Prime Awards and Sub Awards.

The window should now look like Figure 3-2.

https://docs.microsoft.com/en-us/power-bi/connect-data/power-bi-data-sources
https://docs.microsoft.com/en-us/power-bi/connect-data/power-bi-data-sources

P
re

p
p

in
g

 D
a

ta
 fo

r
V

isu
a

liza
tio

n

CHAPTER 3 Prepping Data for Visualization 143

4. Click the Transform Data button.

Notice that these steps tell you to press the Load button. If you’d gone with
Load, you’d have to make modifications to your dataset manually. With
Transform, Power BI does the difficult work on your behalf. (The upcoming
section “Cleansing, Transforming, and Loading Data” covers more about data
transformation, but for now the focus is on knowing how to prepare and
load data.)

After you click Transform Data, a new interface appears called the Power
Query Editor. It’s what loads the data from the two Excel spreadsheet tabs you
just clicked on from the previous Power BI screens. You’ll find the experience
to be like the one shown in Figure 3-3.

FIGURE	3-1:
Finding the

Excel Data File
Connector

in Power BI
Desktop.

FIGURE	3-2:
Selecting data in

the Navigator.

144 BOOK 2 Using Power BI for Data Analytics & Visualization

When you load data into Power BI Desktop, the data is stored as a snapshot in
time. To ensure that you view the latest data, you click the Refresh Preview button
on the home screen every so often.

Loading folders with data inside them can present a few unique challenges. Though
you can point to a folder and ingest just about any type of file, it’s another matter
to replicate a folder structure using the Power Query Editor. When you load data
in Power BI stored inside a folder, you should ensure that the same file type and
structure exist. An example is a series of Microsoft Excel or Google Sheet files that
would be complimentary. To make sure that happens, be sure to follow these steps:

1. Go to the Home tab on the Ribbon and click the Get Data button.

2. Choose All ➪ Folder from the menu that appears.

Want to try another way? Go to the Home tab on the Ribbon, click New Source,
choose More from the menu that appears, and then choose Folder.

3. Whichever way you select Folder, your next step is to click the Connect
button (see Figure 3-4).

Pressing the Connect button enables access to a single data source.

4. Locate the folder path specific to where you’ve stored files on your
desktop, then browse to the location where you placed the file, similar to
C:\Desktop\<filename.xlsx>.

The files from the folder you just selected load into a new screen, as shown in
Figure 3-5.

5. Select one or more tables that have loaded.

6. Once the tables have been selected, click the Combine and Transform
Data button.

The datasets from C:\Desktop\<filename.xlsx> are now loaded into Power

Query Editor.

FIGURE	3-3:
Your data, loaded

into the Power

Query Editor.

P
re

p
p

in
g

 D
a

ta
 fo

r
V

isu
a

liza
tio

n

CHAPTER 3 Prepping Data for Visualization 145

FIGURE	3-4:
Selecting Folder

from Get Data.

FIGURE	3-5:
Files from a

folder load into
Power BI.

146 BOOK 2 Using Power BI for Data Analytics & Visualization

The difference between the Combine and Transform Data option and the
Transform Data option comes down to the file type and structure. Assuming
that each file is similar and can create consistent columns, you can likely use
the Combine and Transform Data option to bring everything into a single file.
Otherwise, you’re better served using the Transform Data option since there is
usually a single file structure.

By now, you can tell you don’t need to do much to load a file, folder, database,
or web source into Power BI. Most users, if they can point to the file path, know
the database connection and security credentials, or know the URL and associ-
ated parameters, can configure their data sources in no time. Power BI’s Power
Query feature automatically detects the nuances in the connection and applies the
proper transformations.

Managing Data Source Settings
Commonly, your dataset requirements change over time. That means if the data
source changes, so will some of the settings that were initially loaded when you
configured Power BI. Suppose that you move the folder that contains the files
611420.xlsx and 54151S.xlsx from C:\Desktop to C:\Documents. Such a change
in folder location would require you to modify the data source settings. You can go
about making these changes in one of two ways:

1. Select each query under Queries on the left.

2. Locate Query Settings on the right side of the interface.

3. Under Applied Steps, click Source, as shown in Figure 3-6.

Doing so brings up a window pointing to the file path and file source.

4. Make the updates necessary to match the new requirements.

Change the file type or path of the original file for each query with this option.

FIGURE	3-6:
Using the Applied

Steps area to

update the data

source settings.

P
re

p
p

in
g

 D
a

ta
 fo

r
V

isu
a

liza
tio

n

CHAPTER 3 Prepping Data for Visualization 147

Though the steps outlined here may seem easy at first blush, they might become
laborious because you need to make a change to each file listed for each query.
That process can be pretty time-consuming, and if you have a lot of queries,
you’re bound to make errors, given the tedious nature of the work. That’s why you
want to consider an alternative option — one where you can change the source
location in one fell swoop rather than tackle each query independently with this
option. Follow these steps for the other method:

1. On the Power Query Editor’s Home tab, click the Data Source Settings
button. (It’s the one sporting a cog — see Figure 3-7.)

A new window opens to make the source location change.

2. Select all files requiring a change in location by choosing Change Source.

3. Make the changes you want to the source location.

4. (Optional) Change and clear associated security credentials by selecting
Edit Permissions or Clear Permissions in this interface.

Working with Shared versus
Local Datasets

So far, the focus in this chapter has been on local datasets that you handle creating
and managing using Power BI Desktop. After the dataset is published and shared
with others — by either your workspace or a shared one — the dataset is referred
to as a shared dataset. Unlike with Power BI Desktop, where you have to continu-

ally update the dataset on the local hard drive, a shared dataset is stored on the
cloud, which means that updates are more consistent whether they’re stored in
your workspace or with others.

You can find many other benefits to using a shared dataset over a local dataset,
including

 » Consistency across reports and dashboards

FIGURE	3-7:
The Data Source
Settings button.

148 BOOK 2 Using Power BI for Data Analytics & Visualization

 » Reduction in dataset copying due to centralization of a data source

 » The ability to create new data sources from existing sources with little effort

Though you may have your own needs with a dataset, after a dataset is shared
with a team, the desired outputs might be different. In that case, you may want
to create a single dataset and allow the other users to develop reports and dash-

boards from the single dataset.

Connecting to a published dataset in Power BI Services requires a user to have
Build permission. You can also be a contributing member of a shared workspace
where a dataset exists. Make sure the owner of the dataset provisions your access
according to your business need.

You can connect to a shared dataset using either Power BI Desktop or Power BI
Services. To accomplish this action, follow these steps:

1. Using Power BI Desktop, either click the Power BI Datasets button on the
Home tab or click the tab’s Get Data button and then choose Power BI
Datasets from the menu that appears. (See Figure 3-8.).

The data is transferred from Power BI Desktop to Power BI Services for you to
consume.

2. With Power BI Services, you would first go to the workspace you’ve
published your data to and then choose New ➪ Report, as shown in
Figure 3-9.

FIGURE	3-8:
Power BI datasets

navigation.

P
re

p
p

in
g

 D
a

ta
 fo

r
V

isu
a

liza
tio

n

CHAPTER 3 Prepping Data for Visualization 149

Whether you’re using Power BI Desktop or Power BI Services, your ability to con-

nect to a dataset without worrying about data refresh issues or version control
becomes a bit easier. You also have the choice to select Save a Copy in the Power
BI Service next to any report in My Workspace or a shared workspace without re-
creating a dataset. This action is similar to connecting to a dataset using Power BI
Desktop, because you create a report without the base data model.

Don’t be alarmed if you decide to use a shared dataset and then some buttons
become inactive in Power BI Desktop. It happens because you’re no longer able
to make changes using Power Query Editor. As a result, the data view is also no
longer visible. However, you can tell whether your dataset is shared or local by
looking in the lower right corner of the Power BI Desktop interface, where you can
find the name of the dataset and the user accessing the data.

If you ever need to change from a shared dataset to a local dataset, follow
these steps:

1. Click the Transform Data label.

2. Select the Data Source Settings option.

FIGURE	3-9:
Connecting to a

shared dataset

in Power BI
Services.

150 BOOK 2 Using Power BI for Data Analytics & Visualization

3. Modify the data source settings to the dataset you want to connect to
instead of the shared dataset.

4. Click the Change button once complete.

Storage and Connection Modes
As you may have already guessed, you can consume data in many ways using
Power BI Desktop and Power BI Services. The most common method is to import
data into a data model. By importing the data in Power BI, you’re copying the
dataset locally until you commit to a data refresh. Though data files and folders
can only be imported into Power BI, databases allow you to use a connection that
supports more flexibility. Two alternatives exist with database connectivity:

 » Import the data locally. This supports data model caching as well as the
ability to reduce the number of connections and lookups. By ingesting the
model, a user can use all Desktop features offered with Power BI.

 » Create a connection to the data source with DirectQuery. With this
feature, the data isn’t cached. Instead, the data source must be queried
each time a data call is required. Most, but not all, data sources support
DirectQuery.

You can use one of two other methods. One is called Live Connection: With this
method, the goal is to use the analysis services integrated with Power BI Desktop
or Power BI Services. Live Connection also supports calculation-based activities
that occur within a data model.

The second alternative uses composite models. Now, suppose that a user must
combine both importing data and DirectQuery, or there is a requirement to con-

nect to multiple DirectQuery connections. In that case, you apply a composite
model. You face some risks, though, when dealing with model security. Suppose,
for example, you open a Power BI Desktop file sent from an untrusted source.
If the file contains a composite model, the information that someone retrieves
from a single source using credentials from a user opening the file can be sent
to another data source as part of the newly formed query. Therefore, it’s vital to
ensure that your data sources are correctly assigned to only those who need access
to the sources.

The four storage modes — local storage, DirectQuery, Live Connection, and com-

posite models — have data housed in a single location. It’s either local to the user
or bound to some server on a network in a data center or the cloud.

P
re

p
p

in
g

 D
a

ta
 fo

r
V

isu
a

liza
tio

n

CHAPTER 3 Prepping Data for Visualization 151

Dual mode isn’t a hybrid mode — instead, it allows for a table to be cached and
retrieved in DirectQuery mode when necessary, applying multiple storage modali-
ties. If another storage mode is used for another table, DirectQuery doesn’t need
usage. You’ll find that Dual mode is beneficial when tables are similar between
those imported and exclusively available using DirectQuery mode.

Data Sources Oh My!
Data can be a bit complicated at times. Admittedly, uploading a single file contain-

ing a few spreadsheets or perhaps a feed with a single stream of data to load and

transform is child’s play. What happens, though, when you have a dataset housed
in a corporate-wide enterprise application that continually has transactions writ-
ten to it? That scenario is quite different. And corporations should be concerned
(for good reason) with the integration and output of business intelligence (BI)

results. With Power BI, organizations don’t need to worry about complex technical
manipulations when it comes to their data systems or their communications with
third-party data feeds. As you can see in this chapter, the integration is fluid —
Power BI has the power to use a standardized connection process, no matter the
connectivity requirement.

Getting data from Microsoft-based
file systems
This section covers integration with Microsoft-based applications such as
OneDrive for Business and SharePoint 365, both of which are Microsoft 365-based
applications.

When using OneDrive, you need to be logged in to Microsoft 365. As long as you’re
logged in, you can access files and folders as though you’re accessing your local
hard drive. The only difference is that your hard drive is Microsoft OneDrive.
In Figure 3-10, you can see that the path to a OneDrive for Business folder is no
different from the path for a standard file or folder on your hard drive.

On the other hand, SharePoint 365 offers a variety of options for document man-

agement and collaboration. The first option is to search a site collection, site, or
subsite (referred to in Power BI as a SharePoint Folder). In this case, you must
enter the complete SharePoint site URL. For example, if your company has an
intranet, the site might be <asite>.sharepoint.com. An example of what you’d see
after you enter a complete URL and log in with your Active Directory credentials
appears in Figure 3-11.

http://sharepoint.com

152 BOOK 2 Using Power BI for Data Analytics & Visualization

You can also collect, load, and transform one or more SharePoint lists in Power
BI. (In SharePoint, a list looks like a simple container — kind of like an Excel
spreadsheet — but acts more like a database.) Using a list lets users collect
information — especially metadata — across a SharePoint site where documents
might be collected. With a list, data is gathered in rows, with each row represented
as a row item similar to a database or spreadsheet item. To load a SharePoint list,
you must know the URL path of the SharePoint site collection, site, or subsite.
Once a user is authenticated, all available lists are loaded for that person.

FIGURE	3-10:
OneDrive
file path.

FIGURE	3-11:
SharePoint

Folder path.

P
re

p
p

in
g

 D
a

ta
 fo

r
V

isu
a

liza
tio

n

CHAPTER 3 Prepping Data for Visualization 153

When you’re first starting out with Power BI, you might be tempted to keep all
your files on the desktop as a way to manage your data. After a while, though,
dealing with numerous versions of the same dataset becomes unmanageable.

That’s why you should use a cloud option such as OneDrive or a SharePoint site to
manage your files and datasets, reports, dashboards, and connection files. It helps
keep all of it streamlined.

Working with relational data sources
Many organizations use relational databases to record transactional activity.
Examples of systems that typically run relational databases are enterprise
resource planning (ERP), customer relationship management (CRM), and supply
chain management (SCM)-based systems. Another type of system might be an
e-commerce platform. Each of these systems has one thing in common: All can
benefit from having a business intelligence tool such as Power BI evaluate data by
connecting with the relational database instead of extracting individual data files.

Businesses rely on solutions such as Power BI to help them monitor the state of
their operations by identifying trends and helping them forecast metrics, indica-

tors, and targets. You can start using Power BI Desktop to connect to virtually any
relational database available in the cloud or on-premise on the market.

In the example shown in Figure 3-12, Power BI is connected to an Azure SQL
Server, Microsoft’s web-based enterprise database. Depending on your relational
database solution, you have a few choices. One would be to choose the Get Data ➪

More . . . command from the Ribbon’s Home tab, then look for Database. Here you
will find Microsoft-specific databases. Otherwise, if you are looking for another
type of data source, choose Get Data ➪ More . . . and look for Other. You’ll find
40+ alternate database options under this section.

In this case, because the selected solution is a Microsoft Azure-based product, you
can either search for the product in the Search box or click the Azure option after
selecting More.

After you select the database source type under Get Data, you must enter the cre-

dentials for the relational database. In this case, you enter the following info:

 » Server name

 » Database name

 » Mode type — Import or DirectQuery

154 BOOK 2 Using Power BI for Data Analytics & Visualization

Figure 3-13 gives an example with the fields correctly filled out. (You don’t need
to add unique command lines or SQL query statements unless you’re looking for
a more granular data view.)

FIGURE	3-12:
Azure SQL

database

location.

FIGURE	3-13:
Entry of

credentials

for relational
database.

P
re

p
p

in
g

 D
a

ta
 fo

r
V

isu
a

liza
tio

n

CHAPTER 3 Prepping Data for Visualization 155

In most cases, you should select Import. The circumstances where you select
DirectQuery are for large datasets. The data updates are intended for near real-
time updates.

After you’ve entered your credentials, you’re prompted to log in with your user-

name and password using your Windows, database, or Microsoft account authen-

tication, as shown in Figure 3-14.

Relational databases
Connecting to the data source is often tricky because you need to make sure your
database source and naming conventions are just right. However, once you get
past these two facts, you often have smooth sailing — well, at least until you need
to pick the data to import. Then you might become overwhelmed if the database
has a lot of tables.

After you’ve connected the database to Power BI Desktop, the Navigator displays
the data available from the data source, as shown in Figure 3-15. In this case, all
data from the Azure SQL database is presented. You can select a table or one of the
entities to preview the content.

FIGURE	3-14:
Selecting the

authentication

method to
connect.

156 BOOK 2 Using Power BI for Data Analytics & Visualization

The data loaded into the model must be the correct data before moving on to the

following dataset. To import data from the relational data source that you want to
ingest into Power BI Desktop, and then either load or transform and load the data,
follow these steps:

1. Select one or more tables in the Navigator.

The data selected will be imported into Power Query Editor.

2. Click the Load button if you’re looking to automate data loading into a
Power BI model based on its current state with no changes.

3. Click the Transform Data button if you want Power BI to execute the
Power Query engine.

The engine performs actions such as cleaning up excessive columns, grouping
data, removing errors, and promoting data quality.

Nonrelational databases
Some organizations use nonrelational databases such as Microsoft Cosmos DB
or Apache Hadoop to handle their myriad of significant data challenges. What’s
the difference, you ask? These databases don’t use tables to store their data. Data
might be stored in a variety of ways in the case of nonrelational (NoSQL) data.
Options run the gamut from document, key-value, wide-column, and graph. All
database options provide flexible schemas and scale effortlessly with large data
volumes.

FIGURE	3-15:
Selecting the

tables from the
Navigator for

import.

P
re

p
p

in
g

 D
a

ta
 fo

r
V

isu
a

liza
tio

n

CHAPTER 3 Prepping Data for Visualization 157

Though the need still exists to authenticate to the database, the querying approach
is a bit different. For example, with Microsoft Cosmos DB, the NoSQL database
created by Microsoft complementary to Power BI, a user must identify the end-

point URL and the Primary key and Read-Only key so that a connection can be
created to the Cosmos DB instance in the Azure portal. To connect to the Cosmos
DB, follow these steps:

1. Choose Get Data ➪ More . . . from the Home tab in Power BI.

2. In the submenu that appears, locate the Azure submenu.

3. Click to select the Azure Cosmos DB option, as shown in Figure 3-16,
allowing you to create a nonrelational database connection.

4. Enter the URL of the Cosmos DB in the URL field and then click OK.
(See Figure 3-17.)

When you’re using a NoSQL database, you need to know the keys in order to
authenticate. For Cosmos DB, you can find those keys in the Azure portal under
the Cosmos DB Instance Settings, Key Link. Be sure to copy down the primary and
secondary read-write keys and the primary and secondary read-only key.

FIGURE	3-16:
Selecting the

Cosmos DB
data source.

158 BOOK 2 Using Power BI for Data Analytics & Visualization

Using the SQL query
You probably shouldn’t be surprised, but Power BI has an intelligent SQL query
editor. Suppose that you know precisely which tables you require from the Azure
SQL database. In this case, all you need to do is call out the tables in a SQL query
with just a few keystrokes rather than request all tables from the Azure SQL Server.
For example, Figure 3-18 presents a representative SELECT query for a table found
in the dataforpowerbi database.

FIGURE	3-17:
Connecting to

the Cosmos DB, a
Microsoft NoSQL

database.

FIGURE	3-18:
Representative

query data from
Azure SQL Server.

P
re

p
p

in
g

 D
a

ta
 fo

r
V

isu
a

liza
tio

n

CHAPTER 3 Prepping Data for Visualization 159

JSON files
JSON files don’t look at all like structured data files. Why is that the case? JSON —
short for JavaScript Object Notation — is a lightweight data-interchange format.
Neither structured nor unstructured, the JSON file type is referred to as semi-

structured because the file type is written by default as a key-value pair. With
JSON-based records, the data must be extracted and normalized before becoming
a report in Power BI. That’s why you must transform the data using Power BI
Desktop’s Power Query Editor.

If your goal is to extract data from a JSON file, you transform the list to a table by
clicking the Transform tab and selecting To Table in the Convert group. Another
option is to drill down into a specific record by clicking on a record link. If you
want to preview the record, click on the cell without clicking on the link. Doing so
opens a data preview pane at the bottom of Power Query Editor.

Need to get a bit more in the weeds? You can click on the cog wheel next to the
source step in Query Settings, which opens a window to specify advanced settings.
There you can specify options such as file encoding in the File Origin drop-down
list. When you are ready for show time and your JSON file is transformed, click
Close and Apply to load data into the Power BI data model. In the example found
in Figure 3-19, employee records have been transformed from the JSON file.

After the Power Query Editor has transformed the file, you might still need to
edit specific fields. In this example, the Country field has all null entries, so it’s a
prime candidate for field deletion. Such a choice is easily carried out with the help
of the drop-down menu, as shown in Figure 3-20, where you can drill down and
delete specific records.

FIGURE	3-19:
JSON file,

transformed
by the Power

Query Editor.

160 BOOK 2 Using Power BI for Data Analytics & Visualization

Online sources
Enterprise applications and third-party data feeds are widely available in Power
BI. In fact, Microsoft has over 100 connectors to applications developed and man-

aged by other vendors, including those by Adobe, Denodo, Oracle, and Salesforce,
to name a few. Of course, Microsoft also supports its own enterprise applica-

tion solutions, including those in the Dynamics 365, SharePoint 365, and Power
Platform families. Online sources can be found across several categories using

the Get Data feature in Power BI Desktop, but your best bets are under the Online
Services heading or the Other heading.

The example shown in Figure 3-21 is connected to Dynamics 365 Business Central.

To connect to an online service, follow these steps:

1. Go to Get Data from the Home tab of Power BI.

2. At the bottom of the Go Data menu, choose the More . . . option.

Selecting More provides users with more data source options.

3. Choose Online Services from the More . . . submenu.

Online Services include enterprise applications, where large datasets are
available (assuming user credentials are accessible).

4. On the right side, click Dynamics 365 Business Central (see Figure 3-22).

Doing so allows for a connection to Microsoft’s Small Business ERP Solution.

5. At the bottom of the screen, click Connect.

The result is that a connection has been established to Microsoft Dynamics 365
Business Central.

FIGURE	3-20:
Modifying a

JSON file using
the Power

Query Editor.

P
re

p
p

in
g

 D
a

ta
 fo

r
V

isu
a

liza
tio

n

CHAPTER 3 Prepping Data for Visualization 161

You’re then asked to enter your online organizational credentials. Generally, this
part is already prepopulated because it’s your Single Sign-On login associated
with Azure Active Directory. (Refer to Figure 3-22.)

Once you authenticate a session, all data available from the database for the
specific source is loaded in the Navigator pane within the Power Query Editor,
as shown in Figure 3-23. Power Query transforms the data before loading it in
Navigator.

FIGURE	3-21:
Connecting to

an online service
in Power BI

Desktop.

FIGURE	3-22:
Interface to

authenticate with

Online Services.

162 BOOK 2 Using Power BI for Data Analytics & Visualization

Cleansing, Transforming, and Loading
Your Data

For any data cleansing and transformation to take place, your organization needs
analysts and engineers — and detectives. The idea here is that you must first ana-

lyze the data before entering the system or after it exists in its intended data store.
Simply glossing over the data alone doesn’t cut it. You need to follow a rigorous
process as you look for those needles in your data haystack. Without a rigorous
process, you can’t ensure data consistency across all columns, values, and keys.
By following a meticulous analysis process, you can engineer optimized queries
that help load the data into the system without issues. This chapter helps you
develop that process by evaluating the whole lifecycle and the supporting activi-
ties the Power BI professional must undertake in order to make their data shine
for visualization consumption.

Detecting anomalies and inconsistencies
Anomalous data comes in many flavors. Using Power Query, you can find unusual
data trends that you might be on the lookout for — even those slight ambigui-
ties you’d have trouble catching on your own. For example, you can see how an

FIGURE	3-23:
Data displayed

in the Navigator
pane within

the Power
Query Editor.

P
re

p
p

in
g

 D
a

ta
 fo

r
V

isu
a

liza
tio

n

CHAPTER 3 Prepping Data for Visualization 163

out-of-context dollar amount or error can be traced back to missing values that
skew the data results. These are all real-life scenarios that you can address using
Power BI.

The easiest and most obvious way to spot errors is to look at a table in the Power
Query Editor. You can evaluate the quality of each column by using the Data Pre-

view feature. You can, among each column, review data under a header value in
order to validate data, catch errors, and spot empty values. All you need to do is
choose View ➪ Data Preview ➪ Column Quality from the Power Query main menu.
In Figure 3-24, you notice right off the bat that the Agency column has data miss-

ing, as shown by the <1% number reported as empty. Such behavior is consistent
with data anomalies.

Notice that all columns except for the Agency column have 100 percent validity.
In this case, that <1% means you have either a null value or mistaken data. The
purpose of investigating data quality issues using Power Query is best exemplified
with this sampling because all other columns show an error percentage of 0. You
learn how to correct such ambiguities later in this chapter.

Checking data structures
and column properties
Evaluating data goes beyond column quality. Another measurement you can use
to better identify data structure issues involves column value distribution, which is
a measure of all distinct values in the selected column as well as the percentage of

rows in the table that each value represents. You enable this measurement in the
Power Query Editor by choosing View ➪ Data Preview ➪ Column Distribution. In
Figure 3-25, notice that the Total Value columns have a high number of distinct
and unique values.

FIGURE	3-24:
Addressing

column quality
issues.

164 BOOK 2 Using Power BI for Data Analytics & Visualization

Here’s what distinct and unique are telling you:

 » Distinct number: The number of different values in a column when duplicates
are omitted

 » Unique number: The number of values that occur precisely one time

By using the Column Distribution command, you can determine the number of
distinct and unique values in each column. As noted, the distribution of columns
of values is visible under the column header. Regardless of the analysis goal, col-
umn profiling is available for all data types.

Each column shows the shape of data — the distribution of values, say, or the
frequency with which a specific data type appears. The value 2021, for example, is
seen most, whereas the values for 2011 through 2020 are distributed in a propor-

tional amount per the chart, as shown in Figure 3-25, under the Years Awarded
heading.

If you want to evaluate the data outside of Power BI and the Power Query Editor,
right-click the columns of choice and then select Copy Value Distribution from
the menu that appears. You’re supplied a list of distinct values and the number of
times the data appears in the columns.

Data statistics to the rescue
Statistics can sometimes be your best friend, which is why you want to consider
using them for profiling and understanding the nature of your data. To enable
data preview for statistics, go to the Power Query Editor, choose View ➪ Data Pre-

view from its main menu, and then select the Column Quality and Column Profile
checkboxes, as shown in Figure 3-26.

FIGURE	3-26:
Data preview

options in

the Power
Query Editor.

FIGURE	3-25:
A look at column

distribution.

P
re

p
p

in
g

 D
a

ta
 fo

r
V

isu
a

liza
tio

n

CHAPTER 3 Prepping Data for Visualization 165

After enabling the features, select a column header requiring further statistical
analysis. In Figure 3-27, you find the profile of the Total Value and Year Awarded
columns from the Excel spreadsheet labeled Fiscal Year Awards. Notice the
general-statistics panel on the bottom and then the individual column statistics.

Your options aren’t limited to column profile and column quality, either. You can
also review data for whitespace, monospacing, and column distribution.

These are the key column statistics you can evaluate:

 » Total count of value

 » Number of errors

 » Empty columns

 » Distinct columns

 » Unique values

 » Minimum, maximum, and average values

 » Number of zero, odd, or even values

If the column has text, the statistics vary in comparison to numerical columns.
With text columns, the number of empty strings and values is highlighted. In con-

trast, in numeric columns, you’re limited to empty values alone.

FIGURE	3-27:
Data preview

of the column
profile and

column quality.

CHAPTER 4 Tweaking Data for Primetime 167

Tweaking Data
for Primetime

F
or any data cleansing and transformation to take place, your organization

needs analysts and engineers — and detectives. The idea here is that you
must first analyze the data before entering the system or after it exists in its

intended data store. Simply glossing over the data alone doesn’t cut it. You need
to follow a rigorous process as you look for those needles in your data haystack.
Without a rigorous process, you can’t ensure data consistency across all columns,
values, and keys. By following a meticulous analysis process, you can engineer
optimized queries that help load the data into the system without issues. This
chapter helps you develop that process by evaluating the whole lifecycle and the
supporting activities the Power BI professional must undertake in order to make
their data shine for visualization consumption.

Stepping through the Data Lifecycle

Data is seldom perfect. Unless you’re connecting to a prepared dataset where you
have limited control over what has been created for you, there’s a good chance
you need to do some data cleansing and data transformation before you can load
anything for analysis.

Chapter 4

IN THIS CHAPTER

 » Understanding the data lifecycle

 » Addressing inconsistencies with data

types, values, keys, structures, and

queries

 » Streamlining data based on queries

and naming conventions before data

loading

168 BOOK 2 Using Power BI for Data Analytics & Visualization

Power BI offers an incredibly powerful tool to help guide you through the entire
data lifecycle, emphasizing data cleansing and transformation. That tool is Power
Query. Within Power Query, a user can extract, transform, and load (ETL) their
data using the Get command as well as the Transform Data command. In this
book, you use Power Query to connect, transform, ingest, and evaluate available
data when connecting to a data source. Power Query is the infrastructure behind
the Power Query Editor found in Power BI.

Power Query isn’t new to Power BI. In fact, the product is integral to Excel as well.
Other products, in addition to Power BI and Excel, include Power Query as a means
of modernizing query development using a low-code approach.

Resolving Inconsistencies

The more data you have, the more you have to be on the lookout for inconsisten-
cies, unexpected values, null values, and other data quality issues. Power BI, with
the help of Power Query, supports users with several ways to deal with incon-
sistencies. These include replacing values, removing rows, and completing root
cause analysis.

Replacing values

Users can replace mistaken values with desired outcomes directly in the Power
Query Editor interface. You would use this approach wherever errors occur in the
data sources you create or import into Power BI. An example of such behavior
is replacing null values with an updated, unique value. There’s a catch, though,
when using this technique: A user must fix the error in the source or the values
during a refresh may be written over. You can access your options by right-click-
ing a column and then choosing an option, as shown in Figure 4-1.

To replace errors, follow these steps:

1. Right-click a column header and choose Replace Errors from the menu

that appears in the Power Query Editor.

2. Enter the values you want to replace in the Value box.

3. Click OK.

T
w

e
a

k
in

g
 D

a
ta

for Prim
etim

e

CHAPTER 4 Tweaking Data for Primetime 169

Replacing values in a column follows a similar process, as shown in Figure 4-2.
Follow these steps:

1. Right-click a column header and choose Replace Value from the menu

that appears in the Power Query Editor.

2. On the new screen that appears, fill in the Value to Find and the Replace
With fields.

3. When you finish, click the OK button.

After selecting the Replace Value menu, you’re prompted to make several updates.
Under Advanced, you see two options: Match Entire Cell Content and Replace
Using Special Character Codes. If you try to replace text in a column, you need
to match an entire cell’s content. If you enable the Match Entire Cell Content
option, the Power Query Editor won’t replace values where the Replace With value
is limited to the Value to Find value. Furthermore, suppose that you’re looking
to replace a unique character. In that case, you need to select the Replace Using
Special Character Codes check box. Otherwise, the value isn’t entered into the box.

FIGURE	4-1:
Look for the

Replace Values

menu option.

FIGURE	4-2:
Replacing values.

170 BOOK 2 Using Power BI for Data Analytics & Visualization

If you want to replace data across multiple columns simultaneously, you must
press the Control key (Ctrl) and then select each column that has values you want
to replace. If you want to select a range of columns following a specific order
instead, press the Shift key and then select each of the columns in your preferred
chronological order. Remember that the data type entered in the replacement
fields must match across all columns or errors will appear.

Removing rows using Power Query

From time to time, you find that you must remove entire rows of data because
something in the rows is creating an abundance of errors. To remove a row, you
would assume that correcting the error should be as simple as right-clicking the
column and choosing Remove Errors from the contextual menu. Using this method
removes only rows where known errors are present. Suppose that you prefer to
remove all rows in a table that meet a particular condition that can lead to errors.
In that case, you’d click the Table icon to the left of the column header, select the
affected rows, and then choose Remove Errors from the menu that appears.

Digging down to the root cause

Every time an error occurs in a column, you can review the message behind the
error. To review the error, select the cell in question. The error message appears
in the Preview panel at the bottom of the page. Using this method enables a
user to see various content types from tables, records, lists, and, of course,
embedded errors.

Figure 4-3 shows that an error has been introduced after a new custom column
was added to the dataset. The issue presented is a mismatch of data types. Neither
a text field nor a numeric field can create a typical column value. It turns out that
type conversion is often one of those root causes triggering an error message.

From time to time, you may need to convert a column from one type to another
(from Text to Number, for example). In Power BI, this is referred to as a type

conversion. Most times, you make type conversion changes immediately after data
is transformed using Power Query.

FIGURE	4-3:
An error, as

presented in

Power Query.

T
w

e
a

k
in

g
 D

a
ta

for Prim
etim

e

CHAPTER 4 Tweaking Data for Primetime 171

Evaluating and Transforming
Column Data Types

Few data sources are ready for prime time. You need to shape them to be ready for
use by Power BI and the Power Query Editor. (Admittedly, such behavior is more
often true for files than for structured database systems, but that’s beside the
point.) As you work through datasets, you need to add query steps as you either
add or reduce rows and column data. Even when you try to transpose column
data, it should come as no surprise that evaluating and transforming data can be
a complex process. This section focuses on topics that help transform data into
its purest possible state. Of course, you need to perform a little bit of magic along
the way.

Finding and creating appropriate
keys for joins
Power BI supports users by combining data from tables in a number of different
ways — but no matter which way you choose, you have to use a join in your query.
(A join is a way to combine data from multiple tables; it brings together these
tables using a common key from two or more tables.) Using Power Query Editor,
you can complete this action using the Merge functionality. If you want to create
relationships using a model outside of Power Query, you create implicit joins. The
use of a join depends on the business requirements.

Of all the many join types out there, the two you most often hear about are implicit
and explicit joins. An implicit join performs a left outer join with a table field, pull-
ing from another table. Explicit joins specify the integration of two tables. There
are many benefits to using implicit joins. A key benefit is syntax because it’s a
useful substitute for explicit join syntax. In fact, an implicit join can appear in the
same query that maintains an explicit join syntax.

Tables can be represented by one or many join statements. If a table is represented
on the One side of the join, the key in the table is unique in every row. If the table
is represented by the Many side of the join, not all keys are unique, which yields
some duplication. As you may have guessed, the One side is represented as a pri-
mary key, and the Many side can be a foreign key. One-to-one (1:1) and many-

to-many (M:M) relationships do exist at times; however, the results produced in
Power Query may not be suitable; one-to-one relationship may produce a narrow
result set, whereas many-to-many often produces too many results.

172 BOOK 2 Using Power BI for Data Analytics & Visualization

Here are two key terms to remember when data modeling:

 » A relationship is the connection between entities in a data model, which in

turn reflect business rules. Relationships between entities can be either
one-to-one, one-to-many, or many-to-many.

 » A join is a bit different in that you’re setting up a relationship between two
or more tables to pull data. The data is commonly mapped together using
a primary key, a foreign key, or a combination, which is referred to as a
composite key.

Consider the following information as it relates to joins and relationships:

 » Keys for joins: You can perform joins based on one or more columns at a

time. Creating composite keys isn’t a requirement to merge tables using
Power Query. When you create joins in Power Query, pay particular attention

to the column type. You must match the data type with one another or a join
won’t work.

 » Keys for relationships: Power BI will try its best to resolve different data
types, including converting data types, if possible. Ideally, though, you

should make sure that the data type in the relationship is the
same when creating a join.

You can combine columns in two different ways: Create a new column or merge
a column in place. To add a new merged column, first select the columns you’re
looking to combine and then choose Add ➪ Column ➪ From Text ➪ Merge Columns
from the Power Query Editor Ribbon. If you’d prefer to merge columns in place,
you replace the original columns. Select the columns you want to merge and then
choose Transform ➪ Text Column ➪ Merge Columns from the same menu.

Whether you select one of the two options, the outcome is ultimately the same.
Figure 4-4 presents the Merge interface. You can combine one or more columns
from Prime Awards and Sub Awards. Then, you select the type of join. The result
is a new column that merges the two columns.

A final step in the process is defining separators from the Separator drop-down
menu, found on the Merge interface. You can either select a predefined separa-
tor or come up with your own by choosing Custom from the menu. If you choose
the latter method, you’re given a choice to enter a new column name. Once you
complete it, click OK.

In the example, a colon is being used as a separator. Finally, the new column is
called Agency-Sub Agency, as shown in Figure 4-5.

T
w

e
a

k
in

g
 D

a
ta

for Prim
etim

e

CHAPTER 4 Tweaking Data for Primetime 173

FIGURE	4-4:
The Merge

Columns option.

FIGURE	4-5:
Columns that

have been

merged.

174 BOOK 2 Using Power BI for Data Analytics & Visualization

Shaping your column data to meet
Power Query requirements
Not every data source you ingest may have the proper data type. Power Query
does its best to detect the data type based on characteristics found in the available
dataset. For example, you may be using a US-based zip code as part of your data-
set. Power Query may (incorrectly) treat zip codes starting with zeros as though
they were whole numbers. As a result, those starting values get cut off. Why?
Because a whole number cuts off the zero. In this example, the zip code should be
a Text data type, not a whole number.

As you begin evaluating your data in columns, keep in mind that Power Query tries
to convert any data it receives as one of the data types shown in Figure 4-6. You
can keep Power Query on the right track by making sure you’re using the correct
data type in the first place.

You see complex data types like functions, lists, records, and tables every so often.
Keep in mind that not all data types may be available after loading data.

If you want to change the data type, you can do so by right-clicking a column
header and selecting Change Type from the menu. Then select the type you want,
as shown in Figure 4-7. After changing a data type once in a column, you then see
a prompt asking whether you agree to change the column type and insert a step.
Figure 4-8 shows an example of inserting a step.

FIGURE	4-6:
The available

data types.

T
w

e
a

k
in

g
 D

a
ta

for Prim
etim

e

CHAPTER 4 Tweaking Data for Primetime 175

Combining queries

In Power BI, you can combine queries using Power Query in one of two ways. First,
you can append queries. That means you add other queries to an existing set of
queries as though you’re stacking the data. When you create appended queries,
you often use patterns such as SQL’s UNION ALL operator. On the other hand,
combining queries using the merge structure is based on the supplied primary and
foreign keys. You need to set up JOIN statements with Merge queries.

Appending queries

You can always make tables taller or wider. When you append, the table is taller.
The reason is that your queries include the same number of columns. In some
cases, the resulting tables have columns from all queries; in other instances, col-
umns that were not present in an original query may populate in the dataset.
Under these circumstances, each of the rows keeps null values.

FIGURE	4-7:
Changing the

data type.

FIGURE	4-8:
Inserting a step.

176 BOOK 2 Using Power BI for Data Analytics & Visualization

A Power BI user can either append a query in its as-is statement, or it can create

a new query to accommodate the aggregate data. To append queries, you make
this choice when there are one or more queries to select. No new queries need to
be built — simply reuse whatever exists. Appending queries without creating new
ones is the default choice in Power BI.

When you take many new rows of data and string them together using the original
query, you should choose Append Queries As New.

To access Append Queries as New, go to the Power Query Editor Home Ribbon.
Then select Append Queries as New. You’re then asked to concatenate rows from
two or more tables. Once you select the tables and rows, press OK.

Merging queries

When you merge queries, you combine them, which yields a wider table. Because
you inherit more columns, it’s only natural for horizontal growth to occur. The
critical consideration is which set of keys you use. The columns must have match-
ing values in both tables to ensure that one table can be combined with the rows
in the second table.

Much like when appending queries, you have two merge options — create a new
query or merge two queries and call them new. Merging queries involves creating
one of six join types using Power Query, as shown in Table 4-1.

When you try to use one of these queries, you may realize that your data isn’t
perfect. To alleviate some of the quality concerns, Power Query supports fuzzy
matching when performing merges. Fuzzy matching occurs when you can compare
items from separate lists. A join is formed if there’s a close match. You can set
the matching tolerance and similarity threshold when establishing a fuzzy match.
Your fuzzy matching options include those described in Table 4-2.

TABLE 4-1 Join Types

Join Type Direction

Inner Only matching rows are visible.

Left Outer All items in the first table appear, but only matching items from the second.

Right Outer All items in the second table appear, but only matching items from the first.

Full Outer All rows appear.

Left Anti Returns all rows from the first table where a match in the second table does not exist.

Right Anti Returns all rows from the second table where a match in the first table does not exist.

T
w

e
a

k
in

g
 D

a
ta

for Prim
etim

e

CHAPTER 4 Tweaking Data for Primetime 177

To merge a query, follow these steps:

1. On the Home tab of the Power Query Editor Ribbon, locate Merge Query.

2. Select Merge Queries, not Merge Queries As New.

3. Select the tables and columns you want to combine in the Merge Queries

interface.

4. Select the key that is common to both tables.

Notice that the appropriate key column is highlighted.

5. Select the type of join you want from the Join Kind drop-down list.

6. Click OK.

In Figure 4-9, you can see that you’re merging the Prime and Sub Awards queries.
The common key selected is Obligated. The type of join kind selected is Full Outer.

Notice that a new column, Sub Awards, appears in Figure 4-10. Each row is high-
lighted and says Table. To view the Sub Awards data, you’d click on the Table link
to drill down. When you merge two tables, you may

 » Add a new table

 » Have the table represented by hyperlinks

 » Have a double-arrow button instead of the Filter button as part of the column

The double arrow is another filter type that allows users to search data from
two or more table datasets.

TABLE 4-2 Fuzzy Matching Options
Fuzzy
Matching Option Description

Similarity threshold Values are from 0 to 1. When values are 0, values are said to match each
other, no matter how far apart they are. With 1, you get a match only when
the match is exact.

Ignore case Treats upper- and lowercase the same.

Maximum number
of matches

Limits the number of rows from the second table that matches the first, which is
helpful when the result set produces multiple matches.

Match by combining
text parts

Attempts to combine separate words into a single entity, looking to find matches
between keys.

Transformation table Equivalent of a to-and-from, which means there must be at least two columns.

178 BOOK 2 Using Power BI for Data Analytics & Visualization

FIGURE	4-9:
An example of

merged columns.

FIGURE	4-10:
Adding a column.

T
w

e
a

k
in

g
 D

a
ta

for Prim
etim

e

CHAPTER 4 Tweaking Data for Primetime 179

When you select any cell in the new column, a preview of the content contained in
the merged table appears.

When expanding a table, you can either expand or aggregate:

 » Expand: Here you’d select a column from the merged table that you want
to add to the current table. If the merged table has more than one matching
row, the current table’s row is the one duplicated.

 » Aggregate: If you want to combine rows without duplication in the current

table, this is your best choice. Using DAX, supplying the function that’s most
appropriate for each column is one way to ensure that data is properly

combined.

To expand a merged column using the Fiscal Awards dataset, follow these steps:

1. In the Prime Awards query, click the double-arrow button in the newly

created column.

You see a screen that allows you to filter based on Expanded view or
Aggregate view.

2. Clear the Select All Columns check box on the Expanded Merge

Columns tab.

3. Click to select the Agency check box and the Sub Agency check box.

4. Uncheck the Use Original Column Name as Prefix check box.

5. Click OK.

You should now see an expanded set of columns, showing the values of both
tables you just merged.

6. Right-click the Agency Key column and select Remove Column.

7. Right-click the Agency.1 column and select Rename.

8. Rename the Agency.1 column to Agency.

The output of what was produced after all those changes appears in Figure 4-11.
There is only one Agency column and a Sub Agency column labeled Sub Agency.1

180 BOOK 2 Using Power BI for Data Analytics & Visualization

Configuring Queries for Data Loading
When developing a Power BI data model, users can take advantage of the fact that
Microsoft gives them the ability to use Help queries. These helper tools are avail-
able by processing your model using the Get Data option and the Transform Data
option. Also, when you’re trying to combine files or even merge datasets, Power
Query supports helper queries.

Helper queries are embedded into Power BI Power Query in order to assist users in
creating query strings. Rather than make the coding process complex, you can use
the built-in API to simplify the most difficult parts of query development. In fact,
helper queries support common terms, phrases, ranges, and geospatial functions.

Of course, you may have queries you don’t need or want to load because not all
data may be helpful. In this case, right-click the Queries pane and then clear the
Enable Load section. When queries are already loaded, you may get errors. Other-
wise, select which queries you want to omit from the load process.

One common scenario occurs when you don’t want to load queries that are
appended or merged with other queries. To segregate queries that should not be
included, follow these steps:

1. Right-click the first query you want to omit.

2. Choose Enable Load from the menu that appears in the Queries pane.

3. Make sure each table you want to omit from the query is deselected.

4. Repeat this process for each query you don’t want to load.

FIGURE	4-11:
The expanded

Merged Columns

example.

T
w

e
a

k
in

g
 D

a
ta

for Prim
etim

e

CHAPTER 4 Tweaking Data for Primetime 181

The result is removing unwanted entities from the data model for future querying
and loading. In Figure 4-12, you can see an example of the drop-down menu to
select or deselect Enable Load. Any query that’s deselected isn’t loaded, and it’s
noted by text that’s italicized.

After you’ve modified the entities to be included in the queries, save your changes
by pressing the Close & Apply button on the Ribbon’s Home tab. (See Figure 4-13.)

FIGURE	4-12:
Removing

queries.

FIGURE	4-13:
Close & Apply

in the Power
Query Editor.

182 BOOK 2 Using Power BI for Data Analytics & Visualization

Resolving Errors During Data Import

Occasionally when you load data, you might encounter query errors in Power
BI. Don’t panic!

Errors come in many forms. Values alone don’t cause a query to fail blatantly.
Power BI lets you know the total number of errors for each query. Error values,

or values ignored during querying, are considered blank values. Simply put, they
have no text in the field — not even a zero.

To get to the bottom of what’s actually causing errors in Power Query, use the View
Error hyperlink, which can be found in the Power Query Editor column throwing
the specified error. When you click the hyperlink, you can see the specific details
related to the query. Common reasons why errors are thrown in Power Query are
often linked to data conversion. For example, a value originally N/A, which is con-
sidered text, would not work in a column intended for numbers.

To correct an error such as this one, you need to change the column type. To make
such a modification, follow these steps:

1. In the Power Query Editor, select the query in question.

2. Right-click the column presenting an error.

3. Choose Change Type from the menu that appears and then change the

selection from Number to Text.

4. Select Replace Current when the pop-up appears to validate that you

want to change the column data type.

You have now changed the column data type from Numerical to Text. Now,
alphanumeric values, not just numeric values, can be added to the column for

the specific dataset. After you click the Close & Apply button for a dataset that’s
been corrected, the error messages disappear.

CHAPTER 5 Designing and Deploying Data Models 183

Designing and Deploying
Data Models

M
anipulating data after it’s in Power BI is both an art and a science. Data

you’ve imported into any application requires you to pay attention to not

just your dataset but also how the data has been defined. If you learn one
thing about data, you need to refine it from the get-go. That means exploiting
tables, creating new hierarchies, establishing joins and relationships that make

sense, and classifying the data. Of course, you want your outputs to be mean-
ingful, so you have to pay close attention to how you arrange the data in the data

model. In this chapter, you discover how to craft your data in Power BI Desktop so

that you can design and deploy effective data models for visualization, reporting,
and dashboards. This chapter starts out by teaching you how to design and develop
a basic data model in the Power BI Desktop environment and then shows you how

to publish the model to Power BI Services when you’re ready for showtime.

Creating a Data Model Masterpiece

Creating visualizations requires a data model — it’s just one of those things. Your
data source also needs to be correct, specific, and well crafted. It’s true that Power
BI can do some amazing things by transforming data across multiple datasets

Chapter 5

IN THIS CHAPTER

 » Detailing the technical requirements

for designing a data model

 » Designing a basic data model in

Power BI Desktop

 » Publishing a data model from Power

BI Desktop to Power BI Services

184 BOOK 2 Using Power BI for Data Analytics & Visualization

utilizing its ETL (extract, transform, and load) framework to support development
and design activity. After the data is safely in the Desktop application, though, the

accessible data still needs your attention. You need to take some specific actions to
prepare the data so that the model can be crafted and work as a well-oiled dataset
for visualization and reporting. A well-defined dataset helps you analyze the data
as well as gain prescriptive and descriptive insights.

Model creation doesn’t stop at data ingestion. It requires defining data types,
exploiting table design, creating hierarchies, crafting joins and relationships, and
classifying the data in the model.

Working with Data view and Modeling view

After importing data into the Power BI Desktop environment, your goal now is

to manipulate the data so that it works the way you need it to for your models.

The first stop on your journey is to explore the Data View tab and the Model View
tab. The difference between the two is that the Data View tab presents all data
imported into the data model. In contrast, the Model View tab is the visualization
of the model based on what Power BI believes the model is at a point in time.

You are responsible for updating the model after importing the data. You can do
this on either the Data View tab (by viewing all data instances) or the Model View
tab (by reviewing the model itself). An example of the output on the Data View tab
is shown in Figure 5-1; Figure 5-2 shows the output on the Model View tab.

FIGURE	5-1:
The Data

View tab.

D
e

sig
n

in
g

 a
n

d

D
e

p
lo

y
in

g
 D

a
ta

 M
o

d
e

ls

CHAPTER 5 Designing and Deploying Data Models 185

The Home Ribbon for the Model view is considered the cockpit for managing many
of your data actions, no matter which view you’re in within the Power BI Desktop.

As you can see in Figure 5-3, the Home Ribbon for the Model view is broken down
into distinct areas: Data, Queries, Relationships, Calculations, Security, and Share.
Each area has its own set of features, as listed in Table 5-1.

FIGURE	5-2:
The Model

View tab.

FIGURE	5-3:
The Home Ribbon

in Model view.

TABLE 5-1 Buttons On the Power BI Model View Home Ribbon

Button What It Does

Get Data Gets data from a data source. You can choose from more than 100 data source
options, both relational and nonrelational.

Excel Workbook Gets data from an Excel file, a common Microsoft data source

Power BI Dataset Gets data from a previously created Power BI dataset

SQL Server Gets data from a SQL Server connection

Enter Data Creates new tables inside Power BI

Dataverse Connects to an environment from Power BI using a query string, including those
supported by DirectQuery

Recent Sources Allows users to access those data sources most recently created in Power BI

(continued)

186 BOOK 2 Using Power BI for Data Analytics & Visualization

The Power Query Editor shares many of the same features shown in Table 5-1,
although it also has (unsurprisingly) specific features for query editing, as shown
in Figure 5-4.

A noticeable difference between Model view and Power Query Editor is that Power
Query Editor allows you to change the data source settings, manage parameters,
configure editor parameters, configure rows and columns, group by, sort by, and
handle data types. It also focuses on artificial intelligence features for text ana-
lytics. As you begin to manage the design of your datasets, you naturally want to

know more about row and column management because configuring rows and
columns to behave as you see fit is integral to dataset behavior. Therefore, as you
probably guessed, you have a few more bells and whistles to play with under the

Power Query Editor because you are manipulating queries versus model building.

Importing queries

It never hurts to practice importing one or more Excel files to establish fresh
queries. Keep in mind that you can import your queries into Power BI Desktop

TABLE 5-1 (continued)

Button What It Does

Transform Data Serves as a gateway to the Power Query Editor with tools that can be found to edit
and transform datasets

Refresh Refreshes the data in an easy way

Manage
Relationships

Establishes cardinality among tables in Power BI

New Measure Creates a new calculated measure using the Formula bar

Quick Measure Using predefined calculations against fields, builds out the specific fields for the user

New Column Creates a new column for a specific table

New Table Creates a new table

Manage Roles Determines who should be able to view specific data models

View As Limits the dataset to specific users

Publish Publishes the dataset to Power BI Services

FIGURE	5-4:
The Power Query

Editor Ribbon.

D
e

sig
n

in
g

 a
n

d

D
e

p
lo

y
in

g
 D

a
ta

 M
o

d
e

ls

CHAPTER 5 Designing and Deploying Data Models 187

using one of several import options. Start by using the Navigation pane on the left

side of the screen to switch to Data view, where all existing tables are available.
If you want to start fresh, open a new file by choosing File ➪ New from the main

menu. If, however, you want to import, follow these steps:

1. Select the type of file or source you want to import into Power BI under
Get Data.

Once you select your data source, the Navigator window opens, as shown in

Figure 5-5.

2. To load data, pick one or more datasets and then click the Load button.

3. To transform data, pick one or more datasets and then click the

Transform Data button.

If you choose Load, that means the data won’t be mapped to a specific data type.
If you choose Transform Data, Power BI does its best to map against the proper
data type based on ETL properties.

FIGURE	5-5:
The Navigator

window in

Data view.

188 BOOK 2 Using Power BI for Data Analytics & Visualization

Though Data view is similar to the Power Query Editor, keep in mind that only a
sample of your data is shown in the Power Query Editor, whereas all data is avail-
able in Data view after it’s imported into the data model. In Data view, you’re

working with your entire dataset, and modifications are made live with the dash-
board requirements and specifications. Both Data view and the Power Query
Editor can handle the creation of calculated columns in real time, though.

After the data is loaded, you can manipulate it, add queries, add or delete columns,

or manage the existing relationships between one or more tables or columns
within a single table. The following sections explain in detail how to complete
each of these activities.

Defining data types
When Power BI imports a dataset, it defaults to a specific data type. For example,
in Figure 5-6, you can see that the Products table has several columns, two of
these columns indicate decimal numbers as options. The column represented here
is ProductMSRP and ProductWhsPrice. The data type may not be accurate because
these columns are monetary in nature. You have the choice of decimal number
or fixed decimal number. In this case, monetary values require decimal number.
A user can also place formatting in the column to better represent the context of
the data in each of the cells.

FIGURE	5-6:
Using the

Column Tools

tab to change

the data type.

D
e

sig
n

in
g

 a
n

d

D
e

p
lo

y
in

g
 D

a
ta

 M
o

d
e

ls

CHAPTER 5 Designing and Deploying Data Models 189

To review the data types for a given column, follow these steps.

1. Go to Data view.

2. Select the column you want to review and highlight it.

3. Make sure you’re on the Column Tools tab. (Refer to Figure 5-6).

4. On the Column Tools tab, check the Name property to make sure.

5. Check to make sure the Data Type drop-down menu (see Figure 5-7) is set

to the correct data type.

In this case, it’s set to Decimal Number.

6. Switch the option to Fixed Decimal Number.

7. Using the tab’s Format drop-down menu (again, see Figure 5-6), switch

the option to Currency.

This process is consistent throughout Power BI for modifying data types whether
you’re trying to change numerical data to text or text to numeric.

Handling formatting and data
type properties
Depending on whether the column is text or numeric, you can use the Format
drop-down menu on the Column Tools tab to also apply specific properties to a
column to ensure specific behaviors. In the preceding section, the Currency format

FIGURE	5-7:
A list of data

type options.

190 BOOK 2 Using Power BI for Data Analytics & Visualization

is applied to the columns. If the column is numeric, you can also apply other

behaviors, including decimal numbers, whole numbers, percentages, and scien-
tific number formatting. (See Figure 5-8.)

Suppose you’re looking to apply properties such as Measures, Geographic mark-
ers, or Mathematical Behaviors against a column. In that case, you can apply a

summarization (a way to further evaluate data mathematically) or a data cate-
gory (a way to classify geographically-based data). Summarization options for
the Column Tools tab are shown in Figure 5-9, and the Data Category options are
displayed in Figure 5-10.

FIGURE	5-8:
Numeric

formatting

options.

FIGURE	5-9:
The

Summarization

options on

the Column

Tools tab.

FIGURE	5-10:
The Data

Categories

options.

D
e

sig
n

in
g

 a
n

d

D
e

p
lo

y
in

g
 D

a
ta

 M
o

d
e

ls

CHAPTER 5 Designing and Deploying Data Models 191

Summarization options allow for any column of numeric data in a table to be
summarized as a single value. Data Category options are applicable for Power BI
mapping — latitude and longitude or degrees, in other words.

Managing tables

After you’ve imported a table and created a dataset, you may realize that you
need to change the name of the table. Or maybe you want to delete a table. These
are common actions that a data expert might perform in Power BI Desktop as
they work their way through the design, development, and deployment of their

data model.

Adding tables

There may be times when you need to add one or more tables to your data model
after you’ve imported the dataset into Power BI Desktop. Perhaps you want to

create an additional fact table for the transactional activity or a dimension table

to support a new lookup. Both scenarios are pretty standard but, luckily, adding a

table is straightforward. You’ll still need to do a bit of configuration after you set
the column names, though.

In any event, here’s how you add a table:

1. In Model view, click the Enter Data button on the Home tab of the Model

view Ribbon, as shown in Figure 5-11.

The Create Table Interface appears.

2. Enter the column names and data you want into the appropriate

table cells.

3. Enter a table name in the Name field.

The table should look something like the one shown in Figure 5-12.

4. Click Load once you are finished creating your table.

FIGURE	5-11:
The Enter

Data button.

192 BOOK 2 Using Power BI for Data Analytics & Visualization

The result is a brand-new table that appears as part of the data model you’re able
to access in Data view as well as in Model view.

Renaming tables

Renaming a table is a straightforward activity as long as no table already has the
same name. With Power BI, every table in a data model must have a unique name.

For example, two tables cannot have the name Product.

Best practices suggest that you be as descriptive as possible when naming tables

within a data model. You can have a table named Product and another named
Products, and although Power BI would allow you to use those names, their simi-
larity could prove confusing for any humans working with your data model.

To rename a table in Power BI Desktop, follow these steps:

1. In either Data view or Model view, go to the Fields pane.

2. Right-click the table name you want to change.

3. Choose Rename from the menu that appears, as shown in Figure 5-13.

4. Enter a new name for your table in the highlighted field and then
press Enter.

The table name will refresh within 30 seconds.

FIGURE	5-12:
Creating a table.

D
e

sig
n

in
g

 a
n

d

D
e

p
lo

y
in

g
 D

a
ta

 M
o

d
e

ls

CHAPTER 5 Designing and Deploying Data Models 193

Deleting tables

If you want to delete a table from a model, you face a few risks. If relationships are

associated with the table, those relationships will break. In addition, if calculated

fields are embedded within a report, those too will disappear. That said, removing
a table, like moving a column, is a relatively simple process. To remove a table,
follow these steps:

1. In either Data view or Model view, go to the Fields pane.

2. Right-click a table to remove, and then choose Delete from Model from

the menu that appears, as shown in Figure 5-14.

A prompt appears, asking whether you’re sure you want to delete the table, as

shown in Figure 5-15.

3. Click Delete.

The table is deleted from the model.

Renaming and deleting columns

Renaming or deleting a column follows the same practice for renaming or delet-
ing a table. The only caveat is that when dependencies such as key enforcements
occur, deleting a column can result in potential broken relationships.

FIGURE	5-13:
Updating the

table name in

Model view.

194 BOOK 2 Using Power BI for Data Analytics & Visualization

To rename a column, follow these steps:

1. In either Data view or Model view, go to the Fields pane.

2. Right-click the column name you want to rename.

3. Rename the column.

The column name refreshes automatically.

If relationship updates require updating, those are revised accordingly.

When the column is deleted, you’ll notice that the link is broken if a relationship

exists between two tables. Figure 5-16 shows Before and After views of CityID
between Products and Location where the column was deleted.

FIGURE	5-14:
Deleting a table

from the model.

FIGURE	5-15:
Asking whether

you’re sure.

D
e

sig
n

in
g

 a
n

d

D
e

p
lo

y
in

g
 D

a
ta

 M
o

d
e

ls

CHAPTER 5 Designing and Deploying Data Models 195

To delete a column, follow these steps:

1. In either Data view or Model view, go to the Fields pane.

2. Right-click the column name, and then choose Delete from Model from

the menu that appears.

You’re alerted that the column is about to be deleted.

3. Press Delete.

The column is deleted, and the model updates automatically.

If relationships are broken, the links between the tables are updated

accordingly.

Adding and modifying data in tables

At times, you may want to add or modify data in an existing table. This process
is one of the less transparent ones because it requires a user to go into the Power

Query Editor to complete the action. If you’ve created the data within Power BI,
the process for adding or modifying is a bit more simplistic than datasets that

FIGURE	5-16:
Before and After

views for column

removal.

196 BOOK 2 Using Power BI for Data Analytics & Visualization

have been imported using a file or ingested using DataQuery. To add rows or mod-
ify cells to rows of tables you’ve created yourself, follow these steps:

1. In the Queries area of the Home tab of the Model view’s Ribbon, click the

Transform Data icon.

The Power Query Editor appears onscreen.

2. Select the dataset you created.

3. Go to the source under Applied Steps.

4. Click the Gear icon. (See Figure 5-17.)

Doing so opens a window that allows you to add or update additional rows

or fields.

As you can see in Figure 5-18, the Manufacturers table has an empty field, as well
as a row indicating that it should be changed.

Adding and modifying data to imported,
DirectQuery, and composite models

When you import or use DirectQuery and then transform the data in Power BI,

your ability to add or change the data can occur only in the native data source.

FIGURE	5-17:
The Gear icon

under Applied

Steps.

FIGURE	5-18:
The modified

table with

new row and

changed data.

D
e

sig
n

in
g

 a
n

d

D
e

p
lo

y
in

g
 D

a
ta

 M
o

d
e

ls

CHAPTER 5 Designing and Deploying Data Models 197

There’s an exception, of course: If you create custom columns or calculated
columns, those are editable and managed within Power BI.

Assume that you want to make a modification to the Location table in Figure 5-19.
You can add an extra three cities or states and directly change the name of one
city or state in Excel. As soon as you update the file, click the Refresh icon in the
Queries area of the Model view’s Home Ribbon. The results are instantaneously
updated, as shown in Figure 5-20.

Managing Relationships

When two tables connect by a common bond, it often signifies that a relation-
ship exists by way of a key. It can be a primary-primary key or a primary-foreign
key relationship. In certain circumstances, a table may even be joined together

in a single field. That single field can map to another table with a like-kind field,
creating a lookup. This section covers the value of relationships in designing and
developing the data model.

Creating automatic relationships

Power BI recognizes that when data is transformed, a relationship exists. For
example, if you have two tables with a numeric data type and they’re named

FIGURE	5-19:
Before a

change occurs
in the Products

table.

FIGURE	5-20:
Seeing the

changes made

in the Products

table.

198 BOOK 2 Using Power BI for Data Analytics & Visualization

similarly, they’re considered to be in a relationship. Power BI detects these rela-
tionships as part of the ETL process. The automatic detection helps reduce the
manual work that goes into identifying the relationships yourself. Also, you can

reduce the risk of errors from occurring between tables.

To see how Power BI views relationships between datasets, follow these steps:

1. Go to the Home tab of the Model view’s Ribbon.

2. In the Relationships area, click the Manage Relationships icon.

Relationships that exist when the datasets are imported are automatically

matched.

3. (Optional) If you want the systems to autodetect the relationships, click

the Autodetect button.

Creating manual relationships

Sometimes the names of primary and foreign keys may not match but you know

that the data between them creates a relationship. For example, LocationID and
CityID might be one and the same or perhaps StateID and StateAbbreviation. All

these are examples where data analysts need to manually map the relationship
between two tables even though Power BI should have been able to pick up the

pattern. To manually establish relationships between tables and keys, follow
these steps:

1. Go to the Home tab of the Model view’s Ribbon.

2. In the Relationships area, click the Manage Relationships icon.

3. Click the New button.

4. The Create Relationship interface appears, as shown in Figure 5-21.

5. Select the two tables that are in a relationship.

6. Using the Cardinality and Cross-Filter Direction drop-down menus,

choose the settings you want.

7. Press OK when you finish.

D
e

sig
n

in
g

 a
n

d

D
e

p
lo

y
in

g
 D

a
ta

 M
o

d
e

ls

CHAPTER 5 Designing and Deploying Data Models 199

Deleting relationships

Deleting relationships occurs in one of three ways. You’re either removing the
field in one of the two tables that sets up the join between the two tables or using
the Manage Relationships interface to disconnect the relationship the same way
you created the interface. You’d uncheck the Active box. Then you’d press Delete.
A warning appears, showing a break to the relationship. You’d acknowledge the
relationship to be broken and then press OK.

The easiest way to break a relationship is to go to Model view and right-click
the link. Choose Delete. You’re prompted to acknowledge that the relationship
will be broken.

Arranging Data

Arranging data in a dataset is different from what you experience when data is
transformed in visualizing data. Arranging data in Power BI can be classified in a
few different ways: Sort By, Group By, and Hide Data. The next few sections drill
down into the specifics of each kind.

FIGURE	5-21:
The Create

Relationship

interface.

200 BOOK 2 Using Power BI for Data Analytics & Visualization

Sorting by and grouping by

You can easily be confused by Sort By and Group By. Sort By sorts data in ascend-
ing order (A–Z) and descending order (Z–A) on a column basis. To ascend or
descend the data in a dataset, you need to go to the Power Query Editor to com-
plete any form of sort-by action. You can sort by only one column at a time.

Group By allows a field to be grouped against a mathematical operation (count,
sum, and means, for example) and another field. Advanced options allow you to
group with one or more fields, as shown in Figure 5-22.

Hiding data

At times, you may want to suppress column data from a table. Perhaps the col-
umn offers little value in the dataset when presenting results, or maybe the data
adds too much complexity to the visualization. It might be that the column, when
included in the dataset, actually provides inaccurate data. You might choose to
hide data for any number of reasons. Hiding data, rather than deleting a column
outright, ensures you can still access the data later if you need it.

To hide a column, as shown in Figure 5-23, follow these steps:

1. In Model view, go to the table containing the column in question.

2. Click to select the field.

3. Go to the Properties pane.

FIGURE	5-22:
Grouping by

capabilities.

D
e

sig
n

in
g

 a
n

d

D
e

p
lo

y
in

g
 D

a
ta

 M
o

d
e

ls

CHAPTER 5 Designing and Deploying Data Models 201

4. Locate the Is Hidden slider.

5. Slide the option from No to Yes.

You see an eye with a line through it appear in the field, indicating that it has
been hidden.

If at any point you want to unhide the column, simply repeat these steps, but this

time slide the Is Hidden slider to No.

Publishing Data Models

When a data model is ready to be published to Power BI Services, the process is

as easy as pressing a button — assuming that you’ve set up your online account
with Microsoft’s Power BI Services at https://powerbi.microsoft.com. You’re
asked to supply your username and the email address that logs you in to all Power

Platform / Office 365 applications. Depending on the type of license you have, your
model’s data volume and refresh vary.

To publish your model, go to the Home Tab on the Power BI Desktop and press
Publish, as shown in Figure 5-24.

FIGURE	5-23:
Hiding data.

FIGURE	5-24:
The Publish

button for

deploying the

data model and

reports to Power

BI Services.

https://powerbi.microsoft.com/

202 BOOK 2 Using Power BI for Data Analytics & Visualization

Every time you publish a new version of the data model, and for that matter,
anything from Power BI Desktop to Power BI Services, you are creating a new

version, hence version control is applied. To ensure consistency, make sure you
use an appropriate name for the file and label each model and visualization in the
Power BI Desktop output to be accurately published.

CHAPTER 6 Tackling Visualization Basics in Power BI 203

Tackling Visualization
Basics in Power BI

T
he adage “A picture speaks a thousand words” is one of the reasons so

many people use Power BI. You’ve imported the data, perhaps millions of
records, and now you want to understand what the data says. A visualiza-

tion is likely a bit easier for you or your organization to use than a large, complex
dataset or a single-page report. And, of course, depending on the number of vari-
ables involved or the type of data you want to explore, having a specific type of
visualization can only enhance the readability and fluency of your data experience.
In this chapter, you can see how to access the visualizations and select a proper
choice. To see how to configure your visualization for report creation, see Book 2,
Chapter 7.

Looking at Report Fundamentals
and Visualizations

There’s a simple division of labor to Power BI: You use the Desktop version to
create the data model and visualizations, and Services is there for you to deploy
datasets, reports, and dashboards to the web. In other words, if you want to share

Chapter 6

IN THIS CHAPTER

 » Mastering the various visualization

options available in Power BI

 » Deciding when to use specific
visualization techniques

204 BOOK 2 Using Power BI for Data Analytics & Visualization

your data, you must become familiar with Power BI Desktop as well as with the
variations in Services options. That doesn’t mean you can’t manipulate visualiza-

tions or update them from within Services. You can, in fact, collaborate or make
edits to your reports on your own. Nevertheless, the majority of your visualization
manipulation occurs in Power BI Desktop, not in Power BI Services.

Creating visualizations

Assume that you have a dataset stored in Power BI Desktop, and you want to share
it as a visualization. Head over to the Report tab (see Figure 6-1) by clicking the
Report View tab on the left-side navigation.

At this point, you’re introduced to the visualization interface, where you have the
choice to drag-and-drop a visualization type from the Visualizations pane on the
right side of the Visualization canvas. Figure 6-2 presents an example of Report
view in Power BI Desktop, where visualization occurs.

In Report view, you can complete a number of activities associated with visuali-
zation, such as

 » Selecting a visual icon from the Visualizations pane.

 » Selecting the fields to be used in the visualization.

FIGURE	6-1:
The Report

View icon.

T
a

c
k

lin
g

 V
isu

a
liza

tio
n

B
a

sic
s in

 P
o

w
e

r B
I

CHAPTER 6 Tackling Visualization Basics in Power BI 205

 » Dragging fields from the Fields pane to the canvas for visualization creation.

 » Utilizing the Ribbon to create and manage the visuals.

 » Interpreting the results of the visuals using the Q&A editor.

To enhance one’s comprehension of a report, a user can integrate text boxes,
custom shapes, and images. For those looking to create multipage reports using
visualizations, you have the choice to add buttons, bookmarks, and page naviga-

tion on each visualization.

Choosing a visualization

The Visualizations pane of Power BI Desktop’s Report view hosts more than 20
visualization options that you can drag to the Visualization canvas. (For a descrip-

tion of each option, see the upcoming section, “Choosing the Best Visualization
for the Job.”) Each visualization requires a user to select one or more fields from
the Fields pane after dragging the visual to the canvas. A user must select the
check box to include the field from the Fields pane for a visual. Figure 6-3 pro-

vides an example of the Visualizations pane, and Figure 6-4 illustrates the associ-
ated Fields pane.

FIGURE	6-2:
Overview of

Report view in

Power BI.

206 BOOK 2 Using Power BI for Data Analytics & Visualization

Limit the number of check boxes you select, or you may create a poor visualiza-

tion. Select only those variables from the Fields pane that are relevant. Use those
fields that contribute to the report’s specificity. Keep in mind that “The more, the
merrier” isn’t necessarily always the best-case scenario.

FIGURE	6-3:
The Visualizations

pane.

FIGURE	6-4:
The Fields pane.

T
a

c
k

lin
g

 V
isu

a
liza

tio
n

B
a

sic
s in

 P
o

w
e

r B
I

CHAPTER 6 Tackling Visualization Basics in Power BI 207

Filtering data

You will often meet the need to filter data while crafting a visualization. Every
time you select a new field to incorporate into the visualization, the field appears
as another value that can be filtered. Depending on the size of your dataset for a
specific value, you may want to narrow the focus. For example, you’ve selected a
value named Award as a choice. Under Award, you have five options to filter from,
including Select All. Under conditions where the data is based on a category or
qualitative measure, you have the choice to select which fields you prefer. (That
is the case with Figure 6-5.) You’ll run into instances where reducing a dataset
based on a value found is always necessary. For example, if you’re looking for any
award data where the value is over $100,000, you’d use that as a filtering condi-
tion, as shown in Figure 6-6.

Users can filter the data on just the specific visualization or across all visualiza-

tions by using the Filter on This Page or Filter on All Pages options within the
Filter pane, as shown in Figure 6-7.

FIGURE	6-5:
Filtering data

based on a
category.

208 BOOK 2 Using Power BI for Data Analytics & Visualization

FIGURE	6-7:
The Filter on This

Page and Filter on
All Page options.

FIGURE	6-6:
Setting up

filtering
conditions with

quantitative data.

T
a

c
k

lin
g

 V
isu

a
liza

tio
n

B
a

sic
s in

 P
o

w
e

r B
I

CHAPTER 6 Tackling Visualization Basics in Power BI 209

Choosing the Best Visualization for the Job

Selecting the appropriate visualization type is a critical step in creating effective
and insightful Power BI reports and dashboards. When choosing a visualization,
it’s essential to consider the nature of your data and the story you want to convey
in your presentation choices. Bar charts, Line charts, scatter plots, and treemaps
are just a few examples of the diverse options available in Power BI.

No matter what the visualization choice, you’ll want to start with a clear under-

standing of your audience and their needs, opting for simplicity over complexity
to avoid overwhelming users. You’ll then want to use color and symbolism stra-

tegically to enhance comprehension. Additionally, ensure your visualizations are
interactive, allowing users to drill down into the details for a more granular view.

It’s crucial to maintain consistency in design across multiple reports to estab-

lish a cohesive and professional look. That means like-kind datasets should use
a consistent visualization type. Regularly review and update your visualiza-

tions to keep them relevant and aligned with evolving business requirements is
paramount.

Working with Bar charts and Column charts

Power BI offers several varieties of the Bar chart and Column chart. Each one
allows you to summarize and compare two or more values within a focused data
category. You would use a Bar chart or Column chart for comparisons because they
offer a snapshot of a dataset.

Stacked Bar charts and Stacked Column charts

The Stacked Bar charts and Stacked Column charts are best used when trying to
compare categories against a standard quantitative variable. The bars are propor-

tionally displayed based on the values displayed — horizontally for Stacked Bar
charts and a vertical alignment for Stacked Column charts. One axis of a chart
presents a category for comparison, and the other is the focused value.

You usually begin comparing just two variables, but should you have more, Power
BI supports the breakout of datasets into finer-grained details. For example, in
Figure 6-8, you see a Stacked Bar chart with a single data category, Bid. A bid is
then broken into segments with the value assigned to the different Award catego-

ries (No, Awarded, Pending, and In-Progress). The proportionality of the bars is
the No, Awarded, Pending, and In-Progress ratio for the total bid amount (sum).

210 BOOK 2 Using Power BI for Data Analytics & Visualization

If you add a second dimension, Agency, you can see that the Stacked Bar charts
are broken out even further. (See Figure 6-9.) There may be only one status with
some stacked bars and several in others.

A Stacked Column chart changes the direction of the data from horizontal
to vertical. There is no actual difference in the summarization of data — only
the visualization of the dataset. Figure 6-10 shows the same data as shown in
Figure 6-8, but this time displayed vertically. The same is true for the multiple
dimensions shown in Figure 6-11.

FIGURE	6-8:
A Stacked
Bar chart.

FIGURE	6-9:
Using multiple

dimensions in a
Stacked Bar chart.

T
a

c
k

lin
g

 V
isu

a
liza

tio
n

B
a

sic
s in

 P
o

w
e

r B
I

CHAPTER 6 Tackling Visualization Basics in Power BI 211

Clustered Bar charts and Clustered Column charts

Unlike Stacked Bar charts and Stacked Column charts, where the data is com-

pressed into a single bar or column per category, the data is broken out more dis-

cretely in Clustered Bar charts and Clustered Column charts. It’s easier to discern
values as larger or smaller when the values are broken out in a cluster. For exam-

ple, the Bid by Awarded scenario is presented in Figure 6-12 using a Clustered Bar
chart and in Figure 6-13 using a Clustered Column chart. As noted by In-Progress,
you notice that few opportunities are being worked on, whereas Pending has the
most significant dollar volume.

FIGURE	6-10:
A Stacked

Column chart.

FIGURE	6-11:
Using multiple

dimensions
in a Stacked

Column chart.

212 BOOK 2 Using Power BI for Data Analytics & Visualization

100% Stacked Bar charts and 100% Stacked
Column charts

When you compare multiple data series in a Stacked Bar chart, you use a 100%
Stacked Bar chart or 100% Stacked Column chart. For this type of visualization,
the total of each stacked bar or column always equals 100 percent. The goal of
this visualization is to show how one part stands in relationship to the whole. In
Figures 6-14 and 6-15, two series are being compared: Bid Role (Prime or Sub-
Contractor) and Awarded Status. The left is all categories tied to being the Prime,
and the right is all Sub-Contractor-related statuses.

FIGURE	6-13:
A Clustered

Column chart.

FIGURE	6-12:
A Clustered

Bar chart.

T
a

c
k

lin
g

 V
isu

a
liza

tio
n

B
a

sic
s in

 P
o

w
e

r B
I

CHAPTER 6 Tackling Visualization Basics in Power BI 213

Using basic Line charts and Area charts

When trend analysis over a period is your goal, consider using a Line chart or an
Area chart. For both chart types, you assign the x-axis a numerical value while the
y-axis acts as a key measure. A Line chart connects specific data points by using
a straight-line segment. The Area chart is more proper when you’re looking for
changes among a dataset. Though both adhere to a trend, the Area chart is filled
with a particular color or texture to show data variation.

FIGURE	6-14:
A 100% Stacked

Bar chart.

FIGURE	6-15:
A 100% Stacked

Column chart.

214 BOOK 2 Using Power BI for Data Analytics & Visualization

In the examples shown in Figure 6-16 (Line chart) and 6-17 (Area chart), you
see a snapshot of Awards Lost during a specific period as well as the figures for
Amount Bid. You can see that the highest bid was $261,000, and the lowest bid,
$2,000. The goal is to see the exact bid amount and the loss rate across agencies,
not necessarily the agency that awarded a bid to specific contractors.

FIGURE	6-16:
A Line chart.

FIGURE	6-17:
An Area chart.

T
a

c
k

lin
g

 V
isu

a
liza

tio
n

B
a

sic
s in

 P
o

w
e

r B
I

CHAPTER 6 Tackling Visualization Basics in Power BI 215

Combining Line charts and Bar charts

There might be times when you’re trying to complete an analysis for multiple
trends. When the dataset is significant, and you want to put as much information
as possible into a single visualization, combining chart types is a possibility.
Two choices to consider are the Line and Stacked Column chart and the Line and
Clustered Column chart.

Take the example presented in Figure 6-18, which depicts a specific evaluation
of the largest number of dollars obligated in three different states. That’s one
comparison measure. The second comparison measure is how many unique NAICS
codes are associated with the dataset. Two states are associated with four NAICS
codes, and one state is associated with only three. The volume of award activity,
the dollar amount of that activity at the maximum obligation, and the number
of distinct NAICS codes tell you that more awards were issued for the state of
Maryland than for the state of Georgia.

When you’re trying to create comparisons for joint charts, make sure they’re
relevant to one another. The data comparison shouldn’t be too ambiguous
because you don’t want to dilute the value of your report. Also, be sure not to add
too many comparison layers.

FIGURE	6-18:
A Line chart

and a Stacked
Column chart.

216 BOOK 2 Using Power BI for Data Analytics & Visualization

Working with Ribbon charts

Should you want to see the values in the order in which they appear as items in
a legend, your best choice is to consider the Ribbon chart. A Ribbon chart orders

items based on which item has most of its measures in a particular axis. When a
category has multiple values being evaluated, each category type is represented
differently.

In Figure 6-19, notice that Virginia has received the highest number of obligated
dollars. In contrast, the District of Columbia has the smallest allocation. In pro-

portion, the number of procurements associated with a given NAICS code is also
visible and differentiated by different colors.

Going with the flow with Waterfall charts
When comparing the strength or weakness of a given value from its start and
understanding how the value transforms based on one or more other conditions,
consider using a Waterfall chart. A classic use case for a Waterfall chart is a cost

analysis or checking account balance. You have intermediate actions displayed in
the chart that show positives and negatives.

FIGURE	6-19:
A Ribbon chart.

T
a

c
k

lin
g

 V
isu

a
liza

tio
n

B
a

sic
s in

 P
o

w
e

r B
I

CHAPTER 6 Tackling Visualization Basics in Power BI 217

In the example shown in Figure 6-20, notice that the most significant total
financial obligation is attached to the state of Virginia. The difference between the
two NAICS codes, 541511 and 541512, creates the gap between financial obligations
to the second highest-funded state (beyond Maryland). In this case, the answer
is Virginia. The negative represented shows you the difference (or it could be the
added) funds assigned to a given NAICS code between states.

Funneling with Funnel charts

When you’re looking for a way to understand linear processes, visualize sequen-

tial stages, or rationalize the weight of critical items in a dataset, a Funnel chart
is the way to go. Using the Sales Funnel modeling analogy, if the pipeline included
bids of various amounts, you could better understand where the bulk of the focus
is placed.

In Figure 6-21, the most significant bid opportunity is, hypothetically, the
Department of Education with a $340,000 bid. The smallest bid was sent to the
Department of Commerce for about $16,800. The smallest amount is 4.9 percent
of the overall bid forecast. In contrast, the $340,000 is the most significant bid, as
represented by 100% in the funnel.

FIGURE	6-20:
A Waterfall chart.

218 BOOK 2 Using Power BI for Data Analytics & Visualization

You’ve probably noticed that some of the reports described in this chapter become
specific when it comes to filtering. Much of the specificity correlates to field asso-

ciation in the Visualizations pane. Regardless of the visualization, you may need to
tailor the following areas under Formatting in the Visualizations pane:

 » Categories: Represent the columns placed within the horizontal axis. You can
add more than one category and drill down.

 » Breakdown: Allows you to show changes between categories.

 » Values: Designates the key numerical field that will be plotted.

 » Tooltip: Adds field descriptions automatically as a user hovers the mouse
cursor over a bar or column in a visualization.

Scattering with Scatter charts

Suppose you have an extensive dataset where you want to find the relationship
between one variable found among two axes and then decide the correlation —
the similarity or lack thereof. In that case, a Scatter chart is a decisive choice to
consider. When more cases correlate to a specific behavior, the points are tighter
and more aligned, as is the case in Figure 6-22, where you can see the extreme
outliers of CA, MD, and VA as well as slight outliers of OH, DC, and CO. Each of
these states had a more significant proportion of funds given to IT-related ser-

vices (NAICS 54151 Series) than the remaining 44 states clustered together in the
lower left quadrant of the screen.

FIGURE	6-21:
A Funnel chart.

T
a

c
k

lin
g

 V
isu

a
liza

tio
n

B
a

sic
s in

 P
o

w
e

r B
I

CHAPTER 6 Tackling Visualization Basics in Power BI 219

Sweetening the data using Pie charts
and Donut charts
Pie charts are circular graphics that break the values from an individual category
into slices (or percentages). The whole piece adds up to 100 percent. The Donut

chart is an extension of the Pie chart in that it displays categories as arcs with a
big hole in the center. The values are precisely the same — it’s more about aes-

thetic design.

In Figure 6-23 (Pie chart) and Figure 6-24 (Donut chart), you see a breakdown of
the bid statuses totaling 100 percent distributed to the various award categories
based on current awarded standing.

Branching out with treemaps

Weight and proportionality require that a user have a better understanding of data
from a hierarchical perspective. The treemap, with its series of nested rectangles
of various sizes, offers such a perspective. Corresponding to the summarization
of values or frequency, more prominent representations show more activity. In
contrast, smaller rectangles represent a smaller subset of data within a branch.
The data volume on the left side of a treemap is always proportionally greater than
that on the right, as though you’re reading a book by its cover from left to right
to tell a story.

FIGURE	6-22:
Scatter chart.

220 BOOK 2 Using Power BI for Data Analytics & Visualization

In the example shown in Figure 6-25, all states where the US government
supplied COVID-19-related funding for an IT project are accounted for in this
diagram. The more businesses within a given state that benefited from this special
allocation, the larger the square in the treemap. Using the treemap, the state of
Maryland had the most IT-related COVID-19 acquisitions, followed by the state
of Virginia. Four other states (CA, DC, OH, CO) had a disproportionally higher
number of added IT purchases. The rest of the US states often had only one or two
COVID-19-related emergency procurements.

FIGURE	6-24:
A Donut chart.

FIGURE	6-23:
A Pie chart.

T
a

c
k

lin
g

 V
isu

a
liza

tio
n

B
a

sic
s in

 P
o

w
e

r B
I

CHAPTER 6 Tackling Visualization Basics in Power BI 221

Mapping with maps

If you thought Power BI didn’t include geospatial analytics, think again. You’re
quite able to conduct various analytics evaluations using Power BI based on loca-

tion, latitude, and longitude as field parameters.

You would use this kind of mapping feature when looking to understand the
impact of spatial data compared to geographical distribution. Power BI can auto-

matically zoom in to show the most proper geographical distribution for a visual.
To ensure that users have an optimized user experience, they can choose between
the Maps and Filled Maps options. Figure 6-26 shows the distribution of funding
provided across the United States for obligated COVID-19-related IT emergency
expenditures, using geographical distribution as the primary consideration.

Granularity is vital when it comes to mapping. In this particular case of geospatial
specificity, the Maps example has an added filter. The parameter set is all obliga-

tions that are greater than $500,000 but less than $10 million. The Filled map in
Figure 6-27 offers a precise answer to only those states given allocations within
that range across the geospatial distribution.

Mapping requires precision and accuracy. You’ll want to geocode as many fields as
possible by selecting in the Fields pane the data category that can provide as much
laser focus as possible.

FIGURE	6-25:
A treemap.

222 BOOK 2 Using Power BI for Data Analytics & Visualization

Indicating with indicators

Whenever you’re trying to measure the effectiveness of a business goal, you want
to compare one or more like-kind measures. Indicators available in Power BI
allow a user to be focused on measuring the value their business provides against
one or more variables. Several types of critical performance indicator visualiza-

tions are available.

FIGURE	6-26:
A Map example.

FIGURE	6-27:
A Filled Map

example.

T
a

c
k

lin
g

 V
isu

a
liza

tio
n

B
a

sic
s in

 P
o

w
e

r B
I

CHAPTER 6 Tackling Visualization Basics in Power BI 223

Gauges

When you think of key performance indicators (KPI), a gauge is often used as a
quick way to display a data point comparing a value to a target range. For example,
you’re tracking budget financials.

If you want to be assured that they’re in line with your range, you can use a gauge

— a pictorial representation of how close you are to meeting your target.

In Figure 6-28, the total fiscal year 2021 Budget for Small Businesses with awards
under a million dollars distributed was $784.81M. Of that amount, $741.07M was
already distributed. The gray area shows that the overall fiscal picture is on track
because the gauge doesn’t show an overage.

Cards and multi-cards

Suppose you’re looking for a single number to help you address a specific sta-

tistic. In that case, the Card indicator can help you track your data. Examples of
card uses are total sales, market share, or, as shown in Figure 6-29, the number
of contracts awarded.

When assessing multiple indicators in a single card, you need to add each of those
values to the visualization, creating a multi-card indicator. Each field is a new
indicator within a card. In Figure 6-30, three indicators are listed as an example
of fiscal year spending. The first indicator is the state, the second indicator is the
obligated amount, and the third is the total obligated amount.

FIGURE	6-28:
Using a gauge.

224 BOOK 2 Using Power BI for Data Analytics & Visualization

Key performance indicators (KPI)

Supplying textual and graphical insights tells a story with true impact. Consider
using the KPI visualization: The visualization looks at a single measure, evaluat-
ing the current value and status against a defined target. You need a base measure
that’s numerical — a target measure or a value — as well as a threshold goal.
The output for a KPI can be both textual and visual, based on the type of trend
you’re looking to output. With Figure 6-31, using a subset of data in Fiscal Year
2021 that has been filtered, the data in this use case shows that the average highly
compensated individuals doing business who have won at least one contract with
the US federal government during FY21 earned an average of $1.382 million. The
compensation trend is visible in the background with many firms paying their
executives around $100,000 with fewer paying $1.5+ million compensation pack-

ages on the right side.

FIGURE	6-29:
A Card example.

FIGURE	6-30:
A Multi-card

example.

T
a

c
k

lin
g

 V
isu

a
liza

tio
n

B
a

sic
s in

 P
o

w
e

r B
I

CHAPTER 6 Tackling Visualization Basics in Power BI 225

FIGURE	6-31:
A KPI example.

With many indicators, you can only assign a single value. You need to adjust the
data category parameters to precisely calculate the output, whether you’re looking
for average, sum, distinct (single instances), or another measure.

Use the Card visual only if there’s a single value to display. If you need to compare
a value against more than one target, use the KPI visual — it offers users the abil-
ity to add trends in the background. Though it has limited information, the data is
nonetheless focused. The multi-card choice can fulfill the business requirement
for those looking to put together unrelated metrics on a single page.

CHAPTER 7 Digging into Complex Visualization and Table Data 227

Digging into Complex
Visualization and
Table Data

T
hink of each visualization you can create using Power BI as offering a dif-
ferent set of insights for a dataset. Visualizations can also be stand-alone or
combined with many other visuals. Either way, the output of a visualization

is an end-state deliverable: a report. Though it’s not uncommon for a report to
include a single visualization, having many visualizations can offer tremendous
perspective to an organization. Depending on the user’s role, the report can also
take on many different lives. Some users may be the report’s designer, and others
may be the consumer of report data.

This chapter covers how to configure visuals and report settings for end user
consumption using Power BI Desktop and Power BI Services. You also see how
Microsoft uses AI tools to enhance Power BI’s Q&A feature. Finally, you see how to
use dashboarding to allow for real-time monitoring of data trends.

Chapter 7

IN THIS CHAPTER

 » Understanding the visualization

configuration differences between
Power BI versions

 » Using Power BI’s built-in artificial
intelligence and machine learning

tools

 » Pumping out reports

 » Creating and configuring dashboards

228 BOOK 2 Using Power BI for Data Analytics & Visualization

Dealing with Table-Based
and Complex Visualizations

Sometimes you need a bit more insight than a single graphical representation to
tell your story. You may even want to manipulate the dataset or perform sorting
activity on a subset of data based on a defined condition. What you want are table-
based visualizations, and Power BI is ready to help, with visualization options
ranging from slicers to tables to matrices. At other times, you may want to drill
down into a many-layered dataset using decomposition trees or key influencers.
With each choice, you can manipulate an extensive dataset with the help of Power
BI’s filtering features.

Zeroing in with slicers
Suppose you want to create a visual drill-down filter on a canvas so the user can
sort and filter a report full of data relevant to their needs. In that case, a slicer — a
dashboard-style tool integrated directly into the report, letting users select values
as they analyze the data — may be just what you need. An example of a slicer can
be found in Figure 7-1.

Tabling with table visualizations
You might scratch your head and wonder why you shouldn’t just go to the data-

set if you want to look at data in a table format. The reason you might want to
use a table visualization versus a plain view of the table has to do with sorting
and searching. Visualizations can give you a glimpse of the world. Still, a table
is handy for displaying precise numerical data and summarized information
found in rows and columns. When a table is enabled for sorting and filtering,
the end user can better understand what the values behind the graphics mean.

FIGURE	7-1:
A slicer example.

D
ig

g
in

g
 in

to
 C

o
m

p
le

x

V
isu

a
liza

tio
n

 a
n

d
 T

a
b

le
 D

a
ta

CHAPTER 7 Digging into Complex Visualization and Table Data 229

Check out Figure 7-2, which uses sorting and filtering to show which unique
company entities (DUNS) were awarded contracts under $1 million for three
NAICS codes (541511, 541512, 541519).

Combing through data with matrices
Assume for a moment that you’re looking to aggregate data across one or more
datasets. Perhaps you need to drill down into the data cross-section to find the
needle in the haystack. Your best choice for mixing and matching aggregate data
to cross-highlight elements requiring attention is using the Matrix visual. You
can select many rows and columns and even drop down to the cellular level to
highlight data. In Figure 7-3, you see a cross-section of the contract award status
for the fictitious company Data Power, highlighting awarded amounts, pending
amounts, in-progress amounts, and lost awards across several federal agencies.

FIGURE	7-2:
Table

visualization.

FIGURE	7-3:
A Matrix example.

230 BOOK 2 Using Power BI for Data Analytics & Visualization

Decomposing with decomposition trees
When you think of an organization chart, you likely envision a chart that displays
leadership to the worker bee. A decomposition tree is a type of chart that allows
you to visualize data across multiple dimensions. Looking at the top value as an
aggregate, you can then drill down into a dataset to a more finite scope. As is
the case with Figure 7-4, the decomposition tree shows total obligations for all
small businesses awarded contracts under $1 million in a fiscal year (total obli-
gation). The decomposition is the amount distributed per state (aggregate) across
all contracts awarded.

Zooming in on key influencers
Ever wonder what the data driver is within a graphic? Or perhaps you’re looking
to measure performance respective of one or more measures in use based on some
form of rank system. Now, it’s realistic to understand that not everything ranks
as triggering an explicit condition. At other times, you see clear visuals pointing
to a scenario where you should pay close attention. Examples of datasets that act
as red flags are signs of unusual drops in sales volume or a significant reduction
in another specific metric. Another extreme is an outlier that stands out like a

FIGURE	7-4:
A decomposition

tree.

D
ig

g
in

g
 in

to
 C

o
m

p
le

x

V
isu

a
liza

tio
n

 a
n

d
 T

a
b

le
 D

a
ta

CHAPTER 7 Digging into Complex Visualization and Table Data 231

sore thumb. Key influencers use the Microsoft AI engine, supported by Azure, to
illustrate impacting metrics at speed and scale. If an influencer is designated an
identifier, the user can complete various forms of analysis, including segment
analysis. As shown in Figure 7-5, a few US states have a huge government con-

tracting presence based on award volume and dollars obligated relative to others.

Using AI Tools to Create Questions
and Answers

It should come as no surprise that Microsoft has integrated its powerful arti-
ficial intelligence and machine learning tools inside of Power BI to help users
ask questions and provide answers about their data. Microsoft’s artificial intel-
ligence engine decides questions for the Q&A feature based on data volume, qual-
ity, and attribution. Looking for trends and relationships, Power BI offers users
two options: Access prebuilt what-if question scenarios already conceived by the
application, or ask the application pointed questions. In Figure 7-6, you can see
potential questions crafted based on the finite number of fields associated with a
given report. Or, you can come up with your own question, as shown in Figure 7-7.

FIGURE	7-5:
Working with key

influencers.

FIGURE	7-6:
Prescribed

questions and

answers.

232 BOOK 2 Using Power BI for Data Analytics & Visualization

Formatting and Configuring
Report Visualizations

All visuals in Power BI are configurable in some shape or form. Though some
visualizations have report-specific configurations based on their predefined cri-
teria, many items can be considered standard across all visualizations. No matter
what, you can format a visual by selecting the item and clicking the Visualization
pane’s handy Paint Roller icon (see Figure 7-8) to access the formatting tools.

Here’s a description of some common formatting choices:

 » General formatting: Here’s where you can select the x-position, y-position,

width, height, and alt text — the description used for accessibility options.

FIGURE	7-7:
Self-created

questions and

answers.

FIGURE	7-8:
Formatting

features found in
the Visualizations

pane.

D
ig

g
in

g
 in

to
 C

o
m

p
le

x

V
isu

a
liza

tio
n

 a
n

d
 T

a
b

le
 D

a
ta

CHAPTER 7 Digging into Complex Visualization and Table Data 233

 » Title: Format the title text, text and word wrapping, color (font and back-
ground), and text features (alignment, font size, and font face).

 » Background: Set the page and visualization background.

 » Lock aspect: Lock a visual element based on the proportion of the specific
object on the canvas.

 » Borders: Format the border colors and radii of your visuals.

 » Shadow: Set the shadow color and position.

 » Tooltips: Format any default or report-specific tooltips (descriptors).

 » Headers: Hide or show headers based on conditions.

Many other options are available, depending on the visualization. The preceding
list covers only the ones you see across all visualizations.

Applying conditional formatting
You may notice an icon on certain formatting areas within the Visualization pane
that includes the fx symbol. You should be aware that you can customize one or
more aspects of the visualization experience whenever you see this. An example of
this button can be found under the Data Labels heading, as shown in Figure 7-9.

A configuration screen appears whenever you press the fx symbol, allowing users
to configure one or more sides of the user experience under certain conditions.
(See Figure 7-10.) For example, for Data Labels, a user can format by color scale,
rules, or field value. Upon selecting the preferred choice, you have the option to
select the condition based on options including Field, Summarization, Minimum,
and Maximum. Of course, there is a Default formatting parameter that is consid-

ered the user baseline.

Configuring the report page
Formatting a report page isn’t much different from formatting a visual element,
except that a report may have multiple visuals. To handle, go straight to the

FIGURE	7-9:
The Conditional

Formatting

button.

234 BOOK 2 Using Power BI for Data Analytics & Visualization

Visualizations panel. Once there, click the Paint Roller icon. On the screen that
appears, you see many options to change the layout and design of your report
page, as shown in Figure 7-11. Most of your options focus on positioning, align-

ment, and color of the overall report experience.

FIGURE	7-11:
Configuring a
report page.

FIGURE	7-10:
The Conditional

Formatting

interface.

D
ig

g
in

g
 in

to
 C

o
m

p
le

x

V
isu

a
liza

tio
n

 a
n

d
 T

a
b

le
 D

a
ta

CHAPTER 7 Digging into Complex Visualization and Table Data 235

A user can format the following page-related features:

 » Page information: Modify the report’s name, turn tooltips on and off, and
enable Q&A across an entire page, not just a specific visual.

 » Page size: Pick the size factor and/or paper type. Depending on how you want
to deploy the report, paper sizes and interface options are available.

 » Page background: Configure the background color of the report page.

 » Page alignment: Decide whether to make the content of their reports
flush-left top or flush-left center on a page.

 » Wallpaper: Brand a report with specific colors or perhaps a logo to take
advantage of the Wallpaper option.

 » Filter pane: To change the Filter pane, an integral part of online-based report
viewing, a user can configure the user experience to match the paper-style
interface with color, transparency, borders, and specific text.

 » Filter cards: Like the Filter pane, Filter cards are specific to a given field (a
column found in a table, for example). They let a user highlight one or more
objects in a report using various aesthetic tools.

The best way to ensure consistency when it comes to report formatting is to create
a page once and duplicate the page configuration multiple times. That saves you
the wasted effort of re-creating the wheel several times over.

Exporting reports

Suppose you don’t want to save the report you’ve created to Power BI Services.
Your singular aim is to print a snapshot in time, thereby saving the data to a PDF
file. That is entirely possible using Power BI Desktop. To export a report without
saving to Power BI Services, follow these steps:

1. Choose File ➪  Export from the main menu.

2. Choose Export from the menu that appears.

3. Save the file either as a Power BI template by providing a description and
pressing OK or selecting PDF file, which automatically generates an
Adobe Acrobat PDF to your Web browser, as shown in Figure 7-12.

The export is saved to the desktop.

236 BOOK 2 Using Power BI for Data Analytics & Visualization

A user who selects the Power BI template option gets the equivalent of a Zip file.
A Power BI template is based on an existing desktop report template. It has report
layout, report pages and visuals, schema, relationships, measures, datasets, and
prebuilt data models. Also, part of a definition file may include queries and query
parameters. The PDF file, on the other hand, has only static copies of the visual-
izations accumulated across all tabs.

Perfecting reports for distribution
Yes, you can create a report in Power BI Desktop and export the output as a PDF
or print it.

If your report has many columns, optimize the report for the screen as printing
or saving the output into PDF will not yield an optimal output. On the other hand,
if there are a contained number of columns, generally 6 – 8 maximum, aim for
creating a Paginated Report. The Paginated Report is optimized for print-based
output.

But, generally, the real purpose of reporting is to share the data online using
either the Power BI service or a mobile app. Microsoft has made it relatively easy
for a designer to create rich reports that can fit on either a computer screen or a
mobile device. The company has recognized that not everything can fit on one
page either — hence, the use of tab management.

Sometimes it makes complete sense to keep any reporting local to the desktop.
An example is sales performance forecasting or human resource management

FIGURE	7-12:
Your export

choices.

D
ig

g
in

g
 in

to
 C

o
m

p
le

x

V
isu

a
liza

tio
n

 a
n

d
 T

a
b

le
 D

a
ta

CHAPTER 7 Digging into Complex Visualization and Table Data 237

distribution. Suppose your goal is to distribute by print or deliver a digital docu-

ment without an Internet connection. In that case, you should consider creating
a paginated report.

Exporting report visuals to a PDF just doesn’t cut it sometimes! That’s why you
want to use the Power BI Report Builder, an extension found at www.microsoft.
com/en-us/download/details.aspx?id=58158.

You can use almost any data source you’d expect to find with Power BI Reports
on your desktop. In fact, you can even use Power BI Services data if you decide to
create one in the application.

Follow these steps to create a Power BI data-based paginated report using Power
BI Services:

1. Go to My Workspace and then find the workspace containing the data
you’d like to use for a paginated report.

2. Open the workspace.

3. Click the workspace’s New button and choose Paginated Report from the
menu that appears, as shown in Figure 7-13.

If this is your first time using Power BI Report Builder, you’re asked to down-
load the application. Otherwise, the application launches Power BI Desktop
along with the Report Builder.

FIGURE	7-13:
The Paginated

Report menu.

http://www.microsoft.com/en-us/download/details.aspx?id=58158
http://www.microsoft.com/en-us/download/details.aspx?id=58158

238 BOOK 2 Using Power BI for Data Analytics & Visualization

After the Report Builder launches, you’re prompted to create a report using the
wizard or a blank report, as shown in Figure 7-14.

4. Choose Blank Report.

5. Using the pane on the left, connect your data sources to the Report
Builder so that you can begin to create a paginated report.

Notice the blank canvas with some typed-in text, as shown in Figure 7-15.

You can paginate a report in many ways, depending on your choice using the
wizard. Whether you select a matrix or a blank canvas, the steps to configure a
paginated report are extensive. To follow the latest approaches as suggested by
Microsoft and its solution offering, go to https://docs.microsoft.com/en-us/
power-bi/paginated-reports/paginated-reports-quickstart-aw.

When formatting visualizations for reporting, remember that Power BI Services
offers a virtually identical experience to Power BI Desktop, including the user
experience. The big difference is that collaboration is possible online while using
the Desktop client; only one user can manage the application simultaneously. What
you know about configuring a report is consistent across all user experiences.

FIGURE	7-14:
The Report

Builder Wizard

screen.

https://docs.microsoft.com/en-us/power-bi/paginated-reports/paginated-reports-quickstart-aw
https://docs.microsoft.com/en-us/power-bi/paginated-reports/paginated-reports-quickstart-aw

D
ig

g
in

g
 in

to
 C

o
m

p
le

x

V
isu

a
liza

tio
n

 a
n

d
 T

a
b

le
 D

a
ta

CHAPTER 7 Digging into Complex Visualization and Table Data 239

Diving into Dashboards

Picture this: a mixture of pictures and text neatly organized like a beautiful canvas.
It tells you that everything in your organization is running smoothly, but then one
of the visuals changes. Alarm bells go off — figurative ones, at least — causing
many phones to ring and SMS messages to be sent. And the person responding
to the emergency doesn’t have to dig too deep, either. Why, might you wonder?
Because the organization has collected a series of datasets available in the form
of a single user experience, not a collection of ad hoc reports. The datasets on
a single canvas all give real-time access to the current state of operations. The
dashboard may appear to be a big mush of data, but it’s meaningful data pre-

sented in a way that those who have mastered the intricacies of the dashboard can
immediately see what’s wrong. This section introduces you to the mysteries of
dashboarding using Power BI Services.

Before your initiation into the mysteries, here are a few critical principles regard-

ing dashboarding with Power BI:

 » You can only create a dashboard using Power BI Services. In fact, to truly
experience the full breadth of dashboarding, you need to have a Pro or
Premium license.

FIGURE	7-15:
The Report

Builder interface.

240 BOOK 2 Using Power BI for Data Analytics & Visualization

 » A dashboard is meant to fill a business void. A report can contain only a

single dataset. Though it’s perfectly okay to use just one dataset in a dash-
board, using dashboards as a way to present multiple datasets is far more
common.

 » A dashboard is a compilation of many objects. It manages that compilation

by limiting itself to only one screen.

 » Each visual in a dashboard is referred to as a tile. In reports, visuals are

referred to as outputs.

 » Power BI Services is web-based service. Power BI Desktop doesn’t require
an Internet connection. Data alerts are only available using Power BI Services.

Configuring dashboards
A dashboard, in its simplest form, is merely a collage of many data objects that
can be pinned to a single page. Most times, the items are visual; at other times,
the content contained in the dashboard may have text, video, audio, or navigation
to other dashboards and data sources. Dashboards can integrate resources using
reports, Excel workbooks, insights, Q&A results, and multimedia across content
providers.

Creating a new dashboard
If you’re logged into Power BI Services, you should ensure that you have a data-

set and some visuals that can be placed on a dashboard. If you’ve never created a
dashboard, follow these steps:

1. In Power BI Services, go to My Workspaces.

2. Click New at the top of My Workspaces.

3. Choose Dashboard from the menu that appears, as shown in Figure 7-16.

4. Enter the name of the new dashboard (see Figure 7-17) and then click

Create.

A blank canvas is set up for you, as shown in Figure 7-18.

D
ig

g
in

g
 in

to
 C

o
m

p
le

x

V
isu

a
liza

tio
n

 a
n

d
 T

a
b

le
 D

a
ta

CHAPTER 7 Digging into Complex Visualization and Table Data 241

FIGURE	7-16:
Creating a

dashboard.

FIGURE	7-17:
Naming a new

dashboard.

FIGURE	7-18:
A blank

Dashboard
canvas.

242 BOOK 2 Using Power BI for Data Analytics & Visualization

Enriching your dashboard with content
You need to keep a couple of points in mind when trying to integrate an object
on your Dashboard canvas. The first thing to consider is what type of objects are
needed to accentuate a planned report compilation on a dashboard. The second
has to do with the layout and number of objects you intend to pin to the canvas.

At this point, you can add a few different items beyond the reports proper:

 » Web content: HTML-based web content

 » Images: Publicly accessible images exclusively

 » Text boxes: Static text that can be formatted

 » Video: Videos that can be embedded either on YouTube or Vimeo

 » Custom streaming data: Real-time data coming from an API, Azure Stream,
or PubNub source

You are probably familiar with most of the content sources described in the pre-

ceding list, but if you are interested in extremely large datasets being presented
in a dashboard, consider using Azure Streams or PubNub. Azure Stream is the
abbreviated name for Azure Stream Analytics, a real-time analytics and complex
event-processing engine designed to analyze and process high volumes of (usu-

ally live) data from multiple sources simultaneously. PubNub, like Azure Streams,
is another real-time analytics streaming service focused on delivering content
using a real-time publish/subscribe messaging process, primarily for Internet of
Things (IoT) devices.

To add content-based objects to the canvas — tiles, in Power BI-speak — follow
these steps:

1. On the Dashboard canvas, go to the Edit menu.

2. Choose Add a Tile, as shown in Figure 7-19.

3. From the new menu that appears, choose one of the listed object types.
(See Figure 7-20.)

Notice that the menu has no Report option.

All the content you place on a dashboard must be publicly accessible. Even if
authentication or uploading is necessary for a user to view the data, Power BI
doesn’t presently support such features.

D
ig

g
in

g
 in

to
 C

o
m

p
le

x

V
isu

a
liza

tio
n

 a
n

d
 T

a
b

le
 D

a
ta

CHAPTER 7 Digging into Complex Visualization and Table Data 243

4. After choosing an option, use the option’s customizing features to place
your content the way you want it.

For example, if you were to choose the Text Box option, a new screen would
appear (see Figure 7-21), where you could add titles, subtitles, and text. You
could even tweak whatever you’ve added by using any of the displayed
formatting commands. When you finish, click Apply. Any changes you’ve made
show up on your dashboard, as shown in Figure 7-22.

FIGURE	7-19:
Accessing the Add

a Tile menu.

FIGURE	7-20:
Selecting a

tile type.

244 BOOK 2 Using Power BI for Data Analytics & Visualization

Once the tile is on the Dashboard canvas, you can move it anywhere you want.
By default, it sits flush-left top unless other tiles are in the region. In the earlier
example, the tile was moved to the upper right corner so that other tiles can be
added later.

FIGURE	7-22:
Customizing a

content tile on

the Dashboard
canvas.

FIGURE	7-21:
Configuring a tile.

D
ig

g
in

g
 in

to
 C

o
m

p
le

x

V
isu

a
liza

tio
n

 a
n

d
 T

a
b

le
 D

a
ta

CHAPTER 7 Digging into Complex Visualization and Table Data 245

Pinning reports

Because you create visualization reports inside Power BI, creating a report Visual-
ization tile is a slightly different process from other content additions. Basically,
you pin the existing report visualization to the dashboard rather than create a new
tile — the asset is already stored in Power BI, so you don’t have to “create” any-

thing. To pin a report visualization, follow these steps:

1. Go to a workspace that contains a report, including one or more visual-
izations you’d like to include in a dashboard.

2. Locate the Pin icon in the Visual header. (See Figure 7-23.)

3. On the new screen that appears, click a radio button to specify whether
the visualization will be part of a new dashboard or added to an existing
dashboard. (See Figure 7-24.)

You’ll add the visualization to an existing dashboard, so you should choose that

option. You then use the drop-down menu to select the dashboard you want.

4. After making your selections, click Pin.

Repeat Steps 1–4 for as many visualizations as you want to include on your dash-

board. The result is a dashboard like the one you see in Figure 7-25.

FIGURE	7-23:
The Pin icon.

FIGURE	7-24:
Opting for a

new or existing

dashboard.

246 BOOK 2 Using Power BI for Data Analytics & Visualization

Pinned visualizations aren’t interactive. Updates are visible only after you refresh
the dataset from which the visualization was derived. If you’re looking for real-
time data, you use the Custom Streaming Data tile.

FIGURE	7-25:
A finished

dashboard

with tiles.

CHAPTER 8 Sharing and Collaborating with Power BI 247

Sharing and
Collaborating
with Power BI

A
fter experiencing the entire data lifecycle across data sources, building

visualizations, learning the purpose of DAX, and publishing reports, your

next step is to share the data from your desktop with everyone who is a

stakeholder in your business. To do that, you have to switch gears and move to

the web because you’re unlikely to want users mangling your Power BI Desktop

data. Instead, they should be using Power BI Services to carry out activities

using a workspace, which is a crucial feature for collaboration and sharing. In

this chapter, you learn about workspaces and how you can collaborate, share,

and accelerate your business operations with monitoring tools, all available using

Power BI Services.

Working Together in a Workspace

Picture yourself in an art museum. You can explore visuals and read anecdotal

tales about each work by yourself or with others by your side. A Power BI work-

space, available in Power BI Services, is analogous to curating content for a

Chapter 8

IN THIS CHAPTER

 » Setting up sharing and collaboration

with Power BI Services

 » Accelerating business operations

with monitoring and performance

tools

 » Troubleshooting data online by

viewing a data lineage

248 BOOK 2 Using Power BI for Data Analytics & Visualization

museum, but of course, it’s data! A workspace is created by a Power BI designer

to manage a collection of dashboards and reports. Think of a workspace as a fil-
ing cabinet. The designer can share the workspace with users based on roles,

responsibilities, and permissions. In fact, the designer can even build an app by

bundling targeted collections of dashboards and reports and distributing them to

their organization, whether that involves just a few users or an entire community.

These apps, called template apps, are distributable on a variety of devices, includ-

ing desktop and smartphone.

Defining the types of workspaces
The idea behind a Power BI workspace is that it should contain all content specific
to an app. When designers create an app, they bundle all the content assets neces-

sary for use and deployment and make it available in the workspace. The content

might include anything from datasets to dashboards to reports.

A workspace may not necessarily include all content types. It may exclusively

contain reports, datasets, or dashboards. It depends on the business purpose and

how the designer wants to share and collaborate with other users.

The workspaces shown in Figure 8-1 are intended for sharing and collaboration
using a collaboration scheme with others. You access them via your My Work-

space (see Figure 8-2), as it is your desktop on the Internet for Power BI. You can
publish data from Power BI Desktop to Power BI Services. Then, you can organize,

store, and share those assets just published online to one or more workspaces

that you might intend to use for collaboration. In Figure 8-3, you find assets that
were originally created in Power BI Desktop now available in a workspace. For the

purposes of this chapter, the project is referred to as thePipeline Identification
project.

Figuring out the nuts and bolts
of workspaces
When you go into Power BI Services, you’re introduced to the Power BI Services

navigation menu. (See Figure 8-4.) To no one’s surprise, data ingestion and access
are a big part of Services.

At the bottom of the list, you find workspaces-related features. A user has a single
My Workspace but can have many workspaces within My Workspace. Just keep in

mind that a user can be active in only one workspace at a given time — the one
highlighted in the navigation.

S
h

a
rin

g
 a

n
d

 C
o

lla
b

o
ra

tin
g

w
ith

 P
o

w
e

r B
I

CHAPTER 8 Sharing and Collaborating with Power BI 249

FIGURE	8-1:
A list of

workspace apps.

FIGURE	8-2:
The My

Workspace

interface.

250 BOOK 2 Using Power BI for Data Analytics & Visualization

Creating and configuring the workspace
Creating a workspace requires that you configure a few items, including its
branding, name, description, access, storage, license mode, app type, and security

settings. To complete this configuration, follow these steps:

FIGURE	8-3:
The content of

a workspace in

Power BI.

FIGURE	8-4:
The navigation

menu in Power

BI Services.

S
h

a
rin

g
 a

n
d

 C
o

lla
b

o
ra

tin
g

w
ith

 P
o

w
e

r B
I

CHAPTER 8 Sharing and Collaborating with Power BI 251

1. Click the Workspace icon on the Power BI navigation menu.

2. On the menu that appears, click the Create a Workspace button.

(See Figure 8-5.)

3. In the new window that appears on the right side, use the settings to

configure the new workspace.

Here are your options, divided between Standard (see Figure 8-6) and
Advanced (see Figure 8-7):

• Upload: Save a photo from your desktop to customize the workspace
experience.

• Workspace Name: Name the workspace based on its content and datasets.

Treat this name as you would for a file collection.

• Description: Describe the purpose of the workspace.

• Contact List: Workspace admins or assigned users receive notifications
about updates in each Power BI workspace.

• Workspace OneDrive: This allows a user to configure a Microsoft 365 group
whose OneDrive shared library is available to assigned workspace users.

FIGURE	8-5:
The Create a

Workspace

button.

252 BOOK 2 Using Power BI for Data Analytics & Visualization

FIGURE	8-7:
Configuring

the advanced

features of a

workspace.

FIGURE	8-6:
Configuring the

standard features

of a workspace.

S
h

a
rin

g
 a

n
d

 C
o

lla
b

o
ra

tin
g

w
ith

 P
o

w
e

r B
I

CHAPTER 8 Sharing and Collaborating with Power BI 253

• License Mode: Select the license type assigning the right to access content in
the workspace. An organization may have access to one type (Pro) or more
than one type (Premium-based).

• Develop a Template App: Select the check box if you want the workspace to
become an app.

• Security settings: Selecting this check box allows administrators and
contributors to make changes to the workspace.

4. When you finish, click Save.

For a refresher on license types and the difference between Pro and Premium-
based licensing, see Book 2, Chapter 1.

Wandering into access management

A big part of sharing and collaborating starts with access management. You must

configure who gains access to workspaces and each of the content assets inside
the workspaces. You as the designer can assign four distinct role types: admin,
member, contributor, or viewer. To change access, follow these steps:

1. Click the Workspace icon on the Power BI navigation menu.

2. Choose the workspace you want to modify from the menu that appears.

3. On the right side of the workspace label, select the three vertical dots.

4. Click Workspace Access from the menu that appears, as shown in Figure 8-8.

FIGURE	8-8:
Assigning

workspace

access.

254 BOOK 2 Using Power BI for Data Analytics & Visualization

5. Enter the email addresses or group accounts of those whose access you

want to control, along with the workspace roles you want to assign them.

6. When you finish, click Close.

When you create a user group, everyone in that user group gets assigned to

the group. Assuming that a user is a part of several user groups, that person is

assigned the highest permission level based on their assigned role. However, if

you embed the user groups, all contained users get permission.

Your ability to interact with data in workspaces is significantly limited unless you
have a Pro or Premium license. You can either view and interact with items or read

data stored in workspace dataflows — nothing less, nothing more.

Dealing with settings and storage

Remember all those settings you configured when you first created a workspace?
You can modify them at any time, including changing the storage type from Pro

to Premium per User, Premium per Capacity, or Embedded. Also, if you’re look-

ing to delete a workspace, you can do so under Premium. To make these changes,

follow these steps:

1. Click the Workspace icon on the Power BI navigation menu.

2. Choose the workspace you want to modify from the menu that appears.

3. On the right side of the workspace label, click the three vertical dots.

4. Click Workspace Settings. (Refer to Figure 8-8.)

Doing so brings up the Workspace Settings pane on the right side of the
screen.

5. Go to the Premium tab.

6. Select the capacity choice that best reflects your need.

7. When you finish, click Save.

Slicing and Dicing Data

As users consume your reports, dashboards, and datasets, you might want to

know how they consume these content assets. That’s why Microsoft has inte-

grated monitoring and alternate data analysis tools within Power BI for those

users who have Pro and Premium licensing to evaluate such metrics.

S
h

a
rin

g
 a

n
d

 C
o

lla
b

o
ra

tin
g

w
ith

 P
o

w
e

r B
I

CHAPTER 8 Sharing and Collaborating with Power BI 255

You can slice and dice usage data in several ways. Options include analyzing data

in Excel as well as accessing a high-level view of your data with the Quick Insights

report. You can also use metrics reports to understand who is accessing and view-

ing your reports and dashboards. Click the three vertical dots next to any reports or

dashboards within a workspace to access these capabilities. You see two options:
one for dashboards (see Figure 8-9) and another for reports (see Figure 8-10).

FIGURE	8-9:
The Dashboard

menu under

Workspaces.

FIGURE	8-10:
The Report

menu under

Workspaces.

256 BOOK 2 Using Power BI for Data Analytics & Visualization

Analyzing in Excel

Sometimes, Power BI may be just a bit too much for a user to evaluate enterprise

data comfortably. Users may want to review a subset of data — so we return to
Microsoft Excel. With the Analyze in Excel option, you can import Power BI data-

sets into Excel. Then you can choose to view and interact with the dataset side-by-

side or independently. Whether your business goal is to create a PivotTable, chart,

table, or Excel output, you need to have the Excel Add-On feature from Power BI

downloaded. Don’t be alarmed when you see a prompt the first time you try to
analyze in Excel, similar to the one you see in Figure 8-11. Once the add-on is
downloaded to the computer, you can begin evaluating your datasets.

Benefiting from Quick Insights
Perhaps you want a quick snapshot of a dataset. Or maybe you’re looking for pat-

terns, trends, and ambiguities in your data. The anomalies in the data can be

challenging to find if you’re first starting out and don’t know where to start look-

ing. However, Power BI at least attempts to do the hard work for you. Its artificial
intelligence engine finds critical trends, patterns, indicators, and anomalies in
your data. With Quick Insights, Power BI automatically produces the top trends

it believes are essential in each dataset for a user to consider evaluating. In the

example shown in Figure 8-12, you have one federal agency, the State Depart-
ment, obligating the lowest dollar amount for COVID-19-related projects relative
to other federal agencies. Similarly, for counties in Virginia, a greater allocation of

dollars was given to Fairfax and Stafford relative to others.

FIGURE	8-11:
The Download

prompt for the

Excel add-on.

S
h

a
rin

g
 a

n
d

 C
o

lla
b

o
ra

tin
g

w
ith

 P
o

w
e

r B
I

CHAPTER 8 Sharing and Collaborating with Power BI 257

Using Usage Metric reports

Ever want to know how popular a report or dashboard is? Or perhaps who
accessed an item in a workspace today, this week, or over time? Microsoft rec-

ognized that data access metrics help improve a designer’s ability to deliver

best-in-class analytics. The Usage Metrics report can help users analyze data

points, including distribution types, views, viewers, viewer rank, views per day,

and unique views per day, as shown in Figure 8-13.

FIGURE	8-12:
The Quick

Insights feature.

FIGURE	8-13:
A usage

metrics report.

258 BOOK 2 Using Power BI for Data Analytics & Visualization

Working with paginated reports

Earlier in this chapter, you see how to create, update, and delete reports

as stand-alone content assets in Power BI Desktop and Services. The stand-

alone report is optimized for data exploration and interactivity. Another type of

report, however, is specific to Power BI Pro and Premium users. That report is the
paginated report, which can be shared directly or as part of a Power BI app.

Unlike web-based reports, paginated reports are meant for print-based consump-

tion. That means they’re formatted to fit well on paper. In fact, you might call the
presentation of these reports pixel-perfect. Suppose you’re looking to render a

highly sophisticated business report PDF, such as a year-end report or profit-

and-loss statement. In that case, a paginated report is an excellent choice.

If you’re given access to a paginated report, you can freely share a report with

others. Also, you have the option to subscribe yourself and others to a report.

In certain reporting frameworks, you’re collating many reports to create a single

report. That isn’t the case with Power BI — in fact, a report designer is creating
a report definition. The definition contains no data; it merely tells you where to
acquire the data, which data to obtain from those sources, and how to display the

data from those sources. After configuring those three parameters, you run the
report, at which time the report processes the definition. The result: a report
that displays the data. As with other reports, you click the three dots next to the

report and choose Create Paginated Report to get started with developing a user-

friendly report.

Troubleshooting the Use of Data Lineage

Business intelligence projects can get complex pretty quickly. Following the flow
of data from one source to its destination might even be a challenge. Suppose

you’ve built a relatively complex, advanced analytical project that contains sev-

eral data sources and maintains numerous reports and dashboards. Each of these

assets clearly has a variety of dependencies. As you review these assets, you might

come upon questions such as, “What will happen to this report if I make a change

to this data point?” Or you may want to better understand how a change you make
will reflect in a dataset.

Data lineage simplifies many complex processes by breaking down processes into
more manageable steps. Think of it as your little detective! With data lineage,

you can see the path your data takes from start to completion, which is crucial

when you’re scratching your head, having hit many roadblocks. Whether you’re

S
h

a
rin

g
 a

n
d

 C
o

lla
b

o
ra

tin
g

w
ith

 P
o

w
e

r B
I

CHAPTER 8 Sharing and Collaborating with Power BI 259

managing a workspace with a single report or dashboard or one with many, make

sure that the impact of a single change in a dataset is recognized by referring to

the data lineage to track those changes. A bonus is that you can resolve many

data-refresh concerns with data lineage as well.

To access data lineage information, follow these steps:

1. Go to the workspace you’re targeting.

2. Click View.

3. Choose Lineage from the menu that appears. (See Figure 8-14.)

Lineage view appears, as shown in Figure 8-15.

As with other workspace features, only specific roles can access Lineage view. You
must be an admin, a contributor, or a member to see Lineage view. Also, you must
have a Power BI Pro or Premium license using an app-based workspace to make

use of the view.

Once you select Lineage, the view of all items found within the workspace appears
on the canvas. Figure 8-15, for example, shows the data lineage for the Pipeline
Identification workspace project previously discussed.

FIGURE	8-14:
Gaining access to

data lineage.

FIGURE	8-15:
An example of

data lineage.

260 BOOK 2 Using Power BI for Data Analytics & Visualization

Lineage view provides a synopsis of all artifacts found in your workspace —
datasets, dataflows, reports, and dashboards, for example. As shown in
Figures 8-16 through 8-19, each of the cards on the canvas as represented in
Lineage view is a separate asset. The arrows between each of the cards explain the
dataflows among assets. Data flows from left to right, letting you observe data as
it goes from the source to the destination. Generally, the flow tells a story, such
as the one in this list:

 » A source produces one or more datasets. (See Figure 8-16.)

 » Reports are generated from datasets. (See Figure 8-17.)

 » A collection of reports presenting a snapshot in time results in the creation of

a dashboard. (See Figure 8-18.)

 » Data flows in particular directions. (See Figure 8-19.)

FIGURE	8-16:
Example of a

Dataset card.

FIGURE	8-17:
A Report card.

FIGURE	8-18:
A Dashboard

card.

S
h

a
rin

g
 a

n
d

 C
o

lla
b

o
ra

tin
g

w
ith

 P
o

w
e

r B
I

CHAPTER 8 Sharing and Collaborating with Power BI 261

Datasets, Dataflows, and Lineage
It’s not uncommon for datasets and dataflows to be associated with external
sources. Some examples may include databases or datasets found in exter-

nal workspaces. You see that — when reviewing the Dataset card, as shown in
Figure 8-20 — a user can drill down to evaluate different factors by choosing one
of these three commands. Each command reveals a different aspect of the dataset:

 » View Details and Related Reports: This command displays all reports tied to

the associated datasets or dataflow.

 » Shows Impact Across Workspace: This command provides you with an

impact analysis of how the dataset or dataflow impacts workspace activity.
(See Figure 8-21.)

 » Show Lineage: This command provides you with a micro-level view of the dataset.

FIGURE	8-19:
Arrows between

each asset in a

workspace.

FIGURE	8-20:
Drilling down into

a Dataset card.

262 BOOK 2 Using Power BI for Data Analytics & Visualization

Defending Your Data Turf

Can you imagine a sensitive report or dashboard being exposed to an unauthorized

user group in your organization? That won’t go over too well because that global
exposure can potentially harm your data and information security practices.

Microsoft integrated a way to codify protection for your data analytics assets.

Called sensitivity labels, this feature (which is available across the Microsoft 365
product family and integrates with Power BI), which allows users to apply labels
to reports, dashboards, datasets, dataflows, and .pbix files. Such labels guard
sensitive content against unauthorized access. It is incumbent on you to label your

data correctly to ensure that only authorized users access your data.

For sensitivity labels to work, edit permissions must be enabled for all content you

want to label in the workspace. Before edit permissions can even be accessed, a

systems administrator must enable sensitivity labels in Settings for users to apply

such permissions in the Power BI workspaces. (See Figure 8-22; more on sensitiv-

ity labels in a few paragraphs.)

You must be part of the security group authorized to apply the sensitivity labels;
otherwise, access is disabled.

Data protection must be enabled for your instance of Power BI so that sensi-

tivity labels can appear. Otherwise, you won’t find any sensitivity labels in the
Sensitivity column in List view of dashboards, reports, datasets, or dataflows with
your workspace.

FIGURE	8-21:
Showing the
impact of an

action across a

workspace.

S
h

a
rin

g
 a

n
d

 C
o

lla
b

o
ra

tin
g

w
ith

 P
o

w
e

r B
I

CHAPTER 8 Sharing and Collaborating with Power BI 263

Your systems administrator must configure sensitivity labels in the Microsoft
Information Protect Admin console, separate from Power BI Admin. This step

must be completed before sensitivity labels can be enabled and usable by any user.

To make changes to a sensitivity label on a report or a dashboard, follow these

steps:

1. Go to the report or dashboard you want to edit.

2. Click the three vertical dots.

3. Choose Settings from the menu that appears.

4. Locate the Sensitivity Label section in the Settings pane that appears (see

Figure 8-23).

5. Choose the appropriate sensitivity label.

6. When you finish, click Save.

In your workspace, the sensitivity label appears in the column under the

appropriate report or dashboard, as shown in Figure 8-24.

To learn how to configure sensitivity labels in Microsoft 365’s information protec-

tion admin console, go to https://docs.microsoft.com/en-us/microsoft-365/

compliance/create-sensitivity-labels.

FIGURE	8-22:
Enabling

sensitivity labels

in Power BI.

https://docs.microsoft.com/en-us/microsoft-365/compliance/create-sensitivity-labels
https://docs.microsoft.com/en-us/microsoft-365/compliance/create-sensitivity-labels

264 BOOK 2 Using Power BI for Data Analytics & Visualization

FIGURE	8-23:
The Sensitivity

Label drop-
down menu.

FIGURE	8-24:
Sensitivity labels
in a workspace.

3Using Tableau
for Data
Analytics &
Visualization

Contents at a Glance

CHAPTER 1: Tableau Foundations . 267

Understanding Key Tableau Terms . 268
Getting to Know the Tableau Product Line 275
Choosing the Right Version . 281
Knowing What Tools You Need in Each Stage of the
Data Life Cycle . 282
Understanding User Types and Their Capabilities 283

CHAPTER 2: Connecting Your Data . 285

Understanding Data Source Options . 286
Connecting to Data . 288
Setting Up and Planning the Data Source . 292
Relating and Combining Data Sources . 294
Working with Data Relationships . 296
Joining Data . 302

CHAPTER 3: Diving into the Tableau Prep Lifecycle 313

Dabbling in Data Flows . 314
Saving Prep Data . 333

CHAPTER 4: Advanced Data Prep Approaches in Tableau . . . 337

Peering into Data Structures . 337
Structuring for Data Visualization . 342
Normalizing Data . 348

CHAPTER 5: Touring Tableau Desktop . 351

Getting Hands-On in the Tableau Desktop Workspace 351
Making Use of the Tableau Desktop Menus 353
Tooling Around in the Toolbar . 365
Understanding Sheets versus Workbooks . 369

CHAPTER 6: Storytelling Foundations in Tableau 371

Working with Dashboards . 371
Creating a Compelling Story . 383

CHAPTER 7: Visualizing Data in Tableau . 391

Introducing the Visualizations . 392
Converting a Visualization to a Crosstab . 419
Publishing Visualizations . 422

CHAPTER 8: Collaborating and Publishing with
Tableau Cloud . 425

Strolling through the Tableau Cloud Experience 426
Evaluating Personal Features in Tableau Cloud 430
Sharing Experiences and Collaborating with Others 435

CHAPTER 1 Tableau Foundations 267

Tableau Foundations

T
ableau is a business intelligence platform that helps users see and under-
stand their data using highly visual representations. Unlike other enterprise
business intelligence platforms, Tableau incorporates business intelligence,

data analytics, data science, data mining, and data visualization into a single solu-
tion. As a result, its capabilities are considered the broadest and deepest for data
evaluation on the market.

In 2019, Salesforce acquired Tableau. At the time, Tableau’s focus on data was big
but not all-encompassing. It included enterprise data applications, data manage-
ment and governance, visual analytics, and end-to-end storytelling. As with every
other platform on the market, machine learning (ML) and artificial intelligence
(AI) have become entrenched in the platform. Salesforce’s Einstein AI engine is
built into Tableau to help accelerate data analytics predictions, provide a strong
recommendation engine, and afford an advanced workflow while touting a low-
code development environment.

Tableau is not a single product but a suite of products that includes Tableau Desk-
top, Tableau Prep, and Tableau Server or Tableau Cloud. Chapter 2 describes the
purpose of each in more detail, but in brief, people use Tableau Desktop to create

Chapter 1

IN THIS CHAPTER

 » Grasping key Tableau terminology

 » Discovering Tableau Desktop and

Tableau Prep installation

prerequisites

 » Identifying which Tableau product

best suits your business needs

 » Discerning what applications you

need to complete the Tableau data

journey

 » Distinguishing user capabilities

throughout the Tableau journey

268 BOOK 3 Using Tableau for Data Analytics & Visualization

their data models. In contrast, Tableau Prep facilitates data preparation. And
when users are ready to collaborate with others, they must publish their outputs
from Desktop and Prep to Tableau Server or Tableau Cloud.

Understanding Key Tableau Terms

Tableau has its own product-specific terminology, but there are also terms you
can’t escape no matter what business intelligence and data analysis tool you use,
whether it’s Microsoft Excel, Microsoft Power BI, IBM Cognos, or others. This
section reviews the most critical Tableau-specific terminology, not the entire
business intelligence dictionary.

Data source

A data source in Tableau comes from anywhere that Tableau can extract, transport,
and load relational and nonrelational data. Sources of data used by Tableau are
often divided into four classifications, shown in the following list along with some
examples of each classification:

 » Files: .csv, .txt, Excel

 » Relational databases: Oracle, SQL Server, DB2

 » Cloud databases and virtualization platforms: Microsoft Azure SQL, Google

Big Query, Amazon Aurora, Denodo

 » ODBC datastores: Datastores using ODBC-related connections

Figure 1-1 shows an overview of the abundant number of data sources you can
connect to in Tableau Desktop.

A Tableau data source may contain multiple data connections to different data-
bases or files, as described previously. The connection information includes where
the data is located, such as the filename and path of the network location, or per-
haps details on connecting to the data source, such as the database server name
and the authentication credentials. Regardless, many data sources can connect in
a single instance of Tableau. Still, categorically, they connect to some file or server
connection, whether local or cloud-based.

T
a

b
le

a
u

 F
o

u
n

d
a

t
io

n
s

CHAPTER 1 Tableau Foundations 269

Data type

Going down the data path a bit more, a data field, which is part of a data source
(see more details in the next section), must always have a data type. A data type
reflects whether the field is a number, a type of date, or a string. For example,
every area code is an integer (703); a date of birth represents a date (01/01/23); and
a state on the U.S. map (“Virginia”) is a string. Users can identify the data type
they are looking for as part of the data field in the Data pane. Each data type also
includes one of several icons, including those represented in Figure 1-2. Although
the examples are not exhaustive, you see a few common examples of data type
icons mapped against their respective data types. The complete list of Tableau
data types includes the following:

 » Text (string) value

 » Date value

 » Date & Time value

 » Numerical value

 » Boolean value (relational data only)

FIGURE 1-1:
A sampling of

Tableau data

sources.

270 BOOK 3 Using Tableau for Data Analytics & Visualization

 » Geographic value (map data)

 » Cluster groups

Data fields
Every time you connect a data source to Tableau, the connection presents the
users with one or more tables from said source. A table includes many data fields
composed of a collection of several data types.

As shown in Figure 1-3, data fields are explicitly defined as dimensions or
measures as the Tableau database is created. Based on data integrity and quality,
Tableau automatically organized the data fields. All data fields containing text
date or Boolean values are dimensions by default. On the other hand, fields con-
taining numerical values are measures. The next section talks about how Tableau
deals with dimensions and measures.

Dimensions and measures

In Tableau, dimensions and measures are both data field types. If the field type
contains non-numeric data, Tableau references the field as a dimension. Examples
include the day of the week, a product category, or geographic data. These variable
types don’t allow you to complete mathematical equations. Here’s an example of
an equation with variable types:

State + City / Country = Invalid

All these items are strings because you can’t add a state plus a city and divide it by
a country to get some magical answer, right?

In Tableau, you can drag each of these fields into a view, which is the part of the
Tableau canvas where a visualization is created. Tableau creates headers for each
data field. That means you can think of each field as a category or a dimension
of data. If the dimension of data is placed in a row, the header label is vertically
placed. The label is horizontally placed if the dimension is placed in a column.
Figure 1-4 shows an example of data placed in both rows and columns.

FIGURE 1-2:
Examples of data

types icons.

T
a

b
le

a
u

 F
o

u
n

d
a

t
io

n
s

CHAPTER 1 Tableau Foundations 271

Measures are numerical data field types. Tableau assumes that these field types
are continuous and tags these values by default. Examples of measures include
temperature and financial instruments. Unlike independent dimensions or values
that do not rely on other data fields, measures are dependent because they allow
you to do the math, as in the following example:

Age 20 + Age 1 / Age 3 = Age 7

As with dimensions, if you drag a measure into a view, Tableau creates a continu-
ous axis. If a measure is placed in a row, the axis is vertical, whereas a column is
horizontal.

FIGURE 1-3:
Examples of

data fields.

FIGURE 1-4:
Rows and

column data

for dimensions

in Tableau.

272 BOOK 3 Using Tableau for Data Analytics & Visualization

In Figure 1-5, you can see that each row (dimension) contains a state, city, and
zip code. The column data looks at each value individually and then aggregates
the data in the data setup. For example, three individual records in Bethesda, MD
20817 contain children identified. Aggregated, the measure is SUM (3).

Continuous versus discrete

As you’ll quickly realize, Tableau separates many concepts based on mathemati-
cal reasoning. If a field is based on mathematical representation, Tableau refers
to this data as continuous. On the other hand, if the data is non-numeric, the data
is known as discrete.

When it comes to continuous data, you are looking for data that is unbroken,
whole, or without interruption. That means data that contains a range of values
such as temperature, time, or monetary values. If the data can be added, aver-
aged, or aggregated and appear as a measure in Tableau, you can almost certainly
assume that the value is continuous.

Discrete data is almost always individualized, separate, and unique data. You can
have only a particular value. For example, do you have more than one shoe size
at a time? Can you be at more than one place at a given location? How many dis-
tinct individuals can you claim on a personal tax return? The number 2.39 is not
possible; 1, 2, or 3 is more like it.

With discrete data, you have no way to add, average, or aggregate the data points
because the values will always be unique by default.

When dragged onto the Tableau View area, discrete data appears as a blue pill to
form a discrete axis on a chart. Continuous data, on the other hand, appears as a
green pill to form a continuous axis on a chart.

FIGURE 1-5:
Rows and

column data

for measures

in Tableau.

T
a

b
le

a
u

 F
o

u
n

d
a

t
io

n
s

CHAPTER 1 Tableau Foundations 273

Filter

The capability for filtering data is one of the essential features of any business
intelligence solution associated with big data. Tableau lets a user filter data,
whether an individual view contains a few records or an entire data source with
millions of records based on dimensions, measures, or values.

As with databases, filtering helps users see only the data they need based on
targeted criteria. When using Tableau filters, you can visualize the data in a read-
able, actionable format. The real benefit of filtering is streamlining data to limit
the number of records for improved performance. An example filter would be to
filter all the U.S. states with the word New. The result set would return a response
of New Hampshire, New Jersey, New Mexico, and New York.

Various filter types are available in Tableau, including the extract, data source,
context, dimension, measure, and user filters.

Aggregation

Combining data, also known as aggregation, is not uncommon in a business intel-
ligence platform. In Tableau, aggregating measures or dimensions is pervasive.
However, aggregation is often numerically focused, meaning focused on the use
of measures. Suppose you add a measure to a view. In that case, the aggregation is
applied to the specific measure by default, which varies based on context.

As an example, pretend for a moment that you’re the CEO of a Fortune 100 com-
pany (think Walmart, Coca-Cola, or Exxon). One of your data analysts prepares
a report for you that presents the minimum, maximum, summary, and average
number of sales opportunities for a specific product in each region. The sce-
nario would appear as follows (with the bold signifying each data field that is
aggregated).

Opportunity Value = 20,000 products sold in five varieties across 4 regions with

a customer population of 1,000,000 households.

You’ve now calculated the opportunity value by utilizing the aggregation func-
tions, a way to calculate a set of values and derive a single value.

There are limits to what you can aggregate. You can only limit data found in rela-
tional data sources. Multidimensional data sources contain data that has already
been aggregated, which is impossible to complete. Note that at this time, multi-
dimensional data source aggregation is supported only in the Windows edition of
Tableau Desktop.

274 BOOK 3 Using Tableau for Data Analytics & Visualization

Workbook and worksheet

Tableau hasn’t deviated much from other industry-leading products when
it comes to the name of file and formatting conventions. There is a Tableau
workbook, the main Tableau file, which contains a collection of sheets. The col-
lection of sheets represents the workbook much like that in Microsoft Excel or
Microsoft Power BI. In Tableau, a worksheet is a single file within a workbook.
A worksheet is an element within a dashboard or story.

Although the workbook represents the proverbial catalog of dashboards or stories,
the worksheet is a single element or a view. Figure 1-6 represents an example of
a single worksheet contained within a Tableau workbook.

Here are points to consider when thinking about the use of workbooks and
worksheets:

 » A Tableau worksheet may contain a single view with many shelves, cards,

legends, and analytics panes, which are included as part of a single sidebar

on a single page to tell a story.

 » When you add many worksheet pages to a workbook, you can generate

a dashboard, which is a collection of views from many worksheets.

 » As you create many worksheets within a workbook, you are compiling a story,

which is a sequence of worksheets that paint a picture to fuse information.

 » Most notably in Tableau Desktop, but also in Tableau Cloud, you can combine

views of data by dragging and dropping fields onto the Tableau shelves, which

are part of a worksheet and which help you create presentations.

FIGURE 1-6:
A Tableau

worksheet.

T
a

b
le

a
u

 F
o

u
n

d
a

t
io

n
s

CHAPTER 1 Tableau Foundations 275

In Book 3, Chapter 5, you take a tour of a worksheet and workbook to see how to
collect, organize, and extract data.

Getting to Know the Tableau Product Line

Tableau is a business intelligence platform that provides tools for users to engage
and interact with data across all phases of the analytics life cycle. Such tools and
techniques include data management and governance functionality, visual ana-
lytics and storytelling, collaboration and communication, and deep learning that
leverages artificial intelligence–powered capabilities.

The Tableau platform brings together all user types at the interaction layer. It
offers various analytic and data management options (discussed in upcoming
sections), and the connections to all data sources are either cloud based, database
ready, or file based. You can deploy all Tableau solutions either in Tableau Cloud,
which is a public cloud infrastructure or by hosting them in an on-premises envi-
ronment. Every layer of the Tableau platform allows for tight integration with
industry-standard APIs, and a core tenet of the platform is the application of
governance, security, and compliance. Figure 1-7 shows the core platform archi-
tecture of Tableau, and the following sections offer an overview of each of the
Tableau products. The interaction layer contains each of the end-user connection
types. Data connections can be with the cloud, a database, or a file. The deploy-
ment options with Tableau include Tableau Cloud, Tableau Server, or Tableau
Public. It’s the two middle layers, the analytic and data management options, that
this book heavily focuses on. Each organization has its own approach, and as you
review your data, you figure out what the best choice is for your organization. At
any time, as shown on the left side of Figure 1-7, all facets of the model should
incorporate security, governance, and compliance. On the right side, APIs, also
known as Application Programmable Interfaces, can be integrated to handle one
or more of the layers in the Tableau architecture.

In this book, coverage is limited to the foundational tools in the Tableau product
line. Salesforce has targeted products for data management, artificial intelligence,
and CRM integration not covered. Refer to Tableau For Dummies, 2nd Edition, for a
more in-depth discussion of the other products.

Tableau Desktop

Every dataset doesn’t just jump from the data source location to Tableau Cloud or
Tableau Server instantly. You follow a process to explore the data and turn it into
a meaningful model for consumption. Next, a transformation process must occur

276 BOOK 3 Using Tableau for Data Analytics & Visualization

to support data visualization, and then you need a mechanism by which to publish
the data. Tableau Desktop is where the entire process begins.

Tableau Desktop is, first and foremost, the platform people use to independently
complete data exploration and visualization activities before collaborating with
others. Users complete these activities by using an intuitive drag-and-drop inter-
face. Anyone looking to independently evaluate their data and make decisions
without cleansing or publishing their data for collaboration can stop at Tableau
Desktop. Collaboration requires other tools described in this chapter.

Figure 1-8 depicts the process by which data is consumed and utilized across
Tableau, most notably between Tableau Desktop, Tableau Prep, and Tableau
Server or Cloud.

As you read the upcoming chapters, you’ll recognize that there is a consistent
process to handle data ingestion, manipulation, and visualization using Tableau
Desktop. Here is a high-level overview of the steps you may take from data inges-
tion to visualization, starting with Tableau Desktop:

1. Connect to your data source in Tableau Desktop (raw data source).

Remember that there are a few data connection types, some of which allow

real-time updates, whereas others require manual updating over time.

FIGURE 1-7:
The core Tableau

platform

architecture.

T
a

b
le

a
u

 F
o

u
n

d
a

t
io

n
s

CHAPTER 1 Tableau Foundations 277

2. After Tableau Desktop recognizes the data source, manipulate the data

for data models and visualizations.

If you must cleanse and transform data, you need to head to Tableau Prep to

complete those activities.

After the data sources go through the cleansing process (also referred to as

Extract, Transform, and Load [ETL]; see Book 3, Chapter 2), Tableau stores that
data in its memory.

You can now create one or more visualizations by querying the dataset in

Tableau Desktop, as shown in Figure 1-9.

FIGURE 1-8:
How you work

with data across

Tableau Desktop,

Prep, Server,

and Cloud.

FIGURE 1-9:
The Tableau

Desktop

interface.

278 BOOK 3 Using Tableau for Data Analytics & Visualization

3. Having readied your data for prime time, publish it using one of the

following three options, depending on what type of Desktop client

you have:

• Tableau Server licensing requires Tableau Desktop to save the workbook

to a private, on-premises, or private, cloud-hosted environment. Either

option requires a paid subscription.

• Tableau Cloud licensing requires Tableau Desktop to save the workbook

to the Salesforce software-as-a-service (SaaS)–hosted environment, which

requires a paid subscription.

• Tableau Public limits your ability to save files anywhere but the Tableau
Public Cloud.

You don’t have data-sharing limits if you are licensed for Tableau Desktop

Personal or Professional. Suppose you choose not to procure a Tableau license

and instead use Tableau Public for free. In that case, you can only share your

data with others openly, limiting your ability to protect sensitive data.

Tableau Desktop and Tableau Prep work together. Some users bypass the

process of cleansing their data using Tableau Prep and jump straight to

Desktop. In fact, you may recognize this being done in some of the examples

in this book. Don’t panic — no pertinent steps were skipped.

Tableau Prep

Unlike other enterprise business intelligence platforms, the extract, transport,
load (ETL), and cleanse process occurs in a separate application within the solu-
tion suite, Tableau Prep. When users need to combine data sources, shape and
manipulate sources to behave a certain way, clean data that may contain a specific
attribution, or analyze a massive dataset at scale before data visualization, they
use Tableau Prep. The data prep environment offers users three different views
of their data:

 » Row-level profiles

 » Column-level profiles

 » The entire dataset

Depending on the task at hand, a user can fine-tune the data, including by making
real-time changes within Prep using the same drag-and-drop experience avail-
able in Tableau Desktop. Figure 1-10 shows the Tableau Prep Builder interface.

T
a

b
le

a
u

 F
o

u
n

d
a

t
io

n
s

CHAPTER 1 Tableau Foundations 279

Tableau Prep is often the glue that combines raw data and the final product
because raw data often needs some TLC. The more data sources you introduce
within Tableau Prep, the more the Tableau artificial intelligence engine works to
reconcile the proper business operations given a source’s data types and fields.
After the data is cleansed, it can go to two possible destinations: Tableau Desktop,
to continue with the data visualization and analysis journey, and Tableau Server
(on-premises) or Tableau Cloud (online) for storage, with the intent of sharing
and collaborating with other end users later.

Data cleansing is a complex process requiring users to evaluate their data for for-
matting errors, duplicates, incomplete values, inconsistencies, and a host of other
potential issues. When you have a bit of data cleansing to do, use Tableau Prep.
If you know that your data is sound and the problem is a one-off, updating your
work using Tableau Desktop will be just fine.

Tableau Server and Tableau Cloud

There are a few differences between Tableau Server and Tableau Cloud. Still, at the
core, their purposes are precisely the same. Tableau Server requires the enterprise
user to host the environment. In contrast, Tableau Cloud is a SaaS-hosted infra-
structure managed by Salesforce. From a licensing perspective, there are some
caveats to using each of these Tableau environments, as noted in Table 1-1.

Server and Cloud are purpose-built to distribute, share, and collaborate user
and organizational datasets, visualizations, dashboards, and reports across the
Tableau enterprise, most notably between Tableau Desktop and Tableau Prep.

Figure 1-11 shows an example of what the Tableau Cloud user experience provides.

FIGURE 1-10:
The Tableau Prep

Builder interface.

280 BOOK 3 Using Tableau for Data Analytics & Visualization

Organizations requiring tighter security, especially in regulated settings, or per-
haps wanting to create custom applications with embedded analytics functionality
should consider Tableau Server over Tableau Cloud because SaaS platforms come
with obvious shared infrastructure limitations.

TABLE 1-1	 Licensing Differences between Tableau Server and
Tableau Cloud

Tableau Server Tableau Cloud

License Structure Core-based or role-based. Role-based.

Administration Hardware is required. A server can be
virtualized. All updates are the end user’s
responsibility, including backups and
data recovery.

Fully managed by Salesforce in the
Tableau Cloud SaaS environment.

Capacity No specific limits beyond environmental
resource constraints.

Site-wide limits exist based on
feature type, role-based license type,
and utilization of back-end resources.

Sites Can have an infinite number of sites on
the same Tableau Server. A distributed
architecture is not allowed.

Multiple sites are charged additional
fees, but cross-region support
is provided.

Identity
Management

Allows identity-management platform
support, such as Microsoft Active Directory
domain integration for syncing users
and groups.

Must use a Tableau Account to log in.

Monitoring Can only use Server logs and analyze the
PostgreSQL repository.

Prebuilt monitoring tools are
available through Tableau. No server
log access.

FIGURE 1-11:
The Tableau

Cloud user

experience.

T
a

b
le

a
u

 F
o

u
n

d
a

t
io

n
s

CHAPTER 1 Tableau Foundations 281

Choosing the Right Version

If you’ve read this entire chapter, you’ve probably realized by now that purchas-
ing the right Tableau product may require you to purchase more than just one
product. That’s not to say that Salesforce won’t sell users a single license; they
will, of course, sell parts of the engine. But getting the whole experience requires
buying Tableau as a bundle.

Tableau has come up with product bundles based on user activity type. The bun-
dles are known as Viewer, Explorer, and Creator.

 » Viewer: Allows users to access existing dashboards. This option is available

only to teams and organizations. The licenses start at $15.00 per user as of

this writing.

 » Explorer: Allows users to edit existing dashboards. This option is available

only to teams and organizations, and the licenses start at $42.00 per user as

of this writing.

 » Creator: Allows users to connect to data, create vizzes (visualizations), and

publish dashboards. Every Tableau subscription requires a minimum of

one Tableau Creator license. These licenses start at $70.00 per user as of
this writing.

Each Creator license entitlement provides an organization with a single copy

of Tableau Desktop and Tableau Prep. The catch is that the Creator license

provides an initial single-user license to Tableau Server or Tableau Cloud.

Additional Creator licenses are then tied to the original Creator license

entitlement of Tableau Server or Tableau Cloud.

When you purchase the Creator license, it’s best to decide early on what

server architecture best suits your organization because once you’re hooked,

it’s hard to go back. Your choice is an on-premises server or the cloud.

If you decide to go with the Explorer or Viewer user type, you must have a mini-
mum of a single Creator license. The license is tied to an organization, hence the
team or group requirement noted previously. So, for example, Data Inc. may have
one Creator doing all the development work but can have many Explorers and
Viewers completing limited activities inside Tableau Desktop. Depending on your
license type, features are enabled or disabled upon purchase based on the pro-
cured license type.

282 BOOK 3 Using Tableau for Data Analytics & Visualization

Knowing What Tools You Need
in Each Stage of the Data Life Cycle

The Tableau portfolio isn’t a one-and-done solution platform but rather a col-
lection of business intelligence solutions. Undoubtedly, every tool mentioned in
this chapter has a place in the Tableau data life cycle. This book focuses on three
solutions to bring the life cycle together.

 » Tableau Desktop: The solution that helps users create reports, dashboards,

stories, and graphs from a workbook containing datasheets. The data can be

shared locally or publicly.

 » Tableau Prep: The solution within the suite of Tableau products meant to

help users prepare data, including combining, shaping, extracting, transform-

ing, and cleansing for analysis in Tableau Desktop.

 » Tableau Cloud: The solution that allows users to share, collaborate, and

manipulate visualizations and datasets created in Tableau Desktop and

Tableau Prep.

Keep in mind that some of the stages in the Tableau Data Life cycle are one
hundred percent based on human intervention, meaning that no tool can answer
every business intelligence problem. For example, can a tool craft a business
hypothesis? Some artificial intelligence agent can probably propose a question or
two for you. Still, it doesn’t know the dataset’s context, hence the need to com-
bine, shape, and transform the data to its destination among the data life cycle
stages. Table 1-2 shows which tools you apply to each life cycle stage.

TABLE 1-2	 Tools to Utilize For the Tableau Data Life Cycle

Life Cycle Stage Tableau Desktop Tableau Prep Tableau Cloud

Identify the question or business need N/A N/A N/A

Get raw data No Yes No

Choose mapping techniques Yes No No

View and prepare datasets Yes Yes No

Develop visual insights Yes No No

Publish and share insights No No Yes

T
a

b
le

a
u

 F
o

u
n

d
a

t
io

n
s

CHAPTER 1 Tableau Foundations 283

As Table 1-2 reveals, the only stage that requires more than one tool is viewing and
preparing data. The cleansed data moves between Tableau Desktop and Tableau
Prep when data is extracted, transformed, and loaded during the cleansing and
querying process. First, Tableau Prep readies the data. After the data is cleansed,
Tableau Prep allows for the data to once again be shared with Tableau Desktop for
visualization. To summarize, most of the work in this stage is completed in Tableau
Prep because there is cleansing and organization going on, not visualization.

Understanding User Types
and Their Capabilities

Previous sections in this chapter provide a brief look at the three user classifica-
tions (Viewer, Explorer, and Creator) for the sole purpose of helping you under-
stand what license you need to procure. This section helps you better understand
how to get the most out of Tableau as a solution-based platform, and takes a deep
dive into what each user type can accomplish.

There are two licensing models: user-based and core-based. Both Tableau Cloud
and Tableau Server require at least one Creator license, which comes as a user-
based license. For on-premises users, though, Tableau Server is available on a core
(server-based) consumption model. To purchase a Viewer or Explorer license, a
Creator license is necessary.

Viewer

The Viewer is by far the most restricted user. Viewers are often the team mem-
bers who need data gathering and viewing activities, not the data creation tasks.
Viewers can interact with the data, dashboards, and visualizations by being
informed reviewers of the sources. These users can collaborate within their
assigned Tableau environment with other users through commenting, download-
ing, and creating custom views of existing published data. But that is where their
involvement stops. The ability to create new assets is prohibited for the Viewer.

Viewers who want to learn more about Tableau Cloud’s capabilities because most
of your interaction occurs when data is published should read Book 3, Chapter 8.

Explorer

As a power user, the Explorer has far more ability to act upon published data,
including workbooks. The Explorer can create calculations, change chart types,

284 BOOK 3 Using Tableau for Data Analytics & Visualization

and craft new filters. Unlike the Viewer, who can only review the data and com-
ment, the Explorer can save the files they modify as separate workbooks or over-
write the original file with the necessary site permissions. The Explorer has a
sliver of developer capacity. They can build their workbook from scratch directly
on either Tableau Server or Tableau Cloud. However, the entire publishing life
cycle is by no means comprehensive like that of the Creator, who has the most
access rights.

Creator

The world is your oyster if you are a Creator because you have all the tools to mas-
ter the entire Tableau data life cycle. Suppose you have a single Creator license.
In that case, by default, you are the system administrator for your Tableau Cloud
or Tableau Server instance. However, when many parties are involved, includ-
ing those with Explorer and Viewer licenses, the Creator must assign roles and
responsibilities to each licensed Viewer and Explorer. Creators in larger organi-
zations have a varying degree of system administrative privileges, which means
that some may be able to provide users with licenses. In contrast, others may have
project-level access.

Creators are granted a single license of Tableau Prep to support data acrobatics
from cleansing to extracting and loading activities across multiple data sources.
In addition, a user is granted access to a full version of Tableau Desktop (not one
with reduced functionality), which allows for developing robust data visualization
solutions. Finally, at the onset of a user contract, you get to pick between Server or
Cloud for publishing and managing your user across all Tableau solutions.

As a Creator, you’ll probably want to read the entire book because all topics are
applicable. Still, pay special attention to topics pertaining to Tableau Prep.

There are many caveats to be aware of for the Creator user and what activities
one might need to engage in, so look carefully before you leap into your licensing
selection choice. First, a Server license is often far more expensive in the long run
than a Cloud consumption license, especially if you procure based on cores con-
sumed. (Cores consumed refers to how many CPUs are on a given server.) Second,
after you lock in your adoption of the Server or Cloud model, it’s hard to transi-
tion from one to another. To learn more about the process of migrating from
Server to Cloud or vice versa, head over to https://help.tableau.com/current/
blueprint/en-gb/bp_move_to_cloud.htm.

To get into the weeds of each licensing model, go to https://help.tableau.com/
current/server/en-us/license_product_keys.htm.

https://help.tableau.com/current/blueprint/en-gb/bp_move_to_cloud.htm
https://help.tableau.com/current/blueprint/en-gb/bp_move_to_cloud.htm
https://help.tableau.com/current/server/en-us/license_product_keys.htm
https://help.tableau.com/current/server/en-us/license_product_keys.htm

CHAPTER 2 Connecting Your Data 285

Connecting Your Data

S
tarting up any Tableau product is like turning on a car for the first time.
You need a set of keys, some fuel in the car to operate, and a basic under-

standing of how to operate the vehicle. The data source is the holy grail to
running the Tableau engine. If you have no data source, the application won’t go
very far. More data provides better insights, but if you have a small set, it is still
better than nothing.

In this chapter, you explore the various data source options at your fingertips.
After showing you how to figure out which option is suitable for your need, the
chapter walks you through how to plan the configuration and customization of
the data source. Sometimes the process is fluid because only one person needs to
access the data, whereas in other situations, thousands, if not millions of users,
may access the data, and this chapter looks at these considerations. The last half
of the chapter talks about data source construction before you dig deep into the

cleansing and prep stage of your data.

Many people want to jump straight to analysis and skip this part, and you may
find doing so to be adequate. But if the data impacts a broader audience, the step-

by-step process described in this chapter should undoubtedly make you a strong
data analyst using Tableau Desktop, Tableau Prep, and Tableau Cloud.

Chapter 2

IN THIS CHAPTER

 » Learning data connectivity

fundamentals across all Tableau

solutions

 » Exploring the different ways to create
meaningful data relationships in

Tableau

 » Getting hands-on experience in

joining and blending data sources

 » Building ad-hoc data connectors in

Tableau Desktop using clipboard data

286 BOOK 3 Using Tableau for Data Analytics & Visualization

Understanding Data Source Options

Whether you are using Tableau Prep or Desktop, the first activity you must com-

plete is to connect to data. Otherwise, guess what? You’ll get nothing out of using
Tableau. That’s right: zip!

Looking for the Connect button, shown where the arrows point in Figures 2-1
and 2-2, is your golden ticket no matter which Tableau solution you intend to use.

A few flavors of data sources are available across Tableau Desktop, Tableau Prep,
Tableau Server, and Tableau Cloud. Tableau has conveniently broken down your
search for options into a few classifications. Users can search for data in the
following places:

 » Directly from Tableau Server, in Tableau Server, and Tableau Cloud

 » From files such as text, JSON, Access, PDF, and XLS

 » From a server such as Microsoft SQL, MySQL, Oracle, and Amazon Redshift

Figure 2-3 shows a simple data source login for users with Box accounts, and
Figure 2-4 shows a complex data source configuration for users needing to con-

nect to Oracle.

FIGURE 2-1:
The Connect

button in

Tableau Prep.

C
o

n
n

e
c
tin

g
 Y

o
u

r D
a

ta

CHAPTER 2 Connecting Your Data 287

FIGURE 2-2:
The Connect

button in Tableau

Desktop.

FIGURE 2-3:
A simple data

source login for
users with Box

accounts.

288 BOOK 3 Using Tableau for Data Analytics & Visualization

As you’ll notice, within these categories, you have many options to choose from
in Tableau. The list is lengthy, with 100+ connector types and counting across

enterprise applications if you have the Professional Edition of Tableau Prep and

Desktop. Among the data sources, it’s essential to know that Tableau is not mar-

ried to fixed data structures; it can handle semi-structured and unstructured data
for analysis. (See the “Data structure differences” sidebar to understand how
these types differ from one another.)

Connecting to Data

To connect to a data source in Tableau, you must first enter the necessary
credentials. You usually complete the connection on a single screen unless the
application has two-factor authentication (which is becoming more common
these days). Tableau then provides a prompt indicating that you are now con-

nected (see Figure 2-5).

But then what? Is connecting to a data source that simple? The answer is yes! You
can start playing with your data at this point. In Figure 2-6, you can see the exam-

ple is connected to a SharePoint list, which is a Microsoft data source. Now you can
start importing the data from one or more of the available SharePoint lists.

FIGURE 2-4:
A complex

data source
configuration for

users needing
to connect

to Oracle.

C
o

n
n

e
c
tin

g
 Y

o
u

r D
a

ta

CHAPTER 2 Connecting Your Data 289

Making the Desktop or Prep connection

Whether you launch Tableau Desktop or Tableau Prep, you make a data connection
by using the Connect pane. As described earlier in the chapter, each application
has the Connect pane in a slightly different location. Your best bet is always to
locate the left panel and find either the Tableau logo (Desktop) or the connection
with the plus symbol (Prep) to initiate the connection without fussing around the
respective applications. Table 2-1 describes the different data source connection
types accessible for Desktop-client users.

In the Tableau documentation, the term “Connect pane” is specific to Tableau
Desktop, whereas “Connections pane” is specific to Tableau Prep. Both terms
refer to the same element, however.

FIGURE 2-5:
Connecting to a

Microsoft data
source, with
the prompt

confirming the
source active.

FIGURE 2-6:
Accessing a
OneDrive +

SharePoint data

source using
the Microsoft

Data Source

Connection.

290 BOOK 3 Using Tableau for Data Analytics & Visualization

Tableau provides the native connectors to the most common file and database
types under the respective Connect menus. Assuming that you cannot find your
enterprise data source, you have a few options. If a JDBC or ODBC connection can
consume your application, quickly utilize these options to create a data source.

Suppose you can’t find what you’re looking for? In that case, consider creat-
ing your own web data connector or even a connector plug-in using the Tableau

Connector SDK. Tableau provides limited support for connection to these options,
and details for building such functionality is well beyond the scope of this book.

Tableau adds new data connector types to its platform all the time. If you have
the 2018 edition of Tableau Desktop and Tableau Prep, you are guaranteed to
have far fewer data connections available than the version this book is based on

(the 2022 edition). To keep up with the latest data connectors, go to https://
help.tableau.com/current/pro/desktop/en-us/exampleconnections_

overview.htm.

Locating the Server and Online connections

Connecting to a data source inside the Tableau ecosystem is easier than connect-
ing to another vendor’s product. However, you may expect the process within
Tableau to be a bit more descriptive than it is, given that Tableau offers two
publishing-oriented products. Still, when you know where to go to get started,
connecting within Tableau should go pretty smoothly.

TABLE 2-1	 Connection Types in Tableau Desktop and Prep

Source Type Description

Tableau Server or
Tableau Cloud

Users connect to the on-premises Tableau Server address or the URL-provided
Tableau Cloud address.

File Users obtain a file by pointing to it on their desktop. There are 25+ file types
currently supported. File types can contain structured, semi-structured, and
unstructured data.

Server application Most enterprise applications and enterprise database sources fall into this category.
Examples include Oracle, SAP, IBM, Salesforce, and Microsoft applications. You can
also integrate with data virtualization platforms such as Denodo and Snowflake.

Other
database (JDBC)

Users can create a connection to a Java Database Connectivity (JDBC) API-based
data source.

Other
database (ODBC)

Users can create a connection to a Microsoft Open Database Connectivity (ODBC)
interface data source.

https://help.tableau.com/current/pro/desktop/en-us/exampleconnections_overview.htm
https://help.tableau.com/current/pro/desktop/en-us/exampleconnections_overview.htm
https://help.tableau.com/current/pro/desktop/en-us/exampleconnections_overview.htm

C
o

n
n

e
c
tin

g
 Y

o
u

r D
a

ta

CHAPTER 2 Connecting Your Data 291

You can find all connections under a single menu, the Server menu. In that menu,
you go to the menu option Sign-In, enter the URL of the Tableau Server into the
Server field, and then press the Connect button. Or you can connect to Tableau
Online using Quick Connect by pressing the link to Tableau Online, as seen in
Figure 2-7. Tableau then prompts the user to log in to their Tableau Cloud account,
as shown in Figure 2-8.

FIGURE 2-7:
The Tableau

Server and

Tableau Cloud

data connection.

FIGURE 2-8:
Log in to Tableau
Online using the

Quick Access link.

REQUESTING A NEW CONNECTOR

There are thousands of IT products on the market that produce data. It should be no
surprise that Tableau does not provide every connector that’s available. Someone in
the greater Tableau community has likely developed a connector to fill the void. To save
yourself some time, head to the Ideas on Community section of the Tableau website
to search for your connector first at https://community.tableau.com/s/ideas.
If it has been requested, vote for it. Tableau may add it to the commercial product line.
Other times, a developer may tinker with the SDK, come up with the one-off connec-
tor, and share it with the greater community. Head over to the various open discus-
sions within the Tableau community and see if someone has solved your problem.
Most times, you’ll find that your problem has already been solved, and you can easily
download the solution in a few clicks.

https://community.tableau.com/s/ideas

292 BOOK 3 Using Tableau for Data Analytics & Visualization

Setting Up and Planning the Data Source

Connecting to a data source doesn’t mean you’re done with the data source
management’s planning and design stage. Not even close, in fact. Setting up the
data source is step one; bending it to your liking such that it can produce exem-

plary result sets is a different activity. This and the following sections in this
chapter describe how to go about analyzing and preparing the data before data
analysis, visualization, and publishing.

Although this is not a self-help book, it’s time to ask yourself some critical ques-

tions about your wants and needs on data! Is your goal to quickly explore your
dataset? If so, you may want to attach your data source to Tableau Desktop or
Tableau Prep and take a quick tour of what’s under the hood. Perhaps build a
few visualizations and see whether you can discern anything of use. You’ll get a
good sense from your first pass of how good (or bad) the data quality is. And yes,
you can figure out how much data cleanup is required. The most significant step
is to consider whether the data meets the business needs. Another more pivotal
question as you plan is whether the data source meets your needs in terms of
source location, cleanliness, customizability, security, and performance maturity.
Table 2-2 explores these questions.

TABLE 2-2	 Data Source Planning Categories and Questions

Category Description Question

Location Identify where the data source resides. Is the data source on-premises or cloud-based?

Is the data source a file or part of an
application?

Is the data source a database?

Does Tableau offer a data connector? If not, will
a data connector need to be created to support
the database source, such as an ODBC or JDBC
connection?

Access Identify the specific functionality
needed to operate in the location,
including authentication and
authorization credentials.

Who should have access to the Tableau
data source?

What level of access should the users have
based on the data source location?

What type of user filtering and row-level security
may be utilized in accessing the data source?

C
o

n
n

e
c
tin

g
 Y

o
u

r D
a

ta

CHAPTER 2 Connecting Your Data 293

Regarding data connections, be aware that Tableau Bridge (referenced in the
Performance category of Table 2-2) is a unique connection type. Tableau Bridge
is a lightweight client software application that sits on the desktop or local server

within your computer network (think on-premises). The client software interacts
with Tableau Cloud to ensure that the data source on the local machine, which
connects to a private network data source that Tableau Cloud can’t reach ordinar-

ily, always remains up to date.

Category Description Question

Cleanliness Identify how well structured and
formatted the data may be, leading
to a range of extract, transport, and
load (ETL) processes that might be
completed using Tableau Prep Builder.

How well structured is the data source?

Is Tableau Data Prep required to clean and
automate prep flows?

Are there any calculations and manipulations
that may best be done natively in Tableau?

Should data be removed to improve speed and
performance or enhance data cleanliness?

Customization Identify ways that require unique
naming conventions or formatting
requirements that allow the data to
align with Tableau’s native capabilities.

Is the data source adequate, or will add-on
capabilities be required, such as calculations?

Will the tables and fields within the data source
require modification to be understood to
explore dimensions and measures better?

Scale Identify the pervasiveness of the data
source and how it should be utilized
within Tableau. Scaling data includes
model maturity and combining of data.

Should data be spread among several systems
or centrally contained in a single environment?

Does it make sense to combine data from each
table into a single source of truth?

Security Identify where the data source is
created and utilized, such as the native
workbook or perhaps an embedded
data source published to Tableau
Server or Tableau Online.

Can the data source remain independent,
or does it need to be embedded in another
data source?

Where will the public data source be published?

Who owns the data source, ultimately?

What authentication and authorization schema
is required for the dataset?

Performance Identify the type of connection required
to support the data source throughout
its entire life cycle.

Does the data source require a live connection,
or is a data extract adequate?

If a data extract is adequate, is a refresh
schedule planned using Tableau Server or
Tableau Cloud?

If Tableau Cloud is being used, will Tableau
Bridge also be used?

294 BOOK 3 Using Tableau for Data Analytics & Visualization

Relating and Combining Data Sources

No two data sources come in the same shape and size. The typical scenario with
Tableau is to have Tableau from a table in one source, with a second source having
another like-kind table. You connect both sources in the same workbook and then
drag the two tables onto the canvas to build a single view. But building a single
view may be easier said than done, assuming that your data can be combined
across multiple databases.

Note: Some of the steps in this chapter use a dataset about Worldwide
University rankings found on Kaggle.com, which you can download at https://

www.kaggle.com/datasets/aneesayoub/world-universities-ranking-2022.
The download contains four CSV files, which you use to extract data into Tableau
to complete the following and later steps in this chapter.

To connect to the data sources you’ve downloaded, follow these steps:

1. Connect to the data source.

2. Drag a table or sheet of data to the canvas, which then releases the table
or sheet onto the canvas for manipulation.

3. To add another table from the same data source (in this example, that is;

see Step 7 to use a different source), drag that second table or sheet to
the canvas and release it.

One of two things might happen:

• A “noodle,” or a line between two items in the Flow pane, forms indicating
that an automatic relationship is created after you map the three like-kind
fields. (See Figure 2-9.)

• The Edit Relationship dialog pops up, prompting you to provide Tableau
with the fields that must be mapped, depending on the warning symbol’s
message. (See Figure 2-10.)

For Step 3, you want to map the Acceptance Rate for all tables against the
Top 300 Universities of the World, resulting in the noodle shown in Figure 2-9.
Otherwise, you’ll continue to get a result like Figure 2-10.

4. Continue adding tables to the canvas as needed, assuming that the

tables come from the same data source under these conditions.

There is a slight modification to the preceding steps if you require multiple
data connections.

http://Kaggle.com
https://www.kaggle.com/datasets/aneesayoub/world-universities-ranking-2022
https://www.kaggle.com/datasets/aneesayoub/world-universities-ranking-2022

C
o

n
n

e
c
tin

g
 Y

o
u

r D
a

ta

CHAPTER 2 Connecting Your Data 295

FIGURE 2-9:
Four tables

connect due

to data field
similarities, as

indicated by

the noodle.

FIGURE 2-10:
An edit

relationship
dialog appears,
prompting the
user to select

the fields.

296 BOOK 3 Using Tableau for Data Analytics & Visualization

5. To connect to a different data source, switch to one of the other available
data connections in the left pane by dragging the desired table to the

canvas and releasing it.

Multiple data sources appear the same way as a single data source does: the
only difference is that two data sources now form a connection.

6. Complete the activity by following Steps 2–4, except you should switch
between data connections when needed.

Relationships are the most practical way to combine data in Tableau because
they are flexible and allow users to combine data across multiple sources, espe-

cially if you have many tables to analyze. You can also join and blend tables, as
described in “Joining Data” and “Blending data from multiple sources,” later in
this chapter.

Working with Data Relationships
Creating relationships is the cleanest and most simplistic approach a user can use
to combine data across the Tableau platform. Another benefit is that a relation-

ship limits your need to join and blend data — activities that can compromise data
quality and reliability. Relationships have numerous advantages, especially when
dealing with multi-table data sources. Of course, they have a few disadvantages as
well. The following sections offer more details on the advantages and disadvan-

tages of using relationships.

Knowing the advantages of relationships
Here are the main advantages of creating relationships:

 » Users do not need to configure a join type between tables. You need to select
only the fields that relate to the tables.

 » Tables remain distinct; no comingling of data occurs because there is no data
merging.

 » Relationships automate joins on your behalf to support the appropriate
visualization type, hence no guessing. As the user conducts analysis, the
relationship join is flexible, and changes are made to the data.

 » Unmatched measures don’t get dropped; they remain preserved, ensuring
that no data loss occurs.

C
o

n
n

e
c
tin

g
 Y

o
u

r D
a

ta

CHAPTER 2 Connecting Your Data 297

 » Relationships help to avoid data duplication and filtering issues, which often
arise with joins.

 » Relationships generate the correct aggregations and join types so that during
analysis, you have little concern regarding the data types associated with a
field in use within a worksheet.

Seeing the disadvantages of relationships

And now for some of the downsides of relationships:

 » Poorly formatted data, especially multi-table data, can make analysis
very complex.

 » Using any data filter can limit Tableau’s ability to utilize join culling, which
involves simplifying queries by eliminating unnecessary join statements.

 » Unmatched values across relationships can be left in limbo.

 » Attempting to mix and match multiple fact tables with multiple-dimension
tables, thereby resulting in modeling shared or conformed dimensions, does
not yield fruitful results.

Using a join can be tricky to manipulate, so use joins cautiously. Furthermore, if
you are trying to use a join with published data; doing so is not supported using
any version of Tableau.

There is one more use case when relationships may not yield the results you want:
limited support of relational connections. Tableau has many prebuilt connectors.
Some offer exceptional data interoperability, including the use of many logical
tables. A few of those connectors limit you to a single logical table, however. You
won’t be imagining things if you attempt to use sources such as Cubes, SAP HANA,
JSON files, or Google Analytics and can pull only a single table, not an infinite
number. Other examples of limited support include adding a stored procedure
to a connection that commits the connection to a single logical table and pub-

lishing data to Tableau Cloud or Tableau Server, where data sources cannot be
interrelated.

Creating relationships

To get a grasp of relationship building, it’s a good idea to try your data in Tableau
Desktop before putting it through Tableau Prep Builder. Doing so lets you see how
the fields are labeled and whether any meaningful relationships can be built in the
logical layer of the data sources based on the default view of the canvas. Taking

298 BOOK 3 Using Tableau for Data Analytics & Visualization

the same previous dataset from Kaggle.com (see “Relating and Combining Data
Sources,” earlier in this chapter), follow these steps to run your data through
Tableau Desktop:

1. Open Tableau Desktop.

2. Connect all four csv files into Tableau Desktop as provided in the zip
package you’ve downloaded from Kaggle.com (assuming that you’ve

extracted them all).

3. Drag the table derived from the data source Top 300 Universities of

World.csv to the canvas (see Figure 2-11).

4. Locate the table from the data source Asia Top 100 Universities.csv and

drop the table onto the canvas when you see the noodle form between
the two tables.

A connection forms (see Figure 2-12).

FIGURE 2-11:
Dragging the Top

300 Universities
of the World table

onto the canvas.

FIGURE 2-12:
A connection

forms between
two tables when
they’re dragged

onto the canvas.

http://Kaggle.com
http://Kaggle.com

C
o

n
n

e
c
tin

g
 Y

o
u

r D
a

ta

CHAPTER 2 Connecting Your Data 299

Editing relationships

Although Tableau attempts to create a relationship between existing data types
(for example, string to string or integer to integer) and field names, it may not
always find a perfect match. You should anticipate that you’ll need to come up
with meaningful relationships based on the data types matching appropriately.

To edit the relationships in Tableau Prep Builder, you’ll need to identify which
columns require editing. After you’ve identified the specific columns in Tableau
Prep Builder, follow these steps:

1. To change the fields, select the field pairs between the two tables.

2. Select the field’s name from the two drop-down lists to create a pair of
matching fields.

3. Repeat Steps 1 and 2 to create multiple field pairs for relationships.

Sometimes, Tableau doesn’t detect constraints, which happens when data has
been labeled poorly. Poor labeling is the case with the dataset shown in this
chapter, which is why you have had to do a bit of data acrobatics to map fields
like Name to name even though the field names are identical. Tableau isn’t per-

fect. The field names must be identical, including the capitalizations (not kidding
here). When these situations occur, you’ll have a many-to-many relationship
form, leading to referential integrity being set to some record match. Tableau’s
settings accommodate safe choices, offering flexibility to your data sources. That
means your data should accommodate full outer joins (which you find out more
about in the next section). Users optimize queries by aggregating table data way
before forming joins for the data. The change results in all column and row data
becoming available for analysis.

Moving tables to create different
relationships

The example using the Top 300 Universities in the World+ dataset in this chapter

contains four tables (which you can download from https://www.kaggle.com/
datasets/aneesayoub/world-universities-ranking-2022, as mentioned in
“Relating and Combining Data Sources,” earlier in this chapter.) The primary
table, Top 300 Universities in the World.csv, connects with Asia Top 100 Universi-
ties.csv, Europe Top 100 Universities.csv, and Pak Top 100 Universities.csv.

https://www.kaggle.com/datasets/aneesayoub/world-universities-ranking-2022
https://www.kaggle.com/datasets/aneesayoub/world-universities-ranking-2022

300 BOOK 3 Using Tableau for Data Analytics & Visualization

Say you wanted to move one of the tables because there may be a better relation-

ship between two tables instead of the primary table, Top 300 Universities. Here
are two ways to move a table:

 » Drag the table requiring the change to the new table with which you intend
to establish the relationship. In this example, you move the PAK Top 100
Universities next to Asia Top 100 Universities (see Figure 2-13).

 » Alternatively, you can hover over the table and click the arrow. Then select
Move To and select your preferred alternative table location (see Figure 2-14).

Changing the root table of a relationship

The root table is considered the primary data table within a Tableau data model.
When a model integrates several like-kind tables, but one table offers a superior
set of fields, you may want to switch the primary table with one of the connecting

FIGURE 2-13:
Dragging a

relationship on
the canvas to a

new table.

FIGURE 2-14:
Hovering over a

table to select an
alternative table

location.

C
o

n
n

e
c
tin

g
 Y

o
u

r D
a

ta

CHAPTER 2 Connecting Your Data 301

tables. For example, if you determine that the connecting table called Asia Top
100 Universities.csv is a superior fit compared to the primary table Top 300 Uni-
versities of World+, you can simply swap the corresponding tables, as shown in
Figure 2-15. To swap the root table with another, right-click the logical table that
should become the primary table in the model. Then select Swap with Root.

Removing tables from a relationship

As you review the data across one or more tables, you may find a table that’s not
helpful, and removing it from the relationship on the canvas would make sense.
To remove a table, follow these steps:

1. Hover your cursor over the table on the canvas.

2. Right-click the table and then select Remove.

3. Release the mouse to make the table disappear.

Deleting a table on a canvas also automatically deletes all related relationships
to the primary descendant table.

In the example shown in Figure 2-16, the table Europe Top 100 Universities.csv is
selected for removal.

Before you remove a table from a relationship, hover your cursor over a noodle
to view the relationship status. Check for three things: the relationship between
the tables; the cardinality of the relationship; and the fields mapped between the
relationship.

FIGURE 2-15:
Changing the

root table of a

relationship.

302 BOOK 3 Using Tableau for Data Analytics & Visualization

Joining Data

Creating relationships is generally the preferred approach to establishing a data

source. You may sometimes want to use a join to control data, however. Whether
you want to ensure specific types of filtering or reduce filtering deliberately, the
join is the technique a data analyst must use to extend the relationship.

A join allows the merging of data from two or more tables into a single table.
Under ordinary circumstances, if you merge data from many tables into one, you
find lots of redundant data, and filtering can be quite cumbersome. Sometimes the
values are even returned null or empty. For these reasons, you need to select the
correct type of join to determine how Tableau handles your data.

Joins and the more simplistic relationship act differently in Tableau because they
are defined in different data model layers. Relationships are defined at the logical
layer of the data source. In contrast, joins are defined at the physical layer of the
data source.

Depending on your data-shaping requirements, the Tableau tool you’ll use varies.
Tableau Desktop is more than adequate when you’re looking to complete basic
shaping and create standard joins. If you need to create multiple joins or do a bit of
data cleanup from modifying field names, changing data types, and establishing
filters or sorts, head over to Tableau Prep Builder.

Understanding join types

Most users stick with one of four join types: left, right, inner, and full outer. The
other option is union, depicted along with the other types in Figure 2-17. In the

FIGURE 2-16:
Removing a table
from an existing

data relationship.

C
o

n
n

e
c
tin

g
 Y

o
u

r D
a

ta

CHAPTER 2 Connecting Your Data 303

following sections, you can see how to create a join, handle various clause types,
and deal with null values generated during join creation.

Setting up join clauses

You perform a join by setting up one or more join clauses. The join clause tells

Tableau which fields are shared between the tables, including how to match the
corresponding rows. For example, rows should be equal when the same iden-

tifiers are aligned in the results table using the equal (=) operator. Similarly,
you can search for values such as not equal to, less than, less than or equal to,
greater than, and greater than or equal to, as shown in the drop-down menu in
Figure 2-18.

FIGURE 2-17:
The most

commonly used
join types.

FIGURE 2-18:
Operator types

supported in
forming joins.

304 BOOK 3 Using Tableau for Data Analytics & Visualization

Joins are not limited to a single clause, either. They can contain multiple clauses.
For example, you may have multiple parameters, such as "Name = Name" and

"State = State", as indicated in the .csv files evaluated in this chapter. The
conditions must be considered valid for both rows to be joined. Other conditions
may include when the Name is shared, but the State is not. The join clause may
appear as "Name = Name" and "State <> State".

Unlike other business intelligence platforms, Tableau supports join clauses
containing calculations. You can concatenate fields “[City] + [State] =

[City]+[State].” That said, only certain data sources support calculations with
join clauses. Most file and relational sources are supported, whereas enterprise
applications are hit or miss.

Creating a join

To create a join, you need to identify at least one data source, preferably two.
You may have a single source, or there may be multiple tables in a database or
worksheets in an Excel spreadsheet representing different sources. You may also
want to use completely different data sources, which is the case with the exam-

ple throughout this chapter that uses the four CSV files from Kaggle.com (see
“Relating and Combining Data Sources,” earlier in this chapter). If you intend to
combine tables using a cross-database join, Tableau applies a color scheme to the
canvas.

Color coding is at the heart of many features within Tableau. Although Tableau
offers the user many opportunities to configure dashboards, worksheets, and sto-

ries so that they’re accessible for public distribution of work, discriminating col-
ors for dimensions and measures inside applications such as Tableau Desktop and
Tableau Prep do not support American Disability Act (ADA) Section 508 Compliant
standards for its interfaces. As for visualizations, it is up to you to ensure that
outputs meet accessibility requirements.

Follow these steps to create a join:

1. To create a join, drag one table to the canvas; then drag a second table

to the canvas.

A Join dialog box appears, enabling you to create a data join. Select the
join type.

A relationship forms, as shown in Figure 2-19.

2. Double-click the first table to open the join canvas.

A separate window opens, showing a join canvas on the right with all the tables
listed in the left pane (see Figure 2-20).

http://Kaggle.com

C
o

n
n

e
c
tin

g
 Y

o
u

r D
a

ta

CHAPTER 2 Connecting Your Data 305

3. Select one or more of the tables to create joins.

Drag one or more tables onto the first table you’ve created from the
Connections pane, and place it on top of the first table. You’ll be asked to
create a union or join. Select the join, not a union. At this point, you’ll want to
select the join type to create after the new relationship has been formed on
the canvas.

4. Repeat this process as many times as you need to by double-clicking

another table from the Data Source pane and dragging it to the canvas

as needed to build additional join clauses as desired.

5. When you have all the desired tables on the canvas, click the join

relationship icon to select the join type desired.

FIGURE 2-19:
A relationship

forms when
you drag two

additional tables
to the canvas.

FIGURE 2-20:
Creating a
join table.

306 BOOK 3 Using Tableau for Data Analytics & Visualization

You need to configure the field mappings based on the join type. In the
example shown in Figure 2-20, all fields are tied to the Name or Country.

6. When you’re done, close the Join dialog box, and the join canvas is saved.

For this example, three tables were selected. The Top 300 Universities of World.
csv was connected with Pak Top 100 Universities.csv to form an inner join, which

results in a table containing only matching values from both tables. A full outer join

(which results in a table containing all values from both tables) was also formed
between the Top 300 Universities of World.csv with Europe Top 100 Universi-
ties.csv.

Joining fields that contain null values
It goes without saying that if you use joins and constrain data in a table, some
fields will have null values. If fields used to join tables do not contain any values,
the system returns rows with null values. Null values may not be returned with
single-connection data sources, however, and believe it or not, such sources are

very popular with Tableau users. That’s why Tableau provides various options to
allow users to join fields containing null values with other values, which also con-

tain null values. To handle these conditions, follow these steps:

1. Go to the Data Source page in Tableau Desktop.

2. Select the Data menu option, then locate Join Null Values to Null Values

on the menu that appears.

If this option is grayed out, as it is in Figure 2-21, that means it’s not available to
your data source. This can happen if, for example, you add a second data
source connection. In that case, the join reverts to the default behavior,
meaning it has decided to eliminate rows with null values.

FIGURE 2-21:
Tableau has

eliminated rows
with null values

in this case, as
indicated by

the greyed-out
option.

C
o

n
n

e
c
tin

g
 Y

o
u

r D
a

ta

CHAPTER 2 Connecting Your Data 307

Blending data from multiple sources

Suppose you want to combine data from multiple sources. In that case, you need
to blend your data to bring in additional information across many data sources so
it can be displayed with the primary data source within the same view.

Whereas blends and relationships can combine data from multiple data sources,
queries don’t combine data; they query each source independently. Results are
aggregated and presented visually in a single view. Blends, in contrast to queries,
can handle different details and work with different published data sources. You
should consider using blending, especially when the goal is to link fields across
many data sources on a sheet-by-sheet basis when combining data sources.

To blend data, follow these steps:

1. Connect to your primary data source. Then, in the Data pane, select the

sheet that contains the data you want to blend.

The first data source becomes the primary.

2. Click the Data Blending icon in the top-right corner of the screen, which
means you can then select the secondary data source you want to blend
with the primary data source.

This source then becomes the secondary data source.

Drag a field from the secondary data source to the Filters or Columns/Rows shelf.

The example uses a workbook that includes Citizen Data and a new data
source containing universities in Washington, D.C. The data fields (those in
Sheet1) show the potential blending opportunities in Figure 2-22. The blended
opportunity, as described in the relationship, is depicted by the noodle in
Figure 2-23.

Watch how Tableau automatically creates a relationship between the two data
sources based on the fields you’ve dragged using the orange noodle, as shown
in Figure 2-23.

If the line is grey, that often means there is a broken link icon. To remedy this
situation, click the icon next to the field that links the two data sources. Find a
field that is appropriate to match both sides of the match. Then the blended
relationships turn orange, representing an active link.

You can’t get away with a single data source when blending. There is a manda-

tory requirement for a primary and secondary data source. The first data source
becomes the primary, which defines the view. The secondary source is restricting,
helping only to keep values that have corresponding matches to the primary data
source. For all purposes, you should consider a blend like a left join.

308 BOOK 3 Using Tableau for Data Analytics & Visualization

Joins and blending have subtle differences. Data blending does simulate the
traditional left blend. There is one caveat to keep in mind about joins and blend-

ing when considering data aggregation. Joins combine data and aggregate after
the fact. Blends aggregate first and then combine the data. In other words, it’s all
about the order in which you combine the data.

FIGURE 2-22:
Blending data

within the Data
pane using

Tableau Desktop.

FIGURE 2-23:
How a data

model reflects
blending between
two data sources.

C
o

n
n

e
c
tin

g
 Y

o
u

r D
a

ta

CHAPTER 2 Connecting Your Data 309

Working with clipboard data
Not all your data may be nice and neatly formatted in a data source such as a
relational database, enterprise application, or even an organized file format. You
may want to pull in data from an outside source for one-off analysis. Rather than
spend hours (or days) trying to craft the perfect data source, and then connect-
ing it to Tableau only to be disappointed, you have a quick solution to test your
assumptions on the fly. Tableau allows users to copy and paste a sample dataset
directly into a workbook, as shown in Figure 2-24.

In a nutshell, to do so Tableau creates a temporary data source on your behalf
so that you can begin analyzing the data. As soon as you paste the data onto the
data source page, Tableau creates a new connection to the existing data source.
Then, if you paste data on a worksheet, Tableau saves the source to your Tableau

Repository. Keep reading for more on how to make all this happen.

Next, follow these steps to copy Excel data from your clipboard into Tableau
Desktop creating an ad hoc data source:

1. Open Tableau Desktop and go to the Data Source page.

2. Next, go to the Data Menu and either Select Paste Data as Connection

or Paste Data as Data Source (Figure 2-25).

FIGURE 2-24:
An Excel

spreadsheet with
data being copied

to the clipboard.

310 BOOK 3 Using Tableau for Data Analytics & Visualization

You’ll want to select Data as Connection.

A new connection, called Clipboard_221120T195 in this case, is created.
A worksheet is also generated consisting of a single table. The worksheet
derives field names automatically. In this case, you can rename the field names
to more appropriate ones by right-clicking the field name and selecting the
Rename option. Note that the field name cannot be the same as the remote
field name (the clipboard data field name), as shown in Figure 2-26.

3. (Optional) To rename the connection, go to the Data Source pane, locate
the newly created Data Source, right-click the connection, and select
Rename.

In this case, the connection is renamed as WRLC Schools, as noted in
Figure 2-27.

4. To rename the worksheet, go to the Flow pane and right-click the data
source. Select Rename, which allows you to enter a unique name in the
Sheet type instead of the generic “Sheet1.”

In this example, Sheet1 was renamed to the logical table name of Top 15 WRLC
Schools.

After you have saved all your changes, the data source can easily integrate into

the existing model, assuming that you’ve made the necessary relationship tweaks
such as streamlining the data in Name, City, State, and Country to be consistent.
Figure 2-27 presents the full integration of the Top 15 WRLC Universities into the
data model.

FIGURE 2-25:
Choose

Paste Data as
Connection or

Paste Data as
Data Source.

C
o

n
n

e
c
tin

g
 Y

o
u

r D
a

ta

CHAPTER 2 Connecting Your Data 311

FIGURE 2-26:
Changes made to
the newly created

data connection

and workbook.

FIGURE 2-27:
Multiple data
connections

integrated into
a single data

model.

CHAPTER 3 Diving into the Tableau Prep Lifecycle 313

Diving into the Tableau
Prep Lifecycle

I
f you ask a thousand data analysts what they spend the most time completing,

from sourcing data to data visualization and reporting, most folks will say data

preparation. Unless you craft the dataset on your own, ensuring that every field
maps perfectly to a T, you seldom have pure data entry. Tableau recognizes that

this issue is one of the complexities in the data life cycle, which is why one of the

first products introduced in the solution stack was Tableau Prep Builder. For those
needing to twist and bend their data so that it can be shaped and integrated for

mass consumption, Tableau Prep Builder is your one-stop shop to handling all
these data life cycle activities, from combining, shaping, and cleaning the data

before analysis in Tableau Desktop to publishing to Tableau Server or Tableau

Cloud.

Tableau Prep Builder is, first and foremost, an Extract, Transport, Load (ETL)
tool that connects data from various sources. After connecting to and combining

the data sources, users can drag and drop tables into the Flow pane to shape and
cleanse the data using a combination of operations such as filtering, pivoting,
joining, and unioning data to get it in tip-top shape.

Chapter 3

IN THIS CHAPTER

 » Exploring key features and

functionality of Tableau Prep Builder

 » Managing data flows across Tableau
Prep Builder, Tableau Desktop, and

Tableau Cloud

 » Mastering data cleansing and

preparation in Tableau Prep Builder

 » Saving Tableau Prep Builder data for

personal and collaborative use

314 BOOK 3 Using Tableau for Data Analytics & Visualization

In this chapter, you discover the key capabilities necessary to build flows from
inception to execution in Tableau Prep Builder.

Dabbling in Data Flows
Flow is the one term not covered in the Book 3, Chapter 1 discussion of Tableau
Fundamentals. That’s because the concept is too extensive to compartmental-
ize into a paragraph. Instead, it requires an entire chapter because Tableau Prep
Builder is synonymous with the data flow. So, what is a data flow, exactly?

You have likely heard a smidge about Extract, Transform, Load (ETL). If so, you
understand that moving data through one or more cycles or flows is the basic
concept of ETL. The flow in Tableau Prep Builder refers to the movement of data
between the source and its destination, whether it’s the extracted file or a pub-
lished server, for end-user consumption.

The following pages take you through the steps of the flow life cycle, including
connecting data in Tableau Prep Builder, configuring the dataset, adding data,
building and organizing flows, and maintaining flows.

Connecting the data dots

You recognize that your data needs a little TLC. A few simple data tweaks inside
the database or the file won’t cut it. In that case, you must first connect your data
to Tableau Prep Builder. To do so, you need to make sure your data source can
connect to one of several options available:

 » One of the 100+ built-in connectors provided by Tableau

 » Custom connectors built using the SDK, ODBC, or JDBC offering

 » Prebuilt data sources compatible with Tableau

 » Tableau Data Extracts or Catalogs

Assuming that all the datasets pass muster and you’ve successfully mastered
connecting your data (covered in Book 3, Chapter 2), you’re ready to move on to
the Tableau Prep Builder panes, and most notably the Flow pane, to create your
first flow.

D
iv

in
g

 in
to

 th
e

 T
a

b
le

a
u

P

re
p

 L
ife

c
y

c
le

CHAPTER 3 Diving into the Tableau Prep Lifecycle 315

Going down the data flow pathway
After you’ve connected your data source, the real fun begins. Your first step is
to create an input step, and then you can go on your merry way down the Prep
Builder pathway of creating flows. The more steps you create, the more actions
the data must undergo in the life cycle.

Are you scratching your head yet? The preceding paragraph mentions the word
step, but you didn’t start a flow. Thought that may be confusing! As soon as you
associate a data source with Tableau Prep Builder, you’ve created a data inges-
tion point so that your data can start flowing down its eventual path. Multiple
input steps can exist, as can multiple data files. The chapter covers some of these
nuances shortly.

Note: Throughout this chapter’s examples, I utilize a specific dataset on salary
predictions, found at https://www.kaggle.com/datasets/thedevastator/jobs-

dataset-from-glassdoor.

If you’ve added a single file, Tableau Prep Builder automatically adds the input
step into the Flow pane (shown in Figure 3-1). All attributes associated with the
file are displayed in the Input pane.

The Flow pane is your main workspace to interact with your data visually and
build the flows. The Input pane is where you complete all configurations from
the time data is ingested. As noted previously, you can see fields, data types, and
data-set examples from the Input pane.

FIGURE 3-1:
The Tableau

Prep Builder

workspace.

https://www.kaggle.com/datasets/thedevastator/jobs-dataset-from-glassdoor
https://www.kaggle.com/datasets/thedevastator/jobs-dataset-from-glassdoor

316 BOOK 3 Using Tableau for Data Analytics & Visualization

Should you want to add multiple files or sources, each data source becomes a new
flow, as shown in the Flow pane in Figure 3-2.

After you create a data flow, you find that Tableau makes it easy to locate the flow
right from the Start page of the Tableau Prep Builder application, where you see
all recent flows (Figure 3-3). If you’re using Tableau Prep Builder on the web,
head over to Explore. From there, you can select all web-based flows recently
published or created on the internet.

FIGURE 3-2:
Adding more than

one data source

creates additional

flows within the
Flow pane.

FIGURE 3-3:
Recent flows in

Tableau Prep

Builder.

D
iv

in
g

 in
to

 th
e

 T
a

b
le

a
u

P

re
p

 L
ife

c
y

c
le

CHAPTER 3 Diving into the Tableau Prep Lifecycle 317

Configuring the data flow
Configuring the dataset after the data connection has been established is the first
step in the preparation process. You might not know at this very moment how

much work needs to be done to your flow, but you’ll get a sense of it as you start
to configure. As soon as you add the input to the flow, you’ll be able to evaluate
what data should be included in the final output.

If you are utilizing an Excel or text file, you can make changes directly from the
input step. Other data sources, such as those meaty databases and enterprise

applications, require some of the changes discussed to be completed in the data

source. It varies by platform.

From the input step, what can you do exactly? If you click the specific item in the
Flow pane, your options appear in the Input pane. Such options, indicated by their
corresponding letters in Figure 3-4, include the following:

 » Data Source: Rename, refresh, and describe the data source.

 » Settings: Establish data connection-specific configurations.

 » Tables: Select one or more tables to include in Input pane.

FIGURE 3-4:
Configuring data

in the Input pane.

318 BOOK 3 Using Tableau for Data Analytics & Visualization

 » Data Sample: Produce data samples based on changes made in Input pane.

 » Changes: Review all changes made in the Input pane.

 » Profile pane: Remove fields from the dataset or modify fields, including
changing data types and field names.

 » Filter Values: Apply filtering functionality.

 » Search: Search for specific fields.

Going with the data flow
Connecting the first data source is easy-breezy. Adding data is where things
become a bit more challenging. You have several options: Refresh the native data

in the input step, edit the connection to re-recognize the data source and its
changes, or create a union among files or database tables in the input step. Read
on to find out more about each of these options.

Refreshing data in the input step

When your data source is still active, data changes are inevitable. You’ll want to
refresh the data, whether it’s added to an Excel spreadsheet or becomes more
entries to another file structure. To refresh the file input steps, you can do one of
the following:

 » Go to the Flow pane at the top menu.

 » Click the Refresh button (Figure 3-5, left image) to refresh all input steps.

 » If you want to refresh only a single input step, locate the drop-down arrow

near the Refresh button and then select the input step from the list that

requires refreshing. You can also select the input step by right-clicking and

pressing Refresh (Figure 3-5, right image).

FIGURE 3-5:
Input step

Refresh options.

D
iv

in
g

 in
to

 th
e

 T
a

b
le

a
u

P

re
p

 L
ife

c
y

c
le

CHAPTER 3 Diving into the Tableau Prep Lifecycle 319

Extract input step updates

What I am about to tell you might sound a bit counterintuitive, but it’s one of the
quirks of Tableau Prep Builder. Suppose you have a Tableau extract or perhaps a
database-driven source. In that case, it’s best to edit the connection instead of
refreshing the data source described in the previous step because data changes can

throw off the integrity of the connection if data updates are frequent. You want
to be as efficient as possible without having to restart all over again under these
conditions.

To ensure the freshest data, follow these steps:

1. In the Connections pane, right-click your preferred data source.

2. In the Flow pane that appears, select Edit on the step for which you’ll be
editing the connection source.

The menu will allow you to edit the source or add additional sources to an

existing flow.

3. Reconnect to the original data source by signing into the database or

selecting the Tableau extract.

If you believe that your file in the previous step did not refresh properly, reconnect
to the data source instead.

What happens when things still don’t seem one hundred percent? The folks at
Tableau suggest you remove and re-add the step to the flow. Tableau at first indi-
cates that an error exists if you have a complex flow, but this situation is entirely
correctable. The steps to ensure that removal and re-addition are successful are
as follows:

1. Go to the Connections pane.

2. Right-click the source and select Remove.

3. The flow temporarily pauses where the source was formerly.

4. Create a connection to the updated file source.

5. Drag and drop the table to the Flow pane to initiate the creation of a
flow; then, you can add one or more input steps (see Figure 3-6).

6. Drag and then drop the new data source onto an Add symbol within a
flow to allow it to reconnect with the flow.

7. Depending on the source type you’ve just dropped and added back in to
the data flow, you may want to remove the source in the Flow pane,
instead of creating a new data source.

320 BOOK 3 Using Tableau for Data Analytics & Visualization

Creating a union among files or database
tables in the input step
Input unions, which are a way to display many tables being queried at a single

time, are in their own class because you can create them in Tableau Prep Builder
only, unlike the other approaches I’ve mentioned. Don’t worry, however. You can
complete some functionality on the web, such as scheduling an input union to run

using Tableau Cloud.

A lot of users decide to use Tableau because they want to evaluate many data

sources, so they need the ability to cleanse and prep multiple files or database
tables. At the same time, with data source complexity comes the desire to search

and filter across all the data sources. To create a union with data, if the data
sources are files, they must be in the same directory. Before you see how to create
a union, here are some other rules that you must consider:

 » The ability to union data is not available for Tableau extracts.

 » Files can be added only to the same folder that matches specific filter
criteria, or the files added to the same folder won’t appear automatically
within the union.

 » Files don’t automatically appear; you need to save your flows and open
them again.

 » Packaged flows aren’t automatically added as new files, even if they are in the
same folder. Instead, you need to open the flow file in Tableau Prep Builder
and select the files. Only then can the files be repackaged.

 » If you want to union a database table, the data sources must be in the same

database; the database must also support wildcard searches (not all data-

bases offer these features). Those that do support wildcard searches include
Amazon Redshift, Microsoft SQL Server, and Oracle. A limited number of

open-source databases offer union options.

 » After creating a union, you can refresh the input step if you decide to

add or remove tables or files. Otherwise, you can update your flow with
available data.

FIGURE 3-6:
Removing and

adding a new

input step.

D
iv

in
g

 in
to

 th
e

 T
a

b
le

a
u

P

re
p

 L
ife

c
y

c
le

CHAPTER 3 Diving into the Tableau Prep Lifecycle 321

Although there are a few limitations unioning data, the pros still outweigh the

cons. Recognize that you are trying to query multiple tables simultaneously with

a union, yet you will visualize the data just one time, which can be complicated to

achieve. Why, you ask? Except for .csv and Excel files, Tableau Prep Builder does
not establish a data union relationship for all files in the same directory. You’ll
need to manually handle creating file connections to the data source.

For .csv and .xls files, Tableau automatically creates the union on your behalf.
Suppose you feel that a better union relationship is available, or that not all the

files are necessary. In that case, in the Input pane, you can specify additional filters
to find the files and sheets that should be included in the union (see Figure 3-7).
You can filter the file being unified in various ways, including by filename, file
size, date created, and date modified to tailor files based on specific attributes.

FIGURE 3-7:
The Union filter

for files in the
Input pane.

322 BOOK 3 Using Tableau for Data Analytics & Visualization

In Figure 3-8, you’ll see that when you add a new step into your flow, all the files
are added to the dataset in the file path, which is located in the Profile pane. All
fields are added automatically and are visible in both the Profile pane and Data
Grid. To add a new step into your flow, follow these steps:

1. Click the Connect tab on the toolbar.

The Connections pane opens so that you can create or access a data

connection.

2. Click the Add Connection button (the plus sign; see Figure 3-8).

The Connect pane expands, providing you with various types of connections

to create.

3. In the Connections pane, select the Text File type under To a File; then
select your file.

You’ll find information pertaining to the file within the Input pane (also shown
in Figure 3-8).

4. Click the Tables tab so that you can be assured that both tables connect

in the next step.

5. Drag the table from the Connections pane and roll it over the

existing table.

FIGURE 3-8:
The state of the

file after an insert
step is created.

D
iv

in
g

 in
to

 th
e

 T
a

b
le

a
u

P

re
p

 L
ife

c
y

c
le

CHAPTER 3 Diving into the Tableau Prep Lifecycle 323

6. Drag the table to the Union (not Join) option below the existing table.

The relationship between the original table and the new table, which forms a

union, can be seen in the Flow pane, also shown in Figure 3-8. Until the union is
created, you cannot see the relationship.

7. Go back to the Input pane and confirm that the data source and relevant
data are available under the Settings tab. If you are not satisfied with the
data source, click Browse and find the appropriate file located on your
desktop or a shared drive and then double-click the file to open it as part
of the existing connection.

After you make the modifications, go back to the Tables tab and click Apply. All
panes and data source details update immediately. The most notable change

is the Field pane, reflecting the updates from the file union.

Establishing a union for tables follows the same protocol except that instead of
creating a union among files, you are creating a union among multiple tables from
one or more data sources. The slight modification occurs in Step 4, whereby the
tables aren’t files but database tables.

Joining data and input steps
Specific to database-related data, both the desktop version and Tableau Cloud can
detect and show users which fields in their tables are unique. Tableau Prep Builder
also identifies related fields and shows the names of these fields.

One of three options, as noted in Table 3-1, appears as part of a new column called
Linked Keys, which is part of the Input pane.

TABLE 3-1	 Join Relationship Types for Input Step Data Flows
Relationship Type Description

Unique identifier The field is unique for each row in the table. A table can have multiple
unique identifiers. Values cannot be blank or null under any circumstance.

Related field The fields have a relationship to another database table. Multiple related
fields in a table can exist.

Both unique identifier and
related field

The field is recognized as unique in a table. The field also relates to one or
more other tables in a database.

324 BOOK 3 Using Tableau for Data Analytics & Visualization

One of the neat things about the linked keys is that you can quickly identify and

add related tables to a flow or even create joins as part of the input step. So long
as the database connector is supported where tables are defined, linked key rela-
tionships are widely available. To successfully leverage linked keys, use the steps

that follow. If all you need to do is create a join relationship, click the + (plus sign)
icon in the Flow pane and select Add Join; then, you can skip most of these steps.
However, if you do need to bring multiple data source types together, follow these

steps:

1. Connect to the database that contains the relationships for fields,
which may include unique identifiers (primary keys) and related fields
(foreign keys).

2. Click the field marked as a related field or as a unique identifier and
related field in the Input pane.

A list of related tables appears in the Profile pane.

3. Review the tables and hover your cursor over the table you want to add
or join to the input step.

4. Click the plus sign to add a table to your flow, or if you already have
multiple tables available, click the Join button to join two or more tables
together.

Nurturing a flow
To get to the stage of cleansing and preparing your data, you must face a deluge

of data, as you now understand if you’ve read the previous sections. Cleansing
requires you to remove all the errors that might be found in your dataset, causing

a potential result set to be skewed. The problem could be words that are inappro-
priately capitalized, items with too few or too many spaces, misspellings, or even

extraneous numbers after a decimal. Those are just a few specific reasons you may
need to clean your data. When you reach the point of cleansing and preparation,

you should be ready to add new steps to the flow, insert new steps, and organ-
ize steps. Also, at this point, you can add context, meaning a way to individualize

items to the flows. Context can be integrated into a flow through the use of the
colors, descriptions, and naming conventions needed to support a flow layout. See
Figure 3-9. Each of these attributes can be included as part of the specific flow,
which incorporates two data sources, a single cleaning step, a pivot step, and a

singular output.

D
iv

in
g

 in
to

 th
e

 T
a

b
le

a
u

P

re
p

 L
ife

c
y

c
le

CHAPTER 3 Diving into the Tableau Prep Lifecycle 325

Whether you intend to add a step at the beginning or insert a step anywhere

throughout a flow, these options are accessible by right-clicking or pressing the +

(plus sign) next to a step (highlighted) in the Input pane, as shown in Figure 3-10.
Even removing a flow requires only one step of right-clicking the input step and
selecting Remove. Here are the available options:

 » Clean Step: Allows you to add a step that supports cleaning actions.

 » New Rows: Generates new rows to a sequential dataset that fill in dataset
gaps.

 » Aggregate: Helps to bring steps together between existing fields and change
the level of detail provided.

 » Pivot: Creates a pivot step between two existing steps to perform actions

such as converting column data to rows or rows data to columns. Users can

also create wildcard pivots to add additional data to an existing pivot

automatically.

 » Join: Creates a join step between existing steps. There are two ways to create

joins, either manually from the menu or by dragging and dropping steps on

top of an existing step to create a join.

 » Union: Creates a union between tables. Like a join, there are two ways to

create a union step, either by using the Add option or by dragging and

dropping to an existing step.

 » Script: If you need to utilize a scripting language such as R or Python in a flow,
you use this option; however, as of this writing, Tableau Cloud does not
support using script steps.

 » Prediction: If you have access to the Einstein Discovery–powered models, you

can incorporate predictive modeling capabilities into your flows.

FIGURE 3-9:
Formatting a

flow step.

326 BOOK 3 Using Tableau for Data Analytics & Visualization

 » Output: Allows a user to create an output step to save an extract or a .csv

file, or to publish output to either Tableau Server or Tableau Cloud.

 » Insert Flow: Enables you to add flow steps already created in a previous
flow into your current flow. The insertion occurs directly on the Input pane
canvas (Figure 3-11) or as part of a step between or at the end of a flow
(refer to Figure 3-10).

FIGURE 3-10:
The menu

options that

appear when

right-clicking to

add or insert

a step.

FIGURE 3-11:
Inserting a step

into a flow.

D
iv

in
g

 in
to

 th
e

 T
a

b
le

a
u

P

re
p

 L
ife

c
y

c
le

CHAPTER 3 Diving into the Tableau Prep Lifecycle 327

To remove a flow step, right-click to bring up the option to remove a step (the
link) between two inserts (see Figure 3-12).

Grouping flows
Suppose you have a set of steps in your flow that are connected and repetitive. The
flow might have steps occurring across many lanes, as shown in Figure 3-13. In
that case, you can consolidate the connected steps into a single group.

To begin a group, you click the two or more steps in the single flow that you want
to group. Then right-click the steps you’ve selected and select Group from the
menu that appears. The result is a folder consolidating all the steps into a nice,

neat package, as shown in Figure 3-14. Notice how each group flow is represented
with a different color, offering you context indicating that two separate flows are
occurring.

FIGURE 3-12:
Removing a step

from a flow.

FIGURE 3-13:
Selecting items

to be included

within a

group flow.

328 BOOK 3 Using Tableau for Data Analytics & Visualization

With a group flow, you can

 » Click the double arrows next to the folder, which is the same as a group, to

expand or collapse a group.

 » Expand a group anytime and add more steps to the existing group before

collapsing the folder to create a compact group.

 » Expand a group anytime and remove unwanted steps in an existing group

before collapsing the folder.

 » To format the group, manage the group settings such as expand or ungroup,

copy group steps, or remove a group, right-click the group folder, as shown in

Figure 3-15.

FIGURE 3-15:
Options available

when you right-

click a group flow.

FIGURE 3-14:
Presenting

when all steps
are compressed

into a group

flow folder.

D
iv

in
g

 in
to

 th
e

 T
a

b
le

a
u

P

re
p

 L
ife

c
y

c
le

CHAPTER 3 Diving into the Tableau Prep Lifecycle 329

Filtering flows
One of the features touted by Tableau is its ability to filter data with a single click.
You can hide data using the Keep Only or Exclude options on a specific field in a
profile card, Data Grid, or result card. Alternatively, you can select from numerous
filtering options at the field level when you require more complex filtering.

Users can filter data at any step within a flow. For example, suppose you want to
change a specific value. In that case, you can edit the value within the field or iso-
late the value with a null by directly clicking the field, assuming that you have a
cleaning step available to present the field, as seen in Figure 3-16. You’d use the
cleaning step in Tableau when your data requires refinement. Each time a flow
cycles, the step will look to complete activities such as filter, rename, split, group,
or remove fields.

Many filtering functions are available at the field level. You find these options by
clicking the ellipsis referred to as “More Options” in Tableau Prep Builder. Some
of the options you can choose from are shown in Figure 3-17 and include the
following:

 » Rename Field: Enables a user to rename a specific field.

 » Duplicate Field: Enables a user to duplicate a field and all the values within
that field.

 » Keep Only Field: Hides all fields except for the ones selected.

 » Hide Field: Temporarily hides the specific field selected from the dataset.

 » Remove: Removes the field entirely from the dataset.

FIGURE 3-16:
You can edit

a field value
by directly

updating within

a cleaning step.

330 BOOK 3 Using Tableau for Data Analytics & Visualization

The menu also offers options to complete more complex filtering, cleaning,
grouping, creating calculated fields, and splitting of values. You can also create
calculated fields or publish a field as a data role. In the following sections, we will
address these items.

Advanced filtering options
There are four filtering categories. The first, Calculated Value, lets you narrow
down string data or create calculated values based on numerical fields, depending
on the field type. The example shown in Figure 3-18 incorporates a CONTAINS
filter, and all jobs must have a Location field containing CA and a Headquarters
field containing CA.

FIGURE 3-17:
Filtering options

that appear

after clicking

the ellipsis next

to a field.

FIGURE 3-18:
A calculated

value filter.

D
iv

in
g

 in
to

 th
e

 T
a

b
le

a
u

P

re
p

 L
ife

c
y

c
le

CHAPTER 3 Diving into the Tableau Prep Lifecycle 331

After you create a string that contains the calculated values for the filter, click
Apply. You can see the changes appear in the dataset after you’ve created a
targeted filter.

The Selected Values Filter allows you to search a specific field value and then nar-
row down the values using the Keep Only or Exclude parameters to tighten the
results further. In the example shown in Figure 3-19, the parameter searched on
the left is MD (for Maryland). On the right, the Exclude field indicates the removal
of all Baltimore, MD instances from the dataset. If you wanted to keep only spe-
cific values, you would go to the Keep Only option and select from the remaining
cities in the state of MD.

Wildcard Search works similarly to Selected Values; however, you could filter on
specific values. Then, on the right side using Boolean parameters, you can further
narrow down the options by Contains, Starts With, Ends With, or Exact Match.
Again, the parameters can be set for you to Exclude or Keep Only. In the exam-
ple shown in Figure 3-20, the initial search looks for all Headquarters locations
containing the value GA. On the right side, the qualifying parameter is set to keep
only those entries that end with the letters GA. As a result, only three locations
match these criteria.

The remaining filter is Null Values. It offers only two options: to narrow the data-
set to null and non-null values. You may wonder why someone would heavily
restrict values to null values, but it’s the quickest way to evaluate what data does
not exist in a field because quickly creating restrictions helps reduce anomalies.

FIGURE 3-19:
Using the

Selected

Values filter.

332 BOOK 3 Using Tableau for Data Analytics & Visualization

Data cleansing options

One of the difficulties when trying to clean a massive dataset is formatting items
to a specification. When you have hundreds, thousands, or millions of rows of
data for a specific field, cleaning the data in one fell swoop for consistency is
ideal. For example, Tableau Prep Builder offers an array of options to clean text
formatting, regardless of whether the text contains numbers, letters, or special

characters. Examples of what you can do with text-formatting features in Tableau
Prep Builder include:

 » Make Uppercase

 » Make Lowercase

 » Remove Letters

 » Remove Numbers

 » Remove Punctuation

 » Trim Spaces

 » Remove Extra Spaces

 » Remove All Spaces

Suppose you had one entry that was Vancouver BC. Another entry was Vancouver,
BC. A third was Vancouver Bc. The formatting here presents three different
scenarios. To ensure consistency, you’ll want to consider streamlining all entries
to one format. In this case, the entry should be Vancouver BC. You would follow
these steps to make all entries conform to that format:

FIGURE 3-20:
The Wildcard

Search filter.

D
iv

in
g

 in
to

 th
e

 T
a

b
le

a
u

P

re
p

 L
ife

c
y

c
le

CHAPTER 3 Diving into the Tableau Prep Lifecycle 333

1. To thoroughly clean the operations, select Remove Punctuation on the

drop-down menu.

2. Type BC in the search box, which acts as a filter, and make sure the BC is

all uppercase.

3. Select Remove All Extra Spaces.

In this case, where the comma is located, you should truncate from two spaces

to one.

Using Split Value

Some users find that when they filter, they wind up with too many rows of data in
a field. In those cases, you may have a way to classify specific data better. With the
Split Value Filter, Tableau Prep Builder can use its recommendation engine to split
values based on patterns and known behaviors. Alternatively, you can select which

rows should be made into a new column, leading users to go from one column to

two or more columns.

An example of using the Split Value Filter for one of the location fields is to split
headquarters locations from A–Z to A–L and M–Z.

Saving Prep Data

Saving your work often is paramount to successfully using any software applica-
tion and Tableau Prep Builder is no exception. A nice feature with Tableau Prep
Builder is the ability to automatically save your data when creating or editing
flows on the web. For the desktop, though, you need to save items manually.

A significant consideration that links data freshness and saving items in Tableau
Prep Builder is how often a flow is executed. Of course, you can run flows manu-
ally and, if you want, save items periodically by utilizing a schedule with Tableau

Server or Tableau Cloud. This section presents a variety of approaches to automate

saving data across Tableau Prep Builder, but it’s important to note that server or
cloud-based configuration is often required as part of the scheduling cycle.

334 BOOK 3 Using Tableau for Data Analytics & Visualization

Automating flows
Changes are automatically saved when you create or edit a flow using Tableau
Server or Tableau Cloud. Saved changes include the data source connection as well

as inserted, added, and customized steps. So, take a deep breath; you won’t lose
your work. But there are a few catches, of course:

 » You must log in to the server to which you are saving your flows.

 » You need to head to the Push menu (click File ➪  Push) to set up the Publishing
parameters if you want to publish a flow to a different server’s project.

 » Draft flows are visible to only one person: you! You must publish them before
they are available to others to collaborate and share. That’s only the half of it.
You also need to set permissions to access the project; permissions are not
configured when you click Publish.

 » Until a flow is published, you see the badge Never Been Published next to a
badge showing Draft.

The most important consideration to keep in mind about automated flows is that
when a flow is published, and you then decide to edit and republish the draft, each
new version of the flow is kept in the Revision History dialog box, accessible on
the Explore Page of either Tableau Server or Tableau Cloud from the actions menu.

Crafting published data sources

If you are reading this section, it probably means you are ready to create a pub-
lished data source. You have reached the last step in the cleansing and prepara-
tion cycle (unless you are looking to make some advanced data enhancements, as
described in Book 3, Chapter 4).

The published data source requires a bit of configuration. Here is how to get there:

1. Locate the +(plus sign) icon on a step where you want to produce an
output.

2. Select the Output option (see Figure 3-21).

An Output Pane opens, showing you a data snapshot (see Figure 3-22). To the
left, you have some options to choose from: Save Output to a File, Published
Data Source, or Database.

Depending on the output type, you will be required to configure one or more
parameters using one of these approaches:

D
iv

in
g

 in
to

 th
e

 T
a

b
le

a
u

P

re
p

 L
ife

c
y

c
le

CHAPTER 3 Diving into the Tableau Prep Lifecycle 335

• If you select File, you’re prompted to select the location where the file is
saved and the output type. Also, you need to determine the Write type,

either Create Table or Append to Table.

• To create a Tableau Extract, set the Save Output to Save As File and the

Output Type to Tableau Data Extract (.hyper).

Selecting Published Data Source requires you to log in to Tableau Server

or Tableau Cloud.

If you decide to save the output to a database table, you need to select the

connection type, allowing you to utilize 10+ connectors. Alternatively, you can

point to a Custom SQL Query.

FIGURE 3-21:
Selecting the

output to run.

FIGURE 3-22:
Snapshot in the

Output pane,

along with ways

to save published

data sources.

336 BOOK 3 Using Tableau for Data Analytics & Visualization

The most efficient way to save and publish work is to use Tableau Cloud. To
publish the data source, follow these steps:

1. Go to the Save Output drop-down menu and select Published Data
Source.

2. Pick one option from the drop-down menu, either Select a Server
or Sign-In.

3. Upon selecting Sign into Tableau Online with your user credentials,
you’re prompted to log in to Tableau Cloud.

4. You can either enter the Tableau Server address or select Tableau Online,

but because you want Tableau Cloud, in this case, select Tableau Online.

5. Click Connecting.

A pop-up screen appears asking for your username and password.

6. Enter your Username and Password to log in. (Figure 3-23.)

7. At the prompt, select the project to be loaded and extracted, the project’s
name, and the project’s description.

8. Press Run Flow.

You now have a published data source, putting you well on your way to using

the Published Data Source in Tableau Cloud.

FIGURE 3-23:
Log into

Tableau Cloud

to configure
a published

data source.

CHAPTER 4 Advanced Data Prep Approaches in Tableau 337

Advanced Data Prep
Approaches in Tableau

A
fter you’ve completed the preparation and cleansing phase covered in

Book 3, Chapters 2 and 3, your data is on its way to being in tip-top shape,
and you’re just about ready to make the transition from Tableau Prep

Builder back to Tableau Desktop. But first, you need to know about a few remain-
ing items in the bag of magic tricks — fundamental concepts that, whether you
are in Tableau Prep Builder or Tableau Desktop, can get you from data glut to
harmony.

In this chapter, you take a final quick tour around Tableau Prep Builder to explore
features that help streamline your data before heading to Tableau Desktop and
Tableau Cloud for the remainder of Book 3.

Peering into Data Structures

When data is in its raw form, you have control over the data structure because
you manipulate and move things all over the place. As soon as you transition to a
Tableau product, though, you lose a bit of that control. Tableau assumes that you

Chapter 4

IN THIS CHAPTER

 » Structuring data in Tableau Prep

based on columns and rows

 » Understanding how Tableau Prep and

Desktop present measures and

dimensions

 » Ensuring accurate and reliable data

for data visualization

 » Normalizing data in Tableau Prep

338 BOOK 3 Using Tableau for Data Analytics & Visualization

have access to the raw data as well as sufficient access within the toolset to shape
the dataset using Tableau Prep. Some situations won’t allow pivoting (explained
in more detail in “Pivoting with data: Tall versus wide,” later in this chapter),
aggregating, or blending data because of how Tableau ingests and presents the
data. You can conduct the analysis, but to be successful, you’ll need to change how
you approach your data, from how you generate calculations to formatting your
rows and columns. The following sections address some of these data structure
complexities.

Rows and records

It might seem odd to talk about rows and records in this chapter, but aspects of
data structure and placement of data are relevant, as your goal should be to focus
on data granularity.

As you prepare your data, you should adhere to the following best practices con-
cerning rows and records:

 » Each row should contain a unique identifier (UID).

 » Each row should have a unique purpose.

 » Each time you have a value such as ExTableName(Count) as a field, you
should know precisely what that value adds to a row.

Your data structure is likely poor if you fail the litmus test for each condition. The
top image in Figure 4-1 shows an example of the data structure, which almost but
not quite meets the litmus test on the left side. To establish a patient’s medical
conditions, Four data requirements are captured in the medical record: weight,
height, temperature, and blood pressure, and the date is recorded. Although
each row of data indicates health care data that is independent and unique, cer-
tain fields, such as the Patient ID (PID), must be included to ensure 100 percent
uniqueness.

In this case, condition one is not met. Each row may appear unique, but what
happens if two patients have the same patient profile, including weight, height,
temperature, and blood pressure captured on the same day? In that case, a user
would be unable to differentiate the record from one patient to another, so con-
dition two is not met because each row does not have a unique purpose. In the
case of condition three regarding calculated fields, the name of a field should be
clearly labeled. The example has no calculated fields, so that condition does not
apply to this use case. By simply adding the PID row, shown in the bottom image
of Figure 4-1, your data structure passes the litmus test because each patient’s
records can be grouped in conjunction with a unique record ID (not seen).

A
d

v
a

n
c
e

d
 D

a
ta

 P
re

p

A
p

p
ro

a
c
h

e
s in

 T
a

b
le

a
u

CHAPTER 4 Advanced Data Prep Approaches in Tableau 339

Columns and fields
In the preceding section’s example, a column is introduced when you need to
make a record set unique to a specific individual or subject, such as a product type.
In that example, the creation of the PID allowed the patient’s records to be aggre-
gated. Hence, a unique identity capturing an entire medical history is now avail-
able. Combined with a record ID, which is not seen in Tableau Prep Builder, each
row is then deemed unique. Fields and columns are considered interchangeable
terms, especially in Tableau Desktop. But for Tableau Prep Builder, you should
address a data field relative to how data is grouped with data and their rela-
tionships. An analyst must articulate the field’s association in terms of domain
groups. For example, the domain of shoes may have four different groups: men’s,
children’s, women’s, and unisex (see Figure 4-2).

On the other hand, the more granular items that fall under each domain, such as
sneakers, boots, and slippers, are all item types, not shoe classifications. In other
words, the shoe domain is limited to a focused classification, not an expansive list
of options. Here’s another example: Education, College, and Grades. College is a
type of schooling (education). The Grades category is too broad and could fit in
various ways, so the concept needs to be narrower.

FIGURE 4-1:
A rows and

records example

that doesn’t meet

all three best

practices for data

structure.

340 BOOK 3 Using Tableau for Data Analytics & Visualization

A column should have broad domain appeal so that the data within the field can
be specific yet reliable. Referring to Figure 4-1, you can see that each column
has consistency because Weight, Height, Temperature, Blood Pressure, and Date
have the same parameters. Assuming that the data contains a UID (which it does
because it is hidden) and combined with a Patient ID (PID) to group like patient
data together, the result is on its way to being a solid data structure.

Categorizing fields
Depending on which application within the Tableau platform you use, fields
appear differently in the Data pane. In Tableau Desktop, fields are either treated
as a dimension or measures, indicated by lines in a table in the Data pane.
Furthermore, dimensions or measures are considered discrete or continuous,
using a color-coding scheme of blue fields for discrete and green fields for con-
tinuous. Blue and green indicators are referred to as pills, as mentioned in Book 3,
Chapter 1.

If you have difficulty seeing colors or want an alternative way to discriminate
blue from green, you can’t. The blue/green pills are a set-in-stone feature within
Tableau.

To better understand how to categorize field-level data, take a look at Table 4-1.

An axis in Tableau is created when you drag a measure that can be aggregated
onto the View. You’ll see an axis because there will be a label with a measure’s
name, and it will include a range of values. Tableau creates an axis to scale based
on your dataset.

In Figure 4-3, the Year field is set to continuous, creating a horizontal axis along
the bottom. The green pill for both fields shows that both the row and column are
representative of continuous fields. The line across the time horizon also indicates
a continuous measure.

FIGURE 4-2:
Focusing on

targeted domains

in structuring

column-based

data.

A
d

v
a

n
c
e

d
 D

a
ta

 P
re

p

A
p

p
ro

a
c
h

e
s in

 T
a

b
le

a
u

CHAPTER 4 Advanced Data Prep Approaches in Tableau 341

Figure 4-4 shows that the Year field has been set to Discrete. The field creates a
horizontal header of an axis. The blue background (using the blue pill) and hori-
zontal headers illustrate that the data is discrete.

Tableau Prep Builder does not distinguish dimensions and measures because it’s
a data-cleansing and preparation tool. In cleansing and preparation, you must
know (generally speaking) the difference between discrete or continuous values
to help shape the data as required.

TABLE 4-1	 Field Types Categories

Type Definition

Dimension Refers to a qualitative field type, meaning it is described as not measurable. Examples of
dimensions include City, State, Hair Color, or Brand. Notice that none of these is a numerical
term. Dimensions are associated with being discrete because qualitative data describe items.

Measure Refers to a quantitative field type, meaning it’s described as having data points that can be
measured using numbers. Examples of measures include income earned, number of clicks, or
quantity. In Tableau Desktop, measures are aggregated by default using SUM. You can change
the way data is aggregated. Measures are generally continuous, but not always.

Discrete When you are looking for distinct values, you are describing discrete data. Restaurants such as
McDonald’s and Starbucks are two specific (discrete) brands.

Continuous Continuous data is associated with constant numeric values and order. Examples of numeric
order include distance, time, and weight. In Tableau Desktop, continuous values are presented
on the axis.

FIGURE 4-3:
Example of a

continuous

measure.

342 BOOK 3 Using Tableau for Data Analytics & Visualization

Structuring for Data Visualization

For proper and compelling visualizations, the underlying data must be structured
in such a way as to make it logical for both users and Tableau itself. Properly
structured data ensures that aggregations and other calculations are computed

accurately, which is the foundation for visualizations.

The following sections show you how to group data for optimal readability and
data analysis. In the case of binning and histograms, you see how to group data
that follows a pattern into bins, or focused groupings using a histogram-based
model. Data tends to follow a structured pattern or data distribution for large
datasets. When the data falls outside the normal range of values, interpreting the
validity of outliers — the odd values in the dataset — is important to improve data
visualization quality. The last section covers how you present your data to avoid
data redundancy and quality concerns. When creating a wide formatted dataset,
data does not repeat in at least one column, usually the first. An example is a
unique record ID. If you utilize tall datasets, minimizing the use of columns, you
will have data repetition, likely resulting in a need to cleanse your data with a tool
such as Tableau Prep Builder.

FIGURE 4-4:
Example of a

discrete measure.

A
d

v
a

n
c
e

d
 D

a
ta

 P
re

p

A
p

p
ro

a
c
h

e
s in

 T
a

b
le

a
u

CHAPTER 4 Advanced Data Prep Approaches in Tableau 343

Binning and histograms

Fixed values are continuous. Your age is an example. It doesn’t change for
365 days, so there is a distance between one year and the next. Think about the
time. Can you change the fact that there are 60 minutes in an hour, 24 hours in a
day, or seven days a week? Not a chance.

When someone asks a 42-year-old person how old they are, do they exclaim from
the rooftops, “42 years old, 7 months, 23 days, and 13 hours old.” Okay, that is
a bit extreme, but generally people say their age in terms of their latest birthday
(or they say 39 going on whatever). A cute little seven-year-old may get into the
nitty-gritty of years, months, and days, but they won’t when they get older.

Speaking of one’s age this way is an example of binning — in this case, by using
a time-bound reference, age. Binning is a way to group related values together
rather than have an exorbitant number of distinct, redundant values. When you
create a fixed value despite having a more precise answer available, you lump all
the facts into a grouping of sorts. How many surveys have you taken in which
you were asked to select your age: 18–24, 25–34, 35–44, and so on? That type of
grouping is another example of binning.

Tableau Prep Builder uses histograms to visualize the distribution of numeri-
cal data using binning. The histogram is similar to the bar chart, but it spans a
grouping across a continuous axis, such as the range of ages in a survey or time
horizons. The height of the bar, as represented by the bar’s rectangle shape, is
determined by the frequency of values using the count function.

In the example presented in Figure 4-5, you see two variables, Mobile Devices
and Age.

FIGURE 4-5:
An example of

binning and

histogram

structures.

344 BOOK 3 Using Tableau for Data Analytics & Visualization

In the figure, both variables have been binned so that you can see two perspec-
tives. The summary view illustrates that owners of mobile devices aged 18–62
own anywhere from one to ten devices. Each bar represents the aggregation of
values, demonstrating how often a user may have a specific number of devices.
Of the range of ten possible answers, there are eight unique binned values that
Tableau has determined should be grouped together for the count of mobile
devices. Each bar represents the number of people within the sample with a given
number of mobile devices. For example, there might be five respondents with
four mobile devices, whereas one respondent in this example has ten or more.

For the detailed view of the age of those owning mobile devices, each group was
aggregated, illustrating the binning of range-bound data. In the survey response,
the detailed view shows how many respondents participated in the mobile device
survey. For example, 6 of the 30 respondents were aged 25–34, representing the
largest bar in the model. The binning was derived by evaluating the ages reported
by the participants and then aggregating the results into the appropriate groups.

Distributions and outliers

After your data is consistent enough to be evaluated, having been cleaned in
Tableau Prep Builder, you’ll want to complete an activity that allows you to under-
stand its range of possible values, known as distribution. This is also the time to
determine whether you have any one-off data points, known as outliers.

Distributions give you an idea of how your data is shaped within the histogram.
Depending on the size of the dataset and the range of the bins within the histo-
gram view, ensuring that your data is complete can be tricky. You can be sure that
the shape is rock-solid only if you know your data; otherwise, the distribution
won’t make sense.

Take, for example, the dataset discussed in the preceding section, “Binning and
histograms.” The section covers two variables: the number of mobile devices
and age. Any number of variables in that dataset would be acceptable, right? Not
really. Age is range-bound, as is (presumably) the number of devices a person
owns. Is it possible for a person to own 1,000 mobile devices? Yes, it’s possible
but not likely. If you saw a maximum of 10, and then someone said they owned
1,000 devices, that is most certainly an outlier. For the user with 1,000 devices,
that outlier should be discarded because it will throw off the entire visualization,
given that it is a single anomaly.

You can gain a perspective on data ambiguity using a data example everyone is
all too familiar with. The number of times the search term COVID-19 appeared on

Google starting in January 2020 is one for the record books. Upon the lockdown
in China, followed by the United States and numerous other countries, the search

A
d

v
a

n
c
e

d
 D

a
ta

 P
re

p

A
p

p
ro

a
c
h

e
s in

 T
a

b
le

a
u

CHAPTER 4 Advanced Data Prep Approaches in Tableau 345

term COVID-19 peaked on March 12, 2020. It was the number one search trend
before the news, weather, music, and sports (really) until April 26, 2020. Since
then, COVID-19 has been considered a common search term on Google. So, what
do we learn from this trend? There was a date-based trend that had COVID-19

as the predominant search term, not at a single point in time. In this case, the
data should not be discarded because a unique trending distribution over a given
period exists.

To zoom in a bit more: March 2, 2020, to April 26, 2020, should for all pur-
poses be considered an outlier because the value is extreme relative to other
search values in Google’s search engine history. Although some may say that
Google exaggerates their numbers from time to time (they don’t; robots do the
counting), errors within a range are possible. For this example, it’s not likely,
though, given the nature of the global lockdown. The outliers are correct, given
that the outliers were part of a trend over a particular period, not a single blip
on the radar, which indicates that natural data anomalies can be introduced into
binning and histogram data.

To review the COVID-19 Google Search dataset, go to https://trends.google.
com/trends/explore?date=today%205-y&geo=US&q=COVID-19&hl=en.

Pivoting with data: Tall versus wide

Most data analysts are accustomed to exploring wide spreadsheets with many col-
umns of data and few rows. The wide-versus-tall debate often leads folks like you
and me to manipulate our data sources because complex data makes us feel unset-
tled. In a typical business productivity application, pivoting functionality helps
you shape your data from tall to wide and vice versa. For those using Tableau’s
pivot functionality, the word pivot suggests going from people-facing (wide) to
machine-readable (tall or long) by transforming columns into rows.

Pivoting data is a complex exercise in both Tableau Desktop and Tableau Prep
Builder. Depending on the quality of the data source and needed searchability,
the requirements vary greatly. To learn more about data pivot-based prepara-
tion requirements in Tableau Prep Builder, go to https://help.tableau.com/
current/prep/en-us/prep_pivot.htm.

Have you ever seen publicly accessible government data before? It’s dizzying
for any expert analyst to interpret, never mind anyone not in that field. There
are numerous top-level agencies in the United States and hundreds, if not
thousands, of government departments and branches that roll up under the 15 or
so big agencies. So it goes without saying that the interpretation of data would
yield a separate column representing each agency’s data. Then you’d have a

https://trends.google.com/trends/explore?date=today%205-y%26geo=US%26q=COVID-19%26hl=en
https://trends.google.com/trends/explore?date=today%205-y%26geo=US%26q=COVID-19%26hl=en
https://help.tableau.com/current/prep/en-us/prep_pivot.htm
https://help.tableau.com/current/prep/en-us/prep_pivot.htm

346 BOOK 3 Using Tableau for Data Analytics & Visualization

minimum number of rows of data depending on how many years of data is avail-
able. Manageable, but quite the eye sore.

The table in Figure 4-6 shows a dataset provided by the White House, reformat-
ted to be readable in Tableau using Microsoft Excel. You can access the raw data
files at https://www.whitehouse.gov/omb/budget/historical-tables/. The
dataset contains the Executive Branch Civilian Full-Time Equivalent Employees
count as a percentage from 1981–2023. Given there are 11 agencies where data is
reported over a 42-year period, the dataset is a good example of a wide dataset
because there are 43 columns and just 11 rows of data.

If you read the document as is, you can understand which agencies support the
most personnel relative to the U.S. Executive Branch budget. However, to suc-
cessfully cleanse the data and bring it into either Tableau Desktop or Tableau Prep
Builder, you must do the following:

 » Ensure that the dataset has a single field per column.

 » Ensure that each agency has only a single data point per year based on a

percentage of total employees.

Although presenting this dataset may look easy in Excel, porting the data into
either Tableau Desktop or Tableau Prep Builder complicates the data’s appearance

FIGURE 4-6:
A wide

dataset from
whitehouse.gov.

https://www.whitehouse.gov/omb/budget/historical-tables/
http://whitehouse.gov

A
d

v
a

n
c
e

d
 D

a
ta

 P
re

p

A
p

p
ro

a
c
h

e
s in

 T
a

b
le

a
u

CHAPTER 4 Advanced Data Prep Approaches in Tableau 347

because your data is transformed. Each field will be represented in a separate
column. In other words, each agency will have a distinct row (single field), and
each year will have a distinct column (many fields). The dataset here is wide, as
shown in Figure 4-7.

If you were to swap rows for columns in the Excel worksheet, you’d then create
tall data. Now, technically, you could have pivoted this data in Tableau Desktop.
Because the dataset is a tad overwhelming, however, you might want to instead
have a column for each agency and then list each agency’s percentage per year.

Tableau Desktop consolidates your dataset from the Excel document, which is in
the tall format, to a compressed set of five rows of data (years) and four distinct
columns representing the sum result of each agency. In Figure 4-8, only a subset
of the agencies in this dataset have been posted.

Compared to the Excel spreadsheet shown on the left in Figure 4-8 containing
20 rows and 3 columns of discrete data, Tableau Desktop has transformed the
dataset by listing dates in a single column and having each agency represented as
its unique column versus row, as shown in the wide data example in the previous
section. Because each row has some form of unique attribution: date, agency, and

FIGURE 4-7:
A wide dataset in

Tableau Desktop.

FIGURE 4-8:
Tableau

transforms

an Excel
spreadsheet

into a Tableau-

readable tall

dataset.

348 BOOK 3 Using Tableau for Data Analytics & Visualization

percentage of the employee population, the dataset is optimized to be readable as
a machine-ready format, hence the definition of tall data.

Normalizing Data

Generally, you don’t think about normalizing data when addressing a single table.
Relational databases often contain several tables sharing a common bond. Each
table contains one or more unique identifiers, known as primary and secondary
keys, on a per-record (row) basis. By joining keys, records become related so that
information can be contained in a single table. If you can link the tables to find
commonality, you can reduce data duplication.

Think about when you go to a doctor. Every doctor has an electronic health record
system containing medical data on you, their patient. Some common data ele-
ments include name, date of birth, phone number, and perhaps your unique
patient ID. There are two possibilities for how your data can be presented. The
first aggregates all data into a single table, as shown in Figure 4-9. Although
this approach may be ideal if all clinicians operate in the same medical practice,
it is not likely because most patients go to many doctors across many medical
practices.

For these reasons, separating the datasets into more discrete blocks that com-
partmentalize data into groups is more suited to patient-centered data. The
primary key (indicated by the arrows in Figure 4-10) synthesizes the record asso-
ciation between two tables. However, you want to look at group-level informa-
tion for more precision in grouping records for trend analysis. The examples of
State in the Demographic Data table and Blood Type and Blind in the Medical Data
table are distinct groups that offer individual-level information with grouping
opportunities.

When you break down tables into more discrete datasets, there is often the
possibility of common fields within one or more columns. This process is called
normalization. When you normalize data, you are helping to reduce redundant data
found in the database.

FIGURE 4-9:
A single

table before

normalization.

A
d

v
a

n
c
e

d
 D

a
ta

 P
re

p

A
p

p
ro

a
c
h

e
s in

 T
a

b
le

a
u

CHAPTER 4 Advanced Data Prep Approaches in Tableau 349

FIGURE 4-10:
Tables are broken

to address

the group and

individual-level

information for

normalization.

CHAPTER 5 Touring Tableau Desktop 351

Touring Tableau Desktop

O
f all the applications in the Tableau product suite, Tableau Desktop is by
far the one you’ll use most as a data analyst. Tableau Desktop was the first
application developed back when its founding company started in the late

1990s. It remained the industry leader because of its rich feature set. To create
reports, dashboards, KPIs, and stories, you must use Tableau Desktop.

This chapter walks you through the key features of Tableau Desktop so that you
can transform data into visualization masterpieces, allowing you to tell a story
with your data.

Getting Hands-On in the Tableau
Desktop Workspace

Tableau Desktop touts itself as an all-inclusive data analytics and business intel-
ligence solution. All-inclusive is the key phrase because all activity is completed
in the Tableau workspace, which consists of menus, toolbars, data panes, cards,
shelves, and sheets. A sheet can represent one or more worksheets, dashboards,
and stories.

Chapter 5

IN THIS CHAPTER

 » Exploring the menus and toolbars

throughout Tableau Desktop

 » Differentiating the workspace from
the worksheet

 » Understanding the differences
among the worksheet, dashboard,
and story

352 BOOK 3 Using Tableau for Data Analytics & Visualization

In Figure 5-1, notice the conglomeration of capabilities built into the Tableau
Desktop, including

 » Workbook name: The name of your workbook, which may consist of

worksheets, dashboards, and stories. The workbook name in Figure 5-1
is PSC Code for Tableau.

 » Cards and shelves: A drag-and-drop interface in the workspace used to add
data among one or more views. In the figure, the card Product Or Service
Codes has been dragged from the Rows shelf to the Filters shelf. Doing so
allows a user to create a filter for Product Or Service Codes.

 » Views: The primary canvas where visualizations (referred to as a vizzes)
are created. The figure shows a listing of Federal Agencies that purchased
products or services under PSC Code 7030 or DA10. Each bar represents
the SUM dollar amount obligated for the specific agency.

 » Toolbar: The central location of commands and navigation aids to complete
your analysis.

FIGURE 5-1:
Overview of the

Tableau Desktop
interface.

T
o

u
rin

g
 T

a
b

le
a

u

D
e

sk
to

p

CHAPTER 5 Touring Tableau Desktop 353

 » Start: Your ability to connect to new data sources begins with the Start icon.

 » Side Bar: Provides direct access to the Data and Analytics panes.

 » Data Source tab: This tab serves as the central location to access the Data
Source pages so that you can view your data.

 » Sheet tab: Tabs in Tableau Desktop provide access to various workbook
pages, whether a worksheet, dashboard, or story.

 » Show Me: Enables you to select the appropriate viz, based on the number of
dimensions and measures included on the cards and shelves. Assuming that
a viz is active, you’d click once, and the viz updates in the View area.

The remainder of this chapter describes these specific areas of the Tableau
Desktop. These are the critical launch points to managing data, creating visual-
izations, and conducting analysis.

Making Use of the Tableau Desktop Menus
Menus in Tableau are one way to access all the features available to your work-
space. Whereas the toolbar visualizes vital features, the menu categorizes each
feature based on business functionality. For example, all worksheet, dashboard,
and story capabilities fall under their respective menus. In contrast, you can
access a complete set of analysis capabilities on the Analysis menu. The following
sections dig a bit deeper into each of the menus and the critical capabilities within
Tableau Desktop.

File menu

The File menu (Figure 5-2) is the central point where you save Tableau Desktop
products and export Desktop files to alternative file formats. You can also import
data into Tableau, set your data locale, and configure outputs to be print-ready.
If you want to start a new workspace (choose New), open an existing workspace
(choose Open), or close the current workspace (choose Close), you can complete
each of these essential functions directly from this menu.

354 BOOK 3 Using Tableau for Data Analytics & Visualization

Data menu

Data is at the heart of Tableau Desktop. The features that are available as part of
the workspace vary somewhat from those you can access on the Data Source page.
When you want to fully exploit all the features within a data source that’s already
connected to Tableau Desktop, you go to the worksheet and click the Data menu.
Most features are greyed out unless you are copying and pasting across multiple
data sources. You can connect to a new data source from the Data menu, as you
can by clicking the Tableau icon.

Most configurable features on the Data menu can be accessed under the active Data
Source page. Active options include adding, removing, or extracting data from the
data source. In addition, you can publish a data source and append existing data
sources. You also find functionality such as configuring data source names and
ensuring that referential integrity exists on the Data menu within a workspace,
as shown in Figure 5-3. After you create a new data source for the Tableau work-
space, you see a Data menu that varies slightly (see Figure 5-4). Each option in
this menu allows you to complete a more detailed data-related task that you can
see within one click.

FIGURE 5-2:
The File menu.

T
o

u
rin

g
 T

a
b

le
a

u

D
e

sk
to

p

CHAPTER 5 Touring Tableau Desktop 355

Worksheet menu
The Worksheet menu combines all the features needed to create, format, and build
interactive experiences for a given worksheet. The Worksheet menu breaks out
into subsections (see Figure 5-5), which include these capabilities:

 » Creating a new worksheet: Allows a user to create a new worksheet.

FIGURE 5-3:
The Data Source
menu under the

Worksheet menu.

FIGURE 5-4:
The Data

Source menu
on the Data

Source page.

356 BOOK 3 Using Tableau for Data Analytics & Visualization

 » Managing the worksheet: The menu items Copy, Export, and Clear
enable you to copy (images, data, and crosstabs), export (images, data,
and crosstabs), and clear datasets of various formatting, sorting, and
filtering anomalies.

 » Applying interactive elements: You use the Actions menu to create

interactive relationships among data elements, dashboard objects, and
other worksheets within Tableau Desktop or on the web. The tooltips
(a way to include text-based data in a pop-up format) are also part of
this section of the Worksheet menu and are worksheet specific.

 » Formatting a worksheet: Here you find the following submenus related to
labeling and marking a worksheet:

• Show Title: Allows you to present the title on a view.

• Show Caption: Allows you to better understand the visualization through
a textual description authored entirely by Tableau.

• Show Summary: A type of card that helps you understand the breadth of
the Tableau dataset included within a view.

• Show Cards: Enables you to select which areas of the interface should be
visible (or not). For example, a Filters card can be shown or hidden.

FIGURE 5-5:
The Worksheet

menu.

T
o

u
rin

g
 T

a
b

le
a

u

D
e

sk
to

p

CHAPTER 5 Touring Tableau Desktop 357

• Show View Toolbar: To maximize the screen real estate, you may want
to hide the toolbars on the top. In this case, you can show or hide the
toolbars.

• Show Sort Controls: Data can be presented as either ascending or
descending. To ensure that the sort order is present, you want to make

sure that the Show Sort Controls is enabled.

 » Adding metadata to the worksheet: If you need to add context or

duplicate the crosstabs, this menu segment includes all the firepower
under two options:

• Describe Sheet: Allows you to see details about elements used in a
visualization.

• Duplicate as Crosstab: Allows you to insert one or more worksheets into
a workbook, and then populate the sheet with a cross-tab view of the data
from the original worksheet.

 » Enabling updates: There are two options to choose from: Auto Updates
and Run Update. You can have the system auto update the data source in
real time, or you can select Run Update to update when you prefer.

Many of the features listed also have like-kind buttons on the toolbar. With the
menu, you get all the features. On the toolbar, you’re limited to the critical capa-
bilities for a worksheet.

Dashboard menu

Similarly to the Worksheet menu, the Dashboard menu is divided into sections,
using a horizontal line to break up features. Given that a dashboard’s pur-
pose combines worksheets, you don’t see many formatting-related options on
the Dashboard menu. Instead, the Dashboard menu focuses on how to present
the data on various devices such as desktops or tablets. Because dashboards also
present a variety of datasets, Tableau Desktop allows you to add grids to each
worksheet so that you can complete a more detailed analysis. The Dashboard
menu (Figure 5-6) is broken out into key sections as follows:

 » New Dashboard: Allows you to create a new dashboard.

 » Device Layouts: Allows you to choose desktop, phone, or tablet.

 » Grids: Provides a matrix design to organize and present specific visual
elements on a canvas, enabling you to understand how they relate to one
another.

358 BOOK 3 Using Tableau for Data Analytics & Visualization

 » Formatting and Images: Allows you to format the dashboard with text-based
elements or to add external images.

 » Titles and Actions: Allows you to add a meaningful title or actions, a means of

adding context or interactivity to a dashboard.

 » Updates: Allows a user to configure Auto Updates or run a manual update on
a dashboard dataset.

 » Current Layout: Presents the current layouts available.

To save and export a dashboard as a graphic, which is a static picture showing
data, you can either copy a worksheet as a viz or export a worksheet to create a
single snapshot of the data in the form of a .png graphic file.

Sometimes users hide the dashboard title because data may not be entirely related
to all the visualizations. Select the Show Title option if you want to show the
dashboard title.

Story menu

The Story menu, shown in Figure 5-7, appears to have few options. You can for-
mat, copy images, export images, clear the story, and enable or disable the title
and backward and forward buttons, and that’s seemingly all you can do — unless
you look at the expandable cards. In contrast to some other features with full

FIGURE 5-6:
The Dashboard

menu.

T
o

u
rin

g
 T

a
b

le
a

u

D
e

sk
to

p

CHAPTER 5 Touring Tableau Desktop 359

menus, the story features take advantage of cards instead. For example, when you
select Format, a card appears on the left side of the Tableau Desktop interface.
That card enables you to format the story experience using options such as the
following:

 » New Story: Allows you to create a new story.

 » Format: Offers various formatting options including background enhance-
ments, navigation enhancements, and font/image options.

 » Title and Navigator: Allows you to add a title and create the story’s naviga-
tion using story points.

 » Updates: Allows you to refresh the data.

You find out more about creating a story in Book 3, Chapter 6. Note that the design
terminology that is standard for most analytics platforms does not apply to a
story. You need to know more lingo for this area of Tableau.

Analysis menu

The Analysis menu is full of bells and whistles. As with other menus, it has dis-
tinct sections, as shown in Figure 5-8. Here’s an overview of the Analysis menu
sections:

 » Labels/Measures/Marks/Data: This menu section enables you to label,
view, and explain your data by applying different approaches. You can either
aggregate measures or keep them distinct.

FIGURE 5-7:
The Story menu.

360 BOOK 3 Using Tableau for Data Analytics & Visualization

 » Percentage Of: Depending on the measurement type selected, each measure
on a worksheet is expressed as a percentage of a given measure within one or

more panes in a view.

 » Summarization, Trending, Values, and Layouts: This segment offers a real
hodge-podge of analysis options, enabling you to establish grand totals, look
at trend-line analysis, show/hide particular values created, and show/hide
empty values if applicable in a dataset.

 » Legends, Highlighters, Filters, Parameters: This is another section with a

boatload of tools that enable data filters, support data parameterization using
calculations, and offer more aesthetic approaches to your presentation by
highlighting data or adding legends for data awareness.

 » Calculated Fields: If the data doesn’t exist, you can create targeted fields to
enhance the dataset with calculated fields. This section is also where you go to
create a calculated field (or edit the field if one has already been created).

 » Cycle Fields/and Swap Rows and Columns: These two options are grouped but

have polar-opposite impacts on the data. Whereas you use Cycle Fields to flip-flop
the order of the rows and columns in the dataset, often changing the accuracy of
data, you use Swap Rows and Columns to change the visualization from left/right
to top/bottom. The data is merely presented from a different visual perspective.

FIGURE 5-8:
The Analysis

menu.

T
o

u
rin

g
 T

a
b

le
a

u

D
e

sk
to

p

CHAPTER 5 Touring Tableau Desktop 361

Map menu
Unless you are using one of the map-based visualizations, the Map menu is of
little value to you. Likewise, if your dataset has no map data such as city, state, or
county, you can skip this menu. But if you do have some demographic-oriented
data, you’ll find that Tableau’s mapping functionality is second to none. You have
various ways to display your map output, whether in light, dark, or normal mode,
using the following options shown in Figure 5-9:

 » Background Maps: Offers map-rendering types such as street, outdoor,
satellite, light, dark, offline.

 » Background Images: Allows you to add a custom background to your map.
For example, you can add a state seal if you’re creating a map for a specific
state in the United States.

 » Geocoding: Lets you integrate geocoding targets into a Tableau map
visualization.

 » Edit Locations: Enables you to edit the map targets to be more specific,
based on a geographic region such as a state or country, depending on

geographic parameters in the map type.

 » Map Legend: Lets you add color variations to a map.

 » Background Layers: Allows you to add textures to your map such as land
cover, terrain, coastlines, or streets or highways based on map granularity.

 » Map Options: Lets you select which controls should be enabled or disabled in
the Tableau Map Viewer, such as search, layer control, pan and zoom, scale,
and units of measure.

When you need to look for more granular details, you can get down to street
level, outdoor, or satellite views so that your data appears in 2-D or 3-D. If you
prefer to add third-party mapping data sources, you find such options within the
Background Maps menu (WMS/Mapbox Options).

FIGURE 5-9:
The Map menu.

362 BOOK 3 Using Tableau for Data Analytics & Visualization

You can also add multiple layers to your maps, depending on how many data-
sets are integrated into a single workspace. Suppose, for example, you have three
worksheets. Each worksheet can be a layer of a map brought together as a single
visualization.

Format menu

You can modify the look and feel of any object from using the Format menu in
Tableau. No questions asked.

The single menu is your single source to locate formatting options, which is
helpful if you don’t know which card controls which formatting function. Most
features in Tableau use the point-and-click method, so you can simply high-
light an item in a specific card, go to the Format menu, select the formatting
feature you want, and then follow the prompt. Options such as Font, Alignment,
Shading, Borders, and Lines align to the more traditional formatting activity
on a document. Visualization-rich formatting options also appear on this menu,
including these:

 » Panes: Enables the Worksheet, Dashboard, or Story Format panes.

 » Format: Enables the specific panes for fonts, alignment, shading, borders,
and lines.

 » Animation: Enables the Animation pane for you to integrate interactivity into
your Tableau workspace.

 » Lines, labels, and captions: Allows you to enhance your visualization using
reference lines, drop lines, annotations, titles, captions, or field labels. Each
menu option enables a new pane.

 » Visualization enhancements: You can enhance visualizations with the use of
legends, filters, highlighters, or parameters.

 » Themes: Enables you to create a targeted look and feel to workbooks
and cells.

 » Copy/Paste Formatting: Lets you capture formatting once and reuse it.

 » Clear: You can clear the formatting of the worksheet, dashboard, or story.

Figure 5-10 shows the Format menu.

T
o

u
rin

g
 T

a
b

le
a

u

D
e

sk
to

p

CHAPTER 5 Touring Tableau Desktop 363

You may notice some repetition of option names on certain menus. For
example, the Format menu contains many Analysis options such as Highlight,
Filter, Legends, and Parameters because they are also deemed to be formatting
options. Although they appear to replicate options of the same name elsewhere,
they actually vary in feature functionality. On the Format menu, options are
specific to data formatting, whereas on the Analysis menu, they relate to creat-
ing or evolving the data elements.

Server menu

You can think of the Server menu, shown in Figure 5-11, as your candy store for
all things relating to public and server data. This menu enables you to access
the most popular Tableau Public datasets, publish your own datasets for the
world to explore via Tableau Public, or take the traditional approach by using
Tableau Server (or Cloud) for publishing workbooks, data sources, and filters.
The menu specifically points out what features are unique to Tableau Public
versus Tableau Server and Tableau Cloud.

FIGURE 5-10:
The Format

menu.

364 BOOK 3 Using Tableau for Data Analytics & Visualization

You also can access the free Tableau Bridge Client from this menu so long as you
have a Creator license.

Sign in before you do anything to save time if you intend to use Tableau Server,
Tableau Public, and even Tableau Cloud. Simply click the first option, Sign-In. If
you haven’t signed in to one of these applications, you’ll be prompted every time
you try to publish your data.

The Tableau Online Link is embedded on each Tableau Server connection page so
that you can create a connection to Tableau Cloud.

Window menu
You can use the Window menu (Figure 5-12) as your cheat sheet for accessing all
your worksheets, dashboards, and story tabs. Instead of going to the bottom of the
screen to find all your worksheets, dashboards, or stories, click the Window tab to
the Window menu on the Tableau toolbar to see how many items you’ve gener-
ated. If you want to focus on a specific item, select that item with a single click.

FIGURE 5-11:
The Server menu.

FIGURE 5-12:
The Window

menu.

T
o

u
rin

g
 T

a
b

le
a

u

D
e

sk
to

p

CHAPTER 5 Touring Tableau Desktop 365

The other feature offered by the Window menu is the capability to show and hide
standard features, such as toolbars, status bars, and sidebars. Again, it takes only
a single click on the menu option to make one of these bars appear or disappear —
nothing less, nothing more.

Help menu

Tableau heavily emphasizes using self-help resources. As you can see in
Figure 5-13, the Help menu offers Open Help (Forums), Get Support (Ask the
Community or Pay for Support), Watch Training Videos, and Check for Product
Updates.

You find a few features in Help that most users would expect to find on a different
menu, such as File, which is typically where application preferences and licensing
details are located. Not with Tableau. You modify all your application-wide set-
tings, preferences, licenses, and language selection choices using the Help menu.

Tooling Around in the Toolbar

The toolbar appears across the top of Tableau Desktop (see Figure 5-14). Although
it’s not as robust as the menus, the toolbar clusters key features that are necessary
to manipulate and analyze data and fully exploit the visualization options avail-
able. As you work through the toolbar, you notice that it is divided into sections.
The first section is specific to creating data sources and handling standard appli-
cation functions such as undoing and redoing previous actions. The following

FIGURE 5-13:
The Help menu.

366 BOOK 3 Using Tableau for Data Analytics & Visualization

list describes the tools found on this first section of the toolbar, also shown in
Figure 5-15:

 » Show Start Page: Enables a user to go back to the Start page.

 » Undo: Reverses the most recent actions in a workbook. A user can reverse an

unlimited number of times, back to when Tableau was most recently opened.

 » Redo: Repeats the last actions reversed, assuming that you’ve selected the
Undo button at least one or more times.

 » Replay Animation: When you have one or more states within a visualization,
you can see the various states by pressing this quasi-Play button. Various
speeds are available with the Replay Animation button.

 » Save: Saves changes made in a workbook.

 » New Data Source: Opens the Connect pane to create a new connection or to

enable a user to access an existing saved connection.

 » Pause Auto Update: Allows you to control where Tableau updates the view
when you make changes.

 » Run Auto Update: If running a query, you can manually update your data to
make changes, assuming that Auto Update is turned off.

The next section of the toolbar functionality, shown in Figure 5-16, centers
around creation and filtering tasks. You must put your magnifying glasses on to
see the itsy-bitsy menus. Each toolbar option has a drop-down menu with sub-
functions. For example, the first button allows you to create a new worksheet.
When you click the button, options appear for creating a new dashboard or new
story. Depending on what feature you’re using (worksheet, dashboard, or story),

FIGURE 5-14:
The full Tableau

Desktop toolbar.

FIGURE 5-15:
Tools on the first

section of the

Tableau Desktop
toolbar.

T
o

u
rin

g
 T

a
b

le
a

u

D
e

sk
to

p

CHAPTER 5 Touring Tableau Desktop 367

the other two toolbar buttons vary in drop-down capability. The second button
always creates a duplicate feature, and the third is intended for clearing a sheet,
residual formatting, and filters.

The next segment of buttons, shown in Figure 5-17, is nifty because these but-
tons enable you to manipulate visualizations and data sort order. The Swap button
allows you to swap rows and columns order visually without touching a single
data cell. The Ascend and Descend buttons enable visualization sort order dif-
ferentiation; one is for data to ascend, and the other is to descend. Depending on
the visualization type you’re applying in the canvas, the data presentation may
be entirely text-based or a mix of visual and text, with the items displayed as
descending or ascending.

After you’ve nailed down the visualization (viz) type you prefer, formatting to
perfection is an essential ingredient for the data analyst. You use the next series of
buttons (see Figure 5-18) to format your visualizations. These buttons, which are
loaded with various options, appear from left to right in the figure:

 » Highlight: Enables you to highlight selected sheet features. You can define
how values appear in a menu.

 » Group Members: Allows for creating groups of selected values by combining
selected values. When you select multiple dimensions, you can choose
whether to apply them to one grouping or all groupings.

FIGURE 5-16:
Core worksheet,

dashboard,

and story

functionality.

FIGURE 5-17:
The swap and

sort order

functionality
on the Tableau

Desktop toolbar.

368 BOOK 3 Using Tableau for Data Analytics & Visualization

 » Show/Hide Mark Labels: Click to show or hide all markings on a current
worksheet. An example of a marking is to provide a text-label equivalent
on a viz.

 » Fix Axes: You can lock the axis or show specific ranges. You can also establish
a dynamic axis that can adjust based on a minimum and maximum value
established within a view.

 » Fit: Select from the drop-down menu how the view is sized within a window.
Several options include Standard, Fit Width, Fit Height, or Entire View.

Tableau has many hidden menus. Within the visualization formatting toolbar
options, you have three complete sets of options — one for worksheets, one for
dashboards, and one for stories. Although the icons are virtually the same, the
capabilities are vastly different.

The rightmost section of the toolbar, shown in Figure 5-19, consists of a series
of shortcuts for users to execute presentation and publishing actions quickly. The
first button, Show/Hide Cards, offers a menu of every available card that can be
shown or hidden. When you click the down-pointing arrow to make the drop-
down menu appear, you can single-click each card and rapidly enable or disable
an option.

You use the next button, Presentation Mode, to put your worksheet, dashboard, or
story into presentation mode. Think of this button as creating the ultimate execu-
tive presentation view with one click.

FIGURE 5-18:
Visualization

formatting

buttons.

FIGURE 5-19:
The rightmost

section of the

Tableau Desktop
toolbar.

T
o

u
rin

g
 T

a
b

le
a

u

D
e

sk
to

p

CHAPTER 5 Touring Tableau Desktop 369

The final button on the Tableau Desktop toolbar is Share Workbook with Others.
Ring a bell? This is a code phrase for publishing to one of several Tableau server-
based platforms such as Tableau Public, Tableau Server, or Tableau Cloud. After
clicking the button, you need to enter the Tableau Server URL or select the Tableau
Online link. You are then on your way to publishing your workbook, dashboard, or
story to the masses.

Understanding Sheets versus Workbooks
Much like other business productivity suites, Tableau uses the same naming
nomenclature and file structure of the workbook and sheet file structure. A work-
book (package) can contain many sheets. A sheet can be in the form of a work-
sheet, dashboard, or story:

 » A worksheet contains a single view of data along with shelves, cards, legends,
data, and analytics panes along the Side Bar.

 » A dashboard is a compilation of views across many worksheets. The
Dashboard and Layout panes are available on the Side Bar.

 » A story page takes a sequence of worksheets or dashboards and integrates

navigations to piece together a cohesive message that cannot be told on a
single screen or page. The Story and Layout panes are also available on the
Side Bar.

You have several ways to create new sheets in a workbook, but the easiest is
to head straight to the tabs at the bottom of the Tableau Desktop interface. To
create a worksheet, dashboard, or story, go to the bottom of a given workbook,
near the status bar. You’ll see three icons with + (plus signs): one to create a new
worksheet, one to create a new dashboard, and one to create a new story (see
Figure 5-20).

FIGURE 5-20:
Click a + (plus

sign) button

to create a

worksheet,

dashboard,

or story.

370 BOOK 3 Using Tableau for Data Analytics & Visualization

Renaming sheets

To rename a worksheet, dashboard, or story within a workbook, you double-click
the tab at the bottom of the workbook and then type in the alternative title in the
highlighted space. If you’re renaming a sheet, you type the new name in when
the tab turns to a different color. When you’re done entering the new name, press
the Enter key to commit the change.

Deleting sheets

Just because you may want to delete a sheet doesn’t mean you’ll be able to. A few
conditions must be met before you can remove a worksheet from a workbook:

 » At least one worksheet must exist within a workbook.

 » If you’ve used a worksheet as part of a dashboard or a story, you’ve commit-
ted the data to the workbook until you remove the dashboard or story. Your
only option is to hide rather than delete the worksheet.

 » If you have used a worksheet as a viz within a tooltip, you can hide it or delete
it, but any associated data with a viz is lost upon deleting the worksheet.

If you consider all these conditions and are still okay with proceeding, select the
active sheet you want to delete from a workbook. Right-click the active sheet,
select the Delete option, and click OK when prompted. If worksheets are dependent
on what you attempt to delete, the software prompts you to hide, unhide, delete,
or cancel the worksheet.

CHAPTER 6 Storytelling Foundations in Tableau 371

Storytelling Foundations
in Tableau

T
ableau is an excellent tool for analyzing data and crafting visualizations,
even utilizing a single worksheet and data source. But the real power of
Tableau reveals itself when you’re looking to share and collaborate on data

with others, which provides multidimensional perspectives. Dashboards enable
you to bring together several perspectives so that the audience can interact with
the data holistically.

In this chapter, you find out how to engage in two forms of data collaboration
beyond a worksheet: the dashboard and the story.

Working with Dashboards

The workbook and its worksheets are obviously important, but there is only so
much a worksheet can accomplish. You may, for example, need to compare a
variety of data views simultaneously, such as the revenue produced by various
departments of an entire company in one view. Or perhaps you want to break out
a geographic region using a map view in a second view. In a third view, you may
even want to pinpoint the product or service accelerating revenue growth in a

Chapter 6

IN THIS CHAPTER

 » Creating compelling dashboards

using Tableau Desktop and Tableau

Cloud

 » Exploring branding options in Tableau

for dashboards

 » Building stories with worksheets and

dashboards

372 BOOK 3 Using Tableau for Data Analytics & Visualization

specific region. Instead of having separate worksheets present the data, you can
create a single view of the data. That single view is your dashboard.

You create dashboards similarly to how you create a worksheet, using the tabs at
the bottom of the workbook. Data in sheets and dashboards are connected at the
hip. If you modify a sheet, your dashboard reflects the change and vice versa.

In Figure 6-1, several worksheets from Book 3, Chapter 5 have been combined into
a single dashboard, and a filter was added.

Configuring the dashboard
Consistency is critical with Tableau. You have several ways to create a dash-
board. One is to click Dashboard on the top of the page to open the Dashboard
menu and choose the New Dashboard option (see Figure 6-2). Or you can click the
New Workbook icon in the toolbar to open the drop-down list and then click the
Dashboard button on the Tableau toolbar (see Figure 6-3). The third way to cre-
ate a dashboard is to head to the bottom of the workspace near the status bar and
select the New Dashboard icon, shown in Figure 6-4.

FIGURE 6-1:
A dashboard

made up of three

worksheets along

with a filter.

S
to

ry
te

llin
g

F
o

u
n

d
a

tio
n

s in
 T

a
b

le
a

u

CHAPTER 6 Storytelling Foundations in Tableau 373

Whichever way you create a new dashboard, the outcome is always the same:
You’ve added a new dashboard workspace. The interface for your new dashboard
workspace (shown in Figure 6-5) consists of many features that enable you to cre-
ate a multifaceted visualization, including the Dashboard pane and Layout pane.

The Dashboard pane contains a few dashboard-specific functions, including

 » The interface type and its size: You can choose whether the dashboard is

meant for the Desktop or a mobile device based on how many views you

expect to integrate into a single dashboard.

 » Sheets: A compilation of all worksheets that you can include as part of a

single dashboard.

FIGURE 6-2:
Creating a new

dashboard using

the menu.

FIGURE 6-3:
Creating a new

dashboard by

clicking the

button on the

toolbar.

FIGURE 6-4:
Creating a new

dashboard by

clicking the New

Dashboard icon

on the bottom of

the workspace.

374 BOOK 3 Using Tableau for Data Analytics & Visualization

 » Objects: Items you can add to enhance a dashboard, including shapes to

highlight data points and textboxes for headers and footers.

 » The dashboard workspace: The location where you can aggregate various

worksheet views on a single page to create a single dashboard.

To create a dashboard, drag one or more sheets from the Sheets card on the
Dashboard pane to the Dashboard’s workspace (as shown in Figure 6-6). In the
Dashboard pane, select the appropriate size for presenting the visualization, ren-
dered for either a desktop or mobile device. A grey workspace indicates that a
new object is being added. You repeat this activity numerous times, adding all the
sheets from the Sheets card and Objects card that you want until you feel that your
dashboard is complete.

Customizing the dashboard

To create the ultimate dashboard, you may also want to utilize layout objects,
found on the Objects section of the Dashboard pane (under Sheets). For example,
you may want to include the horizontal and vertical layout so that when you drag
a sheet to the workspace, the page is more aesthetically pleasing and balanced.
To use a layout object, drag one or more objects to the dashboard workspace.

FIGURE 6-5:
A blank

dashboard

workspace.

S
to

ry
te

llin
g

F
o

u
n

d
a

tio
n

s in
 T

a
b

le
a

u

CHAPTER 6 Storytelling Foundations in Tableau 375

Then place one or more sheets from the Sheets card on the workspace to create
the desired dashboard result. Figure 6-7 shows an example of a layout using the
Horizontal object (Figure 6-7), and Figure 6-8 shows the layout using the Vertical
object (Figure 6-8).

The Blank object, shown in Figure 6-9, is a glorified spacer that helps to separate
the sheets and keep them from being on top of one another. You use the Blank
object for other reasons as well. First, it helps you focus on individual visualiza-
tions when you’re including multiple sheets in your dashboard. More important,
though, is that the spacer can also be used for nonlayout-specific objects, dis-
cussed in depth in the next section.

FIGURE 6-6:
Dragging sheets

and sizing the

visualization in

the dashboard

workspace.

FIGURE 6-7:
A horizontal

layout of sheets

for a dashboard.

376 BOOK 3 Using Tableau for Data Analytics & Visualization

Adding objects to dashboards

In contrast to a worksheet and a story, you can add objects to enhance your dash-
board. Because the dashboard represents a collection of various visualizations,
you may need to incorporate logos, images, shapes, or even embedded content,
such as a web page. The icons in Figure 6-10 represent the various object types
that you can incorporate into a dashboard, including text, images, and embedded
web pages.

FIGURE 6-8:
A vertical layout

of sheets for a

dashboard.

FIGURE 6-9:
The Blank object

serves as a

type of spacer

for enhancing

layouts.

S
to

ry
te

llin
g

F
o

u
n

d
a

tio
n

s in
 T

a
b

le
a

u

CHAPTER 6 Storytelling Foundations in Tableau 377

Figure 6-11 shows how to drag the object to the workspace. In the following sec-
tions, you discover how to integrate text, images, web pages, button types, and
extensions into your dashboard.

Tackling text, fonts, and color

The Text object has many of the same features as your run-of-the-mill text
editor, such as selecting fonts, changing font size, and applying bold, underlining,
italics, and positioning options. The Text object, however, lets you add an object
to the dashboard to augment a caption or data story with self-written text. You
are not married to sticking with a specific font or size or making the text black;

FIGURE 6-10:
Choose an

option for the

dashboard.

FIGURE 6-11:
Drag an object to

the workspace.

378 BOOK 3 Using Tableau for Data Analytics & Visualization

in fact, you can craft a textbox with various font faces, sizes, and shapes if you
want, as exemplified by Figure 6-12. As soon as you drag the Text object to the
dashboard, a pop-up window asks you to type freely. To format the text, highlight
it and then click the button for the formatting feature you need.

Tableau also enables a user to insert prebuilt text, as indicated by the drop-down
menu under Insert, which is part of the text editor.

Integrating images and logos

You may want to make the dashboard experience personal to your brand or per-
haps add an image that adds value to your dataset that is not self-explanatory
using core Tableau features. One idea may be to extract an image from a report
and then compare it to your data. You can pull the image directly from a website,
or you can upload and insert it into the dashboard. To add an image, which can
also act as a logo in a targeted location of a dashboard, follow these steps:

1. Drag the Image object from the Dashboard pane to the workspace (as

indicated by the dotted arrows in Figure 6-13).

2. Select one of the corners and drag to expand or contract the image to the

appropriate dimension.

3. Double-click the image box to open the Edit Image screen.

4. Upload the image to the workspace, or point to the URL by selecting Link

to Image; then enter the URL.

The image uploads from the internet to the dashboard.

5. At the bottom of the Edit Image Object screen, add appropriate alt text

for usability purposes.

FIGURE 6-12:
Example text-box

with formatting

features.

S
to

ry
te

llin
g

F
o

u
n

d
a

tio
n

s in
 T

a
b

le
a

u

CHAPTER 6 Storytelling Foundations in Tableau 379

Alt text helps a user with visual challenges to better understand what an image

object describes. Additionally, if you’re looking to position an image within the
given space provided, you can select the boxes under the options to center or

fit the image (or both).

6. When you’re finished adding your image, click OK.

7. Drag the completed image to its destination.

The ideal logo placement is on the left side of the title of your dashboard.

Weaving in web pages

Including a web page within a dashboard may sound unusual, but it can be use-
ful when you’re pulling data from a targeted source or want to provide additional
insights into a data point. In that case, you can create a Web Page card on the
dashboard. By including procurement data on the dashboard from another source
and then allowing a user to compare the Tableau-generated visualizations, you
can map the source to aggregate data in a single view. The single view incorpo-
rates the various sheets from one or more workbooks and the data source itself
(which is usaspending.gov in the example in Figure 6-14).

FIGURE 6-13:
Placing a

corporate logo on

the bottom of the

dashboard.

http://usaspending.gov

380 BOOK 3 Using Tableau for Data Analytics & Visualization

To add a web page object to your dashboard, follow these steps:

1. Drag the Web Page object to the dashboard workspace.

2. In the pop-up box that appears, shown in Figure 6-14, enter the website

parameters (the URL).

3. When you’re finished, click OK.

The Website Object loads the targeted URL into the layout container, which you

can modify to fit onto the dashboard comfortably. The layout container allows

you to group related dashboard items so that they can be positioned to meet

your specific needs quickly.

Buttoning up the dashboard

Buttons can enhance the interactivity of Tableau dashboard by enabling users to
trigger specific actions or events. The two main types of buttons are the Naviga-
tion and Download buttons. Navigation buttons enable users to navigate between
worksheets, dashboards, and stories within Tableau. Download buttons let users
download items from a specified URL by clicking the button. These buttons can
add an extra dimension to dashboards by allowing users to interact with the data
and navigate through the content in a more targeted and customized way.

FIGURE 6-14:
Embedding a

web page into a

dashboard.

S
to

ry
te

llin
g

F
o

u
n

d
a

tio
n

s in
 T

a
b

le
a

u

CHAPTER 6 Storytelling Foundations in Tableau 381

You can see both button types near the bottom of Figure 6-15. To configure these
buttons, you must fill in all fields on the Edit Button page. Key items to config-
ure include navigation location, button style, and tooltips to describe the button’s
purpose. The figure also shows an example interface for configuring the Naviga-
tion buttons.

Extending the dashboard

Tableau extensions are add-ons that allow you to extend the functionality of
Tableau dashboards and worksheets. Extensions can be created by folks like you
and me or by other enterprise software organizations to enhance Tableau dash-
boards or worksheets.

Many extensions are available, including ones that allow you to integrate with
external applications, add custom visualizations, or add new features to your
dashboards. To use an extension, you need to install it in Tableau and then add it
to your dashboard layout just as you do any other dashboard object.

In Figure 6-16, you’ll find an example of what the Extensions interface looks like
after you drag and drop the Extension object onto the workspace.

FIGURE 6-15:
Configuring
Navigation

and Download

buttons to place

on the dashboard

workspace.

382 BOOK 3 Using Tableau for Data Analytics & Visualization

Each extension has its own configuration requirements, but the process to select,
drag, and drop is the same for all. Follow the developer’s instructions to incorpo-
rate an extension into your dashboard.

Adhering to best practices for dashboard design

When creating a dashboard, it’s essential to keep in mind the guidelines for mak-
ing an effective dashboard. You can’t just consider the data, although that is
important. You should also strive to balance aesthetic clarity, conciseness, and
appropriateness. Also, it would be best to remember that users often face unique
circumstances when reviewing visualizations, especially ones full of color that
may be complex to understand. Follow these principles, at a minimum, for design
best practices. A bit later in the chapter, you find out about applying accessible
features to Tableau.

 » Keep it simple: A dashboard should include only the most crucial information

and be clear of unnecessary details.

 » Use clear and concise labels: Use clear and concise labels to help users

understand the purpose and context of each view or visualization.

 » Use appropriate visualizations: Choose the correct type of visualization to

convey the information effectively. For example, use a bar chart to show
quantitative comparisons and a pie chart to show proportions.

FIGURE 6-16:
Adding an

extension to

the dashboard

using third-party

sources.

S
to

ry
te

llin
g

F
o

u
n

d
a

tio
n

s in
 T

a
b

le
a

u

CHAPTER 6 Storytelling Foundations in Tableau 383

 » Use color effectively: Color should be used only to highlight important

information and create a visual hierarchy; also, using too many colors can be

overwhelming.

 » Test and refine: Test your dashboard with users to gather feedback, and

refine it based on their needs and insights.

Following these guidelines, you can create a compelling and informative dash-
board in Tableau that helps users quickly understand and analyze data.

Creating a Compelling Story

A story is a sequence of visualizations; it could be a worksheet or dashboard com-
ing together to convey information. The story is intended to tell a narrative, pro-
vide context, and demonstrate how outcomes are derived. You can also use a story
to present a streaming use case, from the conception of data to the conclusion.

Like the worksheet and dashboard, a story is nothing more than a sheet in Tableau.
Therefore, the mechanics used to create, name, and manage the story don’t devi-
ate from the worksheet or dashboard. The big difference is in the sequencing of
the worksheets. You’ll need to correctly name and label every worksheet because
each one becomes a story point — a navigation point in the story sequence.

Figure 6-17 shows which of the continental 48 United States had recognized
federal sales of Tableau between 2018 and 2022. The second story point (not
shown) shows a breakdown in how much was spent by each federal agency.

Synthesizing data through a Tableau story

The Tableau story is a powerful tool for creating an interactive data visualization
based on a sequence of information. The story feature lets you easily connect to
various data sources, not just one, to build dashboards and charts. You can also
share your insights with others by aggregating visualizations using workbook
sheets.

The story is a sheet, not a workbook. The method you use to create, name, and
manage the worksheets and dashboards should be consistent with a story. There
is a catch, however: A story is a collection of sheets, so you’ll need to figure out
the sequence of those sheets and create story points. A story point is a single sheet
representing a single concept throughout the story.

384 BOOK 3 Using Tableau for Data Analytics & Visualization

Formatting updates may include the appearance of your charts and dashboards.
You can also add interactive elements to the charts and dashboards for each story
point, including filters, parameters, and actions.

After you’ve assembled your story, the final step is to share it with others by pub-
lishing it to Tableau Cloud. You can also embed a story on a website or blog.

Planning your story to perfection

Have you ever experienced a dataset as a hodge-podge because no theme connects
the data and facts to the scenario? It’s happened to me, and I’m sure it has hap-
pened to all of us at some point.

Before creating your story, it’s essential to consider its purpose and the experience
you want your viewers to have. Are you trying to persuade them to take action, or
do you just want to offer a straightforward narrative or present an extended use
case? Different purposes require different strategies to achieve your goal:

 » Spurring your audience to action: The most powerful stories in this category

get to the punchline immediately by showing the outcome. A story can
present a doom-and-gloom scenario, the a-ha revelatory moment, or the

visionary goal. In each of these cases, you want to start with the result,
followed by walking the user through how you got there. Ultimately, you want

FIGURE 6-17:
An example of a

story consisting

of multiple

worksheets.

S
to

ry
te

llin
g

F
o

u
n

d
a

tio
n

s in
 T

a
b

le
a

u

CHAPTER 6 Storytelling Foundations in Tableau 385

to remind the user why taking action is essential. Using analytics to give a
sales pitch is an example of how to take action.

 » Offering a narrative: The good ol’ line about a picture being worth a
thousand words applies here. Simple, straightforward graphics are best for
a straightforward narrative, with less interaction and more interpretation.
A good narrative focuses on showing the impact before, during, or after a
targeted event.

 » Presenting a use case: For this type of story, you need to consider whether
you want to present data points that build toward a conclusion, or that start

with a conclusion and then show the supporting data points. The latter
approach can be practical for engaged audiences. Health care use cases
are ripe for storytelling using the use case method.

This tip may sound like it defeats the purpose of Tableau, but you may find it
helpful to sketch out your story on paper or a whiteboard before building it in
Tableau. You are laying out the targeted data points to help identify any potential
issues with the sequence and ensure that your story flows smoothly. Another rea-
son an advance sketch is helpful is that it helps you focus on delivery speed and
ensure that the dataset fits in the worksheet comfortably, which leads to better
readability.

Tableau explores numerous ways to tell a compelling story based on the busi-
ness need. When deciding whether you want to take action, create a narrative, or
author the use case, the various approaches can help you laser-focus even more.
To discover more about how to craft each story type, start at https://help.
tableau.com/current/pro/desktop/en-us/story_best_practices.htm.

Surveying the story workspace

The story workspace is pretty simplistic. It has only six major areas to be aware
of, as shown in Figure 6-18:

 » Buttons for adding story points: Click the Blank button in the Story pane to
add a story point. Alternatively, if you want to duplicate the behaviors of a
worksheet, click the Duplicate button to use a current story point as your

starting point.

 » Story pane: From here is where you drag relevant dashboards, sheets, and
text descriptions within your workbook to the story sheet. You can set the size
of your story and its display by going to the Size drop-down menu on the
bottom of the Story pane (which is also where you can hide the title, if you
want). To hide a feature, just deselect the check box next to its name.

https://help.tableau.com/current/pro/desktop/en-us/story_best_practices.htm
https://help.tableau.com/current/pro/desktop/en-us/story_best_practices.htm

386 BOOK 3 Using Tableau for Data Analytics & Visualization

 » Layout pane: In this pane, which is next to the Story pane, you can select the
navigator style and hide the forward and back arrows.

 » Story menu: When trying to format, copy, or export content, including images

for a story, you use the Story menu, which you access via the toolbar. Clearing
a story in this menu may include hiding the navigator and story title.

 » Story toolbar: Mousing over the navigator (described in the next bullet)
enables the Story toolbar. You can reverse changes or handle story point
updates using the Story toolbar.

 » Navigator: Right above the Story view is the navigator, a central hub for
editing and organizing the story points. You’ll come to the navigator when you
want to show your audience how to step through a story. The navigator has a
variety of styles, which you can change in the Layout pane.

Crafting the story

Crafting a story in Tableau is a similar process to creating worksheets and dash-
boards. The difference is that all activities start with the Story tab or menu, as
shown in Figure 6-19.

FIGURE 6-18:
The story

workspace.

S
to

ry
te

llin
g

F
o

u
n

d
a

tio
n

s in
 T

a
b

le
a

u

CHAPTER 6 Storytelling Foundations in Tableau 387

When you click the Story tab, Tableau opens a screen for a new story (see
Figure 6-20). Remember, though, that each worksheet and dashboard previously
created are listed in the Story pane. These assets are required first if you haven’t
created other worksheets or dashboards.

When you have your assets ready in the Story pane, your next step is to set the
story size (Figure 6-21) and apply story points. You can incorporate one story
point, or a hundred; each point presents a targeted message.

In the lower-left corner of the screen, select the size interface based on pixels, as
seen in Figure 6-21.

Your story’s title is based on the original worksheet name. Titles can be modified
by renaming your worksheet.

After setting up the basic story configuration, it’s time to start building the story.
Double-click a worksheet from the Story pane to add it as a story point. You can
also drag and drop the worksheet into the workspace. As shown in Figure 6-22,

FIGURE 6-19:
The Story tab.

FIGURE 6-20:
A blank story

workspace.

FIGURE 6-21:
Select the story

interface size.

388 BOOK 3 Using Tableau for Data Analytics & Visualization

there is one blank space, indicated by Add a Caption. You can double-click a work-
sheet or drag it to the circled location. The other two story points integrate exist-
ing worksheets. Either you can modify the title of the story (Figure 6-23) or save
changes by clicking Update, as shown in Figure 6-24.

FIGURE 6-23:
Modifying

the title of a

story point.

FIGURE 6-24:
Updating the

story with

new filters.

FIGURE 6-22:
Dragging and

dropping a

worksheet from

the Story pane.

S
to

ry
te

llin
g

F
o

u
n

d
a

tio
n

s in
 T

a
b

le
a

u

CHAPTER 6 Storytelling Foundations in Tableau 389

Each sheet you add to a story becomes a story point. The story point is directly tied
to the worksheet. If you remove the worksheet, your story immediately changes.

After you’ve landed the story point where you want it, it’s time to add captions to
the story for descriptive purposes (shown in Figure 6-23). To modify functional-
ity such as filters and story-point order, make changes using the features in the
areas outlined in Figure 6-24. The impact of any changes you make is immedi-
ate. In this case, the name of the caption was changed, as were the filters in the
filters pane.

After creating your first story point, drag one of your sheets next to the recently
created caption, as indicated by the arrow in Figure 6-25. This adds a new story
point to the workspace. The only significant activity you need to complete is mod-
ifying the caption to reflect the sheet moving forward. Repeat this action as many
times as needed to provide more descriptive explanations of each story point.

Formatting the story

Formatting is the most prevalent feature within the story user experience. The
changes you make for formatting are more like nuanced modifications to a work-
sheet and the aesthetics of a story point. Changes you make across the Story and
Layout panes are more global to the story. Here are some key formatting concepts
to consider:

 » Navigator options: Modifying the navigator style can be completed in the

Layout pane.

 » Resizing captions: Expand and contract the size of your caption from the left

and right corners, as you would a typical image. Resizing can only be done in
Tableau Desktop.

FIGURE 6-25:
Dragging a

sheet to create a

story point.

390 BOOK 3 Using Tableau for Data Analytics & Visualization

 » Sizing dashboards within a story: It’s one thing to size a worksheet, but
sizing a dashboard means retrofitting numerous visualizations to a screen.
Tableau can do that for you automatically under the Size section of the
Layout pane.

 » Format the story: The look and feel created in a worksheet may not be

desired. Instead, highlight a specific item and choose Format ➪  Story to open
the Formatting pane to modify the format (see Figure 6-26).

 » Deleting a story: Select the caption and then click the X. You’ll be able to
delete the story point quickly. Don’t worry, however. Your data won’t go
missing.

FIGURE 6-26:
Formatting a

story using the

Format menu.

CHAPTER 7 Visualizing Data in Tableau 391

Visualizing Data
in Tableau

T
ableau makes it easy to figure out whether a visualization requires a mea-

sure or dimension and whether the data should use discrete or continuous
behavior using the Show Me recommendations, which include more than

20 choices. But one of the challenges people often face is having skipped the data
cleansing or realizing that “whoops,” our data has some flubs. That realization
is perfectly okay, however, because Tableau allows you to filter and hide data
anomalies. Before you take a deep dive into the visualization realm, consider that
your dataset size and quality drive the visualization. At the same time, Tableau is
fantastic at interpreting the data; only you know whether the visualization and
explanations are on the money.

This chapter shows how to create each visualization type in the Show Me pane,
with the focus on the importance of data types using measures and dimen-

sions. Then it shows how you can spruce up visualizations by using some of the
customizations provided in Tableau. And finally, you find out how to publish your
visualization to Tableau Online.

Chapter 7

IN THIS CHAPTER

 » Creating key visualization types in

Tableau Desktop

 » Customizing the visualization with

features such as filters, labels, and
legends

 » Converting a visualization to a cross

tabulation table

 » Publishing your data to Tableau
Online

392 BOOK 3 Using Tableau for Data Analytics & Visualization

Introducing the Visualizations
A visualization, referred to as a viz for short in Tableau, is the graphical represen-

tation of data in tables, pivots, charts, graphs, plots, or maps. Tableau provides
a wide range of visualization types and customization options, allowing users to
choose the best way to display their data and convey their message. Often, Tableau
provides best-fit recommendations based on your data when you drag and drop
fields from a data source onto the source. Based on the fields dragged and dropped
onto the canvas (the visualization-specific workspace area) from the highlighted
area in Figure 7-1, a desired visualization type can form in the Show Me pane,
shown in Figure 7-2.

The appearance and formatting of the visualization can be customized using the
options in the Marks card and the Formatting pane.

The text table

The text table places one dimension on a Rows shelf and another on a Columns
shelf. You then complete the view creation by adding more measures to the text
as you see fit. A text table leverages the text mark type, which is a way to display
numerical data in a text-based manner when dimensional data exists. Tableau
uses the mark type, which is a way to add color, size, shape, and typeface, assum-

ing that the view is constructed using dimensions exclusively (remember that it’s
automatic).

FIGURE 7-1:
The Tableau

Desktop canvas,

including data

fields on the left.

V
isu

a
lizin

g
 D

a
ta

 in

T
a

b
le

a
u

CHAPTER 7 Visualizing Data in Tableau 393

Two dimensions in the dataset are Awarding Agency Name and Recipient State
Code. To create a text table visualization, drag both dimensions to the Rows shelf,
and drag one dimension into the area of the mark, which is Total Obligation. The
result is a visualization, as shown in Figure 7-3.

FIGURE 7-2:
The Show Me

pane’s best-fit
examples.

FIGURE 7-3:
A text table

visualization.

394 BOOK 3 Using Tableau for Data Analytics & Visualization

You may be wondering why you move items into the marks area versus to a Rows
or Columns shelf. If you add fields on shelves, you are creating visualization struc-

ture. To increase the level of detail and control the number of marks in the view,
which may include increasing or decreasing data granularity, you’ll want to add
data to the Marks cards. By adding specific fields to Marks cards, you are encod-

ing the visualization with context using color, size, text, or numerical translation.

The heat map and highlight table
A heat map in Tableau is a visualization that uses color to encode values in a table
or matrix. This type of map helps to compare the relative values of data points
within a dataset and identify patterns and trends. The highlight table in Tableau is
a visualization type that displays the values of a single measure or a series of mea-

sures in a table format, with the ability to highlight the highest or lowest values.

Creating a heat map

To create a heat map in Tableau, you need one or more dimensions and measures.
The example in Figure 7-4 uses one measure and two dimensions. To create the
heat map in this example, follow these steps:

1. Drag one dimension to the Columns shelf (Recipient State Code), and
drag the other dimension to the Rows shelf (Funding Agency Name).

The measure is to the left of the chart, as shown in Figure 7-4 under Marks:
SUM(Total Obligations Amount).

2. Right-click each of the dimensions and select Filter; next, select the
desired parameters; and finally, click OK.

Two filters for this visualization now appear under the Filters card:

• One wildcard on Awarding Agency Name, where anything containing the

word Department should appear

• A filter on the Recipient State Code

In this example, any state containing the letter A appears. As you can see, the
viz is significantly filtered. The marks that are proportionally larger than others
indicate greater spending.

Using a heat map to assist in understanding who is getting more money may be
helpful for a scientific presentation or to wow someone. However, with business
reports, it’s all about the data. That’s why you’ll want to use a highlight table
instead.

V
isu

a
lizin

g
 D

a
ta

 in

T
a

b
le

a
u

CHAPTER 7 Visualizing Data in Tableau 395

Creating a highlight table

You can have the values in the table sorted in ascending or descending order.
You can format the table to display the values differently, using colors, font
sizes, or symbols to highlight specific values. A highlight table can quickly iden-

tify trends or patterns in the data and compare values across different categories
or dimensions. It’s a valuable tool for presenting data clearly and concisely and
can be easily included in dashboards or reports. Figure 7-5 presents the same
dataset created in the heat map in the highlight table. You can see many of the
most significant awards in the State of Virginia. Volume-wise, large orders were
also placed in California and Washington State (headquarters to Salesforce and
Tableau, respectively).

FIGURE 7-4:
A heat map

visualization.

FIGURE 7-5:
A highlight table.

396 BOOK 3 Using Tableau for Data Analytics & Visualization

To create a highlight table, follow these steps:

1. Drag the Recipient State Code Field to the Columns shelf and the
Awarding Agency Name to Rows shelf.

Both fields are dimensions.

2. Drag the Total Obligated Amount to the Marks cards twice.

The field automatically becomes SUM(Total Obligated Amount). Both of these
items are measures.

3. Enhance the measures whereby one of the fields reflects the text
marking, and another reflects the color marking.

4. Right-click both dimensions and create a filter for each:

a. For the Recipient State Code, go to the wildcard and pick only states
where the letter A is in the State Code name.

b. For the awarding agency name, select only those where the word
Department exists in the name.

The dataset dramatically shrinks, and the result is a highlight table, as shown in

Figure 7-5, with the State of Virginia seeming to have the most dollars obligated
across key departments in the U.S. federal government.

Maps with and without symbols
There are two map types in Tableau, a map without symbols and one with sym-

bols. The only differences between them are the formatting options and sophis-

tication of the data in terms of the colors, styles, and symbols. On a normal map,
the symbol used is almost always a circle, but the symbols used with a symbol
map can vary.

Regardless of what type of map you use, a map in Tableau is a visualization that
displays quantitative values on a geographical map using symbols (again, often
these are circles). Maps often contain symbols whose size, shape, and color can
vary to represent different values in the dataset. A legend is often used to help
interpret the map. It’s important to use symbols appropriately; using too many or
mixing different sizes, shapes, and colors can make the map hard to understand.

Proportional symbol maps, which use symbols scaled in size according to the data
values, can help compare limited datasets across a geographical area. However,
you should take care to ensure that the symbols are distinct from the actual size of
the location. It’s also essential to ensure that the variables on the map are related.

V
isu

a
lizin

g
 D

a
ta

 in

T
a

b
le

a
u

CHAPTER 7 Visualizing Data in Tableau 397

Figure 7-6 shows a symbol map. To create a symbol map that shows the depth
of symbols, colors, and size based on the data points or map, like the one in Fig-

ure 7-7, as well as illustrates more traditional map details such as terrain and
streets if you zoom in close enough, follow these steps:

1. From the dataset on the left pane, drag Recipient State Code and
Recipient City Name to the Rows shelf.

2. Drag Total Current Value of Award to the Rows shelf.

The difference between Step 2 and Step 1 is a measure versus a row. The
measure automatically SUMs the Total Obligation per City and State Symbol.

3. Right-click the measure and select Edit Filter.

4. Enter a range of values from 50,000 to 1,000,000.

If you select the symbol map from Show Me, you can see very distinct circle sizes
depending on dollar amounts. Selecting Maps initially differentiates the map
by shades, which is normal behavior. As you can see in Figure 7-7, though, by
going to the Maps menu, you can change and adjust the background, in effect
also removing the color scheme. You then see more density relative to the area.
For the example in Figure 7-7, bigger circles appear for the activity occurring in
the Washington, D.C., metro area, where more significant procurements occurred.

FIGURE 7-6:
A symbol

map with
limited detail.

398 BOOK 3 Using Tableau for Data Analytics & Visualization

The pie chart

A pie chart in Tableau is a visualization that displays data as a circle divided into
wedges, with each wedge representing a proportion of the total. The pie chart
helps show the breakdown of a measure or dimension into its parts. It compares
the relative sizes of different categories. Pie charts require one or more dimen-

sions and one or two measures.

To create a pie chart with the usaspending.gov dataset, follow these steps.

1. Select the NAICS Code field from the Data pane and place it in the
Columns shelf.

2. Drag the Total Obligations from the Data pane to the Rows shelf.

3. Go to the NAICS Code and right-click Filter.

A Filter window appears, allowing a user to create a General, Wildcard,
Condition, or Top filter.

4. Select the NAICS Codes 541511, 541512, 541513, 541519 under the General
Filter tab, then click OK.

5. Click the Label button under Marks and select Show Mark Labels. Click
anywhere on the screen to hide the Show Mark Labels screen.

A pie chart is created.

FIGURE 7-7:
A symbol map

with more

details, including

street view.

http://usaspending.gov

V
isu

a
lizin

g
 D

a
ta

 in

T
a

b
le

a
u

CHAPTER 7 Visualizing Data in Tableau 399

This example pie chart, shown in Figure 7-8, enables you to understand the pro-

portionality for all Tableau sales under NAICS Codes 541511, 541512, 541513, and
541519 in the U.S government.

Pie charts are not among the friendliest graphics in Tableau. You need to use
tooltips to interpret data where you have several measures and dimensions. You
can have only one label, which is numerical and, therefore, a measure. Figure 7-9
shows an example of including a tooltip.

FIGURE 7-8:
A pie chart with

filters applied.

FIGURE 7-9:
Including a tooltip

in a pie chart.

400 BOOK 3 Using Tableau for Data Analytics & Visualization

The bar chart

Tableau offers three types of bar charts in Tableau: horizontal (which is standard),
stacked, and side by side. Here are some differences among the three:

 » Standard, horizontal bar charts display the values of a single measure for
different categories or groups. They help to compare the values of the
measure across the categories. Horizontal bars require a single dimension.

 » Stacked bar charts display the values of multiple measures for different
categories or groups, representing each measure differently. They help
to show the contribution of each measure to the total value for each
category. A stacked bar chart requires one or more measures and at least
one dimension.

 » Side-by-side bar charts display the values of multiple measures for different
categories or groups, with each measure displayed in a separate bar next to

the other. This type of chart helps to compare the values of multiple measures
for each category. It would be best if you had one or more dimensions and
measures for a side-by-side bar chart.

To create both the standard and stacked bar charts (using the same usaspending.
gov dataset used throughout the book), follow these steps:

1. Select the NAICS Code field and place it within the Marks card.

2. Drag the Total Obligated Amount field to the Rows shelf.

3. Click the Wildcard tab and select the Contains option in the menu
that opens.

4. Enter 541 in the Match Value textbox.

This step filters the NAICS Code field for all values containing 541 as part of the
NAICS Code.

5. Click Apply.

6. Click the Show Me button on the top-right side to open the Show Me pane
and select either Horizontal (Standard) Bars or Stacked Bars to see
examples like those in Figures 7-10 and 7-11.

The only option for those looking to compare several data points using a bar chart
is the side-by-side bar chart. Figure 7-12 shows an example of what you see when
a second measure, called Total Potential Value of Award, is dragged to the Rows
shelf. Tableau automatically SUMs the value. Although the field is dragged to the
Rows shelf, it’s ultimately transformed into measure values relative to measure
names. Notice in the figure that two columns are being evaluated, which results in
the automatic generation of a legend, also shown in Figure 7-12.

http://usaspending.gov
http://usaspending.gov

V
isu

a
lizin

g
 D

a
ta

 in

T
a

b
le

a
u

CHAPTER 7 Visualizing Data in Tableau 401

The treemap

A treemap offers you a way to visualize and display hierarchical data using nested
rectangles. The area of each rectangle is proportional to the quantity it represents.
The rectangles are arranged in a way that avoids overlap, so it’s easy to see the
structure of the data. Treemaps can help to compare proportions within a hier-

archy and to identify data patterns. People often use them to display data about
categories, such as sales by product, geographical regions, or customer segments.

FIGURE 7-10:
A horizontal

(standard)

bar chart.

FIGURE 7-11:
A stacked

bar chart.

402 BOOK 3 Using Tableau for Data Analytics & Visualization

In Tableau, a treemap may also include colors that indicate proportionality and
importance relative to the dataset.

Using the same dataset (usaspending.gov), follow these steps to create a treemap:

1. Select the Recipient State Code, Recipient City Name, and Total Obligated
Amount fields.

2. Place all the fields in either the Rows or Columns shelf.

3. Select the Recipient State Code, right-click, and click Edit Filter.

4. On the drop-down list that appears, clear all options except for V.

The result is a treemap that shows the volume of sales among cities in the
state of VA between 2007–2022 (see Figure 7-13). The city of Reston had the
most significant sales volume, with more than $50M in sales. On the other
hand, Gainesville, which is not visible or labeled in the corner, has the slightest
impact. Notice that the gradient legend in treemap’s right corner helps to show
the value scale.

Circles and bubbles
People often confuse circles with bubbles in Tableau, but they shouldn’t. Also, the
names of these diagrams are a bit misleading because the Circle view visualization
in Tableau is a traditional scatter plot. The scatter plot displays data points as cir-

cles (or other shapes) on a two-dimensional grid. A single circle represents each
data point, and the circle’s position on the grid represents the values of the data
point along the x and y axes. You often use scatter plots to visualize the relation-

ships between different datasets or to identify patterns and trends in the data. For
example, you may want to use a scatter plot to visualize the relationship between

FIGURE 7-12:
A side-by-side

bar chart.

http://usaspending.gov

V
isu

a
lizin

g
 D

a
ta

 in

T
a

b
le

a
u

CHAPTER 7 Visualizing Data in Tableau 403

a company’s revenue and its profits, or to identify stock market trends. Scatter
plots are a valuable tool for exploring and understanding data. You can customize
them in various ways to highlight different aspects of the data.

A second type of circle visualization is the side-by-side Circle view. This type of
visualization displays two datasets as circles. One set of circles is positioned next
to another to compare the values of two datasets or to show how two datasets are
related. You often use side-by-side Circle views to compare data about categories,
such as sales by product, geographical regions, or customer segments. You can
also use them to compare data about individual observations, such as the size of a
company and its revenue or profit.

The last of the circle-type charts is a bubble, even though bubbles and circles
are the same. The bubble chart in Tableau is a visualization that displays data as
circles shown on a two-dimensional chart. Each bubble represents a single data
point, with its position on the chart determined by its values on two numeric axes.
You can also use the bubble size to encode additional data, such as the volume of
a particular product sold or the population of a particular city. People often use
bubble charts to compare multiple datasets, identify trends and patterns, and find
outliers in the data. Bubble charts can help to visualize data with three or more
dimensions, such as data that includes a third numeric or categorical variable.

Using the following steps with the usaspending.gov dataset, you can create each
circle chart using the same variables: Recipient State Code, Current Total Value of
Award, and Total Obligated Amount.

1. For the Circle view, place the two measures on the Rows shelf and the
dimension on the Columns shelf.

FIGURE 7-13:
A treemap.

http://usaspending.gov

404 BOOK 3 Using Tableau for Data Analytics & Visualization

2. On the bottom of the page, you see that nulls exist. Click the nulls link
to indicate that you want to filter all values (see Figure 7-14).

A pop-up menu appears, asking you to filter or show data at the default
position.

3. Click Filter Data (see Figure 7-15).

The resulting chart shows that one state has a disproportionate amount of
sales relative to the rest. The next step creates a filter to give you a better
sense of reality.

4. Go to the Filters card and select SUM(Current Total Obligations).

5. Right-click SUM(Current Total Obligations) and select Edit Filters.

6. Enter the range of values $50,000 – $2,500,000 in the textbox (see
Figure 7-16), and then click OK.

After you follow the preceding steps, you can click the Circle views, Side-By-
Side Circle views, or Bubble Chart views visualization in the Show Me pane to

see different interpretations of the data using the same dimensions and
measures utilized. Regardless of the view, you’ll see three consistent circle
and bubble charts appear, presenting the same message in terms of sales
value by state, given the range $50,000–$2,500,000 NET from 2007–2022
using the Circle view, Side-by-Side Circle view, and a bubble chart, as shown

in Figures 7-17 through 7-19.

FIGURE 7-14:
Filtering

nulls from a
visualization.

V
isu

a
lizin

g
 D

a
ta

 in

T
a

b
le

a
u

CHAPTER 7 Visualizing Data in Tableau 405

FIGURE 7-15:
A pop-up menu

lets you choose

to filter data.

FIGURE 7-16:
Set a range

of values in
the filter.

FIGURE 7-17:
A Circle views

visualization.

406 BOOK 3 Using Tableau for Data Analytics & Visualization

The line chart

In the Show Me pane, Tableau offers three types of line charts: discrete, continu-

ous, and dual line. Here’s how these three types differ:

 » Continuous line chart: With this type of chart, the x-axis is a continuous
numeric field or date field. When the x-axis is a continuous field, Tableau
automatically creates a continuous axis and plots data using a line.

FIGURE 7-18:
A Side-By-Side

Circle views

visualization.

FIGURE 7-19:
A Bubble

Chart views

visualization.

V
isu

a
lizin

g
 D

a
ta

 in

T
a

b
le

a
u

CHAPTER 7 Visualizing Data in Tableau 407

 » Discrete line chart: With this type of chart, the x-axis is a discrete field
containing a finite number of distinct values. Tableau creates a discrete axis
and plots data using discrete data points rather than a continuous line.

 » Dual-line chart: Also referred to as a dual axis, this type of chart displays
two measures on a y-axis. Using this chart type is proper when comparing
two measures that have different scales. You may have one measure with a
range of 0–100 and another that ranges from 200–500. If you try to measure
these on the same axis, it would not be easy to see the difference between
them. Using dual-scale axes allows you to compare the two values more
effectively than using a single-line discrete or continuous-line evaluation.

To create a continuous line chart from the sample dataset (usaspending.gov),
follow these steps:

1. Locate these two data fields: Current Period of Performance and Total
Obligated Amount.

2. Drag the Current Period of Performance field to the Columns shelf.

3. Drag the Total Obligated Amount field to the Rows shelf.

A continuous line chart like the one shown in Figure 7-20 appears.

FIGURE 7-20:
A continuous

line chart.

http://usaspending.gov

408 BOOK 3 Using Tableau for Data Analytics & Visualization

Each time you add another field to the Rows shelf — for example, the Potential
Value of Award — another line will be added to the visualization. If you want to
create a discrete line chart instead, you’ll need to apply the changes to the y-axis
(Columns shelf), as shown in Figure 7-21.

You can make use of the dual-line option on the Show Me pane without add-

ing more data points. The notable difference between Obligated versus Potential
emerges clearly with this type of chart, shown in Figure 7-22, especially with the
different colors for each line.

The area chart

As with the line chart, the area chart offers a continuous and discrete view.

The area chart displays data as a series of points connected by lines, except that
between the lines and the x-axis, the space is filled with color or a gradient. You
use area charts to demonstrate trends over time or to compare several measures.
If you used the data points from the previous section’s example, you would see
little differentiation between discrete and continuous lines versus area charts
except for the areas being filled. Figure 7-23 uses the data points Year of the
Period of Performance Start Date and the sum of the Potential Value of the Total
Award to show a like-kind line in the area chart.

FIGURE 7-21:
A discrete

line chart.

V
isu

a
lizin

g
 D

a
ta

 in

T
a

b
le

a
u

CHAPTER 7 Visualizing Data in Tableau 409

What happens, though, if you add an extra layer? You may want to understand
who is spending the money. You can add an extra layer and create a stacked area
chart, which is not an option available on the Show Me pane.

FIGURE 7-22:
A dual-line chart.

FIGURE 7-23:
An area chart

(continuous).

410 BOOK 3 Using Tableau for Data Analytics & Visualization

To create a stacked area chart:

1. From the usaspending.gov dataset, drag the Awarding Agency field to
the Marks card.

You see many lines instead of a single line.

2. Click the icon next to the Awarding Agency Name label to differentiate
the colors.

3. Select the Color option.

The result is a stacked area chart like that shown in Figure 7-24. Notice that
it’s the same shape as the original chart, except there is differentiation
because if you scroll over the chart, you can see which agencies have spent
what during a given year. The legend on the right helps you decipher the color
coding.

A legend can be challenging to read for a sighted user, never mind a person with
color challenges. Tableau does offer an accessible, compliant palette for those
needing to meet Section 508 and WCAG standards. Also, the usaspending.gov

dataset has many data points. Filtering should help reduce the number of tones
and shades for better readability in a stacked area chart.

FIGURE 7-24:
A stacked

area chart.

http://usaspending.gov
http://usaspending.gov

V
isu

a
lizin

g
 D

a
ta

 in

T
a

b
le

a
u

CHAPTER 7 Visualizing Data in Tableau 411

The dual combination chart
In Tableau, a dual combination is a visualization that combines two separate
views of the same data onto a single sheet. Dual combinations help to compare
two targeted values given a specific period or value in the exact visualization, or
the same measure or dimension across different periods.

To create a dual combination chart in Tableau, you need two measures and
one date. Dimensions are optional. To create a dual combination chart using the
usaspending.gov dataset as an example, follow these steps:

1. Drag the Period of Performance Start Date data field to the Columns shelf.

2. Drag the Potential Total Value of Award and Total Obligated Amount data
fields to the Rows shelf.

The initial result is shown in Figure 7-25. Notice the bars and line.

3. (Optional) You can swap the line for an alternative combination, such as
areas, circles, and symbols (Figure 7-26). To accomplish this, go to each
value under the Marks card and select one of the following from the
drop-down list (by default, the list is set to automatic):

• Area Chart for Total Obligations

• Line Chart for the Potential Total Value of the Award

In Figure 7-27, you can see the changes made when both fields were changed
from a line or bar given the options found under the drop-down menu.

FIGURE 7-25:
A dual

combination

chart with bars

and a single line.

http://usaspending.gov

412 BOOK 3 Using Tableau for Data Analytics & Visualization

The scatter plot

The scatter plot is appropriate when you want to visualize numerical variables.
You can create a simple scatter plot by placing one measure in the Columns shelf
and one in the Rows shelf, or create a matrix-based scatter plot by adding a
dimension to the Rows and Columns shelves for categorization purposes.

If you take a matrix-based approach, Tableau places the measure as the inner-

most field, meaning that the field is to the right of any dimension on a shelf.

FIGURE 7-26:
Alternative

charting design

combinations.

FIGURE 7-27:
Modifying

the dual
combination

chart.

V
isu

a
lizin

g
 D

a
ta

 in

T
a

b
le

a
u

CHAPTER 7 Visualizing Data in Tableau 413

In the following example using the usaspending.gov dataset, you follow these
steps to evaluate the number of awards per the NAICS Code and Product and
Service Code (which are both dimensions), by including the Current Total Value of
Awards and Number of Offers Received fields:

1. Drag the Current Total Value of Awards field to the Rows shelf.

2. Drag the Number of Offers Received field to the Columns shelf.

3. Drag the NAICS Code and Product and Service Code fields to the
Marks card.

At this point, you see a scatter plot with a highly dense region in the lower-

left corner (see Figure 7-28). However, to better understand data, consider
applying filters on the dimensions and measures. Creating a specific filter
for each measure and dimension helps you to view all scenarios and achieve
greater clarity.

4. To apply filters, right-click each of the dimensions or measures and select
Show Filter.

Each filter appears on the right side of the screen.

FIGURE 7-28:
A scatter plot

with no filters on
dimensions or

measures.

http://usaspending.gov

414 BOOK 3 Using Tableau for Data Analytics & Visualization

5. Adjust the filters as follows:

• For Product and Service Code: Enter D.

• For SUM(Numbers of Offers Received): Set the range to 0–100.

• For SUM(Current Total Values of Award): Set the range to
250,000–1,000,000.

• Keep the NAICS Codes as they are.

The new scatter plot shows the finite number of Tableau-related acquisitions
where the SUM was between $250,000 and $1,000,000 for specific NAICS and
PSCs combined. An example is shown in Figure 7-29.

The histogram

Histograms help users understand data distributions. Using a bar chart to group
values for data comparison, you can better understand data based on grouped
values of continuous measures or bins. In other words, you may have many small
transactions. Still, the transactions are lumped together under a single umbrella
and classified using a range. For example, all store transactions with a value of
less than $99.99 would fall into one range, and transactions above that threshold
would comprise a second range.

FIGURE 7-29:
A granular view of

a scatter plot.

V
isu

a
lizin

g
 D

a
ta

 in

T
a

b
le

a
u

CHAPTER 7 Visualizing Data in Tableau 415

That’s the case in Figure 7-30, where bins, a grouping of like-kind values, are
grouped for the Current Total Value of the Award, which is the only data field
you need to drag to the Rows and Columns shelves. Each of the smaller trans-

actions matched to like-kind properties are paired in bins and then classified,
which is the same in the sampling you’ve just created in the previous section,
“The scatter plot.”

You have little control over histogram bins; therefore, you should filter the data-

set to target a realistic view of a histogram. Such filtering has been applied to the
histogram in Figure 7-30 to keep the range of values from exceeding 25,000,000.
All anomalous data ranges have been removed.

The box and whisker plot
The box and whisker plot, also called a box plot, is a chart type that allows users
to display minimum values, 25 percent quartile, median, 75 percent quartile, and
maximum range values. Values that exceed the thresholds are called outliers. Using
a box and whisker plot helps you understand the distribution and spread of your
dataset.

FIGURE 7-30:
A histogram

created from
the same data

sampling as

that used for
Figure 7-29.

416 BOOK 3 Using Tableau for Data Analytics & Visualization

To create a box and whisker plot, you need two dimensions on the Columns shelf
and one measure on the Rows shelf. Ensure that the Marks card is set to a circle
and the reference line is set to a box plot.

After you place your data fields on the shelves, the resulting chart (using the
usaspending.gov dataset) looks like the one in Figure 7-31, which illustrates
the total value of awards based on a given contract type. As you can tell from the
figure, the Firm Fixed Fee and Labor Hours had the bulk of federal dollars allo-

cated during the award period.

The Gantt chart

You use a Gantt chart to illustrate the duration of a data point. A Gantt chart
requires one date measure in the Columns shelf and one dimension in the Rows
shelf. The Tableau Gantt chart is different from the traditional project manage-

ment tool such as Microsoft Project because you can’t create a discrete line item
and assign a start date and end date to a specific item. Quite the opposite, in fact.
With Tableau, you’re looking at the date at a given moment in time. For exam-

ple, say that a transaction occurred in January 2023. On a Gantt chart, a tick mark
would appear, representing the period of January 2023. Depending on the granu-

larity, it could be one mark representing the month (January 2023) or a series of
marks representing part of a quarter (Q1 2023). The marks are not spelled out for
the duration of the contract; they just show a moment in time. That’s the case
with the Gantt chart you see in Figure 7-32, with each mark representing a unit
of one month.

FIGURE 7-31:
A box and

whisker plot.

http://usaspending.gov

V
isu

a
lizin

g
 D

a
ta

 in

T
a

b
le

a
u

CHAPTER 7 Visualizing Data in Tableau 417

To create a Gantt chart using the usaspending.gov dataset as an example, follow
these steps:

1. Drag the Month of Period of Performance Current End Date field to the
Columns shelf.

2. Drag the Type of Set Aside field to the Rows shelf.

3. Right-click the Period of Performance Current End Date field, and change
the time frame from Years to Months (it’s the second option, which
includes the month and year notation).

Your Gantt chart ticks are now a bit more granular.

4. Click Gantt Chart on the Show Me pane.

A Gantt chart like the one in Figure 7-32 appears.

Out of the box, Tableau defaults to the Year setting for every tick mark on the
Gantt Chart. To change this setting, right-click the date-based measure and then
click an alternative parameter such as Year, Quarter, Month, or Day to modify the
bounds. The example in Figure 7-33 shows Month as the setting.

FIGURE 7-32:
A Gantt chart.

http://usaspending.gov

418 BOOK 3 Using Tableau for Data Analytics & Visualization

The bullet chart

The bullet chart displays data in much the same way as a horizontal bar chart,
except that it’s condensed, given that it contains two data points. A bullet chart
compares a single measure to a targeted value. This type of chart is ideal when
you’re trying to gauge performance over time. The bar represents the tracked
measure, and the horizontal line indicates the target value. Knowing the bar’s
position relative to the line helps you quickly ascertain whether you’re on target
to meet the measured objective. A bullet chart does allow for the comparison of
multiple measures in the same target value.

To create an example bullet chart using the usaspending.gov dataset, follow
these steps:

1. Drag the Award Type data field to the Rows shelf.

2. Drag the Total Potential Value of Award and Total Obligated Amount data
fields to the Columns shelf.

3. Select the Bullet Chart option on the Show Me pane.

The bullet chart shown in Figure 7-34 appears.

FIGURE 7-33:
Setting date-

based measures

for a Gantt chart.

http://usaspending.gov

V
isu

a
lizin

g
 D

a
ta

 in

T
a

b
le

a
u

CHAPTER 7 Visualizing Data in Tableau 419

Converting a Visualization to a Crosstab

You can take any visualization in Tableau and convert it to a cross tabulation table,
or crosstab. A crosstab converts a visualization into a text-based table, showing the
data in a textual form. Like the text table discussed in the section “The text table,”
earlier in the chapter, the crosstab table comprises one or more dimensions and
measures. A crosstab can also integrate various calculations for the measure
fields, including running totals and percentage totals. To convert a visualization
to a crosstab using the usaspending.gov dataset, follow these steps:

1. Drag the Period of Performance Start Date field to the Columns shelf.

2. Drag the Funding Agency Name and Awarding Office Name fields to the
Rows shelf.

3. Drag the measure Total Obligated Amount to the Labels shelf under the
Marks card.

A simple crosstab is created (see Figure 7-35).

FIGURE 7-34:
A bullet chart.

FIGURE 7-35:
A simple

crosstab table.

http://usaspending.gov

420 BOOK 3 Using Tableau for Data Analytics & Visualization

To differentiate the significance of values within a dataset, you can color-code
your dataset. Color-coding requires you to add the Total Obligation field one more
time to the Labels shelf within the Marks card. Then, right-click and select Color.

In the example shown in Figure 7-36, the dataset has been filtered to only one
federal agency. Still, the color scheme and range in values and colors are apparent.

If your range of values is quite broad — say, 0 to a billion — be sure to pick a
gradient range that’s easy to differentiate. Having too many similar shades can
confuse people and defeat the purpose of using color.

Finally, you may want to review data using a standard calculation. Out of the box,
Tableau incorporates various calculations that can be autogenerated in a crosstab
table. The options, which appear in Figure 7-37, are frequently updated.

To add a calculation to the chart to use instead of the dollar values, follow these
steps (still making use of the usaspending.gov dataset for this example):

1. Right-click the SUM(Total Obligated Amount) indicated by the text
symbol in the Measure Values card.

A list of options appears, including Add Table Calculation, which you’ll be
selecting.

FIGURE 7-36:
A crosstab

with colors.

http://usaspending.gov

V
isu

a
lizin

g
 D

a
ta

 in

T
a

b
le

a
u

CHAPTER 7 Visualizing Data in Tableau 421

2. Select the Add Table Calculations option.

A pop-up window appears, enabling you to create a Table Calculation

(see Figure 7-38).

3. On the first drop-down menu, select Table Calculation Type: Percent
Difference From.

4. On the second drop-down menu, select Compute Using Table (across).

When you close the window, the crosstab immediately changes to show yearly
percentages (see Figure 7-39.) The percentages indicate the increase and
decrease in total obligated spending relative to the previous year for a given
agency and its corresponding office.

FIGURE 7-37:
Adding quick

calculations to a

crosstab table.

422 BOOK 3 Using Tableau for Data Analytics & Visualization

Publishing Visualizations

Tableau Desktop has several paths for users to take to get their work product
from Tableau Desktop to Tableau Server or Cloud. You can complete and publish a
worksheet containing your visualization by doing one of the following:

 » On the Server menu, select Publish Workbook.

FIGURE 7-38:
Table calculation

types.

FIGURE 7-39:
A crosstab using

table calculations.

V
isu

a
lizin

g
 D

a
ta

 in

T
a

b
le

a
u

CHAPTER 7 Visualizing Data in Tableau 423

 » On the toolbar, click the last button, Share Workbook with Others.

 » On the File menu, choose Export your Visualization as a Package.

 » Create a PDF, PowerPoint, or alternative file format for mass use.

If your goal is to share and collaborate with other users in the organization who
have Creator, Explorer, or Viewer licenses, publishing the workbook to a Tableau
project is your optimal choice. If a system administrator has configured a project
on your behalf, follow these steps to save your worksheet using either the Server
or toolbar approach; the prompts are the same.

1. Click the Share Workbook with Others button on the toolbar.

A pop-up menu appears (see Figure 7-40).

2. Select the project.

3. Under Name, enter a worksheet name.

4. Under Description, provide a document description.

5. Under Tags, click Add to add tags.

FIGURE 7-40:
A common

publishing dialog

box for Tableau
Cloud and Server.

424 BOOK 3 Using Tableau for Data Analytics & Visualization

6. Under Permissions, click Edit to list who may or may not have access to
the file in the future.

7. Under Data Sources, click Edit to validate the data source parameters
using the Workbook Optimizer.

By default, it is usually embedded.

8. If you are satisfied with what Workbook Optimizer indicates, you can
execute publishing directly, or close the window and click the Back
button to return to the previous window and then click Publish.

At this point, the file should be ready for publishing. One last step could be to opti-
mize the file. In this case, the dataset used so far contains more than 280 fields,
but only a handful have been used for the exercises. That’s okay, because you’ll
use some other fields in subsequent chapters. However, if you want to optimize
the dataset, follow the guidance provided using Workbook Optimizer (shown in
Figure 7-41), which offers you a way to ensure that the dataset you’re publishing
is healthy.

FIGURE 7-41:
Workbook
Optimizer.

CHAPTER 8 Collaborating and Publishing with Tableau Cloud 425

Collaborating and
Publishing with
Tableau Cloud

L
ike other heavyweight enterprise business intelligence platforms, Tableau

offers an online and desktop version of its servers. Many folks try to fig-

ure out why to opt for online versus Tableau Desktop and Tableau Server,
beyond the fact that you can access all the tools on the internet. After all, doesn’t
the online version lack certain features that Tableau Desktop and Tableau Server
offer? My answer is yes, yes, and yes! But the online version also has capabilities
that you can’t get anywhere else affordably.

The significant difference boils down to nuances with worksheet, dashboard, and
story features available only on Tableau Desktop and Tableau Server. With Tableau
Cloud, the user experience is more fluid in that it integrates many of the appli-
cations you need to utilize on your local computer desktop in a single platform.
However, Tableau Cloud requires you to take more steps to complete a straightfor-

ward activity than you have to take in both Tableau Desktop and Tableau Server,
which are not browser-based. That’s the big negative. The positive of being on the
internet is the ability to share and collaborate with users at a highly granular level,
assuming that you are licensed to do so. You get a cadre of collaboration options in
the cloud that you don’t get in any other environment.

Chapter 8

IN THIS CHAPTER

 » Addressing the critical differences
between Tableau Desktop and Cloud

 » Exploring the Tableau Cloud user

experience

 » Collaborating and sharing using

Tableau Cloud

426 BOOK 3 Using Tableau for Data Analytics & Visualization

This chapter covers the end-user aspect of Tableau Cloud, emphasizing how to
collaborate and publish worksheets, dashboards, and stories with others. Although
add-on features such as Data Management, Advanced Management, and Analytics
can be enabled in Tableau Cloud, those features are specifically for targeted enter-

prise use cases, which are well beyond the scope of this book.

Strolling through the Tableau
Cloud Experience

The Tableau Cloud experience combines three tools: a Sharing and Collaboration
platform, a Systems Administrator console for those using Tableau in the enter-

prise, and an online companion to Tableau Desktop and Tableau Prep Builder that
enables a user to create full workbooks and flows online. However, the inter-

face doesn’t divide the platform components as cut-and-dried as this book does.
Figure 8-1 shows the key interface elements.

 » Personal features: All the features to control the Tableau Cloud experience

personally and for those looking to collaborate with others

 » System administrative features: All the features relevant to administering

Tableau Cloud using automation, feeds, templates, and configurable options

 » Features of Tableau applications in the cloud features: All the key features

available in Tableau Desktop for New Workbook, Tableau Prep Builder for

New Flow, and New Data Source

Tableau workbooks, and by default, worksheets are the equivalent of a spread-

sheet created using Google Sheets or Microsoft Excel. Both products produce a
workbook (a single file) that may or may not contain many sheets (worksheets) in
which visualizations are produced.

If you want to complete a universal search of all views, metrics, workbooks, col-

lections, and data sources, or even search by Content Owner, go to the Tableau
Cloud search bar (shown in Figure 8-2) and type in a relevant term. For the figure,
two terms were input for search: external assets and Tableau, which could appear
in any of the objects saved within the instance of Tableau Cloud across all the
object types.

C
o

lla
b

o
ra

tin
g

 a
n

d
 P

u
b

lish
in

g

w
ith Tableau Cloud

CHAPTER 8 Collaborating and Publishing with Tableau Cloud 427

Next to the search bar, you’ll find three icons: a question mark in a circle, a
bell, and two letters (my initials, in Figure 8-3). Each item represents a specific
function:

 » Help: All help functionality is available when you click the question mark icon

for Tableau Cloud. Help options include Tableau Help, Support, System Status,

What’s New, and About Tableau.

FIGURE 8-1:
The Tableau

Cloud interface.

FIGURE 8-2:
Performing a

Tableau Cloud

search.

428 BOOK 3 Using Tableau for Data Analytics & Visualization

 » Alerts and Notifications: Alerts and Notifications appear under the bell. For
example, when you create an item to share or you receive a share notification,
you see the notification under the bell.

 » Profile: Your profile and activity are centrally housed under your initials.
Features include Personal Space, My Content, My Account Settings, Set as

Start Page, and Logout.

Next, you see a button below the three icons with the word New. If you expand
the arrows, you find the New menu, which contains all the features you can use
as part of Tableau Cloud, just as if you were using Tableau Desktop, except for
the additional capability to upload files. This option, Upload Workbook (shown in
Figure 8-4), enables files to be edited in the cloud.

Although creating a project and collection is specific to Tableau Cloud, as you find
out in the upcoming pages, you can select New Workbook to create a new work-

book, which includes a combination of worksheets, dashboards, or stories using
Tableau Cloud. The Tableau Cloud interface that allows users to manage their
workbooks and data online is called the Tableau Cloud Workbook Editor. Using the
Tableau Cloud Workbook Editor is similar to the native user experience in Tableau
Desktop to create new worksheets. Figure 8-5 shows an example of a new work-

book being created in the Tableau Cloud Workbook Editor.

FIGURE 8-3:
Help, notification,

and profile
functionality in

Tableau Cloud.

FIGURE 8-4:
The New menu in

Tableau Cloud.

C
o

lla
b

o
ra

tin
g

 a
n

d
 P

u
b

lish
in

g

w
ith Tableau Cloud

CHAPTER 8 Collaborating and Publishing with Tableau Cloud 429

You can also create a new flow that’s like the entire user experience available in
Tableau Prep Builder. However, before you get to the full editor, you must con-

nect to a data source so that the online Flow Editor can fully operate. (See Book 3,
Chapters 2 through 4 on Tableau Prep Builder for more details.)

Users often assume that data sources previously defined in Tableau Cloud are
brought into a Tableau Cloud flow, but that assumption is inaccurate. Each time
you want to create a new flow, you need to define your sources, just as in Tableau
Prep Builder, and then build the flow from scratch. This process was followed in
Figure 8-6 using the Tableau Cloud Flow Builder web Authoring tool. Remem-

ber, Tableau Cloud tries to replicate the experience with the Desktop companion,
Tableau Prep Builder, but subtle differences should be evident across features and
functionality.

FIGURE 8-5:
Creating a new

workbook in the

Tableau Cloud

Workbook Editor.

FIGURE 8-6:
Using the Tableau

Cloud Flow Editor

is similar to using

Tableau Prep

Builder to create

a flow.

430 BOOK 3 Using Tableau for Data Analytics & Visualization

Evaluating Personal Features
in Tableau Cloud

Transferring a simile of the Desktop experience to the cloud is often a tall order.
Tableau has done a fine job of accomplishing just that by focusing on integrating
many of the best concepts across many industry products within its product.
For example, the concept of the cloud-based personal folder is mimicked by the
Personal Space feature. Like other industry solutions that leverage bookmarking
and recent history, Tableau has replicated those concepts with its Favorites and
Recents. Collectively, users can make use of Personal Space, Favorites, and Recents
to organize and find their data rapidly, often in one click if well enough organized.
The following sections tell you more about each of these features.

Personal Space

If you’ve used Google Drive, Microsoft One Drive, SharePoint Document Librar-

ies, Dropbox, Box, or other document collaboration solutions, you should be at
ease using the Personal Space feature. The Personal Space is just that: personal.
It’s a private location for the Creators and Explorers (see Book 3, Chapter 1 for
more about these user types) to create, edit, and save their work using Tableau
Cloud. Any time you save content to a Personal Space, it can’t be shared with other
users until you move it to a project, which is when it’s ready for others to see and
explore.

You can save workbooks to a Personal Space. Workbooks may consist of work-

sheets, dashboards, or stories. In the example shown in Figure 8-7, two work-

books are saved. If you click the name of each workbook, you can then view the
contents contained within each workbook. For example, one of the workbooks
in Figure 8-7 is called “Total Obligations by City/State.” Clicking that workbook
reveals two worksheets, each with “Obligation Spend by City/State” in the title,
as shown in Figure 8-8. A user can next click either of these worksheets to open
it within the equivalent of the Tableau Desktop read-only view but on the cloud.
At this level, you can edit using Tableau Cloud’s web authoring tools, as shown
in Figure 8-9. To show the Tableau Workbook Editor, go to the specific workbook
that requires editing and then click the Edit button within Tableau Cloud. Notice
that the user experience is almost identical to that of Tableau Desktop.

C
o

lla
b

o
ra

tin
g

 a
n

d
 P

u
b

lish
in

g

w
ith Tableau Cloud

CHAPTER 8 Collaborating and Publishing with Tableau Cloud 431

FIGURE 8-7:
The Tableau

Cloud Personal

Space feature.

FIGURE 8-8:
Click the

workbook

title to see its

worksheets.

FIGURE 8-9:
Click the Edit tab

to fully edit the
worksheet

using Tableau

Cloud’s web

authoring tools.

432 BOOK 3 Using Tableau for Data Analytics & Visualization

Favorites

Throughout Tableau Cloud, you see plenty of stars on your screen. The star is your
way of marking something as one of your Favorites. The purpose of the Favorites
page is to organize your workbooks, worksheets, dashboards, stories, and data
sources you use the most in a single location. Figure 8-10 shows the Favorites
page with a list of items.

Several menus on the Favorites page enable users to complete additional actions
as long as they have the appropriate permissions. For example, selecting one or
more Favorite items and then clicking the Actions drop-down menu allows you
to complete activities such as adding items to a collection, tagging items in bulk,
moving items in bulk, applying for new permissions, changing item ownership,

creating Tabbed views, or refreshing the data extracts. You also have the option to
mass delete. (Be careful!) The options you can choose on the Actions menu from
the Favorites page appear in Figure 8-11.

On the right side of the Favorites screen, you can sort based on the type of con-

tent you have marked with a star. Select the down-pointing arrow to open the
drop-down menu by Content Type (Figure 8-12) or Sort By (Figure 8-13). These
are simple ways to review your favorites with laser focus, especially if you happen

to like everything you create.

FIGURE 8-10:
The Favorites

page.

C
o

lla
b

o
ra

tin
g

 a
n

d
 P

u
b

lish
in

g

w
ith Tableau Cloud

CHAPTER 8 Collaborating and Publishing with Tableau Cloud 433

FIGURE 8-11:
The Actions

menu on the
Favorites page.

FIGURE 8-12:
The Content Type

menu on the

Favorites page.

FIGURE 8-13:
The Sort By

menu on the

Favorites page.

434 BOOK 3 Using Tableau for Data Analytics & Visualization

Be judicious in how you organize your data in Tableau Cloud. Make sure you organ-

ize your data into projects. Tag items with meaningful labels. But most important,
don’t put everything in Favorites; you don’t want to have to sort through a very
long list of items. Use Favorites for only your top picks.

You may like every item you create. That doesn’t mean you should make it a Favor-

ite. A Favorite is reserved for those indispensable reports, dashboards, and stories.

Recents

To open the Recents page, click the Recents item on the navigation pane on the
left. On this page, shown in Figure 8-14, you find a list of your most accessed or
recent activity. Tableau uses the combination of the two metrics to populate the
page. You can slightly modify the parameters of what appears and for how long it
appears on the page.

When you select the check box next to an item, the Actions menu appears with
the same options as those on the Favorites page Actions menu. (Notice a repetitive
theme yet?) The only menu that helps you seek out information based on chro-

nology is the Sort By menu, shown in Figure 8-15. The Sort By menu can help you
sort from oldest to newest and vice versa. You can also sort by owner, location,
last accessed, name, and workbook.

FIGURE 8-14:
Recents page.

C
o

lla
b

o
ra

tin
g

 a
n

d
 P

u
b

lish
in

g

w
ith Tableau Cloud

CHAPTER 8 Collaborating and Publishing with Tableau Cloud 435

Sharing Experiences and Collaborating
with Others

Tableau Cloud’s shared experience is limited to users who are actively licensed in
your organization as Creators, Explorers, and Viewers. Any user without an active
license won’t be able to view, edit, or create content unless they use the Tableau
Public release. As noted elsewhere in the book, if you use Tableau Public, you are
required to publish your findings to the world; you can’t target your group of
users, who may have varying levels of permissiveness.

For licensed users, especially Creators or Explorers, your ability to control object-
level visibility can be pretty granular, down to the data source, view, workbook,
or flow level.

Sharing content

When you’re ready to let your content be shared with others, follow these steps:

1. Go to the item you want to share and then select the drop-down menu

under Actions.

The Actions menu opens.

2. Choose Share.

A pop-up asking whom you want to share the data with appears, along with a

link to the document to be shared.

3. Under Share with People, enter at least one other username (they must

be licensed) to access the content.

FIGURE 8-15:
The Sort By

menu on the
Recents page.

436 BOOK 3 Using Tableau for Data Analytics & Visualization

As you type, the names of licensed users within your Tableau Cloud domain

appear.

4. (Optional) In the Message box, enter a message about the purpose of the

shared documents.

5. When you’re ready, click the Share button (see Figure 8-16).

The document is shared, and each user you decide to share the document with

receives a notification about the shared document. The document also
appears on the Shared with Me page.

Shared with Me

In the previous section, you click the Share button to share the document with
others. You should then receive an email notification with a link to the content.
If, on the other hand, someone shares a document with you, open the Shared with
Me page navigation and click the page to see a list of documents that have been
shared.

Your ability to manipulate the file with Tableau Desktop, Tableau Prep Builder, or
Tableau Cloud depends entirely on the permissions the party sharing the file has
assigned to that file. In the example shown in Figure 8-17, a single item has been
shared, which also triggered a received email, viewable in Figure 8-18.

FIGURE 8-16:
Sharing content

with other users.

C
o

lla
b

o
ra

tin
g

 a
n

d
 P

u
b

lish
in

g

w
ith Tableau Cloud

CHAPTER 8 Collaborating and Publishing with Tableau Cloud 437

Click the check box within the filters pane next to the visualization to choose var-

ious options from the Actions menu that opens (see Figure 8-19). If you happen to
have permission to edit the file, you can do so by downloading the file or opening
the file directly in Tableau Desktop. You can then edit the workbook and publish it
back to your workspace and that of the owners.

Make sure you know what level of access you have to the relevant content. You
might be a Creator in one instance versus a Viewer in another case. It is up to you
(or the content creator) to assign relevant permissions.

Collections

Organization is the key to success with Tableau Cloud. You may have a well-
organized system if you’ve put some thought into how to organize your com-

puter files. Most people, though, always have files that fall through the cracks.
A collection is a virtual folder that lets you place related items in an easy-to-access
list to organize items based on your specific topic or theme. Collections also ena-

ble you to break down items based on visibility and ownership. You can keep a

FIGURE 8-17:
The Shared with

Me page.

FIGURE 8-18:
An email

notification that
an item has been

shared with you.

438 BOOK 3 Using Tableau for Data Analytics & Visualization

project private or make it public, assigning it to a user or a group of users within

your Tableau site.

Although you can give access to others for a collection, you should not worry about
exposing data because collections are permission neutral. Users can see only the
items to which they are given access. Furthermore, when selecting an item and
heading to the Actions menu, you have limited options depending on your per-

missions. Those given the most permission can modify and delete a file from a
collection.

Previous sections mention that users can select the check box and move an item to
a collection. Assuming that a collection has already been created, the user selects
the collection to which the item should be saved. Then, it appears as part of the
virtual list.

For the examples in the following figures, items are assigned to specific collec-

tions based on the files uploaded to Personal Space. Tableau Desktop automati-
cally loads files published to Tableau Cloud into the default folder. It is up to you to
move the file to another collection. Figure 8-20 provides a representative example
of two collections, and Figure 8-21 offers a glimpse of how you can organize items
in a collection (in this case, the collection is named “Government Procurement
Data”).

FIGURE 8-19:
The Actions menu

on the Shared

with Me page.

C
o

lla
b

o
ra

tin
g

 a
n

d
 P

u
b

lish
in

g

w
ith Tableau Cloud

CHAPTER 8 Collaborating and Publishing with Tableau Cloud 439

You may have noticed a tab called My Collections on the Collections page. The My
Collections tab houses only collections you’ve created, not ones that have been
shared with you by others.

Explore

The Explore feature in Tableau Cloud is the equivalent of the Windows File
Explorer or the Apple Finder, with a twist concerning the capability to create fold-

ers and files. Because you are in the cloud, Explore presents all your file systems
on the Explore home page. Each project, represented by a new folder, can contain
a combination of objects, including workbooks, flows, and published data sources.

To create a new workbook, flow, or published data source or to upload a workbook,
click the New drop-down menu in the upper-left corner of the Explore page (see
Figure 8-22).

What happens, though, when you’ve been using Tableau for months if not years,
and you’ve collected thousands of documents in your Explore repository, much
like in your My Documents folder? You’ll want a quick and easy way to search
for the documents. That’s where filters come in handy. Right next to the word
Explore in the upper-left corner of the Explore page, the name of the default

FIGURE 8-20:
The Collections

page listing two

collections.

FIGURE 8-21:
Items stored

within a named

collection.

440 BOOK 3 Using Tableau for Data Analytics & Visualization

filter, Top-Level Projects, appears. When you click the down-pointing arrow
next to that filter, you open a drop-down menu (see Figure 8-23) that lists all
the ways you can filter and thereby organize your documents and folders.

Recommendations

Tableau Cloud has a “big brother” element to it as well. But don’t worry: No
trackers are looking at your activities online other than in Tableau Cloud. Instead,
Tableau Cloud offers recommendations that it thinks may be useful to you. Its
“recommendation engine” notices what content you view the most and looks for
trends of popular content on your site. It also picks out the popular content of
others who share content with you. Recommendations then appear on your site
that best match what you’ve looked at most and what has been trending for a
given period, generally one week.

FIGURE 8-22:
Click New on the

Explore page

to create new

workbooks, flows,
or published data

sources.

FIGURE 8-23:
Filtering options

in Explore.

C
o

lla
b

o
ra

tin
g

 a
n

d
 P

u
b

lish
in

g

w
ith Tableau Cloud

CHAPTER 8 Collaborating and Publishing with Tableau Cloud 441

You may not like the recommendation. That’s okay; Tableau won’t take offense if
you want to hide its recommendations. To do so, select the Actions menu ellipsis
and then choose Hide on the menu that appears.

In the Recommendation for You section of the Recommendations page, you’ll
likely find the names of others, not just yours, who have looked at the content.
Don’t worry; no one has inappropriately accessed your Tableau instance. These
users have access to view the same content as you do.

4Extracting
Information
with SQL

Contents at a Glance

CHAPTER 1: SQL Foundations . 445
SQL and the Relational Model . 445
Sets, Relations, Multisets, and Tables . 446
Functional Dependencies . 447
Keys . 448
Views . 450
Users . 450
Privileges . 451
Schemas . 451
Catalogs . 452
Connections, Sessions, and Transactions . 452
Routines . 453
Paths . 454

CHAPTER 2: Drilling Down to the SQL Nitty-Gritty 455
Executing SQL Statements . 455
Using Reserved Words Correctly . 461
SQL’s Data Types . 461
Handling Null Values . 478
Applying Constraints . 479

CHAPTER 3: Values, Variables, Functions, and Expressions . . . 487
Entering Data Values . 487
Working with Functions . 491
Using Expressions . 503

CHAPTER 4: SELECT Statements and Modifying Clauses 513
Finding Needles in Haystacks with the SELECT Statement 513
Modifying Clauses . 514

CHAPTER 5: Tuning Queries . 539
SELECT DISTINCT . 540
Temporary Tables . 542
The ORDER BY Clause . 547
The HAVING Clause . 551
The OR Logical Connective . 555

CHAPTER 6: Complex Query Design . 557
What Is a Subquery? . 557
What Subqueries Do . 558
Using Subqueries in INSERT, DELETE, and UPDATE Statements 571
Tuning Considerations for Statements Containing Nested Queries . . . 574
Tuning Correlated Subqueries . 579
UNION . 584
INTERSECT . 588
EXCEPT . 590

CHAPTER 7: Joining Data Together in SQL . 591
JOINS . 591
ON versus WHERE . 603
Join Conditions and Clustering Indexes . 603

CHAPTER 1 SQL Foundations 445

SQL Foundations

T
his chapter offers a brief introduction to the (somewhat complicated) rela-

tionship between SQL and the relational database model. The chapter high-

lights how certain important terms and concepts may have slightly different
meanings in the (practical) SQL world as opposed to the (theoretical) relational
database world. The chapter also provides some general, all-inclusive definitions
for good measure.

SQL and the Relational Model

SQL is a software tool designed to deal with relational database data. It does far
more than just execute queries. Yes, of course, you can use it to retrieve the data
you want from a database using a query. However, you can also use SQL to create
and destroy databases, as well as modify their structure. In addition, you can add,
modify, and delete data with SQL. Even with all that capability, SQL is still consid-

ered only a data sublanguage, which means that it does not have all the features of
general-purpose programming languages such as C, C++, C#, or Java.

SQL is specifically designed for dealing with relational databases and thus does
not include a number of features needed for creating useful application pro-

grams. As a result, to create a complete application — one that handles queries

Chapter 1

IN THIS CHAPTER

 » Relating SQL to the relational model

 » Figuring out functional dependencies

 » Discovering keys, views, users,

privileges, schemas, and catalogs

 » Checking out connections, sessions,

and transactions

 » Understanding routines and paths

446 BOOK 4 Extracting Information with SQL

as well as provides access to a database — you must write the code in one of
the general-purpose languages and embed SQL statements within the program
whenever it communicates with the database.

The relational database, a type of data model, stores and provides access to data
points that are related to one another, existed as a theoretical model for almost a
decade before the first relational database product appeared on the market. Now,
it turns out that the first commercial implementation of the relational model — a
software program from the company that later became Oracle — did not even use
SQL, which IBM had not yet released. In those early days, there were a number of
competing data sublanguages. Gradually, SQL became a de facto standard, thanks
in no small part to IBM’s dominant position in the market, and the fact that Oracle
started offering it as an alternative to its own language early on.

Although SQL was developed to work with a relational database management sys-

tem, it’s not entirely consistent with the relational model. However, it is close
enough, and in many cases, it even offers capabilities not present in the relational
model. Some of the most important aspects of SQL are direct analogs of some
aspects of the relational model. Others are not.

Sets, Relations, Multisets, and Tables

The relational model is based on the mathematical discipline known as set theory.
In set theory, a set is defined as a collection of unique objects — duplicates are not
allowed. This carries over to the relational model. A relation is defined as a col-
lection of unique objects called tuples — no duplicates are allowed among tuples.

In SQL, the equivalent of a relation is a table. However, tables are not exactly like
relations in that a table can have duplicate rows. For that reason, tables in a rela-

tional database are not modeled on the sets of set theory but rather on multisets,

which are similar to sets, except they allow duplicate objects.

Although a relation is not exactly the same thing as a table, the terms are often
used interchangeably. Because relations were defined by theoreticians, they have
a very precise definition. The word table, on the other hand, is in general use and
is often much more loosely defined. This book uses the word table, in a more
restricted sense, as being an alternate term for relation. The attributes and tuples
of a relation are strictly equivalent to the columns and rows of a table.

So, what’s an SQL relation? Formally, a relation is a two-dimensional table that
has the following characteristics:

S
Q

L
 F

o
u

n
d

a
tio

n
s

CHAPTER 1 SQL Foundations 447

 » Every cell in the table must contain a single value if it contains any value at all.

Repeating groups and arrays are not allowed as values. (In this context, groups

and arrays are examples of collections of values.)

 » All the entries in any column must be the same. For example, if a column

contains an employee name in one row, it must contain employee names in

all rows that contain values.

 » Each column has a unique name.

 » The order of the columns doesn’t matter.

 » The order of the rows doesn’t matter.

 » No two rows may be identical.

If and only if a table meets all these criteria, it is a relation. You might have tables
that fail to meet one or more of these criteria. For example, a table might have two
identical rows. It is still a table in the loose sense, but it is not a relation.

Functional Dependencies

Functional dependencies are relationships between or among attributes. Consider
the example of two attributes of the CUSTOMER relation, Zipcode and State. If
you know the customer’s zip code, the state can be obtained by a simple lookup
because each zip code resides in one and only one state. This means that State is
functionally dependent on Zipcode or that Zipcode determines state. Zipcode is called
a determinant because it determines the value of another attribute. The reverse is
not true. State does not determine Zipcode because states can contain multiple
Zipcodes. You denote functional dependencies as follows:

Zipcode ➪ State

A group of attributes may act as a determinant. If one attribute depends on the
values of multiple other attributes, that group of attributes, collectively, is a
determinant of the first attribute.

Consider the relation INVOICE, made up as it is of the following attributes:

 » InvNo: Invoice number.

 » CustID: Customer ID.

 » WorR: Wholesale or retail. I’m assuming that products have both a wholesale

and a retail price, which is why I’ve added the WorR attribute to tell me

whether this is a wholesale or a retail transaction.

448 BOOK 4 Extracting Information with SQL

 » ProdID: Product ID.

 » Quantity: Quantity.

 » Price: You guessed it.

 » Extprice: Extended price (which I get by multiplying Quantity and Price.)

With our definitions out of the way, check out what depends on what by following
the handy determinant arrow:

(WorR, ProdID) ➪ Price

(Quantity, Price) ➪ Extprice,

W/R tells you whether you are charging the wholesale or the retail price. Pro-

dID shows which product you are considering. Thus, the combination of WorR
and ProdID determines Price. Similarly, the combination of Quantity and Price
determines Extprice. Neither WorR nor ProdID by itself determines Price; they are
both needed to determine Price. Both Quantity and Price are needed to determine
Extprice.

Keys

A key is an attribute (or group of attributes) that uniquely identifies a tuple (a
unique collection of attributes) in a relation. One of the characteristics of a rela-

tion is that no two rows (tuples) are identical. You can guarantee that no two
rows are identical if at least one field (attribute) is guaranteed to have a unique
value in every row, or if some combination of fields is guaranteed to be unique for
each row.

Table 1-1 shows an example of the PROJECT relation. It lists researchers affiliated
with the Gentoo Institute’s Penguin Physiology Lab, the project that each partic-

ipant is working on, and the location at which each participant is conducting his
or her research.

In this table, each researcher is assigned to only one project. Is this a rule? Must
a researcher be assigned to only one project, can a researcher be assigned to more
than one? If a researcher can be assigned to only one project, ResearcherID is a
key. It guarantees that every row in the PROJECT table is unique. What if there
is no such rule? What if a researcher may work on multiple projects at the same
time? Table 1-2 shows this situation.

S
Q

L
 F

o
u

n
d

a
tio

n
s

CHAPTER 1 SQL Foundations 449

In this scenario, Dr. Pizarro works on the cold feet and the warm eggs projects,
whereas Professor Shelton works on the warm eggs and the varied diet proj-
ects. Clearly, ResearcherID cannot be used as a key. However, the combination of
ResearcherID and Project is unique and is thus a key.

You’re probably wondering how you can reliably tell what is a key and what isn’t.
Looking at the relation in Table 1-1, it looks like ResearcherID is a key because
every entry in that column is unique. However, this could be due to the fact that
you are looking at a limited sample, and any minute now, someone could add a
new row that duplicates the value of ResearcherID in one of the existing rows.
How can you be sure that won’t happen? Easy. Ask the users.

The relations you build are models of the mental images that the users have of
the system they are dealing with. You want your relational model to correspond
as closely as possible to the model the users have in their minds. If they tell you,
for example, that in their organization, researchers never work on more than one
project at a time, you can use ResearcherID as a key. On the other hand, if it is even
remotely possible that a researcher might be assigned to two projects simultane-

ously, you have to revert to a composite key made up of both ResearcherID and
Project.

TABLE 1-1	 PROJECT Relation

ResearcherID Project Location

Pizarro Why penguin feet don’t freeze Bahia Paraiso

Whitehead Why penguins don’t get the bends Port Lockroy

Shelton How penguin eggs stay warm in pebble nests Peterman Island

Nansen How penguin diet varies by season Peterman Island

TABLE 1-2	 PROJECTS Relation

ResearcherID Project Location

Pizarro Why penguin feet don’t freeze Bahia Paraiso

Pizarro How penguin eggs stay warm in pebble nests Peterman Island

Whitehead Why penguins don’t get the bends Port Lockroy

Shelton How penguin eggs stay warm in pebble nests Peterman Island

Shelton How penguin diet varies by season Peterman Island

Nansen How penguin diet varies by season Peterman Island

450 BOOK 4 Extracting Information with SQL

A question that might arise in your mind is, “Is it possible for a relation to exist
that has no key?” By the definition of a relation, the answer is no. Every relation
must have a key. One of the characteristics of a relation is that no two rows may be
exactly the same. That means that you are always able to distinguish rows from
each other, although you may have to include all the relation’s attributes in the
key to do it.

Views

Although the most fundamental constituent of a relational database is undoubt-
edly the table, another important concept is the virtual table or view. Unlike an
ordinary table, a view has no physical existence until it is called upon in a query.
There is no place on the disk where the rows in the view are stored. The view
exists only in the metadata as a definition. The definition describes how to pull
data from tables and present it to the user in the form of a view.

From the user’s perspective, a view looks just like a table. You can do almost
everything to a view that you can do to a table. The major exception is that you
cannot always update a view the same way that you can update a table. The view
may contain columns that are the result of some arithmetic operation on the data
in columns from the tables upon which the view is based. You can’t update a col-
umn that doesn’t exist in your permanent storage device. Despite this limitation,
views, after they’re formulated, can save you considerable work: You don’t need
to code the same complex query every time you want to pull data from multiple
tables. Create the view once, and then use it every time you need it.

Users

Although it may seem a little odd to include them, the users are an important part
of any database system. After all, without the users, no data would be written into
the system, no data would be manipulated, and no results would be displayed.
When you think about it, the users are mighty important. Just as you want your
hardware and software to be of the highest quality you can afford in order to
produce the best results, and for the same reason, you want the highest-quality
people. To ensure that only the people who meet your standards have access to the
database system, you should have a robust security system that enables autho-

rized users to do their job, and at the same time, prevents access to everyone else.

S
Q

L
 F

o
u

n
d

a
tio

n
s

CHAPTER 1 SQL Foundations 451

Privileges

A good security system not only keeps out unauthorized users but also provides
authorized users with access privileges tailored to their needs. The night watch-

man has different database needs from those of the company CEO. One way of
handling privileges is to assign every authorized user an authorization ID. When
the person logs on with his authorization ID, the privileges associated with that
authorization ID become available to him. This could include the ability to read
the contents of certain columns of certain tables, the ability to add new rows to
certain tables, delete rows, update rows, and so on.

A second way to assign privileges is with roles, which were introduced in SQL:1999.
Roles are simply a way for you to assign the same privileges to multiple people,
and they are particularly valuable in large organizations where a number of people
have essentially the same job and, thus, the same needs for data.

For example, a security guard working the nightshift might have the same data
needs as other security guards. You can grant a suite of privileges to the SECU-

RITY_GUARD role. From then on, you can assign the SECURITY_GUARD role to
any new guards, and all the privileges appropriate for that role are automatically
assigned to them. When a person leaves, or changes jobs, revoking their role can
be just as easy.

Schemas

Relational database applications typically use multiple tables. As a database grows
to support multiple applications, it becomes more and more likely that an appli-
cation developer will try to give one of her tables the same name as a table already
in the database. This can cause problems and frustration. To get around this prob-

lem, SQL has a hierarchical namespace structure. A developer can define her tables
as being members of a schema.

With this structure, one developer can have a table named CUSTOMER in her
schema, whereas a second developer can also have an entirely different table, also
named CUSTOMER, but in a different schema.

452 BOOK 4 Extracting Information with SQL

Catalogs

These days, organizations can be so big that if every developer had a schema for
each of her applications, the number of schemas itself could be a problem. Some-

one might inadvertently give a new schema the same name as an existing schema.
An additional level was added at the top of the namespace hierarchy to head off
this possibility. A catalog can contain multiple schemas, which in turn can contain
multiple tables. The smallest organizations don’t have to worry about either cata-

logs or schemas, but those levels of the namespace hierarchy are there if they’re
needed. If your organization is big enough to worry about duplicate catalog names,
it is big enough to figure out a way to deal with the problem.

Connections, Sessions, and Transactions

A database management system is typically divided into two main parts: a client

side, which interfaces with the user, and a server side, which holds the data and
operates on it. To operate on a database, a user must establish a connection between
their client and the server that holds the data they want to access. Generally, the
first thing you must do — if you want to work on a database at all — is to establish

THE RELATIONAL DATABASE HIERARCHY

A relational database is organized in a hierarchical structure, where the highest level is

the catalog. Generally, only the largest, most complex databases have multiple catalogs.

• Catalogs: A database catalog comes into play only in large, complex databases that

have multiple schemas.

• Schemas: A database schema contains metadata. This metadata includes defini-
tions of tables, views, value ranges, indexes, users, and user groups. It can also

include stored procedures and triggers.

• Tables: A database table is a set of elements organized as a two-dimensional table

with horizontal rows and vertical columns. The columns correspond to the attri-

butes in an entity’s entity relationship (ER) model. The rows hold the data about

individual instances of the entity.

• Columns: A column is a component of a database table. Each column in the table

corresponds to one of the attributes in the ER model of the entity being actualized

by the table.

S
Q

L
 F

o
u

n
d

a
tio

n
s

CHAPTER 1 SQL Foundations 453

a connection to it. You can do this with a CONNECT statement that specifies your
authorization ID and names the server you want to connect to. The exact imple-

mentation of this varies from one DBMS to another. (Most people today would use
the DBMS’s graphical user interface to connect to a server instead of using the SQL
CONNECT statement.)

A session is the context in which a single user executes a sequence of SQL state-

ments, using a single connection. A user can either be a person entering SQL state-

ments at the client console, or a program running on the client machine.

A transaction is a sequence of SQL statements that is atomic with respect to recov-

ery. This means that if a failure occurs while a transaction is in progress, the
effects of the transaction are erased so that the database is left in the state it was
in before the transaction started. Atomic in this context means indivisible. Either
the transaction runs to completion, or it aborts in such a way that any changes it
made before the abort are undone.

Routines

Routines are procedures, functions, or methods that can be invoked either by an
SQL CALL statement or by the host language program that the SQL code is operat-
ing with. Methods are a kind of function used in object-oriented programming.

Routines enable SQL code to take advantage of calculations performed by host
language code and enable host language code to take advantage of data operations
performed by SQL code.

Because either a host language program or SQL code can invoke a routine, and
because the routine being invoked can be written either in SQL or in host language
code, routines can cause confusion. A few definitions help to clarify the situation:

 » Externally invoked routine: A procedure, written in SQL and residing in a

module located on the client, which is invoked by the host language program

 » SQL-invoked routine: Either a procedure or a function residing in a module

located on the server, which could be written in either SQL or the host

language that is invoked by SQL code

 » External routine: Either a procedure or a function residing in a module located

on the server, which is written in the host language, but is invoked by SQL

 » SQL routine: Either a procedure or a function residing in a module located on

either the server or the client, which is written in SQL and invoked by SQL

454 BOOK 4 Extracting Information with SQL

Paths

A path in SQL, similar to a path in operating systems, tells the system in what
order to search locations to find a routine that has been invoked. For a system with
several schemas (perhaps one for testing, one for QA, and one for production), the
path tells the executing program where to look first, where to look next, and so
on, to find an invoked routine.

CHAPTER 2 Drilling Down to the SQL Nitty-Gritty 455

Drilling Down to the SQL
Nitty-Gritty

T
his chapter gets into the nitty-gritty of SQL. This is knowledge you need
to master before you embark on actually writing SQL statements. SQL has
some similarities to computer languages you may already be familiar with

and some important differences. The chapter touches on some of these similari-
ties and differences, but others are discussed later in this book (Book 4) at the
appropriate points in a complete discussion of SQL.

Executing SQL Statements

SQL is not a complete language, but a data sublanguage. As such, you cannot write
a program in the SQL language like you can with C or Java. That doesn’t mean SQL
is useless, though. There are several ways that you can use SQL. Say you have a
query editor up on your screen, and all you want is the answer to a simple ques-

tion. Just type an SQL query, and the answer, in the form of one or more lines of
data, appears on your screen. This mode of operation is called interactive SQL.

Chapter 2

IN THIS CHAPTER

 » Executing SQL statements

 » Using (and misusing) reserved words

 » Working with SQL’s data types

 » Handling null values

 » Applying constraints

456 BOOK 4 Extracting Information with SQL

If your needs are more complex, you have two additional ways of making SQL
queries:

 » You can write a program in a host language, such as C or Java, and embed

single SQL statements here and there in the program as needed. This mode

of operation is called embedded SQL.

 » You can write a module containing SQL statements in the form of procedures,

and then call these procedures from a program written in a language such as

C or Java. This mode of operation is called module language.

Interactive SQL

Interactive SQL consists of entering SQL statements into a database management
system such as SQL Server, Oracle, or DB2. The DBMS then performs the com-

mands specified by the statements. You could build a database from scratch this
way, starting with a CREATE DATABASE statement and building everything from
there. You could fill it with data, and then type queries to selectively pull informa-

tion out of it.

Although it’s possible to do everything you need to do to a database with interac-

tive SQL, this approach has a couple of disadvantages:

 » It can get awfully tedious to enter everything in the form of SQL statements

from the keyboard.

 » Only people fluent in the SQL language can operate on the database, and
most people have never even heard of SQL, let alone are able to use it

effectively.

SQL is the only language that most relational databases understand, so there is
no getting around using it. However, the people who interact with databases the
most — those folks that ask questions of the data — do not need to be exposed
to naked SQL. They can be protected from that intimidating prospect by wrap-

ping the SQL in a blanket of code written in another language. With that other
language, a programmer can generate screens, forms, menus, and other famil-
iar objects for the user to interact with. Ultimately, those things translate the
user’s actions to SQL code that the DBMS understands. The desired information is
retrieved, and the user sees the result.

D
rillin

g
 D

o
w

n
 to

 th
e

S
Q

L
 N

itty
-G

ritty

CHAPTER 2 Drilling Down to the SQL Nitty-Gritty 457

Challenges to combining SQL
with a host language
SQL has these fundamental differences from host languages that you might want
to combine it with:

 » SQL is nonprocedural. One basic feature of all common host languages is

that they are procedural, meaning that programs written in those languages

execute procedures in a step-by-step fashion. They deal with data the same

way, one row at a time. Because SQL is nonprocedural, it does whatever it is

going to do all at once and deals with data a set of rows at a time. Procedural

programmers coming to SQL for the first time need to adjust their thinking in
order to use SQL effectively as a data manipulation and retrieval tool.

 » SQL recognizes different data types than whatever host language you
are using with it. Because there are a large number of languages out there

that could serve as host languages for SQL, and the data types of any one of

them do not necessarily agree with the data types of any other, the commit-

tee that created the ANSI/ISO standard defined the data types for SQL that
they thought would be most useful, without referring to the data types

recognized by any of the potential host languages. This data type incompat-

ibility presents a problem if you want to perform calculations with your host

language on data that was retrieved from a database with SQL. The problem
is not serious; you just need to be aware of it. (It helps that SQL provides the
CAST statement for translating one data type into another.)

Embedded SQL

Until recently, the most common form of SQL has been embedded SQL. This
method uses a general-purpose computer language such as C, C++, or COBOL to
write the bulk of an application. Such languages are great for creating an appli-
cation’s user interface. They can create forms with buttons and menus, format
reports, perform calculations, and basically do all the things that SQL cannot do.
In a database application, however, sooner or later, the database must be accessed.
That’s a job for SQL.

It makes sense to write the application in a host language and, when needed,
drop in SQL statements to interact with the data. It is the best of both worlds. The
host language does what it’s best at, and the embedded SQL does what it’s best

at. The only downside to the cooperative arrangement is that the host language
compiler will not recognize the SQL code when it encounters it and will issue an
error message. To avoid this problem, a precompiler processes the SQL before
the host language compiler takes over. When everything works, this is a great

458 BOOK 4 Extracting Information with SQL

arrangement. Before everything works, however, debugging can be tough because
a host language debugger doesn’t know how to handle any SQL that it encounters.
Nevertheless, embedded SQL remains the most popular way to create database
applications.

For example, look at a fragment of C code that contains embedded SQL statements.
This particular fragment is written in Oracle’s Pro*C dialect of the C language
and is code that might be found in an organization’s human resources depart-
ment. This particular code block is designed to authenticate and log on a user,
and then enable the user to change the salary and commission information for
an employee.

EXEC SQL BEGIN DECLARE SECTION;

 VARCHAR uid[20];

 VARCHAR pwd[20];

 VARCHAR ename[10];

 FLOAT salary, comm;

 SHORT salary_ind, comm_ind;

EXEC SQL END DECLARE SECTION;

main()

{

 int sret; /* scanf return code */

 /* Log in */

 strcpy(uid.arr,"Mary"); /* copy the user name */

 uid.len=strlen(uid.arr);

 strcpy(pwd.arr,"Bennett"); /* copy the password */

 pwd.len=strlen(pwd.arr);

 EXEC SQL WHENEVER SQLERROR STOP;

 EXEC SQL WHENEVER NOT FOUND STOP;

 EXEC SQL CONNECT :uid;

 printf("Connected to user: percents \n",uid.arr);

 printf("Enter employee name to update: ");

 scanf("percents",ename.arr);

 ename.len=strlen(ename.arr);

 EXEC SQL SELECT SALARY,COMM INTO :salary,:comm

 FROM EMPLOY

 WHERE ENAME=:ename;

 printf("Employee: percents salary: percent6.2f

 comm: percent6.2f \n", ename.arr, salary, comm);

 printf("Enter new salary: ");

 sret=scanf("percentf",&salary);

 salary_ind = 0;

 if (sret == EOF !! sret == 0) /* set indicator */

 salary_ind =-1; /* Set indicator for NULL */

D
rillin

g
 D

o
w

n
 to

 th
e

S
Q

L
 N

itty
-G

ritty

CHAPTER 2 Drilling Down to the SQL Nitty-Gritty 459

 printf("Enter new commission: ");

 sret=scanf("percentf",&comm);

 comm_ind = 0; /* set indicator */

 if (sret == EOF !! sret == 0)

 comm_ind=-1; /* Set indicator for NULL */

 EXEC SQL UPDATE EMPLOY

 SET SALARY=:salary:salary_ind

 SET COMM=:comm:comm_ind

 WHERE ENAME=:ename;

 printf("Employee percents updated. \n",ename.arr);

 EXEC SQL COMMIT WORK;

 exit(0);

}

Here’s a closer look at what the code does:

 » First comes an SQL declaration section, where variables are declared.

 » Next, C code accepts a username and password.

 » A couple of SQL error traps follow, and then a connection to the database is

established. (If an SQL error code or Not Found code is returned from the
database, the run is aborted before it begins.)

 » C code prints out some messages and accepts the name of the employee

whose record will be changed.

 » SQL retrieves that employee’s salary and commission data.

 » C displays the salary and commission data and solicits new salary and

commission data.

 » SQL updates the database with the new data.

 » C displays a successful completion message.

 » SQL commits the transaction.

 » C terminates the program.

In this implementation, every SQL statement is introduced with an EXEC SQL

directive. This is a clue to the compiler not to try to compile what follows but
instead to pass it directly to the DBMS’s database engine.

Some implementations have deprecated embedded SQL or discontinued it
entirely. For example, embedded SQL was deprecated in SQL Server 2008, mean-

ing it was still present but may not be in a subsequent version. Software vendors
recommend that deprecated features not be included in new development efforts.

460 BOOK 4 Extracting Information with SQL

Embedded SQL is now absent from MySQL and SAP SQL Anywhere, although an
independently developed preprocessor is available for MySQL.

Module language

Module language is similar to embedded SQL in that it combines the strengths
of SQL with those of a host language. However, it does it in a slightly different
way. All the SQL code is stored — as procedures — in a module separate from the
host language program. Whenever the host language program needs to perform a
database operation, it calls a procedure from the SQL module to do the job. With
this arrangement, all your SQL is kept out of the main program, so the host lan-

guage compiler has no problem, and neither does the debugger. All they see is host
language code, including the procedure calls. The procedures themselves cause no
difficulty because they are in a separate module, and the compiler and debugger
just skip over them.

Another advantage of module language over embedded SQL is that the SQL code
is separated from the host language code. Because high skill in both SQL and any
given host language is rare, it is difficult to find good people to program embed-

ded SQL applications. Because a module language implementation separates the
languages, you can hire the best SQL programmer to write the SQL and the best
host language programmer to write the host language code. Neither one has to be
an expert in the other language.

To see how this would work, check out the following module definition, which
shows you the syntax you’d use to create a module that contains SQL procedures:

MODULE [module-name]

 [NAMES ARE character-set-name]

 LANGUAGE {ADA|C|COBOL|FORTRAN|MUMPS|PASCAL|PLI|SQL}

 [SCHEMA schema-name]

 [AUTHORIZATION authorization-id]

 [temporary-table-declarations...]

 [cursor-declarations...]

 [dynamic-cursor-declarations...]

 procedures...

The MODULE declaration is mandatory, but the module name is not. (It’s a good idea
to name your modules anyway, just to reduce the confusion.) With the optional
NAMES ARE clause, you can specify a character set — Hebrew, for example, or
Cyrillic. The default character set will be used if you don’t include a NAMES ARE

clause.

D
rillin

g
 D

o
w

n
 to

 th
e

S
Q

L
 N

itty
-G

ritty

CHAPTER 2 Drilling Down to the SQL Nitty-Gritty 461

The next line lets you specify a host language — something you definitely have
to do. Each language has different expectations about what the procedure will
look like, so the LANGUAGE clause determines the format of the procedures in the
module.

Although the SCHEMA clause and the AUTHORIZATION clause are both optional, you
must specify at least one of them. The AUTHORIZATION clause is a security feature.
If your authorization ID does not carry sufficient privileges, you won’t be allowed
to use the procedures in the module.

If any of the procedures use temporary tables, cursors, or dynamic cursors, they
must be declared before they are used.

Using Reserved Words Correctly

Given the fact that SQL makes constant use of command words such as CREATE

and ALTER, it stands to reason that it would probably be unwise to use these same
words as the names of tables or variables. To do so is a guaranteed way to confuse
your DBMS. In addition to such command words, a number of other words also
have a special meaning in SQL. These reserved words should also not be used for
any purpose other than the one for which they are designed. Consider the follow-

ing SQL statement:

SELECT CustomerID, FirstName, LastName

 FROM Customer

 WHERE CustomerID < 1000;

SELECT is a command word, and FROM and WHERE are reserved words. SQL has
hundreds of reserved words, and you must be careful not to inadvertently use
any of them as the names of objects or variables. Allen G. Taylor’s SQL All-in-

One For Dummies, 3rd Edition (Wiley) provides a list of reserved words in ISO/IEC
SQL:2016.

SQL’s Data Types

SQL is capable of dealing with many different data types — as this aptly named
section will soon make clear. From the beginning, SQL has been able to handle
the common types of numeric and character data, but more recently, new types
have been added that enable SQL to deal with nontraditional data types, such as

462 BOOK 4 Extracting Information with SQL

BLOB, CLOB, and BINARY. At present, there are eleven major categories of data
types: exact numerics, approximate numerics, character strings, binary strings,
Booleans, datetimes, intervals, XML type, collection types, REF types, and user-
defined types. Within each category, one or more specific types may exist.

Your SQL implementation may not support all the data types described in this
section. Furthermore, your implementation may support nonstandard data types
that I don’t describe here.

With that proviso out of the way, read on to find brief descriptions of each of the
categories as well as enumerations of the standard types they include.

Exact numerics

Because computers store numbers in registers of finite size, there is a limit to
how large or small a number can be and still be represented exactly. There is a
range of numbers centered on zero that can be represented exactly. The size of
that range depends on the size of the registers that the numbers are stored in.
Thus, a machine with 64-bit registers can exactly represent a range of numbers
wider than the range that can be exactly represented on a machine with 32-bit
registers.

After doing all the complex math, you’re left with six standard exact numeric data
types. They are

 » INTEGER

 » SMALLINT

 » BIGINT

 » NUMERIC

 » DECIMAL

 » DECFLOAT

The next few sections drill down deeper into each type.

INTEGER

Data of the INTEGER type is numeric data that has no fractional part. Any given
implementation of SQL will have a limit to the number of digits that an integer can
have. If, for some reason, you want to specify a maximum size for an integer that
is less than the default maximum, you can restrict the maximum number of digits

D
rillin

g
 D

o
w

n
 to

 th
e

S
Q

L
 N

itty
-G

ritty

CHAPTER 2 Drilling Down to the SQL Nitty-Gritty 463

by specifying a precision argument. By declaring a variable as having type INTEGER
(10), you are saying numbers of this type can have no more than ten digits, even
if the system you are running on is capable of handling more digits. Of course, if
you specify a precision that exceeds the maximum capacity of the system, you’re
not gonna get it no matter how much you whine. You cannot magically expand the
sizes of the hardware registers in a machine with an SQL declaration.

If there is a possibility that sometime in the near or distant future, your appli-
cation may be ported to a system that has a different default precision for exact
numeric numbers, you should specify a precision. That way, the precision you
have planned on will carry over to the new system. If you rely on the default
precision, and the default precision of the system you port to is different, your
operations may produce different results from those produced by your original
system. On the other hand, you may be fine. For example, both Microsoft SQL
Server and MySQL reserve the same amount of space for a number of the INTEGER

type; thus, the precision is the same for both.

SMALLINT

The SMALLINT data type is similar to the INTEGER type, but how it differs from the
INTEGER type is implementation-dependent. It may not differ from the INTEGER

type at all. The only constraint on the SMALLINT type is that its precision may be

no larger than the precision of the INTEGER type.

For systems where the precision of the SMALLINT type actually is less than the
precision of the INTEGER type, it may be advantageous to specify variables as being
of the SMALLINT type if you can be sure that the values of those variables will never
exceed the precision of the SMALLINT type. This saves you some storage space. If
storage space is not an issue, or if you cannot be absolutely sure that the value of
a variable will never exceed the precision of the SMALLINT type, you may be better
off specifying it as being of the INTEGER type.

BIGINT

The BIGINT type is similar to the SMALLINT type. The only difference is that the
precision of the BIGINT type can be no smaller than the precision of the INTEGER

type. As is the case with SMALLINT, the precision of the BIGINT type could be the
same as the precision of the INTEGER type.

If the precision of the BIGINT type for any given implementation is actually larger
than the precision of the INTEGER type, a variable of the BIGINT type will take up
more storage space than a variable of the INTEGER type. Only use the BIGINT type

464 BOOK 4 Extracting Information with SQL

if there is a possibility that the size of a variable may exceed the precision of the
INTEGER type.

NUMERIC

Data of the NUMERIC type does have a fractional part. This means the number con-

tains a decimal point and zero or more digits to the right of the decimal point.
For NUMERIC data, you can specify both precision and scale. The scale of a number
is the number of digits to the right of the decimal point. For example, a variable
declared as type NUMERIC (10, 2) would have a maximum of ten digits, with two
of those digits to the right of the decimal point. The largest number you can rep-

resent with this type is 99,999,999.99. If the system you are running on happens
to be able to handle numbers with precision greater than ten, only the precision
you specify will be used.

DECIMAL

Data of the DECIMAL type is similar to data of the NUMERIC type with one difference.
For data of the DECIMAL type, if the system you are running on happens to be able
to handle numbers with larger precision than what you have specified, the extra
precision will be used.

The NUMERIC data type is better if portability is a possibility. When you use the
NUMERIC type, you can be sure the precision you specify will be the precision that
is used, regardless of the system’s capabilities. This ensures consistent results
across diverse platforms.

DECFLOAT

DECFLOAT is a new exact numeric data type in SQL:2016. It was added to ISO/IEC
standard SQL specifically for business applications that deal with exact decimal
values. Floating point data types, such as REAL and DOUBLE, can handle larger
numbers than exact numerics such as NUMERIC and DECIMAL. However, they
cannot be counted on to produce exact decimal values. DECFLOAT can handle
larger numbers than other exact numeric data types and retain the exactness of
an exact numeric type.

Approximate numerics

The approximate numeric types (all three of them) exist so that you can represent
numbers either too large or too small to be represented by an exact numeric type.
If, for example, a system has 32-bit registers, then the largest number that can
be represented with an exact numeric type is the largest number that can be rep-

resented with 32 binary digits — which happens to be 4,294,967,295 in decimal.

D
rillin

g
 D

o
w

n
 to

 th
e

S
Q

L
 N

itty
-G

ritty

CHAPTER 2 Drilling Down to the SQL Nitty-Gritty 465

If you have to deal with numbers larger than that, you must move to approximate

numerics or buy a computer with 64-bit registers. Using approximate numerics
may not be much of a hardship: For most applications, after you get above four
billion, approximations are good enough.

Similarly, values very close to zero cannot be represented with exact numerics
either. The smallest number that can be represented exactly on a 32-bit machine
has a one in the least significant bit position and zeros everywhere else. This is
a very small number, but there are a lot of numbers of interest, particularly in
science, that are smaller. For such numbers, you must also rely on approximate
numerics.

With that intro out of the way, it’s time to meet the three approximate numeric
types: REAL, DOUBLE PRECISION, and FLOAT.

REAL

The REAL data type is what you would normally use for single-precision
floating-point numbers. The exact meaning of the term single precision depends
on the implementation. This is hardware-dependent, and a machine with 64-bit
registers will generally have a larger precision than a machine with 32-bit
registers. How much larger may vary from one implementation to another.

A floating-point number is a number that contains a radix point. In the case of
decimal numbers, that means a decimal point. The decimal point could appear
anywhere in the number, which is why it is called floating. 2.7, 2.73, 27.3, and
2735.53894 are all examples of floating-point numbers. Although we humans are
accustomed to seeing numbers expressed in this form, approximate numerics
are expressed as a combination of a mantissa and an exponent. This form is a little
less user friendly but enables the approximate representation of very large and
very small numbers in a compact form. 6.626 × 10-34, for example, is a very small
number, being as it is an approximation of Planck’s constant, also a very small
number. 6.626 is the mantissa, and -34 is the exponent. It would not be possible
to represent a number that small exactly with any currently existing hardware.

DOUBLE PRECISION

A double-precision number, which is the basis for the double precision (DOUBLE)
data type, on any given system has greater precision than a real number on the
same system. However, despite the name, a double-precision number does not
necessarily have twice the precision of a real number. The most that can be said
in general is that a double-precision number on any given system has greater
precision than does a real number on the same system. On some systems, a dou-

ble-precision number may have a larger mantissa than a real number. On other

466 BOOK 4 Extracting Information with SQL

systems, a double-precision number may support a larger exponent (absolute
value). On yet other systems, both mantissa and exponent of a double-precision
number may be larger than for a real number. You will have to look at the specifi-

cations for whatever system you are using to find out what is true for you.

FLOAT

The FLOAT data type is very similar to the REAL data type. The difference is that
with the FLOAT data type, you can specify a precision. With the REAL and DOUBLE
PRECISION data types, the default precision is your only option. Because the
default precision of these data types can vary from one system to another, porting
your application from one system to another could be a problem. With the FLOAT

data type, specifying the precision of an attribute on one machine guarantees that
the precision will be maintained after porting the application to another machine.
If a system’s hardware supports double-precision operations and the application
requires double-precision operations, the FLOAT data type automatically uses the
double-precision circuitry. If single-precision is sufficient, it uses that.

Character strings

After numbers, the next most common thing to be stored is strings of alphanu-

meric characters. SQL provides several character string types, each with somewhat
different characteristics. The three main types are CHARACTER, CHARACTER VARY-
ING, and CHARACTER LARGE OBJECT. These three types are mirrored by NATIONAL
CHARACTER, NATIONAL CHARACTER VARYING, and NATIONAL CHARACTER LARGE
OBJECT deals with character sets other than the default character set, which is
usually the character set of the English language.

CHARACTER

A column defined as being of type CHARACTER or CHAR can contain any of the

normal alphanumeric characters of the language being used. A column definition
also includes the maximum length allowed for an item of the CHAR type. Consider
this example:

Name CHAR (15)

This field can hold a name up to 15 characters long. If the name is less than 15 char-

acters long, the remaining spaces are filled with blank characters to bring the total
length up to 15. Thus, a CHARACTER field always takes up the same amount of space
in memory, regardless of how long the actual data item in the field is.

D
rillin

g
 D

o
w

n
 to

 th
e

S
Q

L
 N

itty
-G

ritty

CHAPTER 2 Drilling Down to the SQL Nitty-Gritty 467

CHARACTER VARYING

The CHARACTER VARYING or VARCHAR data type is like the CHARACTER type in all
respects, except that short entries are not padded out with blanks to fill the field
to the stated maximum.

Name VARCHAR (15)

The VARCHAR data type doesn’t add blanks on the end of a name. Thus, if the Name
field contains Joe, the length of the field that is stored will be only three characters
rather than fifteen.

CHARACTER LARGE OBJECT (CLOB)

Any implementation of SQL has a limit to the number of characters that are
allowed in a CHARACTER or CHARACTER VARYING field. For example, the maximum
length of a character string in Oracle 11g is 1,024 characters. If you want to store
text that goes beyond that limit, you can use the CHARACTER LARGE OBJECT data
type. The CLOB type, as it is affectionately known, is much less flexible than either
the CHAR or VARCHAR types in that it does not allow you to do many of the fine-
grained manipulations that you can do in those other types. You can compare two
CLOB items for equality, but that’s about all you can do. With CHARACTER type data
you can, for example, scan a string for the first occurrence of the letter W, and
display where in the string it occurs. This type of operation is not possible with
CHARACTER LARGE OBJECT data.

Here’s an example of the declaration of a CHARACTER LARGE OBJECT:

Dream CLOB (8721)

Another restriction on CLOB data is that a CLOB data item may not be used as a pri-
mary key or a foreign key. Furthermore, you cannot apply the UNIQUE constraint

to an item of the CLOB type. The bottom line is that the CLOB data type enables you
to store and retrieve large blocks of text, but it turns out you can’t do much with
them beyond that.

NATIONAL CHARACTER, NATIONAL
CHARACTER VARYING, and NATIONAL
CHARACTER LARGE OBJECT
Different languages use different character sets. For example, Spanish and German
have letters with diacritical marks that change the way the letter is pronounced.
Other languages, such as Russian, have an entirely different character set. To store
character strings that contain these different character sets, the various national

468 BOOK 4 Extracting Information with SQL

character types have been added to SQL. If the English character type is the default
on your system, as it is for most people, you can designate a different character set
as your national character set. From that point on, when you specify a data type
as NATIONAL CHARACTER, NATIONAL CHARACTER VARYING, or NATIONAL CHARACTER
LARGE OBJECT, items in columns so specified use the chosen national character set
rather than the default character set.

In addition to whatever national character set you specify, you can use multiple
other character sets in a table definition by specifying them explicitly. Here’s an
example where the national character set is Russian, but you explicitly add Greek
and Kanji (Japanese) to the mix:

CREATE TABLE BOOK_TITLE_TRANSLATIONS (

 English CHARACTER (40),

 Greek VARCHAR (40) CHARACTER SET GREEK,

 Russian NATIONAL CHARACTER (40),

 Japanese CHARACTER (40) CHARACTER SET KANJI

) ;

Some implementations may not support all the character sets. For example,
MySQL does not currently support Kanji.

Binary strings

The various binary string data types were added to SQL:2008. Binary strings are
like character strings, except the only characters allowed are 1 and 0. There are
three different types of binary strings: BINARY, BINARY VARYING, and BINARY
LARGE OBJECT.

BINARY

A string of binary characters of the BINARY type must be some multiple of eight
bits long. You can specify such a string with BINARY (x), where x is the number of
bytes of binary data contained in the string. For example, if you specify a binary
string with BINARY (2), then the string will be two bytes, or 16 bits long. Byte one
is defined as the first byte of the string.

BINARY VARYING

The BINARY VARYING or VARBINARY type is like the BINARY type except the string
length need not be x bytes long. A string specified as VARBINARY (x) can be a

minimum of zero bytes long and a maximum of x bytes long.

D
rillin

g
 D

o
w

n
 to

 th
e

S
Q

L
 N

itty
-G

ritty

CHAPTER 2 Drilling Down to the SQL Nitty-Gritty 469

BINARY LARGE OBJECT (BLOB)

The BINARY LARGE OBJECT (BLOB) type is used for a really large binary number.
That large binary number may represent the pixels in a graphical image, or some-

thing else that doesn’t seem to be a number. However, at the most fundamental
level, it is a number.

The BLOB type, like the CLOB type, was added to the SQL standard to reflect the
reality that more and more of the things people want to store in databases do not
fall into the classical categories of being either numbers or text. You cannot per-

form arithmetic operations on BLOB data, but at least you can store it in a rela-

tional database and perform some elementary operations.

Booleans

A column of the BOOLEAN data type, named after 19th-century English
mathematician George Boole, will accept any of three values: TRUE, FALSE, and
UNKNOWN. The fact that SQL entertains the possibility of NULL values expands
the traditional restriction of Boolean values from just TRUE and FALSE to TRUE,
FALSE, and UNKNOWN. If a Boolean TRUE or FALSE value is compared to a NULL

value, the result is UNKNOWN. Of course, comparing a Boolean UNKNOWN value to
any value also gives an UNKNOWN result.

Datetimes

You often need to store either dates, times, or both, in addition to numeric and
character data. ISO/IEC standard SQL defines five datetime types. Because con-

siderable overlap exists among the five types, not all implementations of SQL
include all five types. This could cause problems if you try to migrate a database
from a platform that uses one subset of the five types to a platform using a dif-
ferent subset. There is not much you can do about this except deal with it when
the issue arises.

DATE

The DATE data type is the one to use if you care about the date of something but
could not care less about the time of day within a date. The DATE data type stores
a year, month, and day in that order, using ten character positions in the form
yyyy-mm-dd. If you were recording the dates that humans first landed on the
Moon, the entry for Apollo 11 would be 1969-07-20.

470 BOOK 4 Extracting Information with SQL

TIME WITHOUT TIME ZONE

Suppose you want to store the time of day but don’t care which day, and further-

more, don’t even care which time zone the time refers to. In that case, the TIME
WITHOUT TIME ZONE data type is just the ticket. It stores hours, minutes, and sec-

onds. The hours and minutes data occupy two digits apiece. The seconds data also
occupies two digits but may include a fractional part for fractions of a second. If
you specify a column as being of TIME WITHOUT TIME ZONE type, with no param-

eter, it will hold a time with no fractional seconds. An example is 02:56:31, which
is fifty-six minutes and thirty-one seconds after two in the morning.

For greater precision in storing a time value, you can use a parameter to specify
the number of digits beyond the decimal point that will be stored for seconds.
Here’s an example of such a definition:

Smallstep TIME WITHOUT TIME ZONE (2),

In this example, there are two digits past the decimal point, so time is measured
down to a hundredth of a second. It would take the form of 02:56:31.17.

TIME WITH TIME ZONE

The TIME WITH TIME ZONE data type gives you all the information that you get in
the TIME WITHOUT TIME ZONE data type and adds the additional fact of the time
zone the time refers to. All time zones around the Earth are referenced to Coor-

dinated Universal Time (UTC), formerly known as Greenwich Mean Time (GMT).
Coordinated Universal Time is the time in Greenwich, U.K., which was the place
where people first started being concerned with highly accurate timekeeping. Of
course, the United Kingdom is a fairly small country, so UTC is in effect through-

out the entire U.K. In fact, a huge “watermelon slice” of the Earth, running from
the North Pole to the South Pole, is also in the same time zone as Greenwich.
There are 24 such slices that girdle the Earth. Times around the Earth range from
eleven hours and fifty-nine minutes behind UTC to twelve hours ahead of UTC
(not counting Daylight Saving Time). If Daylight Saving Time is in effect, the off-

set from UTC could be as much as –12:59 or +13:00. The International Date Line
is theoretically exactly opposite Greenwich on the other side of the world but is
offset in spots so as to keep some countries in one time zone.

TIMESTAMP WITHOUT TIME ZONE

Just as sometimes you will need to record dates and other times you will need
to record times, it’s certain that there will also be times when you need to store
both times and dates. That is what the TIMESTAMP WITHOUT TIME ZONE data type
is for. It is a combination of the DATE type and the TIME WITHOUT TIMEZONE type.

D
rillin

g
 D

o
w

n
 to

 th
e

S
Q

L
 N

itty
-G

ritty

CHAPTER 2 Drilling Down to the SQL Nitty-Gritty 471

The one difference between this data type and the TIME WITHOUT TIMEZONE type

is that the default value for fractions of a second is six digits rather than zero. You
can, of course, specify zero fractional digits, if that is what you want. Suppose you
specified a database table column as follows:

Smallstep TIMESTAMP WITHOUT TIME ZONE (0),

A valid value for Smallstep would be 1969-07-21 02:56:31. That was the date and
time in Greenwich when Neil Armstrong’s foot first touched the lunar soil. It con-

sists of ten date characters, a blank space separator, and eight time characters.

TIMESTAMP WITH TIME ZONE

If you have to record the time zone that a date and time refers to, use the TIMESTAMP
WITH TIME ZONE data type. It’s the same as the TIMSESTAMP WITHOUT TIME ZONE

data type, with the addition of an offset that shows the time’s relationship to
Coordinated Universal Time. Here’s an example:

Smallstep TIMESTAMP WITH TIME ZONE (0),

In this case, Smallstep might be recorded as 1969-07-20 21:56:31-05:00. That is
the date and time in Houston when Neil Armstrong’s foot first touched the lunar
soil. Houston time is normally six hours ahead of Greenwich time, but in July, it is
only five hours ahead due to Daylight Saving Time.

Intervals

An interval is the difference between two dates, two times, or two datetimes.
There are two different kinds of intervals, the year-month interval and the day-

hour-minute-second interval. A day always has 24 hours. An hour always has
60 minutes. A minute always has 60 seconds. However, a month may have 28,
29, 30, or 31 days. Because of that variability, you cannot mix the two kinds of
intervals. A field of the INTERVAL type can store the difference in time between
two instants in the same month but cannot store an interval such as 2 years,
7 months, 13 days, 5 hours, 6 minutes, and 45 seconds.

XML type

The SQL/XML:2003 update to the ISO/IEC SQL standard introduced the XML data
type. Values in the XML type are XML values, meaning you can now manage and
query XML data in an SQL database.

472 BOOK 4 Extracting Information with SQL

With SQL/XML:2006, folks moved to the XQuery Data Model, which means
that any XML value is also an XQuery sequence. The details of the XQuery Data
Model are beyond the scope of this book. Refer to Querying XML, by Jim Melton
and Stephen Buxton (published by Morgan Kaufmann) for detailed coverage of
this topic.

With the introduction of SQL/XML:2006, three specific subtypes of the XML type
were defined. They are XML(SEQUENCE), XML(CONTENT), and XML(DOCUMENT).

The three subtypes are related to each other hierarchically. An XML(SEQUENCE)

is any sequence of XML nodes, XML values, or both. An XML(CONTENT) is an

XML(SEQUENCE) that is an XML fragment wrapped in a document node. An
XML(DOCUMENT) is an XML(CONTENT) that is a well-formed XML document.

Every XML value is at least an XML(SEQUENCE). An XML(SEQUENCE) that is a

document node is an XML(CONTENT). An XML(CONTENT) that has legal document
children is an XML(DOCUMENT).

XML types may be associated with an XML schema. There are three possibilities:

 » UNTYPED: There is no associated XML schema.

 » XMLSCHEMA: There is an associated XML schema.

 » ANY: There may or may not be an associated XML schema.

So, a document of type XML(DOCUMENT(ANY)) may or may not have an associated
XML schema. If you specify a column as being of type XML with no modifiers, it
must be either XML(SEQUENCE), XML(CONTENT(ANY), or XML(CONTENT(UNTYPED)).

Which of those it is depends on the implementation.

ROW type

The ROW type, introduced in the 1999 version of the ISO/IEC SQL standard
(SQL:1999), represents the first break of SQL away from the relational model,
as defined by its creator, Dr. E.F. Codd. With the introduction of this type, SQL
databases can no longer be considered pure relational databases. One of the defin-

ing characteristics of Codd’s First Normal Form (1NF) is the fact that no field in
a table row may be multivalued. Multivalued fields are exactly what the ROW type

introduces. The ROW type enables you to place a whole row’s worth of data into a
single field, effectively nesting a row within a row. To see how this works, create
a ROW type.

Note: The normal forms constrain the structure of database tables as a defense
against anomalies, which are inconsistencies in table data or even outright wrong

D
rillin

g
 D

o
w

n
 to

 th
e

S
Q

L
 N

itty
-G

ritty

CHAPTER 2 Drilling Down to the SQL Nitty-Gritty 473

values. 1NF is the least restrictive of the normal forms and, thus, the easiest to
satisfy. Notwithstanding that, a table that includes a ROW type fails the test of
First Normal Form. According to Dr. Codd, such a table is not a relation and, thus,
cannot be present in a relational database.

CREATE ROW TYPE address_type (

 Street VARCHAR (25),

 City VARCHAR (20),

 State CHAR (2),

 PostalCode VARCHAR (9)

) ;

This code effectively compresses four attributes into a single type. After you have
created a ROW type — such as address_type in the preceding example — you can
then use it in a table definition.

CREATE TABLE VENDOR (

 VendorID INTEGER PRIMARY KEY,

 VendorName VARCHAR (25),

 Address address_type,

 Phone VARCHAR (15)

) ;

If you have tables for multiple groups, such as vendors, employees, customers,
stockholders, or prospects, you have to declare only one attribute rather than four.
That may not seem like much of a savings, but you’re not limited to putting just
four attributes into a ROW type. What if you had to type the same 40 attributes into
100 tables?

Like many other relatively recent aspects of SQL, the ROW type has not yet
been included in many of the most popular SQL implementations. Even Oracle,
which is one of the closest implementations to the SQL:2016 standard, does not
currently support the ROW type. Instead, it supports object types that perform a
similar function.

Collection types

The introduction of ROW types in SQL:1999 was not the only break from the iron-

clad rules of relational database theory. In that same version of the standard, the
ARRAY type was introduced, and in SQL:2003, the MULTISET type was added. Both
of these collection types violate the ol’ First Normal Form (1NF) and, thus, take
SQL databases a couple of steps further away from relational purity.

474 BOOK 4 Extracting Information with SQL

ARRAY

The ARRAY type violates 1NF, but not in the same way that the ROW type does. The
ARRAY type enables you to enhance a field of an existing type by putting more
than one entry into it. This creates a repeating group, which was demonized in
Codd’s original formulation of the relational model but now reappears as a desir-

able feature. Arrays are ordered in the sense that each element in the array cor-

responds to exactly one ordinal position.

You might ask how a repeating group of the ARRAY type differs from the ROW type’s
ability to put “a whole row’s worth of data into a single field.” The distinction is
subtle. The ROW type enables you to compress multiple different attributes into a
single field, such as a street, city, state, and postal code. The repeating group of
the ARRAY type enables you to put multiple instances of the same attribute into a
single field, such as a phone number and three alternate phone numbers.

For example, suppose you want to have alternate ways of contacting your ven-

dors if main telephone number does not work for you. Perhaps you would like
the option of storing as many as four telephone numbers, just to be safe. A slight
modification to the code shown previously will do the trick.

CREATE TABLE VENDOR (

 VendorID INTEGER PRIMARY KEY,

 VendorName VARCHAR (25),

 Address address_type,

 Phone VARCHAR (15) ARRAY [4]

) ;

When he created the relational model, Dr. Codd made a conscious decision to
sacrifice some functional flexibility in exchange for enhanced data integrity. The
addition of the ARRAY type, along with the ROW type and later the MULTISET type,
takes back some of that flexibility in exchange for added complexity. That added
complexity could lead to data integrity problems if it is not handled correctly.
The more complex a system is, the more things that can go wrong and the more
opportunities there are for people to make mistakes.

Multiset

Whereas an array is an ordered collection of elements, a multiset is an unordered
collection. You cannot reference individual elements in a multiset because you
don’t know where they are located in the collection. If you want to have multiples
of an attribute, such as phone numbers but don’t care what order they are listed
in, you can use a multiset rather than an array.

D
rillin

g
 D

o
w

n
 to

 th
e

S
Q

L
 N

itty
-G

ritty

CHAPTER 2 Drilling Down to the SQL Nitty-Gritty 475

REF types

REF types are different from distinct data types such as INTEGER or CHAR. They
are used in obscure circumstances by highly skilled SQL wizards and just about
nobody else. Instead of holding values, an REF type references a user-defined
structured type associated with a typed table. Typed tables are beyond the scope
of this book, but I mention REF type here for the sake of completeness.

REF types are not a part of core SQL. This means that database vendors can claim
compliance with the SQL standard without implementing REF types.

The REF type is an aspect of the object-oriented nature of SQL since the SQL:1999
standard. If object-oriented programming seems obscure to you, as it does to
many programmers of a more traditional bent, you can probably survive quite well
without ever needing the REF type.

User-defined types
User-defined types (UDTs) are another addition to SQL imported from the world
of object-oriented programming. If the data types enumerated here are not
enough for you, you can define your own data types. To do so, use the princi-
ples of abstract data types (ADTs) that are major features of such object-oriented
languages as C++.

SQL is not a complete programming language, and as such must be used with a
host language that is complete, such as C. One of the problems with this arrange-

ment is that the data types of the host language often do not match the data types
of SQL. User-defined types come to the rescue here. You can define a type that
matches the corresponding type in the host language.

The object-oriented nature of UDTs becomes evident when you see that a UDT has
attributes and methods encapsulated within it. The attribute definitions and the
results of the methods are visible to the outside world, but the ways the methods
are actually implemented are hidden from view. In this object-oriented world,
you can declare attributes and methods to be public, private, or protected. A public

attribute or method is available to anyone who uses the UDT. A private attribute or
method may be used only by the UDT itself. A protected attribute or method may be
used only by the UDT itself and its subtypes. (If this sounds familiar to you, don’t
be surprised — an SQL UDT is much like a class in object-oriented programming.)

There are two kinds of UDTs: distinct types and structured types. The next sections
take a look at each one in turn.

476 BOOK 4 Extracting Information with SQL

Distinct types

A distinct type is very similar to a regular predefined SQL type. In fact, a distinct
type is derived directly from a predefined type, called the source type. You can cre-

ate multiple distinct types from a single source type, each one distinct from all
the others and from the source type. Here’s how to create a distinct type from a
predefined type:

CREATE DISTINCT TYPE USdollar AS DECIMAL (10,2) ;

This definition (USdollar) creates a new data type for (wait for it) U.S. dollars,
based on the predefined DECIMAL type. You can create additional distinct types in
the same way:

CREATE DISTINCT TYPE Euro AS DECIMAL (10,2) ;

Now you can create tables that use the new types:

CREATE TABLE USinvoice (

 InvoiceNo INTEGER PRIMARY KEY,

 CustomerID INTEGER,

 SalesID INTEGER,

 SaleTotal USdollar,

 Tax USdollar,

 Shipping USdollar,

 GrandTotal USdollar

) ;

CREATE TABLE Europeaninvoice (

 InvoiceNo INTEGER PRIMARY KEY,

 CustomerID INTEGER,

 SalesID INTEGER,

 SaleTotal Euro,

 Tax Euro,

 Shipping Euro,

 GrandTotal Euro

) ;

The USdollar type and the Euro type are both based on the DECIMAL type, but you
cannot directly compare a USdollar value to a Euro value, nor can you directly
compare either of those to a DECIMAL value. This is consistent with reality because
one U.S. dollar is not equal to one euro. However, it is possible to exchange dollars
for euros and vice versa when traveling. You can make that exchange with SQL too,
but not directly. You must use a CAST operation, as described in Book 4, Chapter 3.

D
rillin

g
 D

o
w

n
 to

 th
e

S
Q

L
 N

itty
-G

ritty

CHAPTER 2 Drilling Down to the SQL Nitty-Gritty 477

Structured types

Structured types are not based on a single source type as are the distinct types.
Instead, they are expressed as a list of attributes and methods. When you cre-

ate a structured UDT, the DBMS automatically creates a constructor function, a
mutator function, and an observer function. The constructor for a UDT is given the
same name as the UDT. Its job is to initialize the UDT’s attributes to their default
values. When you invoke a mutator function, it changes the value of an attribute
of a structured type. You can then use an observer function to retrieve the value of
an attribute of a structured type. If you include an observer function in a SELECT

statement, it will retrieve values from the database.

SUBTYPES AND SUPERTYPES

A hierarchical relationship can exist between two structured types. One structured
type can be a “child” or subtype of a “parent” or supertype. Consider an example
involving books. Suppose you have a UDT named BookUDT, which has a subtype
named NovelUDT and another subtype named TechBookUDT. BookUDT is a supertype
of both subtypes. Suppose further that TechBookUDT has a subtype named
DatabaseBookUDT. DatabaseBookUDT is not only a subtype of TechBookUDT but also
a subtype of BookUDT. Because DatabaseBookUDT is a direct child of TechBookUDT,
it is considered a proper subtype of TechBookUDT. Since DatabaseBookUDT is not

a direct child of BookUDT but rather a grandchild, it is not considered a proper
subtype of BookUDT.

A structured type that has no supertype is considered a maximal supertype, and a
structured type that has no subtypes is considered a leaf subtype.

STRUCTURED TYPE EXAMPLE

Here’s how you can create structured UDTs:

/* Create a UDT named BookUDT */

CREATE TYPE BookUDT AS

/* Specify attributes */

 Title CHAR (40),

 Author CHAR (40),

 MyCost DECIMAL (9,2),

 ListPrice DECIMAL (9.2)

/* Allow for subtypes */

 NOT FINAL ;

/* Create a subtype named TechBookUDT */

CREATE TYPE TechBookUDT UNDER BookUDT NOT FINAL ;

478 BOOK 4 Extracting Information with SQL

/* Create a subtype named DatabaseBookUDT */

CREATE TYPE DatabaseBookUDT UNDER TechBookUDT FINAL ;

Note: In this code, comments are enclosed within /* comment */ pairs. The NOT
FINAL keywords indicate that even though a semicolon is closing out the state-

ment, there is more to come. Subtypes are about to be defined under the super-

type. The lowest level subtype closes out with the keyword FINAL.

Now that the types are defined, you can create tables that use them.

CREATE TABLE DATABASEBOOKS (

 StockItem DatabaseBookUDT,

 StockNumber INTEGER

) ;

Now that the table exists, you can add data to it.

BEGIN

 /* Declare a temporary variable x */

 DECLARE x = DatabaseBookUDT;

 /* Execute the constructor function */

 Set x = DatabaseBookUDT() ;

 /* Execute the first mutator function */

 SET x = x.Title('SQL for Dummies') ;

 /* Execute the second mutator function */

 SET x = x.Author('Allen G. Taylor') ;

 /* Execute the third mutator function */

 SET x = x.MyCost(23.56) ;

 /* Execute the fourth mutator function */

 SET x = x.ListPrice(29.99) ;

 INSERT INTO DATABASEBOOKS VALUES (x, 271828) ;

END

Handling Null Values

SQL is different from practically any computer language that you may have
encountered up to this point in that it allows null values. Other languages don’t.
Allowing null values gives SQL a flexibility that other languages lack, but also
contributes to the impedance mismatch between SQL and host languages that it
must work with in an application. If an SQL database contains null values the host

D
rillin

g
 D

o
w

n
 to

 th
e

S
Q

L
 N

itty
-G

ritty

CHAPTER 2 Drilling Down to the SQL Nitty-Gritty 479

language does not recognize, you have to come up with a plan that handles that
difference in a consistent way.

The term impedance mismatch comes from the world of electrical engineer-

ing. If, for example, you’ve set up your stereo system using speaker cable with
a characteristic impedance of 50 ohms feeding speakers with an impedance of 8
ohms, you’ve got yourself a case of impedance mismatch, and you’ll surely get
fuzzy, noisy sound — definitely low fidelity. If a data type of a host language does
not exactly match the corresponding data type of SQL, you have a similar situa-

tion: bad communication across the interface between the two.

A null value is a nonvalue. If you are talking about numeric data, a null value is
not the same as zero, which is a definite value. It is one less than one. If you are
talking about character data, a null value is not the same as a blank space. A blank
space is also a definite value. If you are talking about Boolean data, a null value is
not the same as FALSE. A false Boolean value is a definite value, too.

A null value is the absence of a value.

A field may contain a null value for several reasons:

 » A field may have a definite value, but the value is currently unknown.

 » A field may not yet have a definite value, but it may gain one in the future.

 » For some rows in a table, a particular field in that row may not be applicable.

 » The old value of a field has been deleted, but it has not yet been replaced with
a new value.

In any situation where knowledge is incomplete, null values are possible. Because
in most application areas, knowledge is never complete, null values are very likely
to appear in most databases.

Applying Constraints

Constraints are one of the primary mechanisms for keeping the contents of a
database from turning into a misleading or confusing mess. By applying con-

straints to tables, columns, or entire databases, you prevent the addition of
invalid data or the deletion of data required to maintain overall consistency.
A constraint can also identify invalid data that already exists in a database. If an
operation that you perform in a transaction causes a constraint to be violated,
the DBMS will prevent the transaction from taking effect (being committed). This
protects the database from being put into an inconsistent state.

480 BOOK 4 Extracting Information with SQL

Column constraints

You can constrain the contents of a table column. In some cases, that means
constraining what the column must contain, and in other cases, what it may not

contain. There are three kinds of column constraints: the NOT NULL, UNIQUE, and
CHECK constraints.

NOT NULL

Although SQL allows a column to contain null values, there are times when you
want to be sure that a column always has a distinct value. In order for one row in
a table to be distinguished from another, there must be some way of telling them
apart. This is usually done with a primary key, which must have a unique value in
every row. Because a null value in a column could be anything, it might match the
value for that column in any of the other rows. Thus, it makes sense to disallow a
null value in the column used to distinguish one row from the rest. You can do this
with a NOT NULL constraint, as shown in the following example:

CREATE TABLE CLIENT (

 ClientName CHAR (30) NOT NULL,

 Address1 CHAR (30),

 Address2 CHAR (30),

 City CHAR (25),

 State CHAR (2),

 PostalCode CHAR (10),

 Phone CHAR (13),

 Fax CHAR (13),

 ContactPerson CHAR (30)

) ;

When entering a new client into the CLIENT table, you must make an entry in the
ClientName column.

UNIQUE

The NOT NULL constraint is a fairly weak constraint. You can satisfy the constraint
as long as you put anything at all into the field, even if what you put into it would
allow inconsistencies into your table. For example, suppose you already had a
client named David Taylor in your database and someone tried to enter another
record with the same client name. If the table was protected only by a NOT NULL

constraint, the entry of the second David Taylor would be allowed. Now, when you
go to retrieve David Taylor’s information, which one will you get? How will you
tell whether you have the one you want? A way around this problem is to use the

D
rillin

g
 D

o
w

n
 to

 th
e

S
Q

L
 N

itty
-G

ritty

CHAPTER 2 Drilling Down to the SQL Nitty-Gritty 481

stronger UNIQUE constraint. The UNIQUE constraint will not only disallow the entry
of a null value in a column but also disallow the entry of a value that matches a
value already in the column.

CHECK

Use the CHECK constraint for preventing the entry of invalid data that goes beyond
maintaining uniqueness. For example, you can check to make sure that a numeric
value falls within an allowed range. You can also check to see that a particular
character string is not entered into a column.

Here’s an example that ensures that the charge for a service falls within the
acceptable range. It insures that a customer is not mistakenly given a credit rather
than a debit, and that they are not charged a ridiculously high amount.

CREATE TABLE TESTS (

 TestName CHARACTER (30) NOT NULL,

 StandardCharge NUMERIC (6,2)

 CHECK (StandardCharge >= 0.00

 AND StandardCharge <= 200.00)

) ;

The constraint is satisfied only if the charge is positive and less than or equal
to $200.

Table constraints

Sometimes, a constraint applies not just to a column but to an entire table. The
PRIMARY KEY constraint is the principal example of a table constraint; it applies
to an entire table.

Although a primary key may consist of a single column, it could also be made up
of a combination of two or more columns. Because a primary key must be guaran-

teed to be unique, multiple columns may be needed if one column is not enough
to guarantee uniqueness.

To better understand what this means, check out the following, which shows a
table with a single-column primary key:

CREATE TABLE PROSPECT (

 ProspectName CHAR (30) PRIMARY KEY,

 Address1 CHAR (30),

 Address2 CHAR (30),

482 BOOK 4 Extracting Information with SQL

 City CHAR (25),

 State CHAR (2),

 PostalCode CHAR (10),

 Phone CHAR (13),

 Fax CHAR (13)

) ;

The primary key constraint, in this case, is listed with the ProspectName column,
but it is nonetheless a table constraint because it guarantees that the table con-

tains no duplicate rows. By applying the primary key constraint to ProspectName,
you are guaranteeing that ProspectName cannot have a null value, and no entry
in the ProspectName column may duplicate another entry in the ProspectName
column. Because ProspectName is guaranteed to be unique, every row in the table
must be distinguishable from every other row.

ProspectName may not be a particularly good choice for a proposed primary key.
Some people have rather common names— Joe Wilson or Jane Adams. It is quite
possible that two people with the same name might both be prospects for your
business. You could overcome that problem by using more than one column for
the primary key. Here’s one way to do that:

CREATE TABLE PROSPECT (

 ProspectName CHAR (30) NOT NULL,

 Address1 CHAR (30) NOT NULL,

 Address2 CHAR (30),

 City CHAR (25),

 State CHAR (2),

 PostalCode CHAR (10),

 Phone CHAR (13),

 CONSTRAINT prospect_pk PRIMARY KEY

 (ProspectName, Address1)

) ;

A composite primary key is made up of both ProspectName and Address1.

You might ask, “What if a father and son have the same name and live at the same
address?” The more such scenarios you think up, the more complex things tend
to get. In many cases, it’s best to make up a unique ID number for every row in a
table and let that be the primary key. If you use an autoincrementer to generate
the keys, you can be sure they are unique. This keeps things relatively simple. You
can also program your own unique ID numbers by storing a value in memory and
incrementing it by one after each time you add a new record that uses the stored
value as its primary key.

D
rillin

g
 D

o
w

n
 to

 th
e

S
Q

L
 N

itty
-G

ritty

CHAPTER 2 Drilling Down to the SQL Nitty-Gritty 483

CREATE TABLE PROSPECT (

 ProspectID INTEGER PRIMARY KEY,

 ProspectName CHAR (30),

 Address1 CHAR (30),

 Address2 CHAR (30),

 City CHAR (25),

 State CHAR (2),

 PostalCode CHAR (10),

 Phone CHAR (13)

) ;

Many database management systems automatically create autoincrementing pri-
mary keys for you as you enter new rows into a table.

Foreign key constraints

Relational databases are categorized as they are because the data is stored in
tables that are related to each other in some way. The relationship occurs because
a row in one table may be directly related to one or more rows in another table.

For example, in a retail database, the record in the CUSTOMER table for customer
Lisa Mazzone is directly related to the records in the INVOICE table for purchases
that Ms. Mazzone has made. To establish this relationship, one or more columns
in the CUSTOMER table must have corresponding columns in the INVOICE table.

The primary key of the CUSTOMER table uniquely identifies each customer. The
primary key of the INVOICE table uniquely identifies each invoice. In addition,
the primary key of the CUSTOMER table acts as a foreign key in INVOICE to link
the two tables. In this setup, the foreign key in each row of the INVOICE table
identifies the customer who made this particular purchase. Here’s an example:

 CREATE TABLE CUSTOMER (

 CustomerID INTEGER PRIMARY KEY,

 CustomerName CHAR (30),

 Address1 CHAR (30),

 Address2 CHAR (30),

 City CHAR (25),

 State CHAR (2),

 PostalCode CHAR (10),

 Phone CHAR (13)

) ;

484 BOOK 4 Extracting Information with SQL

CREATE TABLE SALESPERSON (

 SalespersonID INTEGER PRIMARY KEY,

 SalespersonName CHAR (30),

 Address1 CHAR (30),

 Address2 CHAR (30),

 City CHAR (25),

 State CHAR (2),

 PostalCode CHAR (10),

 Phone CHAR (13)

) ;

CREATE TABLE INVOICE (

 InvoiceNo INTEGER PRIMARY KEY,

 CustomerID INTEGER,

 SalespersonID INTEGER,

 CONSTRAINT customer_fk FOREIGN KEY (CustomerID)

 REFERENCES CUSTOMER (CustomerID),

 CONSTRAINT salesperson_fk FOREIGN KEY (SalespersonID)

 REFERENCES SALESPERSON (SalespersonID)

) ;

Each invoice is related to the customer who made the purchase and the salesper-

son who made the sale.

Using constraints in this way is what makes relational databases relational. This is
the core of the whole thing right here! How do the tables in a relational databases
relate to each other? They relate by the keys they hold in common. The relation-

ship is established but also constrained by the fact that a column in one table has
to match a corresponding column in another table. The only relationships present
in a relational database are those where there is a key-to-key link mediated by a
foreign key constraint.

Assertions

Sometimes, a constraint may apply not just to a column or a table, but to multiple
tables or even an entire database. A constraint with such broad applicability is
called an assertion.

Suppose a small bookstore wants to control its exposure to dead inventory by
not allowing total inventory to grow beyond 20,000 items. Suppose further that
stocks of books and DVDs are maintained in different tables — the BOOKS and
DVD tables. An assertion can guarantee that the maximum is not exceeded.

D
rillin

g
 D

o
w

n
 to

 th
e

S
Q

L
 N

itty
-G

ritty

CHAPTER 2 Drilling Down to the SQL Nitty-Gritty 485

CREATE TABLE BOOKS (

 ISBN INTEGER,

 Title CHAR (50),

 Quantity INTEGER) ;

CREATE TABLE DVD (

 BarCode INTEGER,

 Title CHAR (50),

 Quantity INTEGER) ;

CREATE ASSERTION

 CHECK ((SELECT SUM (Quantity)

 FROM BOOKS)

 + (SELECT SUM (Quantity)

 FROM DVD)

 < 20000) ;

This assertion adds up all the books in stock, then all the DVDs in stock, and
finally adds those two sums together. It then checks to see that the sum of them
all is less than 20,000. Whenever an attempt is made to add a book or DVD to
inventory, and that addition would push total inventory to 20,000 or more, the
assertion is violated and the addition is not allowed.

Most popular implementations do not support assertions. For example, SQL
Server 2016, DB2, Oracle Database 18c, SAP SQL Anywhere, MySQL, and PostgreSQL
do not. Assertions may become available in the future since they are a part of
SQL:2003, but it would not be wise to hold your breath until this functionality
appears. Although a feature that would be nice to have, assertions are far down on
the list of features to add for most DBMS vendors.

CHAPTER 3 Values, Variables, Functions, and Expressions 487

Values, Variables,
Functions, and
Expressions

T
his chapter describes the tools that ISO/IEC standard SQL provides to oper-
ate on data. In addition to specifying the value of a data item, you can slice
and dice an item in a variety of ways. Instead of just retrieving raw data as

it exists in the database, you can preprocess it to deliver just the information you
want, in the form that you want it.

Entering Data Values

After you’ve created a database table, the next step is to enter data into it. SQL
supports a number of different data types. Within any specific data type, the data
can take any of several forms. The five different forms that can appear in table
rows are

 » Row values

Chapter 3

IN THIS CHAPTER

 » Discovering valid values for table

columns

 » Summarizing data with set functions

 » Dissecting data with value functions

 » Converting data types

488 BOOK 4 Extracting Information with SQL

 » Column references

 » Literal values

 » Variables

 » Special variables

Each form is discussed in turn throughout this section.

Row values have multiple parts

A row value includes the values of all the data in all the columns in a row in a table.
It is actually multiple values rather than just one. The intersection of a row and a
column, called a field, contains a single, so-called “atomic” value. All the values of
all the fields in a row, taken together, are that single row’s row value.

Identifying values in a column

Just as you can specify a row value consisting of multiple values, you can specify
the value contained in a single column.

SELECT * FROM CUSTOMER

 WHERE LastName = 'Smith' ;

This query returns all the rows in the CUSTOMER table, where the value in the
LastName column is Smith.

Literal values don’t change

In SQL, a value can either be a constant or it can be represented by a variable.
Constant values are called literals. Table 3-1 shows sample literals for each of the
SQL data types.

Numeric literals are just the values that they represent. Nonnumeric literals are
enclosed in single quotes.

V
a

lu
e

s, V
a

ria
b

le
s,

F
u

n
c
tio

n
s, a

n
d

 E
x

p
re

ssio
n

s

CHAPTER 3 Values, Variables, Functions, and Expressions 489

TABLE 3-1	 Sample Literals of Various Data Types

Data Type Sample Literal

BIGINT 8589934592

INTEGER 186282

SMALLINT 186

NUMERIC 186282.42

DECIMAL 186282.42

DECFLOAT (16) 1234567890123456

REAL 6.02257E23

DOUBLE PRECISION 3.1415926535897E00

FLOAT 6.02257E23

BINARY (2) '0110011111101010'

VARBINARY (1) '10011'

CHARACTER(15) 'GREECE '

Note: Fifteen total characters and spaces are between the quote marks above.

VARCHAR (CHARACTER VARYING) 'lepton'

NATIONAL CHARACTER(15) 'ΕΛΛΑΣ ' 1

Note: Fifteen total characters and spaces are between the quote marks above.

NATIONAL CHARACTER VARYING 'λεπτον' 2

CHARACTER LARGE OBJECT (CLOB) (A really long character string)

BINARY LARGE OBJECT (BLOB) (A really long string of ones and zeros)

DATE DATE '1969-07-20'

TIME(2) TIME '13.41.32.50'

TIMESTAMP(0) TIMESTAMP '2007-07-25-13.03.16.000000'

TIME WITH TIMEZONE(4) TIME '13.41.32.5000-08.00'

TIMESTAMP WITH TIMEZONE(0) TIMESTAMP '2007-07-25-13.03.16.0000+02.00'

INTERVAL DAY INTERVAL '7' DAY

1 This term is the word that Greeks use to name their own country in their own language. (The English equivalent is Hellas.)
2 This term is the word lepton in Greek national characters.

490 BOOK 4 Extracting Information with SQL

Variables vary

Literals that explicitly hold a single value are fine if that value appears only once
or twice in an application. However, if a value appears multiple times, and there
is any chance that value might change in the future, you should represent it with
a variable. That way, if changes are necessary, you have to change the code in one
place only, where the value is assigned to the variable, rather than in all the places
in the application where that value appears.

For example, suppose an application dealing with a table containing the archives
of a magazine retrieves information from various sections of the current issue.
One such retrieval might look like this:

SELECT Editorial FROM PENGUINLIFE

 WHERE Issue = 47 ;

Another could be

SELECT LeadStory FROM PENGUINLIFE

 WHERE Issue = 47 ;

There could be many more like these two in the application. When next week rolls
around, and you want to run the application again for the latest issue, you must go
through the program by hand and change all the instances of 47 to 48. Computers
are supposed to rescue us from such boring, repetitive tasks, and they do. Instead
of using literals in such cases, use variables instead, like this:

 SELECT Editorial FROM PENGUINLIFE

 WHERE Issue = :IssueNumber ;

You have to change the IssueNumber variable in one place only, and the change
affects all the places in the application where the variable appears.

Special variables hold specific values
SQL has a few special variables that hold information about system usage. In mul-
tiuser systems, you often need to know who is using the system at any given time.
This information can be captured in a log file using the special variables. The
special variables are

 » SESSION_USER, which holds a value that’s equal to the user authorization

identifier of the current SQL session. If you write a program that performs a
monitoring function, you can interrogate SESSION_USER to find out who is
executing SQL statements.

V
a

lu
e

s, V
a

ria
b

le
s,

F
u

n
c
tio

n
s, a

n
d

 E
x

p
re

ssio
n

s

CHAPTER 3 Values, Variables, Functions, and Expressions 491

 » CURRENT_USER, which stores a user-specified authorization identifier.
If a module has no such identifier, CURRENT_USER has the same value as

SESSION_USER.

 » SYSTEM_USER, which contains the operating system’s user identifier. This
identifier may differ from that user’s identifier in an SQL module. A user may
log onto the system as ANDREW, for example, but identify himself to a module

as DIRECTOR. The value in SESSION_USER is DIRECTOR. If he makes no explicit
specification of the module identifier, and CURRENT_USER also contains

DIRECTOR, SYSTEM_USER holds the value ANDREW.

One use of the SYSTEM_USER, SESSION_USER, and CURRENT_USER special variables
is to track who is using the system. You can maintain a log table and period-
ically insert the values into that table that SYSTEM_USER, SESSION_USER, and
CURRENT_USER contain. The following example shows how:

INSERT INTO USAGELOG (SNAPSHOT)

 VALUES ('User ' || SYSTEM_USER ||

 ' with ID ' || SESSION_USER ||

 ' active at ' || CURRENT_TIMESTAMP) ;

This statement produces log entries similar to the following example:

User ANDREW with ID DIRECTOR active at 2019-03-03-23.50.00

Working with Functions

Functions perform computations or operations that are more elaborate than what
you would expect a simple command statement to do. SQL has two kinds of func-
tions: set functions and value functions. Set functions are so named because they
operate on a set of rows in a table rather than on a single row. Value functions oper-
ate on the values of fields in a table row.

Summarizing data with set functions

When dealing with a set of table rows, often what you want to know is some
aggregate property that applies to the whole set. SQL has five such aggregate or
set functions: COUNT, AVG, MAX, MIN, and SUM. To see how these work, consider the
example data in Table 3-2. It is a price table for photographic papers of various
sizes and characteristics.

492 BOOK 4 Extracting Information with SQL

The fields that contain dashes do not have a value. The dash in the table repre-
sents a null value.

COUNT

The COUNT function returns the number of rows in a table or the number of rows
that meet a specified condition. In the simplest case, you have

SELECT COUNT (*)

 FROM PAPERS ;

This returns a value of 10 because there are ten rows in the PAPERS table. You can
add a condition to see how many types of paper are available in Size 8:

SELECT COUNT (Size8)

 FROM PAPERS ;

This returns a value of 8 because, of the ten types of paper in the PAPERS table,
only eight are available in size 8. You might also want to know how many different
prices there are for papers of size 8. That is also easy to determine:

SELECT COUNT (DISTINCT Size8)

 FROM PAPERS ;

TABLE 3-2	 Photographic Paper Price List per 20 Sheets

Paper Type Size8 Size11

Dual-sided matte 8.49 13.99

Card stock dual-sided matte 9.49 16.95

Professional photo gloss 10.99 19.99

Glossy HW 9M 8.99 13.99

Smooth silk 10.99 19.95

Royal satin 10.99 19.95

Dual-sided semigloss 9.99 17.95

Dual-sided HW semigloss -- --

Universal two-sided matte -- --

Transparency 29.95 --

V
a

lu
e

s, V
a

ria
b

le
s,

F
u

n
c
tio

n
s, a

n
d

 E
x

p
re

ssio
n

s

CHAPTER 3 Values, Variables, Functions, and Expressions 493

This returns a value of 6 because there are six distinct values of Size 8 paper. Null
values are ignored.

AVG

The AVG function calculates and returns the average of the values in the specified
column. It works only on columns that contain numeric data.

SELECT AVG (Size8)

 FROM PAPERS ;

This returns a value of 12.485. If you wonder what the average price is for the Size
11 papers, you can find out this way:

SELECT AVG (Size11)

 FROM PAPERS ;

This returns a value of 17.539.

MAX

As you might expect, the MAX function returns the maximum value found in the
specified column. Find the maximum value in the Size 8 column:

SELECT MAX (Size8)

 FROM PAPERS ;

This returns 29.95, the price for 20 sheets of Size 8 transparencies.

MIN

The MIN function gives you the minimum value found in the specified column.

SELECT MIN (Size8)

 FROM PAPERS ;

Here the value returned is 8.49.

SUM

Calculating the sum of all the prices for the papers being offered for sale doesn’t
make much sense in the photographic paper example, but this type of calculation
can be valuable in other applications. Just in case you want to know what it would

494 BOOK 4 Extracting Information with SQL

cost to buy 20 sheets of every Size 11 paper being offered, you could make the fol-
lowing query:

SELECT SUM (Size11)

 FROM PAPERS ;

It would cost 122.77 to buy 20 sheets of each of the 7 kinds of Size 11 paper that
are available.

LISTAGG

LISTAGG is a set function, defined in the SQL:2016 ISO/IEC specification. Its pur-
pose is to transform the values from a group of rows into a list of values delimited
by a character that does not occur within the data. An example would be to trans-
form a group of table rows into a string of comma-separated values (CSV).

SELECT LISTAGG(LastName, ', ')

 WITHIN GROUP (ORDER BY LastName) "Customer"

 FROM CUSTOMER

 WHERE Zipcode = 97201;

This statement will return a list of all customers residing in the 97201 zip code, in
ascending order of their last names. This will work as long as there are no commas
in the LastName field of any customer.

Dissecting data with value functions

A number of data manipulation operations occur fairly frequently. SQL provides
value functions to perform these tasks. There are four types of value functions:

 » String value functions

 » Numeric value functions

 » Datetime value functions

 » Interval value functions

The following subsections examine the functions available in each of these
categories.

String value functions

String value functions take one character string as input and produce another
character string as output. There are eight string value functions.

V
a

lu
e

s, V
a

ria
b

le
s,

F
u

n
c
tio

n
s, a

n
d

 E
x

p
re

ssio
n

s

CHAPTER 3 Values, Variables, Functions, and Expressions 495

 » SUBSTRING (FROM)

 » SUBSTRING (SIMILAR)

 » UPPER

 » LOWER

 » TRIM

 » TRANSLATE

 » CONVERT

 » OVERLAY

SUBSTRING (FROM)

The operation of SUBSTRING (FROM) is similar to substring operations in many
other computer languages. Here’s an example:

SUBSTRING ('manual transmission' FROM 8 FOR 4)

This returns tran, the substring that starts in the eighth character position and
continues for four characters. You want to make sure that the starting point and
substring length you specify locate the substring entirely within the source string.
If part or all of the substring falls outside the source string, you could receive an
unexpected result.

SUBSTRING (SIMILAR)

SUBSTRING (SIMILAR) is a regular expression substring function. It divides a
string into three parts and returns the middle part. Formally, a regular expression
is a string of legal characters. A substring is a particular designated part of that
string. Consider this example:

SUBSTRING ('antidisestablishmentarianism'

 SIMILAR 'antidis\"[:ALPHA:]+\"arianism'

 ESCAPE '\')

The original string is the first operand. The operand following the SIMILAR key-
word is a character string literal that includes a regular expression in the form of
another character string literal, a separator (\"), a second regular expression that
means “one or more alphabetic characters,” a second separator (\"), and a third
regular expression in the form of a different character string literal. The value
returned is

establishment

496 BOOK 4 Extracting Information with SQL

UPPER

The UPPER function converts its target string to all uppercase.

UPPER ('ChAoTic') returns 'CHAOTIC'

The UPPER function has no effect on character sets, such as Hebrew, that do not
distinguish between upper- and lowercase.

LOWER

The LOWER function converts its target string to all lowercase.

LOWER ('INTRUDER ALERT!') returns 'intruder alert!'

As is the case for UPPER, LOWER has no effect on character sets that do not include
the concept of case.

TRIM

The TRIM function enables you to crop a string, shaving off characters at the front
or the back of the string — or both. Here are a few examples:

TRIM (LEADING ' ' FROM ' ALERT ') returns 'ALERT '

TRIM (TRAILING ' ' FROM ' ALERT ') returns ' ALERT'

TRIM (BOTH ' ' FROM ' ALERT ') returns 'ALERT'

TRIM (LEADING 'A' FROM 'ALERT') returns 'LERT'

If you don’t specify what to trim, the blank space ('') is the default.

TRANSLATE AND CONVERT

The TRANSLATE and CONVERT functions take a source string in one character set
and transform the original string into a string in another character set. Examples
might be Greek to English or Katakana to Norwegian. The conversion functions
that specify these transformations are implementation-specific, so those details
aren’t relevant here.

These functions do not really translate character strings from one language to
another. All they do is translate a character from the first character set to the cor-
responding character in the second character set. In going from Greek to English,
it would convert Ελλασ to Ellas instead of translating it as Greece. (“Ελλασ” is
what the Greeks call their country, which English speakers call Greece).

V
a

lu
e

s, V
a

ria
b

le
s,

F
u

n
c
tio

n
s, a

n
d

 E
x

p
re

ssio
n

s

CHAPTER 3 Values, Variables, Functions, and Expressions 497

OVERLAY

The OVERLAY function is a SUBSTRING function with a little extra functionality. As
with SUBSTRING, it finds a specified substring within a target string. However,
instead of returning the string that it finds, it replaces it with a different string.
For example:

OVERLAY ('I Love Paris' PLACING 'Tokyo' FROM 8 FOR 5)

This changes the string to

I Love Tokyo

This won’t work if you want to change I Love Paris to I Love London. The number
of letters in London does not match the number in Paris.

Numeric value functions

Numeric value functions can take a variety of data types as input but the output is
always a numeric value. SQL has 14 types of numeric value functions. The defin-
ing characteristic of a function is that it returns a value of some sort. Numeric
value functions always return a numeric value. Thus, the square root function will
return a value that is the square root of the input, the natural logarithm function
will return a value that is the natural logarithm of the input, and so on.

 » Position expression (POSITION)

 » Extract expression (EXTRACT)

 » Length expression (CHAR_LENGTH, CHARACTER_LENGTH, OCTET_LENGTH)

 » Cardinality expression (CARDINALITY)

 » Absolute value expression (ABS)

 » Modulus expression (MOD)

 » Trigonometric functions (SIN, COS, TAN, ASIN, ACOS, ATAN, SINH, COSH, TANH)

 » Logarithmic functions (LOG, LOG10, LN)

 » Exponential function (EXP)

 » Power function (POWER)

 » Square root (SQRT)

 » Floor function (FLOOR)

 » Ceiling function (CEIL, CEILING)

 » Width bucket function (WIDTH_BUCKET)

498 BOOK 4 Extracting Information with SQL

POSITION

POSITION searches for a specified target string within a specified source string
and returns the character position where the target string begins. The syntax is
as follows:

POSITION (target IN source)

If the function doesn’t find the target string, the POSITION function returns a zero
value. If the target string has zero length (as in the last example), the POSITION
function always returns a value of 1. If any operand in the function has a null
value, the result is a null value.

EXTRACT

The EXTRACT function extracts a single field from a datetime or an interval. The
following statement, for example, returns 12:

EXTRACT (MONTH FROM DATE '2018-12-04')

CHARACTER_LENGTH

The CHARACTER_LENGTH function returns the number of characters in a character
string. The following statement, for example, returns 20:

CHARACTER_LENGTH ('Transmission, manual')

As you can see, commas and even blank spaces count as characters. Note that this
function is not particularly useful if its argument is a literal like ΄Transmission,
manual΄. You can write 20 just as easily as you can write CHARACTER_LENGTH
(΄Transmission, manual΄). In fact, writing 20 is easier. This function is more
useful if its argument is an expression rather than a literal value.

OCTET_LENGTH

In music, a vocal ensemble made up of eight singers is called an octet. Typically,
the parts that the ensemble represents are first and second soprano, first and
second alto, first and second tenor, and first and second bass. In computer termi-
nology, an ensemble of eight data bits is called a byte. The word byte is clever in
that the term clearly relates to bit but implies something larger than a bit. A nice
wordplay — but unfortunately, nothing in the word byte conveys the concept of
“eightness.” By borrowing the musical term, a more apt description of a collec-
tion of eight bits becomes possible.

V
a

lu
e

s, V
a

ria
b

le
s,

F
u

n
c
tio

n
s, a

n
d

 E
x

p
re

ssio
n

s

CHAPTER 3 Values, Variables, Functions, and Expressions 499

Practically all modern computers use eight bits to represent a single alphanu-
meric character. More complex character sets (such as Chinese) require 16 bits to
represent a single character. The OCTET_LENGTH function counts and returns the
number of octets (bytes) in a string. If the string is a bit string, OCTET_LENGTH
returns the number of octets you need to hold that number of bits. If the string is
an English-language character string (with one octet per character), the function
returns the number of characters in the string. If the string is a Chinese character
string, the function returns a number that is twice the number of Chinese charac-
ters. The following string is an example:

OCTET_LENGTH ('Brakes, disc')

This function returns 12 because each character takes up one octet.

Some character sets use a variable number of octets for different characters. In
particular, some character sets that support mixtures of Kanji and Latin charac-
ters use escape characters to switch between the two character sets. A string that
contains both Latin and Kanji may have, for example, 30 characters and require
30 octets if all the characters are Latin; 62 characters if all the characters are Kanji
(60 characters plus a leading and trailing shift character); and 150 characters if
the characters alternate between Latin and Kanji (because each Kanji character
needs two octets for the character and one octet each for the leading and trailing
shift characters). The OCTET_LENGTH function returns the number of octets you
need for the current value of the string.

CARDINALITY

Cardinality deals with collections of elements such as arrays or multisets, where
each element is a value of some data type. The cardinality of the collection is
the number of elements that it contains. One use of the CARDINALITY function is
something like this:

CARDINALITY (TeamRoster)

This function would return 12, for example, if there were 12 team members on the
roster. TeamRoster, a column in the TEAM table, can be either an array or a mul-
tiset. An array is an ordered collection of elements, and a multiset is an unordered
collection of elements. For a team roster, which changes frequently, a multiset
makes more sense.

ABS

The ABS function returns the absolute value of a numeric value expression.

500 BOOK 4 Extracting Information with SQL

ABS (-273)

This returns 273.

TRIGONOMETRIC FUNCTIONS SIN, COS, TAN, ASIN, ACOS,
ATAN, SINH, COSH, TANH

The trig functions give you the values you would expect, such as the sine of an
angle or the hyperbolic tangent of one.

LOGARITHMIC FUNCTIONS LOG10, LN, LOG
(<BASE>, <VALUE>)

The logarithmic functions enable you to generate the logarithm of a number,
either a base-10 logarithm, a natural logarithm, or a logarithm to a base that you
specify.

MOD

The MOD function returns the modulus — the remainder of division of one number
by another — of two numeric value expressions.

MOD (6,4)

This function returns 2, the modulus of six divided by four.

EXP

This function raises the base of the natural logarithms e to the power specified by
a numeric value expression:

EXP (2)

This function returns something like 7.389056. The number of digits beyond the
decimal point is implementation-dependent.

POWER

This function raises the value of the first numeric value expression to the power
of the second numeric value expression:

POWER (3,7)

This function returns 2187, which is three raised to the seventh power.

V
a

lu
e

s, V
a

ria
b

le
s,

F
u

n
c
tio

n
s, a

n
d

 E
x

p
re

ssio
n

s

CHAPTER 3 Values, Variables, Functions, and Expressions 501

SQRT

This function returns the square root of the value of the numeric value expression:

SQRT (9)

This function returns 3, the square root of nine.

FLOOR

This function rounds the numeric value expression to the largest integer not
greater than the expression:

FLOOR (2.73)

This function returns 2.0.

CEIL OR CEILING

This function rounds the numeric value expression to the smallest integer not less
than the expression.

CEIL (2.73)

This function returns 3.0.

WIDTH_BUCKET

The WIDTH_BUCKET function, used in online application processing (OLAP), is a
function of four arguments returning an integer between the value of the second
(minimum) argument and the value of the third (maximum) argument. It assigns
the first argument to an equiwidth partitioning of the range of numbers between
the second and third arguments. Values outside this range are assigned to either
the value of zero or one more than the fourth argument (the number of buckets).

For example:

WIDTH_BUCKET (PI, 0, 10, 5)

Suppose PI is a numeric value expression with a value of 3.141592. The example
partitions the interval from zero to ten into five equal buckets, each with a width
of two. The function returns a value of 2 because 3.141592 falls into the second
bucket, which covers the range from two to four.

502 BOOK 4 Extracting Information with SQL

Datetime value functions

SQL includes three functions that return information about the current date, cur-
rent time, or both. CURRENT_DATE returns the current date; CURRENT_TIME returns
the current time; and CURRENT_TIMESTAMP returns the current date and the cur-
rent time. CURRENT_DATE doesn’t take an argument, but CURRENT_TIME and CUR-
RENT_TIMESTAMP take a single argument. The argument specifies the precision for
the seconds part of the time value that the function returns. Datetime data types
and the precision concept are described in Book 4, Chapter 2.

The following table offers some examples of these datetime value functions.

This Statement Returns

CURRENT_DATE 2019-01-23

CURRENT_TIME (1) 08:36:57.3

CURRENT_IMESTAMP (2) 2019-01-23 08:36:57.38

The date that CURRENT_DATE returns is DATE type data. The time that CURRENT_TIME
(p) returns is TIME type data, and the timestamp that CURRENT_TIMESTAMP (p)
returns is TIMESTAMP type data. The precision (p) specified is the number of digits
beyond the decimal point showing fractions of a second. Because SQL retrieves
date and time information from your computer’s system clock, the information
is correct for the time zone in which the computer resides.

In some applications, you may want to deal with dates, times, or timestamps as
character strings to take advantage of the functions that operate on character
data. You can perform a type conversion by using the CAST expression, which is
described later in this chapter.

Polymorphic table functions

A table function is a user-defined function that returns a table as a result. A poly-
morphic table function, first described in SQL:2016, is a table function whose
row type is not declared when the function is created. Instead, the row type may
depend on the function arguments used when the function is invoked.

V
a

lu
e

s, V
a

ria
b

le
s,

F
u

n
c
tio

n
s, a

n
d

 E
x

p
re

ssio
n

s

CHAPTER 3 Values, Variables, Functions, and Expressions 503

Using Expressions

An expression is any combination of elements that reduces to a single value. The
elements can be numbers, strings, dates, times, intervals, Booleans, or more
complex things. What they are doesn’t matter as long as the result is a single
value after all operations have taken place.

Numeric value expressions

The operands in a numeric value expression can be numbers of an exact numeric
type or of an approximate numeric type. (Exact and approximate numeric types
are discussed in Book 4, Chapter 2.) Operands of different types can be used within
a single expression. If at least one operand is of an approximate type, the result is
of an approximate type. If all operands are of exact types, the result is of an exact
type. The SQL specification does not specify exactly what type the result of any
given expression will be due to the wide variety of platforms that SQL runs on.

Here are some examples of valid numeric value expressions:

 » −24

 » 13+78

 » 4*(5+8)

 » Weight/(Length*Width*Height)

 » Miles/5280

String value expressions

String value expressions can consist of a single string or a concatenation of
strings. The concatenation operator (||) joins two strings together and is the only
one you can use in a string value expression. Table 3-3 shows some examples of
string value expressions and the strings that they produce.

From the first two rows in Table 3-3, you see that concatenating two strings pro-
duces a result string that has seamlessly joined the two original strings. The third
row shows that concatenating a null value with two source strings produces the
same result as if the null were not there. The fourth row shows concatenation of
two strings while retaining a blank space in between. The fifth row shows the con-
catenation of two variables with a blank space in between, which produces a string
consisting of the values of those variables separated by a blank space. Finally, the

504 BOOK 4 Extracting Information with SQL

last line of Table 3-3 shows the concatenation of two binary strings. The result is
a single binary string that is a seamless combination of the two source strings.

Datetime value expressions

Datetime value expressions perform operations on dates and times. Such data is
of the DATE, TIME, TIMESTAMP, or INTERVAL type. The result of a datetime value
expression is always of the DATE, TIME, or TIMESTAMP type. Intervals are not one of
the datetime types, but an interval can be added to or subtracted from a datetime
to produce another datetime. Here’s an example datetime value expression that
makes use of an added interval:

CURRENT_DATE + INTERVAL '2' DAY

This expression evaluates to the day after tomorrow.

Datetimes can also include time zone information. The system maintains times in
Coordinated Universal Time (UTC), which until recently was known as Greenwich
Mean Time (GMT). (I guess the feeling was that Greenwich was too provincial,
and a more general name for world time was called for.) You can specify a time as
being either at your local time, or as an offset from UTC. An example is

TIME '13:15:00' AT LOCAL

for 1:15 p.m. local time. Another example is

TIME '13:15:00' AT TIME ZONE INTERVAL '-8:00' HOUR TO MINUTE

TABLE 3-3	 Examples of String Value Expressions

String Value Expression Resulting String

'nanotechnology' 'nanotechnology'

'nano' || 'technology' 'nanotechnology'

'nano' || '' || 'technology' 'nanotechnology'

'Isaac' || '' || 'Newton' 'Isaac Newton'

FirstName || ' ' || LastName 'Isaac Newton'

B'10101010' || B'01010101' B'1010101001010101'

V
a

lu
e

s, V
a

ria
b

le
s,

F
u

n
c
tio

n
s, a

n
d

 E
x

p
re

ssio
n

s

CHAPTER 3 Values, Variables, Functions, and Expressions 505

for 1:15 p.m. Pacific Standard Time. (Pacific Standard Time is eight hours earlier
than UTC.)

Interval value expressions

An interval is the difference between two datetimes. If you subtract one datetime
from another, the result is an interval. It makes no sense to add two datetimes, so
SQL does not allow you to do it.

There are two kinds of intervals: year-month and day-time. This situation is a lit-
tle messy but necessary because not all months contain the same number of days.
Because a month can be 28, 29, 30, or 31 days long, there is no direct translation
from days to months. As a result, when using an interval, you must specify which
kind of interval it is. Suppose you expect to take an around-the-world cruise after
you retire, starting on June 1, 2045. How many years and months is that from
now? An interval value expression gives you the answer.

(DATE '2045-06-01' – CURRENT_DATE) YEAR TO MONTH

You can add two intervals to obtain an interval result.

INTERVAL '30' DAY + INTERVAL '14' DAY

However, you cannot do the following:

INTERVAL '30' DAY + INTERVAL '14' MONTH

The two kinds of intervals do not mix. Besides addition and subtraction, multipli-
cation and division of intervals are also allowed. The expression

INTERVAL '7' DAY * 3

is valid and gives an interval of 21 days. The expression

INTERVAL '12' MONTH / 2

is also valid and gives an interval of 6 months. Intervals can also be negative.

INTERVAL '-3' DAY

gives an interval of -3 days. Aside from the literals used in the previous examples,
any value expression or combination of value expressions that evaluates to an
interval can be used in an interval value expression.

506 BOOK 4 Extracting Information with SQL

Boolean value expressions

Only three legal Boolean values exist: TRUE, FALSE, and UNKNOWN. The UNKNOWN
value becomes operative when a NULL is involved. Suppose the Boolean variable
Signal1 is TRUE and the Boolean variable Signal2 is FALSE. The following Boolean
value expression evaluates to TRUE:

Signal1 IS TRUE

So does this one:

Signal1 IS TRUE OR Signal2 IS TRUE

However, the following Boolean value expression evaluates to FALSE.

Signal1 IS TRUE AND Signal2 IS TRUE

The AND operator means that both predicates must be true for the result to be true.
(A predicate is an expression that asserts a fact about values.) Because Signal2 is
false, the entire expression evaluates to a FALSE value.

Array value expressions

You can use a couple of types of expressions with arrays. The first has to do with
cardinality. The maximum number of elements an array can have is called the
array’s maximum cardinality. The actual number of elements in the array at a given
time is called its actual cardinality. You can combine two arrays by concatenating
them, summing their maximum cardinalities in the process. Suppose you want
to know the actual cardinality of the concatenation of two array-type columns
in a table, where the first element of the first column has a given value. You can
execute the following statement:

SELECT CARDINALITY (FirstColumn || SecondColumn)

 FROM TARGETTABLE

WHERE FirstColumn[1] = 42 ;

The CARDINALITY function gives the combined cardinality of the two arrays, where
the first element in the first array has a value of 42.

Note: The first element of an SQL array is considered to be element 1, rather than
element 0 as is true for some other languages.

V
a

lu
e

s, V
a

ria
b

le
s,

F
u

n
c
tio

n
s, a

n
d

 E
x

p
re

ssio
n

s

CHAPTER 3 Values, Variables, Functions, and Expressions 507

Conditional value expressions

The value of a conditional value expression depends on a condition. SQL offers
three variants of conditional value expressions: CASE, NULLIF, and COALESCE. The
following sections cover each of these separately.

Handling different cases
The CASE conditional expression was added to SQL to give it some of the function-
ality that all full-featured computer languages have, the ability to do one thing
if a condition holds and another thing if the condition does not hold. Originally
conceived as a data sublanguage that was concerned only with managing data,
SQL has gradually gained features that enable it to take on more of the functions
needed by application programs.

SQL actually has two different CASE structures: the CASE expression described
here and a CASE statement. The CASE expression, like all expressions, evaluates
to a single value. You can use a CASE expression anywhere where a value is legal.
The CASE statement, on the other hand, doesn’t evaluate to a value. Instead, it
executes a block of statements.

The CASE expression searches a table, one row at a time, taking on the value of
a specified result whenever one of a list of conditions is TRUE. If the first condi-
tion is not satisfied for a row, the second condition is tested, and if it is TRUE, the
result specified for it is given to the expression, and so on, until all conditions are
processed. If no match is found, the expression takes on a NULL value. Processing
then moves to the next row.

SEARCHING FOR TABLE ROWS THAT SATISFY
VARIOUS CONDITIONS

You can specify the value to be given to a CASE expression based on which of
several conditions is satisfied. Here’s the syntax:

CASE

 WHEN condition1 THEN result1

 WHEN condition2 THEN result2

 ...

 WHEN conditionN THEN resultN

 ELSE resultx

END

If, in searching a table, the CASE expression finds a row where condition1 is true,
it takes on the value of result1. If condition1 is not true but condition2 is true,

508 BOOK 4 Extracting Information with SQL

it takes on the value of result2. This continues for all conditions. If none of the
conditions are met and there is no ELSE clause, the expression is given the NULL
value. Here’s an example of usage:

UPDATE MECHANIC

 Set JobTitle = CASE

 WHEN Specialty = 'Brakes'

 THEN 'Brake Fixer'

 WHEN Specialty = 'Engines'

 THEN 'Motor Master'

 WHEN Specialty = 'Electrical'

 THEN 'Wizard'

 ELSE 'Apprentice'

 END ;

THE EQUALITY CONDITION ALLOWS A COMPACT CASE
VALUE EXPRESSION

A shorthand version of the CASE statement can be used when the condition, as in
the previous example, is based on one thing being equal (=) to one other thing.
The syntax is as follows:

CASE valuet

 WHEN value1 THEN result1

 WHEN value2 THEN result2

 ...

 WHEN valueN THEN resultN

 ELSE resultx

END

For the preceding example, this translates to

UPDATE MECHANIC

 Set JobTitle = CASE Specialty

 WHEN 'Brakes' THEN 'Brake Fixer'

 WHEN 'Engines' THEN 'Motor Master'

 WHEN 'Electrical' THEN 'Wizard'

 ELSE 'Apprentice'

 END ;

If the condition involves anything other than equality, the first, nonabbreviated
form must be used.

V
a

lu
e

s, V
a

ria
b

le
s,

F
u

n
c
tio

n
s, a

n
d

 E
x

p
re

ssio
n

s

CHAPTER 3 Values, Variables, Functions, and Expressions 509

The NULLIF special CASE

SQL databases are unusual in that NULL values are allowed. A NULL value can rep-
resent an unknown value, a known value that has just not been entered into the
database yet, or a value that does not exist. Most other languages that deal with
data do not support nulls, so whenever a situation arises in such databases where
a value is not known, not yet entered, or nonexistent, the space is filled with a
value that would not otherwise occur, such as -1 in a field that never holds a neg-
ative value, or *** in a character field in which asterisks are not valid characters.

To migrate data from a database that does not support nulls to a SQL database that
does, you can use a CASE statement such as

UPDATE MECHANIC

 SET Specialty = CASE Specialty

 WHEN '***' THEN NULL

 ELSE Specialty

 END ;

You can do the same thing in a shorthand manner, using a NULLIF expression,
as follows:

UPDATE MECHANIC

 SET Specialty = NULLIF(Specialty, '***') ;

Admittedly, this looks more cryptic than the CASE version, but it does save some
tedious typing. You could interpret it as, “Update the MECHANIC table by setting
the value of Specialty to NULL if its current value is '***'”.

Bypassing null values with COALESCE

The COALESCE expression is another shorthand version of CASE that deals with
NULL values. It examines a series of values in a table row and assumes the value
of the first one that is not NULL. If all the listed values are NULL, the COALESCE
expression takes on the NULL value. Here’s the syntax for a CASE expression that
does this:

CASE

 WHEN value1 IS NOT NULL

 THEN value1

 WHEN value2 IS NOT NULL

 THEN value2

 ...

 WHEN valueN is NOT NULL

 THEN valueN

510 BOOK 4 Extracting Information with SQL

 ELSE NULL

END

Here’s the syntax for the equivalent COALESCE expression:

COALESCE(value1, value2, ..., valueN)

If you are dealing with a large number of cases, the COALESCE version can save you
quite a bit of typing.

Converting data types with a CAST
expression

Book 4, Chapter 2 describes the data types that SQL recognizes. The host lan-
guages that SQL statements are often embedded in also recognize data types,
and those host language data types are never an exact match for the SQL data
types. This could present a problem, except that, with a CAST expression, you can
convert data of one type into data of another type. Whereas the first type might
not be compatible with the place you want to send the data, the second type is.
Of course, not all conversions are possible. If you have a character string such
as '2019-02-14', you can convert it to the DATE type with a CAST expression.
However, SQL doesn’t let you convert a character string such as 'rhinoceros'
to the DATE type. The data to be converted must be compatible with the desti-
nation type.

Casting one SQL data type to another

The simplest kind of cast is from one SQL data type to another. Even for this
operation, however, you cannot indiscriminately make any conversion you want.
The data you are converting must be compatible with the target data type. For
example, suppose you have a table named ENGINEERS with a column named SSN,
which is of the NUMERIC type. Perhaps you have another table, named MANAGERS
that has a column named SocSecNo, which is of the CHAR (9) type. A typical entry
in SSN might be 987654321. To find all the engineers who are also managers, you
can use the following query. The CAST expression converts the CHAR (9) type to
the NUMERIC type so that the operation can proceed.

SELECT * FROM ENGINEER

 WHERE ENGINEER.SSN = CAST(MANAGER.SocSecNo AS INTEGER) ;

This returns all the rows from the ENGINEER table that have Social Security Num-
bers that match Social Security Numbers in the MANAGERS table. To do so, it

V
a

lu
e

s, V
a

ria
b

le
s,

F
u

n
c
tio

n
s, a

n
d

 E
x

p
re

ssio
n

s

CHAPTER 3 Values, Variables, Functions, and Expressions 511

changes the Social Security Number from the MANAGER table from the CHAR (9)
type to the INTEGER type, for the purposes of the comparison.

Using CAST to overcome data type
incompatibilities between SQL and
its host language
Problems arise when you want to send data between SQL and its host language.
For example, SQL has the DECIMAL and NUMERIC types, but some host languages,
such as FORTRAN and Pascal, do not. One way around this problem is to use CAST
to put a numeric value into a character string, and then put the character string
into a host variable that the host language can take in and deal with.

Suppose you maintain salary information as REAL type data in the EMPLOYEE
table. You want to make some manipulations on that data that SQL is not well-
equipped to perform but your host language is. You can cast the data into a form
the host language can accept, operate on it at the host level, and then cast the
result back to a form acceptable to the SQL database.

SELECT CAST(Salary AS CHAR (10)) INTO :salary_var

 FROM EMPLOYEE

 WHERE EmpID = :emp_id_var ;

That puts the salary value where the host language can grab it and in a form that
the host language understands. After the host language is finished operating on
the data item, it can return to the SQL database via a similar path:

UPDATE EMPLOYEE

 SET Salary = CAST(:salary_var AS DECIMAL(10,2))

 WHERE EmpID = :emp_id_var ;

Row value expressions

Row value expressions (as distinct from mere row values, which are covered at the
beginning of this chapter) enable you to deal with the data in an entire table row
or a subset of a row. The other expressions I’ve shown deal with only a single field
in a row at a time. Row value expressions are useful for adding new data to a table
a row at a time or to specify the retrieval of multiple fields from a table row. Here’s
an example of a row value expression used to enter a new row of data into a table:

INSERT INTO CERTIFICATIONS

 (CertificationNo, CertName, MechanicID, Expires)

512 BOOK 4 Extracting Information with SQL

 VALUES

 (1, 'V8 Engines', 34, 2023-07-31) ;

One advantage of using row value expressions is that many SQL implementations
can process them faster than the equivalent one-field-at-a-time operations. This
could make a significant difference in performance at runtime.

CHAPTER 4 SELECT Statements and Modifying Clauses 513

SELECT Statements
and Modifying Clauses

T
he main purpose of storing data on a computer is to be able to retrieve spe-

cific elements of the data when you need them. As databases grow in size,
the proportion that you are likely to want on any given occasion becomes

smaller. As a result, SQL provides tools that enable you to make retrievals in a
variety of ways. With these tools — SELECT statements and modifying clauses —
you can zero in on the precise pieces of information that you want, even though
they may be buried among megabytes of data that you’re not interested in at the
moment.

Finding Needles in Haystacks
with the SELECT Statement

SQL’s primary tool for retrieving information from a database is the SELECT state-

ment. In its simplest form, with one modifying clause (a FROM clause), it retrieves
everything from a table. By adding more modifying clauses, you can whittle down
what it retrieves until you are getting exactly what you want, no more and no less.

Chapter 4

IN THIS CHAPTER

 » Retrieving data from a database

 » Zeroing in on what you want

514 BOOK 4 Extracting Information with SQL

Suppose you want to display a complete list of all the customers in your CUSTOMER
table, including every piece of data that the table stores about each one. That is the
simplest retrieval you can do. Here’s the syntax:

SELECT * FROM CUSTOMER ;

The asterisk (*) is a wildcard character that means all columns. This statement
returns all the data held in all the rows of the CUSTOMER table. Sometimes that
is exactly what you want. At other times, you may only want some of the data on

some of the customers: those that satisfy one or more conditions. For such refined
retrievals, you must use one or more modifying clauses.

Modifying Clauses

In any SELECT statement, the FROM clause is mandatory. You must specify the
source of the data you want to retrieve. Other modifying clauses are optional. They
serve several different functions:

 » The WHERE clause specifies a condition. Only those table rows that satisfy the
condition are returned.

 » The GROUP BY clause rearranges the order of the rows returned by placing
rows together that have the same value in a grouping column.

 » The HAVING clause filters out groups that do not meet a specified condition.

 » The ORDER BY clause sorts whatever is left after all the other modifying
clauses have had a chance to operate.

The next few sections look at these clauses in greater detail.

FROM clauses

The FROM clause is easy to understand if you specify only one table, as in the previ-
ous example.

SELECT * FROM CUSTOMER ;

This statement returns all the data in all the rows of every column in the
CUSTOMER table. You can, however, specify more than one table in a FROM clause.
Consider the following example:

S
E

L
E

C
T

 S
ta

te
m

e
n

ts a
n

d

M
o

d
ify

in
g

 C
la

u
se

s

CHAPTER 4 SELECT Statements and Modifying Clauses 515

SELECT *

 FROM CUSTOMER, INVOICE ;

This statement forms a virtual table that combines the data from the CUSTOMER
table with the data from the INVOICE table. Each row in the CUSTOMER table
combines with every row in the INVOICE table to form the new table. The new
virtual table that this combination forms contains the number of rows in the
CUSTOMER table multiplied by the number of rows in the INVOICE table. If
the CUSTOMER table has 10 rows and the INVOICE table has 100, the new virtual
table has 1,000 rows.

This operation is called the Cartesian product of the two source tables. The Carte-

sian product is a type of JOIN. Book 4, Chapter 7 covers JOIN operations in detail.

In most applications, the majority of the rows that form as a result of taking
the Cartesian product of two tables are meaningless. In the case of the virtual
table that forms from the CUSTOMER and INVOICE tables, only the rows where
the CustomerID from the CUSTOMER table matches the CustomerID from the
INVOICE table would be of any real interest. You can filter out the rest of the rows
by using a WHERE clause.

Row pattern recognition is a new capability that was added to the FROM clause in

SQL:2016. It enables you to find patterns in a data set. The capability is particularly
useful in finding patterns in time series data, such as stock market quotes or any
other data set where it would be helpful to know when a trend reverses direction.
The row pattern recognition operation is accomplished with a MATCH_RECOGNIZE

clause within an SQL statement’s FROM clause. The syntax of the row pattern rec-

ognition operation is more complex than required for this overview of modifying
clauses. It is described in detail in ISO/IEC TR 19075-5:2016(E), Section 3, which is
available for free from ISO. As of this writing, of the major RDBMS products, only
Oracle implements row pattern recognition.

WHERE clauses

This book often uses the WHERE clause without really explaining it because its
meaning and use are obvious: A statement performs an operation (such as a
SELECT, DELETE, or UPDATE) only on table rows where a stated condition is TRUE.
The syntax of the WHERE clause is as follows:

SELECT column_list

 FROM table_name

 WHERE condition ;

516 BOOK 4 Extracting Information with SQL

DELETE FROM table_name

 WHERE condition ;

UPDATE table_name

 SET column
1
=value

1
, column

2
=value

2
, ..., column

n
=value

n

 WHERE condition ;

The condition in the WHERE clause may be simple or arbitrarily complex. You may
join multiple conditions together by using the logical connectives AND, OR, and NOT

(discussed later in this chapter) to create a single condition.

The following statements show you some typical examples of WHERE clauses:

WHERE CUSTOMER.CustomerID = INVOICE.CustomerID

WHERE MECHANIC.EmployeeID = CERTIFICATION.MechanicID

WHERE PART.QuantityInStock < 10

WHERE PART.QuantityInStock > 100 AND PART.CostBasis > 100.00

The conditions that these WHERE clauses express are known as predicates.
A predicate is an expression that asserts a fact about values.

The predicate PART.QuantityInStock < 10, for example, is True if the value

for the current row of the column PART.QuantityInStock is less than 10. If the
assertion is True, it satisfies the condition. An assertion may be True, False, or
UNKNOWN. The UNKNOWN case arises if one or more elements in the assertion are

null. The comparison predicates (=, <, >, <>, <=, and >=) are the most common, but
SQL offers several others that greatly increase your capability to distinguish or
filter out a desired data item from others in the same column. The following list
notes the predicates that give you that filtering capability:

 » Comparison predicates

 » BETWEEN

 » IN [NOT IN]

 » LIKE [NOT LIKE]

 » NULL

 » ALL, SOME, and ANY

 » EXISTS

 » UNIQUE

 » DISTINCT

S
E

L
E

C
T

 S
ta

te
m

e
n

ts a
n

d

M
o

d
ify

in
g

 C
la

u
se

s

CHAPTER 4 SELECT Statements and Modifying Clauses 517

 » OVERLAPS

 » MATCH

The mechanics of filtering can get a bit complicated, so the following sections
explain the mechanics of each predicate in the preceding list.

Comparison predicates

The examples in the preceding section show typical uses of comparison predicates
in which you compare one value to another. For every row in which the com-

parison evaluates to a True value, that value satisfies the WHERE clause, and the
operation (SELECT, UPDATE, DELETE, or whatever) executes upon that row. Rows
that the comparison evaluates to FALSE are skipped. Consider the following SQL
statement:

SELECT * FROM PART

 WHERE QuantityInStock < 10 ;

This statement displays all rows from the PART table that have a value of less than
10 in the QuantityInStock column.

Six comparison predicates are listed in Table 4-1.

BETWEEN

Sometimes, you want to select a row if the value in a column falls within a speci-
fied range. One way to make this selection is by using comparison predicates. For
example, you can formulate a WHERE clause to select all the rows in the PART table

TABLE 4-1	 SQL’s Comparison Predicates

Comparison Symbol

Equal =

Not equal <>

Less than <

Less than or equal <=

Greater than >

Greater than or equal >=

518 BOOK 4 Extracting Information with SQL

that have a value in the QuantityInStock column greater than 10 and less than 100,
as follows:

WHERE PART.QuantityInStock > 10 AND PART.QuantityInStock < 100

This comparison doesn’t include parts with a quantity in stock of exactly 10 or
100 — only those values that fall in between these two numbers. To include the
end points, you can write the statement as follows:

WHERE PART.QuantityInStock >= 10 AND PART.QuantityInStock <= 100

Another (potentially simpler) way of specifying a range that includes the end
points is to use a BETWEEN predicate, like this:

WHERE PART.QuantityInStock BETWEEN 10 AND 100

This clause is functionally identical to the preceding example, which uses com-

parison predicates. This formulation saves some typing and is a little more intu-

itive than the one that uses two comparison predicates joined by the logical
connective AND.

The BETWEEN keyword may be confusing because it doesn’t tell you explicitly
whether the clause includes the end points. In fact, the clause does include these

end points. BETWEEN also fails to tell you explicitly that the first term in the com-

parison must be equal to or less than the second. If, for example, PART.Quantity
InStock contains a value of 50, the following clause returns a TRUE value:

WHERE PART.QuantityInStock BETWEEN 10 AND 100

However, a clause that you may think is equivalent to the preceding example
returns the opposite result, False:

WHERE PART.QuantityInStock BETWEEN 100 AND 10

If you use BETWEEN, you must be able to guarantee that the first term in your com-

parison is always equal to or less than the second term.

You can use the BETWEEN predicate with character, bit, and datetime data types as
well as with the numeric types. You may see something like the following example:

SELECT FirstName, LastName

 FROM CUSTOMER

 WHERE CUSTOMER.LastName BETWEEN 'A' AND 'Mzzz' ;

S
E

L
E

C
T

 S
ta

te
m

e
n

ts a
n

d

M
o

d
ify

in
g

 C
la

u
se

s

CHAPTER 4 SELECT Statements and Modifying Clauses 519

This example returns all customers whose last names are in the first half of the
alphabet.

IN and NOT IN

The IN and NOT IN predicates deal with whether specified values (such as GA, AL,
and MS) are contained within a particular set of values (such as the states of the
United States). You may, for example, have a table that lists suppliers of a com-

modity that your company purchases regularly. You want to know the phone num-

bers of those suppliers in the southern United States. You can find these numbers
by using comparison predicates, such as those shown in the following example:

SELECT Company, Phone

 FROM SUPPLIER

 WHERE State = 'GA' OR State = 'AL' OR State = 'MS' ;

You can also use the IN predicate to perform the same task, as follows:

SELECT Company, Phone

 FROM SUPPLIER

 WHERE State IN ('GA', 'AL', 'MS') ;

This formulation is more compact than the one using comparison predicates and
logical OR.

The NOT IN version of this predicate works the same way. Say that you have loca-

tions in New York, New Jersey, and Connecticut, and to avoid paying sales tax, you
want to consider using suppliers located anywhere except in those states. Use the
following construction:

SELECT Company, Phone

 FROM SUPPLIER

 WHERE State NOT IN ('NY', 'NJ', 'CT') ;

Using the IN keyword this way saves you a little typing. Saving a little typing,
however, isn’t that great an advantage. You can do the same job using comparison
predicates, as shown in this section’s first example.

You may have another good reason to use the IN predicate rather than compari-

son predicates, even if using IN doesn’t save much typing. Your DBMS probably
implements the two methods differently, and one of the methods may be sig-

nificantly faster than the other on your system. You may want to run a perfor-

mance comparison on the two ways of expressing inclusion in (or exclusion from)

520 BOOK 4 Extracting Information with SQL

a group and then use the technique that produces the quicker result. A DBMS with
a good optimizer will probably choose the more efficient method regardless of
which kind of predicate you use. A performance comparison gives you some idea
of how good your DBMS’s optimizer is. If a significant difference between the run
times of the two statements exists, the quality of your DBMS’s optimizer is called
into question.

The IN keyword is valuable in another area, too. If IN is part of a subquery, the
keyword enables you to pull information from two tables to obtain results that you
can’t derive from a single table. Book 4, Chapter 6 covers subqueries in detail, but
following is an example that shows how a subquery uses the IN keyword.

Suppose that you want to display the names of all customers who’ve bought the
flux capacitor product in the last 30 days. Customer names are in the CUSTOMER
table, and sales transaction data is in the PART table. You can use the following
query:

SELECT FirstName, LastName

 FROM CUSTOMER

 WHERE CustomerID IN

 (SELECT CustomerID

 FROM INVOICE

 WHERE SalesDate >= (CurrentDate – 30) AND InvoiceNo IN

 (SELECT InvoiceNo

 FROM INVOICE_LINE

 WHERE PartNo IN

 (SELECT PartNo

 FROM PART

 WHERE NAME = 'flux capacitor') ;

The inner SELECT of the INVOICE table nests within the outer SELECT of the

CUSTOMER table. The inner SELECT of the INVOICE_LINE table nests within the
outer SELECT of the INVOICE table. The inner select of the PART table nests within
the outer SELECT of the INVOICE_LINE table. The SELECT on the INVOICE table

finds the CustomerID numbers of all customers who bought the flux capacitor
product in the last 30 days. The outermost SELECT (on the CUSTOMER table) dis-

plays the first and last names of all customers whose CustomerID is retrieved by
the inner SELECT statements.

LIKE and NOT LIKE

You can use the LIKE predicate to compare two character strings for a partial
match. Partial matches are valuable if you don’t know the exact form of the string
for which you’re searching. You can also use partial matches to retrieve multiple
rows that contain similar strings in one of the table’s columns.

S
E

L
E

C
T

 S
ta

te
m

e
n

ts a
n

d

M
o

d
ify

in
g

 C
la

u
se

s

CHAPTER 4 SELECT Statements and Modifying Clauses 521

To identify partial matches, SQL uses two wildcard characters. The percent sign
(%) can stand for any string of characters that have zero or more characters. The
underscore (_) stands for any single character. Table 4-2 provides some examples
that show how to use LIKE.

The NOT LIKE predicate retrieves all rows that don’t satisfy a partial match,
including one or more wildcard characters, as in the following example:

WHERE Email NOT LIKE '%@databasecentral.info'

This example returns all the rows in the table where the email address is not
hosted at www.DatabaseCentral.Info.

NULL

The NULL predicate finds all rows where the value in the selected column is null.
In the photographic paper price list table described in Book 4, Chapter 3, several

TABLE 4-2	 SQL’s LIKE Predicate

Statement Values Returned

WHERE String LIKE 'auto%' auto

automotive

automobile

automatic

autocracy

WHERE String LIKE '%ode%' code of conduct

model citizen

WHERE String LIKE '_o_e' mope

tote

rope

love

cone

node

522 BOOK 4 Extracting Information with SQL

rows have null values in the Size11 column. You can retrieve their names by using
a statement such as the following:

SELECT (PaperType)

 FROM PAPERS

 WHERE Size11Price IS NULL ;

This query returns the following values:

Dual-sided HW semigloss

Universal two-sided matte

Transparency

As you may expect, including the NOT keyword reverses the result, as in the fol-
lowing example:

SELECT (PaperType)

 FROM PAPERS

 WHERE Size11Price IS NOT NULL ;

This query returns all the rows in the table except the three that the preceding
query returns.

The statement Size11Price IS NULL is not the same as Size11Price = NULL.
To illustrate this point, assume that, in the current row of the PAPERS table, both
Size11Price and Size8Price are null. From this fact, you can draw the following
conclusions:

 » Size11Price IS NULL is True.

 » Size8Price IS NULL is True.

 » (Size11Price IS NULL AND Size8Price IS NULL) is True.

 » Size11Price = Size8Price is unknown.

Size11Price = NULL is an illegal expression. Using the keyword NULL in a com-

parison is meaningless because the answer always returns as unknown.

Why is Size11Price = Size8Price defined as unknown, even though Size11Price
and Size8Price have the same (null) value? Because NULL simply means, “I don’t
know.” You don’t know what Size11Price is, and you don’t know what Size8Price
is; therefore, you don’t know whether those (unknown) values are the same.
Maybe Size11Price is 9.95, and Size8Price is 8.95; or maybe Size11Price is 10.95,
and Size8Price is 10.95. If you don’t know both the Size11 value and the Size8
value, you can’t say whether the two are the same.

S
E

L
E

C
T

 S
ta

te
m

e
n

ts a
n

d

M
o

d
ify

in
g

 C
la

u
se

s

CHAPTER 4 SELECT Statements and Modifying Clauses 523

ALL, SOME, and ANY

Thousands of years ago, the Greek philosopher Aristotle formulated a system of
logic that became the basis for much of Western thought. The essence of this logic
is to start with a set of premises that you know to be true, apply valid operations
to these premises, and thereby arrive at new truths. The classic example of this
procedure is as follows:

Premise 1: All Greeks are human.

Premise 2: All humans are mortal.

Conclusion: All Greeks are mortal.

Another example:

Premise 1: Some Greeks are women.

Premise 2: All women are human.

Conclusion: Some Greeks are human.

Another way of stating the same logical idea of this second example is as follows:

If any Greeks are women and all women are human, then some Greeks
are human.

ANY CAN BE AMBIGUOUS

The original SQL used the word ANY for existential quantification. This usage turned out
to be confusing and error-prone because the English language connotations of any are

sometimes universal and sometimes existential:

• “Do any of you know where Wilbur Street is?”

• “I can eat more pizza than any of you.”

The first sentence is probably asking whether at least one person knows where Wilbur
Street is. Any is used as an existential quantifier. The second sentence, however, is a
boast that states I can eat more pizza than the biggest eater among all you people can
eat. In this case, any is used as a universal quantifier.

Thus, for the SQL-92 standard, the developers retained the word ANY for compatibility
with early products but added the word SOME as a less confusing synonym. SQL contin-
ues to support both existential quantifiers.

524 BOOK 4 Extracting Information with SQL

The first example uses the universal quantifier ALL in both premises, enabling
you to make a sound deduction about all Greeks in the conclusion. The second
example uses the existential quantifier SOME in one premise, enabling you to make
a deduction about some, but not all, Greeks in the conclusion. The third exam-

ple uses the existential quantifier ANY, which is a synonym for SOME, to reach the
same conclusion you reach in the second example.

Look at how SOME, ANY, and ALL apply in SQL.

Consider an example in baseball statistics. Baseball is a physically demanding
sport, especially for pitchers. A pitcher must throw the baseball from the pitch-

er’s mound, at speeds up to 100 miles per hour, to home plate between 90 and
150 times during a game. This effort can be very tiring, and many times, the start-
ing pitcher becomes ineffective, and a relief pitcher must replace him before the
game ends. Pitching an entire game is an outstanding achievement, regardless of
whether the effort results in a victory.

Suppose that you’re keeping track of the number of complete games that all Major
League pitchers pitch. In one table, you list all the American League pitchers, and
in another table, you list all the National League pitchers. Both tables contain the
players’ first names, last names, and number of complete games pitched.

The American League permits a designated hitter (DH) (who isn’t required to play
a defensive position) to bat in place of any of the nine players who play defense.
Usually, the DH bats for the pitcher because pitchers are notoriously poor hitters.
(Pitchers must spend so much time and effort on perfecting their pitching that
they do not have as much time to practice batting as the other players.)

Say that you speculate that, on average, American League starting pitchers throw
more complete games than National League starting pitchers. This is based on
your observation that designated hitters enable hard-throwing but weak-hitting,
American League pitchers to stay in close games. Because the DH is already bat-
ting for them, the fact that they are poor hitters is not a liability. In the National
League, however, a pinch hitter would replace a comparable National League
pitcher in a close game because he would have a better chance of getting a hit. To
test your idea, you formulate the following query:

SELECT FirstName, LastName

 FROM AMERICAN_LEAGUER

 WHERE CompleteGames > ALL

 (SELECT CompleteGames

 FROM NATIONAL_LEAGUER) ;

S
E

L
E

C
T

 S
ta

te
m

e
n

ts a
n

d

M
o

d
ify

in
g

 C
la

u
se

s

CHAPTER 4 SELECT Statements and Modifying Clauses 525

The subquery (the inner SELECT) returns a list showing every National League
pitcher and the number of complete games he pitched. The outer query returns
the first and last names of all American Leaguers who pitched more complete
games than ALL of the National Leaguers. In other words, the query returns the
names of those American League pitchers who pitched more complete games than
the pitcher who has thrown the most complete games in the National League.

Consider the following similar statement:

SELECT FirstName, LastName

 FROM AMERICAN_LEAGUER

 WHERE CompleteGames > ANY

 (SELECT CompleteGames

 FROM NATIONAL_LEAGUER) ;

In this case, you use the existential quantifier ANY rather than the universal quan-

tifier ALL. The subquery (the inner, nested query) is identical to the subquery in
the previous example. This subquery retrieves a complete list of the game statis-

tics for all the National League pitchers. The outer query returns the first and last
names of all American League pitchers who pitched more complete games than
ANY National League pitcher. Because you can be virtually certain that at least
one National League pitcher hasn’t pitched a complete game, the result probably
includes all American League pitchers who’ve pitched at least one complete game.

If you replace the keyword ANY with the equivalent keyword SOME, the result is the
same. If the statement that at least one National League pitcher hasn’t pitched a
complete game is true, you can then say that SOME National League pitcher hasn’t
pitched a complete game.

EXISTS

You can use the EXISTS predicate in conjunction with a subquery to determine
whether the subquery returns any rows. If the subquery returns at least one row,
that result satisfies the EXISTS condition, and the outer query executes. Consider
the following example:

SELECT FirstName, LastName

 FROM CUSTOMER

 WHERE EXISTS

 (SELECT DISTINCT CustomerID

 FROM INVOICE

 WHERE INVOICE.CustomerID = CUSTOMER.CustomerID);

526 BOOK 4 Extracting Information with SQL

The INVOICE table contains all your company’s sales transactions. The table
includes the CustomerID of the customer who makes each purchase, as well as
other pertinent information. The CUSTOMER table contains each customer’s first
and last names but no information about specific transactions.

The subquery in the preceding example returns a row for every customer who has
made at least one purchase. The DISTINCT keyword assures you that you retrieve
only one copy of each CustomerID, even if a customer has made more than one
purchase. The outer query returns the first and last names of the customers who
made the purchases that the INVOICE table records.

UNIQUE

As you do with the EXISTS predicate, you use the UNIQUE predicate with a subquery.
Although the EXISTS predicate evaluates to TRUE only if the subquery returns at
least one row, the UNIQUE predicate evaluates to TRUE only if no two rows that the
subquery returns are identical. In other words, the UNIQUE predicate evaluates to

TRUE only if all rows that its subquery returns are unique. Consider the following
example:

SELECT FirstName, LastName

 FROM CUSTOMER

 WHERE UNIQUE

 (SELECT CustomerID FROM INVOICE

 WHERE INVOICE.CustomerID = CUSTOMER.CustomerID);

This statement retrieves the names of all first-time customers for whom the
INVOICE table records only one sale. Two null values are considered not equal
to each other and thus unique. When the UNIQUE keyword is applied to a result
table containing only two null rows, the UNIQUE predicate evaluates to True.

DISTINCT

The DISTINCT predicate is similar to the UNIQUE predicate, except in the way it
treats nulls. If all the values in a result table are UNIQUE, they’re also DISTINCT

from each other. However, unlike the result for the UNIQUE predicate, if the
DISTINCT keyword is applied to a result table that contains only two null rows, the
DISTINCT predicate evaluates to False. Two null values are not considered distinct

from each other, while at the same time, they are considered to be unique. This
strange situation seems contradictory, but there’s a reason for it. In some situa-

tions, you may want to treat two null values as different from each other, whereas,
in other situations, you want to treat them as if they’re the same. In the first case,
use the UNIQUE predicate. In the second case, use the DISTINCT predicate.

S
E

L
E

C
T

 S
ta

te
m

e
n

ts a
n

d

M
o

d
ify

in
g

 C
la

u
se

s

CHAPTER 4 SELECT Statements and Modifying Clauses 527

OVERLAPS

You use the OVERLAPS predicate to determine whether two time intervals overlap
each other. This predicate is useful for avoiding scheduling conflicts. If the two
intervals overlap, the predicate returns a True value. If they don’t overlap, the
predicate returns a False value.

You can specify an interval in two ways: either as a start time and an end time or
as a start time and a duration. Following are a few examples:

(TIME '2:55:00', INTERVAL '1' HOUR)

OVERLAPS

(TIME '3:30:00', INTERVAL '2' HOUR)

The preceding example returns a True because 3:30 is less than one hour
after 2:55.

(TIME '9:00:00', TIME '9:30:00')

OVERLAPS

(TIME '9:29:00', TIME '9:31:00')

The preceding example returns a True because you have a one-minute overlap
between the two intervals.

(TIME '9:00:00', TIME '10:00:00')

OVERLAPS

(TIME '10:15:00', INTERVAL '3' HOUR)

The preceding example returns a False because the two intervals don’t overlap.

(TIME '9:00:00', TIME '9:30:00')

OVERLAPS

(TIME '9:30:00', TIME '9:35:00')

This example returns a False because even though the two intervals are contig-

uous, they don’t overlap.

MATCH

Referential integrity involves maintaining consistency in a multitable database. You
can lose integrity by adding a row to a child table that doesn’t have a correspond-

ing row in the child’s parent table. You can cause similar problems by deleting a
row from a parent table if rows corresponding to that row exist in a child table.

528 BOOK 4 Extracting Information with SQL

Say that your business has a CUSTOMER table that keeps track of all your cus-

tomers and a TRANSACT table that records all sales transactions. You don’t want
to add a row to TRANSACT until after you enter the customer making the pur-

chase into the CUSTOMER table. You also don’t want to delete a customer from
the CUSTOMER table if that customer made purchases that exist in the TRANSACT
table. Before you perform an insertion or deletion, you may want to check the can-

didate row to make sure that inserting or deleting that row doesn’t cause integrity
problems. The MATCH predicate can perform such a check.

To examine the MATCH predicate, consider an example that employs the
CUSTOMER and TRANSACT tables. CustomerID is the primary key of the
CUSTOMER table and acts as a foreign key in the TRANSACT table. Every row
in the CUSTOMER table must have a unique, nonnull CustomerID. CustomerID
isn’t unique in the TRANSACT table because repeat customers buy more than
once. This situation is fine and does not threaten integrity because CustomerID
is a foreign key rather than a primary key in that table.

Seemingly, CustomerID can be null in the TRANSACT table because someone can
walk in off the street, buy something, and walk out before you get a chance to
enter their name and address into the CUSTOMER table. This situation can create
a row in the child table with no corresponding row in the parent table. To over-

come this problem, you can create a generic customer in the CUSTOMER table and
assign all such anonymous sales to that customer.

Say that a customer steps up to the cash register and claims that they bought a flux
capacitor on January 15, 2019. They now want to return the device because they
have discovered that their DeLorean lacks time circuits, and so the flux capacitor
is of no use. You can verify their claim by searching your TRANSACT database for
a match. First, you must retrieve their CustomerID into the variable vcustid; then

you can use the following syntax:

... WHERE (:vcustid, 'flux capacitor', '2019-01-15')

 MATCH

 (SELECT CustomerID, ProductName, Date

 FROM TRANSACT)

If a sale exists for that customer ID for that product on that date, the MATCH

predicate returns a True value. Take back the product and refund the customer’s
money. (Note: If any values in the first argument of the MATCH predicate are null,
a True value always returns.)

SQL’s developers added the MATCH predicate and the UNIQUE predicate for the same

reason — to provide a way to explicitly perform the tests defined for the implicit
referential integrity (RI) and UNIQUE constraints. (See the next section for more
on referential integrity.)

S
E

L
E

C
T

 S
ta

te
m

e
n

ts a
n

d

M
o

d
ify

in
g

 C
la

u
se

s

CHAPTER 4 SELECT Statements and Modifying Clauses 529

The general form of the MATCH predicate is as follows:

Row_value MATCH [UNIQUE] [SIMPLE| PARTIAL | FULL] Subquery

The UNIQUE, SIMPLE, PARTIAL, and FULL options relate to rules that come into play
if the row value expression R has one or more columns that are null. The rules for
the MATCH predicate are a copy of corresponding referential integrity rules.

The MATCH predicate and referential integrity

Referential integrity rules require that the values of a column or columns in
one table match the values of a column or columns in another table. You refer
to the columns in the first table as the foreign key and the columns in the second

table as the primary key or unique key. For example, you may declare the column
EmpDeptNo in an EMPLOYEE table as a foreign key that references the DeptNo
column of a DEPT table. This matchup ensures that if you record an employee in
the EMPLOYEE table as working in department 123, a row appears in the DEPT
table, where DeptNo is 123.

This situation is fairly straightforward if the foreign key and primary key both
consist of a single column. The two keys can, however, consist of multiple col-
umns. The DeptNo value, for example, may be unique only within a Location;
therefore, to uniquely identify a DEPT row, you must specify both a Location and a
DeptNo. If both the Boston and Tampa offices have a department 123, you need to
identify the departments as ('Boston', '123') and ('Tampa', '123'). In this case,
the EMPLOYEE table needs two columns to identify a DEPT. Call those columns
EmpLoc and EmpDeptNo. If an employee works in department 123 in Boston, the
EmpLoc and EmpDeptNo values are 'Boston' and '123'. And the foreign key
declaration in EMPLOYEE is as follows:

FOREIGN KEY (EmpLoc, EmpDeptNo)

 REFERENCES DEPT (Location, DeptNo)

Drawing valid conclusions from your data is complicated immensely if the data
contains nulls. Sometimes, you want to treat null-containing data one way,
and sometimes, you want to treat it another way. The UNIQUE, SIMPLE, PAR-
TIAL, and FULL keywords specify different ways of treating data that contains
nulls. If your data does not contain any null values, you can save yourself a lot
of head-scratching by merely skipping to the section called “Logical connec-

tives” later in this chapter. If your data does contain null values, drop out of
Evelyn Wood speed-reading mode now and read the following paragraphs slowly
and carefully. Each paragraph presents a different situation with respect to null
values and tells how the MATCH predicate handles it.

530 BOOK 4 Extracting Information with SQL

If the values of EmpLoc and EmpDeptNo are both nonnull or both null, the refer-

ential integrity rules are the same as for single-column keys with values that are
null or nonnull. But if EmpLoc is null and EmpDeptNo is nonnull — or EmpLoc is
nonnull and EmpDeptNo is null — you need new rules. What should the rules be
if you insert or update the EMPLOYEE table with EmpLoc and EmpDeptNo values
of (NULL, '123') or ('Boston', NULL)? You have six main alternatives: SIMPLE,
PARTIAL, and FULL, each either with or without the UNIQUE keyword. The UNIQUE

keyword, if present, means that a matching row in the subquery result table must
be unique in order for the predicate to evaluate to a True value. If both compo-

nents of the row value expression R are null, the MATCH predicate returns a True

value regardless of the contents of the subquery result table being compared.

If neither component of the row value expression R is null, SIMPLE is specified,
UNIQUE is not specified, and at least one row in the subquery result table matches
R, the MATCH predicate returns a True value. Otherwise, it returns a False value.

If neither component of the row value expression R is null, SIMPLE is specified,
UNIQUE is specified, and at least one row in the subquery result table is both unique
and matches R, the MATCH predicate returns a True value. Otherwise, it returns a
False value.

If any component of the row value expression R is null and SIMPLE is specified, the
MATCH predicate returns a True value.

If any component of the row value expression R is nonnull, PARTIAL is specified,
UNIQUE is not specified, and the nonnull parts of at least one row in the subquery
result table matches R, the MATCH predicate returns a True value. Otherwise, it
returns a False value.

If any component of the row value expression R is nonnull, PARTIAL is specified,
UNIQUE is specified, and the nonnull parts of R match the nonnull parts of at least

one unique row in the subquery result table, the MATCH predicate returns a True

value. Otherwise, it returns a False value.

If neither component of the row value expression R is null, FULL is specified,
UNIQUE is not specified, and at least one row in the subquery result table matches
R, the MATCH predicate returns a True value. Otherwise, it returns a False value.

If neither component of the row value expression R is null, FULL is specified,
UNIQUE is specified, and at least one row in the subquery result table is both
unique and matches R, the MATCH predicate returns a True value. Otherwise, it
returns a False value.

S
E

L
E

C
T

 S
ta

te
m

e
n

ts a
n

d

M
o

d
ify

in
g

 C
la

u
se

s

CHAPTER 4 SELECT Statements and Modifying Clauses 531

If any component of the row value expression R is null and FULL is specified, the
MATCH predicate returns a False value.

Logical connectives

Often, as a number of previous examples show, applying one condition in a query
isn’t enough to return the rows that you want from a table. In some cases, the
rows must satisfy two or more conditions. In other cases, if a row satisfies any of
two or more conditions, it qualifies for retrieval. On other occasions, you want to
retrieve only rows that don’t satisfy a specified condition. To meet these needs,
SQL offers the logical connectives AND, OR, and NOT.

AND

If multiple conditions must all be True before you can retrieve a row, use the AND

logical connective. Consider the following example:

SELECT InvoiceNo, SaleDate, SalesPerson, TotalSale

 FROM SALES

 WHERE SaleDate >= '2019-01-16'

 AND SaleDate <= '2019-01-22' ;

The WHERE clause must meet the following two conditions:

 » SaleDate must be greater than or equal to January 16, 2019.

 » SaleDate must be less than or equal to January 22, 2019.

Only rows that record sales occurring during the week of January 16 meet both
conditions. The query returns only these rows.

Notice that the AND connective is strictly logical. This restriction can sometimes be
confusing because people commonly use the word and with a looser meaning. For
example, suppose that your boss says to you, “I’d like to see the sales for Acheson
and Bryant.” They said, “Acheson and Bryant,” so you may write the following
SQL query:

SELECT *

 FROM SALES

 WHERE Salesperson = 'Acheson'

 AND Salesperson = 'Bryant';

532 BOOK 4 Extracting Information with SQL

Well, don’t take that answer back to your boss. The following query is more like
what they had in mind:

SELECT *

 FROM SALES

 WHERE Salesperson IN ('Acheson', 'Bryant') ;

The first query won’t return anything, because none of the sales in the SALES
table were made by both Acheson and Bryant. The second query returns the infor-

mation on all sales made by either Acheson or Bryant, which is probably what the
boss wanted.

OR

If any one of two or more conditions must be True to qualify a row for retrieval,
use the OR logical connective, as in the following example:

SELECT InvoiceNo, SaleDate, Salesperson, TotalSale

 FROM SALES

 WHERE Salesperson = 'Bryant'

 OR TotalSale > 200 ;

This query retrieves all of Bryant’s sales, regardless of how large, as well as all
sales of more than $200, regardless of who made the sales.

NOT

The NOT connective negates a condition. If the condition normally returns a True

value, adding NOT causes the same condition to return a False value. If a condition
normally returns a False value, adding NOT causes the condition to return a True

value. Consider the following example:

SELECT InvoiceNo, SaleDate, Salesperson, TotalSale

 FROM SALES

 WHERE NOT (Salesperson = 'Bryant') ;

This query returns rows for all sales transactions completed by salespeople other
than Bryant.

When you use AND, OR, or NOT, sometimes the scope of the connective isn’t clear.
To be safe, use parentheses to make sure that SQL applies the connective to the
predicate you want. In the preceding example, the NOT connective applies to the

entire predicate (Salesperson = 'Bryant').

S
E

L
E

C
T

 S
ta

te
m

e
n

ts a
n

d

M
o

d
ify

in
g

 C
la

u
se

s

CHAPTER 4 SELECT Statements and Modifying Clauses 533

GROUP BY clauses

Sometimes, instead of retrieving individual records, you want to know something
about a group of records. The GROUP BY clause is the tool you need. The following
examples use the AdventureWorks2017 sample database designed to work with
Microsoft SQL Server 2017.

SQL Server Express is a version of Microsoft SQL Server that you can download for
free from www.microsoft.com.

Suppose you’re the sales manager and you want to look at the performance of your
sales force. You could do a simple SELECT such as the following:

SELECT SalesOrderId, OrderDate, LastName, TotalDue

 FROM Sales.SalesOrderHeader, Person.Person

 WHERE BusinessEntityID = SalesPersonID

 AND OrderDate >= '2011-05-01'

 AND OrderDate < '2011-05-31'

You would receive a result similar to that shown in Figure 4-1. In this database,
SalesOrderHeader is a table in the Sales schema and Person is a table in the Person
schema. BusinessEntityID is the primary key of the SalesOrderHeader table, and
SalesPersonID is the primary key of the Person table. SalesOrderID, OrderDate,
and TotalDue are rows in the SalesOrderHeader table, and LastName is a row in
the Person table.

This result gives you some idea of how well your salespeople are doing because
relatively few sales are involved. Thirty-eight rows were returned. However, in
real life, a company would have many more sales, and it wouldn’t be as easy to tell
whether sales objectives were being met. To do that, you can combine the GROUP
BY clause with one of the aggregate functions (also called set functions) to get a

quantitative picture of sales performance. For example, you can see which sales-

person is selling more of the profitable high-ticket items by using the average
(AVG) function as follows:

SELECT LastName, AVG(TotalDue)

 FROM Sales.SalesOrderHeader, Person.Person

 WHERE BusinessEntityID = SalesPersonID

 AND OrderDate >= '2011-05-01'

 AND OrderDate < '2011-05-31'

 GROUP BY LastName;

http://www.microsoft.com

534 BOOK 4 Extracting Information with SQL

You would receive a result similar to that shown in Figure 4-2. The GROUP BY

clause causes records to be grouped by LastName and the groups to be sorted in

ascending alphabetical order.

As shown in Figure 4-2, Ansman-Wolfe has the highest average sales. You can
compare total sales with a similar query — this time using SUM:

SELECT LastName, SUM(TotalDue)

 FROM Sales.SalesOrderHeader, Person.Person

 WHERE BusinessEntityID = SalesPersonID

 AND OrderDate >= '2011-05-01'

 AND OrderDate < '2011-05-31'

 GROUP BY LastName;

FIGURE 4-1:
The result set for
retrieval of sales

for May 2011.

FIGURE 4-2:
Average sales for

each salesperson.

S
E

L
E

C
T

 S
ta

te
m

e
n

ts a
n

d

M
o

d
ify

in
g

 C
la

u
se

s

CHAPTER 4 SELECT Statements and Modifying Clauses 535

This gives the result shown in Figure 4-3. As in the previous example, the GROUP
BY clause causes records to be grouped by LastName and the groups to be sorted in

ascending alphabetical order.

Saraiva has the highest total sales for the month. Ansman-Wolfe has appar-

ently sold only high-ticket items, but Saraiva has sold more across the entire
product line.

HAVING clauses

You can analyze the grouped data further by using the HAVING clause. The HAVING

clause is a filter that acts similar to a WHERE clause, but the filter acts on groups of
rows rather than individual rows. To illustrate the function of the HAVING clause,
suppose Saraiva has just resigned, and the sales manager wants to display the
overall data for the other salespeople. You can exclude Saraiva’s sales from the
grouped data by using a HAVING clause as follows:

SELECT LastName, SUM(TotalDue)

 FROM Sales.SalesOrderHeader, Person.Person

 WHERE BusinessEntityID = SalesPersonID

 AND OrderDate >= '2011-05-01'

 AND OrderDate < '2011-05-31'

 GROUP BY LastName

 HAVING LastName <> 'Saraiva';

FIGURE 4-3:
Total sales for

each salesperson.

536 BOOK 4 Extracting Information with SQL

This gives the result shown in Figure 4-4. Only rows where the salesperson is not

Saraiva are returned. As before, the GROUP BY clause causes records to be grouped

by LastName and the groups to be sorted in ascending alphabetical order.

ORDER BY clauses

You can use the ORDER BY clause to display the output table of a query in either
ascending or descending alphabetical order. Whereas the GROUP BY clause gath-

ers rows into groups and sorts the groups into alphabetical order, ORDER BY sorts

individual rows. The ORDER BY clause must be the last clause that you specify in a
query. If the query also contains a GROUP BY clause, the clause first arranges the
output rows into groups. The ORDER BY clause then sorts the rows within each
group. If you have no GROUP BY clause, the statement considers the entire table
as a group, and the ORDER BY clause sorts all its rows according to the column (or
columns) that the ORDER BY clause specifies.

To illustrate this point, consider the data in the SalesOrderHeader table. The
SalesOrderHeader table contains columns for SalesOrderID, OrderDate, DueDate,
ShipDate, and SalesPersonID, among other things. If you use the following exam-

ple, you see all the SALES data, but in an arbitrary order:

SELECT * FROM Sales.SalesOrderHeader ;

In one implementation, this order may be the one in which you inserted the rows
in the table, and in another, the order may be that of the most recent updates. The
order can also change unexpectedly if anyone physically reorganizes the database.

FIGURE 4-4:
Total sales for

all salespeople
except Saraiva.

S
E

L
E

C
T

 S
ta

te
m

e
n

ts a
n

d

M
o

d
ify

in
g

 C
la

u
se

s

CHAPTER 4 SELECT Statements and Modifying Clauses 537

Usually, you want to specify the order in which you want to display the rows. You
may, for example, want to see the rows in order by the OrderDate, as follows:

SELECT * FROM Sales.SalesOrderHeader ORDER BY OrderDate ;

This example returns all the rows in the SalesOrderHeader table in ascending
order by OrderDate.

For rows with the same OrderDate, the default order depends on the imple-

mentation. You can, however, specify how to sort the rows that share the same
OrderDate. You may want to see the orders for each OrderDate in order by
SalesOrderID, as follows:

SELECT * FROM Sales.SalesOrderHeader ORDER BY OrderDate,

SalesOrderID ;

This example first orders the sales by OrderDate then for each OrderDate, it orders
the sales by SalesOrderID. But don’t confuse that example with the following
query:

SELECT * FROM Sales.SalesOrderHeader ORDER BY SalesOrderID,

OrderDate ;

This query first orders the sales by SalesOrderID. Then for each different
SalesOrderID, the query orders the sales by OrderDate. This probably won’t yield
the result you want because it is unlikely that multiple order dates exist for a
single sales order number.

The following query is another example of how SQL can return data:

SELECT * FROM Sales.SalesOrderHeader ORDER BY SalesPersonID,

OrderDate ;

This example first orders by salesperson and then by order date. After you look at
the data in that order, you may want to invert it, as follows:

SELECT * FROM Sales.SalesPersonID ORDER BY OrderDate,

SalesPersonID ;

This example orders the rows first by order date and then by salesperson.

All these ordering examples are ascending (ASC), which is the default sort order.
In the AdventureWorks2017 sample database, this last SELECT would show ear-

lier sales first and, within a given date, show sales for 'Ansman-Wolfe' before

538 BOOK 4 Extracting Information with SQL

'Blythe'. If you prefer descending (DESC) order, you can specify this order for one
or more of the order columns, as follows:

SELECT * FROM Sales.SalesPersonID ORDER BY OrderDate DESC,

SalesPersonID ASC;

This example specifies a descending order for order date, showing the more recent
orders first, and an ascending order for salespeople.

CHAPTER 5 Tuning Queries 539

Tuning Queries

P
erformance is almost always a top priority for any organizational database
system. As the usage of the system goes up, if resources such as processor
speed, cache memory, and hard disk storage do not go up proportionally,

performance starts to suffer, and users start to complain. Clearly, one thing that
a system administrator can do is increase the resources — install a faster proces-
sor, add more cache, buy more hard disks. These solutions may give the needed
improvement and may even be necessary, but you should try a cheaper solution
first: improving the efficiency of the queries that are loading down the system.

Generally, there are several different ways that you can obtain the information
you want from a database; in other words, there are several different ways that
you can code a query. Some of those ways are more efficient than others. If one
or more queries that are run on a regular basis are bogging down the system, you
may be able to bring your system back up to speed without spending a penny on
additional hardware. You may just have to recode the queries that are causing the
bottleneck.

Popular database management systems have query optimizers that try to elim-
inate bottlenecks for you, but they don’t always do as well as you could if you
tested various alternatives and picked the one with the best performance.

Chapter 5

IN THIS CHAPTER

 » Avoiding retrieving duplicate records

 » Managing multiple selection

conditions

 » Saving resources with temporary

tables

 » Filtering out groups that don’t meet

a search condition

 » Working with indexes

540 BOOK 4 Extracting Information with SQL

Unfortunately, no general rules apply across the board. The way a database is
structured and the columns that are indexed have definite effects. In addition,
a coding practice that would be optimal if you use Microsoft SQL Server might
result in the worst possible performance if you use Oracle. Because the different
DBMSs do things in different ways, what is good for one is not necessarily good
for another. There are some things you can do, however, that enable you to find
good query plans. This chapter shows you some common situations.

SELECT DISTINCT

You use SELECT DISTINCT when you want to make sure there are no duplicates in
records you retrieve. However, the DISTINCT keyword potentially adds overhead
to a query that could impact system performance. The impact it may or may not
have depends on how it is implemented by the DBMS. Furthermore, including
the DISTINCT keyword in a SELECT operation may not even be needed to ensure
there are no duplicates. If you are doing a select on a primary key, the result set
is guaranteed to contain no duplicates anyway, so adding the DISTINCT keyword
provides no advantage.

Instead of relying on general rules such as, “Avoid using the DISTINCT keyword
if you can,” if you suspect that a query that includes a DISTINCT keyword is
inefficient, test it to see. First, make a typical query into Microsoft’s Adventure-
Works2017 sample database. The AdventureWorks2017 database contains records
typical of a commercial enterprise. There is a Customer table and a SalesOrder-
Header table, among others. One thing you might want to do is see what compa-
nies in the Customer table have actually placed orders, as recorded in the Orders
table. Because a customer may place multiple orders, it makes sense to use the
DISTINCT keyword so that only one row is returned for each customer. Here’s the
code for the query:

SELECT DISTINCT SalesOrderHeader.CustomerID, Customer.StoreID, SalesOrderHeader.

TotalDue

 FROM Sales.Customer, Sales.SalesOrderHeader

 WHERE Customer.CustomerID = SalesOrderHeader.CustomerID ;

Before executing this query, click on the Include Client Statistics icon to select it.
Then click the Execute button.

You can see the result in Figure 5-1, which shows the first few customer ID num-
bers of the 31,349 companies that have placed at least one order.

T
u

n
in

g
 Q

u
e

rie
s

CHAPTER 5 Tuning Queries 541

This query uses CustomerID to link the Customer table to the SalesOrderHeader
table so that information can be pulled from both.

It would be interesting to see how efficient this query is. Use Microsoft SQL Server
2017’s tools to find out. First, look at the execution plan that was followed to run
this query in Figure 5-2. To see the execution plan, click the Estimated Execution
Plan icon in the toolbar.

The execution plan shows that a hash match on an aggregation operation takes
48% of the execution time, and a hash match on an inner join takes another 20%.
A clustered index scan on the primary key of the customer table takes 5% of the
time, and a clustered index scan on the primary key of the SalesOrderHeader table
takes 26%. To see how well or how poorly things are going, view the client statis-
tics (Figure 5-3) by clicking the Include Client Statistics icon in the toolbar.

FIGURE 5-1:
Customers who

have placed at

least one order.

FIGURE 5-2:
The SELECT

DISTINCT query

execution plan.

542 BOOK 4 Extracting Information with SQL

Book 4, Chapter 7 covers inner joins. A clustered index scan is a row-by-row exam-
ination of the index on a table column. In this case, the index of SalesOrder-
Header.CustomerID is scanned. The hash match on the aggregation operation
and the hash match on the inner join are the operations used to match up the
CustomerID from the Customer table with the CustomerID from the SalesOrder-
Header table.

Total execution time is 447 time units, with client processing time at 2 time units
and wait time on server replies at 445 time units.

The execution plan shows that the bulk of the time consumed is due to hash joins
and clustered index scans. There is no getting around these operations, and it is
doing it about as efficiently as possible.

Temporary Tables

SQL is so feature-rich that there are multiple ways to perform many operations.
Not all those ways are equally efficient. Often, the DBMS’s optimizer dynamically
changes an operation that was coded in a suboptimal way into a more efficient
operation. Sometimes, however, this doesn’t happen. To be sure your query is
running as fast as possible, code it using a few different approaches, and then
test each approach. Settle on the one that does the best job. Sometimes, the best
method on one type of query performs poorly on another, so take nothing for
granted.

FIGURE 5-3:
SELECT DISTINCT

query client

statistics.

T
u

n
in

g
 Q

u
e

rie
s

CHAPTER 5 Tuning Queries 543

One method of coding a query that has multiple selection conditions is to use
temporary tables. Think of a temporary table as a scratchpad. You put some data
in it as an intermediate step in an operation. When you are done with it, it disap-
pears. Consider an example. Suppose you want to retrieve the last names of all
the AdventureWorks employees whose first name is Janice. First, you can create a
temporary table that holds the information you want from the Person table in the
Person schema:

SELECT PersonType, FirstName, LastName INTO #Temp

 FROM Person.Person

 WHERE PersonType = 'EM' ;

As you can see from the code, the result of the select operation is placed into a
temporary table named #Temp rather than being displayed in a window. In SQL
Server, local temporary tables are identified with a # sign as the first character.

Now you can find the Janices in the #Temp table:

SELECT FirstName, LastName

 FROM #Temp

 WHERE FirstName = 'Janice' ;

Running these two queries consecutively gives the result shown in Figure 5-4.

The summary at the bottom of the screen shows that AdventureWorks has only
one employee named Janice. Look at the execution plan (see Figure 5-5) to see
how this retrieval was done.

FIGURE 5-4:
Retrieve all

employees

named Janice

from the

Person table.

544 BOOK 4 Extracting Information with SQL

Creation of the temporary table to separate the employees is one operation, and
finding all the Janices is another. In the Table Creation query, creating the tem-
porary table took up only 1% of the time used. A clustered index scan on the
primary key of the Person table took up the other 99%. Also, notice that a miss-
ing index was flagged with an impact of over 97, followed by a recommendation
to create a nonclustered index on the PersonType column. Considering the huge
impact on runtime due to the absence of that index, if you were to run queries
such as this frequently, you should consider creating an index on PersonType.
Indexing PersonType in the Person table provides a big performance boost in this
case because the number of employees in the table is a relatively small number out
of over 31,000 total records.

The table scan of the temporary table took up all the time of the second query.
How did you do performance-wise? Figure 5-6 gives the details from the Client
Statistics tab.

As you see in the Client Statistics tab, total execution time was 65 time units,
with two units going to client processing time and 63 units waiting for server
replies. 374 bytes were sent from the client, and 148 bytes were returned by the
server. These figures will vary from one run to the next due to caching and other
factors.

FIGURE 5-5:
SELECT query

execution

plan using a

temporary table.

T
u

n
in

g
 Q

u
e

rie
s

CHAPTER 5 Tuning Queries 545

Now, suppose you performed the same operation without using a temporary table.
You could do so with the following code:

SELECT FirstName, LastName

 FROM Person.Person

 WHERE PersonType = 'EM'

 AND FirstName = 'Janice';

EM is AdventureWorks’ code for a PersonType of employee. You get the same result
(shown in Figure 5-7) as in Figure 5-4. Janice Galvin is the only employee with a
first name of Janice.

FIGURE 5-6:
SELECT query

execution client

statistics using a

temporary table.

FIGURE 5-7:
SELECT query

result with a

compound

condition.

546 BOOK 4 Extracting Information with SQL

How does the execution plan (shown in Figure 5-8) compare with the one in
Figure 5-5?

As you can see, the same result was obtained by a completely different execution
plan. A nonclustered index scan took up 77% of the total execution time, a key
lookup took 15%, and the remaining 7% was consumed by an inner join. Once
again, a recommendation for a nonclustered index has been made, this time on
the combined PersonType and FirstName columns. The real story, however, is
revealed in the client statistics (shown in Figure 5-9). How does performance
compare with the temporary table version?

Hmmm. Total execution time is 307 time units, most of which is due to wait time
for server replies. That’s more than the 65 time units consumed by the temporary
table formulation. The client sent 236 bytes, which is significantly less than the
upstream traffic in the temporary table case. In addition, only 119 bytes were sent
from the server down to the client. That’s comparable to the 148 bytes that were
downloaded using the temporary table. All things considered, the performance of
both methods turns out to be about a wash. There may be situations where using
one or the other is better, but creating a nonclustered index on [PersonType] in
the first case or on [PersonType, FirstName] in the second case will have a much
bigger impact.

FIGURE 5-8:
SELECT query

execution plan

with a compound

condition.

T
u

n
in

g
 Q

u
e

rie
s

CHAPTER 5 Tuning Queries 547

The ORDER BY Clause

The ORDER BY clause can be expensive in terms of both bandwidth between the
server and the client and execution time simply because ORDER BY initiates a sort
operation, and sorts consume large amounts of both time and memory. If you
can minimize the number of ORDER BY clauses in a series of queries, you may
save resources. This is one place where using a temporary table might perform
better. Consider an example. Suppose you want to do a series of retrievals on
your Products table in which you see which products are available in several price
ranges. For example, you want one list of products priced between 10 dollars and
20 dollars, ordered by unit price. Then, you want a list of products priced between
20 dollars and 30 dollars, similarly ordered, and so on. To cover four such price
ranges, you could make four queries, all four with an ORDER BY clause. Alterna-
tively, you could create a temporary table with a query that uses an ORDER BY
clause, and then draw the data for the ranges in separate queries that do not have
ORDER BY clauses. Compare the two approaches. Here’s the code for the temporary
table approach:

SELECT Name, ListPrice INTO #Product

 FROM Production.Product

 WHERE ListPrice > 10

 AND ListPrice <= 50

 ORDER BY ListPrice;

SELECT Name, ListPrice

 FROM #Product

FIGURE 5-9:
SELECT query

client statistics,

with a compound

condition.

548 BOOK 4 Extracting Information with SQL

 WHERE ListPrice > 10

 AND ListPrice <= 20;

SELECT Name, ListPrice

 FROM #Product

 WHERE ListPrice > 20

 AND ListPrice <= 30;

SELECT Name, ListPrice

 FROM #Product

 WHERE ListPrice > 30

 AND ListPrice <= 40;

SELECT Name, ListPrice

 FROM #Product

 WHERE ListPrice > 40

 AND ListPrice <= 50;

The execution plan for this series of queries is shown in Figure 5-10.

The first query, the one that creates the temporary table, has the most complex
execution plan. By itself, it takes up 64% of the allotted time, and the other four
queries take up the remaining 36%. Figure 5-11 shows the client statistics mea-
suring resource usage.

FIGURE 5-10:
Execution plan,

minimizing

occurrence

of ORDER BY

clauses.

T
u

n
in

g
 Q

u
e

rie
s

CHAPTER 5 Tuning Queries 549

Total execution time varies from run to run because of variances in the time spent
waiting to hear back from the server, and an average of 13,175 bytes were received
from the server. Now compare that with no temporary table, but four separate
queries, each with its own ORDER BY clause. Here’s the code:

SELECT Name, ListPrice

 FROM #Product

 WHERE ListPrice > 10

 AND ListPrice <= 20

 ORDER BY ListPrice ;

SELECT Name, ListPrice

 FROM #Product

 WHERE ListPrice > 20

 AND ListPrice <= 30

 ORDER BY ListPrice ;

SELECT Name, ListPrice

 FROM #Product

 WHERE ListPrice > 30

 AND ListPrice <= 40

 ORDER BY ListPrice ;

SELECT Name, ListPrice

 FROM #Product

FIGURE 5-11:
Client statistics,

minimizing

occurrence

of ORDER BY

clauses.

550 BOOK 4 Extracting Information with SQL

 WHERE ListPrice > 40

 AND ListPrice <= 50

ORDER BY ListPrice ;

The resulting execution plan is shown in Figure 5-12.

Each of the four queries involves a sort, which consumes 48% of the total time
of the query. This could be costly. Figure 5-13 shows what the client statistics
look like.

Total execution time varies from one run to the next, primarily due to waiting
for a response from the server. The number of bytes returned by the server also
varies. A cursory look at the statistics does not determine whether this latter
method is slower than the temporary table method; averages over multiple inde-
pendent runs will be required. At any rate, as table sizes increase, the time it takes
to sort them goes up exponentially. For larger tables, the performance advantage
tips strongly to the temporary table method.

FIGURE 5-12:
Execution plan,

queries with

separate ORDER

BY clauses.

T
u

n
in

g
 Q

u
e

rie
s

CHAPTER 5 Tuning Queries 551

The HAVING Clause

Think about the order in which you do things. Performing operations in the correct
order can make a big difference in how long it takes to complete those operations.
Whereas the WHERE clause filters out rows that don’t meet a search condition,
the HAVING clause filters out entire groups that don’t meet a search condition. It
makes sense to filter first (with a WHERE clause) and group later (with a GROUP BY
clause) rather than group first and filter later (with a HAVING clause). If you group
first, you perform the grouping operation on everything. If you filter first, you
perform the grouping operation only on what is left after the rows you don’t want
have been filtered out.

This line of reasoning sounds good. To see if it is borne out in practice, consider
this code:

SELECT AVG(ListPrice) AS AvgPrice, ProductLine

 FROM Production.Product

 GROUP BY ProductLine

 HAVING ProductLine = 'T' ;

FIGURE 5-13:
Client statistics,

queries with

separate ORDER

BY clauses.

552 BOOK 4 Extracting Information with SQL

It finds the average price of all the products in the T product line by first grouping
the products into categories and then filtering out all except those in product
line T. The AS keyword is used to give a name to the average list price — in this
case, the name is AvgPrice. Figure 5-14 shows what SQL Server returns. This for-
mulation should result in worse performance than filtering first and grouping
second.

The average price for the products in product line T is $840.7621. Figure 5-15
shows what the execution plan tells us.

A clustered index scan takes up most of the time. This is a fairly efficient opera-
tion. The client statistics are shown in Figure 5-16.

FIGURE 5-14:
Retrieval with a

HAVING clause.

FIGURE 5-15:
Retrieval with a

HAVING clause

execution plan.

T
u

n
in

g
 Q

u
e

rie
s

CHAPTER 5 Tuning Queries 553

Client execution time is about 13 time units. Now, try filtering first and grouping
second.

SELECT AVG(ListPrice) AS AvgPrice

 FROM Production.Product

 WHERE ProductLine = 'T' ;

There is no need to group because all product lines except product line T are fil-
tered out by the WHERE clause. Figure 5-17 shows that the result is the same as in
the previous case, $840.7621.

FIGURE 5-16:
Retrieval with a

HAVING clause

client statistics.

FIGURE 5-17:
Retrieval without

a HAVING clause.

554 BOOK 4 Extracting Information with SQL

Figure 5-18 shows how the execution plan differs.

Interesting! The execution plan is exactly the same. SQL Server’s optimizer has
done its job and optimized the less efficient case. Are the client statistics the same
too? Check Figure 5-19 to find out.

Client execution time is essentially the same.

FIGURE 5-18:
Retrieval without

a HAVING clause

execution plan.

FIGURE 5-19:
Retrieval without

a HAVING clause

client statistics.

T
u

n
in

g
 Q

u
e

rie
s

CHAPTER 5 Tuning Queries 555

The OR Logical Connective

Some systems never use indexes when expressions in a WHERE clause are con-
nected by the OR logical connective. Check your system to see if it does. See how
SQL Server handles it.

SELECT ProductID, Name

 FROM Production.Product

 WHERE ListPrice < 20

 OR SafetyStockLevel < 30 ;

Check the execution plan to see if SQL Server uses an index (like the one shown in
Figure 5-20). SQL Server does use an index in this situation, so there is no point in
looking for alternative ways to code this type of query.

FIGURE 5-20:
Query with

an OR logical

connective.

CHAPTER 6 Complex Query Design 557

Complex Query Design

R
elational databases have multiple tables. That’s where the word relational

comes from — multiple tables that relate to each other in some way. One
consequence of the distribution of data across multiple tables is that most

queries need to pull data from more than one of them. There are a couple of ways
to do this. One is to use relational operators, and the other method is to use sub-

queries. This chapter covers both methods.

In some cases, you may find that using the JOIN operator makes more sense. This

operator is considerably more flexible than the relational operators covered in this
chapter. Book 4, Chapter 7 covers the various joins and their operations.

What Is a Subquery?

A subquery is an SQL statement embedded within another SQL statement. It’s pos-

sible for a subquery to be embedded within another subquery, which is in turn
embedded within an outermost SQL statement. Theoretically, there is no limit to
the number of levels of subquery that an SQL statement may include, although
any given implementation has a practical limit. A key feature of a subquery is that
the table or tables it references need not be the same as the table or tables refer-

enced by its enclosing query. This has the effect of returning results based on the
information in multiple tables.

Chapter 6

IN THIS CHAPTER

 » Defining subqueries

 » Discovering how subqueries work

 » Nesting subqueries

 » Tuning nested subqueries

 » Tuning correlation subqueries

 » Using relational operators

558 BOOK 4 Extracting Information with SQL

What Subqueries Do

Subqueries are located within the WHERE clause of their enclosing statement. Their
function is to set the search conditions for the WHERE clause. The combination of a

subquery and its enclosing query is called a nested query. Different kinds of nested
queries produce different results. Some subqueries produce a list of values that is
then used as input by the enclosing statement. Other subqueries produce a single
value that the enclosing statement then evaluates with a comparison operator.
A third kind of subquery, called a correlated subquery, operates differently (see the
upcoming “Correlated subqueries” section).

Subqueries that return multiple values

A key concern of many businesses is inventory control. When you are building
products that are made up of various parts, you want to make sure that you have
an adequate supply of all the parts. If just one part is in short supply, it could bring
the entire manufacturing operation to a screeching halt. To see how many prod-

ucts are impacted by the lack of a part they need, you can use a subquery.

Subqueries that retrieve rows satisfying
a condition
Suppose your company (Penguin Electronics, Inc.) manufactures a variety of elec-

tronic products, such as audio amplifiers, FM radio tuners, and handheld metal
detectors. You keep track of inventory of all your products — as well as all the
parts that go into their manufacture — in a relational database. The database
has a PRODUCTS table that holds the inventory levels of finished products and a
PARTS table that holds the inventory levels of the parts that go into the products.

A part could be included in multiple products, and each product is made up of
multiple parts. This means that there is a many-to-many relationship between
the PRODUCTS table and the PARTS table. Because this could present problems,
you decide to insert an intersection table between PRODUCTS and PARTS, trans-

forming the problematical many-to-many relationship into two easier-to-deal-

with one-to-many relationships. The intersection table, named PROD_PARTS,
takes the primary keys of PRODUCTS and PARTS as its only attributes. You can
create these three tables with the following code:

CREATE TABLE PRODUCTS (

 ProductID INTEGER PRIMARY KEY,

 ProductName CHAR (30),

 ProductDescription CHAR (50),

 ListPrice NUMERIC (9,2),

 QuantityInStock INTEGER) ;

C
o

m
p

le
x

 Q
u

e
ry

 D
e

sig
n

CHAPTER 6 Complex Query Design 559

CREATE TABLE PARTS (

 PartID INTEGER PRIMARY KEY,

 PartName CHAR (30),

 PartDescription CHAR (50),

 QuantityInStock INTEGER) ;

CREATE TABLE PROD_PARTS (

 ProductID INTEGER NOT NULL,

 PartID INTEGER NOT NULL) ;

Suppose some of your products include an APM-17 DC analog panel meter. To your
horror, you now find that you are completely out of the APM-17 part. You can’t
complete the manufacture of any product that includes it. It is time for manage-

ment to take some emergency actions. One is to check on the status of any out-
standing orders to the supplier of the APM-17 panel meters. Another is to notify
the sales department to stop selling all products that include the APM-17, and
switch to promoting products that do not include it.

To discover which products include the APM-17, you can use a nested query such
as the following:

SELECT ProductID

 FROM PROD_PARTS

 WHERE PartID IN

 (SELECT PartID

 FROM PARTS

 WHERE PartDescription = 'APM-17') ;

SQL processes the innermost query first, so it queries the PARTS table, return-

ing the PartID of every row in the PARTS table where the PartDescription is
APM-17. There should be only one such row. Only one part should have a descrip-

tion of APM-17. The outer query uses the IN keyword to find all the rows in the
PROD_PARTS table that include the PartID that appears in the result set from
the inner query. The outer query then extracts from the PROD_PARTS table the
ProductIDs of all the products that include the APM-17 part. These are the prod-

ucts that the Sales department should stop selling.

Subqueries that retrieve rows that
don’t satisfy a condition
Because sales are the lifeblood of any business, it is even more important to deter-

mine which products the Sales team can continue to sell than it is to tell them

560 BOOK 4 Extracting Information with SQL

what not to sell. You can do this with another nested query. Use the query just
executed in the preceding section as a base, add one more layer of query to it, and
return the ProductIDs of all the products not affected by the APM-17 shortage.

SELECT ProductID

 FROM PROD_PARTS

 WHERE ProductID NOT IN

 (SELECT ProductID

 FROM PROD_PARTS

 WHERE PartID IN

 (SELECT PartID

 FROM PARTS

 WHERE PartDescription = 'APM-17') ;

The two inner queries return the ProductIDs of all the products that include the
APM-17 part. The outer query returns all the ProductIDs of all the products that
are not included in the result set from the inner queries. This final result set is the
list of ProductIDs of products that do not include the APM-17 analog panel meter.

Subqueries that return a single value

Introducing a subquery with one of the six comparison operators (=, <>, <, <=, >,
>=) is often useful. In such a case, the expression preceding the operator evaluates
to a single value, and the subquery following the operator must also evaluate to a
single value. An exception is the case of the quantified comparison operator, which is

a comparison operator followed by a quantifier (ANY, SOME, or ALL).

To illustrate a case in which a subquery returns a single value, look at another
piece of Penguin Electronics’ database. It contains a CUSTOMER table that holds
information about the companies that buy Penguin products. It also contains a
CONTACT table that holds personal data about individuals at each of Penguin’s
customer organizations. The following code creates Penguin’s CUSTOMER and
CONTACT tables.

CREATE TABLE CUSTOMER (

 CustomerID INTEGER PRIMARY KEY,

 Company CHAR (40),

 Address1 CHAR (50),

 Address2 CHAR (50),

 City CHAR (25),

 State CHAR (2),

 PostalCode CHAR (10),

 Phone CHAR (13)) ;

C
o

m
p

le
x

 Q
u

e
ry

 D
e

sig
n

CHAPTER 6 Complex Query Design 561

CREATE TABLE CONTACT (

 CustomerID INTEGER PRIMARY KEY,

 FirstName CHAR (15),

 LastName CHAR (20),

 Phone CHAR (13),

 Email CHAR (30),

 Fax CHAR (13),

 Notes CHAR (100),

 CONSTRAINT ContactFK FOREIGN KEY (CustomerID)

 REFERENCES CUSTOMER (CustomerID)) ;

Say that you want to look at the contact information for the customer named
Baker Electronic Sales, but you don’t remember that company’s CustomerID. Use
a nested query like this one to recover the information you want:

SELECT *

 FROM CONTACT

 WHERE CustomerID =

 (SELECT CustomerID

 FROM CUSTOMER

 WHERE Company = 'Baker Electronic Sales') ;

The result looks something like this:

CustomerID FirstName LastName Phone Notes

---------- --------- -------- ------------ --------------

 787 David Lee 555-876-3456 Likes to visit

 El Pollo Loco

 when in Cali.

You can now call Dave at Baker and tell him about this month’s special sale on

metal detectors.

When you use a subquery in an “=” comparison, the subquery’s SELECT list

must specify a single column (CustomerID in the example). When the subquery
is executed, it must return a single row in order to have a single value for the
comparison.

For this example, assume that the CUSTOMER table has only one row with a
Company value of Baker Electronic Sales. If the CREATE TABLE statement for

CUSTOMER specified a UNIQUE constraint for Company, such a statement guar-

antees that the subquery in the preceding example returns a single value (or no
value). Subqueries like the one in the example, however, are commonly used on

562 BOOK 4 Extracting Information with SQL

columns not specified to be UNIQUE. In such cases, you are relying on some other
reasons for believing that the column has no duplicates.

If more than one CUSTOMER has a value of Baker Electronic Sales in the Com-

pany column (perhaps in different states), the subquery raises an error.

If no Customer with such a company name exists, the subquery is treated as if it
were null, and the comparison becomes unknown. In this case, the WHERE clause

returns no row (because it returns only rows with the condition True and fil-
ters rows with the condition False or Unknown). This would probably happen, for
example, if someone misspelled the COMPANY as Baker Electronics Sales.

Although the equals operator (=) is the most common, you can use any of the
other five comparison operators in a similar structure. For every row in the table
specified in the enclosing statement’s FROM clause, the single value returned by
the subquery is compared to the expression in the enclosing statement’s WHERE

clause. If the comparison gives a True value, a row is added to the result table.

You can guarantee that a subquery returns a single value if you include a set func-

tion in it. Set functions, also known as aggregate functions, always return a single
value. Of course, this way of returning a single value is helpful only if you want
the result of a set function.

Say that you are a Penguin Electronics salesperson, and you need to earn a big
commission check to pay for some unexpected bills. You decide to concentrate on
selling Penguin’s most expensive product. You can find out what that product is
with a nested query:

SELECT ProductID, ProductName, ListPrice

 FROM PRODUCT

 WHERE ListPrice =

 (SELECT MAX(ListPrice)

 FROM PRODUCT) ;

This is an example of a nested query where both the subquery and the enclosing
statement operate on the same table. The subquery returns a single value: the
maximum list price in the PRODUCTS table. The outer query retrieves all rows
from the PRODUCTS table that have that list price.

The next example shows a comparison subquery that uses a comparison operator
other than =:

SELECT ProductID, ProductName, ListPrice

 FROM PRODUCTS

C
o

m
p

le
x

 Q
u

e
ry

 D
e

sig
n

CHAPTER 6 Complex Query Design 563

 WHERE ListPrice <

 (SELECT AVG(ListPrice)

 FROM PRODUCTS) ;

The subquery returns a single value: the average list price in the PRODUCTS table.
The outer query retrieves all rows from the PRODUCTS table that have a list price
less than the average list price.

In the original SQL standard, a comparison could have only one subquery, and it
had to be on the right side of the comparison. SQL:1999 allowed either or both
operands of the comparison to be subqueries, and later versions of SQL retain that
expanded capability.

Quantified subqueries return a single value
One way to make sure a subquery returns a single value is to introduce it with a
quantified comparison operator. The universal quantifier ALL and the existential
quantifiers SOME and ANY, when combined with a comparison operator, process
the result set returned by the inner subquery, reducing it to a single value.

Look at an example. From the 1960s through the 1980s, there was fierce competi-
tion between Ford and Chevrolet to produce the most powerful cars. Both compa-

nies had small-block V-8 engines that went into Mustangs, Camaros, and other
performance-oriented vehicles.

Power is measured in units of horsepower. In general, a larger engine delivers
more horsepower, all other things being equal. Because the displacements (sizes)
of the engines varied from one model to another, it’s unfair to look only at horse-

power. A better measure of the efficiency of an engine is horsepower per displace-

ment. Displacement is measured in cubic inches (CID). Table 6-1 shows the year,
displacement, and horsepower ratings for Ford small-block V-8s between 1960
and 1980.

The Shelby GT350 was a classic muscle car — not a typical car for the weekday
commute. Emission regulations taking effect in the early 1970s halved power out-
put and brought an end to the muscle car era. Table 6-2 shows what Chevy put out
during the same timeframe.

Here again, you see the effect of the emission regulations that kicked in circa
1971 — a drastic drop in horsepower per displacement.

564 BOOK 4 Extracting Information with SQL

Use the following code to create tables to hold these data items:

CREATE TABLE Ford (

 EngineID INTEGER PRIMARY KEY,

 ModelYear CHAR (4),

 Displacement NUMERIC (5,2),

 MaxHP NUMERIC (5,2),

 Notes CHAR (30)) ;

CREATE TABLE Chevy (

 EngineID INTEGER PRIMARY KEY,

 ModelYear CHAR (4),

 Displacement NUMERIC (5,2),

 MaxHP NUMERIC (5,2),

 Notes CHAR (30)) ;

TABLE 6-1	 Ford Small-Block V-8s, 1960–1980

Year Displacement (CID) Maximum Horsepower Notes

1962 221 145

1963 289 225 4bbl carburetor

1965 289 271 289HP model

1965 289 306 Shelby GT350

1969 351 290 4bbl carburetor

1975 302 140 Emission regulations

TABLE 6-2	 Chevy Small-Block V-8s, 1960–1980

Year Displacement (CID) Maximum Horsepower Notes

1960 283 315

1962 327 375

1967 350 295

1968 302 290

1968 307 200

1969 350 370 Corvette

1970 400 265

1975 262 110 Emission regulations

C
o

m
p

le
x

 Q
u

e
ry

 D
e

sig
n

CHAPTER 6 Complex Query Design 565

After filling these tables with the data in Tables 6-1 and 6-2, you can run some
queries. Suppose you are a dyed-in-the-wool Chevy fan and are quite certain that
the most powerful Chevrolet has a higher horsepower-to-displacement ratio than
any of the Fords. To verify that assumption, enter the following query:

SELECT *

 FROM Chevy

 WHERE (MaxHP/Displacement) > ALL

 (SELECT (MaxHP/Displacement) FROM Ford) ;

This returns the result shown in Figure 6-1:

The subquery (SELECT (MaxHP/Displacement) FROM Ford) returns the horsepower-

to-displacement ratios of all the Ford engines in the Ford table. The ALL quantifier
says to return only those records from the Chevy table that have horsepower-to-

displacement ratios higher than all the ratios returned for the Ford engines. Two
different Chevy engines had higher ratios than any Ford engine of that era, including
the highly regarded Shelby GT350. Ford fans should not be bothered by this result,
however. There’s more to what makes a car awesome than just the horsepower-to-

displacement ratio.

What if you had made the opposite assumption? What if you had entered the
following query?

SELECT *

 FROM Ford

 WHERE (MaxHP/Displacement) > ALL

 (SELECT (MaxHP/Displacement) FROM Chevy) ;

FIGURE 6-1:
Chevy muscle

cars with

horsepower to

displacement

ratios higher

than any of the

Fords listed.

566 BOOK 4 Extracting Information with SQL

Because none of the Ford engines has a higher horsepower-to-displacement ratio
than all of the Chevy engines, the query doesn’t return any rows.

Correlated subqueries

In all the nested queries shown in the previous sections, the inner subquery is
executed first, and then its result is applied to the outer enclosing statement.
A correlated subquery first finds the table and row specified by the enclosing state-

ment, and then executes the subquery on the row in the subquery’s table that
correlates with the current row of the enclosing statement’s table.

Using a subquery as an existence test

Subqueries introduced with the EXISTS or the NOT EXISTS keyword are examples
of correlated subqueries. The subquery returns one or more rows, or it returns
none. If it returns at least one row, the EXISTS predicate succeeds, and the enclos-

ing statement performs its action. In the same circumstances, the NOT EXISTS

predicate fails, and the enclosing statement does not perform its action. After one
row of the enclosing statement’s table is processed, the same operation is per-

formed on the next row. This action is repeated until every row in the enclosing
statement’s table has been processed.

TESTING FOR EXISTENCE

Say that you are a salesperson for Penguin Electronics and you want to call
your primary contact people at all of Penguin’s customer organizations in New
Hampshire. Try the following query:

SELECT *

 FROM CONTACT

 WHERE EXISTS

 (SELECT *

 FROM CUSTOMER

 WHERE State = 'NH'

 AND CONTACT.CustomerID = CUSTOMER.CustomerID) ;

Notice the reference to CONTACT.CustomerID, which is referencing a column from
the outer query and comparing it with another column, CUSTOMER.CustomerID,
from the inner query. For each candidate row of the outer query, you evaluate the
inner query using the CustomerID value from the current CONTACT row of the
outer query in the WHERE clause of the inner query.

C
o

m
p

le
x

 Q
u

e
ry

 D
e

sig
n

CHAPTER 6 Complex Query Design 567

The CustomerID column links the CONTACT table to the CUSTOMER table.
SQL looks at the first record in the CONTACT table, finds the row in the
CUSTOMER table that has the same CustomerID, and checks that row’s State
field. If CUSTOMER.State = 'NH', the current CONTACT row is added to the result
table. The next CONTACT record is then processed in the same way, and so on,
until the entire CONTACT table has been processed. Because the query specifies
SELECT * FROM CONTACT, all the CONTACT table’s fields are returned, including
the contact’s name and phone number.

TESTING FOR NONEXISTENCE

In the previous example, the Penguin salesperson wants to know the names and
numbers of the contact people of all the customers in New Hampshire. Imagine
that a second salesperson is responsible for all of the United States except New
Hampshire. They can retrieve their contacts by using NOT EXISTS in a query sim-

ilar to the preceding one:

SELECT *

 FROM CONTACT

 WHERE NOT EXISTS

 (SELECT *

 FROM CUSTOMER

 WHERE State = 'NH'

 AND CONTACT.CustomerID = CUSTOMER.CustomerID) ;

Every row in CONTACT for which the subquery does not return a row is added to
the result table.

Introducing a correlated subquery
with the IN keyword
As noted in a previous section of this chapter, subqueries introduced by IN or

by a comparison operator need not be correlated queries, but they can be. The
“Subqueries that retrieve rows satisfying a condition” section gives examples of
how a noncorrelated subquery can be used with the IN predicate. To show how a

correlated subquery may use the IN predicate, ask the same question that came
up with the EXISTS predicate: What are the names and phone numbers of the
contacts at all of Penguin’s customers in New Hampshire? You can answer this
question with a correlated IN subquery:

SELECT *

 FROM CONTACT

 WHERE 'NH' IN

 (SELECT State

568 BOOK 4 Extracting Information with SQL

 FROM CUSTOMER

 WHERE CONTACT.CustomerID = CUSTOMER.CustomerID) ;

The statement is evaluated for each record in the CONTACT table. If, for that
record, the CustomerID numbers in CONTACT and CUSTOMER match, the value
of CUSTOMER.State is compared to 'NH'. The result of the subquery is a list that
contains, at most, one element. If that one element is 'NH', the WHERE clause of

the enclosing statement is satisfied, and a row is added to the query’s result table.

Introducing a correlated subquery
with a comparison operator
A correlated subquery can also be introduced by one of the six comparison opera-

tors, as shown in the next example.

Penguin pays bonuses to its salespeople based on their total monthly sales
volume. The higher the volume, the higher the bonus percentage. The bonus
percentage list is kept in the BONUSRATE table:

MinAmount MaxAmount BonusPct

--------- --------- --------

 0.00 24999.99 0.

 25000.00 49999.99 0.01

 50000.00 99999.99 0.02

 100000.00 249999.99 0.03

 250000.00 499999.99 0.04

 500000.00 749999.99 0.05

 750000.00 999999.99 0.06

If a person’s monthly sales total is between $100,000.00 and $249,999.99, the
bonus is 3 percent of sales.

Sales are recorded in a transaction master table named TRANSMASTER, which is
created as follows:

CREATE TABLE TRANSMASTER (

 TransID INTEGER PRIMARY KEY,

 CustID INTEGER FOREIGN KEY,

 EmpID INTEGER FOREIGN KEY,

 TransDate DATE,

 NetAmount NUMERIC,

 Freight NUMERIC,

 Tax NUMERIC,

 InvoiceTotal NUMERIC) ;

C
o

m
p

le
x

 Q
u

e
ry

 D
e

sig
n

CHAPTER 6 Complex Query Design 569

Sales bonuses are based on the sum of the NetAmount field for all of a person’s
transactions in the month. You can find any person’s bonus rate with a correlated
subquery that uses comparison operators:

SELECT BonusPct

 FROM BONUSRATE

 WHERE MinAmount <=

 (SELECT SUM(NetAmount)

 FROM TRANSMASTER

 WHERE EmpID = 133)

 AND MaxAmount >=

 (SELECT SUM(NetAmount)

 FROM TRANSMASTER

 WHERE EmpID = 133) ;

This query is interesting in that it contains two subqueries, making use of the log-

ical connective AND. The subqueries use the SUM aggregate operator, which returns
a single value: the total monthly sales of employee 133. That value is then com-

pared against the MinAmount and the MaxAmount columns in the BONUSRATE
table, producing the bonus rate for that employee.

If you had not known the EmpID but had known the person’s name, you could
arrive at the same answer with a more complex query:

SELECT BonusPct

 FROM BONUSRATE

 WHERE MinAmount <=

 (SELECT SUM(NetAmount)

 FROM TRANSMASTER

 WHERE EmpID =

 (SELECT EmployeeID

 FROM EMPLOYEE

 WHERE EmplName = 'Thornton'))

 AND MaxAmount >=

 (SELECT SUM(NetAmount)

 FROM TRANSMASTER

 WHERE EmpID =

 (SELECT EmployeeID

 FROM EMPLOYEE

 WHERE EmplName = 'Thornton'));

This example uses subqueries nested within subqueries, which, in turn, are nested
within an enclosing query to arrive at the bonus rate for the employee named
Thornton. This structure works only if you know for sure that the company has

570 BOOK 4 Extracting Information with SQL

one, and only one, employee whose name is Thornton. If you know that more than
one employee is named Thornton, you can add terms to the WHERE clause of the

innermost subquery until you’re sure that only one row of the EMPLOYEE table
is selected.

Correlated subqueries in a HAVING clause

You can have a correlated subquery in a HAVING clause just as you can in a WHERE

clause. As covered in Book 4, Chapter 5, a HAVING clause is normally preceded by
a GROUP BY clause. The HAVING clause acts as a filter to restrict the groups cre-

ated by the GROUP BY clause. Groups that don’t satisfy the condition of the HAVING

clause are not included in the result. When used this way, the HAVING clause is

evaluated for each group created by the GROUP BY clause. In the absence of a GROUP

BY clause, the HAVING clause is evaluated for the set of rows passed by the WHERE

clause, which is considered a single group. If neither a WHERE clause nor a GROUP

BY clause is present, the HAVING clause is evaluated for the entire table:

SELECT TM1.EmpID

 FROM TRANSMASTER TM1

 GROUP BY TM1.EmpID

 HAVING MAX(TM1.NetAmount) >= ALL

 (SELECT 2 * AVG (TM2.NetAmount)

 FROM TRANSMASTER TM2

 WHERE TM1.EmpID <> TM2.EmpID) ;

This query uses two aliases for the same table, enabling you to retrieve the EmpID
number of all salespeople who had a sale of at least twice the average value of all
the other salespeople. Short aliases such as TM1 are often used to eliminate exces-

sive typing when long table names such as TRANSMASTER are involved. But in
this case, aliases do more than just save some typing. The TRANSMASTER table
is used for two different purposes, so two different aliases are used to distinguish
between them. The query works as follows:

1. The outer query groups TRANSMASTER rows by the EmpID. This is done with
the SELECT, FROM, and GROUP BY clauses.

2. The HAVING clause filters these groups. For each group, it calculates the MAX

of the NetAmount column for the rows in that group.

3. The inner query evaluates twice the average NetAmount from all rows of

TRANSMASTER whose EmpID is different from the EmpID of the current group

of the outer query. Each group contains the transaction records for an
employee whose biggest sale had at least twice the value of the average of

the sales of all the other employees. Note that in the last line, you need to

C
o

m
p

le
x

 Q
u

e
ry

 D
e

sig
n

CHAPTER 6 Complex Query Design 571

reference two different EmpID values, so in the FROM clauses of the outer and

inner queries, you use different aliases for TRANSMASTER.

4. You then use those aliases in the comparison of the query’s last line to indicate

that you’re referencing both the EmpID from the current row of the inner

subquery (TM2.EmpID) and the EmpID from the current group of the outer

subquery (TM1.EmpID).

Using Subqueries in INSERT, DELETE,
and UPDATE Statements

In addition to SELECT statements, UPDATE, DELETE, and INSERT statements can

also include WHERE clauses. Those WHERE clauses can contain subqueries in the

same way that SELECT statement WHERE clauses do.

For example, Penguin has just made a volume purchase deal with Baker Electronic
Sales and wants to retroactively provide Baker with a 10 percent credit for all its
purchases in the last month. You can give this credit with an UPDATE statement:

UPDATE TRANSMASTER

 SET NetAmount = NetAmount * 0.9

 WHERE CustID =

 (SELECT CustID

 FROM CUSTOMER

 WHERE Company = 'Baker Electronic Sales') ;

You can also have a correlated subquery in an UPDATE statement. Suppose the

CUSTOMER table has a column LastMonthsMax, and Penguin wants to give the
same 10 percent credit for purchases that exceed LastMonthsMax for the customer:

UPDATE TRANSMASTER TM

 SET NetAmount = NetAmount * 0.9

 WHERE NetAmount >

 (SELECT LastMonthsMax

 FROM CUSTOMER C

 WHERE C.CustID = TM.CustID) ;

Note that this subquery is correlated: The WHERE clause in the last line references

both the CustID of the CUSTOMER row from the subquery and the CustID of the

current TRANSMASTER row that is a candidate for updating.

572 BOOK 4 Extracting Information with SQL

A subquery in an UPDATE statement can also reference the table being updated.
Suppose that Penguin wants to give a 10 percent credit to customers whose pur-

chases have exceeded $10,000:

UPDATE TRANSMASTER TM1

 SET NetAmount = NetAmount * 0.9

 WHERE 10000 < (SELECT SUM(NetAmount)

 FROM TRANSMASTER TM2

 WHERE TM1.CustID = TM2.CustID);

The inner subquery calculates the SUM of the NetAmount column for all

TRANSMASTER rows for the same customer. What does this mean? Suppose
that the customer with CustID = 37 has four rows in TRANSMASTER with val-
ues for NetAmount: 3000, 5000, 2000, and 1000. The SUM of NetAmount for this

CustID is 11000.

The order in which the UPDATE statement processes the rows is defined by your
implementation and is generally not predictable. The order may differ depending
on how the rows are arranged on the disk. Assume that the implementation pro-

cesses the rows for this CustID in this order: first the TRANSMASTER row with
a NetAmount of 3000, and then the one with NetAmount = 5000, and so on. After
the first three rows for CustID 37 have been updated, their NetAmount values are

2700 (90 percent of 3000), 4500 (90 percent of 5000), and 1800 (90 percent of
2000). Then when you process the last TRANSMASTER row for CustID 37, whose
NetAmount is 1000, the SUM returned by the subquery would seem to be 10000 —
that is, the SUM of the new NetAmount values of the first three rows for CustID 37

and the old NetAmount value of the last row for CustID 37. Thus, it would seem
that the last row for CustID 37 isn’t updated because the comparison with that

SUM is not True, since 10000 is not less than SELECT SUM (NetAmount). But that

is not how the UPDATE statement is defined when a subquery references the table
being updated. All evaluations of subqueries in an UPDATE statement reference

the old values of the table being updated. In the preceding UPDATE for CustID 37,
the subquery returns 11000 — the original SUM.

The subquery in an UPDATE statement WHERE clause operates the same as it does

in a SELECT statement WHERE clause. The same is true for DELETE and INSERT. To

delete all of Baker’s transactions, use this statement:

DELETE FROM TRANSMASTER

 WHERE CustID =

 (SELECT CustomerID

 FROM CUSTOMER

 WHERE Company = 'Baker Electronic Sales') ;

C
o

m
p

le
x

 Q
u

e
ry

 D
e

sig
n

CHAPTER 6 Complex Query Design 573

As with UPDATE, DELETE subqueries can also be correlated and can also refer-

ence the table whose rows are being deleted. The rules are similar to the rules for
UPDATE subqueries. Suppose you want to delete all rows from TRANSMASTER for
customers whose total NetAmount is larger than $10,000:

DELETE FROM TRANSMASTER TM1

 WHERE 10000 < (SELECT SUM(NetAmount)

 FROM TRANSMASTER TM2

 WHERE TM1.CustID = TM2.CustID) ;

This query deletes all rows from TRANSMASTER referencing customers with
purchases exceeding $10,000 — including the aforementioned customer with
CustID 37. All references to TRANSMASTER in the subquery denote the contents of
TRANSMASTER before any deletes by the current statement. So even when you
are deleting the last TRANSMASTER row, the subquery is evaluated on the original
TRANSMASTER table, identified by TM1.

When you update, delete, or insert database records, you risk making a table’s
data inconsistent with other tables in the database. If you delete TRANSMASTER
records and a TRANSDETAIL table depends on TRANSMASTER, you must delete
the corresponding records from TRANSDETAIL too. This operation is called a
cascading delete because the deletion of a parent record cascades to its associ-

ated child records. Otherwise, the undeleted child records become orphans. In
this case, they would be invoice detail lines that are in limbo because they are no
longer connected to an invoice record. Your database management system will
give you the option to either specify a cascading delete or not.

INSERT can include a SELECT clause. One use for this statement is filling snapshot
tables — tables that take a snapshot of another table at a particular moment

in time. For example, to create a table with the contents of TRANSMASTER for
October 27, do this:

CREATE TABLE TRANSMASTER_1027

 (TransID INTEGER, TransDate DATE,

 ...) ;

INSERT INTO TRANSMASTER_1027

 (SELECT * FROM TRANSMASTER

 WHERE TransDate = 2018-10-27) ;

574 BOOK 4 Extracting Information with SQL

The CREATE TABLE statement creates an empty table; the INSERT INTO statement

fills it with the data that was added on October 27. Or you may want to save rows
only for large NetAmounts:

INSERT INTO TRANSMASTER_1027

 (SELECT * FROM TRANSMASTER

 WHERE TRANSMASTER.NetAmount > 10000

 AND TransDate = 2018-10-27) ;

Tuning Considerations for Statements
Containing Nested Queries

How do you tune a nested query? In some cases, there is no need because the
nested query is about as efficient as it can be. In other cases, nested queries are
not particularly efficient. Depending on the characteristics of the database man-

agement system you’re using, you may want to recode a nested query for higher
performance. As mentioned at the beginning of this chapter, many tasks per-

formed by nested queries could also be performed using relational operators. In
some cases, using a relational operator yields better performance than a nested
query that produces the same result. If performance is an issue in a given appli-
cation and a nested query seems to be the bottleneck, you might want to try a
statement containing a relational operator instead and compare execution times.

As mentioned earlier in this chapter, there are two kinds of subqueries, noncorre-

lated and correlated. Let’s look at a noncorrelated subquery without a set function.

SELECT SalesOrderID

 FROM Sales.SalesOrderDetail

 WHERE ProductID IN

 (SELECT ProductID

 FROM Production.ProductInventory

 WHERE Quantity = 0) ;

This query takes data from both the ProductInventory table and the SalesOrder-

Detail table. It returns the SalesOrderIDs of all orders that include out-of-stock
products. Figure 6-2 shows the result of the query. Figure 6-3 shows the execu-

tion plan, and Figure 6-4 shows the client statistics.

C
o

m
p

le
x

 Q
u

e
ry

 D
e

sig
n

CHAPTER 6 Complex Query Design 575

This was a pretty efficient query; 12,089 bytes were transferred from the server,
but total execution time was only 2 time units. The execution plan shows that a
nested loop join was used, taking up 14% of the total time consumed by the query.

How would performance change if the WHERE clause condition was inequality
rather than equality?

SELECT SalesOrderID

 FROM Sales.SalesOrderDetail

 WHERE ProductID IN

 (SELECT ProductID

 FROM Production.ProductInventory

 WHERE Quantity < 10) ;

FIGURE 6-2:
Orders that

contain products

that are out

of stock.

FIGURE 6-3:
An execution

plan for a query

showing orders

for out-of-stock
products.

576 BOOK 4 Extracting Information with SQL

Suppose you don’t want to wait until a product is out of stock to see if you have a
problem. Take a look at Figures 6-5, 6-6, and 6-7 to see how costly a query is that
retrieves orders that include products that are almost out of stock.

Figure 6-4 shows that 2403 rows were returned, and Figure 6-7 shows that 2404
rows were returned. This must mean that there is one item where between 1 and
9 units are still in stock.

FIGURE 6-4:
Client statistics

for a query

showing orders

for out-of-stock
products.

FIGURE 6-5:
A nested query

showing orders

that contain

products that

are almost out

of stock.

C
o

m
p

le
x

 Q
u

e
ry

 D
e

sig
n

CHAPTER 6 Complex Query Design 577

The execution plan is the same in both cases. This indicates that the query opti-
mizer figured out which of the two formulations was more efficient and per-

formed the operation the best way rather than the way it was coded. The client
statistics vary. The difference could have been due to other things the system was
doing at the same time. To determine whether there is any real difference between
the two formulations, they would each have to be run a number of times and an
average taken.

FIGURE 6-6:
An execution

plan for a nested

query showing

orders for almost

out-of-stock
products.

FIGURE 6-7:
Client statistics

for a nested

query showing

orders for almost

out-of-stock
products.

578 BOOK 4 Extracting Information with SQL

Could you achieve the same result more efficiently by recoding with a relational
operator? Take a look at an alternative to the query with the inequality condition:

SELECT SalesOrderID

 FROM Sales.SalesOrderDetail, Production.ProductInventory

 WHERE Production.ProductInventory.ProductID

 = Sales.SalesOrderDetail.ProductInventory

 AND Quantity < 10) ;

Figures 6-8, 6-9, and 6-10 show the results.

Figure 6-8 shows that the same rows are returned. Figure 6-9 shows that the
execution plan is different from what it was for the nested query. The stream
aggregate operation is missing, and a little more time is spent in the nested loops.
Figure 6-10 shows that total execution time has increased substantially, a good
chunk of the increase being in client processing time. In this case, it appears that
using a nested query is clearly superior to a relational query. This result is true
for this database, running on this hardware, with the mix of other work that the
system is performing. Don’t take this as a general truth that nested selects are
always more efficient than using relational operators. Your mileage may vary. Run
your own tests on your own databases to see what is best in each particular case.

FIGURE 6-8:
A relational query

showing orders

that contain

products that

are almost out

of stock.

C
o

m
p

le
x

 Q
u

e
ry

 D
e

sig
n

CHAPTER 6 Complex Query Design 579

Tuning Correlated Subqueries

Compare a correlated subquery to an equivalent relational query and see if a per-

formance difference shows up:

SELECT SOD1.SalesOrderID

 FROM Sales.SalesOrderDetail SOD1

FIGURE 6-9:
The execution

plan for a

relational query

showing orders

for almost out-of-

stock products.

FIGURE 6-10:
Client statistics

for a relational

query showing

orders for almost

out-of-stock
products.

580 BOOK 4 Extracting Information with SQL

 GROUP BY SOD1.SalesOrderID

 HAVING MAX (SOD1.UnitPrice) >= ALL

 (SELECT 2 * AVG (SOD2.UnitPrice)

 FROM Sales.SalesOrderDetail SOD2

 WHERE SOD1.SalesOrderID <> SOD2.SalesOrderID) ;

The query extracts data from the SalesOrderDetail table, including the order
numbers of all the rows that contain a product whose unit price is greater than
or equal to twice the average unit price of all the other products in the table.
Figures 6-11, 6-12, and 6-13 show the results.

As shown in the lower right corner of Figure 6-11, 13,831 orders contained a prod-

uct whose unit price is greater than or equal to twice the average unit price of all
the other products in the table.

Figure 6-12 shows the most complex execution plan in this book. Correlated sub-

queries are intrinsically more complex than the noncorrelated variety. Many parts
of the plan have minimal cost, but the clustered index seek takes up 71% of the
total, and the stream aggregate due to the MAX set function takes up 29%. The
query took much longer to run than any of the queries discussed so far in this
chapter.

FIGURE 6-11:
A correlated

subquery

showing orders

that contain

products at least

twice as costly

as the average

product.

C
o

m
p

le
x

 Q
u

e
ry

 D
e

sig
n

CHAPTER 6 Complex Query Design 581

FIGURE 6-12:
An execution plan for a correlated subquery showing orders at least twice as costly as the average product.

582 BOOK 4 Extracting Information with SQL

The client statistics table in Figure 6-13 shows that 69,341 bytes were returned
by the server, and the total execution time was 759,145 time units. As shown in
the bottom right corner of the statistics panel, the query took 12 minutes and
39 seconds to execute, whereas all the previous queries in this chapter executed
in such a small fraction of a second that the result seemed to appear instanta-

neously. This is clearly an example of a query that anyone would like to perform
more efficiently.

Would a relational query do better? You can formulate one, using a temporary
table:

SELECT 2 * AVG(UnitPrice) AS TwiceAvgPrice INTO #TempPrice

 FROM Sales.SalesOrderDetail ;

SELECT DISTINCT SalesOrderID

 FROM Sales.SalesOrderDetail, #TempPrice

 WHERE UnitPrice >= twiceavgprice ;

When you run this two-part query, you get the results shown in Figures 6-14,
6-15, and 6-16.

FIGURE 6-13:
Client statistics

for a correlated

subquery

showing orders

at least twice

as costly as the

average product.

C
o

m
p

le
x

 Q
u

e
ry

 D
e

sig
n

CHAPTER 6 Complex Query Design 583

This query returns the same result as the previous one, but the difference in exe-

cution time is astounding. This query ran in 8 seconds rather than over 12 minutes.

Figure 6-15 shows the execution plans for the two parts of the relational query.
In the first part, a clustered index scan takes up most of the time (93%). In the
second part, a clustered index scan and an inner join consume the time.

Figure 6-16 shows a tremendous difference in performance with the correlated
subquery in Figure 6-13, which produced exactly the same result. Execution time
is reduced to 8 seconds compared to 12 minutes and 39 seconds.

FIGURE 6-14:
Relational query

showing orders

that contain

products at least

twice as costly

as the average

product.

FIGURE 6-15:
An execution plan

for a relational

query showing

orders for almost

out-of-stock
products.

584 BOOK 4 Extracting Information with SQL

If you have a similar query that will be run repeatedly, give serious consideration
to performing a relational query rather than a correlated subquery if performance
is an issue and if an equivalent relational query can be composed. It is worth run-

ning a couple of tests.

UNION

The UNION operator is the SQL implementation of the union operator used in rela-

tional algebra. SQL’s UNION operator enables you to draw information from two or
more tables that have the same structure. Same structure means

 » The tables must all have the same number of columns.

 » Corresponding columns must all have identical data types and lengths.

When these criteria are met, the tables are union-compatible. The union of two

tables returns all the rows that appear in either table and eliminates duplicates.

FIGURE 6-16:
Client statistics

for a relational

query showing

orders for almost

out-of-stock
products.

C
o

m
p

le
x

 Q
u

e
ry

 D
e

sig
n

CHAPTER 6 Complex Query Design 585

Suppose you have created a database for a business named Acme Systems that
sells and installs computer products. Acme has two warehouses that stock the

products, one in Fort Deposit, Alabama, and the other in East Kingston, New
Hampshire. It contains two union-compatible tables named DEPOSIT and
KINGSTON. Both tables have two columns, and the corresponding columns are
the same type. In fact, corresponding columns have identical column names
(although this condition isn’t required for union compatibility).

DEPOSIT lists the names and quantities in stock of products in the Fort Deposit
warehouse. KINGSTON lists the same information about the East Kingston ware-

house. The UNION of the two tables gives you a virtual result table containing
all the rows in the first table plus all the rows in the second table. This example
shows just a few rows in each table to illustrate the operation:

SELECT * FROM DEPOSIT ;

ProductName QuantityInStock

----------- ---------------

185_Express 12

505_Express 5

510_Express 6

520_Express 2

550_Express 3

SELECT * FROM KINGSTON ;

ProductName QuantityInStock

----------- ---------------

185_Express 15

505_Express 7

510_Express 6

520_Express 2

550_Express 1

SELECT * FROM DEPOSIT

UNION

SELECT * FROM KINGSTON ;

ProductName QuantityInStock

----------- ---------------

185_Express 12

185_Express 15

505_Express 5

505_Express 7

586 BOOK 4 Extracting Information with SQL

510_Express 6

520_Express 2

550_Express 3

550_Express 1

The UNION DISTINCT operator functions identically to the UNION operator with-

out the DISTINCT keyword. In both cases, duplicate rows are eliminated from the
result set. In this example, because both warehouses had the same number of
510_Express and 520_Express products, those rows in both tables were exact
duplicates, only one of which was returned.

This example shows how UNION works, but it isn’t very practical. In most cases,
you might imagine Acme’s manager would not care which products were stocked
in exactly the same numbers at both warehouses and thus partially removed from
the result set. All the information is present, but the user must be savvy enough to
realize that the total number of units of 510_Express is actually 12 rather than 6,
and the total number of units of 520_Express is 4 rather than 2.

I use the asterisk (*) as shorthand for all the columns in a table. This shortcut is
fine most of the time, but it can get you into trouble when you use relational oper-

ators in embedded or module-language SQL. What if you add one or more new
columns to one table and not to another, or you add different columns to the two
tables? The two tables are then no longer union-compatible, and your program is
invalid the next time it’s recompiled. Even if the same new columns are added to
both tables so that they remain union-compatible, your program is probably not
prepared to deal with this additional data. So, explicitly listing the columns that
you want rather than relying on the * shorthand is generally a good idea. When
you’re entering ad hoc SQL from the console, the asterisk will probably work fine
because you can quickly display the table structure to verify union compatibility if
your query isn’t successful.

UNION ALL

As mentioned previously, the UNION operation normally eliminates any duplicate
rows that result from its operation, which is the desired result most of the time.
Sometimes, however, you may want to preserve duplicate rows. On those occa-

sions, use UNION ALL.

The following code shows you what UNION ALL produces when it’s used with the

DEPOSIT and KINGSTON tables:

SELECT * FROM DEPOSIT

UNION ALL

C
o

m
p

le
x

 Q
u

e
ry

 D
e

sig
n

CHAPTER 6 Complex Query Design 587

SELECT * FROM KINGSTON ;

ProductName QuantityInStock

----------- ---------------

185_Express 12

505_Express 5

510_Express 6

520_Express 2

550_Express 3

185_Express 15

505_Express 7

510_Express 6

520_Express 2

550_Express 1

UNION CORRESPONDING

You can sometimes form the union of two tables even if they are not union-

compatible. If the columns you want in your result set are present and compatible
in both source tables, you can perform a UNION CORRESPONDING operation. Only
the specified columns are considered, and they are the only columns displayed in
the result set.

Suppose ACME Systems opens a third warehouse in Jefferson, Maine. A new table
named JEFFERSON is added to the database, which includes Product and Quan-

tityInStock columns (as the DEPOSIT and KINGSTON tables do), but also has an
additional column named QuantityOnHold. A UNION or UNION ALL of JEFFERSON
with either DEPOSIT or KINGSTON would not return any rows because there is
not a complete match between all the columns of JEFFERSON and all the columns
of the other two tables. However, you can still add the JEFFERSON data to either
DEPOSIT or KINGSTON by specifying only the columns in JEFFERSON that corre-

spond with the columns in the other table. Here’s a sample query:

SELECT *

 FROM JEFFERSON

UNION CORRESPONDING BY

 (ProductName, QuantityInStock)

SELECT *

 FROM KINGSTON ;

The result table holds the products and the quantities in stock at both warehouses.

As with the simple UNION, duplicates are eliminated. Thus, if the Jefferson ware-

house happens to have the same quantity of a particular product that the Kingston

588 BOOK 4 Extracting Information with SQL

warehouse has, the UNION CORRESPONDING operation loses one of those rows. To

avoid this problem, use UNION ALL CORRESPONDING.

INTERSECT

The UNION operation produces a result table containing all rows that appear in at
least one of the source tables. If you want only rows that appear in all the source
tables, you can use the INTERSECT operation, which is the SQL implementation of
relational algebra’s intersect operation. To illustrate INTERSECT, the following
example returns the Acme Systems warehouse table:

SELECT * FROM DEPOSIT ;

ProductName QuantityInStock

----------- ---------------

185_Express 12

505_Express 5

510_Express 6

520_Express 2

550_Express 3

SELECT * FROM KINGSTON ;

ProductName QuantityInStock

----------- ---------------

185_Express 15

505_Express 7

510_Express 6

520_Express 2

550_Express 1

Only rows that appear in all source tables show up in the INTERSECT operation’s

result table:

SELECT *

 FROM DEPOSIT

INTERSECT

SELECT *

 FROM KINGSTON;

C
o

m
p

le
x

 Q
u

e
ry

 D
e

sig
n

CHAPTER 6 Complex Query Design 589

ProductName QuantityInStock

----------- ---------------

510_Express 6

520_Express 2

The result table shows that the Fort Deposit and East Kingston warehouses both
have exactly the same number of 510_Express and 520_Express products in
stock, a fact of dubious value. Note that, as was the case with UNION, INTERSECT
DISTINCT produces the same result as the INTERSECT operator used alone. In

this example, only one of the identical rows displaying each of two products is
returned.

The ALL and CORRESPONDING keywords function in an INTERSECT operation the

same way they do in a UNION operation. If you use ALL, duplicates are retained
in the result table. If you use CORRESPONDING, the intersected tables need not be
union-compatible, although the corresponding columns need to have matching
types and lengths.

Consider another example: A municipality keeps track of the phones carried by
police officers, firefighters, parking enforcement officers, and other city employ-

ees. A database table called PHONES contains data on all phones in active use.
Another table named OUT, with an identical structure, contains data on all phones
that have been taken out of service. No cellphone should ever exist in both tables.
With an INTERSECT operation, you can test to see whether such an unwanted
duplication has occurred:

SELECT *

 FROM PHONES

INTERSECT CORRESPONDING BY (PhoneID)

SELECT *

 FROM OUT ;

If the result table contains any rows, you know you have a problem. You should
investigate any PhoneID entries that appear in the result table. The correspond-

ing phone is either active or out of service; it can’t be both. After you detect the
problem, you can perform a DELETE operation on one of the two tables to restore

database integrity.

590 BOOK 4 Extracting Information with SQL

EXCEPT

The UNION operation acts on two source tables and returns all rows that appear

in either table. The INTERSECT operation returns all rows that appear in both the

first and the second table. In contrast, the EXCEPT (or EXCEPT DISTINCT) oper-

ation returns all rows that appear in the first table but that do not also appear in

the second table.

Returning to the municipal phone database example, say that a group of phones
that had been declared out of service and returned to the vendor for repairs have

now been fixed and placed back into service. The PHONES table was updated to
reflect the returned phones, but the returned phones were not removed from the
OUT table as they should have been. You can display the PhoneID numbers of the
phones in the OUT table, with the reactivated ones eliminated, using an EXCEPT

operation:

SELECT *

 FROM OUT

EXCEPT CORRESPONDING BY (PhoneID)

SELECT *

 FROM PHONES;

This query returns all the rows in the OUT table whose PhoneID is not also present
in the PHONES table. These are the phones still out of service.

CHAPTER 7 Joining Data Together in SQL 591

Joining Data Together
in SQL

T
he preceding chapter describes how to use subqueries and relational opera-

tors to pull data from multiple tables in relational databases. This chapter

shows how to collect information from multiple tables by using JOIN opera-

tors. A number of different joins exist, and each performs a somewhat different
operation. Depending on what you want in terms of information retrieved from

multiple tables, one or another of the joins or the other relational operators is
likely to give it to you.

JOINS

The UNION, INTERSECT, and EXCEPT operators are valuable in multitable databases

in which the tables are union-compatible. In many cases, however, you want to
draw data from multiple tables that have very little in common. JOINs are pow-

erful relational operators that combine data from multiple tables into a single

result table. The source tables may have little (or even nothing) in common with

each other.

Chapter 7

IN THIS CHAPTER

 » Combining data from multiple tables

into a single result table

 » Knowing when to use the ON and

WHERE clauses

 » Working with a clustering index

592 BOOK 4 Extracting Information with SQL

SQL supports a number of types of JOINs. The best one to choose in a given situ-

ation depends on the result you’re trying to achieve.

Cartesian product or cross join

Any multitable query is a type of JOIN. The source tables are joined in the sense
that the result table includes information taken from all the source tables. The

simplest JOIN is a two-table SELECT that has no WHERE clause qualifiers. Every
row of the first table is joined to every row of the second table. The result table is
referred to as the Cartesian product of the two source tables — the direct product
of the two sets. (The less fancy name for the same thing is cross join.) The number

of rows in the result table is equal to the number of rows in the first source table
multiplied by the number of rows in the second source table.

For example, imagine that you’re the personnel manager for a company and
that part of your job is to maintain employee records. Most employee data, such
as home address and telephone number, is not particularly sensitive. However,
some data, such as current salary, should be available only to authorized person-

nel. To maintain security of the sensitive information, you’d probably keep it in
a separate table that is password protected. Consider the following pair of tables:

EMPLOYEE COMPENSATION

-------- ------------

EmpID Employ

FName Salary

LName Bonus

City

Phone

Fill the tables with some sample data:

EmpID FName LName City Phone

----- ----- ----- ---- -----

 1 Jenny Smith Orange 555-1001

 2 Bill Jones Newark 555-3221

 3 Val Brown Nutley 555-6905

 4 Justin Time Passaic 555-8908

Employ Salary Bonus

------ ------ -----

 1 63000 10000

 2 48000 2000

 3 54000 5000

 4 52000 7000

Jo
in

in
g

 D
a

ta
 T

o
g

e
th

e
r

in
 S

Q
L

CHAPTER 7 Joining Data Together in SQL 593

Create a virtual result table with the following query:

SELECT *

 FROM EMPLOYEE, COMPENSATION ;

which can also be written

SELECT *

 FROM EMPLOYEE CROSS JOIN COMPENSATION ;

Both of the previous formulations do the same thing. This query produces:

EmpID FName LName City Phone Employ Salary Bonus

----- ----- ----- ---- ----- ------ ------ -----

 1 Jenny Smith Orange 555-1001 1 63000 10000

 1 Jenny Smith Orange 555-1001 2 48000 2000

 1 Jenny Smith Orange 555-1001 3 54000 5000

 1 Jenny Smith Orange 555-1001 4 52000 7000

 2 Bill Jones Newark 555-3221 1 63000 10000

 2 Bill Jones Newark 555-3221 2 48000 2000

 2 Bill Jones Newark 555-3221 3 54000 5000

 2 Bill Jones Newark 555-3221 4 52000 7000

 3 Val Brown Nutley 555-6905 1 63000 10000

 3 Val Brown Nutley 555-6905 2 48000 2000

 3 Val Brown Nutley 555-6905 3 54000 5000

 3 Val Brown Nutley 555-6905 4 52000 7000

 4 Justin Time Passaic 555-8908 1 63000 10000

 4 Justin Time Passaic 555-8908 2 48000 2000

 4 Justin Time Passaic 555-8908 3 54000 5000

 4 Justin Time Passaic 555-8908 4 52000 7000

The result table, which is the Cartesian product of the EMPLOYEE and
COMPENSATION tables, contains considerable redundancy. Furthermore, it
doesn’t make much sense. It combines every row of EMPLOYEE with every row
of COMPENSATION. The only rows that convey meaningful information are those
in which the EmpID number that came from EMPLOYEE matches the Employ
number that came from COMPENSATION. In those rows, an employee’s name
and address are associated with that same employee’s compensation.

When you’re trying to get useful information out of a multitable database, the
Cartesian product produced by a cross join is almost never what you want, but it’s
almost always the first step toward what you want. By applying constraints to the
JOIN with a WHERE clause, you can filter out the unwanted rows. The most com-

mon JOIN that uses the WHERE clause filter is the equi-join.

594 BOOK 4 Extracting Information with SQL

Equi-join

An equi-join is a cross join with the addition of a WHERE clause containing a condi-

tion specifying that the value in one column in the first table must be equal to the
value of a corresponding column in the second table. Applying an equi-join to the
example tables from the previous section brings a more meaningful result:

SELECT *

 FROM EMPLOYEE, COMPENSATION

 WHERE EMPLOYEE.EmpID = COMPENSATION.Employ ;

This produces the following:

EmpID FName LName City Phone Employ Salary Bonus

----- ------ ----- ---- ----- ------ ------ -----

 1 Jenny Smith Orange 555-1001 1 63000 10000

 2 Bill Jones Newark 555-3221 2 48000 2000

 3 Val Brown Nutley 555-6905 3 54000 5000

 4 Justin Time Passaic 555-8908 4 52000 7000

In this result table, the salaries and bonuses on the right apply to the employees
named on the left. The table still has some redundancy because the EmpID column
duplicates the Employ column. You can fix this problem by specifying in your
query which columns you want selected from the COMPENSATION table:

SELECT EMPLOYEE.*,COMPENSATION.Salary,COMPENSATION.Bonus

 FROM EMPLOYEE, COMPENSATION

 WHERE EMPLOYEE.EmpID = COMPENSATION.Employ ;

This produces the following result:

 EmpID FName LName City Phone Salary Bonus

 ----- ----- ----- ---- ----- ------ -----

 1 Jenny Smith Orange 555-1001 63000 10000

 2 Bill Jones Newark 555-3221 48000 2000

 3 Val Brown Nutley 555-6905 54000 5000

 4 Justin Time Passaic 555-8908 52000 7000

This table tells you what you want to know but doesn’t burden you with any extra-

neous data. The query is somewhat tedious to write, however. To avoid ambiguity,
it makes sense to qualify the column names with the names of the tables they

came from. However, writing those table names repeatedly can be tiresome.

Jo
in

in
g

 D
a

ta
 T

o
g

e
th

e
r

in
 S

Q
L

CHAPTER 7 Joining Data Together in SQL 595

You can cut down on the amount of typing by using aliases (or correlation names).

An alias is a short name that stands for a table name. If you use aliases in recasting

the preceding query, it comes out like this:

SELECT E.*, C.Salary, C.Bonus

 FROM EMPLOYEE E, COMPENSATION C

 WHERE E.EmpID = C.Employ ;

In this example, E is the alias for EMPLOYEE, and C is the alias for
COMPENSATION. The alias is local to the statement it’s in. After you declare an
alias (in the FROM clause), you must use it throughout the statement. You can’t use
both the alias and the long form of the table name.

Mixing the long form of table names with aliases creates confusion. Consider the
following example, which is confusing:

SELECT T1.C, T2.C

 FROM T1 T2, T2 T1

 WHERE T1.C > T2.C ;

In this example, the alias for T1 is T2, and the alias for T2 is T1. Admittedly, this
isn’t a smart selection of aliases, but the rules don’t forbid it. If you mix aliases
with long-form table names, you can’t tell which table is which.

The preceding example with aliases is equivalent to the following SELECT with no

aliases:

SELECT T2.C, T1.C

 FROM T1, T2

 WHERE T2.C > T1.C ;

SQL enables you to join more than two tables. The maximum number varies from
one implementation to another. The syntax is analogous to the two-table case:

SELECT E.*, C.Salary, C.Bonus, Y.TotalSales

 FROM EMPLOYEE E, COMPENSATION C, YTD_SALES Y

 WHERE E.EmpID = C.Employ

 AND C.Employ = Y.EmpNo ;

This statement performs an equi-join on three tables, pulling data from corre-

sponding rows of each one to produce a result table that shows the salespeople’s

names, the amount of sales they are responsible for, and their compensation. The
sales manager can quickly see whether compensation is in line with production.

596 BOOK 4 Extracting Information with SQL

Storing a salesperson’s year-to-date sales in a separate YTD_SALES table ensures
better performance and reliability than keeping that data in the EMPLOYEE table.
The data in the EMPLOYEE table is relatively static. A person’s name, address, and
telephone number don’t change very often. In contrast, the year-to-date sales
change frequently. (You hope.) Because the YTD_SALES table has fewer columns
than EMPLOYEE, you may be able to update it more quickly. If, in the course of
updating sales totals, you don’t touch the EMPLOYEE table, you decrease the risk
of accidentally modifying EMPLOYEE information that should stay the same.

Natural join

The natural join is a special case of an equi-join. In the WHERE clause of an equi-

join, a column from one source table is compared with a column of a second source
table for equality. The two columns must be the same type and length and must

have the same name. In fact, in a natural join, all columns in one table that have

the same names, types, and lengths as corresponding columns in the second table
are compared for equality.

Imagine that the COMPENSATION table from the preceding example has columns
EmpID, Salary, and Bonus rather than Employ, Salary, and Bonus. In that case,
you can perform a natural join of the COMPENSATION table with the EMPLOYEE
table. The traditional JOIN syntax looks like this:

SELECT E.*, C.Salary, C.Bonus

 FROM EMPLOYEE E, COMPENSATION C

 WHERE E.EmpID = C.EmpID ;

This query is a natural join. An alternate syntax for the same operation is the
following:

SELECT E.*, C.Salary, C.Bonus

 FROM EMPLOYEE E NATURAL JOIN COMPENSATION C ;

Condition join

A condition join is like an equi-join, except the condition being tested doesn’t have
to be equality (although it can be). It can be any well-formed predicate. If the

condition is satisfied, the corresponding row becomes part of the result table.
The syntax is a little different from what you have seen so far, in that the condi-
tion is contained in an ON clause rather than a WHERE clause.

Jo
in

in
g

 D
a

ta
 T

o
g

e
th

e
r

in
 S

Q
L

CHAPTER 7 Joining Data Together in SQL 597

Suppose Acme Systems wants to know which products the Fort Deposit warehouse

has in larger numbers than does the East Kingston warehouse. This question is a
job for a condition join:

SELECT *

 FROM DEPOSIT JOIN KINGSTON

 ON DEPOSIT.QuantityInStock > KINGSTON.QuantityInStock ;

Within the predicate of a condition join, ON syntax is used in place of WHERE syntax.

Column-name join

The column-name join is like a natural join, but it’s more flexible. In a natural
join, all the source table columns that have the same name are compared with
each other for equality. With the column-name join, you select which same-name
columns to compare. You can choose them all if you want, making the column-
name join effectively a natural join. Or you may choose fewer than all same-name
columns. In this way, you have a great degree of control over which cross product
rows qualify to be placed into your result table.

Suppose you are Acme Systems, and you have shipped the exact same number
of products to the East Kingston warehouse that you have shipped to the Fort
Deposit warehouse. So far, nothing has been sold, so the number of products in
inventory in East Kingston should match the number in Fort Deposit. If there are
mismatches, it means that something is wrong. Either some products were never
delivered to the warehouse, or they were misplaced or stolen after they arrived.
With a simple query, you can retrieve the inventory levels at the two warehouses.

SELECT * FROM DEPOSIT ;

ProductName QuantityInStock

----------- ---------------

185_Express 12

505_Express 5

510_Express 6

520_Express 2

550_Express 3

SELECT * FROM KINGSTON ;

598 BOOK 4 Extracting Information with SQL

ProductName QuantityInStock

----------- ---------------

185_Express 15

505_Express 7

510_Express 6

520_Express 2

550_Express 1

For such small tables, it is fairly easy to see which rows don’t match. However, it’s
not so easy for a table with thousands of rows. You can use a column-name join
to see whether any discrepancies exist. I show only two columns of the DEPOSIT
and KINGSTON tables to make it easy to see how the various relational operators
work on them. In any real application, such tables would have additional columns,
and the contents of those additional columns would not necessarily match. With a

column-name join, the join operation considers only the columns specified.

SELECT *

 FROM DEPOSIT JOIN KINGSTON

 USING (ProductName, QuantityInStock) ;

Note the USING keyword, which tells the DBMS which columns to use.

The result table shows only the rows for which the number of products in stock at

Fort Deposit equals the number of products in stock at East Kingston:

ProductName QuantityInStock ProductName QuantityInStock

----------- --------------- ----------- ---------------

510_Express 6 510_Express 6

520_Express 2 520_Express 2

Wow! Only two products match. There is a definite “shrinkage” problem at one or
both warehouses. Acme needs to get a handle on security.

Inner join

By now, you’re probably getting the idea that joins are pretty esoteric and that it
takes an uncommon level of spiritual discernment to deal with them adequately.

You may have even heard of the mysterious inner join and speculated that it prob-

ably represents the core or essence of relational operations. Well, ha! The joke is
on you: There’s nothing mysterious about inner joins. In fact, all the joins covered
so far in this chapter are inner joins. The column-name join in the last example
could be formulated as an inner join by using the following syntax:

Jo
in

in
g

 D
a

ta
 T

o
g

e
th

e
r

in
 S

Q
L

CHAPTER 7 Joining Data Together in SQL 599

SELECT *

 FROM DEPOSIT INNER JOIN KINGSTON

 USING (ProductName, QuantityInStock) ;

The result is the same.

The inner join is so named to distinguish it from the outer join. An inner join

discards all rows from the result table that don’t have corresponding rows in

both source tables. An outer join preserves unmatched rows. That’s the difference.
Nothing metaphysical about it.

Outer join

When you’re joining two tables, the first one (call it the one on the left) may have
rows that don’t have matching counterparts in the second table (the one on the

right). Conversely, the table on the right may have rows that don’t have matching
counterparts in the table on the left. If you perform an inner join on those tables,
all the unmatched rows are excluded from the output. Outer joins, however, don’t
exclude the unmatched rows. Outer joins come in three types: the left outer join,
the right outer join, and the full outer join.

Left outer join

In a query that includes a join, the left table is the one that precedes the keyword
JOIN, and the right table is the one that follows it. The left outer join pre-

serves unmatched rows from the left table but discards unmatched rows from the
right table.

To understand outer joins, consider a corporate database that maintains records
of the company’s employees, departments, and locations. Tables 7-1, 7-2, and 7-3
contain the database’s sample data.

TABLE 7-1	 LOCATION

LocationID CITY

1 Boston

3 Tampa

5 Chicago

600 BOOK 4 Extracting Information with SQL

Now suppose that you want to see all the data for all employees, including depart-
ment and location. You get this with an equi-join:

SELECT *

 FROM LOCATION L, DEPT D, EMPLOYEE E

 WHERE L.LocationID = D.LocationID

 AND D.DeptID = E.DeptID ;

This statement produces the following result:

1 Boston 24 1 Admin 61 24 Kirk

5 Chicago 27 5 Repair 63 27 McCoy

This results table gives all the data for all the employees, including their location
and department. The equi-join works because every employee has a location and
a department.

Suppose now that you want the data on the locations with the related department

and employee data. This is a different problem because a location without any
associated departments may exist. To get what you want, you have to use an outer
join, as in the following example:

SELECT *

 FROM LOCATION L LEFT OUTER JOIN DEPT D

 ON (L.LocationID = D.LocationID)

 LEFT OUTER JOIN EMPLOYEE E

 ON (D.DeptID = E.DeptID);

TABLE 7-2	 DEPT

DeptID LocationID NAME

21 1 Sales

24 1 Admin

27 5 Repair

29 5 Stock

TABLE 7-3	 EMPLOYEE

EmpID DeptID NAME

61 24 Kirk

63 27 McCoy

Jo
in

in
g

 D
a

ta
 T

o
g

e
th

e
r

in
 S

Q
L

CHAPTER 7 Joining Data Together in SQL 601

This join pulls data from three tables. First, the LOCATION table is joined to the
DEPT table. The resulting table is then joined to the EMPLOYEE table. Rows from
the table on the left of the LEFT OUTER JOIN operator that have no corresponding

row in the table on the right are included in the result. Thus, in the first join, all
locations are included, even if no department associated with them exists. In the
second join, all departments are included, even if no employee associated with
them exists. The result is as follows:

1 Boston 24 1 Admin 61 24 Kirk

5 Chicago 27 5 Repair 63 27 McCoy

3 Tampa NULL NULL NULL NULL NULL NULL

5 Chicago 29 5 Stock NULL NULL NULL

1 Boston 21 1 Sales NULL NULL NULL

The first two rows are the same as the two result rows in the previous exam-

ple. The third row (3 Tampa) has nulls in the department and employee columns

because no departments are defined for Tampa and no employees are stationed
there. (Perhaps Tampa is a brand new location and has not yet been staffed.)
The fourth and fifth rows (5 Chicago and 1 Boston) contain data about the Stock
and the Sales departments, but the employee columns for these rows contain
nulls because these two departments have no employees. This outer join tells you
everything that the equi-join told you, plus the following:

 » All the company’s locations, whether or not they have any departments

 » All the company’s departments, whether or not they have any employees

The rows returned in the preceding example aren’t guaranteed to be in the order
you want. The order may vary from one implementation to the next. To make sure
that the rows returned are in the order you want, add an ORDER BY clause to your

SELECT statement, like this:

SELECT *

 FROM LOCATION L LEFT OUTER JOIN DEPT D

 ON (L.LocationID = D.LocationID)

 LEFT OUTER JOIN EMPLOYEE E

 ON (D.DeptID = E.DeptID)

 ORDER BY L.LocationID, D.DeptID, E.EmpID;

You can abbreviate the left outer join language as LEFT JOIN because there’s no

such thing as a left inner join.

602 BOOK 4 Extracting Information with SQL

Right outer join

I’m sure you have figured out by now how the right outer join behaves. It pre-

serves unmatched rows from the right table but discards unmatched rows from

the left table. You can use it on the same tables and get the same result by revers-

ing the order in which you present tables to the join:

SELECT *

 FROM EMPLOYEE E RIGHT OUTER JOIN DEPT D

 ON (D.DeptID = E.DeptID)

 RIGHT OUTER JOIN LOCATION L

 ON (L.LocationID = D.LocationID) ;

In this formulation, the first join produces a table that contains all departments,
whether they have an associated employee or not. The second join produces a table
that contains all locations, whether they have an associated department or not.

You can abbreviate the right outer join language as RIGHT JOIN because there’s no

such thing as a right inner join.

Full outer join

The full outer join combines the functions of the left outer join and the right outer
join. It retains the unmatched rows from both the left and the right tables. Con-

sider the most general case of the company database used in the preceding exam-

ples. It could have

 » Locations with no departments

 » Locations with no employees

 » Departments with no locations

 » Departments with no employees

 » Employees with no locations

 » Employees with no departments

Whereas the preceding named conditions are unusual, they can happen, particu-

larly in a startup situation, and when they do, you’ll be glad you have outer joins
to deal with them. As soon as you say that a certain situation is not possible, real-
ity will conk you on the head with an example of that very situation.

To show all locations, departments, and employees, regardless of whether they
have corresponding rows in the other tables, use a full outer join in the follow-

ing form:

Jo
in

in
g

 D
a

ta
 T

o
g

e
th

e
r

in
 S

Q
L

CHAPTER 7 Joining Data Together in SQL 603

SELECT *

 FROM LOCATION L FULL OUTER JOIN DEPT D

 ON (L.LocationID = D.LocationID)

 FULL OUTER JOIN EMPLOYEE E

 ON (D.DeptID = E.DeptID) ;

You can abbreviate the full outer join language as FULL JOIN because there’s no

such thing as a full inner join.

ON versus WHERE

The function of the ON and WHERE clauses in the various types of joins is potentially
confusing. These facts may help you keep things straight:

 » The ON clause is part of the inner, left, right, and full joins. The cross join and

UNION join don’t have an ON clause because neither of them does any filtering
of the data.

 » The ON clause in an inner join is logically equivalent to a WHERE clause; the

same condition could be specified either in the ON clause or a WHERE clause.

 » The ON clauses in outer joins (left, right, and full joins) are different from WHERE

clauses. The WHERE clause simply filters the rows returned by the FROM clause.

Rows rejected by the filter are not included in the result. The ON clause in an

outer join first filters the rows of a cross product and then includes the
rejected rows, extended with nulls.

Join Conditions and Clustering Indexes

The performance of queries that include joins depends, to a large extent, on which
columns are indexed and whether or not the index is clustering. A table can have
only one clustering index, where data items that are near each other logically,
such as 'Smith' and 'Smithson', are also near each other physically on disk.
Using a clustering index to step through a table sequentially speeds up hard disk
retrievals and thus maximizes performance.

An index is a separate table that corresponds to a data table but is sorted in some
order. A clustering index is an index sorted in the same order that items are stored
in memory and thus provides the fastest retrievals.

604 BOOK 4 Extracting Information with SQL

A clustering index works well with multipoint queries, which look for equality
in nonunique columns. This is similar to looking up names in a telephone book.

All the Smiths are listed together on consecutive pages. Most or all of them are
located on the same hard disk cylinder. You can access multiple Smiths with a
single disk seek operation. A nonclustering index, on the other hand, would not
have this advantage. Each record typically requires a new disk seek, greatly slow-

ing down operation. Furthermore, you probably have to touch every index to be
sure you have not missed one. This is analogous to searching the greater Los

Angeles telephone book for every instance of Area Code 626. Most of the numbers
are in Area 213, but there will be instances of 626 sprinkled throughout the book.

Consider the following sample query:

SELECT Employee.FirstName, Employee.LastName, Student.Major

 FROM Employee, Students

 WHERE Employee.IDNum = Student.IDNum ;

This query returns the first and last names and the majors of university employ-

ees who are also students. How long it takes to run the query depends on how
the tables are indexed. If Employee has a clustering index on IDNum, records
searched are on consecutive pages. If Employee and Student both have clustering
indexes on IDNum, the DBMS will likely use a merge join, which reads both tables
in sorted order, minimizing the number of disk accesses needed. Such clustering
often eliminates the need for a costly ORDER BY clause because the records are

already sorted in the desired order.

The one disadvantage of clustered indexes is that they can become “tired”
(meaning less helpful) after a number of updates have been performed, causing
the generation of overflow pages, which require additional disk seeks. Rebuilding
the index corrects this problem. Every time you add or delete a record, the index
loses some of its advantage. A deleted record must be skipped over and added

records must be put on an overflow page, which will usually require a couple of
extra disk seeks.

When performance slows, or data slows down, it’s generally a good idea to reindex
as it’s a sign the data is fragmented due to being “tired.”

Some modern DBMS products perform automatic clustered index maintenance,
meaning they rebuild clustered indexes without having to be told to do so. If you
have such a product, then the disadvantage noted previously goes away.

5Performing
Statistical Data
Analysis &
Visualization
with R
Programming

Contents at a Glance

CHAPTER 1: Using Open Source R for Data
Science . 607

Downloading Open Source R . 608

Comprehending R’s Basic Vocabulary . 608

Delving into Functions and Operators . 612

Iterating in R . 615

Observing How Objects Work . 617

Sorting Out R’s Popular Statistical Analysis Packages 619

Examining Packages for Visualizing, Mapping,
and Graphing in R . 620

CHAPTER 2: R: What It Does and How It Does It 623

The Statistical (and Related) Ideas You Just Have to Know 624

Getting R . 630

Getting RStudio . 631

A Session with R . 634

R Functions . 638

User-Defined Functions . 639

Comments . 640

R Structures . 641

for Loops and if Statements . 649

CHAPTER 3: Getting Graphical . 651

Finding Patterns . 651

Doing the Basics: Base R Graphics, That Is 657

CHAPTER 4: Kicking It Up a Notch to ggplot2 671

Histograms . 672

Bar Plots . 675

Dot Charts . 676

Bar Plots Re-revisited . 679

Scatter Plots . 683

Scatter Plot Matrix . 683

Box Plots . 686

CHAPTER 1 Using Open Source R for Data Science 607

Using Open Source R
for Data Science

D
ata science involves the skillful application of math, coding, and subject
matter expertise in ways that allow data scientists to generate reliable and
accurate predictions from data. While the last element — subject mat-

ter expertise — is unique to each practitioner, if you apply data science within a
business context, then you’d want to make sure you’ve got a good handle on the
needed business acumen and the math-and-statistics requirements of data sci-
ence (Book 1, Chapter 3). Another important data science constituent to consider
is coding, which can be done using the open source programming language R, as
covered in this chapter, or Python (covered in Book 6).

This chapter describes the fundamental concepts of programming with R (such as
data types, functions, and classes). The machine learning models you build with
R or Python can serve as the decision engines within AI SaaS products you build
for your company. The chapter also introduces some of the best R packages for
manipulating data, performing statistical computations, creating data visualiza-
tions, and completing other data science tasks.

Chapter 1

IN THIS CHAPTER

 » Exploring R programming

 » Previewing popular R packages

 » Playing with more advanced

R packages

608 BOOK 5 Performing Statistical Data Analysis & Visualization with R Programming

Downloading Open Source R

R is an open-source, free statistical software system that, like Python (covered
in Book 6), has been widely adopted across the data science sector over the past
decade. In fact, a somewhat never-ending squabble takes place among data sci-
ence types about which programming language is best suited for data science.
Practitioners who favor R generally do so because of its advanced statistical pro-
gramming and data visualization capabilities — capabilities that simply can’t be
replicated in Python. When it comes to data science practitioners, specifically, R’s
user base is broader than Python’s.

You can download the R programming language and the packages that support it
from http://cran.r-project.org.

R isn’t as easy to learn as Python, but R can be more powerful for certain types
of advanced statistical analyses. Although R’s learning curve is somewhat steeper
than Python’s, the programming language is nonetheless relatively straightfor-
ward. All you really need to do is master the basic vocabulary used to describe the
language, and then it shouldn’t be too hard to grasp how the software works.

Comprehending R’s Basic Vocabulary

Although the vocabulary associated with R may sound exotic at first, with practice
you can quickly become comfortable with it. For starters, you can run R in one of
two modes:

 » Non-interactive: You run your R code by executing it as an .r file directly
from the command line. (The .r file extension is the one that’s assigned to
script files created for execution by the R program.)

 » Interactive: You generally work in a separate software application that
interacts with you by prompting you to enter your data and R code. In an
R session using interactive mode, you can import datasets or enter the raw
data directly; assign names to variables and data objects; and use functions,
operators, and built-in iterators to help you gain some insight into your
source data.

http://cran.r-project.org

U
sin

g
 O

p
e

n
 S

o
u

rc
e

 R
 fo

r
D

a
ta

 S
c
ie

n
c
e

CHAPTER 1 Using Open Source R for Data Science 609

R is an object-oriented language, which simply means that the different parts
that comprise the language belong to classes — each class has its own specific
definition and role. A specific example of a class is known as an instance of that class;
as an instance, it inherits the class’s characteristics. Classes are also referred to
as polymorphic, meaning the subclasses of a class can have their own set of unique
behaviors yet share some of the same functionality as the parent class. To illus-
trate this concept, consider R’s print function: print(). Because this function is
polymorphic, it works slightly differently depending on the class of the object it’s
told to print. Thus, this function and many others perform the same general job
in many classes but differ slightly according to class. The section “Observing How
Objects Work,” later in this chapter, elaborates on object-oriented programming
and its advantages, but for now, this section simply introduces objects by giving
you their names and definitions.

Here goes!

R works with the following main object types:

 » Vector: A vector is an ordered list of the same mode — character
(alphanumeric), numeric, or Boolean. Vectors can have any number of
dimensions. For instance, the vector A = ["a", "cat", "def"] is a

3-dimensional Character vector. B = [2, 3.1, -5, 33] is a 4-dimensional
Numerical vector. To identify specific elements of these vectors, you can enter
the following codes at the prompt in Interactive mode to get R to generate the
following returns: A[[1]] = "a" or A[[2]] = "cat" or A[[3]] = "def" or

B[[1]] = 2 or B[[2]] = 3.1 or B[[3]] = -5 or B[[4]] = 33. R views a
single number as a vector of dimension one. Because vectors can’t be broken
down further in R, they’re also known as atomic vectors. An atomic vector can
be logical , integer , numeric , complex , character, or raw; it can have any
attributes except a dimension attribute. An atomic vector though can have
only one type, not many. R’s treatment of atomic vectors gives the language
tremendous advantages with respect to speed and efficiency (see the section
“Iterating in R,” later in this chapter).

 » Matrix: Think of a matrix as a collection of vectors. A matrix can be of any
mode (numerical, character, or Boolean), but all elements in the matrix must
be of the same mode. A matrix is also characterized by its number of dimen-
sions. Unlike a vector, a matrix has only two dimensions: number of rows and
number of columns.

 » List: A list is a list of items of arbitrary modes, including other lists or vectors.

Lists are sometimes also called generic vectors because some of the same

operations performed on vectors can be performed on lists as well.

610 BOOK 5 Performing Statistical Data Analysis & Visualization with R Programming

 » Data frame: A data frame is a type of list that’s analogous to a table in a
database. Technically speaking, a data frame is a list of vectors, each of which
is the same length. A row in a table contains the information for an individual
record, but elements in the row most likely won’t be of the same mode. All
elements in a specific column, however, are of the same mode. Data frames
are structured in this same way — each vector in a data frame corresponds to
a column in a data table, and each possible index for these vectors is a row.

There are two ways to access members of vectors, matrices, and lists in R:

 » Single brackets [] give a vector, matrix, or list (respectively) of the
element(s) that are indexed.

 » Double brackets [[]] give a single element.

R users sometimes disagree about the proper use of the brackets for indexing.
Generally speaking, the double bracket has several advantages over the single
bracket. For example, the double bracket returns an error message if you enter an
index that’s out of bounds — or, in other words, an index value that does not exist
within the given object. If, however, you want to indicate more than one element
of a vector, matrix, or list, you should use a single bracket.

Now that you have a grasp of R’s basic vocabulary, you’re probably eager to see
how it works with some actual programming. Imagine that you’re using a simple
EmployeeRoll dataset and entering the dataset into R by hand. You’d come up
with something that looks like Listing 1-1.

LISTING 1-1: Assigning an Object and Concatenating in R

> EmployeeRoll <- data.frame(list(EmployeeName=c("Smith, John","O'Bannon,

Tom","Simmons, Sarah"),Grade=c(10,8,12),Salary=c(100000,75000,125000),

Union=c(TRUE, FALSE, TRUE)))

> EmployeeRoll

EmployeeName Grade Salary Union

1 Smith,John 10 100000 TRUE

2 O'Bannon, Tom 8 75000 FALSE

3 Simmons, Sarah 12 125000 TRUE

The combined symbol <- in the first line of Listing 1-1 is pronounced “gets.”
It assigns the contents on its right to the name on its left. You can think of this

U
sin

g
 O

p
e

n
 S

o
u

rc
e

 R
 fo

r
D

a
ta

 S
c
ie

n
c
e

CHAPTER 1 Using Open Source R for Data Science 611

relationship in even simpler terms by considering the following statement, which
assigns the number 3 to the variable c:

> c <- 3

Line 1 of Listing 1-1 also exhibits the use of R’s concatenate function — c() —
which is used to create a vector. The concatenate function is being used to form
the atomic vectors that comprise the vector list that makes up the EmployeeRoll
data frame. Line 2 of Listing 1-1, EmployeeRoll, instructs R to display the object’s
contents on the screen. (Figure 1-1 breaks out the data in more diagrammatic
form.)

One other object within R is vitally important: the function. Functions use atomic
vectors, matrices, lists, and data frames to accomplish whatever analysis or com-
putation you want done. (The following section covers functions more thor-
oughly. For now, you should simply understand their general role.) Each analysis
you perform in R may be done in one or more sessions, which consists of enter-
ing a set of instructions that tells R what you want it to do with the data you’ve
entered or imported. In each session, you specify the functions of your script.
Then the blocks of code process any input that’s received and return an output.
A function’s input (also known as a function’s arguments) can be any R object or
combination of objects — vectors, matrices, arrays, data frames, tables, or even
other functions.

Invoking a function in R is known as calling a function.

FIGURE 1-1:
The relationship
between atomic

vectors, lists,
and data frame

objects.

612 BOOK 5 Performing Statistical Data Analysis & Visualization with R Programming

Delving into Functions and Operators

You can choose one of two methods when writing your functions: a quick, sim-
ple method and a more complex, but ultimately more useful, method. Of course,
you achieve the same result from choosing either approach, but each method is
advantageous in its own way. If you want to call a function and generate a result
as simply and quickly as possible and don’t think you’ll want to reuse the function
later, use Method 1. If you want to write a function that you can call for different
purposes and use with different datasets in the future, use Method 2 instead.

To illustrate the difference between these two methods, consider again the
EmployeeRoll dataset defined in Listing 1-1. Say you want to come up with a func-
tion you can use to derive a mean value for employee salary. Using the first, sim-
pler method, you call a single function to handle that task: You simply define
an operation by writing the name of the function you want to use, and you then
include whatever argument(s) the function requires in the set of parentheses fol-
lowing the function name. More specifically, you call the built-in statistical func-
tion mean() to calculate the mean value of employee salaries, as shown here:

> #Method 1 of Calculating the Mean Salary

> MeanSalary1 <- mean(EmployeeRoll$Salary)

> MeanSalary1

[1] 1e+05

In this method, the mean() function calculates and saves the average salary,
100,000 (or 1e+05, in scientific notation) as an object (a vector, of course!) named
MeanSalary1.

The $ symbol points R to a particular field in the dataset. In this example, it points
R to the Salary field of the EmployeeRoll dataset.

Method 2 illustrates a more complicated but possibly more useful approach.
Rather than define only a single operation, as in Method 1, Method 2’s function
can define a series of separate operations if they’re needed; therefore, the method
can oftentimes grow quite complex. In the following chunk of code, the statement
MeanSalary2 <- function(x) creates a function named MeanSalary2, which
takes one argument, x. The statements between the curly braces ({ }) make up
this function. The job of {return(mean(x))} is to calculate the mean of some
entity x and then return that value as a result to the computer screen:

> #Method 2 of Calculating the Mean Salary

> #This method allows the user to create a custom set of instructions for R that

can be used again and again.

U
sin

g
 O

p
e

n
 S

o
u

rc
e

 R
 fo

r
D

a
ta

 S
c
ie

n
c
e

CHAPTER 1 Using Open Source R for Data Science 613

> MeanSalary2 <- function(x) {return(mean(x))}

>

> MeanSalary2(EmployeeRoll$Salary)

[1] 1e+05

The argument of the function definition isn’t the Salary field from the
EmployeeRoll dataset because this type of function can be called and used for
different purposes on different datasets and different fields of said datasets. Also,
nothing happens when you finish typing the function and press Return after
entering the ending curly brace; in the next line, you just get another prompt (>).
That’s because you set up the function correctly. (You know it’s correct because
you didn’t get an error message.) You can now call this function when you actually
need it — that’s what the last instruction entered at the prompt in the preceding
code does. Typing MeanSalary2(EmployeeRoll$Salary) is a function call, and it
replaces the function’s placeholder argument x with EmployeeRoll$Salary — a
real object that allows the function to generate a solution.

Of course, the function that’s written in Method 2 yields the same mean salary as
did the function in Method 1, but the Method 2 function can now be reused for dif-
ferent applications. To illustrate how you’d use this same function on a different
dataset, imagine that you have another business with its own payroll. It has five
employees with the following salaries: $500,000; $1,000,000; $75,000; $112,000;
and $400,000. If you want to call and use the MeanSalary2 function to find the
mean salary of these employees, you can simply write

> MeanSalary2(c(500000,1000000,75000,112000,400000))

[1] 417400

As instructed in Method 2, the MeanSalary2 function quickly generates a mean
value for this new dataset — in this case, $417,400.

The primary benefit of using functions in R is that they make it easier to write
cleaner, more concise code that’s easy to read and more readily reusable. But
at the most fundamental level, R is simply using functions to apply operators.
Although applying operators and calling functions both serve the same purpose,
you can distinguish the two techniques by their differing syntaxes.

Speaking of operators, R uses many of the same ones used in other programming
languages. Table 1-1 lists the more commonly used operators.

Operators act as functions in R. (I warned you that learning the vocabulary of R
can be tricky!)

614 BOOK 5 Performing Statistical Data Analysis & Visualization with R Programming

The code snippet shows several examples of where operators are used as functions:

> "<"(2,3)

[1] TRUE

> "<"(100,10)

[1] FALSE

> "+"(100,1)

[1] 101

> "/"(4,2)

[1] 2

> "+"(2,5,6,3,10)

Error in `+`(2, 5, 6, 3, 10) : operator needs one or two arguments

In the preceding snippet, the Boolean operators less-than (<) and greater-than
(>) return a value of either TRUE or FALSE. Also, do you see the error message

TABLE 1-1 Popular Operators

Operation Operator

Plus +

Minus –

Times *

Divide /

Modulo %%

Power ^

Greater than >

Greater than or equal to >=

Less than <

Less than or equal to <=

Equals ==

Not equals !=

Not (logical) !

And (logical) &

Or (logical) |

Is assigned; gets <–

Is assigned to –>

U
sin

g
 O

p
e

n
 S

o
u

rc
e

 R
 fo

r
D

a
ta

 S
c
ie

n
c
e

CHAPTER 1 Using Open Source R for Data Science 615

that’s generated by the last line of code? That error happened because the oper-
ator + can take only one or two arguments, and in that example, I provided three
arguments more than it could handle.

You can use the + operator to add two numbers or two vectors. In fact, all arith-
metic operators in R can accept both numbers and vectors as arguments. For more
on arithmetic operators, check out the following section.

Iterating in R

Because of the way R handles vectors, programming in R offers an efficient way
to handle loops and iterations. Essentially, R has built-in iterators that automati-
cally loop over elements without the added hassle of having to write out the loops
yourself.

To better conceptualize this process, called vectorization, imagine that you want to
add a constant c = 3 to a series of three numbers that you’ve stored as a vector,
m = [10, 6, 9]. You can use the following code:

> c <- 3

> m <- c(10, 6, 9)

> x <- m + c

> x

[1] 13 9 12

The preceding method works because of an R property known as recyclability: If
you perform operations on two vectors of different lengths, R repeats and reuses
the smaller vector to make the operation work. In this example, c was a 1-
dimensional vector, but R reused it to convert it to a 3-dimensional vector so that
the operation could be performed on m.

Here’s the logic behind this process:

10 + 3 = 13

6 + 3 = 9

9 + 3 = 12

This method works also because of the vectorization of the + operator, which per-
forms the + operation on the vectors m and c — in effect, looping through each of
the vectors to add their corresponding elements.

616 BOOK 5 Performing Statistical Data Analysis & Visualization with R Programming

Here’s another way of writing this process that makes the vectorization of the +
operator obvious:

> x <- "+"(m,c)

R vectorizes all arithmetic operators, including +, –, /, *, and ^.

When you’re using conditional statements within iterative loops, R uses vector-
ization to make this process more efficient. If you’ve used other programming
languages, you’ve probably seen a structure that looks something like this:

for (y = 1 through 5) { if (3*y <= 4) then z = 1 else z = 0}

This loop iterates the code within the brackets ({ }) sequentially for each y equal
to 1, 2, 3, 4, and 5. Within this loop, for each y-value, the conditional statement
3*y <= 4 generates either a TRUE or a FALSE statement. For y-values that yield
TRUE values, z is set to 1; otherwise, it’s set to 0. This loop thus generates the
following:

| y | 3*y | 3*y <= 4 | z |

| 1 | 3 | TRUE | 1 |

| 2 | 6 | FALSE | 0 |

| 3 | 9 | FALSE | 0 |

| 4 | 12 | FALSE | 0 |

| 5 | 15 | FALSE | 0 |

Now check out how you can do this same thing using R:

> y <- 1:5

> z <- ifelse(3*y <= 4, 1, 0)

> z

[1] 1 0 0 0 0

It’s much more compact, right? In the preceding R code, the y term represents
the numerical vector [1, 2, 3, 4, 5]. As was the case earlier, in the R code the
operator <= is vectorized, and recyclability is again applied so that the scalar 4
is treated as a 5-dimensional vector [4, 4, 4, 4, 4] to make the vector oper-
ation work. As before, only where y = 1 is the condition met and, consequently,
z[[1]] = 1 and z[2:5] = 0.

In R, you often see something that looks like 1:10. This colon operator notates a
sequence of numbers — the first number, the last number, and the sequence that
lies between them. Thus, the vector 1:10 is equivalent to 1, 2, 3, 4, 5, 6, 7,
8, 9, 10 and 2:5 is equal to 2, 3, 4, 5.

U
sin

g
 O

p
e

n
 S

o
u

rc
e

 R
 fo

r
D

a
ta

 S
c
ie

n
c
e

CHAPTER 1 Using Open Source R for Data Science 617

Observing How Objects Work

R’s object-oriented approach makes deploying and maintaining code relatively
quick and easy. As part of this object-oriented functionality, objects in R are dis-
tinguished by characteristics known as attributes. Each object is defined by its
attributes; more specifically, it is defined by its class attribute.

For example, the USDA provides data on the percentages of insect-resistant and
herbicide-tolerant corn planted yearly for years ranging from 2000 through 2014.
You could use a linear regression function on this information to predict the per-
centage of herbicide-tolerant corn planted in Illinois from 2000 to 2014, from the
percentage of insect-resistant corn planted in Illinois during these same years.
The dataset and function are shown in Listing 1-2.

LISTING 1-2: Exploring Objects in R

> GeneticallyEngineeredCorn <- data.frame(list(year=c(2000, 2001, 2002,

2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013,

2014),Insect =c(13, 12,18,23,26,25,24,19,13, 10, 15, 14, 14, 4, 3),

herbicide=c(3,3,3,4,5,6,12,15,15,15,15,17,18,7,5)))

> GeneticallyEngineeredCorn

 year Insect herbicide

1 2000 13 3

2 2001 12 3

3 2002 18 3

4 2003 23 4

5 2004 26 5

6 2005 25 6

7 2006 24 12

8 2007 19 15

9 2008 13 15

10 2009 10 15

11 2010 15 15

12 2011 14 17

13 2012 14 18

14 2013 4 7

15 2014 3 5

> PredictHerbicide <- lm(GeneticallyEngineeredCorn$herbicide

GeneticallyEngineeredCorn$Insect)

> attributes(PredictHerbicide)$names

 [1] "coefficients" "residuals" "effects" "rank"

 [5] "fitted.values" "assign" "qr" "df.residual"

 [9] "xlevels" "call" "terms" "model"

> attributes(PredictHerbicide)$class

 [1] "lm"

618 BOOK 5 Performing Statistical Data Analysis & Visualization with R Programming

> PredictHerbicide$coef

 (Intercept) GeneticallyEngineeredCorn$Insect

 10.52165581 -0.06362591

In Listing 1-2, the expression PredictHerbicide <- lm(GeneticallyEngineered
Corn$herbicide ~ GeneticallyEngineeredCorn$Insect) instructs R to per-
form a linear regression and assign the results to the PredictHerbicide object.
In the linear regression, GeneticallyEngineeredCorn is defined as the source
dataset, the Insect column acts as the independent variable, and the herbicide
column acts as the dependent variable.

R’s attribute function returns information about an object’s attributes. In this
example, typing in the function attribute(PredictHerbicide)$names instructs
R to name all attributes of the PredictHerbicide object, and the function
attribute(PredictHerbicide)$class instructs R to identify the object’s classes.
You can see from Listing 1-2 that the PredictHerbicide object has 12 attributes
and has class lm (which stands for linear model).

R allows you to request specifics on each of these attributes, but to keep this
example brief, simply ask R to specify the coefficients of the linear regression
equation. Looking back, you can see that this is the first attribute provided for the
PredictHerbicide object. To ask R to show the coefficients obtained by fitting the
linear model to the data, enter PredictHerbicide$coef, as shown in Listing 1-2,
and R returns the following information:

 (Intercept) GeneticallyEngineeredCorn$Insect

 10.52165581 -0.06362591

In plain math, the preceding result translates into the equation shown in
Figure 1-2.

Translated into mathematical terms, this is equivalent to the following:

Percentage of Genetically Engineered Herbicide-Tolerant Corn = 10.5 – 0.06 *
Percentage of Genetically Engineered Insect-Resistant Corn

FIGURE 1-2:
Linear regression

coefficients from
R, translated

into a plain math
equation.

U
sin

g
 O

p
e

n
 S

o
u

rc
e

 R
 fo

r
D

a
ta

 S
c
ie

n
c
e

CHAPTER 1 Using Open Source R for Data Science 619

Thus, l the relationship between the two variables appears rather weak so the per-
centage of genetically engineered, insect-resistant corn planted wouldn’t provide
a good predictor of the percentage of herbicide-resistant corn planted.

This example also illustrates the polymorphic nature of generic functions in R —
that is, where the same function can be adapted to the class it’s used with, thus
making that function applicable to many different classes. The polymorphic func-
tion of this example is R’s attributes() function. This function is applicable to
the lm (linear model) class, the mean class, the histogram class, and many others.

If you want to get a quick orientation when working with instances of an unfamil-
iar class, R’s polymorphic generic functions can come in handy. These functions
generally tend to make R a more efficiently mastered programming language.

Sorting Out R’s Popular Statistical
Analysis Packages

R has a plethora of easy-to-install packages and functions, many of which are
quite useful in data science. In an R context, packages are bundles composed of
specific functions, data, and code suited for performing specific types of analyses
or sets of analyses, including forecasting, multivariate analysis, and factor analy-
sis The CRAN site lists the current packages available for download at http://
cran.r-project.org/web/packages, along with directions on how to download
and install them. This section discusses some popular packages and then delves
deeper into the capabilities of a few of the more advanced packages available.

Let me start with R’s forecast package, which contains various forecasting func-
tions that you can adapt to use for AutoRegressive Integrated Moving Average
(ARIMA) time series forecasting, or for other types of univariate time series fore-
casts. Or perhaps you want to use R for quality management? You can use R’s
Quality Control Charts package (qcc) for quality and statistical process control.

In the practice of data science, you’re likely to benefit from almost any package
that specializes in multivariate analysis. If you want to carry out logistic regres-
sion, you can use R’s multinomial logit model (mlogit), in which observations of a
known class are used to “train” the software so that it can identify classes of other
observations whose classes are unknown.

If you want to use R to take undifferentiated data and identify which of its factors
is significant for some specific purpose, you can use factor analysis. To better

http://cran.r-project.org/web/packages
http://cran.r-project.org/web/packages

620 BOOK 5 Performing Statistical Data Analysis & Visualization with R Programming

illustrate the fundamental concept of factor analysis, imagine that you own a
restaurant. You want to do everything you can to make sure its customer sat-
isfaction rating is as high as possible, right? Well, factor analysis can help you
determine which exact factors have the largest impact on customer satisfaction
ratings — those could coalesce into the general factors of ambience, restaurant
layout, and employee appearance, attitude, and knowledge. With this knowledge,
you can work on improving these factors to increase customer satisfaction and,
with it, brand loyalty.

For information on additional R packages, check out the R Project website at
www.r-project.org. You can find a lot of existing online documentation to help
you identify which packages best suit your needs. Also, coders in R’s active com-
munity are making new packages and functions available all the time.

Examining Packages for Visualizing,
Mapping, and Graphing in R

The following sections introduce some powerful R packages for data visualization,
network graph analysis, and spatial point pattern analysis.

Visualizing R statistics with ggplot2

If you’re looking for a fast and efficient way to produce good-looking data visual-
izations that you can use to derive and communicate insights from your datasets,
look no further than R’s ggplot2 package. It was designed to help you create all
different types of data graphics in R, including histograms, scatterplots, bar charts,
boxplots, and density plots. It offers a wide variety of design options as well,
including choices in colors, layout, transparency, and line density. Admittedly,
ggplot2 probably isn’t the best option if you’re looking to do data storytelling or
data art, but it’s definitely useful for data showcasing.

To better understand how the ggplot2 package works, consider the following
example. Figure 1-3 shows a simple scatterplot that was generated using ggplot2.
This scatterplot depicts the concentrations (in parts per million, or ppm) of four
types of pesticides detected in a stream between the years 2000 and 2013. The
scatterplot could have been designed to show only the pesticide concentrations
for each year, but ggplot2 provides an option for fitting a regression line to each
pesticide type. (The regression lines are the solid lines shown on the plot.) You can
also have ggplot2 present these pesticide types in different colors. The colored
areas enclosing the regression lines represent 95 percent confidence intervals for
the regression models.

http://www.r-project.org

U
sin

g
 O

p
e

n
 S

o
u

rc
e

 R
 fo

r
D

a
ta

 S
c
ie

n
c
e

CHAPTER 1 Using Open Source R for Data Science 621

The scatterplot chart makes it clear that all pesticides except for ryanoids are
showing decreasing stream concentrations. Organochlorides had the highest con-
centration in 2000, but then exhibited the greatest decrease in concentration over
the 13-year period.

Analyzing networks with statnet
and igraph
Social networks and social network data volumes have absolutely exploded over
the past decade. Therefore, knowing how to make sense of network data has
become increasingly important for analysts. Social network analysis skills ena-
ble you to analyze social networks to uncover how accounts are connected and
the ways in which information is shared across those connections. You can use
network analysis methods to determine how fast information spreads across the
Internet. You can even use network analysis methods in genetic mapping to better
understand how one gene affects and influences the activity of other genes or use
them in hydraulic modeling to figure out how to best design a water-distribution
or sewer-collection system.

Two R packages were explicitly written for network analysis purposes: statnet
and igraph. You can use either one to collect network statistics or statistics about

FIGURE 1-3:
A scatterplot,

generated in the

ggplot2 package.

622 BOOK 5 Performing Statistical Data Analysis & Visualization with R Programming

network components. Figure 1-4 shows sample output from network analysis
in R, generated using the statnet package. This output is just a simple network
in which the direction of the arrows shows the direction of flow within the net-
work from one vertex to another. The network has five vertices and nine faces —
connections between the vertices.

Mapping and analyzing spatial
point patterns with spatstat
If you want to analyze spatial data in R, you can use the spatstat package. This
package is most commonly used in analyzing the patterns of spatial data points —
also called point pattern data — but you can also use it to analyze line patterns,
pixels, and linear network data. By default, the package installs with geographical,
ecological, and environmental datasets that you can use to support your analyses,
if appropriate. With its space-time point pattern analysis capabilities, spatstat
can help you visualize a spatiotemporal change in one or several variables over
time. The package even comes with 3-dimensional graphing capabilities. Because
spatstat is a geographic data analysis package, it’s commonly used in ecology,
geosciences, and botany, or for environmental studies, although the package
could easily be used for location-based studies that relate to business, logistics,
sales, marketing, and more.

FIGURE 1-4:
A network

diagram that

was generated
using the statnet

package.

CHAPTER 2 R: What It Does and How It Does It 623

R: What It Does
and How It Does It

B
efore we go any further, it probably makes sense to learn a little about R and
its history. R is a versatile programming language created in the 1990s for
statistical computing and graphics by Ross Ihaka and Robert Gentleman,

professors at the University of Auckland. R shines in data analysis, offering a vast
range of statistical techniques and extensive graphical capabilities for insight-
ful data visualization. The secret sauce of R is in its open-source packages, a
collection of functions, data, and compiled code in a structured format that is
contributed by users worldwide. What sets R apart is its active community and
extensibility. Users not only use R for analysis but also contribute by creating new
packages, enhancing the language’s capabilities.

Before getting into the details of how R operates, this chapter introduces the
foundational concepts of data and statistics pertaining to R.

Chapter 2

IN THIS CHAPTER

 » Introducing statistics

 » Getting R and RStudio on your

computer

 » Starting a session with R

 » Working with R functions

 » Working with R structures

624 BOOK 5 Performing Statistical Data Analysis & Visualization with R Programming

The Statistical (and Related) Ideas
You Just Have to Know

The analytical tools that R provides are based on the statistical concepts explored
in this section. As you’ll see, these concepts are based on common sense.

Samples and populations

If you watch TV on election night, you know that one of the main events is the
prediction of the outcome immediately after the polls close (and before all the
votes are counted). How is it that pundits almost always get it right?

The idea is to talk to a sample of voters right after they vote. If they’re truthful
about how they marked their ballots, and if the sample is representative of the
population of voters, analysts can use the sample data to draw conclusions about
the population.

That, in a nutshell, is what statistics is all about — using the data from samples
to draw conclusions about populations.

Here’s another example. Imagine that your job is to find the average height of
10-year-old children in the United States. Because you probably wouldn’t have
the time or the resources to measure every child, you’d measure the heights of a
representative sample. Then you’d average those heights and use that average as
the estimate of the population average.

Estimating the population average is one kind of inference that statisticians make
from sample data. This chapter discusses inference in more detail in the later
section “Inferential statistics: Testing hypotheses.”

Here’s some important terminology: Properties of a population (like the popula-
tion average) are called parameters, and properties of a sample (like the sample
average) are called statistics. If your only concern is the sample properties (like the
heights of the children in your sample), the statistics you calculate are descriptive.
If you’re concerned about estimating the population properties, your statistics are
inferential.

Now for an important convention about notation: Statisticians use Greek letters
(μ, σ, ρ) to stand for parameters, and English letters (X , s, r) to stand for statistics.
Figure 2-1 summarizes the relationship between populations and samples, and
between parameters and statistics.

R
: W

h
a

t
 It

 D
o

e
s
 a

n
d

H
o

w
 It

 D
o

e
s
 It

CHAPTER 2 R: What It Does and How It Does It 625

Variables: Dependent and independent

A variable is something that can take on more than one value — like your age, the
value of the dollar against other currencies, or the number of games your favorite
sports team wins. Something that can have only one value is a constant. Scientists
tell us that the speed of light is a constant, and we use the constant π to calculate
the area of a circle.

Statisticians work with independent variables and dependent variables. In any
study or experiment, you’ll find both kinds. Statisticians assess the relationship
between them.

For example, imagine a computerized training method designed to increase a
person’s IQ. How would a researcher find out whether this method does what it’s
supposed to do? First, the researcher would randomly assign a sample of people
to one of two groups. One group would receive the training method, and the other
would complete another kind of computer-based activity — like reading text on a
website. Before and after each group completes its activities, the researcher mea-
sures each person’s IQ. What happens next? This chapter discusses that topic in
the later section “Inferential statistics: Testing hypotheses.”

For now, understand that the independent variable here is Type of Activity. The
two possible values of this variable are IQ Training and Reading Text. The depen-
dent variable is the change in IQ from Before to After.

A dependent variable is what a researcher measures. In an experiment, an inde-
pendent variable is what a researcher manipulates. In other contexts, a researcher
can’t manipulate an independent variable. Instead, they note naturally occurring
values of the independent variable and how they affect a dependent variable.

FIGURE 2-1:
The relationship

between

populations,

samples,

parameters, and

statistics.

626 BOOK 5 Performing Statistical Data Analysis & Visualization with R Programming

Types of data

When you do statistical work, you can run into four kinds of data. And when you
work with a variable, the way you work with it depends on what kind of data it is:

The first kind is nominal data. If a set of numbers happens to be nominal data, the
numbers are labels — their values don’t signify anything. On a sports team, the
jersey numbers are nominal. They just identify the players.

The next kind is ordinal data. In this data type, the numbers are more than just
labels. As the name ordinal might tell you, the order of the numbers is important.
If you were to ask a person to rank ten foods from the one they like best (1) to the
one they like least (10), you’d have a set of ordinal data.

But the difference between a person’s third-favorite food and their fourth-favorite
food might not be the same as the difference between their ninth-favorite and their
tenth-favorite. So this type of data lacks equal intervals and equal differences.

Interval data gives equal differences. The Fahrenheit scale of temperature is a
good example. The difference between 30o and 40o is the same as the difference
between 90o and 100o. So each degree is an interval.

People are sometimes surprised to find out that on the Fahrenheit scale, a tem-
perature of 80o is not twice as hot as 40o. For ratio statements (“twice as much
as,” “half as much as”) to make sense, zero has to mean the complete absence
of the thing you’re measuring. A temperature of 0o F doesn’t mean the com-
plete absence of heat — it’s just an arbitrary point on the Fahrenheit scale. (The
same holds true for Celsius.)

The fourth kind of data, ratio, provides a meaningful zero point. On the Kelvin
scale of temperature, zero means absolute zero, where all molecular motion
(the basis of heat) stops. So 200o Kelvin is twice as hot as 100o Kelvin. Another
example is length. Eight inches is twice as long as 4 inches. Zero inches means a
complete absence of length.

An independent variable or a dependent variable can be either nominal, ordinal,
interval, or ratio. The analytical tools you use depend on the type of data you
work with.

A little probability

When statisticians make decisions, they use probability to express their confi-
dence about those decisions. They can never be absolutely certain about what they
decide. They can tell you only how probable their conclusions are.

R
: W

h
a

t
 It

 D
o

e
s
 a

n
d

H
o

w
 It

 D
o

e
s
 It

CHAPTER 2 R: What It Does and How It Does It 627

What do statisticians mean by probability? Mathematicians and philosophers
might give you complex definitions. The best way to understand probability is
usually in terms of examples.

Here’s a simple example: If you toss a coin, what’s the probability that it turns up
heads? If the coin is fair, you might figure that you have a 50-50 chance of heads
and a 50-50 chance of tails. And you’d be right. In terms of the kinds of numbers
associated with probability, that’s ½.

Think about rolling a fair die (one member of a pair of dice). What’s the probability
that you roll a 4? Well, a die has six faces and one of them is 4, so that’s 1⁄6.

Still another example: Select one card at random from a standard deck of 52 cards.
What’s the probability that it’s a diamond? A deck of cards has four suits, so
that’s ¼.

These examples tell you that if you want to know the probability that an event
occurs, count how many ways that event can happen and divide by the total num-
ber of events that can happen. In the first two examples (heads, 4), the event
you’re interested in happens only one way. For the coin, we divide 1 by 2. For
the die, we divide 1 by 6. In the third example (diamond), the event can happen
13 ways (Ace through King), so we divide 13 by 52 (to get ¼).

Now for a slightly more complicated example. Toss a coin and roll a die at the
same time. What’s the probability of tails and a 4? Think about all the possi-
ble events that can happen when you toss a coin and roll a die at the same time.
You could have tails and 1 through 6, or heads and 1 through 6. That adds up to
12 possibilities. The tails-and-4 combination can happen only one way. So the

probability 1⁄12.

In general, the formula for the probability that a particular event occurs is

Pr(event)
Number of ways the event can occur

Total number off possible events

As stated in the beginning of this section, statisticians express their confi-
dence about their conclusions in terms of probability, which is why the chapter
brings all this up in the first place. This line of thinking leads to conditional
probability — the probability that an event occurs given that some other event
occurs. Suppose that a person rolls a die, looks at it (so that you don’t see it), and
tells you that they rolled an odd number. What’s the probability that they’ve rolled
a 5? Ordinarily, the probability of a 5 is 1/6, but “I rolled an odd number” narrows
it down. That piece of information eliminates the three even numbers (2, 4, 6)
as possibilities. Only the three odd numbers (1,3, 5) are possible, so the
probability is 1/3.

628 BOOK 5 Performing Statistical Data Analysis & Visualization with R Programming

Inferential statistics: Testing hypotheses

Before a statistician does a study, they draw up a tentative explanation — a
hypothesis that tells why the data might come out a certain way. After gathering
all the data, the statistician has to decide whether to reject the hypothesis.

That decision is the answer to a conditional probability question — what’s the
probability of obtaining the data, given that this hypothesis is correct? Statisti-
cians have tools that calculate the probability. If the probability turns out to be
low, the statistician rejects the hypothesis.

Back to coin-tossing for an example: Imagine that you’re interested in whether
a particular coin is fair — whether it has an equal chance of heads or tails on any
toss. Let’s start with “The coin is fair” as the hypothesis.

To test the hypothesis, you’d toss the coin a number of times — let’s say 100.
These 100 tosses are the sample data. If the coin is fair (as per the hypothesis),
you’d expect 50 heads and 50 tails.

If it’s 99 heads and 1 tail, you’d surely reject the fair-coin hypothesis: The condi-
tional probability of 99 heads and 1 tail given a fair coin is very low. Of course, the
coin could still be fair, and you could, quite by chance, get a 99-1 split, right? Sure.
You never really know. You have to gather the sample data (the 100 toss results)
and then decide. Your decision might be right, or it might not.

Juries make these types of decisions. In the United States, the starting hypoth-
esis is that the defendant is not guilty (“innocent until proven guilty”). Think of
the evidence as data. Jury members consider the evidence and answer a condi-
tional probability question: What’s the probability of the evidence, given that the
defendant is not guilty? Their answer determines the verdict.

Null and alternative hypotheses
Think again about that coin-tossing study mentioned in the preceding section.
The sample data are the results from the 100 tosses. As stated in that section, you
can start with the hypothesis that the coin is fair. This starting point is called the
null hypothesis. The statistical notation for the null hypothesis is H0. According to
this hypothesis, any heads-tails split in the data is consistent with a fair coin.
Think of it as the idea that nothing in the sample data is out of the ordinary.

An alternative hypothesis is possible — that the coin isn’t a fair one, and it’s
biased to produce an unequal number of heads and tails. This hypothesis says that
any heads-tails split is consistent with an unfair coin. This alternative hypothesis

R
: W

h
a

t
 It

 D
o

e
s
 a

n
d

H
o

w
 It

 D
o

e
s
 It

CHAPTER 2 R: What It Does and How It Does It 629

is called, believe it or not, the alternative hypothesis. The statistical notation for the
alternative hypothesis is H1.

Now toss the coin 100 times and note the number of heads and tails. If the results
are something like 90 heads and 10 tails, it’s a good idea to reject H0. If the results
are around 50 heads and 50 tails, don’t reject H0.

Similar ideas apply to the IQ example given earlier (see the section, “Variables:
Dependent and independent”). One sample receives the computer-based IQ
training method, and the other participates in a different computer-based
activity — like reading text on a website. Before and after each group completes
its activities, the researcher measures each person’s IQ. The null hypothesis, H0,
is that one group’s improvement isn’t different from the other. If the improve-
ments are greater with the IQ training than with the other activity — so much
greater that it’s unlikely that the two aren’t different from one another — reject
H0. If they’re not, don’t reject H0.

Note that statisticians never say “accept H0.” The way the logic works, you never
accept a hypothesis. You either reject H0 or don’t reject H0. In a jury trial, the ver-
dict is either “guilty” (reject the null hypothesis of “not guilty”) or “not guilty”
(don’t reject H0). “Innocent” (acceptance of the null hypothesis) is not a possible
verdict.

In the coin-tossing example, the language used is “around 50 heads and 50 tails.”
What does around mean? Also, the example indicates that if it’s 90-10, reject H0.
What about 85-15? 80-20? 70-30? Exactly how much different from 50-50 does
the split have to be for you to reject H0? In the IQ training example, how much
greater does the IQ improvement have to be to reject H0?

To find out more about the decision rules statisticians have formulated for situa-
tions like this, see R All-in-One For Dummies.

Two types of error

Whenever you evaluate data and decide to reject or not reject H0, you can never be
absolutely sure. You never really know the “true” state of the world. In the coin-
tossing example, that means you can’t be certain whether the coin is fair. All you
can do is make a decision based on the sample data. If you want to know for sure
about the coin, you have to have the data for the entire population of tosses —
which means you have to keep tossing the coin until the end of time.

Because you’re never certain about your decisions, you can make an error either
way you decide. As mentioned earlier, the coin could be fair, and you just happen
to get 99 heads in 100 tosses. That’s not likely, and that’s why you reject H0 if

630 BOOK 5 Performing Statistical Data Analysis & Visualization with R Programming

that happens. It’s also possible that the coin is biased, yet you just happen to toss
50 heads in 100 tosses. Again, that’s not likely, and you don’t reject H0 in that case.

Although those errors are not likely, they are possible. They lurk in every study
that involves inferential statistics. Statisticians have named them Type I errors
and Type II errors.

If you reject H0 and you shouldn’t, that’s a Type I error. In the coin example, that’s
rejecting the hypothesis that the coin is fair, when in reality it is a fair coin.

If you don’t reject H0 and you should have, that’s a Type II error. It happens if you
don’t reject the hypothesis that the coin is fair, and in reality it’s biased.

How do you know if you’ve made either type of error? You don’t — at least not
right after you make the decision to reject or not reject H0. (If it’s possible to know,
you wouldn’t make the error in the first place!) All you can do is gather more data
and see whether the additional data is consistent with your decision.

If you think of H0 as a tendency to maintain the status quo and not interpret any-
thing as being out of the ordinary (no matter how it looks), a Type II error means
you’ve missed out on something big. In fact, some iconic mistakes are Type II
errors.

Here’s a classic example that illustrates a Type II error. On New Year’s Day in
1962, a rock group consisting of three guitarists and a drummer auditioned in the
London studio of a major recording company. Legend has it that the recording
executives didn’t like what they heard, didn’t like what they saw, and believed
that guitar groups were on the way out. Although the musicians played their
hearts out, the group failed the audition.

Who was that group? The Beatles!

And that’s a Type II error.

Getting R

If you don’t already have R on your computer, the first thing to do is to download
R and install it.

You’ll find the appropriate software on the website of the Comprehensive R
Archive Network (CRAN). In your browser, type this web address:

R
: W

h
a

t
 It

 D
o

e
s
 a

n
d

H
o

w
 It

 D
o

e
s
 It

CHAPTER 2 R: What It Does and How It Does It 631

https://cran.rstudio.com

Click the appropriate link to download R for your computer.

Getting RStudio

Working with R is a lot easier if you do it through an application called RStudio.
Computer honchos refer to RStudio as an IDE (Integrated Development Environ-
ment). Think of it as a tool that helps you write, edit, run, and keep track of
your R code, and as an environment that connects you to a world of helpful hints
about R.

Here’s the web address for this terrific tool:

www.rstudio.com/products/rstudio/download

Click the link for the installer for your flavor of computer and again follow the
usual installation procedures. (You’ll want RStudio Desktop.) Figure 2-2 shows an
example of RStudio installed.

The large Console pane on the left runs R code. One way to run R code is to type
it directly into the Console pane. You see another way a little later in the chapter.

FIGURE 2-2:
RStudio,

immediately after

you install it and

click its icon.

https://cran.rstudio.com/
https://www.rstudio.com/products/rstudio/download/

632 BOOK 5 Performing Statistical Data Analysis & Visualization with R Programming

The other two panes provide helpful information as you work with R. The
Environment and History pane is in the upper right. The Environment tab keeps
track of the things you create (which R calls objects) as you work with R. The
History tab tracks R code that you enter.

Get used to the word object. Everything in R is an object.

The Files, Plots, Packages, and Help pane is in the lower right. The Files tab
shows files you create. The Plots tab holds graphs you create from your data.
The Packages tab shows add-ons (called packages) that have downloaded with
R. Bear in mind that downloaded doesn’t mean “ready to use.” To use a package’s
capabilities, one more step is necessary.

Figure 2-3 shows the Packages tab.

The Help tab, shown in Figure 2-4, links you to a wealth of information about R
and RStudio.

To tap into the full power of RStudio as an IDE, click the icon in the rightmost
upper corner of the Console pane. (It looks like a tall folder with a gray band across
the top.) That changes the appearance of RStudio so that it looks like Figure 2-5.

FIGURE 2-3:
The RStudio

Packages tab.

R
: W

h
a

t
 It

 D
o

e
s
 a

n
d

H
o

w
 It

 D
o

e
s
 It

CHAPTER 2 R: What It Does and How It Does It 633

The Console pane relocates to the lower left. The new pane in the upper left is
the Scripts pane. You type and edit code in the Scripts pane, press Ctrl+Enter
(Command+Enter on the Mac), and then the code executes in the Console pane.

You can also highlight lines of code in the Scripts pane and choose Code ➪ Run
Selected Line(s) from RStudio’s main menu.

FIGURE 2-4:
The RStudio

Help tab.

FIGURE 2-5:
RStudio, after you

click the icon in

the upper right

corner of the

Console pane.

634 BOOK 5 Performing Statistical Data Analysis & Visualization with R Programming

A Session with R

Before you start working, choose File ➪ Save As from RStudio’s main menu and
then save the blank pane as My First R Session. This relabels the tab in the Scripts
pane with the name of the file and adds the .R extension. This also causes the
filename (along with the .R extension) to appear on the Files tab.

The working directory

When you follow my advice and save something called My First R Session, what
exactly is R saving and where does R save it? What R saves is called the workspace,
which is the environment you’re working in. R saves the workspace in the working

directory. In Windows, the default working directory is

C:\Users\<User Name>\Documents

If you ever forget the path to your working directory, type

> getwd()

in the Console pane, and R returns the path onscreen.

In the Console pane, you don’t have to type the right-pointing arrowhead at the
beginning of the line. That’s a prompt, and it’s there by default.

My working directory looks like this:

> getwd()

[1] "C:/Users/Joseph Schmuller/Documents"

Note the direction in which the slashes are slanted. They’re opposite to what you
typically see in Windows file paths. This is because R uses \ as an escape character,
meaning that whatever follows the \ means something different from what it
usually means. For example, \t in R means Tab key.

You can also write a Windows file path in R as

C:\\Users\\<User Name>\\Documents

If you like, you can change the working directory:

> setwd(<file path>)

R
: W

h
a

t
 It

 D
o

e
s
 a

n
d

H
o

w
 It

 D
o

e
s
 It

CHAPTER 2 R: What It Does and How It Does It 635

Another way to change the working directory is to choose Session ➪ Set Working
Directory ➪ Choose Directory from R Studio’s main menu.

Getting started

Let’s get down to business and start writing R code. In the Scripts pane, type

x <- c(5,10,15,20,25,30,35,40)

and then press Ctrl+Enter.

That puts this line into the Console pane:

> x <- c(5,10,15,20,25,30,35,40)

The right-pointing arrowhead (the greater-than sign) is a prompt that R puts in
the Console pane. You don’t see it in the Scripts pane.

Here’s what R just did: The arrow sign says that x gets assigned whatever is to the
right of the arrow sign. Think of the arrow sign as R’s assignment operator.

So the set of numbers 5, 10, 15, 20 . . . 40 is now assigned to x.

In R-speak, a set of numbers like this is a vector. I tell you more about this topic
in the later section “R Structures.” That c in front of the parentheses is what does
the actual vector-creating.

You can read that line of code as “x gets the vector 5, 10, 15, 20.”

Type x into the Scripts pane and press Ctrl+Enter, and here’s what you see in the
Console pane:

> x

[1] 5 10 15 20 25 30 35 40

The 1 in square brackets is the label for the first line of output. So this signifies
that 5 is the first value.

Here you have only one line, of course. What happens when R outputs many
values over many lines? Each line gets a bracketed numeric label, and the number
corresponds to the first value in the line. For example, if the output consists of
23 values and the 18th value is the first one on the second line, the second line
begins with [18].

636 BOOK 5 Performing Statistical Data Analysis & Visualization with R Programming

Creating the vector x adds the line in Figure 2-6 to the Environment tab.

Another way to see the objects in the environment is to type

ls()

into the Scripts pane and then press Ctrl+Enter. Or you can type

> ls()

directly into the Console pane and press Enter. Either way, the result in the
Console pane is

[1] "x"

Now you can work with x. First, add all the numbers in the vector. Typing

sum(x)

in the Scripts pane (be sure to follow with pressing Ctrl+Enter) executes the
following line in the Console pane:

> sum(x)

[1] 180

How about the average of the numbers in vector x?

That would be

mean(x)

FIGURE 2-6:
A line in

the RStudio

Environment tab

after creating

the vector x.

R
: W

h
a

t
 It

 D
o

e
s
 a

n
d

H
o

w
 It

 D
o

e
s
 It

CHAPTER 2 R: What It Does and How It Does It 637

in the Scripts pane, which (when followed by pressing Ctrl+Enter) executes

> mean(x)

[1] 22.5

in the Console pane.

As you type in the Scripts pane or in the Console pane, you see that helpful infor-
mation pops up. As you become experienced with RStudio, you learn how to use
that information.

Variance is a measure of how much a set of numbers differ from their mean. Here’s
how to use R to calculate variance:

> var(x)

[1] 150

After R executes all these commands, the History tab looks like the one in
Figure 2-7.

To end a session, choose File ➪ Quit Session from R Studio’s main menu or
press Ctrl+Q. As Figure 2-8 shows, a dialog box opens and asks what you want
to save from the session. Saving the selections enables you the next time you
open RStudio to reopen the session where you left off (although the Console pane
doesn’t save your work).

The instructions for the examples provided in this book don’t always specify
“Type this code into the Scripts pane and press Ctrl+Enter.” The examples just
show the code and its output, as in the var() example.

FIGURE 2-7:
The History tab,

after creating

and working

with a vector.

638 BOOK 5 Performing Statistical Data Analysis & Visualization with R Programming

Also, sometimes code appears in this book with the > prompt, and sometimes
without. Generally, the prompt appears when the book shows R code and its
results. The prompt doesn’t appear when the book shows R code created in the
Scripts pane.

R Functions

The examples in the preceding section use c(), sum(), and var(). These are
three functions built into R. Each one consists of a function name immediately
followed by parentheses. Inside the parentheses are arguments. In the context of
a function, argument doesn’t mean “debate” or “disagreement” or anything like
that. It’s the math term for whatever a function operates on.

Sometimes a function takes no arguments (as is the case with ls()). You still
include the parentheses.

The functions used in the examples shown thus far are pretty simple: Supply an
argument, and each one gives you a result. Some R functions, however, take more
than one argument.

R has a couple of ways for you to deal with multiargument functions. One way is
to list the arguments in the order that they appear in the function’s definition.
R calls this positional mapping.

Here’s an example. As shown previously, you can create the vector x as follows:

x <- c(5,10,15,20,25,30,35,40)

FIGURE 2-8:
The Quit

R Session
dialog box.

R
: W

h
a

t
 It

 D
o

e
s
 a

n
d

H
o

w
 It

 D
o

e
s
 It

CHAPTER 2 R: What It Does and How It Does It 639

Another way to create a vector of those numbers is with the function seq():

> y <- seq(5,40,5)

> y

[1] 5 10 15 20 25 30 35 40

Think of seq() as creating a “sequence.” The first argument to seq() is the
number to start the sequence from (5). The second argument is the number that
ends the sequence — the number the sequence goes to (40). The third argument
is the increment of the sequence — the amount the sequence increases by (5, in
this case).

If you name the arguments, it doesn’t matter how you order them:

> z <- seq(to=40,by=5,from=5)

> z

[1] 5 10 15 20 25 30 35 40

So if you name a function when using it, you can place the function’s arguments
out of order. R calls this keyword matching. This comes in handy when you use an
R function that has many arguments. If you can’t remember their order, use their
names, and the function works.

For help with a particular function — seq(), for example — type ?seq and press
Ctrl+Enter to open helpful information on the Help tab.

User-Defined Functions
R enables you to create your own functions, and here are the fundamentals on
how to do it.

The form of an R function is

myfunction <- function(argument1, argument2, ...){

 statements

 return(object)

}

Here’s a function for dealing with right triangles. Remember them? A right
triangle has two sides that form a right angle and a third side called a hypotenuse.
You might also remember that a guy named Pythagoras showed that if one side
has length a, and the other side has length b, the length of the hypotenuse,

c, is c a b
2 2

640 BOOK 5 Performing Statistical Data Analysis & Visualization with R Programming

So here’s a simple function called hypotenuse() that takes two numbers a and b,
(the lengths of the two sides of a right triangle) and returns c, the length of the
hypotenuse.

hypotenuse <- function(a,b){

 hyp <- sqrt(a^2+b^2)

 return(hyp)

}

Type that code snippet into the Scripts pane and highlight it. Then press
Ctrl+Enter. Here’s what appears in the Console pane:

> hypoteneuse <- function(a,b){

+ hyp <- sqrt(a^2+b^2)

+ return(hyp)

+ }

Each plus sign is a continuation prompt. It just indicates that a line continues from
the preceding line.

And here’s how to use the function:

> hypoteneuse(3,4)

[1] 5

Comments

A comment is a way of annotating code. Begin a comment with the # symbol,
which, as everyone knows, is called an octothorpe. (Wait. What? “Hashtag?”
Getattahere!) This symbol tells R to ignore everything to the right of it.

Comments help someone who has to read the code you’ve written. For example:

hypoteneuse <- function(a,b){ # list the arguments

 hyp <- sqrt(a^2+b^2) # perform the computation

 return(hyp) # return the value

}

Note: To make concepts easier to grasp, this book often provides detailed descrip-
tions rather than the comments you might usually see added to lines of code.

R
: W

h
a

t
 It

 D
o

e
s
 a

n
d

H
o

w
 It

 D
o

e
s
 It

CHAPTER 2 R: What It Does and How It Does It 641

R Structures

As mentioned in the “R Functions” section earlier in this chapter, an R function
can have many arguments. An R function can also have many outputs. To under-
stand the possible inputs and outputs, you must understand the structures that
R works with.

Vectors

The vector is the fundamental structure in R. A vector is an array of elements of the
same type. The data elements in a vector are called components.

To create a vector, use the function c(), as done in the earlier example:

x <- c(5,10,15,20,25,30,35,40)

In the vector x, of course, the components are numbers.

In a character vector, the components are quoted text strings:

> beatles <- c("john","paul","george","ringo")

It’s also possible to have a logical vector, whose components are TRUE and FALSE,
or the abbreviations T and F:

> w <- c(T,F,F,T,T,F)

To refer to a specific component of a vector, follow the vector name with a brack-
eted number:

> beatles[2]

[1] "paul"

Within the brackets, you can use a colon (:) to refer to two consecutive components:

> beatles[2:3]

[1] "paul" "george"

Want to refer to non-consecutive components? That’s a bit more complicated, but
doable via c():

> beatles[c(2,4)]

[1] "paul" "ringo"

642 BOOK 5 Performing Statistical Data Analysis & Visualization with R Programming

Numerical vectors
In addition to c(), R provides two shortcut functions for creating numerical
vectors. One, seq(), was shown earlier:

> y <- seq(5,40,5)

> y

[1] 5 10 15 20 25 30 35 40

Without the third argument, the sequence increases by 1:

> y <- seq(5,40)

> y

 [1] 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 [20] 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39 40

On computer screens, all the elements in y appear on one line. The printed page,
however, is not as wide as the Console pane. This book separates the output into
two lines and adds the R-style bracketed number [20].

R has a special syntax for creating a numerical vector whose elements increase
by 1:

> y <- 5:40

> y

 [1] 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 [20] 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39 40

Another function, rep(), creates a vector of repeating values:

> quadrifecta <- c(7,8,4,3)

> repeated_quadrifecta <- rep(quadrifecta,3)

> repeated_quadrifecta

 [1] 7 8 4 3 7 8 4 3 7 8 4 3

You can also supply a vector as the second argument:

> rep_vector <-c(1,2,3,4)

> repeated_quadrifecta <- rep(quadrifecta,rep_vector)

The vector specifies the number of repetitions for each element. So here’s what
happens:

> repeated_quadrifecta

 [1] 7 8 8 4 4 4 3 3 3 3

R
: W

h
a

t
 It

 D
o

e
s
 a

n
d

H
o

w
 It

 D
o

e
s
 It

CHAPTER 2 R: What It Does and How It Does It 643

The first element repeats once, the second, twice, the third, three times; and the
fourth, four times.

You can use append() to add an item at the end of a vector:

> xx <- c(3,4,5)

> xx

[1] 3 4 5

> xx <- append(xx,6)

> xx

[1] 3 4 5 6

How many items are in a vector? That’s

> length(xx)

[1] 4

Matrices

A matrix is a two-dimensional array of data elements of the same type. You can
have a matrix of numbers:

5 30 55 80

10 35 60 85

15 40 65 90

20 45 70 95

25 50 75 100

or a matrix of character strings:

"john” "paul" "george" "ringo"

"groucho" "harpo" "chico" "zeppo"

"levi" "duke" "larry" “obie"

The numbers are a 5 (rows) X 4 (columns) matrix. The character strings matrix
is 3 X 4.

644 BOOK 5 Performing Statistical Data Analysis & Visualization with R Programming

To create this particular 5 X 4 numerical matrix, first create the vector of numbers
from 5 to 100 in steps of 5:

> num_matrix <- seq(5,100,5)

Then you use R’s dim() function to turn the vector into a two-dimensional matrix:

> dim(num_matrix) <- c(5,4)

> num_matrix

 [,1] [,2] [,3] [,4]

[1,] 5 30 55 80

[2,] 10 35 60 85

[3,] 15 40 65 90

[4,] 20 45 70 95

[5,] 25 50 75 100

Note how R displays the bracketed row numbers along the side and the bracketed
column numbers along the top.

Transposing a matrix interchanges the rows with the columns. The t() function
takes care of that:

> t(num_matrix)

 [,1] [,2] [,3] [,4] [,5]

[1,] 5 10 15 20 25

[2,] 30 35 40 45 50

[3,] 55 60 65 70 75

[4,] 80 85 90 95 100

The function matrix() gives you another way to create matrices:

> num_matrix <- matrix(seq(5,100,5),nrow=5)

> num_matrix

 [,1] [,2] [,3] [,4]

[1,] 5 30 55 80

[2,] 10 35 60 85

[3,] 15 40 65 90

[4,] 20 45 70 95

[5,] 25 50 75 100

If you add the argument byrow=T, R fills the matrix by rows, like this:

> num_matrix <- matrix(seq(5,100,5),nrow=5,byrow=T)

> num_matrix

 [,1] [,2] [,3] [,4]

[1,] 5 10 15 20

R
: W

h
a

t
 It

 D
o

e
s
 a

n
d

H
o

w
 It

 D
o

e
s
 It

CHAPTER 2 R: What It Does and How It Does It 645

[2,] 25 30 35 40

[3,] 45 50 55 60

[4,] 65 70 75 80

[5,] 85 90 95 100

How do you refer to a specific matrix component? You type the matrix name and
then, in brackets, the row number, a comma, and the column number:

> num_matrix[5,4]

[1] 100

To refer to a whole row (like the third one):

> num_matrix[3,]

[1] 45 50 55 60

and to a whole column (like the second one):

> num_matrix[,2]

[1] 10 30 50 70 90

Although it’s a column, R displays it as a row in the Console pane.

Lists

In R, a list is a collection of objects that aren’t necessarily the same type. Suppose
you’re putting together some information on the Beatles:

> beatles <- c("john","paul","george","ringo")

One piece of important information might be each Beatle’s age when he joined
the group. John and Paul started singing together when they were 17 and 15,
respectively, and 14-year-old George joined them soon after. Ringo, a late arriver,
became a Beatle when he was 22. So

> ages <- c(17,15,14,22)

To combine the information into a list, you use the list() function:

> beatles_info <-list(names=beatles,age_joined=ages)

Naming each argument (names, age_joined) causes R to use those names as the
names of the list components.

646 BOOK 5 Performing Statistical Data Analysis & Visualization with R Programming

And here’s what the list looks like:

> beatles_info

$names

[1] "john" "paul" "george" "ringo"

$age_joined

[1] 17 15 14 22

R uses the dollar sign ($) to indicate each component of the list. If you want to
refer to a list component, you type the name of the list, the dollar sign, and the
component name:

> beatles_info$names

[1] "john" "paul" "george" "ringo"

And to zero in on a particular Beatle, like the fourth one? You can probably figure
out that it’s

> beatles_info$names[4]

[1] "ringo"

R also allows you to use criteria inside the brackets. For example, to refer to mem-
bers of the Fab Four who were older than 16 when they joined:

> beatles_info$names[beatles_info$age_joined > 16]

[1] "john" "ringo"

Data frames

A list is a good way to collect data. A data frame is even better. Why? When you
think about data for a group of individuals, you typically think in terms of rows
that represent the individuals and columns that represent the data variables. And
that’s a data frame. If the terms data set or data matrix come to mind, you have the
right idea.

Suppose you have a set of six people:

> name <- c("al","barbara","charles","donna","ellen","fred")

and you have each person’s height (in inches) and weight (in pounds):

> height <- c(72,64,73,65,66,71)

> weight <- c(195,117,205,122,125,199)

R
: W

h
a

t
 It

 D
o

e
s
 a

n
d

H
o

w
 It

 D
o

e
s
 It

CHAPTER 2 R: What It Does and How It Does It 647

You also tabulate each person’s gender:

> gender <- c("M","F","M","F","F","M")

Before you can combine all these vectors into a data frame, you need to know
one more thing. The components of the gender vector are character strings.
For purposes of data summary and analysis, it’s a good idea to turn them into
categories — the Male category and the Female category. To do this, you use the
factor() function:

> factor_gender <-factor(gender)

> factor_gender

[1] M F M F F M

Levels: F M

In the last line of output, Levels is the term that R uses for categories.

The function data.frame() works with the vectors to create a data frame:

> d <- data.frame(name,factor_gender,height,weight)

> d

 name factor_gender height weight

1 al M 72 195

2 barbara F 64 117

3 charles M 73 205

4 donna F 65 122

5 ellen F 66 125

6 fred M 71 199

Want to know the height of the third person?

> d[3,3]

[1] 73

How about all the information for the fifth person:

> d[5,]

 name factor_gender height weight

5 ellen F 66 125

Like lists, data frames use the dollar sign. In this context, the dollar sign identi-
fies a column:

> d$height

[1] 72 64 73 65 66 71

648 BOOK 5 Performing Statistical Data Analysis & Visualization with R Programming

You can calculate statistics, like the average height:

> mean(d$height)

[1] 68.5

As is the case with lists, you can put criteria inside the brackets. This is often done
with data frames in order to summarize and analyze data within categories. To
find the average height of the females:

> mean(d$height[d$factor_gender == "F"])

[1] 65

The double equal sign (==) in the brackets is a logical operator. Think of it as “if
d$factor_gender is equal to ’F’”.

The double equal sign (a == b) distinguishes the logical operator (“if a equals b”)
from the assignment operator (a = b; “set a equal to b”).

If you’d like to eliminate $ signs from your R code, you can use the function
with(). You put your code inside the parentheses after the first argument, which
is the data you’re using.

For example,

> with(d,mean(height[factor_gender == "F"]))

is equivalent to

> mean(d$height[d$factor_gender == "F"])

How many rows are in a data frame?

> nrow(d)

[1] 6

And how many columns?

> ncol(d)

[1] 4

To add a column to a data frame, I use cbind(). Begin with a vector of scores

> aptitude <- c(35,20,32,22,18,15)

R
: W

h
a

t
 It

 D
o

e
s
 a

n
d

H
o

w
 It

 D
o

e
s
 It

CHAPTER 2 R: What It Does and How It Does It 649

Then add that vector as a column:

> d.apt <- cbind(d,aptitude)

> d.apt

 name factor_gender height weight aptitude

1 al M 72 195 35

2 barbara F 64 117 20

3 charles M 73 205 32

4 donna F 65 122 22

5 ellen F 66 125 18

6 fred M 71 199 15

for Loops and if Statements

Like many programming languages, R provides a way of iterating through
its structures to get things done. R’s way is called the for loop. And, like many
languages, R gives you a way to test against a criterion — the if statement.

The general format of a for loop is

for counter in start:end{

 statement 1

 statement n

}

As you might imagine, counter tracks the iterations.

The simplest general format of an if statement is

if(test){statement to execute if test is TRUE}

else{statement to execute if test is FALSE}

Here is an example that incorporates both. If you have one vector xx:

> xx

[1] 2 3 4 5 6

And another vector yy with nothing in it at the moment:

> yy <-NULL

650 BOOK 5 Performing Statistical Data Analysis & Visualization with R Programming

You want the components of yy to reflect the components of xx: If a number in
xx is an odd number, you want the corresponding component of yy to be "ODD"
and if the xx number is even, you want the yy component to be "EVEN".

How do you test a number to see whether it’s odd or even? Mathematicians have
developed modular arithmetic, which is concerned with the remainder of a division
operation. If you divide a by b and the result has a remainder of r, mathema-
ticians say that “a modulo b is r.” So 10 divided by 3 leaves a remainder of 1,
and 10 modulo 3 is 1. Typically, modulo gets shortened to mod, so that would be
“10 mod 3 = 1.”

Most computer languages write 10 mod 3 as mod(10,3). (Excel does that, in fact.)
R does it differently: R uses the double percent sign (%%) as its mod operator:

> 10 %% 3

[1] 1

> 5 %% 2

[1] 1

> 4 %% 2

[1] 0

You’re probably getting the picture: if xx[i] %% 2 == 0, then xx[i] is even.
Otherwise, it’s odd.

Here, then, is the for loop and the if statement:

for(i in 1:length(xx)){

if(xx[i] %% 2 == 0){yy[i]<- "EVEN"}

else{yy[i] <- "ODD"}

}

> yy

[1] "EVEN" "ODD" "EVEN" "ODD" "EVEN"

CHAPTER 3 Getting Graphical 651

Getting Graphical

D
ata visualization is an important part of statistics. A good graph enables

you to spot trends and relationships you might otherwise miss if you look

only at numbers. Graphics are valuable for another reason: They help you

present your ideas to groups.

This concept is especially important in the data science field. Organizations rely
on data scientists to make sense of huge amounts of data so that decision-makers

can formulate strategy. Graphics enable data scientists to explain patterns in the

data to managers and to nontechnical personnel.

Finding Patterns

Data often resides in long, complex tables. Often, you have to visualize only a
portion of the table to find a pattern or a trend. A number of good examples reside
in the MASS package, so download this package into your R library by selecting the

check box next to MASS on the Packages tab.

This chapter uses the Cars93 data frame, which holds data on 27 variables for

93 car models that were available in 1993.

Chapter 3

IN THIS CHAPTER

 » Letting patterns lead you right

 » Exploring base R graphics

652 BOOK 5 Performing Statistical Data Analysis & Visualization with R Programming

Figure 3-1 shows part of the data frame in the Data Editor window that opens after
you type

> edit(Cars93)

Close the Data Editor window, and you can move on to visualizing the data.

Graphing a distribution

One pattern that might be of interest is the distribution of all the car prices listed
in the Cars93 data frame. If you had to examine the entire data frame to deter-

mine this, it would be a tedious task. A graph, however, provides the information

immediately. Figure 3-2, a histogram, shows what this means.

The histogram is appropriate when the variable on the x-axis is an interval vari-

able or a ratio variable. (See Book 5, Chapter 2 for more on these variables.) With
interval and ratio variables, the numbers have meaning (as opposed to nominal

variables, where numbers are just labels).

You can distinguish between independent variables and dependent variables.

Here, Price is the independent variable, and Frequency is the dependent variable.

In most (but not all) graphs, the independent variable is on the x-axis, and the

dependent variable is on the y-axis.

FIGURE 3-1:
Part of the

Cars93 data

frame.

G
e

ttin
g

 G
ra

p
h

ic
a

l

CHAPTER 3 Getting Graphical 653

Bar-hopping

For nominal variables (again, see Book 5, Chapter 2), numbers are just labels. In
fact, the levels of a nominal variable (also called a factor) can be names. Case in
point: Another possible point of interest is the frequencies of the different types
of cars (sporty, midsize, van, and so on) in the data frame. So "Type" is a nominal

variable. If you looked at every entry in the data frame and created a table of these

frequencies, it would look like Table 3-1.

FIGURE 3-2:
Histogram of

prices of cars

in the Cars93

data frame.

TABLE 3-1	 Types and Frequencies of Cars
in the Cars93 Data Frame

Type Frequency

Compact 16

Large 11

Midsize 22

Small 21

Sporty 14

Van 9

654 BOOK 5 Performing Statistical Data Analysis & Visualization with R Programming

The table shows some trends — more midsize and small car models than large
cars and vans. Compact cars and sporty cars are in the middle.

Figure 3-3 shows this information in graphical form. This type of graph is a
bar graph. The spaces between the bars emphasize that Type, on the x-axis, is a

nominal variable.

Although the table is pretty straightforward, an audience would prefer to see the

picture. Eyes that glaze over when looking at numbers often shine brighter when
looking at pictures.

Slicing the pie

The pie graph is another type of picture that shows the same data in a slightly

different way. Each frequency appears as a slice of a pie, as shown in Figure 3-4.
In a pie graph, the area of the slice represents the frequency.

The plot of scatter

Another potential pattern of interest is the relationship between miles per gallon

for city driving and horsepower. One type of graph well-suited to demonstrating

FIGURE 3-3:
Table 3-1 as a

bar graph.

G
e

ttin
g

 G
ra

p
h

ic
a

l

CHAPTER 3 Getting Graphical 655

the nature of this relationship is a scatter plot. Figure 3-5 shows the scatter plot
for these two variables.

Each small circle represents one of the 93 cars. A circle’s position along the
x-axis (its x-coordinate) is its horsepower, and its position along the y-axis (its

y-coordinate) is its MPG for city driving.

FIGURE 3-4:
Table 3-1 as a

pie graph.

FIGURE 3-5:
MPG in city

driving and

horsepower

for the data

in Cars93.

656 BOOK 5 Performing Statistical Data Analysis & Visualization with R Programming

Of boxes and whiskers

What about the relationship between horsepower and the number of cylinders
in a car’s engine? You would expect horsepower to increase with cylinders, and
Figure 3-6 shows that this is indeed the case. Invented by famed statistician
John Tukey, this type of graph is called a box plot, and it’s a nice, quick way to
visualize data.

Each box represents a group of numbers. The leftmost box, for example, repre-

sents the horsepower of cars with three cylinders. The black solid line inside the

box is the median — the horsepower-value that falls between the lower half of
the numbers and the upper half. The lower and upper edges of the box are called

hinges. The lower hinge is the lower quartile, the number below which 25 percent of

the numbers fall. The upper hinge is the upper quartile, which exceeds 75 percent
of the numbers.

The elements sticking out of the hinges are called whiskers (so you sometimes see

this type of graph referred to as a box-and-whiskers plot). The whiskers include
data values outside the hinges. The upper whisker boundary is either the maxi-

mum value or the upper hinge plus 1.5 times the length of the box, whichever is

smaller. The lower whisker boundary is either the minimum value or the lower

hinge minus 1.5 times the length of the box, whichever is larger. Data points out-

side the whiskers are outliers. The box plot shows that the data for four and six

cylinders has outliers.

FIGURE 3-6:
Box plot of

horsepower

versus number

of cylinders

in the Cars93

data frame.

G
e

ttin
g

 G
ra

p
h

ic
a

l

CHAPTER 3 Getting Graphical 657

Note that the graph shows only a solid line for “rotary,” an engine type that

occurs just once in the data.

Doing the Basics: Base R Graphics, That Is

The capability to create the graphs like the ones shown in earlier sections of this

chapter comes with your R installation, which makes these graphs part of the

base R graphics covered in this section. Book 5, Chapter 4 shows you the very useful
ggplot2 package.

In base R, the general format for creating graphics is

graphics_function(data, arg1, arg2, ...)

Histograms

Time to take another look at that Cars93 data frame introduced in the “Finding

Patterns” section at the beginning of this chapter. To create a histogram of the

distribution of prices in that data frame, you enter

> hist(Cars93$Price)

which produces Figure 3-7, the histogram in the Plots pane.

You’ll note that this isn’t quite as spiffy-looking as Figure 3-2. You can spruce it
up by adding arguments.

One often-used argument in base R graphics changes the label of the x-axis from

R’s default into something more meaningful. It’s called xlab. For the x-axis in

Figure 3-2, the following was added to the arguments:

xlab= "Price (x $1,000)"

You can use ylab to change the y-axis label, but this isn’t necessary for the
example.

For the x-axis to extend from a lower limit of 0 to an upper limit of 70, you use

the argument xlim. Because this argument works with a vector, the following was

added for the example:

xlim = c(0,70)

658 BOOK 5 Performing Statistical Data Analysis & Visualization with R Programming

To change the title, you use main:

main = "Prices of 93 Models of 1993 Cars"

To produce the histogram in Figure 3-2, the whole megillah is

> hist(Cars93$Price, xlab="Price (x $1,000)", xlim = c(0,70), main = "Prices of

93 Models of 1993 Cars")

When creating a histogram, R figures out the best number of columns for a nice-
looking appearance. Here, R decided that 12 is a pretty good number. You can vary

the number of columns by adding an argument called breaks and setting its value.

R doesn’t always give you the value you set. Instead, it provides something close
to that value and tries to maintain a nice-looking appearance. To see this effect
in action, add the breaks argument and set its value (breaks =4, for example).

Graph features

An important aspect of base R graphics is the ability to add features to a graph

after you create it. To illustrate graph features, the example used in this section

starts with a slightly different type of graph.

FIGURE 3-7:
Initial histogram

of the distribution

of prices

in Cars93.

G
e

ttin
g

 G
ra

p
h

ic
a

l

CHAPTER 3 Getting Graphical 659

Another way of showing histogram information is to think of the data as

probabilities rather than frequencies. So, instead of the frequency of a particular

price range, you graph the probability that a car selected from the data is in that

price range. To do this, you add

probability = TRUE

to the arguments. Now the R code looks like this:

> hist(Cars93$Price, xlab="Price (x $1,000)", xlim = c(0,70), main = "Prices of

93 Models of 1993 Cars",probability = TRUE)

The result appears in Figure 3-8. The y-axis measures density, which is a concept

related to probability. The graph is called a density plot.

The point of all this is what you do next. After you create the graph, you can use an

additional function called lines() to add a line to the density plot:

> lines(density(Cars93$Price))

The graph now looks like Figure 3-9.

FIGURE 3-8:
Density plot of

the distribution of

prices in Cars93.

660 BOOK 5 Performing Statistical Data Analysis & Visualization with R Programming

So, in base R graphics, you can create a graph and start adding to it after you see

what the initial graph looks like. It’s something like painting a picture of a lake
and then adding mountains and trees as you see fit.

Bar plots

The “Finding Patterns” section at the beginning of this chapter shows you a bar

graph that illustrates the types and frequencies of cars. The section also contains

Table 3-1. As it turns out, you have to make this kind of a table before you can use
barplot() to create the bar graph.

To put Table 3-1 together, the R code is (appropriately enough)

> table(Cars93$Type)

Compact Large Midsize Small Sporty Van

 16 11 22 21 14 9

For the bar graph, then, it’s

> barplot(table(Cars93$Type))

which creates the graph in Figure 3-10.

FIGURE 3-9:
Density plot with

an added line.

G
e

ttin
g

 G
ra

p
h

ic
a

l

CHAPTER 3 Getting Graphical 661

Again, it’s not as jazzy as the final product shown in Figure 3-3. Additional argu-

ments do the trick. To put 0 through 25 on the y-axis, you use ylim, which, like

xlim, works with a vector:

ylim = c(0,25)

For the x-axis label and y-axis label, you use

xlab = "Type"

ylab = "Frequency"

To draw a solid axis, you work with axis.lty. Think of this as “axis linetype,”

which you set to solid by typing

axis.lty = "solid"

The values dashed and dotted for axis.lty result in different looks for the x-axis.

Finally, you use space to increase the spacing between bars:

space = .05

Here’s the entire function for producing the graph shown earlier, in Figure 3-3:

> barplot(table(Cars93$Type),ylim=c(0,25), xlab="Type", ylab="Frequency",

axis.lty = "solid", space = .05)

FIGURE 3-10:
The initial bar

plot of table

(Cars93$Type).

662 BOOK 5 Performing Statistical Data Analysis & Visualization with R Programming

Pie graphs

The pie graph couldn’t be more straightforward. The line

> pie(table(Cars93$Type))

takes you directly to Figure 3-4.

Dot charts

Wait. What? Where did the dot chart come from? This is yet another way of visual-
izing the data in Table 3-1. Noted graphics honcho William Cleveland believes that
people perceive values along a common scale (as in a bar plot) better than they
perceive areas (as in a pie graph). So, he came up with the dot chart, as shown in

Figure 3-11.

Looks a little like an abacus laid on its side, doesn’t it? This is one of those infre-

quent cases where the independent variable is on the y-axis and the dependent

variable is on the x-axis.

The format for the function that creates a dot chart is

> dotchart(x, labels, arg1, arg2 ...)

FIGURE 3-11:
Dot chart for the

data in Table 3-1.

G
e

ttin
g

 G
ra

p
h

ic
a

l

CHAPTER 3 Getting Graphical 663

The first two arguments are vectors, and the others are optional arguments for
modifying the appearance of the dot chart. The first vector is the vector of values
(the frequencies). The second is pretty self-explanatory — in this case, it’s labels
for the types of vehicles.

To create the two necessary vectors (one for the type of car, the other for the fre-

quency), you have to turn the table (which is a single vector) into a data frame:

> type.frame <- data.frame(table(Cars93$Type))

> type.frame

 Var1 Freq

1 Compact 16

2 Large 11

3 Midsize 22

4 Small 21

5 Sporty 14

6 Van 9

After you have the data frame, this line produces the dot chart:

> dotchart(type.frame$Freq,type.frame$Var1)

The type.frame$Freq specifies that the Frequency column in the data frame is
the x-axis, and type.frame$Var1 specifies that the Var1 column (which holds the

car types) is the y-axis.

This line works, too:

> dotchart(type.frame[,2],type.frame[,1])

Note that [,2] means “column 2” and [,1] means “column 1.”

Bar plots revisited

In all the preceding graphs in this chapter, the dependent variable has been

frequency. Many times, however, the dependent variable is a data point rather
than a frequency.

Table 3-2 shows the data for commercial space revenues for the early 1990s.
(The data is from the US Department of Commerce, via the Statistical Abstract of

the US.)

The data are the numbers in the cells, which represent revenue in thousands of

dollars. A base R bar plot of the data in this table appears in Figure 3-12.

664 BOOK 5 Performing Statistical Data Analysis & Visualization with R Programming

This graph is called a grouped bar plot. How do you create a plot like this one in

base R?

The first thing to do is create a vector of the values in the cells:

rev.values <- c(1000,1300,1300,1100,1400,800,1200,1500,1850,2330,860,1300,1400,

1600,1970,570,380,450,465,580,155,190,210,250,300)

Although commas appear in the values in the table (for values greater than a

thousand), you can’t have commas in the values in the vector! (For the obvious
reason: Commas separate consecutive values in the vector.)

TABLE 3-2	 US Commercial Space Revenues 1990–1994 (in Millions
of Dollars)

Industry 1990 1991 1992 1993 1994

Commercial satellites delivered 1,000 1,300 1,300 1,100 1,400

Satellite services 800 1,200 1,500 1,850 2,330

Satellite ground equipment 860 1,300 1,400 1,600 1,970

Commercial launches 570 380 450 465 580

Remote sensing data 155 190 210 250 300

FIGURE 3-12:
Bar plot of the

data in Table 3-2.

G
e

ttin
g

 G
ra

p
h

ic
a

l

CHAPTER 3 Getting Graphical 665

Next, you turn this vector into a matrix. You have to let R know how many rows

(or columns) will be in the matrix, and that the values load into the matrix
row-by-row:

space.rev <- matrix(rev.values,nrow=5,byrow = T)

Finally, you supply column names and row names to the matrix:

colnames(space.rev) <- c("1990","1991","1992","1993","1994")

rownames(space.rev) <- c("Commercial Satellites Delivered","Satellite

Services","Satellite Ground Equipment","Commercial

Launches","Remote Sensing Data")

Let’s have a look at the matrix:

> space.rev

 1990 1991 1992 1993 1994

Commercial Satellites Delivered 1000 1300 1300 1100 1400

Satellite Services 800 1200 1500 1850 2330

Satellite Ground Equipment 860 1300 1400 1600 1970

Commercial Launches 570 380 450 465 580

Remote Sensing Data 155 190 210 250 300

Perfect. It looks just like Table 3-2.

With the data in hand, you move on to the bar plot. You create a vector of colors
for the bars:

color.names = c("black","grey25","grey50","grey75","white")

A word about those color names: You can join any number from 0 to 100 with

"grey" and get a color: "grey0" is equivalent to "black" and "grey100" is equiv-

alent to "white".

And now for the plot:

> barplot(space.rev, beside = T, xlab= "Year",ylab= "Revenue (X $1,000)",

col=color.names)

beside = T means the bars will be, well, beside each other. (You ought to try this

without that argument and see what happens.) The col=color.names argument

supplies the colors you specified in the vector.

The resulting plot is shown in Figure 3-13.

666 BOOK 5 Performing Statistical Data Analysis & Visualization with R Programming

What’s missing, of course, is the legend. You add that with the legend() function

to produce Figure 3-12:

> legend(1,2300,rownames(space.rev), cex=0.7, fill = color.names, bty = "n")

The first two values are the x- and y-coordinates for locating the legend. (That

took a lot of tinkering!) The next argument shows what goes into the legend (the
names of the industries). The cex argument specifies the size of the charac-

ters in the legend. The value, 0.7, indicates that you want the characters to be

70 percent of the size they would normally be. That’s the only way to fit the leg-

end on the graph. (Think of cex as “character expansion,” although in this case

it’s “character contraction.”) fill = color.names puts the color swatches in the

legend, next to the row names. Setting bty (the “border type”) to "n" (“none”) is
another little trick to fit the legend into the graph.

Scatter plots

To visualize the relationship between horsepower and MPG for city driving (as
shown earlier, in Figure 3-5), you use the plot() function:

> plot(Cars93$Horsepower, Cars93$MPG.city, xlab="Horsepower",ylab="MPG City",

main ="MPG City vs Horsepower")

As you can see, this example adds the arguments for labeling the axes and for

the title.

FIGURE 3-13:
Initial bar plot of

the data shown

in Table 3-2.

G
e

ttin
g

 G
ra

p
h

ic
a

l

CHAPTER 3 Getting Graphical 667

Another way to do this is to use the tilde operator (~). So, if you want the R code
to show that MPG-city depends on horsepower, you type

> plot(Cars93$MPG.city ~ Cars93$Horsepower, xlab="Horsepower",ylab="MPG City",

main ="MPG City vs Horsepower")

to produce the same scatter plot.

The tilde operator (~) means “depends on.”

A plot twist

R enables you to change the symbol that depicts the points in the graph.

Figure 3-5 shows that the default symbol is an empty circle. To change the
symbol, which is called the plotting character, set the argument pch. R has a set

of built-in numerical values (0–25) for pch that correspond to a set of symbols.

The values 0–15 correspond to unfilled shapes, and 16–25 are filled.

The default value is 1. To change the plotting character to squares, set pch to 0. For

triangles, it’s 2, and for filled circles, it’s 16:

> plot(Cars93$Horsepower,Cars93$MPG.city, xlab="Horsepower", ylab="MPG City",

main = "MPG City vs Horsepower",pch=16)

Figure 3-14 shows the plot with the filled circles.

You can also set the argument col to change the color from "black" to "blue" or

to a variety of other colors (which wouldn’t show up well on the black-and-white
page you’re looking at).

Scatter plot matrix

Base R provides a nice way of visualizing relationships among more than two

variables. If you add price into the mix and want to show all the pairwise relation-

ships among MPG-city, price, and horsepower, you’d need multiple scatter plots.
R can plot them all together in a matrix, as Figure 3-15 shows.

The names of the variables are in the cells of the main diagonal. Each off-diagonal
cell shows the scatter plot for its row variable (on the y-axis) and its column vari-
able (on the x-axis). For example, the scatter plot in the first row, second column,
shows MPG-city on the y-axis and price on the x-axis. In the second row, first
column, the axes are reversed: MPG city is on the x-axis, and price is on the y-axis.

668 BOOK 5 Performing Statistical Data Analysis & Visualization with R Programming

FIGURE 3-14:
MPG City versus

Horsepower with

filled-in circles
(pch = 16).

FIGURE 3-15:
Multiple scatter

plots for the

relationships

among city

MPG, price, and

horsepower.

G
e

ttin
g

 G
ra

p
h

ic
a

l

CHAPTER 3 Getting Graphical 669

The R function for plotting this matrix is pairs(). To calculate the coordinates

for all scatter plots, this function works with numerical columns from a matrix

or a data frame.

For convenience, you create a data frame that’s a subset of the Cars93 data frame.

This new data frame consists of just the three variables to plot. The function

subset() handles that nicely:

> cars.subset <- subset(Cars93, select = c(MPG.city,Price,Horsepower))

The second argument to subset creates a vector of exactly what to select out of

Cars93. Just to make sure the new data frame is the way you want it, use the

head() function to take a look at the first six rows:

> head(cars.subset)

 MPG.city Price Horsepower

1 25 15.9 140

2 18 33.9 200

3 20 29.1 172

4 19 37.7 172

5 22 30.0 208

6 22 15.7 110

And now,

> pairs(cars.subset)

creates the plot in Figure 3-15.

This capability isn’t limited to three variables, nor to continuous ones. To see
what happens with a different type of variable, add Cylinders to the vector for

select and then use the pairs() function on cars.subset.

Box plots

To draw a box plot like the one shown earlier in Figure 3-6, you use a formula to
show that Horsepower is the dependent variable and Cylinders is the indepen-

dent variable:

> boxplot(Cars93$Horsepower ~ Cars93$Cylinders,

xlab="Cylinders",ylab="Horsepower")

670 BOOK 5 Performing Statistical Data Analysis & Visualization with R Programming

If you get tired of typing the $ signs, here’s another way:

> boxplot(Horsepower ~ Cylinders, data = Cars93, xlab="Cylinders",

ylab="Horsepower")

With the arguments laid out as in either of the two preceding code examples,
plot() works exactly like boxplot().

CHAPTER 4 Kicking It Up a Notch to ggplot2 671

Kicking It Up a Notch
to ggplot2

T
he base R graphics toolset will get you started, but if you want to shine
at visualization, it’s a good idea to learn ggplot2. Created by R megastar
Hadley Wickham, the gg in the package name stands for “grammar of

graphics,” and that’s a good indicator of what’s ahead. That’s also the title of the
book (by Leland Wilkinson) that is the source of the concepts for this package.

In general, a grammar is a set of rules for combining things. In the grammar
that people are most familiar with, the things happen to be words, phrases, and
clauses. The grammar of our language tells you how to combine these components
to produce valid sentences.

So, a “grammar of graphics” is a set of rules for combining graphics compo-
nents to produce graphs. Wilkinson proposed that all graphs have underlying
common components — like data, a coordinate system (the x- and y-axes you
know so well, for example), statistical transformations (like frequency counts),
and objects within the graph (dots, bars, lines, or pie slices, for example — to
name just a few).

Just as combining words and phrases produces grammatical sentences, combining
graphics components produces graphs. And just as some sentences are grammat-
ical but make no sense (“Colorless green ideas sleep furiously”), some ggplot2

Chapter 4

IN THIS CHAPTER

 » Graduating to ggplot2

 » Wrapping things up

672 BOOK 5 Performing Statistical Data Analysis & Visualization with R Programming

creations are beautiful graphs that aren’t always useful. It’s up to the speaker/
writer to make sense for their audiences, and it’s up to the graphics developer to
create useful graphs for people who use them.

Histograms

In ggplot2, Wickham’s implementation of Wilkinson’s grammar is an easy-to-
learn structure for R graphics code. To learn that structure, make sure you have
ggplot2 in the library so that you can follow what comes next. (Find ggplot2 on
the Packages tab and select its check box.)

A graph starts with ggplot(), which takes two arguments. The first argument is
the source of the data. The second argument maps the data components of inter-
est into components of the graph. The function that does the job is aes().

To begin a histogram for Price in Cars93, the function is

> ggplot(Cars93, aes(x=Price))

The aes() function associates Price with the x-axis. In ggplot-world, this is
called an aesthetic mapping. In fact, each argument to aes() is called an aesthetic.

This line of code draws Figure 4-1, which is just a grid with a gray background and
Price on the x-axis.

Well, what about the y-axis? Does anything in the data map into it? No. That’s
because this is a histogram and nothing explicitly in the data provides a y-value
for each x. So, you can’t say “y=” in aes(). Instead, you let R do the work to cal-
culate the heights of the bars in the histogram.

And what about that histogram? How do you put it into this blank grid? You have
to add something indicating that you want to plot a histogram and let R take
care of the rest. What you add is a geom function. (Geom is short for “geometric
object.”)

These geom functions come in a variety of types. ggplot2 supplies one for almost
every graphing need and provides the flexibility to work with special cases. To
draw a histogram, the geom function to use is called geom_histogram().

K
ic

k
in

g
 It U

p
 a

 N
o

tc
h

 to

g
g

p
lo

t2

CHAPTER 4 Kicking It Up a Notch to ggplot2 673

You add geom_histogram() to ggplot() by using a plus sign:

ggplot(Cars93, aes(x=Price)) +

 geom_histogram()

This snippet produces Figure 4-2. The grammar rules tell ggplot2 that when the
geometric object is a histogram, R does the necessary calculations on the data and
produces the appropriate plot.

At the bare minimum, ggplot2 graphics code has to have data, aesthetic map-
pings, and a geometric object. It’s like answering a logical sequence of questions:
What’s the source of the data? What parts of the data are you interested in? Which
parts of the data correspond to which parts of the graph? How do you want the
graph to look?

Beyond those minimum requirements, you can modify the graph. Each bar is
called a bin, and by default, ggplot() uses 30 of them. After plotting the his-
togram, ggplot() displays an onscreen message that advises experimenting
with binwidth (which, unsurprisingly, specifies the width of each bin) to change
the graph’s appearance. Accordingly, you use binwidth = 5 as an argument in
geom_histogram().

FIGURE 4-1:
Applying

ggplot() and

nothing else.

674 BOOK 5 Performing Statistical Data Analysis & Visualization with R Programming

Additional arguments modify the way the bars look:

geom_histogram(binwidth=5, color = "black", fill = "white")

With another function, labs(), you modify the labels for the axes and supply a
title for the graph:

labs(x = "Price (x $1000)", y="Frequency",title="Prices of 93 Models of 1993

Cars")

Altogether now:

ggplot(Cars93, aes(x=Price)) +

 geom_histogram(binwidth=5,color="black",fill="white") +

 labs(x = "Price (x $1000)", y="Frequency", title="Prices of 93 Models of 1993

Cars")

The result is shown in Figure 4-3.

FIGURE 4-2:
The initial

histogram for

Price in Cars93.

K
ic

k
in

g
 It U

p
 a

 N
o

tc
h

 to

g
g

p
lo

t2

CHAPTER 4 Kicking It Up a Notch to ggplot2 675

Bar Plots

Drawing a bar plot in ggplot2 is a little easier than drawing one in base R: It’s not
necessary to first create a table in order to draw the graph. As in the example in
the preceding section, you don’t specify an aesthetic mapping for y. This time, the
geom function is geom_bar(), and the rules of the grammar tell ggplot2 to do the
necessary work with the data and then draw the plot:

ggplot(Cars93, aes(x=Type))+

 geom_bar() +

 labs(y="Frequency", title="Car Type and Frequency in Cars93")

Figure 4-4 shows the resulting bar plot.

FIGURE 4-3:
The finished Price

histogram.

676 BOOK 5 Performing Statistical Data Analysis & Visualization with R Programming

Dot Charts

In the preceding chapter (Book 5, Chapter 3), you see how to use the dot chart as
an alternative to the pie graph. In this section, you find out how to use ggplot()
to draw one.

Making a dot chart begins much the same as in base R: You create a table for ype,
and you turn the table into a data frame:

type.frame <- data.frame(table(Cars$93.Type))

To ensure that you have meaningful variable names for the aesthetic mapping,
you apply the colnames() function to name the columns in this data frame

colnames(type.frame)<- c("Type","Frequency")

Now, type.frame looks just like Table 3-1 in the preceding chapter:

> type.frame

 Type Frequency

1 Compact 16

FIGURE 4-4:
Bar plot

for Car Type.

K
ic

k
in

g
 It U

p
 a

 N
o

tc
h

 to

g
g

p
lo

t2

CHAPTER 4 Kicking It Up a Notch to ggplot2 677

2 Large 11

3 Midsize 22

4 Small 21

5 Sporty 14

6 Van 9

On to the graph. To orient the dot chart as shown in the preceding chapter, you
map Frequency to the x-axis and Type to the y-axis:

ggplot(type.frame, aes(x=Frequency,y= Type))

Again, usually the independent variable is on the x-axis and the dependent vari-
able is on the y-axis, but that’s not the case in this graph.

Next, you add a geom function.

A geom function called geom_dotplot() is available, but surprisingly, it’s not
appropriate here. That one draws something else. In ggplot-world, a dot plot is
different from a dot chart.

The geom function for the dot chart is geom_point(). So, this code:

ggplot(type.frame, aes(x=Frequency,y=Type)) +

 geom_point()

results in Figure 4-5.

A couple of modifications are in order. First, with a graph like this, it’s a nice
touch to rearrange the categories on the y-axis concerning how they order on
what you’re measuring on the x-axis. That necessitates a slight change in the aes-
thetic mapping to the y-axis:

ggplot(type.frame,

 aes(x=Frequency,y=reorder(Type,Frequency)))

Larger dots would make the chart look a little nicer:

geom_point(size =4)

Additional functions modify the graph’s overall appearance. One family of these
functions is called themes. One member of this family, theme_bw(), removes the
gray background. Adding theme() with appropriate arguments a) removes the

678 BOOK 5 Performing Statistical Data Analysis & Visualization with R Programming

vertical lines in the grid and b) blackens the horizontal lines and makes them
dotted:

theme_bw() +

theme(panel.grid.major.x=element_blank(),

 panel.grid.major.y=element_line(color = "black", linetype = "dotted"))

Finally, labs() changes the y-axis label:

labs(y= "Type")

Without that change, the y-axis label would be reorder(Type,Frequency).
Though picturesque, that label makes little sense to the average viewer.

Here’s the code from beginning to end:

ggplot(type.frame, aes(x=Frequency,y=reorder(Type,Frequency))) +

 geom_point(size = 4) +

 theme_bw() +

 theme(panel.grid.major.x=element_blank(),

 panel.grid.major.y=element_line(color = "black",linetype = "dotted"))+

 labs(y="Type")

FIGURE 4-5:
The initial dot

chart for Type.

K
ic

k
in

g
 It U

p
 a

 N
o

tc
h

 to

g
g

p
lo

t2

CHAPTER 4 Kicking It Up a Notch to ggplot2 679

Figure 4-6 shows the dot chart.

Bar Plots Re-revisited

As was the case with the first few graphs in base R (Book 5, Chapter 3), the graphs
shown so far in this chapter have frequencies (or “counts”) as the dependent
variable. And, of course, as shown in the preceding chapter, that’s not always the
case. Here, you see how to use ggplot() to create one from space.rev, the data
set created from the data in Table 3-2 (Book 5, Chapter 3). The finished product
will look like Figure 4-7.

The first order of business is to get the data ready. It’s not in the format that
ggplot() uses. This format

> space.rev

 1990 1991 1992 1993 1994

Commercial Satellites Delivered 1000 1300 1300 1100 1400

Satellite Services 800 1200 1500 1850 2330

Satellite Ground Equipment 860 1300 1400 1600 1970

Commercial Launches 570 380 450 465 580

Remote Sensing Data 155 190 210 250 300

FIGURE 4-6:
The modified dot

chart for Type.

680 BOOK 5 Performing Statistical Data Analysis & Visualization with R Programming

is called wide format. ggplot(), however, works with long format, which looks
like this:

 Industry Year Revenue

1 Commercial Satellites Delivered 1990 1000

2 Satellite Services 1990 800

3 Satellite Ground Equipment 1990 860

4 Commercial Launches 1990 570

5 Remote Sensing Data 1990 155

6 Commercial Satellites Delivered 1991 1300

Those are just the first six rows for this data set. The total number of rows is 25
(because 5 rows and 5 columns are in the wide format).

Hadley Wickham (there’s that name again!) created a package called reshape2
that provides everything for a seamless transformation. The function melt()
turns wide format into long. Another function, cast(), does the reverse. These
functions are a huge help because they eliminate the need to go schlepping around
in spreadsheets to reshape a data set.

FIGURE 4-7:
Bar plot for the

data in Table 3-2,
created with
ggplot().

K
ic

k
in

g
 It U

p
 a

 N
o

tc
h

 to

g
g

p
lo

t2

CHAPTER 4 Kicking It Up a Notch to ggplot2 681

So, with reshape2 in the library (select its check box on the Packages tab), the
code is

> space.melt <- melt(space.rev)

Yes, that’s really all there is to it:

> head(space.melt)

 Var1 Var2 value

1 Commercial Satellites Delivered 1990 1000

2 Satellite Services 1990 800

3 Satellite Ground Equipment 1990 860

4 Commercial Launches 1990 570

5 Remote Sensing Data 1990 155

6 Commercial Satellites Delivered 1991 1300

Next, you give meaningful names to the columns:

> colnames(space.melt) <- c("Industry","Year","Revenue")

> head(space.melt)

 Industry Year Revenue

1 Commercial Satellites Delivered 1990 1000

2 Satellite Services 1990 800

3 Satellite Ground Equipment 1990 860

4 Commercial Launches 1990 570

5 Remote Sensing Data 1990 155

6 Commercial Satellites Delivered 1991 1300

And now you’re ready to roll. You start with ggplot(). The aesthetic mappings
are straightforward:

ggplot(space.melt, aes(x=Year,y=Revenue,fill=Industry))

You add the geom function for the bar, and you specify three arguments:

geom_bar(stat = "identity", position = "dodge", color ="black")

The first argument is necessary for a graph of this type. If left on its own,
geom_bar defaults to the bar plot shown earlier — a graph based on frequen-
cies. Because you defined an aesthetic mapping for y, and that type of graph is
incompatible with an aesthetic for y, not setting this argument results in an
error message.

682 BOOK 5 Performing Statistical Data Analysis & Visualization with R Programming

Accordingly, you let ggplot() know that this is a graph based on explicit data
values. So stat="identity" means “use the given numbers as the data.”

The value for the next argument, position, is a cute name that means the bars
“dodge” each other and line up side-by-side. (Omit this argument and see what
happens.) It’s analogous to “beside =T” in base R.

The third argument sets the color of the borders for each bar. The fill-color scheme
for the bars is the province of the next function:

scale_fill_grey(start = 0,end = 1)

As its name suggests, this function fills the bars with shades of gray (or “grey”).
The start value, 0, is black, and the end value, 1, is white. (Reminiscent of “grey0”
= “black” and “grey100” = “white.”) The effect is to fill the five bars with five
shades from black to white.

You’d like to relabel the y-axis, so that’s

labs(y="Revenue (X $1,000)")

and then remove the gray background

theme_bw()

and, finally, remove the vertical lines from the grid

theme(panel.grid.major.x = element_blank())

The whole chunk for producing Figure 4-8 is

ggplot(space.melt, aes(x=Year,y=Revenue,fill=Industry)) +

 geom_bar(stat = "identity", position = "dodge", color="black") +

 scale_fill_grey(start = 0,end = 1)+

 labs(y="Revenue (X $1,000)")+

 theme_bw()+

 theme(panel.grid.major.x = element_blank())

K
ic

k
in

g
 It U

p
 a

 N
o

tc
h

 to

g
g

p
lo

t2

CHAPTER 4 Kicking It Up a Notch to ggplot2 683

Scatter Plots

A scatter plot is a great way to show the relationship between two variables, like
horsepower and miles per gallon for city driving. And ggplot() is a great way to
draw the scatter plot. If you’ve been following along, the grammar of this will be
easy for you:

ggplot(Cars93,aes(x=Horsepower,y=MPG.city))+

 geom_point()

Figure 4-8 shows the scatter plot. You may want to change the y-axis label to
“Miles per Gallon (City)” and add a descriptive title.

Scatter Plot Matrix

A matrix of scatter plots shows the pairwise relationships among more than two
variables. In the preceding chapter (Book 5, Chapter 3), you see how the base R
pairs() function draws this kind of matrix.

FIGURE 4-8:
MPG.city versus

Horsepower
in Cars93.

684 BOOK 5 Performing Statistical Data Analysis & Visualization with R Programming

The ggplot2 package once had a function called plotpairs() that did something
similar, but not anymore. GGally, a package built on ggplot2, provides ggpairs()
to draw scatter plot matrices, and it does this in a flamboyant way.

The GGally package isn’t on the Packages tab. You have to select Install and type
GGally in the Install Packages dialog box. When it appears on the Packages tab,
select the check box next to it.

Earlier, a subset of Cars93 was created that includes MPG.city, Price, and
Horsepower:

> cars.subset <- subset(Cars93, select = c(MPG.city,Price,Horsepower))

With the GGally package in your library, this code creates the scatter plot matrix
in Figure 4-9:

> ggpairs(cars.subset)

FIGURE 4-9:
Scatter plot

matrix for MPG.

city, Price, and
Horsepower.

K
ic

k
in

g
 It U

p
 a

 N
o

tc
h

 to

g
g

p
lo

t2

CHAPTER 4 Kicking It Up a Notch to ggplot2 685

As Figure 4-9 shows, this one’s a beauty. The cells along the main diagonal
present density plots of the variables. (See the discussion of graph features in
Book 5, Chapter 3.) One drawback is that the y-axis is visible for the variable
MPG.city only in the first row and first column.

The three scatter plots are in the cells below the main diagonal. Rather than show
the same scatter plots with the axes reversed in the cells above the main diagonal
(like pairs() does), each above-the-diagonal cell shows a correlation coefficient
that summarizes the relationship between the cell’s row variable and its column
variable.

For a real visual treat, add Cylinders to cars.subset and then apply ggpairs():

> cars.subset <- subset(Cars93, select = c(MPG.city,Price,Horsepower,Cylinders))

> ggpairs(cars.subset)

Figure 4-10 shows the new scatter plot matrix in all its finery.

FIGURE 4-10:
Adding Cylinders

produces
this scatter
plot matrix.

686 BOOK 5 Performing Statistical Data Analysis & Visualization with R Programming

Cylinders is not a variable that lends itself to scatter plots, density plots, or cor-
relation coefficients. (Thought question: Why not?) Thus, the cell in the fourth
column, fourth row, has a bar plot rather than a density plot. Bar plots relating
Cylinders (on each y-axis) to the other three variables (on the x-axes) are in
the remaining three cells in row 4. Box plots relating Cylinders (on each x-axis)
to the other three variables (on the y-axes) are in the remaining three cells in
column 4.

Box Plots

Statisticians use box plots to quickly show how groups differ from one another.
As in the base R example in Book 5, Chapter 3, this section shows the box plot for
Cylinders and Horsepower. This is a replication of the graph in row 3, column 4
of Figure 4-10.

At this point, you can probably figure out the ggplot() function:

ggplot(Cars93, aes(x=Cylinders, y= Horsepower))

The geom function is geom_boxplot().

So the code is

ggplot(Cars93, aes(x=Cylinders,y=Horsepower)) +

 geom_boxplot()

And that gives you Figure 4-11.

Want to show all the data points in addition to the boxes? Add the geom function
for points:

ggplot(Cars93, aes(x=Cylinders,y=Horsepower)) +

 geom_boxplot()+

 geom_point()

to produce the graph shown in Figure 4-12.

Remember, this is data for 93 cars. You don’t see 93 data points, of course, because
many points overlap. Graphics gurus refer to this as overplotting.

K
ic

k
in

g
 It U

p
 a

 N
o

tc
h

 to

g
g

p
lo

t2

CHAPTER 4 Kicking It Up a Notch to ggplot2 687

FIGURE 4-11:
Box plot for

Horsepower
versus Cylinders.

FIGURE 4-12:
Box plot with

data points.

688 BOOK 5 Performing Statistical Data Analysis & Visualization with R Programming

One way to deal with overplotting is to randomly reposition the points to reveal
them but not change what they represent. This is called jittering. And ggplot2 has
a geom function for that: geom_jitter(). Adding this function to the code

gplot(Cars93, aes(x=Cylinders,y=Horsepower)) +

 geom_boxplot()+

 geom_point()+

 geom_jitter()

draws Figure 4-13.

FIGURE 4-13:
Boxplot with
jittered data

points.

6Applying Python
Programming to
Data Science

Contents at a Glance

CHAPTER 1: Discovering the Match between Data
Science and Python . 691

Creating the Data Science Pipeline . 692

Understanding Python’s Role in Data Science 693

Learning to Use Python Fast . 695

Working with Python . 697

Using the Python Ecosystem for Data Science 699

CHAPTER 2: Using Python for Data Science
and Visualization . 703

Using Python for Data Science . 703

Sorting Out the Various Python Data Types 705

Putting Loops to Good Use in Python . 708

Having Fun with Functions . 709

Keeping Cool with Classes . 711

Checking Out Some Useful Python Libraries 713

CHAPTER 3: Getting a Crash Course in Matplotlib 721

Starting with a Graph . 722

Setting the Axis, Ticks, and Grids . 725

Defining the Line Appearance . 729

Using Labels, Annotations, and Legends . 733

CHAPTER 4: Visualizing the Data . 739

Choosing the Right Graph . 740

Creating Advanced Scatterplots . 746

Plotting Time Series . 748

Plotting Geographical Data . 752

Visualizing Graphs . 757

CHAPTER 1 Discovering the Match between Data Science and Python 691

Discovering the Match
between Data Science
and Python

D
ata science is the person behind the partition in the experience of the won-

derment of technology. Without data science, much of what you accept as

typical and expected today wouldn’t even be possible. This is the reason

that being a data scientist is one of the most interesting jobs of the 21st century.

You can read more about data science in Book 1, Chapter 3.

Python is uniquely suited to making it easier to work with data science. For one

thing, Python provides an incredible number of math-related libraries that help

you perform tasks with a less-than-perfect understanding of precisely what is

going on. However, Python goes further by supporting multiple coding styles

(programming paradigms) and doing other things to make your job easier. There-

fore, yes, you could use other languages to write data science applications, but

Python reduces your workload, so it’s a natural choice for those who really don’t

want to work hard but rather to work smart.

This chapter gets you started with Python. Even though this book isn’t designed to

provide you with a complete Python tutorial, exploring some basic Python issues

Chapter 1

IN THIS CHAPTER

 » Creating the connection between

Python and data science

 » Getting started with Python

 » Exploring the Python ecosystem

692 BOOK 6 Applying Python Programming to Data Science

will reduce the time needed to get you up to speed. (If you do need a good starting

tutorial, please get Beginning Programming with Python For Dummies, 3rd Edition,
by John Mueller [Wiley]). You’ll find that the book provides pointers to tutori-
als and other aids as needed to fill in any gaps that you may have in your Python
education.

Creating the Data Science Pipeline

Data science is partly art and partly engineering. Recognizing patterns in data,

considering what questions to ask, and determining which algorithms work best

are all part of the art side of data science. However, to make the art part of data

science realizable, the engineering part relies on a specific process to achieve
specific goals. This process is the data science pipeline, which requires the
data scientist to follow particular steps in the preparation, analysis, and pres-

entation of the data. The following list helps you understand the data science

pipeline better so that you can understand how the book employs it during the

presentation of examples:

 » Preparing the data: The data that you access from various sources doesn’t

come in an easily packaged form, ready for analysis. The raw data may vary

substantially in format and require that you transform it to make all the data

sources cohesive and amenable to analysis.

 » Performing exploratory data analysis: The math behind data analysis

relies on engineering principles in that the results are provable and consis-

tent. However, data science provides access to a wealth of statistical methods

and algorithms that help you discover patterns in the data. A single approach

doesn’t ordinarily do the trick. You typically use an iterative process to rework

the data from a number of perspectives. The use of trial and error is part of

the art of data science.

 » Learning from data: As you iterate through various statistical analysis

methods and apply algorithms to detect patterns, you begin learning from the

data. The data may not tell the story that you originally thought it would, or it

may have many stories to tell. Discovery is part of being a data scientist. If you

have preconceived ideas of what the data contains, you won’t find the
information it actually does contain.

 » Visualizing: Visualization means seeing the patterns in the data and then

being able to react to those patterns. It also means seeing when data is not

part of the pattern. Think of yourself as a data sculptor, removing the data

that lies outside the patterns (the outliers) so that others can see the master-

piece of information beneath.

D
isc

o
v

e
rin

g
 th

e
 M

a
tc

h
 b

e
tw

e
e

n

D
a

ta
 S

c
ie

n
c
e

 a
n

d
 P

y
th

o
n

CHAPTER 1 Discovering the Match between Data Science and Python 693

 » Obtaining insights and data products: The data scientist may seem to

simply be looking for unique methods of viewing data. However, the process

doesn’t end until you have a clear understanding of what the data means.

The insights you obtain from manipulating and analyzing the data help you
to perform real-world tasks. For example, you can use the results of an
analysis to make a business decision.

Understanding Python’s Role
in Data Science

Given the right data sources, analysis requirements, and presentation needs, you

can use Python for every part of the data science pipeline. In fact, that’s pre-

cisely what you do in this book. Every example uses Python to help you under-

stand another part of the data science equation. Of all the languages you could

choose for performing data science tasks, Python is the most flexible and capable
because it supports so many third-party libraries devoted to the task. The fol-

lowing sections help you better understand why Python is such a good choice for

many (if not most) data science needs.

Considering the shifting profile
of data scientists
Some people view the data scientist as an unapproachable nerd who performs

miracles on data with math. The data scientist is the person behind the curtain in

an Oz-like experience. However, this perspective is changing. In many respects,

the world now views the data scientist as either an adjunct to a developer or as a

new type of developer. The ascendance of applications of all sorts that can learn is

the essence of this change. For an application to learn, it has to be able to manip-

ulate large databases and discover new patterns in them. In addition, the applica-

tion must be able to create new data based on the old data — making an informed
prediction of sorts. The new kinds of applications affect people in ways that would
have seemed like science fiction just a few years ago. Of course, the most noticea-

ble of these applications define the behaviors of robots that will interact far more
closely with people tomorrow than today.

From a business perspective, the necessity of fusing data science and application

development is obvious: Businesses must perform various sorts of analysis on the

huge databases it has collected — to make sense of the information and use it
to predict the future. In truth, however, the far greater impact of the melding of

694 BOOK 6 Applying Python Programming to Data Science

these two branches of science — data science and application development — will
be felt in terms of creating altogether new kinds of applications, some of which

aren’t even possible to imagine with clarity today. For example, new applica-

tions could help students learn with greater precision by analyzing their learning

trends and creating new instructional methods that work for that particular stu-

dent. This combination of sciences may also solve a host of medical problems that
seem impossible to solve today — not only in keeping disease at bay but also by
solving problems, such as how to create truly usable prosthetic devices that look

and act like the real thing.

Working with a multipurpose, simple,
and efficient language
Many different ways are available for accomplishing data science tasks. This book
covers only one of the myriad methods at your disposal. However, Python repre-

sents one of the few single-stop solutions that you can use to solve complex data

science problems. Instead of having to use a number of tools to perform a task,

you can simply use a single language, Python, to get the job done. The Python dif-

ference is the large number of scientific and math libraries created for it by third
parties. Plugging in these libraries greatly extends Python and allows it to easily

perform tasks that other languages could perform only with great difficulty.

Python’s libraries are its main selling point; however, Python offers more than
reusable code. The most important thing to consider with Python is that it sup-

ports four different coding styles:

 » Functional: Treats every statement as a mathematical equation and avoids

any form of state or mutable data. The main advantage of this approach is

that it has no side effects to consider. In addition, this coding style lends itself
better than the others to parallel processing because there is no state to

consider. Many developers prefer this coding style for recursion and

lambda calculus.

 » Imperative: Performs computations as a direct change to program state.

This style is especially useful when manipulating data structures and
produces elegant but simple code.

 » Object-oriented: Relies on data fields that are treated as objects and
manipulated only through prescribed methods. Python doesn’t fully support

this coding form because it can’t implement features such as data hiding.

However, this is a useful coding style for complex applications because it
supports encapsulation and polymorphism. This coding style also favors

code reuse.

D
isc

o
v

e
rin

g
 th

e
 M

a
tc

h
 b

e
tw

e
e

n

D
a

ta
 S

c
ie

n
c
e

 a
n

d
 P

y
th

o
n

CHAPTER 1 Discovering the Match between Data Science and Python 695

 » Procedural: Treats tasks as step-by-step iterations where common tasks

are placed in functions called as needed. This coding style favors iteration,

sequencing, selection, and modularization.

Learning to Use Python Fast

It’s time to try using Python to see the data science pipeline in action. Don’t worry

about understanding every aspect of the process at this point. The purpose of

these sections is to help you understand the flow of using Python to perform data
science tasks. Many of the details may seem difficult to understand at this point,
but the rest of the book will help you understand them.

The examples in this book rely on a web-based application named Jupyter

Notebook. The screenshots you see in this and other chapters reflect how Jupyter
Notebook looks in Chrome on a Windows 10/11 system. The view you see will

contain the same data, but the actual interface may differ a little depending on
the platform (such as using a notebook instead of a desktop system), operating

system, and browser. Don’t worry if you see some slight differences between your
display and the screenshots in the book.

Loading data

Before you can do anything, you need to load some data. Figure 1-1 shows how
to load a dataset called California Housing that contains housing prices and

other facts about houses in California. It was obtained from StatLib repository

(see https://www.dcc.fc.up.pt/~ltorgo/Regression/cal_housing.html for

details). The code places the entire dataset in the housing variable and then places

parts of that data in variables named X and y. Think of variables as you would

storage boxes. The variables are important because they make it possible to work

with the data. The output shows that the dataset contains 20,640 entries with

eight features each. The second output shows the name of each of the features.

Training a model

Now that you have some data to work with, you can do something with it. All sorts

of algorithms are built into Python. Figure 1-2 shows a linear regression model. As
shown in the figure, Python lets you perform the linear regression using just two
statements. You place the result in a variable named hypothesis.

https://www.dcc.fc.up.pt/~ltorgo/Regression/cal_housing.html

696 BOOK 6 Applying Python Programming to Data Science

Viewing a result

Performing any sort of analysis doesn’t pay unless you obtain some benefit from
it in the form of a result. This book shows all sorts of ways to view output, but

Figure 1-3 starts with something simple. In this case, you see the coefficient out-
put from the linear regression analysis. Notice that there is one coefficient for
each of the dataset features.

One of the reasons this book uses Jupyter Notebook is that the product helps you

to create nicely formatted output as part of creating the application. Look again

at Figure 1-3, and you see a report that you could simply print and offer to a col-
league. The output isn’t suitable for many people, but those experienced with

Python and data science will find it quite usable and informative.

FIGURE 1-1:
Loading data

into variables

so that you can

manipulate it.

FIGURE 1-2:
Using the

variable content

to train a linear

regression model.

FIGURE 1-3:
Outputting

a result as a

response to

the model.

D
isc

o
v

e
rin

g
 th

e
 M

a
tc

h
 b

e
tw

e
e

n

D
a

ta
 S

c
ie

n
c
e

 a
n

d
 P

y
th

o
n

CHAPTER 1 Discovering the Match between Data Science and Python 697

Working with Python

This book doesn’t provide you with a full Python tutorial. (However, you can get

a great start with Beginning Programming with Python For Dummies, 3rd Edition,
by John Paul Mueller [Wiley]). The following sections provide a brief but helpful

overview of what Python looks like and how you interact with it.

Contributing to data science

Because this is a book about data science, you’re probably wondering how Python

contributes to better data science and what the word better actually means in this

case. Knowing that a lot of organizations use Python doesn’t help you because

it doesn’t say much about how they use Python, and if you want to match your

choice of language to your particular need, understanding how other organiza-

tions use Python becomes important.

One such example appears at https://www.datasciencegraduateprograms.

com/python. In this case, the article talks about Forecastwatch.com (https://

forecastwatch.com), which actually does watch the weather and try to make pre-

dictions better. Every day, Forecastwatch.com compares 36,000 forecasts with
the weather that people actually experience and then uses the results to create

better forecasts. Trying to aggregate and make sense of the weather data for 800

U.S. cities is daunting, so Forecastwatch.com needed a language that could do

these tasks with the least amount of fuss. Here are the reasons Forecast.com

chose Python:

 » Library support: Python provides support for a large number of libraries,

more than any one organization will ever need. According to https://www.

python.org/about/success/forecastwatch, Forecastwatch.com found

the regular expression, thread, object serialization, and gzip data compression
libraries especially useful.

 » Parallel processing: Each forecast is processed as a separate thread so that

the system can work through them quickly. The thread data includes the web

page URL with the required forecast and category information, such as city

name.

 » Data access: This huge amount of data can’t all exist in memory, so
Forecast.com relies on a MySQL database accessed through the MySQLdb

(https://sourceforge.net/projects/mysql-python) library, which is

one of the few libraries that hasn’t moved on to Python 3.x yet. However,

the associated website promises the required support soon. In the mean-

time, if you need to use MySQL with Python 3.x, then using mysqlclient

https://www.datasciencegraduateprograms.com/python/
https://www.datasciencegraduateprograms.com/python/
http://Forecastwatch.com
https://forecastwatch.com/
https://forecastwatch.com/
http://Forecastwatch.com
http://Forecastwatch.com
http://Forecast.com
https://www.python.org/about/success/forecastwatch/
https://www.python.org/about/success/forecastwatch/
http://Forecastwatch.com
http://Forecast.com
https://sourceforge.net/projects/mysql-python/

698 BOOK 6 Applying Python Programming to Data Science

(https://pypi.org/project/mysqlclient/) will be a good replacement

because it adds Python 3.x support to MySQLdb.

 » Data display: Originally, the PHP scripting language produced the

Forecastwatch.com output. However, by using Quixote (https://www.
mems-exchange.org/software/quixote), which is a display framework,

Forecastwatch.com was able to move everything to Python. (An update

of this framework is DurusWorks, at https://www.mems-exchange.org/
software/DurusWorks.)

Getting a taste of the language

Python is designed to provide clear language statements but does so in an incred-

ibly small space. A single line of Python code may perform tasks that another lan-

guage usually takes several lines to perform. For example, if you want to display

something on-screen, you simply tell Python to print it, like this:

print("Hello There!")

The point is that you can simply tell Python to output text, an object, or any-

thing else using a simple statement. You don’t really need too much in the way of

advanced programming skills. When you want to end your session using a com-

mand line environment such as IDLE, you simply type quit() and press Enter.

This book relies on a much better environment, Jupyter Notebook (or Google Colab

as an alternative), which really does make your code look as though it came from

someone’s notebook.

Understanding the need for indentation

Python relies on indentation to create various language features, such as condi-

tional statements. One of the most common errors that developers encounter is

not providing the proper code indentation. You see this principle in action later in

the book, but for now, always be sure to pay attention to indentation as you work

through the book examples. For example, here is an if statement (a conditional

that says that if something meets the condition, perform the following code) with

proper indentation.

if 1 < 2:

print("1 is less than 2")

The print statement must appear indented below the conditional statement.

Otherwise, the condition won’t work as expected, and you may see an error

message, too.

https://pypi.org/project/mysqlclient/
http://Forecastwatch.com
https://www.mems-exchange.org/software/quixote/
https://www.mems-exchange.org/software/quixote/
http://Forecastwatch.com
https://www.mems-exchange.org/software/DurusWorks/
https://www.mems-exchange.org/software/DurusWorks/

D
isc

o
v

e
rin

g
 th

e
 M

a
tc

h
 b

e
tw

e
e

n

D
a

ta
 S

c
ie

n
c
e

 a
n

d
 P

y
th

o
n

CHAPTER 1 Discovering the Match between Data Science and Python 699

Throughout this book, you’ll be leveraging a combination of both Jupyter Notebook

and Google Colab. Google Colab is used as a way to test code as part of the Ana-

conda installation you create later on in this book. Google Colab and Jupyter Note-

book are Integrated Desktop Environments (IDE). They help create correct code

and perform targeted tasks to manage the code base’s appearance.

This book mostly relies on Jupyter Notebook (with code also tested using Google

Colab), which is part of the Anaconda installation you create in Chapter 3. Jupyter
Notebook is used in Chapter 1 and again later in the book. The presentation for
Google Colab is similar to, but not precisely the same as, Jupyter Notebook,

and you see Google Colab in detail in Chapter 4. The purpose behind using an
Integrated Development Environment (IDE) such as Jupyter Notebook and Google

Colab is that they help you create correct code and perform some tasks, such as

indentation, automatically. An IDE can also give your code a nicer appearance and

give you a means for making report-like output with graphics and other noncode

features.

Using the Python Ecosystem
for Data Science

To perform data science tasks in Python, you first must load libraries, a collection

of code to make using Python more efficient. The following sections provide an
overview of the Python libraries most often used to perform data science tasks.

Accessing scientific tools using SciPy
The SciPy stack (http://www.scipy.org) contains a host of other libraries that

you can also download separately. These libraries provide support for math-

ematics, science, and engineering. When you obtain SciPy, you get a set of

libraries designed to work together to create various types of applications. These

libraries are

 » NumPy

 » SciPy

 » Matplotlib

 » Jupyter

http://www.scipy.org/

700 BOOK 6 Applying Python Programming to Data Science

 » Sympy

 » pandas

The SciPy library focuses on numerical routines, such as routines for numerical

integration and optimization. SciPy is a general-purpose library that provides

functionality for multiple problem domains. It also supports domain-specific
libraries, such as Scikit-learn, Scikit-image, and statsmodels.

Performing fundamental scientific
computing using NumPy

The NumPy library (http://www.numpy.org) provides the means for perform-

ing n-dimensional array manipulation, which is critical for data science work.

The California Housing dataset used in the examples in this chapter is an exam-

ple of an n-dimensional array, and you couldn’t easily access it without NumPy

functions that include support for linear algebra, Fourier transform, and random-

number generation (see the listing of functions at http://docs.scipy.org/doc/

numpy/reference/routines.html).

Performing data analysis using pandas

The pandas library (http://pandas.pydata.org) supports data structures and

data analysis tools. The library is optimized to perform data science tasks espe-

cially fast and efficiently. The basic principle behind pandas is to provide data
analysis and modeling support for Python is similar to other languages, such as

R (covered in Book 5).

Implementing machine learning
using Scikit-learn
The Scikit-learn library (http://scikit-learn.org/stable) is one of a num-

ber of Scikit libraries that build on the capabilities provided by NumPy and SciPy

to allow Python developers to perform domain-specific tasks. In this case, the
library focuses on data mining and data analysis. It provides access to the follow-

ing sorts of functionality:

 » Classification

 » Regression

 » Clustering

http://www.numpy.org/
http://docs.scipy.org/doc/numpy/reference/routines.html
http://docs.scipy.org/doc/numpy/reference/routines.html
http://pandas.pydata.org/
http://scikit-learn.org/stable/

D
isc

o
v

e
rin

g
 th

e
 M

a
tc

h
 b

e
tw

e
e

n

D
a

ta
 S

c
ie

n
c
e

 a
n

d
 P

y
th

o
n

CHAPTER 1 Discovering the Match between Data Science and Python 701

 » Dimensionality reduction

 » Model selection

 » Preprocessing

A number of these functions appear as chapter headings in the book. As a result,

you can assume that Scikit-learn is the most important library for the book (even

though it relies on other libraries to perform its work).

Going for deep learning with Keras
and TensorFlow
Keras (https://keras.io) is an application programming interface (API) used to

train deep learning models. An API often specifies a model for doing something
but doesn’t provide an implementation. Consequently, you need an implementa-

tion of Keras to perform useful work, which is where the machine learning plat-

form TensorFlow (https://www.tensorflow.org) comes into play because Keras

runs on top of it.

When working with an API, you’re looking for ways to simplify things. Keras

makes things easy by offering the following features:

 » A consistent interface: The Keras interface is optimized for common use

cases with an emphasis on actionable feedback for fixing user errors.

 » A building-block approach: Using a black-box approach makes it easy to
create models by connecting configurable building blocks together with only
a few restrictions on how you can connect them.

 » Extendability: You can easily add custom building blocks to express new
ideas for research that include new layers, loss functions, and models.

 » Parallel processing: To run applications fast today, you need good parallel

processing support. Keras runs on both CPUs and GPUs. It will also make use

of multiple CPUs, when available.

 » Direct Python support: You don’t have to do anything special to make the

TensorFlow implementation of Keras work with Python, which can be a major
stumbling block when working with other sorts of APIs.

Plotting the data using Matplotlib

The Matplotlib library (http://matplotlib.org/) gives you a MATLAB-like

interface for creating data presentations of the analysis you perform. The library

https://keras.io/
https://www.tensorflow.org/
http://matplotlib.org/

702 BOOK 6 Applying Python Programming to Data Science

is currently limited to 2-D output, but it still provides you with the means to

express graphically the data patterns you see in the data you analyze. Without this

library, you couldn’t create output that people outside the data science community

could easily understand.

Creating graphs with NetworkX

To properly study the relationships between complex data in a networked system

(such as that used by your GPS setup to discover routes through city streets),

you need a library to create, manipulate, and study the structure of network data

in various ways. In addition, the library must provide the means to output the

resulting analysis in a form that humans understand, such as graphical data.

NetworkX (https://networkx.github.io) enables you to perform this sort of

analysis. The advantage of NetworkX is that nodes can be anything (including

images) and edges can hold arbitrary data. These features allow you to perform

a much broader range of analysis with NetworkX than using custom code would

(and such code would be time-consuming to create).

https://networkx.github.io/

CHAPTER 2 Using Python for Data Science and Visualization 703

Using Python for Data
Science and Visualization

T
his chapter introduces the fundamental concepts of programming with
Python (such as data types, loops, functions, and classes). As with R (covered
in Book 5), the machine learning models you build with Python can serve

as the decision engines within AI SaaS products you build for your company. This
chapter also covers some of the best Python libraries for manipulating data,
performing statistical computations, creating data visualizations, and completing
other data science tasks.

Using Python for Data Science

Although popular programming languages like Java and C++ are good for devel-
oping stand-alone desktop applications, Python’s versatility makes it an ideal
programming language for processing, analyzing, and visualizing data. For this
reason, Python has earned a reputation of excellence in the data science field,
where it has been widely adopted over the past decade. In fact, Python has become
so popular that it’s actually stolen a lot of ground from R — the other free, widely
adopted programming language for data science applications. (Book 5 covers pro-
gramming with R for data analytics and visualization.) Python’s status as one of

Chapter 2

IN THIS CHAPTER

 » Taking on Python programming for

data science

 » Understanding Python data types,

loops, functions, and classes

 » Exploring data science Python

libraries

704 BOOK 6 Applying Python Programming to Data Science

the more popular programming languages out there can be linked to the fact that
it’s relatively easy to learn, and it allows users to accomplish several tasks using
just a few lines of code.

Though this book wasn’t designed to teach readers either the mechanics of pro-
gramming or the implementation of machine learning algorithms, you can find
plenty of helpful coding demonstrations and course recommendations on the
companion website, www.businessgrowth.ai. If you want to get started using
Python to implement data science, you may want to check it out.

You can use Python to do anything, from simple mathematical operations to data
visualizations and even machine learning and predictive analytics. Here’s an
example of a basic math operation in Python:

>>> 2.5+3

5.5

Figure 2-1 shows an example — taken from Python’s MatPlotLib library — of a
more advanced output based on topographical data sets created by the National
Oceanic and Atmospheric Administration (NOAA).

Regardless of the task at hand, you should always study the most basic concepts
of a language before attempting to delve into its more specialized libraries. So,
to start, keep in mind that because Python is an object-oriented programming
language, everything in Python is considered an object. In Python, an object is

FIGURE 2-1:
Sample output

from Python’s

MatPlotLib

library.

http://www.businessgrowth.ai

U
sin

g
 P

y
th

o
n

 fo
r D

a
ta

S
c
ie

n
c
e

 a
n

d
 V

isu
a

liza
tio

n

CHAPTER 2 Using Python for Data Science and Visualization 705

anything that can be assigned to a variable or passed as an argument to a func-
tion. The following items are all considered objects in the Python programming
language:

 » Numbers

 » Strings

 » Lists

 » Tuples

 » Sets

 » Dictionaries

 » Functions

 » Classes

Additionally, all these items (except the last two in the list) function as basic data
types in plain ol’ Python, which is Python with no external extensions added.
(You can find out more about the external Python libraries NumPy, SciPy, Pandas,
MatPlotLib, and Scikit-learn later in this chapter, in the section “Checking out
some useful Python libraries.” When you add these libraries, additional data types
become available.)

In Python, functions do basically the same thing they do in plain math — they
accept data inputs, process them, and output the result. Output results depend
wholly on the task the function was programmed to do. Classes, on the other
hand, are prototypes of objects that are designed to output additional objects.

If your goal is to write fast, reusable, easy-to-modify code in Python, you must
use functions and classes. Doing so helps keep your code efficient and organized.

Sorting Out the Various Python Data Types

If you do much work with Python, you need to know how to work with different
data types. The main data types in Python and the general forms they take are
described in this list:

 » Numbers: Plain old numbers, obviously

 » Strings: ‘. . .’ or “. . .”

 » Lists: [. . .] or [. . ., . . ., . . .]

706 BOOK 6 Applying Python Programming to Data Science

 » Tuples: (. . .) or (. . ., . . ., . . .)

 » Sets: Rarely used

 » Dictionaries: {‘Key’: ‘Value’, . . .}.

Numbers and strings are the most basic data types. You can incorporate them
inside other, more complicated data types. All Python data types can be assigned
to variables.

In Python, numbers, strings, lists, tuples, sets, and dictionaries are classified as
both object types and data types.

Numbers in Python

The Numbers data type represents numeric values that you can use to handle all
types of mathematical operations. Numbers come in the following types:

 » Integer: A whole-number format

 » Long: A whole-number format with an unlimited digit size

 » Float: A real-number format, written with a decimal point

 » Complex: An imaginary-number format, represented by the square root of –1

Strings in Python

Strings are the most often used data type in Python — and in every other pro-
gramming language, for that matter. Simply put, a string consists of one or more
characters written inside single or double quotes. The following code represents
a string:

>>> variable1='This is a sample string'

>>> print(variable1)

This is a sample string

In this code snippet, the string is assigned to a variable and the variable subse-
quently acts like a storage container for the string value.

To print the characters contained inside the variable, simply use the predefined
function, print.

U
sin

g
 P

y
th

o
n

 fo
r D

a
ta

S
c
ie

n
c
e

 a
n

d
 V

isu
a

liza
tio

n

CHAPTER 2 Using Python for Data Science and Visualization 707

Python coders often refer to lists, tuples, sets, and dictionaries as data structures
rather than data types. Data structures are basic functional units that organ-
ize data so that it can be used efficiently by the program or application you’re
working with.

Lists, tuples, sets, and dictionaries are data structures but keep in mind that
they’re still composed of one or more basic data types (numbers and/or strings,
for example).

Lists in Python

A list is a sequence of numbers and/or strings. To create a list, you simply enclose
the elements of the list (separated by commas) within square brackets. Here’s an
example of a basic list:

>>> variable2=["ID","Name","Depth","Latitude","Longitude"]

>>> depth=[0,120,140,0,150,80,0,10]

>>> variable2[3]

'Latitude'

Every element of the list is automatically assigned an index number, starting from
0. You can access each element using this index, and the corresponding value
of the list is returned. If you need to store and analyze long arrays of data, use
lists — storing your data inside a list makes it fairly easy to extract statistical
information. The following code snippet is an example of a simple computation to
pull the mean value from the elements of the depth list created in the preceding
code example:

>>> sum(depth)/len(depth)

62.5

In this example, the average of the list elements is computed by first summing up
the elements via the sum function and then dividing them by the number of the
elements contained in the list — a number you determine with the help of the len
function, which returns the length (the number of elements, in other words) in a
string, an array, or a list. The len function in the denominator returns the average
value of items in the object. See? It’s as simple as 1-2-3!

Tuples in Python

Tuples are just like lists, except that you can’t modify their content after you
create them. Also, to create tuples, you need to use normal brackets instead of
squared ones.

708 BOOK 6 Applying Python Programming to Data Science

“Normal brackets” refers to refers to parentheses in the form of (. . .) or (. . .,
. . ., . . .)

Here’s an example of a tuple:

>>> depth=(0,120,140,0,150,80,0,10)

In this case, you can’t modify any of the elements as you would with a list. To
ensure that your data stays in a read-only format, use tuples.

Sets in Python

A set is another data structure that’s similar to a list. In contrast to lists, however,
elements of a set are unordered. This disordered characteristic of a set makes it
impossible to index, so it’s not a commonly used data type.

Dictionaries in Python

Dictionaries are data structures that consist of pairs of keys and values. In a
dictionary, every value corresponds to a certain key, and consequently, each
value can be accessed using that key. The following code snippet shows a typical
key/value pairing:

>>> variable4={"ID":1,"Name":"Valley City","Depth":0,"Latitude":49.6,

"Longitude":-98.01}

>>> variable4["Longitude"]

-98.01

Putting Loops to Good Use in Python

When working with lists in Python, you typically access a list element by using
the element index number. In a similar manner, you can access other elements of
the list by using their corresponding index numbers. The following code snippet
illustrates this concept:

>>>variable2=["ID","Name","Depth","Latitude","Longitude"]

>>> print(variable2[3])

Latitude

>>> print(variable2[4])

Longitude

U
sin

g
 P

y
th

o
n

 fo
r D

a
ta

S
c
ie

n
c
e

 a
n

d
 V

isu
a

liza
tio

n

CHAPTER 2 Using Python for Data Science and Visualization 709

Don’t let the index numbering system confuse you. Every element of the list is
automatically assigned an index number starting from 0 — not starting from 1.
That means the fourth element in an index actually bears the index number 3.

When you’re analyzing considerable amounts of data, and you need to access each
element of a list, this technique becomes quite inefficient. In these cases, you
should use a looping technique instead.

You can use looping to execute the same block of code multiple times for a sequence
of items. Consequently, rather than manually accessing all elements one by one,
you simply create a loop to automatically iterate (or pass through in successive
cycles) each element of the list.

You can use two types of loops in Python: the for loop and the while loop. The
most often used looping technique is the for loop — designed especially to
iterate through sequences, strings, tuples, sets, and dictionaries. The following
code snippet illustrates a for loop iterating through the variable2 list created in
the preceding code snippet:

>>> for element in variable2:print(element)

ID

Name

Depth

Latitude

Longitude

The other available looping technique in Python is the while loop. Use a while
loop to perform actions while a given condition is true.

Looping is crucial when you work with long arrays of data, such as when you’re
working with raster images. Looping lets you apply certain actions to all data or to
apply those actions to only predefined groups of data.

Having Fun with Functions

Functions (and classes, which I describe in the following section) are the crucial
building blocks of almost every programming language. They provide a way to
build organized, reusable code. Functions are blocks of code that take an input,
process it, and return an output. Function inputs can be numbers, strings, lists,
objects, or other functions. Python has two types of functions: built-in and
custom. Built-in functions are predefined inside Python. You can use them by just
typing their names.

710 BOOK 6 Applying Python Programming to Data Science

The following code snippet is an example of the built-in function print:

>>> print("Hello")

Hello

This oft-used, built-in function print prints a given input. The code behind
print has already been written by the people who created Python. Now that this
code stands in the background, you don’t need to know how to code it yourself —
you simply call the print function. The people who created the Python library
couldn’t guess every possible function to satisfy everyone’s needs, but they man-
aged to provide users with a way to create and reuse their own functions when
necessary.

In the section “Sorting out the various Python data types,” earlier in this chapter,
the following code snippet from that section (listed again here) was used to sum
up the elements in a list and calculate the average:

>>> depth=[0,120,140,0,150,80,0,10]

>>> sum(depth)/len(depth)

62.5

The preceding data represents snowfall and snow depth records from multiple
point locations. As you can see, the points where snow depth measurements were
collected have an average depth of 62.5 units. These are depth measurements
taken at only one time, though. In other words, all the data bears the same time-
stamp. When modeling data using Python, you often see scenarios in which sets of
measurements were taken at different times — known as time-series data.

Here’s an example of time-series data:

>>> december_depth=[0,120,140,0,150,80,0,10]

>>> january_depth=[20,180,140,0,170,170,30,30]

>>> february_depth=[0,100,100,40,100,160,40,40]

You could calculate December, January, and February average snow depth in the
same way you averaged values in the previous list, but that would be cumbersome.
This is where custom functions come in handy:

>>> def average(any_list):return(sum(any_list)/len(any_list))

This code snippet defines a function named average, which takes any list as input
and calculates the average of its elements. The function isn’t executed yet, but the
code defines what the function does when it later receives some input values. In
this snippet, any_list is just a variable that’s later assigned the given value when

U
sin

g
 P

y
th

o
n

 fo
r D

a
ta

S
c
ie

n
c
e

 a
n

d
 V

isu
a

liza
tio

n

CHAPTER 2 Using Python for Data Science and Visualization 711

the function is executed. To execute the function, all you need to do is pass it a
value. In this case, the value is a real list with numerical elements:

>>> average(february_depth)

72

Executing a function is straightforward. You can use functions to do the same
thing repeatedly, as many times as you need for different input values. The
beauty here is that once the functions are constructed, you can reuse them with-
out having to rewrite the calculating algorithm.

Keeping Cool with Classes

Classes are blocks of code that put together functions and variables to produce
other objects. As such, they’re slightly different from functions, which take an
input and produce an output. The set of functions and classes tied together inside
a class describes the blueprint of a certain object. In other words, classes spell out
what has to happen in order for an object to be created. After you come up with
a class, you can generate the actual object instance by calling a class instance. In
Python, this is referred to as instantiating an object — creating an instance of that
class, in other words.

Functions that are created inside a class are called methods, and variables within
a class are called attributes. Methods describe the actions that generate the object,
and attributes describe the actual object properties.

To better understand how to use classes for more efficient data analysis, consider
the following scenario: Imagine that you have snow depth data from different
locations and times, and you’re storing it online on an FTP server. The dataset
contains different ranges of snow depth data, depending on the month of the
year. Now imagine that every monthly range is stored in a different location on
the FTP server.

Your task is to use Python to fetch all monthly data and then analyze the entire
dataset, so you need to use different operations on the data ranges. First, you need
to download the data from within Python by using an FTP handling library, such
as ftplib. Then, to be able to analyze the data in Python, you need to store it in
proper Python data types (in lists, tuples, or dictionaries, for example). After you
fetch the data and store it as recognizable data types in a Python script, you can
then apply more advanced operations that are available from specialized libraries
such as NumPy, SciPy, Pandas, MatPlotLib, and Scikit-learn.

712 BOOK 6 Applying Python Programming to Data Science

In this scenario, you want to create a class that creates a list containing the snow
depth data for each month. Every monthly list would be an object instance gen-
erated by the class. The class would tie together the FTP downloading functions
and the functions that store the downloaded records inside the lists. You can then
instantiate the class for as many months as you need in order to carry out a thor-
ough analysis. The code to do something like this is shown in Listing 2-1.

LISTING	2-1:	 Defining a Class in Python

class Download:

 def __init__(self,ftp=None,site,dir,fileList=[]):

 self.ftp =ftp

 self.site=site

 self.dir=dir

 self.fileList=fileList

 self.Login_ftp()

 self.store_in_list()

 def Login_ftp(self):

 self.ftp=ftplib.FTP(self.site)

 self.ftp.login()

 def store_in_list(self):

 fileList=[]

 self.ftp.cwd("/")

 self.ftp.cwd(self.dir)

 self.ftp.retrlines('NLST',fileList.append)

 return fileList

Defining a class probably looks intimidating right now; use this section just to get
a feeling for the basic structure and observe the class methods involved.

Delving into Listing 2-1, the keyword class defines the class, and the keyword
def defines the class methods. The init function is a default function that you
should always define when creating classes because you use it to declare class
variables. The Login_ftp method is a custom function that you define to log in to
the FTP server. After you log in using the Login_ftp method and set the required
directory where the data tables are located, you then store the data in a Python list
using the custom function store_in_list.

After you finish defining the class, you can use it to produce objects. You just need
to instantiate the class:

>>> Download("ftpexample.com","ftpdirectory")

U
sin

g
 P

y
th

o
n

 fo
r D

a
ta

S
c
ie

n
c
e

 a
n

d
 V

isu
a

liza
tio

n

CHAPTER 2 Using Python for Data Science and Visualization 713

And that’s it! With this brief snippet, you’ve just declared the particular FTP
domain and the internal FTP directory where the data is located. After you execute
this last line, a list appears, giving you data that you can manipulate and analyze
as needed.

Checking Out Some Useful
Python Libraries

In Python, a library is a specialized collection of scripts that were written by some-
one else to perform specialized sets of tasks. To use specialized libraries in Python,
you must first complete the installation process. After you install your libraries on
your local hard drive, you can import any library’s function into a project by sim-
ply using the import statement. For example, if you want to import the ftplib
library, you write

>>> import ftplib

Be sure to import the library into your Python project before attempting to call its
functions in your code.

After you import the library, you can use its functionality inside any of your
scripts. Simply use dot notation (a shorthand way of accessing modules, functions,
and classes in one line of code) to access the library. Here’s an example of dot
notation:

>>> ftplib.any_ftp_lib_function

The dot notation you see above tells the computer to open the “any_ftp_lib_
function” that is found in the ftplib library.

Though you can choose from countless libraries to accomplish different tasks in
Python, the Python libraries most commonly used in data science are MatPlotLib,
NumPy, Pandas, Scikit-learn, and SciPy. The NumPy and SciPy libraries were
specially designed for scientific uses, Pandas was designed for optimal data anal-
ysis performance, and MatPlotLib library was designed for data visualization.
Scikit-learn is Python’s premiere machine learning library.

714 BOOK 6 Applying Python Programming to Data Science

Saying hello to the NumPy library

NumPy is the Python package that primarily focuses on working with n-
dimensional array objects, and SciPy, described next, extends the capabilities of
the NumPy library. When working with plain Python (Python with no external
extensions, such as libraries, added to it), you’re confined to storing your data in
1-dimensional lists. If you extend Python by using the NumPy library, however,
you’re provided a basis from which you can work with n-dimensional arrays. (Just
in case you were wondering, n-dimensional arrays are arrays of one dimension or
of multiple dimensions.)

To enable NumPy in Python, you must first install and import the NumPy library.
After that, you can generate multidimensional arrays.

To see how generating n-dimensional arrays works in practice, start by checking
out the following code snippet, which shows how you’d create a 1-dimensional
NumPy array:

import numpy

>>> array_1d=numpy.arange(8)

>>> print(array_1d)

[0 1 2 3 4 5 6 7]

The numpy.arange method returns evenly spaced values from within a user speci-
fied interval. If you don’t specify a number for numpy.arange to start with, then
it starts with 0. In this case, we specified that we want 8 values, so numpy.arange
returns [0 1 2 3 4 5 6 7]

After importing numpy, you can use it to generate n-dimensional arrays, such as
the 1-dimensional array just shown. One-dimensional arrays are referred to as
vectors. You can also create multidimensional arrays using the reshape method,
like this:

>>> array_2d=numpy.arange(8).reshape(2,4)

>>> print(array_2d)

[[0 1 2 3]

[4 5 6 7]]

The preceding example is a 2-dimensional array, otherwise known as a 2 ×
4 matrix. The only difference between this and the preceding example is that we
called the .reshape method, and passed in a 2 and a 4 value — telling numpy to
take the array and transform it into a 2*4 matrix.

Standard matrix notation is m*n, where m is the number of rows and n specifies
the number of columns in the matrix.

U
sin

g
 P

y
th

o
n

 fo
r D

a
ta

S
c
ie

n
c
e

 a
n

d
 V

isu
a

liza
tio

n

CHAPTER 2 Using Python for Data Science and Visualization 715

Using the .arange and reshape method is just one way to create NumPy arrays.
You can also generate arrays from lists and tuples.

In the snow dataset contained in the earlier section “Having fun with functions,”
the snow depth data for different locations is stored inside three separate Python
lists — one list per month:

>>> december_depth=[0,120,140,0,150,80,0,10]

>>> january_depth=[20,180,140,0,170,170,30,30]

>>> february_depth=[0,100,100,40,100,160,40,40]

It would be more efficient to have the measurements stored in a better-
consolidated structure. For example, you can easily put all those lists in a single
NumPy array by using the following code snippet:

>>>depth=numpy.array([december_depth,january_depth,february_depth])

>>> print(depth)

[[0 120 140 0 150 80 0 10]

[20 180 140 0 170 170 30 30]

[0 100 100 40 100 160 40 40]]

Using this structure allows you to pull out certain measurements more efficiently.
For example, if you want to calculate the average of the snow depth for the first
location in each of the three months, you’d extract the first elements of each hori-
zontal row (values 0, 20, and 0, to be more precise). You can complete the extrac-
tion in a single line of code by taking a slice of the dataset and then calculating the
mean by way of the NumPy mean function. The term slicing refers to taking a slice
out of dataset. Here’s an example:

>>> numpy.mean(depth[:,1])

133.33333333333334

The preceding code snippet instructs the computer to go to column index position
1 and calculate the mean of the value in that column. The values in the column at
column index 1 are 120, 180, and 100. When you calculate the mean value of the
numbers, you get 133.3.

Beyond using NumPy to extract information from single matrices, you can use
it to interact with different matrices as well — applying standard mathematical
operations between matrices, for example, or even applying nonstandard opera-
tors, such as matrix inversion, summarize, and minimum/maximum operators.

Array objects have the same rights as any other objects in Python. You can pass
them as parameters to functions, set them as class attributes, or iterate through
array elements to generate random numbers.

716 BOOK 6 Applying Python Programming to Data Science

Getting up close and personal
with the SciPy library
SciPy is a collection of mathematical algorithms and sophisticated functions that
extends the capabilities of the NumPy library. The SciPy library adds some spe-
cialized scientific functions to Python for more specific tasks in data science. To
use SciPy’s functions within Python, you must first install and import the SciPy
library.

Some sticklers out there consider SciPy to be an extension of the NumPy library.
That’s because SciPy was built on top of NumPy — it uses NumPy functions but
adds to them.

SciPy offers functionalities and algorithms for a variety of tasks, including
vector quantization, statistical functions, discrete Fourier transform-algorithms,
orthogonal distance regression, airy functions, sparse eigenvalue solvers, maxi-
mum entropy fitting routines, n-dimensional image operations, integration
routines, interpolation tools, sparse linear algebra, linear solvers, optimization
tools, signal-processing tools, sparse matrices, and other utilities that aren’t
served by other Python libraries. Impressive, right? Yet that’s not even a complete
listing of the available SciPy utilities. If you’re dying to get hold of a complete list,
running the following code snippet in Python opens an extensive help module that
explains the SciPy library:

>>> import scipy

>>> help(scipy)

You need to first download and install the SciPy library before you can use this
code.

The help function used in the preceding code snippet returns a script that lists all
utilities that comprise SciPy and documents all SciPy’s functions and classes. This
information helps you understand what’s behind the prewritten functions and
algorithms that make up the SciPy library.

Because SciPy is still under development and therefore, changing and growing,
regularly check the help function to see what’s changed.

Bonding with MatPlotLib
for data visualization
Generally speaking, data science projects usually culminate in visual representa-
tions of objects or phenomena. In Python, things are no different. After taking

U
sin

g
 P

y
th

o
n

 fo
r D

a
ta

S
c
ie

n
c
e

 a
n

d
 V

isu
a

liza
tio

n

CHAPTER 2 Using Python for Data Science and Visualization 717

baby steps (or some not-so-baby steps) with NumPy and SciPy, you can use
Python’s MatPlotLib library to create complex visual representations of your
dataset or data analysis findings. MatPlotLib, when combined with NumPy and
SciPy, creates an excellent environment in which to work when solving problems
using data science.

Looking more closely at MatPlotLib, you may notice that it is a 2-dimensional
plotting library you can use in Python to produce figures from data. You can
use MatPlotLib to produce plots, histograms, scatterplots, and a variety of
other data graphics. What’s more, because the library gives you full control of
your visualization’s symbology, line styles, fonts, and colors, you can even use
MatPlotLib to produce publication-quality data graphics.

As is the case with all other libraries in Python, in order to work with MatPlotLib,
you first need to install and import the library into your script. After you complete
those tasks, it’s easy to get started producing graphs and charts.

To illustrate how to use MatPlotLib, consider the following NumPy array (which
was created in the “Saying hello to the NumPy library” section, earlier in this
chapter):

>>> print(depth)

[[0 120 140 0 150 80 0 10]

[20 180 140 0 170 170 30 30]

[0 100 100 40 100 160 40 40]]

With the following few lines of code, using just a for loop and a MatPlotLib
function — pyplot — you can easily plot all measurements in a single graph
within Python:

>>> import matplotlib.pyplot as plt

>>> for month in depth:

 plt.plot(month)

>>> plt.show()

Heads up for MacOS users who may have recently upgraded to Big Sur and
already used MatPlotLib before (but didn’t update), the first line of code gen-
erates a “Segmentation Error 11.” The best way to fix this is to uninstall & re-
install MatPlotLib. Learn more here: https://stackoverflow.com/questions/
64841082/segmentation-fault-11-python-after-upgrading-to-os-big-sur

The preceding code snippet instantly generates the line chart you see in Figure 2-2.

https://stackoverflow.com/questions/64841082/segmentation-fault-11-python-after-upgrading-to-os-big-sur
https://stackoverflow.com/questions/64841082/segmentation-fault-11-python-after-upgrading-to-os-big-sur

718 BOOK 6 Applying Python Programming to Data Science

Each line in the graph represents the depth of snow at different locations in the
same month. The preceding code you use to build this graph is simple; if you want
to make a better representation, you can add color or text font attributes to the
plot function. Of course, you can also use other types of data graphics, depending
on which types best show the data trends you want to display. What’s important
here is that you know when to use each of these important libraries and that you
understand how you can use the Python programming language to make data
analysis both easy and efficient.

Peeking into the Pandas offering
The pandas library makes data analysis much faster and easier with its accessible
and robust data structures. Its precise purpose is to improve Python’s perfor-
mance with respect to data analysis and modeling. It even offers some data visu-
alization functionality by integrating small portions of the MatPlotLib library. The
two main Pandas data structures are described in this list:

 » Series: A Series object is an array-like structure that can assume either a

horizontal or vertical dimension. You can think of a Pandas Series object as

being similar to one row or one column from an Excel spreadsheet.

 » DataFrame: A DataFrame object acts like a tabular data table in Python. Each

row or column in a DataFrame can be accessed and treated as its own Pandas

Series object.

FIGURE 2-2:
Time-series plot

of monthly snow

depth data.

U
sin

g
 P

y
th

o
n

 fo
r D

a
ta

S
c
ie

n
c
e

 a
n

d
 V

isu
a

liza
tio

n

CHAPTER 2 Using Python for Data Science and Visualization 719

Indexing is integrated into both data structure types, making it easy to access and
manipulate your data. Pandas offers functionality for reading in and writing out
your data, which makes it easy to use for loading, transferring, and saving data-
sets in whatever formats you want. Lastly, Pandas offers excellent functionality
for reshaping data, treating missing values, and removing outliers, among other
tasks. This makes Pandas an excellent choice for data preparation and basic data
analysis tasks. If you want to carry out more advanced statistical and machine
learning methods, you’ll need to use the Scikit-learn library. The good news is
that Scikit-learn and Pandas play well together.

Learning from data with Scikit-learn

Scikit-learn is far and away Python’s best machine learning library. With it,
you can execute all sorts of machine learning methods, including classification,
regression, clustering, dimensionality reduction, and more. The library also offers
a preprocessing module that is wonderfully supportive whenever you need to pre-
pare your data for predictive modeling. Scikit-learn offers a model selection mod-
ule that’s readily available with all sorts of metrics to help you build your models
and choose the best-performing model among a selection.

You’ll want to write clear, concise documentation within your Python code to
detail how and why the code works. You can also write comments within your
Python code by simply starting the comment line with a hash symbol — the # sym-
bol. The Python interpreter will ignore anything written after the #.

CHAPTER 3 Getting a Crash Course in Matplotlib 721

Getting a Crash Course
in Matplotlib

P
ython makes the task of converting your textual data into graphics relatively

easy using Matplotlib, which is actually a simulation of the MATLAB appli-

cation. MATLAB and Matplotlib are both prominent data visualization tools,

essentially with the same technical backbone. However, the tools cater to dif-

ferent preferences and environments. MATLAB is a comprehensive, commercial

platform known for its numerical analysis and wide-ranging application-specific
toolboxes, offering a cohesive environment. There is a financial cost associ-
ated with using MATLAB as it is distributed by a software vendor. In contrast,

Matplotlib is a free, open-source plotting library within the Python ecosystem,

specifically designed for data science-targeted activities. While MATLAB offers
an all-in-one proprietary environment with robust support, Matplotlib appeals

to those who prefer the open nature of the Python community and seek a flexible
tool for creating a wide variety of 2D and 3D visualizations. The choice between

them often hinges on specific project needs, budget constraints, and program-

matic integration requirements. This chapter is solely focused on the matplotlib

library, the open-source platform.

You can see a comparison of Matplotlib and MATLAB at https://pyzo.org/

python_vs_matlab.html. (If you don’t know how to use MATLAB, see MATLAB For

Dummies, by John Paul Mueller [Wiley]), if you’d like to learn.)

Chapter 3

IN THIS CHAPTER

 » Creating a basic graph

 » Adding measurement lines to your

graph

 » Dressing your graph up with styles

and color

 » Documenting your graph with labels,

annotations, and legends

https://pyzo.org/python_vs_matlab.html
https://pyzo.org/python_vs_matlab.html

722 BOOK 6 Applying Python Programming to Data Science

Starting with a Graph

A graph or chart is simply a visual representation of numeric data. Matplotlib

makes a large number of graph and chart types available to you. Of course, you

can choose any of the common graph and graph types such as bar charts, line

graphs, or pie charts. You can also access a huge number of statistical plot types,

such as boxplots, error bar charts, and histograms. You can see a gallery of the

various graph types that Matplotlib supports at https://matplotlib.org/

gallery.html. Remember, though, that you can combine graphic ele-

ments in almost infinite ways to create your own presentation of data, no
matter how complex that data may be. The following sections describe how to

create a basic graph, but you have access to a lot more functionality than these

sections tell you about.

Defining the plot
Plots show graphically what you’ve defined numerically. To define a plot, you
need some values, the matplotlib.pyplot module, and an idea of what you want

to display, as shown in the following code:

import matplotlib.pyplot as plt

%matplotlib inline

values = [1, 5, 8, 9, 2, 0, 3, 10, 4, 7]

plt.plot(range(1,11), values)

plt.show()

In this case, the code tells the plt.plot() function to create a plot using x-axis

values between 1 and 11 and y-axis values as they appear in the values vari-

able. Calling plot.show() displays the plot in a separate dialog box, as shown in

Figure 3-1. Notice that the output is a line graph. Book 6, Chapter 4 shows you
how to create other chart and graph types.

The %matplotlib inline magic function (used for embedding plots and other

images) has become optional in newer versions of Python. However, including it
is still a good idea, especially if you share your code with other people.

https://matplotlib.org/gallery.html
https://matplotlib.org/gallery.html

G
e

ttin
g

 a
 C

ra
sh

 C
o

u
rse

in
 M

a
tp

lo
tlib

CHAPTER 3 Getting a Crash Course in Matplotlib 723

Drawing multiple lines and plots

You encounter many situations in which you must use multiple plot lines, such

as when comparing two sets of values. To create such plots using Matplotlib, you

simply call plt.plot() multiple times — once for each plot line, as shown in the
following example:

import matplotlib.pyplot as plt

%matplotlib inline

values = [1, 5, 8, 9, 2, 0, 3, 10, 4, 7]

values2 = [3, 8, 9, 2, 1, 2, 4, 7, 6, 6]

plt.plot(range(1,11), values)

plt.plot(range(1,11), values2)

plt.show()

When you run this example, you see two plot lines, as shown in Figure 3-2. Even
though you can’t see it in the printed book, the line graphs are different colors
(chosen by the library) so you can tell them apart.

FIGURE 3-1:
Creating a basic

plot that shows

just one line.

724 BOOK 6 Applying Python Programming to Data Science

Saving your work to disk

Jupyter Notebook makes it easy to include your graphs within the notebooks
you create, enabling you to define reports that everyone can easily understand.
When you need to save a copy of your work to disk for later reference or to use
it as part of a larger report, you save the graphic programmatically using the

plt.savefig() function, as shown in the following code:

import matplotlib.pyplot as plt

%matplotlib auto

values = [1, 5, 8, 9, 2, 0, 3, 10, 4, 7]

plt.plot(range(1,11), values)

plt.ioff()

plt.savefig('MySamplePlot.png', format='png')

In this case, you must provide a minimum of two inputs. The first input is the
filename. You may optionally include a path for saving the file. The second
input is the file format. In this case, the example saves the file in Portable
Network Graphic (PNG) format, but you have other options: Portable Document
Format (PDF), Postscript (PS), Encapsulated Postscript (EPS), and Scalable
Vector Graphics (SVG).

Note the presence of the %matplotlib auto magic in this case. Using this call

removes the inline display of the graph. You do have options for other Matplotlib

backends, depending on which version of Python and Matplotlib you use. For

example, some developers prefer the notebook backend to the inline backend

FIGURE 3-2:
Defining a plot

that contains

multiple lines.

G
e

ttin
g

 a
 C

ra
sh

 C
o

u
rse

in
 M

a
tp

lo
tlib

CHAPTER 3 Getting a Crash Course in Matplotlib 725

because it provides additional functionality. However, to use the notebook

backend, you must also restart the kernel, and you may not always see what

you expect. To see the backend list, use the %matplotlib -l magic. In addition,

calling plt.ioff() turns plot interaction off.

Setting the Axis, Ticks, and Grids

It’s hard to know what the data actually means unless you provide a unit of mea-

sure or at least some means of performing comparisons. The use of axes, ticks,

and grids makes it possible to illustrate graphically the relative size of data ele-

ments so that the viewer gains an appreciation of comparative measure. You

won’t use these features with every graphic, and you may employ the features

differently based on viewer needs, but it’s important to know that these features
exist and how you can use them to help document your data within the graphic

environment.

The following examples use the %matplotlib notebook magic so that you

can see the difference between it and the %matplotlib inline magic. The two

inline displays rely on a different graphic engine. Consequently, you must choose
Kernel ➪ Restart to restart the kernel before you run any of the examples in the

sections that follow.

Getting the axes

The axes define the x and y plane of the graphic. The x axis runs horizontally, and
the y axis runs vertically. In many cases, you can allow Matplotlib to perform any

required formatting for you. However, sometimes you need to obtain access to the

axes and format them manually. The following code shows how to obtain access

to the axes for a plot:

import matplotlib.pyplot as plt

%matplotlib notebook

values = [0, 5, 8, 9, 2, 0, 3, 10, 4, 7]

ax = plt.axes()

plt.plot(range(1,11), values)

plt.show()

The reason you place the axes in a variable, ax, instead of manipulating them

directly is to make writing the code simpler and more efficient. In this case, you
simply turn on the default axes by calling plt.axes(); then you place a handle to

726 BOOK 6 Applying Python Programming to Data Science

the axes in ax. A handle is a sort of pointer to the axes. Think of it as you would

a frying pan. You wouldn’t lift the frying pan directly but would instead use its

handle when picking it up.

Formatting the axes

Simply displaying the axes won’t be enough in many cases. Instead, you may want
to change the way Matplotlib displays them. For example, you may not want the

highest value to reach to the top of the graph. The following example shows just a
small number of tasks you can perform after you have access to the axes:

import matplotlib.pyplot as plt

%matplotlib notebook

plt.figure()

values = [0, 5, 8, 9, 2, 0, 3, 10, 4, 7]

ax = plt.axes()

ax.set_xlim([0, 11])

ax.set_ylim([-1, 11])

ax.set_xticks([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])

ax.set_yticks([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])

plt.plot(range(1,11), values)

plt.show()

In this case, the set_xlim() and set_ylim() calls change the axes limits — the
minimum and maximum coordinate values of each axis. The set_xticks() and

set_yticks() calls change the ticks used to display data. The ways in which you

can change a graph using these calls can become quite detailed. For example, you

can choose to change individual tick labels if you want.

Notice also the call to plt.figure(). If you don’t make this call, the code will

modify the first plot (figure) from the previous section (Figure 3-2) rather than
create a new figure. In fact, it will actually add to that previous figure, so what
you end up with is a mess that no one can figure out! Figure 3-3 shows the output
from this example. Notice how the changes affect how the line graph displays.

As you can see by viewing the differences between Figures 3-1, 3-2, and 3-3, the
%matlplotlib notebook magic produces a significantly different display. The con-

trols at the bottom of the display let you pan and zoom the display, move between

views you’ve created, and download the figure to disk when working with Jupyter
Notebook (they may not work at all in Google Colab). The button to the right of
the Figure 2 heading in Figure 3-3 lets you stop interacting with the graph after

G
e

ttin
g

 a
 C

ra
sh

 C
o

u
rse

in
 M

a
tp

lo
tlib

CHAPTER 3 Getting a Crash Course in Matplotlib 727

you’ve finished working with it. Any changes you’ve made to the presentation of
the graph remain afterward so that anyone looking at your notebook will see the

graph in the manner you intended. The ability to interact with the graph ends

when you display another graph.

Adding grids

Grid lines enable you to see the precise value of each element of a graph. You can
more quickly determine both the x and y coordinates, which allow you to perform

comparisons of individual points with greater ease. Of course, grids also add noise

(added information) and make seeing the actual flow of data harder. The point
is that you can use grids to good effect to create particular effects. The following
code shows how to add a grid to the graph in the previous section:

import matplotlib.pyplot as plt

%matplotlib notebook

plt.figure()

values = [0, 5, 8, 9, 2, 0, 3, 10, 4, 7]

ax = plt.axes()

ax.set_xlim([0, 11])

FIGURE 3-3:
Specifying how

the axes should

appear to

the viewer.

728 BOOK 6 Applying Python Programming to Data Science

ax.set_ylim([-1, 11])

ax.set_xticks([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])

ax.set_yticks([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])

ax.grid()

plt.plot(range(1,11), values)

plt.show()

All you need to do add a grid to your plot is call the grid() function. As with many

other Matplotlib functions, you can add parameters to create the grid precisely as

you want to see it. For example, you can choose whether to add the x grid lines,

y grid lines, or both. The output from this example appears in Figure 3-4. In this
case, the figure shows the notebook backend with interaction turned off.

FIGURE 3-4:
Adding grids

makes the values
easier to read.

G
e

ttin
g

 a
 C

ra
sh

 C
o

u
rse

in
 M

a
tp

lo
tlib

CHAPTER 3 Getting a Crash Course in Matplotlib 729

Defining the Line Appearance
Just drawing lines on a page won’t do much for you if you need to help the viewer

understand the importance of your data. In most cases, you need to use differ-

ent line styles to ensure that the viewer can tell one data grouping from another.

However, to emphasize the importance or value of a particular data grouping,

you need to employ color. The use of color communicates all sorts of ideas to the

viewer. For example, green often denotes that something is safe, and red com-

municates danger. The following sections help you understand how to work with

line style and color to communicate ideas and concepts to the viewer without

using any text.

Working with line styles

Line styles help differentiate graphs by drawing the lines in various ways. Using a
unique presentation for each line helps you distinguish each line so that you can

call it out (even when the printout is in shades of gray). You could also call out a
particular line graph by using a different line style for it (and using the same style
for the other lines). Table 3-1 shows the various Matplotlib line styles.

The line style appears as a third argument to the plot() function call. You simply

provide the desired string for the line type, as shown in the following example.

import matplotlib.pyplot as plt

%matplotlib inline

values = [1, 5, 8, 9, 2, 0, 3, 10, 4, 7]

values2 = [3, 8, 9, 2, 1, 2, 4, 7, 6, 6]

plt.plot(range(1,11), values, '--')

plt.plot(range(1,11), values2, ':')

plt.show()

MAKING GRAPHICS ACCESSIBLE
Avoiding assumptions about someone’s ability to see your graphic presentation is
essential. For example, someone who is color blind may not be able to tell that one line

is green and the other red. Likewise, someone with low vision may not be able to distin-

guish between a dashed line and one that combines dashes and dots. Using multiple

methods to distinguish each line helps ensure that everyone can see your data in a
manner that is comfortable for each person.

730 BOOK 6 Applying Python Programming to Data Science

In this case, the first line graph uses a dashed line style, while the second line
graph uses a dotted line style. (Note that you must restart the kernel again to
switch from the %matplotlib notebook to the %matplotlib inline style.) You
can see the results of the changes in Figure 3-5.

Using colors

Color is another way in which to differentiate line graphs. Of course, this method
has certain problems. The most significant problem occurs when someone makes
a black-and-white copy of your colored graph — hiding the color differences as
shades of gray. Another problem is that someone with color blindness may not be

able to tell one line from the other. All this said, color does make for a brighter,

eye-grabbing presentation. Table 3-2 shows the colors that Matplotlib supports.

TABLE 3-1	 Matplotlib Line Styles
Character Line Style

’-’ Solid line

’--’ Dashed line

’-.’ Dash-dot line

’:’ Dotted line

FIGURE 3-5:
Line styles help

differentiate
between plots.

G
e

ttin
g

 a
 C

ra
sh

 C
o

u
rse

in
 M

a
tp

lo
tlib

CHAPTER 3 Getting a Crash Course in Matplotlib 731

As with line styles, the color appears in a string as the third argument to the

plot() function call. In this case, the viewer sees two lines — one in red and the
other in magenta. The data points are the same as those used for Figure 3-2, just
with different colors. If you’re reading the printed version of the book, Figure 3-2
appears in shades of gray instead of color, as does this new presentation.

import matplotlib.pyplot as plt

%matplotlib inline

values = [1, 5, 8, 9, 2, 0, 3, 10, 4, 7]

values2 = [3, 8, 9, 2, 1, 2, 4, 7, 6, 6]

plt.plot(range(1,11), values, 'r')

plt.plot(range(1,11), values2, 'm')

plt.show()

Adding markers

Markers add a special symbol to each data point in a line graph. Unlike line style

and color, markers tend to be a little less susceptible to accessibility and printing

issues. Even when the specific marker isn’t clear, people can usually differentiate
one marker from the other. Table 3-3 shows the list of markers that Matplotlib
provides.

TABLE 3-2	 Matplotlib Colors

Character Color

’b’ Blue

’g’ Green

’r’ Red

’c’ Cyan

’m’ Magenta

’y’ Yellow

’k’ Black

’w’ White

732 BOOK 6 Applying Python Programming to Data Science

As with line style and color, you add markers as the third argument to a plot()

call. In the following example, you see the effects of combining line style with a
marker to provide a unique line-graph presentation.

import matplotlib.pyplot as plt

%matplotlib inline

TABLE 3-3	 Matplotlib Markers

Character Marker Type

’.’ Point

’,’ Pixel

’o’ Circle

’v’ Triangle 1 down

’^’ Triangle 1 up

’<’ Triangle 1 left

’>’ Triangle 1 right

’1’ Triangle 2 down

’2’ Triangle 2 up

’3’ Triangle 2 left

’4’ Triangle 2 right

’s’ Square

’p’ Pentagon

’*’ Star

’h’ Hexagon style 1

’H’ Hexagon style 2

’+’ Plus

’x’ X

’D’ Diamond

’d’ Thin diamond

’|’ Vertical line

’_’ Horizontal line

G
e

ttin
g

 a
 C

ra
sh

 C
o

u
rse

in
 M

a
tp

lo
tlib

CHAPTER 3 Getting a Crash Course in Matplotlib 733

values = [1, 5, 8, 9, 2, 0, 3, 10, 4, 7]

values2 = [3, 8, 9, 2, 1, 2, 4, 7, 6, 6]

plt.plot(range(1,11), values, 'o--')

plt.plot(range(1,11), values2, 'v:')

plt.show()

Notice how the combination of line style and marker makes each line stand out
in Figure 3-6. Even when printed in black and white, you can easily differentiate
one line from the other, which is why you usually want to combine presentation

techniques.

Using Labels, Annotations, and Legends
To fully document your graph, you usually have to resort to labels, annotations,

and legends. Each of these elements has a different purpose, as follows:

 » Label: Provides positive identification of a particular data element or group-

ing. The purpose is to make it easy for the viewer to know the name or kind
of data illustrated.

 » Annotation: Augments the information the viewer can immediately see
about the data with notes, sources, or other useful information. In contrast to

a label, the purpose of annotation is to help extend the viewer’s knowledge of
the data rather than simply identify it.

FIGURE 3-6:
Markers help

to emphasize

individual values.

734 BOOK 6 Applying Python Programming to Data Science

 » Legend: Presents a listing of the data groups within the graph and often

provides cues (such as line type or color) to make identification of the data
group easier. For example, all the red points may belong to group A, and all

the blue points may belong to group B.

The following sections help you understand the purpose and usage of various doc-

umentation aids provided with Matplotlib. These documentation aids help you

create an environment in which the viewer is certain of the source, purpose, and

usage of data elements. Some graphs work just fine without any documentation
aids, but in other cases, you may find that you need to use all three in order to
communicate with your viewer fully.

Adding labels

Labels help people understand the significance of each axis of any graph you cre-

ate. Without labels, the values portrayed don’t have any significance. In addition
to a moniker, such as rainfall, you can add units of measure, such as inches or

centimeters, so your audience knows how to interpret the data shown. The fol-

lowing example shows how to add labels to your graph:

import matplotlib.pyplot as plt

%matplotlib inline

values = [1, 5, 8, 9, 2, 0, 3, 10, 4, 7]

plt.xlabel('Entries')

plt.ylabel('Values')

plt.plot(range(1,11), values)

plt.show()

The call to xlabel() documents the x axis of your graph, while the call the

ylabel() documents the y axis of your graph. Figure 3-7 shows the output of this
example.

Annotating the chart

You use annotation to draw special attention to points of interest on a graph. For

example, you may want to point out that a specific data point is outside the usual
range expected for a particular dataset. The following example shows how to add

annotation to a graph:

import matplotlib.pyplot as plt

%matplotlib inline

G
e

ttin
g

 a
 C

ra
sh

 C
o

u
rse

in
 M

a
tp

lo
tlib

CHAPTER 3 Getting a Crash Course in Matplotlib 735

values = [1, 5, 8, 9, 2, 0, 3, 10, 4, 7]

plt.annotate(xy=[1,1], text='First Entry')

plt.plot(range(1,11), values)

plt.show()

The call to annotate() provides the labeling you need. You must provide a loca-

tion for the annotation by using the xy parameter, as well as provide text to place

at the location by using the text parameter. The annotate() function also pro-

vides other parameters that you can use to create special formatting or placement

onscreen. Figure 3-8 shows the output from this example.

Creating a legend

A legend documents the individual elements of a plot. Each line is presented in
a table that contains a label for it so that people can differentiate between each
line. For example, one line may represent sales for one year and another line may

represent sales during the next year, so you include an entry in the legend for

each line that is labeled with the years. The following example shows how to add

a legend to your plot.

import matplotlib.pyplot as plt

%matplotlib inline

values = [1, 5, 8, 9, 2, 0, 3, 10, 4, 7]

FIGURE 3-7:
Use labels to

identify the axes.

736 BOOK 6 Applying Python Programming to Data Science

values2 = [3, 8, 9, 2, 1, 2, 4, 7, 6, 6]

line1 = plt.plot(range(1,11), values)

line2 = plt.plot(range(1,11), values2)

plt.legend(['First', 'Second'], loc=4)

plt.show()

The call to legend() occurs after you create the plots, not before, as with some of

the other functions described in this chapter. The call contains a list of the labels

you want to use in the order of the plots you generate. So, 'First' is associated

with line1, and 'Second' is associated with line2.

The default location for the legend is the upper-right corner of the plot, which

proved inconvenient for this particular example. Adding the loc parameter lets

you place the legend in a different location. See the legend() function documen-

tation at https://matplotlib.org/2.0.2/api/pyplot_api.html#matplotlib.

pyplot.figlegend for additional legend locations. Figure 3-9 shows the output
from this example.

FIGURE 3-8:
Annotation can

identify points

of interest.

https://matplotlib.org/2.0.2/api/pyplot_api.html#matplotlib.pyplot.figlegend
https://matplotlib.org/2.0.2/api/pyplot_api.html#matplotlib.pyplot.figlegend

G
e

ttin
g

 a
 C

ra
sh

 C
o

u
rse

in
 M

a
tp

lo
tlib

CHAPTER 3 Getting a Crash Course in Matplotlib 737

FIGURE 3-9:
Use legends

to identify

individual lines.

CHAPTER 4 Visualizing the Data 739

Visualizing the Data

B
ook 6, Chapter 3 helps you understand the mechanics of working with
Matplotlib, which is an important first step toward using it. This chapter
takes the next step in helping you use Matplotlib to perform useful work.

The main goal of this chapter is to help you visualize your data in various ways.
Creating a graphic presentation of your data is essential if you want to help other
people understand what you’re trying to say. Even though you can see what the
numbers mean in your mind, other people will likely need graphics to see what
point you’re trying to make by manipulating data in various ways.

The chapter starts by looking at some basic graph types that Matplotlib supports.
You don’t find the full list of graphs and plots listed in this chapter — it could
take an entire book to explore them all in detail. However, you do find the most
common types.

In the remainder of the chapter, you begin exploring specific sorts of plotting
as it relates to data science. Of course, no book on data science would be com-

plete without exploring scatterplots, which are used to help people see patterns
in seemingly unrelated data points. Because much of the data that you work with
today is time related or geographic in nature, the chapter devotes two special
sections to these topics. You also get to work with both directed and undirected
graphs, which is fine for social media analysis.

Chapter 4

IN THIS CHAPTER

 » Selecting the right graph for the job

 » Working with advanced scatterplots

 » Exploring time-related and

geographical data

 » Creating graphs

740 BOOK 6 Applying Python Programming to Data Science

Choosing the Right Graph

The kind of graph you choose determines how people view the associated data,
so choosing the right graph from the outset is important. For example, when you
want people to form opinions on how data elements compare through the use
of precise counts, you use a bar chart. The idea is to choose a graph that natu-

rally leads people to draw the conclusion that you need them to draw about the
data that you’ve carefully massaged from various data sources. (You also have the
option of using line graphs — a technique demonstrated in Book 6, Chapter 3.)
The following sections describe the various graph types and provide you with
basic examples of how to use them.

Creating comparisons with bar charts

Bar charts make comparing values easy. The wide bars and segregated measure-

ments emphasize the differences between values rather than the flow of one
value to another as a line graph does. Fortunately, you have all sorts of methods
at your disposal for emphasizing specific values and performing other tricks. The
following example shows just some of the things you can do with a vertical bar
chart:

import matplotlib.pyplot as plt

%matplotlib inline

values = [5, 8, 9, 10, 4, 7]

widths = [0.7, 0.8, 0.7, 0.7, 0.7, 0.7]

colors = ['b', 'r', 'b', 'b', 'b', 'b']

plt.bar(range(0, 6), values, width=widths,

 color=colors, align='center')

plt.show()

To create even a basic bar chart, you must provide a series of x coordinates and
the heights of the bars. The example uses the range() function to create the
x coordinates, and values contains the heights.

Of course, you may want more than a basic bar chart, and Matplotlib pro-

vides a number of ways to get the job done. In this case, the example uses the
width parameter to control the width of each bar, emphasizing the second bar
by making it slightly larger. The larger width shows up even in a black-and-

white printout. It also uses the color parameter to change the color of the target
bar to red (the rest are blue).

V
isu

a
lizin

g
 th

e
 D

a
ta

CHAPTER 4 Visualizing the Data 741

As with other chart types, the bar chart provides some special features that
you can use to make your presentation stand out. The example uses the align

parameter to center the data on the x coordinate (the standard position is to the
left). You can also use other parameters, such as hatch, to enhance the visual
appearance of your bar chart. Figure 4-1 shows the output of this example.

This chapter helps you get started using Matplotlib to create a variety of chart and
graph types. Of course, more examples are better, so you can also find some more
advanced examples on the Matplotlib site at https://matplotlib.org/stable/
gallery/index.html. Some of the examples, such as those that demonstrate
animation techniques, become quite advanced, but with practice you can use any
of them to improve your own charts and graphs.

Showing distributions using histograms

Histograms categorize data by breaking it into bins, where each bin contains a
subset of the data range. A histogram then displays the number of items in each
bin so that you can see the distribution of data and the progression of data from
bin to bin. In most cases, you see a curve of some type, such as a bell curve. The
following example shows how to create a histogram with randomized data:

import numpy as np

import matplotlib.pyplot as plt

%matplotlib inline

FIGURE 4-1:
Bar charts make it

easier to perform

comparisons.

https://matplotlib.org/stable/gallery/index.html
https://matplotlib.org/stable/gallery/index.html

742 BOOK 6 Applying Python Programming to Data Science

x = 20 * np.random.randn(10000)

plt.hist(x, 25, range=(-50, 50), histtype='stepfilled',

 align='mid', color='g', label='Test Data')

plt.legend()

plt.title('Step Filled Histogram')

plt.show()

In this case, the input values are a series of random numbers. The distribution of
these numbers should show a type of bell curve. As a minimum, you must pro-

vide a series of values, x in this case, to plot. The second argument contains the
number of bins to use when creating the data intervals. The default value is 10.
Using the range parameter helps you focus the histogram on the relevant data and
exclude any outliers.

You can create multiple histogram types. The default setting creates a bar chart.
You can also create a stacked bar chart, stepped graph, or filled stepped graph (the
type shown in the example). In addition, it’s possible to control the orientation of
the output with vertical as the default.

As with most other charts and graphs in this chapter, you can add special features
to the output. For example, the align parameter determines the alignment of
each bar along the baseline. Use the color parameter to control the colors of the
bars. The label parameter doesn’t actually appear unless you also create a legend
(as shown in this example). Figure 4-2 shows typical output from this example.

FIGURE 4-2:
Histograms

let you see

distributions

of numbers.

V
isu

a
lizin

g
 th

e
 D

a
ta

CHAPTER 4 Visualizing the Data 743

Random data varies call by call. Every time you run the example, you see slightly
different results because the random-generation process differs.

Depicting groups using boxplots

Boxplots provide a means of depicting groups of numbers through their quartiles
(three points dividing a group into four equal parts). A boxplot may also have lines,
called whiskers, indicating data outside the upper and lower quartiles. The spacing
shown within a boxplot helps indicate the skew and dispersion of the data. The
following example shows how to create a boxplot with randomized data:

import numpy as np

import matplotlib.pyplot as plt

%matplotlib inline

spread = 100 * np.random.rand(100)

center = np.ones(50) * 50

flier_high = 100 * np.random.rand(10) + 100

flier_low = -100 * np.random.rand(10)

data = np.concatenate((spread, center,

 flier_high, flier_low))

plt.boxplot(data, sym='gx', widths=.75, notch=True)

plt.show()

To create a usable dataset, you need to combine several different number-

generation techniques, as shown at the beginning of the example. Here’s how
these techniques work:

 » spread: Contains a set of random numbers between 0 and 100

 » center: Provides 50 values directly in the center of the range of 50

 » flier_high: Simulates outliers between 100 and 200

 » flier_low: Simulates outliers between 0 and –100

The code combines all these values into a single dataset using concatenate().
Being randomly generated with specific characteristics (such as a large number of
points in the middle), the output will show specific characteristics but will work
fine for the example.

The call to boxplot() requires only data as input. All other parameters have
default settings. In this case, the code sets the presentation of outliers to green Xs
by setting the sym parameter. You use widths to modify the size of the box (made

744 BOOK 6 Applying Python Programming to Data Science

extra-large in this case to make the box easier to see). Finally, you can create a
square box or a box with a notch using the notch parameter (which normally
defaults to False). Figure 4-3 shows typical output from this example.

The box shows the three data points as the box, with the red line in the middle
being the median. The two black horizontal lines connected to the box by whiskers
show the upper and lower limits (for four quartiles). The outliers appear above
and below the upper and lower limit lines as green Xs.

Seeing data patterns using scatterplots

Scatterplots show clusters of data rather than trends (as with line graphs) or dis-

crete values (as with bar charts). The purpose of a scatterplot is to help you see
multidimensional data patterns. The following example shows how to create a
scatterplot using randomized data:

import numpy as np

import matplotlib.pyplot as plt

%matplotlib inline

x1 = 5 * np.random.rand(40)

x2 = 5 * np.random.rand(40) + 25

FIGURE 4-3:
Use boxplots to

present groups

of numbers.

V
isu

a
lizin

g
 th

e
 D

a
ta

CHAPTER 4 Visualizing the Data 745

x3 = 25 * np.random.rand(20)

x = np.concatenate((x1, x2, x3))

y1 = 5 * np.random.rand(40)

y2 = 5 * np.random.rand(40) + 25

y3 = 25 * np.random.rand(20)

y = np.concatenate((y1, y2, y3))

plt.scatter(x, y, s=[100], marker='^', c='m')

plt.show()

The example begins by generating random x and y coordinates. For each
x coordinate, you must have a corresponding y coordinate. It’s possible to create a
scatterplot using just the x and y coordinates.

You can dress up a scatterplot in a number of ways. In this case, the s parameter
determines the size of each data point. The marker parameter determines the data
point shape. You use the c parameter to define the colors for all the data points,
or you can define a separate color for individual data points. Figure 4-4 shows the
output from this example.

FIGURE 4-4:
Use scatterplots

to show groups of

data points and

their associated

patterns.

746 BOOK 6 Applying Python Programming to Data Science

Creating Advanced Scatterplots

Scatterplots are especially important for data science because they can show data
patterns that aren’t obvious when viewed in other ways. You can see data group-

ings with relative ease and help the viewer understand when data belongs to a
particular group. You can also show overlaps between groups and even demon-

strate when certain data is outside the expected range. Showing these various
kinds of relationships in the data is an advanced technique that you need to know
in order to make the best use of Matplotlib. The following sections demonstrate
how to perform these advanced techniques on the scatterplot you created earlier
in the chapter.

Depicting groups

Color is the third axis when working with a scatterplot. Using color lets you high-

light groups so that others can see them with greater ease. The following example
shows how you can use color to show groups within a scatterplot:

import numpy as np

import matplotlib.pyplot as plt

%matplotlib inline

x1 = 5 * np.random.rand(50)

x2 = 5 * np.random.rand(50) + 25

x3 = 30 * np.random.rand(25)

x = np.concatenate((x1, x2, x3))

y1 = 5 * np.random.rand(50)

y2 = 5 * np.random.rand(50) + 25

y3 = 30 * np.random.rand(25)

y = np.concatenate((y1, y2, y3))

color_array = ['b'] * 50 + ['g'] * 50 + ['r'] * 25

plt.scatter(x, y, s=[50], marker='D', c=color_array)

plt.show()

The example works essentially the same as the scatterplot example in the previ-
ous section, except that this example uses an array for the colors. Unfortunately,
if you’re seeing this in the printed book, the differences between the shades of
gray in Figure 4-5 will be hard to see. However, the first group is blue, followed
by green for the second group. Any outliers appear in red.

V
isu

a
lizin

g
 th

e
 D

a
ta

CHAPTER 4 Visualizing the Data 747

Showing correlations

In some cases, you need to know the general direction that your data is taking
when looking at a scatterplot. Even if you create a clear depiction of the groups,
the actual direction that the data is taking as a whole may not be clear. In this
case, you add a trendline to the output. Here’s an example of adding a trendline to
a scatterplot that includes groups whose data points aren’t as clearly separated as
in the scatterplot shown previously in Figure 4-5:

import numpy as np

import matplotlib.pyplot as plt

import matplotlib.pylab as plb

%matplotlib inline

x1 = 15 * np.random.rand(50)

x2 = 15 * np.random.rand(50) + 15

x3 = 30 * np.random.rand(25)

x = np.concatenate((x1, x2, x3))

y1 = 15 * np.random.rand(50)

y2 = 15 * np.random.rand(50) + 15

y3 = 30 * np.random.rand(25)

y = np.concatenate((y1, y2, y3))

color_array = ['b'] * 50 + ['g'] * 50 + ['r'] * 25

plt.scatter(x, y, s=[90], marker='*', c=color_array)

z = np.polyfit(x, y, 1)

FIGURE 4-5:
Color arrays

can make the

scatterplot

groups stand

out better.

748 BOOK 6 Applying Python Programming to Data Science

p = np.poly1d(z)

plb.plot(x, p(x), 'm-')

plt.show()

The code for creating the scatterplot is essentially the same as in the example
in the “Depicting groups” section earlier in the chapter, but the plot doesn’t
define the groups as clearly. Adding a trendline means calling the NumPy
polyfit() function with the data, which returns a vector of coefficients, p, that

minimizes the least-squares error. (Least-square regression is a method for
finding a line that summarizes the relationship between two variables, x and y

in this case, at least within the domain of the explanatory variable x. The third
polyfit() parameter expresses the degree of the polynomial fit.)

The vector output of polyfit() is used as input to poly1d(), which calculates the
actual y axis data points. The call to plot() creates the trendline on the scatter-

plot. You can see a typical result of this example in Figure 4-6.

Plotting Time Series

Nothing is truly static. When you view most data, you see an instant of time — a
snapshot of how the data appeared at one particular moment. Of course, such
views are both common and useful. However, sometimes you need to view data
as it moves through time — to see it as it changes. Only by viewing the data as
it changes can you expect to understand the underlying forces that shape it. The
following sections describe how to work with data on a time-related basis.

FIGURE 4-6:
Scatterplot

trendlines can

show you the

general data

direction.

V
isu

a
lizin

g
 th

e
 D

a
ta

CHAPTER 4 Visualizing the Data 749

Representing time on axes

Many times, you need to present data over time. The data could come in many
forms, but generally, you have some type of time tick (one unit of time), followed
by one or more features that describe what happens during that particular tick.
The following example shows a simple set of days and sales on those days for a
particular item in whole (integer) amounts.

import pandas as pd

import matplotlib.pyplot as plt

import datetime as dt

%matplotlib inline

start_date = dt.datetime(2023, 7, 29)

end_date = dt.datetime(2023, 8, 7)

daterange = pd.date_range(start_date, end_date)

sales = (np.random.rand(

 len(daterange)) * 50).astype(int)

df = pd.DataFrame(sales, index=daterange,

 columns=['Sales'])

print(df)

The example begins by specifying the start_date and end_date, then using them
to create daterange, the range of dates used for the output. It then creates a series
of random values to use as data points and places them in sales. The number
of values must match the length for daterange, and normally, you’d rely on
actual data. The next step is to create a DataFrame to hold the information using
daterange as an index and the values in sales as the data. So, what you end up
with is a table of dates and associated values similar to this (the data values you
see will vary):

 Sales

2023-07-29 14

2023-07-30 47

2023-07-31 17

2023-08-01 4

2023-08-02 38

2023-08-03 18

2023-08-04 0

2023-08-05 25

2023-08-06 9

2023-08-07 2

750 BOOK 6 Applying Python Programming to Data Science

Now that you have some properly formatted data to use, it’s time to create a
plot. The following code shows a typical method of plotting data in the DataFrame

format shown previously:

df.loc['Jul 30 2023':'Aug 05 2023'].plot()

plt.ylim(0, 50)

plt.xlabel('Sales Date')

plt.ylabel('Sale Value')

plt.title('Plotting Time')

plt.show()

Using df.loc accesses rows and columns in a DataFrame using labels, which are
dates in string format in this case. So, the resulting plot won’t show all of the data
in df; it will instead show just the data from 'Jul 30 2023' to 'Aug 05 2023'.
The call to plot() creates a line graph containing the requested data. The rest
of the code provides various formatting and labeling features for the plot, which
is then displayed using plt.show(). Figure 4-7 shows the result.

FIGURE 4-7:
Use line graphs to

show the flow of
data over time.

V
isu

a
lizin

g
 th

e
 D

a
ta

CHAPTER 4 Visualizing the Data 751

Plotting trends over time

As with any other data presentation, sometimes you really can’t see what direc-

tion the data is headed in without help. The following example starts with the plot
from the previous section and adds a trendline to it:

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import datetime as dt

%matplotlib inline

start_date = dt.datetime(2023, 7, 29)

end_date = dt.datetime(2023, 8, 7)

daterange = pd.date_range(start_date, end_date)

sales = (np.random.rand(

 len(daterange)) * 50).astype(int)

df = pd.DataFrame(sales, index=daterange,

 columns=['Sales'])

lr_coef = np.polyfit(range(0, len(df)), df['Sales'], 1)

lr_func = np.poly1d(lr_coef)

trend = lr_func(range(0, len(df)))

df['trend'] = trend

df.loc['Jul 30 2023':'Aug 05 2023'].plot()

plt.xlabel('Sales Date')

plt.ylabel('Sale Value')

plt.title('Plotting Time')

plt.legend(['Sales', 'Trend'])

plt.show()

The “Showing correlations” section earlier in this chapter, shows how most
people add a trendline to their graph. In fact, this is the approach that you often
see used online. You’ll also notice that a lot of people have trouble using this
approach in some situations. This example takes a slightly different approach by
adding the trendline directly to the DataFrame. If you print df after the call to
df['trend'] = trend, you see trendline data similar to the values shown here:

 Sales trend

2023-07-29 41 28.181818

2023-07-30 6 26.896970

2023-07-31 14 25.612121

2023-08-01 29 24.327273

752 BOOK 6 Applying Python Programming to Data Science

2023-08-02 46 23.042424

2023-08-03 14 21.757576

2023-08-04 33 20.472727

2023-08-05 6 19.187879

2023-08-06 28 17.903030

2023-08-07 7 16.618182

Using this approach makes it ultimately easier to plot the data. You call plot()

only once and avoid relying on the matplotlib.pylab function shown in the
example in the “Showing correlations” section.

When you plot the initial data, the call to plot() automatically generates a legend
for you. Matplotlib doesn’t automatically add the trendline, so you must also cre-

ate a new legend for the plot. Figure 4-8 shows typical output from this example
using randomly generated data.

Plotting Geographical Data

Knowing where data comes from or how it applies to a specific place can be impor-

tant. For example, if you want to know where food shortages have occurred and
plan how to deal with them, you need to match the data you have to geograph-

ical locations. The same holds true for predicting where future sales will occur.

FIGURE 4-8:
Add a trendline to

show the average

direction of

change in a chart

or graph.

V
isu

a
lizin

g
 th

e
 D

a
ta

CHAPTER 4 Visualizing the Data 753

You may find that you need to use existing data to determine where to put new
stores. Otherwise, you could put a store in a location that won’t receive much in
the way of sales, and the effort will lose money rather than make it. The follow-

ing sections describe how to work with Cartopy (https://pypi.org/project/
Cartopy) to interact with geographical data.

You must shut the Notebook environment down before you make any changes, or
else conda will complain that some files are in use. To shut the Notebook envi-
ronment down, close and halt the kernel for any Notebook files you have open
and then click Quit in the Jupyter page or press Ctrl+C in the Notebook terminal
window. Wait a few seconds to give the files time to close properly before you
attempt to do anything.

Using an environment in Notebook

Some of the packages you install also have a tendency to change your Notebook
environment by installing other packages that may not work well with your
baseline setup. Consequently, you see problems with code that functioned earlier.
Normally, these problems consist mostly of warning messages, such as depreca-

tion warnings.

In some cases, however, the changed packages can also tweak the output you
obtain from code. Perhaps a newer package uses an updated algorithm or interacts
with the code differently. When you have a package, such as Cartopy that makes
changes to the overall baseline configuration, and you want to maintain your cur-

rent configuration, you need to set up an environment for it. An environment
keeps your baseline configuration intact but also allows the new package to create
the environment it needs to execute properly. The following steps help you create
the Cartopy environment used for this chapter:

1. Open an Anaconda Prompt.

Notice that the prompt shows the location of your folder on your system but

that it’s preceded by (base). The (base) indicator tells you you’re in your

baseline environment — the one you want to preserve.

2. Type conda create -n Cartopy python=3.10 anaconda=2023.03 and press

Enter.

This action creates a new Cartopy environment. This new environment will use

Python 3.10 and Anaconda 2023.03-1. You get precisely the same baseline as

you’ve been using so far.

https://pypi.org/project/Cartopy/
https://pypi.org/project/Cartopy/

754 BOOK 6 Applying Python Programming to Data Science

3. Type y and press Enter when asked if you want to proceed.

The installation process begins. This process can take a while to complete,

especially when the software needs to download packages from online, so

you need to be patient.

4. Type conda activate Cartopy and press Enter.

You have now changed over to the Cartopy environment. Notice that the

prompt no longer says (base); it says (Cartopy) instead.

5. Type conda install -c conda-forge cartopy and press Enter to install your

copy of Cartopy.

6. Type y and press Enter when asked if you want to proceed.

The installation process begins.

7. (Optional) After the installation, make sure you’re in your Notebooks

directory using a command such as cd \Users\John\Anaconda Projects

(for Windows developers).

8. Type Jupyter Notebook and press Enter.

You see Notebook start, but it uses the Cartopy environment rather than the

(base) environment. This copy of Notebook works precisely the same as any

other copy of Notebook that you’ve used. The only difference is the environ-

ment in which it operates.

This same technique works for any special package that you want to install. You
should reserve it for packages that you don’t intend to use every day. For exam-

ple, this book uses Cartopy for just one example, so creating an environment for
it is appropriate.

After you have finished using the Cartopy environment, press Ctrl+C to stop the
server, type conda deactivate at the prompt, and press Enter. You see the prompt
change back to (base).

Using Cartopy to plot geographic data

Now that you have a good installation of Cartopy, you can do something with it.
To start with, you need to import all the required packages:

import numpy as np

import matplotlib.pyplot as plt

import matplotlib.ticker as mticker

import cartopy.crs as ccrs

V
isu

a
lizin

g
 th

e
 D

a
ta

CHAPTER 4 Visualizing the Data 755

import cartopy

from cartopy.mpl.gridliner import \

 LONGITUDE_FORMATTER, LATITUDE_FORMATTER

%matplotlib inline

These various packages let you download the map, format it, and add points of
interest to it. The following example shows how to draw a map and place pointers
to specific locations on it:

austin = (-97.75, 30.25)

hawaii = (-157.8, 21.3)

washington = (-77.01, 38.90)

chicago = (-87.68, 41.83)

losangeles = (-118.25, 34.05)

ax = plt.axes(projection=ccrs.Mercator(

 central_longitude=-110))

ax.coastlines()

ax.set_extent([-60, -160, 50, 10],

 crs=ccrs.PlateCarree())

ax.add_feature(cartopy.feature.OCEAN, zorder=0,

 facecolor='aqua')

ax.add_feature(cartopy.feature.LAND, zorder=0,

 edgecolor='black', facecolor='lightgray')

ax.add_feature(cartopy.feature.LAKES, zorder=0,

 edgecolor='black', facecolor='lightblue')

ax.add_feature(cartopy.feature.BORDERS, zorder=0,

 edgecolor='gray')

x, y = list(zip(*[austin, hawaii, washington,

 chicago, losangeles]))

gl = ax.gridlines(

 crs=ccrs.PlateCarree(), draw_labels=True,

 linewidth=2, color='gray', alpha=0.5,

 linestyle='--')

gl.xlabels_top = False

gl.left_labels = False

gl.xlocator = mticker.FixedLocator(list(x))

gl.ylocator = mticker.FixedLocator(list(y))

gl.xformatter = LONGITUDE_FORMATTER

gl.yformatter = LATITUDE_FORMATTER

756 BOOK 6 Applying Python Programming to Data Science

ax.plot(x, y, 'ro', markersize=6,

 transform=ccrs.Geodetic())

plt.title("Mercator Projection")

plt.show()

The example begins by defining the longitude and latitude for various cities. It
then creates the basic map. The projection parameter defines the basic map
appearance. You can find a listing of projection types at https://scitools.
org.uk/cartopy/docs/v0.15/crs/projections.html. The central_longitude

parameter defines where the map is centered. To see the coastlines of the various
countries, you use the coastlines() method. This example doesn’t look at the
whole world, so it uses the set_extent() method to crop the map to size.

The example uses the add_feature() to add features to the basic map. You can
color the features in various ways to provide a distinctive look. The features are
documented more fully at https://scitools.org.uk/cartopy/docs/v0.14/
matplotlib/feature_interface.html.

In this case, the example creates x and y coordinates using the previously stored
longitude and latitude values. As part of displaying the coordinates, the map
also creates gridlines to show their longitude and latitude with the gridlines()

method. The resulting object, gl, allows you to modify the grid characteris-

tics. The documentation at https://scitools.org.uk/cartopy/docs/v0.13/
matplotlib/gridliner.html tells you more about working with gridlines.

The code then plots these locations on the map in a contrasting color so that you
can easily see them. The final step is to display the map, as shown in Figure 4-9.

FIGURE 4-9:
Maps can

illustrate data

in ways other

graphics can’t.

https://scitools.org.uk/cartopy/docs/v0.15/crs/projections.html
https://scitools.org.uk/cartopy/docs/v0.15/crs/projections.html
https://scitools.org.uk/cartopy/docs/v0.14/matplotlib/feature_interface.html
https://scitools.org.uk/cartopy/docs/v0.14/matplotlib/feature_interface.html
https://scitools.org.uk/cartopy/docs/v0.13/matplotlib/gridliner.html
https://scitools.org.uk/cartopy/docs/v0.13/matplotlib/gridliner.html

V
isu

a
lizin

g
 th

e
 D

a
ta

CHAPTER 4 Visualizing the Data 757

Visualizing Graphs

A graph (in the network sense of the word) is a depiction of data showing the con-

nections between data points (called nodes) using lines (called edges). The pur-

pose is to show that some data points relate to others, but not all the data points
that appear on the graph. Think about a map of a subway system. Each station
connects to other stations, but no single station connects to all the stations in
the subway system. Graphs are a popular data science topic because of their use
in social media analysis. When performing social media analysis, you depict and
analyze networks of relationships, such as friends or business connections, from
social hubs such as Facebook, Google+, Twitter, or LinkedIn.

The two common depictions of graphs are undirected, where the graph simply
shows lines between data elements, and directed, where arrows added to the line
show that data flows in a particular direction. For example, consider a depiction
of a water system. The water would flow in just one direction in most cases, so
you could use a directed graph to depict not only the connections between sources
and targets for the water but also to show water direction by using arrows. The
following sections help you understand the two types of graphs better and show
you how to create them.

Developing undirected graphs

As previously stated, an undirected graph simply shows connections between
nodes. The output doesn’t provide a direction from one node to the next. For
example, when establishing connectivity between web pages, no direction is
implied. The following example shows how to create an undirected graph:

import networkx as nx

import matplotlib.pyplot as plt

%matplotlib inline

G = nx.Graph()

H = nx.Graph()

G.add_node(1)

G.add_nodes_from([2, 3])

G.add_nodes_from(range(4, 7))

H.add_node(7)

G.add_nodes_from(H)

G.add_edge(1, 2)

G.add_edge(1, 1)

G.add_edges_from([(2,3), (3,6), (4,6), (5,6)])

758 BOOK 6 Applying Python Programming to Data Science

H.add_edges_from([(4,7), (5,7), (6,7)])

G.add_edges_from(H.edges())

nx.draw_networkx(G, node_color='yellow')

plt.show()

This example builds the graph using a number of techniques. It begins by import-
ing the Networkx package. To create a new undirected graph, the code calls the
Graph() constructor, which can take a number of input arguments to use as attri-
butes. However, you can build a perfectly usable graph without using attributes,
which is what this example does.

The easiest way to add a node is to call add_node() with a node number. You can
also add a list, dictionary, or range() of nodes using add_nodes_from(). In fact,
you can import nodes from other graphs if you want.

Even though the nodes used in the example rely on numbers, you don’t have to
use numbers for your nodes. A node can use a single letter, a string, or even a
date. Nodes do have some restrictions. For example, you can’t create a node using
a Boolean value.

Nodes don’t have any connectivity at the outset. You must define connec-

tions (edges) between them. To add a single edge, you call add_edge() with
the numbers of the nodes that you want to add. As with nodes, you can use
add_edges_from() to create more than one edge using a list, dictionary, or
another graph as input. Figure 4-10 shows the output from this example. (Your
output may differ slightly but should have the same connections.)

FIGURE 4-10:
Undirected

graphs connect

nodes to form

patterns.

V
isu

a
lizin

g
 th

e
 D

a
ta

CHAPTER 4 Visualizing the Data 759

Developing directed graphs

You use directed graphs when you need to show a direction, say from a start point
to an end point. When you get a map that shows you how to get from one specific
point to another, the starting node and ending node are marked as such, and the
lines between these nodes (and all the intermediate nodes) show direction.

Your graphs need not be boring. You can dress them up in all sorts of ways so that
the viewer gains additional information in different ways. For example, you can
create custom labels, use specific colors for certain nodes, or rely on color to help
people see the meaning behind your graphs. You can also change edge line weight
and use other techniques to mark a specific path between nodes as the better one
to choose. The following example shows many (but not nearly all) the ways in
which you can dress up a directed graph and make it more interesting:

import networkx as nx

import matplotlib.pyplot as plt

%matplotlib inline

G = nx.DiGraph()

G.add_node(1)

G.add_nodes_from([2, 3])

G.add_nodes_from(range(4, 9))

G.add_edge(1, 2)

G.add_edges_from([(1,4), (4,5), (2,3), (3,6),

 (5,6), (6,7), (7,8)])

colors = ['r', 'g', 'g', 'g', 'g', 'm', 'm', 'r']

labels = {1:'Start', 2:'2', 3:'3', 4:'4',

 5:'5', 6:'6', 7:'7', 8:'End'}

sizes = [800, 300, 300, 300, 300, 600, 300, 800]

nx.draw_networkx(

 G, node_color=colors, node_shape='D',

 labels=labels, node_size=sizes, font_color='w')

plt.show()

The example begins by creating a directional graph using the DiGraph()

constructor. You should note that the NetworkX package also supports
MultiGraph() and MultiDiGraph() graph types. You can see a listing of all
the graph types at https://networkx.org/documentation/stable/reference/
classes/index.html.

https://networkx.org/documentation/stable/reference/classes/index.html
https://networkx.org/documentation/stable/reference/classes/index.html

760 BOOK 6 Applying Python Programming to Data Science

Adding nodes is much like working with an undirected graph. You can add single
nodes using add_node() and multiple nodes using add_nodes_from(). The order
of nodes in the call is important. The flow from one node to another is from left to
right in the list supplied to the call.

Adding edges is much the same as working with an undirected graph, too. You can
use add_edge() to add a single edge or add_edges_from() to add multiple edges
at one time. However, the order of the node numbers is important. The flow goes
from the left node to the right node in each pair.

This example adds special node colors, labels, shape (only one shape is used),
and sizes to the output. You still call on draw_networkx() to perform the task.
However, adding the parameters shown changes the appearance of the graph.
Figure 4-11 shows the output from this example.

FIGURE 4-11:
Use directed

graphs to

show direction

between nodes.

Index 761

Index

Symbols and Numerics
& (and) logical operator, 614

* (asterisk), 586

: (colon), 641

|| (concatenation) operator, 503–504

{} (curly braces), 612, 616

/ (divide) operator, 614

$ (dollar sign), 646

[[]] (double brackets), 610

== (double equal sign), 614, 648

= (equal) operator, 303–304, 508, 517

> (greater than) operator, 517, 614

>= (greater than or equal to) operator, 517, 614

(hash symbol), 640, 719

<- (is assigned, gets) operator, 614

-> (is assigned to) operator, 614

< (less than) operator, 517, 614

<= (less than or equal to) operator, 517, 614

- (minus) operator, 614

%% (modulo) operator, 614, 650

! (not) logical operator, 614

!= (not equals) operator, 614

<> (not equal) predicate, 517

| (or) logical operator, 614

+ (plus) operator, 614

^ (power) operator, 614

[] (single brackets), 610

~ (tilde) operator, 667

* (times) operator, 614

1:1 (one-to-one) relationship, 171

1NF (Codd’s First Normal Form), 472–473

A
ABS function, 499–500

Absolute mode, for macros, 77–78

Access category (Tableau), 292

access management, in Power BI, 253–254

accessing

macros, 77

reports, 133–136

Tableau Bridge Client, 364

ACOS function, 500

actual cardinality, 506

adaptive models, 128

add_edge() function, 758, 760

add_feature() method, 756

adding

annotations in MatPlotLib, 733–735

color to dashboards in Tableau, 377–378

content to dashboards, 242–244

context

about, 104–105

with annotations, 105, 106

with data, 105

with graphical elements, 105, 106

data

to imported, DirectQuery, and composite
models, 196–197

in tables, 195–196

fonts to dashboards in Tableau, 377–378

grids in MatPlotLib, 727–728

labels in MatPlotLib, 733–734

legends in MatPlotLib, 733–734, 735–737

markers in MatPlotLib, 731–733

metadata to worksheets in Tableau Desktop, 357

objects to dashboards in Tableau, 376–383

tables, 191–192

text to dashboards in Tableau, 377–378

add_node() function, 758, 760

ADLS (Microsoft Azure Data Lake Storage), 43, 45

aes() function, 672

aesthetic mapping, 672–673

aggregate functions, 533

762 Data Analytics & Visualization All-in-One For Dummies

Aggregate option, 325

aggregating

data using GROUP statement, 69

in Tableau, 273

tables, 179

AI (artificial intelligence)
Q&A feature and, 231–232

as a role of big data, 26

Airtable, 57

Alerts and Notifications feature (Tableau
Cloud), 428

aligning report pages, 235

ALL clause, 523–525

all-inclusive, 351

alternative hypotheses, 628–629

Amazon Simple Storage Service (S3), 43, 45

Amazon Web Services (AWS), 30, 44

Analysis menu (Tableau Desktop), 359–360

analytic data, operational data compared with,
47–48

analyzing

big data with enterprise business intelligence
practices, 39–40

data

in Power BI Desktop, 129–130

for trends, 12

networks with statnet and igraph, 621–622

spatial point patterns with spatstat, 622

AND connective, 531–532

and (&) logical operator, 614

Animation option (Format menu of Tableau
Desktop), 361, 362

annotate() function, 735

annotations

adding context with, 105, 106

adding in MatPlotLib, 733–735

anomalies, detecting, 162–163

ANY clause, 523–525

Apache Flume, 29

Apache Hadoop, 156

Apache Kafka, 29

Apache Sqoop, 29

append() function, 643

appending queries, 175–176

application file format, 53
applying

conditional formatting, 233

constraints

about, 479

assertions, 484–485

column constraints, 480–481

foreign key constraints, 483–484

table constraints, 481–483

data science to subject areas, 55–56

interactive elements in Tableau Desktop, 356

mathematical modeling to data science tasks, 54

approximate numerics, 464–466

apps, accessing reports from, 134–135

area boundary polygon, 102

area charts, 91, 92, 213–214, 408–410

ARIMA (AutoRegressive Integrated Moving
Average) time series forecasting, 619

arranging data, in data models

about, 199

hiding data, 200–201

sorting by/grouping by, 200

ARRAY type, 474

array value, 506

artificial intelligence (AI)
Q&A feature and, 231–232

as a role of big data, 26

“as a service” databases, 127

ASIN function, 500

as-is statement, 176

assertions, 484–485

asterisk (*), 586

ATAN function, 500

attributes, 617, 711

attributes() function, 619

automatic relationships, creating, 197–198

automating

data flows, 334
Excel tasks with Macros, 77–79

AutoRegressive Integrated Moving Average
(ARIMA) time series forecasting, 619

Index 763

AVG function, 493

axes

formatting in MatPlotLib, 726–727

representing time on, 749–750

Azure Streams, 242

Azure Synapse, 30

B
background, for report pages, 235

Background Images option (Map menu in Tableau
Desktop), 361

Background Layers option (Map menu in Tableau
Desktop), 361

Background Maps option (Map menu in Tableau
Desktop), 361

bar graphs/charts/plots

about, 92, 93

clustered, 211–212

combining with line charts, 215

in ggplot2, 675–676, 679–683

in MatPlotLib, 740–741

in Power BI, 209–213, 215

in R, 653–654, 660–661, 663–666

side-by-side, 400

stacked, 209–211, 212–213, 400

standard, horizontal, 400

in Tableau, 400–401

barplot() function, 660

Beginning Programming with Python For Dummies,
3rd Edition (Mueller), 692, 697

Best Practice icon, 4

best practices, for dashboards in Tableau,
382–383

BETWEEN clause, 517–519

big data

about, 19

analyzing with enterprise business intelligence
practices, 39–40

connecting with business intelligence, 39

importance of data, 30–35

overhyping, 28

roles of

about, 20

artificial intelligence (AI), 26
data reuse, 26–27

in data science and engineering, 36–38

decision-making, 22

insight management, 24–25

measuring, 23

monitoring, 23–24

operations, 20–21

problem solving, 26

reporting, 25–26

strategy, 21–22

sources of, 35

the three Vs, 27, 28–30

BIGINT type, 463–464

BINARY LARGE OBJECT (BLOB) type, 469

binary large objects (BLOBs), 46

binary strings, 468–469

BINARY type, 468

BINARY VARYING type, 468

binning, in Tableau Prep Builder, 343–344

blending data, from multiple sources, 307–308

BLOBs (binary large objects), 46

blue pill, in Tableau, 272

Boolean values, 469, 506

box and whisker plots

in ggplot2, 686–688

in MatPlotLib, 743–744

in R, 656–657, 669–670

in Tableau, 415–416

boxplot() function, 670, 743

Brainstorm step, in designing for target audience,
85–86

Breakdown (Visualizations pane), 218

bubble plots, 94, 95

bubbles, in Tableau, 402–406

buckets, 501

built systems, 38

built-in functions, in Python, 709–711

bullet charts, in Tableau, 418–419

business intelligence (BI)

about, 12–13

connecting big data with, 39

764 Data Analytics & Visualization All-in-One For Dummies

buttons

integrating in dashboards in Tableau, 380–381

story workspace, 385, 386

Buxton, Stephen (author)

Querying XML, 472

byte, 498

C
C++, 38

c() function, 638–639, 641

Calculated Fields section (Analysis menu of
Tableau Desktop), 360

call to action, in stories in Tableau, 384–385

capacities, in Power BI, 113

captions, resizing in stories, 389

cardinality, 499, 506

CARDINALITY function, 499, 506

cards

as indicators, 223–224

in Tableau Desktop, 352

Cartesian product joins, 592–593

Cartopy, 753–756

CASE expression, 507–509

CAST expression, 510–511

cast() function, 680

CAST function, 510–511

catalogs

in relational database hierarchy, 452

relational databases, 452

Categories (Visualizations pane), 218

categorizing fields, in Tableau Prep Builder,
340–342

cbind() function, 648

CEIL(ING) function, 501

changing

data in tables, 195–196

data to imported, DirectQuery, and composite
models, 196–197

root tables to data relationships, 300–301

sensitivity labels, 263

CHARACTER LARGE OBJECT (CLOB) type, 467

character strings, 464–468

CHARACTER type, 466

CHARACTER VARYING type, 467

character vector, 641

CHARACTER_LENGTH function, 498

charts. See also graphs

about, 25

in Excel, 71, 74–75

Cheat Sheet (website), 4

CHECK constraint, 481

checking data structures and column properties,
163–164

Choose most functional type for purpose step, in
designing for target audience, 86–87

choosing

data graphic type

about, 90–91

comparative graphics, 94–95

spatial plots and maps, 101–103

standard chart graphics, 91–94

statistical plots, 95–99

topology structures, 100–101

data visualizations, 205–206

design style, 87–90

graphs in MatPlotLib, 740–745

Tableau versions, 281

tools for data science strategies, 57–58

circles, in Tableau, 402–406

clarity, visualizing for data, 12

classes, in Python, 711–713

Clean Step option, 325

Cleanliness category (Tableau), 293

cleansing data, 162–165

Clear option (Format menu of Tableau Desktop),
361, 362

Clear tool, on toolbar in Tableau Desktop, 367

clinical information scientists, 56

clipboard data, working with, 309–311

cloropleth, 101–102

cloud providers, data storage pricing for, 44

clustered bar charts, 211–212

clustered column charts, 211–212

clustered index scan, 542

Index 765

clustering indexes, 603–604

COALESCE expression, 509–510

coastlines() method, 756

Codd’s First Normal Form (1NF), 472–473

code listings

aggregating data using GROUP statement, 69

assigning objects and concatenating in R, 610

defining classes in Python, 712
inner JOIN() function, 68

narrowing results using HAVING clause, 69

objects in R, 617–618

outer JOIN() function, 68

querying data using SELECT(), WHERE(), and
DATE(), 66–67

coding, 55

collaborating and sharing

in Power BI

about, 247

access management, 253–254

configuring workspaces, 250–253
creating workspaces, 250–253

data lineage, 258–262

data protection, 262–264

dataflows, 261–262
datasets, 261–262

managing data, 254–258

Microsoft Excel, 256

paginated reports, 258

Quick Insights, 256–257

settings and storage, 254

Usage Metrics reports, 257

workspaces, 247–254

in Power BI Services, 137–138

results, 133

in Tableau Cloud

about, 435–436

collections, 437–439

Explore feature, 439–440

recommendations engine, 440–441

shared with me, 436–437

sharing content, 435–436

collections

of data, 12, 53–54

in Tableau Cloud, 437–439

types for, 473–474

colnames() function, 676

colon (:), 641

color coding, in Tableau, 304

colors

adding to dashboards in Tableau, 377–378

using in MatPlotLib, 730–731

column charts

clustered, 211–212

stacked, 209–211, 212–213

column constraints, 480–481

column data

evaluating and transforming types

about, 171

combining queries, 174–180

finding and creating keys for joins, 171–173
shaping column data to meet Power Query

requirements, 173–174

shaping to meet Power Query requirements,
173–174

column indexes, 64–65

column properties, checking, 163–164

column values, 488

column-name joins, 597–598

columns

deleting in tables, 193–195

in relational database hierarchy, 452

renaming in tables, 193–195

in Tableau Prep Builder, 339–340

combining

data sources in Tableau, 294–296

queries, 174–180

SQL with host languages, 457

comma-separated values (CSV) file format, 53
comments, in R, 640

comparative graphics, 94–95

comparison operators, 560–563, 568–570

comparison predicates, 516, 517

766 Data Analytics & Visualization All-in-One For Dummies

complex data visualization, 228–231

complex format, in Python, 706

components, 45, 641

composite data models, adding and modifying
data to, 196–197

composite storage models, 150–151

Comprehensive R Archive Network (CRAN), 619,
630–631

concatenate() function, 610–611, 743

concatenation (||) operator, 503–504

concurrency control, 48

condition joins, 596–597

conditional formatting

applying, 233

in Excel, 71, 72–74

conditional value, 507–510

configuring
dashboards

in Power BI, 240

in Tableau, 372–374

data flows, 317–318
queries for data loading, 180–181

report pages, 233–235

report visualizations, 232–239

sensitivity labels, 263

workspaces, 250–253

connecting

big data with business intelligence, 39

to online sources, 160

relational databases, 452–453

constraints

applying

about, 479

assertions, 484–485

column constraints, 480–481

foreign key constraints, 483–484

table constraints, 481–483

designing, 63–64

consuming data, 53–54

CONTAINS filter, 330
content, adding to dashboards, 242–244

context, adding

about, 104–105

with annotations, 105, 106

with data, 105

with graphical elements, 105, 106

continuation prompt, 640

continuous compared with discrete data,
in Tableau, 272

Continuous field type, 341
continuous line chart, 406

CONVERT function, 496

converting

data types with CAST expression, 510–511

data visualizations to cross tabulation tables in
Tableau, 419–422

copying data, 48–49

Copy/Paste Formatting option (Format menu of
Tableau Desktop), 361, 362

core-based licensing model (Tableau), 283

cores consumed, 284

correlated subqueries, 566–571, 579–584

correlations

defined, 218
displaying in MatPlotLib, 747–748

COS function, 500

COSH function, 500

COUNT function, 492–493

CRAN (Comprehensive R Archive Network), 619,
630–631

creating

automatic relationships, 197–198

bar charts in Tableau, 400

bullet charts in Tableau, 418

circles in Tableau, 403–404

continuous line charts in Tableau, 407–408

dashboards, 240–241

data lakes, 42

data models

about, 17, 183–184

adding and modifying data to imported,
DirectQuery, and composite models, 196–197

Data view, 184–186

defining data types, 188–189
importing queries, 186–188

Index 767

managing formatting and data type properties,
189–191

managing tables, 191–196

Modeling view, 184–186

in Power BI Desktop, 128–129

data relationships, 297–298

data science pipeline, 692–693

data visualizations, 204–205

directed graphs, 759–760

dual combination charts in Tableau, 411

Gantt charts in Tableau, 417

heat maps in Tableau, 394–395

highlight tables in Tableau, 395–396

items in Power BI Desktop, 130–131

keys for joins, 171–173

manual relationships, 198–199

pie charts in Tableau, 398–399

PivotTables, 76

published data sources, 334–336

scatter plots in Tableau, 413–414

stacked area charts in Tableau, 410

stories in Tableau

about, 383, 386–389

evaluating story workspace, 385–386

formatting, 389–390

planning, 384–385

synthesizing data through Tableau story,
383–384

template apps, 138

treemaps in Tableau, 402

undirected graphs, 757–758

worksheets in Tableau Desktop, 355, 356

workspaces, 250–253

Creator bundle (Tableau), 281, 284

CRM (customer relationship management),
153

cross joins, 592–593

CSV (comma-separated values) file format, 53
.csv files, 321
CURENT_TIMESTAMP function, 502

curly braces ({}), 612, 616

Current Layout section (Dashboard menu of
Tableau Desktop), 358

CURRENT_DATE function, 502

CURRENT_TIME function, 502

CURRENT_USER, 491

customer relationship management (CRM), 153

Customization category (Tableau), 293

customizing dashboards, in Tableau, 374–376

Cycle Fields/and Swap Rows and Columns section
(Analysis menu of Tableau Desktop), 360

D
Dashboard menu (Tableau Desktop), 357–358

Dashboard pane, in Tableau, 373–374

dashboards

accessing reports from, 136

adding content, 242–244

best practices for, in Tableau, 382–383

configuring, 240
creating, 240–241

data visualization and

about, 239–240

adding content, 242–244

configuring, 240
creating new, 240–241

pinning reports, 245–246

embedding reports on, 138

extending in Tableau, 381–382

Power BI, 117

resizing in stories, 390

in Tableau

about, 274, 371–372

adding objects to, 376–383

configuring, 372–374
customizing, 374–376

in Tableau Desktop, 369–370

working with in Power BI Services, 136–137

data

about, 9–10, 167

adding

context with, 105

to imported, DirectQuery, and composite
models, 196–197

aggregating using GROUP statement, 69

768 Data Analytics & Visualization All-in-One For Dummies

data (continued)

analyzing in Power BI Desktop, 129–130

arranging in data models

about, 199

hiding data, 200–201

sorting by/grouping by, 200

business intelligence, 12–13

cleansing, 162–165

collecting, 53–54

configuring queries for data loading, 180–181
consuming, 53–54

copying, 48–49

data analysis, 16–17

data analytics, 13–14

data management, 15

defined, 127
evaluating and transforming column data types

about, 171

combining queries, 174–180

finding and creating keys for joins, 171–173
shaping column data to meet Power Query

requirements, 173–174

filtering, 207–208
getting

to know using Excel, 71–75

from Microsoft-based file systems, 151–153
from sources, 142–146

hiding, 200–201

importance of, 30–35

information compared with, 33–34

ingesting in Power BI Desktop, 125–126

joining input steps and, 323–324

latency of, 49

lifecycle of, 167–168

loading

about, 162–165

in Python, 695

modifying to imported, DirectQuery, and
composite models, 196–197

normalizing, 348–349

pivoting with, 345–348

preparing for data visualization

about, 141

checking data structures and column
properties, 163–164

cleansing data, 162–165

data statistics, 164–165

detecting anomalies and inconsistencies,
162–163

getting data from Microsoft-based file systems,
151–153

getting data from sources, 142–146

loading data, 162–165

managing data source settings, 146–147

relational data sources, 153–162

shared vs. local datasets, 147–150

storage and connection modes, 150–151

transforming data, 162–165

protecting when sharing and collaborating,
262–264

qualitative, 23

quantitative, 23

querying

about, 53–54

using SELECT(), WHERE(), and DATE(), 66–67

raw, 16

reformatting using PivotTables, 75–77

refreshing

in input step, 318

in Power BI Services, 138–139

resolving errors

during data import, 182

during importing of, 182

resolving inconsistencies

about, 168

finding root cause, 170
removing rows using Power Query, 170

replacing values, 168–170

semi-structured, 11

storing, 30, 31–32

structured, 10–11

summarizing using PivotTables, 75–77

transforming, 162–165

types of, 45–46

Index 769

unstructured, 11

visualizing, 17

data access, Python for, 697–698

data analysis, 16–17

data analytics, 13–14

data art, 84

data cleansing

about, 13

options for, 332–333

in Tableau, 279

data connections (Tableau)

about, 285, 288–289

data relationships

about, 296

advantages of, 296–297

changing root table of, 300–301

creating, 297–298

disadvantages of, 297

editing, 299

moving tables to create different, 299–300
removing tables from, 301–302

data sources

combining, 294–296

options for, 286–288

setting up, 292–293

joining data

about, 302

blending data from multiple sources, 307–308

clipboard data, 309–311

creating joins, 304–306

join types, 302–303

joining fields that contain null values, 306
setting up join clauses, 303–304

requesting new connectors, 291

Tableau Desktop, 289–290

Tableau Online, 290–291

Tableau Prep, 289–290

Tableau Server, 290–291

data display, Python for, 698

data engineering, 36–38

data engineers, 52

data fields, in Tableau, 270

data flows
about, 314–316

automating, 334

configuring, 317–318
filtering, 329–333
grouping, 327–328

input step, 318–324

nurturing, 324–327

data frames

about, 610

in R, 646–649

data governance, 15

data graphics

selecting types

about, 90–91

comparative graphics, 94–95

spatial plots and maps, 101–103

standard chart graphics, 91–94

statistical plots, 95–99

topology structures, 100–101

testing, 103–104

data insights

defined, 52
deriving from statistical methods, 55

data integrity, 62

data journalists, 56

data lakes

about, 30, 41–42

building, 42

components of, 45

copying data, 48–49

data services for, 43

data types, 45–46

enterprise-data warehouse, 49–50

expanding, 43–45

operational vs. analytic data, 47–48

data life cycle, Tableau versions by, 282–283

data lineage, for sharing and collaborating,
258–262

data loading, configuring queries for, 180–181
data management, 15

data mart, 30

770 Data Analytics & Visualization All-in-One For Dummies

Data menu (Tableau Desktop), 354–355

data mining, 13

data models

about, 183

arranging data

about, 199

hiding data, 200–201

sorting by/grouping by, 200

creating

about, 17, 183–184

adding and modifying data to imported,
DirectQuery, and composite models, 196–197

Data view, 184–186

defining data types, 188–189
importing queries, 186–188

managing formatting and data type properties,
189–191

managing tables, 191–196

Modeling view, 184–186

in Power BI Desktop, 128–129

defined, 129
managing relationships

about, 197

creating automatic relationships, 197–198

creating manual relationships, 198–199

deleting relationships, 199

publishing, 201–202

data presentation, 13

data processing. See information technology (IT)

data product managers, 56

data relationships

about, 296

advantages of, 296–297

changing root tables of, 300–301

creating, 297–298

disadvantages of, 297

editing, 299

moving tables to create different, 299–300
removing tables from, 301–302

data reuse, as a role of big data, 26–27

data schema, 11

data science

about, 36–37, 51–52

data insights

about, 52–53

applying data science to subject areas, 55–56

applying mathematical modeling to data
science tasks, 54

coding, 55

collecting data, 53–54

consuming data, 53–54

deriving from statistical methods, 55

querying data, 53–54

database design

about, 62–63

defining data types, 63
designing constraints, 63–64

normalizing databases, 64–66

Excel

about, 70

automating tasks with macros, 77–79

getting to know data, 71–75

reformatting with PivotTables, 75–77

summarizing with PivotTables, 75–77

Python and

about, 691–692

creating data science pipeline, 692–693

learning Python, 695–696

role of Python in data science, 693–695

using Python ecosystem for data science,
699–702

working with Python, 697–699

relational databases

about, 58–60

keys, 61–62

role of big data in, 36–38

selecting tools for, 57–58

SQL databases

about, 58–60

keys, 61–62

SQL functions, 66–69

using Python for, 703–705

Data Science For Dummies, 3rd Edition (Pierson),
54, 55

Index 771

data scientists, 693–694

data services, for data lakes, 43

data showcasing, 83

Data Source tab, in Tableau Desktop, 353

data sources

blending data from multiple, 307–308

creating published, 334–336

getting data from, 142–146

managing settings for, 146–147

publishing using Tableau Cloud, 336

relational, 153–162

in Tableau

about, 268–269, 286–288

combining, 294–296

setting up, 292–293

data statistics, 164–165

data storytelling, 82–83

data structures

about, 337–338

categorizing fields, 340–342
checking, 163–164

columns, 339–340

for data visualization

about, 342

binning, 343–344

distributions, 344–345

histograms, 343–344

outliers, 344–345

pivoting with data, 345–348

fields, 339–340
in Python, 707

records, 338–339

rows, 338–339

data types

converting with CAST expression, 510–511

for data lakes, 45–46

defining, 63, 188–189
managing properties for, 189–191

in Python

about, 705–706

dictionaries, 708

lists, 707

numbers, 706

sets, 708

strings, 706–707

tuples, 707–708

in R, 626

in SQL

about, 461–462

approximate numerics, 464–466

ARRAY type, 474

BIGINT, 463–464

BINARY LARGE OBJECT (BLOB) type, 469

binary strings, 468–469

BINARY type, 468

BINARY VARYING type, 468

Booleans, 469

CHARACTER LARGE OBJECT (CLOB) type, 467

character strings, 466–468

CHARACTER type, 466

CHARACTER VARYING type, 467

collection types, 473–474

DATE type, 469

datetimes, 469–471

DECFLOAT type, 464

DECIMAL type, 464

distinct, 476

DOUBLE PRECISION type, 465–466

exact numerics, 462

FLOAT type, 466

INTEGER, 462–463

intervals, 471

NATIONAL CHARACTER LARGE OBJECT type,
467–468

NATIONAL CHARACTER type, 467–468

NATIONAL CHARACTER VARYING type, 467–468

NUMERIC type, 464

REAL type, 465

REF types, 475

ROW type, 472–473

SMALLINT, 463

structured, 477–478

772 Data Analytics & Visualization All-in-One For Dummies

data types (continued)

TIME WITH TIME ZONE type, 470

TIME WITHOUT TME ZONE type, 470

TIMESTAMP WITH TIME ZONE type, 471

TIMESTAMP WITHOUT TIME ZONE type,
470–471

user-defined types, 475–478
XML type, 471–472

in Tableau, 269–270

data values, entering

about, 487–488

column values, 488

literal values, 488–489

row values, 488

variables, 490–491

Data view, 184–186

data visualizations

about, 81–82, 227

adding context

about, 104–105

with annotations, 105, 106

with data, 105

with graphical elements, 105, 106

artificial intelligence (AI) and Q&A feature,
231–232

complex, 228–231

dashboards

about, 239–240

adding content, 242–244

configuring, 240
creating new, 240–241

pinning reports, 245–246

data structures for

about, 342

binning, 343–344

categorizing fields, 340–342
distributions, 344–345

histograms, 343–344

outliers, 344–345

designing for target audience

about, 84–85

Brainstorm step, 85–86

Choose most functional type for purpose step,
86–87

Define the purpose step, 86
in MatPlotLib

about, 739

bar charts, 740–741

boxplots, 743–744

depicting groups, 746–747

displaying correlations, 747–748

histograms, 741–743

plotting geographical data, 752–756

plotting time series, 748–752

scatterplots, 744–745, 746–748

selecting graphs, 740–745

visualizing graphs, 757–760

in Power BI

about, 203

area charts, 213–214

bar charts, 209–213, 215

column charts, 209–213

creating visualizations, 204–205

Donut charts, 219, 220

filtering data, 207–208
Funnel charts, 217–218

indicators, 222–225

line charts, 213–214, 215

maps, 221–222

Pie charts, 219, 220

reports, 203–208

Ribbon charts, 216

Scatter charts, 218–219

selecting visualizations, 205–206

treemaps, 219–221

types, 209–225

Waterfall charts, 216–217

preparing data for

about, 141

checking data structures and column
properties, 163–164

cleansing data, 162–165

data statistics, 164–165

Index 773

detecting anomalies and inconsistencies,
162–163

getting data from Microsoft-based file systems,
151–153

getting data from sources, 142–146

loading data, 162–165

managing data source settings, 146–147

relational data sources, 153–162

shared vs. local datasets, 147–150

storage and connection modes, 150–151

transforming data, 162–165

for reports

about, 232–233

applying conditional formatting, 233

configuring report page, 233–235
exporting reports, 235–236

preparing reports for distribution, 236–239

selecting data graphic type

about, 90–91

comparative graphics, 94–95

spatial plots and maps, 101–103

standard chart graphics, 91–94

statistical plots, 95–99

topology structures, 100–101

selecting design style, 87–90

in Tableau

about, 391–392

area chart, 408–410

bar chart, 400–401

box and whisker plot, 415–416

bubbles, 402–406

bullet chart, 418–419

circles, 402–406

converting to cross tabulation tables, 419–422

dual combination chart, 411–412

Gantt chart, 416–418

heat map, 394–395

highlight table, 395–396

histogram, 414–415

line chart, 406–408

maps with/without symbols, 396–398

pie chart, 398–399

publishing, 422–424

scatter plot, 412–414

text table, 392–394

treemap, 401–402

table-based, 228–231

testing data graphics, 103–104

types of

about, 82

data art, 84

data showcasing, 83

data storytelling, 82–83

data warehouse, 30, 49

databases

“as a service,” 127

creating unions among, 320–324

designing, 62–66

nonrelational, 156–158

normalizing, 64

in Power BI Desktop, 126–128

relational

about, 58–62, 155–156, 445

catalogs, 452

connections, 452–453

functional dependencies, 447–448

hierarchy of, 452

keys, 61–62, 448–450

multisets, 446–447

object-extended, 46

paths, 454

privileges, 451

relational database hierarchy, 452

relational model and, 445–446

relations, 446–447

routines, 453

schemas, 451

sessions, 452–453

sets, 446–447

tables, 446–447

transactions, 452–453

users, 450

views, 450

SQL, 58–62

774 Data Analytics & Visualization All-in-One For Dummies

dataflows
about, 114–115

for sharing and collaborating, 261–262

DataFrame objects, 718

datasets

about, 115

shared vs. local, 147–150

for sharing and collaborating, 261–262

types for data, 138–139

Dataverse button (Home Ribbon), 185

date data type, 63

DATE() function, querying data using, 66–67

DATE type, 469

datetime value functions, 502

datetimes, 469–471, 504–505

datum, 30

DECFLOAT type, 464

DECIMAL type, 464

decision engines, 607

decision-making, 13, 22

decomposition trees, 230

dedicated capacity, 113

Define the purpose step, in designing for target
audience, 86

defining
data types, 63, 188–189

line appearance in MatPlotLib

about, 729

adding markers, 731–733

line styles, 729–730

using colors, 730–731

plots in MatPlotLib, 722–723

DELETE statement, using subqueries in, 571–574

deleting

columns in tables, 193–195

relationships, 199

sheets in Tableau Desktop, 370

stories, 390

tables, 193

dependencies, multiple, 64

dependent variables, in R, 625

depicting groups, in MatPlotLib, 746–747

descriptive data analytics, 13

descriptive statistics, 624

design style, selecting, 87–90

designing

databases, 62–66

for target audience

about, 84–85

Brainstorm step, 85–86

Choose most functional type for purpose step,
86–87

Define the purpose step, 86
detecting anomalies and inconsistencies, 162–163

determinant, 447

Developer tab (Excel), 77

developing

automatic relationships, 197–198

bar charts in Tableau, 400

bullet charts in Tableau, 418

circles in Tableau, 403–404

continuous line charts in Tableau, 407–408

dashboards, 240–241

data lakes, 42

data models

about, 17, 183–184

adding and modifying data to imported,
DirectQuery, and composite models, 196–197

Data view, 184–186

defining data types, 188–189
importing queries, 186–188

managing formatting and data type properties,
189–191

managing tables, 191–196

Modeling view, 184–186

in Power BI Desktop, 128–129

Device Layouts section (Dashboard menu of
Tableau Desktop), 357, 358

diagnostic data analytics, 14

dictionaries, in Python, 708

DiGraph() function, 759–760

dim() function, 644

Dimension field type, 341
dimensions, in Tableau, 270–272

directed graphs, creating, 759–760

Index 775

directors of data science, 56

DirectQuery

about, 138–139, 150–151

adding and modifying data to data models,
196–197

Discrete field type, 341
discrete line chart, 407

displaying correlations, in MatPlotLib, 747–748

DISTINCT clause, 526

distinct number, 164

distinct types, 476

distributions

graphing in R, 652–653

preparing reports for, 236–239

in Tableau Prep Builder, 344–345

divide (/) operator, 614

dollar sign ($), 646

domain-specific, 36
Donut charts, 219, 220

dot charts

in ggplot2, 676–679

in R, 662–663

dot notation, 713

double brackets ([[]]), 610

double equal sign (==), 614, 648

DOUBLE PRECISION type, 465–466

downloading R, 608

drawing multiple lines and plots, in MatPlotLib,
723–724

draw_networks() function, 760

dual combination chart, in Tableau, 411–412

dual mode, 151

dual-line chart, 407

Duplicate Field option, 329

Duplicate tool, on toolbar in Tableau Desktop, 367

DurusWorks, 698

E
edges, 757

Edit Locations option (Map menu in Tableau
Desktop), 361

editing

data relationships, 299

reports in Power BI Services, 132–136

Editing view (Power BI), 116

ELT (extraction, transformation, and loading),
48–49

embedded SQL, 457–460

embedding reports and dashboards, on
websites, 138

enabling updates, in Tableau Desktop, 357

Encapsulated Postscript (ES), 724

Enter Data button (Home Ribbon), 185

entering data values

about, 487–488

column values, 488

literal values, 488–489

row values, 488

variables, 490–491

enterprise business intelligence practices,
analyzing big data with, 39–40

enterprise resource planning (ERP), 153

enterprise-data warehouse, 49–50

environments, Notebook, 753–754

equal (=) operator, 303–304, 508, 517

equi-joins, 594–596

ERP (enterprise resource planning), 153

errors

resolving during data import, 182

types of, 629–630

ES (Encapsulated Postscript), 724

ETL (Extract, Transport, Load) tool, 49, 313, 314

evaluating and transforming column data types

about, 171

combining queries, 174–180

finding and creating keys for joins, 171–173
shaping column data to meet Power Query

requirements, 173–174

evaluating story workspace, in Tableau,
385–386

exact numerics, 462

Excel Connector, connecting using, 141–143

Excel files, 321
Excel Workbook button (Home Ribbon), 185

EXCEPT operation, 590

776 Data Analytics & Visualization All-in-One For Dummies

executing SQL statements

about, 455–456

combining with host languages, 457

embedded SQL, 457–460

interactive SQL, 456

module language, 460–461

existence, testing for, 567

EXISTS clause, 525–526

EXP function, 500

expanding

data lakes, 43–45

tables, 179

explicit join, 171

Explore feature (Tableau Cloud), 439–440

Explorer bundle (Tableau), 281, 283–284

exporting

dashboards as graphics, 358

reports, 235–236

expressions (SQL)

array value, 506

Boolean value, 506

CAST, 510–511

conditional value, 507–510

datetime value, 504–505

interval value, 505

numeric value, 503

row value, 511–512

string value, 503–504

extending dashboards, in Tableau, 381–382

external routine, 453

externally invoked routine, 453

Extract, Transport, Load (ETL) tool, 49, 313, 314

EXTRACT function, 498

extracting input step updates, 319–320

extraction, transformation, and loading (ELT),
48–49

F
factor, 653

factor() function, 647

Favorites (Tableau Cloud), 432–434

features

of graphs in R, 658–660

Tableau Cloud

Favorites, 432–434

Personal Space, 430–431

Recents, 434–435

fields
categorizing in Tableau Prep Builder, 340–342

in Tableau Prep Builder, 339–340

File menu (Tableau Desktop), 353–354

files
creating unions among, 320–324

in Power BI Desktop, 126–128

filter cards, for report pages, 235
Filter pane, 235

filtering
data, 207–208

data flows, 329–333
filters

in Excel, 71, 72

in Tableau, 273

finding
keys for joins, 171–173

patterns for graphs

about, 651–652

bar graphs, 653–654

box and whisker plot, 656–657

graphing distributions, 652–653

pie graph, 654

scatter plot, 654–655

root cause of data inconsistencies, 170

First Normal Form (1NF), 472–473

Fit tool, on toolbar in Tableau Desktop, 368

Fix Axes tool, on toolbar in Tableau Desktop, 368

float format, in Python, 706
FLOAT type, 466

floating-point number, 465
FLOOR function, 501

fonts, adding to dashboards in Tableau, 377–378

for loops, in R, 649–650

forecast package, 619

Index 777

foreign key, 61–62

foreign key constraints, 483–484

Format menu (Tableau Desktop), 362–363

Format option

Format menu of Tableau Desktop, 361, 362

Story menu of Tableau Desktop, 359

formatting

axes in MatPlotLib, 726–727

managing (and data type properties), 189–191

report visualizations, 232–239

stories in Tableau, 389–390

worksheets in Tableau Desktop, 356–357

Formatting and Images section (Dashboard menu
of Tableau Desktop), 358

FROM clauses, 514–515

FTP server, 711

full outer join, 176, 302–303, 602–603

function call, 613

functional coding style, of Python, 694

functional dependencies, 447–448

functions. See also specific functions
aggregate, 533

Python, 709–711

R, 612–615, 638–639

set, 533

SQL, 66–69, 491–502

user-defined (R), 639–640
Funnel charts, 217–218

fuzzy matching, 176–177

G
Gantt charts

about, 94–95, 96

in Tableau, 416–418

gauges, 223

General Architecture for Text Engineering
(GATE), 69

generating

automatic relationships, 197–198

bar charts in Tableau, 400

bullet charts in Tableau, 418

circles in Tableau, 403–404

continuous line charts in Tableau, 407–408

dashboards, 240–241

data lakes, 42

data models

about, 17, 183–184

adding and modifying data to imported,
DirectQuery, and composite models, 196–197

Data view, 184–186

defining data types, 188–189
importing queries, 186–188

managing formatting and data type properties,
189–191

managing tables, 191–196

Modeling view, 184–186

in Power BI Desktop, 128–129

generic vectors, 609

Geocoding option (Map menu in Tableau
Desktop), 361

geographical data, plotting in MatPlotLib, 752–756

geom function, 672

geom_bar() function, 675–676

geom_boxplot() function, 686

geom_dotplot() function, 677

geom_histogram() function, 672–673

geom_jitter() function, 688

Get Data button (Home Ribbon), 185

getting

axes in MatPlotLib, 725–726

data

from Microsoft-based file systems, 151–153
from sources, 142–146

ggpairs() function, 685

ggplot() function, 672–673, 676, 679–680,
681–682, 683, 686

ggplot2

about, 671–672

bar plots, 675–676, 679–683

box plots, 686–688

dot charts, 676–679

histograms, 672–675

scatter plot matrix, 683–686

scatter plots, 683

visualizing R statistics with, 620–621

778 Data Analytics & Visualization All-in-One For Dummies

Google Colab, 699

Google Forms, 58

Google Sheets, 58, 70

granularity, in maps, 221

graph models, 100, 101

graphical elements, adding context with, 105, 106

graphing distributions, in R, 652–653

graphs

about, 651

directed, 759–760

exporting dashboards as, 358

finding patterns
about, 651–652

bar graphs, 653–654

box and whisker plot, 656–657

graphing distributions, 652–653

pie graph, 654

scatter plot, 654–655

MatPlotLib

about, 722

adding grids, 727–728

defining plots, 722–723
drawing multiple lines and plots, 723–724

formatting axes, 726–727

getting axes, 725–726

saving, 724–725

R

about, 657

bar plots, 660–661, 663–666

box plots, 669–670

dot charts, 662–663

features, 658–660

histograms, 657–658

pie graphs, 662

scatter plots, 666–669

saving dashboards as, 358

selecting in MatPlotLib, 740–745

undirected, 757–758

visualizing in MatPlotLib, 757–760

greater than (>) operator, 517, 614

greater than or equal to (>=) operator, 517, 614

green pill, in Tableau, 272

grid() function, 728

grids, adding in MatPlotLib, 727–728

Grids section (Dashboard menu of Tableau
Desktop), 357, 358

GROUP BY clauses, 533–535

Group Members tool, on toolbar in Tableau
Desktop, 367, 368

GROUP statement, aggregating data using, 69

grouping data flows, 327–328
groups, depicting in MatPlotLib, 746–747

H
Hadoop Distributed File System (HDFS), 30, 43

Hadoop MapReduce, 38

handle, 726

hash symbol (#), 640, 719

HAVING clause

about, 535–536, 570–571

narrowing results using, 69

SQL queries and, 551–554

HDFS (Hadoop Distributed File System), 30, 43

head() function, 669

heat map, in Tableau, 394–395

Help feature (Tableau Cloud), 427, 428

Help menu (Tableau Desktop), 365

helper queries, 180

Hide Field option, 329

hiding data, 200–201

hierarchical classification, 100, 101
highlight table, in Tableau, 395–396

Highlight tool, on toolbar in Tableau Desktop,
367, 368

histograms

about, 95, 98

in ggplot2, 672–675

in MatPlotLib, 741–743

in R, 657–658

in Tableau, 414–415

in Tableau Prep Builder, 343–344

Home Ribbon (Power BI model view), 185–186

host language, 461

HubSpot, 37

Index 779

human resources (HR), role of big data in, 20

Hyman, Jack A. (author)

Tableau For Dummies, 2nd Edition, 275

hypotenuse, 639–640

hypotenuse() function, 639–640

hypotheses

alternative, 628–629

null, 628–629

testing, 628

I
icons, explained, 3–4

IDE (Integrated Development Environment), 699

if statements, in R, 649–650

igraph, analyzing networks with, 621–622

images

adding to dashboards, 242

integrating in dashboards in Tableau, 378–379

impedance mismatch, 479

imperative coding style, of Python, 694

implicit join, 171

Import mode, 138

imported data models, adding and modifying data
to, 196–197

importing queries, 186–188

IN clause, 519–520, 567–568

inconsistencies

detecting, 162–163

resolving for data

about, 168

finding root cause, 170
removing rows using Power Query, 170

replacing values, 168–170

indentation, need for, 698–699

independent variables, in R, 625

index

column, 64–65

defined, 59
indicators

cards, 223–224

gauges, 223

key performance indicators (KPIs), 224–225

multi-cards, 223–224

inferential statistics, 624, 628

information, data compared with, 33–34

information technology (IT), 31

ingesting data, in Power BI Desktop, 125–126

init function, 712

inner join, 176, 302–303

inner JOIN() function, 68

inner joins, 598–599

Insert Flow option, 326

INSERT statement, using subqueries in,
571–574

insight management, as a role of big data, 24–25

INTEGER type, 462–463

integers, in Python, 706

Integrated Development Environment (IDE), 699

integrating

buttons in dashboards in Tableau, 380–381

images in dashboards in Tableau, 378–379

logos in dashboards in Tableau, 378–379

web pages in dashboards in Tableau, 379–380

interactive, 608

interactive elements, applying in Tableau
Desktop, 356

interactive SQL, 456

Internet of Things (IoT), 35

Internet resources

Cartopy, 753

Cheat Sheet, 4

Comprehensive R Archive Network (CRAN), 619,
630–631

DurusWorks, 698

embedding reports on, 138

General Architecture for Text Engineering
(GATE), 69

Keras, 701

MATLAB, 721

MatPlotLib library, 701, 721, 741

MySQLdb, 697

Natural Language Toolkit (NLTK), 69

NetworkX, 702

NumPy library, 700

780 Data Analytics & Visualization All-in-One For Dummies

Internet resources (continued)

pandas library, 700

Power BI Desktop, 120

Quixote, 698

R, 620

RStudio, 631

Scikit-learn library, 700

SciPy library, 699

Tableau, 291

TensorFlow, 701

INTERSECT operation, 588–589

interval data, in R, 626

intervals, 471, 505

is assigned, gets (<-) operator, 614

is assigned to (->) operator, 614

items

creating in Power BI Desktop, 130–131

publishing in Power BI Desktop, 130–131

iterating, in R, 615–616

J
Java, 38

JavaScript library, 55

JavaScript Object Notation (JSON) files, 159–160
JOIN() function

inner, 68

outer, 68

Join option, 325

joins

data

about, 302

blending data from multiple sources, 307–308

clipboard data, 309–311

creating, 304–306

input steps and, 323–324

joining fields that contain null values, 306
setting up clauses, 303–304

types of, 302–303

defined, 172
finding and creating keys for, 171–173

keys for, 172

SQL

about, 591–592

Cartesian product, 592–593

ON clause, 603

clustering indexes, 603–604

column-name, 597–598

condition, 596–597

conditions for, 603–604

cross, 592–593

equi-join, 594–596

full outer, 602–603

inner, 598–599

left outer, 599–601

natural, 596

outer, 599–603

right outer, 602

WHERE clause, 603

JSON (JavaScript Object Notation) files, 159–160
Jupyter Notebook, 699

K
Keep Only Field option, 329

Keras, 701

key influencers, 230–231
key performance indicators (KPIs),

224–225

keys

about, 61–62, 64

finding and creating for joins, 171–173
relational databases, 448–450

knowledge management, relationship with insight
management, 25

L
labels, adding in MatPlotLib, 733–734

Labels/Measures/Marks/Data section (Analysis
menu of Tableau Desktop), 359, 360

labs() function, 674, 678

latency, 29, 49

Index 781

Layout pane, in story workspace, 386

learning Python, 695–696

left anti join, 176

left join, 302–303

left outer join, 176, 599–601

legend() function, 736

legends, adding in MatPlotLib, 733–734, 735–737

Legends, Highlights, Filters, Parameters section
(Analysis menu of Tableau Desktop), 360

less than (<) operator, 517, 614

less than or equal to (<=) operator,
517, 614

libraries (Python)

about, 713

MatPlotLib, 716–718

NumPy, 714–715

Pandas, 718–719

Scikit-learn, 719

SciPy, 716

support for, 697

licensing

about, 118

Power BI, 119

for Tableau, 280

lifecycle, of data, 167–168

LIKE clause, 520–521

line charts

about, 92, 93

combining with bar charts, 215

continuous, 406

discrete, 407

dual-, 407

in Power BI, 213–214, 215

in Tableau, 406–408

linear topological structures, 100

lines

defining appearance of in MatPlotLib
about, 729

adding markers, 731–733

line styles, 729–730

using colors, 730–731

drawing multiple in MatPlotLib, 723–724

styles in MatPlotLib, 729–730

Lines, labels, and captions option (Format menu
of Tableau Desktop), 361, 362

lines() function, 659–660

list() function, 645

LISTAGG function, 494

lists

about, 609

in Python, 707

in R, 645–646

literal values, 488–489

Live Connection, 138–139, 150–151

LN function, 500

loading

data, 162–165

data in Python, 695

local storage, 150–151

Location category (Tableau), 292

LOG() function, 500

LOG10 function, 500

logarithmic functions, 500

logical connectives, 531–532

logical vector, 641

logically centralized, data lakes as, 43

logos, integrating in dashboards in Tableau,
378–379

long format, in Python, 706

loops, in Python, 708–709

LOWER function, 496

low-latency data feed, 49

ls() function, 638

M
machine learning, 37

machine learning engineers, 37, 56

macros, automating Excel tasks using, 77–79

Manage Relationships button (Home Ribbon), 186

Manage Roles button (Home Ribbon), 186

management, as a benefit of data models, 128

782 Data Analytics & Visualization All-in-One For Dummies

managing

cases, 507–508

data source settings, 146–147

data when sharing and collaborating, 254–258

formatting and data type properties, 189–191

null values, 478–479

relationships in data models

about, 197

creating automatic relationships, 197–198

creating manual relationships, 198–199

deleting relationships, 199

tables

adding data in, 195–196

adding tables, 191–192

deleting columns, 193–195

deleting tables, 193

modifying data in, 195–196

renaming columns, 193–195

renaming tables, 192–193

worksheets in Tableau Desktop, 356

manual relationships, creating, 198–199

many-to-many relationships, 100, 171

Map Legend option (Map menu in Tableau
Desktop), 361

Map menu (Tableau Desktop), 361–362

Map Options option (Map menu in Tableau
Desktop), 361

mapping spatial point patterns, with
spatstat, 622

maps, 221–222

maps with/without symbols, in Tableau, 396–398

mark type, 392

markers, adding in MatPlotLib, 731–733

marketing data scientists, 56

massively parallel processing (MPP) platform, 38

MATCH clause, 527–532

mathematical modeling, applying to data science
tasks, 54

mathematics, 54

MATLAB application. See MatPlotLib

MATLAB For Dummies (Mueller), 721

MatPlotLib library

about, 701–702, 716–718, 721

adding

annotations, 733–735

labels, 733–734

legends, 733–734, 735–737

data visualizations

about, 739

bar charts, 740–741

boxplots, 743–744

depicting groups, 746–747

displaying correlations, 747–748

histograms, 741–743

plotting geographical data, 752–756

plotting time series, 748–752

scatterplots, 744–745, 746–748

selecting graphs, 740–745

visualizing graphs, 757–760

defining line appearance
about, 729

adding markers, 731–733

line styles, 729–730

using colors, 730–731

graphs

about, 722

adding grids, 727–728

defining plots, 722–723
drawing multiple lines and plots, 723–724

formatting axes, 726–727

getting axes, 725–726

saving, 724–725

website, 741

matrices

about, 229, 609

in R, 643–645

scatter plot, 667–669

matrix() function, 644

MAX function, 493

maximum cardinality, 506

mean() function, 612

Index 783

Measure field type, 341
measures, in Tableau, 270–272

measuring, as a role of big data, 23

median, 656

melt() function, 680

Melton, Jim (author)

Querying XML, 472

menus (Tableau Desktop)

about, 353

Analysis menu, 359–360

Dashboard menu, 357–358

Data menu, 354–355

File menu, 353–354

Format menu, 362–363

Help menu, 365

Map menu, 361–362

Server menu, 363–364

Story menu, 358–359

Window menu, 364–365

Worksheet menu, 355–357

merging queries, 176–180

metadata, adding to worksheets in Tableau
Desktop, 357

Microsoft 365 sensitivity labels, 262

Microsoft AI engine, 231

Microsoft Azure, 44

Microsoft Azure Data Lake Storage (ADLS), 43, 45

Microsoft Cosmos DB, 156–157

Microsoft Excel

about, 70

automating tasks with macros, 77–79

getting to know your data using, 71–75

reformatting with PivotTables, 75–77

for sharing and collaborating, 256

summarizing with PivotTables, 75–77

Microsoft Power Apps, 58

Microsoft Teams, collaborating inside Power BI
Services using, 137

Microsoft-based file systems, getting data from,
151–153

MIN function, 493

minus (-) operator, 614

MOD function, 500

Modeling view, 184–186

models, training in Python, 695–696

modifying

data in tables, 195–196

data to imported, DirectQuery, and composite
models, 196–197

root tables to data relationships, 300–301

sensitivity labels, 263

modifying clauses (SQL)

about, 514

ALL clause, 523–525

ANY clause, 523–525

BETWEEN clause, 517–519

IN clause, 519–520

FROM clauses, 514–515

DISTINCT clause, 526

EXISTS clause, 525–526

GROUP BY clauses, 533–535

HAVING clauses, 535–536

LIKE clause, 520–521

MATCH clause, 527–532

NOT IN clause, 519–520

NOT LIKE clause, 520–521

NULL clause, 521–522

ORDER BY clauses, 536–538

OVERLAPS clause, 527

SOME clause, 523–525

UNIQUE clause, 526

WHERE clauses, 515–517

modular arithmetic, 650

module language (SQL), 460–461

modulo (%%) operator, 614, 650

monitoring, as a role of big data, 23–24

moving tables, to create different data
relationships, 299–300

MPP (massively parallel processing) platform, 38

Mueller, John (author)

Beginning Programming with Python For Dummies,
3rd Edition, 692, 697

MATLAB For Dummies, 721

multi-cards, as indicators, 223–224

784 Data Analytics & Visualization All-in-One For Dummies

multinomial logit model, 619

multiple dependencies, 64

multisets, 446–447, 474

My Workspace, 114

MySQL, 60

MySQLdb, 697

N
narratives, in stories in Tableau, 385

NATIONAL CHARACTER LARGE OBJECT type,
467–468

NATIONAL CHARACTER type, 467–468

NATIONAL CHARACTER VARYING type, 467–468

natural joins, 596

Natural Language Toolkit (NLTK), 69

Navigation pane (Power BI), 117–118

Navigator, in story workspace, 386, 389

n-dimensional arrays, 714

nested queries, 574–579

networks, analyzing with statnet and igraph,
621–622

NetworkX, 702

New Column button (Home Ribbon), 186

New Dashboard section (Dashboard menu of
Tableau Desktop), 357, 358

New Data Source tool, on toolbar in Tableau
Desktop, 366

New Measure button (Home Ribbon), 186

New Rows option, 325

New Story option (Story menu of Tableau
Desktop), 359

New Table button (Home Ribbon), 186

NLTK (Natural Language Toolkit), 69

nodes, 757

nominal data, in R, 626

nonexistence, testing for, 567

non-interactive, 608

nonredundancy, of columns, 64

nonrelational data systems, semi-structured data
and, 11

nonrelational (NoSQL) databases, 11, 156–158

normalizing

data, 348–349

databases, 64

NoSQL databases, 11, 156–158

NOT connective, 532

not equal (<>) predicate, 517

not equals (!=) operator, 614

NOT IN clause, 519–520

NOT LIKE clause, 520–521

not (!) logical operator, 614

NOT NULL constraint, 480

Notebook environments,
753–754

NULL clause, 521–522

null hypotheses, 628–629

null values

joining fields that contain, 306
managing, 478–479

Null Values Filter, 331

NULLIF expression, 509

numbers, in Python, 706

NUMERIC type, 464

numeric value

about, 503

functions

about, 497

ABS, 499–500

ACOS, 500

ASIN, 500

ATAN, 500

CARDINALITY, 499

CEIL(ING), 501

CHARACTER_LENGTH, 498

COS, 500

COSH, 500

EXP, 500

EXTRACT, 498

FLOOR, 501

LN, 500

LOG(), 500

Index 785

LOG10, 500

logarithmic, 500

MOD, 500

OCTET_LENGTH, 498–499

POSITION, 498

POWER, 500

SIN, 500

SINH, 500

SQRT, 501

TAN, 500

TANH, 500

trigonometric, 500

WIDTH_BUCKET, 501

numerical data type, 63

numerical vectors, in R, 642–643

numerics

approximate, 464–466

exact, 462

NumPy library, 700, 714–715

O
object-extended relational databases, 46

object-oriented coding style, of Python, 694

object-oriented language, 609

objects, in R, 617–619

OCTET_LENGTH function, 498–499

octothorpe, 640

ON clause, joins and, 603

OneDrive, getting data from, 151, 152

one-to-one (1:1) relationship, 171

online services, for data sources, 127

online sources, 160–162

on-premises, 44

opening

Recents page in Tableau Cloud, 434

shared reports, 134

operational data, analytic data compared with,
47–48

operations, as a role of big data, 20–21

operators, in R, 612–615

OR connective, 532, 555

or (|) logical operator, 614

ORDER BY clauses, 536–538, 547–551

ordinal data, in R, 626

outer JOIN() function, 68

outer joins, 599–603

outliers, in Tableau Prep Builder, 344–345

Output option, 326

overhyping big data, 28

OVERLAPS clause, 527

OVERLAY function, 497

P
packed circle diagrams, 94, 96

paginated reports, 236, 258

Paint Roller icon, 234

pairs() function, 669, 683, 685

Pandas library, 700, 718–719

Panes option (Format menu of Tableau Desktop),
361, 362

parallel processing, Python for, 697

paths, 454

patterns, finding for graphs
about, 651–652

bar graphs, 653–654

box and whisker plot, 656–657

graphing distributions, 652–653

pie graph, 654

scatter plot, 654–655

Pause Auto Update tool, on toolbar in Tableau
Desktop, 366

PDF (Portable Document Format), 724

Percentage section (Analysis menu of Tableau
Desktop), 360

Performance category (Tableau), 293

performing what-if analysis, 17

Personal Space (Tableau Cloud), 430–431

pie graphs/charts

about, 92, 94

in Power BI, 219, 220

in R, 654, 662

in Tableau, 398–399

786 Data Analytics & Visualization All-in-One For Dummies

Pierson, Lillian (author)

Data Science For Dummies, 3rd Edition, 54, 55

pinning reports, 245–246

Pivot option, 325

PivotCharts, 75, 76

pivoting, with data, 345–348

PivotTables

creating, 76

reformatting and summarizing data using, 75–77

planning stories, in Tableau, 384–385

plot() function, 666, 670, 729, 731, 732, 748,
750, 752

plotpairs() function, 684

plot.show() function, 722

plots/plotting

defining in MatPlotLib, 722–723
drawing multiple in MatPlotLib, 723–724

geographical data in MatPlotLib, 752–756

time series in MatPlotLib, 748–752

plt.axes() function, 725–726

plt.figure() function, 726

plt.ioff() function, 725

plt.plot() function, 722, 723

plt.savefig() function, 724

plus (+) operator, 614

PNG (Portable Network Graphic) format, 724

point map, 102, 103

polyfit() function, 748

polyid() function, 748

polymorphic table functions, 502

populations, in R, 624–625

Portable Document Format (PDF), 724

Portable Network Graphic (PNG) format, 724

POSITION function, 498

positional mapping, 638

PostgreSQL, 60

Postscript (PS), 724

Power BI

about, 109–110, 123

big data in, 39–40

data visualizations in

about, 203

area charts, 213–214

bar charts, 209–213, 215

column charts, 209–213

creating visualizations, 204–205

Donut charts, 219, 220

filtering data, 207–208
Funnel charts, 217–218

indicators, 222–225

line charts, 213–214, 215

maps, 221–222

Pie charts, 219, 220

reports, 203–208

Ribbon charts, 216

Scatter charts, 218–219

selecting visualizations, 205–206

treemaps, 219–221

types, 209–225

Waterfall charts, 216–217

Power BI Desktop

about, 110, 112, 124–125

analyzing data, 129–130

building data models, 128–129

creating items, 130–131

files and databases, 126–128
ingesting data, 125–126

publishing items, 130–131

Power BI Services

about, 110, 112–113, 132

collaborating inside, 137–138

editing reports, 132–136

refreshing data, 138–139

viewing reports, 132–136

working with dashboards,
136–137

Power Map, 110, 111–112

Power Pivot, 110, 111

Power Q&A, 110, 112

Power Query, 110–111

Power View, 110, 111

products

about, 118

Desktop vs. Services options,
120–121

license options, 119

Index 787

sharing and collaborating

about, 247

access management, 253–254

configuring workspaces, 250–253
creating workspaces, 250–253

data lineage, 258–262

data protection, 262–264

dataflows, 261–262
datasets, 261–262

managing data, 254–258

Microsoft Excel, 256

paginated reports, 258

Quick Insights, 256–257

settings and storage, 254

Usage Metrics reports, 257

workspaces, 247–254

structured data and, 11

terminology

about, 113

capacities, 113

dashboards, 117

Navigation pane, 117–118

reports, 115–116

workspaces, 114–115

unstructured data and, 11

Power BI Dataset button (Home Ribbon), 185

Power BI Desktop

about, 110, 112, 124–125

analyzing data, 129–130

building data models, 128–129

creating items, 130–131

files and databases, 126–128
ingesting data, 125–126

license, 119

Power BI Services compared with,
120–121

publishing items, 130–131

Power BI Embedded license, 119

Power BI Free license, 119

Power BI Mobile license, 119

Power BI Premium license, 119

Power BI Pro license, 119

Power BI Report Builder, 237

Power BI Report Server license, 119

Power BI Services

about, 110, 112–113, 132

collaborating inside, 137–138

creating data0based paginated reports using,
237–238

editing reports, 132–136

navigation menu, 248, 249, 250

Power BI Desktop compared with, 120–121

refreshing data, 138–139

viewing reports, 132–136

working with dashboards, 136–137

POWER function, 500

Power Map, 110, 111–112

power (^) operator, 614

Power Pivot, 110, 111

Power Q&A, 110, 112

Power Query

about, 110–111

removing rows using, 170

shaping column data to meet requirements for,
173–174

Power Query Editor, 186, 188

Power View, 110, 111

predicates, 516, 517

Prediction option, 325

predictive data analytics, 14

preparing data, for data visualization

about, 141

checking data structures and column properties,
163–164

cleansing data, 162–165

data statistics, 164–165

detecting anomalies and inconsistencies,
162–163

getting data from Microsoft-based file systems,
151–153

getting data from sources, 142–146

loading data, 162–165

managing data source settings, 146–147

relational data sources, 153–162

shared vs. local datasets, 147–150

storage and connection modes, 150–151

transforming data, 162–165

788 Data Analytics & Visualization All-in-One For Dummies

prescriptive data analytics, 14

Presentation Mode tool, on toolbar in Tableau
Desktop, 368

primary key, 61–62, 64

PRIMARY KEY constraint, 481–483

print() function, 609, 710

printing reports, 138

privileges, 451

probability, in R, 626–627, 659

problem solving, as a role of big data, 26

procedural coding style, of Python, 695

products (Power BI)

about, 118

Desktop vs. Services options, 120–121

license options, 119

Profile feature (Tableau Cloud), 428
proportional symbol maps, 396–397

protecting data, when sharing and collaborating,
262–264

PS (Postscript), 724

Publish button (Home Ribbon), 186

publishing

data models, 201–202

data sources using Tableau Cloud, 336

data visualizations in Tableau, 422–424

items in Power BI Desktop, 130–131

PubNub, 242

Push mode, 139

Python

about, 38

built-in functions, 709–711

classes, 711–713

data science and

about, 691–692

creating data science pipeline, 692–693

learning Python, 695–696

role of Python in data science, 693–695

using Python ecosystem for data science,
699–702

working with Python, 697–699

data types

about, 705–706

dictionaries, 708

lists, 707

numbers, 706

sets, 708

strings, 706–707

tuples, 707–708

ecosystem for data science, 699–702

functions, 709–711

learning, 695–696

libraries

about, 713

MatPlotLib, 716–718

NumPy, 714–715

Pandas, 718–719

Scikit-learn, 719

SciPy, 716

loops, 708–709

role of in data science, 693–695

uses for, 55

using for data science, 703–705

working with, 697–699

Q
Q&A feature, artificial intelligence (AI) and,

231–232

qualitative data, 23

quantified subqueries, 563–566
quantitative data, 23

queries

appending, 175–176

combining, 174–180

configuring for data loading, 180–181
data

about, 53–54

using SELECT(), WHERE(), and DATE(), 66–67

importing, 186–188

merging, 176–180

SQL

about, 539–540, 557

correlated subqueries, 579–584

EXCEPT operation, 590

HAVING clause, 551–554

INTERSECT operation, 588–589

Index 789

nested queries, 574–579

OR connective, 555

ORDER BY clause, 547–551

SELECT DISTINCT, 540–542

subqueries, 557–574

temporary tables, 542–547

UNION operation, 584–588

Querying XML (Melton and Buxton), 472

Quick Insights, for sharing and collaborating,
256–257

Quick Measure button (Home Ribbon), 186

quit() function, 698

Quixote, 698

R
R. See also ggplot2

about, 623

alternative hypotheses, 628–629

analyzing networks with statnet and igraph,
621–622

comments, 640

data types, 626

downloading, 608

error types, 629–630

functions, 612–615, 638–639

getting

about, 630–631

RStudio, 631–633

started with, 635–638

graphs

about, 657

bar plots, 660–661, 663–666

box plots, 669–670

dot charts, 662–663

features, 658–660

histograms, 657–658

pie graphs, 662

scatter plots, 666–669

if statements, 649–650

inferential statistics, 628

iterating in, 615–616

for loops, 649–650

mapping and analyzing spatial point patterns
with spatstat, 622

null hypotheses, 628–629

objects, 617–619

operators, 612–615

populations, 624–625

probability, 626–627

samples, 624–625

statistical analysis packages, 619–620

structures

about, 641

data frames, 646–649

lists, 645–646

matrices, 643–645

numerical vectors, 642–643

vectors, 641

user-defined functions, 639–640
uses for, 55

variables, 625

visualizing statistics with ggplot2, 620–621

vocabulary for, 608–611

website, 620

working directory, 634–635

range() function, 740

raster surface map, 102, 103

ratio data, in R, 626

raw data, 16

RDBMSs, 38

Reading view (Power BI), 116

REAL type, 465

Recent Sources button (Home Ribbon), 185

Recents (Tableau Cloud), 434–435

recommendations engine (Tableau Cloud),
440–441

records, in Tableau Prep Builder, 338–339

Redo tool, on toolbar in Tableau Desktop, 366

REF types, 475

referential integrity, 527, 529–531

reformatting data, using PivotTables, 75–77

Refresh button (Home Ribbon), 186

790 Data Analytics & Visualization All-in-One For Dummies

refreshing

data in input step, 318

data in Power BI Services, 138–139

relational data sources, 153–162

relational databases

about, 58–60, 155–156, 445

catalogs, 452

connections, 452–453

functional dependencies, 447–448

hierarchy of, 452

keys, 61–62, 448–450

multisets, 446–447

object-extended, 46

paths, 454

privileges, 451

relational database hierarchy, 452

relational model and, 445–446

relations, 446–447

routines, 453

schemas, 451

sessions, 452–453

sets, 446–447

tables, 446–447

transactions, 452–453

users, 450

views, 450

relational models, SQL and, 445–446

relations, 446–447

relationships

defined, 172
deleting, 199

keys for, 172

managing in data models

about, 197

creating automatic relationships, 197–198

creating manual relationships, 198–199

deleting relationships, 199

Relative mode, for macros, 77–78

Remember icon, 4

Remove option, 329

removing

rows using Power Query, 170

tables from data relationships, 301–302

Rename Field option, 329

renaming

columns in tables, 193–195

sheets in Tableau Desktop, 370

tables, 192–193

rep() function, 642

replacing values, 168–170

Replay Animation tool, on toolbar in Tableau
Desktop, 366

reporting, as a role of big data, 25–26

reports

accessing, 133–136

data visualization for

about, 232–233

applying conditional formatting, 233

configuring report page, 233–235
exporting reports, 235–236

preparing reports for distribution, 236–239

editing in Power BI Services, 132–136

embedding on dashboards and websites, 138

Power BI, 115–116

printing, 138

value of, 133

viewing in Power BI Services, 132–136

reserved words, in SQL, 461

resizing

captions in stories, 389

dashboards in stories, 390

resolving

data inconsistencies

about, 168

finding root cause, 170
removing rows using Power Query, 170

replacing values, 168–170

errors during data import, 182

resources, Internet

Cartopy, 753

Index 791

Cheat Sheet, 4

Comprehensive R Archive Network (CRAN), 619,
630–631

DurusWorks, 698

embedding reports on, 138

General Architecture for Text Engineering
(GATE), 69

Keras, 701

MATLAB, 721

MatPlotLib library, 701, 721, 741

MySQLdb, 697

Natural Language Toolkit (NLTK), 69

NetworkX, 702

NumPy library, 700

pandas library, 700

Power BI Desktop, 120

Quixote, 698

R, 620

RStudio, 631

Scikit-learn library, 700

SciPy library, 699

Tableau, 291

TensorFlow, 701

results

sharing, 133

viewing in Python, 696

reusability, as a benefit of data models, 128
Ribbon charts, 216

right anti join, 176

right join, 302–303

right outer join, 176, 602

roles of big data

about, 20

artificial intelligence (AI), 26
data reuse, 26–27

in data science and engineering, 36–38

decision-making, 22

insight management, 24–25

measuring, 23

monitoring, 23–24

operations, 20–21

problem solving, 26

reporting, 25–26

strategy, 21–22

root tables, changing of data relationships,
300–301

routines, 453

ROW type, 472–473

row values, 488, 511–512

rows

removing using Power Query, 170

in Tableau Prep Builder, 338–339

RStudio, 631–633

Run Auto Update tool, on toolbar in Tableau
Desktop, 366

S
SaaS (Software as a Service), 37, 120

Salesforce, 37

samples, in R, 624–625

Save tool, on toolbar in Tableau Desktop, 366

saving

dashboards as graphics, 358

in MatPlotLib, 724–725

Tableau Prep Builder data

about, 333

automating flows, 334
creating published data sources, 334–336

Scala, 38

Scalable Vector Graphics (SVG), 724

Scale category (Tableau), 293

scatter plots

about, 98, 99, 218–219

in ggplot2, 683

in MatPlotLib, 744–745, 746–748

in R, 654–655, 666–669

in Tableau, 412–414

scatterplot matrix, 98, 99, 683–686

schemas

in relational database hierarchy, 452

relational databases, 451

Scikit-learn library, 700–701, 719

SciPy library, 699–700, 716

SCM (supply chain management), 153

792 Data Analytics & Visualization All-in-One For Dummies

script file format, 53
Script option, 325

Security category (Tableau), 293

SELECT command, 461

SELECT DISTINCT, SQL queries and, 540–542

SELECT() function, querying data using, 66–67

SELECT statement, 513–514

Selected Values Filter, 331

selecting

data graphic type

about, 90–91

comparative graphics, 94–95

spatial plots and maps, 101–103

standard chart graphics, 91–94

statistical plots, 95–99

topology structures, 100–101

data visualizations, 205–206

design style, 87–90

graphs in MatPlotLib, 740–745

Tableau versions, 281

tools for data science strategies, 57–58

semi-structured data, 11

sensitivity labels, 262–264

seq() function, 639, 642

Series objects, 718

Server menu (Tableau Desktop), 363–364

server side, 452

sessions, 452–453

SESSION_USER, 490

set functions

about, 491–492, 533

AVG, 493

COUNT, 492–493

LISTAGG, 494

MAX, 493

MIN, 493

SUM, 493–494

set_extent() method, 756

sets

in Python, 708

relational databases, 446–447

settings and storage, for sharing and
collaborating, 254

setup, of data sources in Tableau, 292–293

set_xlim() function, 726

set_xticks() function, 726

set_ylim() function, 726

set_yticks() function, 726

shaping column data, to meet Power Query
requirements, 173–174

Share Workbook with Others tool, on toolbar in
Tableau Desktop, 368–369

shared capacity, 113

shared vs. local datasets, 147–150

shared with me (Tableau Cloud), 436–437

SharePoint 365, getting data from, 151, 152

sharing and collaborating

in Power BI

about, 247

access management, 253–254

configuring workspaces, 250–253
creating workspaces, 250–253

data lineage, 258–262

data protection, 262–264

dataflows, 261–262
datasets, 261–262

managing data, 254–258

Microsoft Excel, 256

paginated reports, 258

Quick Insights, 256–257

settings and storage, 254

Usage Metrics reports, 257

workspaces, 247–254

in Power BI Services, 137–138

results, 133

in Tableau Cloud

about, 435–436

collections, 437–439

Explore feature, 439–440

recommendations engine, 440–441

shared with me, 436–437

sharing content, 435–436

Sheet tab, in Tableau Desktop, 353

Index 793

sheets

deleting in Tableau Desktop, 370

renaming in Tableau Desktop, 370

workbooks compared with, 369–370

shelves

in Tableau, 274

in Tableau Desktop, 352

Show Me icon, in Tableau Desktop, 353

Show Start Page tool, on toolbar in Tableau
Desktop, 366

Show/Hide Cards tool, on toolbar in Tableau
Desktop, 368

Show/Hide Mark Labels tool, on toolbar in Tableau
Desktop, 368

Side Bar, in Tableau Desktop, 353

side-by-side bar charts, 400

SIN function, 500

single brackets ([]), 610

SINH function, 500

sizing report pages, 235

Slack, 37

slicers, 228

SMALLINT type, 463

SME (subject matter expert), 53, 56

Software as a Service (SaaS), 37, 120

SOME clause, 523–525

Sort Ascending tool, on toolbar in Tableau
Desktop, 367

Sort Descending tool, on toolbar in Tableau
Desktop, 367

sorting by/grouping by, 200

source type, 476

sources, of big data, 35

Spark, 38

spatial plots and maps, 101–103

spatial point patterns, mapping and analyzing
with spatstat, 622

spatstat, mapping and analyzing spatial point
patterns with, 622

Split Value Filter, 333

SQL All-in-One For Dummies, 3rd Edition
(Taylor), 461

SQL Server button (Home Ribbon), 185

SQL-invoked routine, 453

SQRT function, 501

stacked bar charts, 209–211, 212–213, 400

stacked charts, 95, 97

stacked column charts, 209–211, 212–213

standard, horizontal bar charts, 400

standard chart graphics, 91–94

Start icon, in Tableau Desktop, 353

statistical analysis

about, 13

R, 619–620

statistical methods, deriving insights from, 55

statistical plots, 95–99

statistics, 54

statnet, analyzing networks with, 621–622

storage and connection modes, 138–139,
150–151

storing data, 30, 31–32

Story menu

story workspace, 386

Tableau Desktop, 358–359

story pages, in Tableau Desktop, 369–370

Story pane (story workspace), 385, 386

story points, 388–389

Story toolbar, in story workspace, 386

storytelling (Tableau)

about, 371

charts as, 25

creating stories

about, 383, 386–389

evaluating story workspace, 385–386

formatting, 389–390

planning, 384–385

synthesizing data through Tableau story,
383–384

dashboards

about, 371–372

adding objects to, 376–383

configuring, 372–374
customizing, 374–376

strategy, as a role of big data, 21–22

streaming data, adding to dashboards, 242

string value, 503–504

794 Data Analytics & Visualization All-in-One For Dummies

string value functions

about, 494–495

CONVERT, 496

LOWER, 496

OVERLAY, 497

SUBSTRING(), 495

TRANSLATE, 496

TRIM, 496

UPPER, 496

strings, in Python, 706–707

structured data, 10–11

Structured Query Language (SQL)

about, 53

applying constraints

about, 479

assertions, 484–485

column constraints, 480–481

foreign key constraints, 483–484

table constraints, 481–483

data types

about, 461–462

approximate numerics, 464–466

ARRAY type, 474

BIGINT, 463–464

BINARY LARGE OBJECT (BLOB) type, 469

binary strings, 468–469

BINARY type, 468

BINARY VARYING type, 468

Booleans, 469

CHARACTER LARGE OBJECT (CLOB) type, 467

character strings, 466–468

CHARACTER type, 466

CHARACTER VARYING type, 467

collection types, 473–474

DATE type, 469

datetimes, 469–471

DECFLOAT type, 464

DECIMAL type, 464

distinct, 476

DOUBLE PRECISION type, 465–466

exact numerics, 462

FLOAT type, 466

INTEGER, 462–463

intervals, 471

NATIONAL CHARACTER LARGE OBJECT type,
467–468

NATIONAL CHARACTER type, 467–468

NATIONAL CHARACTER VARYING type,
467–468

NUMERIC type, 464

REAL type, 465

REF types, 475

ROW type, 472–473

SMALLINT, 463

structured, 477–478

TIME WITH TIME ZONE type, 470

TIME WITHOUT TIME ZONE type, 470

TIMESTAMP WITH TIME ZONE type, 471

TIMESTAMP WITHOUT TIME ZONE type,
470–471

user-defined types, 475–478
XML type, 471–472

entering data values

about, 487–488

column values, 488

literal values, 488–489

row values, 488

variables, 490–491

executing statements

about, 455–456

combining with host languages, 457

embedded SQL, 457–460

interactive SQL, 456

module language, 460–461

expressions

array value, 506

Boolean value, 506

CAST, 510–511

conditional value, 507–510

datetime value, 504–505

interval value, 505

numeric value, 503

row value, 511–512

string value, 503–504

Index 795

functions

about, 66–69, 491

set, 491–494

value, 494–502

joins

about, 591–592

Cartesian product, 592–593

ON clause, 603

clustering indexes, 603–604

column-name, 597–598

condition, 596–597

conditions for, 603–604

cross, 592–593

equi-join, 594–596

full outer, 602–603

inner, 598–599

left outer, 599–601

natural, 596

outer, 599–603

right outer, 602

WHERE clause, 603

managing null values, 478–479

modifying clauses

about, 514

ALL clause, 523–525

ANY clause, 523–525

BETWEEN clause, 517–519

IN clause, 519–520

FROM clauses, 514–515

DISTINCT clause, 526

EXISTS clause, 525–526

GROUP BY clauses, 533–535

HAVING clauses, 535–536

LIKE clause, 520–521

MATCH clause, 527–532

NOT IN clause, 519–520

NOT LIKE clause, 520–521

NULL clause, 521–522

ORDER BY clauses, 536–538

OVERLAPS clause, 527

SOME clause, 523–525

UNIQUE clause, 526

WHERE clauses, 515–517

queries

about, 158, 539–540, 557

correlated subqueries, 579–584

EXCEPT operation, 590

HAVING clause, 551–554

INTERSECT operation, 588–589

nested queries, 574–579

OR connective, 555

ORDER BY clause, 547–551

SELECT DISTINCT, 540–542

subqueries, 557–574

temporary tables, 542–547

UNION operation, 584–588

relational databases

about, 445

catalogs, 452

connections, 452–453

functional dependencies, 447–448

keys, 448–450

multisets, 446–447

paths, 454

privileges, 451

relational database hierarchy, 452

relational model and, 445–446

relations, 446–447

routines, 453

schemas, 451

sessions, 452–453

sets, 446–447

tables, 446–447

transactions, 452–453

users, 450

views, 450

routine, 453

SELECT statement, 513–514

uses for, 55

using reserved words, 461

Structured Query Language (SQL) databases

about, 58–60

keys, 61–62

structured types, 477–478

796 Data Analytics & Visualization All-in-One For Dummies

structures (R)

about, 641

data frames, 646–649

lists, 645–646

matrices, 643–645

numerical vectors, 642–643

vectors, 641

subject areas, applying data science to, 55–56

subject matter expert (SME), 53, 56

subject-matter segregation, 65

subqueries (SQL)

about, 557–558

correlated, 566–571

quantified, 563–566
that return multiple values, 558–560

that return single values, 560–563

using in DELETE statement, 571–574

using in INSERT statement, 571–574

using in UPDATE statement, 571–574

subset() function, 669

SUBSTRING() function, 495

subtypes, 477

sum() function, 638–639

SUM function, 493–494

summarization

about, 190–191

data using PivotTables, 75–77

Summarization, Trending, Values, and Layouts
section (Analysis menu of Tableau
Desktop), 360

supertypes, 477

supply chain management (SCM), 153

SVG (Scalable Vector Graphics), 724

Swap Rows and Columns tool, on toolbar in
Tableau Desktop, 367

synthesizing data, through Tableau story, 383–384

SYSTEM_USER, 491

T
t() function, 644

table constraints, 481–483

table visualizations, 228–229

Tableau

about, 267–268

big data in, 39–40

color coding in, 304

data connections

about, 285, 288–289

data relationships, 296–302

data sources, 292–296

joining data, 302–311

requesting new connectors, 291

Tableau Desktop, 289–290

Tableau Online, 290–291

Tableau Prep, 289–290

Tableau Server, 290–291

data visualizations

about, 391–392

area chart, 408–410

bar chart, 400–401

box and whisker plot, 415–416

bubbles, 402–406

bullet chart, 418–419

circles, 402–406

converting to cross tabulation tables,
419–422

dual combination chart, 411–412

Gantt chart, 416–418

heat map, 394–395

highlight table, 395–396

histogram, 414–415

line chart, 406–408

maps with/without symbols, 396–398

pie chart, 398–399

publishing, 422–424

scatter plot, 412–414

text table, 392–394

treemap, 401–402

structured data and, 11

terminology

aggregation, 273

continuous vs. discrete data, 272

data fields, 270
data source, 268–269

Index 797

data type, 269–270

dimensions and measures, 270–272

filter, 273
workbook/worksheet, 274–275

unstructured data and, 11

user classifications, 283–284
versions

about, 275

by data life cycle, 282–283

selecting, 281

Tableau Cloud, 279–280

Tableau Desktop, 275–278

Tableau Prep, 278–279

Tableau Server, 279–280

website, 291

Tableau Bridge, 293

Tableau Bridge Client, 364

Tableau Cloud

about, 279–280, 425–426

components of, 426–429

data life cycle and, 282–283

features

about, 430

Favorites, 432–434

Personal Space, 430–431

Recents, 434–435

publishing data sources using, 336

sharing and collaborating

about, 435

collections, 437–439

Explore feature, 439–440

recommendations engine, 440–441

shared with me, 436–437

sharing content, 435–436

Tableau Desktop

about, 275–278, 351

data life cycle and, 282–283

menus

about, 353

Analysis menu, 359–360

Dashboard menu, 357–358

Data menu, 354–355

File menu, 353–354

Format menu, 362–363

Help menu, 365

Map menu, 361–362

Server menu, 363–364

Story menu, 358–359

Window menu, 364–365

Worksheet menu, 355–357

sheets compared with workbooks,
369–370

toolbar, 365–369

workspace, 351–353

Tableau For Dummies, 2nd Edition (Hyman), 275

Tableau Prep Builder

about, 278–279, 313–314, 337

data flows
about, 314–316

configuring, 317–318
filtering, 329–333
grouping, 327–328

input step, 318–324

nurturing, 324–327

data life cycle and, 282–283

data structures

about, 337–338, 342

binning, 343–344

categorizing fields, 340–342
columns, 339–340

distributions, 344–345

fields, 339–340
histograms, 343–344

outliers, 344–345

pivoting with data, 345–348

records, 338–339

rows, 338–339

normalizing data, 348–349

saving data

about, 333

automating data flows, 334
creating published data sources,

334–336

Tableau Server, 279–280

798 Data Analytics & Visualization All-in-One For Dummies

table-based data visualization, 228–231

tables

aggregating, 179

expanding, 179

managing

adding data in, 195–196

adding tables, 191–192

deleting columns, 193–195

deleting tables, 193

modifying data in, 195–196

renaming columns, 193–195

renaming tables, 192–193

moving to create different data relationships,
299–300

in relational database hierarchy, 452

relational databases, 446–447

removing from data relationships, 301–302

temporary, 542–547

TAN function, 500

TANH function, 500

target audience, designing for

about, 84–85

Brainstorm step, 85–86

Choose most functional type for purpose step,
86–87

Define the purpose step, 86
tasks, automating in Excel using macros, 77–79

Taylor, Allen G. (author)

SQL All-in-One For Dummies, 3rd Edition, 461

Technical Stuff icon, 4
template apps, creating, 138

temporary tables, SQL queries and, 542–547

TensorFlow, 701

terminology

Power BI

about, 113

capacities, 113

dashboards, 117

Navigation pane, 117–118

reports, 115–116

workspaces, 114–115

Tableau

aggregation, 273

continuous vs. discrete data, 272

data fields, 270
data source, 268–269

data type, 269–270

dimensions and measures, 270–272

filter, 273
workbook/worksheet, 274–275

testing

data graphics, 103–104

for existence, 566–567

hypotheses, 628

for nonexistence, 567

text

adding to dashboards in Tableau, 377–378

as a data type, 63

text boxes, adding to dashboards, 242

text mark type, 392

text tables, in Tableau, 392–394

theme() function, 677–678

Themes option (Format menu of Tableau
Desktop), 361, 362

the three Vs, of big data, 27, 28–30

throughput, 29

tilde (~) operator, 667

tiles, 242–244

time series, plotting in MatPlotLib, 748–752

TIME WITH TIME ZONE type, 470

TIME WITHOUT TIME ZONE type, 470

times (*) operator, 614

TIMESTAMP WITH TIME ZONE type, 471

TIMESTAMP WITHOUT TIME ZONE type, 470–471

Tip icon, 4

Title and Navigator option (Story menu of Tableau
Desktop), 359

Titles and Actions section (Dashboard menu of
Tableau Desktop), 358

toolbar, in Tableau Desktop, 352, 365–369

tools, selecting for data science strategies, 57–58

Tooltip (Visualizations pane), 218

topology structures, 100–101

training models, in Python, 695–696

Index 799

transactions, 452–453

Transform Data button (Home Ribbon), 186

transforming data, 12, 162–165

TRANSLATE function, 496

tree network topology, 100, 101

treemaps

about, 95, 97, 219–221

in Tableau, 401–402

trends

analyzing data for, 12

plotting over time, 751–752

trigonometric functions, 500

TRIM function, 496

tuples, 446, 707–708

type conversion, 170

U
UDTs (user-defined types), 475–478
undirected graphs, creating, 757–758

Undo tool, on toolbar in Tableau Desktop, 366

UNION ALL operator, 175, 586–587

UNION CORRESPONDING operator, 587–588

union join, 302–303

UNION operation, 584–588

UNION operator, 584–586

Union option, 325

union-compatible, 584

UNIQUE clause, 526

UNIQUE constraint, 480–481

unique number, 164

unstructured data, 11

UPDATE statement, using subqueries in, 571–574

updates, enabling in Tableau Desktop, 357

Updates option

Dashboard menu of Tableau Desktop, 358

Story menu of Tableau Desktop, 359

UPPER function, 496

Usage Metrics reports, for sharing and
collaborating, 257

use cases, in stories in Tableau, 385

user classifications (Tableau), 283–284

user-based licensing model (Tableau), 283

user-defined functions, in R, 639–640
user-defined types (UDTs), 475–478
users, 450

V
value functions

about, 494

datetime, 502

numeric, 497–501

polymorphic table, 502

string, 494–497

values

of big data, 39

replacing, 168–170

of reports, 133

subqueries that return multiple, 558–560

subqueries that return single, 560–563

Values (Visualizations pane), 218

var() function, 638–639

variables, 490–491, 625

variety, of big data, 27, 29–30, 39

VBA (Visual Basic for Applications), 77, 79

vectors

about, 609

numerical (R), 642–643

in R, 641

velocity, of big data, 27, 28–29, 39

veracity, of big data, 39

versions (Tableau)

about, 275

by data life cycle, 282–283

selecting, 281

Tableau Cloud, 279–280

Tableau Desktop, 275–278

Tableau Prep, 278–279

Tableau Server, 279–280

video, adding to dashboards, 242

View As button (Home Ribbon), 186

view modes, for reports in Power BI, 116

Viewer bundle (Tableau), 281, 283

800 Data Analytics & Visualization All-in-One For Dummies

views/viewing

relational databases, 450

reports in Power BI Services, 132–136

results in Python, 696

in Tableau Desktop, 352

Visual Basic for Applications (VBA), 77, 79

Visualization enhancements option (Format menu
of Tableau Desktop), 361, 362

visualizations (data)

about, 81–82, 227

adding context

about, 104–105

with annotations, 105, 106

with data, 105

with graphical elements, 105, 106

artificial intelligence (AI) and Q&A feature,
231–232

complex, 228–231

dashboards

about, 239–240

adding content, 242–244

configuring, 240
creating new, 240–241

pinning reports, 245–246

data structures for

about, 342

binning, 343–344

categorizing fields, 340–342
distributions, 344–345

histograms, 343–344

outliers, 344–345

designing for target audience

about, 84–85

Brainstorm step, 85–86

Choose most functional type for purpose step,
86–87

Define the purpose step, 86
in MatPlotLib

about, 739

bar charts, 740–741

boxplots, 743–744

depicting groups, 746–747

displaying correlations, 747–748

histograms, 741–743

plotting geographical data, 752–756

plotting time series, 748–752

scatterplots, 744–745, 746–748

selecting graphs, 740–745

visualizing graphs, 757–760

in Power BI

about, 203

area charts, 213–214

bar charts, 209–213, 215

column charts, 209–213

creating visualizations, 204–205

Donut charts, 219, 220

filtering data, 207–208
Funnel charts, 217–218

indicators, 222–225

line charts, 213–214, 215

maps, 221–222

Pie charts, 219, 220

reports, 203–208

Ribbon charts, 216

Scatter charts, 218–219

selecting visualizations, 205–206

treemaps, 219–221

types, 209–225

Waterfall charts, 216–217

preparing data for

about, 141

checking data structures and column
properties, 163–164

cleansing data, 162–165

data statistics, 164–165

detecting anomalies and inconsistencies,
162–163

getting data from Microsoft-based file systems,
151–153

getting data from sources, 142–146

loading data, 162–165

managing data source settings, 146–147

relational data sources, 153–162

shared vs. local datasets, 147–150

storage and connection modes, 150–151

transforming data, 162–165

Index 801

for reports

about, 232–233

applying conditional formatting, 233

configuring report page, 233–235
exporting reports, 235–236

preparing reports for distribution, 236–239

selecting data graphic type

about, 90–91

comparative graphics, 94–95

spatial plots and maps, 101–103

standard chart graphics, 91–94

statistical plots, 95–99

topology structures, 100–101

selecting design style, 87–90

in Tableau

about, 391–392

area chart, 408–410

bar chart, 400–401

box and whisker plot, 415–416

bubbles, 402–406

bullet chart, 418–419

circles, 402–406

converting to cross tabulation tables,
419–422

dual combination chart, 411–412

Gantt chart, 416–418

heat map, 394–395

highlight table, 395–396

histogram, 414–415

line chart, 406–408

maps with/without symbols, 396–398

pie chart, 398–399

publishing, 422–424

scatter plot, 412–414

text table, 392–394

treemap, 401–402

table-based, 228–231

testing data graphics, 103–104

types of

about, 82

data art, 84

data showcasing, 83

data storytelling, 82–83

Visualizations pane, 218

visualizing

about, 130

data, 17

graphs in MatPlotLib, 757–760

R statistics with ggplot2, 620–621

table, 228–229

vocabulary, for R, 608–611

volume, of big data, 27, 28, 39

W
wallpaper, for report pages, 235

Warning icon, 4

Waterfall charts, 216–217

web content, adding to dashboards, 242

web pages, integrating in dashboards in Tableau,
379–380

web programming file format, 53
websites

Cartopy, 753

Cheat Sheet, 4

Comprehensive R Archive Network (CRAN), 619,
630–631

DurusWorks, 698

embedding reports on, 138

General Architecture for Text Engineering
(GATE), 69

Keras, 701

MATLAB, 721

MatPlotLib library, 701, 721, 741

MySQLdb, 697

Natural Language Toolkit (NLTK), 69

NetworkX, 702

NumPy library, 700

pandas library, 700

Power BI Desktop, 120

Quixote, 698

R, 620

RStudio, 631

Scikit-learn library, 700

SciPy library, 699

Tableau, 291

TensorFlow, 701

802 Data Analytics & Visualization All-in-One For Dummies

what-if analysis, performing, 17

WHERE clauses, 515–517, 603

WHERE() function, querying data using, 66–67

Wickham, Hadley, 671, 680

wide-versus-tall debate, 345–348

WIDTH_BUCKET function, 501

Wildcard Search Filter, 331

Wilkinson, Leland, 671

Window menu (Tableau Desktop), 364–365

with() function, 648

word clouds, 95, 97

workbooks

sheets compared with, 369–370

in Tableau, 274–275

working directory, in R, 634–635

Worksheet menu (Tableau Desktop), 355–357

worksheets

adding metadata to in Tableau Desktop, 357

creating in Tableau Desktop, 355, 356

formatting in Tableau Desktop, 356–357

managing in Tableau Desktop, 356

in Tableau, 274–275

in Tableau Desktop, 369–370

workspaces

collaborating inside Power BI Services using,
137

configuring, 250–253
creating, 250–253

Power BI, 114–115

for sharing and collaborating,
247–254

Tableau Desktop, 351–353

X
x-coordinate, 656

xlabel() function, 734

.xls files, 321
XML type, 471–472

Y
y-coordinate, 656

Z
zettabyte, 31–33

About the Authors

Jack Hyman is the founder of HyerTek, a Washington, DC-based technology

consulting and training services firm specializing in cloud computing, business
intelligence, learning management, and enterprise application advisory needs for
federal, state, and private sector organizations in the United States and Canada. He
is an enterprise technology expert with over 20 years of digital and cloud trans-

formation experience, collaborative computing, usability engineering, blockchain,
and systems integration. During his extensive IT career, Jack has led U.S. federal
government agencies and global enterprises through multiyear technology trans-

formation projects. Before founding HyerTek, Jack worked for Oracle and IBM. He
has authored many books, provided peer-review guidance for scholarly journals,
and developed training courseware with an emphasis on Microsoft technologies.
Since 2004, he has served as an adjunct faculty member at George Washington
University, American University, and the University of the Cumberlands. Hyman
holds a PhD in Information Systems from Nova Southeastern University.

Luca Massaron is a data scientist and a marketing research director specializ-

ing in multivariate statistical analysis, machine learning, and customer insight,
with more than a decade of experience in solving real-world problems and gen-

erating value for stakeholders by applying reasoning, statistics, data mining, and
algorithms. From being a pioneer of web audience analysis in Italy to achieving
the rank of top ten Kaggler on kaggle.com, he has always been passionate about
everything regarding data and analysis and about demonstrating the potential-
ity of data-driven knowledge discovery to both experts and nonexperts. Favoring
simplicity over unnecessary sophistication, he believes that a lot can be achieved
in data science by understanding and practicing its essentials.

Paul McFedries has been a technical writer for 30 years (no, that is not a typo). He
has been messing around with spreadsheet software since installing Lotus 1-2-3
on an IBM PC clone in 1986. He has written more than 100 books (nope, not a typo)
that have sold more than four million copies worldwide (again, not a typo). Paul’s
books include the Wiley titles Excel All-in-One For Dummies, Excel Data Analysis For

Dummies, Teach Yourself VISUALLY Excel, and Teach Yourself VISUALLY Windows 11.
Paul invites everyone to drop by his personal website (https://paulmcfedries.
com) and to follow him on Twitter (@paulmcf) and Facebook (www.facebook.com/
PaulMcFedries/).

John Paul Mueller is a freelance author and technical editor. He has writing in his
blood, having produced 124 books and more than 600 articles to date. The topics
range from networking to artificial intelligence and from database management
to heads-down programming. Some of his current books include discussions
of data science, data security, machine learning, and algorithms. His techni-
cal editing skills have helped more than 70 authors refine the content of their
manuscripts. John has provided technical editing services to various magazines,

http://kaggle.com
https://paulmcfedries.com
https://paulmcfedries.com
https://twitter.com/paulmcf
https://www.facebook.com/PaulMcFedries/
https://www.facebook.com/PaulMcFedries/

performed various kinds of consulting, and written certification exams. Be sure to
read John’s blog at http://blog.johnmuellerbooks.com/. You can reach John on
the internet at John@JohnMuellerBooks.com. John also has a website at http://
www.johnmuellerbooks.com/. Be sure to follow John on Amazon at https://www.
amazon.com/John-Mueller/e/B000AQ77KK/.

Lillian Pierson is a CEO and data leader who supports data professionals in evolv-

ing into world-class leaders and entrepreneurs. To date, she’s helped educate over
1.3 million data professionals on AI and data science.

The author of six data-oriented books from Wiley Publishing as well as eight
data courses on LinkedIn Learning, Lillian has supported a wide variety of orga-

nizations across the globe, from the United Nations and National Geographic to

Ericsson and Saudi Aramco and everything in between.

A licensed professional engineer in good standing, Lillian has been a technical
consultant since 2007 and a data business mentor since 2018. She occasionally
volunteers her expertise in global summits and forums on data privacy and ethics.

Dr. Jonathan Reichental is the founder of Human Future, a global business and
technology advisory, investment, and education firm. His previous roles have
included senior software engineering manager and director of technology inno-

vation, and he has served as chief information officer (CIO) at both O’Reilly Media
and the City of Palo Alto, California.

In 2013, he was recognized as one of the 25 doers, dreamers, and drivers in gov-

ernment in America. In 2016, he was named a top influential CIO in the United
States, and in 2017, he was named one of the top 100 CIOs in the world. He has also
won a Best CIO in Silicon Valley award and a national IT leadership prize.

Reichental is a recognized global thought leader, keynote speaker, and business
and government adviser on a number of emerging trends, including urban inno-

vation, smart cities, sustainability, blockchain technology, data governance, the
fourth industrial revolution, digital transformation, and many more.

He is an adjunct professor in the School of Management at the University of San
Francisco and instructs at several other universities. Reichental regularly creates
online educational video courses for LinkedIn Learning, which include a highly
successful series on data governance.

Reichental has written several books, including Smart Cities for Dummies, Exploring

Smart Cities Activity Book for Kids, and Exploring Cities Bedtime Rhymes.

You can learn more about his work at www.reichental.com, and follow him on
LinkedIn and Twitter.

http://blog.johnmuellerbooks.com/
mailto:John@JohnMuellerBooks.com
http://www.johnmuellerbooks.com/
http://www.johnmuellerbooks.com/
https://www.amazon.com/John-Mueller/e/B000AQ77KK/
https://www.amazon.com/John-Mueller/e/B000AQ77KK/
http://www.reichental.com

Joseph Schmuller is a veteran of over 25 years in the field of information
technology. He is the author of several books on computing, including Statistical

Analysis with R For Dummies, R Projects For Dummies, and all five editions of
Statistical Analysis with Excel For Dummies (all from Wiley), and the three editions
of Teach Yourself UML in 24 Hours (SAMS). He has created and delivered online
coursework on statistics and Excel for LinkedIn Learning. Over 100,000 people
around the world have taken these courses.

For seven years, Joseph was the editor-in-chief of PC AI magazine, and he has
written numerous articles on advanced technology.

A former member of the American Statistical Association, he has taught statistics
at the undergraduate and graduate levels. He holds a BS from Brooklyn College, an
MA from the University of Missouri-Kansas City, and a PhD from the University of
Wisconsin, all in psychology.

He and his family live in Jacksonville, Florida, where he works on the Digital Cloud
& Enterprise Architecture Team at Availity.

Alan Simon is the managing principal of Thinking Helmet, Inc., a boutique con-

sulting firm that specializes in enterprise data management, business intel-
ligence, and analytics. Alan began his technology career in 1979 while still in
college, working on a prehistoric data warehouse hosted on an antiquated UNIVAC
mainframe computer. From that moment, he was hooked on data management
and data-driven insights. For more than 40 years, Alan has been at the forefront
of disciplines such as data warehousing, business intelligence, big data and data
lakes, and modern analytics. In addition to working through his own firm, over
the years, Alan has held global, national, and regional business intelligence and
data warehousing practice leadership positions at leading consultancies and soft-
ware firms. He has built both brand-new practices and turnaround situations into
top-tier organizations, often working side by side with his consultants on critical
client engagements.

Alan is especially known for being a “trusted adviser” to clients, helping them
navigate through the hype and hidden traps when bringing emerging data tech-

nologies and architectures into their enterprises. His client work focuses on
assessment, strategy, architecture, and road-map engagements for data lakes,
data warehousing, business intelligence and analytics, and enterprise-scale
systems, as well as rescuing and reviving problematic programs and projects.

Alan has also taught college and university courses since the early 1980s to both
undergraduate and graduate students. He has authored more than 30 business
and technology books dating back to the mid-1980s, including the first edition
of Data Warehousing For Dummies (Wiley).

From 1982 to 1986, Alan was a United States Air Force officer, where he wrote
software for the nation’s nuclear missile attack alert system.

His “other other job” besides consulting and teaching is writing historical novels
and contemporary fiction, including (so far) one title that appeared on USA Today’s

bestseller list.

Allen G. Taylor is a 40-year veteran of the computer industry and the author of
more than 40 books, including SQL For Dummies, Crystal Reports 2008 For Dummies,

Database Development For Dummies, Access 2003 Power Programming with VBA, and

SQL Weekend Crash Course. He lectures internationally on databases, networks,
innovation, astronomy, and entrepreneurship, as well as health and wellness. He
also teaches database development through a leading online education provider.
For the latest news on Allen’s activities, check out his online courses (at pioneer-
academy1.teachable.com) and his blog (at www.allengtaylor.com). You can
contact Allen at allen.taylor@ieee.org.

http://pioneer-academy1.teachable.com
http://pioneer-academy1.teachable.com
http://www.allengtaylor.com
mailto:allen.taylor@ieee.org

Publisher’s Acknowledgments

Executive Editor: Steve Hayes

Compilation Editor: Colleen Diamond

Project Editor: Colleen Diamond

Copy Editor: Colleen Diamond

Senior Managing Editor: Kristie Pyles

Production Editor: Tamilmani Varadharaj

Cover Image: © DC Studio/Shutterstock

Take dummies with you
everywhere you go!
Whether you are excited about e-books, want more

from the web, must have your mobile apps, or are swept
up in social media, dummies makes everything easier.

dummies.com

Find us online!

http://dummies.com

Leverage the power

Dummies is the global leader in the reference category and one
of the most trusted and highly regarded brands in the world. No
longer just focused on books, customers now have access to the
dummies content they need in the format they want. Together
we’ll craft a solution that engages your customers, stands out
from the competition, and helps you meet your goals.

Connect with an engaged audience on a powerful multimedia site,
and position your message alongside expert how-to content.
Dummies.com is a one-stop shop for free, online information
and know-how curated by a team of experts.

� Targeted ads

� Video

� Email Marketing

� Microsites

� Sweepstakes
sponsorship

Advertising & Sponsorships

MILLION
PAGE VIEWS

M I L L I O N

NEWSLETTER

300,000 UNIQUE INDIVIDUALS
EVERY WEEK

UNIQUE

SUBSCRIPTIONS

EVERY SINGLE MONTH

15

700,000

20

43%
OF ALL VISITORS

ACCESS THE SITE
VIA THEIR MOBILE DEVICES

VISITORS PER MONTH

TO THE INBOXES OF

http://Dummies.com

of dummies

you from competitors, amplify your message, and encourage customers to make a
buying decision.

Leverage the strength of the world’s most popular reference brand to reach new
audiences and channels of distribution.

For more information, visit dummies.com/biz

� Apps

� Books
� eBooks

� Video
� Audio

� Webinars

Custom Publishing

Brand Licensing & Content

http://dummies.com/biz

9781119187790

USA $26.00

CAN $31.99

UK £19.99

9781119179030

USA $21.99

CAN $25.99

UK £16.99

9781119293354

USA $24.99

CAN $29.99

UK £17.99

9781119293347

USA $22.99

CAN $27.99

UK £16.99

9781119310068

USA $22.99

CAN $27.99

UK £16.99

9781119235606

USA $24.99

CAN $29.99

UK £17.99

9781119251163

USA $24.99

CAN $29.99

UK £17.99

9781119235491

USA $26.99

CAN $31.99

UK £19.99

9781119279952

USA $24.99

CAN $29.99

UK £17.99

9781119283133

USA $24.99

CAN $29.99

UK £17.99

9781119287117

USA $24.99

CAN $29.99

UK £16.99

9781119130246

USA $22.99

CAN $27.99

UK £16.99

PERSONAL ENRICHMENT

9781119311041

USA $24.99

CAN $29.99

UK £17.99

9781119255796

USA $39.99

CAN $47.99

UK £27.99

9781119293439

USA $26.99

CAN $31.99

UK £19.99

9781119281467

USA $26.99

CAN $31.99

UK £19.99

9781119280651

USA $29.99

CAN $35.99

UK £21.99

9781119251132

USA $24.99

CAN $29.99

UK £17.99

9781119310563

USA $34.00

CAN $41.99

UK £24.99

9781119181705

USA $29.99

CAN $35.99

UK £21.99

9781119263593

USA $26.99

CAN $31.99

UK £19.99

9781119257769

USA $29.99

CAN $35.99

UK £21.99

9781119293477

USA $26.99

CAN $31.99

UK £19.99

9781119265313

USA $24.99

CAN $29.99

UK £17.99

9781119239314

USA $29.99

CAN $35.99

UK £21.99

9781119293323

USA $29.99

CAN $35.99

UK £21.99

PROFESSIONAL DEVELOPMENT

dummies.com

http://dummies.com

WILEY END USER LICENSE AGREEMENT

Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Title Page
	Copyright Page
	Table of Contents
	Introduction
	About This Book
	Foolish Assumptions
	Icons Used in This Book
	Beyond the Book
	Where to Go from Here

	Book 1 Learning Data Analytics & Visualizations Foundations
	Chapter 1 Exploring Definitions and Roles
	What Is Data, Really?
	Working with structured data
	Looking at unstructured data
	Adding semi-structured data to the mix

	Discovering Business Intelligence
	Understanding Data Analytics
	Exploring Data Management
	Diving into Data Analysis
	Cooking raw data
	Dealing with data
	Building data models
	Performing what-if analysis

	Visualizing Data

	Chapter 2 Delving into Big Data
	Identifying the Roles of Data
	Operations
	Strategy
	Decision-making
	Measuring
	Monitoring
	Insight management
	Reporting
	Other roles for data
	Grappling with data volume
	Handling data velocity
	Dealing with data variety

	What’s All the Fuss about Data?
	Welcome to the zettabyte era
	From data to insight

	Identifying Important Data Sources
	Role of Big Data in Data Science and Engineering
	Defining data science
	Defining machine learning engineering
	Defining data engineering

	Connecting Big Data with Business Intelligence
	Analyzing Data with Enterprise Business Intelligence Practices

	Chapter 3 Understanding Data Lakes
	Rock-Solid Water
	A Really Great Lake
	Expanding the Data Lake
	More Than Just the Water
	Different Types of Data
	Different Water, Different Data
	Refilling the Data Lake
	Everyone Visits the Data Lake

	Chapter 4 Wrapping Your Head Around Data Science
	Inspecting the Pieces of the Data Science Puzzle
	Collecting, querying, and consuming data
	Applying mathematical modeling to data science tasks
	Deriving insights from statistical methods
	Coding, coding, coding — it’s just part of the game
	Applying data science to a subject area

	Choosing the Best Tools for Your Data Science Strategy
	Getting a Handle on SQL and Relational Databases
	Knowing all about the keys

	Investing Some Effort into Database Design
	Defining data types
	Designing constraints properly
	Normalizing your database

	Narrowing the Focus with SQL Functions
	Making Life Easier with Excel
	Using Excel to quickly get to know your data
	Filtering in Excel
	Using conditional formatting
	Excel charting to visually identify outliers and trends

	Reformatting and summarizing with PivotTables
	Automating Excel tasks with macros

	Chapter 5 Telling Powerful Stories with Data Visualization
	Data Visualizations: The Big Three
	Data storytelling for decision-makers
	Data showcasing for analysts
	Designing data art for activists

	Designing to Meet the Needs of Your Target Audience
	Step 1: Brainstorm (All about Eve)
	Step 2: Define the purpose
	Step 3: Choose the most functional visualization type for your purpose

	Picking the Most Appropriate Design Style
	Inducing a calculating, exacting response
	Eliciting a strong emotional response

	Selecting the Appropriate Data Graphic Type
	Standard chart graphics
	Comparative graphics
	Statistical plots
	Topology structures
	Spatial plots and maps

	Testing Data Graphics
	Adding Context
	Creating context with data
	Creating context with annotations
	Creating context with graphical elements

	Book 2 Using Power BI for Data Analytics & Visualization
	Chapter 1 Power BI Foundations
	Looking Under the Power BI Hood
	Posing questions with Power Query
	Modeling with Power Pivot
	Visualizing with Power View
	Mapping data with Power Map
	Interpreting data with Power Q&A
	Power BI Desktop
	Power BI Services

	Knowing Your Power BI Terminology
	Capacities
	Workspaces
	Reports
	Dashboards
	Navigation pane

	Power BI Products in a Nutshell
	Introducing the Power BI license options
	Looking at Desktop versus Services options

	Chapter 2 The Quick Tour of Power BI
	Power BI Desktop: A Top-Down View
	Ingesting Data
	Files or databases?
	Building data models
	Analyzing data
	Creating and publishing items

	Services: Far and Wide
	Viewing and editing reports
	Sharing your results
	Seeing why reports are valuable
	Accessing reports from many directions

	Working with dashboards
	Collaborating inside Power BI Services
	Refreshing data
	Storage modes and dataset types

	Chapter 3 Prepping Data for Visualization
	Getting Data from the Source
	Managing Data Source Settings
	Working with Shared versus Local Datasets
	Storage and Connection Modes
	Data Sources Oh My!
	Getting data from Microsoft-based file systems
	Working with relational data sources
	Relational databases
	Nonrelational databases
	Using the SQL query
	JSON files
	Online sources

	Cleansing, Transforming, and Loading Your Data
	Detecting anomalies and inconsistencies
	Checking data structures and column properties
	Data statistics to the rescue

	Chapter 4 Tweaking Data for Primetime
	Stepping through the Data Lifecycle
	Resolving Inconsistencies
	Replacing values
	Removing rows using Power Query
	Digging down to the root cause

	Evaluating and Transforming Column Data Types
	Finding and creating appropriate keys for joins
	Shaping your column data to meet Power Query requirements
	Combining queries
	Appending queries
	Merging queries

	Configuring Queries for Data Loading
	Resolving Errors During Data Import

	Chapter 5 Designing and Deploying Data Models
	Creating a Data Model Masterpiece
	Working with Data view and Modeling view
	Importing queries
	Defining data types
	Handling formatting and data type properties
	Managing tables
	Adding tables
	Renaming tables
	Deleting tables
	Renaming and deleting columns
	Adding and modifying data in tables

	Adding and modifying data to imported, DirectQuery, and composite models

	Managing Relationships
	Creating automatic relationships
	Creating manual relationships
	Deleting relationships

	Arranging Data
	Sorting by and grouping by
	Hiding data

	Publishing Data Models

	Chapter 6 Tackling Visualization Basics in Power BI
	Looking at Report Fundamentals and Visualizations
	Creating visualizations
	Choosing a visualization
	Filtering data

	Choosing the Best Visualization for the Job
	Working with Bar charts and Column charts
	Stacked Bar charts and Stacked Column charts
	Clustered Bar charts and Clustered Column charts
	100% Stacked Bar charts and 100% Stacked Column charts

	Using basic Line charts and Area charts
	Combining Line charts and Bar charts
	Working with Ribbon charts
	Going with the flow with Waterfall charts
	Funneling with Funnel charts
	Scattering with Scatter charts
	Sweetening the data using Pie charts and Donut charts
	Branching out with treemaps
	Mapping with maps
	Indicating with indicators
	Gauges
	Cards and multi-cards
	Key performance indicators (KPI)

	Chapter 7 Digging into Complex Visualization and Table Data
	Dealing with Table-Based and Complex Visualizations
	Zeroing in with slicers
	Tabling with table visualizations
	Combing through data with matrices
	Decomposing with decomposition trees
	Zooming in on key influencers

	Using AI Tools to Create Questions and Answers
	Formatting and Configuring Report Visualizations
	Applying conditional formatting
	Configuring the report page
	Exporting reports
	Perfecting reports for distribution

	Diving into Dashboards
	Configuring dashboards
	Creating a new dashboard
	Enriching your dashboard with content
	Pinning reports

	Chapter 8 Sharing and Collaborating with Power BI
	Working Together in a Workspace
	Defining the types of workspaces
	Figuring out the nuts and bolts of workspaces
	Creating and configuring the workspace
	Wandering into access management
	Dealing with settings and storage

	Slicing and Dicing Data
	Analyzing in Excel
	Benefiting from Quick Insights
	Using Usage Metric reports
	Working with paginated reports

	Troubleshooting the Use of Data Lineage
	Datasets, Dataflows, and Lineage
	Defending Your Data Turf

	Book 3 Using Tableau for Data Analytics & Visualization
	Chapter 1 Tableau Foundations
	Understanding Key Tableau Terms
	Data source
	Data type
	Data fields
	Dimensions and measures
	Continuous versus discrete
	Filter
	Aggregation
	Workbook and worksheet

	Getting to Know the Tableau Product Line
	Tableau Desktop
	Tableau Prep
	Tableau Server and Tableau Cloud

	Choosing the Right Version
	Knowing What Tools You Need in Each Stage of the Data Life Cycle
	Understanding User Types and Their Capabilities
	Viewer
	Explorer
	Creator

	Chapter 2 Connecting Your Data
	Understanding Data Source Options
	Connecting to Data
	Making the Desktop or Prep connection
	Locating the Server and Online connections

	Setting Up and Planning the Data Source
	Relating and Combining Data Sources
	Working with Data Relationships
	Knowing the advantages of relationships
	Seeing the disadvantages of relationships
	Creating relationships
	Editing relationships
	Moving tables to create different relationships
	Changing the root table of a relationship
	Removing tables from a relationship

	Joining Data
	Understanding join types
	Setting up join clauses
	Creating a join
	Joining fields that contain null values
	Blending data from multiple sources
	Working with clipboard data

	Chapter 3 Diving into the Tableau Prep Lifecycle
	Dabbling in Data Flows
	Connecting the data dots
	Going down the data flow pathway
	Configuring the data flow
	Going with the data flow
	Refreshing data in the input step
	Extract input step updates
	Creating a union among files or database tables in the input step
	Joining data and input steps

	Nurturing a flow
	Grouping flows
	Filtering flows
	Advanced filtering options
	Data cleansing options
	Using Split Value

	Saving Prep Data
	Automating flows
	Crafting published data sources

	Chapter 4 Advanced Data Prep Approaches in Tableau
	Peering into Data Structures
	Rows and records
	Columns and fields
	Categorizing fields

	Structuring for Data Visualization
	Binning and histograms
	Distributions and outliers
	Pivoting with data: Tall versus wide

	Normalizing Data

	Chapter 5 Touring Tableau Desktop
	Getting Hands-On in the Tableau Desktop Workspace
	Making Use of the Tableau Desktop Menus
	File menu
	Data menu
	Worksheet menu
	Dashboard menu
	Story menu
	Analysis menu
	Map menu
	Format menu
	Server menu
	Window menu
	Help menu

	Tooling Around in the Toolbar
	Understanding Sheets versus Workbooks
	Renaming sheets
	Deleting sheets

	Chapter 6 Storytelling Foundations in Tableau
	Working with Dashboards
	Configuring the dashboard
	Customizing the dashboard
	Adding objects to dashboards
	Tackling text, fonts, and color
	Integrating images and logos
	Weaving in web pages
	Buttoning up the dashboard
	Extending the dashboard
	Adhering to best practices for dashboard design

	Creating a Compelling Story
	Synthesizing data through a Tableau story
	Planning your story to perfection
	Surveying the story workspace
	Crafting the story
	Formatting the story

	Chapter 7 Visualizing Data in Tableau
	Introducing the Visualizations
	The text table
	The heat map and highlight table
	Creating a heat map
	Creating a highlight table

	Maps with and without symbols
	The pie chart
	The bar chart
	The treemap
	Circles and bubbles
	The line chart
	The area chart
	The dual combination chart
	The scatter plot
	The histogram
	The box and whisker plot
	The Gantt chart
	The bullet chart

	Converting a Visualization to a Crosstab
	Publishing Visualizations

	Chapter 8 Collaborating and Publishing with Tableau Cloud
	Strolling through the Tableau Cloud Experience
	Evaluating Personal Features in Tableau Cloud
	Personal Space
	Favorites
	Recents

	Sharing Experiences and Collaborating with Others
	Sharing content
	Shared with Me
	Collections
	Explore
	Recommendations

	Book 4 Extracting Information with SQL
	Chapter 1 SQL Foundations
	SQL and the Relational Model
	Sets, Relations, Multisets, and Tables
	Functional Dependencies
	Keys
	Views
	Users
	Privileges
	Schemas
	Catalogs
	Connections, Sessions, and Transactions
	Routines
	Paths

	Chapter 2 Drilling Down to the SQL Nitty-Gritty
	Executing SQL Statements
	Interactive SQL
	Challenges to combining SQL with a host language
	Embedded SQL
	Module language

	Using Reserved Words Correctly
	SQL’s Data Types
	Exact numerics
	INTEGER
	SMALLINT
	BIGINT
	NUMERIC
	DECIMAL
	DECFLOAT

	Approximate numerics
	REAL
	DOUBLE PRECISION
	FLOAT

	Character strings
	CHARACTER
	CHARACTER VARYING
	CHARACTER LARGE OBJECT (CLOB)
	NATIONAL CHARACTER, NATIONAL CHARACTER VARYING, and NATIONAL CHARACTER LARGE OBJECT

	Binary strings
	BINARY
	BINARY VARYING
	BINARY LARGE OBJECT (BLOB)

	Booleans
	Datetimes
	DATE
	TIME WITHOUT TIME ZONE
	TIME WITH TIME ZONE
	TIMESTAMP WITHOUT TIME ZONE
	TIMESTAMP WITH TIME ZONE

	Intervals
	XML type
	ROW type
	Collection types
	ARRAY
	Multiset

	REF types
	User-defined types
	Distinct types
	Structured types

	Handling Null Values
	Applying Constraints
	Column constraints
	NOT NULL
	UNIQUE
	CHECK

	Table constraints
	Foreign key constraints
	Assertions

	Chapter 3 Values, Variables, Functions, and Expressions
	Entering Data Values
	Row values have multiple parts
	Identifying values in a column
	Literal values don’t change
	Variables vary
	Special variables hold specific values

	Working with Functions
	Summarizing data with set functions
	COUNT
	AVG
	MAX
	MIN
	SUM
	LISTAGG

	Dissecting data with value functions
	String value functions
	Numeric value functions
	Datetime value functions
	Polymorphic table functions

	Using Expressions
	Numeric value expressions
	String value expressions
	Datetime value expressions
	Interval value expressions
	Boolean value expressions
	Array value expressions
	Conditional value expressions
	Handling different cases
	The NULLIF special CASE
	Bypassing null values with COALESCE

	Converting data types with a CAST expression
	Casting one SQL data type to another
	Using CAST to overcome data type incompatibilities between SQL and its host language

	Row value expressions

	Chapter 4 SELECT Statements and Modifying Clauses
	Finding Needles in Haystacks with the SELECT Statement
	Modifying Clauses
	FROM clauses
	WHERE clauses
	Comparison predicates
	BETWEEN
	IN and NOT IN
	LIKE and NOT LIKE
	NULL
	ALL, SOME, and ANY
	EXISTS
	UNIQUE
	DISTINCT
	OVERLAPS
	MATCH
	The MATCH predicate and referential integrity
	Logical connectives

	GROUP BY clauses
	HAVING clauses
	ORDER BY clauses

	Chapter 5 Tuning Queries
	SELECT DISTINCT
	Temporary Tables
	The ORDER BY Clause
	The HAVING Clause
	The OR Logical Connective

	Chapter 6 Complex Query Design
	What Is a Subquery?
	What Subqueries Do
	Subqueries that return multiple values
	Subqueries that retrieve rows satisfying a condition
	Subqueries that retrieve rows that don’t satisfy a condition

	Subqueries that return a single value
	Quantified subqueries return a single value
	Correlated subqueries
	Using a subquery as an existence test
	Introducing a correlated subquery with the IN keyword
	Introducing a correlated subquery with a comparison operator
	Correlated subqueries in a HAVING clause

	Using Subqueries in INSERT, DELETE, and UPDATE Statements
	Tuning Considerations for Statements Containing Nested Queries
	Tuning Correlated Subqueries
	UNION
	UNION ALL
	UNION CORRESPONDING

	INTERSECT
	EXCEPT

	Chapter 7 Joining Data Together in SQL
	JOINS
	Cartesian product or cross join
	Equi-join
	Natural join
	Condition join
	Column-name join
	Inner join
	Outer join
	Left outer join
	Right outer join
	Full outer join

	ON versus WHERE
	Join Conditions and Clustering Indexes

	Book 5 Performing Statistical Data Analysis & Visualization with R Programming
	Chapter 1 Using Open Source R for Data Science
	Downloading Open Source R
	Comprehending R’s Basic Vocabulary
	Delving into Functions and Operators
	Iterating in R
	Observing How Objects Work
	Sorting Out R’s Popular Statistical Analysis Packages
	Examining Packages for Visualizing, Mapping, and Graphing in R
	Visualizing R statistics with ggplot2
	Analyzing networks with statnet and igraph
	Mapping and analyzing spatial point patterns with spatstat

	Chapter 2 R: What It Does and How It Does It
	The Statistical (and Related) Ideas You Just Have to Know
	Samples and populations
	Variables: Dependent and independent
	Types of data
	A little probability
	Inferential statistics: Testing hypotheses
	Null and alternative hypotheses
	Two types of error

	Getting R
	Getting RStudio
	A Session with R
	The working directory
	Getting started

	R Functions
	User-Defined Functions
	Comments
	R Structures
	Vectors
	Numerical vectors
	Matrices
	Lists
	Data frames

	for Loops and if Statements

	Chapter 3 Getting Graphical
	Finding Patterns
	Graphing a distribution
	Bar-hopping
	Slicing the pie
	The plot of scatter
	Of boxes and whiskers

	Doing the Basics: Base R Graphics, That Is
	Histograms
	Graph features
	Bar plots
	Pie graphs
	Dot charts
	Bar plots revisited
	Scatter plots
	A plot twist
	Scatter plot matrix

	Box plots

	Chapter 4 Kicking It Up a Notch to ggplot2
	Histograms
	Bar Plots
	Dot Charts
	Bar Plots Re-revisited
	Scatter Plots
	Scatter Plot Matrix
	Box Plots

	Book 6 Applying Python Programming to Data Science
	Chapter 1 Discovering the Match between Data Science and Python
	Creating the Data Science Pipeline
	Understanding Python’s Role in Data Science
	Considering the shifting profile of data scientists
	Working with a multipurpose, simple, and efficient language

	Learning to Use Python Fast
	Loading data
	Training a model
	Viewing a result

	Working with Python
	Contributing to data science
	Getting a taste of the language
	Understanding the need for indentation

	Using the Python Ecosystem for Data Science
	Accessing scientific tools using SciPy
	Performing fundamental scientific computing using NumPy
	Performing data analysis using pandas
	Implementing machine learning using Scikit-learn
	Going for deep learning with Keras and TensorFlow
	Plotting the data using Matplotlib
	Creating graphs with NetworkX

	Chapter 2 Using Python for Data Science and Visualization
	Using Python for Data Science
	Sorting Out the Various Python Data Types
	Numbers in Python
	Strings in Python
	Lists in Python
	Tuples in Python
	Sets in Python
	Dictionaries in Python

	Putting Loops to Good Use in Python
	Having Fun with Functions
	Keeping Cool with Classes
	Checking Out Some Useful Python Libraries
	Saying hello to the NumPy library
	Getting up close and personal with the SciPy library
	Bonding with MatPlotLib for data visualization
	Peeking into the Pandas offering
	Learning from data with Scikit-learn

	Chapter 3 Getting a Crash Course in Matplotlib
	Starting with a Graph
	Defining the plot
	Drawing multiple lines and plots
	Saving your work to disk

	Setting the Axis, Ticks, and Grids
	Getting the axes
	Formatting the axes
	Adding grids

	Defining the Line Appearance
	Working with line styles
	Using colors
	Adding markers

	Using Labels, Annotations, and Legends
	Adding labels
	Annotating the chart
	Creating a legend

	Chapter 4 Visualizing the Data
	Choosing the Right Graph
	Creating comparisons with bar charts
	Showing distributions using histograms
	Depicting groups using boxplots
	Seeing data patterns using scatterplots

	Creating Advanced Scatterplots
	Depicting groups
	Showing correlations

	Plotting Time Series
	Representing time on axes
	Plotting trends over time

	Plotting Geographical Data
	Using an environment in Notebook
	Using Cartopy to plot geographic data

	Visualizing Graphs
	Developing undirected graphs
	Developing directed graphs

	Index
	EULA

