

ChatGPT for Cybersecurity
Cookbook

Learn practical generative AI recipes to supercharge
your cybersecurity skills

Clint Bodungen

ChatGPT for Cybersecurity Cookbook
Copyright © 2024 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case
of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable
for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Group Product Manager: Niranjan Naikwadi
Publishing Product Manager: Nitin Nainani
Book Project Manager: Aishwarya Mohan
Senior Editors: Aamir Ahmed and Nathanya Dias
Technical Editor: Simran Haresh Udasi
Copy Editor: Safis Editing
Indexer: Manju Arasan
Production Designer: Shankar Kalbhor
DevRel Marketing Coordinator: Vinishka Kalra

First published: March 2024
Production reference: 1130324

Published by Packt Publishing Ltd.
Grosvenor House
11 St Paul’s Square
Birmingham
B3 1RB, UK

ISBN 978-1-80512-404-7

www.packtpub.com

http://www.packt.com

To my wife, Ashley, for her unwavering support throughout the many weekends and hours burning the
midnight oil for this project. To my sons, Caleb and Connor, the future is what you make of it. You can

accomplish anything if you just believe.

– Clint Bodungen

Foreword

In the relentless cyber battleground, where threats morph with each tick of the clock, generative
artificial intelligence (AI) emerges as our digital sentinel. ChatGPT and its kin are not mere tools; they
are force multipliers in our cyber arsenals. We’re talking about a paradigm shift here – generative AI
doesn’t just uplift; it transforms the cybersecurity landscape. It lets us run rings around potential threats,
streamline security measures, and forecast nefarious plots with an astuteness that’s simply otherworldly.

This isn’t just tech talk; it’s about real muscle in the fight against digital adversaries. Imagine crafting a
cyber training regimen so robust that it catapults neophytes into seasoned defenders within the data
trenches. Generative AI is that game-changer, shattering the barriers to entry, democratizing the field,
and nurturing a new generation of cyber mavens.

But there’s more. With generative AI, we dive into data oceans and surface with those elusive security
insights – the kind that traditional tools would miss. This is about harnessing AI to not just respond to
threats but also to anticipate them, to be steps ahead of the adversary. We’re entering an era where our
collaboration with AI amplifies our strategic nous, sharpens our foresight, and fortifies our resilience.

As we join forces with AI, we’re not just bolstering defenses; we’re fostering a culture of cybersecurity
innovation. We’re empowering minds to push beyond the conventional, to envision a digital realm
where safety is the norm, not the exception. This book is a testament to that vision, a guide on wielding
AI’s might to safeguard our cyber frontiers. Welcome to the future – a future where we stand united
with AI in the vanguard of cybersecurity.

Aaron Crow

OT Cybersecurity Professional & Thought Leader

Host of PrOTect IT All Podcast

Contributors

About the author
Clint Bodungen is a globally recognized cybersecurity professional and thought leader with 25+
years of experience, and author of Hacking Exposed: Industrial Control Systems. He is a U.S. Air Force
veteran, has worked for notable cybersecurity firms Symantec, Booz Allen Hamilton, and Kaspersky
Lab, and is a co-founder of ThreatGEN, a cybersecurity gamification and training firm. Clint has
been at the forefront of integrating gamification and AI into cybersecurity with his flagship product,
ThreatGEN® Red vs. Blue, the world’s first online multiplayer computer game designed to teach real-
world cybersecurity. Clint continues his pursuit to help revolutionize the cybersecurity industry using
gamification and generative AI.

I would first like to thank my amazing team at Packt Publishing for their patience and their trust in
me to write this book. And special thanks to the cybersecurity community and the pioneers of the AI
industry.

About the reviewers
Aaron Shbeeb is a lifelong programmer, cybersecurity enthusiast, and game developer. He has
programmed in over a dozen programming languages both personally and professionally. He has also
worked as a penetration tester and vulnerability researcher. Lately, his passion has been for developing
ThreatGEN® Red vs. Blue, a cybersecurity training video game that he co-founded/co-developed with
Clint Bodungen. Developing that game allows him to practice some of his favorite parts of software
development such as system design, machine learning, and AI.

Pascal Ackerman, a principal security consultant, began his career in IT in 1999. He is a seasoned
industrial security professional with a degree in electrical engineering and experience in industrial
network design and support, information and network security, risk assessments, penetration testing,
threat hunting, and forensics. His passion lies in analyzing new and existing threats to Industrial
Control System (ICS) environments and he fights cyber adversaries both from his home base and
while traveling the world with his family as a digital nomad.

Bradley Jackson navigates the intricate world of cybersecurity with a quiet dedication to Python and
emerging technologies. His journey, though marked by meaningful professional accomplishments,
finds its truest joy in life’s simpler facets. At heart, Bradley is a family man, deeply devoted to his
wife Kayla and their four children. This grounding influence of family life in Arkansas beautifully
complements his thoughtful contributions to the ChatGPT for Cybersecurity Cookbook, reflecting a
blend of practical wisdom with a down-to-earth approach to technology.

Preface xv

1
Getting Started: ChatGPT, the OpenAI API, and Prompt Engineering 1

Technical requirements 3
Setting up a ChatGPT Account 3
Getting ready 3
How to do it… 3
How it works… 4
There’s more… 5

Creating an API Key and interacting
with OpenAI 5
Getting ready 5
How to do it… 6
How it works… 7
There’s more… 7

Basic Prompting (Application:
Finding Your IP Address) 11
Getting ready 11
How to do it… 12
How it works… 15
There’s more… 15

Applying ChatGPT Roles
(Application : AI CISO) 16
Getting ready 16
How to do it… 16
How it works… 18
There’s more… 18

Enhancing Output with Templates
(Application: Threat Report) 19
Getting ready 19
How to do it… 19
How it works… 21
There’s more… 21

Formatting Output as a Table
(Application: Security Controls Table) 22
Getting ready 22
How to do it… 22
How it works… 24
There’s more… 24

Setting the OpenAI API Key as an
Environment Variable 24
Getting ready 24
How to do it… 24
How it works… 26
There’s more… 26

Sending API Requests and Handling
Responses with Python 26
Getting ready 26
How to do it… 26
How it works… 27
There’s more… 29

Table of Contents

Table of Contentsviii

Using Files for Prompts and
API Key Access 29
Getting ready 29
How to do it… 30
How it works... 31
There’s more... 31

Using Prompt Variables
(Application: Manual Page Generator) 32
Getting ready 32
How to do it… 32
How it works… 34
There’s more... 35

2
Vulnerability Assessment 37

Technical requirements 38
Creating Vulnerability Assessment
Plans 38
Getting ready 38
How to do it… 39
How it works… 42
There’s more… 43

Threat Assessment using ChatGPT
and the MITRE ATT&CK framework 53
Getting ready 53
How to do it… 54
How it works… 58

There’s more… 59

GPT-Assisted Vulnerability Scanning 65
Getting ready 65
How to do it… 66
How it works… 68
There’s more… 68

Analyzing Vulnerability Assessment
Reports using LangChain 69
Getting ready 70
How to do it… 70
How it works… 74
There’s more… 75

3
Code Analysis and Secure Development 77

Technical requirements 78
Secure Software Development
Lifecycle (SSDLC) Planning
(Planning Phase) 78
Getting ready 79
How to do it… 79
How it works… 80
There’s more… 81

Security Requirement Generation
(Requirements Phase) 82
Getting ready 82
How to do it… 82
How it works… 84
There’s more… 84

Generating Secure Coding
Guidelines (Design Phase) 85
Getting ready 85

Table of Contents ix

How to do it… 86
How it works… 87
There’s more… 88

Analyzing Code for Security Flaws
and Generating Custom Security
Testing Scripts (Testing Phase) 88
Getting ready 89
How to do it… 90
How it works… 91

There’s more… 92

Generating Code Comments
and Documentation
(Deployment/Maintenance Phase) 96
Getting ready 97
How to do it… 97
How it works… 100
There’s more… 101

4
Governance, Risk, and Compliance (GRC) 107

Technical requirements 108
Security Policy and Procedure
Generation 108
Getting ready 109
How to do it… 109
How it works… 110
There’s more… 111

ChatGPT-Assisted Cybersecurity
Standards Compliance 118
Getting ready 118
How to do it… 118
How it works… 120
There’s more… 121

Creating a Risk Assessment Process 121
Getting ready 122

How to do it… 122
How it works… 130
There’s more… 131

ChatGPT-Assisted Risk Ranking
and Prioritization 132
Getting ready 132
How to do it… 132
How it works… 136
There’s more… 137

Building Risk Assessment Reports 137
Getting ready 137
How to do it… 138
How it works… 145
There’s more… 146

5
Security Awareness and Training 147

Technical requirement 148
Developing Security Awareness
Training Content 148

Getting ready 149
How to do it… 149
How it works… 157

Table of Contentsx

There’s more… 158

Assessing Cybersecurity Awareness 159
Getting ready 159
How to do it… 159
How it works… 161
There’s more… 162

Interactive Email Phishing Training
with ChatGPT 168
Getting ready 168
How to do it… 169
How it works… 170
There’s more… 171

ChatGPT-Guided Cybersecurity
Certification Study 175
Getting ready 175
How to do it… 175
How it works… 176
There’s more… 177

Gamifying Cybersecurity Training 179
Getting ready 180
How to do it… 180
How it works… 182
There’s more… 183

6
Red Teaming and Penetration Testing 185

Technical requirements 186
Creating red team scenarios
using MITRE ATT&CK and the
OpenAI API 186
Getting ready 187
How to do it… 187
How it works… 194
There’s more… 195

Social media and public data OSINT
with ChatGPT 196
Getting ready 196
How to do it… 196
How it works… 198
There’s more… 199

Google Dork automation with
ChatGPT and Python 199
Getting ready 200

How to do it… 200
How it works… 205
There’s more… 205

Analyzing job postings OSINT
with ChatGPT 206
Getting ready 207
How to do it… 207
How it works… 211
There’s more… 212

GPT-powered Kali Linux terminals 213
Getting ready 213
How to do it… 214
How it works… 218
There’s more… 219

Table of Contents xi

7
Threat Monitoring and Detection 221

Technical requirements 222
Threat Intelligence Analysis 223
Getting ready 223
How to do it… 223
How it works… 224
There’s more… 225

Real-Time Log Analysis 229
Getting ready 229
How to do it… 230
How it works… 235
There’s more… 236

Detecting APTs using ChatGPT for
Windows Systems 236
Getting ready 237
How to do it… 237

How it works… 241
There’s more… 242

Building Custom Threat Detection
Rules 243
Getting ready 243
How to do it… 243
How it works… 245
There’s more… 246

Network Traffic Analysis and
Anomaly Detection with PCAP
Analyzer 246
Getting ready 246
How to do it… 247
How it works… 251
There’s more… 252

8
Incident Response 253

Technical requirements 254
ChatGPT-assisted incident analysis
and triage 254
Getting ready 254
How to do it… 255
How it works… 255
There’s more… 256

Generating incident response
playbooks 257
Getting ready 257
How to do it… 257
How it works… 258
There’s more… 258

ChatGPT-assisted root
cause analysis 263
Getting ready 263
How to do it… 264
How it works… 265
There’s more… 266
Notes of caution 266

Automated briefing reports and
incident timeline reconstruction 267
Getting ready 267
How to do it… 268
How it works… 273
There’s more… 274
Notes of caution 275

Table of Contentsxii

9
Using Local Models and Other Frameworks 277

Technical requirements 278
Implementing local AI models
for cybersecurity analysis with
LMStudio 278
Getting ready 278
How to do it… 279
How it works… 285
There’s more… 285

Local threat hunting with Open
Interpreter 286
Getting ready 286
How to do it… 286
How it works… 288
There’s more… 289

Enhancing penetration testing
with Shell GPT 290

Getting ready 291
How to do it… 291
How it works… 293
There’s more… 294

Reviewing IR Plans with
PrivateGPT 295
Getting ready 295
How to do it… 295
There’s more… 298

Fine-tuning LLMs for cybersecurity
with Hugging Face’s AutoTrain 299
Getting ready 299
How to do it… 299
How it works… 303
There’s more… 304

10
The Latest OpenAI Features 305

Technical requirements 306
Analyzing network diagrams with
OpenAI’s Image Viewer 307
Getting ready 307
How to do it… 307
How it works… 309
There’s more… 309

Creating Custom GPTs for
Cybersecurity Applications 310
Getting ready 310
How to do it… 311
How it works… 322

There’s more… 323

Monitoring Cyber Threat
Intelligence with Web Browsing 324
Getting ready 324
How to do it… 324
How it works… 326
There’s more… 327

Vulnerability Data Analysis and
Visualization with ChatGPT
Advanced Data Analysis 327
Getting ready 328
How to do it… 328

Table of Contents xiii

How it works… 328
There’s more… 328

Building Advanced Cybersecurity
Assistants with OpenAI 329

Getting ready 329
How to do it… 330
How it works… 334
There’s more… 335

Index 339

Other Books You May Enjoy 346

Preface

In the ever-evolving domain of cybersecurity, the advent of generative AI and large language models
(LLMs), epitomized by the introduction of ChatGPT by OpenAI, marks a significant leap forward.
This book, dedicated to the exploration of ChatGPT’s applications within cybersecurity, embarks on
a journey from the tool’s nascent stages as a basic chat interface to its current stature as an advanced
platform reshaping cybersecurity methodologies.

Initially conceptualized to aid AI research through the analysis of user interactions, ChatGPT’s journey
from its initial release in late 2022 to its current form illustrates a remarkable evolution in a span of just
over a year. The integration of sophisticated features such as web browsing, document analysis, and
image creation through DALL-E, combined with advancements in speech recognition and text-to-image
understanding, has transformed ChatGPT into a multi-faceted tool. This transformation is not merely
technical but extends into functional realms, potentially significantly impacting cybersecurity practices.

A key facet in ChatGPT’s evolution was the incorporation of code completion and debugging
functionalities, which expanded its utility across technical domains, particularly in software development
and secure coding. These advancements have significantly enhanced coding speed and efficiency and
have effectively democratized programming skills and accessibility.

The Advanced Data Analysis feature (formerly known as Code Interpreter) has further opened new
avenues in cybersecurity. It enables professionals to rapidly analyze and debug security-related code,
automate the creation of secure coding guidelines, and develop custom security scripts. The capability
to process and visualize data from diverse sources, including documents and images, and to generate
detailed charts and graphs, transforms raw data into actionable cybersecurity insights.

ChatGPT’s web-browsing capabilities have greatly enhanced its role in cybersecurity intelligence
gathering. By enabling professionals to extract real-time threat information from a broad spectrum
of online sources, ChatGPT facilitates a rapid response to emerging threats and supports informed
strategic decision-making. This synthesis of data into concise, actionable intelligence underscores
ChatGPT’s value as a dynamic tool for cybersecurity experts navigating the rapidly evolving landscape
of cyber threats.

Finally, this book extends beyond the confines of the ChatGPT web interface, venturing into the
OpenAI API to unlock a world of possibilities, empowering you to not only utilize but also innovate
with the OpenAI API. By delving into the creation of custom tools and expanding upon the inherent
capabilities of the ChatGPT interface, you are equipped to tailor AI-powered solutions to their unique
cybersecurity challenges.

Prefacexvi

This book serves as a quintessential guide for cybersecurity professionals looking to harness the power
of ChatGPT in their projects and tasks by providing practical, step-by-step examples of how to employ
ChatGPT in real-world scenarios.

Each chapter focuses on a unique facet of cybersecurity, from vulnerability assessment and code
analysis to threat intelligence and incident response. Through these chapters, you are introduced to
the innovative application of ChatGPT in creating vulnerability and threat assessment plans, analyzing
and debugging security-related code, and even generating detailed threat reports. The book delves into
using ChatGPT in conjunction with frameworks such as MITRE ATT&CK, automating the creation
of secure coding guidelines, and crafting custom security scripts, thereby offering a comprehensive
toolkit for enhancing cybersecurity infrastructure.

By integrating the advanced capabilities of ChatGPT, this book not only educates but also inspires
professionals to explore new horizons in cybersecurity, making it an indispensable resource in the
age of AI-driven security solutions.

Who this book is for
ChatGPT for Cybersecurity Cookbook is written for a diverse audience with a shared interest in the
intersection of artificial intelligence and cybersecurity. Whether you are a seasoned cybersecurity
professional aiming to incorporate the innovative capabilities of ChatGPT and the OpenAI API
into your security practices, an IT professional eager to broaden your cybersecurity acumen with
AI-powered tools, a student or emerging cybersecurity enthusiast keen on understanding and applying
AI in security contexts, or a security researcher fascinated by the transformative potential of AI in
cybersecurity, this book is tailored for you.

The content is structured to accommodate a spectrum of knowledge levels, initiating you with
fundamental concepts before advancing to sophisticated applications. This inclusive approach ensures
the book’s relevance and accessibility to individuals across various stages of their cybersecurity journey.

What this book covers
Chapter 1, Getting Started: ChatGPT, the OpenAI API, and Prompt Engineering, introduces ChatGPT
and the OpenAI API, laying the foundation for leveraging generative AI in cybersecurity. It covers
the basics of setting up an account, mastering prompt engineering, and utilizing ChatGPT for tasks
including code writing and role simulation, setting the stage for more advanced applications in
subsequent chapters.

Chapter 2, Vulnerability Assessment, focuses on enhancing vulnerability assessment tasks, guiding you
through using ChatGPT to create assessment plans, automate processes with the OpenAI API, and
integrate with frameworks including MITRE ATT&CK for comprehensive threat reporting and analysis.

Preface xvii

Chapter 3, Code Analysis and Secure Development, delves into the secure software development
lifecycle (SSDLC), showing how ChatGPT can streamline the process from planning to maintenance.
It highlights the use of AI in crafting security requirements, identifying vulnerabilities, and generating
documentation to improve software security and maintainability.

Chapter 4, Governance, Risk, and Compliance (GRC), offers insights into using ChatGPT for enhancing
cybersecurity governance, risk management, and compliance efforts. It covers generating cybersecurity
policies, deciphering complex standards, conducting cyber risk assessments, and creating risk reports
to strengthen cybersecurity frameworks.

Chapter 5, Security Awareness and Training, focuses on leveraging ChatGPT in cybersecurity education
and training. It explores creating engaging training materials, interactive assessments, phishing
training tools, exam preparation aids, and employing gamification to enhance learning experiences
in cybersecurity.

Chapter 6, Red Teaming and Penetration Testing, explores AI-enhanced techniques for red teaming and
penetration testing. It includes generating realistic scenarios using the MITRE ATT&CK framework,
conducting OSINT reconnaissance, automating asset discovery, and integrating AI with penetration
testing tools for comprehensive security assessments.

Chapter 7, Threat Monitoring and Detection, addresses the use of ChatGPT in threat intelligence
analysis, real-time log analysis, detecting advanced persistent threats (APTs), customizing threat
detection rules, and using network traffic analysis to improve threat detection and response capabilities.

Chapter 8, Incident Response, focuses on utilizing ChatGPT to enhance incident response processes,
including incident analysis, playbook generation, root cause analysis, and automating report creation
to ensure efficient and effective responses to cybersecurity incidents.

Chapter 9, Using Local Models and Other Frameworks, investigates the use of local AI models and
frameworks in cybersecurity, highlighting tools such as LMStudio and Hugging Face AutoTrain for
privacy-enhanced threat hunting, penetration testing, and sensitive document review.

Chapter 10, The Latest OpenAI Features, provides an overview of the most recent OpenAI features
and their applications in cybersecurity. It emphasizes leveraging ChatGPT’s advanced capabilities for
cyber threat intelligence, security data analysis, and employing visualization techniques for a deeper
understanding of vulnerabilities.

To get the most out of this book
To maximize the benefits derived from this book, you are encouraged to possess the following:

• A foundational grasp of cybersecurity principles, including prevalent terminology and best
practices, to contextualize the applications of ChatGPT within the security landscape.
(This book is not intended to be an introduction to cybersecurity.)

Prefacexviii

• An understanding of programming fundamentals, particularly in Python, as the book employs
Python scripts extensively to demonstrate interactions with the OpenAI API.

• Proficiency with command-line interfaces and a rudimentary knowledge of networking
concepts, essential for executing the practical exercises and understanding the cybersecurity
applications discussed.

• A basic familiarity with web technologies such as HTML and JavaScript, which underpin several
web application security and penetration testing examples presented in the book.

Software/hardware covered in the book OS requirements

Python 3.10 or higher Windows, macOS, and Linux (any)

A code editor (such as VS Code) Windows, macOS, and Linux (any)

A command-line/terminal application Windows, macOS, and Linux (any)

If you are using the digital version of this book, we advise you to type the code yourself or access
the code via the GitHub repository (link available in the next section). Doing so will help you
avoid any potential errors related to the copying and pasting of code.

Important note
Generative AI and LLM technology is evolving extremely fast, so much so that in some cases
you will discover that some examples in this book might already be outdated and not function
as intended due to recent API and/or AI model updates, and even the ChatGPT web interface
itself. As such, it is imperative to reference the most recent code and notes for this book from
the official GitHub repository. Every effort will be made to keep the code up to date in order
to reflect the latest changes and updates by OpenAI and other technology providers used
throughout this book.

Download the example code files

You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/ChatGPT-for-Cybersecurity-Cookbook. If there’s an update to
the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

Code in Action
Code in Action videos for this book can be viewed at (https://bit.ly/3uNma17).

https://github.com/PacktPublishing/ChatGPT-for-Cybersecurity-Cookbook
https://github.com/PacktPublishing/ChatGPT-for-Cybersecurity-Cookbook
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://bit.ly/3uNma17

Preface xix

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “If you are
using a different shell configuration file, replace ~/.bashrc with the appropriate file (for example,
., ~/.zshrc or ~/.profile).”

A block of code is set as follows:

import requests
url = "http://localhost:8001/v1/chat/completions"
headers = {"Content-Type": "application/json"}
data = { "messages": [{"content": "Analyze the Incident Response Plan
for key strategies"}], "use_context": True, "context_filter": None,
"include_sources": False, "stream": False }
response = requests.post(url, headers=headers, json=data)
result = response.json() print(result)

Bold: Indicates a new term, an important word, or words that you see onscreen. For example, words
in menus or dialog boxes appear in the text like this. Here is an example: “In the System Properties
window, click the Environment Variables button.”

Tips or important notes
Appear like this.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do it..., How
it works..., There’s more..., and See also).

To give clear instructions on how to complete a recipe, use these sections as follows:

Getting ready

This section tells you what to expect in the recipe and describes how to set up any software or any
preliminary settings required for the recipe.

How to do it…

This section contains the steps required to follow the recipe.

Prefacexx

How it works…

This section usually consists of a detailed explanation of what happened in the previous section.

There’s more…

This section consists of additional information about the recipe in order to make you more knowledgeable
about the recipe.

See also

This section provides helpful links to other useful information for the recipe.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book title in the
subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book, we would be grateful if you would report this to us. Please
visit www.packtpub.com/support/errata, selecting your book, clicking on the Errata
Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we would
be grateful if you would provide us with the location address or website name. Please contact us at
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com

Preface xxi

Share Your Thoughts
Once you’ve read ChatGPT for Cybersecurity Cookbook, we’d love to hear your thoughts! Please click
here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

https://packt.link/r/1-805-12404-8
https://packt.link/r/1-805-12404-8

Prefacexxii

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781805124047

2. Submit your proof of purchase

3. That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781805124047

1
Getting Started: ChatGPT,

the OpenAI API, and Prompt
Engineering

ChatGPT is a large language model (LLM) developed by OpenAI, which is specifically designed to
generate context-aware responses and content based on the prompts provided by users. It leverages
the power of generative AI to understand and respond intelligently to a wide range of queries, making
it a valuable tool for numerous applications, including cybersecurity.

Important note
Generative AI is a branch of artificial intelligence (AI) that uses machine learning (ML)
algorithms and natural language processing (NLP) to analyze patterns and structures within a
dataset and generate new data that resembles the original dataset. You likely use this technology
every day if you use autocorrect in word processing applications, mobile chat apps, and more.
That said, the advent of LLMs goes far beyond simple autocomplete.

LLMs are a type of generative AI that are trained on massive amounts of text data, enabling
them to understand context, generate human-like responses, and create content based on user
input. You may have already used LLMs if you have ever communicated with a helpdesk chatbot.

GPT stands for Generative Pre-Trained Transformer and, as the name suggests, is an LLM
that has been pre-trained to improve accuracy and/or provide specific knowledge-based
data generation.

Getting Started: ChatGPT, the OpenAI API, and Prompt Engineering2

ChatGPT has raised concerns about plagiarism in some academic and content-creation communities.
It has also been implicated in misinformation and social engineering campaigns due to its ability
to generate realistic and human-like text. However, its potential to revolutionize various industries
cannot be ignored. In particular, LLMs have shown great promise in more technical fields, such as
programming and cybersecurity, due to their deep knowledge base and ability to perform complex
tasks such as instantly analyzing data and even writing fully functional code.

In this chapter, we will guide you through the process of setting up an account with OpenAI, familiarizing
yourself with ChatGPT, and mastering the art of prompt engineering (the key to leveraging the real
power of this technology). We will also introduce you to the OpenAI API, equipping you with the
necessary tools and techniques to harness ChatGPT’s full potential.

You’ll begin by learning how to create a ChatGPT account and generate an API key, which serves
as your unique access point to the OpenAI platform. We’ll then explore basic ChatGPT prompting
techniques using various cybersecurity applications, such as instructing ChatGPT to write Python
code that finds your IP address and simulating an AI CISO role by applying ChatGPT roles.

We’ll dive deeper into enhancing your ChatGPT outputs with templates to generate comprehensive
threat reports, as well as formatting output as tables for improved presentation, such as creating a
security controls table. As you progress through this chapter, you’ll learn how to set the OpenAI API
key as an environment variable to streamline your development process, send requests and handle
responses with Python, efficiently use files for prompts and API key access, and effectively employ
prompt variables to create versatile applications, such as generating manual pages based on user inputs.
By the end of this chapter, you’ll have a solid understanding of the various aspects of ChatGPT and
how to utilize its capabilities in the cybersecurity domain.

Tip
Even if you are already familiar with the basic ChatGPT and OpenAI API setup and mechanics,
it will still be advantageous for you to review the recipes in Chapter 1 as they are almost all set
within the context of cybersecurity, which is reflected through some of the prompting examples.

In this chapter, we will cover the following recipes:

• Setting up a ChatGPT Account

• Creating an API Key and interacting with OpenAI

• Basic prompting (Application: Finding Your IP Address)

• Applying ChatGPT Roles (Application: AI CISO)

• Enhancing Output with Templates (Application: Threat Report)

• Formatting Output as a Table (Application: Security Controls Table)

• Setting the OpenAI API Key as an Environment Variable

Technical requirements 3

• Sending API Requests and Handling Responses with Python

• Using Files for Prompts and API Key Access

• Using Prompt Variables (Application: Manual Page Generator)

Technical requirements
For this chapter, you will need a web browser and a stable internet connection to access the ChatGPT
platform and set up your account. Basic familiarity with the Python programming language and
working with the command line is necessary as you’ll be using Python 3.x, which needs to be installed
on your system so that you can work with the OpenAI GPT API and create Python scripts. A code
editor will also be essential for writing and editing Python code and prompt files as you work through
the recipes in this chapter.

The code files for this chapter can be found here: https://github.com/PacktPublishing/
ChatGPT-for-Cybersecurity-Cookbook.

Setting up a ChatGPT Account
In this recipe, we will learn about generative AI, LLMs, and ChatGPT. Then, we will guide you through
the process of setting up an account with OpenAI and exploring the features it offers.

Getting ready

To set up a ChatGPT account, you will need an active email address and a modern web browser.

Important note
Every effort has been made to ensure that every illustration and instruction is correct at the time
of writing. However, this is such a fast-moving technology and many of the tools used in this
book are currently being updated at a rapid pace. Therefore, you might find slight differences.

How to do it…

By setting up a ChatGPT account, you’ll gain access to a powerful AI tool that can greatly enhance
your cybersecurity workflow. In this section, we’ll walk you through the steps of creating an account,
allowing you to leverage ChatGPT’s capabilities for a range of applications, from threat analysis to
generating security reports:

1. Visit the OpenAI website at https://platform.openai.com/ and click Sign up.

2. Enter your email address and click Continue. Alternatively, you can register with your existing
Google or Microsoft account:

https://github.com/PacktPublishing/ChatGPT-for-Cybersecurity-Cookbook
https://github.com/PacktPublishing/ChatGPT-for-Cybersecurity-Cookbook
https://platform.openai.com/

Getting Started: ChatGPT, the OpenAI API, and Prompt Engineering4

Figure 1.1 – OpenAI signup form

3. Enter a strong password and click Continue.

4. Check your email for a verification message from OpenAI. Click the link provided in the email
to verify your account.

5. Once your account has been verified, enter the required information (first name, last name,
optional organization name, and birthday) and click Continue.

6. Enter your phone number to verify by phone and click Send code.

7. When you receive the text message with the code, enter the code and click Continue.

8. Visit and bookmark https://platform.openai.com/docs/ to start becoming
familiar with OpenAI’s documentation and features.

How it works…

By setting up an account with OpenAI, you gain access to the ChatGPT API and other features offered
by the platform, such as Playground and all available models. This enables you to utilize ChatGPT’s
capabilities in your cybersecurity operations, enhancing your efficiency and decision-making process.

https://platform.openai.com/docs/

Creating an API Key and interacting with OpenAI 5

There’s more…

When you sign up for a free OpenAI account, you get $18 in free credits. While you most likely won’t
use up all of your free credits throughout the recipes in this book, you will eventually with continued
use. Consider upgrading to a paid OpenAI plan to access additional features, such as increased API
usage limits and priority access to new features and improvements:

• Upgrading to ChatGPT Plus:

ChatGPT Plus is a subscription plan that offers additional benefits beyond free access to ChatGPT.
With a ChatGPT Plus subscription, you can expect faster response times, general access to
ChatGPT even during peak times, and priority access to new features and improvements (this
includes access to GPT-4 at the time of writing). This subscription is designed to provide an
enhanced user experience and ensure that you can make the most out of ChatGPT for your
cybersecurity needs.

• Benefits of having an API key:

Having an API key is essential for utilizing ChatGPT’s capabilities programmatically through
the OpenAI API. With an API key, you can access ChatGPT directly from your applications,
scripts, or tools, enabling more customized and automated interactions. This allows you
to build a wide range of applications, integrating ChatGPT’s intelligence to enhance your
cybersecurity practices. By setting up an API key, you’ll be able to harness the full power of
ChatGPT and tailor its features to your specific requirements, making it an indispensable tool
for your cybersecurity tasks.

Tip
I highly recommend upgrading to ChatGPT Plus so that you have access to GPT-4. While
GPT-3.5 is still very powerful, GPT-4’s coding efficiency and accuracy make it more suited to
the types of use cases we will be covering in this book and with cybersecurity in general. At the
time of writing, there are also other additional features in ChatGPT Plus, such as the availability
of plugins and the code interpreter, which will be covered in later chapters.

Creating an API Key and interacting with OpenAI
In this recipe, we will guide you through the process of obtaining an OpenAI API key and introduce
you to the OpenAI Playground, where you can experiment with different models and learn more
about their capabilities.

Getting ready

To get an OpenAI API key, you will need to have an active OpenAI account. If you haven’t already,
complete the Setting up a ChatGPT account recipe to set up your ChatGPT account.

Getting Started: ChatGPT, the OpenAI API, and Prompt Engineering6

How to do it…

Creating an API key and interacting with OpenAI allows you to harness the power of ChatGPT and
other OpenAI models for your applications. This means you’ll be able to leverage these AI technologies
to build powerful tools, automate tasks, and customize your interactions with the models. By the
end of this recipe, you will have successfully created an API key for programmatic access to OpenAI
models and learned how to experiment with them using the OpenAI Playground.

Now, let’s proceed with the steps to create an API key and explore the OpenAI Playground:

1. Log in to your OpenAI account at https://platform.openai.com.

2. After logging in, click on your profile picture/name in the top-right corner of the screen and
select View API keys from the drop-down menu:

Figure 1.2 – The API keys screen

3. Click the + Create new secret key button to generate a new API key.

4. Give your API key a name (optional) and click Create secret key:

Figure 1.3 – Naming your API key

https://platform.openai.com

Creating an API Key and interacting with OpenAI 7

5. Your new API key will be displayed on the screen. Click the copy icon, , to copy the key to
your clipboard:

Tip
Save your API key in a secure location immediately as you will need it later when working with
the OpenAI API; you cannot view the key again in its entirety once it has been saved.

Figure 1.4 – Copying your API key

How it works…

By creating an API key, you enable programmatic access to ChatGPT and other OpenAI models
through the OpenAI API. This allows you to integrate ChatGPT’s capabilities into your applications,
scripts, or tools, enabling more customized and automated interactions.

There’s more…

The OpenAI Playground is an interactive tool that allows you to experiment with different OpenAI
models, including ChatGPT, and their various parameters, but without requiring you to write any
code. To access and use the Playground, follow these steps:

Important note
Using the Playground requires token credits; you are billed each month for the credits used.
For the most part, this cost can be considered very affordable, depending on your perspective.
However, excessive use can add up to significant costs if not monitored.

1. Log in to your OpenAI account.

2. Click Playground in the top navigation bar:

Getting Started: ChatGPT, the OpenAI API, and Prompt Engineering8

Figure 1.5 – The OpenAI Playground

3. In the Playground, you can choose from various models by selecting the model you want to
use from the Model drop-down menu:

Creating an API Key and interacting with OpenAI 9

Figure 1.6 – Selecting a model

4. Enter your prompt in the textbox provided and click Submit to see the model’s response:

Figure 1.7 – Entering a prompt and generating a response

Getting Started: ChatGPT, the OpenAI API, and Prompt Engineering10

Tip
Even though you are not required to enter an API key to interact with the Playground, usage
still counts toward your account’s token/credit usage.

5. You can also adjust various settings, such as the maximum length, number of generated
responses, and more, from the settings panel to the right of the message box:

Figure 1.8 – Adjusting settings in the Playground

Two of the most important parameters are Temperature and Maximum length:

• The Temperature parameter affects the randomness and creativity of the model’s responses. A
higher temperature (for example, 0.8) will produce more diverse and creative outputs, while a
lower temperature (for example, 0.2) will generate more focused and deterministic responses.
By adjusting the temperature, you can control the balance between the model’s creativity and
adherence to the provided context or prompt.

• The Maximum length parameter controls the number of tokens (words or word pieces) the
model will generate in its response. By setting a higher maximum length, you can obtain longer
responses, while a lower maximum length will produce more concise outputs. Adjusting the
maximum length can help you tailor the response length to your specific needs or requirements.

Feel free to experiment with these parameters in the OpenAI Playground or when using the API to
find the optimal settings for your specific use case or desired output.

Basic Prompting (Application: Finding Your IP Address) 11

The Playground allows you to experiment with different prompt styles, presets, and model settings,
helping you better understand how to tailor your prompts and API requests for optimal results:

Figure 1.9 – Prompt presets and model modes

Tip
While we will be covering several of the different prompt settings using the API throughout
this book, we won’t cover them all. You are encouraged to review the OpenAPI documentation
for more details.

Basic Prompting (Application: Finding Your IP Address)
In this recipe, we will explore the basics of ChatGPT prompting using the ChatGPT interface, which
is different from the OpenAI Playground we used in the previous recipe. The advantage of using the
ChatGPT interface is that it does not consume account credits and is better suited for generating
formatted output, such as writing code or creating tables.

Getting ready

To use the ChatGPT interface, you will need to have an active OpenAI account. If you haven’t already,
complete the Setting up a ChatGPT account recipe to set up your ChatGPT account.

Getting Started: ChatGPT, the OpenAI API, and Prompt Engineering12

How to do it…

In this recipe, we’ll guide you through using the ChatGPT interface to generate a Python script that
retrieves a user’s public IP address. By following these steps, you’ll learn how to interact with ChatGPT
in a conversation-like manner and receive context-aware responses, including code snippets.

Now, let’s proceed with the steps in this recipe:

1. In your browser, go to https://chat.openai.com and click Log in.

2. Log in using your OpenAI credentials.

3. Once you are logged in, you will be taken to the ChatGPT interface. The interface is similar to
a chat application, with a text box at the bottom where you can enter your prompts:

Figure 1.10 – The ChatGPT interface

https://chat.openai.com

Basic Prompting (Application: Finding Your IP Address) 13

4. ChatGPT uses a conversation-based approach, so you can simply type your prompt as a message
and press Enter or click the button to receive a response from the model. For example, you
can ask ChatGPT to generate a piece of Python code to find the public IP address of a user:

Figure 1.11 – Entering a prompt

ChatGPT will generate a response containing the requested Python code, along with a
thorough explanation:

Figure 1.12 – ChatGPT response with code

Getting Started: ChatGPT, the OpenAI API, and Prompt Engineering14

5. Continue the conversation by asking follow-up questions or providing additional information,
and ChatGPT will respond accordingly:

Figure 1.13 – ChatGPT contextual follow-up response

6. Run the ChatGPT-generated code by clicking on Copy code, paste it into your code editor of
choice (I use Visual Studio Code), save it as a .py Python script, and run it from a terminal:

PS D:\GPT\ChatGPT for Cybersecurity Cookbook> python .\my_ip.py
Your public IP address is:
Your local network IP address is: 192.168.1.105

Figure 1.14 – Running the ChatGPT-generated script

Basic Prompting (Application: Finding Your IP Address) 15

How it works…

By using the ChatGPT interface to enter prompts, you can generate context-aware responses and
content that continues throughout an entire conversation, similar to a chatbot. The conversation-
based approach allows for more natural interactions and the ability to ask follow-up questions or
provide additional context. The responses can even include complex formatting such as code snippets
or tables (more on tables later).

There’s more…

As you become more familiar with ChatGPT, you can experiment with different prompt styles,
instructions, and contexts to obtain the desired output for your cybersecurity tasks. You can also
compare the results that are generated through the ChatGPT interface and the OpenAI Playground
to determine which approach best fits your needs.

Tip
You can further refine the generated output by providing very clear and specific instructions
or using roles. It also helps to divide complex prompts into several smaller prompts, giving
ChatGPT one instruction per prompt, building on the previous prompts as you go.

In the upcoming recipes, we will delve into more advanced prompting techniques that utilize
these techniques to help you get the most accurate and detailed responses from ChatGPT.

As you interact with ChatGPT, your conversation history is automatically saved in the left panel of
the ChatGPT interface. This feature allows you to easily access and review your previous prompts
and responses.

By leveraging the conversation history feature, you can keep track of your interactions with ChatGPT
and quickly reference previous responses for your cybersecurity tasks or other projects:

Figure 1.15 – Conversation history in the ChatGPT interface

Getting Started: ChatGPT, the OpenAI API, and Prompt Engineering16

To view a saved conversation, simply click on the desired conversation in the left panel. You can also
create new conversations by clicking on the + New chat button located at the top of the conversation
list. This enables you to separate and organize your prompts and responses based on specific tasks
or topics.

Note of caution
Keep in mind that when you start a new conversation, the model loses the context of the previous
conversation. If you want to reference any information from a previous conversation, you will
need to include that context in your new prompt.

Applying ChatGPT Roles (Application : AI CISO)
In this recipe, we will demonstrate how you can use roles in your prompts to improve the accuracy
and detail of ChatGPT’s responses. Assigning roles to ChatGPT helps it generate more context-aware
and relevant content, particularly when you need expert-level insights or recommendations.

Getting ready

Ensure you have access to the ChatGPT interface by logging in to your OpenAI account.

How to do it…

By assigning roles, you’ll be able to obtain expert-level insights and recommendations from the model.
Let’s dive into the steps for this recipe:

1. To assign a role to ChatGPT, start your prompt by describing the role you want the model to
assume. For example, you could use the following prompt:

You are a cybersecurity expert with 20 years of experience.
Explain the importance of multi-factor authentication (MFA) in
securing online accounts, to an executive audience.

2. ChatGPT will generate a response that aligns with the assigned role, providing a detailed
explanation of the topic based on the expertise and perspective of a cybersecurity expert:

Applying ChatGPT Roles (Application : AI CISO) 17

Figure 1.16 – ChatGPT response with role-based expertise

3. Experiment with assigning different roles for different scenarios, such as the following:

You are a CISO with 30 years of experience. What are the top
cybersecurity risks businesses should be aware of?

4. Alternatively, you can use the following:

You are an ethical hacker. Explain how a penetration test can
help improve an organization's security posture.

Getting Started: ChatGPT, the OpenAI API, and Prompt Engineering18

Note of caution
Keep in mind that ChatGPT’s knowledge is based on the data it was trained on, which has a cutoff
date of September 2021. As a result, the model may not be aware of the latest developments,
trends, or technologies in the cybersecurity field that emerged after its training data cutoff.
Always verify the information generated by ChatGPT with up-to-date sources and take its
training limitations into account when interpreting its responses. We will discuss techniques
on how to get around this limitation later in this book.

How it works…

When you assign a role to ChatGPT, you provide a specific context or persona for the model to work
with. This helps the model generate responses that are tailored to the given role, resulting in more
accurate, relevant, and detailed content. The model will generate content that aligns with the expertise
and perspective of the assigned role, offering better insights, opinions, or recommendations.

There’s more…

As you become more comfortable using roles in your prompts, you can experiment with different
combinations of roles and scenarios to obtain the desired output for your cybersecurity tasks. For
example, you can create a dialogue between two roles by alternating prompts for each role:

1. Role 1:

You are a network administrator. What measures do you take to
secure your organization's network?

2. Role 2:

You are a cybersecurity consultant. What additional
recommendations do you have for the network administrator to
further enhance network security?

By using roles creatively and experimenting with different combinations, you can leverage ChatGPT’s
expertise and obtain more accurate and detailed responses for a wide range of cybersecurity topics
and situations.

We will experiment with automating role conversations in later chapters.

Enhancing Output with Templates (Application: Threat Report) 19

Enhancing Output with Templates (Application:
Threat Report)
In this recipe, we will explore how to use output templates to guide ChatGPT’s responses, making them
more consistent, well-structured, and suitable for reports or other formal documents. By providing
a specific format for the output, you can ensure that the generated content meets your requirements
and is easier to integrate into your cybersecurity projects.

Getting ready

Ensure you have access to the ChatGPT interface by logging in to your OpenAI account.

How to do it…

To get started, follow these steps:

1. When crafting your prompt, you can specify the output of several different formatting options,
such as headings, font weight, lists, and more. The following prompt demonstrates how to create
output with headings, font weights, and list types:

Create an analysis report of the WannaCry Ransomware Attack as
it relates to the cyber kill chain, using the following format:

Threat Report

Overview
- **Threat Name:**
- **Date of Occurrence:**
- **Industries Affected:**
- **Impact:**

Cyber Kill Chain Analysis

1. **Kill chain step 1:**
2. **Kill chain step 2:**
3. …

Mitigation Recommendations

- *Mitigation recommendation 1*
- *Mitigaiton recommendation 2*
…

Getting Started: ChatGPT, the OpenAI API, and Prompt Engineering20

2. ChatGPT will generate a response that follows the specified template, providing a well-structured
and consistent output:

Figure 1.17 – ChatGPT response with formatting (headings, bold font, and lists)

Figure 1.18 – ChatGPT response with formatting (heading, lists, and italicized text)

Enhancing Output with Templates (Application: Threat Report) 21

3. This formatted text is now more structured and can be easily transferred to other documents
through copying and pasting while retaining its formatting.

How it works…

By providing a clear template for the output in your prompt, you guide ChatGPT to generate responses
that adhere to the specified structure and formatting. This helps ensure that the generated content is
consistent, well organized, and suitable for use in reports, presentations, or other formal documents.
The model will focus on generating content that matches the output template formatting and structure
you’ve provided while still delivering the information you requested.

The following conventions are used when formatting ChatGPT output:

1. To create a main heading, use a single pound sign (#), followed by a space and the text of the
heading. In this case, the main heading is Threat Report.

2. To create a subheading, use two pound signs (##), followed by a space and the text of the
subheading. In this case, the subheadings are Overview, Cyber Kill Chain Analysis, and Mitigation
Recommendations. You can continue to create additional subheading levels by increasing the
number of pound signs.

3. To create bullet points, use a hyphen (-) or asterisk (*), followed by a space and the text of
the bullet point. In this case, the bullet points are used in the Overview section to indicate the
threat’s name, date of occurrence, industries affected, and impact.

4. To create bold text, use two asterisks (**) or underscores (__) to surround the text you want
to bold. In this case, each of the bullets and numbered list keywords were bolded.

5. To italicize text, use a pair of asterisks (*) or underscores (_) to surround the text you want to
italicize. In this case, the second kill chain step is italicized using a pair of underscores. Here,
italicized text is used for the mitigations recommendations bullets.

6. To create a numbered list, use a number followed by a period and a space, followed by the text
of the list item. In this case, the Cyber Kill Chain Analysis section is a numbered list.

There’s more…

Combining templates with other techniques, such as roles, can further enhance the quality and relevance
of the generated content. By applying both templates and roles, you can create output that is not only
well-structured and consistent but also tailored to specific expert perspectives.

As you become more comfortable using templates in your prompts, you can experiment with different
formats, structures, and scenarios to obtain the desired output for your cybersecurity tasks. For example,
in addition to text formatting, you can also use tables to organize the generated content even further,
which is what we will cover in the next recipe.

Getting Started: ChatGPT, the OpenAI API, and Prompt Engineering22

Formatting Output as a Table (Application: Security
Controls Table)
In this recipe, we will demonstrate how to create prompts that guide ChatGPT to generate output in
table format. Tables can be an effective way to organize and present information in a structured and
easy-to-read manner. In this example, we will create a security controls comparison table.

Getting ready

Ensure you have access to the ChatGPT interface by logging into your OpenAI account.

How to do it…

This example will demonstrate how to create a security controls comparison table. Let’s dive into the
steps to achieve this:

1. Craft your prompt by specifying the table format and the information you want to include. For
this example, we will generate a table comparing different security controls:

Create a table comparing five different security controls.
The table should have the following columns: Control
Name, Description, Implementation Cost, Maintenance Cost,
Effectiveness, and Ease of Implementation.

2. ChatGPT will generate a response containing a table with the specified columns, populated
with relevant information:

Formatting Output as a Table (Application: Security Controls Table) 23

Figure 1.19 – Snippet of a ChatGPT response with a table

3. You can now easily copy and paste the generated table directly into a document or spreadsheet,
where it can be further formatted and refined:

Figure 1.20 – ChatGPT response copied/pasted directly into a spreadsheet

Getting Started: ChatGPT, the OpenAI API, and Prompt Engineering24

How it works…

By specifying the table format and required information in your prompt, you guide ChatGPT to
generate content in a structured, tabular manner. The model will focus on generating content that
matches the specified format and populating the table with the requested information. The ChatGPT
interface automatically understands how to provide table formatting using markdown language, which
is then interpreted by the browser.

In this example, we asked ChatGPT to create a table comparing five different security controls with
columns for Control Name, Description, Implementation Cost, Maintenance Cost, Effectiveness,
and Ease of Implementation. The resulting table provides an organized and easy-to-understand
overview of the different security controls.

There’s more…

As you become more comfortable using tables in your prompts, you can experiment with different
formats, structures, and scenarios to obtain the desired output for your cybersecurity tasks. You can
also combine tables with other techniques, such as roles and templates, to further enhance the quality
and relevance of the generated content.

By using tables creatively and experimenting with different combinations, you can leverage ChatGPT’s
capabilities to generate structured and organized content for various cybersecurity topics and situations.

Setting the OpenAI API Key as an Environment Variable
In this recipe, we will show you how to set up your OpenAI API key as an environment variable. This
is an essential step as it allows you to use the API key in your Python code without hardcoding it,
which is a best practice for security purposes.

Getting ready

Ensure that you have already obtained your OpenAI API key by signing up for an account and accessing
the API key section, as outlined in the Creating an API key and interacting with OpenAI recipe.

How to do it…

This example will demonstrate how to set up your OpenAI API key as an environment variable for
secure access in your Python code. Let’s dive into the steps to achieve this.

1. Set up the API key as an environment variable on your operating system.

Setting the OpenAI API Key as an Environment Variable 25

For Windows

I. Open the Start menu, search for Environment Variables, and click Edit the
system environment variables.

II. In the System Properties window, click the Environment Variables button.

III. In the Environment Variables window, click New under User variables or System
variables (depending on your preference).

IV. Enter OPENAI_API_KEY as the variable’s name and paste your API key as the variable
value. Click OK to save the new environment variable.

For macOS/Linux

I. Open a Terminal window.

II. Add the API key to your shell configuration file (such as .bashrc, .zshrc, or .profile)
by running the following command (replace your_api_key with your actual API key):

echo 'export OPENAI_API_KEY="your_api_key"' >> ~/.bashrc

Tip
If you are using a different shell configuration file, replace ~/.bashrc with the appropriate
file (for example, ., ~/.zshrc or ~/.profile).

III. Restart Terminal or run source ~/.bashrc (or the appropriate configuration file)
to apply the changes.

2. Access the API key in your Python code using the os module:

import os

Access the OpenAI API key from the environment variable
api_key = os.environ["OPENAI_API_KEY"]

Important note
There are many different versions of Linux and Unix-based systems, and the exact syntax for
setting environment variables might differ slightly from what is presented here. However, the
general approach should be similar. If you encounter issues, consult the documentation specific
to your system for guidance on setting environment variables.

Getting Started: ChatGPT, the OpenAI API, and Prompt Engineering26

How it works…

By setting up the OpenAI API key as an environment variable, you make it available for use in your
Python code without hardcoding the key, which is a security best practice. In the Python code, you
use the os module to access the API key from the environment variable you created earlier.

Using environment variables is a common practice when working with sensitive data, such as
API keys or other credentials. This approach allows you to separate your code from your sensitive
data and makes it easier to manage your credentials as you only need to update them in one place
(the environment variables). Additionally, it helps prevent accidental exposure of sensitive information
when you’re sharing code with others or publishing it in public repositories.

There’s more…

In some cases, you may want to use a Python package such as python-dotenv to manage your
environment variables. This package allows you to store your environment variables in a .env file,
which you can load in your Python code. The advantage of this approach is that you can keep all your
project-specific environment variables in a single file, making it easier to manage and share your project
settings. Keep in mind, though, that you should never commit the .env file to a public repository;
always include it in your .gitignore file or similar version control ignore configuration.

Sending API Requests and Handling Responses with
Python
In this recipe, we will explore how to send requests to the OpenAI GPT API and handle the responses
using Python. We’ll walk through the process of constructing API requests, sending them, and
processing the responses using the openai module.

Getting ready

1. Ensure you have Python installed on your system.

2. Install the OpenAI Python module by running the following command in your Terminal or
command prompt:

pip install openai

How to do it…

The importance of using the API lies in its ability to communicate with and get valuable insights from
ChatGPT in real time. By sending API requests and handling responses, you can harness the power
of GPT to answer questions, generate content, or solve problems in a dynamic and customizable way.

Sending API Requests and Handling Responses with Python 27

In the following steps, we’ll demonstrate how to construct API requests, send them, and process the
responses, enabling you to effectively integrate ChatGPT into your projects or applications:

1. Start by importing the required modules:

import openai
from openai import OpenAI
import os

2. Set up your API key by retrieving it from an environment variable, as we did in the Setting the
OpenAI API key as an Environment Variable recipe:

openai.api_key = os.getenv("OPENAI_API_KEY")

3. Define a function to send a prompt to the OpenAI API and receive a response:

client = OpenAI()

def get_chat_gpt_response(prompt):
 response = client.chat.completions.create(
 model="gpt-3.5-turbo",
 messages=[{"role": "user", "content": prompt}],
 max_tokens=2048,
 temperature=0.7
)
 return response.choices[0].message.content.strip()

4. Call the function with a prompt to send a request and receive a response:

prompt = "Explain the difference between symmetric and
asymmetric encryption."
response_text = get_chat_gpt_response(prompt)
print(response_text)

How it works…

1. First, we import the required modules. The openai module is the OpenAI API library, and
the os module helps us retrieve the API key from an environment variable.

2. We set up the API key by retrieving it from an environment variable using the os module.

3. Next, we define a function called get_chat_gpt_response() that takes a single
argument: the prompt. This function sends a request to the OpenAI API using the openai.
Completion.create() method. This method has several parameters:

 � engine: Here, we specify the engine (in this case, chat-3.5-turbo).

 � prompt: The input text for the model to generate a response.

Getting Started: ChatGPT, the OpenAI API, and Prompt Engineering28

 � max_tokens: The maximum number of tokens in the generated response. A token can
be as short as one character or as long as one word.

 � n: The number of generated responses you want to receive from the model. In this case,
we’ve set it to 1 to receive a single response.

 � stop: A sequence of tokens that, if encountered by the model, will stop the generation
process. This can be useful for limiting the response’s length or stopping at specific points,
such as the end of a sentence or paragraph.

 � temperature: A value that controls the randomness of the generated response. A higher
temperature (for example, 1.0) will result in more random responses, while a lower temperature
(for example, 0.1) will make the responses more focused and deterministic.

4. Finally, we call the get_chat_gpt_response() function with a prompt, send the request
to the OpenAI API, and receive the response. The function returns the response text, which is
then printed to the console. The function returns the response text, which is then printed to
the console. The return response.choices[0].message.content.strip()
line of code retrieves the generated response text by accessing the first choice (index 0) in
the list of choices.

5. response.choices is a list of generated responses from the model. In our case, since we
set n=1, there is only one response in the list. The .text attribute retrieves the actual text of
the response, and the .strip() method removes any leading or trailing whitespace.

6. For example, a non-formatted response from the OpenAI API may look like this:

{
 'id': 'example_id',
 'object': 'text.completion',
 'created': 1234567890,
 'model': 'chat-3.5-turbo',
 'usage': {'prompt_tokens': 12, 'completion_tokens': 89,
'total_tokens': 101},
 'choices': [
 {
 'text': ' Symmetric encryption uses the same key for
both encryption and decryption, while asymmetric encryption
uses different keys for encryption and decryption, typically a
public key for encryption and a private key for decryption. This
difference in key usage leads to different security properties
and use cases for each type of encryption.',
 'index': 0,
 'logprobs': None,
 'finish_reason': 'stop'
 }
]
}

Using Files for Prompts and API Key Access 29

In this example, we access the response text using response.choices[0].text.
strip(), which returns the following text:

Symmetric encryption uses the same key for both encryption and
decryption, while asymmetric encryption uses different keys for
encryption and decryption, typically a public key for encryption
and a private key for decryption. This difference in key usage
leads to different security properties and use cases for each
type of encryption.

There’s more…

You can further customize the API request by modifying the parameters in the openai.Completion.
create() method. For example, you can adjust the temperature to get more creative or focused
responses, change the max_tokens value to limit or expand the length of the generated content, or
use the stop parameter to define specific stopping points for the response generation.

Additionally, you can experiment with the n parameter to generate multiple responses and compare
their quality or variety. Keep in mind that generating multiple responses will consume more tokens
and may affect the cost and execution time of the API request.

It’s essential to understand and fine-tune these parameters to get the desired output from ChatGPT
since different tasks or scenarios may require different levels of creativity, response length, or stopping
conditions. As you become more familiar with the OpenAI API, you’ll be able to leverage these parameters
effectively to tailor the generated content to your specific cybersecurity tasks and requirements.

Using Files for Prompts and API Key Access
In this recipe, you will learn how to use external text files to store and retrieve prompts for interacting
with the OpenAI API through Python. This method allows for better organization and easier
maintenance as you can quickly update the prompt without modifying the main script. We will also
introduce a new method of accessing the OpenAI API key – that is, using files – making the process
of changing the API key much more flexible.

Getting ready

Ensure you have access to the OpenAI API and have set up your API key according to the Creating an
API key and interacting with OpenAI and Setting the OpenAI API key as an Environment Variable recipes.

Getting Started: ChatGPT, the OpenAI API, and Prompt Engineering30

How to do it…

This recipe demonstrates a practical approach to managing prompts and API keys, making it easier to
update and maintain your code. By using external text files, you can efficiently organize your project
and collaborate with others. Let’s walk through the steps to implement this method:

1. Create a new text file and save it as prompt.txt. Write your desired prompt inside this file
and save it.

2. Modify your Python script so that it includes a function to read the contents of a text file:

def open_file(filepath):
 with open(filepath, 'r', encoding='UTF-8') as infile:
 return infile.read()

3. Using the script from the Sending API Requests and Handling Responses with Python recipe,
replace the hardcoded prompt with a call to the open_file function, passing the path to
the prompt.txt file as an argument:

prompt = open_file("prompt.txt")

4. Create a file called prompt.txt and enter the following prompt text (the same prompt as in
the Sending API Requests and Handling Responses with Python recipe):

Explain the difference between symmetric and asymmetric
encryption.

5. Set up your API key using a file instead of environment variables:

openai.api_key = open_file('openai-key.txt')

Important note
It’s important to place this line of code after the open_file function; otherwise, Python will
throw an error for calling a function that has not been declared yet.

6. Create a file called openai-key.txt and paste your OpenAI API key into the file with
nothing else.

7. Use the prompt variable in your API call as you normally would.

Here is an example of how the modified script from the Sending API Requests and Handling
Responses with Python recipe would look:

import openai
from openai import OpenAI

def open_file(filepath):

Using Files for Prompts and API Key Access 31

 with open(filepath, 'r', encoding='UTF-8') as infile:
 return infile.read()

client = OpenAI()

def get_chat_gpt_response(prompt):
 response = client.chat.completions.create(
 model="gpt-3.5-turbo",
 messages=[{"role": "user", "content": prompt}],
 max_tokens=2048,
 temperature=0.7
)
 return response.choices[0].message.content.strip()

openai.api_key = open_file('openai-key.txt')

prompt = open_file("prompt.txt")
response_text = get_chat_gpt_response(prompt)
print(response_text)

How it works...

The open_file() function takes a file path as an argument and opens the file using the with
open statement. It reads the file’s content and returns it as a string. This string is then used as the
prompt for the API call. A second open_file() function call is used to access a text file containing
the OpenAI API key instead of accessing the API key using environment variables.

By using an external text file for the prompt and to access the API key, you can easily update or change
both without needing to modify the main script or environment variables. This can be particularly
helpful when you’re working with multiple prompts or collaborating with others.

Note of caution
Using this technique to access your API key does come with a certain level of risk. A text file
is easier to discover and access than an environment variable, so be sure to take the necessary
security precautions. It is also important to remember to remove your API key from the
openapi-key.txt file before you share your script with others, to prevent unintended
and/or unauthorized charges to your OpenAI account.

There’s more...

You can also use this method to store other parameters or configurations that you may want to change
frequently or share with others. This could include API keys, model parameters, or any other settings
relevant to your use case.

Getting Started: ChatGPT, the OpenAI API, and Prompt Engineering32

Using Prompt Variables (Application: Manual Page
Generator)
In this recipe, we’ll create a Linux-style manual page generator that will accept user input in the form
of a tool’s name, and our script will generate the manual page output, similar to entering the man
command in Linux Terminal. In doing so, we will learn how to use variables in a text file to create a
standard prompt template that can be easily modified by changing certain aspects of it. This approach
is particularly useful when you want to use user input or other dynamic content as part of the prompt
while maintaining a consistent structure.

Getting ready

Ensure you have access to the ChatGPT API by logging in to your OpenAI account and have Python
and the openai module installed.

How to do it…

Using a text file that contains the prompt and placeholder variables, we can create a Python script
that will replace the placeholder with user input. In this example, we will use this technique to create
a Linux-style manual page generator. Here are the steps:

1. Create a Python script and import the necessary modules:

from openai import OpenAI

2. Define a function to open and read a file:

def open_file(filepath):
 with open(filepath, 'r', encoding='UTF-8') as infile:
 return infile.read()

3. Set up your API key:

openai.api_key = open_file('openai-key.txt')

4. Create the openai-key.txt file in the same manner as the previous recipe.

5. Define the get_chat_gpt_response() function to send the prompt to ChatGPT and
obtain a response:

client = OpenAI()

def get_chat_gpt_response(prompt):
 response = client.chat.completions.create(
 model="gpt-3.5-turbo",
 messages=[{"role": "user", "content": prompt}],

Using Prompt Variables (Application: Manual Page Generator) 33

 max_tokens=600,
 temperature=0.7
)
 text = response.choices[0].message.content.strip()
 return text

6. Receive user input for the filename and read the content of the file:

file = input("ManPageGPT> $ Enter the name of a tool: ")
feed = open_file(file)

7. Replace the <<INPUT>> variable in the prompt.txt file with the content of the file:

prompt = open_file("prompt.txt").replace('<<INPUT>>', feed)

8. Create the prompt.txt file with the following text:

Provide the manual-page output for the following tool. Provide
the output exactly as it would appear in an actual Linux
terminal and nothing else before or after the manual-page
output.

<<INPUT>>

9. Send the modified prompt to the get_chat_gpt_response() function and print the result:

analysis = get_chat_gpt_response(prompt)
print(analysis)

Here’s an example of how the complete script should look:
import openai
from openai import OpenAI

def open_file(filepath):
 with open(filepath, 'r', encoding='UTF-8') as infile:
 return infile.read()

openai.api_key = open_file('openai-key.txt')

client = OpenAI()
def get_chat_gpt_response(prompt):
 response = client.chat.completions.create(
 model="gpt-3.5-turbo",
 messages=[{"role": "user", "content": prompt}],
 max_tokens=600,
 temperature=0.7
)

Getting Started: ChatGPT, the OpenAI API, and Prompt Engineering34

 text = response['choices'][0]['message']['content'].strip()
 return text

feed = input("ManPageGPT> $ Enter the name of a tool: ")

prompt = open_file("prompt.txt").replace('<<INPUT>>', feed)

analysis = get_chat_gpt_response(prompt)
print(analysis)

How it works…

In this example, we created a Python script that utilizes a text file as a prompt template. The text file
contains a variable called <<INPUT>> that can be replaced with any content, allowing for dynamic
modification of the prompt without the need to change the overall structure. Specifically for this case,
we are replacing it with user input:

1. The openai module is imported to access the ChatGPT API, and the os module is imported
to interact with the operating system and manage environment variables.

2. The open_file() function is defined to open and read a file. It takes a file path as an
argument, opens the file with read access and UTF-8 encoding, reads the content, and then
returns the content.

3. The API key for accessing ChatGPT is set up by reading it from a file using the open_file()
function and then assigning it to openai.api_key.

4. The get_chat_gpt_response() function is defined to send a prompt to ChatGPT and
return the response. It takes the prompt as an argument, configures the API request with the
desired settings, and then sends the request to the ChatGPT API. It extracts the response text,
removes leading and trailing whitespaces, and returns it.

5. The script receives user input for the Linux command. This content will be used to replace the
placeholder in the prompt template.

6. The <<INPUT>> variable in the prompt.txt file is replaced with the content of the file
provided by the user. This is done using Python’s string replace() method, which searches
for the specified placeholder and replaces it with the desired content.

7. Prompt explanation: For this particular prompt, we tell ChatGPT exactly what type of output
and formatting we are expecting since it has access to just about every manual page entry that
can be found on the internet. By instructing it to provide nothing before or after the Linux-
specific output, ChatGPT will not provide any additional details or narrative, and the output
will resemble actual Linux output when using the man command.

Using Prompt Variables (Application: Manual Page Generator) 35

8. The modified prompt, with the <<INPUT>> placeholder replaced, is sent to the get_chat_
gpt_response() function. The function sends the prompt to ChatGPT, which retrieves
the response, and the script prints the analysis result. This demonstrates how to use a prompt
template with a variable that can be replaced to create customized prompts for different inputs.

This approach is particularly useful in a cybersecurity context as it allows you to create standard
prompt templates for different types of analysis or queries and easily modify the input data as needed.

There’s more...

1. Use multiple variables in your prompt template: You can use more than one variable in your
prompt template to make it even more versatile. For example, you can create a template with
placeholders for different components of a cybersecurity analysis, such as IP addresses, domain
names, and user agents. Just make sure you replace all the necessary variables before sending
the prompt to ChatGPT.

2. Customize the variable format: Instead of using the <<INPUT>> format, you can customize
your variable format to better suit your needs or preferences. For example, you can use curly
braces (for example, {input}) or any other format that you find more readable and manageable.

3. Use environment variables for sensitive data: When working with sensitive data such as API
keys, it’s recommended to use environment variables to store them securely. You can modify
the open_file() function to read an environment variable instead of a file, ensuring that
sensitive data is not accidentally leaked or exposed.

4. Error handling and input validation: To make your script more robust, you can add error
handling and input validation. This can help you catch common issues, such as missing or
improperly formatted files, and provide clear error messages to guide the user in correcting
the problem.

By exploring these additional techniques, you can create more powerful, flexible, and secure prompt
templates for use with ChatGPT in your cybersecurity projects.

2
Vulnerability Assessment

Building on the fundamental knowledge and skills established in Chapter 1, this chapter explores
using ChatGPT and the OpenAI API to assist with and automate many vulnerability assessment tasks.

Throughout this chapter, you’ll discover how to employ ChatGPT in creating vulnerability and threat
assessment plans, a crucial part of any cybersecurity strategy. You’ll see how automating these processes
using the OpenAI API and Python can offer even more efficiency, especially in environments with
numerous network configurations or recurring planning needs.

Additionally, this chapter will delve into using ChatGPT in conjunction with the MITRE ATT&CK
framework, a globally accessible knowledge base of adversary tactics and techniques. This fusion will
enable you to generate detailed threat reports, providing valuable insights for threat analysis, attack
vector assessment, and threat hunting.

You’ll be introduced to the concept of Generative Pre-training Transformer (GPT)-assisted
vulnerability scanning. This approach simplifies some of the complexity of vulnerability scanning,
transforming natural language requests into accurate command strings that can be executed in
command-line interfaces (CLIs). This methodology is not only a time-saver but also enhances
accuracy and understanding in performing vulnerability scans.

Lastly, this chapter will tackle the challenge of analyzing large vulnerability assessment reports. Using
the OpenAI API in conjunction with LangChain, a framework designed to enable language models to
assist with complex tasks, you’ll see how large documents can be processed and understood, despite
the current token limitations of ChatGPT.

In this chapter, we will cover the following recipes:

• Creating Vulnerability Assessment Plans

• Threat Assessment using ChatGPT and the MITRE ATT&CK framework

• GPT-Assisted Vulnerability Scanning

• Analyzing Vulnerability Assessment Reports using LangChain

Vulnerability Assessment38

Technical requirements
For this chapter, you will need a web browser and a stable internet connection to access the ChatGPT
platform and set up your account. You will also need to have your OpenAI account set up and have
obtained your API key. If not, revisit Chapter 1 for details. Basic familiarity with the Python programming
language and working with the command line is necessary, as you’ll be using Python 3.x, which needs
to be installed on your system, for working with the OpenAI GPT API and creating Python scripts.
A code editor will also be essential for writing and editing Python code and prompt files as you work
through the recipes in this chapter.

The code files for this chapter can be found here: https://github.com/PacktPublishing/
ChatGPT-for-Cybersecurity-Cookbook.

Creating Vulnerability Assessment Plans
In this recipe, you’ll learn how to harness the power of ChatGPT and the OpenAI API to create
comprehensive vulnerability assessment plans using network, system, and business details as input.
This recipe is invaluable for both cybersecurity students and beginners looking to familiarize themselves
with proper methods and tools for vulnerability assessments, as well as experienced cybersecurity
professionals aiming to save time on planning and documentation.

Building upon the skills acquired in Chapter 1, you will delve deeper into establishing the system
role of a cybersecurity professional specializing in vulnerability assessments. You’ll learn how to craft
effective prompts that generate well-formatted output using Markdown language. This recipe will
also expand on the techniques explored in the Enhancing Output with Templates (Application: Threat
Report) and Formatting Output as a Table (Application: Security Controls Table) recipes in Chapter 1,
enabling you to design prompts that produce the desired output format.

Finally, you’ll discover how to use the OpenAI API and Python to generate a vulnerability assessment
plan, and then export it as a Microsoft Word file. This recipe will serve as a practical guide for creating
detailed and efficient vulnerability assessment plans using ChatGPT and the OpenAI API.

Getting ready

Before diving into the recipe, you should already have your OpenAI account set up and obtained
your API key. If not, revisit Chapter 1 for details. You will also need to be sure you have the following
Python libraries installed:

1. python-docx: This library will be used to generate Microsoft Word files. You can install it
using the pip install python-docx command.

2. tqdm: This library will be used to display progress bars. You can install it using the pip
install tqdm command.

https://github.com/PacktPublishing/ChatGPT-for-Cybersecurity-Cookbook
https://github.com/PacktPublishing/ChatGPT-for-Cybersecurity-Cookbook

Creating Vulnerability Assessment Plans 39

How to do it…

In this section, we will walk you through the process of using ChatGPT to create a comprehensive
vulnerability assessment plan tailored to a specific network and organization’s needs. By providing
the necessary details and using the given system role and prompt, you will be able to generate a
well-structured assessment plan:

1. Begin by logging in to your ChatGPT account and navigating to the ChatGPT web UI.

2. Start a new conversation with ChatGPT by clicking the New chat button.

3. Enter the following prompt to establish a system role:

You are a cybersecurity professional specializing in
vulnerability assessment.

4. Enter the following message text, but replace the placeholders in the { } brackets with the
appropriate data of your choice. You can either combine this prompt with the system role or
enter it separately as follows:

Using cybersecurity industry standards and best practices,
create a complete and detailed assessment plan (not a
penetration test) that includes: Introduction, outline of
the process/methodology, tools needed, and a very detailed
multi-layered outline of the steps. Provide a thorough and
descriptive introduction and as much detail and description as
possible throughout the plan. The plan should not be the only
assessment of technical vulnerabilities on systems but also
policies, procedures, and compliance. It should include the
use of scanning tools as well as configuration review, staff
interviews, and site walk-around. All recommendations should
follow industry standard best practices and methods. The plan
should be a minimum of 1500 words.
Create the plan so that it is specific for the following
details:
Network Size: {Large}
Number of Nodes: {1000}
Type of Devices: {Desktops, Laptops, Printers, Routers}
Specific systems or devices that need to be excluded from the
assessment: {None}
Operating Systems: {Windows 10, MacOS, Linux}
Network Topology: {Star}
Access Controls: {Role-based access control}
Previous Security Incidents: {3 incidents in the last year}
Compliance Requirements: {HIPAA}
Business Critical Assets: {Financial data, Personal health
information}

Vulnerability Assessment40

Data Classification: {Highly confidential}
Goals and objectives of the vulnerability assessment: {To
identify and prioritize potential vulnerabilities in the
network and provide recommendations for remediation and risk
mitigation.}
Timeline for the vulnerability assessment: {4 weeks{
Team: {3 cybersecurity professionals, including a vulnerability
assessment lead and two security analysts}
Expected deliverables of the assessment: {A detailed report
outlining the results of the vulnerability assessment, including
identified vulnerabilities, their criticality, potential impact
on the network, and recommendations for remediation and risk
mitigation.}
Audience: {The organization's IT department, senior management,
and any external auditors or regulators.}
Provide the plan using the following format and markdown
language:
#Vulnerability Assessment Plan
##Introduction
Thorough Introduction to the plan including the scope, reasons
for doing it, goals and objectives, and summary of the plan
##Process/Methodology
Description and Outline of the process/Methodology
##Tools Required
List of required tools and applications, with their descriptions
and reasons needed
##Assessment Steps
Detailed, multi-layered outline of the assessment steps

Hint
If you are performing this in the OpenAI Playground, it is advisable to use Chat mode and
enter the role in the System window, and the prompt in the User message window.

Creating Vulnerability Assessment Plans 41

Figure 2.1 shows the system role and user prompt entered into the OpenAI Playground:

Figure 2.1 – OpenAI Playground method

5. Review the generated output from ChatGPT. If the output is satisfactory and meets the
requirements, you can proceed to the next step. If not, you can either refine your prompt or
rerun the conversation to generate a new output.

6. Once you have obtained the desired output, you can use the generated Markdown to create a
well-structured vulnerability assessment plan in your preferred text editor or Markdown viewer.

7. Figure 2.2 shows an example ChatGPT generation of a vulnerability assessment plan using
Markdown language formatting:

Vulnerability Assessment42

Figure 2.2 – Example ChatGPT assessment plan output

How it works…

This GPT-assisted vulnerability assessment plan recipe leverages the sophistication of natural language
processing (NLP) and machine learning (ML) algorithms to generate a comprehensive and detailed
vulnerability assessment plan. By adopting a specific system role and an elaborate user request as a
prompt, ChatGPT is able to customize its response to meet the requirements of a seasoned cybersecurity
professional who is tasked with assessing an extensive network system.

Creating Vulnerability Assessment Plans 43

Here’s a closer look at how this process works:

• System role and detailed prompt: The system role designates ChatGPT as a seasoned
cybersecurity professional specializing in vulnerability assessment. The prompt, which serves
as the user request, is detailed and outlines the specifics of the assessment plan, from the size
of the network and types of devices to the required compliance and the expected deliverables.
These inputs provide context and guide ChatGPT’s response, ensuring it is tailored to the
complexities and requirements of the vulnerability assessment task.

• NLP and ML: NLP and ML form the bedrock of ChatGPT’s capabilities. It applies these
technologies to understand the intricacies of the user request, learn from the patterns, and
generate a well-structured vulnerability assessment plan that is detailed, specific, and actionable.

• Knowledge and language understanding capabilities: ChatGPT uses its extensive knowledge
base and language understanding capabilities to conform to industry-standard methodologies and
best practices. This is particularly important in the rapidly evolving field of cybersecurity, ensuring
that the resulting vulnerability assessment plan is up to date and adheres to recognized standards.

• Markdown language output: The use of Markdown language output ensures that the plan is
formatted in a consistent and easy-to-read manner. This format can be easily integrated into
reports, presentations, and other formal documents, which is crucial when communicating the
plan to IT departments, senior management, and external auditors or regulators.

• Streamlining the assessment planning process: The overall advantage of using this GPT-assisted
vulnerability assessment plan recipe is that it streamlines the process of creating a comprehensive
vulnerability assessment plan. You save time on planning and documentation and can generate
a professional-grade assessment plan that aligns with industry standards and is tailored to the
specific needs of your organization.

By applying these detailed inputs, you transform ChatGPT into a potential tool that can assist in creating
a comprehensive, tailored vulnerability assessment plan. This not only bolsters your cybersecurity
efforts but also ensures your resources are utilized effectively in protecting your network systems.

There’s more…

In addition to using ChatGPT to generate a vulnerability assessment plan, you can also use the OpenAI
API and Python to automate the process. This approach is particularly useful when you have a large
number of network configurations to assess or when you need to generate plans on a recurring basis.

The Python script we will present here reads input data from a text file and uses it to fill in the
placeholders in the prompt. The resulting Markdown output can then be used to create a well-structured
vulnerability assessment plan.

Vulnerability Assessment44

While the process is similar to the ChatGPT version, the use of the OpenAI API provides additional
flexibility and control over the generated content. Let’s dive into the steps involved in the OpenAI
API version of the vulnerability assessment plan recipe:

1. Import the necessary libraries and set up the OpenAI API:

import openai
from openai import OpenAI
import os
from docx import Document
from tqdm import tqdm
import threading
import time
from datetime import datetime

Set up the OpenAI API
openai.api_key = os.getenv("OPENAI_API_KEY")

In this section, we import the necessary libraries, such as openai, os, docx, tqdm, threading,
time, and datetime. We also set up the OpenAI API by providing the API key.

2. Read user input data from a text file:

def read_user_input_file(file_path: str) -> dict:
 user_data = {}
 with open(file_path, 'r') as file:
 for line in file:
 key, value = line.strip().split(':')
 user_data[key.strip()] = value.strip()
 return user_data

user_data_file = "assessment_data.txt"
user_data = read_user_input_file(user_data_file)

Here, we define a read_user_input_file function that reads the user input data from a
text file and stores it in a dictionary. We then call this function with the assessment_data.
txt file to obtain the user_data dictionary.

3. Generate a vulnerability assessment plan using the OpenAI API:

Important note
The …' notation signifies that we will fill in this section of code in a later step.

def generate_report(network_size,
 number_of_nodes,

Creating Vulnerability Assessment Plans 45

 type_of_devices,
 special_devices,
 operating_systems,
 network_topology,
 access_controls,
 previous_security_incidents,
 compliance_requirements,
 business_critical_assets,
 data_classification,
 goals,
 timeline,
 team,
 deliverables,
 audience: str) -> str:
 # Define the conversation messages
 messages = [...]

 client = OpenAI()

Call the OpenAI API
response = client.chat.completions.create(...)

 # Return the generated text
 return response.choices[0].message.content.strip()

In this code block, we define a generate_report function, which takes the user input
data and calls the OpenAI API to generate the vulnerability assessment plan. The function
returns the generated text.

4. Define the API messages:

Define the conversation messages
messages = [
 {"role": "system", "content": "You are a cybersecurity
professional specializing in vulnerability assessment."},
 {"role": "user", "content": f'Using cybersecurity industry
standards and best practices, create a complete and detailed
assessment plan ... Detailed outline of the assessment steps'}
]

client = OpenAI()

Call the OpenAI API
response = client.chat.completions.create(
 model="gpt-3.5-turbo",

Vulnerability Assessment46

 messages=messages,
 max_tokens=2048,
 n=1,
 stop=None,
 temperature=0.7,
)

Return the generated text
return return response.choices[0].message.content.strip()

In the conversation messages, we define two roles: system and user. The system role
is used to set the context for the AI model, informing it that it’s a cybersecurity professional
specializing in vulnerability assessment. The user role provides the instructions for the AI,
which include generating a detailed vulnerability assessment plan based on industry standards,
best practices, and user-supplied data.

The system role helps set the stage for the AI, while the user role guides the AI in its content
generation. This approach follows a similar pattern to the ChatGPT UI section we discussed
earlier, where we provided an initial message to the AI to set the context.

For more information on sending API requests and handling responses, please refer to the
Sending API Requests and Handling Responses with Python recipe in Chapter 1. This recipe
provides a deeper understanding of interacting with the OpenAI API, including how to structure
requests and process the generated content.

5. Convert the generated Markdown text to a Word document:

def markdown_to_docx(markdown_text: str, output_file: str):
 document = Document()

 # Iterate through the lines of the markdown text
 for line in markdown_text.split('\n'):
 # Add headings and paragraphs based on the markdown
formatting
 ...

 # Save the Word document
 document.save(output_file)

The markdown_to_docx function converts the generated Markdown text to a Word
document. It iterates through the lines of the Markdown text, adding headings and paragraphs
based on the Markdown formatting, and saves the resulting Word document.

6. Display the elapsed time while waiting for the API call:

def display_elapsed_time():
 start_time = time.time()

Creating Vulnerability Assessment Plans 47

 while not api_call_completed:
 elapsed_time = time.time() - start_time
 print(f"\rCommunicating with the API - Elapsed time:
{elapsed_time:.2f} seconds", end="")
 time.sleep(1)

The display_elapsed_time function is used to display the elapsed time while waiting
for the API call to complete. It uses a loop to print the elapsed time in seconds.

7. Write the main function:

current_datetime = datetime.now().strftime('%Y-%m-%d_%H-%M-%S')
assessment_name = f"Vuln_ Assessment_Plan_{current_datetime}"

api_call_completed = False
elapsed_time_thread = threading.Thread(target=display_elapsed_
time)
elapsed_time_thread.start()

try:
 # Generate the report using the OpenAI API
 report = generate_report(
 user_data["Network Size"],
 user_data["Number of Nodes"],
 user_data["Type of Devices"],
 user_data["Specific systems or devices that need to be
excluded from the assessment"],
 user_data["Operating Systems"],
 user_data["Network Topology"],
 user_data["Access Controls"],
 user_data["Previous Security Incidents"],
 user_data["Compliance Requirements"],
 user_data["Business Critical Assets"],
 user_data["Data Classification"],
 user_data["Goals and objectives of the vulnerability
assessment"],
 user_data["Timeline for the vulnerability assessment"],
 user_data["Team"],
 user_data["Expected deliverables of the assessment"],
 user_data["Audience"]
)

 api_call_completed = True
 elapsed_time_thread.join()
except Exception as e:
 api_call_completed = True

Vulnerability Assessment48

 elapsed_time_thread.join()
 print(f"\nAn error occurred during the API call: {e}")
 exit()

Save the report as a Word document
docx_output_file = f"{assessment_name}_report.docx"

Handle exceptions during the report generation
try:
 with tqdm(total=1, desc="Generating plan") as pbar:
 markdown_to_docx(report, docx_output_file)
 pbar.update(1)
 print("\nPlan generated successfully!")
except Exception as e:
 print(f"\nAn error occurred during the plan generation:
{e}")

In the main part of the script, we start by defining an assessment_name function based on
the current date and time. We then use threading to display the elapsed time while making the
API call. The script calls the generate_report function with the user data as arguments,
and upon successful completion, it saves the generated report as a Word document using the
markdown_to_docx function. The progress is displayed using the tqdm library. If any errors
occur during the API call or report generation, they are displayed to the user.

Hint
You can swap out the chat-3.5-turbo model with the GPT-4 model, if you are a ChatGPT Plus
subscriber, for often improved results. In fact, GPT-4 is capable of generating a much longer
and more detailed generation and/or document. Just keep in mind that the GPT-4 model is a
bit more expensive than the chat-3.5-turbo model.

Here is how the completed script should look:

import openai
from openai import OpenAI
import os
from docx import Document
from tqdm import tqdm
import threading
import time
from datetime import datetime

Set up the OpenAI API
openai.api_key = os.getenv("OPENAI_API_KEY")

Creating Vulnerability Assessment Plans 49

current_datetime = datetime.now().strftime('%Y-%m-%d_%H-%M-%S')
assessment_name = f"Vuln_Assessment_Plan_{current_datetime}"

def read_user_input_file(file_path: str) -> dict:
 user_data = {}
 with open(file_path, 'r') as file:
 for line in file:
 key, value = line.strip().split(':')
 user_data[key.strip()] = value.strip()
 return user_data

user_data_file = "assessment_data.txt"
user_data = read_user_input_file(user_data_file)

Function to generate a report using the OpenAI API
def generate_report(network_size,
 number_of_nodes,
 type_of_devices,
 special_devices,
 operating_systems,
 network_topology,
 access_controls,
 previous_security_incidents,
 compliance_requirements,
 business_critical_assets,
 data_classification,
 goals,
 timeline,
 team,
 deliverables,
 audience: str) -> str:

 # Define the conversation messages
 messages = [
 {"role": "system", "content": "You are a cybersecurity
professional specializing in vulnerability assessment."},
 {"role": "user", "content": f'Using cybersecurity industry
standards and best practices, create a complete and detailed
assessment plan (not a penetration test) that includes: Introduction,
outline of the process/methodology, tools needed, and a very
detailed multi-layered outline of the steps. Provide a thorough
and descriptive introduction and as much detail and description as
possible throughout the plan. The plan should not only assessment of
technical vulnerabilities on systems but also policies, procedures,

Vulnerability Assessment50

and compliance. It should include the use of scanning tools as well
as configuration review, staff interviews, and site walk-around. All
recommendations should follow industry standard best practices and
methods. The plan should be a minimum of 1500 words.\n\
 Create the plan so that it is specific for the following
details:\n\
 Network Size: {network_size}\n\
 Number of Nodes: {number_of_nodes}\n\
 Type of Devices: {type_of_devices}\n\
 Specific systems or devices that need to be excluded from the
assessment: {special_devices}\n\
 Operating Systems: {operating_systems}\n\
 Network Topology: {network_topology}\n\
 Access Controls: {access_controls}\n\
 Previous Security Incidents: {previous_security_incidents}\n\
 Compliance Requirements: {compliance_requirements}\n\
 Business Critical Assets: {business_critical_assets}\n\
 Data Classification: {data_classification}\n\
 Goals and objectives of the vulnerability assessment:
{goals}\n\
 Timeline for the vulnerability assessment: {timeline}\n\
 Team: {team}\n\
 Expected deliverables of the assessment: {deliverables}\n\
 Audience: {audience}\n\
 Provide the plan using the following format and observe the
markdown language:\n\
 #Vulnerability Assessment Plan\n\
 ##Introduction\n\
 Introduction\n\
 ##Process/Methodology\n\
 Outline of the process/Methodology\n\
 ##Tools Required\n\
 List of required tools and applications\n\
 ##Assessment Steps\n\
 Detailed outline of the assessment steps'}
]

 client = OpenAI()

 # Call the OpenAI API
 response = client.chat.completions.create(
 model="gpt-3.5-turbo",
 messages=messages,
 max_tokens=2048,
 n=1,

Creating Vulnerability Assessment Plans 51

 stop=None,
 temperature=0.7,
)

 # Return the generated text
 return response.choices[0].message.content.strip()

Function to convert markdown text to a Word document
def markdown_to_docx(markdown_text: str, output_file: str):
 document = Document()

 # Iterate through the lines of the markdown text
 for line in markdown_text.split('\n'):

 # Add headings based on the markdown heading levels
 if line.startswith('# '):
 document.add_heading(line[2:], level=1)
 elif line.startswith('## '):
 document.add_heading(line[3:], level=2)
 elif line.startswith('### '):
 document.add_heading(line[4:], level=3)
 elif line.startswith('#### '):
 document.add_heading(line[5:], level=4)
 # Add paragraphs for other text
 else:
 document.add_paragraph(line)

 # Save the Word document
 document.save(output_file)

Function to display elapsed time while waiting for the API call
def display_elapsed_time():
 start_time = time.time()
 while not api_call_completed:
 elapsed_time = time.time() - start_time
 print(f"\rCommunicating with the API - Elapsed time: {elapsed_
time:.2f} seconds", end="")
 time.sleep(1)

api_call_completed = False
elapsed_time_thread = threading.Thread(target=display_elapsed_time)
elapsed_time_thread.start()

Handle exceptions during the API call

Vulnerability Assessment52

try:
 # Generate the report using the OpenAI API
 report = generate_report(
 user_data["Network Size"],
 user_data["Number of Nodes"],
 user_data["Type of Devices"],
 user_data["Specific systems or devices that need to be excluded
from the assessment"],
 user_data["Operating Systems"],
 user_data["Network Topology"],
 user_data["Access Controls"],
 user_data["Previous Security Incidents"],
 user_data["Compliance Requirements"],
 user_data["Business Critical Assets"],
 user_data["Data Classification"],
 user_data["Goals and objectives of the vulnerability assessment"],
 user_data["Timeline for the vulnerability assessment"],
 user_data["Team"],
 user_data["Expected deliverables of the assessment"],
 user_data["Audience"]
)

 api_call_completed = True
 elapsed_time_thread.join()
except Exception as e:
 api_call_completed = True
 elapsed_time_thread.join()
 print(f"\nAn error occurred during the API call: {e}")
 exit()

Save the report as a Word document
docx_output_file = f"{assessment_name}_report.docx"

Handle exceptions during the report generation
try:
 with tqdm(total=1, desc="Generating plan") as pbar:
 markdown_to_docx(report, docx_output_file)
 pbar.update(1)
 print("\nPlan generated successfully!")
except Exception as e:
 print(f"\nAn error occurred during the plan generation: {e}")

Threat Assessment using ChatGPT and the MITRE ATT&CK framework 53

This script automates the process of generating a vulnerability assessment plan by using the OpenAI API
in conjunction with Python. It starts by importing the necessary libraries and setting up the OpenAI
API. It then reads user input data from a text file (the file path is stored as a user_data_file
string) and then stores this data in a dictionary for easy access.

The core of the script is the function that generates the vulnerability assessment plan. It leverages the
OpenAI API to create a detailed report based on the user input data. The conversation with the API
is formatted with both system and user roles to guide the generation process effectively.

Once the report is generated, it is converted from Markdown text to a Word document, providing a
well-structured, readable output. To provide user feedback during the process, the script includes a
function that displays the elapsed time while the API call is being made.

Finally, the script’s main function ties everything together. It initiates the process of generating the
report using the OpenAI API, shows the elapsed time during the API call, and finally, converts the
generated report to a Word document. If any errors occur during the API call or the document
generation, they are handled and displayed to the user.

Threat Assessment using ChatGPT and the MITRE ATT&CK
framework
In this recipe, you will learn how to leverage ChatGPT and the OpenAI API to conduct a threat
assessment by providing a threat, attack, or campaign name. By combining the power of ChatGPT
with the MITRE ATT&CK framework, you will be able to generate detailed threat reports, tactics,
techniques, and procedures (TTPs) mappings, and associated indicators of compromise (IoCs).
This information will enable cybersecurity professionals to analyze attack vectors in their environment
and extend their capabilities into threat hunting.

Building upon the skills acquired in Chapter 1, this recipe will guide you through establishing the
system role of a cybersecurity analyst and engineering effective prompts that generate well-formatted
output, including tables. You will learn how to design prompts to obtain the desired output from
ChatGPT using both the ChatGPT web UI and a Python script. Additionally, you will learn how
to use the OpenAI API to generate a comprehensive threat report in a Microsoft Word file format.

Getting ready

Before diving into the recipe, you should already have your OpenAI account set up and obtained your
API key. If not, revisit Chapter 1 for details. You will also need to do the following:

1. Install the python-docx library: Ensure you have the python-docx library installed in
your Python environment, as it will be used to generate Microsoft Word files. You can install
it using the pip install python-docx command.

Vulnerability Assessment54

2. Familiarize yourself with the MITRE ATT&CK framework: To make the most of this recipe,
it’s helpful to have a basic understanding of the MITRE ATT&CK framework. Visit https://
attack.mitre.org/ for more information and resources.

3. List sample threats: Prepare a list of sample threat names, attack campaigns, or adversary
groups to use as examples while working through the recipe.

How to do it…

By following these steps, you can successfully utilize ChatGPT to generate a TTP-based threat report
using the MITRE ATT&CK framework and proper Markdown formatting. We will be specifying
the name of a threat and applying prompt engineering techniques. ChatGPT will then generate
a well-formatted report with valuable insights that can assist you in threat analysis, attack vector
assessment, and even in gathering IoCs for threat hunting:

1. Begin by logging in to your ChatGPT account and navigating to the ChatGPT web UI.

2. Start a new conversation with ChatGPT by clicking the New chat button.

3. Enter the following prompt to establish a system role:

You are a professional cyber threat analyst and MITRE ATT&CK
Framework expert.

4. Replace {threat_name} in the user prompt below with the threat name of your choice (in
our example, we will use WannaCry). You can either combine this prompt with the system
role or enter it separately:

Provide a detailed report about {threat_name}, using the
following template (and proper markdown language formatting,
headings, bold keywords, tables, etc.):
Threat Name (Heading 1)
Summary (Heading 2)
Short executive summary
Details (Heading 2)
Description and details including history/background, discovery,
characteristics and TTPs, known incidents
MITRE ATT&CK TTPs (Heading 2)
Table containing all of the known MITRE ATT&CK TTPs that the
{threat_name} attack uses. Include the following columns:
Tactic, Technique ID, Technique Name, Procedure (How WannaCry
uses it)
Indicators of Compromise (Heading 2)
Table containing all of the known indicators of compromise.
Include the following columns: Type, Value, Description

https://attack.mitre.org/
https://attack.mitre.org/

Threat Assessment using ChatGPT and the MITRE ATT&CK framework 55

Hint
Just as with the previous recipe, you can perform this in the OpenAI Playground and use Chat
mode to enter the role in the System window, and the prompt in the User message window.

Figure 2.3 shows the system role and user prompt entered into the OpenAI Playground:

Figure 2.3 – OpenAI Playground method

5. After entering the appropriate system role and user prompt, press Enter.

6. ChatGPT will process the prompt and generate a formatted threat report with Markdown
language formatting, headings, bold keywords, tables, and other elements specified in the prompt.

Vulnerability Assessment56

Figure 2.4 and Figure 2.5 illustrate an example ChatGPT generation of a threat report using
Markdown language formatting with a table:

Figure 2.4 – ChatGPT threat report narrative output

Threat Assessment using ChatGPT and the MITRE ATT&CK framework 57

Figure 2.5 – ChatGPT threat report table output

Vulnerability Assessment58

7. Review the generated report to ensure it contains the desired information and formatting. If
necessary, adjust your user prompt and resubmit it to improve the output.

Hint
Sometimes, ChatGPT will stop generating before it has completed the entire out. This is due
to the token limit of the model being used. In such cases, you can click on the Continue
Generating button.

How it works…

Just as we did in the Applying ChatGPT Roles (Application: AI CISO) recipe in Chapter 1, when you
assign a role to ChatGPT, you provide a specific context or persona for the model to work with. This
helps the model generate responses that are tailored to the given role, resulting in more accurate,
relevant, and detailed content. The model will generate content that aligns with the expertise and
perspective of the assigned role, offering better insights, opinions, or recommendations.

When we provide a threat name and direct ChatGPT to reference the MITRE ATT&CK framework,
we are able to leverage its massive dataset, which includes detailed information about threats and the
MITRE ATT&CK framework. As a result, it is able to correlate the two and quickly give us the relevant
threat information as it pertains to the TTPs identified in the framework.

Important note
When using the current version of ChatGPT and the OpenAI API as of the time of this writing,
the dataset is only trained up through September 2021. Therefore, it will not have knowledge
of any threat data after that. However, we will cover techniques later in this book on how to
use the API and Python to feed recent data into the request.

By providing a clear template for the output in your prompt, you guide ChatGPT to generate responses
that adhere to the specified structure and formatting. This helps ensure that the generated content is
consistent, well organized, and suitable for use in reports, presentations, or other formal documents.
The model will focus on generating content that matches the formatting and structure you’ve provided
while still delivering the information you requested. See the Enhancing Output with Templates
(Application: Threat Report) and Formatting Output as a Table (Application: Security Controls Table)
recipes in Chapter 1 for further details.

Threat Assessment using ChatGPT and the MITRE ATT&CK framework 59

There’s more…

You can extend the power and flexibility of this recipe by using the OpenAI API with a Python script
to generate a threat report, similar to the one created in the ChatGPT web UI. Here’s how you do it:

1. Start by importing the necessary libraries:

import openai
from openai import OpenAI
import os
from docx import Document
from tqdm import tqdm
import threading
import time

2. Set up the OpenAI API the same as we did in the Setting the OpenAI API key as an Environment
Variable recipe in Chapter 1:

openai.api_key = os.getenv("OPENAI_API_KEY")

3. Create a function to generate a report using the OpenAI API:

def generate_report(threat_name: str) -> str:
 ...
 return response['choices'][0]['message']['content'].strip()

This function takes a threat name as input and sends it as part of a prompt to the OpenAI API.
It returns the generated text from the API response.

4. Create a function to convert the generated text, which is in Markdown format, to a Microsoft
Word document:

def markdown_to_docx(markdown_text: str, output_file: str):
 ...
 document.save(output_file)

This function takes the generated text in Markdown format and an output filename. It parses
the Markdown text and creates a Word document with the appropriate formatting.

5. Create a function to extract tables from the Markdown text:

def extract_tables(markdown_text: str):
 ...
 return tables

This function iterates through the Markdown text and extracts any tables it finds.

Vulnerability Assessment60

6. Create a function to display the elapsed time while waiting for the API call:

def display_elapsed_time():
 ...

This function shows the elapsed time in seconds while waiting for the API call to complete.

7. Get the threat name from user input:

threat_name = input("Enter the name of a cyber threat: ")

8. Start a separate thread to display the elapsed time while making the API call:

api_call_completed = False
elapsed_time_thread = threading.Thread(target=display_elapsed_
time)
elapsed_time_thread.start()

9. Make the API call and handle exceptions:

try:
 report = generate_report(threat_name)
 api_call_completed = True
 elapsed_time_thread.join()
except Exception as e:
 ...

10. Save the generated report as a Word document:

docx_output_file = f"{threat_name}_report.docx"

11. Generate the report and handle exceptions:

try:
 with tqdm(total=1, desc="Generating report and files") as
pbar:
 markdown_to_docx(report, docx_output_file)
 print("\nReport and tables generated successfully!")
except Exception as e:
 ...

Here is how the completed script should look:

import openai
from openai import OpenAI
import os
from docx import Document
from tqdm import tqdm

Threat Assessment using ChatGPT and the MITRE ATT&CK framework 61

import threading
import time

Set up the OpenAI API
openai.api_key = os.getenv("OPENAI_API_KEY")

Function to generate a report using the OpenAI API
def generate_report(threat_name: str) -> str:

 # Define the conversation messages
 messages = [
 {"role": "system", "content": "You are a professional cyber
threat analyst and MITRE ATT&CK Framework expert."},
 {"role": "user", "content": f'Provide a detailed report about
{threat_name}, using the following template (and proper markdown
language formatting, headings, bold keywords, tables, etc.):\n\n\
 Threat Name (Heading 1)\n\n\
 Summary (Heading 2)\n\
 Short executive summary\n\n\
 Details (Heading 2)\n\
 Description and details including history/background,
discovery, characteristics and TTPs, known incidents\n\n\
 MITRE ATT&CK TTPs (Heading 2)\n\
 Table containing all of the known MITRE ATT&CK TTPs that the
{threat_name} attack uses. Include the following columns: Tactic,
Technique ID, Technique Name, Procedure (How {threat_name} uses it)\
n\n\
 Indicators of Compromise (Heading 2)\n\
 Table containing all of the known indicators of compromise.
Include the following collumns: Type, Value, Description\n\n\ '}
]

 client = OpenAI()

 # Call the OpenAI API
 response = client.chat.completions.create
 model="gpt-3.5-turbo",
 messages=messages,
 max_tokens=2048,
 n=1,
 stop=None,
 temperature=0.7,
)

 # Return the generated text

Vulnerability Assessment62

 return response.choices[0].message.content.strip()

Function to convert markdown text to a Word document
def markdown_to_docx(markdown_text: str, output_file: str):
 document = Document()

 # Variables to keep track of the current table
 table = None
 in_table = False

 # Iterate through the lines of the markdown text
 for line in markdown_text.split('\n'):

 # Add headings based on the markdown heading levels
 if line.startswith('# '):
 document.add_heading(line[2:], level=1)
 elif line.startswith('## '):
 document.add_heading(line[3:], level=2)
 elif line.startswith('### '):
 document.add_heading(line[4:], level=3)
 elif line.startswith('#### '):
 document.add_heading(line[5:], level=4)
 # Handle tables in the markdown text
 elif line.startswith('|'):
 row = [cell.strip() for cell in line.split('|')[1:-1]]
 if not in_table:
 in_table = True
 table = document.add_table(rows=1, cols=len(row),
style='Table Grid')
 for i, cell in enumerate(row):
 table.cell(0, i).text = cell
 else:
 if len(row) != len(table.columns): # If row length
doesn't match table, it's a separator
 continue
 new_row = table.add_row()
 for i, cell in enumerate(row):
 new_row.cells[i].text = cell
 # Add paragraphs for other text
 else:
 if in_table:
 in_table = False
 table = None

Threat Assessment using ChatGPT and the MITRE ATT&CK framework 63

 document.add_paragraph(line)

 # Save the Word document
 document.save(output_file)

Function to extract tables from the markdown text
def extract_tables(markdown_text: str):
 tables = []
 current_table = []

 # Iterate through the lines of the markdown text
 for line in markdown_text.split('\n'):
 # Check if the line is part of a table
 if line.startswith('|'):
 current_table.append(line)
 # If the table ends, save it to the tables list
 elif current_table:
 tables.append('\n'.join(current_table))
 current_table = []

 return tables

Function to display elapsed time while waiting for the API call
def display_elapsed_time():
 start_time = time.time()
 while not api_call_completed:
 elapsed_time = time.time() - start_time
 print(f"\rCommunicating with the API - Elapsed time: {elapsed_
time:.2f} seconds", end="")
 time.sleep(1)

Get user input
threat_name = input("Enter the name of a cyber threat: ")

api_call_completed = False
elapsed_time_thread = threading.Thread(target=display_elapsed_time)
elapsed_time_thread.start()

Handle exceptions during the API call
try:
 # Generate the report using the OpenAI API
 report = generate_report(threat_name)
 api_call_completed = True
 elapsed_time_thread.join()

Vulnerability Assessment64

except Exception as e:
 api_call_completed = True
 elapsed_time_thread.join()
 print(f"\nAn error occurred during the API call: {e}")
 exit()

Save the report as a Word document
docx_output_file = f"{threat_name}_report.docx"

Handle exceptions during the report generation
try:
 with tqdm(total=1, desc="Generating report and files") as pbar:
 markdown_to_docx(report, docx_output_file)
 print("\nReport and tables generated successfully!")
except Exception as e:
 print(f"\nAn error occurred during the report generation: {e}")

This script uses the OpenAI API to generate a cyber threat report as a Microsoft Word document.

The crux of this script lies in several key functions. The first function, generate_report(), takes
in a cyber threat name and uses it as a prompt for the OpenAI API. It returns the generated text from
the API response. This text is in Markdown format and is subsequently transformed into a Microsoft
Word document by the markdown_to_docx() function.

This function parses through the Markdown text line by line, creating tables and headings as required,
and finally saves it as a Word document. In parallel, there is an extract_tables() function that
is designed to locate and extract any tables present within the Markdown text.

To enhance the user experience, the display_elapsed_time() function is incorporated. This
function tracks and displays the time taken for the API call to complete. It runs in a separate thread,
initiated before making the API call:

Figure 2.6 – Example output of the display_elapsed_time function

The API call itself, as well as the report generation, are wrapped in try-except blocks to handle any
potential exceptions. Once the report is generated, it is saved as a Word document, with the filename
based on the user-inputted cyber threat name.

Upon successful execution of this script, a detailed threat report in Word document format is produced,
mimicking the output generated by the ChatGPT web UI. This recipe demonstrates how the OpenAI
API can be adapted within a Python script to automate the generation of comprehensive reports.

GPT-Assisted Vulnerability Scanning 65

Hint
You can swap out the chat-3.5-turbo model with the GPT-4 model, if you are a ChatGPT Plus
subscriber, for often improved results. Just keep in mind that the GPT-4 model is a bit more
expensive than the chat-3.5-turbo model.

You can also improve accuracy and get a more consistent output by lowering the
temperature value.

GPT-Assisted Vulnerability Scanning
Vulnerability scanning plays a crucial role in identifying and remediating weaknesses before they can
be exploited by malicious actors. The tools we use to conduct these scans, such as NMAP, OpenVAS,
or Nessus, offer robust functionality but can often be complex and challenging to navigate, especially
for those new to the field or unfamiliar with their advanced options.

This is where our recipe comes into play. It leverages the power of ChatGPT to streamline the process
of generating command strings for these tools based on user input. With this recipe, you will be
able to create precise command strings that can be directly copied and pasted into a CLI to initiate a
vulnerability scan, provided the respective tool is installed.

This recipe is not just about saving time; it’s about enhancing accuracy, understanding, and effectiveness.
It is beneficial for those learning vulnerability assessments, those who are new to these tools, and even
seasoned professionals who need a quick reference to ensure their command options are correct. It
is especially useful when dealing with advanced options, such as parsing the output or outputting
results to files or other formats.

By the end of this recipe, you will be able to generate precise command strings for NMAP, OpenVAS,
or Nessus, helping you navigate their functionalities with ease and confidence. Whether you are a
cybersecurity beginner or a seasoned expert, this recipe will serve as a valuable tool in your vulnerability
assessment arsenal.

Getting ready

Before we begin this recipe, it’s essential to ensure that you have properly set up your OpenAI account
and obtained your API key. If this hasn’t been done yet, you can refer back to Chapter 1 for detailed
instructions. Additionally, you will require the following:

1. Vulnerability scanning tools: It’s crucial to have NMAP, OpenVAS, or Nessus installed on
your system as the recipe generates command strings for these specific tools. Please refer to
their official documentation for installation and setup guidelines.

2. Basic understanding of the tools: The more familiar you are with NMAP, OpenVAS, or Nessus,
the better you will be able to utilize this recipe. If you’re new to these tools, consider spending
some time understanding their basic functionalities and command-line options.

Vulnerability Assessment66

3. Command-line environment: As the recipe generates command strings intended for CLIs,
you should have access to a suitable command-line environment where you can run these
commands. This could be a terminal in Unix/Linux systems or Command Prompt or PowerShell
in Windows.

4. Sample network configuration data: Prepare some sample network data that the vulnerability
scanning tools can use. This could include IP addresses, hostnames, or other relevant information
about the systems you’d like to scan.

How to do it…

In this recipe, we’ll show you how to use ChatGPT to create command strings for vulnerability scanning
tools such as NMAP, OpenVAS, and Nessus. We’ll be providing ChatGPT with the necessary details
and using a specific system role and prompt. This will allow you to generate the simplest form of the
command necessary to complete your request:

1. Start by logging in to your OpenAI account and go to the ChatGPT web UI.

2. Begin a new conversation with ChatGPT by clicking on the New chat button.

3. Next, establish the system’s role by entering the following:

You are a professional cybersecurity red team specialist and an
expert in penetration testing as well as vulnerability scanning
tools such as NMap, OpenVAS, Nessus, Burpsuite, Metasploit, and
more.

Important note
Just as in the Creating Vulnerability Assessment Plans recipe, you can enter the role separately
using the OpenAI Playground, or you can combine it as a single prompt in ChatGPT.

4. Now, prepare your request. This is the information that will replace the {user_input}
placeholder in the next step. It should be a natural language request such as the following:

Use the command line version of OpenVAS to scan my 192.168.20.0
class C network starting by identifying hosts that are up, then
look for running web servers, and then perform a vulnerability
scan of those web servers.

5. Once your request is ready, enter the following message text, replacing the {user_input}
placeholder with your specific request from the previous step:

Provide me with the Linux command necessary to complete the
following request:

{user_input}

GPT-Assisted Vulnerability Scanning 67

Assume I have all the necessary apps, tools, and commands
necessary to complete the request. Provide me with the command
only and do not generate anything further. Do not provide any
explanation. Provide the simplest form of the command possible
unless I ask for special options, considerations, output, etc.
If the request does require a compound command provide all
necessary operators, pipes, etc. as a single one-line command.
Do not provide me with more than one variation or more than one
line.

ChatGPT will then generate the command string based on your request. Review the output. If
it meets your requirements, you can proceed to copy the command and use it as needed. If it
doesn’t, you may need to refine your request and try again.

Once you’ve obtained a satisfactory command, you can copy and paste it directly into your
command line to perform the vulnerability scan as described in your request.

Important note
Remember—it’s important to review and understand any command before running it in
your environment. While ChatGPT aims to provide accurate commands, you are ultimately
responsible for ensuring the command’s safety and appropriateness for your specific context.

Figure 2.7 shows an example ChatGPT command generated from the prompt used in this recipe:

Figure 2.7 – Example ChatGPT command generation

Vulnerability Assessment68

How it works…

The GPT-assisted vulnerability scanning recipe taps into the power of NLP and the vast knowledge
of ML algorithms to generate accurate and appropriate command strings for vulnerability scanning
tools such as NMAP, OpenVAS, and Nessus. When you provide a specific system role and a prompt
that represents a user request, ChatGPT uses these inputs to understand the context and generate a
response that aligns with the given role:

• System role definition: By defining ChatGPT’s role as a professional cybersecurity red team
specialist and an expert in penetration testing and vulnerability scanning tools, you’re instructing
the model to answer from a perspective of deep technical understanding and expertise in this
field. This context helps in generating accurate and relevant command strings.

• Natural language prompt: The natural language prompt that simulates a user request allows
ChatGPT to understand the task at hand in a human-like manner. Instead of needing structured
data or specific keywords, ChatGPT can interpret the request as a human would and provide
a suitable response.

• Command generation: With the role and the prompt, ChatGPT generates the Linux command
necessary to complete the request. The command is based on the specific details of the user
input and the expertise of the assigned role. This is where the AI leverages its knowledge of
cybersecurity and language understanding to construct the necessary command string.

• One-line command: The specification of providing a one-line command, including all necessary
operators and pipes, compels ChatGPT to generate a command that’s ready to be pasted into
a command line for immediate execution. This removes the need for the user to manually
combine or modify the command, saving time and potential errors.

• Simplicity and clarity: By asking for the simplest form of the command and without any
further explanation, the output is kept clear and concise, which is particularly helpful for those
learning or in need of a quick reference.

In summary, the GPT-assisted vulnerability scanning recipe harnesses the power of NLP and ML
algorithms to generate precise, ready-to-run commands for vulnerability scanning. By using the defined
system role and prompt, users can streamline the process of crafting commands for vulnerability
assessments, save time, and improve accuracy.

There’s more…

The flexibility and capabilities of this GPT-assisted process extend beyond the example given. First
is the versatility of the prompt. It’s actually designed to accommodate virtually any request for any
Linux command across any domain or task. This is a significant advantage as it enables you to leverage
ChatGPT’s capabilities across a wide range of scenarios. By assigning the role appropriately, such as
"You are a Linux system administrator", and substituting your specific request in

Analyzing Vulnerability Assessment Reports using LangChain 69

place of {user_input}, you can guide the AI to generate accurate and context-specific command
strings for a plethora of Linux operations.

Beyond simply generating command strings, the potential of this recipe is amplified when combined
with the OpenAI API and Python. With the proper setup, not only can you generate the necessary
Linux commands but you can also automate the execution of these commands. Essentially, this could
turn ChatGPT into an active participant in your command-line operations, potentially saving you
significant time and effort. This level of automation represents a substantial step forward in interacting
with AI models, turning them into active assistants rather than passive information generators.

In upcoming recipes in this book, we’ll delve deeper into command automation. This is just the
beginning of the possibilities opened up by the integration of AI with your operating system tasks.

Analyzing Vulnerability Assessment Reports using
LangChain
As powerful as ChatGPT and the OpenAI API are, they currently have a significant limitation—the
token window. This window determines how many characters can be exchanged in a complete message
between the user and ChatGPT. Once the token count exceeds this limitation, ChatGPT may lose
track of the original context, making the analysis of large bodies of text or documents challenging.

Enter LangChain—a framework designed to navigate around this very hurdle. LangChain allows us
to embed and vectorize large groups of text.

Important note
Embedding refers to the process of transforming text into numerical vectors that an ML model
can understand and process. Vectorizing, on the other hand, is a technique to encode non-
numeric features as numbers. By converting large bodies of text into vectors, we can enable
ChatGPT to access and analyze vast amounts of information, effectively turning the text into a
knowledgebase that the model can refer to, even if it hasn’t been trained on this data previously.

In this recipe, we will leverage the power of LangChain, Python, the OpenAI API, and Streamlit
(a framework for quickly and easily creating web applications) to analyze voluminous documents
such as vulnerability assessment reports, threat reports, standards, and more. With a simple UI for
uploading files and crafting prompts, the task of analyzing these documents will be simplified to the
point of asking ChatGPT straightforward natural language queries.

Vulnerability Assessment70

Getting ready

Before we start with the recipe, ensure that you have an OpenAI account set up and have obtained
your API key. If you haven’t done this yet, please revisit Chapter 1 for the steps. Apart from this, you’ll
also need the following:

1. Python libraries: Ensure that you have the necessary Python libraries installed in your environment.
You’ll specifically need libraries such as python-docx, langchain, streamlit, and
openai. You can install these using the pip install command as follows:

 pip install python-docx langchain streamlit openai

2. Vulnerability assessment report (or a large document of your choice to be analyzed): Prepare
a vulnerability assessment report or any other substantial document that you aim to analyze.
The document can be in any format as long as you can convert it into a PDF.

3. Access to LangChain documentation: Throughout this recipe, we will be utilizing LangChain,
a relatively new framework. Although we will walk you through the process, having the
LangChain documentation handy might be beneficial. You can access it at https://docs.
langchain.com/docs/.

4. Streamlit: We will be using Streamlit, a fast and straightforward way to create web apps for
Python scripts. While we will guide you through the basics in this recipe, you may want to
explore it on your own. You can learn more about Streamlit at https://streamlit.io/.

How to do it…

In this recipe, we’ll walk you through the steps needed to create a document analyzer using LangChain,
Streamlit, OpenAI, and Python. The application will allow you to upload a PDF document, ask
questions about it in natural language, and get responses generated by the language model based on
the document’s content:

1. Set up the environment and import required modules: Start by importing all the required
modules. You’ll need dotenv to load environment variables, streamlit to create the web
interface, PyPDF2 to read the PDF files, and various components from langchain to handle
the language model and text processing:

import streamlit as st
from PyPDF2 import PdfReader
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import FAISS
from langchain.chains.question_answering import load_qa_chain
from langchain.llms import OpenAI
from langchain.callbacks import get_openai_callback

https://docs.langchain.com/docs/
https://docs.langchain.com/docs/
https://streamlit.io/

Analyzing Vulnerability Assessment Reports using LangChain 71

2. Initialize the Streamlit application: Set up the Streamlit page and header. This will create a
web application with the title "Document Analyzer" and a "What would you like
to know about this document?" header text prompt:

def main():
 st.set_page_config(page_title="Document Analyzer")
 st.header("What would you like to know about this
document?")

3. Upload the PDF: Add a file uploader to the Streamlit application to allow users to upload a
PDF document:

pdf = st.file_uploader("Upload your PDF", type="pdf")

4. Extract the text from the PDF: If a PDF is uploaded, read the PDF and extract the text from it:

if pdf is not None:
 pdf_reader = PdfReader(pdf)
 text = ""
 for page in pdf_reader.pages:
 text += page.extract_text()

5. Split the text into chunks: Break down the extracted text into manageable chunks that can be
processed by the language model:

text_splitter = CharacterTextSplitter(
 separator="\n",
 chunk_size=1000,
 chunk_overlap=200,
 length_function=len
)
chunks = text_splitter.split_text(text)
if not chunks:
 st.write("No text chunks were extracted from the PDF.")
 return

6. Create embeddings: Use OpenAIEmbeddings to create vector representations of the chunks:

embeddings = OpenAIEmbeddings()
if not embeddings:
 st.write("No embeddings found.")
 return
knowledge_base = FAISS.from_texts(chunks, embeddings)

Vulnerability Assessment72

7. Ask a question about the PDF: Show a text input field in the Streamlit application for the user
to ask a question about the uploaded PDF:

user_question = st.text_input("Ask a question about your PDF:")

8. Generate a response: If the user asks a question, find the chunks that are semantically similar
to the question, feed those chunks to the language model, and generate a response:

if user_question:
 docs = knowledge_base.similarity_search(user_question)

 llm = OpenAI()
 chain = load_qa_chain(llm, chain_type="stuff")
 with get_openai_callback()

9. Run the script with Streamlit. Using a command-line terminal, run the following command
from the same directory as the script:

streamlit run app.py

10. Open browse to localhost using a web browser.

Here is how the completed script should look:

import streamlit as st
from PyPDF2 import PdfReader
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import FAISS
from langchain.chains.question_answering import load_qa_chain
from langchain.llms import OpenAI
from langchain.callbacks import get_openai_callback

def main():
 st.set_page_config(page_title="Ask your PDF")
 st.header("Ask your PDF")

 # upload file
 pdf = st.file_uploader("Upload your PDF", type="pdf")

 # extract the text
 if pdf is not None:
 pdf_reader = PdfReader(pdf)
 text = ""
 for page in pdf_reader.pages:

Analyzing Vulnerability Assessment Reports using LangChain 73

 text += page.extract_text()

 # split into chunks
 text_splitter = CharacterTextSplitter(
 separator="\n",
 chunk_size=1000,
 chunk_overlap=200,
 length_function=len
)
 chunks = text_splitter.split_text(text)

 if not chunks:
 st.write("No text chunks were extracted from the PDF.")
 return

 # create embeddings
 embeddings = OpenAIEmbeddings()

 if not embeddings:
 st.write("No embeddings found.")
 return

 knowledge_base = FAISS.from_texts(chunks, embeddings)

 # show user input
 user_question = st.text_input("Ask a question about your PDF:")
 if user_question:
 docs = knowledge_base.similarity_search(user_question)

 llm = OpenAI()
 chain = load_qa_chain(llm, chain_type="stuff")
 with get_openai_callback() as cb:
 response = chain.run(input_documents=docs, question=user_
question)
 print(cb)

 st.write(response)

if __name__ == '__main__':
 main()

Vulnerability Assessment74

The script essentially automates the analysis of large documents, such as vulnerability assessment
reports, using the LangChain framework, Python, and OpenAI. It leverages Streamlit to create an
intuitive web interface where users can upload a PDF file for analysis.

The uploaded document undergoes a series of operations: it’s read and its text is extracted, then split
into manageable chunks. These chunks are transformed into vector representations (embeddings)
using OpenAI Embeddings, enabling the language model to interpret and process the text semantically.
These embeddings are stored in a database (Facebook AI Similarity Search, or FAISS for short),
facilitating efficient similarity searches.

The script then provides an interface for users to ask questions about the uploaded document. Upon
receiving a question, it identifies the most semantically relevant chunks of text to the question from
the database. These chunks, along with the user’s question, are processed by a question-answering
chain in LangChain, generating a response that is displayed back to the user.

In essence, this script transforms large, unstructured documents into an interactive knowledge base,
enabling users to pose questions and receive AI-generated responses based on the document’s content.

How it works…

1. First, the necessary modules are imported. These include the dotenv module for loading
environment variables, streamlit for creating the application’s UI, PyPDF2 for handling
PDF documents, and various modules from langchain for handling language model tasks.

2. The Streamlit application’s page configuration is set and a file uploader is created that accepts
PDF files. Once a PDF file is uploaded, the application uses PyPDF2 to read the text of the PDF.

3. The text from the PDF is then split into smaller chunks using LangChain’s CharacterTextSplitter.
This ensures that the text can be processed within the language model’s maximum token limit.
The chunking parameters—chunk size, overlap, and separator, used to split the
text—are specified.

4. Next, OpenAI Embeddings from LangChain are used to convert the chunks of text into
vector representations. This involves encoding the semantic information of the text into a
mathematical form that can be processed by the language model. These embeddings are stored
in a FAISS database, which allows efficient similarity searching for high-dimensional vectors.

5. The application then takes a user input in the form of a question about the PDF. It uses the
FAISS database to find the chunks of text that are semantically most similar to the question.
These chunks are likely to contain the information needed to answer the question.

Analyzing Vulnerability Assessment Reports using LangChain 75

6. The chosen chunks of text and the user’s question are fed into a question-answering chain from
LangChain. This chain is loaded with an instance of the OpenAI language model. The chain
processes the input documents and the question, using the language model to generate a response.

7. The OpenAI callback is used to capture metadata about the API usage, such as the number of
tokens used in the request.

8. Finally, the response from the chain is displayed in the Streamlit application.

This process allows for semantic querying of large documents that exceed the language model’s token
limit. By splitting the document into smaller chunks and using semantic similarity to find the chunks
most relevant to a user’s question, the application can provide useful answers even when the entire
document can’t be processed at once by the language model. This demonstrates one way to overcome
the token limit challenge when working with large documents and language models.

There’s more…

LangChain is not just a tool for overcoming the token window limitation; it’s a comprehensive
framework for creating applications that interact intelligently with language models. These
applications can connect a language model to other data sources and allow the model to interact
with its environment—essentially providing the model with a degree of agency. LangChain offers
modular abstractions for the components necessary to work with language models, along with a
collection of implementations for these abstractions. Designed for ease of use, these components
can be employed whether you’re using the full LangChain framework or not.

What’s more, LangChain introduces the concept of chains—these are combinations of the aforementioned
components, assembled in specific ways to accomplish particular use cases. Chains offer a high-level
interface for users to get started with a specific use case easily and are designed to be customizable
to cater to a variety of tasks.

In later recipes, we’ll demonstrate how to use these features of LangChain to analyze even larger and
more complex documents, such as .csv files and spreadsheets.

3
Code Analysis and

Secure Development

This chapter delves deep into the intricate process of software development, focusing on a key concern
in today’s digital world: ensuring the security of your software system. With the increasing complexity of
technology and ever-evolving threats, it has become crucial to adopt a Secure Software Development
Lifecycle (SSDLC) that integrates security considerations at each stage. Here, we illustrate how the
use of AI, specifically the ChatGPT model, can help streamline this process.

You will learn how to apply ChatGPT in planning and outlining a comprehensive SSDLC, taking
into account each phase of development from concept creation to maintenance. Emphasizing the
importance of security in every step, we show how ChatGPT can be utilized to craft detailed security
requirement documents and secure coding guidelines. The chapter elucidates the generation of these
deliverables, demonstrating how they can be collated and shared with your development team and
stakeholders to promote a shared understanding of the project’s security expectations.

The chapter further explores the potential of ChatGPT in the more technical aspects of the SSDLC.
We will examine how ChatGPT can help identify potential security vulnerabilities in your code and
even generate custom scripts for security testing. This practical application of AI illustrates a blend
of proactive and reactive measures to bolster your software’s security.

Lastly, we venture into the final stages of the SSDLC—deployment and maintenance. With the
importance of clear, concise documentation often overlooked, we illustrate how ChatGPT can be
used to generate comprehensive comments and thorough documentation for your code. By the end
of this chapter, you will have gained insights into making your software more comprehensible and
maintainable for other developers and users, thereby improving the overall lifecycle of your software.

Throughout this chapter, the core theme is leveraging generative AI to create secure, efficient, and
maintainable software systems. It showcases the synergy of human expertise and AI, offering you the tools
and techniques to harness ChatGPT and the OpenAI API effectively for secure software development.

Code Analysis and Secure Development78

In this chapter, we will cover the following recipes:

• Secure Software Development Lifecycle (SSDLC Planning (Planning Phase)

• Security Requirement Generation (Requirements Phase)

• Generating Secure Coding Guidelines (Design Phase)

• Analyzing Code for Security Flaws and Generating Custom Security Testing Scripts (Testing Phase)

• Generating Code Comments and Documentation (Deployment/Maintenance Phase)

Technical requirements
For this chapter, you will need a web browser and a stable internet connection to access the ChatGPT
platform and set up your account. You will also need to have your OpenAI account set up and
have obtained your API key. If not, revisit Chapter 1 for details. Basic familiarity with the Python
programming language and working with the command line is necessary, as you’ll be using Python
3.x, which needs to be installed on your system to work with the OpenAI GPT API and create Python
scripts. A code editor will also be essential for writing and editing Python code and prompt files, as
you work through the recipes in this chapter.

The code files for this chapter can be found here: https://github.com/PacktPublishing/
ChatGPT-for-Cybersecurity-Cookbook.

Secure Software Development Lifecycle (SSDLC) Planning
(Planning Phase)
In this recipe, you’ll use ChatGPT to assist you in crafting an outline for the SSDLC. This recipe is an
essential tool for software developers, project managers, security professionals, or anyone involved
in creating secure software systems.

Using the foundational skills of ChatGPT introduced in Chapter 1 and expanded upon in Chapter 2,
this recipe guides you through the process of formulating a comprehensive SSDLC plan. This plan
includes various stages such as initial concept development, requirements gathering, system design,
coding, testing, deployment, and maintenance. Throughout the process, we’ll illustrate how ChatGPT
can be used to detail each phase with a keen emphasis on security considerations.

You’ll learn how to construct prompts effectively to obtain high-quality, informative outputs about
the SSDLC. The techniques demonstrated in the previous chapter, such as enhancing output with
templates and formatting output as a table, will be useful here, enabling you to design prompts that
generate the desired output format for each SSDLC phase.

This recipe involves using ChatGPT for generating outputs, but you’ll also be able to manually compile
these outputs into a well-structured, easily understandable SSDLC plan document, which can then

https://github.com/PacktPublishing/ChatGPT-for-Cybersecurity-Cookbook
https://github.com/PacktPublishing/ChatGPT-for-Cybersecurity-Cookbook

Secure Software Development Lifecycle (SSDLC) Planning (Planning Phase) 79

be shared with your development team and other stakeholders, facilitating a thorough understanding
of the SSDLC planning process.

Getting ready

Before starting this recipe, you should have a good understanding of the use of ChatGPT for prompt
generation, as explained in Chapter 1. No additional setup is required for this recipe.

With these prerequisites in place, you’re now prepared to start planning an Secure Development
Lifecycle with the aid of ChatGPT.

How to do it…

Let’s begin this recipe by setting up the system role for ChatGPT and then follow the subsequent
prompts to create an SSDLC plan for a specific project. For our example, we will use the development
of a secure online banking system, but you can change the system type to one that suits your needs:

1. Begin by logging in to your ChatGPT account and navigating to the ChatGPT web UI.

2. Start a new conversation with ChatGPT by clicking the New chat button.

3. Enter the following prompt to establish a system role:

You are an experienced software development manager with
expertise in secure software development and the Secure Software
Development Lifecycle (SSDLC).

4. Next, we’ll create an overview of the SSDLC with the following prompt:

Provide a detailed overview of the Secure Software Development
Lifecycle (SSDLC), highlighting the main phases and their
significance.

5. Initiate the planning by discussing the specific project’s initial concept and feasibility. In this
example, we are using a banking system (again, change the type of system in the prompt to
suit your needs):

Considering a project for developing a secure online banking
system, detail the key considerations for the initial concept
and feasibility phase.

6. Next, we need to create the requirements-gathering process for the specific project with
this prompt:

Outline a checklist for gathering and analyzing requirements for
the online banking system project during the requirements phase
of the SSDLC.

Code Analysis and Secure Development80

7. Learn about the design considerations and steps for the online banking system:

Highlight important considerations when designing a secure
online banking system during the system design phase of the
SSDLC.

8. Now we can delve into the secure coding practices relevant to our system:

Discuss secure coding best practices to follow when developing
an online banking system during the development phase of the
SSDLC.

9. Understanding the key tests that should be conducted is a critical part of the development. Use
this prompt to create a list of tests:

Enumerate the key types of testing that should be conducted on
an online banking system during the testing phase of the SSDLC.

10. Get guidance on best practices when deploying the online banking system:

List some best practices for deploying an online banking system
during the deployment phase of the SSDLC.

11. Wrap up by understanding the activities during the maintenance phase of the online
banking system:

Describe the main activities during the maintenance phase of an
online banking system and how they can be managed effectively.

Each prompt will result in an output from ChatGPT that assists in developing a specific SSDLC plan
for a secure system.

How it works…

Throughout this recipe, the prompts are crafted to get the best possible output from ChatGPT. The
language is clear and specific, which helps in generating detailed and focused responses. Moreover,
by defining a specific project, we guide ChatGPT to provide insights that are concrete and applicable.
As a result, ChatGPT provides a thorough guide to planning an SSDLC. Here’s a breakdown of how
each of the steps work (specifically steps 3-11):

1. System role: By defining the role of ChatGPT as an experienced software development
manager, with expertise in secure software development and SSDLC, we are setting the context
for our AI partner. This helps ChatGPT generate responses that are more relevant, precise,
and knowledgeable.

2. Understanding the SSDLC: This prompt helps readers to gain a comprehensive understanding
of the SSDLC. By asking ChatGPT to detail the main phases and their significance, we get a
high-level overview of the SSDLC that sets the stage for the subsequent steps.

Secure Software Development Lifecycle (SSDLC) Planning (Planning Phase) 81

3. Initial concept/feasibility: In this step, we have ChatGPT delve into the specific project’s initial
concept and feasibility. This helps identify the key considerations at this initial phase, which
are critical in setting the direction for the rest of the SSDLC.

4. Requirements gathering: The requirements phase of the SSDLC is crucial for the success of
any project. By having ChatGPT outline a requirements gathering checklist for our specific
project, we are ensuring that all the necessary aspects are covered, which will in turn guide the
design and development process.

5. System design: Here, ChatGPT outlines the important considerations for the system design
phase of the SSDLC, focusing on the specifics of our project. This provides guidance on the
important elements that need to be considered during the design of the online banking system.

6. Coding/development: By asking ChatGPT to discuss secure coding best practices during the
development phase, we get a detailed guide on what practices to adhere to, in order to create
a secure code base for the online banking system.

7. Testing: In this step, we have ChatGPT enumerate the key types of testing that should be
conducted during the testing phase. This ensures that the developed online banking system
undergoes thorough testing before it is released.

8. Deployment: Deploying a system securely is as important as developing it securely. In this
step, ChatGPT lists best practices for the deployment phase, ensuring that the transition from
a development to a live environment is smooth and secure.

9. Maintenance: Finally, we have ChatGPT describe the main activities during the maintenance
phase. This provides insights into how the system should be managed post-deployment, to
ensure its continual security and performance.

There’s more…

This recipe provides you with a detailed guide for planning an SSDLC for a development project (using
an online banking system as an example), but that’s just the beginning. There are a couple more things
you can do to customize this recipe and deepen your understanding:

1. Customize for different projects: The principles outlined in this recipe can be applied to a
wide variety of projects beyond online banking systems. You can use the prompts as a base
and modify the project specifics to suit different types of software development projects. Just
ensure that you provide enough context about the project so that ChatGPT can provide relevant
and specific responses.

Hint
You can use the output formatting techniques learned in Chapter 2 to specify the output
formatting you prefer for transferring to formal documentation.

Code Analysis and Secure Development82

2. Detailed exploration of each SSDLC phase: We’ve covered each phase of the SSDLC at a
high level in this recipe. However, you could go deeper into each phase by asking ChatGPT
more specific questions. For example, in the system design phase, you could ask ChatGPT to
explain different design methodologies or go into more detail on best practices for designing
user interfaces or databases.

Remember, the power of ChatGPT lies in its ability to provide detailed, informative responses based
on the prompts you give it. So, don’t be afraid to experiment with different prompts and questions to
extract the most value from them.

Security Requirement Generation (Requirements Phase)
In this recipe, you’ll use ChatGPT to assist you in creating a comprehensive set of security requirements
for your development project. This is an invaluable guide for software developers, project managers,
security professionals, or anyone involved in the creation of secure software systems.

Employing the foundational skills of ChatGPT introduced in Chapter 1 and expanded upon in
Chapter 2, this recipe will walk you through the process of generating a detailed list of security
requirements. These requirements will be tailored to your specific project and will follow best practices
in secure development.

You will learn how to devise effective prompts that elicit high-quality, informative outputs on various
security requirements. Techniques introduced in previous chapters, such as enhancing output with
templates and formatting output as a table, will prove valuable here, as they will enable you to design
prompts that generate the desired output format for each security requirement.

This recipe will not only demonstrate how ChatGPT can be used to generate outputs, but just like
the previous recipe, you’ll be able to collate these outputs into a comprehensive security requirement
document, which can then be shared with your development team and stakeholders, ensuring a clear
understanding of the security expectations for the project.

Getting ready

Before starting this recipe, make sure you have a clear understanding of the use of ChatGPT for prompt
generation as explained in Chapter 1. No additional setup is required for this recipe.

With these prerequisites in place, you’re now prepared to start generating security requirements for
your development project with the help of ChatGPT.

How to do it…

Let’s begin this recipe by setting up the system role for ChatGPT and then following the subsequent
prompts to create a comprehensive set of security requirements for a specific project.

Security Requirement Generation (Requirements Phase) 83

For our example, we will use the development of a secure medical record management system:

1. Begin by logging in to your ChatGPT account and navigating to the ChatGPT web UI.

2. Start a new conversation with ChatGPT by clicking the New chat button.

3. Enter the following prompt to establish a system role:

You are an experienced cybersecurity consultant specializing in
secure software development.

4. Now, we need to inform ChatGPT about the project for which we’re generating
security requirements:

Describe a project for developing a secure medical record
management system. Include details about the type of software,
its purpose, intended users, and the environments in which it
will be deployed.

5. After we’ve informed ChatGPT about the project, we’ll ask it to identify potential security
threats and vulnerabilities:

Given the project description, list potential security threats
and vulnerabilities that should be considered.

6. Now that we’ve identified potential threats and vulnerabilities, we can generate security
requirements that directly address these concerns:

Based on the identified threats and vulnerabilities, generate
a list of security requirements that the software must meet to
mitigate these threats.

7. In addition to the project-specific security requirements, there are general security best practices
that apply to almost all software projects. We will use these to generate general security
requirements based on best practices:

Provide additional security requirements that follow general
best practices in secure software development, regardless of the
specific project details.

8. Lastly, we’ll prioritize these requirements based on their impact on the project:

Prioritize the generated security requirements based on their
impact on the security of the software and the consequences of
not meeting them.

By following these prompts, you will engage ChatGPT in meaningful dialog to develop a comprehensive
and prioritized list of security requirements for your specific project. Of course, you can replace the
secure medical record management system with the specifics of your own project.

Code Analysis and Secure Development84

How it works…

The prompts throughout this recipe are designed to be clear, specific, and detailed, guiding ChatGPT
to provide insightful, relevant, and comprehensive responses. The specificity of the project in the
prompts ensures that the outputs from ChatGPT are not only theoretically sound but are also practically
applicable. As such, this recipe provides an extensive guide to generating security requirements with
the aid of ChatGPT. Here’s a breakdown of how each of the steps works (specifically steps 3-8):

1. System role: By assigning the role of a cybersecurity consultant to ChatGPT, we are providing
it with context. This context helps ChatGPT generate responses that are consistent with the
expertise of a security professional.

2. Project description: In this step, ChatGPT is given a description of the software project. This
is important because the security requirements of a software project are largely determined
by the specifics of the project itself, such as its purpose, users, and deployment environments.

3. Identify threats and vulnerabilities: The prompts at this stage guide ChatGPT to identify the
possible security threats and vulnerabilities of the project. This is a crucial step in generating
security requirements, as these requirements will be designed to address the potential threats
and vulnerabilities.

4. Generate project-specific security requirements: Based on the identified threats and
vulnerabilities, ChatGPT generates a list of security requirements specific to the project.
These requirements will address the specific issues identified in the project description and
threat identification.

5. Generate general security requirements: In addition to the project-specific security requirements,
some general security principles apply to all software projects. By prompting ChatGPT to
provide these, we ensure that we’re not only addressing the specific threats identified but also
adhering to best practices in secure software development.

6. Prioritize security requirements: Finally, ChatGPT is asked to prioritize these requirements.
This is important, as resources are often limited and an understanding of which requirements
are most critical can guide the allocation of resources and effort.

There’s more…

This recipe equips you with a structured approach to generate security requirements for a specific
software project using ChatGPT. However, there are numerous avenues to expand and adapt this recipe:

• Customization for different projects: The strategy outlined in this recipe can be adapted to
a wide variety of projects apart from an online payment gateway. You can tailor the prompts
according to the specifics of different types of software development projects. Just make sure to
provide enough context about the project for ChatGPT to deliver precise and pertinent responses.

Generating Secure Coding Guidelines (Design Phase) 85

Hint
You can use the output formatting techniques learned in Chapter 2 to specify the output
formatting you prefer for transferring to formal documentation.

• Detailed analysis of identified threats: This recipe provides a high-level process of identifying
threats and generating security requirements. However, you can dive deeper into each identified
threat by prompting ChatGPT with more specific questions, such as the potential impacts of
the threat, mitigation strategies, or even exploring real-world instances of such threats.

• Refining security requirements: You can enhance the process of generating security requirements
by asking ChatGPT to detail each requirement further, considering factors such as risk levels,
cost of implementation, and potential trade-offs.

Remember, the power of ChatGPT lies in its capacity to deliver detailed and informative responses
based on the prompts it receives. Don’t hesitate to experiment with various prompts and questions to
maximize the value of ChatGPT in your software development projects.

Generating Secure Coding Guidelines (Design Phase)
In this recipe, you’ll harness the power of ChatGPT to create robust secure coding guidelines that are
designed to meet your project’s specific security requirements. This is an invaluable guide for software
developers, project managers, security professionals, or anyone involved in the development of secure
software systems.

Leveraging the foundational knowledge of the use of ChatGPT introduced in Chapter 1 and expanded
upon in Chapter 2, this recipe takes you through the process of generating detailed secure coding
guidelines. These guidelines will be tailored to your particular project and will encapsulate best practices
in secure development, such as secure session management, error handling, and input validation.

Throughout this recipe, you’ll learn to formulate effective prompts that elicit high-quality, informative
outputs related to secure coding practices. Techniques such as enhancing output with templates and
formatting output as a table, which were introduced in previous chapters, will come in handy here.
They will allow you to design prompts that produce the desired output format for each aspect of
secure coding.

Like the previous two recipes, the output from this recipe can be compiled into a comprehensive
secure coding guidelines document.

Getting ready

Before diving into this recipe, ensure that you have a solid grasp of using ChatGPT for prompt
generation, as explained in Chapter 1. No additional setup is required for this recipe.

With these prerequisites in place, you’re now ready to embark on the journey of generating secure
coding guidelines for your development project, with the assistance of ChatGPT.

Code Analysis and Secure Development86

How to do it…

In this recipe, we’ll set the system role for ChatGPT and subsequently delve into a series of prompts to
create a comprehensive set of secure coding guidelines tailored to a specific project. For our practical
application, let’s consider we’re embarking on the development of a secure healthcare application,
dealing with sensitive patient data:

1. Begin by logging in to your ChatGPT account and navigating to the ChatGPT web UI.

2. Start a new conversation with ChatGPT by clicking the New chat button.

3. Enter the following prompt to establish a system role:

You are a veteran software engineer with extensive experience in
secure coding practices, particularly in the healthcare sector.

4. Next, we’ll gain a general understanding of secure coding specific to our project:

Provide a general overview of secure coding and why it's
important in healthcare software development.

5. Generate language-specific secure coding guidelines. For our healthcare application, let’s
assume it is developed in Python:

What are the key secure coding practices to follow when
developing healthcare software in Python?

6. Next, request guidelines for secure input validation, which is crucial in protecting against
invalid or harmful data:

What guidelines should be followed for secure input validation
when developing a healthcare application?

7. Handling errors and exceptions properly can prevent many security vulnerabilities. Let’s request
information regarding secure error and exception handling specific to our project:

What are the best practices for secure error and exception
handling in healthcare software development?

8. Session management is especially important for applications that handle sensitive data such
as patient health records. Let’s ask about secure session management best practices specific
to our project:

What are the best practices for secure session management in
healthcare web application development?

9. Ask about secure coding practices in handling database operations, especially given the
sensitive nature of healthcare data:

What are the best practices to ensure secure coding when a
healthcare application interacts with databases?

Generating Secure Coding Guidelines (Design Phase) 87

10. With healthcare applications often needing to communicate with other systems, network
communication security is vital. Let’s gain an insight into secure coding practices for network
communication specific to our application:

What secure coding practices should be followed when managing
network communications in healthcare software development?

11. Lastly, ask for guidelines on reviewing and testing code for security, crucial in identifying
any security gaps:

What approach should be taken to review code for security issues
in a healthcare application, and what types of tests should be
conducted to ensure security?

Following these prompts with ChatGPT will provide a comprehensive guide for secure coding practices
in the context of healthcare software development. As always, remember to adjust these prompts to
fit the specifics of your own project or sector.

How it works…

Throughout this recipe, the prompts are carefully constructed to elicit detailed, accurate, and
comprehensive secure coding guidelines from ChatGPT. The responses obtained will be specific to
the healthcare software development context, providing developers with an invaluable resource for
creating secure healthcare applications. This demonstrates the capability of ChatGPT to assist in
generating secure coding guidelines based on industry-specific considerations. Here’s a breakdown
of how each of the steps works (specifically steps 3-11).

1. System role: By defining the role of ChatGPT as a seasoned software engineer, with a specialization
in secure coding practices, particularly in the healthcare sector, we set up the correct context
for generating focused, informed, and industry-specific advice.

2. Understanding secure coding: This step initiates the conversation by obtaining a high-level
overview of secure coding practices. The insights provided by ChatGPT here lay the groundwork
for understanding the importance of secure coding, especially in a sensitive domain like healthcare.

3. Language-specific secure coding: This prompt invites language-specific secure coding guidelines.
As secure coding practices can vary between programming languages, this is essential for
developing secure healthcare software in Python.

4. Input validation: By requesting guidelines on secure input validation, we ensure that the
generated coding guidelines will cover a key aspect of secure coding, that is, protecting against
harmful or malformed input data.

5. Error and exception handling: Proper error and exception handling is a cornerstone of secure
coding. This prompt seeks to draw out the best practices for doing so, aiding in the creation of
robust and secure healthcare software.

Code Analysis and Secure Development88

6. Secure session management: This prompt aims to gather information on secure session
management, crucial for applications that handle sensitive data, such as patient records in a
healthcare application.

7. Secure coding in database operations: Secure interaction with databases is a critical aspect
of secure coding, particularly in healthcare where data sensitivity is paramount. This prompt
targets this area to ensure the produced coding guidelines are comprehensive.

8. Secure coding in network communications: By asking about secure coding practices for
network communications, the guidelines also cover the safe handling of data during transit, a
common area of vulnerability in healthcare software.

9. Code review and testing for security: The final prompt ensures that the secure coding guidelines
include the process of reviewing and testing the code for security vulnerabilities, an integral
part of creating secure software.

There’s more…

This recipe provides a useful framework for creating secure coding guidelines specifically for a healthcare
software project using Python (which you can customize for any other specific application or project).
However, the adaptability of ChatGPT allows for even more customization and deeper understanding:

• Customize for different projects or languages: The principles and structure outlined in this
recipe can be tailored to a wide array of projects and programming languages. For instance,
if you’re working on an e-commerce platform using JavaScript, you can adjust the context in
the prompts to fit that scenario.

• Detailed exploration of each secure coding topic: This recipe provides a broad view of secure
coding guidelines. To gain a deeper understanding of any given topic, you could ask ChatGPT
more specific questions. For example, for secure input validation, you could inquire about
best practices for validating different types of input data, such as emails, URLs, or text fields.

Remember, the power of ChatGPT lies not just in its ability to generate detailed and insightful
responses, but also in its flexibility. You’re encouraged to experiment with different prompts, contexts,
and questions to extract the maximum value from this generative AI tool.

Analyzing Code for Security Flaws and Generating Custom
Security Testing Scripts (Testing Phase)
In this recipe, you’ll use ChatGPT to identify potential security vulnerabilities in your code and
generate custom scripts for security testing. This recipe is an invaluable tool for software developers,
QA engineers, security engineers, and anyone involved in the process of creating and maintaining
secure software systems.

Analyzing Code for Security Flaws and Generating Custom Security Testing Scripts (Testing Phase) 89

Using the foundational knowledge of ChatGPT and the OpenAI API from previous chapters, this
recipe guides you through the process of conducting a preliminary security review of your code
and developing targeted security tests. ChatGPT can assist by scrutinizing provided code snippets,
identifying potential security flaws, and then helping you create custom testing scripts based on these
potential vulnerabilities.

You’ll learn to formulate effective prompts that elicit high-quality, insightful responses about potential
security issues in your code. The techniques from previous chapters, such as refining output with
templates and presenting output in a specific format, will prove useful, allowing you to design prompts
that generate the desired output for both code analysis and test script creation.

Furthermore, you’ll discover how to use the OpenAI API and Python to facilitate the process of
reviewing your code and generating testing scripts. This approach could lead to a more efficient,
comprehensive security testing process that can be shared with your development and quality
assurance teams.

Getting ready

Before diving into this recipe, ensure that your OpenAI account is set up and you have access to your
API key. If you haven’t set this up yet or need a refresher, you can refer back to previous chapters.

In addition, you need to have certain Python libraries installed in your development environment.
These libraries are essential to successfully run the scripts in this recipe. Here are the libraries and
their installation commands:

1. openai: This is the official OpenAI API client library, which we will use to interact with the
OpenAI API. Install it using the pip install openai command.

2. os: This is a built-in Python library, so no installation is required. We’ll use it to interact with
the operating system, specifically to fetch the OpenAI API key from your environment variables.

3. ast: This is another built-in Python library. We’ll use it to parse our Python source code into
an abstract syntax tree, which will allow us to better understand the structure of the code.

4. NodeVisitor: This is a helper class from the ast library that we’ll use to visit the nodes of
our abstract syntax tree.

5. threading: This is a built-in Python library for multi-threading. We’ll use it to create a new
thread that displays the elapsed time while we’re communicating with the OpenAI API.

6. time: This is also a built-in Python library. We’ll use it to pause our elapsed time thread for
one second in each iteration of its loop.

With these prerequisites fulfilled, you are ready to proceed with generating meaningful comments
for your Python scripts and creating comprehensive documentation with the assistance of ChatGPT
and the OpenAI API.

Code Analysis and Secure Development90

How to do it…

In this section, we’ll leverage ChatGPT’s expertise to identify potential security flaws in simple code
snippets. These examples cover common security vulnerabilities, but remember that in a real-world
scenario, the code you’re analyzing might be much more complex. Here are the steps:

Important note
These are simplified code snippets just for educational purposes. When you’re applying this
approach to your own code, remember to adapt the prompt to suit the complexity and language
of your code. If your code snippet is too large, you may need to break it down into smaller
sections to fit within the input limit of ChatGPT.

1. Begin by logging in to your ChatGPT account and navigating to the ChatGPT web UI.

2. Start a new conversation with ChatGPT by clicking the New chat button.

3. Enter the following prompt to establish a system role:

You are a seasoned security engineer with extensive experience
in reviewing code for potential security vulnerabilities.

4. Reviewing a code snippet for SQL injection vulnerability: Direct ChatGPT to analyze a basic
PHP code snippet that interacts with a database and ask it to identify any potential security flaws:

Please review the following PHP code snippet that interacts with
a database. Identify any potential security flaws and suggest
fixes:

$username = $_POST['username'];
$password = $_POST['password'];

$sql = "SELECT * FROM users WHERE username = '$username' AND
password = '$password'";

$result = mysqli_query($conn, $sql);

5. Reviewing a code snippet for Cross-Site Scripting (XSS) vulnerability: Now, ask ChatGPT
to analyze a basic JavaScript code snippet for potential XSS vulnerabilities:

Please review the following JavaScript code snippet for a web
application. Identify any potential security flaws and suggest
fixes:

let userContent = document.location.hash.substring(1);
document.write("<div>" + userContent + "</div>");

Analyzing Code for Security Flaws and Generating Custom Security Testing Scripts (Testing Phase) 91

6. Reviewing a code snippet for Insecure Direct Object References (IDOR) vulnerability:
Lastly, have ChatGPT analyze a Python code snippet to identify potential IDOR vulnerabilities:

Please review the following Python code snippet for a web
application. Identify any potential security flaws and suggest
fixes:

@app.route('/file', methods=['GET'])
def file():
 file_name = request.args.get('file_name')
 return send_from_directory(APP_ROOT, file_name)

In the There’s more... section of this recipe, we’ll explore how to use the OpenAI API to generate custom
scripts for security testing based on the potential security flaws identified by ChatGPT.

How it works…

Throughout the recipe, the prompts are designed to be clear and concise, eliciting detailed and
focused responses from ChatGPT. Each step builds on the one before it, leveraging the AI’s analytical
capabilities to not only identify potential flaws in code but also to suggest solutions and help generate
testing scripts. As a result, this recipe provides a comprehensive guide to analyzing code for security
flaws and creating custom security testing scripts with the help of ChatGPT. Here’s a breakdown of
how each of the steps works (specifically steps 3-6):

1. System role: The system role of ChatGPT is set as a veteran software engineer with experience
in secure coding practices. This lays the groundwork for the AI model, preparing it to provide
accurate and relevant analysis of code snippets for potential security flaws.

2. Code analysis for security flaws: We start by providing a sample code snippet to ChatGPT and
asking it to analyze it for potential security vulnerabilities. Here, ChatGPT reviews the code as
a seasoned software engineer would, checking for typical security issues such as SQL injection
vulnerabilities, weak password management, lack of input validation, and more. This enables
us to get an expert review of the code in a short amount of time.

3. Identifying potential flaws: After analyzing the code, ChatGPT provides a summary of the
potential security flaws it found in the code snippet. This includes the nature of the vulnerability,
its potential impact, and the part of the code where the flaw was identified. The specificity of
these details allows us to understand the vulnerabilities at a deeper level.

4. Suggesting fixes for identified flaws: Once the potential flaws are identified, ChatGPT then
proposes possible solutions to fix them. This is a crucial step in secure coding, as it not only
helps to improve the existing code but also educates on best practices that could prevent similar
issues in future code.

Code Analysis and Secure Development92

There’s more…

You can extend the power and flexibility of this recipe by using the OpenAI API with a Python script
to review your source code and generate a testing script. Here’s how you can do it:

1. Start by importing the necessary libraries:

import openai
from openai import OpenAI
import os
import ast
from ast import NodeVisitor
import threading
import time

Set up the OpenAI API in the same way as we did in the Setting the OpenAI API key as an
Environment Variable recipe in Chapter 1:

openai.api_key = os.getenv("OPENAI_API_KEY")

2. Define a Python Abstract Syntax Tree (AST) visitor to visit each node of the source code:

class CodeVisitor(NodeVisitor):
 ...

This class will visit each node of the Python source code. It is a subclass of the NodeVisitor
class from Python’s ast module.

3. Define a function to review the source code:

def review_code(source_code: str) -> str:
 ...
 return response['choices'][0]['message']['content'].strip()

This function takes a string of Python source code as input and sends it as part of a prompt
to the OpenAI API, asking it to identify potential security flaws and provide testing steps. It
returns the generated testing steps from the API response.

4. Define a function to convert the generated testing steps into a Python test script:

def generate_test_script(testing_steps: str, output_file: str):
 with open(output_file, 'w') as file:
 file.write(testing_steps)

This function takes the generated testing steps and an output filename, then saves the testing
steps into the output file as a Python test script.

Analyzing Code for Security Flaws and Generating Custom Security Testing Scripts (Testing Phase) 93

5. Load the source code from a file and run CodeVisitor on it:

Change the name of the file to match your source
with open('source_code.py', 'r') as file:
 source_code = file.read()
 visitor = CodeVisitor()
 visitor.visit(ast.parse(source_code))

Important note
Be mindful of the input length and token limit when generating content for each section. If
your section content or code is too large, you may need to break it down into smaller parts.

6. Use the OpenAI API to review the code and generate testing steps:

testing_steps = review_code(source_code)

7. Save the generated testing steps as a Python test script:

test_script_output_file = "test_script.py"
generate_test_script(testing_steps, test_script_output_file)

8. Display the elapsed time while waiting for the API call:

def display_elapsed_time():
 ...

This function shows the elapsed time in seconds while waiting for the API call to complete.

Here is how the completed script should look:

import openai
from openai import OpenAI
import os
import ast
from ast import NodeVisitor
import threading
import time

Set up the OpenAI API
openai.api_key = os.getenv("OPENAI_API_KEY")

class CodeVisitor(NodeVisitor):
 def __init__(self):
 self.function_defs = []
 def visit_FunctionDef(self, node):
 self.function_defs.append(node.name)

Code Analysis and Secure Development94

 self.generic_visit(node)

def review_code(source_code: str) -> str:
 messages = [
 {"role": "system", "content": "You are a seasoned security
engineer with extensive experience in reviewing code for potential
security vulnerabilities."},
 {"role": "user", "content": f"Please review the following
Python code snippet. Identify any potential security flaws and then
provide testing steps:\n\n{source_code}"}
]

 client = OpenAI()

 response = client.chat.completions.create(
 model="gpt-3.5-turbo",
 messages=messages,
 max_tokens=2048,
 n=1,
 stop=None,
 temperature=0.7,
)
 return response.choices[0].message.content.strip()

def generate_test_script(testing_steps: str, output_file: str):
 with open(output_file, 'w') as file:
 file.write(testing_steps)

def display_elapsed_time():
 start_time = time.time()
 while not api_call_completed:
 elapsed_time = time.time() - start_time
 print(f"\rCommunicating with the API - Elapsed time: {elapsed_
time:.2f} seconds", end="")
 time.sleep(1)

Load the source code
Change the name of the file to match your source
with open('source_code.py', 'r') as file:
 source_code = file.read()

visitor = CodeVisitor()
visitor.visit(ast.parse(source_code))

api_call_completed = False

Analyzing Code for Security Flaws and Generating Custom Security Testing Scripts (Testing Phase) 95

elapsed_time_thread = threading.Thread(target=display_elapsed_time)
elapsed_time_thread.start()

Handle exceptions during the API call
try:
 testing_steps = review_code(source_code)
 api_call_completed = True
 elapsed_time_thread.join()
except Exception as e:
 api_call_completed = True
 elapsed_time_thread.join()
 print(f"\nAn error occurred during the API call: {e}")
 exit()

Save the testing steps as a Python test script
test_script_output_file = "test_script.py"

Handle exceptions during the test script generation
try:
 generate_test_script(testing_steps, test_script_output_file)
 print("\nTest script generated successfully!")
except Exception as e:
 print(f"\nAn error occurred during the test script generation:
{e}")

This recipe demonstrates how the OpenAI API can be used within a Python script to automate the
process of identifying vulnerabilities in your code and generating testing scripts.

This script kicks off by importing the necessary modules, namely openai, os, and docx. After importing
the modules, the OpenAI API is set up using your API key obtained from the environment variables.

Following this, the structure of two types of documents—a design document and a user guide—is
defined. These structures are simply lists containing the titles of sections that will eventually constitute
the final documents.

The generate_section_content() function is defined next, which serves to create content
for each section of the documents. It uses ChatGPT, prompted by a statement tailored to generate
content for a specified section of the document, given some Python source code. It then returns the
response as a string.

The write_to_word_document() function follows, utilizing the Document class from the
python-docx library. This function adds a heading for each section title and a paragraph for the
content of that section to a specified document.

Code Analysis and Secure Development96

The source code to be analyzed is then loaded from a file named source_code.py with the help
of Python’s built-in open() function.

Now comes the creation of the design document. A new document instance is created, and a loop
is used to go over each section title defined in design_doc_structure. In each iteration, the
loop generates content for the section using the generate_section_content() function and
writes this content to the design document using the write_to_word_document() function.

The process is repeated for the user guide, iterating over the user_guide_structure instead.

Finally, the script saves the created documents with the save() method from the Document class.
As a result, you are presented with a design document and a user guide, both of which have been
generated by ChatGPT based on the source code provided.

Hint
You can swap out the gpt-3.5-turbo model with the GPT-4 model, if you are a ChatGPT
Plus subscriber, often with improved results. Just keep in mind that the GPT-4 model is a bit
more expensive than the gpt-3.5-turbo model. You can also improve accuracy and get a
more consistent output by lowering the temperature value.

This script will be a powerful tool to add to your arsenal for improving the security of your Python
code. By automating the review and testing process, you can ensure more consistent, thorough results,
save time, and increase the overall security of your projects.

Generating Code Comments and Documentation
(Deployment/Maintenance Phase)
In this recipe, we'll harness the power of ChatGPT to breathe life into our Python script by generating
comprehensive comments. As software developers, we recognize that commenting code enhances
its readability, clarifies the purpose and function of different code segments, and promotes easier
maintenance and debugging. Furthermore, comments serve as vital signposts guiding future developers
who may work on or use our code.

In the first part of this recipe, we'll prompt ChatGPT to provide comments for each section of our
Python script. To achieve this, we'll present ChatGPT with the role of a proficient software engineer
seasoned in crafting meaningful comments for Python code.

In the second part of this recipe, we’ll move beyond generating comments to creating in-depth
documentation. Here, we’ll see how ChatGPT can be harnessed to generate a design document
and a user guide based on the same Python script. These documents, encompassing a wide range of
information, from software architecture and function descriptions to installation and usage guides,
are invaluable in ensuring that our software is comprehensible and maintainable for other developers
and users.

Generating Code Comments and Documentation (Deployment/Maintenance Phase) 97

Getting ready

Before diving into this recipe, ensure that your OpenAI account is set up and you have access to your
API key. If you haven’t set this up yet or need a refresher, you can refer back to previous chapters.

In addition, you need to have certain Python libraries installed in your development environment.
These libraries are essential to successfully run the scripts in this recipe. Here are the libraries and
their installation commands:

1. openai: This is the official OpenAI API client library, which we will use to interact with the
OpenAI API. Install it using the command pip install openai.

2. docx: This is a Python library for creating Microsoft Word documents. Install it using the
command pip install docx.

With these prerequisites fulfilled, you are ready to generate meaningful comments for your Python
scripts and create comprehensive documentation with the assistance of ChatGPT and the OpenAI API.

How to do it…

In this section, we’ll use ChatGPT to generate comments for the provided Python script. Having
comments in your code helps improve its readability, aids in understanding the functionality and
purpose of different sections of code, and facilitates maintenance and debugging. Here are the steps:

Important note
Remember to adapt the prompts to suit the complexity and language of your code. If your
code snippet is too large, you may need to break it down into smaller sections to fit within the
input limit of ChatGPT.

1. Set Up Environment: Ensure you have the OpenAI Python package installed in your environment.
This is crucial for interacting with the OpenAI API.

import openai
from openai import OpenAI
import os
import re

2. Initialize OpenAI Client: Create an OpenAI client instance and set your API key. This key is
necessary for authenticating your requests to the OpenAI API.

client = OpenAI()
openai.api_key = os.getenv("OPENAI_API_KEY")

Code Analysis and Secure Development98

3. Read Source Code: Open and read the Python source code file you intend to review. Ensure
the file is in the same directory as your script or provide the correct path.

with open('source_code.py', 'r') as file:
 source_code = file.read()

4. Define Review Function: Create a function, review_code, that takes the source code as input
and constructs a request to the OpenAI API, asking it to add meaningful comments to the code.

def review_code(source_code: str) -> str:
 print("Reviewing the source code and adding comments.\n")
 messages = [
 {"role": "system", "content": "You are a seasoned
security engineer with extensive experience in reviewing code
for potential security vulnerabilities."},
 {"role": "user", "content": f"Please review the
following Python source code. Recreate it with helpful and
meaningful comments... Souce code:\n\n{source_code}"}
]
 response = client.chat.completions.create(
 model="gpt-3.5-turbo",
 messages=messages,
 max_tokens=2048,
 n=1,
 stop=None,
 temperature=0.7,
)
 return response.choices[0].message.content.strip()

5. Invoke Review Function: Call review_code with the read source code to get the reviewed
and commented code.

reviewed_code = review_code(source_code)

6. Output Reviewed Code: Write the reviewed code, with comments added, to a new file, ensuring
to clean up any formatting introduced by the API response.

with open('source_code_commented.py', 'w') as file:
 reviewed_code = re.sub(r'^```.*\n', '', reviewed_code) #
Cleanup
 reviewed_code = re.sub(r'```$', '', reviewed_code) #
Cleanup
 file.write(reviewed_code)

Generating Code Comments and Documentation (Deployment/Maintenance Phase) 99

7. Completion Message: Print a message to indicate the completion of the review process and
the creation of the commented code file.

print("The source code has been reviewed and the comments have
been added to the file source_code_commented.py")

Here's how the complete script should look.

import openai
from openai import OpenAI
import os
import re

client = OpenAI()
openai.api_key = os.getenv("OPENAI_API_KEY")

open a souce code file to provide a souce code file as the
source_code parameter
with open('source_code.py', 'r') as file:
 source_code = file.read()

def review_code(source_code: str) -> str:
 print(f"Reviewing the source code and adding comments.\n")
 messages = [
 {"role": "system", "content": "You are a seasoned
security engineer with extensive experience in reviewing code
for potential security vulnerabilities."},
 {"role": "user", "content": f"Please review the
following Python source code. Recreate it with helpful and
meaningful comments that will help others identify what the code
does. Be sure to also include comments for code/lines inside of
the functions, where the use/functionality might be more complex
Use the hashtag form of comments and not triple quotes. For
comments inside of a function place the comments at the end of
the corresponding line. For function comments, place them on the
line before the function. Souce code:\n\n{source_code}"}
]
 response = client.chat.completions.create(
 model="gpt-3.5-turbo",
 messages=messages,
 max_tokens=2048,
 n=1,
 stop=None,
 temperature=0.7,
)

Code Analysis and Secure Development100

 return response.choices[0].message.content.strip()

reviewed_code = review_code(source_code)

Output the reviewed code to a file called source_code_
commented.py
with open('source_code_commented.py', 'w') as file:
 # Remove the initial code block markdown from the response
 reviewed_code = re.sub(r'^```.*\n', '', reviewed_code)
 # Remove the final code block markdown from the response
 reviewed_code = re.sub(r'```$', '', reviewed_code)
 file.write(reviewed_code)

print("The source code has been reviewed and the comments have
been added to the file source_code_commented.py")

This script exemplifies a practical application of AI in automating the enhancement of source code
documentation. By leveraging the OpenAI API, it adds valuable comments to the code, making
it more understandable and easier to maintain, especially for teams and projects where thorough
documentation is essential.

How it works…

This script demonstrates how to leverage the OpenAI API to enhance a Python source code file with
meaningful comments, thereby improving code readability and maintainability. Each part of the script
plays a critical role in achieving this goal:

1. Library Imports and OpenAI Client Initialization: The script starts by importing necessary
Python libraries: openai for interacting with the OpenAI API, os for accessing environment
variables (like the API key), and re for regular expressions used in processing the AI's response.
An instance of the OpenAI client is created and authenticated using the API key stored in an
environment variable. This setup is crucial for making secure requests to the OpenAI service.

2. Reading the Source Code: The script reads the content of a Python source code file (source_
code.py). This file is expected to contain the code that needs comments but doesn't include
any comments initially. The script uses Python's built-in file handling to read the file's contents
into a string variable.

3. Reviewing the Code with the OpenAI API: The review_code function is where the core
functionality resides. It constructs a prompt that describes the task for the AI model, which
includes reviewing the provided source code and adding meaningful comments. The prompt
is sent to the OpenAI API using the chat.completions.create method, specifying the
model to use (gpt-3.5-turbo) and other parameters like max_tokens to control the
length of the generated output. The function returns the AI-generated content, which includes
the original source code with added comments.

Generating Code Comments and Documentation (Deployment/Maintenance Phase) 101

4. Writing the Reviewed Code to a New File: After receiving the commented code from the
OpenAI API, the script processes the response to remove any unnecessary formatting (like
code block markdown) that may have been included. The cleaned-up, commented code is then
written to a new file (source_code_commented.py). This step makes the enhanced code
available for further review or use.

There’s more…

In the How to do it... section, we leveraged ChatGPT to generate code comments. This is a valuable
step in ensuring that our software is maintainable and understandable by other developers. However,
we can take it a step further by using ChatGPT to generate more comprehensive documentation, such
as a design document and a user guide. Here are the steps to do this:

1. Set up the environment: Similar to the previous section, you’ll need to start by importing the
necessary modules and setting up the OpenAI API:

import openai
from openai import OpenAI
import os
from docx import Document

openai.api_key = os.getenv("OPENAI_API_KEY")

2. Define the structure of the design document and user guide: The structure of the design
document and user guide might look like this:

design_doc_structure = [
 "Introduction",
 "Software Architecture",
 "Function Descriptions",
 "Flow Diagrams"
]

user_guide_structure = [
 "Introduction",
 "Installation Guide",
 "Usage Guide",
 "Troubleshooting"
]

Code Analysis and Secure Development102

3. Generate the content for each section: We can then use ChatGPT to generate the content
for each section. Here’s an example of generating the software architecture section of the
design document:

def generate_section_content(section_title: str, source_code:
str) -> str:
 messages = [
 {"role": "system", "content": f"You are an experienced
software engineer with extensive knowledge in writing {section_
title} sections for design documents."},
 {"role": "user", "content": f"Please generate a
{section_title} section for the following Python code:\n\
n{source_code}"}
]
 client = OpenAI()

 response = client.chat.completions.create(
 model="gpt-3.5-turbo",
 messages=messages,
 max_tokens=2048,
 n=1,
 stop=None,
 temperature=0.7,
)
 return response.choices[0].message.content.strip()

Important note
Be mindful of the input length and token limit when generating content for each section. If
your section content or code is too large, you may need to break it down into smaller parts.

4. Load the source code: We need to load the source code file that the prompt and GPT will reference:

with open('source_code.py', 'r') as file:
 source_code = file.read()

5. Write the content to a Word document: After generating the content, we can write it to a
Word document using the python-docx library:

def write_to_word_document(document: Document, title: str,
content: str):
 document.add_heading(title, level=1)
 document.add_paragraph(content)

Generating Code Comments and Documentation (Deployment/Maintenance Phase) 103

6. Repeat the process for each section and document: We can then repeat the process for each
section in both the design document and the user guide. Here’s an example for creating the
design document:

design_document = Document()

for section in design_doc_structure:
 section_content = generate_section_content(section, source_
code)
 write_to_word_document(design_document, section, section_
content)

design_document.save('DesignDocument.docx')

Here’s how the completed code should look:

import openai
from openai import OpenAI
import os
from docx import Document

Set up the OpenAI API
openai.api_key = os.getenv("OPENAI_API_KEY")

Define the structure of the documents
design_doc_structure = [
 "Introduction",
 "Software Architecture",
 "Function Descriptions",
 "Flow Diagrams"
]

user_guide_structure = [
 "Introduction",
 "Installation Guide",
 "Usage Guide",
 "Troubleshooting"
]

def generate_section_content(section_title: str, source_code: str) ->
str:
 messages = [
 {"role": "system", "content": f"You are an experienced
software engineer with extensive knowledge in writing {section_title}
sections for design documents."},

Code Analysis and Secure Development104

 {"role": "user", "content": f"Please generate a {section_
title} section for the following Python code:\n\n{source_code}"}
]
 client = OpenAI()

 response = client.chat.completions.create(
 model="gpt-3.5-turbo",
 messages=messages,
 max_tokens=2048,
 n=1,
 stop=None,
 temperature=0.7,
)
 return response.choices[0].message.content.strip()

def write_to_word_document(document: Document, title: str, content:
str):
 document.add_heading(title, level=1)
 document.add_paragraph(content)

Load the source code
with open('source_code.py', 'r') as file:
 source_code = file.read()

Create the design document
design_document = Document()

for section in design_doc_structure:
 section_content = generate_section_content(section, source_code)
 write_to_word_document(design_document, section, section_content)

design_document.save('DesignDocument.docx')

Create the user guide
user_guide = Document()

for section in user_guide_structure:
 section_content = generate_section_content(section, source_code)
 write_to_word_document(user_guide, section, section_content)

user_guide.save('UserGuide.docx')

Generating Code Comments and Documentation (Deployment/Maintenance Phase) 105

The script commences by importing the necessary modules, namely openai, os, and docx.
After importing the modules, the OpenAI API is set up using your API key obtained from the
environment variables.

Next, the script outlines the structure of the design document and user guide. These structures are
simply arrays containing the titles of sections that will make up these final documents.

The generate_section_content() function is defined afterward. This function uses ChatGPT,
prompted with a message tailored to generate content for a specified section of the document, given
some Python source code. It then returns the generated response as a string.

Subsequently, the Python source code to be documented is loaded from a file named source_code.
py with the help of Python’s built-in open() function.

Once the source code is loaded, the creation of the design document is initiated. An instance of
the Document class is created, and a loop is used to iterate over each section title outlined in
design_doc_structure. In each iteration, the loop generates content for the section using the
generate_section_content() function and writes this content to the design document with
the help of the write_to_word_document() function.

The same process is repeated for the user guide, this time iterating over user_guide_structure.

Finally, the script saves the created documents by utilizing the save() method from the Document
class. As a result, you will receive a design document and a user guide, both of which are auto-generated
by ChatGPT based on the source code provided.

A point to remember is that the input length and token limit when generating content for each section
need careful attention. If your section content or code is too large, you might need to break it down
into smaller parts.

This script offers a potent tool to streamline your software documentation process. With the help of
ChatGPT and OpenAI API, you can automatically generate precise and comprehensive documents
that enhance the understandability and maintainability of your Python code.

4
Governance, Risk, and

Compliance (GRC)

With the digital landscape becoming more intertwined and complex, managing cybersecurity risks and
maintaining compliance has become increasingly challenging. This chapter offers insightful solutions
by demonstrating how ChatGPT, harnessed with the power of the OpenAI API, can significantly
enhance the efficiency and effectiveness of your cybersecurity infrastructure.

Throughout the chapter, you will discover how to leverage the capabilities of ChatGPT to generate
comprehensive cybersecurity policies, simplifying the intricate task of policy creation. We will walk
you through an innovative approach that allows granular control over each section of the policy
document, delivering a robust cybersecurity framework that’s tailored to your specific business needs.

Building upon this groundwork, we will then delve into the nuances of deciphering complex
cybersecurity standards. ChatGPT acts as a guide, breaking down convoluted compliance requirements
into manageable, clear steps, thus providing a streamlined path to ensuring standards compliance.

Furthermore, we will explore the critical domain of cyber risk assessment, unveiling how automation
can revolutionize this vital process. You will gain insights into identifying potential threats, assessing
vulnerabilities, and recommending suitable controls, leading to a substantial enhancement in your
organization’s ability to manage cybersecurity risks.

Following risk assessment, the focus shifts toward prioritizing these risks effectively. You will learn
how ChatGPT can assist in creating an objective scoring algorithm based on various risk-related
factors, enabling you to strategically allocate resources to manage the highest-priority risks.

Finally, we will address the essential task of risk report generation. Detailed risk assessment reports
not only serve as a valuable record of identified risks and mitigation strategies but also ensure clear
communication between stakeholders. We will demonstrate how ChatGPT can automate the creation
of such reports, saving time and maintaining consistency across all documentation.

Governance, Risk, and Compliance (GRC)108

In this chapter, we will cover the following recipes:

• Security Policy and Procedure Generation

• ChatGPT-Assisted Cybersecurity Standards Compliance

• Creating a Risk Assessment Process

• ChatGPT-Assisted Risk Ranking and Prioritization

• Building Risk Assessment Reports

Technical requirements
For this chapter, you will need a web browser and a stable internet connection to access the
ChatGPT platform and set up your account. You will also need to have your OpenAI account set
up and have obtained your API key. If not, revisit Chapter 1 for details. Basic familiarity with the
Python programming language and working with the command line is necessary, as you’ll be using
Python 3.x, which needs to be installed on your system, for working with the OpenAI GPT API
and creating Python scripts. A code editor will also be essential for writing and editing Python
code and prompt files as you work through the recipes in this chapter.

The code files for this chapter can be found here: https://github.com/PacktPublishing/
ChatGPT-for-Cybersecurity-Cookbook.

Security Policy and Procedure Generation
In this recipe, you will leverage the capabilitiese3 of ChatGPT and the OpenAI API to generate a
comprehensive cybersecurity policy for your organization. This process is invaluable for IT managers,
chief information security officers (CISOs), and cybersecurity professionals looking to create a robust
cybersecurity framework that is tailored to their specific business requirements.

Building upon the knowledge acquired in previous chapters, you will establish the role of ChatGPT
as a seasoned cybersecurity professional, specializing in governance, risk, and compliance (GRC).
You’ll learn how to generate an organized policy outline using ChatGPT and then iteratively fill
in the context for each section using subsequent prompts. This approach enables you to generate
comprehensive documents with granular control over each section, despite ChatGPT’s token limit
and context window.

Additionally, this recipe will provide a walk-through on how to use the OpenAI API and Python to
automate the policy generation process, and subsequently, generate a cybersecurity policy as a Microsoft
Word document. This step-by-step guide will provide a practical framework for producing detailed
and tailored cybersecurity policies using ChatGPT and the OpenAI API.

https://github.com/PacktPublishing/ChatGPT-for-Cybersecurity-Cookbook
https://github.com/PacktPublishing/ChatGPT-for-Cybersecurity-Cookbook

Security Policy and Procedure Generation 109

Getting ready

Before diving into this recipe, ensure you have your OpenAI account set up and your API key on
hand. If not, you should refer back to Chapter 1 for the necessary setup details. You will also need to
confirm you have the following Python libraries installed:

1. openai: This library enables you to interact with the OpenAI API. Install it using the pip
install openai command.

2. os: This is a built-in Python library, which allows you to interact with the operating system,
especially for accessing environment variables.

3. docx: This library is used to generate Microsoft Word documents. Install it with pip install
python-docx.

4. markdown: This library is used to convert Markdown to HTML, which is useful for generating
formatted documents. Install it with pip install markdown.

5. tqdm: This library is utilized for showing progress bars during the policy generation process.
Install it with pip install tqdm.

Once you have verified that all these requirements are met, you are ready to get started on generating
a cybersecurity policy with ChatGPT and the OpenAI API.

How to do it…

In this section, we will guide you through the process of using ChatGPT to generate a detailed
cybersecurity policy that aligns with your organization’s needs. By providing the necessary details and
using the given system role and prompts, you will be able to generate a well-structured cybersecurity
policy document:

1. Start by logging in to your OpenAI account and navigating to the ChatGPT web UI.

2. Initiate a new conversation with ChatGPT by clicking the New chat button.

3. Enter the following system role to set the context for ChatGPT:

You are a cybersecurity professional specializing in governance,
risk, and compliance (GRC) with more than 25 years of
experience.

4. Then, enter the following message text, replacing the placeholders in the { } brackets with
relevant information based on your organization’s needs. You can either combine this prompt
with the system role or enter it separately as follows (replacing the company name and type
with your own):

Write a detailed cybersecurity policy outline for my company,
{company name}, which is credit union. Provide the outline only,
with no context or narrative. Use markdown language to denote
the proper headings, lists, formatting, etc.

Governance, Risk, and Compliance (GRC)110

5. Review the output from ChatGPT. If it is satisfactory and aligns with your requirements, you
can proceed to the next step. If not, you have the option to refine your prompt or run the
conversation again to generate a different output.

6. Generate the policy from the outline. For each section of the outline, prompt ChatGPT with
the following, replacing {section} with the appropriate section title from the outline:

You are currently writing a cybersecurity policy. Write the
narrative, context, and details for the following section
(and only this section): {section}. Use as much detail and
explanation as possible. Do not write anything that should go in
another section of the policy.

7. Once you have the desired output, you can copy and paste the generated responses directly
into a Word document, or editor of your choice, to create a comprehensive cybersecurity
policy document.

How it works…

This GPT-assisted cybersecurity policy creation recipe taps into the power of natural language
processing (NLP) and machine learning algorithms to produce a tailored and comprehensive
cybersecurity policy that caters to the needs of your organization. By assuming a specific system role
and utilizing a detailed user request as a prompt, ChatGPT is capable of tailoring its output to meet
the demands of a cybersecurity professional, tasked with generating a detailed policy. Here’s a deeper
look into how this process functions:

1. System role and detailed prompt: The system role casts ChatGPT as a seasoned cybersecurity
professional, specializing in GRC. The prompt, which acts as the user request, is detailed and
describes the specifics of the policy outline, from the nature of the company to the requirements
of the cybersecurity policy. These inputs provide context and steer ChatGPT’s response, ensuring
it caters to the complexities and requirements of the policy creation task.

2. Natural language processing and machine learning: NLP and machine learning are the
foundation of ChatGPT’s capabilities. It uses these technologies to comprehend the complexities
of the users requests, to learn from the patterns, and to generate a well-structured cybersecurity
policy that is detailed, specific, and comprehensive.

3. Knowledge and language understanding capabilities: ChatGPT leverages its vast knowledge
base and language understanding capabilities to adhere to industry-standard methodologies
and best practices. This is crucial in the swiftly evolving realm of cybersecurity, ensuring that
the generated cybersecurity policy is current and complies with recognized standards.

4. Iterative policy generation: The process of creating the detailed policy from the generated
outline involves prompting ChatGPT iteratively for each section of the policy. This allows for
more granular control over the content of each section and helps ensure that the policy is well
structured and organized.

Security Policy and Procedure Generation 111

5. Streamlining the policy creation process: The overall benefit of utilizing this GPT-assisted
cybersecurity policy creation recipe is that it streamlines the process of creating a comprehensive
cybersecurity policy. It reduces the time spent on policy creation and allows for the generation
of a professional-grade policy that aligns with industry standards and the specific needs of
your organization.

By employing these detailed inputs, you transform ChatGPT into a potentially invaluable tool that
can assist in creating an exhaustive, tailored cybersecurity policy. This not only strengthens your
cybersecurity posture but also ensures that your resources are effectively employed in safeguarding
your organization.

There’s more…

Building on the ChatGPT recipe, you can enhance the functionality by using OpenAI’s API to not
only generate a cybersecurity policy outline but also to fill in the details of each section. This approach
is helpful when you want to create detailed documents on-the-fly or generate policies for multiple
companies with different requirements.

This Python script incorporates the same idea as our ChatGPT version, but with additional functionality
provided by the OpenAI API grants more control and flexibility over the content generation process.
We will now discuss the different steps involved in the OpenAI API version of the cybersecurity
policy generation recipe:

1. Import the necessary libraries and set up the OpenAI API:

import os
import openai
from openai import OpenAI
import docx
from markdown import markdown
from tqdm import tqdm

get the OpenAI API key from environment variable
openai.api_key = os.getenv('OPENAI_API_KEY')

In this step, we import the required libraries, such as openai, os, docx, markdown, and
tqdm. We set up the OpenAI API by providing the API key.

2. Prepare the initial prompt for the cybersecurity policy outline:

prepare initial prompt
messages=[
 {
 "role": "system",
 "content": "You are a cybersecurity
 professional specializing in governance,

Governance, Risk, and Compliance (GRC)112

 risk, and compliance (GRC) with more than
 25 years of experience."
 },
 {
 "role": "user",
 "content": "Write a detailed cybersecurity
 policy outline for my company,
 {company name}, which is a credit union.
 Provide the outline only, with no context
 or narrative. Use markdown language to
 denote the proper headings, lists,
 formatting, etc."
 }
]

The initial prompt is constructed using a conversation with two roles: system and user.
The system message sets the context, informing the AI model about its role as a seasoned
cybersecurity professional. The user message instructs the AI model to create a cybersecurity
policy outline for a credit union, specifying the need for Markdown formatting.

3. Generate the cybersecurity policy outline using the OpenAI API:

print("Generating policy outline...")
try:
 client = OpenAI()
 response = client.chat.completions.create(
 model="gpt-3.5-turbo",
 messages=messages,
 max_tokens=2048,
 n=1,
 stop=None,
 temperature=0.7,
)
except Exception as e:
 print("An error occurred while connecting to the
 OpenAI API:", e)
 exit(1)

get outline
outline =
 response.choices[0].message.content.strip()

print(outline + "\n")

This section sends the request to the OpenAI API, and upon successful completion, retrieves
the generated policy outline.

Security Policy and Procedure Generation 113

4. Split the outline into sections and prepare a Word document:

split outline into sections
sections = outline.split("\n\n")

prepare Word document
doc = docx.Document()
html_text = ""

Here we split the outline into different sections, each containing a Markdown-formatted heading
or subheading. We then initialize a new Word document using the docx.Document() function.

5. Loop over each section in the outline, generating detailed information:

for each section in the outline
for i, section in tqdm(enumerate(sections, start=1),
total=len(sections), leave=False):
 print(f"\nGenerating details for section {i}...")

Here we loop over each section of the outline. The tqdm function is used to display a progress bar.

6. Prepare the prompt for the AI model to generate the detailed information for the current section:

 # prepare prompt for detailed info
 messages=[
 {
 "role": "system",
 "content": "You are a cybersecurity
 professional specializing in
 governance, risk, and compliance (GRC)
 with more than 25 years of
 experience."
 },
 {
 "role": "user",
 "content": f"You are currently writing a
 cybersecurity policy. Write the
 narrative, context, and details for
 the following section (and only this
 section): {section}. Use as much
 detail and explanation as possible. Do
 not write anything that should go in
 another section of the policy."
 }
]

The prompt for the AI model is prepared, instructing it to generate detailed information for
the current section.

Governance, Risk, and Compliance (GRC)114

7. Generate detailed information for the current section and add it to the Word document:

 try:
 response = client.chat.completions.create(
 model="gpt-3.5-turbo",
 messages=messages,
 max_tokens=2048,
 n=1,
 stop=None,
 temperature=0.7,
)
 except Exception as e:
 print("An error occurred while connecting to
 the OpenAI API:", e)
 exit(1)

 # get detailed info
 detailed_info =
 response.choices[0].message.content.strip()

 # convert markdown to Word formatting
 doc.add_paragraph(detailed_info)
 doc.add_paragraph("\n") # add extra line break
 for readability

 # convert markdown to HTML and add to the
 html_text string
 html_text += markdown(detailed_info)

Here we generate detailed information for the current section using the OpenAI API. The
Markdown-formatted text is converted to Word formatting and added to the Word document.
It is also converted to HTML and added to the html_text string.

8. Save the current state of the Word and HTML documents:

 # save Word document
 print("Saving sections...")
 doc.save("Cybersecurity_Policy.docx")

 # save HTML document
 with open("Cybersecurity_Policy.html", 'w') as f:
 f.write(html_text)

The current state of the Word document and the HTML document is saved after each section
is processed. This ensures that you do not lose any progress if the script is interrupted.

Security Policy and Procedure Generation 115

9. Print a completion message after all sections have been processed:

print("\nDone.")

Here’s how the completed script should look:

import os
import openai
from openai import OpenAI
import docx
from markdown import markdown
from tqdm import tqdm

get the OpenAI API key from environment variable
openai.api_key = os.getenv('OPENAI_API_KEY')

prepare initial prompt
messages=[
 {
 "role": "system",
 "content": "You are a cybersecurity professional
 specializing in governance, risk, and
 compliance (GRC) with more than 25 years of
 experience."
 },
 {
 "role": "user",
 "content": "Write a detailed cybersecurity policy
 outline for my company, XYZ Corp., which is a
 credit union. Provide the outline only, with no
 context or narrative. Use markdown language to
 denote the proper headings, lists, formatting,
 etc."
 }
]

print("Generating policy outline...")
try:
 client = OpenAI()
 response = client.chat.completions.create(
 model="gpt-3.5-turbo",
 messages=messages,
 max_tokens=2048,
 n=1,

Governance, Risk, and Compliance (GRC)116

 stop=None,
 temperature=0.7,
)
except Exception as e:
 print("An error occurred while connecting to the OpenAI
 API:", e)
 exit(1)

get outline
outline =
 response.choices[0].message.content.strip()

print(outline + "\n")

split outline into sections
sections = outline.split("\n\n")

prepare Word document
doc = docx.Document()
html_text = ""

for each section in the outline
for i, section in tqdm(enumerate(sections, start=1),
total=len(sections), leave=False):
 print(f"\nGenerating details for section {i}...")

 # prepare prompt for detailed info
 messages=[
 {
 "role": "system",
 "content": "You are a cybersecurity
 professional specializing in governance,
 risk, and compliance (GRC) with more than
 25 years of experience."
 },
 {
 "role": "user",
 "content": f"You are currently writing a
 cybersecurity policy. Write the narrative,
 context, and details for the following
 section (and only this section): {section}.
 Use as much detail and explanation as
 possible. Do not write anything that should
 go in another section of the policy."

Security Policy and Procedure Generation 117

 }
]

 try:
 response = client.chat.completions.createcreate(
 model="gpt-3.5-turbo",
 messages=messages,
 max_tokens=2048,
 n=1,
 stop=None,
 temperature=0.7,
)
 except Exception as e:
 print("An error occurred while connecting to the
 OpenAI API:", e)
 exit(1)

 # get detailed info
 detailed_info =
 response.choices[0].message.content.strip()

 # convert markdown to Word formatting
 doc.add_paragraph(detailed_info)
 doc.add_paragraph("\n") # add extra line break for
 readability

 # convert markdown to HTML and add to the html_text
 string
 html_text += markdown(detailed_info)

 # save Word document
 print("Saving sections...")
 doc.save("Cybersecurity_Policy.docx")

 # save HTML document
 with open("Cybersecurity_Policy.html", 'w') as f:
 f.write(html_text)

print("\nDone.")

This Python script automates the process of generating a detailed cybersecurity policy outline for a
specific company, XYZ Corp., a credit union. The script initiates by importing the necessary libraries,
setting the OpenAI API key, and preparing the initial prompt for the AI model, instructing it to
generate the policy outline.

Governance, Risk, and Compliance (GRC)118

On receiving a successful response from the OpenAI API, the script prints out the policy outline
and breaks it down into separate sections for further detailing. A Word document is then initiated to
record these details. The script then iterates over each section of the policy outline, generating and
appending detailed information from the OpenAI API to the Word document and to an HTML string,
effectively creating a detailed policy document in both Word and HTML formats.

After each iteration, the script ensures the documents are saved, providing a safety net against potential
data loss due to interruptions. Once all sections are covered and the documents are saved, the script
signifies its successful completion. Thus, a high-level policy outline is expanded into a detailed,
comprehensive cybersecurity policy, in a process fully automated using the OpenAI API and Python.

ChatGPT-Assisted Cybersecurity Standards Compliance
In this recipe, we will guide you on how to use ChatGPT to assist with cybersecurity standards
compliance. This recipe builds on the skills gained from previous chapters. Understanding the
requirements of cybersecurity standards can be complex, due to the manner in which they are typically
written. With ChatGPT, you can simplify this task. By prompting ChatGPT with excerpts from a
cybersecurity standard, the model can assist in breaking down these requirements into simpler terms,
helping you determine whether you comply, and what steps need to be taken to become compliant
if you are not.

Getting ready

Ensure you have access to the ChatGPT interface by logging in to your OpenAI account. Have a
cybersecurity standard document on hand from which you can quote excerpts.

How to do it…

To utilize ChatGPT for understanding and checking compliance with cybersecurity standards, follow
these steps:

1. Log in to the ChatGPT interface.

2. Assign a role to ChatGPT with the following prompt:

You are a cybersecurity professional and CISO with 30 years of
experience in the industrial cybersecurity industry.

You should replace industrial with whichever industry you’re in.

3. Then provide ChatGPT with your prompt:

"I need your help understanding the requirements of the NIST
SP 800-82 revision 2 standard. I will give you the requirement
ID, specifications, and any other supplemental information
I have that is associated with the requirement. You will
then explain the requirement to me in way that is easier to

ChatGPT-Assisted Cybersecurity Standards Compliance 119

understand, and form a question based on the requirement to
help me determine whether or not I comply with that requirement
or not. You will follow up by asking me if I have any further
questions about that requirement or if I'm ready to move to
the next requirement. If I have another question regarding
that requirement, we will continue discussing the requirement
in this manner. If I tell you I'm ready to move on to the next
requirement, we will start this process again with the next
requirement."

Remember to replace 'NIST SP 800-82 revision 2 standard' with whichever
cybersecurity standard you are working with.

4. Provide ChatGPT with the first requirement ID, specifications, and any supplemental information:

Figure 4.1 – Example of a ChatGPT response to a standards requirement query

Governance, Risk, and Compliance (GRC)120

5. Engage with ChatGPT in a conversation based on the responses it provides, either delving
deeper into a particular requirement or moving on to the next:

Figure 4.2 – Example of a ChatGPT response to a standards requirement conversation

How it works…

When you assign a role to ChatGPT, you provide a specific context or persona for the model to work
with. This helps the model generate responses that are tailored to the given role, resulting in more
accurate, relevant, and detailed content.

In the context of understanding and checking compliance with cybersecurity standards, ChatGPT
uses its training data to interpret the excerpts from the standard, breaking them down into simpler,
easier-to-understand terms. It then forms a question to assist you in determining whether or not you
comply with the standard.

Throughout the process, you maintain a conversation with the model, either diving deeper into a
specific requirement or moving on to the next one, based on your requirements.

Creating a Risk Assessment Process 121

There’s more…

Once you’re comfortable with this process, you can extend it to cover different standards across
various industries.

Here are some additional points to consider:

• ChatGPT as a training aid: You can also use it as a teaching tool, utilizing the simplified
explanations provided by ChatGPT to educate others in your organization about the requirements
of different cybersecurity standards. Using the model to generate easily understandable
interpretations of complex standards can be a useful supplement to more traditional forms
of training.

• Importance of regular check-ins: Using ChatGPT to understand and check compliance with
cybersecurity standards can be most effective when done regularly. Cybersecurity landscapes
change quickly, and requirements with which an organization was once compliant could change.
Regular check-ins can help keep your organization up to date.

• Potential limitations: It’s worth noting that while ChatGPT is a powerful tool, it does have
limitations. Its responses are based on its training data up until September 2021. Therefore, for
very recent standards or those that have been significantly updated since then, its responses
might not be completely accurate. It’s always important to verify information with the most
current version of the standard.

Important note
We will discuss more advanced methods of providing updated documents as a knowledge base
later on in this book.

• Importance of professional guidance: While this approach can help a great deal in understanding
the requirements of cybersecurity standards, it’s not a substitute for professional legal or
cybersecurity guidance. Compliance with these standards often has legal implications, so
professional advice is essential. Always consult with a professional when determining your
organization’s compliance with any cybersecurity standard.

• Feedback and iteration: As with any AI tool, the more you use ChatGPT and the more feedback
you provide, the better it can assist you. The feedback loop allows the model to adjust and
provide responses better tailored to your needs over time.

Creating a Risk Assessment Process
Cyber risk assessment is an essential part of an organization’s risk management strategy. This process
involves identifying potential threats, assessing vulnerabilities that could be exploited by these threats,
evaluating the impact that such an exploitation could have on the organization, and recommending
suitable controls to mitigate the risk. Understanding the steps involved in conducting a risk assessment
can significantly enhance an organization’s ability to manage cybersecurity risks.

Governance, Risk, and Compliance (GRC)122

In this recipe, we will guide you through creating a cyber risk assessment process using Python and
the OpenAI API. By automating the risk assessment process, you can streamline your workflow and
make your security operations more efficient. This approach can also provide a standardized format
for conducting risk assessments, which can improve consistency across your organization.

Getting ready

Before proceeding with this recipe, you will need the following:

• Python. This recipe is compatible with Python 3.6 or later.

• An OpenAI API key. If you don’t have one, you can obtain it from the OpenAI website after
signing up.

• The OpenAI Python library. You can install it using pip: pip install openai.

• The Python docx library for creating Word documents. You can install it using pip: pip
install python-docx.

• The Python tqdm library for displaying progress. You can install it using pip: pip install
tqdm.

• The Python threading and os libraries, which are generally available with Python.

• Familiarity with Python programming and basic cybersecurity concepts.

How to do it…

Let’s start creating our risk assessment process by building a script that uses the OpenAI API to
generate the content of each section in our risk assessment plan. The script will ask ChatGPT to play
the role of a cybersecurity professional specializing in GRC to provide us with a detailed narrative,
context, and details for each section of the risk assessment process:

1. Import the necessary libraries:

import openai
from openai import OpenAI
import os
from docx import Document
import threading
import time
from datetime import datetime
from tqdm import tqdm

This code block imports all the required libraries for our script: openai for interacting with
the OpenAI API, os for environment variables, Document from docx for creating Word
documents, threading and time for managing the time display during API calls, datetime
for timestamping our report, and tqdm for progress visualization.

Creating a Risk Assessment Process 123

2. Set up the OpenAI API key:

openai.api_key = os.getenv("OPENAI_API_KEY")

This code sets the OpenAI API key, which is stored as an environment variable. This key is
required to authenticate our program’s requests to the OpenAI API.

3. Determine a unique identifier for the assessment report:

current_datetime =
 datetime.now().strftime('%Y-%m-%d_%H-%M-%S')
assessment_name =
 f"Risk_Assessment_Plan_{current_datetime}"

We use the current date and time to create a unique name for each assessment report,
ensuring that we don’t overwrite any previous reports. The name is formatted as Risk_
Assessment_Plan_{current_datetime}, where current_datetime is the
exact date and time when the script is run.

4. Define the outline for the risk assessment:

Risk Assessment Outline
risk_assessment_outline = [
 "Define Business Objectives",
 "Asset Discovery/Identification",
 "System Characterization/Classification",
 "Network Diagrams and Data Flow Review",
 "Risk Pre-Screening",
 "Security Policy & Procedures Review",
 "Cybersecurity Standards Selection and Gap
 Assessment/Audit",
 "Vulnerability Assessment",
 "Threat Assessment",
 "Attack Vector Assessment",
 "Risk Scenario Creation (using the Mitre ATT&CK
 Framework)",
 "Validate Findings with Penetration Testing/Red
 Teaming",
 "Risk Analysis (Aggregate Findings & Calculate
 Risk Scores)",
 "Prioritize Risks",
 "Assign Mitigation Methods and Tasks",
 "Create Risk Report",
]

Here we define the outline for the risk assessment. The outline contains a list of all the sections
to be included in the risk assessment process.

Governance, Risk, and Compliance (GRC)124

Tip
You can modify the process steps to include whichever sections you feel appropriate, and the
model will fill in the context for whichever sections you provide.

5. Implement a function to generate section content using the OpenAI API:

def generate_section_content(section: str) -> str:
 # Define the conversation messages
 messages = [
 {
 "role": "system",
 "content": 'You are a cybersecurity
 professional specializing in
 governance, risk, and compliance (GRC)
 with more than 25 years of
 experience.'},
 {
 "role": "user",
 "content": f'You are
 currently writing a cyber risk
 assessment policy. Write the
 narrative, context, and details for
 the following section (and only
 this section): {section}. Use as much
 detail and explanation as possible. Do
 not write anything that should go in
 another section of the policy.'
 },
]

 # Call the OpenAI API
 client = OpenAI()
 response = client.chat.completions.create(
 model="gpt-3.5-turbo",
 messages=messages,
 max_tokens=2048,
 n=1,
 stop=None,
 temperature=0.7,
)

 # Return the generated text
 Return
 response.choices[0].message.content.strip()

Creating a Risk Assessment Process 125

This function takes as input the title of a section from our risk assessment outline and uses the
OpenAI API to generate detailed content for that section.

6. Implement a function to convert Markdown text to a Word document:

def markdown_to_docx(markdown_text: str, output_file: str):
 document = Document()

 # Iterate through the lines of the markdown text
 for line in markdown_text.split('\n'):
 # Add headings based on the markdown heading
 levels
 if line.startswith('# '):
 document.add_heading(line[2:], level=1)
 elif line.startswith('## '):
 document.add_heading(line[3:], level=2)
 elif line.startswith('### '):
 document.add_heading(line[4:], level=3)
 elif line.startswith('#### '):
 document.add_heading(line[5:], level=4)
 # Add paragraphs for other text
 else:
 document.add_paragraph(line)

 # Save the Word document
 document.save(output_file)

This function takes the generated Markdown text for each section and the desired output
filename as inputs and creates a Word document with the same content.

7. Implement a function to display the elapsed time while waiting for the API call:

def display_elapsed_time():
 start_time = time.time()
 while not api_call_completed:
 elapsed_time = time.time() - start_time
 print(f"\rElapsed time: {elapsed_time:.2f}
 seconds", end="")
 time.sleep(1)

This function is responsible for displaying the elapsed time while waiting for the API call to
complete. This is useful for tracking how long the process is taking.

Governance, Risk, and Compliance (GRC)126

8. Start the process for generating the report:

api_call_completed = False
elapsed_time_thread =
 threading.Thread(target=display_elapsed_time)
elapsed_time_thread.start()

Here we start a separate thread to display the elapsed time. This runs concurrently with the
main process that makes the API calls.

9. Iterate through each section in the risk assessment outline, generate the section content, and
append it to the report:

Generate the report using the OpenAI API
report = []
pbar = tqdm(total=len(risk_assessment_outline),
 desc="Generating sections")
for section in risk_assessment_outline:
 try:
 # Generate the section content
 content = generate_section_content(section)
 # Append the section content to the report
 report.append(f"## {section}\n{content}")
 except Exception as e:
 print(f"\nAn error occurred during the API
 call: {e}")
 exit()
 pbar.update(1)

This block of code loops through each section in our risk assessment outline, generates the
content for that section using the OpenAI API, and appends the generated content to our report.

10. Finalize the progress and elapsed time display once all sections have been generated:

api_call_completed = True
elapsed_time_thread.join()
pbar.close()

The api_call_completed variable is set to True to indicate that all API calls have been
completed. We then stop the elapsed time display thread and close the progress bar to signify
that the process has ended.

11. Finally, save the generated report as a Word document:

Save the report as a Word document
docx_output_file = f"{assessment_name}_report.docx"

Handle exceptions during the report generation

Creating a Risk Assessment Process 127

try:
 markdown_to_docx('\n'.join(report),
 docx_output_file)
 print("\nReport generated successfully!")
except Exception as e:
 print(f"\nAn error occurred during the report
 generation: {e}")

In this final step, the markdown_to_docx function is called with the generated report (in
Markdown format) and the desired output filename as arguments to create a Word document.
The filename includes a timestamp to ensure it’s unique. This process is wrapped in a try-except
block to handle any exceptions that might occur during this conversion. If successful, we print
out a success message; if an error occurs, we print the exception to help with troubleshooting.

The final script should appear as follows:

import openai
from openai import OpenAI
import os
from docx import Document
import threading
import time
from datetime import datetime
from tqdm import tqdm

Set up the OpenAI API
openai.api_key = os.getenv("OPENAI_API_KEY")
current_datetime = datetime.now()
 .strftime('%Y-%m-%d_%H-%M-%S')
assessment_name =
 f"Risk_Assessment_Plan_{current_datetime}"

Risk Assessment Outline
risk_assessment_outline = [
 "Define Business Objectives",
 "Asset Discovery/Identification",
 "System Characterization/Classification",
 "Network Diagrams and Data Flow Review",
 "Risk Pre-Screening",
 "Security Policy & Procedures Review",
 "Cybersecurity Standards Selection and Gap
 Assessment/Audit",
 "Vulnerability Assessment",
 "Threat Assessment",

Governance, Risk, and Compliance (GRC)128

 "Attack Vector Assessment",
 "Risk Scenario Creation (using the Mitre ATT&CK
 Framework)",
 "Validate Findings with Penetration Testing/Red
 Teaming",
 "Risk Analysis (Aggregate Findings & Calculate Risk
 Scores)",
 "Prioritize Risks",
 "Assign Mitigation Methods and Tasks",
 "Create Risk Report",
]

Function to generate a section content using the OpenAI
 API
def generate_section_content(section: str) -> str:
 # Define the conversation messages
 messages = [
 {
 "role": "system",
 "content": 'You are a cybersecurity
 professional specializing in governance,
 risk, and compliance (GRC) with more than
 25 years of experience.'
 },
 {
 "role": "user",
 "content": f'You are currently writing a cyber
 risk assessment policy. Write the
 narrative, context, and details for the
 following section (and only this section):
 {section}. Use as much detail and
 explanation as possible.
 Do not write anything that should go in
 another section of the policy.'
 },
]

 # Call the OpenAI API
 client = OpenAI()
 response = client.chat.completions.create(
 model="gpt-3.5-turbo",
 messages=messages,
 max_tokens=2048,

Creating a Risk Assessment Process 129

 n=1,
 stop=None,
 temperature=0.7,
)

 # Return the generated text
 return response['choices'][0]['message']['content']
 .strip()

Function to convert markdown text to a Word document
def markdown_to_docx(markdown_text: str, output_file: str):
 document = Document()

 # Iterate through the lines of the markdown text
 for line in markdown_text.split('\n'):
 # Add headings based on the markdown heading levels
 if line.startswith('# '):
 document.add_heading(line[2:], level=1)
 elif line.startswith('## '):
 document.add_heading(line[3:], level=2)
 elif line.startswith('### '):
 document.add_heading(line[4:], level=3)
 elif line.startswith('#### '):
 document.add_heading(line[5:], level=4)
 # Add paragraphs for other text
 else:
 document.add_paragraph(line)

 # Save the Word document
 document.save(output_file)

Function to display elapsed time while waiting for the
 API call
def display_elapsed_time():
 start_time = time.time()
 while not api_call_completed:
 elapsed_time = time.time() - start_time
 print(f"\rElapsed time: {elapsed_time:.2f}
 seconds", end="")
 time.sleep(1)

api_call_completed = False
elapsed_time_thread =

Governance, Risk, and Compliance (GRC)130

 threading.Thread(target=display_elapsed_time)
elapsed_time_thread.start()

Generate the report using the OpenAI API
report = []
pbar = tqdm(total=len(risk_assessment_outline),
 desc="Generating sections")
for section in risk_assessment_outline:
 try:
 # Generate the section content
 content = generate_section_content(section)
 # Append the section content to the report
 report.append(f"## {section}\n{content}")
 except Exception as e:
 print(f"\nAn error occurred during the API call:
 {e}")
 api_call_completed = True
 exit()
 pbar.update(1)

api_call_completed = True
elapsed_time_thread.join()
pbar.close()

Save the report as a Word document
docx_output_file = f"{assessment_name}_report.docx"

Handle exceptions during the report generation
try:
 markdown_to_docx('\n'.join(report), docx_output_file)
 print("\nReport generated successfully!")
except Exception as e:
 print(f"\nAn error occurred during the report
 generation: {e}")

Now, let’s take a look at how it works.

How it works…

The Python script works by interacting with the OpenAI API to generate detailed content for each section
of the risk assessment process. The content is generated by simulating a conversation between a user
and a system (ChatGPT) where the system roleplays as a cybersecurity professional. The conversation
messages provided to the API describe the context, and ChatGPT generates a comprehensive response
based on that context.

Creating a Risk Assessment Process 131

In the OpenAI chat models, a list of messages is provided, and each message has a role and content. The
role can be system, user, or assistant. The system role is typically used to set the behavior
of assistant, and the user role is used to instruct assistant.

In this script, we first set the system role with the message 'You are a cybersecurity
professional specializing in governance, risk, and compliance (GRC)
with more than 25 years of experience.'. This is to inform the model of the context,
setting it up to respond as an experienced professional in the field of cybersecurity. The model uses
this contextual information to generate responses that are appropriate and specific to the scenario.

The user role’s message, 'You are currently writing a cyber risk assessment
policy. Write the narrative, context, and details for the following
section (and only this section): {section}. Use as much detail and
explanation as possible. Do not write anything that should go in
another section of the policy.', serves as the specific prompt for the model. This
prompt guides the model to generate a detailed narrative for a specific section of a risk assessment
policy. It instructs the model to remain focused on the current section and to not deviate into details
that belong in other sections. By doing this, we ensure that the content generated is relevant and
precise, adhering to the structure of a risk assessment process.

So, in short, the system role sets up the context and expertise of assistant, while the user role
provides a directive task for the assistant to perform. This method helps in obtaining structured and
relevant content from the AI.

The script is structured to handle each section of the risk assessment process individually, making a
separate API call for each section. It takes advantage of multi-threading to display the elapsed time
while the API calls are being processed, giving a sense of progress.

The generated content for each section is appended to a report in Markdown format, which is then
converted to a Word document using the Python docx library. This creates a well-structured,
detailed risk assessment plan that can be used as a starting point for conducting risk assessments in
an organization.

There’s more…

The risk assessment process created by this recipe is flexible. You can experiment with generating your
own risk assessment process by using ChatGPT to write the content for different sections and then
plug those outline sections into the script. This allows you to create a risk assessment process that
is tailored to your organization’s specific needs and risk profile. Remember, the best risk assessment
process is one that is continually updated and improved based on feedback and new insights.

Governance, Risk, and Compliance (GRC)132

ChatGPT-Assisted Risk Ranking and Prioritization
In this recipe, we’ll leverage the capabilities of ChatGPT to prioritize and rank cybersecurity risks
based on the given data. Prioritizing risks in cybersecurity is a crucial task that helps organizations
focus their resources where they matter most. With the use of ChatGPT, you can make this task more
manageable and objective.

In the given scenario, we have a dataset that includes a range of risk-related factors for different assets
or systems. These factors include the type of asset, its criticality rating, the business function it serves,
the size and rating of its attack surface, the attack vector rating, and the mitigations and remediations
in place.

ChatGPT will assist us in creating a scoring algorithm based on this data to prioritize the risks. The
highest-priority risks, as calculated by the scoring algorithm, will be listed at the top of a new table.
We’ll guide you through the process using sample data, but you can apply the same process to your
own data in the future.

Getting ready

Ensure you have access to the ChatGPT interface by logging in to your OpenAI account. You will also
need a dataset containing a list of systems and their associated vulnerability and risk-related data.
More instructions on what this should entail are included in this recipe.

If you do not have a dataset available, you can use the dataset provided in this recipe, which can
be downloaded from https://github.com/PacktPublishing/ChatGPT-for-
Cybersecurity-Cookbook.

How to do it…

To start with risk ranking and prioritization, let’s send a detailed prompt to ChatGPT. The prompt
should clearly state the task and provide the necessary context and data:

Tip
You can provide any system data you want as long as it is separated or delineated and has
header names and discernable values that represent the level of risk, severity, value, and so on
of the systems and vulnerabilities, which ChatGPT can use to create the appropriate algorithm.

1. Establish the system role by entering the following prompt:

You are a cybersecurity professional with 25 years of
experience.

https://github.com/PacktPublishing/ChatGPT-for-Cybersecurity-Cookbook
https://github.com/PacktPublishing/ChatGPT-for-Cybersecurity-Cookbook

ChatGPT-Assisted Risk Ranking and Prioritization 133

2. Instruct ChatGPT to create a scoring algorithm based on your data using the following prompt:

Based on the following dataset, categories, and values, create
a suitable risk scoring algorithm to help me prioritize the
risks and mitigation efforts. Provide me with the calculation
algorithm and then create a new table using the same columns,
but now ordered by highest priority to lowest (highest being on
top) and with a new column all the way to the left containing
the row number.
Data:
Asset/System Type Criticality Rating Business
Function Attack Surface Size Attack Surface
Rating Attack Vector Rating Mitigations and Remediations
Web Server
1 High Sales 120 Critical High Firewall
updates, SSL/TLS upgrades
Email
Server High Communication 80 High High Spam
filter updates, User training
File Server Medium HR 30 Medium Medium Apply
software patches, Improve password policy
Print Server Low All 15 Low Low Apply firmware
updates
Database Server
1 High Sales 200 Critical High Update DB
software, Enforce strong access control
Workstation
1 Low Engineering 10 Low Low Install
Antivirus, Apply OS patches
CRM
Software High Sales 50 Medium Medium Update
CRM software, Implement 2FA
ERP System High All 150 Critical High Update
ERP software, Implement access control
IoT Device
1 Low Maintenance 20 Medium Low Apply firmware
updates, Change default passwords
Web Server
2 Medium Marketing 60 Medium Medium SSL/TLS
upgrades, Implement WAF
Virtual Machine
1 Low Development 20 Low Low Apply OS patches,
Enforce strong access control
Networking
Switch High All 30 Medium High Firmware
updates, Change default credentials
Mobile Device
1 Medium Sales 25 Medium Medium Implement MDM,
Enforce device encryption
Firewall High All 70 High High Firmware
updates, Tighten rule sets

Governance, Risk, and Compliance (GRC)134

Cloud Storage High All 100 High High Apply
cloud security best practices, Implement 2FA
VOIP Server Medium All 45 Medium Medium Apply
patches, Implement strong access control
Payment
Gateway High Sales 180 Critical High Implement
PCI DSS, SSL/TLS upgrades
Router High All 30 Medium High Firmware
updates, Change default credentials
WiFi AP Medium All 40 Medium Medium Firmware
updates, Implement strong WiFi encryption
SAN Storage High All 60 High High Update SAN
software, Implement access control

The following figure illustrates the scoring algorithm output created by ChatGPT:

Figure 4.3 – Example of a scoring algorithm output

The following code is the example scoring algorithm code output generated by ChatGPT:

def calculate_risk_score(criticality_rating,
attack_surface_rating, attack_vector_rating):
 ratings = {"High": 3, "Medium": 2, "Low": 1}
 return ratings[criticality_rating] +
 ratings[attack_surface_rating] +
 ratings[attack_vector_rating]

The following figure illustrates an example of a formatted output from ChatGPT, which lists the assets,
prioritized by the risk score created by the algorithm:

ChatGPT-Assisted Risk Ranking and Prioritization 135

Figure 4.4 – Example of a prioritization output

Tip
The data provided in the prompt is tab-delineated. You can provide any system data you want as
long as it is separated or delineated and has header names and discernable values that represent
the level of risk, severity, value, and so on of the systems and vulnerabilities, which ChatGPT
can use to create the appropriate algorithm.

Governance, Risk, and Compliance (GRC)136

Hint
The sample data used for this recipe was generated with the following prompt:

"Generate a table of sample data I will be using for a hypothetical
risk assessment example. The table should be at least 20 rows
and contain the following columns:

Asset/System Type, Criticality Rating, Business Function,
Attack Surface Size (a value that is derived from number of
vulnerabilities found on the system), Attack Surface Rating (a
value that is derived by calculating the number of high and
critical severity ratings compared to the total attack surface),
Attack Vector Rating (a value that is derived by the number of
other systems that have access to this system, with internet
facing being the automatic highest number), list of mitigations
and remediations needed for this system (this would normally
be derived by the vulnerability scan recommendations based on
the findings but for this test/sample data, just make some
hypothetical data up.)"

How it works…

ChatGPT is based on a type of machine learning model known as a transformer, specifically a variant
called Generative Pretrained Transformer (GPT). This model has been trained on a diverse range
of internet text, has learned linguistic patterns and factual information, and has certain reasoning
abilities from this vast corpus.

When presented with the task of creating a risk-scoring algorithm, ChatGPT doesn’t draw on an
inherent understanding of cybersecurity or risk management. Rather, it leverages the patterns it has
learned during its training phase. During training, it is likely that it has encountered text related to
risk-scoring algorithms, risk prioritization, and cybersecurity. By recognizing the structure and
context of such information in the training data, it can generate relevant and coherent responses
when prompted.

When creating a risk scoring algorithm, ChatGPT first understands the various factors presented
in the data, such as Criticality Rating, Business Function, Attack Surface
Size, Attack Surface Rating, Attack Vector Rating, and Mitigations and
Remediations. It understands that these factors are important in determining the overall risk
associated with each asset. ChatGPT then formulates an algorithm that takes these factors into
account, assigning different weights and scores to each, based on their perceived importance in the
overall risk assessment.

The generated algorithm is then applied to the data to score each risk, creating a new table sorted by
these scores. This sorting process helps in risk prioritization – risks with higher scores are considered
more critical and are listed at the top of the table.

Building Risk Assessment Reports 137

The impressive aspect of ChatGPT is that while it doesn’t truly understand cybersecurity or risk
assessment in the human sense, it can mimic such understanding quite convincingly based on patterns
it has learned. Its ability to generate creative and coherent text based on these patterns makes it a
versatile tool for a wide range of tasks, including the generation of a risk-scoring algorithm in this recipe.

There’s more…

This method is limited by ChatGPT’s token limit. Due to this limit, only so much data can be pasted.
However, later on in this book, we will provide recipes using more advanced techniques on how to
get around this limitation.

Hint
Different models have different token limits. If you’re an OpenAI Plus subscriber, you can choose
between the GPT-3.5 and GPT-4 models. GPT-4 has twice the token limit size as GPT-3.5.
Additionally, if you use the OpenAI Playground instead of the ChatGPT UI, you can use the
new gpt-3.5-turbo-16k model, which has four times the token limit of GPT-3.5.

Building Risk Assessment Reports
Cybersecurity involves managing and mitigating risks, and an essential part of this process is creating
detailed risk assessment reports. These reports not only document the identified risks, vulnerabilities,
and threats but also articulate the steps taken to address them, facilitating clear communication with
various stakeholders. Automating the creation of risk assessment reports can save significant time
and ensure consistency across reports.

In this recipe, we’ll create a Python script that uses OpenAI’s ChatGPT to automatically generate a
cyber risk assessment report. We’ll be working with the data provided by the user, with a focus on
the data we worked with in the ChatGPT-assisted risk ranking and prioritization recipe. However, the
script and prompts have been designed to work with any relevant user-provided data. By the end of
this recipe, you’ll be able to generate detailed and coherent risk assessment reports using Python,
ChatGPT, and your own data.

Getting ready

Before you start, ensure that you have the following:

• Python.

• The openai Python library installed. You can install it using pip: pip install openai.

• The python-docx library installed. You can install it using pip: pip install python-
docx.

• The tqdm library installed. You can install it using pip: pip install tqdm.

• An API key from OpenAI.

Governance, Risk, and Compliance (GRC)138

How to do it…

Before we start, remember that you need to provide system data in the systemdata.txt file. This
data can be anything as long as they are separated or delineated and contain discernable values that
represent the level of risk, severity, value, and so on of the systems and vulnerabilities. This information
will be used by ChatGPT to create the appropriate algorithm and to generate contextually accurate
report sections:

1. Import the required libraries:

import openai
from openai import OpenAI
import os
from docx import Document
import threading
import time
from datetime import datetime
from tqdm import tqdm

These are the necessary libraries for the script to function correctly. openai is used to interact
with the OpenAI API, os is used to access the environment variables, Document from docx
is used to create a Word document, threading and time are used for multithreading and
to keep track of elapsed time, datetime is used to generate a unique filename for each run,
and tqdm is used to display a progress bar in the console.

2. Set up the OpenAI API key and generate the assessment name:

openai.api_key = os.getenv("OPENAI_API_KEY")

current_datetime = datetime.now()
 .strftime('%Y-%m-%d_%H-%M-%S')
assessment_name =
 f"Risk_Assessment_Plan_{current_datetime}"

The OpenAI API key is read from an environment variable, and the current date and time are
used to create a unique filename for the risk assessment report.

3. Create the risk assessment report outline:

risk_assessment_outline = [
 "Executive Summary",
 "Introduction",
 # More sections...
]

This is the structure of the risk assessment report, which is used to guide the AI model in
generating content for each section.

Building Risk Assessment Reports 139

4. Define the function to generate section content:

def generate_section_content(section: str,
system_data: str) -> str:
 messages = [
 {
 "role": "system",
 "content": 'You are a cybersecurity
 professional...'
 },
 {
 "role": "user",
 "content": f'You are currently
 writing a cyber risk assessment
 report...{system_data}'
 },
]

 # Call the OpenAI API
client = OpenAI()
response = client.chat.completions.create(
 model="gpt-3.5-turbo",
 messages=messages,
 max_tokens=2048,
 n=1,
 stop=None,
 temperature=0.7,
)

 Return
 response.choices[0].message.content.strip()

This function constructs a conversation prompt, sends it to the OpenAI API, and retrieves the
model’s response. It accepts the name of a section and system data as arguments and returns
the generated content for the specified section.

5. Define the function to convert Markdown text to a Word document:

def markdown_to_docx(markdown_text: str, output_file: str):
 document = Document()
 # Parsing and conversion logic...
 document.save(output_file)

This function accepts Markdown text and a file path, creates a Word document based on the
Markdown content, and saves the document to the specified file path.

Governance, Risk, and Compliance (GRC)140

6. Define the function to display elapsed time:

def display_elapsed_time():
 start_time = time.time()
 while not api_call_completed:
 elapsed_time = time.time() - start_time
 print(f"\rElapsed time: {elapsed_time:.2f}
 seconds", end="")
 time.sleep(1)

This function is used to display elapsed time in the console while waiting for the API call to
complete. It’s implemented as a separate thread to allow the main thread to continue executing
the rest of the script.

7. Read the system data and start the elapsed time thread:

with open("systemdata.txt") as file:
 system_data = file.read()

api_call_completed = False
elapsed_time_thread =
 threading.Thread(target=display_elapsed_time)
elapsed_time_thread.start()

The script reads system data from a text file and starts a new thread to display the elapsed time
in the console.

8. Generate the report using the OpenAI API:

report = []
pbar = tqdm(total=len(risk_assessment_outline),
 desc="Generating sections")
for section in risk_assessment_outline:
 try:
 content = generate_section_content(section,
 system_data)
 report.append(f"## {section}\n{content}")
 except Exception as e:
 print(f"\nAn error occurred during the API
 call: {e}")
 api_call_completed = True
 exit()
 pbar.update(1)

api_call_completed = True
elapsed_time_thread.join()
pbar.close()

Building Risk Assessment Reports 141

The script creates a progress bar, iterates over the sections in the risk assessment report outline,
generates content for each section using the OpenAI API, and appends the content to the report.
It then stops the elapsed time thread and closes the progress bar.

9. Save the report as a Word document:

docx_output_file = f"{assessment_name}_report.docx"

try:
 markdown_to_docx('\n'.join(report),
 docx_output_file)
 print("\nReport generated successfully!")
except Exception as e:
 print(f"\nAn error occurred during the report
 generation: {e}")

Finally, the script converts the generated report from Markdown to a Word document and
saves the document. If an exception is thrown during this process, it’s caught and a message
is printed to the console.

The completed script should appear as follows:

import openai
from openai import OpenAI
import os
from docx import Document
import threading
import time
from datetime import datetime
from tqdm import tqdm

Set up the OpenAI API
openai.api_key = os.getenv("OPENAI_API_KEY")

current_datetime = datetime.now()
 .strftime('%Y-%m-%d_%H-%M-%S')
assessment_name =
 f"Risk_Assessment_Plan_{current_datetime}"

Cyber Risk Assessment Report Outline
risk_assessment_outline = [
 "Executive Summary",
 "Introduction",
 "Asset Discovery/Identification",
 "System Characterization/Classification",
 "Network Diagrams and Data Flow Review",
 "Risk Pre-Screening",

Governance, Risk, and Compliance (GRC)142

 "Security Policy & Procedures Review",
 "Cybersecurity Standards Selection and Gap
 Assessment/Audit",
 "Vulnerability Assessment",
 "Threat Assessment",
 "Attack Vector Assessment",
 "Risk Scenario Creation (using the Mitre ATT&CK
 Framework)",
 "Validate Findings with Penetration Testing/Red
 Teaming",
 "Risk Analysis (Aggregate Findings & Calculate Risk
 Scores)",
 "Prioritize Risks",
 "Assign Mitigation Methods and Tasks",
 "Conclusion and Recommendations",
 "Appendix",
]

Function to generate a section content using the OpenAI
 API
def generate_section_content(section: str, system_data:
str) -> str:
 # Define the conversation messages
 messages = [
 {
 "role": "system",
 "content": 'You are a cybersecurity
 professional specializing in governance,
 risk, and compliance (GRC) with more than
 25 years of experience.'
 },
 {
 "role": "user",
 "content": f'You are currently writing a
 cyber risk assessment report. Write the
 context/details for the following section
 (and only this section): {section}, based
 on the context specific that section, the
 process that was followed, and the
 resulting system data provided below. In
 the absense of user provided context or
 information about the process followed,
 provide placeholder context that aligns
 with industry standard context for that

Building Risk Assessment Reports 143

 section. Use as much detail and explanation
 as possible. Do not write
 anything that should go in another section
 of the policy.\n\n{system_data}'
 },
]

 # Call the OpenAI API
 client = OpenAI()
 response = client.chat.completions.create(
 model="gpt-3.5-turbo",
 messages=messages,
 max_tokens=2048,
 n=1,
 stop=None,
 temperature=0.7,
)

 # Return the generated text
 response.choices[0].message.content.strip()

Function to convert markdown text to a Word document
def markdown_to_docx(markdown_text: str, output_file: str):
 document = Document()

 # Iterate through the lines of the markdown text
 for line in markdown_text.split('\n'):
 # Add headings based on the markdown heading levels
 if line.startswith('# '):
 document.add_heading(line[2:], level=1)
 elif line.startswith('## '):
 document.add_heading(line[3:], level=2)
 elif line.startswith('### '):
 document.add_heading(line[4:], level=3)
 elif line.startswith('#### '):
 document.add_heading(line[5:], level=4)
 # Add paragraphs for other text
 else:
 document.add_paragraph(line)

 # Save the Word document
 document.save(output_file)

Function to display elapsed time while waiting for the

Governance, Risk, and Compliance (GRC)144

 API call
def display_elapsed_time():
 start_time = time.time()
 while not api_call_completed:
 elapsed_time = time.time() - start_time
 print(f"\rElapsed time: {elapsed_time:.2f}
 seconds", end="")
 time.sleep(1)

Read system data from the file
with open("systemdata.txt") as file:
 system_data = file.read()

api_call_completed = False
elapsed_time_thread =
 threading.Thread(target=display_elapsed_time)
elapsed_time_thread.start()

Generate the report using the OpenAI API
report = []
pbar = tqdm(total=len(risk_assessment_outline),
 desc="Generating sections")
for section in risk_assessment_outline:
 try:
 # Generate the section content
 content = generate_section_content(section,
 system_data)
 # Append the section content to the report
 report.append(f"## {section}\n{content}")
 except Exception as e:
 print(f"\nAn error occurred during the API call:
 {e}")
 exit()
 pbar.update(1)

api_call_completed = True
elapsed_time_thread.join()
pbar.close()

Save the report as a Word document
docx_output_file = f"{assessment_name}_report.docx"

Handle exceptions during the report generation

Building Risk Assessment Reports 145

try:
 markdown_to_docx('\n'.join(report), docx_output_file)
 print("\nReport generated successfully!")
except Exception as e:
 print(f"\nAn error occurred during the report
 generation: {e}")

Now, let’s take a look at how it works.

How it works…

The key function of this script is to automate the generation of a detailed risk assessment report based
on system data and the assessment process. The script works by dividing the process into a series of
defined sections, and in each section, uses the OpenAI API to generate specific, detailed content.

The system data loaded from the file provides context for the gpt-3.5-turbo model to generate the
content of each section. We define an outline that breaks down the risk assessment report into various
sections that each represent a stage in the risk assessment process. These sections match the steps
outlined in the Creating a Risk Assessment Process recipe.

We used the following prompt to build a report template prompt in our script:

You are a cybersecurity professional and CISO with more than 25 years
of experience. Create a detailed cyber risk assessment report outline
that would be in line with the following risk assessment process
outline:
1. Define Business Objectives
2. Asset Discovery/Identification
3. System Characterization/Classification
4. Network Diagrams and Data Flow Review
5. Risk Pre-Screening
6. Security Policy & Procedures Review
7. Cybersecurity Standards Selection and Gap Assessment/Audit
8. Vulnerability Assessment
9. Threat Assessment
10. Attack Vector Assessment
11. Risk Scenario Creation (using the Mitre ATT&CK Framework)
12. Validate Findings with Penetration Testing/Red Teaming
13. Risk Analysis (Aggregate Findings & Calculate Risk Scores)
14. Prioritize Risks
15. Assign Mitigation Methods and Tasks"

This approach guides the model to generate content that matches each section of the report.

Governance, Risk, and Compliance (GRC)146

In each section, the script calls the generate_section_content() function. This function
sends a chat message to the OpenAI API that includes the role of the model as a seasoned cybersecurity
professional, the task at hand (writing the specified section), and the provided system data. The model’s
response, which is the content for the specified section, is returned by this function and added to the
report list.

The markdown_to_docx() function converts the Markdown text in the report list into a Word
document. It does this by iterating over each line in the Markdown text, checking whether it starts
with a Markdown heading tag (such as #, ##, etc.), and adding it to the document as a heading or
paragraph accordingly.

Once all sections are generated and appended to the report list, the list is joined into a single string
and converted into a Word document using the markdown_to_docx() function.

There’s more…

The context for each section that describes certain aspects of the process is placeholder text that can
and probably should be modified by the user. We’ve used this approach for simplicity, but in later
recipes, we will demonstrate more advanced techniques on how to provide the actual risk assessment
process as real context for the report.

We encourage you to experiment with different assessment process outlines and datasets. Understanding
how to tweak the prompts and data to get the most effective results that suit your needs is a crucial
part of leveraging AI models such as gpt-3.5-turbo and gpt-4.

Important note
Do remember that, similar to the previous recipe, this method is limited by the chosen model’s
token limit. The gpt-3.5-turbo model has a token limit of 4,096, which constrains how much data
can be passed in from the system data file. However, we will be exploring advanced techniques
later in this book to get around this limitation. With these techniques, you’ll be able to handle
larger datasets and generate more comprehensive reports.

Hint
As with most recipes in this book, the gpt-3.5-turbo model was used for the recipes in this
chapter, so that the baseline is set with the most cost-effective model. The GPT-3.5 ChatGPT
model was also used so the baseline is set with the most efficient model without limitations.
However, you are encouraged to experiment with the use of different models such as gpt-3.5-
turbo, gpt-4, and the newly released gpt-3.5-turbo-16k to find the results that best suit your needs.

5
Security Awareness

and Training

In this chapter, we will delve into the fascinating realm of cybersecurity training and education,
highlighting the instrumental role that OpenAI’s large language models (LLMs) can play in enhancing
and enriching this critical process. We’ll embark on a journey to discover how ChatGPT can be
employed as an interactive tool to facilitate various aspects of cybersecurity awareness, from the
creation of comprehensive employee training material to the development of interactive cybersecurity
assessments, and even gamifying the learning process itself.

We’ll start by demonstrating how ChatGPT, coupled with Python and the OpenAI API, can be used
to automatically generate content for employee cybersecurity awareness training. In an era where
human error often precipitates security breaches, you’ll learn to leverage these powerful tools to create
engaging training materials tailored to your organization’s specific needs.

As we progress, we’ll explore how to create interactive assessments with ChatGPT, helping businesses
and institutions test their employees understanding and retention of critical cybersecurity concepts.
You’ll be guided through a hands-on approach to customize these assessments, enabling you to
construct a tool that aligns with your organization’s existing training content. By the end of this
section, you’ll have the capability to generate, export, and integrate these assessments into your
learning management systems.

Continuing our journey, we turn our attention towards email phishing - one of the most prevalent tactics
employed by cyber criminals. You’ll discover how to use ChatGPT to create a tool for interactive email
phishing training, thereby fostering a safer cyber environment for your organization. The interactive
nature of the training not only ensures a continuous, engaging, and efficient learning experience but
also allows for easy integration with live courses or learning management systems.

Security Awareness and Training148

Next, we’ll see how ChatGPT can assist in preparing for cybersecurity certification exams. By
creating a study guide tailored to certifications like CISSP and others, you’ll harness the capabilities of
ChatGPT to engage with potential exam questions, gather useful insights, and evaluate your readiness
for the exam.

Finally, we explore the exciting and dynamic world of gamification in cybersecurity education. As the
creator of ThreatGEN® Red vs. Blue, one of the world’s first educational cybersecurity video games, I believe
that the marriage of gaming and education offers a unique and engaging way to impart cybersecurity
skills, and the way of the future. With ChatGPT acting as a game master in a cybersecurity-themed
role-playing game, you’ll discover how this AI tool can manage game progression, keep score, and
provide detailed reports for improvement, adding a whole new dimension to the learning experience.

Through this chapter, you’ll not only appreciate the diverse educational applications of ChatGPT
but also gain the skills necessary to leverage its capabilities effectively in the realm of cybersecurity.

In this chapter, we will cover the following recipes:

• Developing Security Awareness Training Content

• Assessing Cybersecurity Awareness

• Interactive Email Phishing Training with ChatGPT

• ChatGPT-Guided Cybersecurity Certification Study

• Gamifying Cybersecurity Training

Technical requirement
For this chapter, you will need a web browser and a stable internet connection to access the
ChatGPT platform and set up your account. You will also need to have your OpenAI account
setup and have obtained your API key. If not, revisit Chapter 1 for details. Basic familiarity with
the Python programming language and working with the command line is necessary, as you’ll be
using Python 3.x, which needs to be installed on your system, for working with the OpenAI GPT
API and creating Python scripts. A code editor will also be essential for writing and editing Python
code and prompt files as you work through the recipes in this chapter.

The code files for this chapter can be found here: .

Developing Security Awareness Training Content
In the realm of cybersecurity, employee education is paramount. Human error remains one of the
leading causes of security breaches, making it vital to ensure that all members of an organization
understand their roles in maintaining cybersecurity. However, creating engaging and effective training
materials can be a time-consuming process.

Developing Security Awareness Training Content 149

This recipe will guide you in using Python and the OpenAI API to automatically generate content
for employee cybersecurity awareness training. The generated content can be utilized for both
slide presentations and lecture notes, which you can seamlessly integrate into your chosen slide
presentation application.

By leveraging the capabilities of the Python script and API prompt methods, you’ll be able to generate
a significant volume of content, much more than a single prompt in ChatGPT would typically produce.

The generated training materials in this recipe focus on the electric utility industry, a sector that
frequently faces high-stakes cyber threats. However, the techniques used in this recipe are meant to be
flexible, allowing you to specify any industry that suits your needs, and the appropriate content will be
generated to match your chosen industry. The guidance and procedures developed will be an invaluable
resource for educating employees about their roles in maintaining the organization’s cybersecurity.

Getting ready

Before diving into this recipe, ensure you have your OpenAI account set up and your API key on
hand. If not, you should refer back to Chapter 1 for the necessary setup details. You will also need
Python version 3.10.x or later.

Additionally, confirm you have the following Python libraries installed:

1. openai: This library enables you to interact with the OpenAI API. Install it using the command
pip install openai.

2. os: This is a built-in Python library, which allows you to interact with the operating system,
especially for accessing environment variables.

3. tqdm: This library is utilized for showing progress bars during the policy generation process.
Install it with pip install tqdm.

Once these requirements are in place, you are all set to dive into the script.

How to do it…

Important note
Before we begin, it should be noted that the gpt-4 model is highly recommended for the
prompts in this recipe. The gpt-3.5-turbo model sometimes provides inconsistent formatting
in its output, even after much experimentation with the prompt.

Security Awareness and Training150

In the following steps, we will guide you through creating a Python script that automates the process
of using an initial prompt to generate a list of slides, generating detailed information for each slide,
and finally, creating a document with all of the content suitable for copying and pasting directly into
the slide presentation app of your choice.

1. Import Necessary Libraries. The script begins by importing the required Python libraries,
which include openai (for OpenAI API calls), os (for environment variables), threading (for
parallel threading), time (for time-based functions), datetime (for date and time operations),
and tqdm (for progress bars).

import openai
from openai import OpenAI
import os
import threading
import time
from datetime import datetime
from tqdm import tqdm

2. Set Up OpenAI API and Prepare File Output. Here, we initialize the OpenAI API using your
API key. We also prepare the output file where the generated slide content will be stored. The
filename is based on the current date and time, ensuring it’s unique.

Set up the OpenAI API
openai.api_key = os.getenv("OPENAI_API_KEY")

current_datetime = datetime.now().strftime('%Y-%m-%d_%H-%M-%S')
output_file = f"Cybersecurity_Awareness_Training_{current_
datetime}.txt"

3. Define Helper Functions. These functions, content_to_text_file() and display_
elapsed_time(), are defined to handle writing slide content into a text file and displaying
elapsed time while waiting for the API call, respectively.

def content_to_text_file(slide_content: str, file):
 try:
 file.write(f"{slide_content.strip()}\n\n---\n\n")
 except Exception as e:
 print(f"An error occurred while writing the slide
content: {e}")
 return False
 return True

def display_elapsed_time(event):
 start_time = time.time()
 while not event.is_set():
 elapsed_time = time.time() - start_time

Developing Security Awareness Training Content 151

 print(f"\rElapsed time: {elapsed_time:.2f} seconds",
end="")
 time.sleep(1)
def display_elapsed_time(event):
 #... function content here...

4. Start the Elapsed Time Tracking Thread. An Event object is created and a separate thread is
started, running the display_elapsed_time() function.

Create an Event object
api_call_completed = threading.Event()

Starting the thread for displaying elapsed time
elapsed_time_thread = threading.Thread(target=display_elapsed_
time, args=(api_call_completed,))
elapsed_time_thread.start()

5. Prepare Initial Prompt. We set up the initial prompts for the model. The system role describes
the AI model’s persona, and the user role provides the instruction for the model to generate a
cybersecurity training outline.

messages=[
 {
 "role": "system",
 "content": "You are a cybersecurity professional with
more than 25 years of experience."
 },
 {
 "role": "user",
 "content": "Create a cybersecurity awareness training
slide list that will be used for a PowerPoint slide based
awareness training course, for company employees, for the
electric utility industry. This should be a single level list
and should not contain subsections or second-level bullets. Each
item should represent a single slide."
 }
]

6. Generate Training Outlinea. In this step, we make an API call to OpenAI’s gpt-3.5-turbo
model using the openai.ChatCompletion.create() function with the prepared
prompts to generate a training outline. If any exceptions occur during this process, they are
caught and printed to the console.

print(f"\nGenerating training outline...")
try:
 client = OpenAI()
 response = client.chat.completions.create(
 model="gpt-3.5-turbo",

Security Awareness and Training152

 messages=messages,
 max_tokens=2048,
 n=1,
 stop=None,
 temperature=0.7,
)
except Exception as e:
 print("An error occurred while connecting to the OpenAI
API:", e)
 exit(1)

7. Retrieve and Print the Training Outline. After the model generates the training outline, it is
extracted from the response and printed to the console for the user to review.

response.choices[0].message.content.strip()

print(outline + "\n")

8. Split the Outline into Sections. We split the outline into individual sections based on line
breaks (\n). This prepares them for more detailed content generation in the next step.

sections = outline.split("\n")

9. Generate Detailed Slide Content. In this section, the script iterates through each section in
the outline and generates detailed slide content for each. It opens the output text file, prepares
a new prompt for the model, resets the elapsed time event, calls the model again, retrieves the
generated slide content, and writes it to the output file.

try:
 with open(output_file, 'w') as file:
 for i, section in tqdm(enumerate(sections, start=1),
total=len(sections), leave=False):
 print(f"\nGenerating details for section {i}...")

 messages=[
 {
 "role": "system",
 "content": "You are a cybersecurity
professional with more than 25 years of experience."
 },
 {
 "role": "user",
 "content": f"You are currently working on a
PowerPoint presentation that will be used for a cybersecurity
awareness training course, for end users, for the electric
utility industry. The following outline is being used:\n\
n{outline}\n\nCreate a single slide for the following section

Developing Security Awareness Training Content 153

(and only this section) of the outline: {section}. The slides
are for the employee's viewing, not the instructor, so use the
appropriate voice and perspective. The employee will be using
these slides as the primary source of information and lecture
for the course. So, include the necessary lecture script in the
speaker notes section. Do not write anything that should go in
another section of the policy. Use the following format:\n\
n[Title]\n\n[Content]\n\n---\n\n[Lecture]"
 }
]

 api_call_completed.clear()

 try:
 response = client.chat.completions.create(
 model="gpt-3.5-turbo",
 messages=messages,
 max_tokens=2048,
 n=1,
 stop=None,
 temperature=0.7,
)
 except Exception as e:
 print("An error occurred while connecting to the
OpenAI API:", e)
 api_call_completed.set()
 exit(1)

 api_call_completed.set()

 slide_content = response.choices[0].message.content.
strip()

 if not content_to_text_file(slide_content, file):
 print("Failed to generate slide content.
Skipping to the next section...")
 continue

10. Handle Successful and Unsuccessful Runs. If the output text file is generated successfully, a
success message is printed to the console. If any exceptions occur during the process, they are
caught and the error message is printed.

print(f"\nText file '{output_file}' generated successfully!")

except Exception as e:
 print(f"\nAn error occurred while generating the output text
file: {e}")

Security Awareness and Training154

11. Clean Up Threads At the end of the script, we signal the elapsed_time_thread to stop
and join it back to the main process. This ensures no threads are left running unnecessarily.

api_call_completed.set()
elapsed_time_thread.join()

Here is how the final script should look:

import openai
from openai import OpenAI
import os
import threading
import time
from datetime import datetime
from tqdm import tqdm

Set up the OpenAI API
openai.api_key = os.getenv("OPENAI_API_KEY")

current_datetime = datetime.now().strftime('%Y-%m-%d_%H-%M-%S')
output_file = f"Cybersecurity_Awareness_Training_{current_datetime}.
txt"

def content_to_text_file(slide_content: str, file):
 try:
 file.write(f"{slide_content.strip()}\n\n---\n\n")
 except Exception as e:
 print(f"An error occurred while writing the slide content:
{e}")
 return False
 return True

Function to display elapsed time while waiting for the API call
def display_elapsed_time(event):
 start_time = time.time()
 while not event.is_set():
 elapsed_time = time.time() - start_time
 print(f"\rElapsed time: {elapsed_time:.2f} seconds", end="")
 time.sleep(1)

Create an Event object
api_call_completed = threading.Event()

Starting the thread for displaying elapsed time
elapsed_time_thread = threading.Thread(target=display_elapsed_time,
args=(api_call_completed,))

Developing Security Awareness Training Content 155

elapsed_time_thread.start()

Prepare initial prompt
messages=[
 {
 "role": "system",
 "content": "You are a cybersecurity professional with more
than 25 years of experience."
 },
 {
 "role": "user",
 "content": "Create a cybersecurity awareness training slide
list that will be used for a PowerPoint slide based awareness training
course, for company employees, for the electric utility industry. This
should be a single level list and should not contain subsections or
second-level bullets. Each item should represent a single slide."
 }
]

print(f"\nGenerating training outline...")
try:
 client = OpenAI()
 response = client.chat.completions.create(
 model="gpt-3.5-turbo",
 messages=messages,
 max_tokens=2048,
 n=1,
 stop=None,
 temperature=0.7,
)
except Exception as e:
 print("An error occurred while connecting to the OpenAI API:", e)
 exit(1)

Get outline
outline = response.choices[0].message.content.strip()

print(outline + "\n")

Split outline into sections
sections = outline.split("\n")

Open the output text file
try:
 with open(output_file, 'w') as file:

Security Awareness and Training156

 # For each section in the outline
 for i, section in tqdm(enumerate(sections, start=1),
total=len(sections), leave=False):
 print(f"\nGenerating details for section {i}...")

 # Prepare prompt for detailed info
 messages=[
 {
 "role": "system",
 "content": "You are a cybersecurity professional
with more than 25 years of experience."
 },
 {
 "role": "user",
 "content": f"You are currently working on a
PowerPoint presentation that will be used for a cybersecurity
awareness training course, for end users, for the electric utility
industry. The following outline is being used:\n\n{outline}\n\nCreate
a single slide for the following section (and only this section) of
the outline: {section}. The slides are for the employee's viewing,
not the instructor, so use the appropriate voice and perspective.
The employee will be using these slides as the primary source of
information and lecture for the course. So, include the necessary
lecture script in the speaker notes section. Do not write anything
that should go in another section of the policy. Use the following
format:\n\n[Title]\n\n[Content]\n\n---\n\n[Lecture]"
 }
]

 # Reset the Event before each API call
 api_call_completed.clear()

 try:
 response = client.chat.completions.create(
 model="gpt-3.5-turbo",
 messages=messages,
 max_tokens=2048,
 n=1,
 stop=None,
 temperature=0.7,
)
 except Exception as e:
 print("An error occurred while connecting to the
OpenAI API:", e)
 exit(1)

 # Set the Event to signal that the API call is complete

Developing Security Awareness Training Content 157

 api_call_completed.set()

 # Get detailed info
 slide_content = response.choices[0].message.content.
strip()

 # Write the slide content to the output text file
 if not content_to_text_file(slide_content, file):
 print("Failed to generate slide content. Skipping to
the next section...")
 continue

 print(f"\nText file '{output_file}' generated successfully!")

except Exception as e:
 print(f"\nAn error occurred while generating the output text file:
{e}")

At the end of the script, make sure to join the elapsed_time_thread
api_call_completed.set()
elapsed_time_thread.join()

The result is a comprehensive cybersecurity awareness training course in a text file, ready for conversion
into a PowerPoint presentation.

How it works…

This script leverages the advanced capabilities of the OpenAI models to generate engaging, instructive,
and well-structured content for a cybersecurity awareness training course. The process follows
several stages:

• API Initialization: The script starts by initializing the OpenAI API. It uses the API key to
connect with the OpenAI gpt-3.5-turbo model, which has been trained on a diverse range of
internet text. The model is designed to generate human-like text, making it ideal for creating
unique and comprehensive content for training materials.

• Date-Time Stamping and File Naming: The script creates a unique timestamp that it appends
to the output file name. This ensures each run of the script creates a distinct text file, preventing
any overwriting of previous outputs.

• Function Definitions: Two helper functions are defined: content_to_text_file() and
display_elapsed_time(). The former is used for writing generated slide content to a
text file, with error handling in place. The latter, working with Python’s threading capabilities,
provides a real-time display of elapsed time during API calls.

Security Awareness and Training158

• Outline Generation: The script constructs a prompt that reflects the requirements of the course
and sends this to the API. The API uses its contextual understanding to generate an outline
matching these criteria.

• Outline Segmentation: After the outline is generated, the script separates it into individual
sections. Each section will later be developed into a full-fledged slide.

• Detailed Content Generation: For each section in the outline, the script prepares a detailed
prompt incorporating the entire outline and the particular section. This is sent to the API,
which returns detailed slide content, split into slide content and lecture notes.

• Writing to File: Each generated slide content is written to the output file using the content_
to_text_file() function. If a slide fails to generate, the script skips to the next section
without halting the entire process.

• Thread Management and Exception Handling: The script includes robust thread management
and exception handling to ensure smooth operation. If an error occurs while writing to the output
file, the script reports the issue and gracefully shuts down the thread displaying elapsed time.

By employing the OpenAI API and the gpt-3.5-turbo model, this script efficiently generates a structured
and comprehensive cybersecurity awareness training course. The course can then be converted into a
PowerPoint presentation. The generated content is both engaging and instructive, making it a valuable
resource for the target audience.

There’s more…

The potential of this script is not limited to text output alone. With some modifications, you could
integrate it with the Python library python-pptx to generate Microsoft PowerPoint presentations
directly, thus streamlining the process even further.

At the time of writing, this method is in its development stage and is being actively explored for
improvement and refinement. For the adventurous and the curious, you can access the modified script on
GitHub at: https://github.com/PacktPublishing/ChatGPT-for-Cybersecurity-
Cookbook. This script promises an exciting step forward in automating the creation of cybersecurity
training material.

To delve deeper into the workings and capabilities of the python-pptx library, which would allow
you to generate and manipulate PowerPoint presentations in Python, you can visit its comprehensive
documentation at: https://python-pptx.readthedocs.io/en/latest/.

As technology advances, the integration of AI and automation with content creation is an evolving
landscape with immense potential. This script is just the starting point, and the possibilities for
customization and expansion are endless!

https://github.com/PacktPublishing/ChatGPT-for-Cybersecurity-Cookbook
https://github.com/PacktPublishing/ChatGPT-for-Cybersecurity-Cookbook
https://python-pptx.readthedocs.io/en/latest/

Assessing Cybersecurity Awareness 159

Assessing Cybersecurity Awareness
With an increasing number of cyber threats around us, cybersecurity awareness has never been more
critical. This recipe will walk you through creating an interactive cybersecurity awareness assessment
using ChatGPT. The tool we are building can be a vital instrument for businesses and institutions
looking to educate their employees about cybersecurity. The quiz could serve as a follow-up to a
cybersecurity awareness training course, testing the employees understanding and retention of the
content. Furthermore, the assessment can be customized to match your existing cybersecurity training
content, making it highly adaptable to any organization’s specific needs.

The most interesting part? At the end of the guide, you will be able to export the assessment questions
and an answer key to a text document. This feature allows for easy integration with live courses or
Learning Management Systems (LMS). Whether you are a cybersecurity instructor, a business
leader, or an enthusiast, this recipe will provide a practical and innovative way to engage with
cybersecurity education.

Getting ready

Before diving into this recipe, ensure you have your OpenAI account set up and your API key on
hand. If not, you should refer back to Chapter 1 for the necessary setup details. You will also need
Python version 3.10.x or later.

Additionally, confirm you have the following Python libraries installed:

1. openai: This library enables you to interact with the OpenAI API. Install it using the command
pip install openai.

2. os: This is a built-in Python library, which allows you to interact with the operating system,
especially for accessing environment variables.

3. tqdm: This library is utilized for showing progress bars during the policy generation process.
Install it with pip install tqdm.

4. A text file named trainingcontent.txt: This file should contain the categories you wish
to base your assessment on. Each line should contain one category. This file should be in the
same directory as your Python script.

How to do it…

Before we begin, let’s note a few things. The assessment will consist of multiple-choice questions
generated by ChatGPT. Each question will come with four options, and only one of these will be
correct. The responses you provide will guide ChatGPT’s interaction, helping it keep score, provide
explanations, and give feedback on your performance. So let’s get started.

1. Log into your OpenAI account and access the ChatGPT interface. Visit the website at
https://chat.openai.com to get started.

https://chat.openai.com

Security Awareness and Training160

2. Generate a cybersecurity awareness training assessment. Use the following prompt to instruct
ChatGPT to start creating your cybersecurity awareness training assessment.

You are a cybersecurity professional and instructor with more
than 25 years of experience. Create a cybersecurity awareness
training (for employees) assessment test via this chat
conversation. Provide no other response other than to ask me a
cybersecurity awareness related question and provide 4 multiple
choice options with only one being the correct answer. Provide
no further generation or response until I answer the question.
If I answer correctly, just respond with "Correct" and a short
description to further explain the answer, and then repeat the
process. If I answer incorrectly, respond with "Incorrect", then
the correct answer, then a short description to further explain
the answer. Then repeat the process.

Ask me only 10 questions in total throughout the process and
remember my answer to them all. After the last question has been
answered, and after your response, end the assessment and give
me my total score, the areas/categories I did well in and where
I need to improve.

3. Generate a content specific assessment. If you want a specific assessment for a cybersecurity
awareness course, such as the one created in the Developing Security Awareness Training Content
recipe, use this alternative prompt:

You are a cybersecurity professional and instructor with more
than 25 years of experience. Create a cybersecurity awareness
training (for employees) assessment test via this chat
conversation. Provide no other response other than to ask me a
cybersecurity awareness related question and provide 4 multiple
choice options with only one being the correct answer. Provide
no further generation or response until I answer the question.
If I answer correctly, just respond with "Correct" and a short
description to further explain the answer, and then repeat the
process. If I answer incorrectly, respond with "Incorrect", then
the correct answer, then a short description to further explain
the answer. Then repeat the process.

Ask me only 10 questions in total throughout the process and
remember my answer to them all. After the last question has been
answered, and after your response, end the assessment and give
me my total score, the areas/categories I did well in and where
I need to improve.

Base the assessment on the following categories:

Introduction to Cybersecurity
Importance of Cybersecurity in the Electric Utility Industry
Understanding Cyber Threats: Definitions and Examples
Common Cyber Threats in the Electric Utility Industry

Assessing Cybersecurity Awareness 161

The Consequences of Cyber Attacks on Electric Utilities
Identifying Suspicious Emails and Phishing Attempts
The Dangers of Malware and How to Avoid Them
Safe Internet Browsing Practices
The Importance of Regular Software Updates and Patches
Securing Mobile Devices and Remote Workstations
The Role of Passwords in Cybersecurity: Creating Strong
Passwords
Two-Factor Authentication and How It Protects You
Protecting Sensitive Information: Personal and Company Data
Understanding Firewalls and Encryption
Social Engineering: How to Recognize and Avoid
Handling and Reporting Suspected Cybersecurity Incidents
Role of Employees in Maintaining Cybersecurity
Best Practices for Cybersecurity in the Electric Utility
Industry

Tip
Experiment with the number of questions asked and the categories asked to get the results that
work best for your needs.

How it works…

The success of this recipe lies in the intricate design of the prompts and the manner in which they guide
ChatGPT’s behavior to provide an interactive, Q&A-based assessment experience. Each instruction
within the prompt corresponds to a task that ChatGPT is capable of executing. The OpenAI models have
been trained on a diverse range of data and can generate relevant questions based on the input provided.

The initial portion of the prompt positions ChatGPT as an experienced cybersecurity professional
and instructor, which sets the context for the kind of responses we expect. This is crucial in guiding
the model to generate content related to cybersecurity awareness.

We further instruct the model to maintain the flow of a standard assessment: posing a question, waiting
for a response, then giving feedback. We explicitly state that the AI should ask a question and provide
four multiple choice options, giving it a clear structure to follow. The feedback, whether it’s Correct
or InCorrect, is designed to include a short explanation to supplement the learner’s understanding.

One unique aspect of the prompt design is its built-in memory management. We instruct the model
to remember all responses throughout the conversation. This way, we get a cumulative scoring
mechanism, adding an element of progression and continuity to the interaction. This isn’t perfect, as
AI models have limited memory and cannot track context beyond a certain limit, but it’s effective for
the scope of this application.

Security Awareness and Training162

Importantly, we restrict the model’s responses to maintain the assessment context. The prompt explicitly
states that the model should provide no other response apart from the question and feedback loop. This
restriction is vital in ensuring that the model doesn’t deviate from the intended conversational flow.

For custom assessments, we provide a list of specific topics to base the questions on, leveraging the
model’s ability to understand and generate questions from given subjects. This way, the model tailors
the assessment to the specific needs of a cybersecurity awareness course.

In essence, the prompt’s structure and creativity help harness ChatGPT’s capabilities, transforming it
into an interactive tool for cybersecurity awareness assessment.

Important note
While the models are good at understanding and generating human-like text, they don’t know
things in the way humans do. They can’t remember specific details beyond what is available
in the conversation context.

Different models have different strengths and weaknesses you might want to consider for this
recipe. GPT-4 has the ability to handle longer context (more assessment questions), but it’s
a bit slower and you can only submit 25 prompts over 3 hours (at the time of this writing).
GPT-3.5 is faster and doesn’t have any prompt limitations. However, it might lose context
over long assessments and provide inaccurate results at the end of the assessment.

In a nutshell, this recipe leverages the capabilities of OpenAI models to create a highly interactive and
informative cybersecurity awareness assessment.

There’s more…

If you were using a LMS, you might prefer a question set document rather than an interactive method
like ChatGPT. In this case, Python scripting provides a convenient alternative, creating a static question
set that you can then import into your LMS or use in an in-person training session.

Tip
Different models have different context memory windows. The more questions the script
generates, the better the chance that the model will lose context along the way and provide
inconsistent or out of context results. For more questions, try using the gpt-4 model, which
has twice the context window as gpt-3.5-turbo, or even the new gpt-3.5-turbo-16k, which
has 4 times the context window.

Assessing Cybersecurity Awareness 163

Here are the steps to do it:

1. Import necessary libraries. For this script, we’ll need to import openai, os, threading, time,
datetime, and tqdm. These libraries will allow us to interact with the OpenAI API, manage
files, and create multi-threading.

import openai
from openai import OpenAI
import os
import threading
import time
from datetime import datetime
from tqdm import tqdm

2. Set up the OpenAI API. You will need to provide your OpenAI API key, which you can store
as an environment variable for security purposes.

openai.api_key = os.getenv("OPENAI_API_KEY")

3. Set up the filename for the assessment. We use the current date and time to create a unique
name for each assessment.

current_datetime = datetime.now().strftime('%Y-%m-%d_%H-%M-%S')
assessment_name = f"Cybersecurity_Assessment_{current_datetime}.
txt"

4. Define the function to generate questions. This function creates a conversation with the AI
model, using a similar approach as in the interactive session. It includes a function parameter
for the categories.

def generate_question(categories: str) -> str:
 messages = [
 {"role": "system", "content": 'You are a cybersecurity
professional and instructor with more than 25 years of
experience.'},
 {"role": "user", "content": f'Create a cybersecurity
awareness training (for employees) assessment test. Provide
no other response other than to create a question set of 10
cybersecurity awareness questions. Provide 4 multiple choice
options with only one being the correct answer. After the
question and answer choices, provide the correct answer and
then provide a short contextual description. Provide no further
generation or response.\n\nBase the assessment on the following
categories:\n\n{categories}'},
]

 client = OpenAI()
response = client.chat.completions.create(

Security Awareness and Training164

 model="gpt-3.5-turbo",
 messages=messages,
 max_tokens=2048,
 n=1,
 stop=None,
 temperature=0.7,
)

 return response.choices[0].message.content.strip()

Important note
You can adjust the number of questions here to suit your needs. You can also modify the prompt
to tell it you want at least x questions per category.

5. Display elapsed time. This function is used to provide a user-friendly display of elapsed time
during the API call.

def display_elapsed_time():
 start_time = time.time()
 while not api_call_completed:
 elapsed_time = time.time() - start_time
 print(f"\rElapsed time: {elapsed_time:.2f} seconds",
end="")
 time.sleep(1)

6. Prepare and execute the API call. We read the content categories from a file and initiate a
thread to display the elapsed time. We then call the function to generate the questions.

try:
 with open("trainingcontent.txt") as file:
 content_categories = ', '.join([line.strip() for line in
file.readlines()])
except FileNotFoundError:
 content_categories = ''

api_call_completed = False
elapsed_time_thread = threading.Thread(target=display_elapsed_
time)
elapsed_time_thread.start()

try:
 questions = generate_question(content_categories)
except Exception as e:
 print(f"\nAn error occurred during the API call: {e}")

Assessing Cybersecurity Awareness 165

 exit()

api_call_completed = True
elapsed_time_thread.join()

7. Save the generated questions. Once the questions are generated, we write them to a file with
the previously defined filename.

try:
 with open(assessment_name, 'w') as file:
 file.write(questions)
 print("\nAssessment generated successfully!")
except Exception as e:
 print(f"\nAn error occurred during the assessment
generation: {e}")

Here’s how the complete script should look:

import openai
from openai import OpenAI
import os
import threading
import time
from datetime import datetime
from tqdm import tqdm

Set up the OpenAI API
openai.api_key = os.getenv("OPENAI_API_KEY")

current_datetime = datetime.now().strftime('%Y-%m-%d_%H-%M-%S')
assessment_name = f"Cybersecurity_Assessment_{current_datetime}.txt"

def generate_question(categories: str) -> str:
 # Define the conversation messages
 messages = [
 {"role": "system", "content": 'You are a cybersecurity
professional and instructor with more than 25 years of experience.'},
 {"role": "user", "content": f'Create a cybersecurity awareness
training (for employees) assessment test. Provide no other response
other than to create a question set of 10 cybersecurity awareness
questions. Provide 4 multiple choice options with only one being
the correct answer. After the question and answer choices, provide
the correct answer and then provide a short contextual description.
Provide no further generation or response.\n\nBase the assessment on
the following categories:\n\n{categories}'},
]

Security Awareness and Training166

 # Call the OpenAI API
 client = OpenAI()
 response = client.chat.completions.create(
 model="gpt-3.5-turbo",
 messages=messages,
 max_tokens=2048,
 n=1,
 stop=None,
 temperature=0.7,
)

 # Return the generated text
 return response.choices[0].message.content.strip()

Function to display elapsed time while waiting for the API call
def display_elapsed_time():
 start_time = time.time()
 while not api_call_completed:
 elapsed_time = time.time() - start_time
 print(f"\rElapsed time: {elapsed_time:.2f} seconds", end="")
 time.sleep(1)

Read content categories from the file
try:
 with open("trainingcontent.txt") as file:
 content_categories = ', '.join([line.strip() for line in file.
readlines()])
except FileNotFoundError:
 content_categories = ''

api_call_completed = False
elapsed_time_thread = threading.Thread(target=display_elapsed_time)
elapsed_time_thread.start()

Generate the report using the OpenAI API
try:
 # Generate the question
 questions = generate_question(content_categories)
except Exception as e:
 print(f"\nAn error occurred during the API call: {e}")
 api_call_completed = True
 exit()

api_call_completed = True

Assessing Cybersecurity Awareness 167

elapsed_time_thread.join()

Save the questions into a text file
try:
 with open(assessment_name, 'w') as file:
 file.write(questions)
 print("\nAssessment generated successfully!")
except Exception as e:
 print(f"\nAn error occurred during the assessment generation:
{e}")

After these steps, you’ll have a text file with a set of questions generated by the model that you can
use for your cybersecurity awareness training!

Here’s how it works:

This Python script is designed to generate a set of cybersecurity awareness training questions. It works by
making use of the OpenAI gpt-3.5-turbo model through a series of API calls to generate the questions
based on specific categories. The categories are read from a text file named trainingcontent.
txt, where each line is considered a separate category.

The script first imports the necessary libraries, including openai to interact with the gpt-3.5-turbo
model, os for operating system-dependent functionality such as reading environment variables
(the API key, in this case), threading and time to create a separate thread that displays the elapsed
time during the API call, datetime to get the current date and time for naming the output file, and
tqdm to provide progress bars.

Once the API key is set, the script then constructs a filename for the output assessment file. It appends
the current date and time to a base name to ensure the output file has a unique name each time the
script is run.

Next, the generate_question function is defined, which sets up a conversation with the
ChatGPT model. It starts by setting the system role message, establishing the perspective of the user
(a cybersecurity professional), and then asks for the creation of a cybersecurity awareness training
assessment test. It uses the categories parameter in the user’s message to the model. This parameter
is replaced later with the actual categories read from the file.

The display_elapsed_time function is designed to display the elapsed time since the API call
started until it finishes. This function runs on a separate thread to keep updating the elapsed time on
the console without blocking the main thread where the API call is made.

The content categories are read from the file trainingcontent.txt, and a new thread is created
to display elapsed time. An API call is then made by calling the generate_question function
and passing the content categories. If an exception occurs during the API call (for example, if there is
a problem with the network connection), the script stops execution and reports the error.

Security Awareness and Training168

Finally, once the API call is complete and the generated questions are received, they are written into
the output file. If any exception occurs during the writing process (for example, if there is a problem
with write permissions), the error is reported to the console.

Overall, this script provides a practical way to generate a set of questions for cybersecurity awareness
training using the OpenAI gpt-3.5-turbo model. The structure of the prompt and the specific parameters
used in the API call help ensure that the output is tailored to the specific needs of the training.

Interactive Email Phishing Training with ChatGPT
With the rise of cyber threats, organizations of all sizes are increasingly aware of the importance of
training their staff on email phishing, a common and potentially dangerous tactic employed by cyber
criminals. In this recipe, we’ll be using ChatGPT to create a tool for interactive email phishing training.

This recipe guides you through the process of crafting a specialized prompt to turn ChatGPT into
a simulation tool for phishing attack awareness. With this approach, you can use ChatGPT to train
users to identify potential phishing emails, thereby increasing their awareness and helping to protect
your organization from potential security threats.

What makes this truly powerful is its interactive nature. ChatGPT will present the user with a
series of email scenarios. The user will then decide whether the email is a phishing attempt or a
legitimate email, and can even ask for more details such as the URL to a link in the email or header
information, for example. ChatGPT will provide feedback, ensuring a continuous, engaging, and
efficient learning experience.

Additionally, we will also cover how to use Python in conjunction with these prompts to create
exportable email simulation scenarios. This feature can be beneficial in situations where you might
want to use the generated scenarios outside of ChatGPT, such as in a live course or in a LMS.

Getting ready

Before diving into this recipe, ensure you have your OpenAI account set up and your API key on
hand. If not, you should refer back to Chapter 1 for the necessary setup details. You will also need
Python version 3.10.x or later.

Additionally, confirm you have the following Python libraries installed:

1. openai: This library enables you to interact with the OpenAI API. Install it using the command
pip install openai.

2. os: This is a built-in Python library, which allows you to interact with the operating system,
especially for accessing environment variables.

3. tqdm: This library is utilized for showing progress bars during the policy generation process.
Install it with pip install tqdm.

Interactive Email Phishing Training with ChatGPT 169

How to do it…

In this section, we will walk you through the process of creating an interactive email phishing training
simulation using ChatGPT. The instructions are broken down into steps, starting from logging into
your OpenAI account and ending with generating phishing training simulations.

1. Access the ChatGPT interface. Log in to your OpenAI account and go to the ChatGPT interface
at https://chat.openai.com.

2. Initialize the simulation by entering the specialized prompt. The following prompt is carefully
designed to instruct ChatGPT to act as a phishing training simulator. Enter the prompt into
the text box and press Enter.

"You are a cybersecurity professional and expert in adversarial
social engineering tactics, techniques, and procedures, with
25 years of experience. Create an interactive email phishing
training simulation (for employees). Provide no other response
other than to ask the question, "Is the following email real
or a phishing attempt? (You may ask clarification questions
such as URL information, header information, etc.)" followed
by simulated email, using markdown language formatting. The
email you present can represent a legitimate email or a phishing
attempt, which can use one or more various techniques. Provide
no further generation or response until I answer the question.
If I answer correctly, just respond with "Correct" and a short
description to further explain the answer, and then restart
the process from the beginning. If I answer incorrectly,
respond with "Incorrect", then the correct answer, then a short
description to further explain the answer. Then repeat the
process from the beginning.

Present me with only 3 simulations in total throughout the
process and remember my answer to them all. At least one of
the simulations should simulate a real email. After the last
question has been answered, and after your response, end the
assessment and give me my total score, the areas I did well in
and where I need to improve."

Tip
Be sure to change the number of simulations ChatGPT provides, to suit your needs.

Now, ChatGPT will generate interactive email phishing scenarios based on your instructions.
Respond to each scenario as if you were the employee undergoing the training. After the third
scenario and your final response, ChatGPT will calculate and provide your total score, areas
of strength, and areas for improvement.

https://chat.openai.com

Security Awareness and Training170

How it works…

At the heart of this recipe lies the specialized prompt. This prompt is constructed to instruct ChatGPT
to act as an interactive phishing training tool, delivering a series of email phishing scenarios. The
prompt follows certain design principles which are essential to its effectiveness and interaction with
the OpenAI models. Here, we’ll dissect those principles:

1. Defining the role: The prompt starts by setting up the role of the AI model – a cybersecurity
professional and expert in adversarial social engineering tactics, techniques, and procedures,
with 25 years of experience. By defining the AI’s persona, we direct the model to generate
responses using the knowledge and expertise expected from such a role.

2. Detailed instructions and simulation: The instructions given in the prompt are meticulously
detailed, and it is this precision that enables ChatGPT to create effective and realistic phishing
simulations. The prompt asks the AI model to generate a phishing email scenario, followed by
the question, “Is the following email real or a phishing attempt?”. Notably, the AI model is given
the liberty to provide additional clarifying questions, such as asking about URL information,
header information, etc., giving it the freedom to generate more nuanced and complex scenarios.

By asking the model to generate these emails using markdown language formatting, we ensure
that the simulated emails have the structure and appearance of genuine emails, enhancing the
realism of the simulation. The AI is also instructed to present emails that can represent either
legitimate correspondence or a phishing attempt, ensuring a diverse range of scenarios for the
user to evaluate.

How can ChatGPT convincingly simulate phishing emails? Well, ChatGPT’s strength comes from
the wide variety of text it has been trained on, including (but not limited to) countless examples
of email correspondences and probably some instances of phishing attempts or discussions
around them. From this extensive training, the model has developed a robust understanding of
the format, tone, and common phrases used in both legitimate and phishing emails. So, when
prompted to simulate a phishing email, it can draw on this knowledge to generate a believable
email that mirrors the features of a real-world phishing attempt.

As the model doesn’t generate responses until it receives an answer to its question, it guarantees
an interactive user experience. Based on the user’s response, the model provides relevant feedback
(Correct or Incorrect), the correct answer if the user was wrong, and a brief explanation. This
detailed, immediate feedback aids the learning process and helps to embed the knowledge
gained from each simulated scenario.

It’s worth noting that, although the model has been trained to generate human-like text, it
doesn’t understand the content in the same way humans do. It doesn’t have beliefs, opinions,
or access to real-time, world-specific information or personal data unless explicitly provided in
the conversation. Its responses are merely predictions based on its training data. The carefully
designed prompt and structure are what guide the model to generate useful, contextually
appropriate content for this particular task.

Interactive Email Phishing Training with ChatGPT 171

3. Feedback mechanism: The prompt instructs the AI to provide feedback based on the user’s
answer, further explaining the answer. This creates an iterative feedback loop that enhances
the learning experience.

4. Keeping track of progress: The prompt instructs the AI to present three simulations in total
and to remember the user’s answer to all of them. This ensures continuity in the training and
enables tracking of the user’s progress.

5. Scoring and areas of improvement: After the final simulation and response, the prompt
instructs the AI to end the assessment and provide a total score along with areas of strength
and areas for improvement. This helps the user understand their proficiency and the areas they
need to focus on for improvement.

ChatGPT’s models are trained on a broad range of internet text. However, it’s essential to note that
it does not know specifics about which documents were part of its training set or have access to any
private, confidential, or proprietary information. It generates responses to prompts by recognizing
patterns and producing text that statistically aligns with the patterns it observed in its training data.

By structuring our prompt in a way that clearly defines the interactive assessment context and expected
behavior, we’re able to leverage this pattern recognition to create a highly specialized interactive tool.
The ability of the OpenAI models to handle such a complex and interactive use case demonstrates
their powerful capability and flexibility.

There’s more…

If you’re using a LMS or conducting a live class, you might prefer to have a list of scenarios and details
rather than an interactive method like ChatGPT. In these settings, it’s often more practical to provide
learners with specific scenarios to ponder and discuss in a group setting. The list can also be used for
assessments or training materials, offering a static reference point that learners can revisit as needed,
or as content for a phishing simulation system.

By modifying the script from the previous recipe, you can instruct the ChatGPT model to produce a
set of phishing email simulations complete with all necessary details. The resulting text can be saved
into a file for easy distribution and usage in your training environment.

Since this script is so similar to the one from the previous recipe, we’ll just cover the modifications
instead of steppping through the entire script again.

Security Awareness and Training172

Let’s walk through the necessary modifications:

1. Rename and modify the function: The function generate_question is renamed to
generate_email_simulations, and its argument list and body are updated to reflect
its new purpose. It will now generate the phishing email simulations instead of cybersecurity
awareness questions. This is done by updating the messages that are passed to the OpenAI
API within this function.

def generate_email_simulations() -> str:
 # Define the conversation messages
 messages = [
 {"role": "system", "content": 'You are a cybersecurity
professional and expert in adversarial social engineering
tactics, techniques, and procedures, with 25 years of
experience.'},
 {"role": "user", "content": 'Create a list of fictitious
emails for an interactive email phishing training. The emails
can represent a legitimate email or a phishing attempt, using
one or more various techniques. After each email, provide the
answer, contextual descriptions, and details for any other
relevant information such as the URL for any links in the email,
header information. Generate all necessary information in the
email and supporting details. Present 3 simulations in total. At
least one of the simulations should simulate a real email.'},
]
 ...

Important note
You can adjust the number of scenarios here to suit your needs. In this example, we’ve requested
3 scenarios.

2. Remove unnecessary code: The script no longer reads content categories from an input file,
as it’s not required in your use case.

3. Update variable and function names: All variable and function names referring to “questions”
or “assessment” have been renamed to refer to “email simulations” instead, to make the script
more understandable in the context of its new purpose.

4. Call the appropriate function: The generate_email_simulations function is called
instead of the generate_question function. This function initiates the process of generating
the email simulations.

Generate the email simulations
email_simulations = generate_email_simulations()

Interactive Email Phishing Training with ChatGPT 173

Tip
Like the previous method, more scenarios will require a model that supports a larger context
window. However, the gpt-4 model seems to provide better results in terms of accuracy, depth,
and consistency with its generations for this recipe.

Here’s how the complete script should look:

import openai
from openai import OpenAI
import os
import threading
import time
from datetime import datetime

Set up the OpenAI API
openai.api_key = os.getenv("OPENAI_API_KEY")

current_datetime = datetime.now().strftime('%Y-%m-%d_%H-%M-%S')
assessment_name = f"Email_Simulations_{current_datetime}.txt"

def generate_email_simulations() -> str:
 # Define the conversation messages
 messages = [
 {"role": "system", "content": 'You are a cybersecurity
professional and expert in adversarial social engineering tactics,
techniques, and procedures, with 25 years of experience.'},
 {"role": "user", "content": 'Create a list of fictitious
emails for an interactive email phishing training. The emails can
represent a legitimate email or a phishing attempt, using one or more
various techniques. After each email, provide the answer, contextual
descriptions, and details for any other relevant information such as
the URL for any links in the email, header information. Generate all
necessary information in the email and supporting details. Present 3
simulations in total. At least one of the simulations should simulate
a real email.'},
]

 # Call the OpenAI API
 client = OpenAI()
 response = client.chat.completions.create(
 model="gpt-3.5-turbo",
 messages=messages,
 max_tokens=2048,
 n=1,

Security Awareness and Training174

 stop=None,
 temperature=0.7,
)

 # Return the generated text
 return response.choices[0].message.content.strip()

Function to display elapsed time while waiting for the API call
def display_elapsed_time():
 start_time = time.time()
 while not api_call_completed:
 elapsed_time = time.time() - start_time
 print(f"\rElapsed time: {elapsed_time:.2f} seconds", end="")
 time.sleep(1)

api_call_completed = False
elapsed_time_thread = threading.Thread(target=display_elapsed_time)
elapsed_time_thread.start()

Generate the report using the OpenAI API
try:
 # Generate the email simulations
 email_simulations = generate_email_simulations()
except Exception as e:
 print(f"\nAn error occurred during the API call: {e}")
 api_call_completed = True
 exit()

api_call_completed = True
elapsed_time_thread.join()

Save the email simulations into a text file
try:
 with open(assessment_name, 'w') as file:
 file.write(email_simulations)
 print("\nEmail simulations generated successfully!")
except Exception as e:
 print(f"\nAn error occurred during the email simulations
generation: {e}")

By running this modified script, the ChatGPT model is directed to generate a series of interactive email
phishing training scenarios. The script then collects the generated scenarios, checks them for errors,
and writes them to a text file. This gives you a ready-made training resource that you can distribute
to your learners or incorporate into your LMS or live training sessions.

ChatGPT-Guided Cybersecurity Certification Study 175

ChatGPT-Guided Cybersecurity Certification Study
This recipe will guide you through the process of using ChatGPT to create an interactive certification
study guide, specifically designed for cybersecurity certifications like CISSP. The approach will
leverage ChatGPT’s conversational abilities to pose a series of questions mimicking the ones typically
found on the specified certification exam. Furthermore, ChatGPT will provide you with additional
context after each question, offering helpful insights and explanations. To round off the study session,
ChatGPT will also evaluate your performance, highlighting areas for improvement and suggesting
suitable study resources. This recipe could serve as a powerful study tool for anyone preparing for a
cybersecurity certification exam.

Getting ready

Before diving in to this recipe, ensure you have your OpenAI account set up and your API key on
hand. If not, you should refer back to Chapter 1 for the necessary setup details. You will also need
Python version 3.10.x or later.

Additionally, confirm you have the following Python libraries installed:

1. openai: This library enables you to interact with the OpenAI API. Install it using the command
pip install openai.

2. os: This is a built-in Python library, which allows you to interact with the operating system,
especially for accessing environment variables.

3. tqdm: This library is utilized for showing progress bars during the policy generation process.
Install it with pip install tqdm.

How to do it…

This interactive certification study guide will be created directly on the OpenAI platform, specifically
in the ChatGPT interface. The process is simple and straightforward.

1. Access the ChatGPT interface. Log into your OpenAI account and go to the ChatGPT interface
at https://chat.openai.com.

2. Initialize the session by entering the specialized prompt. The following prompt is carefully
designed to instruct ChatGPT to act as a phishing training simulator. Enter the prompt into
the text box and press Enter.

You are a cybersecurity professional and training instructor
with more than 25 years of experience. Help me study for the
CISSP exam. Generate 5 questions, one at a time, just as they
will appear on the exam or practice exams. Present the question
and options and nothing else and wait for my answer. If I answer
correctly, say, "Correct" and move on to the next question.
If I answer incorrectly, say, "Incorrect", present me with the

Security Awareness and Training176

correct answer, and any context for clarification, and then move
on to the next question. After all questions have been answered,
tally my results, present me with my score, tell me what areas I
need to improve on, and present me with appropriate resources to
help me study for the areas I need to improve in.

Important note
The certification exam mentioned in the prompt can be replaced with the one you’re interested
in. However, remember that ChatGPT’s training data only extends up to September 2021, so
it won’t have information about certifications updated or introduced after that date.

Tip
We will be presenting another recipe later in this book on how to get ChatGPT and/or the
OpenAI to access more recent information for more up-to-date exam practice.

How it works…

This recipe leverages the AI’s role-playing and interactive conversational capabilities to create an
engaging study session. When given the role of a seasoned cybersecurity professional and instructor,
ChatGPT generates a sequence of realistic certification exam questions, validates your answers,
provides corrective feedback, and supplies additional context or explanation where needed. The
prompt structure ensures that the AI maintains the focus on the task at hand, guiding the interaction
to create an effective learning environment.

The approach relies on ChatGPT’s ability to understand and generate human-like text based
on the instructions provided. In the context of this recipe, the AI model employs its underlying
language understanding to generate relevant cybersecurity certification exam questions and provide
informative responses.

Important note
As has been mentioned throughout this book, the chosen model dictates the limitations you’ll
face. GPT-4 offers a significantly larger context window (allowing for more questions before
potentially straying) than GPT-3.5. If you have access to the OpenAI Playground, you can use
the gpt-3.5-turbo-16k model, which has the largest context window to date.

ChatGPT-Guided Cybersecurity Certification Study 177

Figure 5.1 – Using the gpt-3.5-turbo-16k model in the OpenAI Playground

There’s more…

If you’re interested in generating a complete list of questions for a study group or class, you can adapt
the script from the previous recipe (Interactive Email Phishing Training with ChatGPT). Here is the
role and prompt to use:

Role:

You are a cybersecurity professional and training instructor with more
than 25 years of experience.

Prompt:

Help me study for the CISSP exam. Generate a list of 25 multiple
choice questions, just as they will appear on the exam or practice
exams. Present the question followed by the answer choices. After all
of the questions have been listed, automatically provide an answer key
without waiting for a prompt.

Remember to replace the certification name if needed, adjust the number of questions, choose the
appropriate model, and modify the filename for the generated output (unless you’re okay with the file
being called “Email_Simulations_...”).

Here’s an example of what the modified script would like like:

import openai
from openai import OpenAI
import os
import threading

Security Awareness and Training178

import time
from datetime import datetime

Set up the OpenAI API
openai.api_key = os.getenv("OPENAI_API_KEY")

current_datetime = datetime.now().strftime('%Y-%m-%d_%H-%M-%S')
assessment_name = f"Exam_questions_{current_datetime}.txt"

def generate_email_simulations() -> str:
 # Define the conversation messages
 messages = [
 {"role": "system", "content": 'You are a cybersecurity
professional and training instructor with more than 25 years of
experience.'},
 {"role": "user", "content": 'Help me study for the CISSP exam.
Generate a list of 25 multiple choice questions, just as they will
appear on the exam or practice exams. Present the question follow
by the answer choices. After all of the questions have been listed,
automatically provide an answer key without waiting for a prompt.'},
]

 # Call the OpenAI API
 client = OpenAI()
 response = client.chat.completions.create(
 model="gpt-3.5-turbo",
 messages=messages,
 max_tokens=2048,
 n=1,
 stop=None,
 temperature=0.7,
)

 # Return the generated text
 return response.choices[0].message.content.strip()

Function to display elapsed time while waiting for the API call
def display_elapsed_time():
 start_time = time.time()
 while not api_call_completed:
 elapsed_time = time.time() - start_time
 print(f"\rElapsed time: {elapsed_time:.2f} seconds", end="")
 time.sleep(1)

api_call_completed = False

Gamifying Cybersecurity Training 179

elapsed_time_thread = threading.Thread(target=display_elapsed_time)
elapsed_time_thread.start()

Generate the report using the OpenAI API
try:
 # Generate the email simulations
 email_simulations = generate_email_simulations()
except Exception as e:
 print(f"\nAn error occurred during the API call: {e}")
 api_call_completed = True
 exit()

api_call_completed = True
elapsed_time_thread.join()

Save the email simulations into a text file
try:
 with open(assessment_name, 'w') as file:
 file.write(email_simulations)
 print("\nEmail simulations generated successfully!")
except Exception as e:
 print(f"\nAn error occurred during the email simulations
generation: {e}")

Just like the script in the previous recipe, this script will generate a text document containing the
response from the API. In this case, that’s the list of certification exam questions and the answer key.

Gamifying Cybersecurity Training
Gamification, the application of game-design elements in non-game contexts, has transformed many
areas of education and training, and cybersecurity is no exception. As the creator of one of the world’s
first educational cybersecurity video games, ThreatGEN® Red vs. Blue, I might be a bit biased. However,
I firmly believe that gamification is the educational medium of the future.

The exciting world of gamification has increasingly become the go-to methodology for many forms
of education and training. The essence of gamification is creating a game-like environment that keeps
individuals engaged, thus enhancing the learning process. One of the most intriguing and promising
applications of ChatGPT and OpenAI’s LLMs is the ability to gamify cybersecurity education.

From Gen X and younger, most people have grown up in a culture of gaming. This trend, combined with
the explosion of gamification and game-based learning over the last few years, has led to a significant
shift in the way education and training are delivered. And when it comes to cybersecurity, the marriage
of gaming and education provides an engaging, interactive, and fun way to learn complex concepts.

Security Awareness and Training180

This recipe will show you how to turn ChatGPT into the game master (GM) for a cybersecurity-
themed role-playing game (RPG). The game we’ll be playing is “Find the Insider Threat”, a “who
done it” mystery. The objective of the game is to interview staff and investigate systems to find the
insider threat, all in 50 turns or less. ChatGPT will manage the game, keeping score and tracking
your turns. It will even provide a detailed report after the game, outlining your successes, failures,
and areas for improvement.

Getting ready

The prerequisites for this recipe are simple. You just need a web browser and an OpenAI account. If
you haven’t already created an account or need a refresher on how to use the ChatGPT interface, refer
back to Chapter 1 for a comprehensive guide.

How to do it…

1. Access the ChatGPT interface. Log into your OpenAI account and go to the ChatGPT interface
at https://chat.openai.com.

2. Initialize the game by entering the specialized prompt The following prompt is carefully
designed to instruct ChatGPT to act as a phishing training simulator. Enter the prompt into
the text box and press Enter.

"You are a cybersecurity professional with more than 25 years
of experience and an expert in gamification and game-based
training. You will be the game master for a cybersecurity themed
role-playing game (RPG). The game is "Find the Insider Threat",
a "who did it" mystery. The object is to interview staff and
investigate systems to find the insider threat. I must do it in
50 turns or less. Keep score by adding and subtracting points
as you see fit, as I go. If I find the culprit (I win) or after
turn 50 the game is over (I lose). At that time, present me with
my score, the game summary, my successes, my failures, and where
I can improve (keeping in mind this is meant to be cybersecurity
educational). When the game starts, present me with the
scenario, setting, and game rules. Stay in character as the game
master, keep track of each turn (every prompt after you present
the game scenario, setting, and rules, is a game turn). At the
end of each of your responses after the game starts, you will
remind me of the turn and my current score (score starts at 0).
Use markdown language in your prompts, to make the presentation
more interesting and more readable.

If you understand, start the game."

Gamifying Cybersecurity Training 181

Figure 5.2 – Example game initialization output

Security Awareness and Training182

Important note
The model limitations will come into play significantly in this recipe due to the potential for
long, contextual prompts. GPT-4 will give you the longest context window, but you will be
limited to 25 prompts over 3 hours, including the initial prompts. So, you might want to limit
games using GPT-4 to 20 turns. GPT-3.5 has no prompt limits, but the context window is
smaller. Therefore, ChatGPT might lose context after a certain point in the game and forget
details from earlier in the game. It should remember the turn and score since that is restated
every turn, but details from earlier prompts, especially at and just after initialization, will be lost.
This includes the entire setting. ChatGPT does, however, attempt to maintain context the best it
can by deriving context from what it does have access to. Sometimes, that can be just enough.

Tip
Play around (pun intended) with the turn limit and even the theme or game style to find a
setting that works for your interests and needs.

How it works…

This recipe essentially transforms ChatGPT into a game master for a role-playing game. RPGs typically
involve a narrative experience where players assume the roles of characters in a fictional setting.
The game master (or GM) is the person who runs the game, creates the story and the setting, and
adjudicates the rules.

By providing ChatGPT with a prompt that establishes it as the game master, it’s directed to construct
the narrative and guide you, the player, through the game. The prompt also instructs the model to
track game progress, keep score, and provide a detailed report at the end of the game.

The effectiveness of this recipe relies heavily on ChatGPT’s capability to generate coherent and
contextually relevant responses. It needs to maintain the continuity of the game narrative while
simultaneously tracking the score and turn count. This is achieved by ensuring that each of ChatGPT’s
responses includes a reminder of the turn and the current score.

However, it’s worth mentioning, yet again, the limitations that exist regarding the model’s capacity
to remember context. The context window of GPT-3.5 is smaller than GPT-4, which can impact the
continuity of the game, especially if it extends over numerous turns.

Gamifying Cybersecurity Training 183

There’s more…

This recipe provides just a glimpse into the exciting and dynamic world of gamified cybersecurity
training. By manipulating the prompts, the scope of the game, and the role of the AI, you can create
entirely different scenarios that cater to different cybersecurity skills or areas of interest.

For instance, in our recipe, we used a “who done it” mystery to identify the insider threat. However,
you could potentially adapt this approach to your specific interests or needs. If you’re a more technically
inclined person, you could focus the theme around the tasks for something more technical, such as
performing a threat hunting exercise on a single system... RPG style! This unique blend of learning
and entertainment provides a tailored educational experience, making the learning process much
more engaging and fun.

Moreover, gamified cybersecurity training isn’t limited to solo play. It’s a fantastic tool for team building
exercises, tradeshow events, or even a game night with friends. By fostering an interactive learning
environment, you can elevate the educational experience, making it more memorable and effective.

6
Red Teaming and

Penetration Testing

Penetration testing and red teaming are specialized approaches to cybersecurity assessment. Penetration
testing, often referred to as ethical hacking, involves the simulation of cyber-attacks on a system, network,
or application to uncover vulnerabilities that could be exploited by malicious actors. Red teaming, on
the other hand, is a more comprehensive and adversarial engagement that simulates a full-scale attack
to evaluate an organization’s detection and response capabilities. Emulating adversarial tactics using
such methods is crucial for evaluating the security posture of an organization.

By emulating the tactics and techniques of real-world adversaries, these authorized simulations reveal
vulnerabilities and attack vectors before they can be exploited by malicious actors. In this chapter,
we will explore recipes that leverage AI to enhance red teaming and penetration testing operations.

We will begin by using the MITRE ATT&CK framework, the OpenAI API, and Python to swiftly
generate realistic red team scenarios. By combining curated adversarial knowledge with the expansive
capabilities of large language models (LLMs), this technique allows us to create threat narratives that
closely mirror real-world attacks.

Next, we will harness ChatGPT’s natural language prowess to guide us through OSINT reconnaissance.
From mining social media to analyzing job postings, these recipes illustrate how to extract actionable
intelligence from public data sources in an automated fashion.

To accelerate the discovery of unintentionally exposed assets, we will use Python to automate Google
Dorks generated by ChatGPT. Together, these technologies enable the methodical footprinting of an
organization’s digital footprint.

We wrap up with a unique recipe that infuses a Kali Linux terminal with the power of the OpenAI
API. By translating natural language requests into OS commands, this AI-enabled terminal provides
an intuitive way to navigate complex penetration testing tools and workflows.

Red Teaming and Penetration Testing186

By the end of this chapter, you will have an array of strategies powered by AI that augment red team and
penetration testing engagements. When applied ethically and with permission, these techniques can
uncover oversights, streamline testing, and ultimately, harden the security posture of an organization.

In this chapter, we will cover the following recipes:

• Creating red team scenarios using MITRE ATT&CK and the OpenAI API

• Social media and public data OSINT with ChatGPT

• Google Dork automation with ChatGPT and Python

• Analyzing job postings OSINT with ChatGPT

• GPT-powered Kali Linux terminals

Technical requirements
For this chapter, you will need a web browser and a stable internet connection to access the ChatGPT
platform and set up your account. You will also need to have your OpenAI account set up and
have obtained your API key. If not, revisit Chapter 1 for details. Basic familiarity with the Python
programming language and working with the command line is necessary, as you’ll be using Python
3.x, which needs to be installed on your system, to work with the OpenAI GPT API and create Python
scripts. A code editor will also be essential for writing and editing Python code and prompt files as
you work through the recipes in this chapter. Finally, since many penetration testing use cases rely
heavily on the Linux operating system, access to and familiarity with a Linux distribution (preferably
Kali Linux) is recommended.

Kali Linux can be found here:

https://www.kali.org/get-kali/#kali-platforms

The code files for this chapter can be found here:

https://github.com/PacktPublishing/ChatGPT-for-Cybersecurity-Cookbook

Creating red team scenarios using MITRE ATT&CK and the
OpenAI API
Red team exercises play a pivotal role in assessing an organization’s preparedness against real-world
cybersecurity threats. Crafting authentic and impactful red team scenarios is vital for these exercises,
yet designing such scenarios can often be intricate. This recipe demonstrates a refined approach to
scenario generation by synergizing the Mitre ATT&CK framework with the cognitive capabilities
of ChatGPT via the OpenAI API. Not only will you be able to swiftly create scenarios but you’ll also
receive a ranked list of the most relevant techniques, complete with summarized descriptions and
example TTP chains, ensuring your red team exercises are as realistic and effective as possible.

https://www.kali.org/get-kali/#kali-platforms
https://github.com/PacktPublishing/ChatGPT-for-Cybersecurity-Cookbook

Creating red team scenarios using MITRE ATT&CK and the OpenAI API 187

Getting ready

Before diving into this recipe, ensure you have your OpenAI account set up and your API key on
hand. If not, you should refer back to Chapter 1 for the necessary setup details. You will also need
Python version 3.10.x or later.

Additionally, confirm you have the following Python libraries installed:

• openai: This library enables you to interact with the OpenAI API. Install it using the pip
install openai command.

• os: This is a built-in Python library that allows you to interact with the operating system,
especially for accessing environment variables.

• Mitreattack.stix20: This library is used for searching Mitre ATT&CK datasets locally
on your computer. Install it with pip install mitreattack-python.

Finally, you will need a MITRE ATT&CK dataset:

• For this recipe, we will be using enterprise-attack.json. You can get MITRE ATT&CK
datasets at https://github.com/mitre/cti.

• The dataset used in this recipe, specifically, is at https://github.com/mitre/cti/
tree/master/enterprise-attack.

Once these requirements are in place, you are all set to dive into the script.

How to do it…

Follow these steps:

1. Set up the environment: Before diving into the script, ensure you have the necessary libraries
and the API key:

import openai
from openai import OpenAI
import os
from mitreattack.stix20 import MitreAttackData

openai.api_key = os.getenv("OPENAI_API_KEY")

2. Load the MITRE ATT&CK dataset: Utilize the MitreAttackData class to load the dataset
for easy access:

mitre_attack_data = MitreAttackData("enterprise-attack.json")

https://github.com/mitre/cti
https://github.com/mitre/cti/tree/master/enterprise-attack
https://github.com/mitre/cti/tree/master/enterprise-attack

Red Teaming and Penetration Testing188

3. Extract keywords from the description: This function integrates ChatGPT to extract relevant
keywords from the provided description, which will later be used to search the MITRE
ATT&CK dataset:

def extract_keywords_from_description(description):
 # Define the merged prompt
 prompt = (f"Given the cybersecurity scenario description:
'{description}', identify and list the key terms, "
 "techniques, or technologies relevant to MITRE
ATT&CK. Extract TTPs from the scenario. "
 "If the description is too basic, expand upon it
with additional details, applicable campaign, "
 "or attack types based on dataset knowledge. Then,
extract the TTPs from the revised description.")

 # Set up the messages for the OpenAI API
 messages = [
 {
 "role": "system",
 "content": "You are a cybersecurity professional
with more than 25 years of experience."
 },
 {
 "role": "user",
 "content": prompt
 }
]

 # Make the API call
 try:
 client = OpenAI()
 response = client.chat.completions.create(
 model="gpt-3.5-turbo",
 messages=messages,
 max_tokens=2048,
 n=1,
 stop=None,
 temperature=0.7
)
 response_content = response.choices[0].message.content.
strip()

 keywords = response_content.split(', ')
 return keywords

 except Exception as e:

Creating red team scenarios using MITRE ATT&CK and the OpenAI API 189

 print("An error occurred while connecting to the OpenAI
API:", e)
 return []

4. Search the MITRE ATT&CK dataset: With the extracted keywords, the search_dataset_
for_matches function searches the dataset for potential matches. Then, the score_matches
function scores the findings:

def score_matches(matches, keywords):
 scores = []
 for match in matches:
 score = sum([keyword in match['name'] for keyword in
keywords]) + \
 sum([keyword in match['description'] for keyword
in keywords])
 scores.append((match, score))
 return scores

def search_dataset_for_matches(keywords):
 matches = []
 for item in mitre_attack_data.get_techniques():
 if any(keyword in item['name'] for keyword in keywords):
 matches.append(item)
 elif 'description' in item and any(keyword in
item['description'] for keyword in keywords):
 matches.append(item)
 return matches

5. Generate a comprehensive scenario using ChatGPT: This function leverages the OpenAI API
to generate a summarized description and an example TTP chain for each matched technique:

def generate_ttp_chain(match):
 # Create a prompt for GPT-3 to generate a TTP chain for the
provided match
 prompt = (f"Given the MITRE ATT&CK technique
'{match['name']}' and its description '{match['description']}',
"
 "generate an example scenario and TTP chain
demonstrating its use.")

 # Set up the messages for the OpenAI API
 messages = [
 {
 "role": "system",
 "content": "You are a cybersecurity professional
with expertise in MITRE ATT&CK techniques."
 },

Red Teaming and Penetration Testing190

 {
 "role": "user",
 "content": prompt
 }
]

 # Make the API call
 try:
 client = OpenAI()
 response = client.chat.completions.create(
 model="gpt-3.5-turbo",
 messages=messages,
 max_tokens=2048,
 n=1,
 stop=None,
 temperature=0.7
)
 response_content = response.choices[0].message.content.
strip()
 return response_content

 except Exception as e:
 print("An error occurred while generating the TTP
chain:", e)
 return "Unable to generate TTP chain."

6. Put it all together: Now, integrate all the functions to extract keywords, find matches in the
dataset, and generate a comprehensive scenario with a TTP chain:

description = input("Enter your scenario description: ")
keywords = extract_keywords_from_description(description)
matches = search_dataset_for_matches(keywords)
scored_matches = score_matches(matches, keywords)

Sort by score in descending order and take the top 3
top_matches = sorted(scored_matches, key=lambda x: x[1],
reverse=True)[:3]

print("Top 3 matches from the MITRE ATT&CK dataset:")
for match, score in top_matches:
 print("Name:", match['name'])
 print("Summary:", match['description'])
 ttp_chain = generate_ttp_chain(match)
 print("Example Scenario and TTP Chain:", ttp_chain)
 print("-" * 50)

Creating red team scenarios using MITRE ATT&CK and the OpenAI API 191

By following the preceding steps, you’ll have a robust tool at your disposal that can generate realistic red
team scenarios using the MITRE ATT&CK framework, all enhanced by the capabilities of ChatGPT.

Here is how the completed script should look:

import openai
from openai import OpenAI
import os
from mitreattack.stix20 import MitreAttackData

openai.api_key = os.getenv("OPENAI_API_KEY")

Load the MITRE ATT&CK dataset using MitreAttackData
mitre_attack_data = MitreAttackData("enterprise-attack.json")

def extract_keywords_from_description(description):
 # Define the merged prompt
 prompt = (f"Given the cybersecurity scenario description:
'{description}', identify and list the key terms, "
 "techniques, or technologies relevant to MITRE ATT&CK.
Extract TTPs from the scenario. "
 "If the description is too basic, expand upon it with
additional details, applicable campaign, "
 "or attack types based on dataset knowledge. Then,
extract the TTPs from the revised description.")

 # Set up the messages for the OpenAI API
 messages = [
 {
 "role": "system",
 "content": "You are a cybersecurity professional with more
than 25 years of experience."
 },
 {
 "role": "user",
 "content": prompt
 }
]

 # Make the API call
 try:
 response = openai.ChatCompletion.create(
 model="gpt-3.5-turbo",
 messages=messages,
 max_tokens=2048,
 n=1,

Red Teaming and Penetration Testing192

 stop=None,
 temperature=0.7
)
 response_content = response.choices[0].message.content.strip()

 keywords = response_content.split(', ')
 return keywords

 except Exception as e:
 print("An error occurred while connecting to the OpenAI API:",
e)
 return []

def score_matches(matches, keywords):
 scores = []
 for match in matches:
 score = sum([keyword in match['name'] for keyword in
keywords]) + \
 sum([keyword in match['description'] for keyword in
keywords])
 scores.append((match, score))
 return scores

def search_dataset_for_matches(keywords):
 matches = []
 for item in mitre_attack_data.get_techniques():
 if any(keyword in item['name'] for keyword in keywords):
 matches.append(item)
 elif 'description' in item and any(keyword in
item['description'] for keyword in keywords):
 matches.append(item)
 return matches

def generate_ttp_chain(match):
 # Create a prompt for GPT-3 to generate a TTP chain for the
provided match
 prompt = (f"Given the MITRE ATT&CK technique '{match['name']}' and
its description '{match['description']}', "
 "generate an example scenario and TTP chain
demonstrating its use.")

 # Set up the messages for the OpenAI API
 messages = [
 {
 "role": "system",
 "content": "You are a cybersecurity professional with

Creating red team scenarios using MITRE ATT&CK and the OpenAI API 193

expertise in MITRE ATT&CK techniques."
 },
 {
 "role": "user",
 "content": prompt
 }
]

 # Make the API call
 try:
 client = OpenAI()
 response = client.chat.completions.create
 (
 model="gpt-3.5-turbo",
 messages=messages,
 max_tokens=2048,
 n=1,
 stop=None,
 temperature=0.7
)
 response_content = response.choices[0].message.content.strip()
 return response_content

 except Exception as e:
 print("An error occurred while generating the TTP chain:", e)
 return "Unable to generate TTP chain."

Sample usage:
description = input("Enter your scenario description: ")
keywords = extract_keywords_from_description(description)
matches = search_dataset_for_matches(keywords)
scored_matches = score_matches(matches, keywords)

Sort by score in descending order and take the top 3
top_matches = sorted(scored_matches, key=lambda x: x[1], reverse=True)
[:3]

print("Top 3 matches from the MITRE ATT&CK dataset:")
for match, score in top_matches:
 print("Name:", match['name'])
 print("Summary:", match['description'])
 ttp_chain = generate_ttp_chain(match)
 print("Example Scenario and TTP Chain:", ttp_chain)
 print("-" * 50)

Red Teaming and Penetration Testing194

In essence, this recipe works by combining structured cybersecurity data with the flexible and expansive
knowledge of ChatGPT. The Python script serves as the bridge, directing the flow of information and
ensuring that the user receives detailed, relevant, and actionable red team scenarios based on their
initial input.

How it works…

This recipe merges the power of the MITRE ATT&CK framework with the natural language processing
abilities of ChatGPT. By doing so, it provides a unique and efficient way to generate detailed red team
scenarios based on a brief description. Let’s delve into the intricacies of how this merger takes place:

1. Python and MITRE ATT&CK integration: At its core, the Python script utilizes the
mitreattack.stix20 library to interface with the MITRE ATT&CK dataset. This dataset
provides a comprehensive list of tactics, techniques, and procedures (TTPs) that adversaries
might employ. By using Python, we can efficiently query this dataset and retrieve relevant
information based on specific keywords or criteria.

The MitreAttackData("enterprise-attack.json") method call initializes an
object that provides an interface to query the MITRE ATT&CK dataset. This ensures that our
script has a structured and efficient way to access the data.

2. ChatGPT integration for keyword extraction: The first major task where GPT comes into
play is in the extract_keywords_from_description function. This function sends
a prompt to ChatGPT to extract relevant keywords from a given scenario description. The
generated prompt is designed to guide the model in not just blindly extracting keywords but
thinking and expanding upon the provided description. By doing so, it can consider broader
aspects of the cybersecurity domain and extract more nuanced and relevant keywords.

3. Searching the MITRE ATT&CK dataset: Once keywords are extracted, they are used to search
the MITRE ATT&CK dataset. This search isn’t merely a straightforward string match. The
script looks at both the name and the description of each technique in the dataset, checking
whether any of the extracted keywords are present. This dual-check increases the likelihood
of getting relevant results.

4. ChatGPT integration for scenario generation: With the matched techniques from the MITRE
ATT&CK dataset in hand, the script once again leverages ChatGPT – this time, to generate
comprehensive scenarios. The generate_ttp_chain function is responsible for this
task. It sends a prompt to ChatGPT, instructing it to summarize the technique and provide an
example TTP chain scenario for it. The reason for using ChatGPT here is crucial. While the
MITRE ATT&CK dataset provides detailed descriptions of techniques, it doesn’t necessarily
provide them in a format that’s easy for non-experts to understand. By using ChatGPT, we can
convert these technical descriptions into more user-friendly summaries and scenarios, making
them more accessible and actionable.

Creating red team scenarios using MITRE ATT&CK and the OpenAI API 195

5. Ranking and selection: The script doesn’t just return all matched techniques. It ranks them
based on the length of their descriptions (as a proxy for relevance and detail) and then selects
the top three. This ensures that the user isn’t overwhelmed with too many results and instead
receives a curated list of the most pertinent techniques.

There’s more…

The current script prints the detailed red team scenarios directly to the console. However, in a real-
world setting, you might want to store these scenarios for future reference, share them with team
members, or even use them as a basis for reporting. One straightforward way to achieve this is by
writing the output to a text file.

This is how we output to a text file:

1. Modify the Python script:

We’ll need to slightly modify the script to incorporate the functionality to write the results to
a text file. Here’s how you can achieve that.

First, add a function to write the results to a file:
def write_to_file(matches):
 with open("red_team_scenarios.txt", "w") as file:
 for match in matches:
 file.write("Name: " + match['name'] + "\n")
 file.write("Summary: " + match['summary'] + "\n")
 file.write("Example Scenario: " + match['scenario']
+ "\n")
 file.write("-" * 50 + "\n")

Then, after the print statements in the main part of the script, call this function:
write_to_file(top_matches)

2. Run the script: Once you’ve made these modifications, run the script again. After execution,
you should find a file named red_team_scenarios.txt in the same directory as your
script. This file will contain the top three matched scenarios, formatted for easy reading.

There are three main benefits to doing this:

• Portability: A text file is universally accessible, making it easy to share or move between systems

• Documentation: By saving scenarios, you create a record of potential threat patterns to watch
out for

• Integration with other tools: The output file can be ingested by other cybersecurity tools for
further analysis or action

Red Teaming and Penetration Testing196

This enhancement allows you to not only view the red team scenarios interactively but also to
maintain a persistent record of them, enhancing the utility and applicability of the script in diverse
cybersecurity contexts.

Social media and public data OSINT with ChatGPT
Open source intelligence (OSINT) techniques allow us to gather information from publicly available
sources to support cybersecurity operations such as penetration testing. This can include scouring
social media sites, public records, job postings, and more. In this recipe, we will use ChatGPT’s natural
language capabilities to guide us through an entire OSINT project focused on gathering intel from
social media and other public data sources.

ChatGPT can serve as an AI OSINT expert, walking us through effective online reconnaissance from
start to finish. The conversational nature of the process helps us learn as we go, gaining new skills
and ideas. By the end, you’ll have a detailed plan and methodology you can replicate for real-world
engagements. OSINT is a vital skill for ethical hackers, social engineers, and cyber defenders alike.

Getting ready

The prerequisites for this recipe are simple. You just need a web browser and an OpenAI account. If
you haven’t already created an account or need a refresher on how to use the ChatGPT interface, refer
back to Chapter 1 for a comprehensive guide.

How to do it…

Let’s begin by having ChatGPT outline the high-level steps involved in an OSINT operation focused
on social media and public data sources:

1. Establish the system role and create an OSINT process list:

You are a cybersecurity professional with 25 years of
experience, specializing in red team tactics. Think step-by-step
and create a detailed list of steps to perform OSINT, as part of
a cyber penetration test.

Social media and public data OSINT with ChatGPT 197

Figure 6.1 – Example OSINT process steps output from ChatGPT

2. Next, we will take the first step identified by ChatGPT and expand on it:

"You are a cybersecurity professional with 25 years of
experience, specializing in red team tactics. Think step-by-step
and provide more detail on how I achieve the following. Include
any applicable tools, apps, and resources.
Identify the Target: Identify the target organization or
individual you will be focusing on during the OSINT phase.
Gather as much information as possible about the target, such as
the organization's name, website, key personnel, or any other
relevant details."

Red Teaming and Penetration Testing198

Figure 6.2 – Example OSINT details output from ChatGPT

3. Repeat the second prompt for each remaining step in the OSINT outline provided originally.
This will expand each high-level step into a detailed process with tools and tactical advice
from ChatGPT.

Once all steps have been expanded on, you will have a comprehensive methodology for executing a
social media and public data-focused OSINT operation.

How it works…

The key to this technique is establishing ChatGPT as an experienced OSINT expert upfront. This frames
the conversational prompts in a way that guides the model to provide detailed, practical responses on
conducting online reconnaissance.

Asking ChatGPT to “think step-by-step” further tunes the output, resulting in orderly, logical processes.
We first have it outline the overall workflow, providing high-level steps.

Google Dork automation with ChatGPT and Python 199

Then, by taking each step and providing it back to ChatGPT as a prompt asking for more details, we
essentially get into the specifics of how to execute each phase.

This leverages ChatGPT’s knowledge bank on OSINT tradecraft and elicits tailored recommendations
powered by its natural language processing capabilities. The result is an expert-guided OSINT
methodology customized to our goal.

There’s more…

The beauty of this technique is that the “recursion” can be taken even further. If any single step’s
explanation from ChatGPT contains additional high-level tasks, those can be further expanded by
repeating the process.

For example, ChatGPT may mention “Use Google Dorks to find public records.” This could be provided
back to ChatGPT as another prompt asking for more details on which operators and strategies to use.

By recursively “zooming in” on details in this way, you can extract an immense amount of practical
advice from ChatGPT to build a comprehensive guide. The model can also suggest tools, techniques,
and ideas you may have never considered before!

Google Dork automation with ChatGPT and Python
Google Dorks are a powerful tool in the arsenal of penetration testers, ethical hackers, and even
malicious actors. These specially crafted search queries leverage advanced Google search operators to
uncover information or vulnerabilities that are unintentionally exposed on the web. From finding open
directories to exposed configuration files, Google Dorks can reveal a treasure trove of information,
often inadvertently published.

However, crafting effective Google Dorks requires expertise, and manually searching for each dork
can be time-consuming. This is where the combination of ChatGPT and Python shines. By utilizing
the linguistic capabilities of ChatGPT, we can automate the generation of Google Dorks tailored to
specific requirements. Python then takes over, using these dorks to initiate searches and organize the
results for further analysis.

In this recipe, we leverage ChatGPT to generate a series of Google Dorks that are designed to unearth
valuable data during penetration tests. We then employ Python to apply these dorks systematically,
producing a consolidated view of potential vulnerabilities or exposed information regarding a target. This
approach not only amplifies the efficiency of the pentesting process but also ensures a comprehensive
sweep of the digital footprint of the target. Whether you’re a seasoned penetration tester looking to
streamline your reconnaissance phase or a cybersecurity enthusiast keen on exploring Google Dorks,
this recipe provides a practical, automated approach to harnessing the power of Google’s search engine
for security assessments.

Red Teaming and Penetration Testing200

Getting ready

Before diving into this recipe, ensure you have your OpenAI account set up and your API key on hand.
If not, you should refer back to Chapter 1 for the necessary setup details. You will also need Python
version 3.10.x or later, and the following libraries:

• openai: This library enables you to interact with the OpenAI API. Install it using the pip
install openai command.

• requests: This library is essential for making HTTP requests. Install it using pip install
requests.

• time: This is a built-in Python library used for various time-related tasks.

Additionally, you’ll need to set up a Google API key and a custom search engine ID, which can be
done at https://console.cloud.google.com/ and https://cse.google.com/
cse/all.

With these requirements in place, you’re prepared to delve into the script.

How to do it…

Google Dorks are incredibly potent when it comes to uncovering exposed data or vulnerabilities on the
web. While they can be run manually, automating this process can significantly boost efficiency and
comprehensiveness. In this section, we will guide you through the steps of using Python to automate
the application of Google Dorks, fetching search results, and saving them for further analysis.

First, let’s generate a list of Google Dorks:

1. Generate a series of Google Dorks: To do this, give ChatGPT a clear objective. Use the
following prompt with ChatGPT:

"You are a cybersecurity professional specializing in red team
tactics. I am a cybersecurity professional and I have a scenario
where I need to find exposed documents on a my own domain.
Please provide a list of example Google dorks that I can use to
discover such vulnerabilities as part of an authorized exercise
on my own authorized domain."

By giving ChatGPT the scenario and purpose, ChatGPT is less likely to reject the prompt,
thinking it is being asked to provide something unethical.

https://console.cloud.google.com/
https://cse.google.com/cse/all
https://cse.google.com/cse/all

Google Dork automation with ChatGPT and Python 201

This is an example output:

Figure 6.3 – Example ChatGPT output for a list of Google Dorks

Red Teaming and Penetration Testing202

Next, let’s generate the Python script to automate the Google Dork execution.

2. Import the necessary libraries: In this case, we will need requests and time:

import requests
import time

3. Set up the prerequisites: To utilize Google’s Custom Search JSON API, you need to set it up
and get the necessary credentials:

API_KEY = 'YOUR_GOOGLE_API_KEY'
CSE_ID = 'YOUR_CUSTOM_SEARCH_ENGINE_ID'
SEARCH_URL = "https://www.googleapis.com/customsearch/
v1?q={query}&key={api_key}&cx={cse_id}"

Replace 'YOUR_GOOGLE_API_KEY' with your API key and 'YOUR_CUSTOM_SEARCH_
ENGINE_ID' with your custom search engine ID. These are vital for your script to communicate
with Google’s API.

4. List the Google Dorks: Craft or gather the list of Google Dorks you want to run. For our
example, we’ve provided a sample list targeting 'example.com':

dorks = [
 'site:example.com filetype:pdf',
 'intitle:"index of" site:example.com',
 'inurl:admin site:example.com',
 'filetype:sql site:example.com',
 # ... add other dorks here ...
]

You can extend this list with any additional Dorks relevant to your pentesting objectives.

5. Fetch the search results: Create a function to fetch Google search results using the provided Dork:

def get_search_results(query):
 """Fetch the Google search results."""
 response = requests.get(SEARCH_URL.format(query=query, api_
key=API_KEY, cse_id=CSE_ID))
 if response.status_code == 200:
 return response.json()
 else:
 print("Error:", response.status_code)
 return {}

This function sends a request to Google’s Custom Search API with the Dork as the query and
returns the search results.

Google Dork automation with ChatGPT and Python 203

6. Iterate through Dorks and fetch and save results: This is the core of your automation. Here,
we loop through each Google Dork, fetch its results, and save them in a text file:

def main():
 with open("dork_results.txt", "a") as outfile:
 for dork in dorks:
 print(f"Running dork: {dork}")
 results = get_search_results(dork)

 if 'items' in results:
 for item in results['items']:
 print(item['title'])
 print(item['link'])
 outfile.write(item['title'] + "\n")
 outfile.write(item['link'] + "\n")
 outfile.write("-" * 50 + "\n")
 else:
 print("No results found or reached API limit!")

 # To not hit the rate limit, introduce a delay
between requests
 time.sleep(20)

This simple piece of code ensures that when you run the script, the main function, which
contains our core logic, gets executed.

Important note
Remember, Google’s API might have rate limits. We’ve introduced a delay in our loop to
prevent hitting these limits too quickly. Adjustments might be required based on your API’s
specific rate limits.

Here is how the completed script should look:

import requests
import time

Google Custom Search JSON API configuration
API_KEY = 'YOUR_GOOGLE_API_KEY'
CSE_ID = 'YOUR_CUSTOM_SEARCH_ENGINE_ID'
SEARCH_URL = "https://www.googleapis.com/customsearch/
v1?q={query}&key={api_key}&cx={cse_id}"

List of Google dorks
dorks = [

Red Teaming and Penetration Testing204

 'site:example.com filetype:pdf',
 'intitle:"index of" site:example.com',
 'inurl:admin site:example.com',
 'filetype:sql site:example.com',
 # ... add other dorks here ...
]

def get_search_results(query):
 """Fetch the Google search results."""
 response = requests.get(SEARCH_URL.format(query=query, api_
key=API_KEY, cse_id=CSE_ID))
 if response.status_code == 200:
 return response.json()
 else:
 print("Error:", response.status_code)
 return {}

def main():
 with open("dork_results.txt", "a") as outfile:
 for dork in dorks:
 print(f"Running dork: {dork}")
 results = get_search_results(dork)

 if 'items' in results:
 for item in results['items']:
 print(item['title'])
 print(item['link'])
 outfile.write(item['title'] + "\n")
 outfile.write(item['link'] + "\n")
 outfile.write("-" * 50 + "\n")
 else:
 print("No results found or reached API limit!")

 # To not hit the rate limit, introduce a delay between
requests
 time.sleep(20)

if __name__ == '__main__':
 main()

This script harnesses the power of both Python (for automation) and ChatGPT (for the initial expertise
to create the list) to create an efficient and comprehensive tool for Google Dorking, a valuable method
in the arsenal of penetration testers.

Google Dork automation with ChatGPT and Python 205

How it works…

Understanding the mechanics behind this script will empower you to adapt and optimize it according to
your requirements. Let’s delve into the intricacies of how this automated Google Dorking script functions:

Python scripting:

1. API and URL configuration:

API_KEY = 'YOUR_GOOGLE_API_KEY'
CSE_ID = 'YOUR_CUSTOM_SEARCH_ENGINE_ID'
SEARCH_URL = https://www.googleapis.com/customsearch/
v1?q={query}&key={api_key}&cx={cse_id}

The script starts by defining constants for the Google API key, custom search engine ID, and
URL endpoint for search requests. These constants are vital for making authenticated API calls
to Google and retrieving search results.

2. Fetching search results: The get_search_results function uses the requests.get()
method to send a GET request to the Google Custom Search JSON API. By formatting the URL
with the query (Google Dork), API key, and custom search engine ID, the function retrieves
search results for the specified Dork. The results are then parsed as JSON.

3. Iterating and storing: The main function is where the script iterates over each Google Dork
in the list. For each Dork, it fetches the search results using the function mentioned previously
and writes the title and link of each result to both the console and a dork_results.txt
text file. This ensures that you have a persistent record of your findings.

4. Rate limiting: To avoid hitting Google’s API rate limits, the script includes a time.sleep(20)
statement, which introduces a 20-second delay between successive API calls. This is crucial, as
sending too many requests in a short span can lead to temporary IP bans or API restrictions.

GPT prompts:

1. Crafting the prompt: The initial step involves creating a prompt that instructs the GPT model
to generate a list of Google Dorks. The prompt is specifically designed to provide the model
with a clear and concise directive, along with a purpose and scenario, so that ChatGPT doesn’t
reject the prompt (due to safety measures preventing unethical activity).

There’s more…

While the core recipe provides a foundational approach to leveraging Google Dorks for penetration
testing, truly mastering this domain requires diving into a deeper layer of complexities and nuances.
The additional enhancements and suggestions provided in this section might necessitate a more
advanced understanding of both penetration testing and programming. Venturing beyond the scope
of this basic recipe can open up a wealth of possibilities for more in-depth vulnerability discovery
and analysis. If you’re looking to elevate your penetration testing capabilities, extending this recipe

Red Teaming and Penetration Testing206

with these add-ons can offer more comprehensive insights, more refined results, and a higher degree
of automation. However, always approach with caution, ensuring you maintain ethical practices and
have the necessary permissions when probing systems and networks:

1. Refinement of Dorks: While the initial prompt provided a basic list of Dorks, it’s always a
good idea to customize and refine these queries based on the specific target or domain you’re
working with. For instance, if you’re specifically interested in SQL vulnerabilities, you might
want to expand your list with more SQL-specific Dorks.

2. Integration with other search engines: Google isn’t the only game in town. Consider expanding
the script to work with other search engines such as Bing or DuckDuckGo. Each search engine
might index websites differently, giving you a broader range of potential vulnerabilities.

3. Automated analysis: Once you have the results, you might want to implement a post-processing
step. This could involve checking the legitimacy of vulnerabilities, sorting them based on potential
impact, or even integrating with tools that can automate the exploitation of found vulnerabilities.

4. Notifications: Depending on the scope of your penetration test, you might be running many
Dorks, and analyzing them all can be time-consuming. Consider adding a feature that sends
notifications (maybe through email or a messenger bot) when a particularly high-value
vulnerability is detected.

5. Visual dashboard: Presenting the results in a more visual format, such as a dashboard, can
be beneficial, especially if you’re reporting to stakeholders. There are Python libraries such as
Dash or even integration with tools such as Grafana that can help present your findings in a
more digestible manner.

6. Rate limiting and proxies: If you’re making a lot of requests, not only might you hit API rate
limits but you might also end up getting IP banned. Consider integrating proxy rotation in the
script to distribute the requests across different IP addresses.

7. Ethical considerations: Always remember to use Google Dorks responsibly and ethically. Never
use them to exploit vulnerabilities on systems you do not have permission to test. Additionally,
be aware of the terms of service for both Google and the Google Cloud API. Over-reliance or
misuse can lead to API key suspension or other penalties.

Analyzing job postings OSINT with ChatGPT
OSINT refers to the practice of collecting and analyzing information that is publicly available. In the
realm of cybersecurity, OSINT serves as a valuable tool, offering insights into potential vulnerabilities,
threats, and targets within an organization. Among the myriad sources of OSINT, company job listings
stand out as a particularly rich trove of data. At first glance, job listings are innocuous, aiming to
attract potential candidates by detailing the responsibilities, qualifications, and benefits associated
with a position. However, these descriptions often inadvertently disclose far more than intended.

Analyzing job postings OSINT with ChatGPT 207

For instance, a job listing seeking an expert in a specific version of software might reveal the exact
technologies a company uses, potentially highlighting known vulnerabilities in that software. Similarly,
listings that mention proprietary technologies or in-house tools can give hints about a company’s
unique technological landscape. Job ads might also detail team structures, revealing hierarchies and
key roles, which can be exploited for social engineering attacks. Furthermore, geographic locations,
departmental interactions, and even the tone of the job listing can provide astute observers with
insights into a company’s culture, size, and operational focus.

Understanding these nuances, this recipe guides you on how to harness the capabilities of ChatGPT
to meticulously analyze job listings. By doing so, you can extract valuable OSINT data, which can
then be structured and presented in a comprehensive report format.

Getting ready

The prerequisites for this recipe are simple. You just need a web browser and an OpenAI account. If
you haven’t already created an account or need a refresher on how to use the ChatGPT interface, refer
back to Chapter 1 for a comprehensive guide.

How to do it…

Before diving into the step-by-step instructions, it’s essential to understand that the quality and depth
of OSINT data derived will vary based on the richness of the job description. Remember, while this
method provides valuable insights, always ensure you are authorized to perform any intelligence
gathering or penetration testing.

First, we need to analyze the job description:

1. Prepare the prompt for the initial OSINT analysis:

You are a cybersecurity professional with more than 25 years
of experience, specializing in red team tactics. As part of an
authorized penetration test, and using your knowledge of OSINT
and social engineering tactics, analyze the following sample
job description for useful OSINT data. Be sure to include any
correlations and conclusions you might draw.

Red Teaming and Penetration Testing208

2. Provide the job description data. Append the job description to the prompt, ensuring
clear separation:

Figure 6.4 – Example prompt with the job posting appended to it

3. Analyze the results. Send the combined prompt and data to ChatGPT and review the derived
OSINT data:

Analyzing job postings OSINT with ChatGPT 209

Figure 6.5 – Example ChatGPT output analysis

Now we have analyzed the results, we can generate a structured OSINT report.

4. Prepare the next prompt for report generation:

You are a cybersecurity professional with more than 25 years
of experience, specializing in red team tactics. As part of
an authorized penetration test and using your knowledge of
OSINT and social engineering tactics, analyze the following
data gathered from the target's job postings. Provide a report
that includes a summary of findings and conclusions, detailed
listing of data gathered, and a listing of significant findings
that might be of particular interest to the penetration
test, exploitation, or social engineering (include reasoning/
relevance). Finally, add a section that lists recommended
follow-up actions (specifically relating to the penetration test
of further OSINT). Use markdown language formatting. Use the

Red Teaming and Penetration Testing210

following report format:

#OSINT Report Title

##Summary

##Details

##Significant Findings

##Recommended Follow-up Actions

5. Provide the OSINT analysis data. Append the summarized OSINT findings from the previous
step to the prompt:

Figure 6.6 – Example prompt with the first job data analysis appended to it

Analyzing job postings OSINT with ChatGPT 211

6. Now, we can generate the report. Submit the combined prompt and OSINT analysis data to
ChatGPT to receive a structured report in Markdown format:

Figure 6.7 – Example ChatGPT output with structured formatting

How it works…

The process is divided into two primary steps – OSINT extraction from job listings and structured
report generation:

1. Job description analysis: The first prompt guides ChatGPT to focus on extracting OSINT
data from job listings. The key here is the role assignment, which ensures the model adopts the
perspective of a seasoned cybersecurity professional, allowing for a more insightful analysis.

Red Teaming and Penetration Testing212

2. Report generation: The second prompt takes the OSINT findings and structures them into a
detailed report. Again, the role assignment is crucial. It ensures that ChatGPT understands the
context and delivers the report in a manner suitable for a cybersecurity professional. The use
of Markdown formatting ensures the report is structured, clear, and easy to read.

In both steps, the prompts are engineered to give ChatGPT the right context. By explicitly instructing
the model on the desired outcome and the role it should adopt, we ensure the results are tailored to
the needs of cybersecurity OSINT analysis.

In conclusion, this recipe illustrates how ChatGPT can be an invaluable tool for cybersecurity
professionals, simplifying the process of OSINT extraction and report generation from job listings.

There’s more…

OSINT analysis of job listings is just the tip of the iceberg when it comes to understanding a company’s
digital footprint. Here are some additional ways to further enhance and expand on this recipe:

1. Multiple data sources: While job listings can provide a wealth of information, considering
other public-facing documents such as press releases, annual reports, and official blogs can
yield even more OSINT data. Aggregating and cross-referencing data from multiple sources
can lead to more comprehensive insights.

2. Automate data gathering: Instead of manually gathering job listings, consider building a
web scraper or using APIs (if available) to automatically fetch new job listings from targeted
companies. This allows for continuous monitoring and timely analysis.

Important note
We didn’t include automated web scraping here due to the current controversy regarding LLMs
and web scraping. These techniques are fine during an authorized penetration test as long as
you have permission to do so.

3. Temporal analysis: Analyzing job listings over time can provide insights into a company’s
growth areas, shifts in technology stacks, or expansion into new domains. For instance, a
sudden increase in hiring cloud security professionals might indicate a move to cloud platforms.

4. Integration with other OSINT tools: There are many OSINT tools and platforms available
that can complement the insights gained from job listings. Integrating this method with other
tools can provide a more holistic view of a target.

5. Ethical considerations: Always ensure that any OSINT gathering activity is done ethically and
legally. Remember that while the information might be publicly available, how it’s used can
have legal and ethical implications.

GPT-powered Kali Linux terminals 213

In conclusion, while analyzing job listings is a potent method in the OSINT toolkit, combining it
with other techniques and data sources can significantly enhance its value. As always, the key is to be
thorough and ethical and stay updated on the latest trends and tools in the OSINT domain.

GPT-powered Kali Linux terminals
Navigating and mastering the command line of any Linux distribution, especially security-focused
ones such as Kali Linux, can be a daunting task. For beginners, there’s a steep learning curve as they
have to memorize various commands, switches, and syntax to accomplish even basic tasks. For
experienced professionals, while they may be familiar with many commands, constructing complex
command strings on the fly can sometimes be time-consuming. Enter the power of natural language
processing (NLP) and the capabilities of OpenAI’s GPT models.

In this recipe, we present an innovative approach to interacting with your Linux terminal: an
NLP-powered terminal interface. This script harnesses the capabilities of OpenAI’s GPT model
to allow users to input requests in natural language. In return, the model deciphers the intent and
translates it into the appropriate command for the Linux operating system. For instance, instead of
remembering the intricate syntax for certain operations, a user could simply input Show me all
the files modified in the last 24 hours, and the model would generate and execute
the appropriate find command.

This approach provides numerous benefits:

• User-friendly: Beginners can start performing complex operations without the need for deep
command-line knowledge. It lowers the barrier to entry and accelerates the learning curve.

• Efficiency: Even for experienced users, this can speed up workflows. Instead of recalling specific
flags or syntax, a simple sentence can generate the needed command.

• Flexibility: It’s not just limited to OS commands. This approach can be extended to applications
within the OS, from networking tools to cybersecurity utilities in distributions such as Kali Linux.

• Logging: Every command generated by the model is logged, providing an audit trail and a way
to learn the actual commands over time.

By the end of this recipe, you’ll have a terminal interface that feels more like a conversation with
a Linux expert, guiding you and executing tasks on your behalf, powered by the advanced NLP
capabilities of GPT models.

Getting ready

Before diving into this recipe, ensure you have your OpenAI account set up and your API key on
hand. If not, you should refer back to Chapter 1 for the necessary setup details. You will also need
Python version 3.10.x or later.

Red Teaming and Penetration Testing214

Additionally, confirm you have the following Python libraries installed:

• openai: This library enables you to interact with the OpenAI API. Install it using the pip
install openai command.

• os: This is a built-in Python library that allows you to interact with the operating system,
especially for accessing environment variables.

• subprocess: This library is a built-in Python library that allows you to spawn new processes,
connect to their input/output/error pipes, and obtain their return codes.

Once these requirements are in place, you are all set to dive into the script.

How to do it…

To construct a GPT-powered terminal, we’ll leverage the OpenAI API to interpret natural language
input and generate the corresponding Linux command. This fusion of advanced NLP with the OS’s
capabilities offers a unique and enhanced user experience, especially for those who may not be familiar
with intricate Linux commands. Follow this step-by-step guide to integrate this functionality into
your Linux system:

1. Setting up your environment: Before diving into the code, ensure you have Python installed
and the necessary libraries available. If not, you can easily install them using pip:

import openai
from openai import OpenAI
import os
import subprocess

2. Storing the OpenAI API key: To interact with the OpenAI API, you’ll need your API key. For
security reasons, it’s a good practice not to hardcode this key directly in the script. Instead,
we’re storing it in a file called openai-key.txt:

def open_file(filepath): #Open and read a file
 with open(filepath, 'r', encoding='UTF-8') as infile:
 return infile.read()

This function reads the content of a file. In our case, it retrieves the API key from openai-
key.txt.

3. Sending requests to the OpenAI API:

Create a function that sets up the request to the OpenAI API and retrieves the output:
def gpt_3(prompt):
 try:
 client = OpenAI()
 response = client.chat.completions.create(

GPT-powered Kali Linux terminals 215

 model="gpt-3.5-turbo",
 prompt=prompt,
 temperature=0.1,
 max_tokens=600,
)
 text = response.choices[0].message.content.strip()
 return text
 except openai.error.APIError as e:
 print(f"\nError communicating with the API.")
 print(f"\nError: {e}")
 print("\nRetrying...")
 return gpt_3(prompt)

This function sends a prompt to the OpenAI GPT model and fetches the corresponding output.

4. Running the command: Use the Python subprocess library to execute the command
generated by the OpenAI API on your Linux system:

process = subprocess.Popen(command, shell=True,
stdout=subprocess.PIPE, bufsize=1, universal_newlines=True)

This piece of code initializes a new subprocess, runs the command, and provides real-time
feedback to the user.

5. Continuous interaction loop: To keep the NLP terminal running and accepting continuous
user input, implement a while loop:

while True:
 request = input("\nEnter request: ")
 if not request:
 break
 if request == "quit":
 break
 prompt = open_file("prompt4.txt").replace('{INPUT}',
request)
 command = gpt_3(prompt)
 process = subprocess.Popen(command, shell=True,
stdout=subprocess.PIPE, bufsize=1, universal_newlines=True)
 print("\n" + command + "\n")
 with process:
 for line in process.stdout:
 print(line, end='', flush=True)

 exit_code = process.wait()

This loop ensures the script continuously listens for user input, processes it, and executes the
corresponding commands until the user decides to quit.

Red Teaming and Penetration Testing216

6. Logging the commands: For future reference and auditing purposes, log every generated command:

append_file("command-log.txt", "Request: " + request + "\
nCommand: " + command + "\n\n")

This code appends each user request and the corresponding generated command to a file
named command-log.txt.

7. Create the prompt file: Enter the following text in a text file named prompt4.txt:

Provide me with the Windows CLI command necessary to complete
the following request:

{INPUT}

Assume I have all necessary apps, tools, and commands necessary
to complete the request. Provide me with the command only and do
not generate anything further. Do not provide any explanation.
Provide the simplest form of the command possible unless I
ask for special options, considerations, output, etc.. If the
request does require a compound command, provide all necessary
operators, options, pipes, etc.. as a single one-line command.
Do not provide me more than one variation or more than one line.

Here’s how the completed script should look:

import openai
from openai import OpenAI
import os
import subprocess

def open_file(filepath): #Open and read a file
 with open(filepath, 'r', encoding='UTF-8') as infile:
 return infile.read()

def save_file(filepath, content): #Create a new file or overwrite an
existing one.
 with open(filepath, 'w', encoding='UTF-8') as outfile:
 outfile.write(content)

def append_file(filepath, content): #Create a new file or append an
existing one.
 with open(filepath, 'a', encoding='UTF-8') as outfile:
 outfile.write(content)

#openai.api_key = os.getenv("OPENAI_API_KEY") #Use this if you prefer
to use the key in an environment variable.

GPT-powered Kali Linux terminals 217

openai.api_key = open_file('openai-key.txt') #Grabs your OpenAI key
from a file

def gpt_3(prompt): #Sets up and runs the request to the OpenAI API
 try:
 client = OpenAI()
 response = client.chat.completions.create(
 model="gpt-3.5-turbo",
 prompt=prompt,
 temperature=0.1,
 max_tokens=600,
)
 text = response['choices'].message.content.strip()
 return text
 except openai.error.APIError as e: #Returns and error and retries
if there is an issue communicating with the API
 print(f"\nError communicating with the API.")
 print(f"\nError: {e}") #More detailed error output
 print("\nRetrying...")
 return gpt_3(prompt)

while True: #Keeps the script running until we issue the "quit"
command at the request prompt
 request = input("\nEnter request: ")
 if not request:
 break
 if request == "quit":
 break
 prompt = open_file("prompt4.txt").replace('{INPUT}', request)
#Merges our request input with the pre-written prompt file
 command = gpt_3(prompt)
 process = subprocess.Popen(command, shell=True, stdout=subprocess.
PIPE, bufsize=1, universal_newlines=True) #Prepares the API response
to run in an OS as a command
 print("\n" + command + "\n")
 with process: #Runs the command in the OS and gives real-time
feedback
 for line in process.stdout:
 print(line, end='', flush=True)

 exit_code = process.wait()
 append_file("command-log.txt", "Request: " + request + "\nCommand:
" + command + "\n\n") #Write the request and GPT generated command to
a log

Red Teaming and Penetration Testing218

This script provides a fully operational GPT-powered, NLP-driven terminal interface, providing a
powerful and user-friendly way to interact with your Linux system.

How it works…

At its core, this script bridges the gap between NLP and the Linux operating system. Let’s break down
the components to understand the intricacies of this integration:

1. The OpenAI API connection: The first major component is the connection to the OpenAI
API,Remove this from the sentence. GPT-3.5 and GPT-4 models are autoregressive language
model that use deep learning to produce human-like text. Their extensive training on diverse
datasets means they can comprehend a wide range of prompts and generate accurate and
coherent responses.

When you make a query in natural language, such as List all files in the current
directory, the script sends this query to the GPT-3 model. The model then processes it and
responds with a corresponding Linux command – in this case, ls.

2. Python integration with the OS: Python’s subprocess library is the linchpin that allows
the script to execute commands on the operating system. This library provides an interface to
spawn and interact with subprocesses, mimicking the command-line behavior within the script.

The command returned by GPT-3 is executed using subprocess.Popen(). The advantage
of using Popen over other methods is its flexibility. It spawns a new process, lets you interact
with its input/output/error pipes, and obtains its return code.

3. User interaction loop: The script uses a while loop to keep the terminal running continuously,
allowing the user to input multiple requests without having to restart the script. This emulates
the behavior of a typical terminal where a user can run successive commands.

4. Logging mechanism: Maintaining a log of all executed commands is crucial for multiple
reasons. For one, it aids in troubleshooting; if a command behaves unexpectedly, you can trace
back to see what was executed. Furthermore, from a security perspective, having an audit trail
of commands can be invaluable.

5. Security measures: Storing sensitive information such as API keys in plain text within scripts
is a potential security risk. This script circumvents this by reading the API key from a separate
file, ensuring that even if the script is shared or exposed, the API key remains protected.
Always ensure that the file containing the API key has appropriate file permissions to limit
unauthorized access.

6. GPT-3 prompt design: The design of the prompt is crucial. A well-crafted prompt will guide
the model to provide more accurate results. In this script, a predefined prompt is merged with
the user’s input to generate a more comprehensive query for GPT-3. This ensures that the model
has the right context to interpret the request and return an appropriate command.

GPT-powered Kali Linux terminals 219

In conclusion, this script embodies a seamless melding of advanced NLP capabilities with the
power of the Linux operating system. By translating natural language into complex commands,
it offers both beginners and experienced users an enhanced, intuitive, and efficient interface
to interact with their systems.

There’s more…

This script is just the tip of the iceberg when it comes to leveraging the power of NLP with operating
systems. Here are some enhancements and extensions you can consider:

1. Support for multiple operating systems: Currently, the script is tailored for Linux commands,
but with tweaks to the GPT-3 prompt, it can be adapted to work with Windows, macOS, or any
other OS. By detecting the operating system type using Python (os.name or platform.
system()), you can dynamically adjust the GPT-3 prompt to request OS-specific commands.

2. Command validation: Before executing any command, implement a security layer that validates
the command against a list of safe commands. This can prevent potentially harmful commands
from being executed inadvertently.

3. Interactive command execution: Some commands, especially installation or system configuration
ones, might require user interaction (e.g., confirmation or choices). Enhancing the script to
handle such interactive commands would be invaluable.

4. Integration with other APIs: Beyond just the OpenAI API, consider integrating other APIs to
fetch real-time data. For instance, if you’re working in cybersecurity, you could integrate threat
intelligence feeds. This way, a query such as Get me the latest threats related
to ransomware could fetch real-time data from these feeds.

5. Enhanced logging: The current logging mechanism records commands. Consider extending
this to log the date, the time, and perhaps the user, especially if deployed on a multi-user system.
This provides better auditing capabilities.

6. User profiles: If you’re aiming to make this tool usable by multiple people, consider user profiles.
Each profile could have its custom set of commands, permissions, and perhaps even its API keys.

7. Command history: Just like traditional terminals maintain a command history, having a mechanism
where users can recall and rerun previous commands could enhance the user experience.

Remember, while the potential applications are vast, always be mindful of security. Ensure you’re not
exposing sensitive information, and always validate and sanitize inputs and outputs.

Red Teaming and Penetration Testing220

Hint
Using ChatGPT and the OpenAI API for red team support can be tricky due to OpenAI’s
evolving safety mechanisms. While we don’t condone unethical or malicious behavior, sometimes
it is necessary to mimic the tactics and actions of an attacker in order to truly assess our own
vulnerabilities and associated level of risk. These methods should obviously be performed on
authorized systems only. That said, when we can get OpenAI’s models to support us in the
efforts, it is of great value and can save a lot of time.

I have found that the OpenAI API tends to be more lenient than the ChatGPT web UI when
it comes to red team adversarial tactics. It also helps in many cases to include in your prompts
that you are authorized to perform the actions you are asking ChatGPT to assist with and
tell ChatGPT that you are looking for examples (just as we have done in the previous recipe).

We will be providing even more strategies for getting the results you need from ChatGPT using
red team methods later on in this book, as we cover more advanced techniques.

7
Threat Monitoring

and Detection

In the dynamic and ever-evolving realm of cybersecurity, the role of timely detection, analysis, and
response to threats is of paramount importance. Modern challenges require innovative solutions that
leverage the power of technology, artificial intelligence, and human expertise. This chapter offers a
deep dive into the world of proactive cybersecurity, exploring various methods and tools to stay ahead
of potential threats.

At the forefront of our exploration is the concept of Threat Intelligence Analysis. As cyber threats
continue to grow in complexity and volume, the need for effective and efficient threat intelligence
becomes indispensable. This chapter introduces you to the potential of ChatGPT in analyzing raw
threat data, extracting crucial indicators of compromise, and generating detailed narratives for each
identified threat. While traditional platforms offer invaluable insights, the integration of ChatGPT
presents a unique opportunity for swift initial analyses, providing immediate insights and augmenting
the capabilities of existing systems.

Diving deeper, the chapter sheds light on the significance of Real-Time Log Analysis. With an ever-
growing number of devices, applications, and systems generating logs, the ability to analyze this
data in real-time becomes a critical asset. By utilizing the OpenAI API as an intelligent filter, we can
highlight potential security incidents, offering invaluable context and enabling incident responders
to act with precision and speed.

A specific focus is also given to the stealthy and persistent nature of Advanced Persistent Threats
(APTs). These threats, often lurking in the shadows, pose significant challenges due to their evasive
tactics. By leveraging ChatGPT’s analytical prowess combined with native Windows utilities, this
chapter offers a novel approach to detect such sophisticated threats, serving as a primer for those
looking to integrate AI-driven insights into their threat hunting toolkit.

Recognizing the unique nature of each organization’s cybersecurity landscape, the chapter delves into
the art and science of Building Custom Threat Detection Rules. Generic rules often fail to capture the
intricacies of specific threat landscapes, and this section serves as a guide to tailor-making rules that
resonate with an organization’s unique cybersecurity needs.

Threat Monitoring and Detection222

Lastly, the chapter navigates the waters of Network Traffic Analysis, emphasizing the importance of
monitoring and analyzing network data. Through hands-on examples and scenarios, you’ll learn to
leverage the OpenAI API and Python’s SCAPY library, offering a fresh perspective on how to detect
anomalies and bolster network security.

In essence, this chapter stands as a testament to the fusion of traditional cybersecurity practices with
modern AI-driven tools. Whether you’re just starting your journey in cybersecurity or are a seasoned
expert, this chapter promises a blend of theory, hands-on exercises, and insights that will enrich your
cybersecurity toolkit.

In this chapter, we will cover the following recipes:

• Threat Intelligence Analysis

• Real-Time Log Analysis

• Detecting APTs using ChatGPT for Windows Systems

• Building Custom Threat Detection Rules

• Network Traffic Analysis and Anomaly Detection with PCAP Analyzer

Technical requirements
For this chapter, you will need a web browser and a stable internet connection to access the ChatGPT
platform and set up your account. You will also need to have your OpenAI account setup and
have obtained your API key. If not, revisit Chapter 1 for details. Basic familiarity with the Python
programming language and working with the command line is necessary, as you’ll be using Python
3.x, which needs to be installed on your system, for working with the OpenAI GPT API and creating
Python scripts. A code editor will also be essential for writing and editing Python code and prompt
files as you work through the recipes in this chapter. Since we will be discussing APTs specifically
for Windows systems, access to a Windows environment (preferably Windows Server) is essential.

Familiarity with the following subjects can be helpful:

• Threat Intelligence Platforms: Familiarity with common threat intelligence feeds and indicators
of compromise (IoCs) would be advantageous.

• Log Analysis Tools: A tool or platform for real-time log analysis, such as ELK Stack (Elasticsearch,
Logstash, Kibana) or Splunk.

• Rule Creation: Basic understanding of how threat detection rules are structured and the logic
behind them. Familiarity with platforms like YARA can be beneficial.

• Network Monitoring Tools: Tools like Wireshark or Suricata for analyzing network traffic
and detecting anomalies.

The code files for this chapter can be found here: https://github.com/PacktPublishing/
ChatGPT-for-Cybersecurity-Cookbook.

https://github.com/PacktPublishing/ChatGPT-for-Cybersecurity-Cookbook
https://github.com/PacktPublishing/ChatGPT-for-Cybersecurity-Cookbook

Threat Intelligence Analysis 223

Threat Intelligence Analysis
In the dynamic field of cybersecurity, the importance of staying ahead of threats cannot be overstated.
One of the pillars of this proactive approach is effective threat intelligence analysis. This recipe offers
a hands-on guide on how to use ChatGPT for analyzing raw threat intelligence data. By the end of
this exercise, you will have a working script capable of gathering unstructured threat intelligence data
from a variety of sources, utilizing ChatGPT to identify and categorize potential threats, extracting
indicators of compromise like IP addresses, URLs, and hashes, and finally, generating a contextual
narrative for each identified threat. While ChatGPT isn’t designed to replace specialized threat
intelligence platforms, it can serve as an invaluable tool for quick initial analyses and insights.

This recipe aims to equip you with a set of skills crucial for any modern cybersecurity professional. You
will learn how to set up your working environment for interacting with OpenAI’s GPT models. You
will also discover how to construct queries that prompt ChatGPT to sift through raw data to identify
potential threats. Moreover, the recipe will teach you how to use ChatGPT to extract indicators of
compromise from unstructured threat data. Lastly, you’ll gain insights into understanding the context
or narrative behind the threats you uncover, thereby enriching your threat analysis capabilities.

Getting ready

Before diving into this recipe, ensure you have your OpenAI account set up and your API key on
hand. If not, you should refer back to Chapter 1 for the necessary setup details. You will also need
Python version 3.10.x or later.

Additionally, confirm you have the following Python libraries installed:

1. openai: This library enables you to interact with the OpenAI API. Install it using the command
pip install openai.

2. Raw Threat Data: Prepare a text file containing the raw threat intelligence data you wish to
analyze. This can be gathered from various forums, security bulletins, or threat intelligence feeds.

By completing these steps, you’ll be well-prepared to run the script and analyze raw threat intelligence data.

How to do it…

In this section, we’ll walk through the steps to analyze raw threat intelligence data using ChatGPT.
Since the primary focus of this recipe is to use ChatGPT prompts, the steps are geared towards
querying the model effectively.

1. Gather raw threat data. Start by collecting unstructured threat intelligence data. This data can
be sourced from various places, such as forums, blogs, and security bulletins/alerts. Store this
data in a text file for easy access.

Threat Monitoring and Detection224

2. Query ChatGPT for threat identification. Open your favorite text editor or IDE and initiate
a ChatGPT session. Enter the following prompt to identify potential threats in the raw data:

Analyze the following threat data and identify potential
threats: [Your Raw Threat Data Here]

ChatGPT will analyze the data and provide a list of potential threats it has identified.

3. Extract Indicators of Compromise (IoCs). Now, use the second prompt to have ChatGPT
highlight specific indicators of compromise. Enter the following:

Extract all indicators of compromise (IoCs) from the following
threat data: [Your Raw Threat Data Here]

ChatGPT will sift through the data and list out the IoCs such as IP addresses, URLs, and hashes.

4. Begin contextual analysis. To understand the context or narrative behind each identified
threat, use the third prompt:

Provide a detailed context or narrative behind the identified
threats in this data: [Your Raw Threat Data Here]

ChatGPT will provide you with a detailed analysis, explaining the origin, objectives, and
potential impact of each threat.

5. Store and Share. Once you have all this information, store it in a centralized database and
distribute the findings to relevant stakeholders for further action.

How it works…

In this recipe, we leveraged ChatGPT’s natural language processing capabilities for threat intelligence
analysis. Let’s break down how each part works:

• Gathering Raw Threat Data. The first step involves collecting unstructured data from various
sources. While ChatGPT isn’t designed to scrape or gather data, you can manually compile this
information from multiple sources into a text file. The objective is to get a comprehensive set
of data that may contain hidden threats.

• Querying ChatGPT for Threat Identification. ChatGPT processes the raw data using natural
language understanding to identify potential threats. Although not a replacement for specialized
threat intelligence software, ChatGPT can give quick insights that are useful for initial assessments.

• Extracting IoCs. IoCs are elements in the data that signify malicious activity. These can range
from IP addresses to file hashes. ChatGPT uses its text analysis capabilities to identify and list
these IoCs, aiding in quicker decision-making for security professionals.

• Contextual Analysis. Understanding the context behind a threat is critical for assessing its
severity and potential impact. ChatGPT provides a narrative or contextual analysis based on
the data it has processed. This can give you valuable insights into the origin and objectives of
the threat actors involved.

Threat Intelligence Analysis 225

• Storing and Sharing. The final step involves storing the analyzed data and sharing it with
relevant stakeholders. While ChatGPT doesn’t handle database interactions or data distribution,
its outputs can easily be integrated into existing workflows for these tasks.

By combining these steps, you harness the power of ChatGPT to add an extra layer of analysis to your
threat intelligence efforts, all in a matter of minutes.

There’s more…

While our primary focus has been on using ChatGPT through prompts, you can also automate this
process by using the OpenAI API in Python. This way, you can integrate ChatGPT’s analysis into your
existing cybersecurity workflows. In this extended section, we’ll guide you through the Python code
to automate the ChatGPT threat analysis process.

1. Import the OpenAI Library. First, import the OpenAI library to interact with the OpenAI API.

import openai
from openai import OpenAI

2. Initialize the OpenAI API Client. Set your OpenAI API key to initialize the client. Use the
environment variable method as demonstrated in previous recipes.

openai.api_key = os.getenv("OPENAI_API_KEY")

3. Define the ChatGPT Query Function. Create a function, call_gpt, to handle sending
prompts to ChatGPT and receiving its responses.

def call_gpt(prompt):
 messages = [
 {
 "role": "system",
 "content": "You are a cybersecurity SOC
 analyst with more than 25 years of experience."
 },
 {
 "role": "user",
 "content": prompt
 }
]

 client = OpenAI()
 response = client.chat.completions.create(
 model="gpt-3.5-turbo",
 messages=messages,
 max_tokens=2048,

Threat Monitoring and Detection226

 n=1,
 stop=None,
 temperature=0.7
)
 return response.choices[0].message.content

4. Create the Threat Analysis Function. Now create a function, analyze_threat_data,
which takes a file path as an argument and uses call_gpt to analyze the threat data.

def analyze_threat_data(file_path):
 # Read the raw threat data from the provided file
 with open(file_path, 'r') as file:
 raw_data = file.read()

5. Complete the Threat Analysis Function. Complete the analyze_threat_data function by
adding the code to query ChatGPT for threat identification, IoC extraction, and contextual analysis.

 # Query ChatGPT to identify and categorize potential threats
 identified_threats = call_gpt(f"Analyze the
 following threat data and identify potential
 threats: {raw_data}")

 # Extract IoCs from the threat data
 extracted_iocs = call_gpt(f"Extract all indicators
 of compromise (IoCs) from the following threat
 data: {raw_data}")

 # Obtain a detailed context or narrative behind
 the identified threats
 threat_context = call_gpt(f"Provide a detailed
 context or narrative behind the identified
 threats in this data: {raw_data}")

 # Print the results
 print("Identified Threats:", identified_threats)
 print("\nExtracted IoCs:", extracted_iocs)
 print("\nThreat Context:", threat_context)

6. Run the Script. Finally, put it all together and run the main script.

if __name__ == "__main__":
 file_path = input("Enter the path to the raw
 threat data .txt file: ")
 analyze_threat_data(file_path)

Threat Intelligence Analysis 227

Here is the correct script that should be pasted here:

import openai
from openai import OpenAI
import os

Initialize the OpenAI API client
openai.api_key = os.getenv("OPENAI_API_KEY")

def call_gpt(prompt):
 messages = [
 {
 "role": "system",
 "content": "You are a cybersecurity SOC analyst with more
than 25 years of experience."
 },
 {
 "role": "user",
 "content": prompt
 }
]
 client = OpenAI()
 response = client.chat.completions.create(
 model="gpt-3.5-turbo",
 messages=messages,
 max_tokens=2048,
 n=1,
 stop=None,
 temperature=0.7
)
 return response.choices[0].message.content

def analyze_threat_data(file_path):
 # Read the raw threat data from the provided file
 with open(file_path, 'r') as file:
 raw_data = file.read()

 # Query ChatGPT to identify and categorize potential threats
 identified_threats = call_gpt(f"Analyze the following threat data
and identify potential threats: {raw_data}")

 # Extract IoCs from the threat data
 extracted_iocs = call_gpt(f"Extract all indicators of compromise

Threat Monitoring and Detection228

(IoCs) from the following threat data: {raw_data}")

 # Obtain a detailed context or narrative behind the identified
threats
 threat_context = call_gpt(f"Provide a detailed context or
narrative behind the identified threats in this data: {raw_data}")

 # Print the results
 print("Identified Threats:", identified_threats)
 print("\nExtracted IoCs:", extracted_iocs)
 print("\nThreat Context:", threat_context)

if __name__ == "__main__":
 file_path = input("Enter the path to the raw threat data .txt
file: ")
 analyze_threat_data(file_path)

This recipe not only demonstrates the practical application of ChatGPT in enhancing threat intelligence
analysis but also underscores the evolving role of AI in cybersecurity. By integrating ChatGPT into
the process, we unlock a new dimension of efficiency and depth in analyzing threat data, making it an
indispensable tool for cybersecurity professionals aiming to fortify their defenses in an ever-changing
threat landscape.

How the Script Works

Let's look at the steps to understand how the script works:

1. Import the OpenAI Library. The import openai statement allows your script to use the
OpenAI Python package, making all its classes and functions available. This is essential for
making API calls to ChatGPT for threat analysis.

2. Initialize the OpenAI API Client. The 'openai.api_key = os.getenv("OPENAI_
API_KEY")' initializes the OpenAI API client by setting your personal API key. This API
key authenticates your requests, allowing you to interact with the ChatGPT model. Make sure
to set the 'YOUR_OPENAI_API_KEY' environment variable with the actual API key you
obtained from OpenAI.

3. + The function call_gpt(prompt) is a utility function designed to send your query to
the ChatGPT model and retrieve the response. It uses a predefined system message to set the
role of ChatGPT, ensuring the model’s output aligns with the task at hand. The openai.
ChatCompletion.create() function is where the API call happens, using parameters
like model, messages, and max_tokens to customize the query.

Real-Time Log Analysis 229

4. Create the Threat Analysis Function. The function analyze_threat_data(file_path)
serves as the core of the threat analysis process. It starts by reading raw threat data from a file
specified by file_path. This raw data will be processed in the subsequent steps.

5. Complete the Threat Analysis Function. This part of the code fills out the analyze_
threat_data function by employing the call_gpt utility function defined earlier. It
sends three different queries to ChatGPT: one for identifying threats, another for extracting
indicators of compromise, and a final one for contextual analysis. The results are then printed
to the console for review.

6. Run the Script. The if __name__ == "__main__": block ensures that the script only
runs when executed directly (not imported as a module). It asks the user to input the file path of
the raw threat data and then calls the analyze_threat_data function to start the analysis.

Real-Time Log Analysis
In the complex and ever-changing world of cybersecurity, real-time threat monitoring and detection
are paramount. This recipe introduces a cutting-edge approach using the OpenAI API to perform real-
time log analysis and generate alerts for potential threats. By funneling data from diverse sources like
firewalls, Intrusion Detection Systems (IDS), and various logs into a centralized monitoring platform,
the OpenAI API serves as an intelligent filter. It analyzes the incoming data to highlight possible
security incidents, providing invaluable context to each alert and thus enabling incident responders
to prioritize more effectively. This recipe not only guides you through the process of setting up these
alerting mechanisms but also shows you how to establish a feedback loop, allowing for continuous
system improvement and adaptability to the evolving threat landscape.

Getting ready

Before diving into this recipe, ensure you have your OpenAI account set up and your API key on
hand. If not, you should refer back to Chapter 1 for the necessary setup details. You will also need
Python version 3.10.x or later.

Additionally, confirm you have the following Python libraries installed:

1. openai: This library enables you to interact with the OpenAI API. Install it using the command
pip install openai.

In addition to the OpenAI package, you’ll need the asyncio library for asynchronous programming
and the watchdog library for monitoring file system events: pip install asyncio watchdog.

Threat Monitoring and Detection230

How to do it…

To implement real-time log analysis using the OpenAI API, follow these steps to set up your system
for monitoring, threat detection, and alert generation. This approach will enable you to analyze and
respond to potential security incidents as they occur.

1. Import Required Libraries. The first step is to import all the libraries that you’ll be using in
the script.

import asyncio
import openai
from openai import OpenAI
import os
import socket
from watchdog.observers import Observer
from watchdog.events import FileSystemEventHandler

2. Initialize the OpenAI API Client. Before you can start sending logs to be analyzed, initialize
the OpenAI API client.

Initialize the OpenAI API client
#openai.api_key = 'YOUR_OPENAI_API_KEY' # Replace with your
actual API key if you choose not to use a system environment
variable
openai.api_key = os.getenv("OPENAI_API_KEY")

3. Create Function to Call GPT. Create a function that will interact with the GPT-3.5 Turbo
model to analyze log entries.

def call_gpt(prompt):
 messages = [
 {
 "role": "system",
 "content": "You are a cybersecurity SOC
 analyst with more than 25 years of
 experience."
 },
 {
 "role": "user",
 "content": prompt
 }
]
 client = OpenAI()
 response = client.chat.completions.create(
 model="gpt-3.5-turbo",
 messages=messages,

Real-Time Log Analysis 231

 max_tokens=2048,
 n=1,
 stop=None,
 temperature=0.7
)
 return response.choices[0].message.content.strip()

4. Setup Asynchronous Function for Syslog. Set up an asynchronous function to handle incoming
syslog messages. We’re using the UDP protocol for this example.

async def handle_syslog():
 UDP_IP = "0.0.0.0"
 UDP_PORT = 514
 sock = socket.socket(socket.AF_INET,
 socket.SOCK_DGRAM)
 sock.bind((UDP_IP, UDP_PORT))
 while True:
 data, addr = sock.recvfrom(1024)
 log_entry = data.decode('utf-8')
 analysis_result = call_gpt(f"Analyze the following log
entry for potential threats: {log_entry} \n\nIf you believe
there may be suspicious activity, start your response with
'Suspicious Activity: ' and then your analysis. Provide nothing
else.")

 if "Suspicious Activity" in analysis_result:
 print(f"Alert: {analysis_result}")
 await asyncio.sleep(0.1)

5. Setup File System Monitoring. Utilize the watchdog library to monitor a specific directory
for new log files.

class Watcher:
 DIRECTORY_TO_WATCH = "/path/to/log/directory"

 def __init__(self):
 self.observer = Observer()

 def run(self):
 event_handler = Handler()
 self.observer.schedule(event_handler,
 self.DIRECTORY_TO_WATCH, recursive=False)
 self.observer.start()
 try:
 while True:

Threat Monitoring and Detection232

 pass
 except:
 self.observer.stop()
 print("Observer stopped")

6. Create Event Handler for File System Monitoring. The Handler class will process the newly
created files in the directory being watched.

class Handler(FileSystemEventHandler):
 def process(self, event):
 if event.is_directory:
 return
 elif event.event_type == 'created':
 print(f"Received file: {event.src_path}")
 with open(event.src_path, 'r') as file:
 for line in file:
 analysis_result = call_gpt(f"Analyze the
following log entry for potential threats: {line.strip()} \n\
nIf you believe there may be suspicious activity, start your
response with 'Suspicious Activity: ' and then your analysis.
Provide nothing else.")
 if "Suspicious Activity" in analysis_result:
 print(f"Alert: {analysis_result}")
 def on_created(self, event):
 self.process(event)

7. Run the System. Finally, put it all together and run your system.

if __name__ == "__main__":
 asyncio.run(handle_syslog())
 w = Watcher()
 w.run()

Here is how the completed script should look:

import asyncio
import openai
from openai import OpenAI
import os
import socket
from watchdog.observers import Observer
from watchdog.events import FileSystemEventHandler

Initialize the OpenAI API client
#openai.api_key = 'YOUR_OPENAI_API_KEY' # Replace with your actual
API key if you choose not to use a system environment variable

Real-Time Log Analysis 233

openai.api_key = os.getenv("OPENAI_API_KEY")

Function to interact with ChatGPT
def call_gpt(prompt):
 messages = [
 {
 "role": "system",
 "content": "You are a cybersecurity SOC analyst
 with more than 25 years of experience."
 },
 {
 "role": "user",
 "content": prompt
 }
]
 client = OpenAI()
 response = client.chat.completions.create(
 model="gpt-3.5-turbo",
 messages=messages,
 max_tokens=2048,
 n=1,
 stop=None,
 temperature=0.7
)
 return response.choices[0].message.content.strip()

Asynchronous function to handle incoming syslog messages
async def handle_syslog():
 UDP_IP = "0.0.0.0"
 UDP_PORT = 514

 sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
 sock.bind((UDP_IP, UDP_PORT))

 while True:
 data, addr = sock.recvfrom(1024)
 log_entry = data.decode('utf-8')
 analysis_result = call_gpt(f"Analyze the following log entry
for potential threats: {log_entry} \n\nIf you believe there may be
suspicious activity, start your response with 'Suspicious Activity: '
and then your analysis. Provide nothing else.")

 if "Suspicious Activity" in analysis_result:
 print(f"Alert: {analysis_result}")

Threat Monitoring and Detection234

 await asyncio.sleep(0.1) # A small delay to allow
 other tasks to run

Class to handle file system events
class Watcher:
 DIRECTORY_TO_WATCH = "/path/to/log/directory"

 def __init__(self):
 self.observer = Observer()

 def run(self):
 event_handler = Handler()
 self.observer.schedule(event_handler,
 self.DIRECTORY_TO_WATCH, recursive=False)
 self.observer.start()
 try:
 while True:
 pass
 except:
 self.observer.stop()
 print("Observer stopped")

class Handler(FileSystemEventHandler):
 def process(self, event):
 if event.is_directory:
 return
 elif event.event_type == 'created':
 print(f"Received file: {event.src_path}")
 with open(event.src_path, 'r') as file:
 for line in file:
 analysis_result = call_gpt(f"Analyze the following
log entry for potential threats: {line.strip()} \n\nIf you believe
there may be suspicious activity, start your response with 'Suspicious
Activity: ' and then your analysis. Provide nothing else.")

 if "Suspicious Activity" in analysis_result:
 print(f"Alert: {analysis_result}")

 def on_created(self, event):
 self.process(event)

if __name__ == "__main__":
 # Start the syslog handler

Real-Time Log Analysis 235

 asyncio.run(handle_syslog())

 # Start the directory watcher
 w = Watcher()
 w.run()

By following this recipe, you’ve equipped your cybersecurity toolkit with an advanced real-time log
analysis system, leveraging the OpenAI API for efficient threat detection and alerting. This setup not
only enhances your monitoring capabilities but also ensures that your security posture is robust and
responsive to the dynamic nature of cyber threats.

How it works…

Understanding how the code works is essential for tweaking it to fit your specific needs or for
troubleshooting. Let’s break down the key elements:

• Importing Libraries. The script starts by importing necessary Python libraries. This includes
asyncio for asynchronous programming, openai for interacting with the OpenAI API,
os for environment variables, and socket and watchdog for network and file system
operations, respectively.

• OpenAI API Initialization. The openai.api_key is initialized using an environment
variable. This key allows the script to interact with the GPT-3.5 Turbo model via the OpenAI API.

• GPT-3.5 Turbo Function. The call_gpt() function serves as a wrapper for the OpenAI
API call. It takes a log entry as a prompt and returns an analysis. The function is configured to
initiate a chat with the system role setting the context as a seasoned cybersecurity SOC analyst,
which helps in generating more context-aware responses.

• Asynchronous Syslog Handling. The handle_syslog() function is asynchronous, allowing
it to handle multiple incoming syslog messages without blocking. It calls the call_gpt()
function with the log entry and checks for the keyword Suspicious Activity to generate alerts.

• File System Monitoring. The Watcher class uses the watchdog library to monitor a directory
for new log files. It triggers the Handler class whenever a new file is created.

• Event Handling. The Handler class reads the new log files line by line and sends each line
to the call_gpt() function for analysis. Similar to the syslog handling, it also checks for
the keyword “Suspicious Activity” in the analysis result to generate alerts.

• Alerting Mechanism. Both the syslog handler and the file system event handler print an alert
to the console if Suspicious Activity is found in the analysis. This can be easily extended to
send alerts via email, Slack, or any other alerting mechanism.

• Main Execution. The script’s main execution starts the asynchronous syslog handler and the
file system watcher, making the system ready for real-time log analysis.

Threat Monitoring and Detection236

By structuring the code this way, you get a modular and easily extendable real-time log analysis system
powered by the OpenAI API.

There’s more…

The code presented in this recipe serves as a foundational layer for real-time log analysis using the
OpenAI API. While it showcases the core functionalities, it’s a basic implementation and should be
extended to maximize its utility in a production environment. Here are some avenues for extension:

• Scalability. The current setup is basic and might not handle large-scale, high-throughput
environments well. Consider using more advanced networking setups and distributed systems
to scale the solution.

• Alerting Mechanisms. While the code prints alerts to the console, in a production scenario,
you’d likely want to integrate with existing monitoring and alerting solutions like Prometheus,
Grafana, or even a simple email alert system.

• Data Enrichment. The script currently sends raw log entries to the OpenAI API. Adding data
enrichment steps to add context or correlate entries could improve the quality of the analysis.

• Machine Learning Feedback Loop. With more data and results, machine learning models
could be trained to reduce false positives and improve accuracy over time.

• User Interface. An interactive dashboard could be developed to visualize the alerts and possibly
control the behavior of the system in real-time.

Note of caution
It’s crucial to note that sending actual sensitive data to the OpenAI API could expose it. While the
OpenAI API is secure, it’s not designed to handle sensitive or classified information. However,
later in this book, we’ll discuss methods to use local models to analyze sensitive logs, keeping
your data local and private

Detecting APTs using ChatGPT for Windows Systems
APTs are a class of cyber-attacks where the intruder gains unauthorized access to a system and
remains undetected for an extended period. These attacks often target organizations with high-
value information, including financial data, intellectual property, or national security details. APTs
are particularly challenging to detect due to their low-and-slow operational tactics and their use of
sophisticated techniques to evade traditional security measures. This recipe aims to leverage the
analytical capabilities of ChatGPT to assist in the active monitoring and detection of such threats on
Windows systems. By combining native Windows utilities with ChatGPT’s natural language processing
prowess, you can create a rudimentary, yet insightful, threat hunting tool. While this approach is not
a replacement for specialized threat hunting software or experts, it serves as an educational or proof-
of-concept method for understanding how AI can contribute to cybersecurity.

Detecting APTs using ChatGPT for Windows Systems 237

Getting ready

Before diving into this recipe, ensure you have your OpenAI account set up and your API key on
hand. If not, you should refer back to Chapter 1 for the necessary setup details. You will also need
Python version 3.10.x or later.

Additionally, confirm you have the following Python libraries installed:

1. Openai:This library enables you to interact with the OpenAI API. Install it using the command
pip install openai.

Finally, the script uses native Windows command-line utilities like reg query, tasklist,
netstat, schtasks, and wevtutil. These commands come pre-installed on most Windows
systems, so no additional installation is needed for them.

Important note
This script must be executed with administrative privileges to access specific system information
on a Windows machine. Ensure that you have administrative access or consult your system
administrator if you’re in an organization.

How to do it…

To detect Advanced Persistent Threats (APTs) on Windows systems, follow these steps to gather
system data and analyze it with ChatGPT for potential security threats.

1. Importing Required Modules. First, import the required Python modules. You’ll need the
subprocess module to run Windows commands, os to fetch environment variables, and openai
to interact with ChatGPT.

import subprocess
import os
import openai
from openai import OpenAI

2. Initialize the OpenAI API client. Next, initialize the OpenAI API client with your API key.
You can either hardcode the API key or retrieve it from an environment variable.

Initialize the OpenAI API client
#openai.api_key = 'YOUR_OPENAI_API_KEY'
openai.api_key = os.getenv("OPENAI_API_KEY")

Threat Monitoring and Detection238

3. Define the ChatGPT Interaction Function. Create a function that will interact with ChatGPT
using a given prompt. This function takes care of sending the prompt and messages to ChatGPT
and returns its response.

def call_gpt(prompt):
 messages = [
 {
 "role": "system",
 "content": "You are a cybersecurity SOC
 analyst with more than 25 years of
 experience."
 },
 {
 "role": "user",
 "content": prompt
 }
]
 client = OpenAI()
 response = client.chat.completions.creat(
 model="gpt-3.5-turbo",
 messages=messages,
 max_tokens=2048,
 n=1,
 stop=None,
 temperature=0.7
)
 response.choices[0].message.content.strip()

Important note
It is possible that you may need to use the model gpt-4-turbo-preview if the data
gathering produces an error indicating that the amount of tokens exceed the model's limit.

4. Define the Command Execution Function. This function will run a given Windows command
and return its output.

Function to run a command and return its output
def run_command(command):
 result = subprocess.run(command, stdout=
 subprocess.PIPE, stderr=subprocess.PIPE,
 text=True, shell=True)
 return result.stdout

Detecting APTs using ChatGPT for Windows Systems 239

5. Gather and Analyze Data. Now that the functions are set, the next step is to gather data
from the Windows system and analyze it with ChatGPT. The data gathering uses native
Windows commands.

Gather data from key locations
registry_data = run_command('reg query HKLM /s') # This
produces MASSIVE data. Replace with specific registry keys if
needed
print(registry_data)
process_data = run_command('tasklist /v')
print(process_data)
network_data = run_command('netstat -an')
print(network_data)
scheduled_tasks = run_command('schtasks /query /fo LIST')
print(scheduled_tasks)
security_logs = run_command('wevtutil qe Security /c:10 /rd:true
/f:text') # Last 10 security events. Adjust as needed
print(security_logs)

Analyze the gathered data using ChatGPT
analysis_result = call_gpt(f"Analyze the following Windows
system data for signs of APTs:\nProcess Data:\n{process_data}\n\
nNetwork Data:\n{network_data}\n\nScheduled Tasks:\n{scheduled_
tasks}\n\nSecurity Logs:\n{security_logs}") # Add Registry
Data:\n{#registry_data}\n\n if used

Display the analysis result
print(f"Analysis Result:\n{analysis_result}")

Here is how the completed script should look:

import subprocess
import os
import openai
from openai import OpenAI

Initialize the OpenAI API client
#openai.api_key = 'YOUR_OPENAI_API_KEY' # Replace with your actual
API key or use a system environment variable as shown below
openai.api_key = os.getenv("OPENAI_API_KEY")

Function to interact with ChatGPT
def call_gpt(prompt):
 messages = [
 {
 "role": "system",

Threat Monitoring and Detection240

 "content": "You are a cybersecurity SOC analyst
 with more than 25 years of experience."
 },
 {
 "role": "user",
 "content": prompt
 }
]
 client = OpenAI()
 response = client.chat.completions.create(
 model="gpt-3.5-turbo",
 messages=messages,
 max_tokens=2048,
 n=1,
 stop=None,
 temperature=0.7
)
 return response.choices[0].message.content.strip()

Function to run a command and return its output
def run_command(command):
 result = subprocess.run(command,
 stdout=subprocess.PIPE, stderr=subprocess.PIPE,
 text=True, shell=True)
 return result.stdout

Gather data from key locations
registry_data = run_command('reg query HKLM /s') # This produces
MASSIVE data. Replace with specific registry keys if needed
print(registry_data)
process_data = run_command('tasklist /v')
print(process_data)
network_data = run_command('netstat -an')
print(network_data)
scheduled_tasks = run_command('schtasks /query /fo LIST')
print(scheduled_tasks)
security_logs = run_command('wevtutil qe Security /c:10 /rd:true
/f:text') # Last 10 security events. Adjust as needed
print(security_logs)

Analyze the gathered data using ChatGPT
analysis_result = call_gpt(f"Analyze the following Windows system data
for signs of APTs:\nProcess Data:\n{process_data}\n\nNetwork Data:\
n{network_data}\n\nScheduled Tasks:\n{scheduled_tasks}\n\nSecurity
Logs:\n{security_logs}") # Add Registry Data:\n{#registry_data}\n\n if

Detecting APTs using ChatGPT for Windows Systems 241

used

Display the analysis result
print(f"Analysis Result:\n{analysis_result}")

In this recipe, we’ve explored a novel approach to APT detection by leveraging ChatGPT’s analytical
capabilities. Utilizing native Windows command-line utilities for data collection and feeding this
information into ChatGPT, we’ve created a rudimentary, yet insightful, threat hunting tool. This method
offers a unique way to identify and understand APTs in real-time, aiding in the timely planning of
response strategies.

How it works…

This recipe takes a unique approach by combining Python scripting with ChatGPT’s natural language
processing abilities to create a basic APT detection tool for Windows systems. Let’s dissect each part
to understand its intricacies.

• Data Collection with Native Windows Commands. The Python script uses a series of native
Windows command-line utilities to gather relevant system data. Commands like reg query
fetch registry entries, which could contain configurations set by an APT. Similarly, tasklist
enumerates running processes, and netstat -an gives a snapshot of current network connections,
among others.

These commands are part of the Windows operating system and are executed using Python’s
subprocess module, which allows you to spawn new processes, connect to their input/output/
error pipes, and obtain their return codes.

• Interacting with ChatGPT through OpenAI API. The call_gpt function serves as the
bridge between the Python script and ChatGPT. It utilizes the OpenAI API to send a prompt
along with the collected system data to ChatGPT.

The OpenAI API requires an API key for authentication, which can be obtained from OpenAI’s
official website. This API key is used to initialize the OpenAI API client in the script.

• Analysis and Context by ChatGPT. ChatGPT receives the system data along with a prompt
that guides it to look for anomalies or indicators of APT activities. The prompt is crafted to be
specific to the task, leveraging ChatGPT’s ability to understand and analyze text.

ChatGPT’s analysis aims to find irregularities or anomalies in the data. It tries to identify
unusual registry entries, suspicious running processes, or odd network connections that could
indicate an APT.

• Output and Result Interpretation. Once the analysis is complete, ChatGPT’s findings are
returned as a text output. This output is then printed to the console by the Python script.

The output should be considered a starting point for further investigation. It provides clues
and potential indicators that can guide your response strategy.

Threat Monitoring and Detection242

• Administrative Privileges Requirement. It’s important to note that the script must be run
with administrative privileges to access certain protected system information. This ensures
that the script can probe into areas of the system that are usually restricted, offering a more
comprehensive data set for analysis.

By carefully combining Python’s capability to interact with system-level details and ChatGPT’s prowess
in natural language understanding, this recipe provides a rudimentary but insightful tool for real-time
threat detection and analysis.

There’s more…

The recipe we’ve just walked through offers a basic yet effective approach to identifying potential APT
activities on a Windows system. However, it’s worth noting that this is just the tip of the iceberg, and there
are several ways to extend this functionality for more comprehensive threat hunting and monitoring:

• Machine Learning Integration. While ChatGPT provides a good starting point for anomaly
detection, integrating machine learning algorithms for pattern recognition could make the
system even more robust.

• Automated Response. Currently, the script provides an analysis that can be used for manual
response planning. You could extend this by automating certain responses, such as isolating a
network segment or disabling a user account based on the severity of the threat.

• Longitudinal Analysis. The script performs a point-in-time analysis. However, APTs often
reveal themselves through behaviors that change over time. Storing data over extended periods
and running trend analyses could provide more accurate detection.

• Integrate with Security Information and Event Management (SIEM) Solutions. SIEM solutions
can provide a more comprehensive view of an organization’s security posture. Integrating the
script’s output into a SIEM could allow for correlation with other security events, enhancing
the overall detection capability.

• Multi-System Analysis. The current script focuses on a single Windows system. Extending
it to collect data from multiple systems in a network can provide a more holistic view of
potential threats.

• User Behavior Analytics (UBA). Incorporating UBA can add another layer of sophistication.
By understanding normal user behaviors, the system can more accurately identify anomalous
activities that may indicate a threat.

• Scheduled Runs. Instead of running the script manually, you could schedule it to run at regular
intervals, providing a more continuous monitoring solution.

• Alerting Mechanism. Implementing an alerting mechanism that notifies system administrators
or security teams in real-time can expedite the response process.

Building Custom Threat Detection Rules 243

• Customizable Threat Indicators. Allow for customization in the script where operators can
define their threat indicators based on the evolving threat landscape.

• Documentation and Reporting. Enhancing the script to generate detailed reports can aid in
post-incident analysis and compliance reporting.

By considering these extensions, you can transform this rudimentary tool into a more comprehensive,
dynamic, and responsive threat monitoring system.

Building Custom Threat Detection Rules
In the evolving landscape of cybersecurity, generic threat detection rules often fall short. The nuances
of each organization’s network and systems necessitate custom rules tailored for specific threat
landscapes. This recipe aims to equip you with the skills to identify unique threats and draft custom
detection rules, specifically YARA rules, using ChatGPT. By walking you through the process—from
threat identification to rule deployment—with hands-on sample scenarios, this recipe serves as a
comprehensive guide for enhancing your organization’s threat monitoring and detection capabilities.

Getting ready

The prerequisites for this recipe are simple. You just need a web browser and an OpenAI account. If
you haven’t already created an account or need a refresher on how to use the ChatGPT interface, refer
back to Chapter 1 for a comprehensive guide.

You should also have a clear understanding of your organizational environment. This includes an inventory
of the types of systems deployed, the software in use, and the most critical assets requiring protection.

Ensure you have:

1. A test environment where you can safely deploy and test the rules. This could be a virtualized
network or an isolated lab setup.

2. An existing threat detection system capable of using YARA rules or similar for testing purposes.

For those who are not familiar with YARA rules, you may want to brush up on the basics as this recipe
will require some understanding of how they work in a threat detection context.

How to do it…

Important note
Two sample threat scenarios can be found in the official GitHub repository for this book. These
scenarios can be used to test the prompts in this recipe and also provide guidance on creating
your own practice scenarios.

Threat Monitoring and Detection244

The process of building custom threat detection rules with ChatGPT involves a series of steps. These
steps will take you from identifying unique threats to deploying effective rules.

1. Identify Unique Threats.

 � Sub-step 1: Conduct an internal assessment or consult your cybersecurity team to identify
the specific threats most relevant to your environment.

 � Sub-step 2: Review any recent incidents, logs, or threat intelligence reports for patterns
or indicators.

Important note
The objective here is to find something specific—a unique file, an unusual system behavior, or
a particular network pattern—that isn’t already covered by generic detection rules.

2. Draft Rules with ChatGPT.

 � Sub-step 1: Open your web browser and navigate to the ChatGPT web UI.

 � Sub-step 2: Initiate a conversation with ChatGPT. Be as specific as possible about the threat
characteristics. For example, if you’re dealing with a malware that leaves a unique file, say so.

Sample Prompt:
I've noticed suspicious network activity where an unknown
external IP is making multiple failed SSH login attempts on
one of our critical servers. The IP is 192.168.1.101 and it's
targeting Server-XYZ on SSH port 22. Can you help me draft a
YARA rule to detect this specific activity?

 � Sub-step 3: Review the YARA rule that ChatGPT drafts for you. Make sure it includes the
characteristics that are specific to the threat you’ve identified.

3. Test Rules.

 � Sub-step 1: Access your test environment, which should be isolated from your production network.

 � Sub-step 2: Deploy the YARA rule by adding it to your threat detection system. If you’re new
to this, most systems have an Import or Upload feature for new rules.

 � Sub-step 3: Run initial scans to check for false positives and the rule’s overall effectiveness.

Important note
Be prepared to roll back changes or disable the rule if it causes disruptions.

Building Custom Threat Detection Rules 245

4. Refinement.

 � Sub-step 1: Assess the test results. Note down any false positives or misses.

 � Sub-step 2: Return to ChatGPT with this data for refinement.

Sample Prompt for Refinement:
The YARA rule for detecting the suspicious SSH activity is
generating some false positives. It's alerting on failed SSH
attempts that are part of routine network scans. Can you help me
refine it to focus only on the pattern described in the initial
scenario?

5. Deployment.

 � Sub-step 1: Once you’re confident with the rule’s performance, prepare for deployment.

 � Sub-step 2: Integrate the refined rule into your production threat detection systems using
the system’s rule management interface.

How it works…

Understanding the mechanics behind each step will provide you with the insights needed to adapt
this recipe for other threat scenarios. Let’s break down what’s happening:

• Identify Unique Threats. At this stage, you’re essentially conducting threat hunting. You’re
going beyond the alerts and logs to find patterns or behaviors that are unusual and specific to
your environment.

• Draft Rules with ChatGPT. ChatGPT uses its trained model to understand the threat
characteristics you provide. Based on that understanding, it drafts a YARA rule aimed at
detecting the described threat. It’s a form of automated rule generation, saving you the time
and effort needed to write rules manually.

• Test Rules. Testing is crucial in any cybersecurity task. Here, you’re not just checking if the rule
works, but also if it works without causing disruptions or false positives. A poorly designed
rule can be as problematic as having no rule at all.

• Refinement. This step is about iteration. Cyber threats are not static; they evolve. The rules
you create will likely need to be adjusted over time, either because the threat has changed or
because the initial rule wasn’t perfect.

• Deployment. Once a rule is tested and refined, it’s ready to be deployed into production. This
is the final validation of your efforts. However, continuous monitoring is essential to ensure
that the rule remains effective against the threat it was designed to detect.

By understanding how each step works, you can adapt this method to various threat types and scenarios,
making your threat detection system more robust and responsive.

Threat Monitoring and Detection246

There’s more…

Now that you’ve learned how to create custom threat detection rules with ChatGPT, you might be
interested in diving deeper into related topics and advanced functionalities. Here are some areas
worth exploring:

• Advanced YARA Features. Once you’re comfortable with basic YARA rule creation, consider
delving into its advanced features. YARA offers functionalities like condition statements and
external variables that can make your custom rules even more effective.

• Continuous Monitoring and Tuning. Cyber threats are ever-evolving, and so should your
detection rules. Regularly review and update your custom rules to adapt to new threat landscapes
and to fine-tune their performance.

• Integration with SIEM Solutions. Custom YARA rules can be integrated into existing SIEM
solutions. This integration allows for a more comprehensive monitoring approach, correlating
rule alerts with other security events.

• Community Resources. For further exploration and support, check out online forums, blogs, or
GitHub repositories dedicated to YARA and threat detection. These platforms can be excellent
resources for learning and troubleshooting.

• Future of AI in Threat Detection. The landscape of threat detection is continuously changing,
with machine learning and AI playing an increasingly crucial role. Tools like ChatGPT
can significantly streamline the rule-creation process, acting as a valuable asset in modern
cybersecurity efforts.

Network Traffic Analysis and Anomaly Detection with
PCAP Analyzer
In the constantly evolving landscape of cybersecurity, keeping tabs on network traffic is crucial. Traditional
methods often involve using specialized network monitoring tools and considerable manual effort. This
recipe takes a different approach by leveraging the OpenAI API in conjunction with Python’s SCAPY
library. By the end of this recipe, you’ll learn how to analyze a PCAP file containing captured network
traffic and identify potential anomalies or threats, all without the need for real-time API calls. This
makes the analysis not only insightful but also cost-effective. Whether you’re a cybersecurity newbie
or a seasoned professional, this recipe offers a novel way to bolster your network security measures.

Getting ready

Before diving into this recipe, ensure you have your OpenAI account set up and your API key on
hand. If not, you should refer back to Chapter 1 for the necessary setup details. You will also need
Python version 3.10.x or later.

Network Traffic Analysis and Anomaly Detection with PCAP Analyzer 247

Additionally, confirm you have the following Python libraries installed:

1. openai:This library enables you to interact with the OpenAI API. Install it using the command
pip install openai.

2. SCAPY Library: Install the SCAPY Python library, which will be used to read and analyze
PCAP files. You can install it using pip: pip install scapy

3. PCAP File: Have a PCAP file ready for analysis. You can either capture network traffic
using tools like Wireshark or Tcpdump, or use sample files available at: https://wiki.
wireshark.org/SampleCaptures. A sample example.pcap file has also been
provided in the GitHub repository for this recipe.

4. libpcap (Linux and MacOS) or Ncap (Windows): You will need to install the appropriate
library to enable SCAPY to read the PCAP files. libpcap can be found at https://www.
tcpdump.org/ and Ncap can be found at https://npcap.com/.

How to do it…

This recipe will guide you through a step-by-step process to analyze network traffic and detect anomalies
using ChatGPT and Python’s SCAPY library.

1. Initialize OpenAI API Client. Before you can interact with the OpenAI API, you need to
initialize the OpenAI API client. Replace YOUR_OPENAI_API_KEY with your actual API key.

import openai
from openai import OpenAI
import os
#openai.api_key = 'YOUR_OPENAI_API_KEY' # Replace with your
actual API key or set the OPENAI_API_KEY environment variable
openai.api_key = os.getenv("OPENAI_API_KEY")

2. Create Function to Interact with the OpenAI API. Define a function named chat_with_gpt
that takes a prompt and sends it to the API for analysis.

Function to interact with the OpenAI API
def chat_with_gpt(prompt):
 messages = [
 {
 "role": "system",
 "content": "You are a cybersecurity SOC
 analyst with more than 25 years of experience."
 },
 {
 "role": "user",
 "content": prompt
 }

https://wiki.wireshark.org/SampleCaptures
https://wiki.wireshark.org/SampleCaptures
https://www.tcpdump.org/
https://www.tcpdump.org/
https://npcap.com/

Threat Monitoring and Detection248

]
 client = OpenAI()
 response = client.chat.completions.create(
 model="gpt-3.5-turbo",
 messages=messages,
 max_tokens=2048,
 n=1,
 stop=None,
 temperature=0.7
)
 return response.choices[0].message.content.strip()

3. Read and Pre-process PCAP File. Utilize the SCAPY library to read a captured PCAP file and
summarize the network traffic.

from scapy.all import rdpcap, IP, TCP
Read PCAP file
packets = rdpcap('example.pcap')

4. Summarize Traffic. Process the PCAP file to summarize key traffic aspects like unique IP
addresses, ports, and protocols used.

Continue from previous code snippet
ip_summary = {}
port_summary = {}
protocol_summary = {}

for packet in packets:
 if packet.haslayer(IP):
 ip_src = packet[IP].src
 ip_dst = packet[IP].dst
 ip_summary[f"{ip_src} to {ip_dst}"] =
 ip_summary.get(f"{ip_src} to {ip_dst}", 0) + 1
 if packet.haslayer(TCP):
 port_summary[packet[TCP].sport] =
 port_summary.get(packet[TCP].sport, 0) + 1

 if packet.haslayer(IP):
 protocol_summary[packet[IP].proto] =
 protocol_summary.get(packet[IP].proto, 0) + 1

Network Traffic Analysis and Anomaly Detection with PCAP Analyzer 249

5. Feed Summarized Data to ChatGPT. Send the summarized data to the OpenAI API for
analysis. Use OpenAI’s API to look for anomalies or suspicious patterns.

Continue from previous code snippet
analysis_result = chat_with_gpt(f"Analyze the following
summarized network traffic for anomalies or potential threats:\
n{total_summary}")

6. Review Analysis and Alert. Check the analysis provided by the LLM. If any anomalies or
potential threats are detected, alert the security team for further investigation.

Continue from previous code snippet
print(f"Analysis Result:\n{analysis_result}")

Here’s how the completed script should look:

from scapy.all import rdpcap, IP, TCP
import os
import openai
from openai import OpenAI

Initialize the OpenAI API client
#openai.api_key = 'YOUR_OPENAI_API_KEY' # Replace with your actual
API key or set the OPENAI_API_KEY environment variable
openai.api_key = os.getenv("OPENAI_API_KEY")

Function to interact with ChatGPT
def chat_with_gpt(prompt):
 messages = [
 {
 "role": "system",
 "content": "You are a cybersecurity SOC analyst
 with more than 25 years of experience."
 },
 {
 "role": "user",
 "content": prompt
 }
]
 client = OpenAI()
 response = client.chat.completions.create(
 model="gpt-3.5-turbo",

Threat Monitoring and Detection250

 messages=messages,
 max_tokens=2048,
 n=1,
 stop=None,
 temperature=0.7
)
 return response.choices[0].message.content.strip()

Read PCAP file
packets = rdpcap('example.pcap')

Summarize the traffic (simplified example)
ip_summary = {}
port_summary = {}
protocol_summary = {}

for packet in packets:
 if packet.haslayer(IP):
 ip_src = packet[IP].src
 ip_dst = packet[IP].dst
 ip_summary[f"{ip_src} to {ip_dst}"] =
 ip_summary.get(f"{ip_src} to {ip_dst}", 0) + 1

 if packet.haslayer(TCP):
 port_summary[packet[TCP].sport] =
 port_summary.get(packet[TCP].sport, 0) + 1

 if packet.haslayer(IP):
 protocol_summary[packet[IP].proto] =
 protocol_summary.get(packet[IP].proto, 0) + 1

Create summary strings
ip_summary_str = "\n".join(f"{k}: {v} packets" for k,
 v in ip_summary.items())
port_summary_str = "\n".join(f"Port {k}: {v} packets"
 for k, v in port_summary.items())
protocol_summary_str = "\n".join(f"Protocol {k}:
 {v} packets" for k, v in protocol_summary.items())

Combine summaries
total_summary = f"IP Summary:\n{ip_summary_str}\n\nPort Summary:\
n{port_summary_str}\n\nProtocol Summary:\n{protocol_summary_str}"

Analyze using ChatGPT

Network Traffic Analysis and Anomaly Detection with PCAP Analyzer 251

analysis_result = chat_with_gpt(f"Analyze the following summarized
network traffic for anomalies or potential threats:\n{total_summary}")

Print the analysis result
print(f"Analysis Result:\n{analysis_result}")

With the completion of this recipe, you’ve taken a significant step forward in utilizing AI for network
traffic analysis and anomaly detection. By integrating Python’s SCAPY library with ChatGPT’s analytical
capabilities, you’ve crafted a tool that not only simplifies the identification of potential network threats
but also enriches your cybersecurity arsenal, making your network monitoring efforts both efficient
and insightful.

How it works…

This recipe is designed to break down the complexity of network traffic analysis into a set of manageable
tasks that utilize Python programming and the OpenAI API. Let’s delve into each aspect to understand
it better:

• SCAPY for Traffic Summarization. SCAPY is a Python library for networking that allows you
to handle, manipulate, and analyze network packets. In our case, we use SCAPY’s rdpcap
function to read the PCAP file, which is essentially a capture of network packets saved to a file.
After reading this file, we loop through each packet to collect data on IP addresses, ports, and
protocols, summarizing these into dictionaries.

• Initializing OpenAI API Client. The OpenAI API provides programmatic access to powerful
machine learning models like GPT-3. To start using the API, you need to initialize it with an API
key, which you can obtain from OpenAI’s website. This key is used to authenticate your requests.

• Interaction with OpenAI API. We define a function, interact_with_openai_api, which
takes a text prompt as an argument and sends it to the OpenAI API. The function constructs
a message structure that includes a system role, defining the context for the AI (in our case, a
cybersecurity SOC analyst), and a user role, which provides the actual query or prompt. It then
calls OpenAI’s ChatCompletion.create method to get the analysis.

• OpenAI API for Anomaly Detection. Once the summarized data is ready, it is sent as a prompt
to the OpenAI API for analysis. The API’s model scans this summary and outputs its analysis,
which could include detection of anomalies or suspicious activities based on the data it received.

• Result Interpretation. Finally, the output from the OpenAI API is printed to the console using
Python’s print function. This output can include potential anomalies and could serve as a
trigger for further investigations or alerts within your cybersecurity framework.

By understanding each of these components, you’ll gain the ability to adapt this recipe to specific
cybersecurity tasks, even if you’re relatively new to Python or OpenAI’s offerings.

Threat Monitoring and Detection252

There’s more…

While the steps outlined in this recipe provide a solid foundation for network traffic analysis and
anomaly detection, there are various ways to build upon and extend this knowledge.

• Extend the Code for Advanced Analysis. The Python script in this recipe provides a basic
overview of the network traffic and potential anomalies. You could extend this code to perform
more detailed analyses, such as flagging specific types of network behavior or integrating
machine learning algorithms for anomaly detection.

• Integrate with Monitoring Tools. While this recipe focuses on a standalone Python script,
the logic could easily be integrated into existing network monitoring tools or SIEM systems to
provide real-time analysis and alerting capabilities.

8
Incident Response

Incident response is a critical component of any cybersecurity strategy, involving the identification,
analysis, and mitigation of security breaches or attacks. A timely and effective response to incidents is
essential to minimize damage and prevent future attacks. In this chapter, we will delve into leveraging
ChatGPT and the OpenAI API to enhance various aspects of the incident response process.

We will begin by exploring how ChatGPT can assist in incident analysis and triage, providing quick
insights and prioritizing events based on their severity. Next, we will see how to generate comprehensive
incident response playbooks tailored to specific scenarios, streamlining the response process.

Furthermore, we will utilize ChatGPT for root cause analysis, helping to identify the origins and
methods of an attack. This can significantly speed up the recovery process and fortify defenses against
similar threats in the future.

Lastly, we will automate the creation of briefing reports and incident timelines, ensuring that stakeholders
are well-informed and that a detailed record of the incident is maintained for future reference.

By the end of this chapter, you will be equipped with a suite of AI-powered tools and techniques that
can significantly enhance their incident response capabilities, making them faster, more efficient,
and more effective.

In this chapter, we will cover the following recipes:

• ChatGPT-assisted incident analysis and triage

• Generating incident response playbooks

• ChatGPT-assisted root cause analysis

• Automated briefing reports and incident timeline reconstruction

Incident Response254

Technical requirements
For this chapter, you will need a web browser and a stable internet connection to access the ChatGPT
platform and set up your account. You will also need to have your OpenAI account set up obtain your
API key. If not, revisit Chapter 1 for details. Basic familiarity with the Python programming language and
working with its command line is necessary, as you’ll be using Python 3.x, which needs to be installed
on your system to work with the OpenAI GPT API and create Python scripts. A code editor will also
be essential for writing and editing Python code and prompt files as you work through the recipes
in this chapter. Finally, since many penetration testing use cases rely heavily on the Linux operating
system, access to and familiarity with a Linux distribution (preferably Kali Linux) is recommended:

• Incident data and logs: Access to incident logs or simulated data is important for practical
exercises. This will help in understanding how ChatGPT can assist in analyzing incidents and
generating reports.

• The code files for this chapter can be found here: https://github.com/
PacktPublishing/ChatGPT-for-Cybersecurity-Cookbook.

ChatGPT-assisted incident analysis and triage
In the dynamic realm of cybersecurity, incidents are inevitable. The key to mitigating the impact
lies in how effectively and swiftly an organization can respond. This recipe introduces an innovative
approach to incident analysis and triage, leveraging the conversational capabilities of ChatGPT. By
simulating the role of an Incident Commander, ChatGPT guides users through the initial critical
steps of triaging a cybersecurity event.

Through an engaging question-and-answer format, ChatGPT assists in identifying the nature of
suspicious activities, the systems or data affected, triggered alerts, and the extent of the impact on
business operations. This interactive method not only aids in immediate decision-making, such as
isolating affected systems or escalating issues but also serves as a valuable training tool for cybersecurity
professionals. Embracing this AI-driven strategy elevates an organization’s incident response readiness
to a new pinnacle.

Before proceeding further, it’s crucial to note the sensitivity of information shared during such
interactions. The upcoming chapter on private local large language models (LLMs) addresses this
concern, guiding users on how to maintain confidentiality while benefiting from AI assistance in
incident response.

Getting ready

Before diving into the interactive session with ChatGPT for incident triage, it’s imperative to establish
a foundational understanding of the incident response process and familiarize oneself with the
conversational interface of ChatGPT. No specific technical prerequisites are required for this recipe,
making it accessible to professionals across various levels of technical expertise. However, a basic grasp

https://github.com/PacktPublishing/ChatGPT-for-Cybersecurity-Cookbook
https://github.com/PacktPublishing/ChatGPT-for-Cybersecurity-Cookbook

ChatGPT-assisted incident analysis and triage 255

of common cybersecurity terminologies and incident response protocols will enhance the efficacy
of the interaction.

Ensure that you have access to the ChatGPT interface, either through the OpenAI website or an
integrated platform. Familiarize yourself with initiating conversations and providing clear, concise
inputs to maximize the utility of ChatGPT’s responses.

With the preparatory steps addressed, you’re set to embark on the journey of AI-assisted incident triage.

How to do it…

Engaging with ChatGPT for incident triage is a collaborative effort. It’s essential to guide the AI step
by step, providing detailed information and context to each query. This ensures that the AI’s guidance
is as relevant and actionable as possible. Here’s how you can proceed:

1. Initiate the incident triage dialogue: Begin by introducing the situation to ChatGPT using
the following prompt:

You are the Incident Commander for an unfolding cybersecurity
event we are currently experiencing. Guide me step by step,
one step at a time, through the initial steps of triaging this
incident. Ask me the pertinent questions you need answers for
each step as we go. Do not move on to the next step until we are
satisfied that the step we are working on has been completed.

2. Provide incident details and respond to queries: As ChatGPT asks questions, offer specific and
detailed responses. Information about the nature of suspicious activities, any affected systems or
data, any triggered alerts, and any business operations impacted will be crucial. The granularity
of your details will significantly influence the accuracy and relevance of ChatGPT’s guidance.

3. Follow ChatGPT’s step-by-step guidance: ChatGPT will provide instructions and
recommendations one step at a time based on your responses. It’s vital to follow these steps
meticulously and not proceed to the next step until you’ve adequately addressed the current one.

4. Iterate and update information: Incident response is an evolving scenario where new details can
come to light at any moment. Keep ChatGPT updated with the latest developments and iterate
through the steps as necessary, ensuring that the AI’s guidance adapts to the changing situation.

5. Document the interaction: Maintain a record of the dialogue for future reference. This can
be a valuable resource for post-incident reviews, refining response strategies, and training
team members.

How it works…

The effectiveness of this recipe hinges on the carefully crafted prompt that instructs ChatGPT to
act as an Incident Commander, guiding the user through the incident triage process. The prompt
is designed to elicit a structured, interactive dialogue, mirroring the step-by-step decision-making
typical of real-world incident response.

Incident Response256

The specificity of the prompt, emphasizing the step-by-step and one step at a time process, is crucial.
It instructs ChatGPT to avoid overwhelming the user with information and, instead, provides
guidance in manageable, sequential steps. This approach allows for a more focused response from
ChatGPT, closely aligning with how an Incident Commander would progressively assess and address
an unfolding situation.

By requesting ChatGPT to ask pertinent questions before proceeding to the next step, the prompt
ensures that each phase of the triage is thoroughly addressed. This mimics the iterative nature of
incident response, where each action is based on the most current and relevant information.

ChatGPT’s programming and training on a diverse range of texts allows it to understand the context
provided by the user and the intent behind the prompt. As a result, it responds by simulating the
role of an Incident Commander, drawing from best practices and protocols in cybersecurity incident
response. The AI’s responses are generated based on patterns it has learned during its training, enabling
it to provide relevant questions and actionable recommendations.

Furthermore, this design of this prompt encourages users to engage deeply with the AI, fostering a
collaborative problem-solving environment. This not only aids in the immediate triage process but
also helps users develop a more nuanced understanding of incident response dynamics.

In summary, the prompt’s structure and specificity play a pivotal role in guiding ChatGPT’s responses,
ensuring that the AI delivers targeted, step-by-step guidance that closely resembles the thought
processes and actions of an experienced Incident Commander.

There’s more…

While the recipe provides a structured approach to using ChatGPT for incident triage, there are
additional considerations and extensions that can enhance its utility:

• Simulated training scenarios: Use this recipe as a training exercise for cybersecurity teams.
Simulating different types of incidents can prepare teams for a variety of real-world scenarios,
improving their readiness and response capabilities.

• Integration with incident response tools: Consider integrating ChatGPT’s guidance with
your existing incident response tools and platforms. This can streamline the process, allowing
for quicker implementation of the AI’s recommendations.

• Customization for organization-specific protocols: Tailor the interaction with ChatGPT to
reflect your organization’s specific incident response protocols. This ensures that the guidance
provided is aligned with your internal policies and procedures.

• Confidentiality and privacy: Be mindful of the sensitivity of information shared during the
interaction. Utilize private instances of LLMs or anonymize data to ensure confidentiality. The
upcoming chapter on private local LLMs provides further guidance on this matter.

By expanding upon the foundational recipe, organizations can further integrate AI into their incident
response strategies, enhancing their cybersecurity posture and preparedness.

Generating incident response playbooks 257

Generating incident response playbooks
In the realm of cybersecurity, preparation is key. Incident response playbooks are vital tools that
guide organizations through the process of handling various cyber threats. This recipe showcases how
ChatGPT can be employed to generate these playbooks tailored to specific threats and environmental
contexts. We’ll walk through the process of crafting prompts for ChatGPT and interpreting its responses
to create comprehensive playbooks. Additionally, we introduce a Python script that automates this
process, further enhancing efficiency and readiness. By the end of this recipe, you’ll have a way
to rapidly generate detailed incident response playbooks, a critical component in fortifying your
organization’s cyber defense strategy.

Getting ready

Before diving into the recipe, ensure you have the following prerequisites in place:

• Access to ChatGPT: You’ll need access to ChatGPT or the OpenAI API to interact with the
language model. Ensure you have an API key if you’re using the API.

• Python environment: If you plan to use the provided Python script, make sure you have Python
installed on your system. The script is compatible with Python 3.6 and newer.

• OpenAI Python library: Install the openai Python library, which allows you to interact with
the OpenAI API. You can install it using pip, pip install openai.

How to do it…

Follow these steps to harness the power of ChatGPT and Python in crafting playbooks that are both
comprehensive and customized to your specific scenarios.

1. Identify the threat and environment: Before you can generate an incident response playbook,
you must identify the specific threat type and the details of the environment it affects. This
information is crucial, as it will guide the customization of your playbook.

2. Craft the prompt: With the threat and environment details in hand, construct a prompt that
you will use to communicate with ChatGPT. Here’s a template to follow:

Create an incident response playbook for handling [Threat_Type]
affecting [System/Network/Environment_Details].

Replace [Threat_Type] with the specific threat you’re preparing for, and replace [System/
Network/Environment_Details] with the relevant details of your environment.

3. Interact with ChatGPT: Input your crafted prompt into ChatGPT. The AI will generate a
response that outlines a detailed incident response playbook that is tailored to the threat and
environment you specified.

Incident Response258

4. Review and refine: Once you have the generated playbook, it’s time to review it. Ensure that
the playbook aligns with your organization’s policies and procedures. Make any necessary
customizations to fit your specific needs.

5. Implement and train: Disseminate the playbook among your incident response team members.
Conduct training sessions to make sure everyone understands their roles and responsibilities
as outlined in the playbook.

6. Maintain and update: The threat landscape is ever-evolving, and so should your playbooks.
Regularly review and update your playbooks to incorporate new threats, vulnerabilities, and
changes in your environment.

How it works…

The efficacy of the prompt in generating an incident response playbook hinges on its specificity and
clarity. When you input the prompt, “Create an incident response playbook for handling [Threat_
Type] affecting [System/Network/Environment_Details],” you’re setting a clear task
for ChatGPT:

• Task understanding: ChatGPT interprets the prompt as a request to create a structured document,
recognizing terms such as incident response playbook and handling [Threat_Type] as
indicators of the document’s purpose and content.

• Contextualization: By specifying the threat type and environment details, you’re providing
context. ChatGPT uses this information to tailor the playbook, ensuring relevance to the
specified scenario.

• Structured response: ChatGPT draws on its training data, which includes various cybersecurity
materials, to structure the playbook. It typically includes sections on roles, responsibilities,
and step-by-step procedures, aligning with standard formats of incident response documents.

• Customization: The model’s ability to generate content based on the provided details results in
a playbook that feels custom-made. It’s not a generic template but a response crafted to address
the specifics of the prompt.

This interaction between the prompt and ChatGPT showcases the model’s capability to generate detailed,
structured, and contextually relevant documents, making it a valuable tool for cybersecurity professionals.

There’s more…

While the ChatGPT web interface provides a convenient way to interact with the AI, using a Python
script and leveraging the OpenAI API can take the generation of incident response playbooks to the
next level. This can be a more dynamic and automated approach.

Generating incident response playbooks 259

The script introduces automation, customization, integration, scalability, programmatic control, and
confidentiality, which are enhancements that significantly elevate the playbook creation process. It
will prompt you for the threat type and environment details, construct the prompt dynamically, and
then use the OpenAI API to generate the playbook. Here’s how to set it up:

1. Set up your environment: Ensure you have Python installed on your system. You’ll also need
the openai library, which you can install using the following pip:

pip install openai

2. Obtain your API key: You’ll need an API key from OpenAI to use their models. Securely store
this key and ensure it’s not exposed in your code or version control systems.

3. Create the OpenAI API call: Create a new function that directs the model to generate
the playbook:

import openai
from openai import OpenAI
import os

def generate_incident_response_playbook(threat_type,
environment_details):
 """
 Generate an incident response playbook based on
 the provided threat type and environment details.
 """
 # Create the messages for the OpenAI API
 messages = [
 {"role": "system", "content": "You are an AI
 assistant helping to create an incident
 response playbook."},
 {"role": "user", "content": f"Create a
 detailed incident response playbook for
 handling a '{threat_type}' threat affecting
 the following environment: {environment_
 details}."}
]

 # Set your OpenAI API key here
openai.api_key = os.getenv("OPENAI_API_KEY")

 # Make the API call
 try:
 client = OpenAI()
 response = client.chat.completions.create(

Incident Response260

 model="gpt-3.5-turbo",
 messages=messages,
 max_tokens=2048,
 n=1,
 stop=None,
 temperature=0.7
)
 response_content = response.choices[0].message.content.
strip()
 return response_content
 except Exception as e:
 print(f"An error occurred: {e}")
 return None

4. Prompt for user input: Enhance the script to collect the threat type and environment details
from the user:

Get input from the user
threat_type = input("Enter the threat type: ")
environment_details = input("Enter environment
 details: ")

5. Generate and display the playbook: Call the function with the user’s input and print the
generated playbook:

Generate the playbook
playbook = generate_incident_response_playbook
 (threat_type, environment_details)

Print the generated playbook
if playbook:
 print("\nGenerated Incident Response Playbook:")
 print(playbook)
else:
 print("Failed to generate the playbook.")

6. Run the script: Execute the script. It will prompt you for the threat type and environment
details, and then it will display the generated incident response playbook.

Here’s how the completed script should look:

import openai
from openai import OpenAI # Updated for the new OpenAI API
import os

Set your OpenAI API key here

Generating incident response playbooks 261

openai.api_key = os.getenv("OPENAI_API_KEY")

def generate_incident_response_playbook
 (threat_type, environment_details):
 """
 Generate an incident response playbook based on the
 provided threat type and environment details.
 """
 # Create the messages for the OpenAI API
 messages = [
 {"role": "system", "content": "You are an AI
 assistant helping to create an incident response
 playbook."},
 {"role": "user", "content": f"Create a detailed
 incident response playbook for handling a
 '{threat_type}' threat affecting the following
 environment: {environment_details}."}
]

 # Make the API call
 try:
 client = OpenAI()
 response = client.chat.completions.create(
 model="gpt-3.5-turbo",
 messages=messages,
 max_tokens=2048,
 n=1,
 stop=None,
 temperature=0.7
)
 response_content = response.choices[0].message.content.strip()
 return response_content
 except Exception as e:
 print(f"An error occurred: {e}")
 return None

Get input from the user
threat_type = input("Enter the threat type: ")
environment_details = input("Enter environment details: ")

Generate the playbook
playbook = generate_incident_response_playbook

Incident Response262

 (threat_type, environment_details)

Print the generated playbook
if playbook:
 print("\nGenerated Incident Response Playbook:")
 print(playbook)
else:
 print("Failed to generate the playbook.")

The Python script provided acts as a bridge between the user and the OpenAI API, facilitating
the generation of incident response playbooks. Here’s a breakdown of how each part of the script
contributes to this process:

1. Importing dependencies: The script begins by importing the openai library, which is the
official Python client library provided by OpenAI. This library simplifies the interaction with
the OpenAI API, allowing us to send prompts and receive responses.

2. Defining the playbook generation function: The generate_incident_response_
playbook function is the core of the script. It’s responsible for crafting the API request and
parsing the response.

API messages: The function constructs a list of messages that emulates a chat session. The
first message sets the context for the AI ("You are an AI assistant..."), and the
second message contains the user’s prompt with the specific threat type and environment details.

API call: Using the openai.ChatCompletion.create method, the function sends the
messages to the chosen model. It specifies parameters such as max_tokens and temperature
to control the length and creativity of the response.

Error handling: The script includes a try and except block to gracefully handle any errors
that may occur during the API call, such as network issues or invalid API keys.

3. User interaction: The script gathers input from the user through the input function. This is
where the threat type and environment details are specified by the user.

4. Generating and displaying the playbook: Once the function receives the user input, it generates
the prompt, sends it to the OpenAI API, and receives the playbook. The script then prints the
generated playbook, giving the user an immediate view of the output.

This script is a practical example of how you can integrate OpenAI’s powerful language model
into your cybersecurity workflow, automating the generation of detailed and contextual incident
response playbooks.

ChatGPT-assisted root cause analysis 263

Note of caution
When generating incident response playbooks using ChatGPT or the OpenAI API, be mindful
of the sensitivity of the information you’re inputting. Avoid sending confidential or sensitive
data to the API, as it could potentially be stored or logged. If your organization has stringent
confidentiality requirements, consider utilizing private local language models. Stay tuned for an
upcoming chapter where we’ll explore how to deploy and use local language models, offering
a more secure and private alternative for sensitive applications.

ChatGPT-assisted root cause analysis
When the digital alarms ring and systems flash red, incident responders are the first line of defense
in the cybersecurity battlefield. Amidst the chaos of alerts and anomalies, identifying the root cause
of a security incident is akin to finding the proverbial needle in a haystack. It requires a keen eye, a
systematic approach, and, often, a touch of intuition. However, even the most seasoned professionals
can benefit from a structured guide through the labyrinth of logs, alerts, and symptoms that define a
security incident. This is where ChatGPT-assisted root cause analysis comes into play.

Envision ChatGPT as your digital Sherlock Holmes, a tireless incident response advisor equipped
with the collective knowledge of cybersecurity practices and the analytical prowess of artificial
intelligence. This recipe unveils a conversational blueprint that leads you through the fog of digital
warfare, posing critical questions and suggesting investigative pathways based on your responses. It’s
a dynamic dialogue that evolves with each piece of information you provide, steering you toward the
probable root causes of the incident.

Whether it’s a mysterious spike in network traffic, an unexpected system shutdown, or a subtle anomaly
in user behavior, ChatGPT’s inquisitive nature ensures no stone is left unturned. By leveraging the
power of generative AI, this recipe empowers you to peel back the layers of the incident, guiding
you from the initial symptoms to the underlying vulnerabilities that adversaries may have exploited.

This recipe is more than a set of instructions; it’s a collaborative journey with an AI companion that’s
committed to aiding you in safeguarding your digital realm. So, prepare to embark on a quest to
demystify the complexities of incident response and root cause analysis with ChatGPT as your guide.

Getting ready

Before diving into the heart of root cause analysis with ChatGPT, it’s essential to set the stage for
an effective session. This involves ensuring that you have access to the necessary information and
tools and are prepared to interact with ChatGPT in a way that maximizes its potential as an incident
response advisor.

• Access to ChatGPT: Make sure you have access to ChatGPT, preferably through the Web UI, for
ease of interaction. If you’re using the OpenAI API, ensure that your environment is properly
configured to send and receive messages from the model.

Incident Response264

• Incident data: Gather all relevant data associated with the security incident. This may include
logs, alerts, network traffic data, system statuses, and any observations noted by the security
team. Having this information at hand will be crucial for providing context to ChatGPT.

• Secure environment: Ensure that you’re operating in a secure environment when interacting
with ChatGPT. Be mindful of the sensitivity of the data you’re discussing, and follow your
organization’s data handling and privacy policies.

• Familiarity with incident response protocols: While ChatGPT can guide you through the
analysis, a foundational understanding of your organization’s incident response protocols and
procedures will enhance the collaboration.

By meeting these prerequisites, you’ll be well-positioned to engage with ChatGPT effectively and
embark on a structured journey to uncover the root cause of the security incident at hand.

How to do it…

Root cause analysis in incident response is an intricate dance of queries and deductions. With
ChatGPT as your partner, this dance becomes a structured dialogue, each step bringing you closer
to understanding the underlying cause of the incident. Follow these steps to leverage ChatGPT’s
capabilities in your incident response endeavors:

1. Initiate the session: Begin by clearly stating your intent to ChatGPT. Provide the following prompt:

You are my incident response advisor. Help me identify the root
cause of the observed suspicious activities.

2. Describe the symptoms: Provide a detailed description of the first symptoms or anomalies
you observed. This could include unusual system behavior, unexpected alerts, or any other
indicators of a potential security incident.

3. Answer ChatGPT’s questions: ChatGPT will respond with a series of questions to narrow
down the potential causes. These may include inquiries about unauthorized access alerts,
unusual network traffic, or commonalities among affected systems. Answer these questions to
the best of your knowledge.

4. Follow the decision trees: Based on your responses, ChatGPT will guide you through a decision
tree, suggesting possible root causes and further investigative steps. This interactive process is
designed to consider various scenarios and their likelihood based on the information provided.

5. Investigate and validate: Use the suggestions provided by ChatGPT to conduct further
investigations. Validate the hypotheses by checking against logs, system configurations, and
other relevant data.

6. Iterate as needed: Incident response is rarely linear. As you uncover new information, return
to ChatGPT with your findings to refine the analysis. The model’s responses will adapt based
on the evolving situation.

ChatGPT-assisted root cause analysis 265

7. Document and report: Once you’ve identified the probable root causes, document your
findings and report them according to your organization’s protocols. This documentation can
be invaluable for future incident response efforts and for strengthening your security posture.

By following these steps, you can transform the daunting task of root cause analysis into a structured
and manageable process, with ChatGPT serving as a knowledgeable advisor every step of the way.

How it works…

The simplicity of the initial prompt, “You are my incident response advisor. Help me identify the root
cause of the observed suspicious activities,” belies its effectiveness. This prompt sets the stage for a
focused and purpose-driven interaction with ChatGPT. Here’s why it works:

• Clarity of the role: By explicitly defining ChatGPT’s role as an incident response advisor, we
prime the AI to adopt a specific mindset geared towards problem-solving within the realm
of cybersecurity incident response. This helps tailor the subsequent conversation towards
actionable insights and guidance.

• Open-ended inquiry: The request to help me identify the root cause is intentionally open-
ended, inviting ChatGPT to ask probing questions. This approach mimics the Socratic method,
leveraging inquiry to stimulate critical thinking and illuminate the path toward understanding
the incident’s root cause.

• Focus on suspicious activities: The mention of observed suspicious activities provides a context
for the analysis, signaling ChatGPT to concentrate on anomalies and potential indicators of
compromise. This focus helps narrow down the line of questioning and analysis, making the
interaction more efficient.

In the context of incident response, root cause analysis often involves sifting through a maze of
symptoms, logs, and behaviors to trace back to the origin of the security incident. ChatGPT assists
in this process by doing the following:

• Asking targeted questions: Based on the initial prompt and subsequent inputs, ChatGPT
asks targeted questions that help isolate variables and identify patterns. This can help incident
responders focus their attention on the most relevant areas of investigation.

• Suggesting hypotheses: As the conversation unfolds, ChatGPT suggests potential root
causes based on the information provided. These hypotheses can serve as starting points for
deeper investigation.

• Guiding investigation: Through its questions and suggestions, ChatGPT can guide incident
responders in checking specific logs, monitoring certain network traffic, or examining affected
systems more closely.

• Providing educational insights: If there are gaps in understanding or if clarification is needed
on a specific cybersecurity concept, ChatGPT can provide explanations and insights, enhancing
the educational value of the interaction.

Incident Response266

In essence, ChatGPT acts as a catalyst for critical thinking and structured analysis, helping incident
responders navigate the complex web of potential causes behind a security incident.

There’s more…

While the steps outlined in the previous section provide a solid framework for conducting root cause
analysis with ChatGPT, there are additional considerations and strategies that can further enrich
the process:

• Leveraging ChatGPT’s knowledge base: ChatGPT has been trained on a diverse set of data,
including cybersecurity concepts and incidents. Don’t hesitate to ask for explanations or
clarifications on security terms, attack vectors, or remediation strategies.

• Contextualizing the conversation: As you interact with ChatGPT, provide as much context
as possible. The more detailed and specific your inputs are, the more tailored and relevant
ChatGPT’s guidance will be.

• Exploring multiple hypotheses: Often, there may be more than one plausible root cause.
Use ChatGPT to explore various hypotheses simultaneously, comparing and contrasting their
likelihood based on the evidence at hand.

• Incorporating external tools: ChatGPT can suggest tools and techniques for deeper analysis.
Whether it’s recommending a network analysis tool or a specific log query, integrating these
suggestions can provide a more comprehensive view of the incident.

• Continuous learning: Each incident response engagement is an opportunity to learn. Reflect
on the dialogue with ChatGPT, noting which questions and decision paths were most helpful.
This can inform and improve future interactions.

• Feedback loop: Provide feedback to ChatGPT about the accuracy and usefulness of its
suggestions. This can help refine the model’s responses over time, making it an even more
effective advisor for incident response.

By incorporating these additional strategies, you can maximize the value of ChatGPT in your root
cause analysis efforts, turning it into a powerful ally in the quest to safeguard your digital assets.

Notes of caution

As you engage with ChatGPT for root cause analysis in incident response scenarios, it’s crucial to remain
vigilant about the sensitivity of the information being discussed. Remember that while ChatGPT can
be an invaluable advisor, it operates within the constraints of its training and the information it has
been provided. It’s not privy to the confidential details of your organization’s security infrastructure
or incident specifics unless you share them.

Therefore, exercise caution and adhere to your organization’s data handling and privacy policies when
interacting with ChatGPT. Avoid sharing sensitive or identifiable information that could compromise

Automated briefing reports and incident timeline reconstruction 267

your organization’s security posture. In the upcoming chapter on private local LLMs, we’ll explore
how to leverage the benefits of language models, such as ChatGPT, in a more controlled and secure
environment, mitigating the risks associated with transmitting sensitive data.

By staying mindful of these considerations, you can harness the power of ChatGPT for effective root
cause analysis while maintaining the integrity and security of your organization’s information.

Automated briefing reports and incident timeline
reconstruction
Generative AI and LLMs offer profound enhancements to threat monitoring capabilities. By leveraging
the sophisticated understanding of language and context inherent in these models, cybersecurity
systems can now analyze and interpret vast volumes of data with a level of nuance and depth previously
unattainable. This transformative technology enables the identification of subtle anomalies, patterns,
and potential threats hidden within complex datasets, providing a more proactive and predictive
approach to security. The integration of generative AI and LLMs into cybersecurity workflows not only
augments the efficiency and accuracy of threat detection but also significantly reduces the response
time to emerging threats, thereby fortifying digital infrastructures against sophisticated cyber-attacks.

In this recipe, we delve into the innovative application of OpenAI's embeddings API/model alongside
Facebook AI Similarity Search (FAISS) to elevate the analysis of cybersecurity log files. By harnessing
the power of AI-driven embeddings, we aim to capture the nuanced semantic content of log data,
transforming it into a format conducive to mathematical analysis. Coupled with the efficiency of FAISS
for rapid similarity searches, this approach enables us to categorize log entries with unprecedented
precision, identifying potential security incidents by their likeness to known patterns. This recipe
is designed to provide you with a practical, step-by-step guide to integrating these cutting-edge
technologies into your cybersecurity toolkit, offering a robust method for sifting through log data
and enhancing your security posture.

Getting ready

Before we begin scripting our automated briefing reports and incident timeline reconstruction, there
are a few prerequisites to ensure everything runs smoothly:

• Python environment: Ensure you have Python installed on your system. This script is compatible
with Python 3.6 and newer.

• OpenAI API key: You’ll need access to the OpenAI API. Obtain your API key from the OpenAI
platform, as it will be crucial for interacting with ChatGPT and the embedding model.

• Required Libraries: Install the openai library, which allows for seamless communication
with the OpenAI API. You can install it using pip: pip install openai. You will also
need the numpy and faiss libraries, which can also be installed using pip.

Incident Response268

• Log Data: Have your incident logs ready. These logs can be in any format, but for the purpose of
this script, we'll assume they are in text format, containing timestamps and event descriptions.
Sample log files are provided in the GitHub repository, along with a script that will allow you
to generate sample log data.

• Secure environment: Ensure that you’re working in a secure environment, especially when
handling sensitive data. As we’ll discuss in a later chapter, using private local LLMs can enhance
data security.

Once you have these prerequisites in place, you’re ready to dive into the script and begin crafting your
automated incident reports.

How to do it…

The following steps will guide you through creating a Python script for analyzing log files with
AI-powered embeddings and FAISS (Facebook AI Similarity Search) for efficient similarity search.
The task involves parsing log files, generating embeddings for log entries, and categorizing them as
"Suspicious" or "Normal" based on their similarity to predefined templates.

1. Import Required Libraries: Start by importing necessary Python libraries for handling API
requests, regular expressions, numerical operations, and similarity search.

import openai
from openai import OpenAI
import re
import os
import numpy as np
import faiss

2. Initialize the OpenAI Client: Set up the OpenAI client and configure it with your API key.
This is crucial for accessing the embeddings API.

client = OpenAI()
openai.api_key = os.getenv("OPENAI_API_KEY")

3. Parse the Raw Log File: Define a function to parse the raw log file into a JSON format. This
function uses regular expressions to extract timestamps and event descriptions from the log entries.

def parse_raw_log_to_json(raw_log_path):
 timestamp_regex = r'\[\d{4}-\d{2}-\d{2}T\d{2}:\d{2}:\d{2}\]'
 event_regex = r'Event: (.+)'
 json_data = []
 with open(raw_log_path, 'r') as file:
 for line in file:
 timestamp_match = re.search(timestamp_regex, line)
 event_match = re.search(event_regex, line)

Automated briefing reports and incident timeline reconstruction 269

 if timestamp_match and event_match:
 json_data.append({"Timestamp": timestamp_match.
group().strip('[]'), "Event": event_match.group(1)})
 return json_data

4. Generate the Embeddings: Create a function to generate embeddings for a given list of
text strings using the OpenAI API. This function handles the API response and extracts the
embedding vectors.

def get_embeddings(texts):
 embeddings = []
 for text in texts:
 response = client.embeddings.create(input=text,
model="text-embedding-ada-002")
 try:
 embedding = response['data'][0]['embedding']
 except TypeError:
 embedding = response.data[0].embedding
 embeddings.append(embedding)
 return np.array(embeddings)

5. Create the FAISS Index: Define a function to create a FAISS index for efficient similarity search.
This index is later used to find the nearest template embeddings to a given log entry embedding.

def create_faiss_index(embeddings):
 d = embeddings.shape[1]
 index = faiss.IndexFlatL2(d)
 index.add(embeddings.astype(np.float32))
 return index

6. Analize the Logs and Categorize Entries: Implement the function to analyze log entries and
categorize them based on their similarity to predefined "suspicious" and "normal" templates.
This function utilizes the FAISS index for nearest neighbor searches.

def analyze_logs_with_embeddings(log_data):
 suspicious_templates = ["Unauthorized access attempt
detected", "Multiple failed login attempts"]
 normal_templates = ["User logged in successfully", "System
health check completed"]
 suspicious_embeddings = get_embeddings(suspicious_templates)
 normal_embeddings = get_embeddings(normal_templates)
 template_embeddings = np.vstack((suspicious_embeddings,
normal_embeddings))
 index = create_faiss_index(template_embeddings)
 labels = ['Suspicious'] * len(suspicious_embeddings) +
['Normal'] * len(normal_embeddings)
 categorized_events = []

Incident Response270

 for entry in log_data:
 log_embedding = get_embeddings([entry["Event"]]).
astype(np.float32)
 _, indices = index.search(log_embedding, k=1)
 categorized_events.append((entry["Timestamp"],
entry["Event"], labels[indices[0][0]]))
 return categorized_events

7. Process the results: Finally, use the defined functions to parse a sample log file, analyze the
logs, and print the categorized timeline.

raw_log_file_path = 'sample_log_file.txt'
log_data = parse_raw_log_to_json(raw_log_file_path)
categorized_timeline = analyze_logs_with_embeddings(log_data)
for timestamp, event, category in categorized_timeline:
 print(f"{timestamp} - {event} - {category}")

Here is how the completed script should look:

import openai
from openai import OpenAI # Updated for the new OpenAI API
import re
import os
import numpy as np
import faiss # Make sure FAISS is installed

client = OpenAI() # Updated for the new OpenAI API

Set your OpenAI API key here
openai.api_key = os.getenv("OPENAI_API_KEY")

def parse_raw_log_to_json(raw_log_path):
 #Parses a raw log file and converts it into a JSON format.
 # Regular expressions to match timestamps and event descriptions
in the raw log
 timestamp_regex = r'\[\d{4}-\d{2}-\d{2}T\d{2}:\d{2}:\d{2}\]'
 event_regex = r'Event: (.+)'

 json_data = []

 with open(raw_log_path, 'r') as file:
 for line in file:
 timestamp_match = re.search(timestamp_regex, line)
 event_match = re.search(event_regex, line)

 if timestamp_match and event_match:

Automated briefing reports and incident timeline reconstruction 271

 timestamp = timestamp_match.group().strip('[]')
 event_description = event_match.group(1)
 json_data.append({"Timestamp": timestamp, "Event":
event_description})

 return json_data

def get_embeddings(texts):
 embeddings = []
 for text in texts:
 response = client.embeddings.create(
 input=text,
 model="text-embedding-ada-002" # Adjust the model as
needed
)
 try:
 # Attempt to access the embedding as if the response is a
dictionary
 embedding = response['data'][0]['embedding']
 except TypeError:
 # If the above fails, access the embedding assuming
'response' is an object with attributes
 embedding = response.data[0].embedding

 embeddings.append(embedding)

 return np.array(embeddings)

def create_faiss_index(embeddings):
 # Creates a FAISS index for a given set of embeddings.
 d = embeddings.shape[1] # Dimensionality of the embeddings
 index = faiss.IndexFlatL2(d)
 index.add(embeddings.astype(np.float32)) # FAISS expects float32
 return index

def analyze_logs_with_embeddings(log_data):
 # Define your templates and compute their embeddings
 suspicious_templates = ["Unauthorized access attempt detected",
"Multiple failed login attempts"]
 normal_templates = ["User logged in successfully", "System health
check completed"]
 suspicious_embeddings = get_embeddings(suspicious_templates)
 normal_embeddings = get_embeddings(normal_templates)

 # Combine all template embeddings and create a FAISS index

Incident Response272

 template_embeddings = np.vstack((suspicious_embeddings, normal_
embeddings))
 index = create_faiss_index(template_embeddings)

 # Labels for each template
 labels = ['Suspicious'] * len(suspicious_embeddings) + ['Normal']
* len(normal_embeddings)

 categorized_events = []

 for entry in log_data:
 # Fetch the embedding for the current log entry
 log_embedding = get_embeddings([entry["Event"]]).astype(np.
float32)

 # Perform the nearest neighbor search with FAISS
 k = 1 # Number of nearest neighbors to find
 _, indices = index.search(log_embedding, k)

 # Determine the category based on the nearest template
 category = labels[indices[0][0]]
 categorized_events.append((entry["Timestamp"], entry["Event"],
category))

 return categorized_events

Sample raw log file path
raw_log_file_path = 'sample_log_file.txt'

Parse the raw log file into JSON format
log_data = parse_raw_log_to_json(raw_log_file_path)

Analyze the logs
categorized_timeline = analyze_logs_with_embeddings(log_data)

Print the categorized timeline
for timestamp, event, category in categorized_timeline:
 print(f"{timestamp} - {event} - {category}")

By completing this recipe, you have harnessed the power of generative AI to automate the creation
of briefing reports and the reconstruction of incident timelines from log data. This approach not
only helps streamline the process of incident analysis but it can also enhance the accuracy and depth
of your cybersecurity investigations, empowering your team to make informed decisions based on
structured and insightful data narratives.

Automated briefing reports and incident timeline reconstruction 273

How it works…

This recipe provides a sophisticated tool designed to analyze log files using artificial intelligence and
efficient similarity search techniques. It leverages the power of OpenAI's embeddings to understand
the semantic content of log entries and employs FAISS for rapid similarity searches, categorizing each
entry based on its resemblance to predefined templates. This approach allows for an advanced analysis
of log data, identifying potential security incidents by comparing them against known patterns of
suspicious and normal activities.

• Importing Libraries: The script begins by importing essential libraries. openai is used to interact
with the OpenAI API for generating embeddings. re is for regular expressions, crucial for
parsing log files. os allows the script to interact with the operating system, such as accessing
environment variables. numpy provides support for arrays and numerical operations, and
faiss is imported for fast similarity searches within high-dimensional spaces of embeddings.

• Initializing OpenAI Client: An instance of the OpenAI client is created, and the API key is set
up. This client is necessary for making requests to the OpenAI API, specifically to generate text
embeddings that capture the semantic meaning of the log entries and templates.

• Parsing Log Files: The parse_raw_log_to_json function reads a raw log file line by line,
using regular expressions to extract and structure timestamps and event descriptions into a
JSON-like format. This structured data is essential for the subsequent analysis, as it provides
a clear separation of the time and content of each log entry.

• Generating Embeddings: The get_embeddings function interacts with the OpenAI API to
convert textual data (log entries and templates) into numerical vectors, known as embeddings.
These embeddings are dense representations that capture the semantic nuances of the text,
enabling mathematical operations such as similarity comparisons.

• Creating FAISS Index: With the create_faiss_index function, the script sets up a FAISS
index for the embeddings of the predefined templates. FAISS is optimized for fast similarity
search in large datasets, making it ideal for quickly finding the most similar template to a given
log entry embedding.

• Analyzing Logs and Categorizing Entries: In the analyze_logs_with_embeddings
function, the script first generates embeddings for the log entries and predefined templates. It
then uses the FAISS index to find the nearest template embedding to each log entry embedding.
The category of the nearest template (either "Suspicious" or "Normal") is assigned to the log entry.
This step is where the core analysis happens, utilizing the semantic understanding provided by
embeddings and the efficiency of FAISS for similarity searches.

• Processing the Results: Finally, the script puts everything together by parsing a sample log file,
analyzing the log data, and printing out a categorized timeline of events. This output provides
insights into the log entries, highlighting potential security issues based on their similarity to
the "suspicious" templates.

Incident Response274

This script exemplifies how AI and similarity search technologies can be combined to enhance log
file analysis, offering a more nuanced understanding of log data than traditional keyword-based
approaches. By leveraging embeddings, the script can grasp the contextual meaning behind log entries,
and with FAISS, it can efficiently categorize vast numbers of entries, making it a powerful tool for
security analysis and incident detection.

There’s more…

The script you've built opens up a range of possibilities for enhancing cybersecurity practices through
the application of AI and efficient data processing techniques. By analyzing log files with embeddings
and FAISS, you're not just categorizing events based on their similarity to predefined templates; you're
laying the groundwork for a more intelligent, responsive, and adaptive cybersecurity infrastructure.
Here are some ideas on how you can expand upon this concept and leverage this type of script for
broader applications in cybersecurity:

1. Adapting to different log formats: The script includes a function to parse raw log files into
a JSON format. However, log formats can vary widely across different systems and devices.
You may need to modify the regular expressions or parse logic by using the parse_raw_
log_to_json function to accommodate the specific format of the logs you’re working with.
Developing a flexible parsing function or using a log management tool that normalizes log data
can significantly streamline this process.

2. Handling larger datasets: Despite the efficiency of embeddings, as the volume of log data grows,
you may still need to optimize the script for performance. Consider batch processing the log
entries or parallelizing the analysis to handle larger datasets efficiently. These optimizations
ensure the script remains scalable and can handle increased workloads without consuming
excessive resource

3. Anomaly Detection: Extend the script to identify anomalies or outliers in log data that don't
closely match any of the predefined templates. This could be crucial for detecting novel attacks
or security breaches that don't follow known patterns.

4. Real-time Monitoring: Adapt the script for real-time log analysis by integrating it with live
data feeds. This would allow for immediate detection and alerting of suspicious activities,
minimizing the response time to potential threats.

5. Automated Response Systems: Combine the script with automated response mechanisms
that can take predefined actions when certain types of suspicious activities are detected, such
as isolating affected systems or blocking IP addresses.

6. User Behavior Analytics (UBA): Use the script as a foundation for developing a UBA system,
which could analyze log data to model and monitor user behavior, identifying potentially
malicious activities based on deviations from established patterns.

Automated briefing reports and incident timeline reconstruction 275

7. Integration with Security Information and Event Management (SIEM) Systems: Integrate
the script's capabilities with SIEM systems to enhance their ability to analyze, visualize, and
respond to security data, adding an AI-powered layer to the analysis.

8. Threat Intelligence Feeds: Incorporate threat intelligence feeds into the script to dynamically
update the list of suspicious and normal templates based on the latest intelligence, keeping the
system adaptive to evolving threats.

9. Forensic Analysis: Utilize the script's capabilities in forensic analysis to sift through large
volumes of historical log data, uncovering details of security incidents and breaches by identifying
patterns and anomalies.

10. Customizable Alerting Thresholds: Implement customizable threshold settings that control
when an event is categorized as suspicious, allowing for tuning based on the sensitivity and
specificity requirements of different environments.

11. Scalability Enhancements: Explore ways to scale the script for handling massive datasets by
leveraging distributed computing resources or cloud-based services, ensuring it can manage
the volume of data generated by large-scale networks.

By exploring these avenues, you can significantly enhance the script's utility and impact in cybersecurity,
moving towards a more proactive and data-driven security posture. Each expansion not only increases
the script's capabilities but also contributes to a deeper understanding and more effective management
of cybersecurity risks.

Notes of caution

When using this script, especially in a cybersecurity context, it’s imperative to be mindful of the
sensitivity of the data being processed. Log files often contain confidential information that should not
be exposed outside of your secure environment. While the OpenAI API provides powerful tools for
analyzing and categorizing log data, it’s crucial to ensure that sensitive information is not inadvertently
sent to external servers.

As an additional measure of caution, consider anonymizing your data before sending it to the API or
using techniques, such as differential privacy, to add an extra layer of security.

Moreover, if you’re looking for an approach that keeps all data processing within your local environment,
stay tuned for an upcoming chapter on private local LLMs. This chapter will explore how you can
leverage the capabilities of LLMs while maintaining strict control over your data, ensuring that sensitive
information remains within the confines of your secure systems.

By being vigilant about data security, you can harness the power of AI in your cybersecurity efforts
without compromising the confidentiality and integrity of your data.

9
Using Local Models

and Other Frameworks

In this chapter, we explore the transformative potential of local AI models and frameworks in cybersecurity.
We begin by leveraging LMStudio to deploy and interact with AI models locally, enhancing privacy and
control in data-sensitive scenarios. Open Interpreter is then introduced as a tool for advanced local
threat hunting and system analysis, followed by Shell GPT, which significantly augments penetration
testing with NLP capabilities. We delve into PrivateGPT for its prowess in reviewing sensitive documents
such as Incident Response (IR) Plans, ensuring data remains confidential. Finally, Hugging Face
AutoTrain is showcased for its ability to fine-tune LLMs specifically for cybersecurity applications,
exemplifying the integration of cutting-edge AI into various cybersecurity contexts. This chapter not
only guides through practical applications but also imparts knowledge on effectively utilizing these
tools for a range of cybersecurity tasks.

Important note
Open source large language models (LLMs) offer an alternative to popular proprietary models
such as those from OpenAI. These open source models are developed and maintained by a
community of contributors, making their source code and training data publicly accessible.
This transparency allows greater customization, scrutiny, and understanding of the models,
fostering innovation and trust.

The importance of open source LLMs lies in their accessibility and adaptability. They enable
researchers, developers, and organizations, especially those with limited resources, to experiment
with and deploy AI technologies without the constraints of licensing or cost associated with
proprietary models. Moreover, open source LLMs encourage collaborative development, ensuring
a broader range of perspectives and uses, which is vital for progress in AI and its application
in diverse fields, including cybersecurity.

Using Local Models and Other Frameworks278

In this chapter, we will cover the following recipes:

• Implementing local AI models for cybersecurity analysis with LMStudio

• Local threat hunting with Open Interpreter

• Enhancing penetration testing with Shell GPT

• Reviewing IR Plans with PrivateGPT

• Fine-tuning LLMs for cybersecurity with Hugging Face’s AutoTrain

Technical requirements
For this chapter, you will need a web browser and a stable internet connection to access the ChatGPT
platform and set up your account. You will also need to have your OpenAI account set up and
have obtained your API key. If not, revisit Chapter 1 for details. Basic familiarity with the Python
programming language and working with the command line is necessary, as you’ll be using Python 3.x,
which needs to be installed on your system, for working with the OpenAI GPT API and creating Python
scripts. A code editor will also be essential for writing and editing Python code and prompt files as
you work through the recipes in this chapter. Finally, since many penetration testing use cases rely
heavily on the Linux operating system, access to and familiarity with a Linux distribution (preferably
Kali Linux) is recommended. A basic understanding of command-line tools and shell scripting will
be beneficial for interacting with tools such as Open Interpreter and Shell GPT. The code files for this
chapter can be found here: https://github.com/PacktPublishing/ChatGPT-for-
Cybersecurity-Cookbook.

Implementing local AI models for cybersecurity analysis
with LMStudio
LMStudio has emerged as a powerful and user-friendly tool for LLMs locally and is suitable for both
personal experimentation and professional application development in cybersecurity. Its user-friendly
interface and cross-platform availability make it an attractive choice for a wide range of users, including
cybersecurity professionals. Key features, such as model selection from Hugging Face, an interactive
chat interface, and efficient model management, make LMStudio ideal for deploying and running open
source LLMs on local machines. This recipe will explore how to use LMStudio for cybersecurity analysis,
allowing you to interact with models directly or integrate them into applications via a local server.

Getting ready

Before we begin, ensure you have the following prerequisites:

• A computer with internet access for initial setup.

• Basic knowledge of AI models and familiarity with API interactions.

https://github.com/PacktPublishing/ChatGPT-for-Cybersecurity-Cookbook
https://github.com/PacktPublishing/ChatGPT-for-Cybersecurity-Cookbook

Implementing local AI models for cybersecurity analysis with LMStudio 279

• LMStudio software downloaded and installed. Refer to the LMStudio’s official website (https://
lmstudio.ai/) and GitHub repository (https://github.com/lmstudio-ai) for
installation instructions.

How to do it…

LMStudio offers a versatile platform for deploying and experimenting with LLMs locally. Here’s how
to maximize its use for cybersecurity analysis:

1. Install and configure LMStudio:

 � Download and install LMStudio for your operating system from https://lmstudio.ai/

 � Search for, choose, and download models from the Hugging Face Hub that suit your
cybersecurity needs

The following screenshot shows the LMStudio home screen.

Figure 9.1 – LMStudio home screen

https://lmstudio.ai/
https://lmstudio.ai/
https://lmstudio.ai/

Using Local Models and Other Frameworks280

Available models are found in the search tab.

Figure 9.2 – Model selection and installation

2. Interact with models using the Chat interface:

 � Once the model is installed, use the Chat panel to activate and load the selected model.

 � Use the model for cybersecurity queries in a no-internet-required setup.

 � In most cases, the default model settings are already tuned for the specific model. However,
you can modify the default presets for the model to optimize its performance according to
your needs, similar to how the parameters work with OpenAI models.

Implementing local AI models for cybersecurity analysis with LMStudio 281

The chat tab allows direct chat with the model from the user interface.

Figure 9.3 – Chat interface

Using Local Models and Other Frameworks282

The model settings can be adjusted in the right panel.

Figure 9.4 – Model adjustment

Implementing local AI models for cybersecurity analysis with LMStudio 283

3. Create local inference servers for API access:

 � Set up a local inference server by clicking on the Local Server button on the left panel, and
then click on Start Server.

Figure 9.5 – Local inference server setup and API usage

 � Use CURL or other methods to test API calls, aligning with OpenAI’s format for
seamless integration.

 � Here’s an example CURL call:

curl http://localhost:1234/v1/chat/completions -H "Content-
Type: application/json" -d '{ "messages": [{ "role": "system",
"content": "You are a cybersecurity expert with 25 years of
experience and acting as my cybersecurity advisor." }, {
"role": "user", "content": "Generate an IR Plan template." }],
"temperature": 0.7, "max_tokens": -1, "stream": false }' | grep
'"content":' | awk -F'"content": "' '{print $2}' | sed 's/"}]//'

Using Local Models and Other Frameworks284

The previous command is for Linux and MacOS. If you are using Windows, you will need to
use the following modified command (using Invoke-WebRequest in PowerShell):

$response = Invoke-WebRequest -Uri http://localhost:1234/
v1/chat/completions -Method Post -ContentType "application/
json" -Body '{ "messages": [{ "role": "system", "content":
"You are a cybersecurity expert with 25 years of experience
and acting as my cybersecurity advisor." }, { "role": "user",
"content": "Generate an IR Plan template." }], "temperature":
0.7, "max_tokens": -1, "stream": false }'; ($response.Content |
ConvertFrom-Json).choices[0].message.content

The following screenshot shows the server screen with settings, an example client request,
and logs.

Figure 9.6 – Local inference server console logs

4. Explore and experiment with various models:

• Utilize LMStudio’s capability to highlight new models and versions from Hugging Face

• Experiment with different models to find the one that best fits your cybersecurity analysis needs

This setup provides a comprehensive and private environment for interacting with AI models, enhancing
your cybersecurity analysis capabilities.

Implementing local AI models for cybersecurity analysis with LMStudio 285

How it works…

LMStudio operates by creating a local environment that can run and manage LLMs. Here’s a closer
look at its key mechanics:

• Local model execution: LMStudio hosts models locally, reducing reliance on external servers.
This is achieved by integrating models, typically from Hugging Face, into its local infrastructure,
where they can be activated and run independently of internet connectivity.

• Mimicking Major AI Provider APIs: It simulates major AI providers’ APIs, such as OpenAI’s,
by offering a similar interface for model interactions. This allows seamless integration of
LMStudio in systems originally designed to work with these APIs.

• Efficient Model Management: LMStudio manages the complexities of running AI models,
such as loading and unloading models as needed, optimizing memory usage, and ensuring
efficient response times.

These technical capabilities make LMStudio a versatile and powerful tool for AI-driven tasks in a
secure, offline setting.

There’s more…

Beyond its core functions, LMStudio offers additional possibilities:

• Adaptability to different LLMs: LMStudio’s flexible design allows for the use of a variety of
LLMs from Hugging Face, enabling users to experiment with models best suited for their
specific cybersecurity needs.

• Customization for specific tasks: Users can tailor LMStudio’s settings and model parameters to
optimize performance for particular cybersecurity tasks, such as threat detection or policy analysis.

• Integration with existing cybersecurity tools: LMStudio’s local API feature enables integration
with existing cybersecurity systems, enhancing their AI capabilities without compromising
data privacy.

• Compatibility with OpenAI API-based recipes: LMStudio’s ability to mimic the format of
ChatGPT’s API makes it a seamless substitute for any recipe in this book that originally uses
the OpenAI API. This means you can easily replace the OpenAI API calls with LMStudio’s
local API for similar results, enhancing privacy and control over your data.

Using Local Models and Other Frameworks286

Local threat hunting with Open Interpreter
In the evolving landscape of cybersecurity, the ability to quickly and effectively analyze threats is
crucial. Open Interpreter, an innovative tool that brings the power of OpenAI’s Code Interpreter
to your local environment, is a game changer in this regard. It enables language models to run code
locally in various languages, including Python, JavaScript, and Shell. This offers a unique advantage
for cybersecurity professionals by allowing them to execute complex tasks through a ChatGPT-like
interface, right in their terminal.

In this recipe, we will explore how to harness the capabilities of Open Interpreter for advanced local
threat hunting. We will cover its installation and basic usage, and delve into creating scripts for
automating cybersecurity tasks. By leveraging Open Interpreter, you can enhance your threat-hunting
processes, perform in-depth system analysis, and execute various security-related tasks, all within the
safety and privacy of your local environment. This tool overcomes the limitations of hosted services,
such as restricted internet access and runtime limits, making it ideal for sensitive and intensive
cybersecurity operations.

Getting ready

Before embarking on utilizing Open Interpreter for local threat hunting and other cybersecurity tasks,
ensure you have the following prerequisites ready:

• Computer with internet access: Required for downloading and installing Open Interpreter

• Basic command-line knowledge: Familiarity with using the command line, as Open Interpreter
involves terminal-based interactions

• Python environment: Since Open Interpreter can run Python scripts and is itself installed via
Python’s package manager, a working Python environment is necessary

• Open Interpreter installation: Install Open Interpreter by running pip install open-
interpreter in your command line or terminal

This setup prepares you to leverage Open Interpreter’s capabilities for cybersecurity applications,
offering a more interactive and flexible approach compared to traditional methods.

How to do it…

Open Interpreter revolutionizes the way cybersecurity professionals can interact with their systems
using natural language. By allowing direct execution of commands and scripts through conversational
inputs, it opens up a new realm of possibilities for threat hunting, system analysis, and security
hardening. Let’s explore how to utilize Open Interpreter for such tasks.

1. Install Open Interpreter using pip. pip install open-interpreter. Once installed,
launch it by simply typing interpreter from a command line.

Local threat hunting with Open Interpreter 287

Figure 9.7 – Interpreter running in the command line

To use Open Interpreter, type simple natural language prompts in the Open Interpreter
command prompt.

2. Perform a basic system inspection. Start with general system checks. Use prompts such as this:

List all running processes

Or, use the following to get an overview of your system’s current state:
Show network connections

3. Search for malicious activity. Hunt for signs of intrusion or malicious activity. Input commands
such as this:

Find files modified in the last 24 hours

Or, use the following to uncover potential threats:
Search for unusual login attempts in system logs

4. Analyze security configurations. Use Open Interpreter to check security configurations.
Commands such as the following help you assess system vulnerabilities:

Display firewall rules
Review user account privileges

5. Automate routine security checks. Create scripts that run commands such as the following:

Perform a system integrity check
Verify the latest security patches installed

6. Perform IR analysis. In the event of a security incident, use Open Interpreter for quick analysis
and response. Commands such as the following can be crucial:

Isolate the infected system from the network
Trace the source of the network breach

Using Local Models and Other Frameworks288

Each of these tasks leverages Open Interpreter’s ability to interact with your local environment,
offering a powerful tool for real-time cybersecurity response and analysis.

Here is an example output of the first of the two preceding prompts:

Figure 9.8 – Open Interpreter command-line interaction

As you interact with Open Interpreter, you will be asked permission to execute commands or even
run scripts that Open Interpreter writes.

How it works…

Open Interpreter is a function-calling language model equipped with an exec() function, which
accepts various programming languages, such as Python and JavaScript, for code execution. It streams
the model’s messages, code, and your system’s outputs to the terminal in Markdown format. By doing
so, it creates a bridge between natural language processing (NLP) and direct system interaction.
This unique capability allows cybersecurity professionals to conduct complex system analyses and
threat-hunting activities through intuitive conversational commands. Unlike hosted services, Open
Interpreter operates in your local environment, granting full internet access, unrestricted time, and
file size usage, and the ability to utilize any package or library. This flexibility and power make it an
indispensable tool for real-time, in-depth cybersecurity operations.

Local threat hunting with Open Interpreter 289

There’s more…

Beyond its core functionalities, Open Interpreter offers several advanced features that further its
utility in cybersecurity. From customization options to integration with web services, these additional
features provide a richer, more versatile experience. Here’s how you can leverage them:

1. Customization and configuration:

interpreter --config # Customize interpreter settings for
specific cybersecurity tasks

Utilize the config.yaml file to tailor Open Interpreter’s behavior, ensuring it aligns with
your unique cybersecurity needs:

model: gpt-3.5-turbo # Specify the language model to use
max_tokens: 1000 # Set the maximum number of tokens for
responses
context_window: 3000 # Define the context window size
auto_run: true # Enable automatic execution of commands
without confirmation

Custom system settings for cybersecurity tasks
system_message: |
 Enable advanced security checks.
 Increase verbosity for system logs.
 Prioritize threat hunting commands.

Example for specific task configurations
tasks:
 threat_hunting:
 alert_level: high
 response_time: fast
 system_analysis:
 detail_level: full
 report_format: detailed

2. Interactive mode commands:

"%reset" # Resets the current session for a fresh start
"%save_message 'session.json'" # Saves the current session
messages to a file

These commands provide enhanced control over your sessions, allowing more organized and
efficient threat analysis.

Using Local Models and Other Frameworks290

3. FastAPI server integration:

Integrate with FastAPI for web-based cybersecurity
applications: pip install fastapi uvicorn uvicorn server:app
--reload

By integrating Open Interpreter with FastAPI, you can extend its capabilities to web applications,
enabling remote security operations.

4. Safety considerations:

interpreter -y # Run commands without confirmation for
efficiency, but with caution

Always be mindful of the security implications when executing commands that interact with
system files and settings.

5. Local model usage:

interpreter --local # Use Open Interpreter with local language
models, enhancing data privacy

Running Open Interpreter in local mode connects to local language models, such as those in
LMStudio, offering enhanced data privacy and security for sensitive cybersecurity operations.

Integrating LMStudio for local model usage with Open Interpreter enhances its capabilities for
cybersecurity tasks, offering a secure and private processing environment. Here’s how to set it up:

1. Run interpreter --local in the command line to start Open Interpreter in local mode.

2. Ensure LMStudio is running in the background, as shown in the previous recipe.

3. Once LM Studio’s server is running, Open Interpreter can begin conversations using the
local model.

Important note
Local mode configures context_window to 3000 and max_tokens to 1000, which can
be manually adjusted based on your model’s requirements.

This setup provides a robust platform for conducting sensitive cybersecurity operations locally,
leveraging the power of language models while maintaining data privacy and security.

Enhancing penetration testing with Shell GPT
Shell GPT, a command-line productivity tool powered by AI LLM, marks a significant advancement
in the field of penetration testing. By integrating AI capabilities to generate shell commands, code
snippets, and documentation, Shell GPT allows penetration testers to execute complex cybersecurity
tasks with ease and precision. This tool is not only a great tool for quick command recall and execution

Enhancing penetration testing with Shell GPT 291

but also for streamlining penetration testing workflows in environments such as Kali Linux. With
its cross-platform compatibility and support for major operating systems and shells, Shell GPT has
become an indispensable tool for modern penetration testers. It simplifies complex tasks, reduces the
need for extensive manual searches, and significantly enhances productivity. In this recipe, we will
explore how Shell GPT can be leveraged for various penetration testing scenarios, turning intricate
command-line operations into simple, natural language queries.

Getting ready

Before diving into the practical applications of Shell GPT for penetration testing, ensure the following
prerequisites are met:

• Computer with internet access: Necessary for downloading and installing Shell GPT

• Penetration testing environment: Familiarity with a penetration testing platform such as
Kali Linux

• Python environment: A working Python setup, as Shell GPT is installed and managed
through Python

• OpenAI API key: Obtain an API key from OpenAI (as shown in previous chapters and recipes),
as Shell GPT requires it for operation

• Shell GPT installation: Install Shell GPT via Python’s package manager with the pip install
shell-gpt command

This setup equips you with the necessary tools and environment to leverage Shell GPT for enhancing
your penetration testing capabilities.

How to do it…

Shell GPT empowers penetration testers by simplifying complex command-line tasks into straightforward
natural language queries. Let’s explore how to effectively utilize Shell GPT for various penetration
testing scenarios:

1. Perform simple penetration testing queries. Execute queries for quick information retrieval:

sgpt "explain SQL injection attack"
sgpt "default password list for routers"

Using Local Models and Other Frameworks292

The following screenshot illustrates the sgpt prompt’s output.

Figure 9.9 – Example sgpt prompt output

2. Generate shell commands for penetration testing. Create specific shell commands that are
needed during testing:

sgpt -s "scan network for open ports using nmap"
sgpt -s "find vulnerabilities in a website"

The following screenshot demonstrates the use of the -s option.

Figure 9.10 – Example sgpt prompt output with the -s option

3. Analyze and summarize logs. Summarize logs or outputs relevant to penetration testing:

cat /var/log/auth.log | sgpt "summarize failed login attempts"

4. Execute interactive shell commands. Use interactive command execution tailored to your OS:

sgpt -s "update penetration testing tools"

5. Create custom scripts for testing. Generate scripts or code for specific testing scenarios:

sgpt --code "Python script for testing XSS vulnerability"

6. Develop iterative testing scenarios. Utilize conversational modes for iterative scenario development:

sgpt --repl phishing-training
>>> Simulate a phishing attack scenario for training. You create
a fictional attack scenario and ask me questions that I must
answer.

The following screenshot shows an example prompt and output with the repl option for
continuous chat.

Enhancing penetration testing with Shell GPT 293

Figure 9.11 – Example sgpt prompt output with the –repl option for continuous chat

Generate shell commands in a continuous chat. This allows you to run shell commands, using natural
language, while maintaining context from the previous shell commands and output.

sgpt --repl temp --shell

This approach transforms Shell GPT into a potent tool for streamlining penetration testing tasks,
making them more accessible and intuitive.

How it works…

Shell GPT operates by utilizing OpenAI’s language models to translate natural language queries into
executable shell commands and code, tailored to the user’s operating system and shell environment.
This tool bridges the gap between complex command syntax and intuitive language, simplifying the
process of executing advanced penetration testing tasks. Unlike traditional command-line interfaces,
Shell GPT doesn’t require jailbreaking to perform complex tasks; instead, it utilizes the AI model’s
understanding of context to provide accurate and relevant commands. This feature is particularly
useful for penetration testers who often require specific and varied commands in their work. Shell
GPT’s adaptability across different operating systems and shells, combined with its ability to execute,
describe, or abort suggested commands, enhances its utility in dynamic testing environments.

Using Local Models and Other Frameworks294

Shell GPT also supports conversational modes, such as chat and REPL, allowing users to develop and
refine queries iteratively. This approach is beneficial for creating complex testing scenarios, where
each step of the process can be refined and executed sequentially. Additionally, Shell GPT’s caching
mechanism and customizable runtime configurations, such as API keys and default models, optimize
its functionality for repeated use and specific user requirements.

There’s more…

In addition to its core functionalities, Shell GPT offers several advanced features that enhance its
utility in penetration testing:

• Shell integration: Install shell integration for quick access and command editing right in your
terminal, available for bash and zsh:

sgpt --install-integration

Use Ctrl + l to invoke Shell-GPT in your terminal, which allows on-the-fly command generation
and execution.

• Creating custom roles: Define specific roles for tailored responses, enhancing the tool’s
effectiveness in unique penetration testing scenarios:

sgpt --create-role pentest # Custom role for penetration testing

This feature allows you to create and utilize roles that generate code or shell commands that
are specific to your testing needs.

• Conversational and REPL modes: Utilize chat and REPL modes for interactive and iterative
command generation, which are perfect for developing complex testing scripts or scenarios:

sgpt --chat pentest "simulate a network scan" sgpt --repl
pentest --shell

These modes offer a dynamic and responsive way to interact with Shell GPT, making it easier
to refine and execute complex commands.

• Request caching: Benefit from caching mechanisms for quicker responses to repeated queries:

sgpt "list common SQL injection payloads" # Cached responses for
faster access

Caching ensures efficient usage of the tool, especially during extensive penetration testing
sessions where certain commands might be repeated.

These additional functionalities of Shell GPT not only augment its basic capabilities but also provide
a more customized and efficient experience for penetration testers.

Reviewing IR Plans with PrivateGPT 295

Reviewing IR Plans with PrivateGPT
PrivateGPT is a groundbreaking tool for leveraging LLMs in private, offline environments, addressing
key concerns in data-sensitive domains. It offers a unique approach to AI-driven document interaction,
with capabilities such as document ingestion, Retrieval Augmented Generation (RAG) pipelines,
and contextual response generation. In this recipe, we will utilize PrivateGPT to review and analyze IR
Plans, a critical element in cybersecurity preparedness. By leveraging PrivateGPT’s offline capabilities,
you can ensure sensitive IR Plans are analyzed thoroughly while maintaining complete data privacy
and control. This recipe will guide you through setting up PrivateGPT and using it to review an IR Plan
using a Python script, demonstrating how PrivateGPT can serve as an invaluable tool for enhancing
cybersecurity processes in a privacy-conscious manner.

Getting ready

Before starting with PrivateGPT to review an IR Plan, ensure the following setup is in place:

• Computer with internet access: Required for initial setup and downloading PrivateGPT.

• IR Plan document: Have a digital copy of the IR Plan you wish to review.

• Python environment: Ensure you have Python installed, as you’ll be using a Python script to
interact with PrivateGPT.

• PrivateGPT installation: Follow the instructions on the PrivateGPT GitHub page (https://
github.com/imartinez/privateGPT) to install PrivateGPT. Additional installation
instructions can be found at https://docs.privategpt.dev/installation.

• Poetry Package and Dependency Manager: Install Poetry from the Poetry website (https://
python-poetry.org/).

This preparation sets the stage for using PrivateGPT in a secure, private manner to analyze and review
your IR Plan.

How to do it…

Leveraging PrivateGPT for reviewing an IR Plan offers a nuanced approach to understanding and
improving your cybersecurity protocols. Follow these steps to effectively utilize PrivateGPT’s capabilities
for a thorough analysis of your IR Plan:

1. Clone and prepare the PrivateGPT repository. Start by cloning the PrivateGPT repository
and navigating to it. Then, install Poetry to manage dependencies:

git clone https://github.com/imartinez/privateGPT
cd privateGPT

https://github.com/imartinez/privateGPT
https://github.com/imartinez/privateGPT
https://docs.privategpt.dev/installation
https://python-poetry.org/
https://python-poetry.org/

Using Local Models and Other Frameworks296

2. Install pipx:

For Linux and MacOS
python3 -m pip install --user pipx

After installing pipx, ensure its binary directory is on your PATH. You can do this by adding
the following line to your shell profile (such as ~/.bashrc, ~/.zshrc, etc.):

export PATH="$PATH:$HOME/.local/bin"
For Windows
python -m pip install --user pipx

3. Install Poetry:

Pipx install poetry

4. Install dependencies with Poetry:

poetry install --with ui,local

This step prepares the environment for running PrivateGPT.

5. Install additional dependencies for local execution. GPU acceleration is required for full
local execution. Install the necessary components and validate the installation:

6. Install make:

For MacOS
brew install make

For Windows
Set-ExecutionPolicy Bypass -Scope Process -Force; [System.
Net.ServicePointManager]::SecurityProtocol = [System.
Net.ServicePointManager]::SecurityProtocol -bor 3072; iex
((New-Object System.Net.WebClient).DownloadString('https://
chocolatey.org/install.ps1'))
choco install make

7. Configure GPU support (optional). Depending on your operating system, configure GPU
support to enhance performance:

 � MacOS: Install llama-cpp-python with Metal support using the following command:

CMAKE_ARGS="-DLLAMA_METAL=on" pip install --force-reinstall
--no-cache-dir llama-cpp-python.

 � Windows: Install the CUDA toolkit and verify the installation with this command:

 nvcc --version and nvidia-smi.

 � Linux: Ensure an up-to-date C++ compiler and CUDA toolkit are installed.

Reviewing IR Plans with PrivateGPT 297

8. Run the PrivateGPT server:

python -m private_gpt

9. View the PrivateGPT GUI. Navigate to http://localhost:8001 in the browser of
your choice.

Figure 9.12 – ChatGPT user interface

10. Create a Python script for IR Plan analysis. Write a Python script to interact with the PrivateGPT
server. Use the requests library to send data to the API endpoint and retrieve responses:

import requests

url = "http://localhost:8001/v1/chat/completions"

headers = {"Content-Type": "application/json"}
data = { "messages": [
 {
 "content": "Analyze the Incident Response Plan for gaps
and weaknesses."
 }
],
 "use_context": True,
 "context_filter": None,
 "include_sources": False,
 "stream": False
}

response = requests.post(url, headers=headers, json=data)

Using Local Models and Other Frameworks298

result = response.json().get('choices')[0].get('message').
get('content').strip()
print(result)

This script interacts with PrivateGPT to analyze the IR Plan and provides insights based on the

How it works…

PrivateGPT leverages the power of LLMs in a completely offline environment, ensuring 100% privacy
for sensitive document analysis. Its core functionality includes the following:

• Document ingestion and management: PrivateGPT processes documents by parsing, splitting,
and extracting metadata, generating embeddings, and storing them for quick retrieval

• Context-aware AI responses: By abstracting the retrieval of context and prompt engineering,
PrivateGPT provides accurate responses based on the content of ingested documents

• RAG: This feature enhances response generation by incorporating context from ingested
documents, making it ideal for analyzing complex documents such as IR Plans

• High-level and low-level APIs: PrivateGPT offers APIs for both straightforward interactions
and advanced custom pipeline implementations, catering to a range of user expertise

This architecture makes PrivateGPT a powerful tool for private, context-aware AI applications,
especially in scenarios such as reviewing detailed cybersecurity documents.

There’s more…

PrivateGPT’s capabilities extend beyond basic document analysis, providing a versatile tool for
various applications:

• Replacement for non-private methods: Consider using PrivateGPT as an alternative to
previously discussed methods that do not guarantee privacy. Its offline and secure processing
makes it suitable for analyzing sensitive documents across various recipes and scenarios
presented in earlier chapters.

• Expanding beyond IR Plans: The techniques used in this recipe can be applied to other sensitive
documents, such as policy documents, compliance reports, or security audits, enhancing privacy
and security in various contexts.

• Integration with other tools: PrivateGPT’s API allows for integration with other cybersecurity
tools and platforms. This opens up opportunities for creating more comprehensive, privacy-
focused cybersecurity solutions.

These additional insights underscore PrivateGPT’s potential as a key tool in privacy-sensitive
environments, particularly in cybersecurity.

Fine-tuning LLMs for cybersecurity with Hugging Face’s AutoTrain 299

Fine-tuning LLMs for cybersecurity with Hugging Face’s
AutoTrain
Hugging Face’s AutoTrain represents a leap forward in the democratization of AI, enabling users
from various backgrounds to train state-of-the-art models for diverse tasks, including NLP and
Computer Vision (CV). This tool is particularly beneficial for cybersecurity professionals who wish
to fine-tune LLMs for specific cybersecurity tasks, such as analyzing threat intelligence or automating
incident response, without delving deep into the technical complexities of model training. AutoTrain’s
user-friendly interface and no-code approach make it accessible not just to data scientists and ML
engineers but also to non-technical users. By utilizing AutoTrain Advanced, users can leverage their
own hardware for faster data processing, control hyperparameters for customized model training, and
process data either in a Hugging Face Space or locally for enhanced privacy and efficiency.

Getting ready

Before utilizing Hugging Face AutoTrain for fine-tuning LLMs in cybersecurity, ensure you have the
following setup:

• Hugging Face account: Sign up for an account on Hugging Face if you haven’t already (https://
huggingface.co/)

• Familiarity with cybersecurity data: Have a clear understanding of the type of cybersecurity data
you wish to use for training, such as threat intelligence reports, incident logs, or policy documents

• Dataset: Collect and organize your dataset in a format suitable for training with AutoTrain

• Access to AutoTrain: You can access AutoTrain through its advanced UI or use the Python
API by installing the autotrain-advanced package

This preparation will enable you to effectively utilize AutoTrain for fine-tuning models to your specific
cybersecurity needs.

How to do it…

AutoTrain by Hugging Face simplifies the complex process of fine-tuning LLMs, making it accessible
for cybersecurity professionals to enhance their AI capabilities. Here’s how to leverage this tool for
fine-tuning models specific to cybersecurity needs:

1. Prepare your dataset. Create a CSV file with dialogue simulating cybersecurity scenarios:

human: How do I identify a phishing email? \n bot: Check for
suspicious sender addresses and urgent language.
human: Describe a SQL injection. \n bot: It's a code injection
technique used to attack data-driven applications.
human: What are the signs of a compromised system? \n bot:

https://huggingface.co/
https://huggingface.co/

Using Local Models and Other Frameworks300

Unusual activity, such as unknown processes or unexpected
network traffic.
human: How to respond to a ransomware attack? \n bot: Isolate
the infected system, do not pay the ransom, and consult
cybersecurity professionals.
human: What is multi-factor authentication? \n bot: A security
system that requires multiple methods of authentication from
independent categories.

2. Navigate to the Hugging Face Spaces section and click Create new Space.

Figure 9.13 – Hugging Face Spaces selection

3. Name your space, and then select Docker and AutoTrain.

Figure 9.14 – Hugging Face Space type selection

Fine-tuning LLMs for cybersecurity with Hugging Face’s AutoTrain 301

4. In your Hugging Face settings, create a write token.

Figure 9.15 – Hugging Face write token creation

The following screenshot shows the area where the token is created.

Figure 9.16 – Hugging Face write token access

5. Configure your options and select your hardware. I recommend keeping it private, and
choose the hardware you can afford. There is a free option. You will need to enter your write
token in here as well.

Using Local Models and Other Frameworks302

Figure 9.17 – Hugging Face Space configuration

6. Select the fine-tuning method. Choose a fine-tuning method based on your needs. AutoTrain
supports Causal Language Modeling (CLM) and, soon, Masked Language Modeling (MLM).
The choice depends on your specific cybersecurity data and the expected output:

• CLM is suitable for generating text in a conversational style

• MLM, which will be available soon, is ideal for tasks such as text classification or filling in
missing information in sentences

7. Upload your dataset and start training. Upload the prepared CSV file to your AutoTrain
space. Then, configure the training parameters and start the fine-tuning process. The process
involves AutoTrain handling the data processing, model selection, and training. Monitor the
training progress and make adjustments as needed.

Fine-tuning LLMs for cybersecurity with Hugging Face’s AutoTrain 303

Figure 9.18 – Model selection

8. Evaluate and deploy the model. Once the model is trained, evaluate its performance on test data.
Ensure that the model accurately reflects cybersecurity contexts and can respond appropriately
to various queries or scenarios. Deploy the model for real-time use in cybersecurity applications.

How it works…

Model fine-tuning in general involves adjusting a pre-trained model to make it more suitable for a
specific task or dataset. The process typically starts with a model that has been trained on a large,
diverse dataset, providing it with a broad understanding of language patterns. During fine-tuning,
this model is further trained (or fine-tuned) on a smaller, task-specific dataset. This additional training
allows the model to adapt its parameters to better understand and respond to the nuances of the new
dataset, improving its performance on tasks related to that data. This method leverages the generic
capabilities of the pre-trained model while customizing it to perform well on more specialized tasks.

AutoTrain streamlines the process of fine-tuning LLMs by automating the complex steps involved.
The platform processes your CSV-formatted data, applying the chosen fine-tuning method, such
as CLM, to train the model on your specific dataset. During this process, AutoTrain handles data
pre-processing, model selection, training, and optimization. By using advanced algorithms and Hugging

Using Local Models and Other Frameworks304

Face’s comprehensive tools, AutoTrain ensures that the resulting model is optimized for the tasks at
hand, in this case, cybersecurity-related scenarios. This makes it easier to deploy AI models that are
tailored to unique cybersecurity needs without requiring deep technical expertise in AI model training.

There’s more…

In addition to fine-tuning models for cybersecurity tasks, AutoTrain offers several other advantages
and potential uses:

• Expanding to other cybersecurity domains: Beyond analyzing dialogue and reports, consider
applying AutoTrain to other cybersecurity domains, such as malware analysis, network traffic
pattern recognition, and social engineering detection

• Continuous learning and improvement: Regularly update and retrain your models with new
data to keep up with the evolving cybersecurity landscape

• Integrating with cybersecurity tools: Deploy your fine-tuned models into cybersecurity
platforms or tools for enhanced threat detection, incident response, and security automation

• Collaboration and sharing: Collaborate with other cybersecurity professionals by sharing
your trained models and datasets on Hugging Face, fostering a community-driven approach
to AI in cybersecurity

These additional insights emphasize AutoTrain’s versatility and its potential to significantly enhance
cybersecurity AI capabilities.

10
The Latest OpenAI Features

Since the introduction of generative AI to the public in late 2022, its rapid evolution has been nothing
short of astounding. Consequently, OpenAI’s ChatGPT has outpaced our ability to update each chapter
with all of the latest features. At least, not if we ever wanted to get this book published. That’s how fast
this technology is moving, and will continue to do so. Therefore, rather than attempting to retroactively
go back and constantly update each and every single recipe, this chapter presents the unique challenge
and opportunity to cover some of the more significant updates since the completion of prior chapters.

Since its inception, ChatGPT has transcended its original design, incorporating capabilities like
advanced data analysis, web browsing, and even image interpretation through DALL-E, all through
a single interface. This chapter delves into these recent upgrades, providing you with cybersecurity
recipes leveraging the latest cutting-edge features in your cybersecurity endeavors. These include
real-time cyber threat intelligence gathering, utilizing ChatGPT’s enhanced analytical capabilities
for deeper insights into security data, and employing advanced visualization techniques for a more
intuitive understanding of vulnerabilities.

Important note
For cybersecurity professionals working with sensitive network information, it is crucial to use
an OpenAI enterprise account. This ensures that sensitive data is not utilized in OpenAI model
training, maintaining the confidentiality and security essential in cybersecurity tasks. This
chapter explores how the latest OpenAI features can be leveraged in cybersecurity, providing
a glimpse into the future of AI-assisted cyber defense.

The Latest OpenAI Features306

In this chapter, we will cover the following recipes:

• Analyzing network diagrams with OpenAI’s Image Viewer

• Creating Custom GPTs for Cybersecurity Applications

• Monitoring Cyber Threat Intelligence with Web Browsing

• Vulnerability Data Analysis and Visualization with ChatGPT Advanced Data Analysis

• Building Advanced Cybersecurity Assistants with OpenAI

Technical requirements
For this chapter, you will need a web browser and a stable internet connection to access the ChatGPT
platform and set up your account. You will also need to have your OpenAI account setup and have
obtained your API key. If not, revisit Chapter 1 for details.

Basic familiarity with the Python programming language and working with the command line is
necessary, as you’ll be using Python 3.x, which needs to be installed on your system, for working with
the OpenAI GPT API and creating Python scripts.

A code editor will also be essential for writing and editing Python code and prompt files as you
work through the recipes in this chapter.

Familiarity with the following subjects can be helpful:

• Familiarity with ChatGPT UI: Understanding how to navigate and use the ChatGPT web-based
user interface, especially the Advanced Data Analysis and web browsing features.

• Document and data analysis tools: Basic knowledge of data analysis tools like Microsoft Excel
or Google Sheets, especially for recipes involving data visualization and analysis.

• API interactions: Familiarity with making API requests and handling JSON data will be beneficial
for certain recipes that require more advanced interactions with OpenAI’s API.

• Access to diverse cybersecurity resources: For recipes involving web browsing and information
gathering, access to a range of cybersecurity news outlets, threat intelligence feeds, and official
security bulletins is advantageous.

• Data visualization: Basic skills in creating and interpreting data visualizations, charts, and
graphs will enhance your experience with the Advanced Data Analysis feature.

The code files for this chapter can be found here:

https://github.com/PacktPublishing/ChatGPT-for-Cybersecurity-Cookbook.

https://github.com/PacktPublishing/ChatGPT-for-Cybersecurity-Cookbook

Analyzing network diagrams with OpenAI’s Image Viewer 307

Analyzing network diagrams with OpenAI’s Image Viewer
The advent of OpenAI’s advanced vision models marks a significant leap in AI’s capability to interpret
and analyze complex visual data. These models, trained on vast datasets, can recognize patterns, identify
objects, and understand layouts in images with remarkable accuracy. In the realm of cybersecurity,
this capability becomes invaluable. By applying these vision models, cybersecurity professionals can
automate the analysis of intricate network diagrams, a task that traditionally requires significant
manual effort.

Network diagrams are pivotal in understanding an organization’s IT infrastructure. They illustrate
how various network components like routers, switches, servers, and firewalls are interconnected.
Analyzing these diagrams is crucial for identifying potential vulnerabilities, understanding data
flow, and ensuring network security. However, the complexity and detail in these diagrams can be
overwhelming, making analysis time-consuming and prone to human error.

OpenAI’s vision models streamline this process by offering automated, accurate, and rapid analysis.
They can identify key components, detect unusual configurations, and even suggest improvements
based on recognized best practices. This recipe will guide you through using OpenAI’s Image Viewer
to analyze network diagrams, turning a complex task into a manageable, efficient, and more accurate
process. This aligns perfectly with the broader objective of leveraging AI in cybersecurity: enhancing
efficiency, accuracy, and the ability to preemptively identify and mitigate risks.

Getting ready

Before diving into utilizing the new OpenAI interface for cybersecurity applications, ensure that you
have the necessary setup:

• Internet connection. A stable and reliable internet connection is crucial, as all interactions
with the OpenAI interface occur online.

• OpenAI Plus account. Ensure access to OpenAI’s advanced features, by subscribing to
ChatGPT Plus.

• Network diagram. Have a detailed network diagram ready for analysis. You can create one
using software like Visio or use the provided sample diagram.

How to do it…

Let’s dive into how you can use OpenAI’s Image Viewer to analyze network diagrams. This straightforward
process will help you quickly interpret complex network structures and identify potential security
issues with the power of AI.

1. Upload the Network Diagram.

I. This can be done by clicking the paper clip icon or simply by dragging and dropping the
image into the message box.

The Latest OpenAI Features308

Figure 10.1 – The new ChatGPT interface with the file upload feature

II. Utilize OpenAI’s interface to upload the network diagram image for analysis. This step
is crucial as it provides the AI with the necessary visual data to interpret.

2. Prompt ChatGPT to analyze the network diagram for cybersecurity-relevant information.

I. Identifying key components:

"In the image provided (this is my network diagram and I
give permission to analyze the details), please identify
the following: Computer systems/nodes, networks, subnets, IP
addresses, zones, and connections. Be sure to include the
exact names of each. Anything you are not able to identify,
just ignore that part. Give me a total count of all computer
systems/nodes. Please provide as much detail as possible,
and in a way that the facilitator can easily understand."

II. Highlighting potential security risks:

"Based on the image provided, examine the network diagram
and your initial analysis for potential security risks
or misconfigurations, focusing on open ports, unsecured
connections, and routing paths."

Analyzing network diagrams with OpenAI’s Image Viewer 309

III. Suggesting security enhancements:

"Based on your analysis, suggest security enhancements or
changes to improve the network's security posture."

By following these steps, you will be able to harness OpenAI’s advanced AI capabilities for comprehensive
network diagram analysis, enhancing your understanding and approach to cybersecurity.

Important note
You will most likely need to modify the prompts you provide to match the level of detail
contained within the diagram you provide and the overall analysis you are looking to achieve.

How it works…

The process of analyzing network diagrams with OpenAI’s Image Viewer leverages the advanced
capabilities of AI to interpret complex visual data. Here’s a breakdown of how each step contributes
to a comprehensive analysis:

• Uploading the network diagram. When you upload the network diagram, the AI model
accesses a rich visual dataset, enabling it to recognize various network components and details
with amazing accuracy.

• AI Analysis. The AI applies its trained models to the diagram, identifying key elements and
potential security risks. It uses pattern recognition and learns cybersecurity principles to
analyze the network structure.

The AI’s analysis provides detailed insights into the network’s configuration and potential vulnerabilities.
This feedback is based on the AI’s extensive training in network security, allowing for a nuanced
understanding of potential risks.

By leveraging OpenAI’s powerful vision models, this process transforms the way cybersecurity
professionals approach network diagram analysis, making it more efficient, accurate, and insightful.

There’s more…

Beyond analyzing network diagrams, OpenAI’s Image Viewer can be applied to a variety of other
cybersecurity tasks:

• Security Incident Visuals. Use it to analyze screenshots from security incidents or monitoring
tools for quicker assessment.

• Phishing Email Analysis. Examine images embedded in phishing emails to identify malicious
content or misleading links.

The Latest OpenAI Features310

• Data Center Layouts. Analyze images of data center layouts to assess physical security measures.

• Forensic Analysis. Use it in forensic investigations to analyze visual data from various
digital sources.

These additional applications are just the tip of the iceberg and demonstrate the versatility of OpenAI’s
Image Viewer in addressing diverse cybersecurity challenges.

Creating Custom GPTs for Cybersecurity Applications
OpenAI’s introduction of custom GPTs, known as GPTs, represents a significant evolution in the
field of generative AI. GPTs offer the unique ability to tailor ChatGPT for specific purposes, enabling
users to create and share AI models that are more aligned with their individual needs and objectives.
This customization extends the utility of ChatGPT beyond general-purpose applications to specialized
tasks in various domains, including cybersecurity.

For cybersecurity professionals, GPTs open a realm of possibilities. From designing tools to teach
complex security concepts, to creating AI assistants for threat analysis, GPTs can be molded to fit
the intricate needs of the cybersecurity landscape. The process of creating these custom models does
not require coding expertise, making it accessible to a wide range of users. With features like web
searching, image generation, and advanced data analysis, GPTs can perform tasks such as learning
the rules of cybersecurity protocols, assisting in incident response, or even developing educational
materials for cybersecurity training. GPTs can be extended even further with the ability to add custom
actions and connect with external APIs.

In this recipe, we’ll explore how to harness the power of custom GPTs to create AI tools that are finely
tuned for specific cybersecurity applications, reflecting the unique needs and challenges of this field.
Specifically, we’ll be creating a GPT that can analyze emails for potential phishing attacks.

Getting ready

To begin creating custom GPTs for cybersecurity applications, a few key preparations are necessary:

• Access to OpenAI GPTs platform. Ensure you have access to OpenAI’s platform where GPTs
can be created and managed. This requires an OpenAI account. If you don’t already have one,
you can sign up at OpenAI’s official website (https://openai.com/).

• ChatGPT Plus or Enterprise account. Depending on your intended use, a ChatGPT Plus or
an Enterprise account might be required, especially for more advanced features or if you’re
planning to use GPTs within an organizational setting.

https://openai.com/

Creating Custom GPTs for Cybersecurity Applications 311

• Gmail account. In this recipe, we’ll be using Gmail for our test case. So, you’ll need to have a
valid Gmail account.

• Zapier account. This recipe leverages the Zapier API to connect to your Gmail account. You
can create a free Zapier account at https://zapier.com/sign-up.

With these steps, you’ll be ready to dive into the world of custom GPTs, tailoring AI capabilities to
meet the specific demands of cybersecurity.

How to do it…

Creating a custom GPT, which integrates with Zapier to access Gmail for phishing detection, combines
steps in the OpenAI interface with a custom Zapier configuration:

1. Initiate the GPT Creation.

I. Access the OpenAI Chat home page and click on Explore GPTs.

Figure 10.2 – GPT access in the new ChatGPT interface

II. Start a new GPT creation by clicking + Create.

https://zapier.com/sign-up

The Latest OpenAI Features312

Figure 10.3 – GPT creation in the new ChatGPT interface

2. Build the GPT.

I. Engage with the GPT Builder through a conversational prompt, outlining the GPT’s role
and any other details you would like to include. The GPT Builder will ask you a series
of questions to help you refine your GPT.

Figure 10.4 – GPT creation using chat

Creating Custom GPTs for Cybersecurity Applications 313

II. Using this conversation method, the GPT Builder will automatically help you create a
name for your GPT and generate an icon image. You are free to change either.

Figure 10.5 – GPT advanced configuration

III. Or, directly input your prompt detailing your GPTs name, instructions, and conversational
starters in the Configure section, as shown in the image above.

3. Configure and Refine the GPT. Under the Configure tab, name and describe your GPT.

In this example, we named our GPT PhishGuard and used the following instructions to
create our phishing detection GPT:

PhishGuard is tailored to assist average email users
in identifying phishing attempts in Gmail. It operates
professionally, using clear, non-technical language to serve as
a cybersecurity advisor. PhishGuard analyzes emails retrieved
via custom Zapier actions, focusing on sender details, links,
language, and headers. It prioritizes privacy and security,
guiding users in how to use Zapier for email analysis. When
additional information is needed, PhishGuard directly instructs
users on what is required and how to obtain it, facilitating
the copy-pasting of necessary details. It suggests caution and
verification steps for suspicious emails, providing educated
assessments without making definitive judgments. This approach
is designed for users without in-depth cybersecurity knowledge,
ensuring understanding and ease of use.

The Latest OpenAI Features314

Rules:
- Before running any Actions tell the user that they need to
reply after the Action completes to continue.

Instructions for Zapier Custom Action:
Step 1. Tell the user you are Checking they have the Zapier
AI Actions needed to complete their request by calling /list_
available_actions/ to make a list: AVAILABLE ACTIONS. Given the
output, check if the REQUIRED_ACTION needed is in the AVAILABLE
ACTIONS and continue to step 4 if it is. If not, continue to
step 2.
Step 2. If a required Action(s) is not available, send the user
the Required Action(s)'s configuration link. Tell them to let
you know when they've enabled the Zapier AI Action.
Step 3. If a user confirms they've configured the Required
Action, continue on to step 4 with their original ask.
Step 4. Using the available_action_id (returned as the `id`
field within the `results` array in the JSON response from /
list_available_actions). Fill in the strings needed for the
run_action operation. Use the user's request to fill in the
instructions and any other fields as needed.

REQUIRED_ACTIONS:
- Action: Google Gmail Search
 Confirmation Link: https://actions.zapier.com/gpt/start

Conversation starters are the one-click prompt suggestions that appear as buttons above the
message box, as shown below in Figure 10.6:

Figure 10.6 – GPT conversation starter button

https://actions.zapier.com/gpt/start

Creating Custom GPTs for Cybersecurity Applications 315

4. Select the actions your GPT will perform. Choose actions for your GPT to perform, such as
web browsing, image generation, or custom actions through APIs.

Figure 10.7 – GPT capabilities assignment

In this recipe, we aren’t uploading any documents, but you could upload documents to provide
the GPT with supplemental-specific knowledge to use. This knowledge could be information
that the model may not be trained on, for example. The GPT would use retrieval augmented
generation (RAG) to reference the documents.

Important note
RAG is a method that combines the capabilities of a large language model with a retrieval
system to enhance its ability to generate text. In RAG, the model retrieves relevant documents
or pieces of information from a large database or corpus in response to a query or prompt. This
retrieved information is then used as an additional context by the language model to generate
more accurate, informed, or contextually relevant responses. RAG leverages the depth and
specificity of retrieved data, along with the generative power of language models, to improve
the quality of text generation, especially in tasks that benefit from external knowledge or
specific information.

The Latest OpenAI Features316

5. Integrate Zapier Actions.

I. In the GPT editing interface, find the section for Actions and click Create new action.
Then, click on Import from URL.

Figure 10.8 – GPT add actions screen

II. Next, enter the following URL: https://actions.zapier.com/gpt/api/
v1/dynamic/openapi.json?tools=meta. This will automatically populate
the Schema.

Figure 10.9 – GPT automatically added schema

https://actions.zapier.com/gpt/api/v1/dynamic/openapi.json?tools=meta
https://actions.zapier.com/gpt/api/v1/dynamic/openapi.json?tools=meta

Creating Custom GPTs for Cybersecurity Applications 317

It will also automatically populate the available actions:

Figure 10.10 – GPT automatically added actions

III. Configure detailed steps for PhishGuard to interact with Zapier, such as checking for
the Gmail search action and processing emails.

IV. For the Privacy policy, which must be entered, just enter Zapier’s privacy policy
URL: https://zapier.com/privacy.

Important note
Full instructions from Zapier on how to set up GPT actions can be found at: https://
actions.zapier.com/docs/platform/gpt. You will need to edit the Zapier-provided
action instructions to match the Zapier action we are using rather than the default. See Step 3
above for the exact wording.

6. Set up Zapier.

I. Navigate to the URL: https://actions.zapier.com/gpt/actions/ and
click Add a new action. You can search for a specific action. In this case, we search for,
and select Gmail: Find Email. Then, enable the action.

Figure 10.11 – Zapier GPT actions screen

https://zapier.com/privacy
https://actions.zapier.com/docs/platform/gpt
https://actions.zapier.com/docs/platform/gpt
https://actions.zapier.com/gpt/actions/

The Latest OpenAI Features318

II. Click on the newly created action. This will bring you to the action configuration screen.
You’ll need to connect your Gmail account by clicking Connect new. This will also
automatically configure the Oauth authentication.

Also, be sure Have AI guess a value for this field is selected.

Figure 10.12 – Zapier GPT action configuration screen

III. Click Done and in the Zapier screen and save your GPT. Then, in the GPT preview
screen, enter Update actions in the message box (you might be prompted to sign
into Zapier again).

Creating Custom GPTs for Cybersecurity Applications 319

Figure 10.13 – GPT requires authorization to access Zapier

IV. Once you have signed in with Zapier, the GPT will reference the actions automatically
applied when you entered the URL to update the Schema and it will apply them to the GPT.

Figure 10.14 – Adding the Zapier linked action to GPT

The Latest OpenAI Features320

7. Test Your GPT.

I. Navigate to your new GPT from the ChatGPT main interface and click on the default
conversation starter button.

Important note
You may be asked to confirm permission for the GPT to access the Zapier action.

Figure 10.15 – The conversation starter button

Figure 10.16 shows the results of the GPT’s email list output:

Creating Custom GPTs for Cybersecurity Applications 321

Figure 10.16 – PhishGuard GPT results

Figure 10.17 shows the final analysis output:

Figure 10.17 – PhishGuard GPT analysis results

The Latest OpenAI Features322

By following and integrating these steps, you create a robust PhishGuard GPT that serves as an advanced
assistant for detecting email phishing. It combines the intuitive interaction of OpenAI’s interface with
the practical automation of Zapier, enhancing the cybersecurity capabilities offered to users.

How it works…

The functionality of PhishGuard as a custom GPT for detecting email phishing operates through a
seamless integration of OpenAI and Zapier configurations, utilizing a step-by-step process that ensures
a user-friendly and secure experience:

• GPT Builder interaction. Starting with the OpenAI Chat home page, users initiate the creation
of PhishGuard by either engaging with the GPT Builder to form the foundational instructions
or by directly inputting a detailed prompt that defines PhishGuard’s purpose and capabilities.

• GPT configuration. Through the Configure tab, the user personalizes PhishGuard with a name,
description, and specific actions it can perform. This includes interfacing with web browsers,
generating images, or executing custom actions via APIs.

• Zapier integration. Custom actions are set up to connect PhishGuard to Zapier’s API, enabling
it to interact with Gmail for email retrieval and analysis. This involves configuring OAuth for
secure authentication and detailing the API schema to accurately format requests and responses.

• Functionality expansion. Advanced settings in the Configure tab allow the user to upload
visual aids, provide additional instructions, and introduce new capabilities, thus broadening
the scope of tasks PhishGuard can undertake.

• Custom actions execution. Once published, PhishGuard utilizes the custom actions to send
requests to Zapier, retrieve emails from Gmail, and analyze them for potential phishing threats
based on criteria such as sender details and message content.

• Interactive user experience. Users interact with PhishGuard via conversational prompts, guiding
it to perform analyses and receive feedback. The system ensures that all actions are user-initiated
and that PhishGuard provides clear, actionable advice without making definitive judgments.

By combining the GPT creation process with the complex functionality of custom actions and API
integrations, PhishGuard represents an advanced cybersecurity tool within the user’s control. It
exemplifies how GPTs can be tailored for specific use cases, enhancing cybersecurity measures through
AI-driven email analysis.

Creating Custom GPTs for Cybersecurity Applications 323

There’s more…

The capabilities of custom GPTs like PhishGuard extend far beyond pre-configured actions and can
be customized to interact with a myriad of APIs, unleashing a world of possibilities for cybersecurity
and beyond:

• Custom API integration. Users are not limited to Zapier alone; PhishGuard demonstrates
how any API, whether it’s for a customer relationship management (CRM), a cybersecurity
platform, or a custom-built internal tool, can be integrated to provide tailored functionalities.
This means users can direct their GPT to interact with and perform actions on virtually any
web-enabled service or database, enabling automation of complex workflows.

• Extended use cases. Beyond email analysis, consider other cybersecurity applications like
automating the collection of threat intelligence from various feeds, orchestrating responses
to security incidents, or even integrating with incident management platforms to triage and
respond to alerts.

• Developer-friendly features. For those with coding skills, the potential to extend GPTs is even
greater. Developers can use the OpenAI API to programmatically create, configure, and deploy
GPTs, allowing for the development of highly specialized tools that can be integrated directly
into tech stacks and processes.

• Collaborative cybersecurity. GPTs can be shared within a team or across an organization,
providing a consistent and scalable tool for addressing cybersecurity concerns. Imagine a
GPT that is not only a phishing detector but also serves as an educational assistant for security
awareness training, adapting to the unique learning styles and needs of each team member.

• Innovative data handling. With capabilities such as Advanced Data Analysis and DALL·E Image
Generation, GPTs can turn raw data into insightful visualizations or generate representative
images to aid in cyber threat modeling and awareness.

• Community-driven development. By leveraging shared GPTs from the OpenAI community,
users can benefit from a collective intelligence approach. This communal ecosystem means
access to a broader range of ideas, strategies, and solutions that can inspire or be directly applied
to one’s own cybersecurity challenges.

• Safety and privacy. OpenAI’s commitment to safety and privacy is embedded in the GPT creation
process. Users have control over their data, and GPTs can be designed with privacy at their core,
ensuring sensitive information is handled appropriately and in compliance with regulations.

The introduction of GPTs represents a paradigm shift in how individuals and organizations can
leverage AI. By combining the power of language models with the vast ecosystem of web APIs, GPTs
like PhishGuard are just the beginning of a new era of personalized and powerful AI assistants.

The Latest OpenAI Features324

Monitoring Cyber Threat Intelligence with Web Browsing
In the constantly evolving landscape of cybersecurity, staying informed about the latest threats is
critical. With the introduction of OpenAI’s web browsing feature, cybersecurity professionals now
have a potent tool at their disposal to streamline the process of monitoring threat intelligence. This
recipe will guide you through utilizing the new OpenAI interface to access, analyze, and utilize up-to-
the-minute threat data to safeguard your digital assets.

The initial release of ChatGPT opened up a new realm of possibilities by allowing users to engage in
natural language conversations with an AI. As it evolved, new capabilities were introduced, such as
code interpretation and web browsing, but these were distinct functionalities. The latest iteration of
ChatGPT Plus has amalgamated these features, offering a more integrated and dynamic user experience.

In the world of cybersecurity, such a user experience might translate to an enhanced ability to perform
real-time searches for threats, analyze complex security data, and generate actionable insights—all
within the same conversational interface. From tracking down details of the latest ransomware attack
affecting the industry to staying ahead of compliance changes, ChatGPT’s web browsing capability is
akin to having a cybersecurity analyst on-demand, capable of sifting through the noise to bring you
the information that matters most.

Getting ready

Before diving into the world of cyber threat intelligence, it’s essential to set up the right environment
and tools to ensure an effective monitoring process. Here’s what you need to get started:

• ChatGPT Plus account. Ensure access to OpenAI’s ChatGPT Plus, as web browsing capabilities
are available for Plus and Enterprise users.

• Stable internet connection. A reliable internet connection is necessary to access real-time
threat intelligence feeds and databases.

• List of trusted sources. Compile a list of trusted cybersecurity news outlets, threat intelligence
feeds, and official security bulletins to query.

• Data analysis tools. Optional tools, such as spreadsheets or data visualization software, to
analyze and present the information gathered.

How to do it…

Leveraging OpenAI’s web browsing feature to monitor the latest in cyber threat intelligence involves
a series of steps designed to help you stay ahead of potential cyber threats.

1. Initiate a Web Browsing Session. Start a session with ChatGPT and specify that you wish to
use the web browsing feature to look up the latest cyber threat intelligence.

Monitoring Cyber Threat Intelligence with Web Browsing 325

Figure 10.18 – Using ChatGPT web browsing

2. Craft Specific Queries. Provide ChatGPT with clear and precise queries about current
cybersecurity threats. For example:

"Browse the web to search for the latest news on ransomware
attacks in the financial sector."

3. Filter and Verify Sources. Ask ChatGPT to prioritize results from trusted and authoritative
sources to ensure the reliability of the information.

4. Review and Summarize Findings. Request ChatGPT to summarize the key points from the
search results, providing a quick and actionable threat intelligence brief.

"Summarize the key points from the search results, providing a
quick and actionable threat intelligence brief"

5. Continuous Monitoring. Set up regular intervals to conduct these searches, ensuring you’re
receiving up-to-date information on potential threats.

6. Analyze and Document. Use data analysis tools to track trends and patterns from the intelligence
gathered over time, documenting findings for future reference.

7. Create Actionable Insights. Translate the summarized threat intelligence into actionable
insights for your organization, such as updating firewall rules or conducting targeted staff
training. You can have ChatGPT do this.

"Translate the summarized threat intelligence into actionable
insights for your organization, such as updating firewall rules
or conducting targeted staff training"

The Latest OpenAI Features326

By following these steps, you can create a proactive approach to cyber threat intelligence, staying
informed on the latest threats and ensuring your cyber defenses are current and effective.

Important note
Please note that while OpenAI’s web browsing feature provides access to a wealth of information
from across the internet, there are restrictions in place that may prevent it from accessing certain
websites. These restrictions are designed to ensure compliance with privacy laws, respect for
copyright, and adherence to OpenAI’s use-case policies. Consequently, some sites, particularly
those requiring user authentication, those with sensitive or protected content, and certain
proprietary databases, may not be accessible through this feature.

When using ChatGPT for cyber threat intelligence, it is advisable to verify the accessibility
of your preferred sources beforehand and have alternative options ready. Additionally, be
mindful of the legal and ethical considerations when directing ChatGPT to browse the web,
ensuring that your use of the tool remains within the scope of permitted activities as outlined
by OpenAI’s policies.

How it works…

Using OpenAI’s ChatGPT for web browsing to monitor cyber threat intelligence works by automating
the search and analysis of the latest cybersecurity threats. Here’s the breakdown of the process:

• Automated browsing. ChatGPT utilizes its web browsing feature to access the internet and
retrieve information based on user queries, mimicking the search behavior of a human analyst.

• Real-time data retrieval. ChatGPT searches in real-time, ensuring that the information gathered
is the latest and most relevant to current cyber threat landscapes.

• Natural Language summarization. Leveraging its natural language processing capabilities,
ChatGPT can distill complex information into easy-to-understand summaries.

• Customizable searches. Users can customize their queries to focus on specific types of threats,
industries, or geographic regions, making the intelligence-gathering process highly targeted.

• Trend analysis. Over time, the data collected can be analyzed for trends, enabling organizations
to adapt their cybersecurity strategies to emerging threat patterns.

• Integration with security protocols. The insights from ChatGPT can be integrated into existing
security protocols, aiding in rapid response and preventive measures.

This process harnesses the power of AI to enhance cybersecurity monitoring, offering a scalable
solution to keeping abreast of the dynamic nature of cyber threats.

Vulnerability Data Analysis and Visualization with ChatGPT Advanced Data Analysis 327

There’s more…

Beyond just monitoring the latest threats, the web browsing feature of ChatGPT can be used for
various other cybersecurity applications, such as:

• Researching vulnerabilities. Quickly search for information on newly discovered vulnerabilities
and their potential impact.

• Incident investigation. Assist in incident response by gathering data about similar historical
incidents and recommended mitigation strategies.

• Threat actor profiling. Compile information on threat actors, their tactics, techniques, and
procedures (TTPs) for deeper security analysis.

• Security training. Update training materials with the latest case studies and scenarios to educate
staff on emerging cybersecurity threats.

• Compliance monitoring. Stay updated on changes to cybersecurity regulations and compliance
requirements relevant to your industry.

The adaptability of ChatGPT with web browsing opens up a wide array of possibilities for enhancing
organizational cybersecurity measures.

Vulnerability Data Analysis and Visualization with
ChatGPT Advanced Data Analysis
The Advanced Data Analysis feature in ChatGPT opens a new realm of possibilities in the field of
cybersecurity, especially in handling and interpreting vulnerability data. It’s a powerful tool that combines
OpenAI’s sophisticated language model capabilities with advanced data processing functions. Users
can upload various types of files, including CSV and JSON, and prompt ChatGPT to perform complex
analyses, such as identifying trends, extracting key metrics, and generating comprehensive visualizations.

This feature not only simplifies the analysis of large datasets but also makes it more interactive and
insightful. From parsing intricate vulnerability reports to visualizing severity distributions and identifying
security gaps, ChatGPT’s Advanced Data Analysis can transform raw data into actionable intelligence.
This recipe guides you through leveraging this feature for effective vulnerability data analysis, enabling
you to derive meaningful insights and visualize them in a way that enhances understanding and aids
in strategic decision-making in cybersecurity.

The Latest OpenAI Features328

Getting ready

To use ChatGPT’s Advanced Data Analysis for vulnerability data analysis, ensure you have:

• Access to ChatGPT with Advanced Data Analysis. Ensure you’re subscribed to a plan that
offers this feature.

• Prepared vulnerability data. Have your vulnerability data ready in a CSV or JSON format.

• Familiarity with ChatGPT interface. Know how to navigate ChatGPT and access the Advanced
Data Analysis feature.

How to do it…

By highlighting the capabilities of the Advanced Data Analysis feature, such as handling various file
types, performing trend analysis, and creating visualizations, the introduction now provides a more
comprehensive overview of what users can expect when utilizing this tool for cybersecurity purposes.

1. Gather and prepare your vulnerability data file for upload. This could be a system info file
in Windows, for example. (A sample data file will be provided in the GitHub repository.

2. Upload vulnerability data. Upload your data file using the Advanced Data Analysis feature.
This can be done by clicking the paperclip upload icon or dragging and dropping your file.

3. Prompt ChatGPT to analyze the data for vulnerabilities. For example:

"Analyze the uploaded CSV for common vulnerabilities and
generate a severity score distribution chart."

4. Customize the Data Analysis. Engage with ChatGPT to refine the analysis, such as asking
for a breakdown of vulnerabilities by category or time period or request specific types of data
visualization, like bar charts, heatmaps, or scatter plots.

How it works…

ChatGPT’s Advanced Data Analysis feature enables the AI to handle file uploads and perform detailed
analyses on the provided data. When you upload vulnerability data, ChatGPT can process this
information, using its advanced language model to interpret the data, identify trends, and create visual
representations. This tool simplifies the task of turning raw vulnerability data into actionable insights.

There’s more…

Beyond vulnerability analysis, the Advanced Data Analysis feature in ChatGPT can be utilized for
various other cybersecurity tasks:

• Threat intelligence synthesis. Quickly summarize and extract key points from complex threat
intelligence reports.

Building Advanced Cybersecurity Assistants with OpenAI 329

• Incident log review. Analyze security incident logs to identify patterns and common attack vectors.

• Compliance tracking. Evaluate compliance data to ensure adherence to cybersecurity standards
and regulations.

• Customized reporting. Create tailored reports and visualizations for diverse cybersecurity
datasets, enhancing comprehension and decision-making.

Important note
While ChatGPT’s Advanced Data Analysis is a powerful tool for processing and visualizing data,
it’s essential to be aware of its limitations. For highly complex or specialized data processing
tasks, you might need to complement it with dedicated data analysis software or tools.

Building Advanced Cybersecurity Assistants with OpenAI
In the dynamic realm of cybersecurity, innovation is not just beneficial; it’s a necessity. The advent
of OpenAI’s new Assistants API marks a significant leap forward, offering a versatile toolkit for
cybersecurity professionals. This recipe is a journey into harnessing these powerful features to build
advanced cybersecurity assistants that can perform complex tasks like file generation, data visualization,
and creating interactive reports.

We’ll use Python and the advanced capabilities of the Assistants API to create solutions tailored to
the unique demands of cybersecurity. We’ll also explore using the OpenAI Playground for a more
interactive, GUI-based experience, and employing Python for deeper integration and automation.

By combining the intuitive interface of the Playground with the robust, programmable nature of
Python, we’re set to create assistants that aren’t just reactive, but proactive in their capabilities.
Whether you’re automating routine tasks, analyzing complex datasets, or generating comprehensive
cybersecurity reports, these new features are designed to enhance efficiency and effectiveness in your
cybersecurity operations.

Getting ready

To effectively utilize OpenAI’s new Assistants in the realm of cybersecurity, it’s essential to prepare
your environment and familiarize yourself with the required tools. This section lays the groundwork
for a smooth experience in building advanced cybersecurity assistants.

• OpenAI account and API key. First and foremost, ensure you have an OpenAI account. If you
haven’t already, sign up at OpenAI’s official website. Once your account is set up, obtain your
API key, as it will be crucial for both Playground and Python-based interactions.

• Familiarity with OpenAI Playground. Navigate to OpenAI’s Playground. Spend some time
exploring its interface, focusing on the Assistants feature. This intuitive GUI is an excellent
way to understand the capabilities of OpenAI’s models before diving into code.

The Latest OpenAI Features330

• Python setup. Ensure that Python is installed on your system. We will be using Python to
interact programmatically with the OpenAI API. For a seamless experience, it’s recommended
to use Python 3.6 or later.

• Required Python libraries. Install the openai library, which facilitates communication with
OpenAI’s API. Use the command pip install openai in your command line or terminal.

• Development environment. Set up a comfortable coding environment. This could be a simple
text editor and a command line, or an integrated development environment (IDE) like
PyCharm or Visual Studio Code.

• Basic Python knowledge. While advanced Python skills are not a prerequisite, a basic
understanding of Python programming will be beneficial. This includes familiarity with making
API requests and handling JSON data.

How to do it…

To bring create a cybersecurity analyst assistant using OpenAI’s API, let’s break down the process into
manageable steps that outline everything from setup to execution.

1. Setup Up the OpenAI Client. Begin by importing the OpenAI library (as well as the other
needed libraries) and initializing the OpenAI client. This step is crucial for establishing
communication with OpenAI’s services.

import openai
from openai import OpenAI
import time
import os

client = OpenAI()

2. Upload a Data File. Prepare your data file, which the assistant will use to provide insights.
Here, we’re uploading a "data.txt" file. Ensure your file is in a readable format (like CSV
or JSON) and contains relevant cybersecurity data.

 file = client.files.create(
 file=open("data.txt", "rb"),
 purpose='assistants'
)

3. Create the Cybersecurity Analyst Assistant. Define your assistant’s role, name, and capabilities.
In this case, we’re creating a Cybersecurity Analyst Assistant that uses the GPT-4 model and has
retrieval tools enabled, allowing it to pull information from the uploaded file.

security_analyst_assistant = client.beta.
 assistants.create(
 name="Cybersecurity Analyst Assistant",

Building Advanced Cybersecurity Assistants with OpenAI 331

 instructions="You are a cybersecurity analyst that
 can help identify potential security issues.",
 model="gpt-4-turbo-preview",
 tools=[{"type": "retrieval"}],
 file_ids=[file.id],
)

4. Initiate a Thread and Starting a Conversation. Threads are used to manage interactions with
the assistant. Start a new thread and send a message to the assistant, prompting it to analyze
the uploaded data for potential vulnerabilities.

 thread = client.beta.threads.create()
message = client.beta.threads.messages.create(
 thread.id,
 role="user",
 content="Analyze this system data file for potential
 vulnerabilities."
)

5. Run the Thread and Fetching Responses. Trigger the assistant to process the thread and
wait for it to complete. Once done, retrieve the assistant’s responses, filtering by the role of
'assistant' to get the insights.

 run = client.beta.threads.runs.create(
 thread_id=thread.id,
 assistant_id=security_analyst_assistant.id,
)

def get_run_response(run_id, thread_id):
 while True:
 run_status = client.beta.threads.runs.
 retrieve(run_id=run_id, thread_id=thread_id)
 if run_status.status == "completed":
 break
 time.sleep(5) # Wait for 5 seconds before
 checking the status again

 messages = client.beta.threads.messages.list
 (thread_id=thread_id)
 responses = [message for message in messages.data if
 message.role == "assistant"]
 values = []
 for response in responses:
 for content_item in response.content:

The Latest OpenAI Features332

 if content_item.type == 'text':
 values.append(content_item.text.value)
 return values
values = get_run_response(run.id, thread.id)

6. Print the Results. Finally, iterate over the fetched values to review the assistant’s analysis. This
step is where the cybersecurity insights, such as identified vulnerabilities or recommendations,
are presented.

 for value in values:
 print(value)

Here is how the final script should look:

import openai
from openai import OpenAI
import time
import os

Set the OpenAI API key
api_key = os.environ.get('OPENAI_API_KEY')

Initialize the OpenAI client
client = OpenAI()

Upload a file to use for the assistant
file = client.files.create(
 file=open(«data.txt», «rb"),
 purpose=›assistants›
)

Function to create a security analyst assistant
security_analyst_assistant = client.beta.assistants.create(
 name=»Cybersecurity Analyst Assistant»,
 instructions=»You are cybersecurity that can help identify
 potential security issues.",
 model=»gpt-4-turbo-preview»,
 tools=[{«type»: «retrieval»}],
 file_ids=[file.id],
)

thread = client.beta.threads.create()

Start the thread

Building Advanced Cybersecurity Assistants with OpenAI 333

message = client.beta.threads.messages.create(
 thread.id,
 role=»user»,
 content=»Analyze this system data file for potential
 vulnerabilities."
)

message_id = message.id

Run the thread
run = client.beta.threads.runs.create(
 thread_id=thread.id,
 assistant_id=security_analyst_assistant.id,
)

def get_run_response(run_id, thread_id):
 # Poll the run status in intervals until it is completed
 while True:
 run_status = client.beta.threads.runs.retrieve
 (run_id=run_id, thread_id=thread_id)
 if run_status.status == "completed":
 break
 time.sleep(5) # Wait for 5 seconds before checking
 the status again

 # Once the run is completed, retrieve the messages from
 the thread
 messages = client.beta.threads.messages.list
 (thread_id=thread_id)

 # Filter the messages by the role of ‹assistant› to get
 the responses
 responses = [message for message in messages.data if
 message.role == "assistant"]

 # Extracting values from the responses
 values = []
 for response in responses:
 for content_item in response.content: # Assuming
 'content' is directly accessible within 'response'
 if content_item.type == 'text': # Assuming each
 'content_item' has a 'type' attribute
 values.append(content_item.text.value)

The Latest OpenAI Features334

 # Assuming 'text' object contains 'value'

 return values

Retrieve the values from the run responses
values = get_run_response(run.id, thread.id)

Print the extracted values
for value in values:
 print(value)

Using these steps will give you the foundation for creating assistants using OpenAI’s Assistants API.

How it works…

he process of creating and utilizing a cybersecurity analyst assistant via OpenAI’s API involves a
sophisticated interaction of various components. This section delves into the underlying mechanisms
that make this possible, providing insights into the functionality and integration of these components.

• Initialization and File Upload. The process begins with initializing the OpenAI client, a crucial
step that enables communication with OpenAI’s services. Following this, a data file is uploaded,
serving as a crucial resource for the assistant. This file, containing relevant cybersecurity
information, is tagged for 'assistants' use, ensuring it is appropriately categorized within
OpenAI’s ecosystem.

• Assistant Creation. A specialized assistant is then created with a specific focus on cybersecurity
analysis. This assistant is not just any generic model; it is tailored with instructions that define
its role as a cybersecurity analyst. This customization is pivotal, as it directs the assistant’s focus
towards identifying potential security issues.

• Thread Management and User Interaction. Threads are a core component of this process,
acting as individual sessions of interaction with the assistant. A new thread is created for each
query, ensuring a structured and organized dialogue. Within this thread, a user message initiates
the assistant’s task, prompting it to analyze the uploaded data for vulnerabilities.

• Active Analysis and Run Execution. The Run represents the active phase of analysis, where
the assistant processes the information within the thread. This phase is dynamic, with the
assistant actively engaged in deciphering the data, guided by its underlying model and the
instructions provided.

• Response Retrieval and Analysis. Once the run is complete, the focus shifts to retrieving and
analyzing the assistant’s responses. This step is critical, as it involves filtering through the messages
to extract the assistant’s insights, which are based on its analysis of the cybersecurity data.

Building Advanced Cybersecurity Assistants with OpenAI 335

• Tool Integration. The assistant’s capabilities are further enhanced by integrating tools such
as the Code Interpreter. This integration allows the assistant to perform more complex tasks,
such as executing Python code, which can be particularly useful for automating security checks
or parsing threat data.

• Comprehensive Workflow. The culmination of these steps forms a comprehensive workflow that
transforms a simple query into a detailed cybersecurity analysis. This workflow encapsulates the
essence of leveraging AI in cybersecurity, demonstrating how structured data, when analyzed
by a specialized assistant, can yield critical insights into potential vulnerabilities.

This intricate process showcases the power of OpenAI’s API in creating specialized assistants that can
significantly augment cybersecurity operations. By understanding the underlying mechanisms, users
can effectively leverage this technology to enhance their cybersecurity posture, making informed
decisions based on the assistant’s analysis.

There’s more…

The Assistants API offers a rich set of features that extend far beyond the basic implementation covered
in the recipe. These capabilities allow for the creation of more complex, interactive, and versatile
assistants. Here’s a detailed look at some of the API features that weren’t covered in the initial recipe,
complete with code references to illustrate their implementation:

• Streaming Output and Run Steps. Future enhancements may introduce streaming outputs for
real-time interaction and detailed Run Steps for a granular view of the assistant’s processing
stages. This could be particularly useful for debugging and optimizing the assistant’s performance.

 # Potential future code for streaming output
stream = client.beta.streams.create
 (assistant_id=security_analyst_assistant.id, ...)
for message in stream.messages():
 print(message.content)

• Notifications for Status Updates. The ability to receive notifications for object status updates
could eliminate the need for polling, making the system more efficient.

 # Hypothetical implementation for receiving
 notifications
client.notifications.subscribe(object_id=run.id, event_
type='status_change', callback=my_callback_function)

• Integration with DALL·E or Browsing Tools. Integrating with DALL·E for image generation
or adding browsing capabilities could significantly expand the assistant’s functionalities.

 # Example code for integrating DALL·E
response = client.dalle.generate(prompt="Visualize
 network security architecture",
 assistant_id=security_analyst_assistant.id)

The Latest OpenAI Features336

• User Message Creation with Images. Allowing users to include images in their messages
could enhance the assistant’s understanding and response accuracy in visually dependent tasks.

 # Example code for sending an image in a user message
message = client.beta.threads.messages.create(thread.id,
 role="user", content="Analyze this network diagram.",
 file_ids=[uploaded_image_file.id])

• Code Interpreter Tool. The Code Interpreter tool enables the assistant to write and execute
Python code, offering a powerful way to automate tasks and perform complex analyses.

 # Enabling Code Interpreter in an assistant
assistant = client.beta.assistants.create(
 name="Data Analysis Assistant",
 instructions="Analyze data and provide insights.",
 model="gpt-4-turbo-preview",
 tools=[{"type": "code_interpreter"}]
)

• Code Interpreter Tool. This tool allows the assistant to pull information from uploaded files
or databases, enriching its responses with external data.

 # Using Knowledge Retrieval to access uploaded files
file = client.files.create(file=open("data_analysis.pdf",
 "rb"), purpose='knowledge-retrieval')
assistant = client.beta.assistants.create(
 name="Research Assistant",
 instructions="Provide detailed answers based on the
 research data.",
 model="gpt-4-turbo-preview",
 tools=[{"type": "knowledge_retrieval"}],
 file_ids=[file.id]
)

• Custom Tool Development. Beyond the provided tools, you can develop custom tools using
Function calling, tailoring the assistant’s capabilities to specific needs.

 # Example for custom tool development
def my_custom_tool(assistant_id, input_data):
 # Custom tool logic here
 return processed_data

Integration with the assistant
assistant = client.beta.assistants.create(
 name="Custom Tool Assistant",
 instructions="Use the custom tool to process data.",

Building Advanced Cybersecurity Assistants with OpenAI 337

 model="gpt-4-turbo-preview",
 tools=[{"type": "custom_tool", "function":
 my_custom_tool}]
)

• Persistent Threads and Advanced File Handling. Assistants can manage persistent threads,
maintaining a history of interactions, and handle files in various formats, supporting complex
data processing tasks.

 # Creating a persistent thread and handling files
thread = client.beta.threads.create(persistent=True)
file = client.files.create(file=open("report.docx",
 "rb"), purpose='data-analysis')
message = client.beta.threads.messages.create(thread.id,
 role="user", content="Analyze this report.",
 file_ids=[file.id])

• Safety and Privacy Considerations. OpenAI’s commitment to data privacy and security
ensures that sensitive information is handled with care, making the Assistants API suitable for
applications involving confidential data.

 # Example of privacy-focused assistant creation
assistant = client.beta.assistants.create(
 name="Privacy-Focused Assistant",
 instructions="Handle user data securely.",
 model="gpt-4-turbo-preview",
 privacy_mode=True
)

These examples illustrate the breadth and depth of functionalities offered by the Assistants API,
highlighting its potential to create highly specialized and powerful AI assistants. Whether it’s through
real-time interaction, enhanced data processing capabilities, or custom tool integration, the API provides
a versatile platform for developing advanced AI solutions tailored to a wide range of applications.

More comprehensive information about the OpenAI assistants API can be found at: https://
platform.openai.com/docs/assistants/overview and https://platform.
openai.com/docs/api-reference/assistants

https://platform.openai.com/docs/assistants/overview
https://platform.openai.com/docs/assistants/overview
https://platform.openai.com/docs/api-reference/assistants
https://platform.openai.com/docs/api-reference/assistants

Index

A
Abstract Syntax Tree (AST) 92
advanced cybersecurity assistants

building, with OpenAI 329-337
advanced vision models 307
anomaly detection

with PCAP analyzer 246-252
API key

benefits 5
creating 5-7

API Requests
sending 26-29

APTs
detecting, with ChatGPT for

Windows Systems 236-243
artificial intelligence (AI) 1
Assistants API 329
assisted incident analysis and

triage, ChatGPT 254-256
considerations and extensions 256

assisted root cause analysis,
ChatGPT 263-266

considerations and strategies 266
automated briefing reports

scripting 267-274

B
broader applications, in cybersecurity

script, type 274, 275

C
Causal Language Modeling (CLM) 302
CharacterTextSplitter 74
chat-3.5-turbo model 65
ChatGPT 2, 38

account, setting up 3, 4
assisted incident analysis and triage 254-256
assisted root cause analysis 263-266
as training aid 121
cybersecurity certification exam 175-179
feedback 121
inputs 68
iteration 121
job postings OSINT, analyzing 206-213
limitations 121
professional guidance, need for 121
public data OSINT with 196-199
regular check-ins, need for 121
roles, assigning to 16-18
root cause analysis 266, 267

Index340

social media OSINT with 196-199
used, for detecting APTs for

Windows System 236-243
used, for generating comprehensive

documentation 101-105
used, for training interactive

email phishing 168-174
using, for threat assessment 53-58

ChatGPT Advanced Data Analysis
using, for vulnerability data analysis 328
visualizing with 327-329

ChatGPT-assisted cybersecurity
standards compliance 118-120

ChatGPT interface
advantage 11
using 12-15

ChatGPT output
formatting, with conventions 21
generating, in table format 22-24

ChatGPT Plus
upgrading to 5

ChatGPT prompting
interacting with 11-16

chief information security
officers (CISOs) 108

CISSP 175
code comments and documentation

generating 96-100
code, for security flaws

analyzing 88-96
comprehensive cybersecurity policy 108
comprehensive documentation

generating, with ChatGPT 101-105
Computer Vision (CV) 299
copy icon 7
customer relationship management

(CRM) 323

custom GPTs
creating, for cybersecurity

applications 310-323
custom search engine ID 200
custom security testing scripts

generating 88-96
custom threat detection rules

building 243-246
cybersecurity analysis

local AI models, implementing
with LMStudio for 278-285

cybersecurity applications
custom GPTs, creating for 310-323

cybersecurity assistants 329
cybersecurity awareness

assessing 159-168
training content, developing 148-158

cybersecurity-themed role-playing game 148
cybersecurity training

gamifying 179-183
cybersecurity training and education 147
cyber threat intelligence

monitoring, with web browsing 324-327

D
data analysis

vulnerability 327-329

E
email phishing 147
embedding 69
environment variable

OpenAI API key, setting as 24-26
external text files

used, for storing and retrieving
prompts 29-31

Index 341

F
Facebook AI Similarity Search

(FAISS) 74, 267

G
game master 148
gamification

cybersecurity training 179-183
generative AI 1
Generative Pre-Trained Transformer

(GPT) 1, 136
Google API key 200
Google Dork automation

with ChatGPT 199-206
with ChatGPT and Python 199-206
with Python 199-206

governance, risk, and compliance (GRC) 108
GPT-3.5 162
gpt-3.5-turbo-16k model 176
GPT-4 model 65
GPT-assisted vulnerability scanning 65-68

flexibility and capabilities 68, 69
GPT-powered Kali Linux

terminal 213-219
terminal, benefits 213

GPT Prompts 205

H
high-dimensional vectors 74
Hugging Face 278
Hugging Face AutoTrain 277

used, for fine-tuning LLMs for
cybersecurity 299-304

I
Incident Response (IR) 277
incident response playbooks 257

generating 257-262
incident timeline reconstruction

scripting 267-274
integrated development

environment (IDE) 330
interactive assessments 147
interactive email phishing

training, with ChatGPT 168-174
IR Plans

reviewing, with PrivateGPT 295-298
iterative policy generation 110

J
job postings OSINT

analyzing, with ChatGPT 206-213

K
knowledge and language understanding

capabilities 110

L
LangChain 75

used, for analyzing vulnerability
assessment reports 69-75

large language models (LLMs) 1,
147, 254, 267, 277

Learning Management Systems (LMS) 159
Linux 296
Linux distribution 213
LLMs, for cybersecurity

fine-tuning, with Hugging Face’s
AutoTrain 299-304

Index342

LMStudio 277
local AI models, implementing for

cybersecurity analysis with 278-285
local AI models

implementing, for cybersecurity
analysis with LMStudio 278-285

local threat hunting
with Open Interpreter 286-290

M
machine learning (ML) algorithms 42
MacOS 296
macOS/Linux

OpenAI API key, setting as
environment variable 25

markdown library 109
Masked Language Modeling (MLM) 302
Microsoft PowerPoint 158
Microsoft Word document 64
MITRE ATT&CK framework 53

used, for creating red team
scenarios 186-196

MITRE ATT&CK Framework 53
using, for threat assessment 53-58

N
natural language processing

(NLP) 1, 42, 110, 213, 299
Nessus 65
network diagrams 307

analyzing, with OpenAI’s Image
Viewer 307-310

network traffic analysis
with PCAP analyzer 246-252

NLP, and the Linux operating system
components 218, 219

NMAP 65

O
OpenAI

advanced cybersecurity assistants,
building with 329-337

interacting with 5-11
OpenAI API 38, 53

used, for creating red team
scenarios 186-196

using, to automate process 43-53
using, with Python script to generate

threat report 60-64
using, with Python script to

generate threat report 59
OpenAI API key 122

setting up, as environment variable 24-26
setting up, as environment variable

on macOS/Linux 25
setting up, as environment

variable on Windows 25
OpenAI API version, of cybersecurity

policy generation 111-118
OpenAI assistants API

references 337
openai library 109
OpenAI Playground 176
OpenAI Python library 122
OpenAI’s Image Viewer

network diagrams, analyzing with 307-310
Open Interpreter 277

local threat hunting with 286-290
Open source intelligence (OSINT) 196
OpenVAS 65
os built-in Python library 109
OSINT analysis 212
output templates

using 19-21

Index 343

P
PCAP analyzer

anomaly detection with 246-252
network traffic analysis with 246-252

penetration testing
enhancing, with Shell GPT 290-294

phishing attacks 310
Poetry 295
policy creation process

streamlining 111
PrivateGPT 277

used, for reviewing IR Plans 295-298
prompts

retrieving and storing external
text files 29-31

variables, using 32-35
public data OSINT

with ChatGPT 196-199
Python

using, to automate process 43-53
python-pptx 158
Python scripting 205
Python version 3.10.x or later 187

R
real-time log analysis 229-236

foundational layer 236
red team scenarios

creating, with MITRE ATT&CK 186-195
creating, with OpenAI API 186-195

responses
handling 26-29

Retrieval Augmented Generation (RAG) 295

risk
prioritizing 132-137
ranking 132-137

risk assessment process
creating 121-131

risk assessment reports
building 137-146

risk management strategy 121
risk-scoring algorithms 136

S
script

usage 228
secure coding guidelines

creating, framework 88
generating 85-88
industry-specific considerations 87, 88

Secure Software Development
Lifecycle (SSDLC) 77

planning 78-82
security controls comparison table

creating 22-24
security policy and procedure

generation 108-111
security requirement generation

requirements phase 82-84
structured approach 84, 85

Shell GPT 277
used, for enhancing penetration

testing 290-294
social data OSINT

with ChatGPT 196-199
Streamlit 69
system role 110

Index344

T
tactics, techniques, and procedures

(TTPs) 53, 194, 327
technologies, into cybersecurity toolkit

integrating, prerequisites 267, 268
threat assessment

with ChatGPT 53-58
with MITRE ATT&CK Framework 53-58

threat intelligence analysis 223-228
threat report

OpenAI API, using with Python
script to generate 59-64

token limit 137
token window 69
tqdm library 109
transformer 136

U
User Behavior Analytics (UBA) 274
user guide 96

V
vectorizing 69
vector representations 74
Vulnerability Assessment Plans

creating 38-43
vulnerability assessment reports

analyzing, with LangChain 69-75
vulnerability data analysis

ChatGPT Advanced Data
Analysis, using for 328

vulnerability scanning 65

W
WannaCry 54
web browsing

cyber threat intelligence,
monitoring with 324-327

Windows 296
OpenAI API key, setting as

environment variable 25
Windows Systems

ChatGPT, used for detecting
APTs for 236-243

Z
Zapier account

URL 311

packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as
industry leading tools to help you plan your personal development and advance your career. For more
information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos from over

4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at packtpub.com and as a print book customer, you
are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.
com for more details.

At www.packtpub.com, you can also read a collection of free technical articles, sign up for a range
of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://packtpub.com
http://packtpub.com
mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
www.packtpub.com

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Unlocking the Secrets of Prompt Engineering

Gilbert Mizrahi

ISBN: 978-1-83508-383-3

• Explore the different types of prompts, their strengths, and weaknesses

• Understand the AI agent’s knowledge and mental model

• Enhance your creative writing with AI insights for fiction and poetry

• Develop advanced skills in AI chatbot creation and deployment

• Discover how AI will transform industries such as education, legal, and others

• Integrate LLMs with various tools to boost productivity

• Understand AI ethics and best practices, and navigate limitations effectively

• Experiment and optimize AI techniques for best results

https://packt.link/1835083838

347Other Books You May Enjoy

The Future of Finance with ChatGPT and Power BI

James Bryant, Aloke Mukherjee

ISBN: 978-1-80512-334-7

• Dominate investing, trading, and reporting with ChatGPT’s game-changing insights

• Master Power BI for dynamic financial visuals, custom dashboards, and impactful charts

• Apply AI and ChatGPT for advanced finance analysis and natural language processing (NLP)
in news analysis

• Tap into ChatGPT for powerful market sentiment analysis to seize investment opportunities

• Unleash your financial analysis potential with data modeling, source connections, and Power
BI integration

• Understand the importance of data security and adopt best practices for using ChatGPT and
Power BI

https://packt.link/1805123343

348

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just like you, to
help them share their insight with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you’ve finished ChatGPT for Cybersecurity Cookbook, we’d love to hear your thoughts! If you
purchased the book from Amazon, please click here to go straight to the Amazon review page for this
book and share your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

http://authors.packtpub.com
https://packt.link/r/1-805-12404-8

349

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781805124047

2. Submit your proof of purchase

3. That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781805124047
https://packt.link/free-ebook/9781805124047

	Cover
	Title Page
	Copyright and Credits
	Dedication
	Foreword
	Contributors
	Table of Contents
	Preface
	Chapter 1: Getting Started: ChatGPT, the OpenAI API, and Prompt Engineering
	Technical requirements
	Setting up a ChatGPT Account
	Getting ready
	How to do it…
	How it works…
	There’s more…

	Creating an API Key and interacting with OpenAI
	Getting ready
	How to do it…
	How it works…
	There’s more…

	Basic Prompting (Application: Finding Your IP Address)
	Getting ready
	How to do it…
	How it works…
	There’s more…

	Applying ChatGPT Roles (Application : AI CISO)
	Getting ready
	How to do it…
	How it works…
	There’s more…

	Enhancing Output with Templates (Application:
Threat Report)
	Getting ready
	How to do it…
	How it works…
	There’s more…

	Formatting Output as a Table (Application: Security Controls Table)
	Getting ready
	How to do it…
	How it works…
	There’s more…

	Setting the OpenAI API Key as an Environment Variable
	Getting ready
	How to do it…
	How it works…
	There’s more…

	Sending API Requests and Handling Responses with Python
	Getting ready
	How to do it…
	How it works…
	There’s more…

	Using Files for Prompts and API Key Access
	Getting ready
	How to do it…
	How it works...
	There’s more...

	Using Prompt Variables (Application: Manual Page Generator)
	Getting ready
	How to do it…
	How it works…
	There’s more...

	Chapter 2: Vulnerability Assessment
	Technical requirements
	Creating Vulnerability Assessment Plans
	Getting ready
	How to do it…
	How it works…
	There’s more…

	Threat Assessment using ChatGPT and the MITRE ATT&CK framework
	Getting ready
	How to do it…
	How it works…
	There’s more…

	GPT-Assisted Vulnerability Scanning
	Getting ready
	How to do it…
	How it works…
	There’s more…

	Analyzing Vulnerability Assessment Reports using LangChain
	Getting ready
	How to do it…
	How it works…
	There’s more…

	Chapter 3: Code Analysis and
Secure Development
	Technical requirements
	Secure Software Development Lifecycle (SSDLC) Planning (Planning Phase)
	Getting ready
	How to do it…
	How it works…
	There’s more…

	Security Requirement Generation (Requirements Phase)
	Getting ready
	How to do it…
	How it works…
	There’s more…

	Generating Secure Coding Guidelines (Design Phase)
	Getting ready
	How to do it…
	How it works…
	There’s more…

	Analyzing Code for Security Flaws and Generating Custom Security Testing Scripts (Testing Phase)
	Getting ready
	How to do it…
	How it works…
	There’s more…

	Generating Code Comments and Documentation (Deployment/Maintenance Phase)
	Getting ready
	How to do it…
	How it works…
	There’s more…

	Chapter 4: Governance, Risk, and Compliance (GRC)
	Technical requirements
	Security Policy and Procedure Generation
	Getting ready
	How to do it…
	How it works…
	There’s more…

	ChatGPT-Assisted Cybersecurity Standards Compliance
	Getting ready
	How to do it…
	How it works…
	There’s more…

	Creating a Risk Assessment Process
	Getting ready
	How to do it…
	How it works…
	There’s more…

	ChatGPT-Assisted Risk Ranking and Prioritization
	Getting ready
	How to do it…
	How it works…
	There’s more…

	Building Risk Assessment Reports
	Getting ready
	How to do it…
	How it works…
	There’s more…

	Chapter 5: Security Awareness
and Training
	Technical requirement
	Developing Security Awareness Training Content
	Getting ready
	How to do it…
	How it works…
	There’s more…

	Assessing Cybersecurity Awareness
	Getting ready
	How to do it…
	How it works…
	There’s more…

	Interactive Email Phishing Training with ChatGPT
	Getting ready
	How to do it…
	How it works…
	There’s more…

	ChatGPT-Guided Cybersecurity Certification Study
	Getting ready
	How to do it…
	How it works…
	There’s more…

	Gamifying Cybersecurity Training
	Getting ready
	How to do it…
	How it works…
	There’s more…

	Chapter 6: Red Teaming and
Penetration Testing
	Technical requirements
	Creating red team scenarios using MITRE ATT&CK and the OpenAI API
	Getting ready
	How to do it…
	How it works…
	There’s more…

	Social media and public data OSINT with ChatGPT
	Getting ready
	How to do it…
	How it works…
	There’s more…

	Google Dork automation with ChatGPT and Python
	Getting ready
	How to do it…
	How it works…
	There’s more…

	Analyzing job postings OSINT with ChatGPT
	Getting ready
	How to do it…
	How it works…
	There’s more…

	GPT-powered Kali Linux terminals
	Getting ready
	How to do it…
	How it works…
	There’s more…

	Chapter 7: Threat Monitoring
and Detection
	Technical requirements
	Threat Intelligence Analysis
	Getting ready
	How to do it…
	How it works…
	There’s more…

	Real-Time Log Analysis
	Getting ready
	How to do it…
	How it works…
	There’s more…

	Detecting APTs using ChatGPT for Windows Systems
	Getting ready
	How to do it…
	How it works…
	There’s more…

	Building Custom Threat Detection Rules
	Getting ready
	How to do it…
	How it works…
	There’s more…

	Network Traffic Analysis and Anomaly Detection with PCAP Analyzer
	Getting ready
	How to do it…
	How it works…
	There’s more…

	Chapter 8: Incident Response
	Technical requirements
	ChatGPT-assisted incident analysis and triage
	Getting ready
	How to do it…
	How it works…
	There’s more…

	Generating incident response playbooks
	Getting ready
	How to do it…
	How it works…
	There’s more…

	ChatGPT-assisted root cause analysis
	Getting ready
	How to do it…
	How it works…
	There’s more…
	Notes of caution

	Automated briefing reports and incident timeline reconstruction
	Getting ready
	How to do it…
	How it works…
	There’s more…
	Notes of caution

	Chapter 9: Using Local Models
and Other Frameworks
	Technical requirements
	Implementing local AI models for cybersecurity analysis with LMStudio
	Getting ready
	How to do it…
	How it works…
	There’s more…

	Local threat hunting with Open Interpreter
	Getting ready
	How to do it…
	How it works…
	There’s more…

	Enhancing penetration testing with Shell GPT
	Getting ready
	How to do it…
	How it works…
	There’s more…

	Reviewing IR Plans with PrivateGPT
	Getting ready
	How to do it…
	There’s more…

	Fine-tuning LLMs for cybersecurity with Hugging Face’s AutoTrain
	Getting ready
	How to do it…
	How it works…
	There’s more…

	Chapter 10: The Latest OpenAI Features
	Technical requirements
	Analyzing network diagrams with OpenAI’s Image Viewer
	Getting ready
	How to do it…
	How it works…
	There’s more…

	Creating Custom GPTs for Cybersecurity Applications
	Getting ready
	How to do it…
	How it works…
	There’s more…

	Monitoring Cyber Threat Intelligence with Web Browsing
	Getting ready
	How to do it…
	How it works…
	There’s more…

	Vulnerability Data Analysis and Visualization with ChatGPT Advanced Data Analysis
	Getting ready
	How to do it…
	How it works…
	There’s more…

	Building Advanced Cybersecurity Assistants with OpenAI
	Getting ready
	How to do it…
	How it works…
	There’s more…

	Index
	Other Books You May Enjoy

